В.М.Черкасский

НАСОСЫ, ВЕНТИЛЯТОРЫ, КОМПРЕССОРЫ

Для студентов вузов

В. М. Черкасский

НАСОСЫ, ВЕНТИЛЯТОРЫ, КОМПРЕССОРЫ

Допущено Министерством высшего и среднего специального образования СССР в качестве учебника для студентов теплоэнергетических специальностей втузов

ББК 31.56 **U-48** УДК [621.51+621.63+621.65](075.8)

Рецензент кафедра гидромашии ХПИ им. В. И. Лепина

BOOKS.PROEKTANT.ORG

БИБЛИОТЕКА ЭЛЕКТРОННЫХ копий книг

для проектировщиков и технических специалистов

Черкасский В. М.

U-48Насосы, вентиляторы, компрессоры: Учебник для теплоэнергетических специальностей вузов. --2-е изд., перераб. и доп. — М.: Энергоатомиздат, 1984. — 416 с., ил.

> В пер.: 1 р. 10 к. 45000 экз.

Рассмотрены классификации, основы теорин, характеристики, методы регулировация, конструкции и вопросы эксплуатации машин для подачи жидкостей и газов, применяющихся в энергетике и других отраслях промышленности. Первое издание вышло в 1977 г.; второе существенно дополнено и обновлено сведеннями о новых конструкциях насосов и копрессоров.

Для студентов теплоэнергетических специальностей.

ББК 31.56+31.76 2303020000-254 238-84 051(01)-84

> © Эпергия, 1977 Эпергоатомиздат, 1984, с изменениями

6П5.7

ПРЕДИСЛОВИЕ

Учебник предназначен для изучения дисциплин «Насосы, вентиляторы, компрессоры», «Гидромеханика и гидромашины», «Гидравлика и насосы» студентами эксплуатационных энергетических специальностей высших учебных заведений и может быть использован как вводный и общий курс студентами гидромашиностроительных и технологических специальностей различных профилей.

В книге кратко излагаются основы теории, вопросы эксплуатации и рассматриваются конструкции машин, применяемых для подачи жидкостей и газов в тепловых и технологических системах электростанций и промышленных

предприятий.

В книге использован материал предшествующих изданий (в 1977 г. на русском и в 1980 г. на английском языках), исправленный и дополненный в соответствии с рецензиями, отзывами и замечаниями, полученными автором.

В связи с развитием энергетики в направлениях, указанных решениями XXV и XXVI съездов КПСС, книга дополнена разделами «Насосное оборудование атомных электрических станций», «Насосное оборудование тепловых электрических станций» и др.; ряд разделов книги переработан полностью или частично. В некоторых разделах книги обновлен иллюстративный материал по конструкциям машин и их деталям.

Одним из специальных разделов книги является § 3.19 «Неустойчивость работы. Помпаж», написанный по просьбе автора доктором техн. наук проф. В. В. Казакевичем,

разработавшим основы теории помпажа.

Методика изложения определяется многолетним опытом преподавания автором дисциплин гидромеханического и гидромашинного направлений в Ивановском энергетическом институте им. В. И. Ленина. При работе над текстом

рукописи автор руководствовался твердым убеждением. что в основе формирования инженерных знаний должно находиться отчетливое представление о физических и механических явлениях, происходящих в изучаемой системе, и что физическая сущность этих явлений не должна заслоняться не в меру развитыми математическими комбинациями. Поэтому автор полагал допустимым использование в тексте лишь самого необходимого математического аппарата, способствующего пониманию физической сущности рабочего процесса гидромашины.

Вслелствие незначительного повышения давления вентиляторами они не изменяют термодинамического состояния перемещаемой среды. Это дает основание для рассмотрения теории насосов и вентиляторов слитно, в общем разделе, как теории машин для подачи несжимаемой сре-

ды (гл. 3 и 6).

Специфика рабочего процесса компрессоров, обусловленная термодинамическими факторами, приводит к целесообразности изложения вопросов теории и практики этих машин в едином общем разделе «Компрессорные машины».

Автор особо признателен доктору техн. наук проф. Д. Я. Алексапольскому (кафедра гидравлических машин ХПИ им. В. И. Ленина), выполнившему рецензирование рукописи, канд. техн. иаук доц. А. К. Михайлову за труд по научному редактированию книги и канд, техн. В. В. Малюшенко, сделавшему подробный анализ предшествующего издания.

Автор приносит искреннюю благодарность всем организациям и специалистам за рецензии, отзывы и критические замечания, учтенные при подготовке переиздания. Отзывы, предложения и замечания по книге просьба направлять по адресу: 113114, Москва, М-114, Шлюзовая наб., 10, Энергоатомиздат.

Автор

Принятые обозначения и единицы физических величин

Геометрические величины

- r. R. м, мм радиусы сечений, рабочих колес, отводов; расстояния точек в потоках от условного центра;
- d, D, м, мм диамстры сечений, рабочих колес;
 - b, м. мм ширина лопасти, длина хорды профиля;
 - В. м. мм ширина решетки лопастей;
 - 1, м, мм длина лопасти;
 - t. м, мм шаг лопастей решетки;
 - г; *Н*. м высота; напор;
 - δ, мм размер зазора (ширина щели);
 - S. м, мм ход поршия;
 - $\omega = \Omega$, M^2 площадь сечения, площадь поршня;
 - V, м⁸ объсм жидкости, газа;
- β_{y} , град угол установки лопасти в решетке (угол между хордой профиля лопасти и фронтальной линией решетки);
- β_{π} , град угол между осью решетки и касательной к средней линии профиля; угол между изправлением окружной скорости, обратным вращению, и касательной к средней линии профиля (для центробежных машин);
- θ, град угол изогнутости профиля; угол раскождения диффузора или схождения конфузора;
 - $\Lambda \beta$, град изменение углов; разность двух соссдиих эначений углов; $z,\ i$ количество лопастей, ступеней, цилиндров.

Кинематические величины

- ω, рад/с, 1/c угловая скорость;
 - g, м/с² ускорение свободного падения;
- $c.\ u.\ w.\ \text{м/c}$ соответственно абсолютная, окружная, относительная скорости;
- Λε, Δи, м/с изменения скоростей или их проекций;
- α, град— угол между окружной и абсолютной скоростями в параллелограммах или треугольниках скоростей;
- β, град угол между направлением окружной скорости, обратным вращению, и вектором относительной скорости (для центробежных машин); угол между отрицательным направлением относительной скорости и осью решетки (в осевых машинах);
 - і, град угол атаки при натеканни жидкости (газа) на лопасть;
 - Γ , м²/с циркуляция скорости;
- v, v^2/c , cv^2/c кинематический коэффициент вязкости жидкости, газа:
 - п, об/мин частота вращения вала (ротора) машин;
 - а. м/с скорость звука.

P, H -- сила:

M, H⋅м — момент силы:

N. Дж/с. Вт, кВт — мощность;

Е, Дж - энергия.

Аэродинамические и термодинамические величины

ho, кг/м³ — плотность (масса одной кубической единицы объема) жидкости, газа;

ү, Н/м³ — удельный (объемный) вес жидкости, газа;

v, м³/кг — удельный объем (объем одной единицы массы или веса) жидкости, газа:

р, Па — давление жидкости, газа;

 $Q, \, M^3/c, \, M^3/MHH, \, M^3/4$ — объемиая подача (расход);

 $M, m, \kappa \Gamma/c, \kappa \Gamma/мин — массовая подача (расход);$

L, Дж/кг — эпергия единицы массы жидкости, газа; удельнаа работа;

h, м — потери напора жидкости, газа;

Т — абсолютная температура, К;

Q, Дж — количество теплоты;

q. Дж/кг — удельное количество теплоты жидкости, газа;

с, Лж/(кг-К) — удельная теплоемкость;

Дж/кг — удельная работа термодинамического процесса;

S, Дж/(к $\mathbf{r} \cdot \mathbf{K}$) — энтропия;

к — показатель изоэнтропного процесса;

n — показатель политропного процесса;

i, Дж/(кг•К) — энтальния.

Коэффициенты и относительные величины

η — КПД машины, ступени, проточной части;

степень реактивности;

ζ — коэффициент местной потери энергии (напора);

 $\mu - - коэффициент заполнения сечения активным потоком; коэффициент закрутки потока;$

v — втулочное отношение;

т — относительный шаг профилей в решетке;

 \overline{b} — густота решетки профилей;

 C_{x} . C_{y} — аэродинамические коэффициенты лобовой и подъемной сил;

ф — коэффициент расхода;

ф — коэффициент напора;

Re, Fr, Eu, M, Sh — соответственно числа Рейнольдса, Фруда, Эйлера, Маха, Струхала;

- λ объемный коэффициент; коэффициент потери энергии, распределенной по длине;
 - є степень повышения давления:
- a относительный объем мертвого пространства поршневого компрессора;
 - δ коэффициент (масштаб) подобия.

Индексы

- r радиальный (спроектированный на радиус);
- а осевой (спроектированный на ось машины);
- u тангенциальный (спроектированный на линию окружной скорости);
 - л лопастный (относящийся к лопасти машины);
 - п полезный;
 - т теоретический;
 - ск скоростной;
 - ст статический; относящийся к ступени;
 - г геометрический; гидравлический;
- 1, 2, 3... относящийся к сечениям первому, второму третьему...
 - ∞ эквивалентный; бесконечный; приблизительный;
- опт оптимальный (относящийся к режиму с максимальным КПД), экономически наивыгоднейший;
 - вп внутрешний; относящийся к внутреннему процессу машины;
 - к относящийся к корпусу; конечный;
 - м модельный (относящийся к модели машины); механический;
- и натурный (относящийся к патурной конструкции); относящийся к началу процесса;
 - о объемный;
 - вс относящийся к всасыванию:
- доп допустимый;
- кр критический;
- макс максимальный;
- мин минимальный:
- рег относящийся к режиму регулирования машины;
 - * -- относящийся к заторможенному потоку;
 - а адиабатный:
 - п политропный, полезный;
- пол полный:
 - is изоэнтропиый;
 - i внутренний (индикаторный);
 - е эффективный;
 - у относящийся к подъемной силе;
 - х относящийся к лобовой силе:
 - в относящийся к валу машины; к воде.

В современной технике машины для подачи жидкостей называют насосами.

Машины для подачи газов принято подразделять в зависимости от развиваемого ими давления на компрессоры,

нагнетатели и вентиляторы.

Насосы примитивных конструкций применялись еще во времена Аристотеля (IV в. до н. э.). Водоподъемные машины, приводимые в действие силой людей и животных, использовались в Египте за несколько тысячелетий до н. э. Из сочинений итальянского зодчего Витрувия следует, что поршневые насосы применялись в Римской империи еще в царствование цезаря Августа (I в. до н. э.). Насосы с бесконечной цепью действовали в Каире для подъема воды с глубины 91,5 м в V—VI вв. до н. э. В Александрии в V—VI вв. до н. э. был построен поршневой пожарный насос, отлитый из бронзы.

Примерно в 1805 г. Ньюкомен (Англия) создал поршневой насос для подъема воды в руднике, применив для привода его паровой цилиндр с конденсацией пара, использующий для создания необходимой силы на штоке атмо-

сферное давление.

В 1840—1850 гг. американец Вортингтон предложил конструкцию парового насоса, в котором поршни насоса и парового двигателя располагались на общем штоке; движением поршней управляла специальная парораспределительная система.

Широкое использование насосов в России началось с горнорудной промышленности. В XVIII в. горный мастер К. Д. Фролов построил на Змеиногорском руднике Алтая несколько установок с поршневыми насосами для водоотлива из шахт и промывания россыпей. Привод насосов осуществлялся от водяных колес мельничного типа.

К. Д. Фролов был выдающимся изобретателем. Он дал оригинальные образцы конструкций насосов и гидродвига-телей, широко применявшихся им и его учениками в гор-

ной промышленности Алтая и Урала.

Со второй половины XIX в. началось развитие центро-Со второй половины XIX в. началось развитие центро-бежных насосов. Установить достоверно изобретателя центробежного насоса невозможно. Известны рисунки Лео-пардо да Винчи, относящиеся к XV в., в которых великий ученый разъяснял возможность использования центробеж-ной силы воды, вращающейся в криволинейном канале, для подачи ее на некоторую высоту. Возможно, что цент-робежный насос был изобретен итальянцем Жорданом, выполнившим в конце XVII в. рисунок такого насоса. В на-чале XVIII в. французский физик Папен изготовил центро-бежный насос примитивной конструкции.

Первой примененной в практике маниной для подачи жидкости действием центробежной силы был насос Ледемура (Франция, 1732 г.). В этой конструкции вода, находящаяся в наклонной трубе, вращающейся вокруг вертикальной оси, перемещалась с нижнего уровня на верхний действием центробежной силы самой воды. Таким образом

достигалась подача воды на некоторую высоту.

Классическая схема и конструкция одноколесного центробежного насоса, применяющегося в различных модификациях и поныне, была осуществлена Андревсом (США) в 1818 г. и существенно улучшена им в 1846 г. Исследования Андревса привели к созданию многоступенчатого центробежного насоса, однако весьма несовершенной конструктический в 1951 г. ции, запатентованной в 1851 г.

Знаменитый ученый Рейнольдс (Англия), исследуя конструкцию многоступенчатого насоса, ввел в нее прямой и обратный направляющие лопаточные аппараты и в 1875 г. запантентовал насос, в общих чертах аналогичный современным многоступенчатым насосам.

Широкое распространение центробежных насосов стало возможным только на основе применения электрической ло возможным только на основе применения электрической энергии и, в частности, при использовании электродвигателя трехфазного переменного тока, разработанного инженером В. О. Доливо-Добровольским (Россия, 1888—1889 гг.). К этому времени относится изобретение русским инженером В. А. Пушечниковым специального малогабаритного насоса для подъема подземных вод с больших глубин.

Изобретение поршневого воздушного насоса, прототвпа современных компрессоров с одной ступенью сжатия, свя-ыно с именем физика Герике (Германия, 1640 г.). Совер-

шенствованию компрессоров в XVIII и XIX вв. способствовало развитие горно-рудной промышленности и металлургии. Во второй половине XVIII в. в Англии Вилькинсон запатентовал двухцилиндровый пориневой компрессор и в то же время Уатт изготовил воздуходувную машину с паровым приводом.

Компрессоры со ступенями сжатия, но без промежуточных охладителей появились во Франции в 30-х годах прошлого столетия. Многоступенчатый компрессор с межступенными охладителями был предложен в 1849 г. Ратеном

(Германия).

Производство центробежных компрессоров было начато фирмами Рато (Франция) и Парсонс (Англия) в нача-

ле XX в.

В России в 1832 г. нженер А. А. Саблуков предложил конструкцию центробежного вентилятора для проветривания шахт и заводских помещений и указал простой способ

его расчета.

Широкому распространению центробежных мащин в промышленности сопутствовало и развитие их теории. Основное уравнение центробежного насоса непосредственно следует из теоретической работы акад. Л. Эйлера, члена Российской академии наук, «Более полная теория машин, приводимых в действие силою воды», опубликованной им во второй половине XVIII в.

Теоретические работы О. Рейнольдса (Англия), Л. Прандтля (Германия) и выдающиеся научные труды Н. Е. Жуковского (Россия), относящиеся к концу XIX и началу XX вв., привели к созданию современной научной основы насосостроения. Особое значение имели работы Н. Е. Жуковского «Видоизменение метода Кирхгофа» и «Теория воздушных винтов». В первой из них дано теоретическое обоснование метода расчета подъемной силы крыла, распространяемого ныне на лопасти насосов, вентиляторов и компрессоров. Вторая работа содержит теорию и метод расчета пропеллеров. Эта работа легла в основу теории осевых вентиляторов, разработанной учениками Н. Е. Жуковского — К. А. Ушаковым, В. П. Ветчинкиным и др. Значение научной и организационной деятельности Н. Е. Жуковского очень велико. Им были определены и разработаны важнейшие направления развития современной гидроаэромеханики.

Исключительно большое значение для развития рассматриваемой области машиностроения в СССР имела деятельность Центрального аэрогидродинамического инсти-

тута (ЦАГИ), организованного Н. Е. Жуковским в 1918 г. В этом институте в течение многих лет проводились исследования воздушных и гидравлических машин.

В настоящее время научно-исследовательская по насосам, вентиляторам и компрессорам в СССР ведется многими организациями, такими как ВНИИгидромаш, ВНИИхиммаш, ЦАГИ им. Н. Е. Жуковского, ВНИИАЭН, ВНИИкомпрессормаш.

Большие работы ведутся на специальных кафедрах вузов — Ленинградского и Харьковского политехнических, МВТУ им. Н. Э. Баумана, Сумского филиала XIIИ и др.

Пользуются широкой известностью исследования и конструкторские разработки в области насосо- и компрессоростроения, выполненные на специальных кафедрах и в лабораториях политехнических институтов на континентах Европы, Америки и в Японии. Среди деятелей этой области техники, известных своими фундаментальными исследованиями, могут быть названы: И. И. Куколевский, Г. Ф. Проскура, А. А. Ломакин, С. С. Руднев (насосострое-ние), В. И. Поликовский, М. И. Невельсон, К. А. Ушаков (вентиляторостроение), В. Ф. Рис, М. Н. Френкель, К. П. Селезнев (компрессоростроение).

Из зарубежных ученых следует отметить О. Рейпольдса (Англия), проф. А. Стодола (Чехословакия), Л. Прандт-

ля. А. И: Степанова (США).

Развитию теории насосо- и компрессоростроения и практическому применению ее в Европе и на континенте Америки в высокой степени способствовали классические труды К. Пфлейдерера «Лопаточные машины для жидкостей и газов», А. А. Ломакина «Центробежные и пропеллерные насосы», А. И. Степанова «Центробежные и осевые насосы» и «Центробежные и осевые компрессоры, воздуходувки и вентиляторы», опубликованные в основном в первой половине текущего столетия.

Из печатных изданий последнего времени особый интерес представляет труд инженера-консультанта американской корпорации «Вортингтон» Карассика и инженера Картера «Центробежные насосы», переведенный на несколько языков.

Количество насосов, компрессоров и вентиляторов различного назначения, выпускаемых промышленностью технически развитых стран, исчисляется миллионами штук в год; электрическая энергия, используемая для привода их, составляет существенную часть в энергетическом балансе стран. Поэтому теоретические и экспериментальные исследования, направленные на усовершенствование рабочих процессов и повышение КПД машин этого вида, имеют очень большое значение.

Для современной промышленности характерно соединение заводов в крупные специализированные комплексы производственные объединения. В составе таких объединений, располагающих мощной финансовой базой, возможна организация специальных конструкторских бюро, крупномасштабных испытательных стендов, исследовательских лабораторий для разработки важнейших проблем отрасли. Это относится непосредственно и к области насосного и компрессорного машиностроения.

В Советском Союзе действуют крупнейшие производственные объединения: «Невский завод», «Ленинградский металлический завод». сумские «Насосэнергомаш» и Тяжелого компрессоростроения, «Южгидромаш», «Уралгидромаш» и др., выпускающие насосы и компрессоры для промышленности СССР и экспорта.

Крупнейшим объединением США является «Вортингтон» - старейшая насосостроительная фирма мира, имеющая филиалы в 14 странах, выпускающая около 300 типов насосов различных назначений и размеров. Насосы в США изготовляют и многие другие фирмы; наиболее значительные из них, выпускающие насосы для энергетики, «Пасифик пампс» и «Ингерсолл Рэнд».

В Федеративной Республике Германии действуют известные фирмы «КСБ», «Рютчи Пумпэн и др., выпускающие насосы высокого класса, в основном на экспорт.

Особо должны быть отмечны фирмы «Зульцер» (Швейцария) и «Рато» (Франция), выпускающие различные насосы и компрессоры, в совершенстве конструкций которых отражается многолетний опыт фирм (более 100 лет).

В странах СЭВ известны комбинаты «Сигма» и «Шко-

да» (ЧССР) и «Пумпен унд Фердихтер» (ГДР). Последняя международная выставка «Насосы и компрессоры-75» отчетливо продемонстрировала громадные ус-пехи человечества в создании машин для подачи жидкостей и газов.

О5ЩИЕ СВЕДЕНИЯ ПО МАШИНАМ ДЛЯ ПОДАЧИ ЖИДКОСТЕЙ И ГАЗОВ

ГЛАВА ПЕРВАЯ

КЛАССИФИКАЦИЯ. ОБЛАСТИ ПРИМЕНЕНИЯ

1.1. Определения и классификация

Государственный стандарт определяет насос как машину для создания потока жидкой среды. Развитие этого определения приводит к пониманию насоса как машины, предназначенной для перемещения жидкости и увеличения ее энергии. При работе насоса энергия, получаемая им от двигателя, превращается в потенциальную, кинетическую и в незначительной мере в тепловую энергию потока жидкости.

Машины для подачи газовых сред в зависимости от развиваемого ими давления называют вентиляторами, газодувками, компрессорами.

Вентилятор — машина, перемещающая газовую среду

при степени повышения давления до 1,15*.

Газодувка — машина, работающая при є>1,15, но ис-

кусственно не охлаждаемая.

Компрессор сжимает газ при ε>1,15 и имеет искусственное (обычно водяное) охлаждение полостей, в которых происходит сжатие газа.

В современной промышленности распространены гидродвигатели — машины, превращающие энергию потока жидкости в механическую энергию (гидротурбины, гидро-

моторы).

В последнее время в различных технических устройствах употребляются гидропередачи — конструктивные комбинации, служащие для передачи механической энергии с вала двигателя на вал приводимой машины гидравлическим способом. Гидропередача состоит из насоса, гидродвигателя и системы трубопроводов с устройствами для распределения и регулирования потоков рабочей жидкости (энергоносителя). Во многих случаях все указанные эле-

Степень повышения давления є — отношение давления газа на выходе из машины к давлению его на входе.

менты гидропередачи совмещаются в едином конструктивном блоке. Гидравлические двигатели, насосы и гидропередачи составляют класс гидравлических машин. Классификация гидравлических машин по энергетическому и конструктивному признакам представлена на рис. 1.1.

ГОСТ 17398-72 подразделяет насосы на два основных

класса: динамические и объемные.

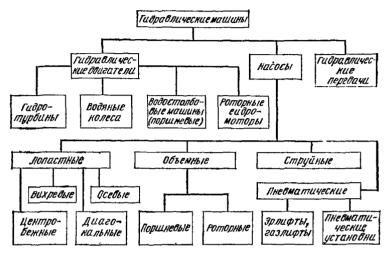


Рис. 1.1. Классифнкация гидравлических машин по энергетическому и конструктивному признакам

В динамических насосах передача эпергии потоку происходит под влиянием сил, действующих на жидкость в рабочих полостях, постоянно соединенных с входом и выходом насоса. Характерным представителем этого класса является центробежный насос (см. рис. 1.3).

В объемных насосах энергия передается жидкой среде в рабочих камерах, периодически изменяющих объем и попеременно сообщающихся с входом и выходом насоса. Для этого класса типичным является поршневой насос (см. рис. 1.6).

Виды насосов по принципу действия и конструкциям весьма многообразны; исчерпывающее представление об этом дает ГОСТ 17398-72 и прилагаемая к нему схема.

Простейшая краткая классификация машин для подачи жидкостей и газов на основе конструктивных признаков и свойств перемещаемой среды приведена на рис. 1.2.

Среди динамических насосов, применяемых в промышленности, наиболее распространены лопастные, в которых жидкая среда перемещается под воздействием движущихся лопастей, и вихревые. В последних жидкость перемещается в тангенциальном направлении благодаря действию плоских радиальных лопастей, расположенных по периферии рабочего колеса.

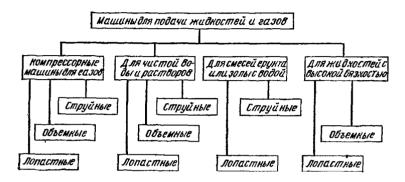


Рис. 1.2. Классификация гидравлических машин по конструктивным признакам и свойствам перемещасмой среды

Среди объемных насосов наиболее распространены пориневые и роторные. Объяснение принципа действия этих насосов дано в § 1.3.

Машины для подачи газовых сред аналогично машинам для жидкостей также подразделяют на динамические и объемные.

1.2. Динамические машины

Эти машины представлены в современной промыщленности тремя основными группами: центробежными и осевыми насосами, вентиляторами и компрессорами, вихревыми насосами. Машины первых двух групп являются лопастными, третью группу государственный стандарт относит к машинам трения.

Большое распространение лопастных машин обусловлено удобством комбинирования их с приводными электродвигателями, компактностью при больших подачах, достаточно высоким КПД, возможностью достижения высоких давлений.

Схема центробежного насоса дана на рис. 1.3. Рабочие лопасти 1, жестко скрепленные с дисками, один из которых закреплен на валу, соединенном с валом приводного двигателя, вращаются вокруг оси вала. Под влиянием центробежных сил, обусловленных массами жидкости, находя-

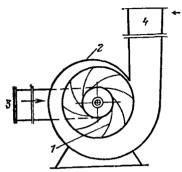


Рис. 1.3. Схема устройства центробежного насоса

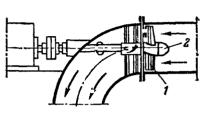
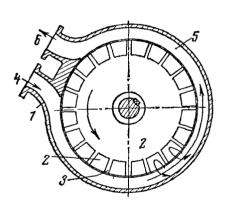



Рис. 1.4. Схема осевого насоса

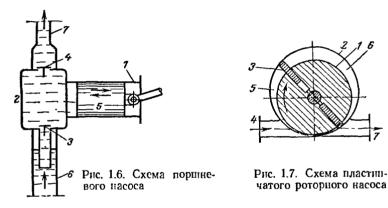
Рнс. 1.5. Схема вихревого насоса

шимися в межлопастных пространствах, жидкость повышает свою энергию, выбрасывается в спиральный канал, образованный корпусом 2, и далее вытесняется напорный R трубопровод 4. приемное отверстие непрерывное происходит всасывание жидкости.

На рис. 1.4 дана схема осевого насоса. Лопасти 1 закреплены на втулке 2 под некоторым углом к плоскости нормальной оси вала насоса, образуя рабочее колесо. При вращении лопасти взаимодействуют с потоком жидкости, сообщая ей энергию и перемещая ее вдоль оси насоса.

Способ действия вихревого насоса поясняет рис. 1.5. В корпусе I насоса концентрично располагается рабочее колесо 2 с плоскими радиальными лопастями 3. При работе насоса жидкость поступает во всасывающий патрубок 4, увлекается рабочим колесом и, совершая сложное вихревое движение в кольцевом канале 5, выходит через на-

порный патрубок 6. В отличие от центробежных и осевых машин в вихревой машине вход и выход жидкости производятся на периферии рабочего колеса.


Работа машины для подачи газовых сред может осу-

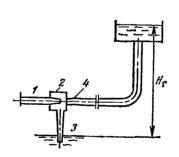
ществляться любым из рассмотренных способов.

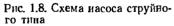
1.3. Объемные машины

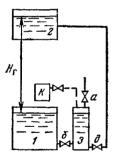
Работа таких машин выполняется путем всасывания и вытеснения жидких или газовых сред твердыми телами — поршнями; пластинами, зубцами, движущимися в рабочих полостях — цилиндрах, корпусах специальных форм. На рис. 1.6 дана схема простейшей объемной маши-

На рис. 1.6 дана схема простейшей объемной машины — поршневого насоса одностороннего действия. Ци-

линдр 1 плотно соединен с клапанной коробкой 2, в гнездах которой расположены вертикально перемещающиеся всасывающий 3 и напорный 4 клапаны. Поршень 6 двигается в цилиндре возвратно-поступательно и производит всасывание среды по трубе 6 на ходу вправо и подачу по трубе 7 на ходу влево. При этом открытие и закрытие всасывающего и напорного клапанов происходят автоматически. Периодичность движения поршня обусловливает неравномерность подачи и всасывания и возникновение инерционных сил. Эти факторы проявляются тем существенее, чем значительнее изменение скорости на полном ходу поршня. Поэтому привод таких машин высокооборотными двигателями недопустим. Эти обстоятельства вызвали появление объемных насосов вращательного типа, называемых роторными. Широко используемыми представителями этой группы насосов являются шестеренные и пла-


стинчатые. На рис. 1.7 представлена схема пластинчатого роторного насоса. Массивный ротор 1 с радиальными прорезями постоянной ширины помещается эксцентрично в корпусе 2. Вал ротора через уплотнение выведен из корпуса для соединения с валом двигателя. В прорезях ротора вставлены прямоугольные пластинки 3, отжимаемые от центра к периферии собственными центробежными силами. При вращении ротора жидкость всасывается через патрубок 4 в полость 5 и вытесняется из полости 6 в напорный патрубок 7. Насос реверсивеи: при изменении направления вращения его вала насос будет всасывать через патрубок 7 и подавать через патрубок 4. Частота вращения такого насоса значительна; его вал может соединяться с валом двигателя непосредственно.


Машины, выполненные по схемам рис. 1.6 и 1.7, приме-


няются и для подачи газовых сред.

1.4. Струйные насосы и пневматические подъемники для жидкостей

В промышленности для перемещения жидкостей и газов находят применение насосы *струйного типа*. Схема такого насоса приведена на рис. 1.8. Поток рабочей жидко-

Рнс. 1.9. Схема пневматического подъемника для жидкостей

сти, несущей энергию, проходит через сопло 1. В сужающемся сопле увеличивается скорость потока, соответственно возрастает кинетическая энергия. По закону сохранения энергии увеличение кинетической энергии обусловливает понижение давления в выходном сечении сопла и, следовательно, в камере 2; под влиянием разности давлений (ат-

мосферного — на уровне 3 и в камере 2) жидкость поднимается в камеру 2, где захватывается струей рабочей жидкости, смешивается c нею, поступает в расширяющий патрубок 4 и далее по трубопроводу в бак на высоту H_r . Коэффициент полезного действия струйных насосов невысок, но простота конструкции и отсутствие движущихся деталей способствует их применению в различных промыщ-

лениых установках. Насосы струйного типа применяются для перемещения газов и как эжекторы в вакуумных установках.

Для подъема и перемещения жидкостей иногда примеияют пневматические подъемники, в которых в качестве рабочей среды используют сжатый воздух или технический газ. Пневматический подъемник периодического действия показан на рис. 1.9. Подъем жидкости из резервуара 1 на высоту H_{Γ} в бак 2 производится при помощи компрессора К и пневматического баллона 3. При отключенном компрессоре и открытых кранах а и б баллон 3 заполняется жид-

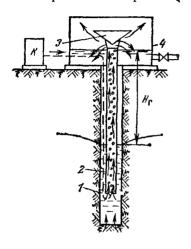


Рис. 1.10. Схема работы эрлифта

костью из резервуара 1. При закрытии кранов a и b и включении компрессора K жидкость вытесняется через открытый кран b из баллона b в бак b. Цикл подачи осуществляется периодически.

Схема подъемника для жидкостей, называемого эрлифтом или газлифтом, дана на рис. 1.10. Подъемники такого типа применяют, например, для подъема воды и нефти из буровых скважин. В обсадную трубу I опущена водоподъемная труба 2. Воздух поступает из компрессора K по воздухопроводу (показан штриховой линией) в нижний конец водоподъемной трубы, где, смешиваясь с водой, образует смесь с малой плотностью $\rho_{\text{см}} < \rho_{\text{вед}}$. По закону сообщающихся сосудов между столбами жидкости в кольцевом пространстве между обсадной и водоподъемной трубами и более легкой смеси в водоподъемной трубе стремится установиться равновесие. Глубина погружения водоподъемной трубы под уровень жидкости может быть такой, что

высота столба смеси в подъемной трубе будет достигать верхнего конца этой трубы или несколько превышать er_{0} , Столб воды в обсадной трубе будет выдавливать $\mathrm{вве}_{0}$ х столб легкой смеси в подъемной трубе. При ударе об отбойный копус 3 смесь выделяет воздух; вода, освобожденная от воздуха, собирается в резервуаре 4. Таким образом производится подъем жидкости на высоту H_{r} .

1.5. Подача и напор объемных и динамических машин

Подача и напор¹ машин для перемещения жидкости или газа определяются в основном конструкцией машин и скоростью движения ее рабочих органов, но зависят также и

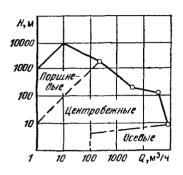


Рис. 1.11. График подач н иапоров водяных насосов различных типов

от гидравлических свойств систем, в которые машины включены.

Поршневые и роторные машины конструктивно приспособлены для создания высоких напоров; подача их, определяемая размерами их рабочих органов, может быть очень малой. Это машины малых подач и высоких напоров.

Лопастные центробежные машины, как будет показано ниже, перекрывают область значительных подач при широком диапазоне развиваемых напоров.

Машинами, развивающими малые напоры и наибольшие подачи, являются осевые.

Вихревые машины занимают промежуточную область между центробежными и поршиевыми.

Представление о подачах и напорах разных типов насосов, работающих на воде, дает график рис. 1.11, построенный в логарифмической сетке координат на основе обследования выполненных конструкций насосов общепромышленного назначения. Отдельные уникальные конструкции насосов выполнены с параметрами, выходящими за пределы этого графика.

Рабочие параметры различных машин для перемещений газов указаны в § 10.1.

¹ Определение этих терминов дастся в ГОСТ 17398-72 «Насосъ Термины и определения». См. также § 2.1.

1.6. Области использования различных машин

Наибольшее распространение в народном хозяйстве получили лопастные насосы. Создаваемый ими напор может превышать 3500 м, а подача — 100 000 м³/ч в одном агрегате

В теплоэнергетических установках для питания котлов, подачи конденсата в системе регенеративного подогрева питательной воды, циркуляционной воды в конденсаторы турбин, сетевой воды в системах теплофикации применяются центробежные насосы.

В последнее время в связи с ростом мощности паровых турбин в конденсационных установках иногда применяют осевые насосы.

Центробежные и струйные насосы применяются на ТЭС

в системах гидрозолоудаления.
Струйные насосы используются для удаления воздуха из конденсаторов паровых турбин и в абонентских теплофикационных вводах в качестве смесителей прямой и обратной воды.

Эрлифты иногда употребляют на ТЭС для подъема воды из буровых скважин основного или резервного хозяйственного волоснабжения.

Из объемных насосов в теплоэнергетике применяют поршневые насосы для питания паровых котлов малой паропроизводительности и в качестве дозаторов реагентов для поддержания требуемого качества питательной и котловой воды крупных котлов. Роторные насосы употребляются на электростанциях в системах смазки и регулирования турбин.

В технологическом цикле АЭС применяются центробежные насосы специальных конструкций обычного и герметичного исполнений.

Еще более широко насосы всех видов применяются на промышленных предприятиях, в сельском хозяйстве и для водоснабжения городов. Центробежные насосы работают в промышленности в системах хозяйственного и технического водоснабжения, а также для подачи различных растворов и реагентов в технологических схемах производств. Поров и реагентов в технологических схемах производств. Очень широко применяются струйные и центробежные насосы в строительной и угольной промышленности при гидромеханизации разработки грунтов и при гидравлическом способе добычи угля. В торфяной промышленности лопастными насосами пользуются для разработки залежей торфа и подачи смеси торфа с водой. Центробежные, струйные насосы, газлифты и пневматические установки применяются для различных целей в легкой, химической, пищевой и нефтяной промышленности. За последние годы широкое применение получили центробежные насосы в трубопроводных системах транспорта воды и нефти на дальние расстояния. Следует отметить, что все системы коммунального водоснабжения основаны на использовании лопастных (центробежных) насосов.

В сельском хозяйстве для водоснабжения животноводферм применяются в основном центробежные скважинные насосы. В крупных водопроводных системах поливного земледелия используют центробежные насосы с

большой подачей.

Широко распространены в народном хозяйстве различные машины для сжатия и перемещения воздуха и технических газов. Центробежные и осевые вентиляторы больших подач и значительных напоров применяются в качестве дымососов и для подачи воздуха в топки котлов. Все обширное вентиляционное хозяйство промышленных предприятий и гражданских сооружений основывается на применении центробежных вентиляторов низких и средних на-

поров.

Центробежные компрессоры с паровым и электрическим приводом являются основным видом компрессорных машин в металлургическом и коксохимическом производствах здесь они служат для подачи дутьевого воздуха и газовосновных или побочных продуктов технологического цикла. Эти машины получают распространение в системах дальнего газоснабжения. Осевые компрессоры широко используются в газотурбинных установках. Поршневые компрессоры применяются в металлообрабатывающей и машиностроительной промышленности для сжатия приводящего в действие пневматический инструмент и прессы. В химической промышленности газовые многоступенчатые компрессоры используются в циклах синтеза химических продуктов при высоком давлении. В последнее время сжатый воздух, получаемый от поршневых компрессоров, находит применение в текстильной промышленности как энергоноситель для проведения ткацкого процесса.

На ТЭС поршневые компрессоры служат для обдува поверхностей нагрева котлов с целью их очистки от летучих золы и сажи и снабжения сжатым воздухом пневмати-

ческого ремонтного инструмента.

ОСНОВНЫЕ ПОЛОЖЕНИЯ И ОПРЕДЕЛЕНИЯ

3.1. Параметры машин, подающих жидкости и газы

Основными величинами, характеризующими работу машин, являются подача, напор и давление, ими развиваемые. Энергия, сообщаемая потоку жидкости или газа машиной, вполне определяется этими величинами и плотностью подаваемой среды. Гидродинамическое и механическое совершенство машины характеризуется се полным КПЛ.

Подача — количество жидкости (газа), перемещаемое мащиной в единицу времени.

Если подачу измеряют в единицах объема, то ее назы-

вают объемной и обозначают Q.

Системой СИ введена массовая подача М, кг/с, -- масса жидкости (газа), подаваемой машиной в единицу времени. Очевидно, что

$$M = \rho Q, \tag{2.1}$$

где ρ — плотность среды, кг/м³; Q — объемная подача.

 M^3/c .

При отсутствии утечек массовая подача одинакова для асех сечений проточной полости машины независимо от рода подаваемой среды. Объемная подача практически одинакова по всей длине проточной полости только в насосах и приблизительно одинакова в вентиляторах. В компрессорах вследствие существенного повышения давления происходит уменьшение удельного объема газа и объемная подача по длине проточной полости падает.

В расчетах принято исчислять объемную подачу компрессоров при условии всасывания или при нормальных условиях, т. е. при параметрах среды T=293 K, p=100 кПа, $\rho = 1.2 \text{ KF/M}^3$.

Подача насоса (вентилятора, компрессора) зависит от размеров и скоростей движения его рабочих органов и свойств трубопроводной системы, в которую он включен. По ГОСТ 17398-72 «Насосы. Термины и определения»

давление, развиваемое насосом, определяется зависимо-СТЫЮ

$$p = p_{\rm R} - p_{\rm fl} + \frac{c_{\rm K}^2 - c_{\rm fl}^2}{2} \rho + \rho g (z_{\rm K} - z_{\rm fl}), \qquad (2.2)$$

где $p_{\rm H}$ и $p_{\rm R}$ — соответственно давления на входе в насос (начальное) и на выходе из насоса (конечное), Па; ρ — плотность среды, подаваемой насосом, кг/м³; $c_{\rm H}$ и $c_{\rm H}$ — средние скорости потока на входе и выходе, м/с; $z_{\rm H}$ и $z_{\rm H}$ — высоты расположения центров входного и выходного сечений насоса.

Государственный стандарт устанавливает отчетливое понятие напора как величины, связанной с давлением соотношением

$$H = p/(\rho g). \tag{2.3}$$

Такое понятие напора как величины, исчисляемой в единицах длины, вполне согласуется с основными положениями гилромеханики.

Перейдем от давлений к напорам, разделив все члены

(2.2) на ρg :

$$H = \frac{p_{\rm K} - p_{\rm ff}}{\rho g} + \frac{c_{\rm K}^2 - c_{\rm H}^2}{2g} + (z_{\rm K} - z_{\rm H}). \tag{2.4}$$

Полученное равенство определяет полный напор, развиваемый насосом.

Графически уравнение (2.4) поясняется рис. 2.1.

Если пренебречь приростом скоростного напора

 $\left(\frac{c_{\rm K}^2}{2g}-\frac{c_{\rm H}^2}{2g}\right)$, значение которого в некоторых случаях невелико, то полный напор машины представится только статической частью его $H_{\rm cr}$, м:

$$H_{\rm cr} = \frac{p_{\rm R} - p_{\rm H}}{\rho g} + (z_{\rm R} - z_{\rm H}). \tag{2.5}$$

Заметим, что напор физически представляет собой высоту столба той жидкости, к потоку которой он относится (рис. 2.1).

Налор, развиваемый вентиляторами, выражают иногда условно в миллиметрах водяного столба. Напомним, что напор в 1 мм вод. ст. эквивалентен давлению 9,81 Па¹.

Важной величиной, характеризующей насосы и вентиляторы с энергетической стороны, является их удельная полезная работа L_{π} , Дж/кг:

$$L_{\rm n} = p/\rho = gH,\tag{2.6}$$

¹ Давление, развиваемое всптиляторами, по ГОСТ 5976-73 измеряется в паскалях.

представляющая собою работу, получаемую потоком от рабочих органов машины, отнесенную к 1 кг массы жидкости (газа).

Работа L, подводимая на вал машины для приведения ее в действие, отнесенная к 1 кг массы подаваемой среды, называется удельной работой машины; она в основном определяет необходимую мощность приводного двигателя

машины. Из-за потерь энергии в машине удельная полезная работа машины меньше ее

удельной работы.

Удельная работа компрессоров вычисляется особо в зависимости от вида термодинамического процесса, протекающего в компрессорах (см. § 10.2).

2.2. Мощность и КПД

Рабочие органы машины — лопасти, поршни — работают в потоке и увеличивают его эиергию. Для проведения этой работы к валу насоса должна

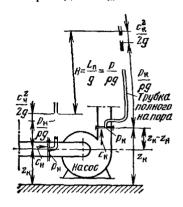


Рис. 21 Полный напор *H*, развиваемый насосом

непрерывно подводиться энергия от двигателя.

Аналогично понятию удельной полезной работы в гидромашиностроении введены понятия полезной мощности насоса и мощности насоса.

Полезная мощность машины (насоса, вентилятора) — работа, сообщаемая машиной в секунду подаваемой среде, определяется соотношением

$$N_{\rm rr} = \rho \, QgH/1000 = Q \, p/1000.$$
 (2.7)

Формула (2.7) следует из представления о работе как $\mathfrak o$ произведении силы на длину пути. Действительно, $\rho Qg = M_c g = G_c$ — вес среды, подаваемой машиной в секунду на высоту H, м. При этом машина совершает в секунду полезную работу $G_c H$, Вт, сообщаемую подаваемой среде. Делением на 1000 выражают полезную мощность в киловаттах.

Соотношение (2.7) с учетом (2.6) может быть приведено к виду

$$N_{\rm n} = M L_{\rm n} / 1000. \tag{2.8}$$

В системе МКГСС полезная мощность определяется формулой

$$N_{\rm m} = \gamma QH/102$$
.

Мощность N, подводимую от двигателя на вал насоса (вентилятора), называют мощностью насоса (вентилятора).

Потери энергии, неизбежные в любом рабочем процессе, приводят к неравенству $N_n < N$. Процесс работы машины тем совершениее, чем меньше N_n отличается от N.

ны тем совершениее, чем меньше $N_{\rm n}$ отличается от N. Эффективность использования насосом энергии, к нему подводимой, оценивают $K\Pi\mathcal{L}$ насоса η — отношением полезной мощности к мощности насоса,

$$\eta = N_{\rm n}/N. \tag{2.9}$$

В рабочих условиях КПД зависит от многих факторов: типа, размера и конструкции машины, рода перемещаемой среды, режима работы машины, характеристики сети, на которую машина работает.

Для оценки энергетической эффективности установки в целом, состоящей из машины и двигателя к ней, пользуют-

ся КПД установки пу:

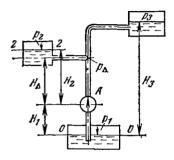
$$\eta_{y} = N_{r}/N_{\theta J}, \qquad (2.10)$$

где $N_{\rm 3\pi}$ — электрическая мощность, подводимая к двигателю.

Для оценки эффективности компрессоров служат относительные термодинамические КПД (см. § 10.3).

2.3. Совместная работа насоса и трубопроводной системы

Работа насоса, присоединенного к системе водопроводов, находится в зависимости от гидравлических свойств этой системы, называемой *сетью*. Рассмотрим условия работы машины на примере насосной установки (рис. 2.2), полагая систему устойчивой (понятие устойчивости системы дано в § 3.19).


Первое условие связи насоса с трубопроводной системой следует из уравнения неразрывности и заключается в равенстве массовых подач, проходящих через насос и присоединенные к нему всасывающий и напорный трубопроводы:

$$M_{\rm gac} = M_{\rm rp}. \tag{2.11}$$

Для несжимаемой жидкости $\rho_{\text{нас}} = \rho_{\text{тр}}$ и поэтому имеет место равенство объемных подач:

$$Q_{\text{nac}} = Q_{\text{rp}}. (2.12)$$

Второе условие связи основывается на уравнении сохранения энергии. Пусть заданием и расчетом установлены давления p_1 , p_2 , p_3 , подачи Q_1 , Q_2 , Q_3 , высоты H_1 , H_2 , H_3 и размеры труб всех участков сети.

H a a

Рис. 2.2. Насос, включенный в водопроводную сеть

Рнс. 2.3. График совместной работы насоса и водопроводной сети

Уравнение сохранения энергин для уровней *0—0* и *2—2* **с** учетом полезной работы, нередаваемой потоку насосом,

$$\frac{p_1}{\rho} + L_n = \frac{p_2}{\rho} + g(H_1 + H_2) + g(h_1 + h_{A-\Delta} + h_{\Delta-2}), \quad (2.13)$$

где h_1 , $h_{A-\Delta}$, $h_{\Delta-2}$ — потери напора в трубах I, $A-\Delta$, $\Delta-2$. В области развитой турбулентности потери напора под-

В области развитой турбулентности потери напора подчинены квадратичному закону и поэтому

$$\Sigma h = h_1 + h_{A-\Delta} + h_{\Delta-2} = m_1 Q^2 + m_{A-\Delta} Q^2 + m_{\Delta-2} Q_2^2$$

или

$$\Sigma h = (m_1 + m_{A-\Delta} + m_{\Delta-2} Q_2^2/Q^2) Q^2$$
.

Сумма коэффициентов, содержащихся в скобках, с учетом поправки на разницу в подачах Q и Q_2 может быть тринята постоянной и равной m. Тогда $\Sigma h = mQ^2$,

Деление (2.13) на g приводит к равенству

$$H = L_{\rm r}/g = (p_2 - p_1)/(\rho g) + (H_1 + H_2) + mQ^2$$
. (2.14)

Задавая произвольные значения Q, вычисляем по (2.14) соответствующие значения H и наносим на график (рис. 2.3) ряд точек, соединяя которые плавной кривой получа-

ем характеристику сети а.

Каждый насос при заданной частоте вращения обладает определенной характеристикой, выражающей связь между его подачей и напором. Пусть линия A на рис. 2.3 является характеристикой насоса A (см. рис. 2.2). Характеристики α и A пересекаются в рабочей точке α , определяющей единственно возможный в данной системе установившийся режим работы насоса с подачей Q и напором H. Только в режиме, определяемом точкой α , имеет место равенство полезной удельной работы насоса и удельной работы, требуемой сетью.

Подача и напор, соответствующие точке а, могут быть использованы для расчета мощности насоса по формулам

(2.7) и (2.9).

Вопросы совместной работы насосов и водопроводной сети подробно рассматриваются в § 3.18.

ЦЕНТРОБЕЖНЫЕ НАСОСЫ У ВЕНТУЛЯТОРЫ

глава третья

ОСНОВЫ ТЕОРИИ

3.1. Способ действия

Передача энергии потоку жидкости с вала центробежной машины осуществляется рабочим колесом с кривыми (иногда профилированными) лопастями (рис. 3.1 и 3.2). Внутренняя полость рабочего колеса (межлопастные

Внутренняя полость рабочего колеса (межлопастные каналы) образуются двумя фасонными дисками 1 и 2 и несколькими (обычно кривыми) лопастями 3. Диск 1, называемый основным или ведущим, составляет одно целое со ступицей, служащей для жесткой посадки на вал насоса. В вентиляторах основной диск и ступица изготовляются раздельно и жестко соединяются заклепками или сваркой. Диск 2 называется покрывающим или передним; он составляет одно целое с лопастями в насосах (изготовление колеса — отливкой), а в вентиляторах соединяется с лопастями сваркой или заклепыванием (см. § 5.5).

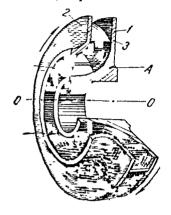
Жидкость (газ), поступая в межлопастные каналы, вращается вокруг оси θ — θ рабочего колеса, под влиянием центробежных сил перемещается к периферни колеса и выбрасывается в канал, окружающий колесо.

Работа центробежных сил на пути от входа в межлопастные каналы до выхода из них приводит к увеличению

энергии потока.

Применим к потоку в межлопастных каналах вращаюдегося рабочего колеса с вертикальной осью и постоянной шириной лопасти уравнение Бернулли, полагая потери энергии равными нулю:

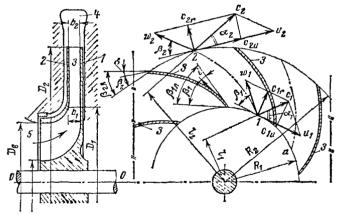
$$\frac{p}{\rho} + gz + \frac{tv^2}{2} - R^2 \frac{\omega^2}{2} = \text{const.}$$


Для рассматриваемого случая при z=const это уравнение в развернутом виде будет иметь вид

$$\frac{p_1}{\rho} + \frac{w_1^2}{2} - R_1^2 \frac{\omega^2}{2} = \frac{p_2}{\rho} + \frac{w_2^2}{2} - R_2^2 \frac{\omega^2}{2},$$

откуда определяется повышение давления в потоке, проходящем через колесо центробежной машины:

$$p = p_2 - p_1 = \frac{\rho}{2} \left(w_1^2 - w_2^2 \right) + \frac{\rho}{2} \left(u_2^2 - u_1^2 \right). \tag{3.1}$$


Это равенство показывает, что давление, развиваемое колесом центробежной машины, есть результат двух процес-

сов: 1) преобразования кинетической энергии относительного движения [первый член равенства (3.1)]; 2) работы центробежных сил [второй член равенства (3.1)]*.

Рис. 3.1. Рабочее колесо центробежной машниы (A — осевое сечеиие)

Рис. 32. Разрезы колеса центробежной машины. Параллелограммы скоростей на входе и выходе межлопастных каналов

^{*} Единица массы жидкости, находящейся на расстоянии r от ценра вращения, обладает центробежной силой $\rho \omega^2 r$, и ее работа на элементарном пути dr составит $\rho \omega^2 r dr$. На пути от R_1 до R_2 центробежная сила дает работу

$$\int_{R_1}^{R_2} \rho \omega^2 r \, dr = \frac{\rho}{2} \left(\omega^2 R_2^2 - \omega^2 R_1^2 \right) = \frac{\rho}{2} \left(u_2^2 - u_1^2 \right).$$

В конструкцию центробежной машины кроме рабочего колеса входят следующие основные элементы: подвод (входная полость) 5, отвод [выходная полость 4 (рис. 3.2)]. В некоторых машинах подвод и отвод выполняются в виде специальных, направляющих поток лопаточных устройств. Назначение этих устройств объяснено в § 3.6.

3.2. Уравнение Эйпера. Теоретический и действительный напоры, развиваемые рабочим колесом

Напор, развиваемый рабочим колесом центробежной машины, зависит от скорости потока, проходящего через рабочее колесо, и от размеров его. Основная задача теории центробежных машин состоит в установлении этой зависимости.

Кинематическая структура потока во вращающихся криволинейных каналах весьма сложна, и решение указанной задачи в рамках настоящего курса требует введения некоторых условий, упрощающих решение. Полученный таким путем результат может быть скорректирован введением опытных коэффициентов.

Введем следующие предположения: 1) поток имеет струйчатую структуру, т. е. состоит из множества струй, повторяющих геометрическую форму лопасти; 2) имеет место осевая симметрия потока, т. е. все струи, составляющие поток, совершенно одинаковы геометрически и кинематически; 3) поток является плоским, т. е. градиент скорости вдоль оси, параллельной геометрической оси машины, отсутствует.

Первые два предположения можно полагать осуществимыми только при бесконечно большом количестве рабочих лопастей при условии, что лопасти не имеют толшины и, следовательно, не уменьшают проходное сечение межлопастных каналов. Поэтому в последующем изложении параметры машины, вычисляемые при указанных предположениях, обозначаются индексом ∞ и называются параметрами при бесконечном количестве лопастей.

Применим к потоку, проходящему через колесо центробежной машины, уравнение моментов количества движения: импульс момента внешних сил, действующих на массу, состоящую из любых материальных частиц, равен изменению момента количества движения этой массы. Пусть через колесо машины проходит расход Q жид-кости или газа с постоянной плотностью ρ ; моменты количеств движения, отнесенные к 1 с, составят $\rho Q c_1 l_1$ на входе и $\rho Q c_2 l_2$ на выходе из колеса. Здесь ρQ — массовый расход через колесо; c_1 и c_2 — абсолютные средние скорости потока на входе и выходе межлопастных каналов; l_1 и l_2 — плечи скоростей c_1 и c_2 (рис. 3.2).

Если обозначить $M_{\tau\infty}$ теоретический момент, передаваемый потоку с вала (в предположении бесконечного количества лопастей и при отсутствии потерь в процессе преобразования механической энергии в гидравлическую), то уравнение моментов количеств движения для времени Δt

с. будет иметь вид

$$M_{\tau\infty} \Delta t = (\rho Q c_2 l_2 - \rho Q c_1 l_1) \Delta t. \tag{3.2}$$

Момент, подводимый от двигателя к валу машины, больше $M_{\rm T\infty}$ вследствие механического трения в подшипниках и уплотнениях вала, наличия объемных потерь и трения нерабочих поверхностей колес о жидкость (газ).

Введем в уравнение (3.2) конструктивные радиусы R_1 и

 R_2 : $l_1 = R_1 \cos \alpha_1$; $l_2 = R_2 \cos \alpha_2$, тогда

$$M_{\tau\infty} = \rho \, Q \left(R_2 c_2 \cos \alpha_2 - R_1 c_1 \cos \alpha_1 \right). \tag{3.3}$$

Здесь α_1 и α_2 — углы между абсолютными и переносными скоростями на входе и выходе.

По рис. 3.2 $c_1\cos\alpha_1=c_{1u}$; $c_2\cos\alpha_2=c_{2u}$, следовательно,

$$N_{r\infty} = \rho Q (R_2 c_{2u} - R_1 c_{1u}). \tag{3.4}$$

Мощность, передаваемая потоку в межлопастных каналах,

$$N_{\tau\infty} = M_{\tau\infty}\omega = \rho \, Q \left(R_{2}c_{2n} - R_{1}c_{1n} \right) \omega,$$

или

$$N_{\tau\infty} = \rho Q (u_2 c_{2u} - u_1 c_{1u}). \tag{3.5}$$

Теоретическая мощность при бесконечном количестве лопастей может быть вычислена и как произведение массы, проходящей через рабочее колесо в секунду, на соответствующую удельную работу:

$$N_{\rm T\infty} = \rho \, Q L_{\rm T\infty}.\tag{3.6}$$

Из сопоставления (3.5) и (3.6) следует

$$L_{T\infty} = u_2 c_{2u} - u_1 c_{1u}. (3.7)$$

удельная работа связана с напором равенством (2.6), из которого с учетом (3.7) следует

$$gH_{T\infty} = u_2c_{2u} - u_1c_{1u}.$$

Поэтому

$$H_{\tau\infty} = (u_2 c_{2u} - u_1 c_{1u})/g. \tag{3.8}$$

Теоретическое давление $p_{T\infty}$ получается из (3.8) и известного соотношения гидромеханики $p = \gamma H$, где $\gamma = \rho g$ — удельный вес среды,

$$p_{\tau\infty} = \rho \left(u_2 c_{2u} - u_1 c_{1u} \right). \tag{3.9}$$

Уравнения (3.4), (3.5) и (3.8)—основные уравнения центробежной машины. Уравнение (3.8) было получено великим математиком Леонардом Эйлером в 1754 г. и называется уравнением Эйлера.

При использовании основных уравнений скорости c_{1u} и c_{2u} по окружностям радиусов R_1 и R_2 принимаются постоянными, так же как и прочие составляющие параллелограммов скоростей на входе и выходе. В действительности это не так, потому что лопасти, развивая силу взаимодействия с потоком, должны по теореме Жуковского о подъемной силе крыла иметь положительное значение циркуляции, что имеет место только при разных значениях относительной скорости на выпуклой (рабочей) и вогнутой (нерабочей) поверхностях лопастей. Таким образом, относительная скорость в межлопастных каналах должна изменяться от наибольшего значения на вогнутой стороне лопасти до наименьшего значения на выпуклой, а не оставаться постоянной.

В изложенном заключается парадоксальность рассмотренной струйной теории центробежной машины

Из параллелограммов на входе и выходе следует

$$w_1^2 = u_1^2 + c_1^2 - 2 u_1 c_{1u};$$

$$w_2^2 = u_2^2 + c_2^2 - 2 u_2 c_{2u}.$$

Определив отсюда произведения u_1c_{1u} и u_2c_{2u} и внеся полученные выражения в (3.8), получим уравнение

$$H_{\text{T}\infty} = \frac{u_2^2 - u_1^2}{2g} + \frac{w_1^2 - w_2^2}{2g} + \frac{c_2^2 - c_1^2}{2g}.$$
 (3.10)

Первый член этого уравнення — напор, обусловленный работой центробежной силы жидкости (газа).

Члены уравнения (3.10) $(w_1^2 - w_2^2)/2g$ и $(c_2^2 - c_1^2)/2g$ выражают, очевидно, прирост напора вследствие преобразования кинетических энергий относительного и абсолютного движений в междопастных каналах.

Скоростной напор, создаваемый лопастями рабочего колеса, при принятых ранее допущениях равен

$$(H_{CB})_{T\infty} = (c_2^2 - c_1^2)/(2g),$$
 (3.11)

потому что абсолютная скорость потока повышается колесом от c_1 до c_2 . Поэтому теоретический статический напор составит

$$(H_{\rm cr})_{\rm roo} = H_{\rm roo} - (H_{\rm ck})_{\rm roo} = \frac{u_2^2 - u_1^2}{2g} + \frac{w_1^2 - w_2^2}{2g}.$$
 (3.12)

Из последнего равенства следует, что повышение статического напора и давления лопастным колесом центробежной машины происходит за счет работы центробежных сил и понижения кинетической энергии относительного движения.

Если выполнить межлопастные каналы так, что их сечение по всей длине будет постоянно, то $w_1 = w_2$ и теоретическое статическое давление, развиваемое таким колесом

$$(\rho_{\rm cr})_{\rm r\infty} = \rho \left(u_2^2 - u_1^2 \right) / 2. \tag{3.13}$$

Тангенциальная составляющая абсолютной скорости c_{1u} характеризует закрученность потока перед входом в межлопастные каналы. Удельная работа, затрачиваемая на закручивание, численно равна u_1c_{1u} , Дж/кг; она передается жидкости и суммируется с работой, передаваемой потоку рабочими лопастями. Поэтому в соответствии с (3.7) удельная теоретическая энергия потока на выходе из рабочего колеса

$$L_{\tau\infty} = u_2 c_{2u} - u_1 c_{1u} + u_1 c_{1u} = u_2 c_{2u}. \tag{3.14}$$

Следовательно, при определении теоретических параметров машин, не имеющих на входе специальных устройств, закручивающих поток, основные уравнения представляются в следующем виде:

$$M_{T\infty} = \rho \, Q R_2 c_{2u}; \quad L_{T\infty} = u_2 c_{2u}; N_{T\infty} = \rho Q u_2 c_{2u}; \quad H_{T\infty} = u_2 c_{2u} / g.$$
 (3.15)

Равенства (3.15) обычно называют основными уравнениями центробежной машины с радиальным входом (при $c_{1u} = 0$ абсолютная скорость радиальна).

Из треугольника скоростей на входе при $c_{1u}=0$ следует $=w_1^2-u_1^2$; поэтому уравнения (3.10) — (3.12) дают следующие, характерные для машин с радиальным входом значения теоретических напоров:

$$H_{T\infty} = (u_2^2 - w_2^2 + c_2^2)/(2g);$$

$$(H_{CK})_{T\infty} = (c_2^2 - c_1^2)/(2g);$$

$$(H_{CT})_{T\infty} = (u_2^2 - w_2^2 + c_1^2)/(2g).$$
(3.16)

Действительный напор, развиваемый колесом, меньше теоретического при бесконечном количестве лопастей, $H < H_{T\infty}$. Это объясняется тем, что, во-первых, часть энергии, получаемой потоком в межлопастных каналах, затрачивается на преодоление гидравлического сопротивления проточной полости машины (это обстоятельство учитывают введением в расчет гидравлического КПД η_r , оценивающего совершенство проточной полости машины), и, во-вторых, уравнение Эйлера (3.8) получено в предположении осевой симметрии потока, т. е. при постоянном осредненном значении w_2 на выходе из межлопастных каналов. Однако в действительности скорости w_2 распределены по выходному сечению рабочего колеса перавномерно, и поэтому переход от $H_{T\infty}$ к H_T может быть проведен по формуле

$$H_{\tau} = \mu H_{\tau \infty}, \tag{3.17}$$

где μ <1 — поправочный коэффициент, учитывающий конечное число лопастей.

Уравнение Эйлера давало бы точное значение $H_{\rm T}$ в случае, когда при составлении исходного уравнения (3.2) количество движения потока вычислялось не по среднему значению w_2 —const, а с учетом действительного распределения скоростей в выходном сечении колеса.

На основании изложенного вычисление действительного напора ведется по формуле

$$H = \eta_{\rm r} \mu H_{\rm r\infty}. \tag{3.18}$$

Для современных центробежных машин $\eta_r = 0.80 \div 0.96$.

Из ряда соотношений для определения поправочного коэффициента и часто пользуются формулой чешского профессора Стодолы

$$\mu = 1 - \frac{u_2}{c_{2\mu\infty}} \frac{\pi}{z} \sin \beta_2,$$

где z — количество лопастей рабочего колеса насоса.

Формула Стодолы дает удовлетворительные практические результаты. В ориентировочных расчетах принимается $\mu \approx 0.8$.

3.3. Уравнения энергии потока в рабочем колесе машины

В машинах, перемещающих газы, ρ =var и передача эпергии потоку и теплообмен с окружающей средой обуссловливает изменение термодинамического состояния газа.

Условие сохранения энергии газового потока в рабочем колесе центробежной машины можно записать в виде

$$c_p T_1 + \frac{c_1^2}{2} + L_r - q = c_p T_2 + \frac{c_2^2}{2},$$
 (3.19)

где соответственно для входа и выхода рабочего колеса T_1 и T_2 — абсолютные температуры газа; c_1 и c_2 — абсолютные скорости; c_p — теплоемкость газа при постоянном давлении; $L_{\rm T}$ — удельная энергия, сообщаемая газу; q — количество теплоты, переходящее в окружающую среду, отнесенное к 1 кг газа.

Используя (3.7) и вводя поправочный коэффициент μ получаем

$$\mu\left(u_{2}c_{2u}-u_{1}c_{1u}\right)=c_{p}\left(T_{2}-T_{1}\right)+\frac{c_{2}^{2}-c_{1}^{2}}{2}+q. \tag{3.20}$$

Это уравнение показывает, что механическая работа, передаваемая рабочими лопастями потоку газа, расходуется на изменение состояния газа, приращение его кинетической энергии и частично теряется, переходя в среду, окружающую машину, в виде теплоты.

Если машина служит для подачи малосжимаемой жидкости (насос) или подачи газовой среды при небольшом повышении давления (вентилятор), то термодинамическое состояние потока можно полагать неизменяющимся; температура газа в процессе работы машины остается постоянной, и баланс энергии может быть записан так:

$$\frac{p_1}{\rho} + \frac{c_1^2}{2} + \mu L_r = \frac{p_2}{\rho} + \frac{c_2^2}{2} + gh, \tag{3.21}$$

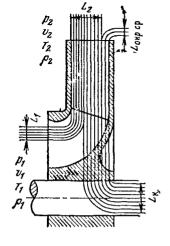

где p_1 и p_2 — давление на входе и выходе; h—потери напора в проточной полости машины.

рис. 33. Балацс энергии рабочего колем центробежной машины

Аналогично (3.20) на основации последнего равенства можно записать:

$$\mu(u_2c_{2u} - u_1c_{1u}) = \frac{p_2 - p_1}{\rho} + \frac{c_2^2 - c_1^2}{2} + gh.$$
 (3.22)

Следовательно, механическая работа, сообщаемая потоку рабочими лопастями машины, повышает давление в потоке, уве-

личивает кинетическую энергию его и отчасти расходуется на преодоление сопротивлений проточной полости.

Рисунок 3.3 дает графическое представление баланса энергии центробежной машины. Здесь обозначено: L_1 — удельная энергия потока на входе в рабочее колесо, Дж/кг; $L_{\rm K}$ — удельная энергия, передаваемая потоку в рабочем колесе; L_2 — удельная энергия потока на выходе из рабочего колеса; $L_{\rm OKP, CP}$ — потеря энергии в окружающую среду.

3.4. Влияние угла β_2 на напор, развиваемый центробежной машиной

Влияние угла β_2 на примере рабочего колеса с радиальным входом потока в межлопастные каналы. Из плана скоростей на выходе (см. рис. 3.2) имеем

$$u_2-c_{2u}=c_{2t}\operatorname{ctg}\beta_2,$$

откуда

$$c_{2u}=u_2-c_{2r}\operatorname{ctg}\beta_2,$$

где c_{2r} — радиальная составляющая абсолютной скорости на выходе;

$$H_{1\infty} = \frac{u_2^2 - u_2 c_{2r} \operatorname{ctg} \beta_2}{g}$$
,

$$H_{\tau\infty} = \frac{u_2^2}{g} - \frac{u_2 c_{2r}}{g} \operatorname{ctg} \beta_2. \tag{3.22}$$

Если ввести обозначения $u_2^2/g = A$ и $u_2c_{2r}/g = B$, то теоретический напор определится формулой

$$H_{\tau\infty} = A - B \operatorname{ctg} \beta_2. \tag{3.23}$$

Зависимость $H_{\tau\infty}$ от β_2

Значение β_2 , соответствующее $H_{\tau\infty}{=}0$ в уравнение (3.23), получается равным

$$\beta_2 = \operatorname{arcctg} u_2/c_{2r}$$
.

Уравнение (3.24) представлено на рис. 3.4. Как видно из этого рисунка, теоретический напор существенно зави-

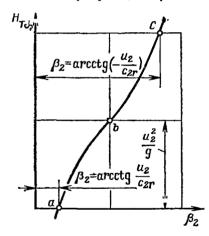


Рис. 3.4. График зависимости $H_{T\infty} = A - B \operatorname{clg} \beta_2$

сит от угла β_2 , в особенности при малых и больших значениях, приближающихся к нулю или 180° .

Измерения скорости потока и определение ее направления на выходе из рабочих колес насосов и вентиляторов показывают, что угол β_2 нотока отличается от лопастного угла $\beta_{2\pi}$, характеризующего положение конечного участка лопасти. Разность углов $\beta_{2\pi}$ и β_2 называют углом скоса потока $\sigma = \beta_{2\pi} - \beta_2$. Угол σ для машин обычных конструкции почти не зависит от режима работы и составляет 3—5°.

Очевидно, что лопастной

угол $\beta_{2\pi}$ является фактором, позволяющим конструировать машины с различными значениями теоретического и действительного напоров.

Ветвь abc кривой $H_{\tau\infty} = f(\beta_2)$, представляющая практический интерес, на рис. 3.4 ограничивается областью положительных значений $H_{\tau\infty}$

Три типа лопастей рабочего колеса. В конструкциях центробежных машин различных назначений встречаются лопасти, отогнутые назад, радиальные и отогнутые вперед. Лопастный угол $\beta_{2\pi}$, как видно из рис. 3.5, определяет тип лопасти: если $\beta_{2\pi} > 90^{\circ}$, лопасть отогнута вперед; при $\beta_{2\pi} = 90^{\circ}$ лопасть радиальна и при $\beta_{2\pi} < 90^{\circ}$ лопасть отогнута назад. Во всех случаях угол $\beta_{1\pi}$ на входе меньше 90° .

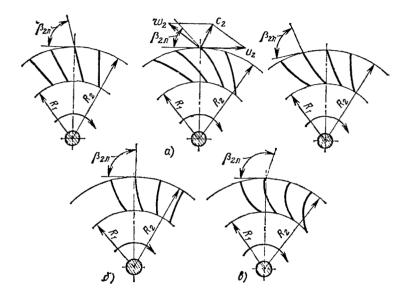


Рис. 35. Типы рабочих лопастей центробежной машины: a = nопасти отогнуты назад; b = nопасти отогнуты вперед

Ранее было показано, как влияет угол β_2 на полный теоретический напор. Выясним теперь влияние этого угла на статическую и скоростную составляющие теоретического напора применительно к трем основным типам рабочих лопастей.

Для упрощения анализа предположим, что колесо имеет радиальный вход и что радиальная составляющая абсолютной скорости на выходе равна абсолютной скорости на входе в межлопастные каналы.

Воспользуемся известным соотношением

$$H_{\tau\infty} = (H_{cv})_{\tau\infty} + (H_{c\tau})_{\tau\infty}.$$
 (3.25)

На основании принятого условия $c_1 = c_{2r}$ и формуль (3.11) получим

$$(H_{\rm CR})_{\rm T\infty} = \frac{c_2^2 - c_{1r}^2}{2g} \,.$$
 (3.2f)

Из тригонометрических соотношений (см. рис. 3.2) сле дует

$$c_2^2 = c_{2r}^2 + c_{2u}^2$$
; $c_{2u} = u_2 - c_{2r} \operatorname{ctg} \beta_2$;
 $c_2^2 = c_{2r}^2 + (u_2 - c_{2r} \operatorname{ctg} \beta_2)^2$.

Подставив значение c_2^2 в уравнение (3.26), получим

$$(H_{\rm CR})_{\rm T\infty} = \frac{(u_2 - c_{2r} \operatorname{ctg} \beta_2)^2}{2g}.$$
 (3.27)

По уравнению (3.25) статический напор определяется как разность полного и скоростного теоретических напоров

$$(H_{\rm CT})_{\rm T\infty} = H_{\rm T} - (H_{\rm CR})_{\rm T\infty} = \frac{u_2 c_{2\mu}}{g} - \frac{(u_2 - c_{2r} \cot g \beta_2)^2}{2g}.$$

Преобразовав это выражение, после подстановки

$$c_{2u} = u_2 - c_{2r} \operatorname{ctg} \beta_2$$

$$(H_{c_T})_{T\infty} = \frac{u_2^2 - (c_{2r} \operatorname{ctg} \beta_2)^2}{2\sigma}.$$
(3.28)

получим

По уравнениям (3.23), (3.27) и (3.28) можно построить графики зависимости полного напора и его составляющих от угла β_2 . На рис. 3.6 даны графики $H_{\tau\infty} = f(\beta_2)$ и $(H_{\rm CT})_{\tau\infty} = F(\beta_2)$, которые наглядно показывают, что умень шение угла β_2 приводит к снижению полного напора, развиваемого рабочим колесом центробежной машины.

Из уравнения (3.28) видно, что $(H_{c\tau})_{\tau}$ становится равным нулю при условии $u_2^2 - (c_2 \cot \beta_2)^2 = 0$, что возможно

при
$$\beta_2 = \operatorname{arcctg}\left(-\frac{u_2}{c_{2r}}\right)$$
 и $\beta_2 = \operatorname{arcctg}\left(\frac{u_2}{c_{2r}}\right)$.

Максимум (H_{cT}) т будет при ctg β_2 =0 (или β_2 =90°) Изменение теоретического скоростного напора на рис. 3.6 представлено как изменение разности ординат кривых $H_{\tau\infty} = f(\beta_2)$ и (H_{cT}) $_{\tau\infty} = f(\beta_2)$.

Наибольшее $(H_{ch})_{T\infty}$ в случае лопастей, отогнутых впе

ред, будет при

$$\beta_2 = \operatorname{arcctg}\left(-\frac{u_2}{c_{2r}}\right)$$
.

При уменьшении угла β_2 теоретический скоростной напор непрерывно уменьшается, достигая значения, равного нулю, при

$$\beta_2 = \operatorname{arcctg}\left(+\frac{u_2}{c_{2r}}\right)$$
.

Из изложенного следует, что лопасти, отогнутые вперед, передают потоку наибольшее количество энергии по срав-

нению с лопастями других форм. Но в общем количестве энергии, передаваемой такими лопастями, преобладает скоростная энергия. Напротив, в полиой энергии, передаваемой лопастями, отогнутыми назад, преобладает энергия потенциальная (статический напор).

Способность рабочих лопастей развивать статический напор обычно характеризуют степенью реактивности рабочего колеса.

Степень реактивности о равна отношению теоретического напора к полному теоретическому напору, развиваемому лопастями рабочего колеса машины:

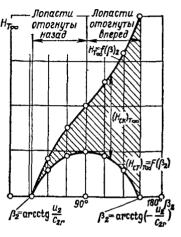


Рис. 3.6. Графики $H_{\tau\infty} = f(\beta)_2$ и $(H_{c\tau})_{\tau\infty} = f(\beta_2)$

$$\rho = (H_{\rm cr})_{\rm To}/H_{\rm To}. \tag{3.29}$$

Пользуясь уравнениями (3.23) и (3.28), можем нашисать

$$\rho = \frac{u_2^2 - (c_{2r} \operatorname{ctg} \beta_2)^2}{2g} : \frac{(u_2^2 - u_2 c_{2r} \operatorname{ctg} \beta_2)}{g} ,$$

откуда после преобразований получим

$$\rho = \frac{1}{2} \left(1 + \frac{c_{2r}}{u_2} \operatorname{ctg} \beta_2 \right). \tag{3.30}$$

Для лопастей, предельно отогнутых вперед, при

$$\beta_2 = \operatorname{arcctg}\left(-\frac{u_2}{c_{2r}}\right) \quad \rho = \frac{1}{2}\left(1 - \frac{c_{2r}}{u_2} - \frac{u_2}{c_{2r}}\right) = 0.$$

Для радиальных лопастей ctg $\beta_2 = 0$, поэтому $\rho = \frac{1}{2}$.

Для лопастей, предельно отогнутых назад, при

$$\beta_2 = \operatorname{arcctg}\left(+\frac{u_2}{c_{2r}}\right) \ \rho = 1.$$

Таким образом, степень реактивности характеризует конструктивный тип лопастей машины со стороны развиваемого ими статического напора.

Лопасти с малой степенью реактивности в основном развивают скоростной напор и, следовательно, имеют высокие выходные скорости. Для преобразования скоростного напора в статический машины с такими лопастями снабжаются диффузорными устройствами, обладающими низким КПД. Поэтому КПД машины с малой степенью реактивности обычно ниже КПД машины, обладающей большой степенью реактивности.

Выводы. Лопасти, предельно отогнутые вперед, развивают при заданных u_2 и c_2 , наибольший полный теоретический напор в форме скоростного напора. При уменьшении угла β_2 полный теоретический напор уменьшается; одновременно растет степень реактивности и повышается статический напор. При β_2 =90° степень реактивности равна 0,5 и полный теоретический, напор состоит из одинаковых скоростного и статического напоров.

Дальнейшее уменьшение угла β₂ связано с падением полного теоретического напора до нуля при одновременном росте степени реактивности до единицы. Последнее связано с относительным повышением статического напора.

В конструкциях центробежных машин различных назначений встречаются все три типа лопастей. В центробежных насосах применяются в основном только лопасти, отогнутые назад.

Центробежные вентиляторы имеют все три типа лопастей. Центробежные компрессоры обычно имеют лопасти, отогнутые назад.

3.5. Течение в межлопастных каналах. Основные размеры рабочего колеса

Начнем с треугольника скоростей на входе в рабочее колесо (см. рис. 3.2). Как уже указывалось, при отсутствин специальных направляющих аппаратов закручивание потока перед колесом при номинальном режиме невелико и поэтому $\alpha_1 = 90^\circ$. Из треугольника скоростей на входе имеем

$$\lg \beta_1 = \frac{c_{1r}}{u_1 - c_{1u}} \approx \frac{c_{fr}}{u_1}.$$

Но по условию перазрывности $c_{1r} = Q/\pi D_1 \mu_1 b_1$, где μ_1 — коэффициент заполнения сечения активным потоком (с учетом толщины лопастей), $\mu_1 = 0.85 \div 0.95$. Следовательно,

$$tg \,\beta_1 = \frac{Q}{\pi D_1 b_1 \mu_1 u_1}. \tag{3.31}$$

Для машины с определенными размерами и формой лопастей u_1 и c_{1u} пропорциональны частоте вращения n и поэтому последнее равенство может быть приведено к ви-

ду tg $\beta_1 = Q/an$, где a — коэффициент пропорциональности. Следовательно, угол' β_1 уменьшается при увеличении частоты вращения
рабочего колеса, а при возрастании подачи — увеличивается.

Таким образом, при постоянном значении лопастного угла $\beta_{1\pi}$ существует разность углов $i = \beta_{1\pi} - \beta_1$, называемая углом атаки. От размера этого угла зависят потери энергии в рабочем колесе. Оптимальный угол атаки рабочих колес с лопастями, сильно загнутыми назад, составляет — $3 \div + 5^\circ$. Для лопастей, сильно загнутых вперед, опти-

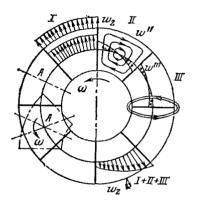


Рис. 3.7. Относительные движения в межлонастных каналах:

/- движение в исподвижной решетке; // — ввирское движение в межлопастных каналах; /// — циркуляциоиное движение вокруг профилей

мальный угол атаки значительно больше.

Теперь рассмотрим треугольник скоростей на выходе из рабочего колеса. Здесь также направления выходной относительной скорости w_2 и конечного участка лопастей не совпадают; существует угол отставания потока $\sigma = \beta_{2n} - \beta_2$. Этот угол в отличие от угла атаки i почти не зависит от режима работы машины и всегда положителен ($\sigma > 0$), т. е. $\beta_2 < \beta_{2n}$.

Рассмотрим картину течения в межлопастных каналах, образованных плоскими радиальными лопастями (рис. 3.7). Сложное течение в межлопастных каналах можно разложить на простые: поступательное радиальное, как в неподвижном канале, циркуляционное, обусловленное вра-

щением канала, и циркуляционное, вызываемое разностью давлений по обе стороны лопасти.

Поступательное течение I направлено от центра к периферии; скорости его радиальны и соответственно уравнению неразрывности обратно пропорциональны расстоянию от центра. Циркуляционное течение II обусловлено инерцией жидкости, стремящейся сохранить в пределах каждого межлопастного канала свое положение в пространстве и поэтому стремящейся вращаться относительно колеса с угловой скоростью ю, приблизительно равной угловой скорости колеса, но имеющей обратное направление. Линейные скорости этого движения распределены прямо пропорционально расстоянию от центра вращения и на входе в межлопастные каналы совпадают по направлению с окружной скоростью колеса, а на выходе — противоположны ей.

Циркуляционное течение *III*, связанное по теореме Жуковского с разностью давлений на рабочей и тыльной поверхности лопастей, несколько изменяет скоростной эффект течения *II*.

Результат суммирования скоростей течений I, II, III, показан в нижнем канале колеса на рис. 3.7. Из-за неравномерного распределения скоростей в сечениях межлопастных каналов происходит уменьшение компоненты c_{2u} и соответственно уменьшение теоретического напора H_{τ} . Учет уменьшения c_{2u} можно производить по полуэмпирической формуле Пфлейдерера

$$c_{2u} = \frac{(c_{2u})_{\infty}}{1+p},\tag{3.32}$$

где c_{2u} — действительное значение тангенциальной компоненты абсолютной скорости на выходе из колеса; значение $(c_{2u})_{\infty}$ вычисляется по лопастному углу β_{2n} :

$$(c_{2u})_{\infty} = u_2 - c_{2r} \operatorname{ctg} \beta_{2\pi}.$$

Поправочный коэффициент p вычисляется по формуле-Пфлейдерера

$$p = \frac{1.2}{z} \frac{1 + \sin \beta_{2\Pi}}{1 - (D_1/D_2)^2};$$

здесь г — число рабочих лопастей.

При расчете вентиляторов связь между углами β_2 и $\beta_{2\pi}$ можно учитывать по эмпирической формуле ЦАГИ

$$\cos \beta_2 = \cos \beta_{2\pi} + k \frac{(c_{2u})_{\infty}}{zu_2}. \tag{3.33}$$

Коэффициент k в этой формуле зависит от типа лопасти, режима работы и отношения диаметров. При отношении диаметров $D_2/D_1=1,5\div2,5$ в расчетном режиме можно принимать: $k=1,5\div2$ — при лопастях, отогнутых назад; k=3—при радиальных лопастях; $k=3\div4$ — при лопастях, отогнутых вперед.

Вычисление угла β_2 по последней формуле позволяет рассчитать $c_{2u} = u_2 - c_{2r}$ ctg β_2 и определить напор с учетом поправки на неравномерность распределения скорости в

выходном сечении колеса вентилятора.

Выбор числа рабочих лопастей необходимо производить так, чтобы обеспечить максимальный КПД рабочего колеса. Если число лопастей выбрано слишком малым, то появляются вихревые области (зоны отрыва потока) в межлопастных каналах, являющиеся дополнительным источником потерь. Чрезмерно большое число лопастей также вызывает увеличение потерь вследствие возрастания поверхностей трения.

Опыты показывают, что оптимальным будет такое число лопастей, при котором среднее расстояние между ними примерно равно половине их длины. Этому условию соответствует эмпирическая формула Пфлейдерера, широко применяемая при определении числа рабочих лопастей насосов:

$$z = 6.5 \frac{m+1}{m-1} \sin \frac{\theta_{1,n} + \beta_{2,n}}{2}; \quad m = D_2/D_1.$$
 (3.34)

Отношение диаметров оказывает сравнительно исбольшое влияние на КПД и поэтому может находиться в широких пределах. Обычно отношение диаметров не выходит за пределы $1,25 < D_2/D_1 < 3,3$. Лучшие машины характеризуются отношением $D_2/D_1 = 1,4 \div 1,6$.

Правильный выбор отношения диаметров имеет большое значение для вентиляторов с регулированием подачи

посредством направляющих аппаратов (см. § 3.16).

Ширину рабочих лопастей на входе b_1 обычно выбирают такой, чтобы скорость c_1 перед рабочими лопастями не отличалась от скорости c_0 на входе в ступень. Поскольку

$$c_0 = \frac{4Q}{\pi \, D_0^2 \mu_0}; \quad c_1 \approx \frac{Q}{\pi \, D_1 b_1 \mu_0}; \quad D_0 \approx D_1; \quad \mu_0 \approx \mu_1$$

(μ_0 и μ_1 — коэффициенты заполнения сечений активным потоком), из условия $c_1 \approx c_0$ следует, что

$$b_1 \approx D_1/4$$
.

В некоторых случаях, особенно для вентиляторов, лучь шие результаты получаются, если принять несколько большую ширину лопастей. Можно рекомендовать определять b_1 по формуле

$$b_1 = (1 \div 1,5) D_1/4.$$
 (3.35)

Ширина рабочих лопастей на выходе b_2 в большинстве случаев определяется из условия равенства радиальных проекций скорости до и после рабочего колеса (см. рис. 3,2):

$$b_2 = b_1 D_1 / D_2. {(3.36)}$$

Для насосов малой мощности и вентиляторов в целях упрощения изготовления рабочего колеса принимают $b_2 = b_1$, однако следует иметь в виду, что при этом КПД машины снижается примерно на 2-3%.

3.6. Подводы и отводы

Подводом называется часть проточной полости машины, подводящая перемещаемую среду к входному отверстию рабочего колеса.

Подвод правильной конструкции должен давать равномерное, осесимметричное распределение потока по входному сечению рабочего колеса. Несоблюдение этого условия снижает гидравлический КПД колеса и машины в целом. Симметричность потока при входе в рабочее колесо достигается выполнением подвода в форме прямолниейного кофузора при осевом потоке (рис. 3.8) или спирального кожуха (рис. 3.9) при поперечном потоке.

Потери энергии в подводе должны быть минимальными; для этого скорости в его сечениях не должны быть высокими. Проходные сечения подвода должны постепенно уменьшаться в направлении движения, обеспечивая постепенное возрастание скорости до значения ее во входном сечении колеса.

Конструкция подвода и положение приемного отверстия его должны создавать удобное сопряжение машины с всасывающим трубопроводом.

Многочисленные исследования показали, что форма, размеры и расположение подвода влияют не только на энергию, передаваемую потоку жидкости колесом, но и на все характеристики машины.

Отводом называют часть проточной полости машицы, принимающую перемещаемую среду из рабочего колеса и

частично преобразующую кинетическую энергию этой среды в потенциальную.

Известны три типа отводов: кольцевой, спиральный и

лопаточный.

Кольцевой отвод представляет собой цилиндрическое пространство 1 постоянной ширины, охватывающее рабочее

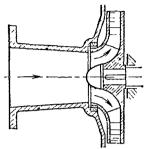


Рис. 3.8. Входная камера при осевом подводе жидкости к рабочему колесу насоса

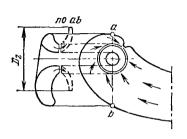


Рис. 3.9. Схема спиральной входной камеры переменного сечения

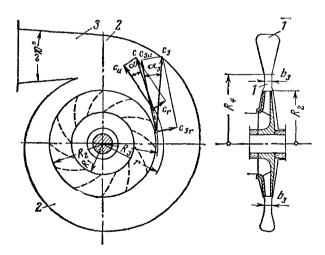


Рис. 3.10. Центробежная машина с кольцевым и спиральным отводами

колесо машины (рис. 3.10). Спиральный отвод представляется в виде криволинейного диффузорного канала 2, окружающего рабочее колесо и обычно комбинируемого, как показано на рис. 3.10, с кольцевым отводом.

Отводы должны обеспечивать отведение жидкости (газа) от колеса с наименьшими потерями и по возможности без нарушения осесимметричности потока в колесе. При этом скорость потока должна постепенио уменьшаться до скорости в начальном сечении напорного трубопровода.

С целью понижения скорости на выходе из напорного патрубка машины к спиральному отводу присоединяют ко-нический диффузор 3 с углом раскрытия около 10°. При трапециевидном и прямоугольном поперечных се-

чениях спирального отвода диффузор 3 служит и для пе-

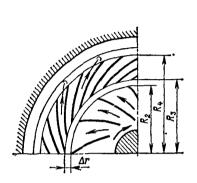


Рис. 3.11. Лопаточный отвод центробежной машины (многоступенчатого компрессора)

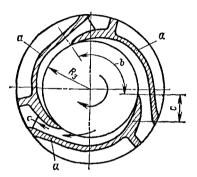


Рис. 3.12. Канальный отвод центробежной машины (многоступенчатого насоса)

рехода к круглому сечению выходного патрубка насоса, что необходимо для присоединения напорного водопровода.

Лопаточный отвод представляет собой систему несколь-ких диффузорных каналов, окружающих рабочее колесо (рис. 3.11); рис. 3.12 — канальный отвод.

Как показывают опыты, движение реальных газов и жидкостей в кольцевых отводах в основной части потока приблизительно подчиняется законам движения невязкой жидкости. Поэтому анализ работы отводов в первом приближении можно вести, полагая, что трение в потоке не проявляется.

Рассмотрим работу кольцевого отвода машины, подаюнесжимаемую жидкость. Пусть R_3 и c_3 — соответственно радиус и абсолютная скорость в начале кольцевого отвода; r и c — радиус и абсолютная скорость в любой точке произвольного сечения отвода (см. рис. 3.10). Установим зависимость между скоростями c и c_3 .

Окружную проекцию скорости можно определить по условию постоянства момента скорости rc_u —const (поскольку влияние сил трения о стенки не учитывается):

$$R_3c_{3u} = rc_u; \quad c_u = c_{3u} \frac{R_3}{r}.$$

Радиальную проекцию скорости найдем с помощью уравнення перазрывности $Q = 2\pi R_3 b_3 \mu_3 c_{3r} = 2\pi r b \mu c_r$, приняв для простоты $b_3 \mu_3 = b \mu$ (b = const).

Отсюда находим

$$c_r = c_{3r} \frac{R_3}{r} ,$$

т.е. радиальные составляющие скорости находятся в таком же соотношении, как и тангенциальные составляющие. Следовательно, параллелограммы скоростей подобны и существует равенство $\alpha \approx \alpha_3$ (см. рис. 3.10). Иными словами, линиями тока являются логарифмические спирали. Поскольку проекции скорости c изменяются обратно пропорционально радиусу сечения, сама скорость изменяется так же:

$$c = c_3 \frac{R_3}{I}. (3.37)$$

Формула (3.37) обусловливает основной недостаток кольцевых отводов — необходимость существенного увеличения радиальных размеров машины. Действительно, если желательно снизить скорость в безлопаточном отводе вдвое, необходимо увеличить диаметр D_4 (на выходе из кольцевого отвода) также вдвое, т. е. D_4/D_3 =2. Поэтому кольцевые отводы применяются сравнительно редко и лишь в одноступенчатых насосах специального типа.

Из кольцевого отвода, а при отсутствии кольцевого отвода — из рабочего колеса жидкость поступает в спиральный отвод (см. рис. 3.2).

Рассмотрим машину без кольцевого отвода. Поток из рабочего колеса поступает в спиральный отвод со скоростью c_2 , в то время как средняя скорость в отводе c_a' существенно меньше. Вследствие этого получаются потери на удар, которые могут быть приближенно определены по формуле Карно

$$\Delta H_{yx} = \frac{(c_2 - c_a')^2}{2g}.$$
 (3.38)

4-559

В этой формуле c_a' — скорость в спиральном отводе после удара (условная скорость). Расчеты показывают, что можно принимать

$$c'_a = (1, 1 \div 1, 3) c_a.$$
 (3.39)

Кроме потерь $\Delta H_{y\pi}$ в спиральном отводе имеются потери на трение о стенки отвода при повороте потока в отво

Рис. 3.13. Трапециевидная и прямоугольная формы сечений спиральных отводов

Рис. 3 14. Круглая и гругиевидная формы сечений спиральных отводов

де и диффузоре, расположенном за отводом. Сумму эти потерь обозначим через $\Delta H_{\mathrm{c.o}}$ и определим в долях динамического напора скорости c_a :

$$\Delta H_{\text{c.o}} = \zeta_{\text{c.o}} \frac{c_a^2}{2g}$$
 (3.40)

В зависимости от формы спирального отвода можн принимать

$$\zeta_{c,o} = 0.2 \div 0.5$$
.

Очевидно, что с ростом скорости c_a' потери на удау уменьшаются, а на трение и поворот потока — растут. Следовательно, имеется оптимальная скорость c_a' , при которой суммарные потери минимальны.

Из условия минимума потерь $\frac{\partial \left(\Delta H_{yx} + \Delta H_{c.o}\right)}{\partial c_a} = 0$ нахо дим

$$(c_a)_{our} = \frac{c_2}{1 + \zeta_{co}}$$
 (3.4)

Если принять $\zeta_{c,o} = 0.4$, то $(c_0')_{ont} \approx 0.7$ c_2 . Если машина выполнена с кольцевым отводом, то при определении скорости в спиральном отводе также можно пользоваться формулой (3.38), заменив в ней c_2 на c_4 — скорость за кольневым отводом.

Формы поперечных сечений спиральных отводов показапы на рис. 3.13 и 3.14.

Рассмотрим способ ориентировочного расчета размеров спирального корпуса по заданной величине $(c_a)_{\text{опт}}$ и подаче Q (рис. 3.15)

Расходы $Q_1, Q_2, Q_3, ...$ Q_z , проходящие через произвольно заданные сечения 1, 2, 3, ..., z, равны расходам, выбрасываемым из колеса в пределах дуг 0-1. 0-2, 0-3, ..., 0-г. Поскольку эти сечения ориентированы углами ф1, ф2, ф3, ..., ф2, то, следовательно.

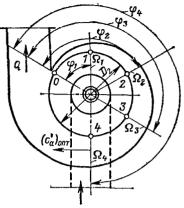


Рис. 3.15. К определению размеров сечений спирального отвода

$$Q_1 = Q \frac{\varphi_1}{360}; \quad Q_2 = Q \frac{\varphi_2}{360}; \quad Q_z = Q \frac{\varphi_\tau}{360} = Q.$$
 (3.42)

Из уравнений расхода следует

$$\Omega_1 = \frac{Q_1}{(c'_a)_{\text{OUT}}}; \quad \Omega_2 = \frac{Q_2}{(c'_a)_{\text{OUT}}}; \dots; \quad \Omega_z = \frac{Q_z}{(c'_a)_{\text{OUT}}}. \quad (3.43)$$

По полученным Ω_1 , Ω_2 , Ω_3 , ..., Ω_z , приняв одну из форм поперсчных сечений, можно рассчитать их линейные размеры. Таким образом, будут определены размеры спирального отвола.

При расчете размеров корпуса, ссстоящего из кольцевого и спирального отводов, расчетные сечения представляют собой сумму площадей сечений обоих отводов.

Способ определения размеров спирального корпуса

вентиляторов приведен в гл. 5.

В многоступенчатых конструкциях центробежных машин применяют в основном лопаточные отводы; их конструктивные схемы даны на рис. 3.11 и 3.12. Из этих схем видно, что лопаточный отвод представляет собой неподвижную круговую решетку с большим количеством лопаток (см. рис. 3.11) или состоит из небольшого количества

лопаток специального профиля, образующих межлопаточные каналы (см. рис. 3.12).

Форма лопаточного отвода, выполненная по рис. 3.11. обычно свойственна центробежным газовым машинам, а по рис. 3.12 — центробежным насосам.

Во всех типах лопаточных отводов при значительном отклонении режима работы от расчетного наблюдается отрыв потока от поверхности лопаток и вследствие этого уменьшение КПД машины.

Большое влияние на работу центробежной машины оказывает радиальный зазор Δr между концами рабочих лопастей и входными кромками лопаток отвода. При малых значениях Δr центробежная машина создает шум, нежелательный в условиях эксплуатации.

Положительное влияние цилипдрического пространства с размером Δr на работу машины проявляется в том, что в нем, во-первых, происходит выравнивание скоростей c_2 , неравномерно распределенных по окружности выхода из рабочего колеса, и, во-вторых, получается некоторый диффузорный эффект (преобразование кинстической эпергии в давление).

В конструкциях центробежных насосов размер Δr обычно не превышает 10 мм, а в компрессорах он может достигать нескольких десятков миллиметров.

3.7. Мощность и КПД

Энергия, подводимая от двигателя к валу машины, больше полезной энергии, получаемой жидкостью или газом. Это объясняется тем, что в процессе преобразования энергии, осуществляемом машиной, часть механической энергии неизбежно теряется вследствие гидравлических ямеханических потерь и утечек.

Гидравлические потери возникают в результате гидравлического трения и вихреобразования во всей проточной части машины.

Если гидравлические потери составляют h, то, очевилно, рабочее колесо должно развивать напор $H_{\rm T} = H + h$. Оценка машины в отношении гидравлических потерь производится с помощью гидравлического КПД

$$\eta_{\rm r} = \frac{H}{H+h} \tag{3.44}$$

иЛИ

$$\eta_{r} = \frac{H_{r} - h}{H_{r}} = 1 - \frac{h}{H_{r}}. \tag{3.45}$$

Большое влияние на η_r оказывают форма проточной части машины, чистота обработки внутренних поверхностей и вязкость жидкости.

Значения гидравлического КПД современных крупных пентробежных машин лежат в предслах $\eta_1 = 0.8 \div 0.96$.

Объемные потери (утечки) обусловлены протеканием жидкости (газа) через зазоры между рабочим колесом и корпусом машины из зоны повышенного давления в полосты всасывания (рис. 3.16).

От потока, проходящего через рабочее колесо машины и получающего в нем приращение эпергии, ответвляется часть ΔQ подачи, проходящая через зазоры во входное сечение ко-

леса. Если ступень центробеж δ_r Aq P_2 $Q+\Delta q$ $Q+\Delta q$ $Q+\Delta q$

Рис. 3.16. Объемные потери в ступсии центробежной машииы

ной машины подает в напорный трубопровод расход Q, а через зазоры циркулирует расход ΔQ , то через рабочее колесо проходит расход $Q+\Delta Q$.

Объемный КПД

$$\eta_{\rm o} = \frac{Q}{Q + \Delta Q} \,. \tag{3.46}$$

Объемный КПД существенно зависит от значений радиального зазора δ_r . Высокий η_o может быть получен только при малых значениях δ_r .

Для увсличения объемного КПД следует уменьшать утечки через заднюю пазуху П и разгрузочные отверстия 0 (или обводную трубку, соединяющую П с всасывающим

патрубком насоса).
Это достигается уплотнительным устройством k (см.

рис. 3 24).

Значения η_0 у современных центробежных манин лежат в пределах $\eta_0 = 0.96 \div 0.98$.

Полезная мощность центробежной машины определяется формулами (2.7) и (2.8).

Внутренняя мощность машины, т. е. мощность, развиваемая рабочими лопастями, движущимися в потоке,

$$N_{\rm BH} = \rho \left(Q + \Delta Q \right) g \left(H + h \right). \tag{3.47}$$

Отношение полезной мощности к внутренней называех ся внутренним КПД:

$$\eta_{\text{BH}} = \frac{N_{\text{H}}}{N_{\text{BH}}} = \frac{\rho \, gQH}{\rho \, g \, (Q + \Delta \, Q)(H + h)}$$
(3.46)

Следовательно,

$$\eta_{\rm BH} = \eta_{\rm o} \eta_{\rm r}. \tag{3.49}$$

Очевидно, что

$$N_{\rm BH} = \frac{N_{\rm B}}{\eta_{\rm BH}} = \frac{MgII}{\eta_{\rm O}\eta_{\rm F}}.$$
 (3.50)

Впутренний КПД учитывает объемные и гидравличе ские потери в машине, кроме потерь от дискового трения

Мощность, подводимая от двигателя на вал машины больше внутренней мощности вследствие механического трения в подшипниках и уплотнениях вала и гидравлического (газового) трения внешних поверхностей колес.

Влияние механического и гидравлического трения мо-

жет быть учтено общим механическим КПД

$$\eta_{\rm M} = N_{\rm BH}/N. \tag{3.5l}$$

Для современных центробежных машин $\eta_{\rm M}$ = 0,92 ÷ 0,95. Значение $\eta_{\rm M}$ определяется механическими свойствам, конструкцией и эксплуатационным состоянием подшицивков машины. Применение подшиников качения повышает $\eta_{\rm M}$. Содержание подшинников в чистоте в регулярная смазка приводят к повышению $\eta_{\rm M}$. Большое влияние на $\eta_{\rm M}$ оказывают конструкция и эксплуатационное состояние уплотнений вала машины. Несоразмерно сильная затяжка сальников насосов вредна ввиду увеличения мощности трения в возможности местного нагрева и деформаций вала. На $\eta_{\rm M}$ оказывает влияние чистота обработки перабочих поверхностей рабочих колес; уменьшение шероховатости их повышает КПД машины.

Из сопоставления выражений (3.50) и (3.51) следует

$$N = \frac{MgII}{\eta_0 \eta_0 \eta_0} = \frac{MgII}{\eta} . \tag{3.52}$$

Произведение $\eta_0\eta_1\eta_M = \eta$ дает полный КПД машины Обычно мощность на валу выражают формулами

$$N = \frac{MgII}{1000 \, \eta}; \qquad N = \frac{\rho \, QgII}{1000 \, \eta}. \tag{3.53}$$

Полный КПД оценивает энергетическое совершенство машины в целом и для современных центробежных машин составляет $\eta = 0.75 \div 0.92$.

При рассмотрении баланса энергии центробежной машины мощность дискового трения выделяют особо, полагая, что мощность, получаемая колесом с вала, $N_{\rm K}$ состоит из внутренней мощности $N_{\rm BH}$ и мощности дискового трения $N_{\rm TP}$:

$$N_{\rm K} = N_{\rm BH} + N_{\rm TP} \tag{3.54}$$

или

$$N_{\rm rc} = \frac{\rho (Q + \Delta Q) g (II + h)}{1000} + N_{\rm Tp}.$$

Последнее выражение может быть приведено к следующему виду:

$$N_{\rm rc} = \frac{MgII}{1000} \left[\left(1 + \frac{\Delta Q}{Q} \right) \left(1 + \frac{\Delta p}{p} \right) + \frac{1000N_{\rm TP}}{MgH} \right]. \tag{3.55}$$

Отношение $\Delta Q/Q = k_{yT}$, называемое коэффициентом утечек, оценивает относительное значение утечек через зазоры между рабочим колесом и корпусом. В машинах различных назначений $k_{yT} = 0.02 \div 0.1$.

Так как

$$1 + \Delta p/p = 1/\eta_c$$

то, используя соотношение (3.44), получаем

$$N_{\rm R} = \frac{MgH}{1000} \left[\frac{1 + k_{\rm yr}}{\eta_{\rm c}} + \frac{1000 N_{\rm TP}}{MgH} \right]. \tag{3.56}$$

Обозначим

$$\eta' = N_{\rm m}/N_{\rm R}. \tag{3.57}$$

Сопоставив два последних равенства, получим

$$\eta' = \frac{1}{\frac{1 + k_{yr}}{\eta_{\Gamma}} + \frac{N_{\tau p}}{N_{\pi}}}.$$
 (3.58)

Мощность трения одной стороны диска, вращающегося в жидкости или газе.

$$N_{\pi p} = \beta \rho R_2^5 \omega^3; \qquad (3.59)$$

⁸десь ω — угловая скорость вала машины; β — опытный коэффициент, зависящий от относительной шероховатости вращающейся поверхности и числа Re. Орисптировочно можно принимать β = $(2 \div 8) 10^{-5}$.

Затрата энергии при вращении колеса машины в жид-кости существенно зависит от формы течения в полостях,

образованных внешними поверхностями рабочего колеса в внутренними поверхностями корпуса. В этих полостях жидкость, примыкающая к рабочему колесу, вращается угловой скоростью колеса и полностью затормаживается на неподвижной поверхности корпуса. Вследствие этого в пространствах между колесом и корпусом возникают вых ревые течения, требующие тем больших затрат энергия чем больше расстояния между колесом и корпусом. Если эти расстояния малы, то затрата энергии определяется лишь трением жидкости в пристенных слоях.

В 1938—1939 гг. акад. Г. Ф. Проскура показал, что вихревое течение в пазухах рабочего колеса имеет и положительное влияние, потому что при срыве потока с поверхности рабочего колеса существенная часть энергии вихру отдается основному потоку, выходящему из рабочего коле

са. Коэффициент в в (3.59) учитывает эти явления.

Так как напор, создаваемый колесом центробежной машины, определяется окружной скоростью, а последняя равна ωR_2 , то для достижения заданного напора могут быть приняты различные комбинации значений R_2 и ω Для уменьшения потерь от дискового трения следует ограничивать R_2 и принимать повышенные значения ω ; это приводит к повышению η' и полного КПД машины. Этим обстоятельством объясняется отчасти применение в современной технике высокооборотных центробежных маший с ограниченным диаметром рабочего колеса.

3.8. Многоступенчатые и многопоточные центробежные машины

Напор, развиваемый колесом центробежной машины как видно из выражения (3.8), определяется произведением u_2c_{2u} . Для достижения высокого напора в машине с одним колесом необходимо иметь большое значение окружной скорости. Однако окружная скорость ограничена условиями прочности колес и кавитацией: для чугунных колес она не должна превышать 40, а для стальных легированных — 300 м/с. В специальных конструкциях транспортным нагнетателей для колес из легких сплавов высокой прочности допускаются окружные скорости до 500 м/с.

В насосах, подающих воду и технические жидкосты скорость вращения, а следовательно, и напор лимитируют ся обычно условиями возникновения кавитации (см. § 4.4)

В промышленных установках часто требуется создание высоких давлений жидкости или газа. В таких случая

центробежные машины с одним рабочим колесом оказываются непригодными и их замещают многоступенчатыми.

Многоступенчатая центробежная машина представляет собой обычно ряд одноступенчатых машин, рабочие колеса которых сидят на общем валу и соединены последова-

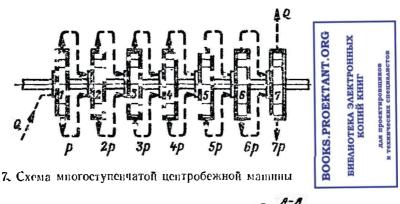


Рис 317. Схема многоступенчатой центробежной манины

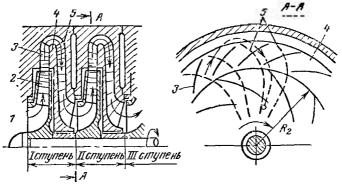


Рис 318. Продольный и поперечный разрезы многоступенчатой центробежной машины

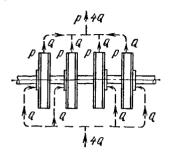
тельно. Представление о такой семиступенчатой машине дает рис. 3.17.

При последовательном включении колес напоры, создаваемые ими, складываются так, что полный напор машины равен сумме напоров отдельных ступеней. В большинстве случаев при подаче несжимаемых жидкостей геометрические размеры всех ступеней одинаковы, и поэтому полный напор такой машины равен напору одной ступени, умноженному на число ступеней машины. Часть продольного сечения многоступенчатой машины представлена на рис. 3.18.

Поток жидкости (газа) поступает через подвод 1 в рабочее колесо 2 первой ступени машины, откуда, восприняв от лопаток некоторое количество энергии, он выбрасывается в направляющий аппарат 3 этой ступени. Далее, обогнув диафрагму 4, отделяющую первую ступень от второй, поток проходит обратный направляющий аппарат 5 между первой и второй ступенями и поступает в рабочее колесо второй ступени. Из второй ступени поток направляется в третью и т. д. Обратный направляющий аппарат является характерным элементом многоступенчатой центробежной машины.

При выходе из направляющего лопаточного устройства первой ступени поток обладает значительными тангенциальными составляющими абсолютной скорости, т. е. он закручен относительно оси машины. Если такой поток будет подведен к лопастям рабочего колеса второй ступени машины, то здесь он сможет получить приращение энергии, обусловленное лишь разностью окружных скоростей выхода и входа.

Если же на пути между выходом из направляющего устройства первой ступени и входом в рабочее колосо второй ступени расположить лопаточное направляющее устройство, обеспечивающее радиальный вход в рабочее колесо второй ступени, то последнее будет работать столь же эффективно, как и рабочее колесо первой ступени, передавая жидкости удельную энергию, определяемую по выражению (3.15).


Назначение обратного направляющего аппарата заключается в устранении закручивания потока с целью эффективной передачи энсргии потоку в последующей ступени машины.

Напоры, развиваемые совремсниыми центробежными многоступенчатыми машинами, очень высоки; папример, насосы, подающие воду, создают напор до 4000 м. Имеются насосы с числом ступеней до 30.

В тех случаях, когда центробежная машина при заданном напоре должна обеспечивать такую подачу, что размеры проточной части (например, ширина лопасти b_2 на выходе) окажутся конструктивно неприемлемыми, применяют параллельное соединение рабочих колес. Такие машины называют многопоточными. Принципиальная схема машины с четырымя потоками представлена на рис. 3.19.

При высоких напорах и больших подачах находят применение центробежные машины многопоточного типа со ступенями давления. Такие машины состоят из двух или

четырех групп ступсней давления. В каждой группе ступени включены последовательно с целью повышения напора, а группы ступсней включены параллельно. В качестве примера соединения ступеней и групп в смешанном типе цен-

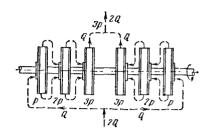


Рис. 3.19. Схема многопоточной центробежной машини

Рис. 3 20. Схема трехступенчатой двухноточной машины

тробежной машины на рис. 3.20 приведена схема работы трехступенчатой двухпоточной машины с симметричным расположением ступеней и их групп.

3.9. Осевые и радиальные силы в центробежных насосах

Осевые силы. Эти силы возникают в центробежных машинах в результате разных по значению и направлению давлений, действующих на рабочие колеса с передней (обращенной к всасыванию) и задней сторон. Кроме того, осевая сила возникает в результате динамического действия потока, входящего в рабочие колеса. В крупных многоступенчатых центробежных машинах осевые силы могут достигать нескольких десятков тонн.

При вычислении осевых сил, действующих на криволинейные поверхности рабочего колеса, надо рассматривать проекции этих новерхностей на плоскость, нормальную к геометрической оси машины.

Пусть в полости входа в рабочес колесо давление равно ρ_1 (рис. 3.21). При наличии уплотнения a на входном диаметре колеса конечное давления ρ_2 распространяется через зазоры в полости b и c перед и за колесом. Действительное осевое давление ρ в любой точке наружной поверхности колеса, лежащей на произвольном расстоянии от центра, является результатом действия двух давлений: ρ_1 и ρ_{ω} , создаваемого действием центробежной силы жидкости, вращающейся в полости между наружной поверхностью колеса и корпусом, т. е.

$$p = p_2 + p_{\omega} \,. \tag{3.60}$$

Опытным путем доказано, что при отсутствии расхода через зазоры средняя угловая скорость вращения жидкости в полостях между поверхностями вращающегося колеса и корпусом равна половине угловой скорости рабочего колеса. На основании этого соображения можновычислить $\rho_{\rm co}$.

Выделим в полости c кольцевой объем жидкости с шириной, равпой единице, и радпусами r и r+dr. При вращении этого кольцевого

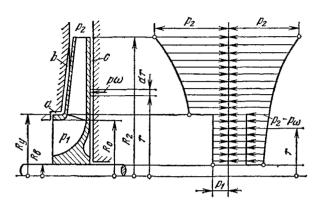


Рис. 3.21. Распределение осевых давлений по наружным поверхностя колсса центробежной машины

объема с угловой скоростью $\omega/2$ на его внутренней цилиндрической поверхности действует центробежная сила жидкости

$$dP_{\rm II} = \rho \cdot 2\pi r dr \frac{\omega^2}{4} r. \tag{3.61}$$

Давление, обусловленное этой центробежной силой,

$$d\rho_{\omega} = -\frac{dP_{\Pi}}{2\pi rl} = -\rho \frac{\omega^2}{4} r dr. \tag{3.62}$$

Отрицательный знак у dP_{ω} указывает на то, что под влиянием центробежной силы жидкости в цилиндрических сечениях полости c возникает разрежение (давление уменьшается):

$$\rho_{\omega} = -\int_{r}^{R_{2}} \rho \frac{\omega^{2}}{4} r dr = -\rho \frac{\omega^{2}}{8} \left(R_{2}^{2} - r^{2} \right). \tag{3.63}$$

Из выражения (3.60) и (3.63) следует, что

$$\rho = \rho_2 - \rho \frac{\omega^2}{8} (R_2^2 - r^2). \tag{3.64}$$

Гидравлическое уплотиение при входе в колесо на окружности радиусом R_y обусловливает уравновешивание внешних давлений на рабочее колесо с передней и задней сторон. В пределах же от R_B до R_y давления на колесо не уравновешены, так как с передней стороны колеса действует давление всасывания p_1 , а с задней — давление p_2 распределенное по закону, выражаемому формулой (3.64). Очевидно, сила обусловленная этими давлениями, действующими на колесо, равна

$$P_{p} = \int_{R_{p}}^{R_{y}} 2\pi r \, dr \left[p_{2} - \rho \, \frac{\omega^{2}}{8} \left(R_{2}^{2} - r^{2} \right) \right] - \pi \left(R_{y}^{2} - R_{p}^{2} \right) p_{1}. \quad (3.65)$$

Интегрирование к алгебранческие преобразования приводят последвсе уравнение к виду

$$P_{p} = \pi \left(R_{y}^{2} - R_{p}^{2} \right) \left(p_{2} - p_{1} \right) - \frac{\pi \rho \omega^{2}}{8} \left(R_{y}^{2} - R_{p}^{2} \right) \left[R_{2}^{2} - 0.5 \left(R_{y}^{2} + R_{p}^{2} \right) \right]. \tag{3.66}$$

Поток в колесе радиальной центробежнои машины изменяет направление движения. Входя в осевом направлении, он покидает колесо, двигаясь в плоскостях, нормальных к оси машины, благодаря чему возникает динамическое давление на колесо. Силу, обусловленную этим давлением, можно определить, применив уравнение количества движения.

$$P_{\text{MBB}} \Delta t = \left(m_{\text{CER}} c_0 - m_{\text{CER}} c_2 \cos \frac{\pi}{2} \right) \Delta t_s \tag{3.67}$$

где $\Delta t = 1$ с. Тогда

$$P_{\text{дин}} = \rho Q c_0. \tag{3.68}$$

Направление действия силы $P_{\pi^{u_B}}$ соответствует направлению скорости c_0 входа в колесо машины.

Осевая сила, действующая на одно рабочее колесо центробежной машины, получается алгебранческим сложением сил $P_{\rm p}$ и $P_{\rm grad}$:

$$P_{\text{oc}}' = \pi \left(R_{y}^{2} - P_{\text{B}}^{2} \right) (p_{2} - p_{1}) - \frac{\pi \rho \omega^{2}}{8} \left(R_{y}^{2} - R_{\text{B}}^{2} \right) \left[R_{2}^{2} - 0.5 \left(R_{y}^{2} + R_{\text{B}}^{2} \right) \right] - \rho Q c_{0}.$$
 (3.69)

Как видно из выраження (3.69), осевая сила зависит от различных факторов. Основвыми из них являются: раднальные размеры колеса R_2 и R_3 , частота вращения и давление на выходс из колеса. Осевая сила существенно зависит от режима работы центробежной машины. Осевая сила тем больше, чем менее машина нагружена, т.е. чем меньше лодача машины, достигаемая дросселированием. Наивысшее значение осевой силы — на холостом ходу машины (полное закрытие регулиру-

ющего дросселя). Это объясняется отсутствием динамической осевой силы и говышением p_2 с уменьшением подачи машины.

Формула (3.69) относится к одной ступени центробежной машины. Если же центробежная машина состоит из *i* одинаковых ступеней давления, то осевая сила на роторе машины будет равна

$$P_{\text{oc}} = iP'_{\text{oc}}. (3.70)$$

В действительных условнях благодаря протечкам через уплотнения значения осевой силы несколько отличаются от вычисляемых по выражениям (3.69) и (3.70).

Осевая сила в многоступсичатых машинах может достигать больших значений, и восприятие ее упорными подшиниками при большой

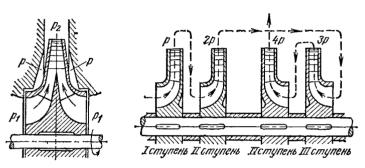
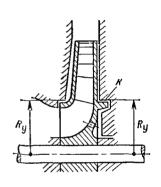


Рис. 322. Колесо центробежной машины с двусторонним входом

Рис. 3 23. Многоступенчатая машипа с двусторонним симметричным входом


частоте вращения вала затруднено. Только у машин малых размеров и при небольшом числе ступеней можно допустить восприятие осевой силы упорным подшинником.

Двусторонний подвод потока жидкости в рабочее колесо. Рабочее колесо с подводом потока жидкости с двух сторон (рис. 3.22) не передаст осевой силы на вал вследствие своей симметрин. Колеса такого типа широко применяются в одноступенчатых центробежных машинах.

В многоступенчатых и многоноточных машинах с четным числом рабочих колес можно разместить колеса одинаковыми группами с подводом готока жидкости с разных сторон, как показано на рис. 3.23. В таких случаях осевые силы, создаваемые обенми группами колес, одинаковы по значению, по различны по награвлению и поэтому взаимно уравновешены. Такой способ уравновешивания осевой силы является одним из лучших, так как он обеспечивает надежное уравновешивание без понижения КПД машниы. Для фиксирования ротора машины в осевом направлении и восприятия незначительных осевых сил, обусловлев-

ных педостаточно строгой симметрней ротора (влияние технологических и монтажных неточностей), в машинах такого тига устанавливают шариковый подцятник.

Выравнивание давления с обеих сторон рабочего колеса. Из днаграммы распределения внешних давлений на колеса машипы (см. рис. 321) следует, что осевая сила является результатом неравенства осевых давлений перед колесом и за ним в пределах радиусов R_y и $R_{\rm B}$. Если на заднем диске колеса центробежной машины по окружности с радиусом R_y разместить уплотияющее цилиндрическое кольцо κ , а в теле заднего диска близ ступицы колеса просверлить несколько отверстий, то давления перед колесом (на входе) и за ним будут уравновешены (рис. 3.24) и осевая сила будет вызываться только динамической составляющей ес. Динамическое усилие на входе относительно невелико и может быть воспринято шариковым подпятником.

Poc Str. Spach

Рис. 3 24. Уравновешивание осевой силы при помощи отверстий в основном диске рабочего колеса

Рнс. 3.25. Уравновешивание осевой силы при помощи разгрузочного диска (гидравлической пяты)

Отверстия в диске, сообщающие полости перед колесом и за ним, ипогда заменяют соединительной трубкой, сообщающей указанные полости. Такой способ уравновешивания удобен, прост и поэтому широко распространен.

К недостаткам описанного способа разгрузки следует отнести иекоторое понижение объемного КПД машины (за счет перстекания среды через отверстия) и ухудшение структуры потока при входе на рабочие лопасти вследствие местных потоков через разгрузочные отверстия.

Разгрузочный диск (гидравлическая пята). В конструкциях многоступсичатых центробежных машин осевую силу можно уравновесить специальным диском, навываемым разгрузочным (или гидравлической пятой) (П на рис. 3.25), который жестко крепится за последним коле-

сом машины на валу. Давление ра за последним рабочим колесом машины распространяется через радиальный зазор б, и действует на диск как это показано стрелками. В полости за диском поддерживается павление, приблизительно равное давлению р, во всасывающей трубе насоса. Это достигается соединением полости А со всасывающей трубов машины отводящей трубкой B. Ясно, что давление, близкое к p_1 , может поддерживаться в полости А только при условни, что осевой зазов δ_a между диском и поверхностью кольцевого выступа корпуса достаточно мал по сравнению е диаметром отводящей трубки Б. В противном случае, т. е. когда размер δ_{α} увеличен и кольцевая шель шириной δ_a имеет малос гидравлическое сопротивление, лавление в полости Aвозрастет и диск, находящийся под действием разности давлений ра-рь будет создавать недостаточную осевую силу. При нормальных соотношениях между размерами δ_a , δ_r и диаметром отводящий трубки **Б** разгрузочный диск создает осевую силу, прилагаемую к валу и направленную вправо, равную осевой силе, создаваемой рабочими колесами. Для этого разгрузочный диск Π должен иметь диаметр D_{Π} , удовлетворяющий условию

$$P_{\rm oc} \approx \frac{\pi}{4} \left(D_H^2 - D_{\rm BT}^2 \right) \left[\left(p_2 - \gamma h_r \right) - \left(p_1 + \gamma h_B \right) \right],$$
 (3.71)

где $D_{\rm nr}$ — диаметр втулки рабочего колеса; $h_{\rm r}$ — гидравлическое сопротивление радиального зазора $\delta_{\rm r}$; $h_{\rm g}$ — сопротивление перепускной трубки ${\it B}$.

Такое уравновешивающее устройство обладает способностью авторегулирования. Действительно, если по какой-либо причине ротор машины вместе е диском сдвинулся из нормального положения вправо, то зазор δ_a увеличится, гидравлическое сопротивление его уменьшится, давление в полости B снизится, а в полости A возрастет. Уравиовешивающая сила на диске уменьшится, равновесие между осевой силой, создаваемой рабочими колесами, и уравновешивающей силой, созданной диском, нарушится в пользу первой и ротор сдвинется влево, восстановив нормальное значение зазора δ_a . В противоположном направлении протекает процесс при сдвиге ротора из нормального положения влево. Таким образом, правильно рассчитанный диск будет автоматически самоустацавливаться, обеспечивая соответствие между осевой и уравновешивающей силами.

Конструктивное выполнение разгрузочного диска в воздушими центробежных машинах отличается от рассмотрениого, хотя способ действия разгрузочного диска во всех случаях остается одним и тем же.

Уравновешивание с помощью разгрузочного диска нашло широкое применение в многоступевчатых машинах благодаря простоте и надежности действия. Крупным недостатком этого способа уравновешивания является увеличение утечек жидкости, вызывающее снижение КПД ма-шины. В одноступенчатых машинах сказывается также влияние раско-

да мощности на преодоление потерь дискового трения. Поэтому в одноступенчатых машинах разгрузочный диск не применяют.

Радиальные силы. Основная причина возникновения радиальных сил— асимметрия потока на выходе из рабочего колеса, обусловлениая в основном влиянием отвода. При изменении скорости в отводе по закону сохранения энергии происходыт соответственное изменение давления по длине отвода. Эти изменяющиеся давления в сумме и дают радиальную силу, действующую на ротор насоса.

Давление в спиральном отводе постоянно по длине лишь при расчетном режиме насоса с оптимальной подачей Q_0 . Естественно, что при регулировании насоса прв $Q < Q_0$ спиральный отвод работает как диффузор, а при $Q > Q_0$ — как конфузор, и скорость в нем соответственно уменьшается или увеличивается. Таким образом, радиальная сила возпикает лишь при отклонении режима от оптимального.

Из теоретических предпосылок в опытов радиальная сила в насосе со спиральным отводом рассчитывается по формуле

$$P_r = k_r \left(1 - \frac{Q}{Q_0} \right) \rho g H D_2 b_2.$$

143 формулы видно, что максимальное значение радиальной силы $(P_r)_{\mathsf{MMKC}} = k_r \rho g H D_2 b_2$ достигается при Q = 0, мивимальное — при $Q = Q_0$. Для насосов с кольцевым отводом применяется формула

$$P_r = k_r \frac{Q}{Q_0} \rho g H D_2 b_2.$$

В ориентировочных расчетах принимается $k_r \approx 0.36$.

Радиальные силы вызываются также статической и динамической неуравновещенностью ротора вследствие неточности технологии и монтажа насоса.

Радикальным способом уменьшения радиальной силы является применение двухзаходной спирали и канальных направляющих аппаратов.

Радиальные силы воспринимаются подшиниками васоса и существенно влияют на их надежность и долговечность.

3.10. Теоретические характеристики

Характеристиками центробежной машины называют графически изображенные зависимости

$$H = f(Q);$$

$$N = F(Q);$$

$$\eta = F(Q);$$

$$H_{cr} = \varphi(Q);$$

$$\eta_{cr} = \theta(Q).$$
(3.72)

Если эти зависимости даны при n—const, то они явля, ются характеристиками при постоянной частоте вращения если же они даны при n—var, то их называют характеристиками при переменной частоте вращения.

Наиболее важной характеристикой является зависимость между напором и подачей (или давлением и пода-

чей).

Воспользуемся уравнением Эйлера для получения теоретической характеристики напора при условии $\alpha_1 = 90^{\circ}$

$$H_{\mathbf{r}^{\infty}} = u_2 c_{2u} / g.$$

Из плана скоростей (см. рис. 3.2) следует, что

$$c_{2u}=u_2-c_{2r}\operatorname{ctg}\beta_2.$$

Кроме того, по уравнению неразрывности для выходного сечения рабочего колеса при бесконечно тонких лопастях

$$Q = \pi D_2 b_2 c_{2r}$$

И

$$c_{2r} = Q/(\pi D_2 b_2).$$

Тогда

$$c_{2u} = u_2 - \frac{\operatorname{clg} \beta_2}{\pi D_2 b_2} Q.$$

Подставив последнее выражение в уравнение Эйлера, получим

$$H_{\tau\infty} = \frac{u_2}{g} \left(u_2 - \frac{\operatorname{ctg} \beta_2}{\pi D_2 b_2} Q \right).$$

Выразим наружную скорость u_2 через диаметр рабочего колеса и частоту вращения его вала

$$u_2 = \pi D_2 n/60.$$

Подставив это значение в последнее выражение, получим

$$H_{T^{\infty}} = \frac{(\pi D_2 n)^2}{3600g} - \frac{n \operatorname{ctg} \beta_2}{60b_2 g} Q. \tag{3.73}$$

Для центробежной машины с заданными геометрическими размерами при n = const

$$\frac{(\pi D_2 n)^2}{3600g} = C = \text{const}; \quad \frac{n \cot \beta_2}{60b_2 g} = E = \text{const}.$$

На основании последних соотношений получим следующее уравнение характеристики:

$$H_{\tau^{\infty}} = C - EQ. \tag{3.74}$$

Это уравнение прямой линии; положение ее в координатной системе Q, H при заданных значениях n, b_2 и D_2 зависит от угла β_2 .

При построении характеристики центробежной машины при n = const предполагается изменение аргумента Q путем изменения открытия запорного органа на выходном патрубке машины. Такой процесс называется $\partial pocce_{\Lambda}upo$ -

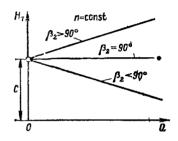


Рис. 3.26. Теоретические характеристики центробежиых иашин при различных углах $oldsymbol{eta}_2$

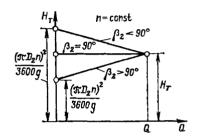


Рис. 3.27. Теоретические характеристики центробежных машин с одвнаковыми Q и $H_{\mathtt{T}}$ при различных углах β_2

ванием, а сами характеристики — дроссельными кривыми. Независимо от формы рабочей лопасти, определяемой углом β_2 , теоретический напор при Q=0 (полное закрытие регулирующей задвижки) будет равен C и определится однозначно диаметром рабочего колеса и его частотой вращения.

При $\beta_2 = \pi/2$, ctg $\beta_2 = 0$ по уравнению (3.74) теоретический напор $H_{T\infty} = C = \text{const}$; теоретическая характеристика машины получится в виде прямой, параллельной оси абсцисс (рис. 3.26).

Лопасти, отогнутые назад, характеризуются углом $\beta_2 < \pi/2$ 1 при этом второй член уравнения (3.73) положителен и увеличение Q вызывает снижение теоретического напора. Характеристика такой машины представится наклонной линией, расположенной ниже характеристики машины с $\beta_2 = \pi/2$. Напротив, если машина имеет лопасти с $\beta_2 > \pi/2$ (отогнутые вперед), то второй член уравнения (3.73) отрицателен и возрастание Q вызывает увеличение $H_{\tau\infty}$. Теоретическая характеристика для такого случая

располагается выше горизонтальной характеристики пра $\beta_2 = \pi/2$. Из рис. 3.26 видно, что при заданной подаче теоретический напор тем выше, чем больше рабочая лопасть отогнута вперед.

Достижение заданных теоретического напора и подачи центробежной машины при рабочих колесах с различным углами требует различных окружных скоростей на выходе

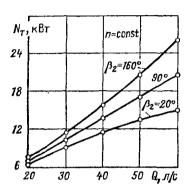


Рис. 3.28. Теоретические характеристики мощности при различных значениях угла β2

из рабочего колеса или при одинаковом диаметре колес различных частот вращения. Это ясно из теоретических характеристик, показанных на рис. 3.27.

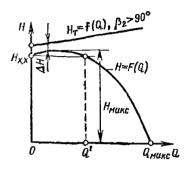
Для получения заданного теоретического напора при одинаковом диаметре рабочих колес наименьшей частотой вращения должно обладать колесо с лопастями, загнутыми вперед, а наибольшей—колесо с лопастями, загнутыми назад.

По уравнению (3.74) можно выяснить форму характеристики теоретической мощности центробежной машины:

$$N_{\tau^{\infty}} = MgH_{\tau^{\infty}} = \rho Q(C - EQ)g. \tag{3.75}$$

Эта характеристика может быть представлена графически для различных значений β_2 при постоянных значениях ρ , n, D_2 , b_2 .

На рис. 3.28 показаны теоретические жарактеристики мощности для углов β_2 =20; 90 и 160°, при n=1000 об/мин, D_2 =0,5 м и b_2 =0,03 м (центробежный насос).


3.11. Действительные характеристики при постоянной частоте вращения

Действительный напор отличается от теоретического на значение потерь напора в проточной полости машины.

При изменении подачи машины потери напора меняются, во-первых, вследствие изменения сопротивления проточной полости, пропорционального квадрату средней скорости потока, во-вторых, по причине изменения направления скорости на входе в межлопастные каналы. Последнее

обусловливает удар жидкости (газа) о входные кромки лопастей и образование в потоке вихревых зон. В результате этого характеристика действительного напора располагается ниже характеристики теоретического напора.

В зависимости от значения лопастного угла β_2 и конструктивных особенностей проточной полости центробежной машины действительная характеристика может иметь две типичные формы.

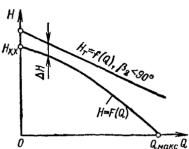
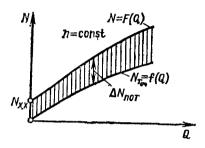


Рис. 3 29. Действительная характеристика при $\beta_2 > 40^\circ$


Рис. 3.30. Действительная характеристика при $\beta_2 < 40^\circ$

Характеристика, представленная на рис. 3.29, тнпична для $\beta_2 > 40^\circ$. Особенностью такой характеристики является наличие максимума и, следовательно, пеоднозначность зависимости H = f(Q) для данной машины в пределах напоров от $H_{\mathbf{x}.\mathbf{x}}$ до $H_{\text{макс}}$. Машины с характеристикой такого тппа, как позднее будет показано, могут работать неустойчиво, самопроизвольно изменяя подачу. Это является отрицательным свойством машины, и поэтому такой тип характеристики нежелателен.

Другая форма характеристики, представленная на рис. 3.30, свойственна центробежным машинам с β₂ < 40° при рациональной конструкции проточной части.

Действительная характеристика мощности машины может быть получена из теоретических характеристик путем вычитания (при данных подачах) из значений теоретической мощности ее потерь. При этом характер зависимости мощности от подачи в основном сохранится: действительная мощность машины будет возрастать с увеличением подачи. Однако вследствие неодинакового относительного влияния потерь на полную мощность линия действительной мощности отклоняется от линии теоретической мощно-

сти; она представится слегка изогнутой кривой. Теоретическая мощность при подаче, равной нулю, также равна нулю. Действительная же мощность при Q=0 (при закрытом дросселе) равна мощности холостого хода $N_{x.x}$, затрачиваемой на покрытие потерь мощности в этом режиме. Потери мощности на холостом ходу обусловлены циркуляционными потоками в проточной части машины, особенно в рабочем колесе, дисковым трением о жидкость (газ), механическим трением в уплотнениях и подшипниках маши-

η_{manc} η_{manc} Q_o Q_{manc}Q

Рис. 3.31. Характеристики теоретической и действительной мощностей центробежной машины

Рис. 3.32. Характеристика КПД центробежной машивы

ны. Все указанное приводит к форме характеристик действительной мощности, показанной на рис. 3.31.

По характеристикам действительного напора и действительной мощности определяется КПД центробежной машины. Из уравнения (2.9) получим

$$\eta = \frac{\rho QgH}{1000N}.$$

Очевидно, КПД равен нулю при Q=0 или H=0, потому что при всех режимах работы машины $N\neq 0$. В пределах между Q=0 и $Q=Q_{\text{макс}}$ (рис. 3.32) КПД машины достигает максимального значения.

Режим машины, при котором ее КПД максимален, называют оптимальным; при этом затрата мощности для создания напора и подачи осуществляется в машине с навлучшим энергетическим эффектом, т.е. наиболее экономично¹.

³ Напоры (давления), подачи и мощности, приводимые в справочниках, относятся, если вет оговорок, к оптимальному режиму машины.

3.12. Подобие центробежных машин. Коэффициент быстроходности. Формулы пропорциональности

Движение жидкостей (газов) в проточной полости машины весьма сложно. Поэтому точный расчет рабочих элементов машины представляет большие трудности. При проектировании насосов и компрессоров широко используют опытные данные, полученные при исследовании машин, аналогичных проектируемой. Использование опытных дан-

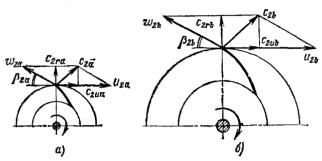


Рис. З 33. Параллелограммы скоростей подобных центробежных машни

ных при проектировании допустимо лишь при соблюдении законов подобия.

В современном гидромашиностроении широко применяется метод моделирования, т. е. испытания моделей, позволяющий проверить проект и внести в него практические коррективы. Модели строят, как правило, с соблюдением законов подобия.

Физические явления, протекающие в геометрически подобных пространствах, называются подобными, если в соответственных точках этих пространств сходственные физические величины находятся в постоянных соотношениях. Эти соотношения называются коэффициентами или масштабами подобия.

Пусть машины a и b (рис. 3.33) подобны. Условия eo-метрического подобия этих машин заключаются в равенстве сходственных углов и постоянстве отношений сходственных геометрических величин:

$$\beta_{1a} = \beta_{1b} = \beta_{1}; \ \beta_{2a} = \beta_{2b} = \beta_{2}; \ \beta_{ia} = \beta_{ib} = \beta_{i};
\frac{D_{2b}}{D_{2a}} = \frac{D_{ib}}{D_{1a}} = \frac{b_{1b}}{b_{1a}} = \dots = \frac{l_{ib}}{l_{ia}} = \delta_{l} = \text{const},$$
(3.76)

где δ_t — коэффициент геометрического подобия.

Кинематическое подобие состоит в постоянстве отноше. ний скоростей в сходственных точках геометрически подобных машин и равенстве сходственных углов параллело. граммов скоростей:

$$\frac{\alpha_{1a} = \alpha_{1b}; \ \alpha_{2a} = \alpha_{2b}; \ \dots; \ \alpha_{la} = \alpha_{lb};}{u_{1a}} = \frac{w_{ib}}{w_{1a}} = \frac{c_{ib}}{c_{1a}} = \frac{u_{2b}}{u_{2a}} = \dots = \frac{c_{ib}}{c_{la}} = \delta_c = \text{const},}$$
(3.77)

где δ_c — коэффициент кинематического подобия.

Динамическое подобие выражается постоянством отношений сил одинаковой природы, действующих в сходственных точках геометрически и кинематически подобных машин:

$$\frac{P_{1b}}{P_{1a}} = \frac{P_{2b}}{P_{2a}} = \dots = \frac{P_{ib}}{P_{ia}} = \delta_p = \text{const},$$
 (3.78)

где δ_p — коэффициент динамического подобия.

Из изложенного следует, что доказательство подобия течений в двух насосах заключается в обнаружении постоянства коэффициентов подобия для сходственных точек.

Если известны коэффициенты подобия двух машин, то по известным характеристикам одной машины l_{ia} , β_{ia} , c_{ia} , P_{ia} можно получить значения сходственных характеристик другой машины:

$$\beta_{ib} = \beta_{ia}; \ l_{ib} = \delta_l \ l_{ia}; \ c_{ib} = \delta_c c_{ia}; \ P_{ib} = \delta_p P_{ia}.$$

Общие критерии подобия потоков, известные в гидроаэромеханике как числа Рейнольдса, Фруда, Эйлера и Струхала, применимы и к потокам в центробежных машинах. Напомним выражения этих чисел через основные параметры потоков: Re = cl/v, $Er = c^2/gl$; $Eu = p/\rho c^2$; Sh = ln/c.

Подобие течений характеризуется следующими равенствами безразмерных критериев, вычисленных для сходств

венных точек машин:

$$Re_a = Re_b$$
; $Eu_a = Eu_b$; $Fr_a = Fr_b$; $Sh_a = Sh_b$. (3.79)

Для компрессоров число Эйлера выражают через местную скорость звука a и показатель адиабаты k, между которыми существует зависимость $a=\sqrt[k]{kp/\rho}$. Следовательно, $p=a^2\rho/k$, и поэтому

$$\mathrm{Eu} = \frac{p}{\rho c^2} = \frac{1}{k} \frac{a^2}{c^2} \,.$$

Безразмерную скорость c/a обозначают через М. Тогда $Eu=1/(kM^2)$, откуда следует, что для подобных компрессоров $M_a=M_b$.

Таким образом, условия подобия компрессоров выра-

жаются следующими равенствами:

$$\left. \begin{array}{l}
 \text{Re}_{a} = \text{Re}_{b}; \ \text{Fr}_{a} = \text{Fr}_{b}; \ M_{a} = M_{b}; \\
 \text{Sh}_{a} = \text{Sh}_{b}; \ k_{a} = k_{b}.
 \end{array} \right\}
 \tag{3.80}$$

Поскольку в процессе работы компрессоров проявляется теплоотдача, для строгого соблюдения подобия следует сохранять еще и постоянство критериев Прандтля и Грасгофа.

Заводы, изготовляющие центробежные машины, обычно имсют в производстве не случайные типы машин, различающиеся и размерами, и геометрической формой, а серии геомстрически подобных машин. Поэтому важно установить соотношения между основными параметрами машин данной серии.

Предположим, что две подобные машины a и b с радиальным входом работают в подобных режимах (см. рис. 3.33). При этом должны соблюдаться условия кинема-

тического подобия [см. (3.77)].

Объемная подача для обеих машин

$$\begin{aligned} Q_a &= \pi D_{2a} \, b_{2a} \, c_{2ra} \, \eta_{oa}; \\ Q_b &= \pi D_{2b} \, b_{2b} \, c_{2rb} \, \eta_{ob}. \end{aligned}$$

Рассмотрим отношение этих подач:

$$\frac{Q_a}{Q_b} = \frac{D_{2a}}{D_{2b}} \frac{b_{2a}}{b_{2b}} \frac{c_{2ra}}{c_{2rb}} \frac{\eta_{0a}}{\eta_{0b}}.$$

Из подобия планов скоростей на выходе и условия пропорциональности окружной скорости частоте вращения рабочего колеса машины следует

$$\frac{c_{2ra}}{c_{2rb}} = \frac{u_{2a}}{u_{2b}} = \frac{n_a D_{2a}}{n_b D_{2b}}.$$

Тоэтому

$$\frac{Q_a}{Q_b} = \frac{D_{2a}^2}{D_{2b}^2} \frac{b_{2a}}{b_{2b}} \frac{n_a}{n_b} \frac{\eta_{0a}}{\eta_{0b}}.$$

Вследствие геометрического подобия машин

$$\frac{b_{2a}}{b_{2b}}=\frac{D_{2a}}{D_{2b}},$$

следовательно, в окончательном виле

$$\frac{Q_a}{Q_b} = \frac{D_{2a}^3}{D_{2b}^3} \frac{n_a}{n_b} \frac{\eta_{0a}}{\eta_{0b}}.$$
 (3.81)

Объемные подачи центробежных машин, работающих в подобных режимах, относятся как кубы наружных диаметров рабочих колес и первые степени частот вращения валов и объемных $K\Pi J$.

Если рассматривается центробежная машина данного размера, то $D_{2a} = D_{2b}$ и, следовательно,

$$\frac{Q_a}{Q_b} = \frac{n_a}{n_b} \frac{\eta_{oa}}{\eta_{ob}} . \tag{3.82}$$

При изменении частоты вращения вала центробежной машины объемные подачи ее в подобных режимах относятся как первые степени частот вращения вала и объемных КПД.

Пользуясь соотношениями (3.15) и (3.18), получаем

$$\frac{H_a}{H_b} = \frac{u_{\Sigma a} c_{2\mu a}}{u_{2b} c_{2\mu b}} \frac{\eta_{\Gamma a}}{\eta_{\Gamma b}}.$$

По условиям кинематического подобия $\frac{c_{\it 2ua}}{c_{\it 2ub}} = \frac{u_{\it 2a}}{u_{\it 2b}}$. Кроме

того,
$$\dfrac{u_{2a}^2}{u_{b2}^2}=\dfrac{n_a^2}{n_b^2}\,\dfrac{D_{2a}^2}{D_{2b}^2}$$
 , следовательно,

$$\frac{H_a}{H_b} = \frac{D_{2a}^2}{D_{2b}^2} \frac{n_a^2}{n_b^2} \frac{\eta_{ra}}{\eta_{rb}} . \tag{3.83}$$

Полные напоры, создаваемые центробежными машинами в подобных режимах, относятся как квадраты наружных диаметров рабочих колес, квадраты частот вращения вала и первые степени гидравлических КПД.

Для данной машины при переменной частоте вращения

$$\frac{H_a}{H_b} = \frac{n_a^2}{n_b^2} \frac{\eta_{ra}}{\eta_{rb}}.$$
 (3.84)

При изменении частоты вращения вала центробежной машины напоры, создаваемые ею в подобных режимах, относятся как квадраты частот вращения вала и первые степени гидравлических КПД.

Соотношение между давлениями, создаваемыми машинами, получается умножением обеих частей уравнения (3 83) на соответственные значения плотностей:

$$\frac{\rho_a}{\rho_b} = \frac{\rho_a H_a}{\rho_b H_b} = \frac{D_{2a}^2}{D_{2b}^2} \frac{n_a^2}{n_b^2} \frac{\rho_a}{\rho_b} \frac{\eta_{ra}}{\eta_{tb}} . \tag{3.85}$$

Для данной машины при разных частотах вращения ее вала

$$\frac{p_a}{p_b} = \frac{n_a^2}{n_b^2} \frac{\rho_a}{\rho_b} \frac{\eta_{ra}}{\eta_{rb}}.$$
 (3.86)

Давления, создаваемые центробежной машиной в подобных режимах, пропорциональны плотности перемещаемой ею среды (жидкости или газа).

Из формулы для расчета мощности на валу центробежной машины следует

$$N_a = \frac{\rho_a Q_a g H_a}{\eta_a}$$
; $N_b = \frac{\rho_b Q_b g H_b}{\eta_b}$.

Соотношение между мощностями на валах двух центробежных машин, работающих в подобных режимах,

$$\frac{N_a}{N_b} = \frac{\rho_a Q_a H_a \eta_b}{\rho_b Q_b H_b \eta_a}.$$

Учитывая выражения (3.81) и (3.83) получаем

$$\frac{N_a}{N_b} = \frac{D_{2a}^5}{D_{2b}^5} \frac{n_a^3}{n_b^3} \frac{\rho_a}{\rho_b} \frac{\eta_b}{\eta_a} . \tag{3.87}$$

Мощности центробежных машин, работающих в подобных режимах, относятся как пятые степени наружных диаметров рабочих колес, кубы частот вращения валов, первые степени плотностей перемещаемых машинами сред и обратно пропорциональны КПД.

При небольшой разнице в размерах и частотах враще-

ния машин можно полагать $\eta_a = \eta_b$.

Для данной машины, подающей несжимаемую жидкость (вода, нефтепродукты, растворы), $\rho_a = \rho_b$; $D_{2a} = D_{2b}$ и формула (3.87) приобретает простейший вид

$$\frac{N_a}{N_b} = \frac{n_a^3}{n_b^3} \frac{\eta_b}{\eta_a} \,. \tag{3.88}$$

Соотношення (3.82), (3.84), (3.88) называют формулами пропорциональности. Для удобства пользования изложен-

ным материалом ниже приведены формулы пропорциональности при изменении параметров Q, H, p и N:

 Γ ри изменениях D_2 , n и ho Γ ри изменениях ho $\frac{\Gamma}{D_2}$ Γ ри изменениях η

$$\begin{split} Q_{a} &= Q_{b} \, \frac{D_{2a}^{3}}{D_{2b}^{3}} \, \frac{n_{a}}{n_{b}} \, \frac{\eta_{oa}}{\eta_{ob}} \qquad Q_{a} = Q_{b} \qquad Q_{a} = Q_{b} \, \frac{D_{2a}^{3}}{D_{2b}^{3}} \quad Q_{a} = Q_{b} \, \frac{n_{a}}{n_{b}} \\ H_{a} &= H_{b} \, \frac{D_{2a}^{2}}{D_{2b}^{2}} \, \frac{n_{a}^{2}}{n_{b}^{2}} \, \frac{\eta_{ra}}{\eta_{rb}} \qquad H_{a} = H_{b} \qquad H_{a} = H_{b} \, \frac{D_{2a}^{2}}{D_{2b}^{2}} \quad H_{a} = H_{b} \, \frac{n_{a}^{2}}{n_{b}^{2}} \\ p_{a} &= p_{b} \, \frac{D_{2a}^{2}}{D_{2b}^{2}} \, \frac{n_{a}^{2}}{n_{b}^{2}} \, \frac{\rho_{a}}{\eta_{rb}} \, \eta_{rb} \qquad p_{a} = p_{b} \, \frac{\rho_{a}}{\rho_{b}} \qquad p_{a} = p_{b} \, \frac{D_{2a}^{2}}{D_{2b}^{2}} \qquad p_{a} = p_{b} \, \frac{n_{a}^{2}}{n_{b}^{2}} \\ N_{a} &= H_{b} \, \frac{D_{2a}^{2}}{D_{2b}^{2}} \, \frac{n_{a}^{3}}{n_{2b}^{2}} \, \frac{\rho_{a}}{\rho_{b}} \, \frac{\eta_{b}}{\eta_{a}} \qquad N_{a} = N_{b} \, \frac{\rho_{a}}{\rho_{b}} \qquad N_{a} = N_{b} \, \frac{D_{2a}^{5}}{D_{2b}^{5}} \qquad N_{a} = N_{b} \, \frac{n_{a}^{3}}{n_{b}^{3}} \end{split}$$

Применяя формулы пропорциональности, можно принимать КПД машин, работающих в подобных режимах, практически одинаковыми.

При строгих расчетах следует иметь в виду некоторое повышение КПД при увеличении размеров машины. Не следует, однако, думать, что пересчет Q, H и N по формулам пропорциональности приводит к правильным результатам независимо от условий, в которых работает центробежная машина. Работа машины определяется также свойствами трубопроводной системы, подключенной к ней. Поэтому определение основных параметров Q, H и N машины, включенной в трубопроводную систему, должно производиться, как указывается ниже, с учетом рабочих свойств последней.

Важной величиной, определяющей подобие течений в на-

сосах, является коэффициент быстроходности ns.

Коэффициентом быстроходности n' данной машины (насоса, вентилятора, компрессора) называют число, равное частоте вращения машины, геометрически подобной данной, но имеющей подачу Q=1 м³/с и напор H'=0,102 м (соответственно L'=gH'=1 Дж/кг) в режиме максимального КПД.

Полагая в уравнениях подобия (3.81) и (3.83) Q'=1 м³/с и gH'=1 Дж/кг, получаем

$$\frac{1}{Q} = \frac{n^e}{n} \left(\frac{D_2'}{D_2} \right)^3; \tag{3.89}$$

$$\frac{1}{gH} = \left(\frac{n'}{n}\right)^2 \left(\frac{D_2'}{D_2}\right)^2. \tag{3.90}$$

Решение этих уравнений дает

$$n' = \frac{n\sqrt{Q}}{(gH)^{3/4}}. (3.91)$$

Коэффициент быстроходности n' — безразмерная величина, являющаяся коэффициентом подобия. Однако в практике насосостроения в качестве коэффициента быстроходности до настоящего времени применяют размерную величину

$$n_s = 3,65 - \frac{n\sqrt{Q}}{H^{3/4}}, \qquad (3.92)$$

отнесенную к единичным величинам H'=1 м; N'=1 л. с. Формула (3.92) получается из условий подобия (3.81), (3.83).

Понятие n_s по (3.92) перешло в насосостроение из области гидротурбостроения, где в качестве единичных эталонных величин были приняты H'=1 м, N'=1 л. с и следующий отсюда единичный расход Q'=0.075 м³/с.

Коэффициент быстроходности n_s определяется величинами Q, H и n; при регулировании машины он может изменяться в пределах от 0 до ∞ .

Характеризуя машину при помощи n_s , обычно относят его к режиму с максимальным КПД.

Значения n_s для различных типов насосов следующие:

Ротационные и поршневы														
Вихревые		:	:	:	:	•	:	•	•	•	•	•	•	10-40 40-300
Диагональные	•	٠	•			•	•	•			•	٠		300600
Осевые		•		•										000-1200

При помощи коэффициента быстроходности, вычисленного по выражению (3.92), можно выбирать тип машины для работы с заданными Q, H и n.

По предложению ЦАГИ коэффициентом быстроходности вентилятора принято считать частоту вращения вентилятора данного типа, который в режиме максимального КПД подает 1 м³/с газа, создавая условное давление $30 \ \text{кгс/м}^2$. Тогда $n_s = n \sqrt{Q} I H^{3'4}$, где H— напор, приведенный к $\rho = 1.2 \ \text{кг/м}^3$.

3.13. Пересчет характеристик при изменении частоты вращения машины и вязкости среды

Влияние частоты вращения на характеристики насоса, Задана характеристика H = f(Q) насоса (вентилятора) при частоте вращения n_a (рис. 3.34).

Требуется перестроить эту характеристику на другую частоту вращения $n_b > n_a$, полагая гидравлический и объемный КПД не зависящими от частоты вращения.

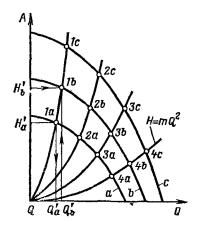


Рис. 3.34. Построение характеристик H = f(Q) по формулам пропорциональности

Рис. 3.35. Построенне характеристик N = f(Q) по формулам пропорциональности

Из формул пропорциональности следует

$$Q_b = Q_a \frac{n_b}{n_a}; \ H_b = H_a \frac{n_b^2}{n_a^2}.$$

Выбрав на характеристике a произвольную точку 1a, находим на осях координат численные значения Q_a' и H_a' . Затем вычисляем координаты точки 1b (характеристики для

частоты вращения
$$n_b$$
) $Q_b' = Q_a' \frac{n_b}{n_a}$ и $H_b' = H_a' \frac{n_b^2}{n_a^2}$ и по

этим координатам наносим на графике точку 1 b.

Аналогично по координатам произвольно выбираемых точек 2a, 3a, 4a... вычисляем координаты точек 2b, 3b, 4b.... я напосим эти точки в график. Соединяя их плавной линией,

получаем характеристику H=f(Q) для частоты вращения вала $n_{\rm B}$. Точно так же можно построить 1c, 2c, 3c... характеристики при частоте n_c и других частотах. Соединив точки 1a, 1b, 1c..., 2a, 2b, 2c..., 3a, 3b, 3c..., получим параболические кривые, удовлетворяющие уравнению $H=mQ^2$, называемые линиями пропорциональности (m- коэффициент пропорциональности уравнения квадратичной параболы).

При пересчете координат КПД машины полагался постоянным, не зависящим от частоты вращения. Поэтому линии пропорциональности являются линиями постоянных КПД

машины.

Очевидно, точки пересечения линий пропорциональности и характеристик H = f(Q) при разных частотах вращения определяют параметры Q и H мащины в подобных режимах работы.

Пересчет характеристик N = F(Q) проводится аналогич-

ным способом по формулам пропорциональности

$$Q_b = Q_a \frac{n_b}{n_a}; \quad N_b = N_a \frac{n_b^3}{n_a^3}.$$

По координатам Q_a' , Q_a'' , Q_a''' ... и N_a' , N_a'' , N_a''' ... про- извольно взятых точек 1a, 2a, 3a ... получим пересчетом координаты точек 1b, 2b, 3b... и 1c, 2c, 3c ..., по которым проводим кривые зависимости мощности от подачи при частотах вращения n_b и n_c (линии b и c на рис. 3.35). Линии 1a, 1b, 1c..., 2a, 2b, 2c... являются линиями подоб-

Линии 1a, 1b, 1c..., 2a, 2b, 2c... являются линиями подобных режимов с постоянным для каждой из них значением

КПД. Общий вид уравнения этих линий

$$N=eQ^3$$

где e — коэффициент пропорциональности уравнения кубической параболы.

Следует иметь в виду, что в общем случае работы машины на сеть, напор которой подчинен уравнению $H=H_{\rm or}+ + mQ^2$, КПД машины при изменении режима не остается постоянным. Условие $\eta={\rm const}$ при изменении частоты вращения соблюдается только в том случае, когда напор в сети подчинен законам квадратичной параболы $H=mQ^2$, т. е. в сети нет статического напора.

Выясним, как изменяется форма характеристики КПД $\eta = f(Q)$ при изменении частоты вращения (рис. 3.36). Даны характеристики напора и КПД при частоте вращения n_a (кривые показаны сплошными линиями). Проведем ли-

нин подобных режимов $\eta' = \text{const}$, $\eta'' = \text{const}$ (режимы I и II).

При частоте вращения n_a и режиме работы I параметры машины Q_a' и η_a' определяет точка α_a' . Если частота вращения изменяется до n_b , то подача Q_b' определится точкой α_b' , а КПД останется прежним, т. е. $\eta_b' = \eta_a'$.

Следовательно, соответственная точка κ кривой КПД при частоте вращения n_b получается перенесением по горизонтали значения η'_a на ординату, соответствующую абсциссе Q'_b . Аналогичное построение дано на графике для режима II.

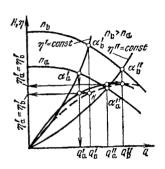
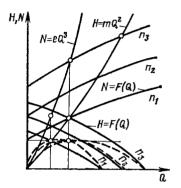
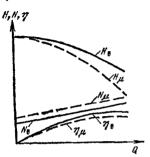



Рис. 3.36. Влияние частоты вращения на характеристику КПД

Рнс. 3 37. Характернстнки центробежной машины при переменной частоте вращения

Таким образом, при увеличении частоты вращения характеристики КПД деформируются в направлении, параллельном оси абсцисс.

На рис. 3.37 представлена совместная характеристика напора, мощности и КПД центробежной машины для трех различных частот вращения. Такое семейство кривых, связанное условиями подобия, называют характеристикой при переменной частоте вращения.


Влияние вязкости среды на рабочие параметры насоса. Насосы, выпускаемые заводами, снабжаются паспортами с гарантийными данными и характеристиками напора, мошности и КПД при нормальной частоте вращения.

Характеристики получают на стенде завода-изготовителя испытанием на чистой пресной воде при температуре не выше 323 К и плотности ρ = 988 кг/м³. В промышленности используют насосы, испытанные на воде, для подачи жидкостей и с другой вязкостью, например минеральных и растительных масел, нефти, растворов и пр. В таких случаях заводские характеристики оказываются непригодными и подлежат пересчету на другую вязкость.

Вязкость в широком смысле этого термина — способность жидкости (газа) развивать внутренние силы, особен-

но существено проявляющиеся на твердых поверхностях, ограничивающих поток.

Вязкость влияет на гидравлическое сопротивление и обусловливает затрату энергии на его преодоление. При увеличении вязкости жидкости будут уменьшаться развиваемые насосом подача, напор и КПД. Мощность насоса при этом будет увеличиваться вследствие возрастания гидравлического сопротивления проточной полости и мощности дискового трения.

Рнс. 3.38. Влияние вязкости на характеристики центробежного насоса

Теоретически учесть влияние вязкости на рабочие параметры насоса и форму характеристик невозможно.

Наиболее простой способ пересчета рабочих параметров и перестроения характеристик при изменении вязкости основывается на применении поправочных коэффициентов, полученных опытным путем.

Обозначим параметры насоса, испытанного на воде, индексом «в», а работающего на другой, более вязкой жидкости — индексом» «µ». В соответствии с ранее указанным

$$Q_{\mu} < Q_{\rm B}; \ H_{\mu} < H_{\rm B}; \ \eta_{\mu} < \eta_{\rm B}.$$

Опытные поправочные коэффициенты подачи, напора и КПД обозначим соответственно f_Q , f_H , f_η . Их физический смысл ясен из соотношений

$$Q_{\mu} = f_{Q} Q_{B}; \ H_{\mu} = f_{H} H_{B}; \ \eta_{\mu} = f_{\eta} \eta_{B}.$$
 (3.93)

Числовые значения поправочных коэффициентов определяются конструкцией насоса, режимом нагрузки его и вязкостью жидкости; они даются в специальных справочниках в табличной форме. Удобно находить значения поправочных коэффициентов при помощи специальных номограмм, например в [29].

Выбором произвольных точек на характеристиках, полученных испытанием насоса на воде и пересчетом координатиих по (3.93), находят координаты точек характеристик праработе насоса на вязкой жидкости. Получаемая при этом картина качественно представлена на графике рис. 3.38, где штриховые линии относятся к жидкости с повышенной вязкостью.

Ориентировочные значения поправочных коэффициентов при пересчете на жидкости с вязкостью от 50 до 120°E для центробежных насосов с $n_s \approx 100$ лежат в пределах

$$f_0 = 0.9 \div 0.7$$
; $f_H = 0.92 \div 0.65$; $f_n = 0.7 \div 0.4$.

Задавая ряд произвольных значений Q_{μ} и находя по характеристикам соответственные значения H_{μ} и η_{μ} , можно вычислить мощность насоса $N_{\mu} = \rho Q_{\mu}gH_{\mu}/(1000 \, \eta_{\mu})$ в нанести в графике ряд точек, по которым проводится характеристика $N_{\mu} = F(Q_{\mu})$.

3.14. Безразмерные и универсальные характеристики

Рассмотренные действительные характеристики **явля**ются размерными и индивидуальными характеристикама, применимыми лишь к данной машине. Однако существуют приемы изображения характеристик в таких координатах, что они получаются применимыми для целой серии подобных машин, это безразмерные характеристики. Они строятся в безразмерных координатах, обозначаемых общепранятыми для подачи, напора, давления, мощности и КПД буквами, но с чертой сверху: \overline{Q} , \overline{H} , $\overline{H}_{c\tau}$, \overline{p} , \overline{N} , η , $\eta_{c\tau}$.

Рассмотрим тип безразмерных параметров, введенных

в употребление ЦАГИ для вентиляторов.

Подачи двух подобных вентиляторов, отмечаемых индексами a и b,

$$Q_a = \pi D_{2a} \, b_{2a} \, c_{2ra}; \ Q_b = \pi D_{2b} \, b_{2b} \, c_{2rb}.$$

Для всей серии подобных вентиляторов

$$\frac{b_{2a}}{D_{2a}} = \frac{b_{2b}}{D_{2b}} = k = \text{const};$$
 $\frac{c_{2ra}}{u_{2a}} = \frac{c_{2rb}}{u_{2b}} = m = \text{const}.$

Поэтому $Q_a=\pi kmD_{2a}^2\,u_{2a}$ и $Q_b=\pi kmD_{2b}^2\,u_{2b}$, или Q_a

$$=4km - \frac{\pi D_{2a}^2}{4} u_{2a} \text{ H } Q_b = 4km - \frac{\pi D_{2b}^2}{4} u_{2b}.$$

Следовательно, геометрически подобные машины, иаходящиеся в подобных режимах работы, характеризуются соотношением

$$\frac{Q_a}{\left(\pi D_{2a}^2/4\right)u_{2a}} = \frac{Q_b}{\left(\pi D_{2b}^2/4\right)u_{2b}} = 4km = \text{const.}$$

Отношение

$$\frac{Q}{(\pi D_2^2/4) u_2} = \bar{Q} \tag{3.94}$$

называют безразмерной подачей вентилятора или коэффициентом подачи.

Для данной машины, работающей при постоянной частоте вращения, параметр \overline{Q} изменяется пропорционально расходу и может быть легко рассчитан.

Воспользуемся уравнением Эйлера для машин, работа-

ющих в подобных режимах:

$$H_a = \frac{u_{2a} c_{2\mu a}}{g}$$
 и $H_b = \frac{u_{2b} c_{2\mu b}}{g}$

или с учетом условий кинематического подобия

$$H_a = \frac{mu_{2a}^2}{g} \quad \text{if } H_b = \frac{mu_{2b}^2}{g};$$

$$\frac{gH_a}{u_{2a}^2} = \frac{gH_b}{u_{2b}^2} = \frac{gH}{u_2^2} = \text{const.}$$

Отсюда следует

$$\overline{H} = \frac{gH}{u_2^2} \,, \tag{3.95}$$

где \vec{H} — параметр, не имеющий размерности и называемый безраэмерным полным напором или коэффициентом напора.

Для данной машины, работающей с постоянной частотой вращения, параметр \overline{H} пропорционален полному напору.

Аналогичиым путем могут быть введены параметры: безразмерное давление (коэффициент давления)

$$\overline{p} = \frac{p}{\rho u_2^2} \,; \tag{3.96}$$

безразмерная мощность (коэффициент мощности)

$$\bar{N} = \frac{N}{(\pi D_2^2/4) \rho u_2^3} \,. \tag{3.97}$$

Разумеется, КПД является безразмерным параметром. и поэтому

$$\overline{\eta} = \eta.$$
 (3.98)

Образцы безразмерных характеристик даны в гл. 5. По аналогии с топографической картой, дающей пред-

ставление о широте, долготе и высоте расположения каждой точки на местности, где высота дается горизонталями. т. е. линиями постоянной высоты, можно построить топо-

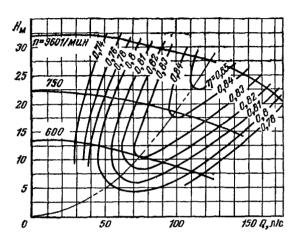


Рис. 3.39. Уннверсальная характеристика центробежного насоса

графическую, универсальную характеристику центробежной машины. Для этого по осям прямоугольной координатной системы откладывают, аналогично долготе и широте в топографической карте местности, основные параметры машины Q и H или Q и N, а КПД, аналогично высоте местности, дается в виде изолиний, т. е. линий постоянного КПД. приведена универсальная характеристика На рис. 3.39 Метод построения универсальных центробежного насоса. характеристик рассмотрен в [26].

3.15. Испытания насосов

Испытания центробежных и осевых иасосов регламентированы ГОСТ, который содержит перечень типов испытаний, методику измерений основных рабочих параметров насосов и указания по обработке опытных материалов. Здесь рассмотрим лишь общие вопросы испытаний насосов и измерений, проводимых на насосной установке с целью получения графических зависимостей H = f(Q), N = F(Q), $\eta = \varphi(Q)$, называемых энергетическими характеристиками.

Испытания в эксплуатационных условиях и в лабораториях проводят обычно при постоянной частоте вращения вала машины. Если это условие выдержать не удается, то измеренные параметры корректируют по формулам пропорциональности.

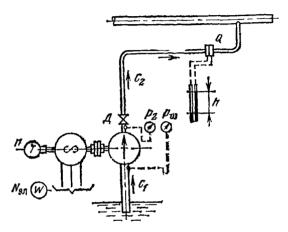


Рис. 3 40. Схема измереннй при снятии характеристики центробежного иасоса при n = const

Характеристики при n=var получают пересчетом характеристик при n=const по формулам пропорциональности, как это указано в § 3.13.

При испытаниях с целью получения энергетических характеристик подлежат измерению подача, напор (или давление), мощность и частота вращения вала машины. На рис. 3.40 дана схема расстановки приборов, применяемых при испытаниях насосов.

Испытание насоса заключается в измерении Q, H, N ч n при различных режимах работы, устанавливаемых открытием дросселя \mathcal{L} .

При центробежных насосах испытание начинают с режима холостого хода, т. е. при полном закрытии дросселя Д; при осевых насосах — с режима максимальной подачи, при полном открытии дросселя. Количество рабочих режимов при испытании, устанавливаемых промежуточными от-

крытиями дросселя Д, должно быть не менее 15 (для полу.

чения надежных форм характеристик).

Измерительная аппаратура и методика обработки результатов измерений при испытаниях в условиях эксплуатации должны обеспечивать относительную погрешность при измерении подачи не более 3,2, напора — 2, частоты вращения — 1 %.

Подача насосов измеряется приборами, устанавливаемыми на напорном трубопроводе. При испытании иасосов на воде подача измеряется сужающим устройством (соплом, диафрагмой) или измерением скоростей в мерном сечении (точечный способ с последующим суммированием).

чении (точечный способ с последующим суммированием). Сужающее устройство, например диафрагма, обусловливает местное падение напора $h_{\pi} = \xi c^2/(2g)$. Присоединив сюда уравнение расхода $Q = c\pi d^2/4$, получим

$$Q = m \sqrt{h_{\rm H}}, \qquad (3.99)$$

где $m = \sqrt{\pi^2 d^4 g/8\xi}$.

Коэффициент ξ местного сопротивления диафрагмы определяется по справочникам в зависимости от конструкции диафрагмы и отношения диаметров ее и напорного водопровода насоса. Следовательно, коэффициент m может быть вычислен, и формула (3.99) удобна для расчета расхода. Потеря напора h_{π} в диафрагме при пользовании формулой (3.99) выражается в метрах столба той жидкости, расход которой измеряется. Так, если показание ртутного дифманометра диафрагмы — h, то $h_{\pi} = h \rho_{\text{рт}} / \rho$, где $\rho_{\text{рт}} = h \rho_{\text{рт}} / \rho$

При испытаниях насосов в лабораторных условиях подачу можно измерять водосливным устройством или мерными баками.

Статическое давление, развиваемое машиной, измеряют как разность абсолютных статических давлений (p_2 — p_1) в напорном и всасывающем трубопроводах. При этом $H_{\text{ст}} = (p_2 - p_1)/\rho g$. Для этой цели применяют маиометры класса точности не ниже 0,6 для напорного и не ниже 1,0 для всасывающего трубопровода. Манометр и вакуумметр удобно располагать на одной высоте, как это показано на рис. 3.40. В этом случае нет необходимости учитывать разность геометрических отметок приборов, если импульсные трубки их заполнены жидкостью, подаваемой насосом. При измерениях давлений следует особое внимание об-

При измерениях давлений следует особое внимание обращать на правильное расположение мест отбора давления.

имся в виду, что всякое изменение направления движения потока, а также изменение размеров сечения вызывает появление инерционных сил, влияющих на давление в месте расположения импульсного отверстия. Во всех случаях измерений давлений желательно использовать несколько импульсных отверстий, объединенных общей (осредняющей) камерой.

Если определены абсолютные давления p_1 и p_2 во всасывающем и напорном трубопроводах насоса, то полный напор, развиваемый насосом, при расположении приборов

на одной высоте, будет равен

$$H = \frac{p_2 - p_1}{\rho g} + \frac{c_2^2 - c_1^2}{2g},$$

где c_1 и c_2 — средние скорости, вычисляемые по подаче и площадям сечений всасывающего и напорного трубопроводов.

Точки, соответствующие измеренным при разных режимах Q и H, паносят в график и, соединяя их плавной кривой, получают энергетическую напорную характеристику.

Мощность насоса определяют или измерением крутящего момента M на валу и частоты вращения n, или непосредственным измерением мощности, передаваемой двигателем.

Измерение M можно проводить несколькими способами. В лабораторных условиях удобно применять балансирный электродвигатель; в этом случае статор электродвигателя подвешен на подшипниках качения, геометрические оси которых совпадают с осью ротора электродвигателя. Крутящий момент, развиваемый электродвигателем, передается через муфту на вал приводимой машины; он получается как результат силового взаимодействия между обмотками статора и ротора электродвигателя. Поэтому момент, вращающий вал машины, равен моменту, стремящемуся повернуть статор электродвигателя относительно его оси; последний измеряется подвешиванием уравновешивающего груза к рычагу, радиально прикрепленному к статору электродвигателя. Если масса груза, подвешенного к рычагу, равна m, кг, а горизонтальное расстояние точки подвеса его от оси машины равно l, м, то момент, Дж, передаваемый электродвигателем на вал машины, равен M = mgl.

Иногда для измерения М применяют установку электродвигателя на качающейся платформе. Этот способ аналоги-

чен описанному с балансирным двигателем.

При измерении момента балансирным электродвигателем или двигателем на качающейся платформе должны учитываться вентиляционный и механический моменты двигателя, определяемые при работе двигателя без на-

грузки.

Другой способ измерения крутящего момента заключается в применении торсионного (крутильного) динамометра. При этом между валами электродвигателя и приводимой машины устанавливают упругий валик, сделанный из стали, с высоким пределом пропорциональности. Момеит, передаваемый таким валиком, пропорционалеи углу закручивания его; поэтому достаточно измерить угол закручивания при вращении валика посредством стробоскопического устройства и по нему определить момент на валу машины.

Частоту вращения вала машины измеряют тахометром или счетчиком.

По измеренному крутящему моменту на валу машины и частоте вращения легко определить мощность, кВт:

$$N = \frac{M\omega}{1000}$$
 или $N = \frac{mgl\omega}{1000}$.

где $\omega = \pi n/30 1/c$.

В производственных условиях наиболее доступным является способ определения мощности на валу по электрической мощности на зажимах приводного электродвигателя.

Применяя точные электрические приборы, измеряют электрическую мощность $N_{\rm BR}$ на зажимах электродвигателя и по зависимости между мощностью на зажимах и КПД предварительно испытанного электродвигателя определяют мощность двигателя $N_{\rm дB}$, которая при соединенни муфтой равна мощности на валу машины: $N_{\rm дB} = \eta_{\rm дB} N_{\rm BR} = N$.

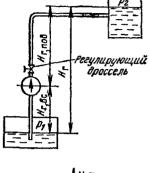
При испытании насоса его КПД определяют как частное от деления полезной мошности на мошность насоса:

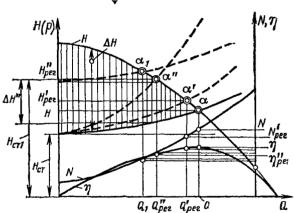
$$\eta = N_{\rm n}/N = \rho QgH/1000N$$
.

Нанесением на график соответственных значений Q, N и Q, η , измеренных для различных режимов, получаем характеристики N = F(Q) и $\eta = \varphi(Q)$.

3.16. Регулирование подачи

Основной задачей регулирования машины является подача в сеть расхода Q, м 3 /с, заданного определенным графиком. При этом, как показывают характеристики, все ос-


новиые параметры машины *H*, *p*, *N* и η изменяются. Одиако сеть трубопроводов и потребители накладывают на некоторые из параметров определенные условия. Так, например, насосы и вентиляторы, покрывая заданный график расходов, должны создавать переменное давление,


определяемое потребителем и гидравлическими свойствами системы трубопроводов,

Компрессоры в некоторых случаях работают на сеть с пе-

рис. 3.41. Центробежный насос в системе трубопроводов

рис. 3.42. График дроссельного регулирования центробежной машины

ременным Q, но должны обеспечить постоянное давление p (пневматический инструмент, воздушные молоты); в других случаях они работают с постоянным Q при переменном p (доменный и ваграночный процессы и т.п.).

Таким образом, возможны различные варианты задачи регулирования подачи.

Дроссельное регулирование при n=const. Пусть центробежная машина включена в трубопроводную систему так, как показано на рис. 3.41.

Представим на графике (рис. 3.42) характеристики напора, мощности и КПД центробежной машины при постоянной частоте вращения. На этом же графике нанесем ха-

рактеристику трубопроводной сети, на которую включена машина: при этом будем предполагать, что регулирующий

дроссель открыт полностью.

Установившийся режим работы машины возможен только при условии, что напор машины равен напору, расходуемому в системе. Так как первый из них выражается ординатами характеристики H = f(Q) центробежной машины, а второй — ординатами характеристики трубопровода, то очевидно, что указанное равенство наблюдается только в точке α пересечения характеристик. Таким образом, точка α определяет режим работы установки, т. е. подачу, напор, мощность и КПД машины, при полностью открытом дросселе. Эти величины на рис. 3.42 обозначены соответственно Q, H, N, η .

В случае прикрытия дросселя на напорной трубе положение характеристики трубопровода изменится и точка α передвинется по характеристике машины влево вверх и займет положение α' , определив тем самым новые значения параметров $Q_{\rm per}$, $H'_{\rm per}$, $N'_{\rm per}$, $\eta'_{\rm per}$.

Дальнейшее прикрывание дросселя вызывает смещение характеристики трубопроводной системы еще больше вверх, и точка α передвинется, например, в точку α'' , дающую повые значения $Q''_{\rm per}$, $H''_{\rm per}$, $N''_{\rm per}$, $\eta''_{\rm per}$, и т. д.

Следовательно, дроссельное регулирование при n = const достигается введением дополнительного гидравлического сопротивления в сеть трубопроводов машины.

Поскольку наибольшая подача достигается при полностью открытом дросселе (точка α), дроссельное регулирование применяют только с целью уменьшения подачи.

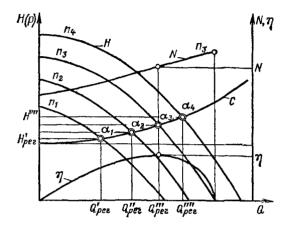
Из рис. 3.42 видно, что дросселирование уменьшает мощность на валу машины и вместе с тем повышает долю энергии, расходуемой при регулировании; поэтому оно неэкономично. Так, например, при регулировании до $Q_{\rm per}^*$ напор, непроизводительно затрачиваемый в дросселе, определяется отрезком $\Delta H''$ ординаты, а теряемая при этом в насосе мощность будет

 $\Delta N = \frac{\rho Q_{\rm per}^{''} g \Delta H_{\rm per}^{''}}{1000 \eta_{\rm per}^{''}} \,. \label{eq:deltaN}$

Чем более глубоко осуществляется процесс регулирования, тем более непроизводительна затрата мощности.

Энергетическая эффективность этого вида регулирования центробежных машин низка, однако ввиду чрезвычайной простоты этот способ имеет широкое применение.

При дроссельном регулировании центробежных насосов, подающих жидкость, дроссель располагают на напорной трубе. Если разместить его на всасывающей трубе, то при регулировании могут возникнуть кавитационные явления в потоке и нарушение нормальной работы насоса.


Подача центробежной машины при постоянной частоте рращения может изменяться не только вследствие изменения открытия дросселя, но и по причинам, связанным с изменением давления в системе трубопроводов. Представим ссбе, что по какой-либо причине повышается давление p_2 в напорном баке. На рис. 3.42 это отразится в смещениях характеристик трубопровода вверх на одинаковые отрезки при всех подачах; при этом точка с пересечения характеристик будет передвигаться по характеристике машины влево и вверх; это означает, что подача машины уменьшается. Уменьшение давления p_2 , наоборот, вызывает увеличение подачи машины. Аналогично влияет на подачу машины изменение геометрической высоты.

В некоторых случаях режим работы центробежной машины может изменяться самопроизвольно (без прямого вмешательства эксплуатационного персонала). Так, например, если в установке, включенной по схеме на рис. 3.41, прекратился расход жидкости из напорного бака, а центробежная машина продолжает работать, то статическая высота подачи будет возрастать ввиду изменения р, и H_r ; это повлечет за собой смещение характеристики трубопровода вверх. Точка α будет передвигаться по характеристике машины влево вверх, подача машины будет уменьшаться при одновременном возрастании напора и снижении мощности. Такой процесс может привести к понижению подачи машины до нуля; это произойдет в тот момент, когда статическая высота подачи (сумма геометрической высоты и высоты давления) сравняется с напором холостого хода машины.

В заключение отметим, что дросселирование как способ регулирования допустимо только в тех случаях, когда по-пребляемая мощность уменьшается с уменьшением подачи $\left(\frac{\partial N}{\partial Q}>0\right)$. Если же потребляемая мощность возрастает с уменьшением подачи $\left(\frac{\partial N}{\partial Q} < 0\right)$, то дросселирование как способ регулирования бессмысленно, поскольку вызывает увеличение потребляемой мощности. Регулирование изменением частоты вращения вала машины. В тех случаях, когда имеется возможность изменять

частоту вращения вала двигателя, целесообразно регулировать подачу изменением частоты вращения.

Пусть центробежная машина, включенная по схеме из рис. 3.41, работает при частотах вращения n_1 , n_2 , n_3 ..., причем $n_1 < n_2 < n_3$... Нанесем в общей координатной системе характеристики этой машины при указанных условиях и характеристику трубопроводной сети (рис. 3.43). Точкы пересечения характеристик H = f(Q) машины с характе-

Рнс. 3.43. Графих регулирования центробежной машины изменением частоты вращения

ристикой трубопровода, обозначенные на графике через α_1 , α_2 , α_3 ..., определяют режимы работы установки при различных частотах вращения. Из графика видно, что изменением частоты вращения могут быть достигнуты различные, подачи $Q_{\rm per}'$, $Q_{\rm per}''$, $Q_{\rm per}''$... и напоры $H_{\rm per}'$, $H_{\rm per}''$, $H_{\rm per}''$... причем с увеличением частоты вращения подача и напор увеличиваются, а с уменьшением ее — убывают. Мощность и КПД могут быть определены из кривых мощности и КПД по имеющимся значениям подачи $Q_{\rm per}'$, $Q_{\rm per}''$. На графике это показано для частоты вращения n_3 .

В отличие от способа регулирования n=const данный способ регулирования дает возможность регулировать по-

дачу в любом направлении.

Потери энергии, обусловленные гидравлическим сопротивлением дросселя, здесь не имеют места, и поэтому данный способ в эксплуатации выгоднее первого. Однако применяется он значительно реже. Преобладающее большинство центробежных машин небольшой подачи приводится в движение короткозамкнутыми электродвигателями трехфазного тока, изменять частоту вращения вала которых с

целью регулирования расхода невозможно. В таких слу-

гулирование при n = const, хотя это и невыгодно.

Мощные центробежные машины снабжают электродвигателями, допускающими плавную или ступенчатую регулировку частоты вращения. Такие электродвигатели дороги, и применение их оправдывается в редких случаях. В эксплуатации машинные агрегаты с такими электродвигателями энергетически эффективны и имеют высокие КПД.

Крупные центробежные машины (насосы, турбокомпрессоры), применяющиеся в металлургии, химической промышленности и на центральных тепловых электрических станциях, часто выполняются с паротурбинным приводом. Регулирование подачи в таких случаях производится изменением частоты вращения вала машины. Для этого можно изменять частоту вращения турбины воздействием на ее паровпускное устройство. Можно также включить между валами двигателя и приводной машины механический вариатор скорости или гидравлическую муфту¹. Тогда, сохраняя частоту вращения вала двигателя постоянной и изменяя передаточное отношение вариатора или гидромуфты, получаем переменную частоту вращения вала приводимой машины.

Применение гидромуфт ввиду их высокой стоимости оправдывается только в мощных высокооборотных установках при неглубоком регулировании. Глубокое регулирование гидромуфтой неэффективно, потому что ее КПД синжается пропорционально частоте вращения вала насоса (вентилятора).

Регулирование при помощи гидромуфты существенно

выгоднее дроссельного регулирования при n=const.

Ввиду высокой стоимости вариаторов и гидромуфт, дающих плавное изменение скорости вала машины, в некоторых случаях целесообразно применение ступенчатого изменения частоты вращения (специальные электродвигатели и ступенчатые вариаторы) с дорегулировкой до требующей подачи дросселированием. На рис. 3.44 показан график такого смешанного регулирования подачи. Пусть основная частота вращения центробежной машины n, а ступенчатым вариатором можно получать частоты вращения $n_1 > n$ и $n_2 < n$. Предположим, что регулированием следует получить подачу $Q_{\text{тег}}$. Изменяя частоту вращения вариатором скорости до n_1 , получаем подачу $Q_{\text{рег}1}$. Вводя

¹ О принципе действия гидромуфт и их конструкциях см. [11].

дроссель и создавая им сопротивление $\Delta H_{\rm per}$, получаем требующуюся подачу $Q_{\rm per}$. Без регулирования частоты вращения получение такой подачи у данной машины было бы невозможно.

Если требуется отрегулировать подачу до $Q_{\rm per}^{"} < Q$, то следует уменьшить частоту вращения до n_2 и дросселем

Рис. 3.44. График смешанного регулирования подачи центробежной машины

уменьшить напор на $\Delta H_{\text{per}}^{"}$. При регулировании расхода до $Q_{\text{per}}^{"}$ при частоте вращения n только дросселем потери напора в дросселе составляли бы $\Delta H^{"} > \Delta H_{\text{per}}^{"}$.

Таким образом, смешанное регулирование со ступенчатым изменением частоты вращения с энергетической стороны более эффективно, чем простое дроссельное регулирование.

Регулирование поворотными направляющими лопастями на входе в рабочее колесо. Из уравнения Эйлера (3.8) следует, что удельная энергия, передаваемая потоку жидкости в центробежной машине, существенно зависит от условий входа на рабочие лопасти. Закручивание потока, поступающего в рабочее колесо, влияет на напор и при заданной характеристике трубопровода изменяет подачу машины. Отсюда возникает возможность регулирования воздействием на поток, входящий в машину, особого лопастного направляющего аппарата. Последний может выполняться в двух основных конструктивно различных вариантах — осевом и радиальном.

На рис. 3.45 дана схема осевого направляющего аппарата, состоящего из лопаток \mathcal{J} с радиальными осями поворота: лопатки поворочиваются все одновременно при помощи особого перестановочного кольца. Одно из положений допаток соответствует размещению их в меридиональных плоскостях; при этом поток на входе в рабочее колесо будет радиальным. Другое характерное положение лопаток

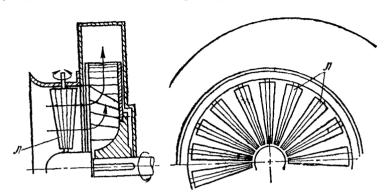


Рис. 3.45. Центробежная машина с осевым направляющим аппаратом на входе

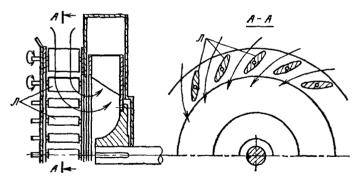


Рис. 3.46. Центробежная машина с радиальным направляющим аппаратом на входе

будет соответствовать полному их закрытию, когда Q=0. Промежуточные положения лопаток будут давать некоторые регулируемые значения подачи.

Конструкция осевого направляющего аппарата на входе удобна при осевом подводе потока к машине (вентиляторы типа ВД). На рис. 3.46 представлена схема направляющего аппарата радиальной конструкции, установленного на входе Здесь круговая цилиндрическая решетка поворотных лопаток с осями, параллельными геометрической оси ротора машины, также обусловливает отклонение потока от меридиональных плоскостей. Это отклонение регулируется углом расположения средней плоскости лопаток относительно меридиональных плоскостей, проходящих через осв

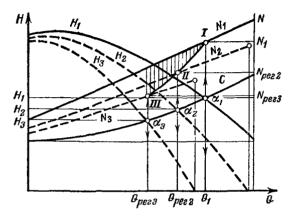


Рис. 3 47. График регулировання подачи направляющим аппаратом на входе

поворота лопастей. Как видно из рис. 3.46, радиальный направляющий аппарат требует радиального подвода потока с центробежной машине; поэтому комбинирование такой машины с трубопроводом менее удобно, чем в случае осевого направляющего аппарата.

Направляющие аппараты следует располагать в непосредственной близости от входа в колесо (чем ближе, тем лучше); только в этом случае достигается эффективное регулирование. Если направляющий аппарат располагать на некотором расстоянии от машины, то эффективность его может быть низкой из-за быстрого торможения вращательного движения потока, создаваемого направляющим аппаратом на участке трубопровода между направляющим аппаратом и машиной.

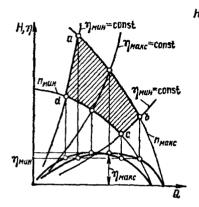
Рассмотрим график регулирования подачи направляющим аппаратом на входе (рис. 3.47). На графике нанесены характеристики напора и мощности при n—const, соответствующие трем различным положениям направляющего

аппарата на входе. Эти кривые обозначены соответственно через H_1 , H_2 , H_3 , N_1 , N_2 и N_3 . При работе центробежной машины на заданную систему трубопроводов с характеристикой, показанной на графике, получаются режимные точности, потребляемые при этом, — N_1 , $N_{\rm per2}$, $N_{\rm per3}$. Они определяются точками I, II и III. Соединив плавной линией точки I, II и III, получим линию изменения мощности машины при регулировании ее подачи направляющим аппаратом на входе. Эта линия лежит ниже линин мощности N_1 , что указывает на уменьшение потребления энергии при регулировании направляющим аппаратом на входе по сравнению с потреблением энергии при дроссельном регулировании при n—const. Вообще же уменьшение потребляемой мощности при регулировании рассматриваемым способом определяется здесь ординатами вертикально заштрихований площади между линиями N_1 и I-II-III. Это подтверждает сравнительную экономичность данного способа регулирования центробежных вентиляторов.

3.17. Попя рабочих параметров при разпичных способах регупирования. Сводные графики

Изменение подачи машины, работающей по заданному графику, обычно сопровождается изменением ее КПД. Отклонение КПД от его максимального значения обычно тем значительнее, чем глубже регулируется машина. Работа машины с низким КПД невыгодна, поэтому допустимые отклонения КПД от его максимального значения регламентированы ГОСТ или ведомственными нормалями. Так, например, при выборе насосов допускаются режимы работы с КПД, отличающимися на 7% от максимального КПД данного насоса; выбор вентиляторов по ГОСТ должен пропзводиться так, чтобы КПД их не падал ниже 0,9 $\eta_{\text{макс}}$. В связи с этим выбор машин следует производить по характеристикам, построенным с учетом допустимого снижения КПД.

Если на характеристиках манины выделить участок с допустимым КПД, то получим область, называемую полем рабочих параметров. Каждая точка этого поля обеспечивает работу машины с КПД не ниже допустимого.


Рассмотрим построение полей рабочих параметров при

различных способах регулирования машин.
Пусть машина регулируется изменением частоты вращения в пределах от $n_{\text{мин}}$ до $n_{\text{макс}}$ (рис. 3.48). Проведени-

97

ем на графике линии минимальных КПД, допустимых в эксплуатации, вырезается заштрихованная площадь abcd. Эта площадь представляет собой поле подач и напоров, создаваемых машиной при условии работы с $\eta \geqslant \eta_{\text{мив}}$.

Если в координатной системе Q = H нанести поля подач и напоров различных машии, регулируемых изменени-

 η_{mun} = const η_{mun} =

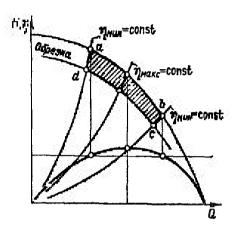
Рис. 3 48. Построение поля характеристик машины с регулируемой частотой вращения

Рис. 3.49. Постросние поля характеристик машины с дроссельным регулированием

ем частоты вращения, то получится сводный график при переменной частоте вращения.

Выясним поле Q-Н машины при регулировании ее дрос-

селем на напорной трубе рис. 3.49.


Очевидно, что минимальное значение КПД $\eta_{\text{мин}}$, допустимое при эксплуатации машин, определяет участок ab напорной характеристики, для всех точек которого $\eta \geqslant \eta_{\text{мин}}$. Следовательно, при n солѕt и регулировании дросселем поле подач и напоров представляется участком ab характеристики.

Для расширения области применения насосов широко пользуются способом обрезки рабочих колес без изменения формы рабочих лопастей. Обрезкой называют уменьшение наружного диаметра рабочего колеса путем обтачивания его на токарном станке. При этом геометрическое подобие нарушается; поэтому условия подобия и формулы пропорциональности для пересчета параметров при обрезке применять нельзя.

При обрезке колеса совместное влияние изменений выходного угла $\beta_{2\pi}$ и диаметра D_2 приводит, как показывают опыты, к пропорциям

$$\frac{Q}{Q_{06p}} = \frac{D_4}{D_{206p}} + \frac{H}{H_{06p}} = \frac{D_2^2}{D_{206p}^2}.$$
 (3.100)

При небольших обрезках колес КПД насоса можно считать постоянным.

 $\frac{D_2 - D_{200p}}{D_2} 100 \%$ 20
16
12
8
4
0 100 200 300 n_S

Рис 3.50. Построение поля характеристик насоса при обрезке рабочего колеса

Рис. 3.51. Допустнмая обрезка колеса в зависимостн от коэффициента быстроходности

Исключив из пропорций (3.100) диаметры, получим

$$H = \frac{C^2}{Q_{\text{thip}}^2}$$

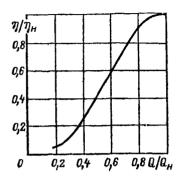
ВООКS.PROEKTANT.ORG

БИБЛИОТЕКА ЭЛЕКТРОННЫХ КОПИЙ КНИГ

 $H = \frac{H_{\text{COP}}}{Q^2} = a;$

отсюда

$$H = aQ^2,$$
 (3.101)


т. е. режимы, удовлетворяющие условиям (3.100), определяются уравнением параболы (3.101).

Выясним влияние обрезки на поле подач и напоров насоса. Имеем характеристику насоса с исходным колесом при n = const (рис. 3.50). Эксплуатационное условие $\eta \ge \eta_{\text{мип}}$ позволяет определить рабочий участок ab характеристики до обрезки.

Задавшись D_{200p} и зная D_2 и параметры Q и H для точек a и b, можно определить положения точек c и d (они лежат на нараболах обрезок, проходящих через точки a и b). Таким образом, определилось поле подач и напоров задайного насоса при условии обрезки до D_{200p} .

Обрезка существенно расширяет область подач и напо-

ров насоса данного типа и размера.

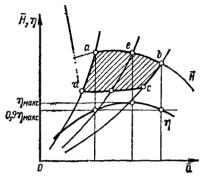


Рис. 3.52. Регулировочиая характеристика центробежной машины с направляющим апларатом на входе

Рис. 353. Постросние поля характеристик машины с регулированием направляющим аппаратем на входе

Значение обрезки оценивается отношением

$$\frac{D_2 - D_{206p}}{D_2}$$
 или $\frac{D_2 - D_{206p}}{D_2}$ 100 %.

Колеса центробежных насосов допускают без заметиого попижения КПД тем большую обрезку, чем меньше их быстроходность (рис. 3.51). Максимальная обрезка составляет 10 %.

Если в координатную систему Q-H внести поля подач и напоров разных типов насосов при различных их размерах и допустимой обрезке, то получим сводный график полей.

В § 3.16 рассмотрен способ регулирования подачи направляющим лопаточным аппаратом на входе в рабочее колесо, применяемый в вентиляторах средней и высокой мощности и дымососах.

Поля рабочих параметров таких машин даются в сводных графиках, приводимых в каталогах; они строятся на основе получаемых испытанием регулировочных кривых, выражающих связь между безразмерными величинами

 $\eta/\eta_{\rm H} = f(Q/Q_{\rm H})$ и $N/N_{\rm H} = F(Q/Q_{\rm H})$, где $Q_{\rm H}$, $N_{\rm H}$ и $\eta_{\rm H}$ — подача, мощность и КПД при нейтральном положении лопаток [рис. (3.52)] [20]. Рисунок 3.53 дает качественное представление о поле подач и напоров в безразмерных координатах.

3.18. Параллельное и последовательное соединения центробежных насосов

Насосные установки состоят обычно из нескольких машин, включенных параллельно в общую трубопроводную систему. Это обусловлено в основном необходимостью работы установки на покрытие графика переменного расхода.

Если гидравлическая система не имеет емкости, аккумулирующей расходы, и должна покрывать график с переменными расходами (рис. 3.54), то в любой момент насосы должны давать в сеть подачу, равную расходу из се-

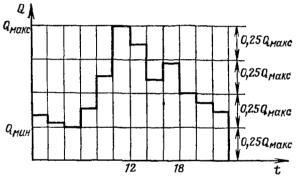


Рис. 354. График подач установки центробежных машиц

ти. При прохождении пиковой части графика насосы должны давать подачу $Q_{\text{макс}}$, в провалах графика $Q_{\text{миц}}$.

Если установка состоит лишь из одного рабочего насоса, то он должен быть выбран на подачу не менее чем $Q_{\text{макс}}$ и иметь возможность глубокого регулирования до $Q_{\text{унп}}$. Поскольку регулирование связано с потерями энергии, такой насос будет иметь низкий эксплуатационный КПД. Кроме того, требование бесперебойности подачи волы в сеть обусловливает необходимость установки резервного насоса с подачей не менее $Q_{\text{макс}}^*$; при одном рабочем

^{*} Резерв подачн и количество резервных агрегатов промышленных и коммунальных насосных станций устанавливают по строительным пормам и правилам Госкомитета по делам строительства В установкох для питания паровых котлов размеры резерва определяются правилами Госгортехиадзора СССР.

насосе требуется резерв 100 %. Следовательно, установка одного рабочего насоса при неравномерном графике расходов невыгодна по причине высокой стоимости резерва и потерь энергии при эксплуатации.

Установка двух одинаковых насосов может уже существенно повысить энергетическую эффективность эксплуатации и снизить аварийный резерв до 50 %. Вообще увели-

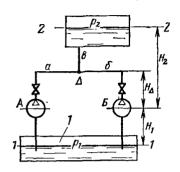


Рис. 3.55. Схема симметричиого параллельного соединения двух одинаковых центробежных насосов

чение количества рабочих насосов уменьшает аварийный резерв установки и при благоприятной форме характеристики $\eta = f(Q)$ обеспечивает энергетически эффективную эксплуатацию.

На основании изложенного большинство насосных установок выполняется в виде ряда насосов, включаемых в сеть параллельно. Центробежные машины, включенные в работу параллельно, взаимно влияют одна на другую: подача, напор, мощность и КПД каждой из них существенно зависят от

режимов нагрузки совместно работающих машин.

Рассмотрим графически параллельную работу двух одинаковых центробежных насосов, включенных в сетьсимметрично (рис. 3.55). Насосы А и Б по условию одинаковы, поэтому их характеристики А и Б на графике 3.56 при наложении совпадают.

Запишем баланс энергии установки (рис. 3.55), рассматривая поток от уровня 1-1 до точки Δ соединения на-

порных трубопроводов а и б машин А и Б.

Очевидно, что энергия давления в резервуаре 1, складываясь с энергией, сообщаемой потоку жидкости машиной А или Б, обеспечивает подъем потока на высоту расположения точки Δ , создание в этой точке некоторых количеств потенциальной и кинетической энергий и преодоление гидравлических сопротивлений всасывающего и напорного трубопроводов. Следовательно,

$$\frac{p_i}{\rho} + gH = \frac{p_{\Delta}}{\rho} + gH_1 + gH_{\Delta} + \frac{c^2}{2} + g\Sigma h, \quad (3.102)$$

где $g\dot{H}$ — энергия, передаваемая жидкости любым из насосов A или B; ρ_{Δ}/ρ — энергия давления в точке Δ ; $g\Sigma h$ — по-

тери энергии во всасывающем и напорном трубопроводах любого из насосов A или B; $c^2/2$ — кинетическая энергия потока в напорном трубопроводе любого из насосов. Отсюда можно получить удельную энергию давления в точке Δ

$$\frac{p_{\Delta}}{\rho} = \frac{p_{1}}{\rho} + gH - g(H_{1} + H_{\Delta}) - mQ^{2}.$$
 (3.103)

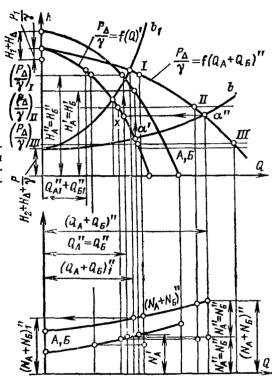


Рис. 356. График параллельной работы двух симметрично соединснных центробежных насосов

Здесь по известным соображениям сумма потерь энергии трубопроводов и кинетической энергии потока принята пропорциональной квадрату подачи каждого из насосов, т. е.

$$c^2/2 + g\Sigma h = mQ^2.$$

Задавая в графике на рис. 3.56 произвольные подачи по характеристикам H = f(Q) насосов A и B, можно получить соответствующие значения H; зная постоянные p_1 , H_1 ,

 H_{Δ} и рассчитав для этих подач mQ^2 , можно вычислить по (3.103) энергию давления p_{Δ}/ρ в точке Δ соединения труб. Напоры в точке Δ будут

$$H_{\Delta} = \frac{p_{\Delta}}{\rho g} = \frac{p_{\Delta}}{\gamma}$$
.

Откладывая вычисленные значения p_{Δ}/γ на графике рис. 3.56, получаем характеристики машин A и B, приведенные к точке Δ : $p_{\Delta}/\gamma = f(Q)'$.

Ординаты приведенных в точке Δ характеристик представляют собой высоты или в определенном масштабе давления жидкости в точке Δ соединения труб a и b. Абсцисы этих характеристик — подачи одного из насосов. Ясно, что насосы a и a, работая параллельно, создают в точке a одинаковые давления. Поэтому для любой заданной в точке a высоты давления a суммарная подача обоих насосов получается сложением абсцисс. Отсюда вытекает следующий способ построения общей характеристики обонх насосов, приведенной к точке a.

Проводим на графике линии произвольных постоянных

высот давления

$$\left(\frac{p_{\Delta}}{\gamma}\right)_{\mathbf{i}}; \left(\frac{p_{\Delta}}{\gamma}\right)_{\mathbf{i}\mathbf{i}}; \left(\frac{p_{\Delta}}{\gamma}\right)_{\mathbf{i}\mathbf{i}\mathbf{i}} \dots$$

и суммируем соответствующие им абсциссы характеристики $p_{\Delta}/\gamma = f(Q)'$. Получаем точки I, II, III общей характеристики $p_{\Delta}/\gamma = f(Q_A + Q_B)''$ насосов, приведенной к точке Δ .

Если брать за аргумент суммарную подачу обоих насосов при их параллельном включении, то ординаты характеристики $p_{\Delta}/\gamma = f(Q_A + Q_B)''$ будут давать высоты давлений в точке Δ . Эти давления обусловливаются, с одной стороны, работой насосов и подчиняются уравнению (3.103), с другой стороны, они обусловлены давлением p_2 на уровне 2-2, геометрической высотой H_2 — H_{Δ} и гидравлическим сопротивлением Σh_b трубопровода b, т. е.

$$\frac{p_{\Delta}}{\gamma} = \frac{p_2}{\gamma} + (H_2 - H_{\Delta}) + \Sigma h_b. \tag{3.104}$$

Последнее равенство — аналитическое выражение характеристики трубопровода b, изображенной на рис. 3.56 в виде восходящей квадратичной параболы (кривая b).

Давление, развиваемое в узловой точке Δ насосами A и B, должно быть равно противодавлению в этой точке со

стороны трубопровода в. Отсюда ясно, что режим работы системы определяется точкой а" нересечения характерис-THE $p_A/\gamma = f(Q_A + Q_b)''$ H b.

Получив точку α", определим, как показано на графике стрелками, параметры насосов при параллельной

боте:

$$(Q_A + Q_B)''$$
— общая подача насосов; $Q_A'' = Q_B''$ — подача каждого насоса; $H_A''' = H_B''$ — полный напор каждого насоса; $N_A'' = N_B''$ — мощность каждого насоса.

Пользуясь характеристиками насоса, можно построить общую характеристику мощности насосов, соединенных параллельно, следующим образом. Подача каждого из насосов при режиме, определяемом точкой а", найдется проведением горизонтальной линии из точки а" до точки х на единичных характеристиках $p_{\Delta}/\gamma = f(Q')$ насосов. Абсцисса точки х — подача каждого насоса при параллельной работе.

Очевидно, мощность $N''_{A} = N''_{B}$ каждого из насосов определяется как ордината характеристики мощности насосов при $Q''_A = Q''_B$. Откладывая сумму $N''_A + N''_B$ на ординате, проведенной через точку α'' , получаем точку общей характеристики мощности параллельно соединенных насосов. На рис. 3.56 сделано аналогичное определение точек

режимов І и ІІ.

Построенные графики позволяют выяснить закономер-

ности параллельной работы центробежных насосов.

Если в установке (см. рис. 3.55) один из насосов, например E, включен, а другой — A работает один, то подача последнего определяется абсциссой Q'А точки а' и развиваемый им напор равен H'A.

 ${\cal M}$ з графика ясно, что включение насоса ${\cal B}$ в параллель с A, несмотря на то что насосы одинаковы, не увеличивает подачу установки в 2 раза: $(Q_A+Q_{\mathcal{B}})''<(Q_A'+Q_{\mathcal{B}})$ или $(Q_A + Q_B)'' < 2Q'_A = 2Q'_B$ (здесь $Q'_A = Q'_B$).

Из графиков рис. 3.56 видно, что при одинаковых насосах подключение второго насоса в параллель к первому увеличивает подачу установки в 2 раза только в том случае, когда общий трубопровод системы от сечения Δ до напорного резервуара не дает гидравлического сопротивления (или оно пезначительно). В этом случае характеристика трубопровода b — прямая линия, параллельная оси абсинсе.

Чем больше гидравлическое сопротивление трубопровода b, тем круче поднимается его характеристика и тем меньше увеличивается подача установки при параллельном подключении второго насоса. Так, например, если трубопровод b обладает характеристикой $b_{\rm I}$, т. е. его сопротивление очень значительно, то повышение подачи установки при включении насоса b в параллель с b составляет только (b составляет т

Легко убедиться в том, что включение центробежного насоса параллельно с работающим понижает мощность последнего. Наблюдается и обратное явление: если один из насосов, работающих параллельно, отключить, то другие, остающиеся в работе, самопроизвольно повысят подачу и мощность. Это объясняется тем, что при отключении одного из насосов подача установки уменьшается, гидравлическое сопротивление общего трубопровода падает, давление в узловом сечении Δ понижается и оставшиеся в работе насосы будут работать при пониженном давлении. Но понижению давления при обычных формах характеристик сопутствуют повышение подачи и увеличение мощности.

Изложенные общие соображения о способе графическо-го исследования параллельной работы двух одинаковых симметрично включенных центробежных насосов можно распространить и на большее число насосов с разными ха-

рактеристиками, соединенных несимметрично.

Регулирование подачи центробежных машин при параллельном соединении может производиться всеми указанными в § 3.16 способами [26].

Регулирование подачи насосных установок, состоящих из нескольких насосов, может производиться последова-

тельно и параллельно.

Если изменение подачи установки достигается регулированием только одного насоса с доведением его подачи до нуля и дальнейшим переходом к регулированию следующего насоса и т. д., то такое регулирование называют последовательным.

Изменение подачи установки можно вести одновременным регулированием всех или нескольких машин; такое регулирование называют параллельным.

¹ Действительно только для центробежных машин с $n_s < 250$.

Экономичность этих способов регулирования неодинакова. Пользуясь описанными графическими методами исследования параллельной работы центробежных насосов, можно выяснить затраты энергии всей установкой при этом и другом способах регулирования и рекомендовать для применения способ более экономичный.

В насосных установках встречается последовательное соединение насосов с целью повышения давления. В этом

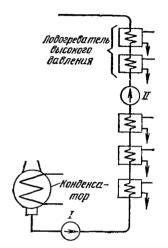
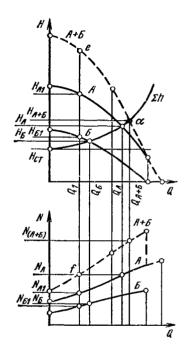



Рис. 3 57. Схема последовательного соединения центробежных мании в регенеративном цикле паротурблиной установки

Рис 358. График работы двух различных центробежных машии при их последовательном сосди-

случае напорный трубопровод насоса присоединяют к всасывающему патрубку последующего насоса и, таким образом, происходит сложение напоров, развиваемых насосами. В некоторых случаях необходимость последовательного соединения диктуется технологическими соображениями. Так, например, в регенеративном цикле паротурбинной установки поток конденсата проходит последовательно через ряд подогревателей, в результате чего постепенно повышается его температура. Конечная температура подогрева конденсата в современных установках значительна, и это требует высокого давления водного

тракта подогревателей.

Однако постановка всех подогревателей под высокое давление невыгодна. Поэтому подогреватели разбивают на две последовательные группы (рис. 3.57): через первую группу конденсат подается насосом І низкого давления, далее конденсат поступает во всасывающий патрубок насоса ІІ высокого давления и прокачивается последним через группу подогревателей высокого давления. Таким образом, насосы І и ІІ соединены последовательно.

Рассмотрим характеристики двух носледовательно соединенных центробежных насосов A и Б (рис. 3.58); характеристики напора и мощности этих насосов при раздель-

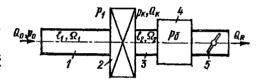
ной работе их заданы.

Каждый из последовательно соединенных насосов дает одну и ту же подачу, и, следовательно, общая характеристика их получается суммированием ординат характеристик A и B при произвольно задаваемых подачах. Так, например, задавая произвольную подачу Q_1 и суммируя ординаты H_{A1} и H_{B1} , получаем точку e, принадлежащую общей характеристике напора насосов A и B (обозначена на графике 3.58 условно A+B). Аналогично получается точка f общей характеристики мощности. Общие характеристики напора и мощности показаны на графиках штриховыми линиями.

Если насосы работают последовательно на трубопровод с характеристикой Σh , то их подача определится точкой \mathbf{c} и будет равна Q_{A+B} при общем напоре H_{A+B} н мощности N_{A+B} . При одиночной работе каждый насос развивал бы соответственно подачи Q_A и Q_B , напоры H_A и H_B и имел

мощности N_A и N_B .

График показывает, что последовательное соединение насосов увеличивает напор и существенно влияет на подачу установки. Это объясняется тем, что при последовательном соединении увеличивается энергия, передаваемая нотоку жидкости, и при постоянной статической высоте подачи избыток энергии в силу закона сохранения энергии неизбежно должен быть израсходован на повышение кинетической энергии и преодоление гидравлических сопротивлений сети. Все это и обусловливает рост подачи установки.


3.19. Неустойчивость работы. Помпаж

В системах, состоящих из центробежных или осевых машин, трубопроводов и емкостей, могут возинкать изменения режимов, обусловливаємые различными причинами: регулярными или спорадическими срывами вихрей с кромок лопастей, резким изменением расхода потребителями и т. п. Такие причины выводят систему из «равновесного» состояния. Если при снятии этих возбуждающих причин система приходит в исходное состояние, то она устойчива.

Однако при определениом сочетании форм характеристик машины и ссти сиятие возбуждений не приводит к устойчивости, и в системе остактся самопроизвольные, без видимых внешних причии, колсбания

Рис 3.59. Схема системы, состоящей из вентилятора с подключенной к нему сетью:

 I — длина прубопроведа;
 Ω — плошадь его поперечного сс жимя

подачи, напора и мощности машины; это — автоколебания, или помпаж.

Автоколебания проявляются в разных системах с различной интенсивностью: от едва заметных изменений подачи, давления и мощности до значительных резких их изменений, опасных для машин и трубопроводов.

Возникновение помпажа в современных сложиых высокоскоростных системах представляет большую опасность; известиы случаи разрушения машин и трубопроводов вследствие интенсивных автоколебаний.

Теория автоколебания и эксперимент в этой области — сложны [7]; приведем лишь исобходимые основные положения.

Рассмотрим систему (рис. 3.59), состоящую из вситилятора 2, всасывающего 1 и нагиетательного 3 трубопроводов. Нагнетательный трубопровод связаи с воздушным объсмом 4, на выходе из которого находится переменное сопротивление в виде дросселя 5.

Рабочие свойства вентилятора представляются характеристикой $p_{\kappa} = F(Q_{\kappa})$, связывающей полное давление p_{κ} в иапорном трубопроводе вепосредственно за вентилятором с объемным расходом воздуха Q_{κ} в том же сечении (кривая 1 на рис. 3.60).

Характеристику 2 дросселя представим зависимостью $\rho_6 = \mathfrak{P}(Q_R)$, где ρ_6 — избыточное давление перед дросселем; Q_R — объемиый расход через дроссель. При последовательном прикрытий дросселя его сопротивление возрастет и характеристики 3-6 расположатся выше. Рассмотрим характеристику 2. Равновесный, не изменяющийся по времени режим работы вентилятора определяется точкой O пересечения характеристик вентилятора и сети. Этот режим статически устойчив (анало-

гично нижиему положению маятника). Действительно, увеличим подачу на ΔQ ; при этом давленне, развиваемое вентилятором, уменьшается, а сопротивление дросселя возрастает. Это вызовет торможение потока, уменьшение подачи и возвращение режима в точку O. Аналогично точкам пересечения A_1 , A_3 , B_2 , C_1 , D характеристик соответствуют статически устойчивые режимы. В этих точках тангенс k угла наклона касательной к характеристике дросселя больше тангенса F' угла наклона каса-

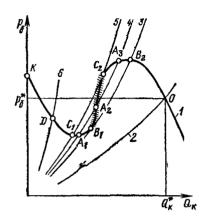


Рис. 3 60. Исследование статической устойчивости работы машины на сеть

тельной к характеристике вентилятора, что является признаком статической устойчивости системы.

В точке А2 режим статически иеустойчив (аналогично верхнему положению маятцика). k < F'. Одиако статически тежим может оказаться иеустойчивым, линамически подобио л**е**бательиым раскачке системы с отрицательным трени-Рассмотрим этот вопрос. Пусть $p_{\kappa,a}/p_{1a}=f(Q_{\kappa})$ — относна тельная характеристика вентиля**р. .** — абсолютные TODA (0:. полные давления перед и за вентилятором). Предположим, рассматриваемая система праблаженно может быть заменена системой с одной степенью своболы.

Пусть воздух в трубопроводе 1 (рис. 359) движется ускоренно. Тогда давление p_{10} перед вентилятором будет меньше давления p_{00} на входе из-за преодоления силы инерции воздуха во входном трубопроводе.

По теореме об изменении количества движения $d(mv)/dt=\Phi$, где $m=\rho_0\Omega_1l_1$ — масса воздуха во всасывающем трубопроводе; $v=Q_0/\Omega_1$ — скорость воздуха; Φ — сила, равная $\Omega_1(p_0-p_{1a})$. Отсюда имеем: $p_{1a}=p_0-L_{a1}dQ_0/dt$. Велячина $L_{a1}=\rho_0l_1/\Omega_1$ называется акустической массой.

В вентиляторе давление возрастает от p_{1a} до $p_{\kappa a} = p_{1a} f(Q_{\kappa})$. Давление $p_{5 a}$ в объеме 4 будет равно $p_{\kappa a} = L_{a2} dQ_{\kappa}/dt$, где $L_{a2} = p_{1d} l_2/\Omega_2$. Подставляя в выражение для $p_{5 a}$ значения p_{1a} и $p_{\kappa a}$, получаем первое уравнение движения рассматриваемой системы:

$$L_a dQ_R/dt = F(Q_R) - p_0,$$
 (3.105)

где $L_a = L_{a_1} f(Q_{\kappa}) + L_{a_2}$; $F(Q_{\kappa}) = p_0 f(Q_{\kappa}) - p_0$.

Второе уравнение можно получить, принимая во винмание, что скорость изменения давления dp_6/dt в объеме V перед дроссеяем провор-

циональна разности секуидных расходов Q_{κ} — воздуха, поступающего в $_{91}$ 01 объем, и Q_{R} — вытекающего на него. Это уравнение имеет вид

$$C_a \frac{dp_0}{dt} = Q_R - Q_R , \qquad (3.106)$$

где $C_1 = V/(\rho c^2)$ — акустическая гибкость (с — скорость звука). Используєм уравнение характеристики сети:

$$p_6 = \varphi(Q_R) \tag{3.107}$$

Исключая из уравиений (3 106) н (3.107) расход Q_R , получаем дифференциальные уравнения, описывающие движение в системе

$$L_{a} dQ_{R}/dt = F(Q_{R}) - p_{6};$$

$$C_{a} dp_{6}/dt = Q_{R} - \varphi_{1}(p_{6}),$$
(3.108)

где φ_1 — обращение функции (3.107).

Равновесные режимы определяются условиями $dQ_\kappa/dt=0$; $dp_6/dt=0$, откуда $F(Q_\kappa)-p_6=0$; $Q_\kappa-\phi_1(p_6)=0$. Число и значения действительных корней этой системы определяют число равновесных режимов и значения их параметров. Геометрически эти параметры определяются точками пересечения характеристик компрессора и сети (рис. 3 60).

Приведем систему (3.108) к одному уравнению второго порядка. Перепесем начало координат в точку равновесия $Q_{\rm K}^*$, $p_{\rm 6}^*$ и обозначим отклонения расхода $Q_{\rm R}$ и давления $p_{\rm 6}$ от их равновесных значений через Q и p. Разлагая $F(Q_{\rm K}^*+Q)$ и $\phi_{\rm I}(p_{\rm 6}^*+p)$ в степенные ряды и ограничиваясь членами первого порядка, получаем:

$$L_a dQ/dt = F'Q - p; C_a = Q - \phi_1'p.$$

Обезначим $1/\phi_1'=k$, тогда F' и k— соответственно тангенсы углов наклона касательных к характеристикам вентилятора и сети в рабочей точке. Исключая переменную p, получаем дифференциальное урависние второго порядка

$$L_a d^2 Q/dt^2 + bdQ/dt + dQ = 0,$$
 (3.109)

где $b = -[F'-L_a/(kC_a)]; d = (k-F')/(kC_a).$

Уравнение (3.109) аналогично уравиению колебаний подпружиненной массы L_a с коэффициентом скоростного трения b и жесткостью пружины d. Равиовесный режим по уравнению (3.109) статически устойчив, ссли жесткость d положительна, т. е. если k > F'. Этот вывод получен ранее из геометрических соображений для точки O (рис. 3 60). Если жесткость d отрицательна, т. е. k < F', то система статически неустойчива (точка A_2 на рис. 3.60).

Пусть d>0, т. е. система статически устойчива. Система, описываемая уравнением (3.109), будет устойчива также и динамически, если скоростное трение положительно, т. е. коэффициент b>0. Отсюда условие устойчивости

$$F' < \dot{L}_a/(kC_a)$$
. (3.110)

При этом условии в системе происходит расссяние энергии, свободиње колебания будут с течением времени затухать и помпаж невозможен. Если же b < 0, т, е,

$$F' > L_a/(kC_a),$$
 (3.111)

то трение отрицательно, в системе происходит накопление энергии, любые колебания расхода в системе будут с течением времени нарастать и помпаж обязательно возникиет на восходящих участках характеристики вентилятора, где выполняется условие (3.111). Обычно при возрастании амплитуды колебаний рабочая точка (точка пересечения характеристик вентилятора и дросселя) в процессе колебаний перемещается по характеристике машины вправо и влево и попадает в области с меньшими зцачениями F', где $F' < L_a / k C_a$; в этих областях b > 0 и происходит рассеяще эпергии. Амплитуда колебаний будет возрастать, пока не установится баланс между накоплением. эпергии в областях, где b < 0, и рассеянием энергии в областях, где b > 0. В явном виде условие устойчивости имеет вид

$$F' < L_a/(kC_a)$$
,

где

$$\frac{L_{\rm a}}{kC_{\rm a}} = \frac{\rho_0^2 c^2 l_1}{k\Omega_1 V} = \frac{\rho_0^2 c^2 l_1}{k\Omega_1 \Omega_2 l_2} .$$

Устойчивость возрастает при увеличении l_1 , уменьшении l_2 и площадей Ω_1 и Ω_2 . Квадрат угловой частоты колебаний

$$\omega^2 = \frac{d}{L_a} = \frac{k - F'}{kC_a L_a};$$

если $k\gg F'$, то $\omega^2=\frac{1}{C_a\,L_a}=\frac{\Omega_1\,c^2}{\Omega_2\,l_1\,l_2}$; период колебаний $T=2\pi/\omega=$ $=2\pi/\sqrt{L_aC_a}$.

Помпаж рассмотренного вида (при b < 0) называется мягким. Однако бывают случаи, когда в точке статического равновесия b > 0, а при колебаниях b < 0. В этих случаях при внезапных изменениях режима работы может возникиуть так называемый жесткий помпаж — наиболее опасный, так как он сразу создает большую амплитуду колебаний системы; жесткий помпаж может возникать даже при работе системы на нисходящих участках характеристики вентилятора; необходимое условие его появления F''' > 0. В процессе помпажа значения p_0 и $Q_{\rm R}$ отличаются от равновесных значений и точка со значениями p_0 и $Q_{\rm R}$ (так называемая изображающая точка) описывает на плоскости $Q_{\rm R}p_0$ некоторую

криаую, называемую фазовой траекторией, характеризующую переходный процесс в системе.

Поделив почленно уравнение (3 106) на (3.105), получим дифференциальное уравнение фазовых траекторий

$$\frac{dp_6}{dQ_R} = \frac{Q_R - Q_R}{F(Q_R) - p_6} \frac{L_a}{C_a}$$

Рассмотрим графический метод его решения. Пусть точка M_1 с коордипатами Q_{κ_1} и p_{δ_1} представляет состояние системы (рис. 3.61). Изменяем в L_*/C_a раз длнну отрезка $M_1A_1 = Q_{\kappa_1} - \varphi_1(p_{\delta})$, откладывая его от точки

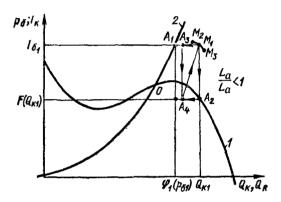


Рис. 361. Метод графического построения переходных процессов

 M_1 . Пусть это будет отрезок M_1A_3 . Проведя нз точки A_4 , как из центра раднусом A_4M_1 , элемент дуги через точку M_1 , получим точки M_3 и M_2 . Продолжая указанное построение, последовательно строим фазовую траскторию, движение изображающей точки по которой происходит против часовой стрелки. Анализ показывает, что, выбрав масштаб по оси ординат отличающимся в m раз от масштаба по оси абсцисс, нужно изменять отрезок M_1A_1 в $k=m^2L_a/C_a$ раз.

Рассмотрим конкретную задачу: построим переходные процессы, выделим помпажные колебания, определим их пернод и проследим, как сказывается изменсние положення дросселя на работе системы. Выберем вентилятор с подачей 1 м³/с и максимальным давлением около 1000 Па. Из рис. 3 62 видно, что масштаб по оси ординат в 1000 раз больше, чем по оси абсцисс. Пусть $l_1 = 0.25$ м, $l_2 = 1$ м, $\Omega_1 = \Omega_2 = 0.5$ м²; 10гда $L_{\rm A} = 1.8$ кг/м²; $C_{\rm A} = 0.18 \cdot 10^{-5}$ м²с²/кг. Период помпажных колебаний $T = 2\pi/\omega = 2\pi$ у $\overline{L_{\rm A}C_{\rm A}} = 0.01$ с. Рассмотрнм графическое построение переходного процесса. Поскольку m = 1000, получаем $k = m^2 L_{\rm A}/C_{\rm A} = 1$.

Таким образом, длину отрезка M_1A_1 изменять не следует. Из рис. 3.62 видно, что при выбранной степени прикрытия дросселя в системе помпаж невозможен, так как любые начальные отклонения затухают. При
некотором дальпейшем прикрытии дросселя на плоскости $Q_{\rm R} p_{\rm G}$ (рис. 3.63) фазовые траектории принимают вид замкнутой кривой—это
так называемый предельный цикл, соответствующий периодическим дви-

Рис. 3.63. Построение переходных процессов на фазовой плоскости при жестком помпаже

Рис. 3.64. Построение переходими процессов на фазовой плоскости при мягком помпаже

ся внешний, устойчивый предельный цикл, на который соседние траектории «наматываются» как изнутри предельного цикла, так и сиаружы. Этот цикл характеризует возникающий жесткий помпаж.

При дальнейшем прикрытии дросселя, при переходе рабочей точки на восходящий участок характеристики вентилятора (рис. 3.64) возникает один устойчивый предельный цикл, следовательно, в системе устанавливается мягкий помпаж. Точка характеристики $p=\overline{f}(Q)$ машины при n=const, соответствующая началу автоколебаций в случае уменьшения подачи дросселем, назинается границей помпажа. В характеристиках при переменной частоте вращения точки границ помпажа наносятся на каждой дроссельной кривой; линия, проведенная через эти точки, является границей помпажа машины при n=var (см. рис. 10.9). Границы помпажа определяются испытанием лопастных машин. При эксплуатации машии значительной мощности выход за границы помпажа, независимо от применяемого способа регулировання подачи, недопустим.

Задача предупреждения помпажа имеет большое практическое значение и может решаться:

- 1) созданием конструкций лопастиых машин с границей помпажа, по возможности сдвинутой в область малых подач и имеющих изпорную карактеристику без воскодящего участка (без «седловины») или имеющих воскодящий участок карактеристики с наименьшим наклоном. Это достигается разработкой рациональных форм проточной полости и профилей рабочих лопастей машины. Существенное значение имеет количество рабочих и направляющих допастей;
- 2) применением специальных противопомпажных устройств, ие позволяющих машиие переходить границу помпажа. В этом случае устанавливается антипомпажный клапан, настроенный так, что при уменьшении расхода потребителей до значения, соответствующего границе помпажа, он начинает перепуск газа на всас машины или выпуск его в атмосферу. При этом подача машины будет соответствовать границе помпажа, предупреждая его появление. Импульс для приведения в действие антипомпажного клапана берется от трубок полного напора или диафрагм, располагаемых в напорном трубопровода машвны.

Принциппально возможно также создание антипомпажного регулятора, управляющего движением выходного дросселя или направляющего аппарата.

Для увеличення устойчивости вентилятора на испытательных стендах вводится дополнительная емкость, включенияя или последовательно, или параллельно основному воздушному тракту. При этом указанная емкость отделяется от основной дополнительным дросселем. Нужно отметить, что при параллельном подключении емкости дополнительный дроссель в стационарном режиме не вносит дополнительных потерь.

ЦЕНТРОБЕЖНЫЕ НАСОСЫ

4.1. Формы рабочих колес насосов различной быстроходности

Конструкция колеса в значительной степени определяется его коэффициентом быстроходности n_s . В зависимоств от коэффициента быстроходности рабочие колеса лопастных насосов условно разделяют на пять основных типов, показанных на рис. 4.1.

При увеличении коэффициента быстроходности наблюдаются возрастание относительной ширины лопасти рабочего колеса на выходе и уменьшение относительного наружного днаметра его, т. е. рабочее колесо преобразуется последовательно из радиального в осевое.

Из формулы коэффициента быстроходности $n_s = 3.65 \, n\, V\, \overline{Q}\, / H^{3/4}$ видно, что колесо центробежного насоса, предназначенное для работы с заданными Q и H, обладает тем большей быстроходностью, чем больше его частота вращения. Большие частоты вращения обусловливают малые размеры и массу насосов и приводных двигателей при высоком КПД агрегатов. Поэтому применение рабочих колес с высоким n_s (типы 3, 4, 5) экономически целесообразно. сообразно.

сообразно.
При заданной частоте вращения n_s тем выше, чем больше подача и меньше напор, развиваемые рабочим колесом. Поэтому рабочие колеса с высоким коэффициентом быстроходности являются низконапорными и дают большую подачу (типы 3, 4, 5). Напротив, рабочие колеса типов 1 и 2 характерны для малых подач и высоких на-

поров.

поров.
При оценке центробежных насосов при помощи коэффициента быстроходности n_s (3.92) следует иметь в виду, что он определяет быстроходность не насоса в целом, а лишь одного рабочего колеса. Поэтому общий вид формулы для определения n_s рабочего колеса многоступенчатого многопоточного насоса будет

$$n_s = 3,65n \frac{\sqrt{Q} i^{3/4}}{z^{1/2} H^{3/4}},$$

где Q и H — полные подача и напор насоса; z — число потоков; i — число ступеней давления насоса (см. § 3.8).

Рабочее колесо центробежного насоса заданных подачи и давления может быть изготовлено с двусторонним подволом жидкости. В этом случае заданная подача Q распределяется поровну между правой и левой его половинами. При этом коэффициент быстроходности колеса уменьшается в $\sqrt{2}$ раз и колесо становится менее быстроходным.

Условия работы лопастей колес различной быстроходности неодинаковы. Так, например, в тихоходном колесе

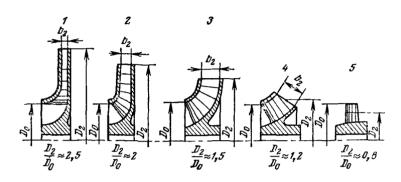
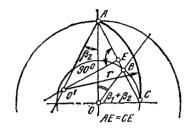


Рис 4.1. Конструктивные типы рабочих колес:

I — тихоходное колесо, n_s =40 \pm 80; 2 — нормальное колесо, n_s =80 \pm 150; 3 — быстроходное колесо, n_s =150 \pm 300; 4 — диагональное колесо, n_s =300 \pm 600; 5 — осевое или пропеллерное колесо, n_s =600 \pm 1200


типа 1 (см. рис. 4.1) струйки потока жидкости движутся практически в одинаковых условиях, входная кромка лонасти лежит на цилиндрической поверхности, а сама лонасть является цилиндрической. Это особенность радиальных центробежных колес.

В нормальных и быстроходных колесах входные кромки лопастей вынесены в область поворота потока жидкости, т. е. в ту зону, где направление потока изменяется от осевого к радиальному. Это обстоятельство вызывает превращение цилиндрической лопасти в лопасть с поверхностью двоякой кривизны.

Резко выраженными формами лопастей двоякой кривизны обладают диагональные насосы (рис. 4.1, тип 4).

Общие требования, предъявляемые к конструктивной форме сечения лопасти: соблюдение расчетных углов входа и выхода, минимальное гидравлическое сопротивление и достаточная прочность.

Два псрвых требования удовлетворяются применением общепринятых способов построения средней линии сечения лопасти и употреблением профилей рациональной формы с тщательно обработанными поверхностями проточной части. Большое значение имеет форма поперечного сечения межлопастного канала, определяемая шириной ло-

a) 0) R1 R2

Рис. 4.2. Построение средней линии сечения лопасти одной дугой круга

Рис. 4.3. Формы сечений рабочих лопастей

пастей и их количеством; она должна обладать большим

гидравлическим радиусом.

Один из простых способов построения средней линии сечения лопасти по заданным углам входа и выхода показан на рис. 4.2. По этому методу лопасть очерчивается дугой окружности.

Количество рабочих лопастей определяется следующими соображениями. Большое количество лопастей обусловливает каналы большой длины с благоприятной формой поперечного сечения, но при этом лопасти стесняют поперечное сечение, уменьшая пропускную способность колеса.

Для каждого колеса существует некоторое наивыгоднейшее число лопастей, определяемое формулой (3.34).

Обычно $z=6\div 8$.

Известно также, что рациональные формы профилей, употребляемых в авиации и гидромашиностроении, имеют утолщенную округленную переднюю часть и тонкую заднюю кромку (рис. 4.3, а). Такая форма профиля лопасти благоприятна в смысле прочности. Однако при небольших размерах рабочего колеса утолщенные передние кромки рабочих лопастей значительно стесняют входное сечение, что от этой формы профиля приходится отказываться и применять сечения, приведенные на рис. 4.3, б и в.

Толщина рабочих лопастей обычно назначается кон-

структивно.

4.2. Коэффициенты попезного действия центробежных насосов

Общие соображения о потерях энергии и коэффициент полезного действия центробежных машин были изложены в § 3.7.

Объемные потери в центробежных насосах обусловлены перетеканием жидкости через переднее уплотнение колеса

и уплотнение втулки вала между ступенями насоса. Теоретические соображения в связи с часто встречающимися конструктивными соотношениями приводят к следующему ориентировочному выражению для коэффициента полезного действия по:

$$\eta_0 = \frac{1}{1 + a n_s^{-0.66}}. (1.1)$$

Коэффициент а зависит от соотношения между диаметрами входа и выхода и составляет около 0,68.

Формулу (4.1) можно использовать для практических

расчетов.

У современных крупных центробежных насосов при тщательном изготовлении рабочих колес η_0 =0,96÷0,98, а у мелких и средних насосов $\eta_0 = 0.85 \div 0.95$.

Значение по центробежного насоса в значительной мере зависит от состояния его уплотнений. Последние довольно быстро изнашиваются, в особенности в тех случаях,

когда насос работает на агрессивных жидкостях.

Гидравлические потери в центробежных насосах обусловлены гидравлическим треннем, ударами и вихреобразованием в проточной части. Плавно очерченные рабочего колеса, отсутствие резких поворотов, расширений и сужений, тщательная обработка внутренних поверхностей проточной части обеспечивают высокий гидравлический КПД насоса.

Для современных крупных насосов при тщательном изготовлении лопастей гидравлический КПД можно определять по формуле

$$\eta_{\rm r} = 1 - \frac{0.42}{(\lg D_{\rm 1D} - 0.172)^2},$$
(4.2)

где $D_{1\pi}$ — условный диаметр живого сечения входа в рабочее колесо, называемый приведенным днаметром входе, $D_{\rm in} = \sqrt{D_0^2 - d_{\rm cr}^2}$

$$D_{1p} \approx 4.25 \sqrt[3]{Q/n}$$
 (4.3)

Сопоставляя выражения (4.2) и (4.3), можно видеть, что гидравлический КПД зависит от подачи и частоты вращения вала центробежного насоса.

Для современных насосов хорошего изготовления значения η_r лежат в пределах от 0,85 до 0,96. Мелкие насосы с плохой обработкой внутренних поверхностей имеют $n_c = 0.80 \div 0.85$.

Механические потери обусловлены трением в уплотнениях и подшипниках, а также гидравлическим трением о

поверхности рабочих колес и разгрузочных дисков. Значения механического КПД у современных крупных центробежных насосов достигают $\eta_{\text{м}}=0.92\div0.96$; общий же КПД центробежных насосов крупных размеров и тщательного изготовления равен $\eta=0.75\div0.90$ и иногда 0.92.

4.3. Упрощенный способ расчета рабочего колеса насоса малой быстроходности

Исходными данными являются Q, M^3/c , H, M, n, OG/MUH. Частота вращения назначается в зависимости от типа приводного двигателя. Центробежные насосы приводятся движение обычно асинхронными электродвигателями стандартными частотами вращения; следует ориентироваться на непосредственное соединение валов насоса электродвигателя.

Крупные насосы имеют относительно низкие частоты вращения, а мелкие — высокие. Так, например, крупные насосы марки 18HД при $D_2 = 700$ мм имеют n = 730 об/мин, а малые насосы марки 2K-6 при $D_2 = 162$ мм работают с

n = 2900 об/мин.

Выбор количества ступеней производится путем сравнения заданных Q и H с параметрами построенных насосов. Напор одной ступени H'=H/z, где z— количество ступеней.

Для выяснения конструктивного типа насоса рассчитывают коэффициент быстроходности n_s по формуле (3.84). Далее по формуле (4.1) рассчитывают η_0 и, вычислив по формуле (4.3) приведенный диаметр, по формуле (4.2) находят гидравлический КПД насоса.

Принимая η_{M} в указанных выше пределах, можно рассчитать общий КПД насоса $\eta = \eta_{0}\eta_{\Gamma}\eta_{M}$.

Определив мощность насоса $N = mgH/(1000\eta)$ и крутяший момент $M = 97\,500N/n$, можно рассчитать по условиям скручивания диаметр вала насоса

$$d_b = \sqrt[3]{M/(0.2\tau_{\text{non}})}. (4.4)$$

Вал насоса работает в основном на скручивание моментом M, но частично нагружен поперечными и центробежными силами, обусловленными небалансом ротора. Поэтому допустимое напряжение кручения $\tau_{\text{доп}}$ принимают пониженным: $\tau_{\text{доп}} = 1,2 \div 2,0 \text{ кH/см}^2$.

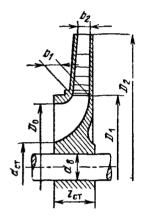


Рис. 4.4. Расчетное конструктивное сечение рабочего колеса

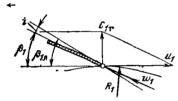


Рис. 4.5. Построение начального элемента рабочей лопасти

Диаметр ступицы колеса (рис. 4.4) принимают равным $d_{\rm cr} = (1,2 \div 1,4) \, d_{\rm B}$.

Диаметр входа в колесо D_0 определяют по приведенному диаметру:

$$D_0 = \sqrt{D_{1\pi}^2 + d_{\rm cr}^2} \,. \tag{4.5}$$

Приняв длину ступицы $l_{\rm cr} = (1\div 1,5)\,d_{\rm cr}$, можно наметить конструкцию входной части колеса, как это показано на рис. 4.4. Рекомендуется последовательное вычерчивание конструктивного эскиза по мере получения расчетных размеров.

Окружная скорость на входе в межлопастные каналы

$$u_1 = \pi R_1 n / 30. \tag{4.6}$$

Полагая $c_{1r} = c_0$, построением входного параллелограмма скоростей определяют входной угол β_1 .

Конструктивный угол лопасти на входе получают, принимая угол атаки $i=0\div 6^\circ$ (рис. 4.5).

Шприна b_1 лопасти на входе определяется из уравнения расхода

$$b_1 = \frac{Q_{\rm K}}{\pi D_1 c_1 \mu_1} ,$$

где μ_1 — коэффициент стеснения входного сечения кромками лопастей, $\mu_1 \approx 0.9$.

Толщина лопастей литых чугунных колес принимается

по соображениям технологии не менее 4 мм.

Далее выполняется расчет выходных элементов колеса. Удобно принять угол потока β_2 и определить необходимую окружную скорость u_2 .

Используя уравнение Эйлера, при радиальном входе в межлопастные каналы (c_{1u} = 0) получаем расчетную фор-

мулу

$$u_2 = \frac{1}{2} c_{2r} \operatorname{ctg} \beta_2 \sqrt{\left(\frac{c_{2r} \operatorname{ctg} \beta_2}{2}\right)^2 + \frac{gH}{\eta_{\Gamma}}}.$$

Зная β_2 и выбрав число лопаток, нетрудно по формуле Пфлейдерера (3.34) определить выходной угол лопастей $\beta_{2\pi}$.

Размеры, полученные расчетом и конструктивные соображения позволяют построить продольное сечение колеса и вычертить лопасть, пользуясь указанным выше способом.

Пример 4.1. Рассчитать рабочее колесо насоса для подачи $Q=180~{\rm M}^3/{\rm q}$ воды с температурой $T=293~{\rm K}$ под избыточным давлением 200 кПа при давлении на входе 10 кПа.

Решение. Напор насоса

$$H = \frac{p_2 - p_1}{0.00} = \frac{200\,000 - 10\,000}{1000 \cdot 9.8} = 19,38 \text{ m}.$$

Выбираем частоту вращения вала насоса при соединении его с валом двигателя муфтой n=1430 об/мин.

Коэффициент быстроходности по (3.84)

$$n_s = 3,65 \cdot 1430 \frac{\sqrt{0.05}}{19.38^{3/4}} \approx 125.$$

По данным § 4.1, колесо имеет нормальный коэффициент быстроходности. Определим объемный КПД по формуле (4.1)

$$\eta_0 = \frac{1}{1 + 0.68 \cdot 125^{-0.66}} = 0.97.$$

Приведенный диаметр по формуле (4.3)

$$D_{10} = 4.25 \sqrt[3]{\frac{0.05}{1430}} = 0.14 \text{ m}.$$

Гидравлический КПД по формуле (4.2)

$$\eta_{\Gamma} = 1 - \frac{0.42}{(0.14 - 0.172)^2} = 0.91.$$

Принимаем механический КПД η_{M} = 0,93. Полный КПД насоса

$$\eta = 0.97 \cdot 0.91 \cdot 0.93 = 0.82$$
.

Мощность на валу

$$N = \frac{\rho QgH}{1000\eta} = \frac{1000 \cdot 0.05 \cdot 9.8 \cdot 19.38}{1000 \cdot 0.82} = 12 \text{ kBt.}$$

Крутящий момент

$$M = 9600 \cdot \frac{12}{1430} = 81 \text{ H} \cdot \text{M} = 8100 \text{ H} \cdot \text{cm}.$$

Диаметр вала по формуле (4.4)

$$d_{\rm B} = \sqrt[3]{\frac{8100 \cdot 0, 102}{0, 2 \cdot 150}} = 3 \text{ cm}.$$

Принимаем диаметр ступицы колеса

$$d_{\rm CT} = 1,4d_{\rm B} = 42$$
 mm.

Диаметр входа на рабочие лопасти

$$D_1 = D_0 + 20 = 160$$
 mm.

В последней формуле увеличение D_1 против D_0 на 20 мм производится с целью вынесения входной кромки рабочей лопасти из зоны поворота потока в область плоского течения.

Длина ступицы конструктивно

$$l_{\rm CT} = 1.4d_{\rm CT} = 84$$
 MM.

Окружная скорость на входе в каналы рабочего колеса

$$u_1 = \frac{\pi D_1 n}{60} = \frac{3,14 \cdot 0,160 \cdot 1430}{60} = 12 \text{ m/c}.$$

Скорость входа в рабочее колесо

$$c_0 = \frac{4Q}{\eta_0 \pi \left(D_0^2 - d_{\text{cr}}^2\right)} = \frac{4 \cdot 0.05}{0.97 \cdot 3.14 \cdot 0.024} = 2.7 \text{ M/c}.$$

Из входного параллелограмма, полагая $c_1 = c_{1r} = c_0$, получаем

$$\operatorname{tg} \beta_1 = \frac{c_1}{u_i} = \frac{2.7}{12} = 0.225; \quad \beta_1 \approx 12^{\circ}.$$

Приняв i=4, получим угол лопасти на входе

$$\beta_{1,n} = \beta_1 + i = 16^{\circ}$$
.

При коэффициенте стеснения входного сечения межлопаточных каналов $\mu_1 = 0.9$ определяем ширину лопасти на входе

$$b_1 = \frac{0.05}{0.97 \cdot 3.14 \cdot 0.160 \cdot 0.9 \cdot 2.7} = 0.042 \text{ m} = 42 \text{ mm}.$$

Принимаем $\beta_2 = 17^\circ$ и определяем по формуле (4.6) окружную скорость на выходе из колеса

$$u_2 = \frac{1}{2} 2.7 \text{ ctg } 17^\circ + \sqrt{\frac{\left(\frac{2.7 \text{ ctg } 17^\circ}{2}\right)^2 + \frac{19.38 \cdot 9.81}{0.91}}{0.91}} = 19.5 \text{ m/c.}$$

Определяем D_2

$$D_2 = \frac{60u_2}{\pi n} = \frac{60 \cdot 19.5}{3.14 \cdot 1430} = 0.26 \text{ M}.$$

Отнощение днаметров выхода и входа

$$\frac{D_2}{D_1} = \frac{0.26}{0.160} \approx 1.62.$$

Ширина лопасти на выходе при условии $c_{1r} = c_{2r}$

$$b_2 = b_1 \cdot \frac{D_1}{D_2} = 42 \cdot \frac{0.160}{0.260} = 26 \text{ MM}.$$

Количество лопаток рабочего колеса по формуле (3.34)

$$z = 6.5 \frac{1.62 + 1}{1.62 - 1} \sin \frac{16^{\circ} + 19^{\circ}}{2} \approx 8.$$

По полученным данным профилируются продольное сечение рабочего колеса и лопасти.

4.4, Кавитация. Допустимая высота всасывания

Давление жидкости, проходящей через насос, непрерывно изменяется в направлении движения и неодинаково в отдельных точках сечений проточной полости.

В обычных конструкциях центробежных насосов иаименьшее давление наблюдается близ входа в цилиндрическое сечение рабочего колеса на вогнутой стороне лопастей, т. е. там, где относительная скорость w и соответствующая ей кинетическая энергия $w^2/2$, Дж/кг, достигают панбольших значений (рис. 4.6, зона А). Если в зоне А давление оказывается равным или меньшим давления насыщенного пара, соответствующего температуре всасываемой жидкости, то возникает явление, называемое кавитаuneŭ.

Физическая картина кавитации состоит во вскипании жидкости в зоне пониженного давления и в последующей

лесе

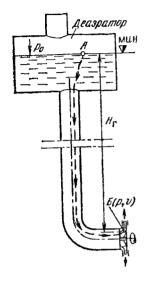


Рис 47. К уравнению (4.7)

конденсации паровых пузырьков при выносе кипящей жидкости в область повышенного давления. При этом кавитационный процесс распространен по некоторой длине потока. Кавитация может быть местным процессом, характерным для короткого участка потока, в тех случаях, когда давление в сечении пульсирует около его среднего значения, равного давлению насыщенного пара при температуре всасываемой жидкости. В этом случае процессы вскипания и конденсации паровых пузырьков протекают с большой частотой, пульсирующим образом.

В любых случаях кавитации при быстрой коиденсации парового пузырька окружающая его жидкость устремляется к центру пузырька (центру конденсации) и в момент сыыкания его объема производит вследствие малой сжимаемости жидкости резкий точечный удар. По современным данным, давления в точках смыкания паровых

зырьков при их конденсации в кавитационных процессах достигают нескольких мегапаскалей.

Если пузырек пара в момент его конденсации находится на поверхности, ограничивающей поток, например на рабочей лопасти, то удар приходится на эту поверхность и вызывает местное разрушение металла, называемое питтингом. Современные исследования показывают, что кавитация сопровождается термическими и электрохимическими процессами, существенно влияющими на разрушения поверхностей проточной полости насосов.

Характер питтинга зависит от материала, из которого изготовлена проточная часть насоса. Так, питтинг чугунных деталей, например рабочих лопастей низконапорных насосов, дает губчатую структуру с весьма неровной поверхностью и извилистыми узкими щелями, проникающими глубоко в металл и парушающими прочность детали. В насосах высоконапорных, работающих при большой частоте вращения, с деталями, выполненными из обычных конструкционных и легированных сталей, питтинг проявляется в виде гладких, как бы проточенных впадин и канавок. Материалов, абсолютно устойчивых против кавитации, не существует. Очень плохо противостоят кавитации неодпородные хрупкие материалы, такие как чугун и керамика. Из металлов, применяемых в насосостроении, наиболее кавитационно устойчивы легированные стали, содержащие никель и хром.

Кавитация вредна не только потому, что разрушает металл, но и потому, что машина, работающая в кавита-

ционном режиме, существенно снижает КПД.

Работа насоса в режиме кавитации внешне проявляется шумом, внутренним треском, повышенным уровнем вибрации, а при сильно развившейся кавитации — удара-

ми в проточной полости, опасными для насоса.

Принято подразделять кавитационный процесс на три стадии. В начальной стадии зона кавитации заполнена смесью жидкости и более или менее крупных пузырьков пара. Во второй стадии в кавитирующем потоке на ограпичивающей поверхности образуются крупные каверны; срываемые потоком и вновь образующиеся. Это стадия развитой кавитации. Третья стадия — суперкавитация: весь обтекаемый элемент гидромашины лежит в области каверны.

Работа насоса в стадии начальной кавитации нежелательна, по допустима, если детали насоса изготовлены из кавитационно-устойчивых материалов. В стадиях развитой и суперкавитации работа насоса становится ненадежной и поэтому недопустима.

Как было указано ранее, кавитация возникает обычно во всасывающем тракте насоса на лопастях рабочего колеса, однако кавитационные процессы могут возникать и в напорных потоках в местах срыва жидкости с рабочих допастей, направляющих лопаток, регулирующих органов.

Меры, предупреждающие возникновение кавитации в насосах: ограничение скорости жидкости в проточной полости насосов, применение рациональных форм сечений проточной полости и профилей лопастей, эксплуатация насосов в режимах, близких к расчетным.

В многоступенчатых насосах наиболее подвержено кавитации первое по ходу жидкости рабочее колесо, погому что на входе в него давление наименьшее. Чтобы повысить кавитационные качества таких насосов, перед первой ступенью их устанавливают предвключенное осевое колесо или шнек, состоящий из двух-трех витков. Они выполняются из кавитационно-устойчивых материалов и развивают на входе в первое колесо многоступенчатого насоса давление, препятствующее возникновению кавитации (см. рис. 4.46).

Оценка кавитационных качеств насосов проводится на основе кавитационных характеристик, получаемых испытанием на специальных стендах [28].

Основной мерой против кавитации в насосах любых типов и конструкций является соблюдение такой высоты всасывания насоса, при которой кавитация не возникает, Такая высота всасывания называется допустимой.

Установим способ расчета допустимой высоты всасывания для бустерного насоса, включенного по схеме рис. 4.7, всасывающего питательную воду из деаэратора.

Уравнение Бернулли для потока $A\Gamma$ от поверхности воды в деаэраторе до входа в межлопастные каналы рабочего колеса насоса

$$\frac{p_{\rm H}}{\rho} + gH_{\rm r} = \frac{p_{\rm B}}{\rho} + \frac{c^2}{2} + gh_{\rm BC},$$

где p_{π} — абсолютное давление на поверхности воды в деаэраторе, Па; $p_{\rm B}$ — абсолютное давление в насосе перед входным сечением межлопастных каналов, Па; $H_{\rm r}$ — геометрическая высота всасывания, т. е. вертикальное расстояние между поверхностью воды в деаэраторе и точкой E; C — абсолютная скорость на входе в межлопастные ка-

налы рабочего колеса, м/с; $h_{\rm BC}$ — потеря напора во всасывающей трубе насоса, м.

Из этого уравнения следует

$$p_{\rm B} = p_{\rm m} + \rho g H_{\rm r} - \rho g h_{\rm BC} - \rho \frac{c^2}{2}$$
 (47)

Условия входа в межлопастные каналы рабочего колеса определяются уравнением энергии относительного движения

$$\frac{\rho_{B}}{\rho} + \frac{w_{1}^{2}}{2} = \frac{\rho_{\text{MUH}}}{\rho} + \frac{w_{\pi}^{2}}{2}$$
,

из которого следует

$$p_{\text{MHH}} = p_B - \rho \frac{w_1^2}{2} \left(\frac{w_{\pi}^2}{w^2} - 1 \right).$$

Разность $\frac{w_{\dot{n}}^2}{w_1^2} - 1 = \lambda$ называют коэффициентом кавитации.

Следовательно,

$$p_{\text{MHH}} = p_B - \rho \lambda w_1^2 / 2.$$
 (4.8)

Чем больше относительная скорость w_{π} на вогнутой стороне рабочей лопасти близ входа в межлопастные каналы (рис. 4.6), тем меньше давление $p_{\text{мин}}$ и тем возможнее возникновение кавитации. При работе насосов в подобных режимах (см. § 3.12) все скорости изменяются пропорционально, и поэтому $\lambda = \text{const.}$

Из (4.7) и (4.8) следует

$$\frac{p_{\rm R}-p_{\rm MHH}}{\rho}+g(H_{\rm r}-h_{\rm BC})=\frac{c^2}{2}+\lambda\frac{w_1^2}{2}.$$

В случае расположения поверхности всасываемой жидкости выше оси пасоса разность между геометрической высотой всасывания и потерей напора во всасывающем тракте насоса пазывают полной высотой всасывания $H_{\rm BC} = H_{\rm F} - h_{\rm BC}$. Поэтому

$$\frac{p_{\rm R} - p_{\rm MHH}}{\rho} + gH_{\rm BC} = \frac{c_1^2}{2} + \lambda \frac{\omega_1^2}{2}.$$
 (4.9)

Условие возникновения кавитации в зоне минимального давления $p_{\text{мин}} = p_{\text{п.п.}}$, где $p_{\text{н.п.}}$ — давление насыщенного пара при температуре всасываемой жидкости.

Полная высота всасывания, при которой в зоне минимального давления возникает кавитация, называется $\kappa pu-$

Уравнение (4.9) для случая возникновения кавитации

можно записать так:

$$\frac{\rho_{\rm H} - \rho_{\rm H,H}}{\rho} + gH_{\rm BC,Kp} = \frac{c_1^2}{2} + \lambda \frac{w_1^2}{2}$$
.

Если пренебречь незначительным изменением температуры на пути AB от уровня воды в деаэраторе до входа в межлопастные каналы рабочего колеса насоса, то величину $(p_{\pi}-p_{\text{н.п}})/p=gH_{\text{кав}}$ следует рассматривать как кавитационный запас энергии на верхнем уровне (в деаэраторе). Поэтому последнее уравнение представляется так:

$$H_{\text{\tiny KAB}} + H_{\text{\tiny BC.KP}} = \frac{c_1^2}{2g} + \lambda \frac{w_1^2}{2g}$$
. (4.10)

Для двух подобных режимов насосов (см. § 3.12), отмечаемых индексами 1 и 2, имеют место соотношения

$$\frac{c_1}{c_2} = \frac{w_1}{w_2} = \frac{u_1}{u_2} = \frac{n_1 D_1}{n_2 D_2} \text{ H} \frac{Q_1}{Q_2} = \frac{n_1 D_{11}^3}{n_2 D_{12}^3}.$$
 (4.11)

Поэтому из (4.10) следует

$$\frac{(H_{\text{RAB}} + H_{\text{BC-RP}})_1}{(H_{\text{RAB}} + H_{\text{BC-RP}})_2} = \frac{(nD_1)_1^2}{(nD_1)_2^2}; \quad \frac{H_{\text{RAB}} + H_{\text{BC-RP}}}{(nD_1)^2} = h = \text{const.}$$

Кроме того, из пропорции (4.11) следует $Q/(nD_1^3) = q = -\cos t$. Исключив из двух последних равенств D_1 , получим после алгебраических преобразований

$$\frac{n V_Q}{\left(\frac{H_{\text{KBB}} + H_{\text{BC-RP}}}{10}\right)^{3/4}} = V \overline{10q^2/h^3} = C. \tag{4.12}$$

Величину C, структурно сходную с коэффициентом быстроходности n_s , называют кавитационным коэффициентом быстроходности (введен С. С. Рудневым в практику расчетов в 30-х годах). Значения коэффициента C для начальной стадии кавитации лежат в пределах 900-1500.

Формула (4.12) дает возможность определения критической высоты всасывания насоса по заданному коэффи-

циенту C:

$$H_{\text{BG-RP}} = 10 \left(\frac{n V \tilde{Q}}{C} \right)^{4/3} - H_{\text{Rab}}.$$
 (4.12')

Геометрическая критическая высота всасывания определяется по формуле

$$H_{\text{r.BC.RD}} = H_{\text{BC.RD}} + h_{\text{BC}}$$

или

$$H_{\text{r.fc BP}} = 10 \left(\frac{n \sqrt{Q}}{C} \right)^{43} - H_{\text{Rab}} + h_{\text{BC}}.$$
 (4.13)

Если полагать $p_{\rm H}=p_{\rm H.H.}$, то $H_{\rm кав}=0$ и

$$H_{\text{r BC RP}} = 10 \left(\frac{n V \overline{Q}}{C}\right)^{4/3} + h_{\text{BC}}.$$

Работа насоса при $H_{\text{г.вс.кр}}$ недопустима, потому что при этом насос находится в начальной стадии кавитации. Нормальная эксплуатация насоса обеспечивается только при допустимой высоте всасывания, удовлетворяющей условию $H_{\text{г.вс.кр}} > H_{\text{г.вс.кр}}^*$.

Противокавитационный запас напора следует принимать равным около 25 % $H_{\text{г.вс.кр}}$, и поэтому в рассматрива-

емом случае

$$H_{\text{r.ec non}} \approx 1.25 \left[10 \left(\frac{n V \tilde{Q}}{C_{\star}} \right)^{4/3} - H_{\text{Rab}} + h_{\text{BC}} \right].$$
 (4.14)

При расчете допустимой высоты всасывания насосов двустороннего всасывания (тип Д) в формулу (4.14) следует подставлять под знаком корня половину полной подачи насоса.

Следует иметь в виду существенное влияние на допустимую высоту всасывания частоты вращения вала насоса.

Кавитационный запас энергии на уровне всасываемой жидкости $gH_{\rm кав}$ зависит от давления насыщенного пара при температуре всасываемой жидкости. Поэтому из (4.14) следует, что $H_{\rm r.вc.лоп}$ зависит от температуры жидкости. Из формулы (4.14) видно, что при расположении уровня всасываемой жидкости выше оси насоса повышение температуры увеличивает допустимую геометрическую высоту всасывания. Если уровень всасываемой жидкости располагается ниже оси насоса и давление на поверхности атмосферное, то чем выше температура жидкости, тем меньше $H_{\rm r.вc.доп}$. Очевидно, при некоторой температуре, обусловливающей достаточно высокое значение $p_{\rm п.п.}$, вели-

^{*} В случае расположения уровня всасываемой жидкости ниже оси насоса $H_{\rm FBC}$ доп $<\!H_{\rm FBC}$ нр.

чина $H_{\text{г.в.е., доп}}$ становится равной нулю и дальнейшее повышение температуры потребует установки насоса ниже уровня всасываемой жидкости.

Практически возможны два различных случая расположения насоса относительно приемного резервуара (рис. 4.8).

Установка рис. 4.8, α характерна для насосов, подающих жидкости с низкой температурой, а установка на рис. 4.8, δ — для насосов, подающих жидкости с высокой тем-

пературой, а также при всасывании насосами холодной воды из емкостей с достаточно высоким вакуумом.

Установки, выполненные по схеме рис. 4.8, 6, часто встречаются в теплоэнергетике в схемах регенеративного подогрева и питания паровых котлов.

Когда насос подает горячую воду, емкость, из которой он всасывает, приходится располагать выше насоса (папример,

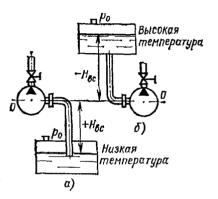


Рис. 4.8. Два случая установки насоса относительно уровня всасываемой жидкости

в случае бустерного насоса, всасывающего питательную воду из деаэратора). По соображениям удобства строительных работ и монтажа желательно по возможности уменьшать требуемую расчетом высоту установки присмной емкости. Этого можно достигнуть увеличением диаметра всасывающего трубопровода, уменьшением его длины, а также выбором рациональной конструкции тех элементов всасывающего тракта, которые дают снижение местных потерь напора.

В некоторых случаях допустимую высоту всасывания можно изменить уменьшением или увеличением давления в емкости, из которой происходит всасывание.

Пример 4.2. Определить допустимую геометрическую высоту расположения насоса пад уровнем всасываемой воды.

Установка характеризуется следующими данными:

Q = 1450 м³/ч; n = 970 об/мин; $D_1 = 320$ мм; $D_2 = 855$ мм; $d_{BC} = 500$ мм; $p_0 = 100$ кПа; $T_{BOR} = 293$ K; p = 1000 кг/м³; $\Sigma h_{BC} = 0.25$ м.

Решение. По тиблицам пасыщенного водяного пара находим давление насыщения при $T_{\rm noq} = 293 \; {
m K}$

$$p_{\rm Hac} = 2.34 \text{ kHa.}$$

Следовательно,

$$H_{\text{KaB}} = \frac{100\,000 - 2340}{1000 \cdot 9.8} = 9.9 \text{ M}.$$

По формуле (4.14)

$$H_{\text{BC.KP}} = 9.9 - 10 \left(\frac{970 \sqrt{\frac{1450}{3600}}}{1100} \right)^{4/3} = 5.3 \text{ M}.$$

Допустимая высота всасывания по (4.15)

$$H_{\rm BC, gold} = 5.3 - 0.25 (9.9 - 5.3) = 4.15 \text{ m}.$$

Скорость во всасывающем патрубке насоса

$$c_{\text{BC}} = \frac{Q}{\Omega} = \frac{1450}{3600 \cdot 0.785 \cdot 0.5^2} = 2,05 \text{ M/c.}$$

Допустимая геометрическая высота всасывания

$$H_{\text{F-,MOII}} = H_{\text{BC-,MOII}} - \Sigma h_{\text{BC}} - \frac{c_{\text{BC}}^2}{2g} - \frac{D_{\text{f}}}{2} =$$

$$= 4,15 - 0,25 - \frac{2,05^2}{2 \cdot 9,8} - 0,16 = 3,53 \text{ M}.$$

Обозначения даны на рис. 4.9.

Пример 4.3. Центробежный пасос предназначен для отсасывания из конденсатора паровой турбины конденсата, переохлажденного до T= =323 K.

Данные по установке: $Q=36~{\rm m}^3/{\rm v}$; диаметр всасывающей трубы насоса $d=160~{\rm mm}$; абсолютное давление в паровом пространстве конденсатора $p_{\rm R}=19.8~{\rm k\Pi a}$; $n=1480~{\rm o}6/{\rm m}$ ин; сопротивление всасывающего трубопровода $\Sigma h_{\rm nc}=0.4~{\rm m}$ вод. ст.

Рассчитать, на каком наименьшем вертикальном расстоянии от минимального уровня в конденсаторе должна находиться ось насоса для обеспечения его нормальной работы без кавитационных срывов. Обозначения даны на рис. 4.10.

Решение. Воспользуемся соотношеннями

$$H_{\text{Rab}} = \frac{p_0 - p_{\text{Hac}}}{\rho g}$$
; $H_{\text{BC,ROI}} = H_{\text{BC,KP}} - 0.25 (H_{\text{Rab}} - H_{\text{BC,KP}})$.

По таблицам насыщенного водяного пара для $T\!=\!323$ K иаходим $\rho_{\rm h, c}\!=\!12,\!3$ кПа, следовательно,

$$H_{\text{RAB}} - \frac{19\,800 - 12\,300}{1000 \cdot 9,8} = 0,662 \text{ m};$$

$$H_{\text{BC.RP}} = 0,662 - 10 \left(\frac{1480 \sqrt{\frac{36}{3600}}}{1200} \right)^{4/3} = 0,042 \text{ m}.$$

Здесь коэффициент Руднева принят для конденсатного насоса с коришими кавитационными качествами равным 1200.

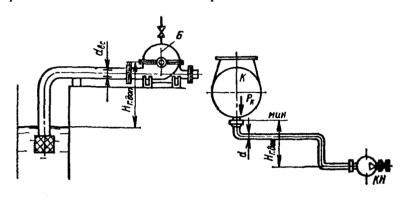


Рис. 4.9. К примеру 4.2.

Рис. 4.10. К примеру 4.3.

Скорость на всасывании

$$c_{\rm BC} = \frac{0.01}{0.785 \cdot 0.16^2} = 0.5 \text{ m/c}.$$

По формуле (4.15)

$$H_{\text{BC.HOII}} = 0.042 - 0.25 (0.662 - 0.042) = -0.113 \text{ M}.$$

Допустимая геометрическая высота

$$H_{\text{r.mon}} = -0,113 - 0,40 - \frac{0,5^2}{2 \cdot 9.8} - 0,08 = -0,595 \text{ m.}$$

Ось насоса должна находиться ниже уровня всасываемого конденсата не менее чем на 595 мм.

4.5. Типы характеристик

Форма характеристики центробежного насоса качественно определяется значением коэффициента быстроходности, находящимся в пределах от 40 до 600. Насосы с n_s,

находящимися в этом промежутке, обладают различными типами характеристик (рис. 4.11).

Особенностью характеристик тихоходного насоса (чисто радиального типа) является наличие максимума кривой напора и быстрый рост мощности при увеличении подачи.

Насосы с нормальной быстроходностью и быстроходные обладают монотонно падающей характеристикой напора;

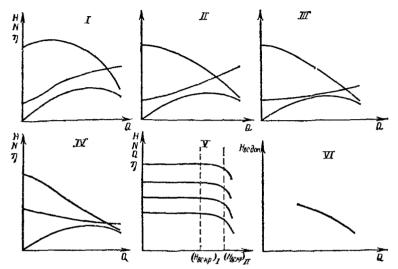


Рис. 4.11. Типы характеристик центробежных насосов:

I — тихоходный; II — нормальный; III — быстроходный; IV — диагональный; V — кавитационная характеристика; VI — характеристика допустимой высоты всасывания

их характеристика мощности по сравнению с характеристикой тихоходных насосов располагается более полого.

Характеристика напора диагонального насоса имеет специфическую впадину и поэтому представляется линией двоякой кривизны; характеристика мощности этого насоса показывает снижение потребляемой мощности при увеличении подачи. Последнее является особенностью диагональных, а также осевых насосов.

Кроме обычных, указанных выше типов характеристик центробежные и осевые насосы оценивают с помощью кавитационных характеристик.

Известно, что в насосе, всасывающем жидкость с уровня, лежащего ниже его оси, кавитация возникает при вакуумметрической высоте всасывания, равной или большей

се критического значения. Следовательно, при малых вакуумметрических высотах, отличающихся от критической, рабочие параметры насоса — давление, подача, мощность и КПД от высоты всасывания и сопротивления всасывающего тракта не зависят. При достижении критической вакуумметрической высоты всасывания и дальнейшем увеличении ее замечаются медленные в начале, а затем резкие спижения давления, подачи, мощности и КПД насоса.

Для выяснения влияния высоты всасывания на работу насоса производят испытания их на кавитационных стендах. Здесь насос испытывают при увеличивающейся высоте всасывания, наблюдая начало кавитации по падению ра-

бочих параметров насоса.

В результате испытання получают кавитационную характеристику (рис. 4.11, V), на которой можно отметить две критические высоты всасывания ($H_{\rm BC,KP}$) $_{I}$ и ($H_{$

Опыт показывает, что работа насоса в интервале $(H_{\text{вс.кр}})_I < H_{\text{вс}} < (H_{\text{вс.кр}})_{II}$ не сопровождается заметными разрушениями металла проточной полости насоса и при необходимости может быть допущена кратковременно.

проточной полости насоса и при пеобходимости может быть допущена кратковременно. Изложенное в § 4.4 показывает, что увеличение подачи насоса вызывает падение допустимой высоты всасывания. Поэтому на заводских характеристиках насосов обычно даются зависимости $H_{\text{вс.доп}} = f(Q)$, удобные для определения допустимой высоты всасывания (рис. 4.11, VI).

4.6. Основные части конструкций центробежных насосов. Применяемые материалы

Основными частями центробежного насоса являются: рабочее колесо, вал с деталями для крепления колес и защиты от истирания сальниками, подшипники, соединительная муфта, корпус, направляющие аппараты, сальники, всасывающий и напорный патрубки, стяжные и крепежные болты. Рабочие колеса изготовляют из различных сортов чугуна, углеродистых и легированных сталей, сплавов цветных металлов и керамических материалов. Применение того или иного материала определяется условиями работы, размерами и частотой вращения, а также родом перемещаемой жидкости.

Колеса малых насосов для чистой воды и неагрессивных жидкостей низкой температуры отливают из серого

конструкционного чугуна. Центробежные насосы для питания котлов высокого давления имеют значительные размеры и высокую частоту вращения. Они подают воду высокой температуры. Поэтому рабочие колеса этих насосов изготовляют из легированных хромом и никелем сталей. Колеса насосов для перемещения грунтошлакосмесей изготовляют отливкой из белого чугуна. Насосы для химической промышленности имеют колеса, изготовленные из специальных сплавов, керамики или пластмасс.

Колеса больших размеров имеют ступицу значительной длины; это затрудняет точную посадку их на вал. Для

Рис. 4.12. Продольное сечение рабочего колеса быстроходного насоса

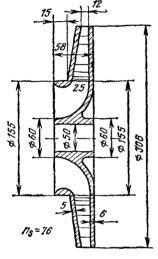


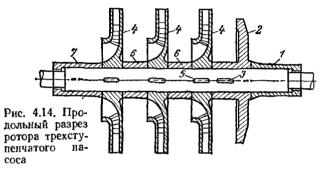
Рис. 4.13. Продольное сечение рабочего колеса тихоходного насоса

облегчения посадки ступицу растачивают внутри на два диаметра: посадочный и облегчающий носадку.

К литым поверхностям колес предъявляются особые требования: эти поверхности должны обладать малой шероховатостью для уменьшения внутренних потерь.

Механической обработке подлежат внутренняя и торцовая поверхности ступицы, а также поверхности уплотнительных колец.

На рис. 4.12 и 4.13 представлены разрезы колес центробежных насосов различной быстроходности.


Вал насоса является весьма ответственной деталью; при высокой частоте вращения он подвергается действию больших поперечных сил. При расчете вала на прочность

и жесткость учитываются следующие внешине нагрузки: персдаваемый от двигателя крутящий момент, собственный вес вала и посаженных на него деталей, поперечные силы, обусловливаемые несимметричными подводом и отводом жидкости и неточностью балансировки колес.

Валы изготовляют из проката или поковок. В том и другом случаях выполняется механическая обработка. Материалом для валов служат углеродистая конструкцион-

ная и специальная легированная стали.

Вал с посаженными на него деталями носит название рогора насоса. Роторы центробежных насосов балансиру-

ют, причем у мелких насосов производится статическая, а у крупных статическая и динамическая балансировки.

На рис. 4.14 показан продольный разрез ротора трехступенчатого насоса с уравновешиванием осевой силы при помощи разгрузочного диска (гидравлической пяты). Посадка деталей на вал производится здесь следующим образом. На резьбу правого конца вала ставится цилиндрическая втулка 1, предохраняющая вал от истирания сальниковой набивкой. В левый конец втулки 1 упирается торповая поверхность разгрузочного диска 2, стопорящегося от поворачивания на валу закладной шпонкой 3. Непосредственно в левый конец ступицы этого диска упирается торец ступицы третьего рабочего колеса 4. Последнее крештся на валу при помощи закладной шпонки 5, рассчитанной на передачу колесу с вала мощности, равной сумме внутренней мощности колеса и мощности дискового трешия.

Рабочие колеса отделяются одно от другого при помощи дистанционных втулок 6. К ступице первого рабочего колеса примыкает левая предохранительная втулка 7, плотно затягивающая на валу при помощи втулки с резьбой 1 все посаженные на него детали. Собранный таким

образом ротор при сильной затяжке втулок образует как бы одно целое.

Обработка торцовых поверхностей всех сажаемых на вал деталей должна быть особо точной. В противном случае при затяжке втулок 1 и 7 неизбежно возникает изгиб вала, вызывающий биение ротора и вибрацию насоса при эксплуатации.

Подшинники центробежных насосов выполняются раз-

личной конструкции.

Насосы малой мощности, как правило, спабжаются шариковыми подшинниками и подпятниками нормальных образцов. Смазка их обычно консистептная и реже жидким маслом из ванны в корпусе подпинника. Более крупные центробежные насосы конструируются с применением роликовых подшинников с цилиндрическими и коническими роликами.

Круппые насосы большой подачи выполияются с подшиппиками скользящего трения. В одних случаях примепяется смазка с помощью колец, висящих свободно на валу и подпимающих масло на вал из ванны в корпусе подшиппика; в других случаях масло подается в подшипники при помощи насоса.

Известны случаи применения в крупных центробежных

насосах подпятников сегментного типа.

Для соединения валов насосов и двигателей наиболее удобно применение эластичных муфт различных конструкций, предупреждающих передачу биений и вибраций свала насоса на вал двигателя и обратно.

Эластичная муфта должна сажаться на валы насоса и двигателя с наибольшей точностью, без перетяжек и перекосов. Это требуется потому, что по наружным обработанным поверхностям муфты при монтаже производится выверка совпадения геометрических осей валов.

Корпус насоса выполняется двух основных конструк-

Корпус насоса выполняется двух основных конструктивных форм: 1) секционный; 2) с горизонтальным разъе-

MOM.

Секционный корпус состоит из нескольких одинаковых основных и двух замыкающих секций, несущих всасываю-

щий и напорный патрубки.

Последняя ступень давления обычно размещается в замыкающей секции, несущей напорный патрубок насоса. Каждая секция представляет собой цилиндрическую, литую из чугуна или стали толстостенную оболочку, включающую разделительную днафрагму, а также прямой и обратный направляющие аппараты.

Больним достоинством секционной конструкции корпуса является возможность создания из одинаковых секций насосов различных давлений. При этом изменяются только размеры вала, стяжных болтов и плиты.

Недостатками секционной конструкции корпуса являются сложность монтажа и малая доступность рабочих колес

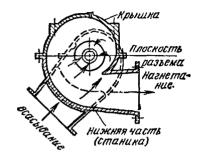
для осмотра.

Для осмотра и ремонта колес секционного насоса необходимо удалить стяжные болты и последовательно снять

все секции при одновременной разборке ротора.

Корпус с горизонтальным разъемом состоит из двух цельнолитых из чугуна или стали половин, из которых инжиня несет всасывающий и напорный патрубки. Последнее, впрочем, не обязательно, хотя и создает больщое удобство при разборке и ремонте насоса.

Половины корпуса у многоступенчатых насосов песут в себе диафрагмы и лопасти прямых и обратных направ-


ляющих аппаратов и уплотнительных колец.

Иногда встречаются многоступенчатые насосы с корпусом, состоящим из двух половин, с безлопастными направляющими аппаратами. В таких случаях цельполитые половины корпусов выполняются со спиральными направляющими каналами. Обе половины корпуса имеют фланцы. Примыкающие одна к другой плоскости фланцев простроганы и хорошо прошлифованы. Крепежные болты стягивают фланцы с помещенной между ними тонкой прокладкой или мастикой. Большое удобство такой конструкции корпуса состоит в том, что, сняв верхнюю часть корпуса (крышку), не нарушая соединения насоса с трубопроводами, можно осмотреть все рабочие колеса ротора и изъять последний из корпуса для ремонта. Корпус насоса с горизонтальным разъемом показан в поперечном разрезе на рис. 4.15.

Кроме рассмотренных двух основных корпусов, в энергетике, нефтенерерабатывающей и химической отраслях промышленности применяют двухкорпусные насосы. Такие насосы представляют собой секционную конструкцию или конструкцию с разъемом в меридиональной плоскости, заключенную в толстостенную, кованную из стали оболочку. Применение таких конструкций обусловлено особыми требованиями в отношении надежности и безопасности эксплуатации.

При наличии избыточного давления или вакуума во внутренних полостях насоса в местах прохода вала через стенки корпуса применяются особые уплотнительные уст-

ройства, иногда называемые салынками или уплотнениями контактного трения. При отсутствии или неисправности сальников происходит выброс перемещаемой насосом жидкости наружу на напорной стороне или подсасывание наружного воздуха внутрь насоса на стороне ее всасывания.

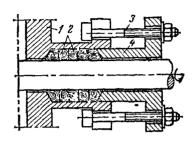


Рис. 4.15. Корпус насоса с разъемом в горизонтальной плоскости

Рис. 4.16. Конструкция сальника с мягкой набивкой

Простейшая конструкция сальника с мягкой набивкой дана на рис. 4.16. Имеющаяся в металле корпуса 1 цилиндрическая выточка заполняется кольцами шнура 2 из мягкого промасленного материала (хлопчатника, пеньки, асбеста). Нажатием гаек, навертываемых на болты 3, втулка 4 сальника плотно загоняется в выточку и, раздавая мягкую набивку в стороны, уплотняет вал. Вследствие трения вала о набивку при работе насоса выделяется некоторое количество теплоты. Для отвода ее необходимо, чтобы сальник пропускал небольшое количество жидкости, удаляемой в канализацию. Со стороны всасывания часто применяют сальники с водяным уплотнением (рис. 4.17).

В насосах, подающих горячую воду, применяют уплотнения с интенсивным водяным охлаждением. На рис. 4.18 показана конструкция такого уплотнения, применяемого в питательных насосах. В крышке насоса устанавливается тонкостенная ребристая втулка 1, уплотняемая кольцом из термостойкого пластика. Уплотняющая набивка 2 закладывается в кольцевую полость, образованную втулкой 1 и защитной втулкой 3, и зажимается стаканом 4. Вода проходит к набивке по кольцевой щели с радиальным размером 0,3 мм, где интенсивно охлаждается, соприкасаясь с колодной поверхностью втулки 1. Таким образом, втулка и вал предохранены от перегрева.

В современном насосостроении находят широкое применение торцовые уплотнения. На рис. 4.19 показаны основные типы этих уплотнений, разработанные ВНИИгидромашем. Фигура а этого рисунка дает представление об уплотнении из резиновых колец на давления до 10 МПа.

В этом уплотнении пара трення состоит из неподвижного резинового кольца 1 и фасопного металлического кольца 2. Поддержание необходимого натяга уплотнения достигается пружиной 3 и отчасти внутренним эластичным кольцом 4.

На фигуре б показано аналогичное уплотнение с той лишь разницей, что фторопластовое кольцо 1 пары трепия и внутреннее резиновое кольцо 4 выполнены ко-

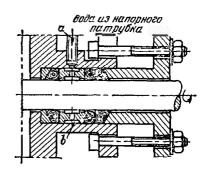
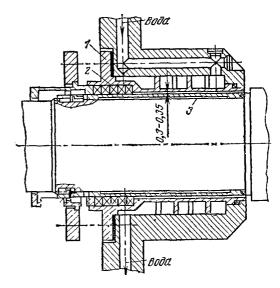



Рис. 4.17. Сальник с мягкой иабивкой и водяным уплотнением

Рис. 4.18. Сальниковое уплотиение вала насоса, подающего горячую воду

ническими. Уплотнения этого типа применяются на давления до 0,5 МПа для воды и агрессивных жидкостей.

Фигура *b* представляет собой уплотнение с неподвижним фторопластовым или пропиленовым сильфоном, приненяющимся для кислот и щелочей при давлениях до

0,3 МПа. Натяг уплотнения создается здесь одновременным действисм сильфона и вспомогательной пружины.

На фигуре г дано уплотнение с металлическим сильфо-

ном на давления до 1 МПа.

Торцовые уплотнения обладают многими положитель-

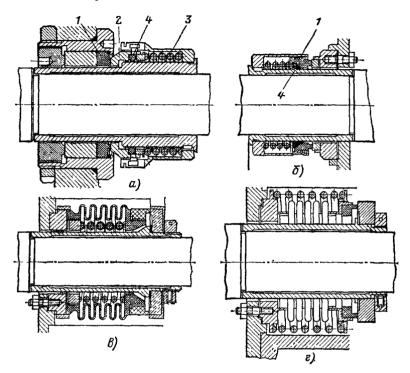


Рис. 4.19. Типы торцовых уплотнений

ными свойствами. Они работают практически с нулевой утечкой; будучи правильно подобранными и смонтированными, они не требуют обслуживания, отличаются большой износостойкостью, малочувствительны к перскосу и биению вала.

Потеря мощности на трение в торцовых уплотнениях составляет не более 50 % потери мощности в обычных сальниках.

В современных крупных питательных насосах применяют безнабивочные дроссельные щелевые уплотнения с подводом холодного запирающего конденсата и отводом

сто по выходе из уплотнения в емкости регенсративпого цикла (конденсаторы, деаэраторы, сливные баки) [11].

Щелевые уплотнения относятся к типу бесконтактных уплотнений и применяются в крупных насосах, эксплуата-

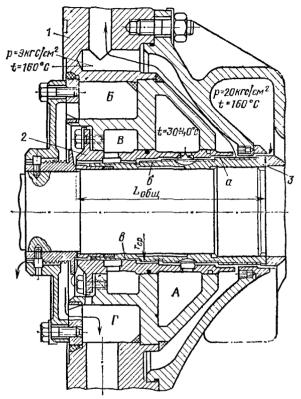


Рис. 4.20. Концевое уплотнение щелевого типа

ция которых должна быть особо надежной при длительных межремонтных периодах. Уплотнения этого типа негерметичны, и выброс жидкости, перемещаемой насосом, предотвращается дросселированием протечек и подводом холодной «запирающей» жидкости с необходимым давлением от постороннего источника. Они широко распространены в питательных насосах крупных энергетических блоков. В некоторых случаях щелевые уплотнения конструктивно комбинируются с контактными сальниковыми.

В качестве примера рассмотрим щелевое уплотнение на рис. 4.20. Корпус уплотнения 1 содержит четыре камеры A, B, B, Г, сообщающиеся между собой через узкие кольцевые щсли, образованные ступенчатыми втулками 2 и 3. Втулка 2 жестко посажена в корпус, 3— вращается вместе с валом. Камера Б сообщается со сливной напорной емкостью, Г—с безнапорной емкостью, В—с конденсатором. Холодный запирающий конденсат подводится в камеру А под давлением несколько большим, чем в камере Б, и, проходя через отверстия в неподвижной втулке 2, распространяется по кольцевой щели в обоих направлениях. В кольцевом пространстве между втулками конденсат смешивается с протечкой через участок щели а и отводится в напорную емкость. Другая часть конденсата следует по участку щели б в камеру В и далее в конденсатор. Незначительная часть конденсата проходит через участок щели в и сливается в безнапорную емкость.

Для уменьшения протечек и расхода запирающего конденсата радиальный размер щели выполняют не более

0,3 мм.

Мощность, затрачиваемая щелевыми уплотнениями, значительно меньше, чем в контактных уплотнениях.

Направляющие аппараты выполняются безлопаточными или лопаточными. В первом случае они представляют собой спиральные каналы в отливке корпуса, а во втором являются сменными деталями, закрепляемыми в полостях секций или нижней и верхней половинах корпуса.

В некоторых конструкциях поток переходит из ступени или одной группы ступеней в другую не по каналам в корпусе насоса, а по специальным переводным трубам, располагаемым вне корпуса насоса (см. рис. 4.27).

Всасывающий и напорный патрубки составляют обычно одно целое с нижней половиной корпуса насоса или его секциями. Они лочти во всех конструкциях выполнены

слегка на конус (с углом до 12°).

Фундаментные плиты предназначены для установки и крепления к ним насоса и двигателя, а в некоторых случаях только для крепления насоса. Они представляют собой плоскую ребристую литую конструкцию с простроганными горизонтальными приливами, на которые опираются и к которым крепятся лапы корпуса насоса.

Фундаментные плиты отливают из чугуна или сваривают

из стальных прокатных профилей.

Применение фундаментных плит создает большие удобства при монтаже и выверке насосов и двигателей. Однако в крупных насосах общие фундаментные плиты под насос и двигатель иногда не ставят.

4.7. Конструкции центробежных насосов

В теплоэнергетике употребляются центробежные насосы, разнообразные по основным параметрам и конструкциям. Это вызывается различием в условиях работы и эксилуатационных требованиях.

Обозначения и маркировка насосов общего назначения. за исключением специальных конструкций, определены

FOCT.

ГОСТ определяет группу центробежных многоступенчатых насосов секционного типа для чистой воды с пода-

чей от 6 до 1000 м³/ч и напором от 40 до 2000 м.
Обозначение насоса включает три буквы: Ц — центробежный, Н — насос, С — секционный и два числа, первое из которых — подача насоса Q, м³/ч, второе — напор H, м ст. жидкости. Например, ЦНС-22-88 означает: центробежный насос секционного типа с полачей 22 м3/ч и на-

пором 88 м.

ГОСТ определяет группу центробежных насосов двустороннего входа, обозначаемую буквой Д. Подача и напор даются в марке, так же как и в секционных насосах. Например: Д-2000-100— центробежный насос двустороннего входа с подачей 2000 м3/ч и напором 100 м. Насосы типа Д охватывают область подач ДО $12\,500\,\,\mathrm{M}^3/\mathrm{ч}$ и напоров до $100\,\,\mathrm{M}$; КПД этих насосов до 92 %.

Применительно K теплоэнергетике центробежвсе быть разделены шые насосы могут на следующие

группы:

- 1) насосы для чистой воды, одноступенчатые и многоступенчатые:
 - 2) конденсатные;
 - 3) питательные;
 - 4) насосы для кислых сред;
- 5) насосы для подачи смесей жидкостей и твердых частиц.

Рассмотрим характерные черты указанных групп насосов.

Насосы для чистой воды применяются для венного, технического и противопожарного водоснабже-

10 - 559145 иня электрических станций и промышленных предприятий. Они бывают одноступечатыми и многоступенчатыми.

Простейшим типом одноступенчатого насоса является консольный насос, обозначаемый буквой К. Продольный разрез такого насоса дан на рис. 4.21, а внешний вид его представлен на рис. 4.22. Характерной особенностью такого насоса является расположение рабочего колеса на

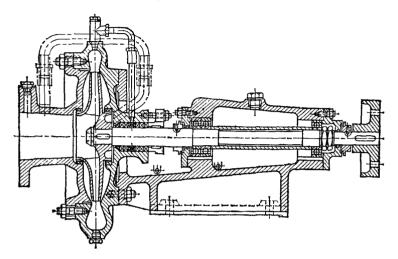


Рис. 4.21. Продольный разрез насоса консольного типа

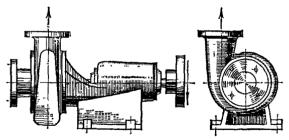


Рис. 4.22. Внешний вид центробежного насоса типа К с напорным патрубком, обращенным вверх

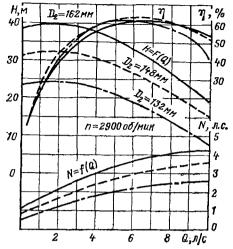

консоли вала, вращающегося в двух широко расставленных шариковых подшипниках. Корпус спиральный с осевым подводом жидкости. Салыник здесь имеется только на стороне подачи. Насосы этого типа рассчитаны на подачу 10—360 м³/ч. Создаваемые ими напоры лежат в пре-

Рис 423. Характеристики консольного насоса с диаметром всасывающего патрубка 50 мм

делах 10—100 м, частота вращения 1450—2900 об/мин, диаметр рабочих колес 132—328 мм, полный КПД находится в пределах 50—84 %.

На рис. 4.23 представлена типичная для насоса типа K характеристика при n=2900 об/мин.

Для внессния больного разнообразия в

рабочие параметры пасосов заводы широко практикуют обрезку рабочих колсс; это дает изменение параметров при сохранении конструкции и габаритов насоса. Приведенные на рис. 4.23 характеристики относятся к колесам трех различных диаметров, отмеченных на графике.

Продольный разрез насоса типа Д представлен на рис.

4.24, а на рис. 4.25 дан его внешний вал. Насосы типа Л характеризуются л

Насосы типа Д характеризуются двусторонним подводом жидкости к рабочему колесу, спиральной безлопаточной формой направляющих аппаратов и присоединением всасывающего и напорного патрубков к нижней половине корпуса при горизонтальной плоскости его разъема.

Основные параметры насосов этого типа: подача 90—12 500 м 3 /ч, напор 10—102 м, частота вращения 730—2950 об/мин, диаметр рабочих колес 265—900 мм, полный КПД в предслах 64—92 %.

На рис. 4.26 представлена типичная для насосов типа

Д размерная характеристика.

Многоступенчатые насосы представлены тремя основными группами: секционные насосы типа С (секционные насосы с колесами одностороннего входа), насосы с колесами одностороннего входа и горизонтальным разъемом корпуса, насосы с первым колесом двустороннего входа и остальными колесами одностороннего входа и горизонтальным разъемом корпуса. Многоступенчатые насосы

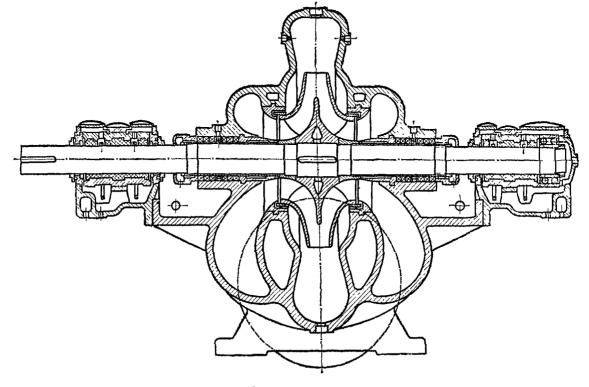


Рис. 4.24. Продольный разрез насоса типа Д

этих типов перекрывают подачу от 5 до 1000 м3/ч при напорах от 35 до 100 м. Специальные конструкции могут быть выполнены с основными параметрами, выходящими за указанные пределы.

В качестве примера на рис. 4.27 дан внешний вид чстырехступенчатого насоса и приведена схема последова-

тельного включения его колес.

На рис. 4.28 приведены характеристики напора и мощпости такого насоса.

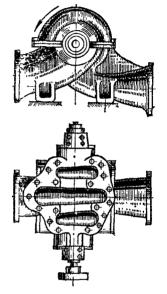


Рис. 4.25. Внешний вид насоса типа Д

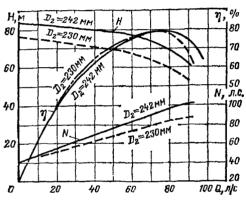


Рис. 4.26. Характеристики насоса Д-320-70

Конденсатные насосы применяются для удаления конденсата, а также как горячие, дренажные насосы бойлерных установок. Они предназначены для перекачивания конденсата и дренажа при температуре до 393 К.

Питательные насосы применяются для подачи питательной воды в наровые котлы. В большинстве случасв эго центробежные многоступенчатые насосы высокого давления, приспособленные к подаче воды с высокой температурой.

Насосы для кислых сред изготовляются из специальных пержавеющих сталей. Они перекрывают область рас-

ходов от 5 до 300 м³/ч при напорах от 7 до 500 м. Насосы для подачи смесей жидкостей и твердых частиц. Условия работы таких насосов специфичны. Поток жидкости, содержащей твердые частицы, проходя с большой скоростью через проточную часть, истирает внутренние поверхности насоса.

Поэтому к конструкциям и материалам таких насосов предъявляются особые требования.

В теплоэнергетике такие насосы употребляются для перекачки золосмесей и шлакосмесей в системах гидро-золоудаления, а также при производстве работ по очистке

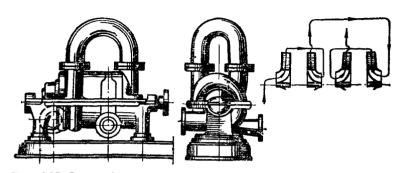


Рис. 4 27. Внешний вид и схема соединения колес четырехступеичатого насоса

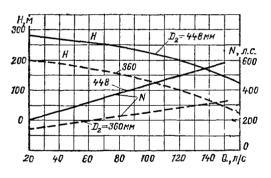


Рис. 4.28. Характеристики четырехступенчатого насоса марки ЭВ-200×4 (по рис. 4.27)

гидротехнических сооружений станции (каналов, колодцев).

Простейшим типом таких насосов является песковый насос марки ПН. Это одноступенчатый консольный насос, предназначенный для перекачивания смеси воды с рудой, гравием и песком с крупностью кусков от 2 до 15 мм в зависимости от размеров насоса. Конструкция этого насоса показана на рис. 4.29.

Рабочее колесо, спиральный корпус и диск отлиты из чугуна, хорошо противостоящего истиранию. Остальные

детали выполняются из обычного конструкционного чу-

гуна.

Максимальная высота подъема при содержании в ней до 65% твердых частиц крупностью 2 мм составляет до 30м при частоте вращения до 1470 об/мин.

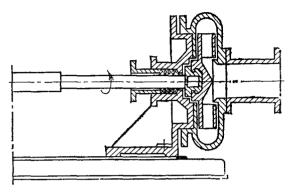
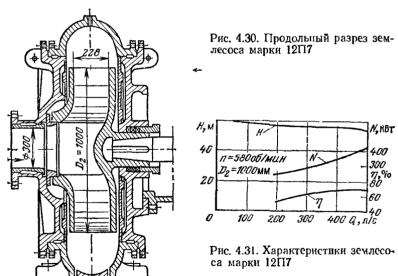



Рис. 4.29. Продольный разрез пескового насоса типа ПН

Подача при содержании твердых частиц до 70 % доходит до 138 ${\rm M}^3/{\rm q}$.

Песковые насосы большей подачи с диаметром напорного патрубка до 200 мм могут подавать смеси с крунпостыю частиц до 25 мм и развивать подачу до 500 м³/ч. Эти насосы характеризуются боковым подводом смеси к

рабочему колесу. Их заводская марка НП.

Шламовые (грязевые) насосы конструктивно сходны с песковыми, но применяются для перскачки смссей с включением более мелких фракций твсрдых веществ. Так, например, шламовый насос марки ШН-1 перемсщает смеси с крупностью частиц всего лишь до 4 мм.

Земляные насосы (землесосы) служат для перекачкибольших количеств грунтосмеси (нульпы) при весьма разнородном ее составе. Конструктивно они выполняются в виде консольных центробежных насосов с колесами, спиральными камерами и внутренними дисками, изготовленными из твердых белых чугунов.

На рис. 4.30 и 4.31 даны конструкция и характеристики

центробежного землесоса марки 12П7.

4.8. Влияние температуры жидкости на конструкцию центробежных насосов

Обычные конструкции центробежных насосов могут применяться для подачи воды с температурой до 353 К. В некоторых случаях по еогласованию с заводами-изготовителями допускается повышение температуры до 378 К. Дальнейшее повышение температуры воды отражается на конструкциях некоторых элементов насосов. Это влияние температуры распространяется на конструкции подшинников, сальников, способ крепления корпуса насоса или его секций к станине (плите) и т. д.

При работе подшипшиков выделяется некоторое количество теплоты, тем большее, чем менее совершенен подшипшик. В горячих насосах значительное количество теплоты подводится к подшипшику через вал от сальников и перемещаемой жидкости. Эта теплота совместно с теплотой трения может создавать недопустимо высокие температуры элементов подшиппика, приводящие к вытеканию смазки и полусухому трению. Отсюда вытекает необходимость охлаждения подшиппиков, предиазначениых для перекачки горячих жидкостей. В таких насосах с небольшой подачей смазка подшиппиков производится постоянными порциями масла, находящегося в ваннах подшиппиков. Охлаждение масла производят введением холодной воды в трубчатый змеевик, размещенный в масляной вание подшипника или полости охлаждения, окружающей последнюю.

Сальшики насосов являются важными элементами их. У насосов для горячих жидкостей сальшики требуют особого внимания. Сальшики таких насосов выполняются, как правило, охлаждаемыми. Здесь возможны различные конструктивные формы как с виешним отводом теплоты, так

и с отводом теплоты водой, испосредственно омывающей повсрхности втулок сальника.

При внешнем охлаждении в части корпуса насоса, окружающей салыник, делается кольцевая полость, в которую синзу подводится холоная вода. Отвод воды производится из самой верхней точки охлаждающей полости, чем предупреждается концентрация в ней воздуха и нара.

Простейшая конструкция сальника с охлаждением была показана на рис. 4.17; если по трубке a подводить воду не из напорного патрубка насоса, а из трубопровода холодной воды, то при помощи распределительного кольца b будет производиться не только уплотнение, но и до-

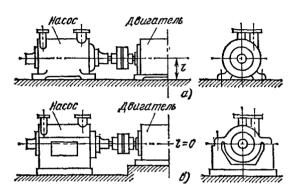
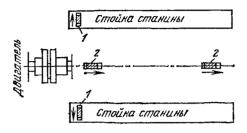


Рис. 4.32. Два варианта опорных лап центробежных насосов

статочно равномерное охлаждение вала. Действителью, холодиая вода, равномерно обволакивая вал в области кольца **b**, стремится растекаться через малейшие неплотности между поверхностью вала и набивкой и, проникая наружу и частично внутрь насоса, эффективно отводит теплоту от поверхности трения. Сальник такого типа не следует сильно затягнать; он должен пропускать воду тонкой струйкой или быстро выбегающими каплями.


Значительные тепловые деформации и неравномерность их приводят к своеобразным конструктивным формам отдельных элементов насосов для горячих жидкостей.

Обычная схема расположения опорных лап корпуса насоса для подачи холодной воды показана на рис. 4.32, а. Расположение лап здесь нижнее. Применение такой конструкции в насосах для горячих жидкостей вызывает существенные затруднения с центровкой насоса и двигателя, если они соединяются непосредственно при помощи муфты.

Действительно, правильная центровка, произведенная при низкой монтажной температуре (рис. 4.32, а), неизбежно нарушится в течение

короткого периода после пуска, как только насос разогреется до своей рабочей температуры. Размер l, м, для электродвигателя практически останется без изменений, а для насоса он изменится за счет тепловой деформации $\Delta l = 0.012 l \Delta t$.

Таким образом, после разогрева насоса совпадение геометрических осей насоса и двигателя нарушается и возникает вибрация вгрегата. Это обстоятельство заставляет располагать опорные поверхности лап

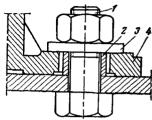


Рис. 4.33. Компенсация тепловых деформаций насоса для горячих жидкостей

Рис. 4.34. Компенсирующее крепление опорной лапы насоса для горячих жидкостей

пасоса па уровне геометрической оси насоса (рис. 432, б). При этом тепловые деформации корпуса пасоса будут распрострапяться симметрично и нарушений центровки при разогреве наблюдаться не будет.

В насосах для горячих жидкостей предусматривается надежная компенсация тепловых деформаций продольного и поперечного направлений. С этой целью производят фиксацию насоса шпонками, располагаемыми на лапах и корпусе и входящими в канавки на станине насоса (рис. 4.33).

Поперечные шпонки 1 фиксируют корпус насоса в продольном иаправлении и создают возможность для свободного поперечного расширения. Продольные шпонки 2 фиксируют насос в поперечном направлении и позволяют ему свободно расширяться в продольном направлении.

Таким образом обеспечивается свободное расширение корпуса насоса в направлениях, указанных на рисунке стрелками.

Факсация корпуса в вертикальном направлении производится болтовыми соединениями (рис. 4.34). Здесь затяжка крепежного болта 1 производится на втулке 2 так, что между поверхностями массивиой жесткой шайбы 3 и прилегающей к ней опорной лапы 4 достигается илотное соприкосновение без натяга.

Если в пасосах для горячих жидкостей не предусмотрена компенсация тепловых деформаций, то возникают местные перенапряжения в материале, опасные для машины. В таких пасосах секционного типа в тяжслых условиях находятся стяжные болты, затягиваемые при мом-

тажной (относительно низкой) температуре. При разогреве насоса температура стяжных болтов не достигает температуры секций, так как они лежат вне секций, омываемых с внутренней стороны жидкостью высокой температуры. Возникающая разность тепловых деформаций вызывает в резьбовой части болтов перенапряжение материала. С целью предотвращения этого явления насосы снабжают изолирующим кожухом, захватывающим стяжные болты, а промежуток между внутренией поверхностью кожуха и корпусом набивают теплоизоляционным материалом.

При медленном разогреве насоса можно получить практически близкее температуры корпуса и стяжных болтов.

4.9. Особые конструкции агрегатов с центробежными насосами

Развитие технологических процессов в промышленности, требующих применения насосного оборудования, вызвало разработку новых конструкций насосов и новых типов насосных блоков (агрегатов).

Появление новых типов блоков и конструкций насосов стало возможным, во-первых, благодаря развитию прогрессивного принципа соединения насоса и двигателя в единый конструктивный блок и, во-вторых, ввиду широких возможностей технологии современного машиностроения и применения новых материалов.

Тепденция к соединению машины-двигателя с машиной-орудием, свойственная всем отраслям техники, вполне отчетливо выражена и в насосостроении. Первой ступенью явился здесь переход от насосного агрегата с разделенными насосом и двигателем (при передаче энергии посредством ременной передачи) к блоку с непосредственным соединением валов муфтой. Это создает большое удобство при компоновке насосных станций. Большинство агрегатов с лопастными насосами выполняется теперь по этому типу.

Затем возникли конструкции моноблочных насосов (обозначаются в марке насоса буквой М). Так, на рис. 4.35 представлен один из типов консольных моноблочных насосов КМ для химической промышленности. В этом типе блоков рабочее колесо насоса посажено на консоль вала двигателя, а корнуса двигателя и насоса сопряжены через приставку непосредственно болтовыми соединениями. Это дает большую экономию в габаритах и массе агрегата.

Масса моноблочного агрегата КМ по данным ВНИИгидромаша составляет от 43 до 65 % массы обычных агрегатов с консольными насосами типа К.

Соединение насоса и двигателя в единый конструктивный блок оказывается особенно удобиым в случае применения экранированных двигателей. В таких двигателях полости ротора и статора герметично разобщены топкой цилиндрической гильзой из немагнитной стали. Поэтому

оказывается возможным заполнить внутренность двигателя и полости опор перекачиваемой жидкостью (если она неагрессивна для примененных в конструкции материалов) и, таким образом, обойтись в конструкции без уплотнений вала. Следовательно, такой блок может быть выполнен герметичным, что особенно важно при передаче вредиых и лег-ковоспламеняющихся жидкостей.

На рис. 4.36 представлен вертикальный одноступенчатый герметичный химический электронасос с экранированным двигателем.

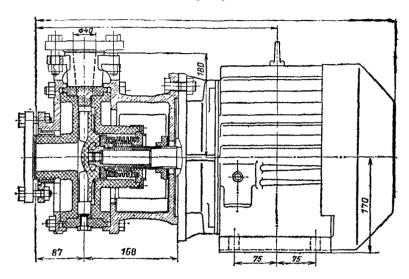


Рис. 4.35. Моноблочный консольный насос для химической промышленности

Жидкость всасывается через правый патрубок и, пройдя рабочее колесо и направляющий аппарат, выходит через левый патрубок. Часть жидкости пропикает через уплотнения рабочего колеса и радиальный зазор между валом и расточкой крышки насоса, проходя затем в зазор между гильзой, защищающей обмотки, и поверхностью ротора двигателя. Выше она поступает в отводную трубку и проходит в эмеевиковый холодильник, охватывающий корпус двигателя. Здесь жидкость отдает свою теплоту охлаждающей воде, подаваемой через полость термобарьера по трубке в полость холодильника.

Таким образом, жидкость проходит через зазоры двигателя и змеевиковый холодильник по замкнутому контуру, отдавая теплоту, получаемую в двигателе.

В описациой конструкции уплотнения вала исключены, и поэтому насосный агрегат является герметичным.

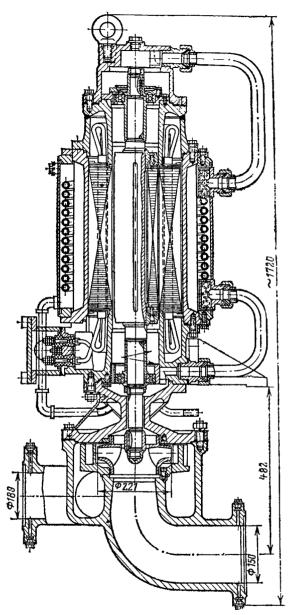


Рис. 4.36. Вертикальный герметичный насос

Дальнейшим развитием прииципа соединения насоса и двигателя является, например, лопастиый (осевой) многоступенчатый насос для перскачки иефтепродуктов, изображенный на рис. 4.37. В этой конструкции насос и двигатель полностью совмещены в общий конструктивный

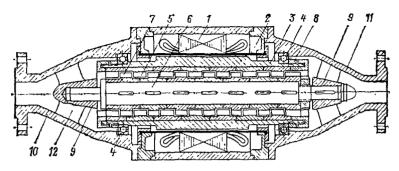


Рис. 4.37. Однокорпусный электронасосный агрегат

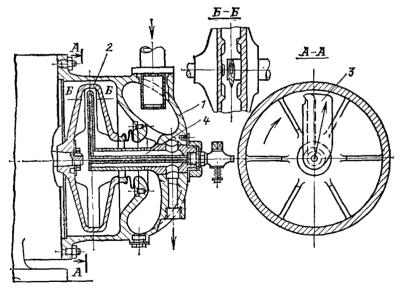


Рис. 438. Насос с вращающимся корпусом

блок. Агрегат отличается большой компактностью и относительно малой массой. Он состоит из статора 1, защищенного гильзой (экраном) 2, и массивного ротора 3. Последний вращается в шарикоподшипшках 4. Ротор представляет собой массивный полый барабан, на впутреиней

поверхности которого расположены венцы рабочих лопастей 5. Количество венцов определяется числом ступеней насоса.

В полости ротора жестко крепится стержень 6, на который набираются венцы направляющих лопастей 7, фиксируемых на стержне шеопками и затяжной гайкой 8. Стержень 6 крепится на втулках 9, поддерживаемых во всасывающем 10 и напорном 11 патрубках лопастями 12.

Силовое взаимодействие между статором и массивным ротором обусловливает вращение венцов рабочих лопастей и сообщение энсргии потоку жидкости, проходящему через проточную часть.

Представляет существенный интерес применение в области малых производительностей и высоких напоров насосов с вращающимся корпусом. Конструктивная схема такого насоса дана на рис. 4.38.

В неподвіжном корпусе 1 насоса, скрспленном жестко с двігателем, расположен вращающийся корпус 2, закрепленный на консоли вала электродвигателя. Внутри вращающегося корпуса между радпальными лопастями расположен неподвижный приемник (обтекатель) 3. При вращении корпуса 2 жидкость захватывается радпальными лопастями и под действием центробежных сил развивает давление, пропорциональное квадрату окружной скорости. Под этим давлением жидкость поступает в приемное отверстие 3 и далее по осевому каналу 4 отводится наружу в насосный трубопровод. Одновременно через приемный патрубок жидкость подводится в центральную часть вращающегося корпуса.

Коэффициент быстроходности насосов этого типа составляет около 25; КПД достигает 60 %. Напориая характеристика крутопадающая, стабильной формы.

В насосостроении находят широкое применение различные синтетические материалы,

В зависимости от назначения насосов пластмассы, стеклопластики и производные каучука употребляются для изготовления и покрытия рабочих колес и внутреннего покрытия корпуса насоса.

На рис. 4.39 показан центробежный вертикальный погружной насос для исрекачки соляной кислоты и различных агрессивных жидкостей ири температурах до 60°С. Рабочее колесо открытого типа (без переднего покрывающего диска). Корпус насоса, рабочее колесо и корпус нижнего подшинника выполнены из фенолита, защитная втулка— из антихлора.

Рисунок 4.35 дает представление о конструкции насоса для перекачивания кислот и щелочей при температурах до 70 °C. Детали проточной части насоса — корпус, крышки, рабочее колесо, фланец уплотнения выполнены из пропилена.

Для работы с агрессивными кислыми жидкостями различной концентрации при температурах до 60°С применяют гуммированные насосы, один из которых (3X-9P-1) показан на рис. 4.40. Корпус и крышки этого консольного насоса выполнены из конструкционного чугуна и

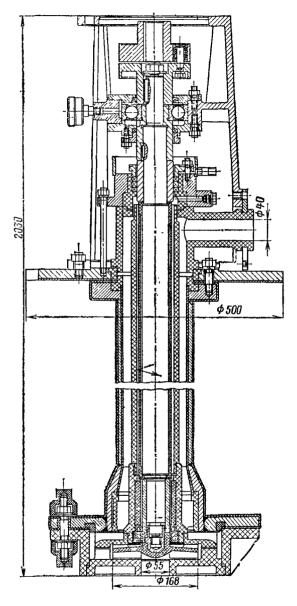
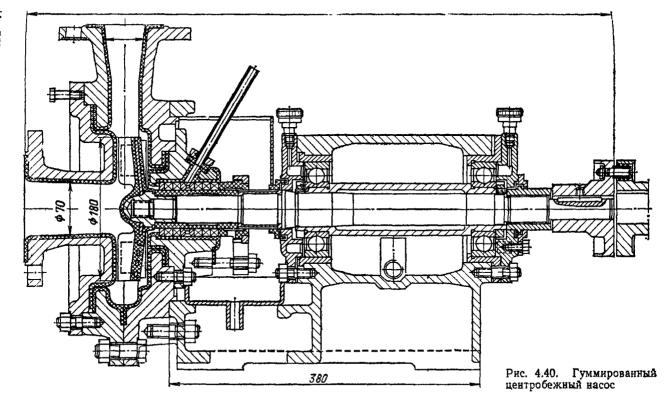



Рис. 4.39. Пластмассовый центробежный насос

с внутренней стороны покрыты слоем кислотостойкой резины (гуммированы). Колесо насоса сборное стальное, покрыто слоем резины. Покрытие резиной производится машинным способом в горячем состоянии, и поэтому слой резины прочно приваривается к металлу. Сальниковое уплотнение выполняется из кислотостойких материалов. В этой конструкции заслуживает внимания особый прием, примененный для разгрузки сальника и уменьшения осебой силы: на задней стороне рабочего диска колеса расположены лопасти, понижающие давление в зазоре между корпусом и колесом. Рабочее колесо насоса имеет свободные лопасти, без переднего покрывающего диска.

4.10. Насосное оборудование тепловых электрических станций и тепловых сетей

Насосы различного назначения являются необходимыми элементами тепловой системы районных и промышленных электростанций всех типов. Место насосов в тепловой системе определяется ее структурой, зависящей в основном от мощности блоков ТЭС и параметров пара [11].

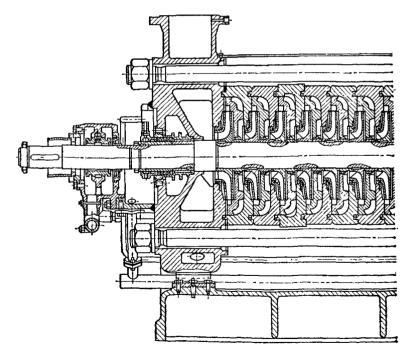
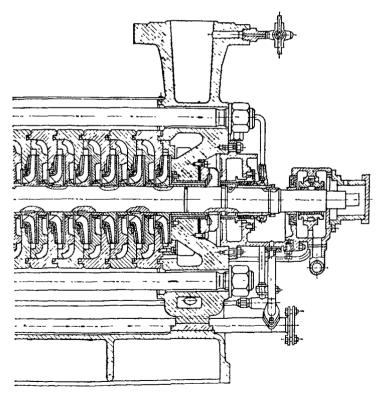



Рис. 441. Питательный

Основные группы насосов, применяемых на ТЭС:

- питательные насосы высокого давления для подачи воды в паровой котел;
- 2) бустерные (предвилюченные) для создания подпора во всасывающем патрубке питательных насосов;
- 3) конденсатные для отсасывания конденсата из конденсаторов турбин и подачи его в систему регенеративного цикла;
- 4) циркуляционные для подачи охлаждающей воды в конденсаторы турбин;
 - 5) сетсвые для подачи горячей воды в сеть теплоснабжения;
- 6) прочие дренажные, подпиточные тепловой сети, масляные системы смазки и регулирования турбоагрегатов.

Рассмотрим насосы первых пяти групп и отметим их особенности, Питательные насосы. Рабочие параметры питательных электронасосов паровых котлов определены ГОСТ 22337-77 и лежат в пределах: $Q=65\div900~\text{M}^3/\text{u};~\rho=3,9\div29,4~\text{MIIa};~N=108\div6360~\text{kBt};~\eta=65\div82~\%$

Обозначение питательных электронасосов ПЭ-Q-р, где П — питательный, Э — электропроводный, Q — подача насоса, M^3/q , р — давление насоса, кгс/см².

Питательные насосы подают воду с высокими температурой и давлеиием, что отражается на конструкции насосов. Основные требования, предъявляемые к ним: прочность, герметичность, компенсированность

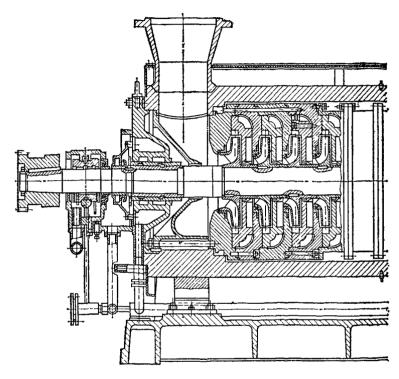
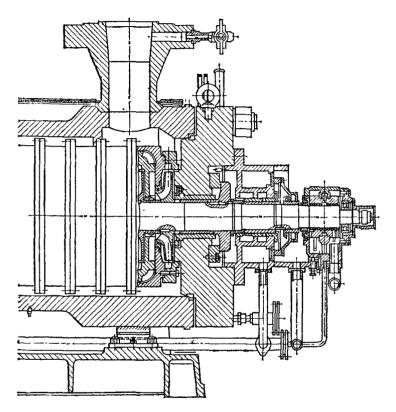



Рис. 4.42. Питательный

тепловых деформаций, динамическая устойчивость (отсутствие автоколебаний) в любых режимах нагрузки, длительный ресурс работы.

Рассмотрим типичную конструкцию однокорпусиого питательного иасоса, применяемого для котлов с давлением пара 9,8 и 13,7 МПа (насосы ПЭ-150-145; ПЭ-270-150; ПЭ-250-180). На рис. 4.41 показан продольный разрез 13-ступенчатого иасоса ПЭ-250-180. Количество ступеней давления насосов этого типа в зависимости от требуемого давления может быть различиым (до 14) при полной идентичности всех ступеней кроме первой. Рабочее колесо первой ступени выполняется с увеличенным входным сечением (для предохранения от кавитации). Корпус

насоса скомбинирован по обычному типу секционных насосов для подачн горячей воды. Направляющие аппараты лопаточного типа, выполненные из хромистой стали, запрессованы в корпуса секций по напряженной посадке.

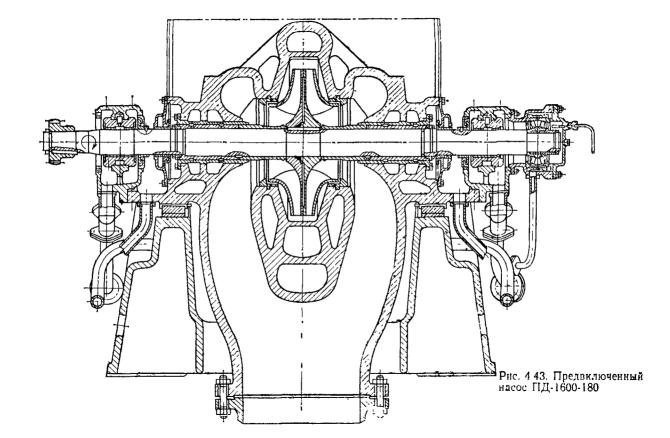
двухкорпусный иасос

Ротор насоса состоит из вала, рабочих колес, защитных и дистаиционных втулок, разгрузочного диска, эубчатой полумуфты и мелких вспомогательных деталей (шпонок, концевых гаек). Колеса выполнены из хромистой стали. Опоры ротора — подшипники скольжения с принулительной смазкой. Концевые уплотиения сальникового типа с подволом охлаждающей воды в корпус уплотнения. Ротор насоса снабжен указателем осевого сдвига, располагаемым на свободном конце вала насоса.

Насосы описываемого типа экономичны, их КПД лежит в пределах 0,70-0,76.

При давлениях нара, применяемых на современных ТЭС, питательные насосы выполняются многоступсичатыми и в большинстве случаев секционными. Однако такая конструкция при высоких давлениях и температурах питательной воды оказывается ненадежной. Поэтому при давлениях пара 13,7 МПа и выше применяют двухкорпусные питательные насосы: внутренний корпус секционной конструкции, паружный — тоасстостенный, кованый.

На рис. 4.42 представлен продольный разрез секционного двухкорпусного насоса. К этому типу относятся ПЭ-500-180, ПЭ-720-185, ПЭ-900-185 и др. Особенности конструкции насоса: массивные наружный корпус и крышка с напорной стороны, легкая конструкция крышки со стороны всасывания, отсутствие тяжелых стяжных болтов секций, иаличие отбора воды после третьей ступени, осуществляемого через сверления в теле трех первых секций, концевые уплотнения щелевого типа. Подробное описание конструкции насоса дано в [10].


Привод питательных электронасосов производится электродвигателями с синхронной частотой вращения 3000 об/мин. Для повышения экомомичности агрегата при регулировании в некоторых случаях между электродвигателем и насосом включают гидромуфту, позволяющую изменять частоту вращения вала насоса и, следовательно, подачу его в широких пределах.

Мощность электродвигателей для привода питательных насосов ограничена по конструктивным соображениям значением 8000 кВт при частоте 50 Гц. Поэтому на ТЭС нашли применение питательные насосы с турбоприводом, получающим пар из промежуточных ступеней турбины энергоблока.

Питательные паротурбонасосы имеют рабочие параметры в следующих пределах: $Q = 30 \div 1150 \text{ м}^3/\text{ч}; p = 5,3 \div 33,2 \text{ МПа}; n = 10\,000 \div 5000 \text{ об/мни; } N = 115 \div 12\,500 \text{ кВт. Абсолютное давление пара, поступающего в турбину, <math>p_{\tau} = 1.45 \div 12.7 \text{ МПа}.$

Обозначение питательных турбонасосов: Π TH-Q-p- p_{T} где Π — питательный, T — турбоприводный, H — насос, Q — подача насоса в иоминальном режиме, м³/ч; p — давление насоса, кгс/см², p_{T} — абсолютное давление пара на входе в приводную турбину.

В зависимости от параметров пара, подаваемого в турбину, и от конструкции проточной полости ее частота вращения вала насоса может значительно превышать синхронную частоту вращения электродвигателя, дости ая в обычных, эксплуатационно освоенных конструкциях 7000 об/мии, а в отдельных случаях еще более высокий. Однако при столь высоких частотах вращения первая ступень насоса становится нечадежной с точки эрения кавитации. В таком случае часть напора, развиваемого питательным насосом, целесообразно передать особому, предвключенному насосу, работающему на пониженной частоте вращения, устойчивому против кавитации; питательная установка будет состоять из основного питательного насоса высокого давления и предвключенного

низкоиапорного, соединенных последовательно. Привод основного питательного насоса и предвилюченного осуществляется в современных блоках большой мощности от одной паровой турбины; вал основного высокооборотного насоса соединяется с валом турбины непосредствению зубчатой муфтой, а вал предвилюченного — через редуктор.

Рассмотрим в качестве примера питательный агрегат, состоящий на иасосов — предвилюченного ПД-1600-180 и основного ПТН-1150-340-15. Продольный разрез предвилюченного насоса ПД-1600-180 приведен из рис. 4.43. Его номинальная подача 1630 м³/ч, напор 180 м, температура воды не более 438 К. частота вращения 1890 об/мин, КПД 80 %. Насос горизонтальный, двустороннего входа, с рабочим колесом, составлениым из двух симметричных половии. Разъем корпуса в горизонтальной плоскости. Для уравновешивания поперечных сил применен двухзаходиый спиральный отвод. Входной и выходной патрубки составляют одно целое с инжней частью корпуса, что значительно облегчает ремоит насоса. Рабочее колесо фиксируется на валу дистанционными втулками и коицевыми цилиндрическими гайками. Подшипники скользящего трених с принудительной смазкой от маслосистемы агрегата. Для фиксации ротора в осевом направлении применен роликовый подпятник. Концевые уплотиення вала — щелевого типа с подводом охлаждающего конденсата. Зубчатая соединительная муфта смазывается от маслосистемы агрегата.

Основной питательный насос ПТН-1150-340-15 представлен в продольном разрезе на рис. 4.44. Насос двухкорпусный, шестиступенчатый, высокоскоростной. Рабочие параметры его — в табл. 4.1.

Особенности конструкции насоса: разъем основного внутреннего корпуса по горизонтальной осевой плоскости, все рабочие колеса одинаковы, потому что насос предназначен для работы с подпором от предвилюченного насоса, наличие направляющих лопаток перед первой ступенью, радиальное расположение всасывающего и отводящего патрубков в нижней части корпуса, закрепленной на фундаментной плите, ротор насоса неразборный с жесткой, неподвижной посадкой рабочих колес.

Подробное описание конструкций насосов ПД-1600-180 и ПТН-1150-340-15 дано в [10].

Коидеисатные иасосы. Их назначение — подача конденсата отработаиного пара из конденсатора турбин и коиденсата греющего пара из теплообменников ТЭС в трубопроводную систему регенеративного цикла.

Рабочие параметры горизонтальных конденсатных иасосов иаходятся в пределах: $Q=12\div125$ м³/ч; $H=50\div140$ м; $N=3,6\div77$ кВт; n=3000 и 1500 об/мин; $\eta=45\div66$ %. То же для вертикальных иасосов: $Q=200\div2000$ м³/ч; $H=40\div180$ м; $N=100\div1226$ кВт; $n=1000\div1500\div3000$ об/мин; $\eta=71\div82$ %.

Обозначение коидсисатных иасосов: горизонтальные Кс, вертикальные КсВ; первая цифра — подача, м³/ч; вторая — иапор, м.

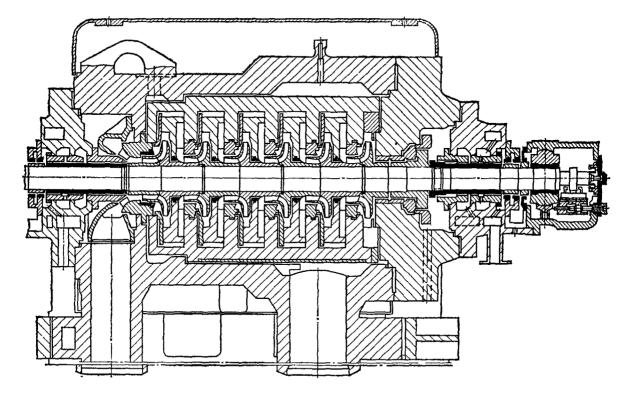


Рис. 4.44. Питательный турбонасос ПТН-1150-340-15

_ 3	Наименование	Назначение машины	Характеристика среды		Параметры машины			
ГРОМЕР Группы Машипы			Радиоактив- ность	Темпера- тура, К	Давление на входе, МПа	Подача, м ⁴ /ч	Разпипае- мый иа- пор, м	Конструктивная схема машины
Ia	Главные циркуляцион- ные насосы — ГЦН	Обеспечение циркуляции теплоносителя — воды через реактор в одноконтурных АЭС	Радно- активная	573	До 15	10 000	До 150	Одноступенча- тые с колесом ди- агонального типа; иногда в комплек- те со струйными аппаратами
16	Главные циркуляцион- ные насосы — ГЦН	Обеспечение циркуляции теплоносителя — воды через реактор в двухконтурных и неполностью двухконтурных АЭС	Радио- активная	523—573	10—20	250— 30 000	50—100	Одноступенчатые с однопоточным нли двухпоточным колесом центробежного или днагонального типа; вертикальные
Ів	Главные циркуляцион- ные насосы— ГЦН	Обеспечение циркуляции теплоносителя — натрия на трехконтурных АЭС: а) в I контуре б) во II контуре	Радно- активная Нерадно- активная	503—553 503—553	0,19	3000— 9000 3000— 9000	70—110 70—110	Одноступенча- тые с однопоточ- ным или двухпо- точным колесом центробежного ти- па; вертнивльные

	,	,			1			
IIa	Питатель- ные насосы (главные)	Подача пита- тельной воды в парогеиератор или реактор	Слаборадно- активная	433—438	2,5	504000	500— 1800	Многоступенча- тые с однопоточ- ным колссом цен- тробежного тина; горизонтальные
116	Бустерные (предвклю- ченные насосы)	Подача пита- тельной воды во всасывающий пат- рубок питатель- иого насоса	Слаборадио- активная	433438	0,6-0,7	5040 00	200-500	Одноступенча- тые с однопоточ- ным или двухпо- точным колесом центробежного ти- па; горизонтальные
III, IV	Конденсат- ные насосы	Подача коиденсата из конденсатора в деаэратор: а) на одноконтурий АЭС б) на двухконтурий АЭС	Слаборадно- активная Нерадно- активная	2 97—310 —	0,003— 0,006 —	50—1500 —	110—240 —	Многоступенча- тые с однопоточ- ным колесом цен- тробежного тина; вертикальные
V	Циркуляци- онные насосы охлаждающей воды	Подача охлаж- дающей воды в конденсаторы	Нерадно- активная	283—293	0,1	1000— 6500 и болес	20—100	Одноступенча- тые с двухпоточ- ным колесом цен- тробежного типа; горизонталь н ы е. Одноступенчатые с однопоточным колесом центро- бежного типа, вер- тикальные. Одно- ступенчатые, осе- вые, вертикаль- иые

_ [И В В В В В В В В В В В В В В В В В В В	Назначение машины	Характеристика среды		Параметры машины			
Номер группы машины			Радно- актнвиость	Темпера- тура, К	Давление на входе, МПа	Подача. м³/ч	Развивае- мый на- пор, м	Конструктивная скема машины
VI	Пусковые па- роструйные эжекторы	Отсос воздуха из конденсатора при пуске турбо- агрегата	Нерадио- активная	298303	0,1	-	ε=5÷10	Одноступеича- тые струйные ап- параты
VII	Осиовные па- роструйиые нли водоструйиые эжекторы	Отсос паровоздушиой смеси из конденсатора пря работе турбоагрегата: а) на одноконтурной АЭС б) на двухкоитурной АЭС	Радио- активиая Нерадио- активная	297—310 —	0,003— 0,005 —	_	ε=30÷40 —	Пароструйные с числом ступеней до трех, с промежуточными охладителями пара. Водоструйные, одиоступенчатые

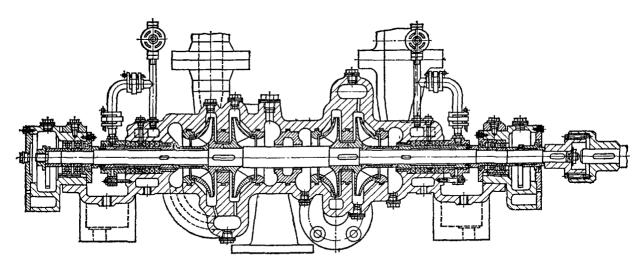


Рис. 4.45. Конденсатный насос КС-20

Конденсатные насосы работают в режимах нагрузки, близких к кавитационным. Чтобы обеспечить надежную, без кавитационных срывов и помпажа работу насоса, частоту вращения его ограничивают (в обычных конструкциях не выше 1500 об/мин) и первое рабочее колесо выполняют с шпроким входным сечением для повышения давления на входе в межлопастные каналы. Рабочие колеса и детали, подверженные питтингу, изготовляют из кавитационно-стойких материалов.

Количество рабочих конденсатных насосов для одного энергетического блока не менее двух, поэтому они соединяются параллельно и должны обладать напорной характеристикой, устойчивой в широком диапазоне нагрузок.

Малые и средине насосы типа Кс выполняются секционными или с разъемом в осевой горизонтальной плоскости, с количеством ступеней давления до четырех.

Типичная конструкция насоса типа Кс с подачей до 125 м3/ч и четырьмя ступенями давлення представлена на рис. 4.45. Корпус насоса чугунный с горизонтальным разъемом; всасывающий и напорный патрубки на нижней половине корпуса; на верхней половине корпуса имсются два патрубка для присоединения персводной трубы от первой группы (две ступени) ко второй. В пределах группы ступени соединяются каналами, выполненными в теле корпуса. Комисисация тепловых деформаций достигается способами, указанными в § 4.8. Для уравновешивания осевой силы применено обратное расположение рабочих колес в каждой группе. Подшилники качения сдвоенные с кольцевой смазкой. Масляные ванны подшипников имеют внешнее охлаждение водой, подводимой в полости корпусов подшинников. Конденсатные насосы требуют хороших концевых уплотнений вала, поэтому уплотнения с мягкой набивкой, примененные в насосе, снабжены еще и гидрозатвором -- специальным кольцом, распределяющим по окружности вала подводимый из напорного патрубка уплотняющий конденсат.

Конденсатные горизонтальные секционные насосы отличаются от обычных конструкций этого типа лишь наличием винтового предвилюченного колеса (шиека) и формой и размерами входной воронки первого рабочего колеса [10].

Конденсатные насосы с подачей 125 м³/ч выполняются трехступенчатыми с первой ступенью типа Д, а второй и третьей ступенями обычного типа с переводными каналами в корпусе [10].

Увеличение единичной мощности паротурбоагрегатов и переход к крупным энергетическим блокам вызвали появление вертикальных конденсатных насосов типа КсВ.

Кондсисатные насосы вертикального типа применяются для подач 200 м³/ч и более. Конструкции конденсатных насосов блочных ТЭС я двухконтурных АЭС одинаковы. На рис. 4.46 дан продольный разрез насоса КсВ с подачей до 500 м³/ч. Переход к подачам до 1600 м³/ч привел к разработке оригинальной конструкции, показанной на рис. 4.47.

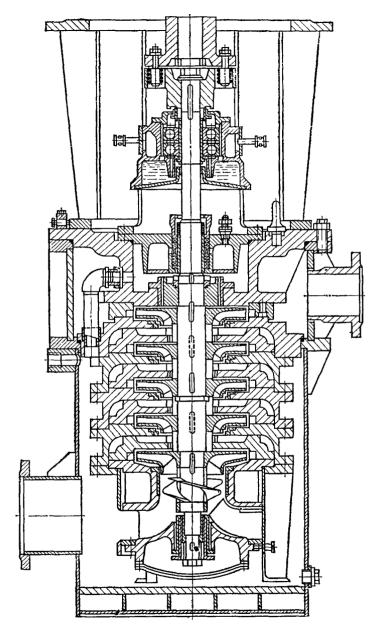


Рис. 4.46. Конденсатный насос КсВ-200-220

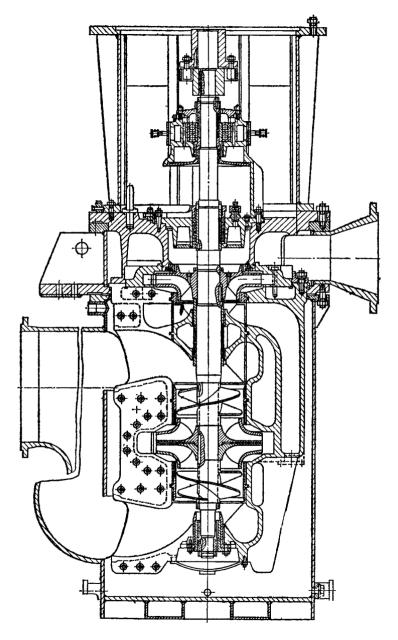


Рис. 4.47. Конденсатный насос КсВ-1000-95

Насос двухступенчатый, двухкорпусный, с осевым разъемом. Первая ступснь снабжена винтовыми предвключениыми колесами (шпеками). Вторая ступень с колесом односторошнего входа и разгрузкой осевой силы отверстиями в диске. Вес ротора и остаточная осевая сила воспринимаются радиально-упорным подшиппиком на верхием коице вала. Нижний подшиппик скользящего трения с водяной смазкой. Уплотнения, соедишительная муфта, вспомогательные детали ротора и корпуса уиифицированы с коиструкцией насосов КсВ-200-220, данной на рис. 4.46.

Циркуляционные насосы. В системах снабжения охлаждающей водой конденсаторов ТЭС применяются насосы с большой подачей и относительно низким напором следующих типов: вертикальные — осевые и центробежные, горизоитальные с колесом типа Д. Насосы устанавливаются на электростанциях малой мощности в пределах турбинного цеха близ конденсаторов, на мощных, как правило, в специальных зданиях береговых насосных станций.

Обозначення осевых насосов: ОВ №-d и ОПВ №-d, где О—осевой, В — вертикальный, П — поворотно-лопастный, № — номер модели рабочего колеса, d — диаметр рабочего колеса, см.

Обозначение центробежиых насосов: dB-Q/H, где d — диаметр напорного патрубка, мм; B — вертикальный; Q — подача, м³/с; H — напор, м.

Для горизонтальных иасосов типа Д обозначения аналогичны обозначениям для насосов общепромышленного назначения.

В насосах ОВ рабочие лопасти жестко закреплены на втулке, а в ОПВ — имеют возможиость поворота (изменения угла установки) в зависимости от конструктивной модификации при остановке насоса или на ходу его.

Параметры выпускаемых осевых насосов ОВ и ОПВ: $d=470\div 2600$ мм; $Q=1700\div 16\,300$ м³/ч; $H=4\div 28$ м, $N=27\div 10\,000$ кВг; $n=250\div 960$ об/мин; $n=80\div 88$ %; $M=1800\div 75\,000$ кг.

Осевые насосы применяются в системах прямоточного водоснабжения, требующих инзкого напора.

На рис. 4.48 даны две схемы установок осевых насосов, различающиеся конструкцией подвода к входному отверстию насоса.

Рисунок 4.49 дает представление о конструкции насоса типа ОПВ. Насос состоит из следующих основных частей: всасывающей конфузорной части 1, корпуса 2, в котором располагается рабочее колесо, переходной слегка конической обечайки, сопряженной с главной частью корпуса 3, имеющей отводищее колено и составляющей одно целое с закладным кольцом, оппрающимся на фундамент.

Рабочее колесо состоит из втулки, снабженной обтекателем, в которой на шипах большого диаметра крепятся поворотные рабочие лопасти. Внутри втулки располагается механизм поворота лопастей, управляемый штангой, проходящей через полый вал 4 насоса. Поток, проходящий через рабочее колесо, иесколько закручен относительно оси насоса и

12-559

с целью повышения КПД иасосной установки раскручивается выправляющими лопастями 5, служащими для крепления иижнего подшипника 6. Верхний подшипник 7 крепится иа приливе колена 8. Вкладыши подшипников выполнены из специальной резины или древесного пластика и смазываются водой. Насос коисольного типа и имеет одио верхнее

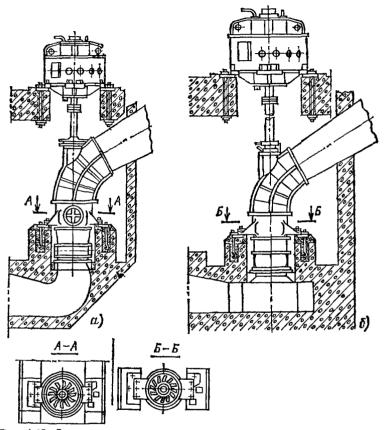


Рис. 4.48. Схемы установок осевых насосных агрегатов: *а* — подвод в виде колена; *б* — камерный подвод

уплотнение с мягкой набивкой. Вес ротора и гидродинамическая сила через жесткую муфту передаются на вал двигателя и его подпятник.

Параметры центробежных насосов типа В: $Q=5500\div54\,000\,$ м³/ч; $H=26\div90\,$ м; $N=1300\div9500\,$ кВт; $n=250\div750\,$ об/мм; $\eta=89\,$ %; $M=8500\div100\,000\,$ кг.

Продольный разрез насоса типа В показаи на рис. 4.50. Ротор иасоса состоит из рабочего колеса 1, основной диск которого жестко кре-

пится к инжнему фланцу 2 вала 3. Втулка рабочего колеса снабжена обтекателем 4. Верхним фланцем вал 3 жестко крепится к валу двигателя или к фланцу промежуточного вала. Корпус 5 иасоса жестко крепится к закладному кольцу 6, скрепленному с фундаментом анкерными болтами. Корпус имеет разъем в осевой вертикальной плоскости. Снизу к фланцу корпуса присоединен всасывающий конфузор 7. Сверху корпус

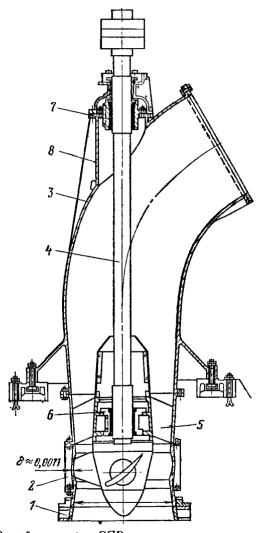


Рис. 4.49. Осевой насос типа ОПВ

перекрывается фасонной крышкой, иесущей тумбу 8 подшипника в сальникового уплотнении. Смазка подшипника водяная; сальниковое уплотнение с мягкой набивкой.

Подвод воды к насосу или испосредственио из камеры всасывания, или при помощи нзогнутой бетонной всасывающей трубы.

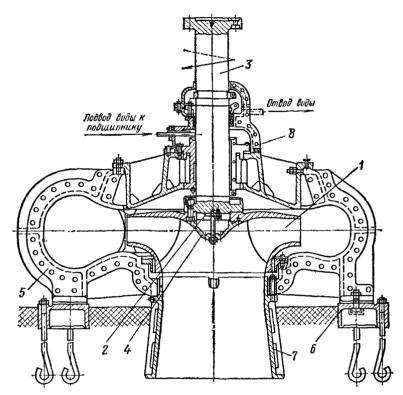
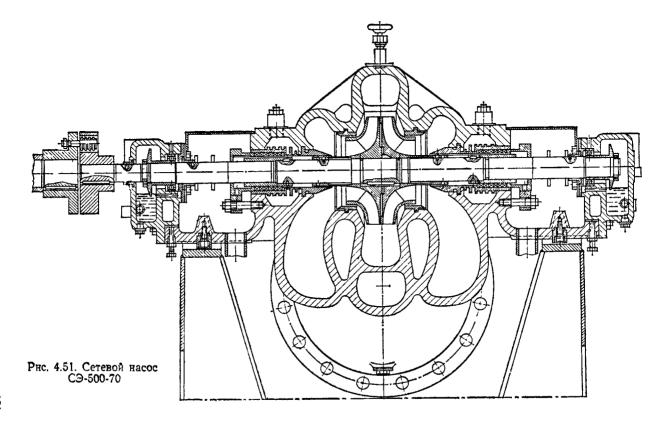



Рис. 4.50. Вертикальный центробежный насос типа В

Насосы типа Д, применяемые в системах циркуляциониого охлаждения, имеют рабочне параметры: $Q=160\div12\,600\,$ м³/ч; $H=15\div90\,$ м; $n=485\div2900\,$ об/мин. Их коиструкция аналогична конструкции насосов типа Д промышленного иззначения.

Сетевые насосы. Служат для подачи горячей воды в теплофикационные сети коммунальных и промышленных систем теплосиабжения; устанавливаются на ТЭЦ и насосных стаициях районов. Сетевые насосы — центробежные, горизоитальные, одно- и двухступенчатые.

В системах теплосиабжения в зависимости от применяемого (качественного или количественного) способа регулирования подачи теплоты

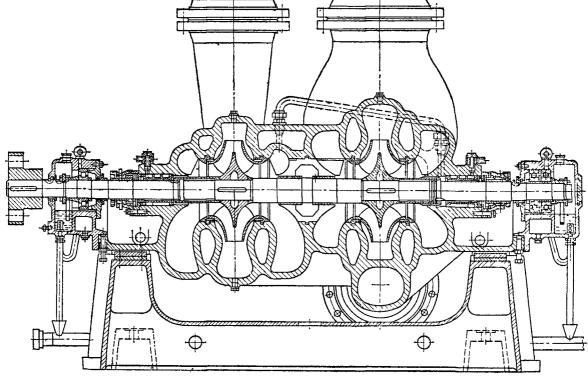


Рис. 4.52, Сетевой насос СЭ-1250-140

сетевые насосы работают в широком днапазоне изменения подач и температур подаваемой воды.

Обозначение сетевых изсосов: СЭ-Q-H, где С — сетевой; Э — электронасос; Q — подача, м³/ч; H — напор, м.

Рабочие параметры сетевых насосов, выпускаемых заводами СССР: $Q=160\div5000~{\rm m}^3/{\rm q};~H=50\div180~{\rm m};~N=30\div2370~{\rm кВт};~n=1500~{\rm m}$ 3000 об/мин; $\eta=87$ %, температура подаваемой воды не выше 453 К.

Продольный разрез одноступенчатого насоса типа СЭ дан на рис. 4.51. Литой чугунный корпус с горизонтальным разъемом в осевой плоскости устанавливается на сварной корытообразной станине. Привалочине плоскости опорных дап располягаются близ осевой плоскости разъема корпуса для компенсации тепловых деформаций. Корпуса подпипников крепятся шпильками к нижней половине корпуса, несущей всасывающий и напорный патрубки. Ротор насоса состоит из скомбинированного из двух половин колеса двустороннего входа и комплекта дистанционных и предохранительных втулок. Подшилники, шариковые или роликовые, смазываются жидким маслом; корпуса подшилников имеют полости водяного охлаждения. Концевые уплотнения вала-сальники с мягкой набивкой; внешняя втулка уплотнений выполнена ребристой для более эффективного охлаждения водой, подводимой в камеру уплотнения. В последнее время в сетсвых насосах находят применение торцовые охлаждаемые уплотнения как более надежные и дающие экономию приводной энергии.

Конструкция двухступенчатого сетевого насоса СЭ-1250-140 представлена на рис. 4.52. Особенность конструкции заключается в примсиении в каждой ступсии колес типа Д и переброске потока из первой ступени во вторую специальной внешней переводной трубой.

Подробное описание конструкций, параметры и характеристики энергетических насосов, применяемых на ТЭС, см. в [10].

4.11. Насосное оборудование атомных электрических станций

В технологических системах атомных электрических станций (АЭС) в зависимости от требующихся рабочих параметров, рода подаваемой жидкости и специальных условий (надежности и безопасности эксплуатации и ремонтов) применяются насосы различных конструктивных типов и размеров.

Насыщенность энергетических блоков АЭС насосным оборудованнем очень велика. Так, блок с реактором ВВЭР-440 вмеет 210, а блок с реактором РБМК-1000—481 единицу насосного оборудования. Мощность привода насосного оборудования энергоблоков АЭС составляет до 90 % мощности собственных нужд. Установлениая мощность приводных двигателей насосов АЭС равна примерно 10 % номинальной мощности блока, а расход электроэнергии на привод основного насосного оборудова-

ния составляет около 7 % выработки электроэнергин блока. Такое большое количество насосов в энергоблоках АЭС обусловлено, во-первых, большими расходами перекачиваемых жидких сред и, во-вторых, условнями безопасности, требующими значительного резерва в основном насосном оборудовании.

Изложенное указывает на необходимость особо внимательного отношения к вопросам выбора, эксплуатации и ремонта насосного оборудования АЭС.

Место насосов в технологических схемах АЭС. Рассмотрим технологические схемы с жидким теплоносителем и установим место и орнентировочные значения рабочих параметров применяемых насосов.

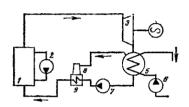


Рис. 4.53. Схема одноконтурной АЭС

Рис. 4.54. Схема двухконтуриой АЭС

На рис. 4.53 дана принципнальная схема одноконтурной АЭС. Среда, вносящая теплоту, образующуюся в реакторе 1 в результате термоядерного процесса, называется теплоносителем. В одноконтурных АЭС теплоноситель — пар является и рабочей средой турбины 3, вращающей вал генератора электроэнергии 4. Отработавший в турбине пар кондеисируется в конденсаторе 5, получающем охлаждающую воду от циркуляционного пасоса 6. Эжектор 8, служащий для отсоса воздуха из конденсатора, снабжен теплообменником 9, улучшающим работу эжектора и подогревающим конденсат, подаваемый насосом 7. Этот насос является конденсационным (дрепажным) насосом турбины и вместе с тем питательным насосом реактора. Насос 2 называется главным циркуляционным насосом (ГЦН); он усиливает циркуляцию в контуре реактора и интенсифицирует его работу.

Таким образом, в схеме одноконтурной АЭС применяются насосы трех основных назначений: ГЦН, питательные насосы реактора (ПН) и циркуляционные насосы конденсатора (ЦНК).

Рабочая среда (пар) получается непосредственно в реакторе. Поэтому пар и получаемый из него конденсат существенно радиоактивны. Следовательно, ГЦН 2, конденсатио-питательные насосы 7 и вся сопряженная с инми трубопроводная основная система работают на радиоактивной жидкости. Это обстоятельство существенно усложияет эксплуатацию.

одноконтурных АЭС. Циркуляционные насосы 6 конденсаторов подают псактивнрованную воду.

На рис. 4.54 показана принципиальная схема двухконтурной АЭС, в которой аппаратура и трубопроводные системы теплоносителя (активированной среды) и рабочей среды турбины разделены. В цяркуляционный контур реактора 1 включен парогенератор (теплообменник 1') в в ответвление контура — компенсатор объема 1". Главный цяркуляционный насос 2, создавая циркуляцию в I контуре, подает теплоноситель через трубную систему парогенератора 1', где теплота передается рабочей среде II контура.

Схема II контура строится по обычному принципу тепловой станции: пар из парогенератора поступает в турбину 3, приводящую генервтор 4, и далее в конденсатор 5, в который насосом 6 подается циркуляционная вода. Конденсат отсасывается из конденсатора насосом 7 и подается через подогреватель 9 эжектора 8 в деаэратор 10. Питательный насос 11 подает конденсат в парогенератор.

Экономичность системы АЭС может быть повышена применением во II контуре регенеративного подогрева питательной воды парогенератора.

Возможные в эксплуатационных условиях нарушения плотности соединений трубчатых систем парогенератора и коррозионные разрушения металла могут привести к попаданию радиационно-активной жидкости (или газа при газообразном теплоносителе) во И контур. При этом его эксплуатация становится опасной. Поэтому в особо ответственных случаях, например в атомных отопительных котельных, систему выполняют трехконтурной.

В некоторых случаях на АЭС применяют жидкометаллический теплопоситель, что существенно отражается на материалах и конструкции насосов.

В системах АЭС с газовым теплоносителем ГЦН заменяется специальной газодувкой с небольшой степенью повышения давления.

Представление о назначении основного насосного оборудования АЭС, его рабочих параметрах и конструктивных типах дает табл. 4.1 [10].

Кроме основных групп насосов, указанных в табл. 4.1, в системах АЭС работают насосы, выполняющие вспомогательные функцип: насосы, подающие масло в системах смаэки и регулирования турбии и генераторов, дренажные насосы подогревателей, насосы тепловой сети и системы технического водоснабжения и др. Конструкции этих насосов и условия их эксплуатации такие же, как и на тепловых станциях.

Рабочне параметры, конструкции и условия эксплуатации ГЦН. Главные циркуляционные насосы реактора в схемах АЭС с любым количеством контуров подают радиоактивную жидкость — воду, жидкий металл. Это обстоятельство предъявляет жесткие требования к конструкции и материалам насоса, условиям его эксплуатации и ремонта.

В состав главного циркуляцнонного контура двухконтурных АЭС входят реактор, основные циркуляционные трубопроводы, ГЦН и парогенератор. Все конструктивные части контура находятся под высоким внутренним давлением (около 20 МПа) при температуре подаваемой среды до 573 К. Поэтому корпусные конструкции ГЦН должны обладать большой прочностью и иадежностью в эксплуатации. Эти требования удовлетворяются применением толстостенных корпусов из спецвальных легированных сталей.

Представление о рабочих параметрах І ЦН для водо-водяных экергетических реакторов различной мощности дает табл. 4.2.

Таблица 4.2. Рабочие параметры ГЦН для блоков ВВЭР различиой мощности

Параметры	Блоки с реакторями ВВЭР, МВт								
реактора, ГЦН	210	365	440	500	1000				
Давление в корпусе реактора, МПа	10	10,5	12,5	16,5	16				
Температура воды на входе в реактор, K	525	52 5	541	562	562				
Температура воды на выходе из реактора, К	546	553	574	595	595				
Расход воды через реактор, м ³ /ч	3 6 500	49 500	39 000	38 000	76 000				
Количество петель главного реакторно- го контура	6 ,	8	6	2	4				
Подача ГЦН, м³/ч Напор ГЦН, м Мощность ГЦН, кВт Средняя скорость во- ды, м/с:	6,1·10 ³ 40 1650	6,2·10³ 50 1930	6,5·10 ³ 50 2260	19·10³ 50 —	19.10 ³ 84 4300				
в главных трубо- проводах	7,7	10,0	9,6	9,8	9,3				
во входных пат- рубках	9,3	10,0	9,6	9,8	9,3				
в активной зоне Средняя длитель- ность межремонт- ного периода, ч	2,8 5000	4,0 20 000	3,5 15 000	3,1	5.3				

ГЦН включаются в главный циркуляционный контур и предназначеиы для преодоления его гидравлического (или газового при газообразном теплоносителе) сопротивления. Гидравлическое сопротивление системы, проводящей жидкость или газ, пропорционально квадрату средней скорости потока. Средняя скорость воды в главных трубопроводах контура составляет до 10, а в активной зоне до 5 м/с. При таких скоростях напор, развиваемый ГЦН, для различных тинов АЭС лежит в пределах 50—150 м. Очевидно, что такой напор может быть развит центробежным насосом с одинм рабочим колесом. В зависимости от подачи рабочее колесо ГЦП может быть одио- или двухпоточным.

Важнейшее требование к ГЦН, диктуемое радиоактивностью подаваемой ими жидкости, — отсутствие протечек в среду, окружающую насос. Этому требованию удовлетворяют ГЦН в бессальниковом герметичном исполненин. В таких насосах рабочее колесо, вал и двигатель монтируются в общем корпусе, герметично отделенном от атмосферы. Они выполняются вертикальными, одноступенчатыми, с рабочими колесами одно- или двустороннего входа.

Применяется несколько способов герметизации ГЦН. В некоторых случаях обмотка статора и ротор защищены от подаваемой жидкости специальными экранирующими рубашками — гильзами. Это насосы с сухим электродвигателем. В других случаях вся внутренняя полость электродвигателя заполнена подаваемой жидкостью; здесь требуется применение особо стойкой изоляции, надежно защищающей поверхности электродвигателя от контакта с жидкостью.

Известны такие конструкции ГЦН с газонаполненными электродвигателями, в которых внутренняя полость электродвигателя содержит воздух или технический газ, давление которых соответствует давлению подаваемой жидкости.

Герметичным насосам свойственны серьезные недостатки: пониженный по сравнению с насосами обычных конструкций КПД (не выше 60~%), высокая стоимость, сложность ремонтно-монтажных работ.

Герметичные насосы надежны в эксплуатации и применены при отпосительно малых подачах на АЭС с реакторами ВВЭР мощностью 210, 365 и 440 МВт (Ново-Воронежская, Белоярская, Кольская и другие станции СССР и зарубежные).

Типичным образдом водяного ГЦН является насос марки ЦЭН-310 для реакторов BBЭР-440 (рис. 4.55).

Основная деталь насоса — спиральный корпус 1, изготовленный интампованием и сваркой. Подвод к корпусу для удобства компоновки с циркуляционными трубопроводами выполнен прямоугольным колепом. Крепление разъемов корпуса агрегата выполняется шпильками с набором жестких тарельчатых пружин, воспринимающих тепловые деформации при разогреве конструкции. Электродвигатель 2 с сухим статором крепится иепосредственно на крышке насоса.

Рабочее колесо 3 насоса имеет специально увеличенную площадь продольного сечения с целью увеличення массы колеса и соответственно выбега ротора насоса иа случай обесточивания электродвигателя (при достаточном выбеге ротора ГЦН предотвращается педопустимое по соображениям безопасности повышение температуры и давления в активной зоне реактора).

Ротор насоса представлиет собой жесткую комбинацию из вала, рабочего колеса насоса и ротора электродвигателя. Ротор насоса имеет два подшипника: нижний — опориый и верхний — опорио-упорный, воспринимающий поперечиые и осевые силы, обусловленные весом ротора и гидродниамической неуравновешенностью рабочего колеса.

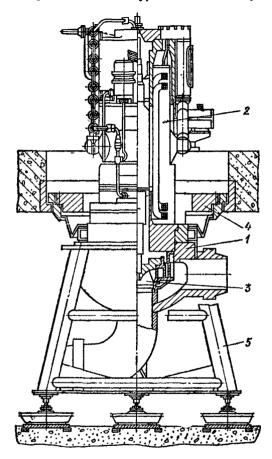


Рис. 4.55. Насосный агрегат ЦЭН-310

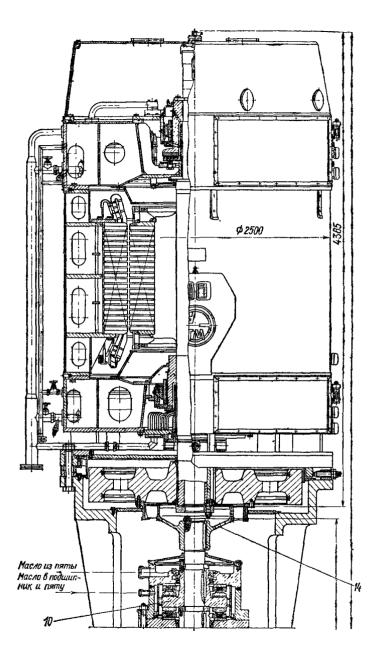
Теплообменник, насос и вентилятор системы охлаждения ГЦН крепятся на корпусе электродвигателя.

Массивная перегородка 4, сопряженная с гибкой мембраной, воспринимающей тепловые деформации при разогреве агрегата, разделяет пространство, занимаемое агрегатом на две зоны: обслуживаемую и необслуживаемую. Эти зоны разделены перекрытием большой толщины, гарантирующим радиационную безонасность обслуживаемой зоны.

Онорная конструкция 5 сборная, выполненная на толстостенных стальных труб и проката. С целью компенсации тепловых деформаций присоединенных к насосу трубопроводов опорнаи конструкция располагается на катковых опорах, допускающих горизонтальное перемещение агрегата.

Герметичные ГЦН для подачи жидкого натрия, употребляемого в качестве теплоносителя на некоторых АЭС, конструктивно близки к описанному.

В процессе развития АЭС мощность реактора увеличилась от 210 до 1000 МВт и соответственно возросла подача ГЦН от 6000 м³/ч для реактора ВВЭР-210 до 19 000 м³/ч для реактора ВВЭР-1000. При этом изменилось и сопротивление главного циркуляционного контура реактора от 0,6 до 0,8 МПа и более. Для таких рабочих условий применение герметичных ГЦН затруднительно и экономически невыгодно вследствие пизкого значения их КПД. Поэтому возникла проблема создания ГЦН с контролируемой протечкой через концевые уплотнения вала и возвратом этой протечки в контур циркуляции; ГЦН такого типа могут иметь приводной двигатель обычной конструкции — электрический или тепловой.


Особо ответственной частью конструкции таких насосов являются концевые уплотнения. Это механические щелевые уплотнения с подачей запирающей нерадноактивной воды извие от специального источника с необходимым избыточным давлением.

Насосы с механическим уплотнением и контролируемой протечкой имеют КПД на 10—15 % выше, чем герметичные насосы при давлении до 1 МПа. Они выполняются одноступенчатыми, консольными, с вертикальным расположением вала. Стоимость таких насосов почти в 2 раза ниже, чем герметичных.

Протечки ГЦН этого типа при нормально работающем уплотнении составляют несколько десятков кубических сантиметров в час, что представляет очень малую долю подачи насоса.

Типнчным образцом бессальниковых насосов с контролируемой протечкой являются ГЦН марки ЦЭН-7, показавшие моторесурс более 20 000 ч. На основе эксплуатационного опыта с этими насосами разработана их модернизированная конструкция ЦЭН-8, показанная в продольном разрезе на рис. 4.56. Это центробежный, одноступенчатый вертикальный насос с рабочим колесом одностороннего входа, предназначенный для применения в АЭС с реакторами типа РБМК. Рабочие параметры насоса:

Подача, м	3/q .						•					До 10 000
Температу	ра вод	ы, К				•						543
Давление	всасы	вания,	МПа	· .				•				7,0
Мощность	на го	рячей	воде,	кВт	•							До 4800

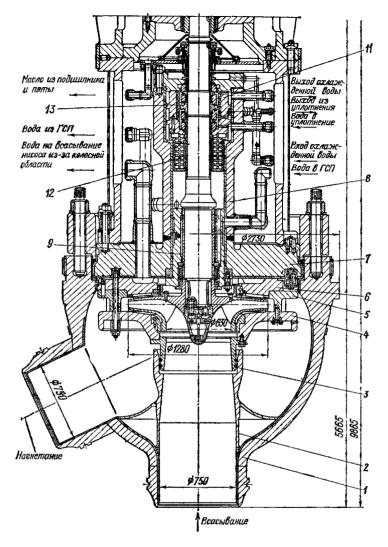


Рис. 4.56. Насосный агрегат ЦЭН-8

Корпус 1 насоса выполнен из теплостойкой стали; внутренняя новерхность его покрыта антикоррознонной наплавкой,

Всасывающая полость насоса образована стальным конфузором 2 промежуточным конусом 3 с уплотинтельными кольцами, обеспечиваю-

щими надежную компенсацию разности тепловых деформаций корпуса и блока внутрикорпусных деталей 4—6.

Проточная полость насоса образована входной ворошкой и межлопастными каналами рабочего колеса, передним и задним покрывающими дисками и лопастным направляющим аппаратом. Все эти детали выполняются из специальных сталей высокой прочности, стойких против коррозии при подаче насосом радиоактивной воды.

В конструкции насоса применеи известный способ уравновешивания осевой силы соединением заколесной пазухи со всасывающей полостью пасоса при помощи обводной трубы (см. § 3.9). Необходимое при этом уплотняющее устройство осуществлено сменными кольцами; одно кольцо крепится к задней поверхности рабочего колеса насоса, другое — к детали 6. Уплотнение необходимо для уменьшения утечки воды через заднюю пазуху на сторону всасывания.

Рабочее колесо крепится на валу закладными шпонками и торцовыми шпильками; для улучшення гндродинамических условий на входе—снабжено обтекателем (коком).

Корпус *I* насоса сверху закрывается крышкой 7, к которой приварена конструктивная втулка 8, служащая для размещения вспомогательных элементов: подшинника, охладителя, торцовых уплотиений и пр.

Насос имеет два подшипника. Нижний подшипник 9 — гидростатического типа, скользящего трения.

Подшипник смазывается водой, подаваемой через мультигидроциклоны из напорного патрубка насоса или из общестационарного коллектора ГЦН. Последнее предпочтительнее, потому что при обесточивании электродвигателя ГЦН со значительным выбегом агрегата подшипник не остается без смазки. Слив смазывающей воды из подшипника — во всасывающий патрубок ГЦН.

Верхняя опора насоса — подшипник и подпятилк — скомбинированы в общем конструктивном блоке. Подшипник — скользящего трения с втулкой, жестко закреплениой на валу; подпятник состоит из дисковой пяты 10 и верхиего и нижиего сегментных упорных устройств, обеспечивающих необходимую фиксацию ротора насоса в осевом направлении. Система смазки подшипника и подпятника циркуляционнаи, с прииудительным движением масла с помощью насосов через маслоохладители и свободиым сливом в циркуляционный бак.

Уплотиительное устройство 11 насоса ЦЭН-8 состоит из двух торцовых коитактных уплотнений. Запирающая вода нодводится от специальной системы в полость между ступенями торцовых уплотнений под давлением более высоким, чем в контуре циркуляции реактора. Абсолютная герметичность стыков коитактных колец торцового уплотнения недостижима, поэтому малое количество запирающей воды будет проходить через «контурную» — нижнюю ступень уплотнения и присоеднияться к радноактивной воде контура циркуляции. Некоторая часть запираюшей воды проходит через атмосферную — верхнюю ступень уплотнения и сливается в специальную емкость

При качественных изготовлении и монтаже конструкции выход нагужу радиоактивной воды контура исключен полностью, а протечки через атмосферную ступень уплотнения легко контролируются как по количеству, так и по радиоактивности.

Контактиме кольца уплотнения выполнены из силицированного графита — матерпала весьма изпосостойкого и обладающего малым коэффициентом трения.

Экономичность описанного двухступенчатого торнового уплотнения в всока ЦЭН-8 очень высокая: расход запирающей воды составляет не б лее 50 л/ч, что существению отражается на стоимости системы питания уплотнения.

Тепловой режим ГЦН весьма изпряжен вследствие подачи ими восто с высокой температурой (до 600 K). Поэтому в ЦЭН-8 вмонтировагы два охладителя 12 и 13, питаемые холодной водой от специальной системы. Охладитель 12 служит для сиятия теплового потока, распространяющегося по валу от насоса вверх, в область уплотнений и верхнего подшивника. Охладитель 13 охватывает зону расположения уплотнения и предназначен для поддержания его температуры в допустимых претелах.

Валы насоса и двигателя соединены механической муфтой 14 свециальной конструкции, допускающей независимые осевые перемещения концов валов.

Характерной особенностью агрегата является расположение на ыт жием конце вала электродвигателя тяжелого маховика, существенно увеличивающего маховой момент агрегата. Это требуется по следующим соображениям. При аварийном обесточивании электродвигателя ГЦН частота вращения ротора агрегата, вращающегося по инерции, падает, и тем быстрее, чем меньше масса ротора. При этом уменьшается подача ГЦН в соответственно количество теплоты, отводимой теплоносителем из активной зоны реактора. Однако процесс выделения теплоты в активной зоне реактора в течение некоторого времени, до сработки аварийной защиты, остается неизменным. Следовательно, стационарный тепловой процесс реактора нарушается. В результате температура и давление теплоносителя в активной зоне реактора быстро возрастают, обусловливая аварийную ситуацию. Установка маховика на валу агрегата, увеличивая время выбега ротора насоса до значения большего, чем время сработки аварийной защиты реактора, позволяет избежать указанной аварийной ситуации.

Наиболсе круппым ГЦН с контролируемыми протечками является насос ГЦН-26000-100, предпазначенный для работы на АЭС с реактогами ВВЭР-1000.

Номинальные параметры этого насоса:

Подача, м³/ч								
Напор, м	•	•	 •	•	•	•	*	84
Давление на выходе, МПа	•	•						16,5
Частота вращения, об/мин								1480
Температура подаваемой воды, К								563
Мощность на колодной воде, кВт								5500
Мощность на горячей воде, кВт								4300
Коэффициент полезного действия, % .								80

Описание конструкции в установочные данные во насосу ГЦН-20000-100 приведены в [29].

Современные ГЦН большой мощности вместе с вспомогательными устройствами, обеспечивающими их нормальную эксплуатацию, представляют собою весьма сложные и ответственные системы, требующие высокой культуры изготовления, монтажа и эксплуатации. Масса агрегатов с ГЦН крупных реакторов достигает в настоящее время 120 т.

Питательные иасосы парогенераторов АЭС. Давление, развиваемое питательным насосом, в основном определяется рабочим давлением парогенератора. Для парогенераторов АЭС с водо-водяными реакторами приняты давления от 3,2 до 6,4 МПа.

На АЭС применяются одноподъемная и одноподъемная с бустерным насосом схемы включения питательных насосов. Двухподъемная схема с включением регенеративных подогревателей между бустерным и основным питательным насосами, карактерная для ТЭС со сверхвысокими параметрами пара, на АЭС применяется редко.

В одноподъемной схеме один питательный насос создает давление, необходимое для водачи питательной воды в парогенератор. Такие схемы применяются при небольших подачах.

При увеличении мощности парогенераторов и ограниченных, как на АЭС, давлениях пара паросъем и, следовательно, подача витательных насосов увеличиваются. При этом квадратично возрастает сопротивление всасывающего трубопровода, поэтому уменьшается давление входе в насос. Возникает опасность появления кавитации на входе в первую ступень насоса. Возможность возникновения кавитации тем реальнее, чем больше частота вращения ротора насоса. Отсюда вытекает требование ограничения частоты вращения. Однако умецьшение частоты вращения при больших подачах вызывает увеличение сечений проточной полости, габаритов, массы и стоимости насоса, что неприемлемо из-за снижения экономичности. Выход из такого положения заключается в разделении полного давления, требующегося от питательной установки, на два насоса, включенных последовательно: бустерный (предвключенный) и основной. Оба насоса удобно приводить от одного электрического двигателя или паровой турбины. Основной питательный насос должен иметь высокую частоту вращения, поэтому он соединяется с двигателем непосредственно. Бустерный насос должен работать на

пониженной частоте вращения, поэтому он соединяется с двигателем через редуктор.

На АЭС применяют питательные установки и с приводом основного и бустерного насосов отдельными двигателями.

Защиту первой ступени витательного насоса от кавитации можно осуществить без применения бустерного насоса. Для этого перед первой — неитробежной ступенью вводится предвилюченное колесо, обычно осевое, устойчивое с точки зрения кавитации. Это колесо развивает перед первой ступенью насоса давление, необходимое для предотвранения кавитации.

Номенклатура питательных насосов для парогенераторов АЭС дана в табл 43.

Таблица 4.3. Номенклатура питательных насосов для парогенераторов **АЭС**

	Типоразмеры (марки) насосов									
Параметры насоса	СПЭ- 65- 5 6	ПЭ- 150-85	ПЭ- 250-75	179- 850-65	СПЭ- 1650-75	11 T- 3750-75	ПД- 375(i•20			
Подача, м ³ /ч Напор, м Допустимый ка- витационный за-	65 5 80 9	150 910 11	250 830 9	850 714 9	1650 830 15	3 7 50	3750 20			
пас не менее, м Температура по- данаемой жидко-	432	438	438	432	442	438	43 8			
сти, К Частота враще-	2970	2970	2975	2975	2895	3500	1800			
иия, об/мин Мощиость на-	144	480	686	1880	4100	9200	2460			
соса, кВт Масса насоса, кг	1250	2920	256 5	5135	9000	18 0 00	6000			

Поскольку давление парогенераторов АЭС ограничено значением 6,4 МПа, то с учетом сопротивления питательного тракта и геометрической высоты подачи напор питательных насосов не превышает 900 м. Для таких напоров возможно применение однокорпусных насосов секционного типа, аналогичных по конструкции питательным насосам ТЭС с рабочим давлением 13,7 МПа и ниже.

Типичным образиом может служить секционный питательный электронасос СПЭ-1650-75 (рис. 4.57). Конструктивно насос выполнен по обычному принципу построения секционных насосов. Крышки насоса, замыкающие конструкцию с торцов, иесут всасывающий и напорный патрубки, резко различающиеся толщипой стенок и фланцев. В первой со стороны всасывания секции расположено винтовое предвключенное колесо, назначение которого состоит в создании повышенного давления, предотвращающего кавитацию на входе в первое центробежное

Рис. А.Л. Литательный, насос СПЭ 1650 75

колесо. Последнее для увеличення противокавитационной надежности выполнено с широким входным сечением, обеспечивающим пониженные скорости входа и, следовательно, повышениое входное давление.

Рабочие колеса второй и третьей центробежных ступеней одинаковых Концевые уплотнения вала щелевые. Подшинники — скользящего трения, Уравновешивание осевой силы — при помощи гидравлической изты. Насос и электродвигатель расположены на отдельных фундаментых плитах и соединены зубчатой муфтой.

Для питания парогенераторов АЭС применяют и насосы с паротурьниным приводом. Так, на АЭС с реакторами ВВЭР-1000 используется гитательный турбоагрегат ПТ-3750-100, приводом для которого является конденсационная турбина. Агрегат состоит из основного насоса с пласокой частотой вращения, приводимого от вала турбины, и предъяключенного ПД-750-200, приводимого через понижающий редуктор.

Конденсатиые насосы паротурбиниых установок АЭС Конденсатные насосы одпоконтурых АЭС подают слаборадиоактивый конденсат, двух- и трехконтурных — нерадноактивный. Поэтому к этим насосам не предъявляется каких-либо особых требований, которые отличали бы их от насосов этой группы ТЭС, за исключением рабочих параметров подачи, напора и мощности. Это объясняется тем, что принятые для АЭС давление и температура пара существенно ниже, чем для ТЭС, и, следовательно, при равных мощностях расход пара и конденсата на АЭС больше, чем на современных блочных ТЭС.

Применительно к требованиям современной энергетики подача конденсатных насосов достигла 1500 м³/ч, и имеется тенденция дальнейшего ее увеличения. В насосах горизонтального исполнения габариты агрегата в плане при таких подачах становятся столь значительными, что затрудняют компоновку оборудования. Рациональным решением задачи является переход к конструкции с вертикальным валом.

Таблица 4.4. Номенклатура конденсатных насосов для крупных энергоблоков АЭС

Тип насоса	Подача, м¹/ч	Напор, м	Синхрон- ная часто- та вра- ицения, об/мин	Мощность, кВт	Назначение насоса для блока
KcB-1500-120 KcB-1000-220 KcB-500-220 KcB-500-85 KcB-200-220 KcB-50-110 KcB-630-125 KcB-360-160	1500 1000 500 500 200 50 630 360	120 220 220 85 220 110 125 160	750 1500 1500 1000 1500 1500 1500	620 760 400 154 164 24 287 210	PBMK-1000 BBЭР-1000 BBЭР-440 — BBЭР-440 — BBЭР-1000

Номенклатура конденсатных насосов для крупных энергоблоков АЭС дана в табл. 4.4.

Типичная конструкция конденсатного секционного вертькальног**о** насоса КсВ-200-220 представлена на рис. 4.46. Насос выполнен двухкорпусным для удобства монтажа и ремонтов.

Вертикальные конденсатные насосы с большей подачей в основиых частях аналогичны описанному выше, ио первая центробежцая ступень их выполняется с колесом двустороннего вхола.

4.12. Выбор насосов по заданным рабочим параметрам. Приводные двигатели

Выбор насосов для работы в заданных эксплуатационных условиях должен проводиться на основе технико-экономических расчетов. Насос, приводной двигатель его и вся трубная и электрическая коммуникация насосного агрегата должны быть дешевыми и работать с наивысшим КПД.

Рассмотрим общий метод решения задачи о выборе насоса для заданных рабочих условий.

Гидравлическим расчетом водопроводной сети выясняются необходимый напор насосов и их подача. Последняя в общем случае переменна во времени (см. рис. 3.54) и покрывается несколькими насосами. Поэтому задача выбора насосов заключается не только в определении типа и размеров насоса, но и в выяснении необходимого количества их. Эта задача решается экономическим расчетом нескольких (не менее трех) вариантов установки с различными количествами насосов. Наиболее выгодным является вариант, дающий наименьшую стоимость 1 м³ поданной жидкости при соблюдении полной надежности и бесперебойности работы. боты.

боты. Для любого заданного графика подач (см. рис. 3.54) наиболее простым будет вариант с одним рабочим насосом, покрывающим все заданные расходы от $Q_{\text{мин}}$ до $Q_{\text{макс}}$. При этом установка должна состоять из двух насосов — рабочего и резервного, рассчитанного на расход $Q_{\text{макс}}$. Пользуясь сводным графиком полей характеристик, например рис. 4.58, находим подходящий тип насоса. Здесь следует заботиться о том, чтобы при регулировании подачи от $Q_{\text{мип}}$ до $Q_{\text{макс}}$ режим насоса не выходил из поля его характеристик. Если это не может быть выполиено, то вариант с одним насосом практически неприемлем.
По частоте вращения, указанной в поле характеристик, и в зависимости от предполагаемых условий работы выби-

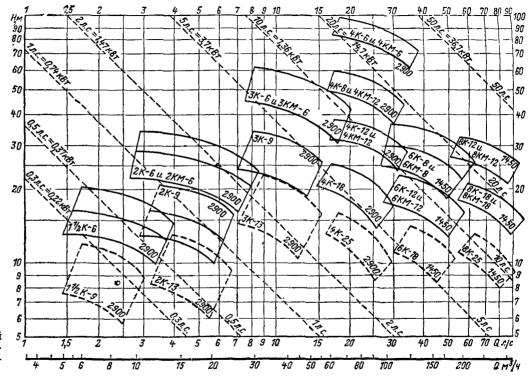


Рис. 458. Сводный график полей характеристик пасосов типов K и KM

рается тип электродвигателя, причем если ист ограничений, то следует выбирать наиболее дешевые, открытые конструкции. Затем эскизию разрабатывается размещение оборудования с указанием трубопроводов и электрической коммутации и нанесснием всего вспомогательного оборудования.

По справочникам-ценникам определяется стоимость оборудования й его монтажа.

Намечаются тип и кубатура здания (помещения) насосной установки и по укрупненным измерителям определяется стоимость сооружения его.

Годовые эксплуатационные затраты складываются из стоимости электроэнергии, отчислений на амортизацию и капитальный ремонт здания и оборудования, стоимости обслуживания, отчислений на текущий ремонт, стоимости смазочных и обтирочных материалов.

Годовой расход электроэнергии легко вычисляется по графику подач и размерной характеристике принятого типа насоса.

Годовая стоимость электроэнергии получается умножением годового расхода ее на стоимость 1 кВт.ч.

Все указанные выше отчисления (амортизация, ремон-

ты) принимаются по ведомственным данным.

Годовая стоимость обслуживания вычисляется в зависимости от штата обслуживающего персонала и его зарплаты также по ведомственным данным.

Если годовые эксплуатационные затраты, вычисленные описанным способом, $R_{\rm s}'$, а годовая подача насосной установки $V_{\rm rog}$, то стоимость подачи 1 м⁸ жидкости в первом варианте составляет

 $r_1 = R_{\rm B}'/V_{\rm rog}.$

Этот вариант характерен глубоким регулированием и 100 %-ным резервом установленной подачи.

Аналогичным путем, приняв количество насосов равным 2, 3, 4 ..., можно рассчитать стоимости r_2 , r_3 , r_4 ... и построить график (рис. 4.59).

Наиболее экономичный вариант насосной установки соответствует количеству насосов $z_{\text{опт}}$, при котором $r = r_{\text{мин}}$.

Применительно к графику на рис. 4.59 экономически наивыгоднейший вариант соответствует количеству насосов z_{2} .

При проектировании насосных установок промышленных предприятий, располагающих для привода и электроэнергией, и паром, должен быть решен вопрос о выборе

приводного двигателя (электродвигатель или паровая турбина). При этом следует иметь в виду, что турбины малой мощности обычно высокооборотны и для обычных типов насосов без применения редукторов неприемлемы. Кроме того, КПД паровых турбин малой мощности, работающих на выхлоп в атмосферу, очень низок, и энергетическая эффективность насосного агрегата с такой турбиной ничтожна.

Принять такой вид привода можно лишь для пускорезервных, кратковременно действующих агрегатов.

Применение паротурбинного привода для постоянно действующих (не резервных) центробежных насосов допустимо лишь при условии использования отработавшего пара турбины в регенеративном цикле или для целей теплофикации. В этом случае паротурбинный привод энергетически эффективнее электрического для мощности привода более 6 МВт.

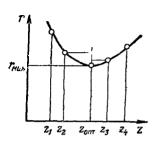


Рис. 4.59. Выбор экономически паивыгоднейшего варианта насосной установки

Для электрического привода центробежных насосов применяют синхронные и асинхронные двигатели.

Частота n_c вращения ротора синхронного двигателя кратна частоте электрического тока сети, питающей двигатель: $n_c = 60f/p$, где f— частота тока электрической сети; p— число пар полюсов электродвигателя.

При принятой в СССР частоте тока 50 Гц частоты вращения валов синхронных двигателей в зависимости от p=1, 2, 3, ..., 6 будут соответственно $n_c=3000, 1500, 1000, 750, 600, 500.$

Частота вращения n асинхронных двигателей меньше, чем синхронных, вследствие разницы между частотами вращения магнитного поля статора и ротора: $n < n_c$. Разность n_c —n относят к синхронной частоте n_c и называют скольжением $(n_c$ — $n)/n_c$ =s. Очевидно, что $n=n_c(1-s)$.

Скольжение при номинальной нагрузке асинхропных двигателей обратно пропорционально мощности двигателя и лежит в пределах 0,01—0,06 (в среднем 0,03). Для асинхронных двигателей характерны следующие ориентировочные частоты вращения: 2960—1430, 960, 730, 585, 368.

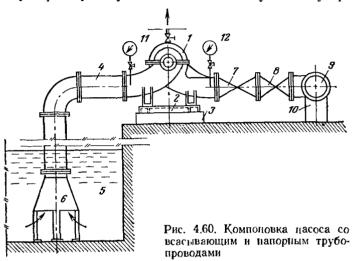
В преобладающем большинстве случаев валы насосов и электродвигателей соединяются непосредственно с помо-

щью упругих муфт, без вариаторов частоты вращения. Поэтому указанные ряды частот вращения являются характерными для центробежных насосов стандартного исполнения.

Выбор типа электродвигателя следует производить с учетом следующих соображений. Асинхронные двигатели большой мощности и невысокой частоты вращения обладают пониженными КПД. При достаточной мощности питающей сети их включают непосредственно, без добавочных устройств, уменьшающих пусковой ток, что является их положительным качеством. Применение асинхронных двигателей с фазовым ротором с целью облегчения условий пуска рекомендуется лишь в редких случаях ввиду высокой стоимости таких двигателей. Асинхронные двигатели применяют обычно для привода насосов с мощностью не более 500 кВт при частоте вращения не менее 750 об/мин, Длительность разгона при пуске насоса не должна быть более 15 с.

Для привода насосов с мощностью от 500 до 10 000 кВт и более применяют синхронные двигатели, обладающие при больших мощностях и малых частотах вращения высокими энергетическими показателями. Важным положительным свойством синхронных двигателей является их способность работать в качестве компенсаторов реактивной мощности, повышающих соя ф системы. Пуск синхронных двигателей сложнее, чем асинхронных, потому что связан с применением специальных обмоток в пазах якоря, служащих для «втягивания» ротора в синхронизм (достижения синхронной скорости).

В зависимости от рабочих условий электродвигатели для привода насосов могут иметь особую форму исполнения для защиты от вредных воздействий. В сухих и непыльных залах насосных станций применяют двигатели открытого типа незащищенные. Для работы в сырых помещениях выбирают двигатели с влагостойкой изоляцией или в закрытом исполнении с подводом охлаждающего воздуха извне, передко от специальной вентиляторной установки.


При расчете мощности двигателя для привода насоса следует учитывать возможное увеличение мощности на валу при отклопении режима от расчетного. Это обстоятельство требует некоторого запаса мощности двигателя и учитывается коэффициентом *m* запаса мощности:

$$N_{\rm AB} = m \frac{M_{\rm g} H}{1000\eta}$$
 (4.15)

где M, H и η — параметры насоса при расчетном режиме; $m = 1, 1 \div 1, 5$ и имеет тем меньшее значение, чем крупнее насос.

4.13. Устройство и эксплуатация насосных установок

Насосный агрегат состоит из насоса, двигателя, трубопроводной арматуры, измерительных приборов и устройства для заполнения насоса жидкостью перед пуском. К насосному агрегату могут быть отнесены и пусковые устрой-

ства двигателя, а также приборы для автоматического управления работой агрегата.

Компоновки насосных агрегатов определяются назначением последних. Типичная компоновка показана на рис. 4.60.

Насос 1 и двигатель, соединенные эластичной муфтой, располагаются на раме 2 из фасонной прокатной стали. Рама крепится анкерными болтами к фундаменту 3.

Всасывающий трубопровод 4 может быть индивидуальным; в этом случае жидкость берется насосом из приемного колодца 5 через воронку 6. В других случаях всасывающий трубопровод берет жидкость из общего всасывающего коллектора; это встречается, например, в насосных установках для питания паровых котлов. Во всех случаях горизонтальные участки всасывающих трубопроводов укладываются с подъемом к насосу, равным не менее 0,005. Это

необходимо во избежание образования во всасывающих

трубопроводах воздушных мешков.

Непосредственно на напорном патрубке насоса располагается обратный клапан 7. Его назначение — автоматически отключать насос от напорного коллектора 9 в случае остановки двигателя (или аварии).

Между обратным клапаном и напорным коллектором 9 располагается задвижка (или вентиль) 8 для дроссельного регулирования насоса и отключения его от напорной сети. При диаметре трубопроводов более 300 мм задвижки часто выполняются с электрическим или гидравлическим

приводом. Коллектор 9 располагается на тумбах 10.
Показанное на рис. 4.60 расположение напорных трубопроводов выше отметки пола удобно для монтажа, а также надзора за трубопроводом, однако при этом загромождаются проходы для обслуживающего персонала. При такой компоновке в местах перехода через трубопроводы устраивают переходные мостики.

Для освобождения помещения располагают трубопроводы в каналах ниже пола и перскрывают по-

следние рифленой сталью.

Перед пуском центробежные и осевые насосы должны заполняться подаваемой ими жидкостью. Если уровень всасываемой жидкости располагается выше верхней точки насоса или на всасывающем коллекторе имеется избыточное давление, то заполнение насоса производят, открывая задвижку на всасывающей трубе и выпуская воздух через краник, расположенный в верхней точке корпуса насоса. В установках, где уровень всасываемой жидкости лежит ниже оси насоса, для заполнения пользуются двумя способами:

способами:

1) в агрегатах небольшой подачи с диаметром всасыва-1) в агрегатах небольшой подачи с диаметром всасывающей трубы до 250 мм на конце се под уровнем жидкости располагают приемный клапан. При этом заполнение пронзводят через воронку и кран в верхней точке корпуса насоса из водопровода или специального заливочного бака;

2) в агрегатах с d_{вс} > 250 мм приемные клапаны не ставят и заполнение производят отсасыванием воздуха из насоса специальным вакуумным насосом (обычно применяют насосы типов КВН и ВВН, создающие вакуум до 97 %). При наличии загрязнений всасываемой жидкости воронка на всасывающей трубе комбинируется со щелевым или сстчатым фильтром.

или сетчатым фильтром.

Контроль за работой насоса ведется по показаниям вакуумметра 11 и манометра 12, присоединенных к всасы-

вающему и напорному патрубкам; измерение подачи производится по расходомеру, вмонтированному в напорный трубопровод насоса.

Так как о натрузке насоса можно судить по показаниям манометра, часто отказываются от установки расходомеров на каждом насосе и располагают один расходомер на общем трубопроводе, контролируя по его показаниям подачу установки в целом. В качестве расходомеров применяют диафрагмы, трубы Вентури и крыльчатые водомеры.

Мощность, расходуемая агрегатом, определяется при помощи вольтметров, амперметров или ваттметров, располагаемых на электрическом щите агрегата или установки

Для пуска иасосного агрегата следует произвести подготовительные опсрации: убсдиться в свободном вращении вала, проверить открытие кранов манометра и вакуумметра, заполнить насос и всасывающую трубу, открыть подачу охлаждающей воды в подшипники (в агрегатах с охлаждаемыми подшипниками), проверить положение уровня масла в подшипниках (при подшипниках с жидкой смазкой). Задвижка на напорном трубопроводе центробежного насоса при пуске должна быть закрыта (при $n_s < 250$).

Пуск насоса производится следующим образом: включается электродвигатель и частота вращения его доводится до нормальной; медленно открывается задвижка на напорном патрубке насоса до достижения требуемой подачи; открываются краны, подводящие охлаждающую воду к сальникам насоса.

При работе насоса следует наблюдать за температурой подшипников и корпуса двигателя, которая при нормальных условиях не должна превышать 60°С, наличием масла в камере подшипников (при жидкой смазке), плотностью сальников (затяжка сальника считается нормальной, если он пропускает воду редкими каплями и температура его певысока).

Остановка насосного агрегата заключается в закрытии задвижки на напорной трубе, выключении двигателя, закрытии задвижки на всасывающей трубе и выключении охлаждения сальников и подшипников).

Пуск, обслуживание при работе и остановка агрегатов значительной мощности обязательно регламентируются особыми инструкциями.

Особым инструкциям подчиняется эксплуатация питательных насосных агрегатов паровых котлов и насосов для подачи горячих жидкостей.

При современиом развитии техники автоматического управления производственными процессами автоматизация насосных установок не представляет трудности. Автоматическое управление насосами предусматривает следующие операции:

1) подготовку насосов к пуску, заключающуюся в контроле за положением запорной арматуры и заполнении насосов жидкостью;

- 2) пуск и останов насосов в зависимости от расхода, требуемого потребителями;
- 3) останов насоса при неисправностях его и пуск другого насоса взамен неисправного;
 - 4) защиту от перегрева сальников и подшипников;

5) гидравлическую защиту насосов, создающую невозможность пуска насоса, не заполненного жидкостью.

При разработке схемы автоматизации и защиты может быть предусмотрена необходимость работы насосной установки по намеченной программе.

Автоматизация повышает экономичность и надежность работы насосной установки, позволяет уменьшить количество обслуживающего персонала.

ГЛАВА ПЯТАЯ

ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ

5.1. Основные понятия. Применение

Центробежными вентиляторами называют машины для перемещения чистых газов и смесей газов с мелкими твердыми материалами, имеющие степень повышения давления не более 1,15 при плотности потока 1,2 кг/м³. Характерным признаком центробежного вентилятора является повышение давления за счет работы центробежной силы газа, движущегося в рабочем колесс от центра к периферии.

При незначительном повышении давления газа изменением его термодинамического состояния можно пренебрегать. Поэтому к центробежным вентиляторам

теория машины для несжимаемой среды (см. гл. 3). Центробежные вентиляторы широко распространены в промышленности и коммунальном хозяйстве для вентиляции зданий, отсасывания вредных веществ в технологических процессах,

В теплоэнергстических установках центробежные вептиляторы применяются для подачи воздуха в топочные камеры котлов, перемещения топливных смесей в системах пылеприготовления, отсасывания дымовых газов и транспортирования их в атмосферу.

Конструктивное устройство центробежного вентилятора простейшего типа показано на рис. 5.1. Рабочее колесо вентилятора состоит из литой ступицы 1, жестко сопряжен-

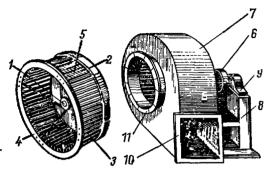


Рис. 51. Центробежный вентилятор

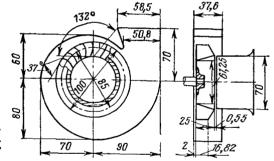


Рис. 5.2. Аэродинамическая схема вентилятора ЦКТИ-07-37

ной с основным диском 2. Рабочие лопатки 3 крепятся к основному диску 2 и переднему диску 4, обеспечивающему необходимую жесткость лопастной решетки 5; 6 — шкив привода вентилятора. Корпус 7 вентилятора крепится к литой или сварной станине 8, на которой располагаются подшипники 9, несущие вал вентилятора с посаженным на пето рабочим колесом; 10 и 11 — фланцы крепления всасывающей и напорной труб.

Центробежные вентиляторы выпускаются заводами в определенных геометрических сериях. Каждая серия харак-

теризуется постоянством отношений сходственных размеров; размеры отдельных машин и их рабочие параметры в серии различны.

Геометрическая форма данной серии представляется аэродинамической схемой, где все размеры вентилятора даны, в процентах внешнего диаметра рабочего колеса (рис.

5.2).

Обозначение центробежных вентиляторов в соответствии с ГОСТ включает букву Ц, указывающую на основной признак типа — центробежный, пятикратное значение коэффициента полного давления (см. § 3.14) на режиме при $\eta_{\text{макс}}$, округленное до целого числа, и быстроходность на режиме $\eta_{\text{макс}}$, тоже округленную до целого числа. Обозначение вентилятора включает и его номер, представляющий собой значение диаметра D_2 , выраженное в дециметрах. Например, центробежный вентилятор с диаметром рабочего колеса 400 мм, имеющий при максимальном КПД коэффициент полного давления 0,86 и быстроходность 70, обозначается Ц4-70-4.

В современном вентиляторостроении разработаны и строятся машины с профилированными лопастями и рациональной формой проточной полости, КПД которых достигает 90 %.

Характерной конструктивной величиной центробежного вентилятора является отношение выходного и входного диаметров межлопастных каналов рабочего колеса D_2/D_1 . В обычных конструкциях это отношение выбирается небольшим (1,2-1,45), радиальная длина лопасти составляст $(0,084\div0,16)D_2$.

5.2. Давление, развиваемое вентилятором. Влияние самотяги. Коэффициент полного давления

Условия работы машины, подающей жидкость или газ в сеть трубопроводов, существенно зависят от свойств по-следней (см. § 2.3).

Выясним связь между параметрами. машины и трубопровода на примере дымососа, берущего газы из хвостового хода котла и подающего их через дымовую трубу в атмосферу (рис. 5.3).

Применим к потоку между сечениями 1 и 2 уравнение

Бернулли:

$$\frac{(\rho_{1CT})_{a\delta C}}{\rho_{\Gamma}} + \frac{c_{1}^{2}}{2} + gH = \frac{(\rho_{2CT})_{a\delta C}}{\rho_{\Gamma}} + \frac{c_{2}^{2}}{2} + gH_{TP} + g\Sigma h,$$

где $(p_{1cr})_{abc}$ и $(p_{2cr})_{abc}$ — абсолютные статические давления в начале и конце участка 1-2 газового потока; p_r — средняя плотность газа на участке 1-2; c_1 и c_2 — скорости газа в сечениях 1 и 2; H — напор, развиваемый дымососом; Σh — потери напора на участке 1-2.

Выразим абсолютные давления, входящие в уравнение Бернулли, через избыточные и учтем изменение атмосфер-

ного давления по высоте дымовой трубы:

$$(p_{1cr})_{a6c} = p_{1cr} + p_0; \quad (p_{2cr})_{a6c} = p_{2cr} + p_0 - \rho_B g H_{rp}.$$
 Получим

$$\frac{\rho_{1\text{CT}}}{\rho_{\text{r}}} + \frac{c_1^2}{2} + \tilde{g}H = \frac{\rho_{2\text{CT}}}{\rho_{\text{r}}} - \frac{\rho_{\text{B}}}{\rho_{\text{r}}} gH_{\text{TP}} + \frac{c_2^2}{2} + gH_{\text{TP}} + g\Sigma h,$$

где $\rho_{\text{в}}$ — средняя плотность воздуха по высоте дымовой трубы.

После преобразования будем иметь

$$H = \frac{\rho_{2\text{CT}} - \rho_{1\text{CT}}}{\rho_{\text{r}} g} + \frac{c_2^2 - c_1^2}{2g} + \Sigma h - H_{\text{TP}} \left(\frac{\rho_{\text{B}}}{\rho_{\text{r}}} - 1 \right). \quad (5.1)$$

Выражение $H_{\rm TP}\Big(\frac{\rho_{\rm B}}{\rho_{\rm F}}-1\Big)$ называют самотягой или естественной тягой системы. В зависимости от соотношения $\rho_{\rm B}$ и $\rho_{\rm F}$ самотяга может быть положительной или отрицательной. Если $\rho_{\rm B}\!>\!\rho_{\rm F}$ и $H_{\rm TP}\!>\!0$, то самотяга положительна и уменьшает напор дымососа, необходимый в системе. При

 $H_{\text{тр}} > 0$ и $\rho_{\text{в}} < \rho_{\text{г}}$ самотяга отрицательна и увеличивает требуемый напор и мощность на валу дымососа. Равенство плотностей газа и воздуха при любых значениях $H_{\text{тр}}$ дает нулевое значение самотяги, и дымосос работает на преодоление разности статических давлений и кинетических энергий в выходном и входном сечениях газового тракта и покрытие его газового сопротивления.

 H_{TP} P_{0} P_{0} P_{0}

Рис. 5.3. Совместная работа дымососа и дымовой трубы

В современных котельных установках ТЭС ввиду большой разности температур наружного воздуха и дымовых газов и при больших высотах дымовых труб (до 350—400 м) самотяга проявляется очень существенно.

Рассмотрим практический способ оценки давления, развиваемого вентилятором, по коэффициенту полного давления. Выражая тангенциальную компоненту c_{2u} через коэффициент закручивания $\mu_2 = c_{2u}/u_2$ на выходе и используя основное уравнение центробежной машины (см. § 3.2), получаем

$$H_{\tau} = \frac{1}{\sigma} \mu_2 u_2^2.$$

Оценим потери энергии в вентиляторе, введя в это уравнение гидравлический КПД:

$$H = \eta_{r} H_{r} = \frac{1}{g} \eta_{r} \mu_{2} u_{2}^{2}; \quad p = \rho g H = \eta_{r} \rho \mu_{2} u_{2}^{2}.$$

Воспользуемся коэффициентом полного давления $\vec{p} = p/\rho u_2^2$. Очевидно,

$$p = \overline{p_0} u_2^2; \tag{5.2}$$

$$\overline{p} = \eta_r \, \mu_2. \tag{5.3}$$

Для ориентировочного расчета полного давления при трех типах лопастей, применяемых в вентиляторах, можно пользоваться следующими данными:

$\beta_{2\pi}$	μ_{\imath}	η_{Γ}	p
>90° <90°	$1,1-1,6 \\ 0,85-0,95 \\ 0,50-0,80$	0,60—0,75 0,65—0,80 0,70—0,90	0,66—1,20 0,60—0,76 0,35—0,72

Если поток газа на входе в вентилятор имеет параметры $p_{1\text{CT}}$ и c_1 на выходе $p_{2\text{CT}}$ и c_2 , то полное давление, развиваемое вентилятором,

$$p = p_{2cr} - p_{1cr} + \rho \frac{c_2^2 - c_1^2}{2}. {(5.4)}$$

5.3. Подача, мощность, КПД вентилятора. Выбор вентилятора по заданным параметрам

Работа вситилятора при данной частоте вращения характеризуется объемной подачей Q, полным давлением p, мощностью N, полным КПД η .

Однако в некоторых случаях для вентиляторов характерно не полное давление, ими развиваемое, а лишь статическая часть его $p_{\rm cr}$ или соответственно статический напор $II_{\rm cr}$. В таких случаях оценка энергетической эффективности вентилятора производится статическим КПД — $\eta_{\rm cr}$:

$$\eta_{cr} = \frac{\rho Q g H_{cr}}{1000N} = \frac{Q p_{cr}}{1000N}.$$

Статический КПД — отношение полезной мощности, расходуемой на развитие статического давления, к мощности, подводимой на вал вентилятора от двигателя. Очевидно, $\eta_{\rm ct} < \eta$.

Соотношение между $p_{\rm cr}$ и p характеризуется степенью реактивности машины (см. § 3.4), зависящей от лопастного угла β_{2n} . Поэтому для разных типов вентиляторов различно и соотношение между $\eta_{\rm cr}$ и η . Ориентировочно $\eta_{\rm cr}$

 $= (0.7 \div 0.8) \eta.$

Подача центробежных вентиляторов общего назначения по ГОСТ 5976-73 достигает примерно 300 тыс. м³/ч, давление — примерно 12 кПа. В станционной теплоэнергетике применяются вентиляторы с подачей до 900·10³ м³/ч и давлением до 7 кПа. Полный КПД крупных центробежных вентиляторов η достигает 87 %.

Предварительным расчетом системы, в которую включается вентилятор, при заданной подаче Q определяется необходимое давление p вентилятора. Имея в виду ошибки, возможные в расчете потерь давления в системе, вводят гарантийные запасы в рабочих параметрах и вентиляторы общего назначения выбирают на подачу 1,05Q и давление 1,1p. Дутьевые вентиляторы и дымососы выбирают на подачу 1,1Q и давление 1,2p.

Данные каталогов (таблицы и графики) относятся обычно к нормальным условиям (T_0 =293 K; p_0 =103 кПа), поэтому выбор по каталогу вентиляторов общего назначения следует вести на подачу Q_k =1,05Q и давление p_k ==1,1 p_{Q_k}/p_0 , где p_k — плотность воздуха при нормальных условиях: p_k =1,05 $p_$

ловиях; ρ — фактическая плотность при рабочих условиях. Простейший и надежный способ выбора вентиляторов основан на использовании сводных графиков (см. § 3.17 и [21]). Откладывая на координатных осях сводного графика значения $Q_{\rm K}$ и $p_{\rm K}$ и проводя нормали к осям, получаем точку пересечения, попадающую в поле рабочих параметров, определяющее необходимый типоразмер и частоту вращения вентилятора.

Необходимая мощность вентилятора рассчитывается по

формуле (3.53).

Мощность приводного двигателя принимается с запасом, учитывающим возможное отклонение режима от расчетного уменьшения КПД и ухудшение изоляции двигателя в процессе наработки:

$$N_{\text{HB}} = m \frac{\rho QgH}{1000\eta \eta_{\text{H}}} = m \frac{Qp}{1000\eta \eta_{\text{H}}}$$
.

Коэффициент запаса мощности $m=1,05\div1,2$ принимается тем большим, чем меньше мощность вентилятора. При непосредственном соединении валов вентилятора и двигателя муфтой КПД передачи $\eta_n=1$; при клиноременной передаче $\eta_n=0,92$.

5.4. Характеристики. Регулирование центробежных вентиляторов

Характеристиками вентиляторов называют графики зависимостей напоров, мощности на валу и КПД от объемной подачи.

Характеристики получаются непосредственным испытанием вентиляторов при постоянной частоте вращения и строятся для воздуха с $\rho = 1.2 \text{ kr/m}^3$.

При пересчете характеристик, построенных для нормальных условий и φ=50 %, на натуриые следует иметь в виду, что подача, напор и КПД остаются неизменными, а давление и мощность на валу изменяются пропорционально плотности газа, подаваемого вентилятором, т. е.

$$p = p_0 \frac{\rho}{1,2}$$
 и $N = N_0 \frac{\rho}{1,2}$.

Характеристики при переменной частоте вращения строятся по условиям подобия способом, указанным в § 3.11.

На рис. 5.4 и 5.5 даны типичные формы характеристик

соответственно при n = const и n = var.

В вентиляторостроении широко применяются безразмерные характеристики, общие для целой серии геометрически подобных машин (см. § 3.11). На рис. 5.6 показана безразмерная характеристика вентиляторов Ц4-76, построенная по результатам испытания модели с D_2 =500 мм при n==1200 об/мин.

Безразмерные характеристики очень удобны для расчета рабочих параметров вентилятора из данной серии, име-

ющего диаметр рабочего колеса D_2 и работающего при n об/мин. Расчет ведется по формулам § 3.11

$$Q = \bar{Q} \cdot 0,785 D_2^2 u_2; \quad H = \bar{H} u_2^2; \quad N = \bar{N} \rho \cdot 0,785 D_2^2 u_2^3;$$

$$H_{cr} = \bar{H}_{cr} u_2^2; \quad \rho = \bar{\rho} \rho u_2^2; \quad \eta = \bar{\eta}; \quad u_2 = \frac{\pi D_2 n}{60}.$$

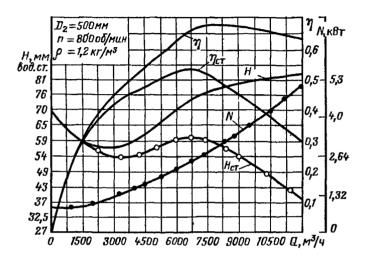


Рис. 5.4. Размерная характеристика вентилятора при n = const

Формы характеристик вентиляторов определяются аэродинамикой проточной полости их: в основном отношением D_2/D_1 , выходным углом лопасти $\beta_{2\pi}$ и формой ее профиля. На рис. 5.7 показаны три типа характеристик давления вентиляторов. Из них интересна характеристика седлообразной формы 1, свойственная вентиляторам с большими углами $\beta_{2\pi}$ и малой радиальной протяженностью лопастей (малое D_2/D_1).

ГОСТ и ведомственные указания запрещают эксплуатацию вентиляторов при $\eta < 0.9\eta_{\text{макс}}$. Это требование исключает из эксплуатации начальный участок седлообразной характеристики при малых подачах.

Работа вентиляторов с седлообразной формой характеристики на сеть со значительным статическим напором в ряде случаев является неустойчивой. Это обстоятельство указывает на нежелательность применения вентиляторов с седлообразной формой характеристики.

Регулирование подачи вентиляторов можно производить всеми способами, указанными в § 3.16:

- 1) изменением частоты вращения вала вентилятора;
- 2) дросселированием на входе и выходе вентилятора:

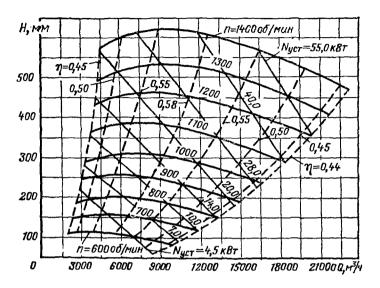


Рис. 5.5. Размерная характеристика вентилятора ВВД № 11 при $n\!=\!{\sf var}$

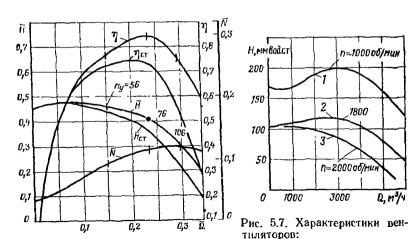


Рис. 5.6. Безразмерная характеристика вентилятора Ц4-76

1 — вентилятор СТД № 8; 2 — вентилятор Ц6-46 № 4; 3 — вентилятор ВРН № 4

3) паправляющими анпаратами различных конструкций па входе.

Первый способ требуст применения электродвигателей с переменной частотой вращения (коллекторных или двухскоростных). Возможно применение двигателей с постоянной частотой вращения при включении между валами дви-

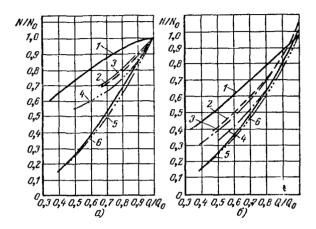


Рис. 58. Изменения потребляемой мощности при различных способах регулирования:

a — вентилятор ЦН 53 с лопастями, отогнутыми назад; 6 — вентилятор ЦВ 55 с лопастями, отогнутыми вперед; I — дроссель; 2 — упрощенный направляющий аппарат; 3 — упрощенный осевой направляющий аппарат; 4 — осевой направляющий аппарат; 5 — гидромуфта; 6 — реостат в цепи ротора электродвитателя

гателя и вентилятора вариатора частоты вращения (обычно гидромуфты).

В обоих этих вариантах вентиляторная установка усложняется и удорожается, и поэтому такой способ регулирования применяется только для крупных вентиляторов в особо ответственных установках.

В некоторых случаях для привода вентиляторов применяют электродвигатели с фазовым ротором, в которых с помощью специальных контактных колец и реостата можно регулировать сопротивление в цепи ротора и таким образом изменять частоту вращения вала.

В пастоящее время для регулирования подачи вентиляторов изменением частоты вращения применяют приводные двигатели с тиристорными преобразователями частоты.

Этот метод регулирования подачи вентиляторов весьма экономичен.

Второй способ применяется очень широко ввиду его конструктивной простоты. Вентиляторы малых и средних размеров, приводимые асинхронными короткозамкнутыми двигателями, регулируются этим способом, единственно в таких условиях доступным.

Третий способ распространен для вентиляторов с большой подачей в шахтных установках, и особенно в станцион-

ной теплоэнергетике (дутьевые вентиляторы, дымососы).
По затратам энергии на привод в режимах регулирования при одинаковых подачах указанные способы не равноценны. Для любых типов вентиляторов худшим способом ценны. Для любых типов вентиляторов худшим способом регулирования является дроссельное, дающее наибольшую затрату энергии. Сопоставление эффективности различных способов регулирования наглядно показано на графиках на рис. 5.8. Из графиков ясно, что при неглубоком регулировании подачи направляющие аппараты на входе и гидромуфта при $n_{\rm дв}$ =const почти равноэффективны; при глубоком регулировании установки с $n_{\rm дв}$ =var и установки с гидромуфтой равноэффективны.

5.5. Конструктивное выполнение центробежных вентиляторов общего назначения

В зависимости от давления, создаваемого вентиляторами, их принято подразделять на три основные группы: низкого давления — до 0,981, среднего — свыше 0,981 до 2,943, высокого — свыше 2,943 до 11, 772 кПа (по ГОСТ 5976-73). Конструктивная форма и размеры вентилятора определяются его подачей, давлением и частотой вращения.

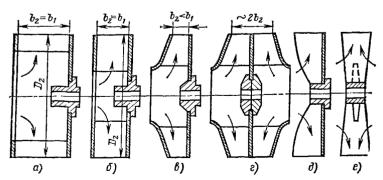
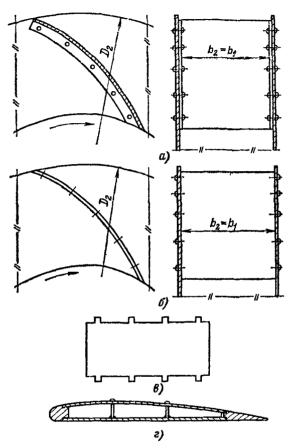



Рис. 5.9. Схемы конструкций рабочих колес центробежных вентиляторов

формы конструкций рабочих колес вентиляторов даны на рис. 5.9.

Барабанная (a) и кольцевая (б) формы свойственны вентиляторам низкого давления с лопатками, загнутыми

Рвс. 5.10. Конструктивные типы рабочих лопастей

вперед; формы б, в и г характерны для вентиляторов пизкого, среднего и высокого давлений с лопатками, загнутыми пазад.

Наименьшей прочностью и жесткостью обладают колеса формы a, допускающие окружную скорость на диаметре D_2 не более 40 м/с. Ширина таких колес постоянна и составляет около $0.5D_2$.

Колеса кольцевой формы с шириной $b_1 = b_2 = 0.2 \div 0.35$ мм более прочны и жестки и допускают скорость u_2 до 60 м/с.

Конический покрывающий диск (в и г) обусловливает большую жесткость колеса и допустимость высоких окруж-

ных скоростей до 80 м/с.

Форма г применяется для колес большой подачи и находит, в частности, применение для дутьевых вентиляторов и дымососов ТЭС.

Открытые однодисковые и бездисковые колеса (д и е) применяются в пылевых вентиляторах, служащих для подачи смесей газов с твердыми частицами, например в системах пылеприготовления ТЭС.

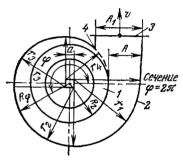
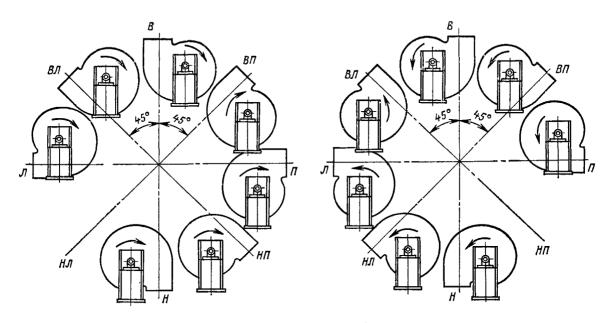


Рис. 5.11. Спиральный кожух: 1— рабочее колесо; 2— спиральный кожух; 3— выходное сечение; 4— язык

В вентиляторах применяются все три типа лопастей (см. § 3.4).

В настоящее время существует тенденция применения главным образом лопаток, загнутых назад. Они обеспечивают по сравнению с лопатками, загнутыми вперед, более высокий КПД вентилятора, устойчивую работу его в широком диалазоне расходов и уменьшение шума.


На рис. 5.10 показа**ны** цва конструктивных типа

лопастей вентиляторов: a и b — постоянной толщины, изготовляемых штампованием из листовой стали, и b — объемного профиля, изготовляемых штампованием и сваркой.

Крепление лопастей постоянной толщины к дискам производится клепкой или сваркой. В первом случае возможны два варианта:

- 1) на торцах лопастей фрезеруются шипы (в), расклепываемые в отверстиях дисков;
- 2) лопатки получают отгибы, которыми и приклепываются к дискам (а).

Для придания объемным лопастям большей прочности и жесткости внутри профиля монтируют ребра из полосовой стали. Одна кромка их приваривается непрерывным швом к внутренней поверхности лопасти, а вторая — прерывистым швом через отверстия во второй половине листа, образующего лопасть.

Рнс. 5.12. Стандартные положення корпусов вентнляторов общепромышленного назначения

Применение объемных профилированных лопастей с рациональной формой сечения привело к повышению КПД крупных вентиляторов до 90 %.

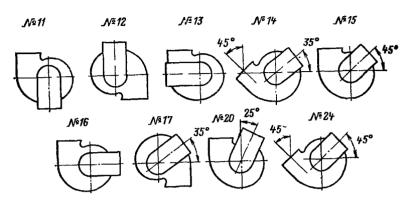


Рис. 5.13. Стаидартные положения корпусов дымососов и вентиляторов двусторониего всасывания

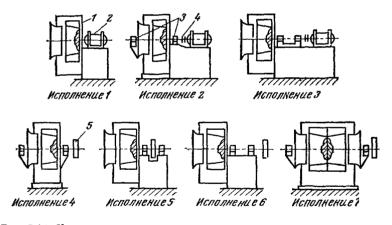


Рис. 5.14. Конструктивные схемы вентиляторных установок: 1 — вентилятор; 2 — двигатель, 3 — подшипник; 4 — муфта; 5 — шкив

Корпуса вентиляторов выполняются спиральными постоянной ширины и очерчиваются обычно способом «конструкторского квадрата» (рис. 5.11), где $a=(0.25\div0.3)~Q/bc_a,~b$ — ширина корпуса.

Материалом корпусов является конструкционная листовая сталь толщиной от 2 до 8 мм. Исключением являются

корпуса некоторых вентиляторов высокого давления, изготовляемые литьем из чугуна.

Торцовые поверхности вентиляторов являются своеобразными мембранами, колеблющимися под влиянием пульсаций давления в воздушном потоке в корпусе вентилятора. Это вызывает интенсивный шум. Для уменьшения шу-

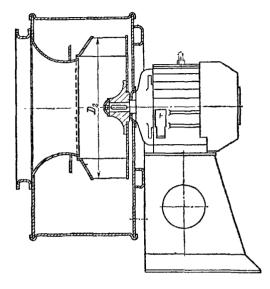


Рис. **5.15.** Вентилятор инэкого давления

ма наружные поверхности корпусов крупных вентиляторов укрепляются приваркой уголков жесткости.

При компоновке вентилятора в системе воздухопроводов большое значение имеют направление вращения вала и расположение выходного отверстия вентилятора. Вентиляторы правого вращения имеют направление вращения по часовой стрелке при наблюдении со стороны всасывания, левого вращения — наоборот. Вентиляторы общепромышленного назначения изготовляют обоих направлений вращения с положениями корпуса, указанными на рис. 5.12, где приняты следующие обозначения: В — вверх, Н — вниз, Л — влево, П — вправо.

Для мельничных вентиляторов систем пылеприготовления ТЭС приняты 24 стандартных расположения корпусов [4].

Корпуса вентиляторов и дымососов двустороннего всасывания обычно компонуются по схеме рис. 5.13.

Комбинация вентилятора с приводом осуществляется по схемам рис. 5.14.

221

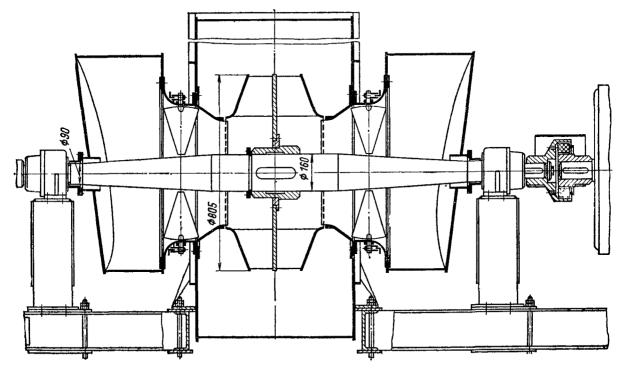


Рис. 5.16. Вентилитор высокого давлении двустороннего всасывания

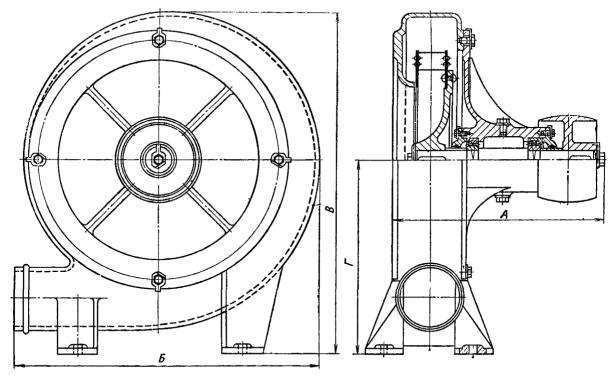


Рис. 5.17. Вентилятор высокого давления системы В. Н. Косточкина

На рис. 5.15 представлена конструкция вентилятора низкого давления. Как и в моноблочном насосе рабочее колесо вентилятора посажено непосредственно на вал двигателя, расположенного на литой чугунной или стальной сварной тумбе. Конструкция в целом очень компактна.

Рисунок 5.16 даст представление о конструкции вентилятора высокого давления. Подача этого вентилятора при номинальной частоте вращения достигает 23 м³/с, поэтому колесо вентилятора выполнено с двусторонним входом. Привод вентилятора — непосредственно от электродвитателя через эластичную муфту. Регулирование подачи — осевым направляющим аппаратом на входе.

Типичным вентилятором высокого давления малой подачи является вентилятор, разработанный по схеме проф. В. Н. Косточкина, широко распространенный в промышленности (рис. 5.17). Особенностями этого вентилятора являются: колесо с малой шириной, развитое в радиальном направлении, узкий спиральный корпус, отлитый из чугуна, расположение колеса на консоли вала, высокая частота врашения (до 3600 об/мин для вентилятора с D_2 =400 мм).

5.6. Тягодутьевые вентиляторы тепловых электрических станций

Для котлов тепловых электрических станций промышленность СССР выпускает около 50 типоразмеров веитиляторов и дымососов с подачами 4,5—900 тыс. м³/ч и давлениями более 9810 Па (1000 мм вод. ст.).

Вентиляторы ТЭС подразделяются по их назначению на следующие группы: 1) вентиляторы дутьевые; 2) вентиляторы мельинчиые; 3) вентиляторы горячего дутья; 4) дымососы основные; 5) дымососы рециркуляционные.

Для обозначения типа тягодутьевых вентиляторов приняты буквы: В — вентилятор; Д — дымосос, дутьевой; Н — назад загнутые лопасти рабочего колеса; У — узкое рабочее колесо; М — мельничный; у—унифицированный; А, II — индексы аэродинамической схемы.

Дутьсвые вентиляторы (ВД) работают на воздухе с T < 293 K, подавая его через систему воздухопроводов и воздухопологреватель в топочную камеру. Этот воздух иззывают первичным в отличие от вторичного, подаваемого непосредственио с топливом.

Вентиляторы горячего дутья (Γ) работают на воздухе, подогретом до 473—673 К.

Мельничные вентиляторы (M) применяются в системах пылеприготовления и подают смесь горячего вторичного воздуха с угольной пылью через горелки в топочную камеру, Давление, развиваемое дутьевыми и мельничными вентиляторами, определяется сопротивлениями воздушного и пылевоздушного трактов и необходимым давлением в топочной камере.

Дымососы транспортируют дымовые газы по газоходам котла и дымовой трубе и совместио с последней преодолевают сопротивления этого тракта и системы золоулавливания (см. § 5.2).

Дымососы рециркуляции применяются для отбора части дымовых газов из газоходов котла и подачи их в топочную камеру с целью уменьшения шлакования, регулирования температуры перегрева пара и повышения общей экономичиости агрегата.

Дутьевые вентиляторы, работающие на холодном воздухе, выполняются с объемными профилированными лопастями, отогнутыми назад, т. е. $\beta_{2\pi}$ <90° (см. рис. 5.16 и 5.18). Коэффициент полезного действия таких вентиляторов достигает 88%.

Условия работы вентиляторов горячего дутья, и особенно мельинчных вентиляторов и дымососов, осложнены влиянием высокой температуры реремещаемой среды и наличием в ней угольной пыли или унося (золы, шлаковых частиц различной крупности).

Высокая температура перемещаемого газа вызывает нагрев рабочего колеса и вала машины. Это приводит к перегреву подшипников и уменьшению срока их службы. Поэтому вентиляторы горячего дутья и дымососы выполняются с охлаждаемыми подшипниками. Простейший способ охлаждения подшинников состоит в том, что в масляную ванну корпуса подпининика вводится трубчатый змеевик, пропускающий холодную воду. Смазочные кольца, свободно висящие на валу, подают охлажденное масло из ваниы подшипника в зазор между вкладышем и шейкой вала. Подогреваемое в подшипвиках масло стекает в отводя таким образом теплоту из подшипника и охлаждая его. В вентиляторах горячего дутья и дымососах большой мощности такой способ охлаждения оказывается недостаточным и в этих случаях применяют выносное охлаждение, смазочное масло сливается непрерывно из корпусов подшипников в бак, служащий для сбора и отстаивания масла; из бака масло забирается шестеренными или другого типа насосами и подается через фильтр и трубчатый охладитель под давлением в подшипники машины. Основные элементы системы охлаждения - иасосы, фильтры, охладители — дублируются с целью полной пости.

Для уменьшения теплового потока по валу в подшинники в месте выхода вала из корпуса машины из нем монтируется вспомогательное вентиляторное колесо, просасывающее внеший холодный воздух через кольцевые щели, окружающие вал. Таким образом досгигается охлаждение вала и понижение температуры подшининков.

Значительные неприятности при эксплуатации дымососов и мельничных вентиляторов дают твердые частицы, содержащиеся в газоном потоке.

В дымососах, подающих газ с содержанием мелких абразивных частиц золы и шлака, в мельничных вентиляторах, подающих смесь воздуха с угольной пылью, происходит интенсивный износ внутренних поверхностей корпуса и рабочего колеса. При этом вследствие несимметричности подвода рабочие колеса разбалансировываются и теряют прочность, межремонтные сроки сокращаются, экономичность работы установки падает.

Меры против абразивного износа предусматриваются в конструкцив машины и ее компоновке с газоходами применением сменных защитных листов из твердого металла. Этими листами бронируются корпуса вентиляторов и газоходы в тех местах, гле поток, меняя направление, дает выпадение абразивных частиц на поверхность.

Рациональная компоновка проточной полости машины и системы газоходов, уменьшающая выпадение уноса и угольной ныли на внутренние поверхности, ограничивающие поток, существению силжает износ и увеличивает межремонтные периоды.

Износ дымососов и мельничных вентиляторов существенно зависит от частоты вращения. Для работы при заданных подаче и давления желательно применение меньшей частоты вращения. При этом размеры машины будут увеличены. Работа трения абразивных частии распределится на большую поверхность, износ будет менее интенсивен.

При протекации запылениого газа через рабочее колесо поток изменяет направление от осевого к радиальному и твердые частицы под влиянием цевтробежимх сил выпадают на втулку и основной диск, постепенно истирая их. При пересечении потоком вращающейся решетки лопастей происходит выпадение абразивных частиц в иекоторых местах лопастей, приводящих их к разрушению.

Полное предотвращение износа деталей рабочего колеса невозможно. Уменьшение износа достигается наплавкой твердых металлов электрическим способом в тех местах, где в данной конструкцин проявляется износ. Толщина слоя наплавки составляет от 2 до 4 мм. Срок службы рабочего колеса при наплавке увеличивается в 3—4 раза.

Наплавка твердыми сплавами широко применяется в эксплуатациозной практике и экономически вполне оправдывается.

На рис. 5.18 изображена конструкция дутьевого вентилятора одиосторониего веасывания.

Рабочее колесо *I* вентилятора с лопастями переменной ширины, посаженное на консоль вала, располагается в сварном спиральном корпусе *2*, крепящемся на фундаменте раздельно от электродвигателя *3* в блока подшинников *4*. На входной воронке *5*, обеспечивающей постепенное изменение скорости потока при подводе к рабочему колесу, крепится блок *6* осевого направляющего аппарата, регулирующего подачу.

Основные параметры вентиляторов этого типа при диаметрах рабочего колеса $D_2 = 600 \div 2000$ мм; $Q = 4400 \div 200\ 000$ м³/ч; $H = 97 \div 610$ мм вод. ст.; $N = 173 \div 590$ кВт; $\eta = 67 \div 70$ %; $n = 750 \div 1430$ об/мии.

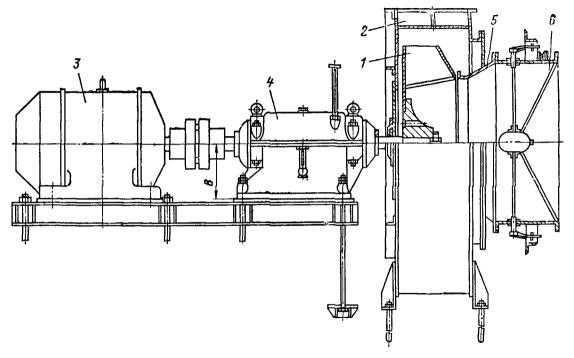
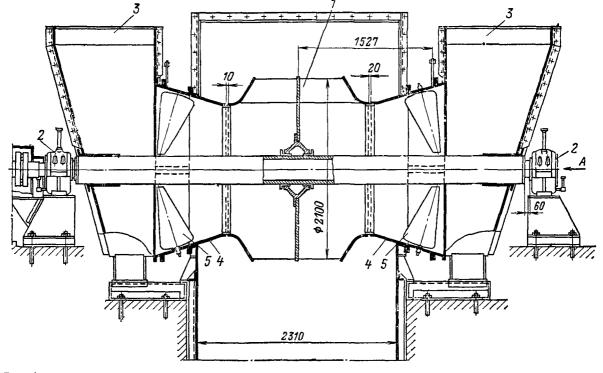



Рис. 5.18. Дутьевой вентилятор с регулированнем НА на входе

Рнс. 5.19. Дымосос центробежный двустороннего всасывания

Па рис. 5.19 представлена конструкция дымососа двустороннего всасывания. Рабочее колесо *I* посажено на полый вал, опирающийся на подшипники *2*, вынесенные из газового потока. Подвод дымовых газов к рабочему колесу — через боковые карманы *3* и входные конические воронки *4*, в которых располагаются направляющие аппараты *5* осевого типа.

Диаметры рабочих колес дымососов этого типа $D_2 = 1800 \div 2600$ мм. Основные параметры: $Q = 240~000 \div 500~000$ м³/ч; $H = 150 \div 350$ мм вод. г; $Y = 120 \div 585$ кВт; n = 735~06/мин; n = 0.83.

Сводные графики полей рабочих параметров дутьевых вентиляторов и дымососов см. в [21].

5.7. Вентиляторные установки

Вентиляторной установкой называют агрегат, состоящий из вентилятора с приводным двигателем и вспомогательным комплектующим оборудованием (шиберами на всасывающем или напорном патрубке, измерительной аппаратурой, пусковыми устройствами двигателя и пр.). Наравне с вентилятором приводной двигатель является основным оборудованием, определяющим КПД установки.

В установках общепромышлениого назначения желательно иепосредственное соединение валов двигателя и вентилятора при помощи упругой муфты. Применение глухих жестких муфт не рекомендуется иследствие невозможности абсолютно точной центровки валов и возинкающих при этом вибраций агрегата и шума. Из-за ограниченности ряда частот вращения короткозамкнутых асинхронных двигателей (730—960—1430—2960 об/мин) в некоторых случаях соединяют валы двигателей и вентиляторов клиноременной передачей.

Коиструктивное исполнение двигателей (открытые, защищенные, взрывобезопасные) определяется условиями помещений, где располагаются вентиляториые установки.

Для привода дымососов и вентиляторов применяют в осиовном асинхронные односкоростиые и двухскоростные двигатели закрытого исполнения с охлаждением обмоток замкнутым объемом воздуха, циркулирующим через специальную охлаждающую установку (водяной трубчатый теплообмениик). Применение дорогих двухскоростных двигателей для привода крупных вентиляторов и дымососов, работающих в режимах глубокого регулирования, вполне оправдывается повышением общего эксплуатационного КПД установки.

Эксплуатационная надежность вентиляторной установки зависит не только от конструкций веитилятора и приводного двигателя, но в большой степени и от точности и качества их совместного моитажа,

Установки небольших размеров желательно монтировать на общей литой или сварной раме, крепящейся к фундаменту, установки средних

и больших размеров — на жестких, армированных, бетопных фундаментах без рам (вептилятор и двигатель раздельно).

Шум, производимый вентиляторной установкой, вызывается в основном аэродинамическими факторами в потоке газа, проходящего через вентилятор, вибрацией агрегата вследствие плохой центровки при монтаже и небалансом роторов вентилятора и двигателя. Шум вентиляториой установки проявляется тем свльиее, чем больше частота вращения и выше окружные скорости u_2 концов рабочих лопастей.

Меры, ведущие к уменьшению шума вентиляториых установок: рациональная форма проточной полости вентилятора с применением лопастей с малым углом $\beta_{2\pi}$, тщательная балансировка ротора вентилятора (при значительной шириие колеса — обязательно динамическая),
точная центровка при монтаже, применение звукоизолирующих упругих прокладок (резина, пробка, войлок) между опориыми поверхностями вентилятора и фундаментом, крепление уголками жесткости плоских
торцовых поверхностей вентилятора, ограничение скорости u_2 в пределах 45—50 м/с.

С целью контроля работы вентиляторная установка должна быть снабжена необходимой измерительной аппаратурой: тягонапоромерами, дроссельным устройством для измерения подачи, ваттметрами или счетчиками электроэнергии, указателями температуры подшипников. В некоторых случаях шкалы приборов, контролирующих работу вентиляторных установок, выносятся на центральный щит (дымососы и дутьевые вентиляторы).

Порядок пуска и останова вентиляторных и дымососиых установок регламентируется указаниями эксплуатационных инструкций.

Расход электроэнергии на привод дутьевых и мельничных вентиляторов и дымососов энергетических блоков относится к расходам на собственные нужды станции. Эти расходы должны быть минимальными. Поэтому затраты на реконструкцию, модернизацию и автоматизацию вентиляторных установок, имеющие целью повышение их КПД, обычно экономически оправдываются.

5.8. Влияние механических примесей в газе на работу вентилятора

Для перемещения смесей газов с мелкими твердыми частицами применяют вентиляторы специальных коиструкций, называемые обычно пылевыми. Такне случаи встречаются в системах отсасывания пыльных газов, в пневмотранспорте, в системах пылеприготовления энергетических блоков. В последнем случае вентиляторы называют мельничными.

Аэродииамические схемы пылевых и мелыпичных вентиляторов близки к схемам обычных высоконапорных вентиляторов, но в их конструкциях есть особенности.

Пылевые вентиляторы, подающие холодные смеси, имеют рабочие колеса или без покрывающего диска, или совсем бездисковые (см. рис. 5.9, ∂ и e). В таких конструкциях рабочих колес уменьщается или совсем исключается абразивный износ дисков, весьма значительный в обычных конструкциях.

Рабочие лопатки пылевых вентиляторов должны хорошо сопротивляться истиранию твердыми частицами, содержащимися в газовом потоке. Поэтому рабочие лопасти и их ступицы изготовляются из твердых, хорошо сопротивляющихся истиранию металлов или наплавляются твердыми сплавами. Количество рабочих лопаток берется малым — 6—8 шт. для быстроты демонтажа и ремонта.

Корпуса таких вентиляторов изготовляются из листов увеличенной по сравнению с листами в обычных конструкциях толщины. В некоторых конструкциях внутренияя поверхность корпуса бронируется съемными плитами из отбеленного чугуна большой твердости.

Соображения по защите мельничных вситиляторов от абразивного износа и вредных термических влияний изложены в § 5.6.

Рассмотрим влияние твердых частиц, содержащихся в газе, на рабочие параметры вентилятора. Концентрация твердых частиц в газовом потоке характеризуется коэффициентом μ массовой концентрации: $\mu = M_T/M_r$, где M_T — масса твердых частиц, перемещаемых потоком газа в секунду; M_r — секундная масса чистого газа в смеси.

Опыты, произведенные на вентиляторах, подающих смеси с малым и при мелкой пыли, переносимой потоком во взвешенном состоянки, показывают, что давление и подача вентилятора такие же, как при работе его на чистом газе.

Плотность смеси $\rho_{\rm cM}=(M_{\rm T}+M_{\rm r})/Q_{\rm cM}$. Плотность чистого газа $\rho_{\rm r}=-M_{\rm r}/Q_{\rm r}$. Отношение плотностей $\rho_{\rm cM}/\rho_{\rm r}=(M_{\rm T}+M_{\rm r})/M_{\rm r}$. Следовательно, $\rho_{\rm cM}/\rho_{\rm r}=1+\mu$ и

$$\rho_{\rm CM} = \rho_{\rm r} (1 + \mu).$$

Отноше ие мощиостей вентиляторов, работающих на смеси и чистом газе,

$$\frac{N_{\rm CM}}{N_{\rm r}} = \frac{\rho_{\rm CM} Q_{\rm CM} g H_{\rm CM}}{\rho_{\rm r} Q_{\rm r} g H_{\rm r}} = \frac{\rho_{\rm cM}}{\rho_{\rm r}} .$$

Поэтому $N_{\rm cm} = (1+\mu)~N_{\rm r}$. Если вентилятор перемещает смесь с твердыми частицами значительных размеров, то поперечные составляющие скорости в турбулентном горизонтальном потоке оказываются недостаточными для поддержания твердых частиц во взвешенном состоянии. Происходит вынадение твердых частиц на поверхность, ограничивающую поток, возникает дополнительная затрата энергии на преодоление сил трения твердых частиц о поверхность.

Вследствие значительной инерциоиности круппых частиц они ие могут следовать за пульсациями в турбулентном потоке и частота их соударений возрастает, ўвеличивая внутренние потери энергии в потоке. При этом уменьшается давление $p_{\rm cn}$ вентилятора, падает его КПД в возрастает мощиость.

Подробные исследования, проведенные М. П. Калинушкиным, привели к следующим полуэмпирическим зависимостям:

$$p_{cM} = p_r (1 - k_p \mu);$$

 $N_{cM} = N_r (1 + k_N \mu).$

Коэффициенты коррекции k_p и k_N определяются по опытиым данным и при размерах твердых частиц органического происхождения (торф, опилки) 0,5—3 мм составляют $k_p = 0,1 \div 0,45$; $k_N = 1,5 \div 1,7$.

Коэффициент полезного действия вентилятора, нодающего смесь в этом случае,

$$\eta_{\rm CM} = \frac{Q_{\rm CM} \, p_{\rm CM}}{N_{\rm CM}} = \frac{Q_{\rm CM} \, p_{\rm C} \, (1 - k_{\rm D} \, \mu)}{N \, (1 + k_{\rm N} \mu)} = \eta_{\rm C} \frac{1 - k_{\rm D} \, \mu}{1 + k_{\rm N} \mu}.$$

ОСЕВЫЕ НАСОСЫ И ВЕНТИЛЯТОРЫ

глава ШЕСТАЯ

основы теории

6.1. Решетка профилей

В осевой машине (вентиляторе, компрессоре, насосе) передача энергии с вала потоку происходит при помощи рабочего колеса, состоящего из консольных лопастей, закрепленных на втулке (рис. 6.1). Так как колесо машины, вращаясь, удерживается в осевом направлении, а лопасти его закреплены под углом к плоскости вращения, то колесо перемещает жидкость (или газ) вдоль оси. При этом поток несколько закручивается.

Для рассмотрения работы осевых машин пользуются

теорией решетки профилей.

Рассекая колесо цилиндрической поверхностью радиусом r (рис. 6.1) и развертывая эту поверхность с сечениями лопастей, получаем плоскую решетку профилей осевой машины (рис. 6.2).

Основные величины, характеризующие геометрию решетки, следующие: t — шаг лопастей, равный расстоянию между сходственными точками сечений лопасти, измеренному в направлении движения решетки; b — длина хорды сечения лопасти; B — ширина решетки — размер, параллельный оси вращения; $\beta_{1\pi}$ и $\beta_{2\pi}$ — лопастные углы на входе и выходе; β_y — угол установки лопасти — угол между хордой лопасти и осью решетки.

 Γ устотой решетки \overline{b} называют отношение хорды к шагу:

$$\bar{b} = \frac{b}{t} \ . \tag{6.1}$$

Величину, обратиую густоте, называют относительным шаеом:

$$\bar{t} = \frac{1}{\bar{h}} = \frac{t}{h} \ . \tag{6.2}$$

Построив планы скоростей на входе и выходе, введем основные кинематические параметры потока, проходящего через решетку (рис. 6.3): u_1 , w_1 , c_1 и u_2 , w_2 , c_2 — соответ-

ственно переносная, относительная и абсолютная скорости на входе и выходе; β_1 и β_2 — углы входа и выхода — углы между осью решетки и относительными скоростями на входе и выходе; i — угол атаки лопасти на входе (между ка-

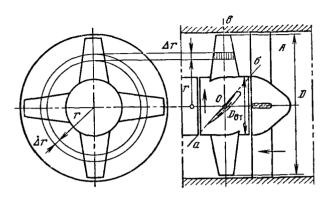


Рис. 61. Схема четырехлопастной осевой машины

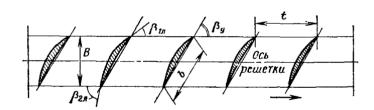


Рис. 6.2. Решетка лопастей осевой машины, развернутая на плоскость

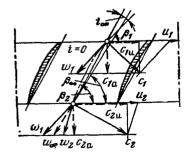


Рис. 6.3. Параллелограммы скоростей решетки лопастей осевой машины

сательной к средней линии профиля и относительной скоростью на входе); i_{∞} — угол атаки лопасти решетки (между хордой профиля и средней векторной относительной скоростью w_{∞}).

Из планов скоростей (рис. 6.3) следует, что решетка. профилей изменяет значения и направления относительной и абсолютной скоростей.

Характерными особенностями являются закручивание потока решеткой ($c_{2u} > c_{1u}$) и наличие отставания потока на выходе ($\sigma \neq 0$).

6.2. Основные уравнения

Уравнение неразрывности. Это уравнение имеет вид

$$\rho_1 \Omega_1 c_1 = \rho_2 \Omega_2 c_2. \tag{6.3}$$

Применим это уравнение к одному межлопастному каналу, рассматривая лопасть длиной Δr (см. рис. 6.1). В пределах малой длины Δr можно полагать скорости не измениющимися. Площади входного и выходного сечений одинаковы, т. е.

$$\Omega_1 = \Omega_2 = t \Delta r$$
.

В уравнении (6.3) векторы c_1 и c_2 соответственно пормальны к плоскостям сечений Ω_1 и Ω_2 . Поэтому, полагая Ω_1 и Ω_2 нормальными к оси машины, следует считать c_1 и c_2 осевыми составляющими абсолютной скорости и обозначать индексом a. Из рис. 6.3 следует

$$c_{1a} = w_{1a}; \quad c_{2a} = w_{2a}.$$

Следовательно, уравнение неразрывности может быть записано после сокращения Ω_1 и Ω_2 так:

$$\begin{aligned}
\rho_1 c_{1a} &= \rho_2 c_{2a}; \\
\rho_1 w_{1a} &= \rho_2 w_{2a}.
\end{aligned} (6.4)$$

Для несжимаемой жидкости $\rho_1 = \rho_2$, поэтому

$$c_{1a} = c_{2a} = c_a; \ w_{1a} = w_{2a} = w_a.$$
 (6.5)

Уравнение энергии. В относительном движении через рабочее колесо осевой машины энергия потоку не сообщастся; здесь происходит лишь преобразование кинетической энергии в потенциальную. Этот процесс сопровождается диссипацией энергии потока.

При изменении удельной кинетической энергии относительного движения от $w_1^2/2$ до $w_2^2/2$ происходит пепрерывное изменение давления и плотности и уравнение энергии можно записать так:

$$\frac{w_1^2}{2} - \frac{w_2^2}{2} = \int_1^2 \frac{dp}{\rho} + \Delta L, \qquad (6.6)$$

где ΔL — энергия, переходящая в теплоту.

Изменение потенциальной энергии, выражаемое интегралом в правой части равенства (6.6), может быть вычис-

лено в случаях, когда известна зависимость между ρ и ρ , т. е. когда известен термодинамический процесс в межлопастном канале машины. В машинах низкого давления

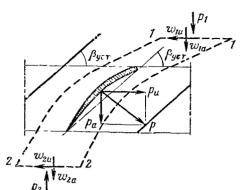


Рис. 6.4. Применение теоремы импульсов к определению сил, действующих на лопасть

(вентиляторы) — это изотермический, а в осевых компрессорах — политропный процесс.

Энергия, сообщаемая потоку рабочей лопастной решеткой, может быть рассчитана по основному уравнению центробежной машины, в котором $u_2 = u_1 = u$:

$$L_{\mathrm{T}} = u \left(c_{2u} - c_{1u} \right) = u \Delta c_{u}.$$

Из планов скоростей (рис. 6.3) следует

$$c_{2u} = u_2 - c_{2a} \operatorname{ctg} \beta_2; \quad c_{1u} = u_1 - c_{1a} \operatorname{ctg} \beta_1.$$

Подставляя значения c_{2u} и c_{1u} в выражение для $L_{\mathbf{T}}$ и используя выражение (6.5), получаем

$$L_{\mathrm{T}} = uc_{a} \left(\operatorname{ctg} \beta_{1} - \operatorname{ctg} \beta_{2} \right). \tag{6.7}$$

Уравнение энергии абсолютного движения через рабочую лопастную решетку осевой машины можно записать аналогично уравнению (3.20):

$$uc_a (\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2) = c_p (T_2 - T_1) + \frac{c_2^2 - c_1^2}{2} + q.$$
 (6.8)

Уравнения количества движения. Уравнения количества движения служат для расчета сил взаимодействия между потоком и лопастями осевой машины. Пусть участок лопасти длиной Δr действует на поток с силой P (см. рис. 6.1 и 6.4). Проекции этой силы: P_a — на ось машины и P_u — на ось решетки. Рассмотрим поток при относительном движении с шириной, равной шагу решетки.

Через сечение 1-1 проходит в секупду масса $\Delta rtw_{1a}\rho_1$, бладающая в направлении оси машины количеством движения $\Delta rtw_{1a}\rho_1w_{1a}$, аналогично для сечения 2-2 $\Delta rtw_{2a}\rho_2w_{2a}$.

Если p и p_2 — давления в сечениях 1-1 и 2-2 потока, то обусловливаемые ими силы. — соответственно Δrtp_1 и Δrtp_2 .

Импульс внешних сил, действующих на поток в направлении пачальной скорости, равен изменению количества движения потока, поэтому

$$(P_a + \Delta rt p_1 - \Delta rt p_2) 1c = -(\Delta r t \rho_2 w_{2a}^2 - \Delta rt \rho_1 w_{1a}^2).$$

Знак минус в правой части равенства указывает на то, что изменение количества движения рассматриваемого объема жидкости вызывает силу, действующую на лопасть в направлении, обратиом P_a . Следовательно,

$$P_{a} = \Delta rt (p_{2} - p_{1}) + \Delta rt (\rho_{1} w_{1a}^{2} - \rho_{2} w_{2a}^{2}).$$
 (6.9)

Для несжимаемой жидкости $\rho_1 = \rho_2$ и по уравнению (6.5) $w_{1a} = w_{2a}$, поэтому

$$P_a = \Delta rt (p_2 - p_1).$$
 (6.10)

Решетка профилей, перемещающая несжимаемую жидкость, не изменяет осевой скорости потока; осевая сила, приложенная к потоку, расходуется на повышение давления.

Применим уравнение количества движения для определения тангенциальной составляющей P_u . Для этого запишем уравнение количества движения в проекции на осърешетки.

Количество движения в сечениях 1-1 и 2-2

$$\Delta r t w_{1a} \rho_1 w_{1u}$$
 и $\Delta r t w_{2a} \rho_2 w_{2u}$.

Уравнение количества движения

$$P_u \cdot 1c = -(\Delta r t w_{2a} \rho_2 w_{2u} - \Delta r t w_{1a} \rho_1 w_{1u}).$$

Отсюда следует

$$P_u = \Delta r t (\rho_1 w_{1a} w_{1u} - \rho_2 w_{2a} w_{2u}).$$

Используя равенство (6.4), получаем

$$P_{u} = \Delta r t \rho_{1} w_{1a} (w_{1u} - w_{2u}). \tag{6.11}$$

Результирующая получается геометрическим сложени- $\epsilon_{\mathbf{M}}$ сил P_a и P_{u*}

Уравнение циркуляции. Общее выражение для циркуляции

$$\Gamma = \oint c \cos \alpha \, ds$$

легко применяется к профилю решетки. Рассматривая контур 1-1-2-2-1 (см. рис. 6.4), представляем циркуляцию как сумму следующих интегралов:

$$\Gamma = \int_{1}^{1} w_{1u} dt + \int_{1}^{2} w ds - \int_{2}^{2} w_{2u} dt - \int_{2}^{1} w ds.$$

Ввиду того что линии 1-2 и 2-1 геометрически одинаковы и скорости в соответственных точках равны, второй и четвертый интегралы сокращаются. Следовательно,

$$\Gamma = \int (w_{1u} - w_{2u}) dt.$$

Поскольку w_{1u} и w_{2u} — постоянные, средние по шагу величины,

$$\Gamma = (w_{1u} - w_{2u})t. (6.12)$$

Тесрема Н. Е. Жуковского. Подъемная сила лопасти с l=1, движущейся в неограниченном пространстве, определяется известной теоремой Н. Е. Жуковского

$$P_{\nu} = \rho \omega \Gamma, \tag{6.13}$$

где w — относительная скорость набегающего потока; Γ —

циркуляция по контуру, охватывающему лопасть.

Изолированная лопасть не изменяет параметров потока: относительная скорость перед лопастью и за нею одинакова. Решетка лопастей, как это видно на рис. 6.3, измеияет значение и направление относительной скорости ($w_1 \neq w_2$). В этом заключается существенное различие в действии изолированной лопасти и решетки лопастей на поток.

Теорема Н. Е. Жуковского для лопасти решетки

$$P_{y} = \rho \Gamma w_{\infty}. \tag{6.14}$$

Из рис. 6.3 ясно, что w_{∞} представляет собой среднюю векториую скорость

$$\vec{w}_{\infty} = \frac{1}{2} \left(\vec{w}_1 + \vec{w}_2 \right).$$

¹ Такую лопасть называют изолированной.

В случае обтекания решетки газом плотность ρ в уравнении (6.14) можно полагать среднеарифметической плотностей входа и выхода.

Нетрудно убедиться, что направление силы P_{y} нормаль-

но к вектору w_{∞} (рис. 6.5).

Аэродинамические коэффициенты. Распространяя известный в аэромеханике способ расчета сил, действующих

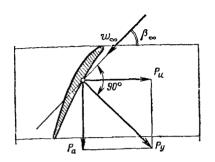


Рис. 65. Силы, действующие со стороны лопасти на поток

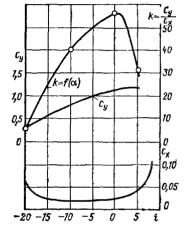


Рис. 6.6. Результаты испытания решетки при малых скоростях

на изолированную лопасть, на решетку профилей, можно записать

$$P_{y} = c_{y} \rho b \frac{w_{\infty}^{2}}{2};$$

$$P_{x} = c_{x} \rho b \frac{w_{\infty}^{2}}{2};$$
(6.15)

где c_y и c_x — коэффициенты подъемной силы и лобового сопротивления; P_y и P_x — подъемная и лобовая силы взанмодействия потока и профиля решетки.

Коэффициент c_x может быть определен только опытным путем; приближенное значение c_y можно найти теоретически, а точное — из опыта.

Сопоставив уравнения (6.14) и первое из уравнений (6.15), получим

$$\rho w_{\infty} \Gamma = c_y \, \rho b \, \frac{w_{\infty}^2}{2} \, .$$

$$\Gamma = c_y \, b \, \tfrac{w_\infty}{2} \, .$$

Последнее уравнение совместно с уравнением (6.12) позволяет определить c_v :

$$c_y = 2 \frac{1}{h} \frac{w_{1u} - w_{2u}}{w_{m}}.$$

Из рис. 6.3 имеем

$$\frac{w_{1u}}{w_{\infty}} = \operatorname{ctg} \beta_1 \sin \beta_{\infty} \text{ is } \frac{w_{2u}}{w_{\infty}} = \operatorname{ctg} \beta_2 \sin \beta_{\infty}.$$

Поэтому

$$c_y = 2 \frac{t}{b} \left(\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2 \right) \sin \beta_{\infty}. \tag{6.16}$$

 \Im то равенство дает возможность расчета коэффициента c_y

по известным параметрам решетки профилей.

Точные значения c_x и c_y получают путем продувки решеток лопастей различных форм при разных углах атаки; производя измерения скорости, плотности и сил P_y и P_x , производят расчет c_y и c_x по уравнениям (6.15). Результаты продувок изображают графически, как это показано, например, на рис. 6.6.

Подобрав при проектировании диаграмму для решетки данного геометрического типа и задавая угол атаки, находят по диаграмме значения c_v и c_x и по формулам (6.15)

вычисляют \dot{P}_y и P_x .

6.3. Напор, потери энергии, КПД

Теоретический напор, создаваемый рабочим колесом осевой машины, может быть вычислен по уравнению Эйлера, в котором следует полагать $u_1 = u_2 = u$. При этом условии получаем уравнение (6.7). Введем в это уравнение коэффициент расхода φ :

$$\varphi = c_a/u, \tag{6.17}$$

определяющий объемный расход, приходящийся на единицу площади поперечного сечения решетки лонастей.

Тогда получим

$$H_{2} = \frac{u}{g} c_{a} (\operatorname{ctg} \beta_{1} - \operatorname{ctg} \beta_{2}) = \frac{u^{2}}{g} \varphi (\operatorname{ctg} \beta_{1} - \operatorname{ctg} \beta_{2}).$$
 (6.18)

Теорегическое давление, создаваемое колесом,

$$p_1 = \rho g H_T = \rho u^c \varphi (\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2). \tag{6.19}$$

Потери энергии в осевых машинах обусловливаются трением и вихреобразованием в проточных полостях, перетеканием части потока через зазоры, механическим трением в подшипниках и уплотнениях.

Эффективность решеток осевых машин для несжимаемой жидкости может оцениваться посредством КПД ре-

петки

$$\eta_p = \frac{p}{p + \Delta p} = \frac{p}{p_T} \,, \tag{6.20}$$

где p и $p_{\rm T}$ — действительное и теоретическое повышения дзвления в решетке; Δp — потери давления в решетке.

Если решетка повышает давление с p_1 до p_2 , то

$$\eta_{\rm p} = \frac{p_2 - p_1}{p_3 - p_1 + \Delta p} \,. \tag{6.21}$$

Для несжимаемой жидкости по уравнению (6.6)

$$\rho_2 - \rho_1 + \Delta \rho = \rho \frac{w_1^2 - w_2^2}{2}. \tag{6.22}$$

Из планов скоростей входа и выхода следует

$$\rho \frac{w_1^2 - w_2^2}{2} = \rho (w_{1u} - w_{2u}) w_a \operatorname{ctg} \beta_{\infty},$$

где β_{∞} — угол между вектором w_{∞} и осыо решетки. Используя выражение (6.22), получаем

$$p_2 - p_1 + \Delta p = \frac{P_u}{t} \operatorname{ctg} \beta_{\infty}.$$

По уравнению (6.10) для решетки с $\Delta r = 1$

$$p_2 - p_1 = P_a/t$$
.

Следовательно,

$$\eta_{\rm p} = \frac{P_a}{t} : \frac{P_u}{t} \operatorname{ctg} \beta_{\infty} = \frac{P_a}{P_u \operatorname{ctg} \beta_{\infty}}. \tag{6.23}$$

В соответствии с рис. 6.7

$$P_a = P_y \cos \beta_\infty - P_x \sin \beta_\infty$$
; $P_u = P_x \cos \beta_\infty + P_y \sin \beta_\infty$. (6.24)

16--559 241

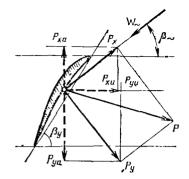


Рис. 67. Составляющие силы, действующие на лопасть осевой машины

Подставив значения P_a и P_u в выражение (6.23), после преобразований получим

$$\eta_p = \frac{1 - \mu \operatorname{ctg} \beta_{\infty}}{1 + \mu \operatorname{ctg} \beta_{\infty}} , \qquad (6.25)$$

где μ — обратное качество профиля.

Для лопастей осевых мамин μ = 0,02 \div 0,04. При μ = 0,03 и β_{y} = 25 \div 45° КПД решет-

ки $\eta_p = 0.90 \div 0.94$. Для повышения КПД осевой машины следует приме-

иять профили с возможно меньшими значениями и.

От теоретического давления, определяемого равенством (6.19), можно перейти к действительному давлению

$$\rho = \eta_{\rm p} \rho_{\rm r} = \rho u^2 \, \varphi \left(\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2 \right) \, \eta_{\rm p}. \tag{6.26}$$

Действительное давление, создаваемое ступенью осевой машины, есть результат совместного действия подвода, решетки рабочих лопастей и отвода (диффузора).

В отводе проявляется диффузорный эффект, повышаю-

щий давление,

$$\Delta p_{\mu\nu\Phi} = \rho \frac{c_3^2 - c_4^2}{2}$$
, (6.27)

где c_3 и c_4 — абсолютные скорости на входе и выходе отвода (диффузора).

Если $\Sigma \Delta p$ — потери давления в подводе и отводе, то давление, создаваемое ступенью,

$$p_{cr} = \rho u^2 \varphi \left(\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2 \right) \eta_n + \Delta p_{math} - \Sigma \Delta p. \quad (6.28)$$

Потери $\Sigma \Delta p$ рассчитываются по формулам гидравлики. Коэффициенты местных потерь зависят от конструктивных форм подвода и отвода.

Механический КПД учитывает потери энергии от трения в уплотнениях, подшипниках и дискового трения,

$$\eta_{\rm M} = 0.94 - 0.98$$
.

Объемные потери незначительны, $\eta_0 \approx 1$.

Гидравлический КПД ступени

$$\eta_{\rm r} = p_{\rm c1}/p_{\rm r}.$$
(6.29)

Для осевых насосов и вентиляторов

$$\eta_c = 0.75 \div 0.92$$
.

Полный КПД ступени

$$\eta = \eta_{\rm r} \, \eta_{\rm M} = 0.70 = 0.90.$$

Мощность на валу

$$N = \frac{MgH}{1000\eta}.$$
 (6.30)

6.4. Многоступенчатые осевые насосы и вентиляторы

Анализируя формулу (6.19), можно видеть, что давлепие, создаваемое одним колесом осевой машины, ограничепо скоростными и геометрическими факторами. В современных осевых машинах транспортных установок примеияют очень высокие окружные скорости на концах лопас-

Рис. **G.8.** Схема осевой машины с тремя ступенями

тей—до 400 м/с. Но даже это во многих случаях не обеспечивает получения необходимого давления. Тогда применяют многоступенчатые машины.

Осевая многоступенчатая машина имеет несколько осевых колес, насаженных на общий вал (рис. 6.8). При этом между каждыми двумя рабочими колесами ставится направляющий аппарат. Его назначение — раскручивать поток, выходящий из рабочего колеса, и придавать сму направление, необходимое для эффективной передачи энергии в следующей ступени. В направляющем аппарате, кромс того, происходит преобразование части скоростного напора в потенциальную энергию.

Направляющий аппарат обычно выполняется из криволинейных профилей переменной толщины, обладающих

малым лобовым сопротивлением. Количество ступеней давлення в осевых машинах обычных тинов достигает 20.

6.5. Особенности условий работы длинных лопастей

Элементы лопастей осевой машины, находящиеся на различных расстояниях от центра, вращаются с неодинаковыми скоростями. Вследствие этого лопасть с постоянной шириной и постоянными углами входа и выхода создает напор, изменяющийся по длине ее. Это приводит к радиальным перемещениям частиц жидкости в проточной поло-

сти рабочих колес и отводов и понижению КПД машины, Явление радиального перемещения особенно сильно сказывается в ступенях машины с относительно большой длиной лопасти. Поэтому ступени осевых машин с большой длиной лопастей обычно проектируют исходя из условий

отсутствия радиальных перетеканий жидкости.
В теории осевых машин показано, что условие радиального равновския, если пренебречь силами вязкости потока, выражается равенством

$$rc_n = \text{const.}$$
 (6.31)

Это соотношение имеет большое практическое значение, показывая, что отсутствие радиальных перетеканий возможно лишь при постоянстве циркуляции по длине лопасти. В этом случае каждая частица потока движется по цилиндрической поверхности соответствующего радиуса.

Уравнение (6.31) является важнейшим положением вихревой теории воздушных винтов Н. Е. Жуковского. Выполнение его для осевых машин дает существенное повы-

шение их КПЛ.

Влияние условия (6.31) на конструктивную форму лопасти проявляется в том, что она получается закрученной (винтовой) с переменными углами $\beta_{1\pi}$ и $\beta_{2\pi}$ по длине. Такие лопасти имеют широкое применение, в особенности в машинах с малым относительным диаметром втулки.

В машинах с большим относительным диаметром втулки лопасти выполняются незакрученными, по с хордой, уменьшающейся к периферии.

6.6. Расчет осевых насосов и вентиляторов

Определение основных размеров осевых насосов и вентиляторов производится на основе уравнений Эйлера и неразрывности потока. При этом учитываются особенности

работы ступсней и конструктивные соотношения, принятые в практике. Для расчета должны быть заданы: H — напор, выраженный в метрах столба среды, перемещаемой машиной; Q — подача, м³/с, и физические константы среды.

Осевые машины соединяются с электродвигателем нег эсредственно; в таких случаях частоту вращения машины принимают равной рабочей частоте вращения электродвигателя.

Соответственно окружные скорости концов лопастей оказываются значительными. Так, в случае насосов допускают окружные скорости до 60 м/с; большие значения не принимают из условий недопустимости кавитации. В оссвых вентиляторах обычно ограничиваются скоростями до 100 м/с во избежание появления сильного шума. Относительный диаметр втулки принимают $v = D_{\rm nr}/D_{\rm n} = 0.4 \div 0.8$, причем большие значения выбираются для высоконапорных машин.

Коэффициент расхода ф принимают в пределах 0,4—0,8. Диаметр рабочего колеса машины может быть определен из уравнения неразрывности

$$c_a = \frac{Q}{0.785D_a^2(1-v^2)} = k_{\varphi} vu = k_{\varphi} v \frac{\pi D_{\Pi} n}{60}$$

где $k = c_a/u_{\text{вт}}$.

Очевидно,

$$D_{\rm rt} \approx 2.9 \sqrt[3]{\frac{1}{v(1-v^2)}} \sqrt[3]{\frac{Q}{k_{\rm p} n}}$$
 (5.32)

При выбранных \mathbf{v} и $k_{\, \mathbf{\phi}}$ последнее равенство однозначно определяет диаметр колеса осевой машины. Обычно $k_{\, \mathbf{\phi}} = 0.6 \div 1$. Далее определяется диаметр втулки $D_{\, \mathbf{B}^{\, \mathbf{\tau}}} = \mathbf{v} D_{\, \mathbf{H}}$ и находится длина лопасти

$$l_{\pi} = \frac{D_{\Pi} - D_{BT}}{2}$$
.

Цслесообразность применения высоких частот вращения непосредственно ясна из выражения (6.32), показывающего уменьшение D_{π} при повышении n.

Как было указано выше, элементы лопасти, находящисся на разных расстояниях от центра колеса, работают с различной эффективностью. Поэтому допускается расчет лопастей по среднему диаметру $D_{\rm cp} = \sqrt{\frac{(D_{\rm H}^2 + D_{\rm BT}^2)}{2}}$ и применение цилиндрических лопастей только при $v \geqslant 0.7$.

При v<0.7 разбивают лопасть по длине на 7—10 участков и ведут расчет каждого из них отдельно по среднему диаметру его, получая различные значения лопастных углов на входе и выходе; лопасть получается закрученной (винтовой).

Так как осевая составляющая c_a скорости для принятого значения φ известна ($c_a = \varphi u_u$), то при отсутствии закрут-

ки на входе

$$\beta_1 = \operatorname{arctg} c_a / u_{cp}$$
.

Угол выхода потока из межлопастных каналов

$$\beta_2 = \operatorname{arctg} \frac{c_a}{u_{\rm cp} - c_{2u}}.$$

Величина $c_{2\vec{u}}$ определяется из основного уравнения машины

$$c_{2u} = \frac{gH}{\eta_{\Gamma} u_{\rm cp}},$$

где H — напор одной ступени машины; η_r — гидравлический КПД, лежащий в пределах 0,75—0,92.

Лопастные углы на входе и выходе:

$$\beta_{1:i} = \beta_1 + i, \quad i = 2 \div 7^\circ;$$

$$\beta_{2:i} = \beta_{1:i} + \Delta \beta_{n},$$

где $\Delta \beta_{\pi}$ принимается по результатам экспериментальных продувок решеток лопастей.

Количество рабочих лопастей осевых насосов выбирают

от 3 до 6, а осевых вентиляторов — до 40.

В многоступенчатых осевых машинах между венцами рабочих лопастей двух соседних ступеней помещаются венцы неподвижных лопаток, направляющих поток, проходящий из одного рабочего колеса в другое (см. рис. 6.8).

Угол входа направляющих лопаток $\alpha_2 = \operatorname{arctg} c_a/c_{2u}$, а

угол выхода $\alpha_3 = 90^{\circ}$.

При известном значении относительного шага профиля $t=0,5\div1,5$ определяется хорда профиля $b=t/\bar{t}$ (где t вычисляется по диаметру колеса и принятому количеству лопастей).

Построив среднюю линию профиля по углам $\beta_{1\pi}$, $\beta_{2\pi}$ и b, по относительным координатам профилей можно построить профили лопастей.

При длишных лопатках (v < 0.7) хорду профиля изменяют по длине так, чтобы $b_{\text{вт}} = (1 \div 1.5) b_{\text{и}}$, где $b_{\text{н}} - \text{хорда}$ профиля на окружности наружного диаметра колеса.

6.7. Характеристики. Регулирование лодачи

Аналогично центробежным машинам характеристики оссвых машин дают зависимость напора (давления), мощности на валу и КПД от подачи. Характеристики получают обычно путем испытания при постоянной частоте вращения и пересчитывают на различные частоты вращения по формулам пропорциональности.

Форма характеристик определяется конструкцией и аэродинамическими свойствами машины.

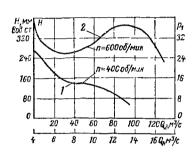
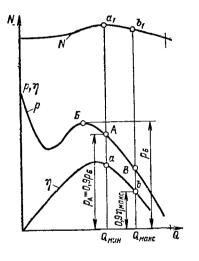



Рис. 6.9. Характеристики H = f(Q) осевых вентиляторов:

J — вентилятор серии У-12 № 16; 2 — вентилятор серии ВС

Рис. 6.10. Характеристика осевого вентилятора при n=const

В отличие от центробежных машин характеристика напора (давления) осевой машины часто имеет седлообразную форму (рис. 6.9), однако у низконапорных машин встречастся падающая форма этой характеристики.

Седловина на характеристике объясняется снижением подъемной силы лопастей при малых подачах и повышенных углах атаки и наличием вторичных течений.

Характеристики мощности осевых машин показывают уменьшение мощности при увеличении Q или близки, как у вентиляторов, к горизонтальной линии (рис. 6.10). Поэтому пуск осевых машин допустим при открытой задвижке на напорной трубе, т. е. под нагрузкой.

Характеристики КПД осевых машии с рабочими лопастями, жестко закрепленными на втулке, имеют резко выраженный максимум; при отклонении режима машины от оптимального КПД здесь резко изменяется.

В некоторых случаях осевые насосы выполняют с поворотными (на ходу) рабочими лопастями. В этих случаях возможно значительное изменение расхода без существенного снижения КПД.

Рабочий участок характеристики устанавливается в стабильной части ее правее горба Б (рис. 6.10). Макси-

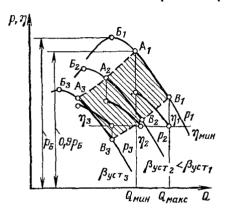


Рис. 6.11. Рабочая область характеристики

мально допустимое давление составляет 0,9 давления в точке Б характеристики. Допустимое пониженное значение КПД составляет до 0,9 пмакс.

Характеристики осевых машин, так же как и центробежных, могут быть даны в безразмерных координатах.

Регулирование подачи осевых машин может производиться изменением частоты вращения, поворотом рабочих лопастей, направляющим аппаратом на входе и дросселированием. Первый

способ наиболее эффективен. Дроссельное рсгулирование особенно неэкономично, потому что при этом при понижении подачи мощность остается постоянной или возрастает (рис. 6.10). Поэтому расход энергии на единицу объема перемещаемой среды при регулировании этим способом увеличивается.

При регулировании осевых мащин поворотом лопастей рабочего колеса или направляющим аппаратом на входе достигается очень экономное использование энергии привода.

При регулировании осевых машин поворотом лопаток рабочего колеса или направляющим аппаратом удобно пользоваться типовыми регулировочными характеристиками. Рабочая область характеристик, ограничиваемая значениями допустимых КПД, выделяется на характеристике (заштрихованная площадка на рис. 6.11).

КОНСТРУКЦИИ ОСЕВЫХ НАСОСОВ И ВЕНТИЛЯТОРОВ

7.1. Осевые насосы

Осевые насосы большой подачи выполняются с вертикальным расположением вала.

кальным расположением вала.

Рассмотрим конструкцию насоса, представленного на рис. 7.1. К станине *I*, опирающейся на раму из швеллеров 2, крепится корпус 3 с направляющим аппаратом 4. На коническую заточку нижнего конца вала сажается ступица 5 рабочего колеса, крепящаяся при помощи врезной шпонки и гайки. Лобовая часть ступицы обработана в виде тела с малым сопротивлением при обтекании.

Лопасти направляющего аппарата 4 поддерживают своими внутренними концами криволинейную втулку 6 (задний обтекатель), на внутреннем фланце которой крепися нижний полименик 7

пится нижний подшипник 7.

пится нижний подшипник 7.

Ротор насоса, состоящий из вала с облицовкой 8, рабочего колеса, соединительной муфты и упорного кольца, подвешен на упорном подшипнике, помещенном в корпусе 9. Таким образом, вся осевая нагрузка передается на станину насоса. В корпусе 9 расположен также и верхний подшипник. В тумбе 10 смонтирован сальник.

Смазка верхних подшипников производится густой консистентной мазью при помощи пресс-масленок. Нижний подшипник имеет водяную смазку.

При небольших подачах все детали насоса, кроме вала и крепежных частей (колец, втулок, болтов, гаек), выполняются из уугунного литья.

няются из чугунного литья.
В насосах значительной подачи рабочее колесо выполняется из стального литья. Лопасти могут изготовляться отдельно от втулки и крепиться к ней одним или несколькими болтами.

Известны конструкции осевых насосов, выполненные в основном из листовой и фасонной стали сварным способом. Насос приводится в движение вертикальным электро-

двигателем.

Конструкции осевых двухступенчатых насосов значи-тельно сложнее и выполняются с корпусом, имеющим разъ-ем в меридиональной плоскости. Промышленность Советского Союза выпускает осевые насосы типов О и ОП. Насосы типа О имеют жесткое кре-нление допастей к втулке, типа ОП — поворотное крепле-

ние (поворот — перестановка лопастей — производится при остановленном насосе).

Имеются конструкции крупных осевых насосов с лопастями, поворачиваемыми на ходу насоса через полый вал аналогично поворотно-лопастным гидротурбинам. Это дает большие удобства при регулировании подачи при сохранении высокого КПД. Однако этот способ усложняет и

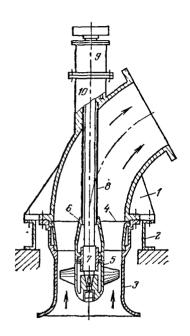


 Рис. 7.1. Вертикальный одноступенчатый осевой насос

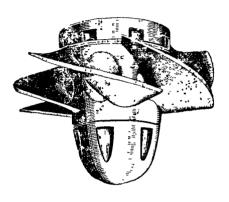


Рис. 7.2. Лопастное колесо насоса ОПВ-110

удорожает конструкцию и оправдан только для крупных машин.

На рис. 7.2 показано рабочее колесо насоса типа ОП. При диаметрах рабочего колеса от 295 до 1850 мм насосы типов О и ОП имеют рабочие параметры в следующих диапазонах:

Частота вращения,	об/м	ин .						•	. 960-210
Подача, м³/ч									. 4450—54 700
Напор. м					. .				, 1,9-20,9
Мощность, кВт .									44-3000
К о эффициент полез	ного	дейс	твия,	%		•		•	. 81—86

7.2. Осевые веннтиляторы

Схема конструкции одноступенчатого осевого вентиля-

тора была приведена на рис. 6.1.

Основные размеры осевых вентиляторов различных типов даются в зависимости от диаметра рабочего колеса на аэродинамических схемах. На рис. 7.3 показана аэродина-

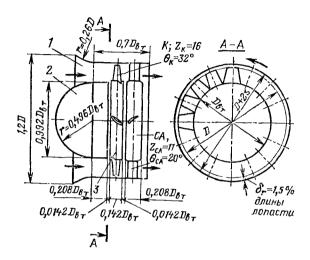


Рис 7.3. Аэродинамическая ехема осевого вентилятора серии В: 1 — коллектор; 2 — кок, 3 — рабочее колесо; СЛ — спрямляющий анцарат

мическая схема оссвого вентилятора серии В (высокона-порный).

Осевые вентиляторы общего назначения изготовляются в соответствии с ГОСТ для санитарно-технических и производственных целей.

Аналогично центробежным вентиляторам номер осевого вентилятора — диаметр окружности, на которой лежат наружные концы рабочих лопастей (диаметр рабочего колеса), выраженный в дециметрах.

Заводы выпускают осевые вентиляторы с диаметрами рабочих колес от 300 до 2000 мм на подачи до 130 м³/с и давления 30—1000 Па (при $\rho=1,2$ кг/м³).

Лопасти рабочих колес могут выполняться поворотицыи и неповоротными (жестко закрепленными на втулке). Основные размеры осевых вентиляторов общего назна-

чения по ГОСТ: $D_{\text{вт}} = (0.3 \div 0.55) D$; днаметр входного конуса $D_{\text{к}} = 1.2D$; длина входного конуса $L_{\text{к}} = 0.2 D$.

Углы установки лопастей 15—32°.

В конструкциях осевых вентиляторов с одним и несколькими рабочими колесами применяются устройства, улучшающие аэродинамику потока и повышающие КПД вентиляторов: коки, обтекатели, направляющие и спрямляющие аппараты.

На рис. 7.4 показаны лопасти и параллелограммы скоростей двуступенчатого осевого вентилятора. Рассмотрим

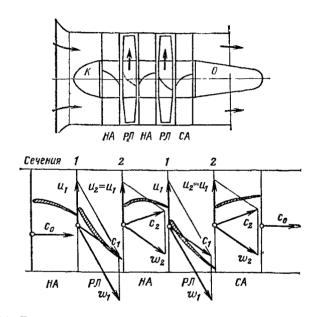
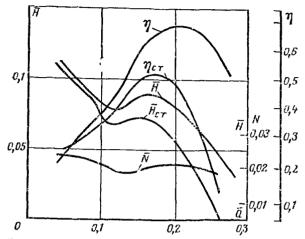



Рис. 7.4. Лопасти и параллелограммы скоростей двухступенчатого осевого вептилятора

назначение отдельных элементов конструкций осевого вентилятора.

Кок К представляет собой тело, штампованное из тонкого листового металла, закрепляемое неподвижно перед направляющим аппаратом. Назначение кока — обеспечить постепенное возрастание скорости потока до значения со на входе в направляющий аппарат первой ступени при минимальных потерях энергии. Направляющий аппарат НА состоит из венца неподвижных лопаток, располагающихся перед входом в рабочее колесо.

Выходиме углы лопаток HA могут быть выбраны так, что c_{1u} будет отрицательно, т. е. поток на выходе из HA будет иметь направление, противоположное направлению вращения рабочего колеса. Это приводит к увеличению напора вентилятора.

Р.:с. 7.5. Безразмерная характеристика вентилятора серии МЦ

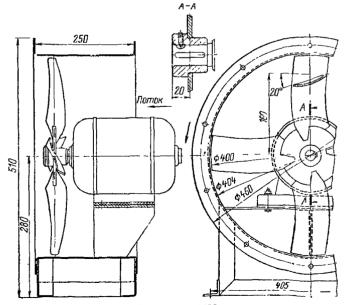


Рис. 7.6. Осевой вентилятор № 4 серии МЦ

Положение лопастей рабочего колеса определяется в основном значением угла схода потока с лопаток НА.

Назначение спрямляющего аппарата CA состоит в безударном принятии потока, сходящего с лопастей рабочего колеса, и приданий потоку осевого направления. Если последнее не выполнено, то энергия $c_{2u}^2/2$ будет потеряна. Раскручивание потока, т. е. уменьшение c_{2u} до нуля, приводит к повышению КПД вентилятора. Обтекатель O, рас-

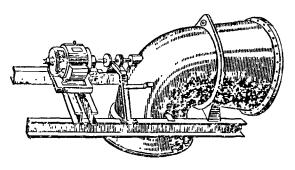
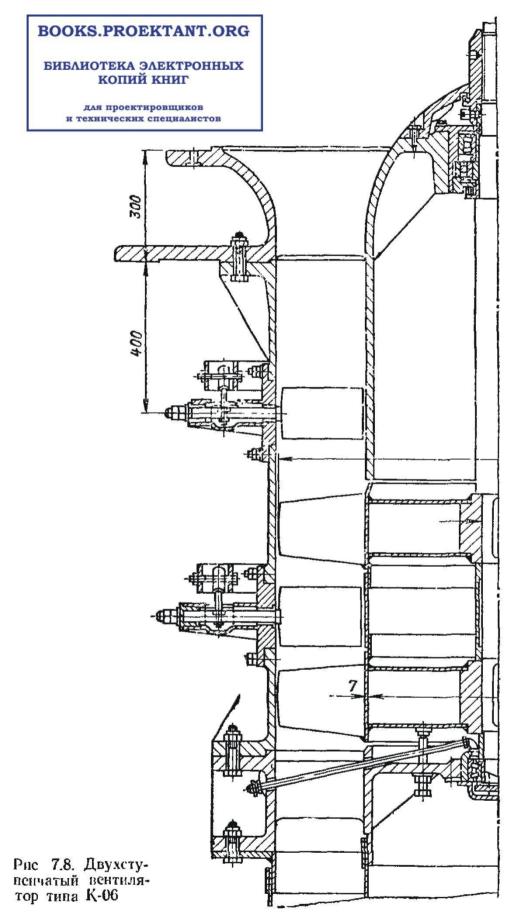


Рис. 7.7. Вентилятор с электродвигателем, вынесенным из потока

полагаемый неподвижно за спрямляющим аппаратом, уменьшает потери в потоке при постепенном уменьшении скорости. Параллелограммы скоростей решеток лопастей на рис. 7.4 дают представление о кинематической структуре потока в осевом двухступенчатом вентиляторе.


Регулирование подачи осевых вентиляторов может производиться изменением частоты вращения, направляющим аппаратом HA на входе, поворотом рабочих лопастей

РЛ и одновременно двумя последними способами.

Наиболее часто, в случае привода от электродвигателя с постоянной частотой вращения, применяется регулирование HA на входе.

Некоторые конструкции одноступенчатых осевых вентиляторов допускают реверсирование, т. е. при изменении направления вращения или углов расположения лопастей они изменяют направление потока. Лопасти таких вентиляторов должны выполняться с симметричным сечением.

Характеристики напора осевых вентиляторов имеют обычно седлообразную форму. Это отчетливо замечается, например, в безразмерной характеристике вентилятора серии МЦ (рис. 7.5). Конструкция этого вентилятора показана на рис. 7.6. Ее основные особенности: винтовая форма

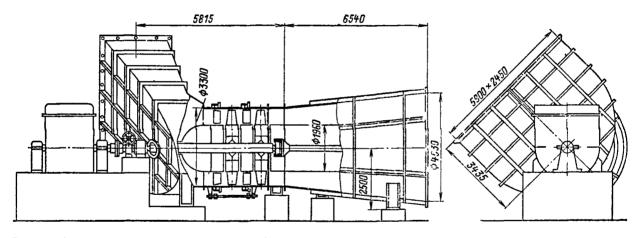


Рис. 7.9. Общий вид осевого дымососа ДО-31,9

допасти, жесткое крепление лопастей на втулке, расположение рабочего колеса непосредственно на валу двигателя.

Расположение электродвигателя в потоке газа в некоторых случаях (высокая температура, запыленность) недопустимо, и тогда двигатель выносят из потока (рис. 7.7).

На рис. 7.8 представлена конструкция вертикального двухступенчатого осевого вентилятора типа K-06. Регулирование подачи этого вентилятора — направляющими аппаратами на входе. Вентилятор имеет КПД до 80 % при коэффициенте давления p=0.2.

Имеется тенденция к применению осевых машин в ка-

честве дымососов для крупных блочных ТЭС.

На рис. 7.9 показана установка с осевым двухступенчатым дымососом марки ДО-31,5.

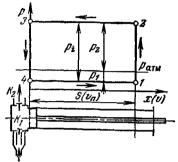
ОБЪЕМНЫЕ ПОРШНЕВЫЕ И РОТОРНЫЕ НАСОСЫ

ГЛАВА ВОСЬМАЯ

ПОРШНЕВЫЕ НАСОСЫ

8.1. Способ действия. Индикаторная диаграмма

Схема насоса с поршнем одностороннего действия и его теоретическая диаграмма давлений, называемая индика-


торной, даны на рис. 8.1.

При движении поршня вправо полость цилиндра со стороны клапанной коробки увеличивается и заполняется жидкостью, поступающей из приемной трубы через всасывающий клапан K_1 . При этом давление в клапанной коробке ниже атмосферного, что объясняется гидравлическим сопротивлением всасывающего тракта, расположением поверхности всасываемой жидкости ниже оси цилиндра и низким давлением над этой поверхностью.

Изменение давления на протяжении всего хода поршня направо изобразится линией всасывания 4-1.

В положении 1 поршень изменяет направление движения на обратное и всасывающий клапан автоматически закрывается; в клапанной коробке происходит резкое повышение давления до значения давления подачи p_2 . Этот процесс изображается вертикальной линией 1-2. В момент, когда давление повысится до p_2 , разность давлений под клапаном и над ним преодолевает вес и натяжение пружины напорного клапана K_2 и он открывается. При равномерном движении поршня от точки 2 влево происходит подача жидкости при постоянном давлении р2. В крайнем левом положении поршень снова меняет направление движения. При этом давление в клапанной коробке резко падает по линии 3-4, напорный клапан K_2 закрывается и открывается всасывающий клапан K_1 . Диаграмма давлений замыкается.

Индикаторная диаграмма показывает, как меняется давление в цилиндре и клапанной коробке насоса на протяжении двух ходов поршня. Площадь индикаторной диаграммы измеряется в H·м/м² и, следовательно, представляет собой работу поршня за два хода, отнесенную к 1 м² его поверхности (см. § 8.4). Действительная индикаторная диаграмма (рис. 8.2) отличается от теоретической, представленной на рис. 8.1, в основном наличием колебаний давления в начале всасывания и подачи. Эти колебания обусловлены влиянием инерции клапанов насоса и прилипанием плотно притертых поверхностей их к седлам. Поэтому, например, в момент отрыва от седла напорного клапана (точка 2) в клапанной коробке должно быть повышенное давление, создающее

Т
Рис. 81. Теоретическая иидикаторная диаграмма поршиевого иасоса

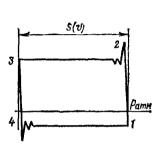


Рис. 8.2. Действительная индикаторная диаграмма поршиевого насоса

силу, способную оторвать клапан от седла и преодолеть его инерцию.

Как только клапан открывается, давление в клапанной коробке резко снижается и клапан дает несколько быстрых колебаний в потоке жидкости; при этом он дросселирует поток, вызывая колебания давления в клапанной коробке, отражающиеся на линии подачи индикаторной диаграммы. На форму линий всасывания и подачи оказывают зачетное влияние также силы инерции жидкости, поступающей в цилиндр или уходящей из него при неравномерном движении поршня.

Действительные индикаторные диаграммы снимают с насосов при помощи индикаторов.

8.2. Подача поршневых насосов

Подача поршневого насоса определяется размерами рабочего цилиндра, числом ходов поршня или частотой вращения вала насоса и количеством цилиндров. Если поршень насоса работает лишь одной своей стороной (насос одностороннего действия) и приводится в движение от двигателя при помощи кривошипно-шатунного механизма (рис. 8.3), то количество жидкости, м³/ч, фактически всасываемой и подаваемой насосом

$$Q = \frac{\pi}{4} D^2 S \cdot 60n\eta_o, \qquad (8.1)$$

где n — число двойных ходов поршня в минуту; D — внутренний диаметр цилиндра; S — ход поршня; η_0 — объемный КПЛ.

Объемный КПД учитывает то обстоятельство, что насос не может подавать в напорный трубопровод объем

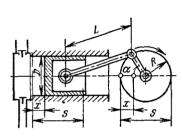
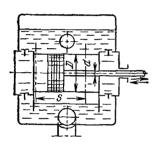



Рис. 83. Схема иасоса односторошнего действия

Рнс. 8.4. Схема насоса двусторониего действия

жидкости, равный теоретическому объему, описываемому поршнем: часть жидкости неибежно теряется через неплотности, а часть протекает через клапаны, не мгновенно закрывающиеся в левом и правом положениях поршня.

Объемный КПД определяется при испытании насоса посредством измерения действительно подаваемого насосом объема жидкости. Делением последнего на рабочий объем цилиндра получаем η_0 , обычно $\eta_0 = 0.7 \div 0.97$.

Насос двустороннего действия (рис. 8.4) создает подачу

$$Q = \frac{\pi}{4} (2D^2 - d^2) S \cdot 60n\eta_0. \tag{8.2}$$

Если насос имеет несколько цилиндров, поршни которых приводятся в движение от общего коленчатого вала (многопоршневой насос), то его подача получается умножением подачи одного поршня на их число. Характерными для поршневых насосов величинами являются отношение

хода поршня к диаметру S/D и средняя скорость поршня $c_{\text{п ср}} = Sn/30$. Обычно чем больше число двойных ходов поршия в минуту, тем меньше S/D.

Для насосов, выпускаемых заводами СССР,

$$S/D = 0.8 \div 2$$
; $c_{\text{n.cp}} = 0.5 \div 0.9 \text{ M/c.}$

8.3. Неравномерность всасывания и подачи

Жидкость всасывается в цилиндр насоса, следуя за движущимся в нем поршнем, им же вытесняется в напорный трубопровод. Если жидкость несжимаема и не имеет раз-

рывов, то она строго следует за движением поршня. В большинстве конструкций поршневых насосов осуществляется неравномерное движение поршней при помощи кривошипно-шатунных механизмов. Поэтому, если не предусмотреть специальных мер, жидкость будет двигаться во всасывающем и напорном трубопроводах тоже неравномерно.

Рассмотрим процесс всасывания в цилиндр насоса одностороннего действия (см. рис. 8.3), полагая, что $R/L \approx 0$.

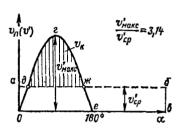


Рис. 8.5. Зависимость скорости поршия от угла поворота кривошипа в пределах от 0 до 180°

Двигаясь из левого крайнего положения направо, поршень проходит путь $x = R - R \cos \alpha$ (α — угол поворота кривошила из левого крайнего положения).

Переменная скорость движения поршня

$$v_{\rm m} = \frac{dx}{dt} = \frac{d}{dt} (R - R \cos \alpha) = R \sin \alpha \frac{d\alpha}{dt}$$
, (8.3)

но $d\alpha/dt = \omega$ — угловая скорость вращения кривошила, поэтому

$$v_{\rm n} = R\omega \sin \alpha$$
. (8.4)

Графически выражение (8.4) представлено на рис. 8.5. Ускорение поршня

$$a_{\rm m} = \frac{dv_{\rm m}}{dt} = R\omega\cos\alpha\frac{d\alpha}{dt}$$
,

HI.IH

$$a_n = R\omega^2 \cos \alpha. \tag{8.5}$$

Ускорение поршня изменяется в зависимости от угла поворота кривошипа по закону косинуса.

Из формул (8.4) и (8.5) следует:

при
$$\alpha=0$$
 $v_{\rm m}=0;$ $a_{\rm m}=R\omega^2;$ при $\alpha=90^{\circ}$ $v_{\rm m}=R\omega;$ $a_{\rm m}=0;$ при $\alpha=180^{\circ}$ $v_{\rm m}=0;$ $a_{\rm m}=-R\omega^2.$

Произведение скорости движения поршня на его площадь даст объем V' жидкости, всасываемой поршнем в единицу времени,

 $V' = \Omega_{\rm m} v_{\rm m} = \Omega_{\rm m} R \omega \sin \alpha. \tag{8.6}$

Диаграмму $v_n = f(\alpha)$, приведенную на рис. 8.5, можно рассматривать и как диаграмму $V' = f(\alpha)$; для этого следует лишь ввести для оси ординат новый масштаб, обусловленный наличием в формуле (8.6) множителя Ω_n . Следовательно, объем жидкости, всасываемой поршнем в цилиндр, изменяется в зависимости от угла поворота кривошипа по синусоиде.

При движении поршия влево происходит только подача жидкости. Поэтому в пределах полного оборота вала (два хода поршня) диаграмма всасывания изобразится синусондой (ход вправо) и прямой линией, совпадающей с осью абсцисс (ход влево).

В действительности $R/L \neq 0$ и синусондальная диаграмма, изображенная на рис. 8.5, несколько искажается,

теряя симметрию.

Аналогично можно изобразить диаграмму подачи. Всасывание в клапанную коробку и подача из нее протекают неравномерио. Это вызывает возникновение инерционных сил, резко проявляющихся в моменты наибольших ускорений поршня, т. с. в крайних его положениях. Сила инерции жидкости, движущейся безотрывно за поршнем, пропорциональна его ускорению, которое согласно формуле (8.5) пропорционально квадрату угловой скорости вала насоса. Поэтому при высокой частоте вращения вала насоса инерционные силы могут достигнуть большого значения, вызвать разрыв сплошности потока и нарушить нормальную работу насоса.

Если в насосе не предусмотрены меры, устраняющие неравномерность всасывания и подачи, то жидкость будет двигаться неравномерно по всей системе примыкающих к насосу трубопроводов. Это опасное явление может привести к разрушению отдельных частей насоса и трубопроводов.

Существует несколько способов уменьшения неравномерности движения жидкости в трубопроводной системе, соединенной с насосом. Весьма эффективным способом является применение многопоршневых насосов с параллельным соединением цилиндров, поршни которых приводятся в движение от общего коленчатого вала. Рассмотрим, например, диаграмму подачи трехпоршневого насоса, у которого колена вала располагаются под углом 120° (рис. 8.6).

Поршни, двигаясь несинхронно, создают чередуемость ходов подачи во времени, и хотя подача из каждого цилин-

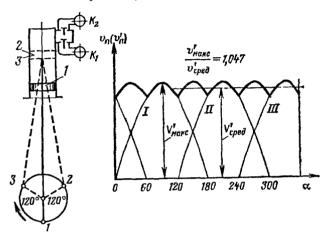


Рис. 86. Схема и диаграмма подачи трехпоршневого насоса односторолнего действия

дра остается неравномерной, общая подача насоса существенно выравнивается.

При вращении коленчатого вала по часовой стрелке палец *I* движется по дуге круга вверх и поршень цилиндра производит подачу из клапанной коробки в коллектор по синусоиде *I*. Поршень цилиндра 2 придет в нижнее крайнее положение и начнет подачу тогда, когда коленчатый вал повернется от исходного положения на угол 120°. Поэтому синусоида *II* подачи второго цилиндра изобразится на графике подачи в пределах углов 120—300°. Поршень цилиндра *3* проходит остаточную часть хода подачи, начиная от исходного положения вала, на протяжении угла поворота 60°. Эта часть синусоиды *III* подачи изобразится

ветвью ее в пределах углов 0—60°. Вместе с тем поршень цилиндра 3 начнет новый ход подачи после поворота вала на 240° , считая от исходного положения. Но на одном полном обороте вала этот ход не закончится. Поэтому синусоида III подачи третьего цилиндра оборвется при $\alpha=360^\circ$. В промежутках между углами 0—60, 120—180, 240—

В промежутках между углами 0—60, 120—180, 240—300° диаграммы подачи накладываются одна на другую. Это значит, что происходит одновременная подача в коллектор K_9 сразу из двух цилиндров: первого и третьего.

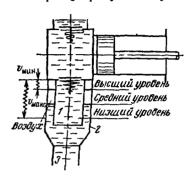


Рис. 8.7. Работа воздушного колпака на всасывающей трубе

первого и второго, второго и третьего. Поэтому для построения диаграммы подачи в коллектор и напорный трубопровод следует суммировать ординаты диаграмм отдельных цилиндров там, где эти диаграм-Проведя мы накладываются. 910 суммирование. получим диаграмму подачи трехпоршневого насоса, показанную на рис. 8.6 жирной линией. В этом случае отклонение максимальных значений мгновенной подачи от ее среднего значения для целого оборота очень незначительно. Подача протекает

здесь достаточно равномерно. Возможны и другие комбинации параллельного соединения цилиндров, дающие повышение равномерности подачи и всасывания.

Другой способ повышения равномерности всасывания и подачи заключается в применении воздушных колпаков навсасывающей и напорной трубах близ клапанной коробки насоса. Рассмотрим способ работы воздушного колпака на всасывающей трубе насоса (рис. 8.7). Короткий патрубок 1, присоединенный к клапанной коробке насоса, окружен верхней, расширенной частью 2 всасывающей трубы 3. Воздух, заключенный в цилиндрическом кольцевом объеме между трубами 1 и 2, является упругой средой, выравнивающей скорости движения жидкости во всасывающей трубе при неравномерном всасывании в клапанную коробку.

Если насос не работает, то уровень жидкости занимает среднее положение, указанное на схеме. При работе насоса уровень колсблется между высшим и низшим его положениями. Воздух при этом изменяет свой объем от $v_{\text{мин}}$ до

 v_{make} , что вызывает изменение его давления от p_{make} до PMHH.

Работу воздушного колпака характеризуют степенью

неравномерности его, обозначаемой б,

$$\delta = (p_{\text{MBHC}} - p_{\text{MBH}})/p_{\text{CD}}, \tag{8.7}$$

где $p_{\rm cp}$ — среднее давление воздуха в колпаке,

$$p_{\rm cp} = 0.5 (p_{\rm Marc} + p_{\rm Muh}).$$
 (8.8)

При достаточно большом объеме воздуха в колпаке поток во всасывающей трубе движется почти с постоянной скоростью; неравномерное всасывание в клапанную коробку компенсируется переменным расходом жидкости из воздушного колпака.

Элементарная приближенная теория воздушного колпака основывается на уравнении изотермического газового

процееса

$$pv = \text{const},$$
 (8.9)

где v — объем некоторого постоянного весового количества воздуха, заключенного в колпаке. Уравнение (8.9) для двух состояний воздуха в колпаке

имеет вил

$$p_{\text{Marc}} v_{\text{Mull}} = p_{\text{Mull}} v_{\text{Marc}}$$

откуда

 $p_{\text{MMH}} = p_{\text{MARC}} v_{\text{MMH}} / v_{\text{MARC}}.$

Воспользуемся уравнениями (8.7) и (8.8):

$$\delta = \frac{p_{\text{Marc}} - p_{\text{Marc}} v_{\text{MHH}} / v_{\text{Marc}}}{p_{\text{Marc}} + p_{\text{Marc}} v_{\text{MHH}} / v_{\text{Marc}}}.$$

После алгебраического преобразования получим

$$\delta = (v_{\text{Marc}} - v_{\text{MuH}})/v_{\text{CPeg.}}$$
 (8.10)

Из рис. 8.7 видно, что разность $v_{\rm макс}$ — $v_{\rm мин}$ есть то количество жидкости, которое поступает в цилиндр из возлушного колпака за первую половину оборота вала. Это же количество накапливается в воздушном колпаке в осповном за вторую половину оборота вала. Воспользуемся диаграммой, приведенной на рис. 8.5, где

напесем линию аб равномерного поступления жидкости по всасывающей трубе насоса. Площадь прямоугольника оабв равновелика площади синусоиды всасывания. Ясно, что если движение во всасывающей трубе протекает неравномерно по синусоиде оге, то площадь дежд, лежащая выше ли-

нии $a\delta$, представляет собой то количество жидкости, которое в период всасывания должно быть взято из воздушного колпака. Но это количество равно $v_{\rm K} = v_{\rm Makc} - v_{\rm Muh}$. Величина $v_{\rm K}$ определяется построением синусоиды всасывания, планиметрированием ее и построением равновеликого с нею прямоугольника oabs.

Если v_{κ} определено указанным путем, то по формуле (8.10) можно определить средний объем воздуха в колпаке

при заданной степени неравномерности его:

$$v_{\rm cp} = v_{\rm r}/\delta. \tag{8.11}$$

Аналогично можно рассмотреть работу напорного воздушного колпака для любых насосов и при любом количестве цилиндров.

Для колпаков на напорном разветвленном трубопроводе полагают $\delta = 0.02$ и даже меньше, а для колпаков на

всасывающих трубопроводах $\delta = 0.04 \div 0.05$.

Произведя построение диаграммы и вычисления, можно выразить средний объем воздуха в воздушном колпаке через полезный объем цилиндра для насосов различных типов. При δ = 0,02 получится:

для насоса одностороннего действия $v_{\rm cp}$ =27,5 $\Omega_{\rm n}S$; для насоса двустороннего действия $v_{\rm cp}$ =10,5 $\Omega_{\rm n}S$; для трехпор-

шневого насоса простого действия $v_{\rm cp} = 0.45 \Omega_{\rm n} \hat{S}$.

Многопоршневые насосы требуют воздушных колпаков относительно малой емкости. Применение многопоршневых насосов с колпаками достаточной емкости обеспечивает почти равномерное движение жидкости в присоединяемых к ним трубопроводах.

8.4. Мощность и КПД

Воспользуемся индикаторной диаграммой, показанной на рис. 8.1, для вычисления внутренней (индикаторной)

мощности поршневого насоса.

Атмосферная линия, разделяя индикаторную диаграмму на две части, позволяет определить значения избыточных давлений p_2 и p_1 , преодолеваемых поршнем насоса на ходах подачи и всасывания.

Работа поршня за ход всасывания равна $\Omega_{\mathbf{n}}p_{\mathbf{l}}S$, а за

ход подачи $\Omega_{\rm n} p_2 S$.

Полная работа поршня за два хода равна $(p_2+p_1)\Omega_{\rm m}S$. Давление, взятое по индикаторной диаграмме как сумма $p_i=p_2+p_1$, называется индикаторным давлением.

Следовательно, работа поршня насоса простого действия за один оборот вала будет равна $p_i\Omega_{\rm n}S$.

Внутренняя, или индикаторная, мощность одного ци-

линдра

$$N_i = \frac{p_i \,\Omega_{\rm B} \,Sn}{60 \cdot 1000} \,. \tag{8.12}$$

Для насосов двустороннего действия и многопоршневых внутреняя мощность вычисляется как сумма внутренних мощностей отдельных цилиндров.

Действительная мощность, подводимая от двигателя к валу насоса, больше внутренией, так как часть ее идет на преодоление механического трения.

Механический КПД пориневого насоса

$$\eta_{\rm M} = N_i/N. \tag{8.13}$$

Поэтому $N = N_i/\eta_M$. Используя выражение (8.12); получаем

$$N = \frac{p_i \Omega_{\rm II} Sn}{60 \cdot 1000 \eta_{\rm M}}. \tag{8.14}$$

Если имеется индикаторная диаграмма насоса, то по формуле (8.14) можно определить мощность на валу насоса при определенном значении $\eta_{\rm M}$.

Механический КПД поршневых насосов находится в

пределах $\eta_{\rm M} = 0.9 \div 0.95$.

Внутренняя мощность насоса больше полезной мощности, потому что часть мощности затрачивается в цилиндре насоса на преодоление гидравлических сопротивлений, а также на восполнение потерь, вызываемых утечками через неплотности и клапаны.

Внутренним, или индикаторным, КПД поршневого насоса называют отношение

$$\eta_i = N_{\rm n}/N_i, \tag{8.15}$$

где $N_{\rm m}$ — полезная мощность.

Внутренний КПД является произведением гидравлического и объемного КПД.

Из формул (8.13) и (8.15) следует

$$N = N_{\rm II}/(\eta_i \, \eta_{\rm M}), \tag{8.16}$$

или

$$N = \frac{MgH}{1000\eta} \,. \tag{8.17}$$

Значения гидравлического КПД для поршневых насосов находятся в пределах $\eta_r = 0.8 \div 0.94$. Общий (полный) КПД

$$\eta = \eta_{\rm p} \eta_{\rm o} \eta_{\rm m} = 0.65 + 0.85$$
.

Коэффициенты полезного действия поршневых насосов определяются опытным путем (см. § 8.9).

8.5. Характеристики. Регулирование подачи

Регулирование подачи. В соответствии с уравнениями (8.1) и (8.2) общее выражение для подачи поршневого насоса имеет вид

$$Q = k\eta_0 D^2 Sn, \qquad (8.18)$$

где k — постоянный коэффициент.

Отсюда следует, что подача поршневого насоса находится в зависимости от четырех факторов: D, S, n и no. Изменения подачи теоретически можно достигнуть изменением одного или нескольких из них. Практически же изменение D с целью регулирования подачи насоса с заданными reoметрическими размерами невозможно. Можно регулировать подачу насоса изменением по. Для этого нужно выполнить всасывающий или напорный клапан управляемым и задерживать посадку его на седло во время соответствующего хода подачи или всасывания. Этот способ регулирования применяют редко, так как он связан с понижением общего КПД насоса и, следовательно, энергетически неэффективен.

Регулирование изменением длины хода поршня применяют в малых поршневых насосах с кривошипно-шатунным приводом; в таких насосах палец кривошила можно переставлять в прорези щеки кривошила. При остановке насоса можно переставлять палец на определенное расстояние R от центра и иметь S = 2R, необходимое для получения требуемой подачи.

В прямодействующих паровых насосах поршни приводятся в движение непосредственно от штоков паровых поршней; в этом случае получают изменение хода перестановкой парораспределительных органов.

Основным способом регулирования подачи поршневого насоса с электрическим приводом является изменение частоты вращения приводного двигателя или перемена отношения передаточных устройств, включенных между двигателем и насосом. Этот способ регулирования оправдывается энергетически.

Дросселирование как способ регулирования поршневых насосов недопустимо, ибо оно почти не влияет на подачу, но существенно увеличивает потребляемую мощность.

Характеристики. Основной характеристикой поршневого насоса является зависимость между его подачей и напо-

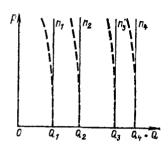


Рис. 8.8. Теоретические и действительные характеристики папора при n = var

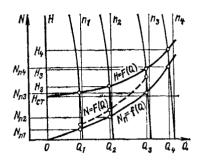


Рис. 8.9. График совместной работы поршневого насоса и трубопровода

ром (давлением). Форма этой зависимости легко выясняется из уравнения (8.18). Действительно, для насоса с заданными геометрическими размерами подача теоретически не зависит от давления. Это значит, что при заданной частоте вращения подача постоянна и одинакова при всех напорах. Поэтому в системе координат Q-H характеристика H=f(Q) изобразится (при $n=n_1$) прямой линией, параллельной оси ординат (рис. 8.8).

Если насос получит новую частоту вращения $n_2 > n_1$, то его подача увеличится пропорционально частоте вращения и характеристика займет новое положение, соответствующее n_2 . Аналогично получаются характеристики для частот вращения $n_3 > n_2$, $n_4 > n_3$...

Теоретические характеристики поршневого насоса при переменной частоте вращения представляются семейством прямых линий, параллельных оси ординат. Действительные же характеристики отклоняются от теоретических, как это показано штриховыми линиями на рис. 8.8.

Указанное отклонение объясняется тем, что при повышении напора объемный КПД насоса уменьшается вследствие увеличения утечек.

Характеристики H = f(Q) показывают, что при заданной частоте вращения поршневой насос может создавать различные напоры. При этом он будет потреблять разные мощности.

Так как давление, создаваемое насосом любого типа, определяется условиями совместной работы насоса и трубопроводной сети, то вопрос о мощности на валу поршневых насосов может быть рассмотрен только применительно к условиям заданной сети.

8.6. Совместная работа поршневого насоса и трубопровода

Задача по определению напора (давления), создаваемого поршневым насосом, и полезной мощности его решается графически совместным построением характеристики насоса и трубопровода. Это выполнено на рис. 8.9 для частот вращения n_1 , n_2 , n_3 и n_4 при условии $n_1 < n_2 < n_3 < n_4$.

Создаваемые насосом напоры и подачи соответственно

равны H_1 , H_2 , H_3 , H_4 и Q_1 , Q_2 , Q_3 , Q_4 .

Полезные мощности насоса для каждой подачи

$$N_{\rm rr} = \frac{\rho QgH}{1000}$$
 (8.19)

На рис. 8.9 нанесены ординаты кривой $N_n = f(Q)$. Эта кривая дает представление об изменении полезной мощности в зависимости от подачи (и частоты вращения) поршневого насоса; это характеристика полезной мощности. Форма ее зависит от гидравлических свойств трубопровода, присоединенного к насосу.

Если трубопровод обладает малым гидравлическим сопротивлением и насос преодолевает в основном статический напор, то характеристика полезной мощности получается почти прямой линией. При отсутствии статического напора в сети характеристика полезной мощности является кубической параболой вида $N_n = an^3$.

Мощность на валу поршневого насоса изменяется при изменении частоты вращения вала, потому что изменяются полезная мощность и КПД насоса. Полный КПД насоса имеет наибольшее значение при оптимальной частоте вращения. Отклонение частоты вращения от оптимальной вызывает уменьшение КПД.

Изменение КПД при регулировании поршневого насоса может быть установлено только при испытании его.

Когда значения КПД в пределах допустимых для данного насоса изменений частоты вращения известны, то по значениям полезной мощности могут быть определены соответствующие мощности на валу. Штриховая кривая, по-казанная на рис. 8.9 и построенная в пределах подачи от Q_1 до Q_3 , дает представление о характере изменения мощности насоса. Это характеристика мощности насоса.

8.7, Допустимая высота всасывания

Анализируя работу поршневого насоса с кривошипношатунным механизмом, можно видеть, что наиболее низкое давление получается в самой верхней точке полости всасывания в тот момент, когда поршень изменяет направление движения (начинает всасывающий ход). В этот момент поршень движется с наивысшим ускорением и на значение давления в цилиндре оказывают существенное влияние силы инерции жидкости, движущейся за поршнем безотрывно.

Давление в цилиндре с учетом влияния сил инерции при всасывании определяется уравнением одномерного неустановившегося движения

$$p_{BC} = p_0 - \rho g H_{BC} - \rho g h_{BC} \mp p_{HH}, \qquad (8.20)$$

где p_0 — давление на поверхности всасываемой жидкости; $H_{\rm BC}$ — расстояние по вертикали от поверхности всасываемой жидкости до верхней точки полости цилиндра; $h_{\rm BC}$ — потери напора во всасывающем тракте; $p_{\rm ин}$ — понижение давления, обусловленное инерцией неравномерно всасываемой жидкости.

Скорость жидкости в сечении $\Omega_{\rm BC}$, м², полости всасывания

$$c_{\mathrm{BC}} = v_{\mathrm{II}} \frac{\Omega_{\mathrm{II}}}{\Omega_{\mathrm{DC}}} = R \omega \sin \alpha \frac{\Omega_{\mathrm{II}}}{\Omega_{\mathrm{DC}}}$$
.

Ускорение всасываемой жидкости

$$a_{\mathrm{BC}} = \frac{dc_{\mathrm{BC}}}{dt} = R\omega^2 \cos\alpha \frac{\Omega_{\mathrm{R}}}{\Omega_{\mathrm{BC}}}$$
 .

 Π_0 изложенному в § 8.3 $\cos \alpha = 1 - x/R$. Следовательно,

$$a_{\rm BC} = R\omega^2 \frac{\Omega_{\rm B}}{\Omega_{\rm BC}} \left(1 - \frac{x}{R}\right).$$

Сила инерции неравномерно всасываемой жидкости

$$P_{\rm\scriptscriptstyle BH} = \rho L_{\rm\scriptscriptstyle BC} \, \Omega_{\rm\scriptscriptstyle BC} \, R \omega^2 \, \frac{\Omega_{\rm\scriptscriptstyle B}}{\Omega_{\rm\scriptscriptstyle BC}} \Big(1 - \frac{x}{R} \Big),$$

где L_{Bc} — длина полости всасывания с неравномерным движением.

Очевидно,

$$p_{\rm BR} = \frac{P_{\rm MH}}{\Omega_{\rm BC}} = \rho L_{\rm BC} R \omega^2 \frac{\Omega_{\rm R}}{\Omega_{\rm BC}} \left(1 - \frac{x}{R}\right).$$

Подставляя в последнее $\omega = \pi n/30$, получаем

$$p_{\text{mb}} = \rho L_{\text{bc}} \, R \, \frac{\pi^2 \, n^2}{900} \, \frac{\Omega_{\text{n}}}{\Omega_{\text{bc}}} \Big(1 - \frac{x}{R}\Big). \label{eq:pmb}$$

По уравнению (8.20)

$$p_{\rm BC} = p_0 - \rho g H_{\rm BC} - \rho g h_{\rm BC} \pm \rho L_{\rm BC} R \frac{\pi^2 n^2}{900} \frac{\Omega_{\rm B}}{\Omega_{\rm BC}} \left(1 - \frac{x}{R}\right).$$

Наименьшее значение. $p_{\rm BC}$ достигается в начале хода

всасывания при x=0 (см. § 8.3).

Отрыв поршня от жидкости (явление кавитации) происходит при понижении давления в полости всасывания до давления насыщенного пара $p_{\text{н.п.}}$ при данной температуре жидкости. Поэтому полагаем в уравнении (8.20)

$$p_{\rm BC} = p_{\rm H \, 0} + 20\,000 \, \text{H/m}^2$$
,

где 20 000 Н/м² — запас давления, обеспечивающий безотрывность поршня от жидкости. Получаем допустимую высоту всасывания

$$H_{\rm BC}^{\rm AOB} = \frac{p_0 - (p_{\rm II-II} + 20\,000)}{\rho g} - h_{\rm BC} - \frac{L_{\rm BC}}{g} \frac{\Omega_{\rm II}}{\Omega_{\rm BC}} \frac{\pi^2 n^2 R}{900} \,. \quad (8.21)$$

Отсюда ясно влияние различных факторов на допустимую высоту всасывания поршневого насоса. Особое значение имеет частота вращения вала насоса, влияющая на допустимую высоту всасывания через инерционные силы и гидравлические сопротивления полости всасывания.

Увеличение частоты вращения существенно понижает

допустимую высоту всасывания поршневого насоса.

Допустимая высота всасывания при температуре воды до 303 К обычно не превышает 6 м.

8.8. Конструкции поршневых насосов

В зависимости от рода привода различают две основные группы поршневых насосов: паровые и с электрическим приводом.

Паровые насосы выполняются горизонтальными и вертикальными.

На рис. 8.10 представлена конструкция горизонтального парового насоса. Поршень водяного цилиндра приводится в движение непосредственно штоком парового поршня. Такие насосы обычно бывают двухпоршневыми для обеспечения равномерности подачи и удобного осуществления парораспределения. При этом каждый из штоков пары цилиндров (парового и водяного) управляет парораспределением соседнего цилиндра.

Паровые насосы просты по устройству, но энергетически пеэффективны, так как КПД парового цилиндра их низок. Насосы этого типа применяются в малых стационарных и транспортных установках для питания паровых котлов.

Поршневые насосы с электрическим приводом выполняются с горизонтальным и вертикальным расположением цилиндров. Конструкция горизонтального двухпоршневого насоса двустороннего действия показана на рис. 8.11. Поршень 1 насоса приводится в движение штоком 2, соединенным через крейцкопф 3 с кривошипно-шатунным механизмом. Цилиндр 4 представляет собой отдельную отливку, крепящуюся к основной раме 5 насоса. Нагнетательные 6 и всасывающие клапаны расположены на цилиндрах и благодаря съемным крышкам 7 доступны для осмотра и ремонта.

Вследствие ограниченного числа двойных ходов поршня двигатель передает мощность на вал насоса при помощи понижающей зубчатой передачи.

Насосы с электрическим приводом при различных диаметрах цилиндров охватывают области давлений до 700 м вод, ст. и подач до 1400 л/мин.

Специальные гидравлические поршневые насосы, употребляемые в прессовых установках, создают давление до 100 МПа. Поршневые электроприводные насосы распространены в промышленности как дозаторы компонентов составляемой жидкой смеси.

На рис. 8.12 изображен дозировочный насосный агрегат 4ДА6-10, предназначенный для одновременной подачи четырех различных жидкостей.

В процессе работы изменением частоты вращения вала насоса можно одновременно и пропорционально изменять подачу всех четырех жидкостей.

Регулирование подачи каждой жидкости раздельно достигается изменением длин хода поршней отдельных цилиндров.

В станционной теплоэнергетике находят широкое применение поршневые насосы малой подачи для непрерывного

18-559 273

снабжения реагентами систем водоприготовления и ведения заданного режима котловой воды. На рис. 8.13 дан продольный разрез однопоршневого вертикального насоса такого типа.

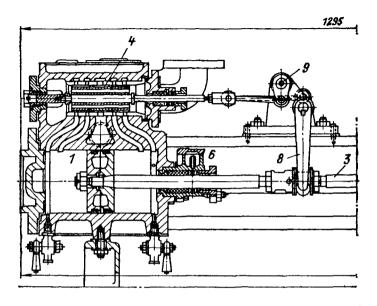
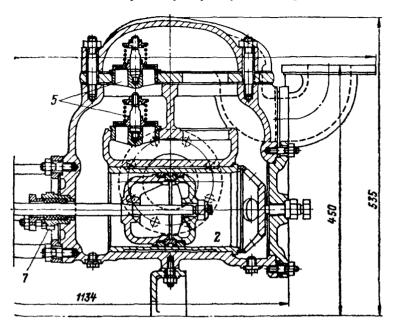


Рис. 8.10. Горизонтальный


1 — паровой цилиидр; 2 — водяной цилнидр; 3 — шток; 4 — паровой золотник; Варораспределения

Технические	да	нн	ыс	0,	дн	οп	or	Щ	не	вь	X	на	co	СО	В	эт	or	запит о
Диаметр поршия,	ММ		•					•	•				٠	٠				15-28
Подача, л/ч Давление, МПа .	•	:	•		•		•	•	•	•	•	:	:	•	:	:	:	25—100 6—25

Поршни насосов выполняются дисковыми (рис. 8.14) и плунжерными (рис. 8.15). Уплотнение дисковых поршней в цилиндре достигается металлическими разрезными уплотняющими кольцами (аналогично поршням компрессоров) или кожаными манжетами. Плунжерный поршень уплотняют внешним сальником с мягкой набивкой. Поршни изготовляют из чугуна, а для высоких давлений — из стали.

Клапаны часто выполняют тарельчатыми. Для насосов высокой подачи тарельчатые клапаны выполняются двух-кольцевыми (рис. 8.16) и трехкольцевыми. Наиболее часто

употребляемая конструкция такого клапана для малого расхода дана на рис. 8.17. Седло 1 клапана плотно впрессовано в клапанную перегородку цилиндра. Седло имеет

двухпорішневой паровой насос:

5 — клананы насоса; 6 — паровой салынк; 7 — водяной салынк; 8 и 9 — рычаги

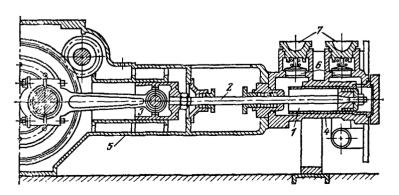
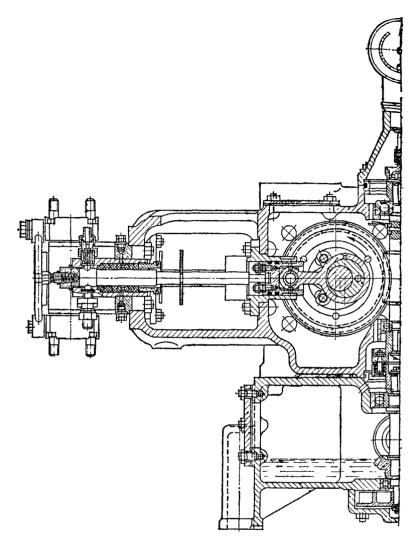
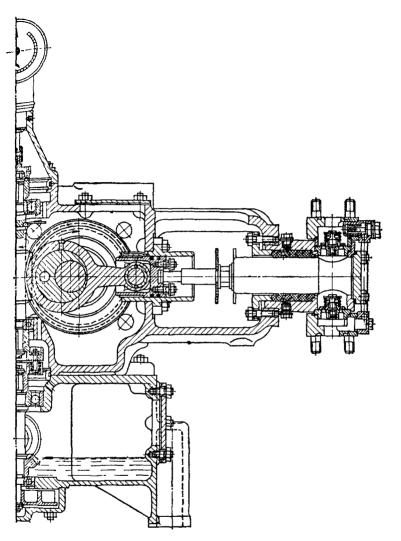




Рис. 8.11 Продольный разрез горнзонтального двухпоршиевого насоса двусторониего действия

Рнс. 8.12. Дозировочный

две кольцевые притертые поверхности: 2 и 3. Клапан 4 скользит по направляющему стержню 5 и под влиянием разности давлений над клапаном и под ним, а также под действием конической пружины 6 плотно прижимается к седлу.

насосный агрегат 4ДА6-10

В некоторых случаях тарельчатые клапаны выполняются в виде толстых резиновых пластин: это обеспечивает высокую герметичность клапана.

Сальники поршневых насосов бывают с мягкой набив-кой или с кожаными манжетами (рис. 8.18). Здесь давле-

 Рис. 813. Однопоршневой вертикальный дозировочный насос малой подачи:

Л — фундаментная плита;
 2 — циліндр;
 3 — гільва;
 4 — влунжер;
 5 — свльниковая гайка;
 6 — гайка для изменення хода плунжера;
 7 — предохранительный клапаи;
 8 — клананная камера;
 9 — всасывающий клапан;
 10 — нагнетательный клапан;
 11 — подвод раствора;
 12 — отвод раствора;
 13 — пробка для удалення воздуха из рабочей полости цилиндра

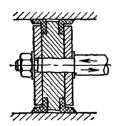


Рис. 8.14. Дисковый поршень с уплотнением кожапыми Г-образными манжетами

Рис. 8.15. Плунжерный поршень

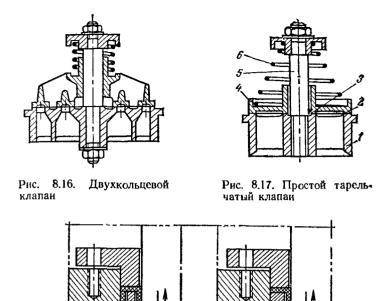


Рис 818. Сальники с кожаными манжетами

ние, создаваемое насосом, действует на впутреннюю поверхность манжеты Γ - или Π -образного сечения, прижимает ее к штоку и создает тем большую плотность, чем выше давление, создаваемое насосом.

8.9. Испытание поршневых насосов и определение неисправностей в рвботе

Испытания насосов производят с целью выяснения их исправности и энергетической эффективности работы. При испытании насоса измеряют действительную подачу, мощность, объемный, гидравлический, механический и полный КПД.

Измерение действительной подачи удобно производить при номощи мерных баков. В тех случаях, когда это вынол-

нить нельзя, пользуются диафрагмой с дифференциальным

манометром.

Теоретическая подача насоса, м³/с, определяется в зависимости от геометрических размеров насоса и частоты вращения (двойных ходов поршня) по формулам

$$Q_{\rm T} = \frac{\pi}{4} D^2 S - \frac{n}{60} z; \qquad (8.22)$$

$$Q_{\tau} = \frac{\pi}{4} (2D^2 - d^2) S \frac{n}{60} z. \tag{8.23}$$

В приведенных формулах г — количество поршней насоса.

Давление, создаваемое насосом, определяется по показаниям манометра на напорном и вакуумметра на всасывающем трубопроводах.

Полезная мощность определяется по действительной

подаче и полному напору по формуле

$$N_{\rm m} = \frac{\rho QgH}{1000} \,. \tag{8.24}$$

Индикаторная мощность определяется по формуле (8.12) в соответствии с указаниями, дапными для этой формулы.

Мощность *N* насоса вычисляется по показаниям приборов в сети электродвигателя, его КПД и КПД передачи от электродвигателя к насосу.

Объемный КПД определяется по идеальной и действительной подачам

$$\eta_0 = Q/Q_T$$

Внутренний КПД

$$\eta_i = N_{\rm m}/N_i$$
.

Полный КПД

$$\eta = N_{\rm m}/N$$
.

Гидравлический КПД определяется из соотношения

$$\eta_i = \eta_o \eta_r$$
,

откуда

$$\eta_{\Gamma} = \eta_i/\eta_{o}$$
.

Механический КПД

$$\eta_{\rm M} = \frac{\eta}{\eta_{\rm D} \eta_{\rm O}}$$
.

В результате оказываются известными все основные параметры поршневого насоса.

Сравнение снимаемой при испытании индикаторной диаграммы с нормальной диаграммой позволяет судить о пра-

вильности работы насоса.

Наличие неисправностей в работе насоса отражается на его индикаторной диаграмме, как это видно из рис. 8.19.

Если насос вместе с жидкостью подсасывает воздух, то линия подъема давления 1-2 из вертикальной прямой ли-

нии превращается в кривую (случай а). Это означает, что повышение давления протекает на некоторой части хода поршня вследствие сжимаемости воздуха, находящегося в цилиндре. Если при этом воздух из цилиндра на ходу подачи вытесняется, то линия понижения давления 3-4 вертикальна. Если же воздух в цилиндре остается, то линия понижения давления также превращается в

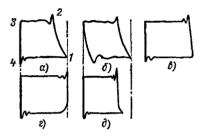


Рис. 8 19. Иидикаториые диаграммы неисправных насосов

кривую и диаграмма получает форму 6. Наличие воздуха в цилиндре во время подачи и всасывания отражается также на горизонтальных линиях диаграммы: они получаются волнистыми.

Неплотность всасывающего клапана придает наклон линии 1-2, так что повышение давления до конечного значения достигается на некоторой части хода (случай в). Если же напорный клапан недостаточно плотен, то повышение давления начинается несколько ранее начала хода подачи (случай г).

Повышенная (против допустимой) высота всасывания вызывает разрыв сплошности жидкости в цилиндре и удары в начале кода подачи. Это объясняется резким смыканием полости разрыва в начале процесса повышения давления. Диаграмма приобретает форму ∂ .

Ввиду большого практического значения индикаторных диаграмм снятие их производится не только при испытаниях насоса, но и периодически в процессе эксплуатации насоса.

Пример 8.1. Определить основные размеры двухпоршиевого насоса двусторониего действия с подачей $Q=1,25\,$ м³/мии, найти напор и мощиость при работе насоса на сеть, характеристика которой выражается уравнением $H = H_{c\tau} + aQ^2$ при $H_{c\tau} = 40$ м и a = 6.4.

Насос приводится в движение через клиноремениую и зубчатую передачи от электродвигателя с n=960 об/мив.

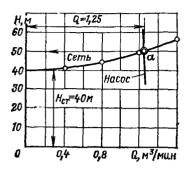


Рис. 8 20. Характеристика трубопроводной сети (к примеру 8.1)

Решение. Подача одиого цилиндра

$$Q' = 0.5Q = 0.63 \text{ m}^3/\text{muft.}$$

Уравнение подачи

$$Q'=\frac{\pi}{4} (2D^2-d^2) nS\lambda_0.$$

Принимаем

$$S/D = 1 \text{ H } \frac{\pi d^2}{4} = 0.1 \frac{\pi D^2}{4}$$
;

тогла

$$Q' = \frac{\pi}{4} 1,9D^2 n\lambda_0.$$

Средняя скорость поршня $v_u = 2Sn/60$ может быть принята равной 0,6 м/с. Поэтому

$$n = 18/D$$
; $Q' = 27D^2 \lambda_0$.

Необходимое зиачение D при λ_0 =0,92 составляет

$$D = \sqrt{\frac{Q'}{27\lambda_0}} = \sqrt{\frac{0.63}{27 \cdot 0.92}} = 0.16 \text{ M.}$$

Ход поршия S=D=0.16 м.

Необходимая частота вращения вала насоса

$$n = 18/D = 18/0, 16 \approx 113 \text{ ob/muss.}$$

Передаточное отношение редуктора

$$i = n_{\text{AB}}/n = 960/113 = 8.5.$$

Диаметр штока $d=\sqrt{0.1} D=0.317 \cdot 160=50$ мм.

Пользуясь уравиеиием, приведенным в задании, строим характеристику сети (рис. 8.20).

Точка α характеристики определяет напор, создаваемый насосом} он равеи 50 м.

Задавшись КПД насоса и зубчатой передачи $\eta\!=\!0.82$ и $\eta_u\!=\!0.94$, определим мощность насоса:

$$N = \frac{\rho QgH}{1000\eta\eta_{H}} = \frac{1000 \cdot 1,25 \cdot 9,81 \cdot 50}{60 \cdot 1000 \cdot 0,82 \cdot 0,94} = 13,2 \text{ kBt.}$$

ГЛАВА ДЕВЯТАЯ

POTOPHUE HACOCU

9.1. Основные конструктивные типы

Объемные роторные машииы (насосы и гидродвигатели) широко распростраиены в промышлениости и транспорте; конструкции их чрезвычайио разнообразиы. Они примениются в системах смазки и регулирования двигателей, компрессоров и насосов, в силовых гидропередачах и особеино широко в системах гидроприводных устройств различного назначения. Выпуск их в СССР исчисляется сотнями тысяч штук в год. Рабочие параметры лежат в области относительно малых подач и высоких давлений.

Выделим, следуя конструктивиому признаку, следующие группы роторных насосов: шестеренные, пластичатые, аксиально-поршневые, радиально-поршневые, винтовые. Каждая из указанных групп содержит много конструктивных модификаций.

Шестеренные насосы. Конструктивная схема такого насоса с внешним зацеплением представлена на рис. 9.1.

Сцепляющиеся зубчатые колеса 1 и 2 помещены с малыми зазорами в корпусе 3. Одно из колес (ведущее) снабжено наликом, выходящим из корпуса через уплотияющий сальник; другое колесо (ведомое) являетси холостым.

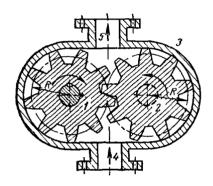
При вращении колес в направлении, указанном стрелками, жидкость поступает из полости всасывания 4 во впадины между зубьями и перемещается в напориую полость 5; здесь при сцеплении происходит выдавливание жидкости из впадии.

Зубчатые колеса таких иасосов обычно выполняются одинаковых размеров.

Подача шестеренного иасоса, состоищего из двух колес разных размеров, определяется как

$$Q = (flz_1 n_1 + flz_2 n_2) \eta_0, (9.1)$$

где f — площадь поперечного сечения впадины между зубьями; l — длина зуба колеса; z_1 и r_2 — количества зубьев; n_1 и n_2 — частоты вращения, об/мии; η_0 — объемный коэффициент насоса.


Если обозначить передаточное число зубчатой пары e, а диаметры начальных окружностей D_1 и D_2 , то уравнение (9.1) можно привести k следующему виду:

$$Q = flz_1 n_1 \left(1 + \varepsilon \frac{D_2}{D_1}\right) \eta_0. \tag{9.2}$$

Если колеса одинаковы, то $\varepsilon = 1$ и

$$Q = 2flzn\eta_0. (9.3)$$

Подача насоса определяется геометрическими размерами насоса и частотой вращения его вала.

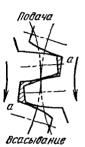


Рис. 9.1. Конструктивная схема шестеренного насоса

Рис. 9.2. Обратное нагиетание жидкости шестеренным насосом

Объемный коэффициент η_o иасоса учитывает переиос жидкости в простраиствах a впадин обратно в полость всасывания (рис. 9.2). Этот же коэффициент оценивает перетекание жидкости через зазоры из напорной полости во всасывающую. Для насосов $\eta_o = 0.7 \div 0.9$.

В результате исследования кинематики и геометрии шестеренного насоса с одинаковыми колесами при эвольвентном зацеплении приходят к следующему выражению для подачи:

$$Q = 0.233lRhn,$$
 (9.4)

где R — радиус начальной окружности; h — высота головки зуба.

Все приведенные выражении для подачи дают средние значения ее за достаточио длительный промежуток времени. При работе шестереяных иасосов подача испрерывно колеблется около среднего значения.

Шестерениые иасосы реверсивны, т. е. при измеиении направления вращения зубчаток они измеияют иаправление потока в трубопроводах, присоединениых к насосу Эти насосы обратимы: подводя жидкость под давлением к одному из патрубков иасоса и сообщая другой па-

трубок со сливным баком, получаем работу машины в качестве гидродвигателя; выходной вал машины будет развивать мощность, пропорциональную расходу и давлению подводимой жидкости.

Пластинчатые (шибериые) насосы. Простейшая схема такого насоса дана на рис. 9 3. Действительные конструкции значительно сложнее; син укладываются в две основные схемы.

Первая схема — насос с внешним подводом жилкости (рис. 93.).

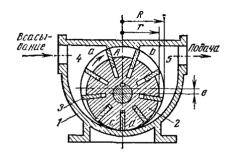


Рис 93. Пластинчатый насос с внешним подводом

Рис. 94. Пластинчатый насос с внутренним подводом

В корпусе 1 вращается эксцентрично расположениый массивный ротор 2. В радиальных канавках, выфрезерованных в роторе, ходят пластинки (шиберы) 3. Виутренняя поверхность корпуса обработана так, что полость всасывания 4 и полость подачи 5 отделены одна от другой пластинами и цилиндрическими поверхностями ав и са Для правильной работы насоса нужно, чтобы длины дуг ав и са были не меньше расстояний между концами пластинок во времи пробегания их по уплотияющим поверхностям. Вследствие наличии эксцентриситета е при вращении ротора 2 жидкость переносится из полости 4 в полость 5 в межлопастных пространствах А.

Fсли экспентриситст e будет уменьшен смещением ротора вверх, то и в нижней части иасоса возникиут межлопаточные пространства и часть жидкости из полости 5 будет переноситься в полость 4.

При e=0 количества жидкости, переносимой из полости 5 в полость 4 и обратио, становятся одинаковыми, и насос не подает жидкость. Рсли же e отрицательио, т. е. откладывается от центра корпуса вверх, то происходит подача из полости 5 в полость 4.

В простейших конструкциях насосов этого типа эксцентриситет выполняется постоянным. Средияя подача такого насоса, м3/мин,

$$Q = f_A lz n \eta_{\alpha}, \tag{9.5}$$

 r_{AC} f_A — площадь межлопастиого пространства при пробегании его по замыкающей дуге ab.

Выражая f_A через внутренний радиус корпуса R, относительный эксцентриситет e и центральный угол β , можио получить развериутую формулу для определения подачи насоса.

Втораи схема — насос с внутренним подводом жидкости (рис. 9.4). Здесь имеются те же элементы коиструкции, что и в насосе с внешним подводом: корпус 1, эксцентричио посаженный ротор 2, рабо-

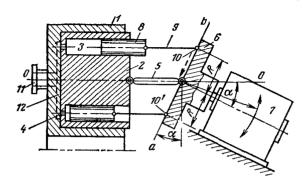


Рис. 9.5. Коиструктивная схема аксиально-поршиевого роторного нассоса

чие пластины 3. Всасывание и подача происходит через осевое отверстие в роторе, которое разделено неподвижиой, плотно поставлениой перегородкой 6 на полости всасывания и подачи. При вращении ротора в иаправлении, указаином стрелкой, объемы А между пластииами увеличиваются. Благодаря этому происходит всасывание жидкости по радиальным каналам из полости 4. Последняя сообщена со всасывающим трубопроводом.

При пробегании объемов A по дуге ba происходит уменьшение их и жидкость подается в полость ba, соединенную с напорным трубопроводом насоса. Таким образом, осуществляются внутренний подвод и отвод жидкости.

За один оборот вала каждый объем между пластинами подает f_{Al} жидкости, и подачу насоса можно вычислить по формуле (9.5).

Объемный коэффициент пластинчатых насосов, учитывающий перетекание жидкости через зазоры с напориой стороны на всасывающую, составляет 0,94—0,98.

Насосы двух указанных схем реверсивиы и обратимы.

Аксиально-поршневые насосы. На рис. 9.5 дана конструктивиая. схема аксиального поршиевого роторного насоса. В неподвижный корпус 1 плотио вставлен ротор 2, свободио вращающийся вокруг оси 0-0. В теле ротора 2 выполнены цилиидрические, хорошо обработанные отверстия 3 с осями, параллельными 0-0. Эти отверстия являются цилиидрами насоса. Торцы цилиндров 3 снабжены сквозными отверстиями 4. Ротор 2 сопряжен карданом 5 с наклонной вращающейся шайбой 6, сидящей на валу электродвигателя 7. Поршии 8 соединены тягами 9 с шариирами, закрепленными на плоскости шайбы 6. При вращении шайбы 6 и соединенного с ней ротора 2 шарниры 10 и 10° бегут по окружности в плоскости ав, установленной под углом α к плоскости вращения ротора 2. Благодаря этому поршни 8 движутся в цилиидрах

3, проходя вдоль оси путь $2R\sin\alpha$. При этом объемы, замыкаемые поршнями в цилиидрах, иепрерывно изменяютси. Так, если шарнир 10' поршня бежит по дуге полуокружиости радиусом R вверх, то поршень отолвигается вправо и происходит всасывание через всасывающий штуцер 11. серповидную канавку 12 в торце корпуса н отверстие 4 в полость цилиидра. Дальнейший путь шарнира 10'вииз по дуге, указанной штриховой стрелкой, повлечет за собой подачу жидкости даниым цилиндром в напориый штуцер. Аналогичио работают все цилиидры.

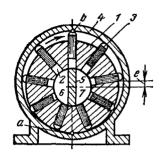


Рис. 9.6. Поршневой радиальный роторный насос

Средияя подача такого насоса может быть определена по формуле

$$Q = 2R \sin \alpha \frac{\pi d^2}{4} z n \eta_0 = 1,57 \dot{R} d^2 z n \eta_0 \sin \alpha, \qquad (9.6)$$

где η₀=0,97.

Насосы аксиально-поршневого типа реверсивны и обратимы; при подведении жидкости под давлеиием к одному из патрубков насоса и сообщении другого со сливом силы, действующие от жидкости на поршии, будут передаваться по штокам на плоскость шайбы 6; таким образом, эти силы будут давать тангенциальные составляющие, обусловливающие вращающий момент и мощность на валу шайбы.

В рассмотренной коиструктивной схеме насоса его геометрическая ось пересекается с осью двигателя, поэтому для передачи мощности от двигателя ротору насоса необходим карданиый вал 5, усложняющий конструкцию.

Имеются аксиально-поршневые насосы, в которых геометрические оси насоса и двигателя лежат на одиой линии. В таких насосах шайба 6 выполняется профилированной, посаженной на вал под прямым углом, или плоской, сидящей на валу под углом, меньшим $90\,^\circ$. Наружные концы поршией получают движение в осевом направлении, следуя за рабочей поверхностью шайбы 6.

Радиально-поршневые насосы. Конструктиниая скема насоса дана иа рис. 9.6. Ротор 1 имеет радиально расточенные отверстия 2, выпол-

пяющие назначение цилиндров. Поршеньки 3, входящие в отверстия 2, своими иаружиыми концами упираются во внутреинюю поверхность направляющего корпуса 4.

Ротор 1 расположеи в корпусе 4 эксцентрично. Внутри осевой расточки ротора поставлена неподвижная разделительная перегородка 5. При вращении ротора в направлении часовой стрелки поршеньки, бегущие по дуге аb, отодвигаются от центра и всасывают жидкость из виутренией полости 6. Движение концов поршеньков по дуге ba вызы-

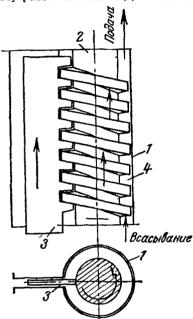


Рис. 9.7. Способ действии виитового насоса:

J — корпус насоса;
 2 — винт,
 3 — пластина,
 перегораживающая межвитковые каналы

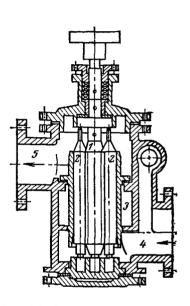


Рис. 9.8. Виитовой насос с одним рабочим и двумя замыкающими червяками:

I — рабочий червяк (винт); 2 — замыкающие червякй; 3 — полость охлаждения; 4 — полость всасывания; 5—полость подачи

вает перемещение их к центру и подачу жидкости в полость 7 и далее к иапориому штуцеру насоса.

При обозначениях, данных на рис. 9.6, средняя подача насоса

$$Q = \frac{\pi d^2}{4} 2ezn\eta_0 = 1,57d^2 ezn\eta_0, \tag{9.7}$$

где $\eta_o = 0.97$.

Насос реверсивен и обратим. Последнее обусловлено тем, что при подвелении жидкости под давлением сила, действующая на любой из поршней, обусловливает скольжение наружного конца поршня по образующей. Поэтому возникают вращение ротора и крутящий момент на сго валу.

Винтовые насосы. В системах регулирования и смазки крупных мангин-двигателей находят применение винтовые насосы Рисунок 97 объясняет способ действия таких иасосов. В цилиндрическую расточку кэрпуса 1 плотио вставлеи виит 2. В плоской прорези корпуса находится пластина 3, зубцы которой входят в межвитковые каиалы винта и выотно перегораживают их.

При вращении внита в направлении, указанном стрелкой, жилкость, заключенная в межвитковых каналах 4, удерживается от вращения зубцами пластины 3 и перемещается в осевом направлении. Таким образом, осуществляются всасывание и подача.

При вращении винта пластина 3 перемещается вверх, и для непрерывной работы насоса она должна быть бесконечной, что конструктивно невыполнимо. Поэтому в коиструкциях винтовых насосов роль пластины 3 выполииют замыкающие вииты, витки которых плотно входят в межвитковые каналы основного (ведущего) винта, перегораживая их.

На рис. 9.8 показан виитовой насос с двумя замыкающими винтлми (червяками). Подача, л/с, стандартного иасоса такого типа выражается формулой

$$Q = \frac{d^2 n}{14\,500} \,\eta_0,\tag{9.8}$$

где η_0 =0,70÷0,95; n — частота вращения основиого червяка, об/мин; d — диаметр червяка, см.

Из выражения (9.8) выясняются факторы, определяющие подачу винтового насоса.

9.2. Неравномерность подачи

Большинству типов роторных иасосов свойственна неравномерность подачи. Если при работе насоса подача его колеблется от $Q_{\text{мин}}$ до $Q_{\text{маке}}$, то перавномерность подачи карактеризуют коэффициентом перавномерности подачи

$$\delta = (Q_{\text{макс}} - Q_{\text{мин}})/Q_{\text{средн}}.$$
 (9.9)

Значение в определяется конструкцией насоса

Колебаиие подачи можно изобразить графически для любого типа роторного иасоса. Для этого надо воспользоваться формулой для вычисления подачи.

Для цестеренного насоса с колесами одинаковых размеров подача

$$Q = \frac{\pi n}{30} (h^2 + 2Rh - f^2) l, \qquad (9 10)$$

где R — радиус начальной окружности; h — высота головки зуба; f — расстояние от полюса зацепления до точки касании.

В теории энольвентимх зацеплений доказывается, что f зависит от угла поворота α зубчатых колес.

Уравиение (9.10) в координатной системе α , Q представится квадратичной параболой (рис. 9.9).

Пусть подача первой пары зубьев, находищихси в зацеплении, дает изменение подачи по ветви ab.

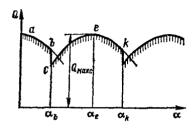


Рис. 9.9. График подачи шестерениого насоса с виешним зацеплением

При $\alpha = \alpha_b$ происходят защемление некоторого объема жидкости во впадине между зубьями и подача резко снижается по линии bc. Подача, соответствующая точке c, обеспечивается теперь другим зубом колеса.

В связи с увеличением f при изменении угла от α_b до α_e происходит увеличение подачи до $Q_{\text{макс}}$. Затем нвиду уменьшения f произойдет снижение Q и защемление (отсечка) некоторого объема в точке k и т. д. Линия пода-

чи представится совокупностью параболических кривых, показаиных ма чертеже штриховкой. График указывает иа существенные колебания подачи.

Роторные насосы часто примеияют в таких системах, где раниомерность подачи и давления имеет не очень большое зиачение. Для повышения равномериости подачи насосы делают с увеличенным количеством зубьев, пластни или поршней и конструктивными мерами устраняют защемление объемов жидкости во впадинах между зубьями. В некоторых случаях имеет смысл установка воздушных колпаков (см. § 8.3).

9.3. Мощность и КПД

В зависимости от подачи и давления, создаваемых роториым насосом, мощность его определяется формулой

$$N = \frac{Qp}{1000\eta} . {(9.11)}$$

В роторных насосах основное зиачение имеют объемные потери и потери, обусловленные механическим трением. Потери энергии, обусловленные трением жидкости, здесь иезиачительны, и практически $\eta_{\rm r} \approx 1$. Следовательно,

$$\eta = \eta_0 \, \eta_M. \tag{9.12}$$

Внутренние объемные потери определяются типом иасоса, шириной зазоров, вязкостью жидкости и давлением, которое создает иасос.

Ширина зазоров оказывает существенное влияние на объем жидкости, циркулирующей виутри иасоса; износ элемеитов насоса, связаиный с увеличением зазора, понижает объемный КПД и ухудшает энергетическую эффективность насоса.

Вязкость жидкости непосредственно влияет иа гидравлическое сопротивление потоков в зазорах. Чем больше вязкость, тем меньше утечки через зазоры и выше η_o . Отсюда выясняется влияние температуры жидкости на объемный коэффициент роториого насоса; η_o понижается с повышением температуры жидкости. Средиие значения η_o для разных типов насосов приведены в § 9.1:

Механические потери энергии, оцениваемые $\eta_{\text{м}}$, зависит главным образом от сил трения между движущимися поверхиостями деталей насосов. Основиой фактор, влияющий на $\eta_{\text{м}}$, — давление, создаваемое насосом. Если давление повышается, но не превосходит векоторого предсла, то $\eta_{\text{м}}$ увеличивается; это объисняется тем, что силы трения возрастают медлениее, чем увеличивается полезная мощность насоса. При повышении давления сверх некоторого предельного значения давление начинает уменьшаться вследствие выдавливания жидкости с трущихся поверхностей. Такие режимы работы нежелательны ввиду значительного износа.

На η_{μ} влияют вязкость и, следовательно, температура жидкости. Чем выше вязкость, тем интенсивнее трение в тонком слое жидкости, разделяющем движущиеся поверхности, и меньше η_{m} . При малой вязкости (высокая температура жидкости) η_{m} велико. Но при этом имеется опасность выдавливания жидкости и возникновения сухого и полусухого трения, вызывающего износ. Поэтому для роторных насосов разных типов существует максимальная температура жидкости, превышение которой в эксплуатации недопустимо.

Механическое трение в роториых иасосах проявляется в сальинках, подшипинках, между зубьями и винтовыми поверхностими рабочих элементов, в пазах роторов пластиичатых насосов и т. д.

Для нормальных условий работы роторных иасосов

$$\eta_\text{M}=0.85 \div 0.98$$
 .

9.4. Характеристики. Регулирование подачи

Для роторных насосов приняты два типа характеристик: 1) p = = f(Q) и 2) Q = f(p); N = F(p); $\eta = \varphi(p)$.

Характеристики первого типа аналогичны характеристикам поршневых насосов и применяются для исследования совместной работы насоса и трубопровода (см. § 8.5 и 8.6).

Характеристики p=f(Q) одиотипиы для всех объемных насосов, и поэтому кривые на рис. 8.8 и 8.9 для поршиевых насосов могут рассматриваться и как Характеристики роторных насосов,

Рассмотрим характеристики второго типа (рис. 9 10). Здесь за аргумент принимается давление, создаваемое иасосом; вязкость жидкости считается постоянной.

Зависимость Q = F(p) изображается линией, отклоняющейся от го-

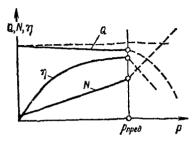


Рис. 9.10. Характеристика $Q = \int (p)$ шестеренного насоса

ризонтали. Это объясияется понижением η_0 при повышении давления.

Если бы η_o оставалось при изменении p постоянным, то зависимость N=F(p) была бы почти прямой линией. Но в действительности $\eta_o \neq$ const и зависит от ряда факторов, указаиных в предыдущем параграфе. При изменении p КПД существенно измеияется, и это приводит к особой форме кривой N=F(Q), отклоняющейся от прямой линии.

На графике рис. 9 10 отмечено предельное давление $p_{\text{пред}}$, превышение которого влечет за собой работу насоса с быстрым изиосом. Давление $p_{\text{пред}}$ устанавливает предел работоспособности насоса. За этим пределом наблюдаются быстрое сиижение КПД и рост мощиости насоса.

Величина $p_{\text{пред}}$, допустимая для роторного насоса, устанавливается натягом пруживы предохранительного клапана, перепускающего жидкость из иапориой полости иасоса во всасывающую. Такой клапан является необходимой принадлежностью каждого роторного иасоса.

Регулирование подачи роторных иасосов может производиться различными способами.

Подачу всех типов роторных насосов можно регулировать изменением частоты вращении и перепуском жидкости из напорного патрубка во всасывающий.

Подача пластинчатых насосов в соответствии с формулой (9.5) может регулироваться также изменением эксцентриситета (см. рис. 9.3) потому что площадь f_{A} пространства между пластинами зависит от e.

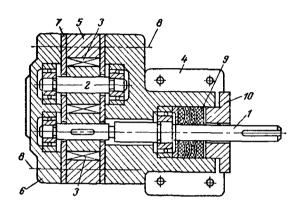
Из (9.7) следует, что подача радиально-поршневых насосов также может регулироваться изменением эксцентриситета.

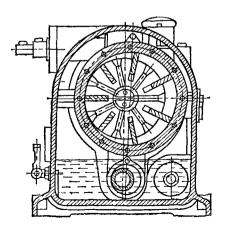
Аксиальио-поршневые насосы (см. рис. 9.5) регулируются изменением угла α. Это достигается карданным соединением ротора насоса и ведущей шайбы и установкой двигателя на подвижной поворотной платформе.

9.5. Области применения. Конструкции

Роторные насосы применяются для малых подач при высоком дав-

На рис. 9.11 дан продольный разрез шестеренного насоса. Шестеренные насосы изготовляют на давления до 20 МПа при подачах до 1000 л/мии и частоте вращения до 4000 об/мин. В энергетике такие насосы применяют в системах смазки и регулирования тепловых двигателей и центробежных машин большой мощности.




Рис 911. Продольный разрез шестеренного насоса:

I — вал ведущего колеса, 2 — ось ведомого колеса; 3 — зубчатые колеса; 4 — станина; 5 — корпус; 6 — крышка, 7 — регулирующие прокладки; 8 — оси стяжных виныск, 9 — сальник манжетного типа; 10 — крышка сальника

Рис 912. Поперечный разрез пластинчатого насоса

Конструкция пластиичатого насоса представлена на рис. 9 12. Эти насосы предназначены для давлений до 15 МПа при подачах до 200 л/мин и частоте вращения до 3000 об/мин.

На рис. 9.13 и 9.14 представлены разрезы аксиально- и радиально-поршневых насосов.

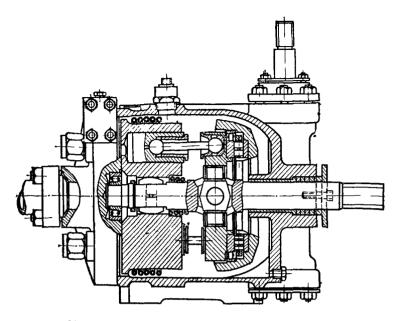


Рис. 9.13. Продольный разрез аксиально-поршиевого иасоса

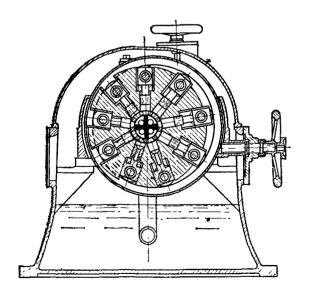


Рис. 9 14 Поперечный разрез радиально-поршневого насоса

Акснально-поршневые насосы выполняются для давлений до 35 МПа, подач до 400 л/мин; частота вращения обычно не превышает 2000 об/мин.

Раднально-поршневые насосы развивают давления до 100 МПа при нодаче до 8000 л/мин. Частота вращения до 1500 об/мин.

Одна из конструкций виитового насоса показана иа рис. 9.8. Давление таких насосов достигает 20 МПа, подача — 900 м³/ч. Для этих иасосов характерна высокаи частота вращения, доходящая в уникальных конструкциях до 18 000 об/мин.

Корпуса роторных иасосов иизкого давления изготовляются обычно из конструкционного чугуна; высокое давление требует применения стального литья. Рабочие органы насосов — роторы, зубчатые колеса, пластины — выполняютси из специальных сталей. Применяют особую обработку поверхностей трении с целью повысить износостойкость деталей.

Достоинством всех типов роториых насосов является возможность непосредственного соединения их с двигателем, что обусловливает компактность агрегата. Возможность самовсасывания, присущая ротационным насосам, явлиется их положительным свойством.

К недостаткам роторных — шестеренных, пластинчатых и порщневых насосов относятся ограниченность частоты вращения и некоторая исравномерность подачи. Винтовые насосы практически лишены этих недостатков и обладают высокой равномерностью подачи, большой частотой вращения, бесшумностью работы, высоким КПД. При одинаковых рабочих параметрах винтовые насосы дороже роторных вследствие сложности технологии винтов специального профиля.

BOOKS.PROEKTANT.ORG

БИБЛИОТЕКА ЭЛЕКТРОННЫХ КОПИЙ КНИГ

> для проектировщиков и технических специалистов

КОМПРЕССОРНЫЕ МАШИНЫ

ГЛАВА ДЕСЯТАЯ

ОСНОВЫ ТЕОРИИ

10.1. Основные понятия. Типы компрессоров

Определение компрессора дано в § 1.1. Назначение компрессоров состоит в сжатии газов и перемещении их к потребителям по трубопроводным системам.

Компрессоры, применяемые для отсасываняи газа из емкостей с вакуумом, сжимающие газ до атмосферного или несколько большего давления, называют вакуум-насосами.

Основными параметрами, характеризующими работу компрессора, являются объемная подача Q (исчисляется обычно при условиях всасывания, см. § 2.1), начальное p_1 и конечное p_2 давления или степень повышения давления $\varepsilon = p_2/p_1$, частота вращения и мощность N на валу компресcopa.

Компрессоры соответственно способу действия можно разделить на три основные группы: объемные, лопастные

и струйные (см. § 1.1).

При классификации по конструктивному признаку объемные компрессоры подразделяются на поршневые и роторные, а лопастные — на центробежные и осевые. Возможно разделение компрессоров на группы в зависимости от рода перемещаемого газа, вида привода, назначения компресcopa.

Ориентировочные значения основных параметров компрессорных машин различных типов, применяемых в промышленности, приведены в табл. 10.1 [13].

Ниже рассмотрены принципиальные конструктивные

скемы компрессоров.

Поршневой компрессор (однопоршневой, с одной ступенью сжатия) приведен на рис. 10.1. При возвратио-поступательном движении поршня осуществляются фазы процесса: расширение, всасывание, сжатие и выталкивание. Способ действия поршневого компрессора, основанный на вытеспении газа поршнем, позволяет строить конструкции с малым диаметром и ходом поршня, развивающие высокое давление при относительно малой подаче.

Таблица 10.1. Основные характеристики компрессорных машии

Tun) јазначен и е	Гіодача. м'/мніі	Степень повышения давления	Частота вращения л, об/мин
Поршневые	Вакуум-насосы	0—100	1—50	60—1500
	Қомпрессоры	0—500	2,5—1000	100—3000
Роторные	Вакуум-насосы	0—100	1—50	250—6000
	Газодувки	0—500	1,1—3	300—15 000
	Қомпрессоры	0—500	3—12	300—15 000
Цептробежные	Вентиляторы	0—6000	1-1,15	300—3000
	Газодувки	0—5000	1,1-4	300—3000
	Компрессоры	100—4000	3-20	1500—45 000
Осевые	Веитиляторы	50—10 000	1—1,04	750—10 000
	Компрессоры	100—15 000	2—20	500—20 000

Роторный компрессор пластициатого типа представлец на рис. 10.2. При вращении массивного ротора 2, в продольных пазах которого могут свободно перемещаться

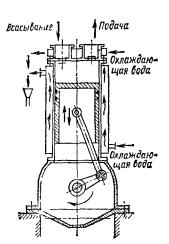


Рис. 10.1. Конструктивная схема поршневого компрессора

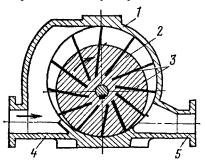
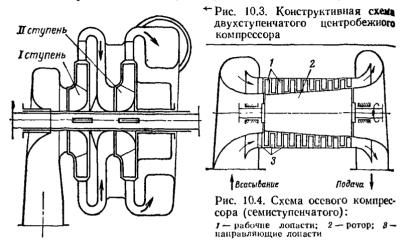


Рис. 10.2. Конструктивная схема роторного компрессора:


1 — корпус; 2 — ротор; 3 — пластины, 4 — всасывающий патрубок; 5 — подающий патрубок

стальные пластины 3, газ захватывается в межлопастные пространства, переносится от всасывающего патрубка 4 к напорному 5 и вытесняется в трубопровод.

Вал роторного компрессора может соединяться с валом приводного двигателя непосредственно, без редуктора. Это

обусловливает компактность и малую массу установки целом.

Центробежный компрессор (рис. 10.3) действует аналорично центробежному насосу (см. § 3.1). Вал центробежного компрессора соединяется с валом приводного двигатела (электродвигатель, паровая турбина) или непосредствекно, или через механическую передачу, повышающую часто-

ту вращения вала компрессора, чем достигается уменьшение размеров компрессора, снижаются его масса и стоимость.

Осевой компрессор схематически изображен на рис. 10.4. Конструкция состоит из массивного ротора с несколькими венцами рабочих лопастей и корпуса, несущего венцы неподвижных направляющих лопастей. Газ всасывается в приемный патрубок и, двигаясь в осевом направлении, сжимается последовательно в лопастных ступенях компрессора. Через напорный патрубок газ вытесняется в трубопровод, ведущий к потребителям.

Привод осевых компрессоров — от электродвигателей, паровых и газовых турбии.

10.2. Термодинамика компрессорного процесса

Простейшая теория компрессорных машин, обладающая практически приемлемой точностью, основывается на термодинамике идеального газа, подчиненного уравнению

$$p = \rho RT. \tag{10.1}$$

При конечном давлении воздушного компрессорного процесса более 10 МПа следует пользоваться уравнением состояния реального газа

$$p = z \rho R T, \tag{10.2}$$

где z — коэффициент сжимаемости. Опытные значения его в зависимости от безразмерных величин $p/p_{\rm kp}$ и $T/T_{\rm kp}$ приведены в [27].

Основные уравнения. Совместное использование первого закона термодинамики и уравнения состояния идеального газа приводит к следующим уравнениям сжатия и расширения, проходящих в компрессорах:

политропный процесс
$$p/\rho^n = \text{const},$$
 $pv^n = \text{const};$ (10.3)

адиабатный процесс
$$p/\rho^k = \text{const}$$
, $pv^k = \text{const}$; (10.4)

изотермический процесс
$$p/\rho = \text{const.}$$
 $pv = \text{const.}$ (10.5)

Политропный процесс является общим видом термодинамического процесса и протекает в компрессорах в зависимости от внешних и внутренних условий с показателем $n=1.15\div 1.80$.

Адиабатным называют процесс без теплообмена с внешней средой; в таком процессе возможно внутрениее образование теплоты за счет работы газового трения и вихреобразования. Строго адиабатный процесс в компрессорах получить нельзя вследствие невозможности полной тепловой изоляции газового потока от окружающей среды. Кроме процессов (10.3)—(10.5) в теории компрессоров

рассматривают процесс изоэнтропный, характеризующийся постоянством энтропии в результате отсутствия теплообмена с окружающей средой и внутреннего тепловыделения, обусловленного газовым трением в потоке. В реальных компрессорах, очевидно, изоэнтропный процесс невозможен.

Диаграммы ST и рv. Указанные процессы удобно изо-бражать графически в координатах S, T (рис. 10.5). Здесь представлены основные виды компрессорных про-

цессов: политропный n < k, свойственный компрессорам с интенсивным водяным охлаждением (рис. 10.5, a); политропный n > k, типичный для лопастных (центробежных и осевых) компрессоров (рис. 10.5, 6);

изоэнтропный с S = const (рис. 10.5, θ); изотермический с T = const (рис. 10.5, ϵ).

Процессы на рис. 10.5, в и г в компрессорах неосуществимы, первый — потому что образование теплоты за счет внутреннего газового трения проявляется весьма существенно, второй — по причине невозможности выполнить

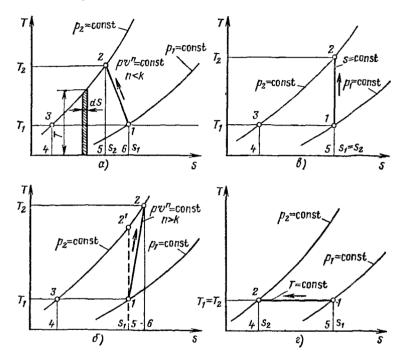


Рис. 10.5. S, T-диаграммы компрессорных процессов, описываемых формулами (10.3)—(10.5).

конструкцию охлаждающей системы компрессора так, чтобы она обеспечивала сжатие газа при постоянной температуре. Как будет показано ниже, эти два процесса используются для оценки эпергетической эффективности компрессоров.

Отметим свойства термодинамических днаграмм комп-

рессорных процессов, показанных на рис. 10.5.

Процесс сжатия во всех случаях представляется линиями 1-2. В случаях на рис. 10.5, а и б сжатие (повышение давления) сопровождается изменением энтропии и повышением температуры газа. При этом увеличивается энтальпия газа.

В политропном компрессорном процессе при n < k линия 1-2 представляет собой процесс сжатия, протекающий в рабочей полости (цилиндре, каналах колеса и корпуса) компрессоров; линия 2-3 — процесс изобарного охлаждения сжатого газа, уходящего из компрессора. Этот процесс протекает в охладителе компрессора и трубопроводной сети.

Соответственно закону сохранения энергии работа, затрачиваемая компрессором на сжатие и выталкивание газа (без учета механических потерь), представляется суммой геплот, отводимых от газа в процессах сжатия и изобарного охлаждения.

Воспользуемся основным определением энтропии в эле-

ментарном тепловом процессе:

$$dS = dQ/T$$
.

Для процессов 1-2 и 2-3

$$Q_{1-2} = \int_{1}^{2} T \, dS; \quad Q_{2-3} = \int_{2}^{3} T \, dS.$$

Подынтегральные произведения являются элементарными площадями процессов сжатия и охлаждения, изображенных в ST-диаграмме. Следовательно, количество энергии в тепловых единицах, подводимое к газу для осуществления компрессорного процесса, представляется суммой площадей диаграммы 1-2-5-6 и 2-3-4-5.

При сжатии газа по политропе с показателем n > k (рис. 10.5), что характерно для компрессоров с воздушным или неинтенсивным водяным охлаждением, площадь 1-2-6-5 под политропой 1-2 процесса сжатия представляет собой количество теплоты, образующейся в потоке вследствие газового трения и вихреобразования.

Энергия, подводимая к компрессору, расходуется на проведение компрессорного процесса (сжатие и проталкивание) и работу газового трения в проточной полости. Работа компрессорного процесса представляется площадью 1-2-3-4-5. Следовательно, полная энергия, расходуемая компрессором (без энергии, идущей на покрытие механических и объемных потерь), выражается площадью 2-3-4-6.

Если бы процесс в компрессоре протекал по изоэнтропе 1-2', то полная ватрата энергии была бы равна площади

1-2'-3-4-5, т.е. была бы меньше на размер площади 1-2'-2-6-5. Следовательно, увеличение энергии, расходуемой компрессором, при переходе от изоэнтропного процесса к реальному политропному с n > k сопровождается увеличением потребления энергии, равным площади 2'-2-6-5-1. Очевидно, площадь 1-2'-2 представляет собой энергию, затрачиваемую дополнительно на сжатие и проталкивание

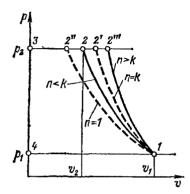


Рис. 10.6. р, v-диаграммы компрессорных процессов, описываемых формулами (10.3)— (10.5)

объема, появляющегося в результате нагрева газа в процессе трения и вихреобразования.

Изложенные соображения применимы и к рассмотрению S, Т-диаграмм изоэнтропного и изотермического процессов (рис. 10.5, в и г).

Наименьшее количество энергии затрачивается в компрессорном процессе с изотермическим сжатием (рис. 10.5, г). Эта энергия представляется площадью 1-2-4-5.

В некоторых случаях удобно изображать компрессорные процессы на *p*, *v*-диаграмме (рис. 10.6). Здесь сплош-

ной линией 1-2 показан процесс при политропном сжатии с n < k, протекающий в проточной полости компрессора. Процесс охлаждения 2-3 теоретически проходит по изобаре p_2 =const, в действительных условиях несколько отклоняется от изобары.

Изотермическое сжатие изображается штриховой линяей 1-2'', изоэнтропное — 1-2', адиабатное при n>k — линией 1-2'''

Уравнения энергии компрессорных процессов. Энергия L, затрачиваемая в компрессорном процессе при сжатии и выталкивании 1 кг массы газа, выражается площадью p, v-диаграммы, ограниченной изобарами начального p_1 и конечного p_2 давлений, политропой сжатия и осью ординат (рис. 10.6).

Для процесса с n < k

$$L = -\int_{1}^{2} p \, dv + p_{2} \, v_{2} - p_{1} \, v_{1}.$$

Из уравнения политропного сжатия $pv^n = p_1v^n$ имеем $p = p_1v_1^n/v^n$ и, следовательно,

$$L = -p_1 v_1^n \int_{1}^{2} \frac{dv}{v^n} + p_2 v_2 - p_1 v_1.$$

После интегрирования и алгебраических преобразований получается

$$L = \frac{n}{n-1} p_1 v_1 \left[(p_2/p_1)^{\frac{n-1}{n}} - 1 \right]. \tag{10.6}$$

Связь между давлениями и температурами в политропных процессах определяется соотношением

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}.$$
 (10.7)

Поэтому

$$L = \frac{n}{n-1} p_1 v_1 \left[\frac{T_2}{T_1} - 1 \right]. \tag{10.8}$$

Присоединяем к формуле (10.8) уравнение состояния, записанное для начальных параметров, $p_1v_1 = RT_1$.

Тогда

$$L = \frac{n}{n-1} R (T_2 - T_1). \tag{10.9}$$

Уравнение политропного и изоэнтропного процессов (10.3) и (10.4) совершенно идентичны и разнятся только значением показателей. Поэтому для изоэнтропного компрессорного процесса можно записать следующие соотношения:

$$L_{a} = \frac{k}{k-1} \rho_{1} v_{1} \left[\left(\frac{p_{2}}{\rho_{1}} \right)^{\frac{k-1}{k}} - 1 \right]; \tag{10.10}$$

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_{2a}}{T_1}\right)^{\frac{k}{k-1}}; \tag{10.11}$$

$$L_{a} = \frac{k}{k-1} p_{1} v_{1} \left[\frac{T_{2a}}{T_{1}} - 1 \right]; \qquad (10.12)$$

$$L_{\rm a} = \frac{k}{h_{\rm a}-1} R (T_{\rm 2a} - T_{\rm 1}).$$
 (10.13)

Последние с помощью известных соотношений $R = c_p - c_v$ и $k = c_p/c_v$ легко преобразуется в уравнение

$$L_{\rm a} = c_p (T_{\rm 2a} - T_{\rm 1}) = i_{\rm 2a} - i_{\rm 1},$$
 (10.14)

выражающее работу изоэнтропного компрессорного процесса через начальную и конечную энтальнии сжимаемого газа.

Для изотермического компрессорного процесса $pv = p_1v_1 = p_2v_2$ из p, v-диаграммы имеем

$$L_{us} = -\int_{1}^{2} p \, dv + p_{2} v_{2} - p_{1} v_{1} = -\int_{1}^{2} p \, dv.$$

Имея в виду, что $p = p_1 v_1/v$, получаем

$$L_{113} = -\int_{1}^{2} p_1 v_1 \frac{dv}{v},$$

или

$$L_{\text{u3}} = p_1 v_1 \ln \frac{p_2}{p_1} \ . \tag{10.15}$$

Приведенные соотношения (10.6)—(10.15) позволяют определять затраты энергии на проведение компрессорного процесса, но не дают открытого ответа на вопрос о распределении израсходованной энергии на изменение отдельных параметров процесса.

Последнее может быть выполнено использованием условия сохранения энергии: энергия, расходуемая в компрессорном процессе, идет на изменение энтальнии и кинетической энергии газа и покрытие потерь в окружающую среду. Это условие можно записать в самом общем виде как уравнение баланса энергии компрессорного процесса

$$i_1 + \frac{c_1^2}{2} + L = i_2 + \frac{c_2^2}{2} \pm q,$$
 (10.16)

или

$$L = c_p \left(T_2 - T_1 \right) + \frac{c_2^2 - c_1^2}{2} \pm q. \tag{10.17}$$

В теории и расчетах компрессорных процессов принято использовать параметры торможения. Напомним сущность этого понятия.

Если изоэнтропный газовый поток с температурой T и скоростью c полностью затормаживается, то его кинетиче-

ская энергия превращается в теплоту и температура газа повышается до T^* , называемой температурой торможения. Очевидно, соотношение баланса энергии

$$c_p T + \frac{c^2}{2} = c_p T^*;$$

$$T^* = T + \frac{c^2}{2c_p}.$$
(10.18)

Следовательно, в соответствии с (10.17) удельная энсргия изоэнтропного процесса может быть выражена через температуры торможения:

$$L = c_p (T_2^* - T_1^*). (10.19)$$

Давления и температуры в изоэнтропных процессах связаны соотношением (10,11). Поэтому нараметр давление торможения может быть определен из этого уравнения:

$$p^* = p\left(\frac{T^*}{T}\right)^{\frac{k}{p-1}}. (10.20)$$

Мощность компрессора

$$N = \frac{\rho QL}{1000\eta_0 \,\eta_M},\tag{10.21}$$

где ρ — плотность газа, поступающего в компрессор, кг/м³; Q — объемная подача компрессора, м³/с; L — удельная энергия компрессорного процесса, Дж/кг; η_{o} — объемный коэффициент, учитывающий потери объема газа вследствие перетекания через зазоры уплотнений компрессора; $\eta_{\rm M}$ — механический КПД компрессора, учитывающий расход энергии на преодоление механического трения и привод вспомогательных механизмов (масляных насосов, вентиляторов и насосов системы охлаждения, если они приводятся от вала компрессора).

Числовые значения η_0 и η_M для компрессоров различных типов приведены в соответствующих разделах книги.

Особенностью объемных компрессоров (поршневых и некоторых типов роторных) является периодичность их рабочего процесса, обусловленная периодическим движением их рабочих органов. В рабочем процессе этих компрессоров следует выделить особую часть — политропное расширение газа от конечного до начального давления, предшествующее всасыванию газа в замкнутое рабочее пространство компрессора. Расширение газа обусловливает

возврат части энергии, израсходованной на сжатие и выталкивание, обратно на вал компрессора. Количественная оценка этого явления рассматривается в гл. 13.

10.3. Коэффициенты полезного действия компрессоров

Эффективность компрессоров нельзя оценивать значением обычного энергетического КПД, представляющего собой отношение энергии, приобретаемой газом, к энергии, затрачиваемой на проведение компрессорного процесса. Выясним правильность этого утверждения.

По (10.17) при условии $c_1=c_2$ удельная энергия, приобретаемая газом в компрессорном процессе, $L-q=c_p(T_2-T_1)$, где q — количество теплоты, уходящее в окружающее пространство вследствие охлаждения компрессора.

Следовательно, энергетический КПД компрессорного

процесса

$$\eta = \frac{c_P (T_2 - T_1)}{c_P (T_2 - T_1) + q}$$
 (10.22)

Применяя полученное выражение к изотермическому компрессорному процессу с $T_1 = T_2$ (см. рис. 10.5), получаем

η=0.

Однако ранее было доказано, что из всех возможных типов компрессорных процессов наименьшей затраты энергии требует изотермический процесс, являющийся самым выгодным по затратам энергии. При оценке по (10.22) изотермический компрессорный процесс крайне невыгоден, потому что $\eta = 0$.

В чем причина парадокса?

При изотермическом компрессорном процессе $c_p(T_2 - T_1) = 0$ и, следовательно, энтальпия газа как мера его энергии остается постоянной. Однако при сохранении значения энтальпии компрессорный процесс переводит газ на новый потенциальный уровень, соответствующий более высокому давлению p_2 , и тем предоставляет газу возможность совершить работу при расширении до начального давления.

Следовательно, оценивать энергию, получаемую газом в компрессорном процессе, изменением его энтальпии не имеет смысла, потому что при сохранении постоянства энтальпии способность газа производить работу возрастает. Отсюда вытекает недопустимость оценки совершенства компрессора значением энергетнческого КПД,

Совершенство компрессорного процесса оценивают при помощи относительных термодинамических $K\Pi \bot$ изотермического η_{113} и изоэнтропного η_a .

Если действительный политропный процесс протекает в компрессоре с показателем n при удельной энергии L, то

изотермический и изоэнтропный КПД

$$\eta_{118} = L_{113}/L;$$
(10.23)

$$\eta_{\rm a} = L_{\rm a}/L. \tag{10.24}$$

Здесь $L_{\rm H3}$ и $L_{\rm a}$ — удельные энергии изотермического и изоэнтропного процессов, определяемые формулами (10.13) и

(10.15).

Изотермический КПД η_{113} применяют для оценки компрессоров с интенсивно действующим водяным охлаждением (поршневых и роторных). Для этих компрессоров изотермический процесс, обладающий наименьшей удельной энергией, является эталонным.

Компрессоры с неинтенсивным охлаждением (центробежные и осевые) оцениваются при помощи изоэнтропного КПД η_a . Это объясияется тем, что для компрессоров этого типа изоэнтропный процесс является эталонным, наиболее

совершенным.

Значения $\eta_{\mu 3}$ и η_a для компрессоров различных типов

приведены в гл. 11—13.

Установим основные, важные в расчетной практике соотношения, связывающие относительный изоэнтропный КПД с термодинамическими параметрами торможения процесса.

Из формул (10.1) и (10.10) следует

$$L_{a} = \frac{k}{k-1} RT_{1}^{*} \left[\left(\frac{p_{2}^{*}}{p_{1}^{*}} \right)^{\frac{k-1}{k}} - 1 \right].$$

Действительный процесс является политропным, и для него формулу (10.17) можно записать в параметрах торможения при условии $q\!=\!0$ так:

$$L = c_p \left(T_2^* - T_1^* \right). \tag{10.25}$$

Из этих соотношений следует

$$\eta_{a} = \frac{\left(\frac{p_{2}^{*}}{p_{1}^{*}}\right)^{\frac{k-1}{k}} - 1}{\frac{T_{2}^{*}}{T_{1}^{*}} - 1}$$
 (10.26)

Формула для расчета относительного изотермического КПД для оценки объемиых одноступенчатых компрессоров с интенсивным охлаждением получается из (10.15) и (10.23):

$$\eta_{\text{nta}} = \frac{R \ln \frac{p_2}{p_1}}{c_p \left(\frac{T_2}{T_1} - 1\right)} . \tag{10.27}$$

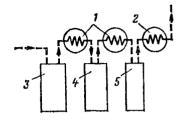
Расчет с использованием параметров торможения здесь не имеет смысла, потому что в начале и конце процесса сжатия скорости газового потока незначительны.

10.4. Охлаждение. Ступенчатое сжатие

Давления, создаваемые компрессорами, работающими в технологических схемах производств, достигают больших значений. Однако получение высокого давления в одной ступени компрессора (в одном компрессорном процессе) затруднительно. Причиной этого в объемных компрессорах (поршиевых и роторных) является чрезмерное повышение температуры в конце сжатия, обусловленное невозможностью создания конструкции компрессора с достаточно интенсивным отводом теплоты от сжимаемого газа. В компрессорах лопастных (центробежных и осевых) причина кроется в недопустимости таких скоростей рабочих лопастей, выполненных из материала с определенной прочностью, которые обеспечили бы требуемое высокое давление при достаточно высоком КПД процесса. Поэтому следует, во-первых, применять возможно более интенсивное охлаждение газа в процессе сжатия его и, во-вторых, производить сжатие в последовательно соединенных ступенях. осуществляя понижение температуры газа в охладителях, включенных в поток между ступенями.

Общая схема компрессора со ступенчатым сжатием представлена на рис. 10.7.

Применение ступенчатого сжатия с охлаждением газа в охладителях между ступенями дает большую экономию в энергии, расходуемой на привод компрессора. Это отчетливо видно на S, T- и p, v-диаграммах двухступенчатого компрессора (рис. 10.8).


Если сжатие производить в одной ступени, то линия сжатия изобразится политропой 1'-2 с показателем n > k. При сжатии для того же интервала давлений в двух ступенях процесс изобразится ломаной линией 1'-2'-1''-2'', со-

стоящей из двух политроп 1'-2' и 1''-2'' и изобары 2'-1'', представляющей собой охлаждение в промежуточном охладителе при давлении $p_{\rm пp}$ =const. В обеих диаграммах экономия энергии от сжатия в двух ступенях с промежуточным охлаждением выражается заштрихованными площадками 1''-2'-2-2''.

В современных компрессорах применяют:

Рис. 107. Схема компрессора со ступенчатым сжатием:

1 — охладители I и II ступеней, 2 — конечный охладитель; 3, 4, 5 — охладители соответствению I, II и III ступени

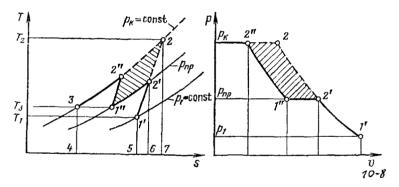


Рис. 108. S, T и p, v-диаграммы двухступенчатого компрессора.

I'.2'— политропное сжатие в цервой ступени, $2 \cdot I''$ — изобвриое охлаждение в промежуточном охладителе; $I''\cdot 2''$ — сжатие до конечного давления во второй ступени Площадь $I''\cdot 2''-2''$ — экономия энергни от применения двухступенчатого сжатия с промежуточным охлажденнем

1) охлаждение компрессора подачей воды в специально ыполненные полости в отливке корпуса (внутреннее охлаждение). Этот способ существенно улучшает условия смазы поршневых компрессоров. Добиться этим способом существенной экономии энергии, приближая процесс сжатия к изотермическому, не удается. Причина этого — затрудненные условия теплообмена между потоками газа и охлаждающей водой;

- 2) охлаждение газа в охладителях, устанавливаемых между отдельными ступенями (выносное охлаждение). При этом способе охлаждения, используя трубчатые охладители с большой площадью поверхности, можно получить существенную экономию в расходе энергии. В центробежных компрессорах охладители располагают обычно между группами ступеней, получая, таким образом, более простую конструкцию установки. Известны уникальные конструкции компрессоров с охладителями после каждой центробежной ступени. Такие компрессоры называют изотермическими. Они экономичны в эксплуатации, но конструктивно сложны и стоимость их велика;
- 3) комбинированное (внутреннее и выносное) охлаждение. Этот способ наиболее эффективен и широко применяется, несмотря на конструктивное усложнение и увеличение стоимости установки;
- 4) охлаждение впрыском охлаждающей воды в поток газа перед первой ступенью компрессора. При этом способе теплота газа частично расходуется на испарение охлаждающей воды и температура конца сжатия существенно понижается. Недостатком способа является увлажнение газа, что во многих случаях недопустимо.

10.5. Количество ступеней. Промежуточное давление

Самым выгодным компрессорным процессом, обусловливающим наименьший расход энергии на привод, является изотермический процесс (см. рис. 10.5).

По указанным ранее причинам такой процесс практически неосуществим. Приближение к изотермическому процессу при заданном общем повышении давления компрессора возможно путем увеличения количества ступеней компрессора при выпосном охлаждении и, следовательно, уменьшения степени повышения давления одной ступени. При этом уменьшается мощность привода, но усложияется конструкция компрессорной установки и увеличивается ее стоимость.

В компрессоростроении выработаны нормативы по определению необходимого числа ступеней: для поршневых и роторных компрессоров — в зависимости от температуры вспышки паров смазочного масла, для лопастных — в зависимости от допустимых, по условиям прочности, окружных скоростей концов лопастей и минимума потерь энергии в проточной полости машины.

Рассмотрим вопрос о распределении работы по ступеням компрессора и вычислении промежуточного давления. Из термодинамических диаграмм ступенчатого сжатия видно, что промежуточное давление влияет на распределение затрат энергии между ступенями компрессора.

Если полная степень повышения давления компрессора $\varepsilon_{\rm L} = p_{\rm K}/p_1$ и число ступеней z заданы, то минимум затрат эпергни достигается при вполне определенном соотношении

энергий отдельных ступеней.

Определение условий минимума энергии, затрачиваемой в компрессорном процессе, может быть произведено с номощью известного математического метода отыскания

минимума функции.

Если пренебречь незначительными газовыми сопротивлениями охладителей и полагать, что относительные термодинамические КПД ступеней сжатия одинаковы, то можно, пользуясь указанным приемом, обнаружить, что минимум затрат энергии обеспечивается равенством энергий отдельных ступеней процесса

$$L_1 = L_2 = L_3 = \dots = L/z$$
,

где L — полная эпергия; z — количество ступеней компрессова.

Полагая, что охлаждение в промежуточных охладителях проводится до начальной температуры компрессорного процесса и показатели политроп сжатия в отдельных ступенях одинаковы, можем записать

$$T_{2}^{'} = T_{2}^{''} = T_{2}^{'''} = \dots = T_{2};$$

$$\frac{T_{2}}{T_{1}} = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}},$$

где n = const для всех ступеней.

Следовательно, для отдельных ступеней

$$\frac{T_{2}^{'}}{T_{1}} = \varepsilon_{1}^{\frac{n-1}{n}}; \quad \frac{T_{2}^{''}}{T_{1}} = \varepsilon_{2}^{\frac{n-1}{n}}; \quad \frac{T_{2}^{'''}}{T_{1}} = \varepsilon_{3}^{\frac{n-1}{n}} \dots$$

Поэтому

$$\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \dots = \varepsilon, \tag{10.28}$$

где є — степень повышения давления одной ступени.

Минимум затрат эпергии в ступенчатом компрессорном процессе имеет место при равенстве степеней повышения давления во всех ступенях.

Очевидны соотношения

Отсюда следует, что оптимальная степень повышения давления ступени компрессора

$$\varepsilon = \frac{1}{1} \cdot \overline{p_{\rm K}/p_{\rm I}} = \sqrt[2]{\varepsilon_{\rm K}} \quad . \tag{10.30}$$

где $p_{\rm R}$ — конечнос давление (за последней ступенью компрессора); $\epsilon_{\rm R}$ — степень повышения давления компрессора в целом; z — количество ступеней компрессора.
При определенной степеци повышения давления ступени

промежуточные давления определяются формулами (10.29).

В практике компрессоростроения обычно отступают от принципа равномерного распределения затраты энергии по ступеням и относят на ступени высокого давления несколько меньшие степени повышения давления.

В лопастных компрессорах ступень сжатия состоит из совокупности венцов рабочих и направляющих лопастей и количество ступеней может быть большим (до 40). В этом случае ступени разбивают на группы (секции) и холодильники ставят между секциями. В пределах группы ступени не охлаждают.

В объемных компрессорах ступень давления состоит из замкнутого герметичного корпуса, в котором перемещается рабочее тело (поршень, двигающийся в цилиндре поршневого компрессора), камер всасывания и нагнетания. Количество ступеней современных компрессоров раз-

личных конструкций указано в гл. 11-13.

10.6. Характеристики лопастных компрессоров. Пересчет характеристик

Характеристиками лопастной компрессорной машины называют графически изображенные зависимости между подачей и основными параметрами — конечным давлением (или степенью повышения давления $\varepsilon = p_{\rm K}/p_1$), мощностью, внутренним (политропным или изотермическим) КПД при определенных свойствах газа и заданной частоте вращения. Аргументом, как правило, считают подачу машины при условии всасывания.

Характеристики получают испытанием на стенде завода-изготовителя при нескольких постоянных частотах врашения; испытание ведут на воздухе.

Характеристики изображают обычно в одном графике для нескольких частот вращения с обязательным указанием начальных температуры и давления и названия перемещаемого газа.

В соответствии с требованиями производства компрессор может работать при частоте вращения, отличающейся от таковой при стендовом испытании. Кроме того, в производственных условиях компрессоры работают с параметрами всасывания, отличающимися от параметров на стенде, и могут служить для подачи газов с физическими свойствами, существенно отличающимися от свойств воздуха. Поэтому компрессорная машина в производственных условиях булет работать иначе, чем на стенде, и характеристики се будут другими. Отсюда возиикает задача пересчета стендовых характеристик на новую частоту вращения, другие условия всасывания и иные физические параметры газа. Точных методов пересчета характеристик с учетом всех влияющих факторов не существует.

Применительно к объему настоящего курса ограничимся рассмотрением приближенного способа пересчета, ос-

пованного на следующих допущениях:

1) вследствие больших скоростей газа в проточной полости компрессора значения Re высоки и режимы движения лежат в области автомодельности;

- 2) число Маха существенно ниже критического, и влияние его при переходе от одного режима к другому не проявляется;
- 3) параллелограммы скоростей при разных режимах остаются геометрически подобными (сохраняется кинематическое подобие):
- 4) КПД компрессора в подобных режимах остаются постоянными;
- 5) охлаждение компрессора неинтенсивное, процесс сжагия близок к изоэнтропному.

Пересчет при изменении частоты вращения. Заданы характеристики компрессора при частоте вращения n_{α} .

Требуется перестроить характеристики на новую частоту n_b , большую или меньшую n_a , при неизменных составе газа и начальных параметрах.

Объемная подача компрессора определяется по уравнению перазрывности значением абсолютной скорости (радиальной в центробежных машинах и осевой в осевых), которая по условию кинематического подобия пропорциональна окружной скорости и, следовательно, частоте вращения. Поэтому при небольших степенях сжатия для пересчета подачи можно пользоваться обычной формулой пропорциональности.

$$Q_b = Q_a \frac{n_b}{n_a} \,. \tag{10.31}$$

Пересчет подачи по (10.31) дает тем большую неточность, чем выше степень повышения давления.

Из уравнения энергетического баланса компрессорного процесса, связывающего механическую энергию, подводимую к лопастям, с энергией газового потока компрессора, следует, что в изоэнтропном процессе $\binom{k-1}{2} - 1 = n^2$, где n — частота вращения вала компрессора. Поэтому для двух частот вращения, заданной n_a и назначенной для пересчета n_b , может быть принята следующая зависимость:

$$\frac{\frac{k-1}{\epsilon_a^{\frac{1}{k}} - 1}}{\frac{k-1}{\epsilon_b^{\frac{1}{k}} - 1}} = \frac{n_a^2}{n_b^2}.$$
 (10.32)

Следовательно, степень повышения давления при частоте вращения n_b

$$\varepsilon_b = \left[1 + \left(\frac{n_b}{n_a}\right)^2 \left(\varepsilon_a^{\frac{k-1}{k}} - 1\right)\right]_{k-1}^{\frac{k}{k-1}}.$$
 (10.33)

Для воздушных компрессоров формула (10.33) приближенно записывается

$$\varepsilon_b \approx \left[1 + \left(\frac{n_b}{n_a}\right)^2 \left(\sqrt[3]{\varepsilon_a} - 1\right)\right]^3.$$
(10.34)

По рассчитанным для разных подач значениям e_b вычисляются давления $p_b = p_1 e_b$ и строится характеристика для режима b.

При допущениях, указанных ранее, и имея в виду, что мощность компрессора пропорциональна плотности газа, пересчет мощности можно вести по приближенной формуле

$$N_b = \frac{\rho_b}{\rho_a} \left(\frac{n_b}{n_a}\right)^3 N_a. \tag{10.35}$$

Пересчет при изменении физических свойств газа. Физические свойства газа применительно к рассматриваемой залаче характеризуются величинами R, $k=c_n/c_v$, v.

Даны характеристики компрессора при начальных температуре T_{1a} и давлении p_{1a} и работе с частотой вращения n_a на газе с константами R_a , k_a , v_a . Требуется пересчитать характеристики для работы компрессора при неизменной частоте вращения, но на газе с константами R_b , k_b , v_b и при начальных нараметрах T_{1b} и p_{1b} .

Наиболее часто встречаются случаи работы компрессоров на двухатомных газах. Поэтому полагаем $k_a = k_b =$

=1,41.

Влияние числа Re исключено условием автомодельности (см. § 3.11), и поэтому влияние вязкости при пересчете можно не учитывать.

Условие подобия (см. § 3.11) дает постоянство коэффициента подачи. Поэтому $c_{1a}/u_{1a}=c_{1b}/u_{1b}$ или $c_{12}=c_{1b}$.

Отсюда следует, что $\Omega_1 c_{1a} = \Omega_1 c_{1b}$ или $Q_{1a} = Q_{1b}$.

Изменения газовых констант и начальной температуры не влияют на объемную подачу компрессора.

Полагая удельную энергию изоэнтропного компрессорного процесса не зависящей от начальных условий, можно записать

$$\frac{k}{k-1}R_aT_{1a}\left(\varepsilon^{\frac{k-1}{k}}-1\right)=\frac{k}{k-1}R_bT_{1b}\left(\varepsilon^{\frac{k-1}{k}}-1\right).$$

Отсюда следует

$$\varepsilon_b = \left[1 + \frac{R_a T_{1a}}{R_b T_{1b}} \left(\varepsilon_a^{\frac{k-1}{k}} - 1\right)\right]^{\frac{k}{k-1}} \tag{10.36}$$

или в упрощенной форме при k = 1,41

$$\boldsymbol{\varepsilon}_b = \left[1 + \frac{R_a T_{1a}}{R_b T_{1b}} \left(\sqrt[3]{\varepsilon_a} - 1\right)\right]^3. \tag{10.37}$$

Выбирая на заданной характеристике при произвольных Q_a значения p_a и определяя $\varepsilon_a = p_a/p_{1a}$ по (10.37), рассчитываем $\varepsilon_b = p_b/p_{1b}$, откуда будем иметь $p_b = \varepsilon_b p_{1b}$. По полученным значениям p_b строится искомая характеристика давления.

Пересчет характеристики мощности проводится аналогично указанному в предыдущем случае.

10.7. Особенности регулирования лопастных компрессоров

В зависимости от вида потребителей сжатого воздука компрессорные установки разделяют на две основные групны:

1. Потребители требуют подачи постоянного количества воздуха при переменном давлении (доменные печи, вагранки, специальные аппараты химической технологии).

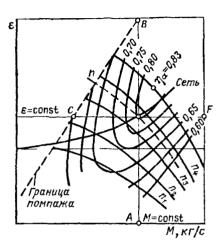


Рис 10 9. График регулирования компрессора двумя способами:

1) на *M*=const; 2) на *E*=const

2. Потребители требуют подачи воздуха с постоянным давлением при изменяющейся подаче (пневматический инструмент, отбойные молотки, пневматический привод, вибраторы различных типов).

В первом случае изменение режима работы компрессора называют регулированием на постоянную подачу, во втором — на постоянное давление.

Рассмотрим характеристику $\varepsilon = f(M)$ компрессора совместно с характеристикой сети (рис. 10.9).

Последняя в случае

воздушных сетей высокого давления довольно полога.

Пусть пормальный режим установки определяется точкой при частоте вращения $n: n_3 < n < n_4$.

Если требуется поддерживать подачу M = const, то рабочие точки режимов должны располагаться на линии AB,

параллельной оси ординат.

Повышение или понижение степени сжатия при M = сопѕt обусловливается потребителем и может быть достигнуто только изменением частоты вращения вала компрессора. При этом следует иметь в виду, что точка B определяет предельное значение степени сжатия $\varepsilon_{\text{макс}}$. Выход за точку B, лежащую на границе помпажа, недопустим. Поэтому лопастные компрессоры, регулируемые изменением частоты вращения на постоянную подачу, должны снабжаться предохранительными клапанами, отрегули-

рованными на конечное давление $p_{\rm k} \approx 0.9~\epsilon_{\rm макс} p_{\rm l}$. Это даст

гарантию избежания помпажных режимов.

Если к компрессору предъявляется требование поддержания постоянной степени повышения давления ε = const при переменной подаче, то возможные режимные точки должны располагаться на линии CF.

Точка С определяет предельное минимальное значение подачи по условиям помпажа. В этом случае компрессор должен быть снабжен автоматическим антипомпажным устройством, датчиком в котором является динамический импульс $c^2/2$ или давление всасывания, зависящее от подачи компрессора. При регулировании на є сопѕт различные режимы могут достигаться, как видно из графика, изменением частоты вращения вала компрессора. Если приводным двигателем компрессора является паровая или газовая турбина, то изменение частоты вращения достигается без затруднений регулированием турбины. В случае элсктропривода компрессора необходимо применение специальных типов двигателей с регулируемой частотой врашения.

Из графика (рис. 10.9) вндно, что при любом способе регулирования изменение частоты вращения приводит к уменьшению адиабатного КПД, т.е. к ухудшению использования эпергии, подводимой на вал компрессора. Только в области частот вращения от n до n_4 имеет место незначительное повышение η_a при регулировании на постоянную подачу.

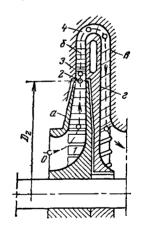
Уменьшение КПД является существенным недостатком способа регулирования компрессора изменением частоты вращения.

Дроссельное регулирование при n—const является доступным во всех случаях и очень простым способом регулирования. Однако при заданных n и характеристике сети этим способом возможно регулирование только на уменьшение подачи. В этом можно убедиться, анализируя график регулирования.

Регулирование можно проводить дросселем на напорном и всасывающем патрубках компрессоров; второе выгоднее вследствие меньших затрат энергии, как правило, пропорциональных плотности дросселируемого потока газа.

В некоторых частных случаях регулирование дросселем на входе оказывается выгоднее, чем регулирование изменением частоты вращения. Регулирование направляющим лопастным аппаратом на входе (см. § 3.12) находит в цен-

тробежных компрессорах ограниченное применение ввиду конструктивной сложности.


Крупные компрессоры, приводимые паровыми турбинами, подвержены опасности разгона при снятии нагрузки сети. Для устранения возможности разгона до недопустимой частоты вращения компрессорные агрегаты с приводом от паровых турбин снабжаются специальными автоматами-ограничителями частоты вращения, воздействующими на паровпускную систему турбины.

ГЛАВА ОДИННАДЦАТАЯ

ЦЕНТРОБЕЖНЫЕ КОМПРЕССОРЫ

11.1. Ступень центробежного компрессора

Рабочее колесо a, кольцевой отвод (диффузор), направляющий аппарат b и обратный направляющий аппарат b, взятые совместно, называют ступенью давления или

просто ступенью компрессора (рис. 11.1). Рабочее колесо и обратный направляющий аппарат разделены диафрагмой г. В многоступенчатых компрессорах ступени включены в поток газа последовательно.

При протекании газа через каналы ступени состояние его изменяется в результате передачи энергии потоку рабочим колесом, газового трения, вихреобразования и тепло-

Рис. 11.1. Схема ступени центробежного компрессора

обмена со средой, окружающей компрессор. Запишем баланс энергии потока на участке 1-2, Дж/кг, [см. формулу (10.16) и рис. 11.1].

Энергия газа в сечении 1 на входе в межлопастные каналы

$$L_1 = \frac{c_1^2}{2} + c_p T_1.$$

Эпергия, передаваемая газу рабочими лопастями, по уравнению Эйлера

$$L=u_2c_{2u}-u_1c_{1u}.$$

Энергия газа в выходном сечении 2 межлопастных ка-

$$L_2 = \frac{c_2^2}{2} + c_1 T_2.$$

Если от газа, проходящего через рабочее колесо, передается в окружающую среду количество теплоты q, то уравнение баланса энергии $L_1 + L - q = L_2$ можно записать так:

$$\frac{c_1^2}{2} + c_p T_1 + (u_2 c_{2u} - u_1 c_{1u}) - q = \frac{c_2^2}{2} + c_p T_2.$$

Следовательно, конечная температура сжатия в колесе

$$T_2 = T_1 + \frac{1}{2c_p} \left[c_1^2 - c_2^2 + 2 \left(u_2 c_{2u} - u_1 c_{1u} \right) \right] - \frac{q}{c_p} . \quad (11.1)$$

Предполагая процесс изоэнтропным, получаем

$$T_{2a} = T_1 + \frac{1}{2c_n} \left[c_1^2 - c_2^2 + 2 \left(u_2 c_{2u} - u_1 c_{1u} \right) \right]. \tag{11.2}$$

При изоэнтропном сжатии газа

$$\frac{T_{2A}}{T_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\frac{k-1}{k}}.$$

Из двух последних уравнений следует

$$p_2 = p_1 \left\{ 1 + \frac{1}{2c_n T_1} \left[c_1^2 - c_2^2 + 2 \left(u_2 c_{2u} - u_1 c_{1u} \right) \right] \right\}^{\frac{k}{k-1}}. \quad (11.3)$$

Уравнения (11.1) и (11.3) связывают термодинамические факторы T, p и c_p с размерами, частотой вращения и формой лопастей рабочего колеса компрессора. Эти уравнения опытами не подтверждаются, потому что действительный процесс сжатия в рабочем колесе неизоэнтропен.

Высокие скорости газа в межлопастных каналах ступени обусловливают существенные потери от трения и вихреобразования и переход части энергии газового потока в теплоту. При этом действительный процесс сжатия оказывается близким к политропному с показателем n:

$$pv^n = \text{const.}$$

Вместе с тем отвод теплоты от потока газа в колесе во внешнюю среду незначителен, и для процесса сжатия в этом случае можно полагать q=0 и

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}},\tag{11.4}$$

гле $n = 1.5 \div 1.62$

В практике расчетов и оценки ступеней центробежиых компрессоров с неинтенсивным охлаждением пользуются изоэнтропным КПД [см. формулу (10.24)].

Решив совместно уравнения (11.1) и (11.4) при условии q=0 и использовав выражение η_a через степени сжатия при изоэнтропном и политропном процессах, получим

$$p_2 = p_1 \left\{ 1 + \frac{\eta_a}{2c_p T_1} \left[c_1^2 - c_2^2 + 2 \left(u_2 c_{2u} - u_1 c_{1u} \right) \right] \right\}^{\frac{k}{k-1}}. (11.5)$$

Изоэнтропный КПД стационарных центробежных компрессоров находится в пределах $\eta_a = 0.80 \div 0.90$. Уравнением (11.5) можно пользоваться для ориентировочного расчета конечного давления в рабочем колесе ступени компрессора.

В направляющих аппаратах компрессора энергия потоку газа извне не передается; здесь происходит только преобразование кинетической энергии в потенциальную или наоборот.

Если полагать, что теплообмена с окружающей средой нет, то энергетический баланс потока на участке 3-4 будет

$$c_{\rho}T_{3} + \frac{c_{3}^{2}}{2} = c_{\rho}T_{4} + \frac{c_{4}^{2}}{2}$$
. (11.6)

Отсюда следует

$$\frac{T_4}{T_3} = 1 + \frac{c_3^2}{2c_p T_3} \left(1 - \frac{c_4^2}{c_3^2} \right). \tag{11.7}$$

При обратной пропорциональности $\frac{c_4}{c_3} = \frac{R_3}{R_4}$, следующей из закона rc_u = const, получим

$$\frac{T_4}{T_3} = 1 + \frac{c_3^2}{2c_p T_3} \left(1 - \frac{R_3^2}{R_4^2}\right). \tag{11.8}$$

Полагая процесс в отводе политропным, будем иметь

$$p_4 = p_3 \left[1 + \frac{c_3^2}{2c_p T_3} \left(1 - \frac{R_3^2}{R_4^2} \right) \right]^{\frac{n}{n-1}}.$$
 (11.9)

Показатель политропы зависит от условий охлаждения и для обычных конструкций компрессоров близок к n=1,5.

11.2. Мощность центробежного компрессора

Пользуясь изоэнтропным КПД, можно определить внутрениюю работу ступени:

$$L = L_a/\eta_a. \tag{11.10}$$

При расчете мощности на валу компрессора следует учитывать энергию, расходуемую на преодоление механического трения в подшипниках и газового трения нерабочих поверхностей колес, введением механического КПД

$$\eta_{\rm M} = L/L_{\rm R}.\tag{11.11}$$

Для обыкновенных конструкций компрессоров $\eta_{\rm M} = 0.96 \div 0.98$.

Утечки газа через уплотнения в центробежных компрессорах составляют не более 1,5 % номинальной подачи, и их влияние при ориентировочных расчетах можно не учитывать.

Удельная энергия компрессора ${\bf c}$ учетом механических потсрь

$$L_{\rm R} = \frac{L_{\rm a}}{\eta_{\rm a} \, \eta_{\rm M}} \,. \tag{11.12}$$

Вычислив L_a по уравнению (10.10) и задавшись η_a и η_M , можно определить L по (11.12).

При массовой подаче компрессора М, кг/с, мощность компрессора для привода рабочего колеса одной ступени

$$N = \frac{MI_{\rm a}}{1000\eta_{\rm a}\eta_{\rm m}}.$$
 (11.13)

Мощность многоступенчатого компрессора представляется суммой мощностей отдельных ступеней.

11.3. Приближенный расчет ступени

Общие соображения. Расчет ступени состоит в определении основных размеров рабочего колеса и направляющих аннаратов.

Существующие способы расчета основываются на положениях струйной теории и условиях подобия при широком использовании экспериментальных данных по термодинамике и аэродинамике элементов ступени. Здесь рассматривается метод приближенного расчета, дающий общее представление о геометрических размерах ступени компрессора стационарного типа, работающего при дозвуковых скоростях газа.

При расчете задаются:

1) объемная Q или массовая М подача ступени;

2) начальное p_1 и конечное p_2 давления; 3) начальная температура T_1 газа;

4) термодинамические характеристики газа при нор-

мальных условиях k, R, ρ .

Частота вращения вала компрессора определяется ти-пом приводного двигателя. Для привода компрессоров при-меняют асинхронные и синхронные двигатели с частотой вращения до 3000 об/мин и более, обусловливающей малые размеры и массу конструкции.

В некоторых случаях между двигателем и компрессором включают передачу, повышающую частоту вращения

вала компрессора

При больших мощностях предпочтительнее применение синхронных электродвигателей, существенно улучшающих коэффициент мощности электрической системы и стабилизирующих напряжение в ней.

Удобным приводным двигателем при средних и высоких мощностях является паровая турбина с частотой вращения 3500 об/мин и выше. В этом случае допускается свобода выбора частоты вращения; агрегат в целом получается компактным и удобным в отношении регулирования подачи изменением частоты вращения.

Стационарные компрессоры должны иметь высокий КПД. Условие компактности и малой массы не является здесь решающим. По этим соображениям окружная скорость на выходе из рабочего колеса ограничена примерно 200 м/с. Колеса стационарных компрессоров выполняются с лопастями, загнутыми назад.

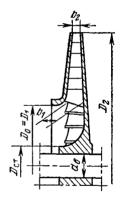
Поэтому для получения высокого давления требуется

многоступенчатая конструкция.

Количество ступеней давления определяется полным повышением давления, заданным для компрессора, и давлением, создаваемым отдельными ступенями. Приближенный расчет рабочего колеса. Продольный

разрез рабочего колеса дан на рис. 11.2. Полагая вход на

рабочие лопасти раднальным (рис. 11.3), из уравнения (11.5) получаем


$$p_2 = p_1 \left[1 + \frac{\eta_a}{2c_n T_1} \left(c_1^2 - c_2^2 + 2u_2 c_{2u} \right) \right]^{\frac{k}{k-1}}. \quad (11.14)$$

Изоэнтропный КПД ступени может быть принят равным около 0,85. Окружная скорость u_2 принимается от 150 до 250 м/с. По известным значениям n и u_2 рассчитывается паружный диаметр колеса:

$$D_2 = 60u_2/(\pi n).$$

Отношение входного и выходного диаметров выбирастся равным приблизительно 0,5. Возможны отклонения от 0.48 до 0.60.

Лопастной угол на входе определяется из параллелограмма скоростей (см. рис. 11.3).

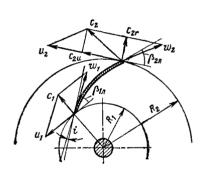


Рис. 11.3. Параллелограммы скоростей рабочего колеса с радиальным входом на лопасти

Угол атаки рабочей лопасти можно принимать $i{=}0{\div}5^{\circ}.$

Установочный угол лопасти на входе $\beta_{i,n} = \beta_i + i$. Из уравнения (11.14) следует

$$c_1^2 - c_2^2 + 2u_2 c_{2u} = \frac{2c_p T_1}{\eta_a} \left[\left(\frac{\rho_2}{\rho_1} \right)^{\frac{k-1}{k}} - 1 \right].$$
 (11.15)

Скорость c_1 может быть принята равной скорости c_0 входа в рабочее колесо, определяемой из уравнения расхода для входного сечения колеса. Из параллелограмма ско- 21^4 323

ростей на выходе (см. рис. 11.3) следует, что $c_2^2 = c_{2\mu}^2 + + c_{2r}^2$. Полагая $c_{2r} = c_1$, что является обычным для колесцентробежных машин, из уравнения (11.15) получаем

$$2u_2c_{2u}-c_{2u}^2=\frac{2c_pT_1}{\eta_a}\left[\left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}-1\right]=B. \quad (11.16)$$

Правая часть равенства, обозначенная B, может быть вычислена по заданным и принятым величинам p_1 , p_2 , T_1 , c_p , k, η_a . Из уравнения (11.16) следует

$$c_{2u}^2 - 2u_2c_{2u} + B = 0$$
; $c_{2u} = u_2 \pm \sqrt{u_2^2 - B}$.

Связь c_{2u} с выходными параметрами, учитывая влияние конечного числа лопастей формулой Стодолы, удобно выражается в виде

$$c_{2u} = u_2 \left(1 - \frac{\pi}{\epsilon} \sin \beta_2 - \frac{c_{2r}}{u_2} \cot \beta_2 \right).$$
 (11.17)

Количество рабочих лопастей принимают $z=16\div 32$.

Формула (11.17) позволяет найти необходимое значение угла β₂. Конечная температура сжатия в рабочем колесе определяется с помощью зависимостей

$$T_{2a} = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}; T_2 = T_1 + \frac{T_{2a} - T_1}{\eta_a}.$$
 (11.18)

Удельные объемы газа на входе и выходе находят по уравнению состояния, а затем по заданной массовой подаче рассчитывают объемные расходы.

Уравнение расхода $Q = \pi Dbc_r \mu$, примененное к входному и выходному сечениям, позволяет определить ширину лопастей. При этом следует иметь в виду, что вследствие утечек через уплотнения переднего диска фактический расход рабочего колеса больше заданного на 1-1,5%.

Размеры входного (нормального к оси) сечения рабочего колеса определяют по уравнению расхода

$$Q_1 = \frac{\pi}{4} \left(D_0^2 - D_{\text{cr}}^2 \right) c_0, \tag{11.19}$$

где размер $D_{\text{ст}}$ принимается по конструктивным соображениям в зависимости от диаметра вала.

Форма рабочих лопастей устанавливается значениями углов $\beta_{1\pi}$ и $\beta_{2\pi}$ и способом построения средней линии лопасти (рис. 11.4).

Расчет безлопаточного диффузора. Расчет такого диффузора, применяемого в стационарных компрессорах, за-

к, почастся в определении геометрических размеров и состочния газа на выходе.

В основе расчета лежат закон

$$rc_n = \text{const}$$

и уравнение баланса энергии, приводящие к уравнениям (11.8) и (11.9).

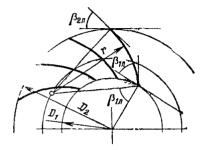


Рис 114, Построение лопасти одной дугой окружности

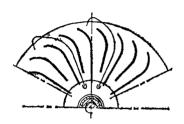


Рис. 11,5. Форма допастей обратного направляющего аппарата центробежного компресcopa

Ширину и радиальный размер диффузора можно рассчитать по выработанным практикой соотношениям

$$b_3 = b_4 \approx b_2;$$

 $D_4 = (1,6 \div 1,8) D_2.$

Окружная составляющая скорости на выходе из диффузора

$$c_{4u} = c_{2u} \frac{D_2}{D_4}$$
.

Радиальная составляющая

$$c_{4r} = \frac{Q_4}{\pi D_4 b_4} .$$

Ввиду того что объемный расход Q_4 может быть определен только при известном удельном объеме газа, использование последнего равенства связано с предварительным заданнем Q_4 и проверкой его в конце расчета. Угол выхода потока из диффузора

$$\alpha_4 = \operatorname{arctg} \frac{c_{4i}}{c_{4i}}$$
.

Повышение давления в диффузоре можно рассчитать по уравнению (11.9), а повышение температуры— по уравнению

$$T_4 = T_3 \left(\frac{p_4}{p_3}\right)^{\frac{n-1}{n}}.$$

Расчет лопаточного диффузора. Лопаточные диффузообычно применяют при $\alpha_2 < 20$ °. Размеры их могут ры обычно применяют быть приняты на основании практических данных:

 $b_3 = b_4 = (1 \div 1, 2)$ b_2 ; $D_3 \approx 1, 1$ D_2 ; $D_4 = (1, 3 \div 1, 55)$ D_2 .

Входной угол азл лопаток диффузора следует полагать равным выходному углу α_2 рабочего колеса. Выходной угол $\alpha_{4\pi}$ находится обычно в пределах 30—40°.

Число лопаток диффузора не должно быть равным и кратным числу рабочих лопаток. В обычных конструкциях $z_{\text{nud}} = 20 \div 28.$

"—20.20. Лопатки диффузоров очерчиваются дугой круга. Форма лопастей обратного направляющего аппарата приведена на рис. 11.5.

11.4. Конструкции центробежных компрессоров

Центробежные компрессоры в большинстве случаев имеют несколько ступеней. При небольшой подаче они изготовляются секционными с разделением ступеней на отдельные секции с разъемом в илоскостях, нормальных коси машины.

Компрессоры средней и высокой подач, как правило, изготовляются с разъемом корпуса в горизонтальной плоскости аналогично современным паровым турбинам. В этом случае прямой и обратный направляющие аппараты составляют одно целое с половинами корпуса или же, что встречается чаще, размещаются на диафрагмах, плотно вставленных в корпус. Диафрагмы имеют разъем в горизонтальной плоскости.

Охлаждение корпуса компрессора, желательное с энергетической точки зрения, усложняет конструкцию корпуса. Поэтому компрессоры строят с подразделением ступеней на группы в отдельных корпусах и расположением промежуточных охладителей между корпусами. Таким образом, возможны компрессоры одно-, двух- и трехкорпусные. Промежуточные охладители могут располагаться и ме-

жду группами ступеней, заключенных в одном корпусе,

На рис. 11.6 представлен продольный разрез второго корпуса шестиколесного турбокомпрессора с подачей 9000 м³/ч при давлении 0,7 МПа, частота вращения составляет 10 200 об/мин при мощности на валу 1200 кВт. Первый корпус этого компрессора имеет одно колесо с двусторонним подводом. Воздух, сжатый в первой ступени, проходит через трубчатый охладитель и поступает в приемный

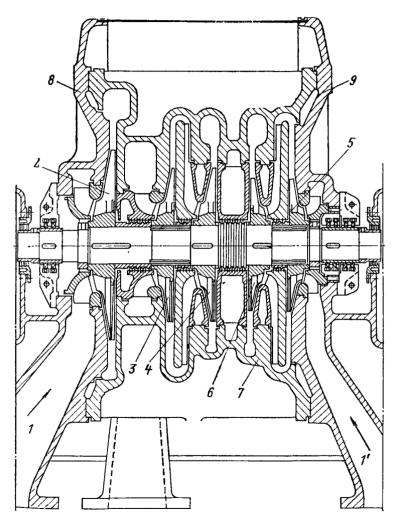
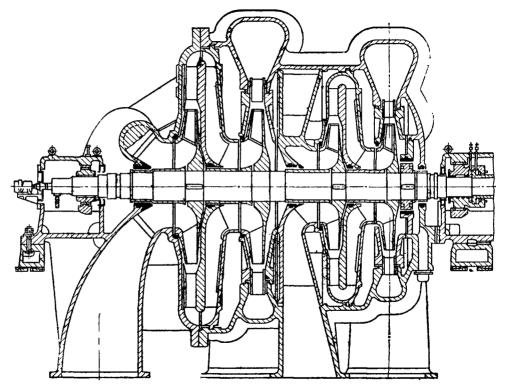



Рис 116. Продольный разрез второго корпуса турбокомпрессора

Рис. 11.7. Доменный компрессор K-3250-41-2

натрубок второго корпуса, в котором размещены пять колес, составляющих ступень конечного сжатия. Воздух продес, составляющих ступень конечного сжатия. Воздух про-ходит последовательно через колесо 2 и диффузор и посту-пает в колесо 3. Затем, пройдя через прямой и обратный направляющие аппараты, он попадает в колесо 4, откуда направляется через промежуточный охладитель и канал в нягую 5 и шестую 6 ступени. Основными элементами кон-струкции здесь являются: литой чугунный корпус 7, за-мыкающие крышки 8 и 9 корпуса, несущие патрубки 1 и 1 и коробки подшипников (на рисунке не показаны).

Внутри корпуса располагаются диафрагмы, несущие лопасти обратного направляющего аппарата.

Уравновешивание осевой силы достигается обратным расположением пятой и шестой ступеней и упорным сегментным подшипником. находящимся между корпусами компрессора.

Между ступенями располагаются гребенчатые уплотнения Вал в крышках имеет графитоугольные уплотнения. Колеса всех ступеней выполнены из стальных поковок;

контур лопастей осуществляется фрезерованием. Лопасти консольные, крепящиеся только на ступице; они не имеют ни основного, ни покрывного диска. Крепление рабочих колес на валу достигается шпонками и затяжными гайками.

Подшинники — скользящего трения с принудительной подачей масла от роторного насоса, приводимого в движе-

ние от валика шестерни редуктора.
Привод компрессора осуществляется электродвигателем с n=3000 об/мин; повышение частоты вращения до 10 200 об/мин достигается зубчатым вариатором. Оба корпуса компрессора и вариатор устанавливаются на массивной чугунной раме, крепящейся к фундаментным балкам. Электродвигатель устанавливается на раме, жестко сопряженной с рамой компрессора и фундаментом.

женной с рамой компрессора и фундаментом. На рис. 11.7 дан продольный разрез четырехступенчатого компрессора типа К-3250-41-2, применяемого в доменном процессе. Подача такого компрессора $Q=2840\div3250 \text{ м³/ч}$ при конечном давлении $p=0,36\div0,42 \text{ МПа}$. Привод компрессора происходит от паровой турбины АКВ-12-1V с частотой вращения 2500—3400 об/мин. Охлаждение производится выносным охладителем между третьей и четвертой ступенями.

Рисунок 11.8 дает представление о шестиступенчатом компрессоре K-100-61-2, применяемом в блоках производства кислорода путем разделения атмосферного воздуха. Подача его 90 м³/мин при конечном давлении 0,8 МПа.

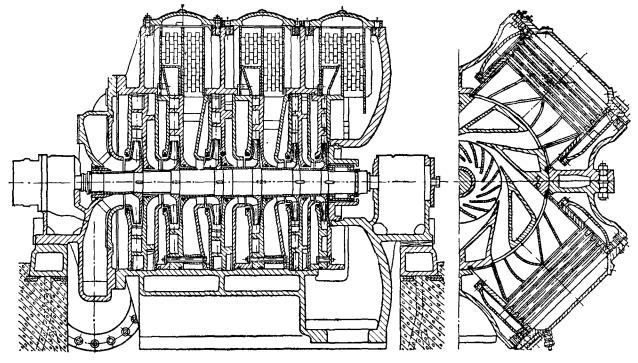


Рис. 11.8. Компрессор К-100-61-2 со встроенными охладителями

Компрессор имеет встроенные в корпус охладители (после каждых двух ступеней), что дает большую экономию размеров и массы компрессорной установки.

ГЛАВА ДВЕНАДЦАТАЯ

ОСЕВЫЕ КОМПРЕССОРЫ

12.1. Ступень осевого компрессора

Основные понятия. Осевой компрессор, как видно из конструктивной схемы (см. рис. 10.4), комбинируется из нескольких ступеней давления. Каждая ступень состоит из вращающегося венца рабочих и неподвижного венца на-

правляющих лопастей, представляющих собой круговые плоские лопастные решетки (рис. 12.1). Гибочие лопастн закреплены на дисках или барабине ротора, направляющие — жестко посажены в корпусе компрессора.

Первая ступень компрессора может выполняться с входными направляющими лопастями и без них. Последняя ступень всегда выполняется с выходными направляющими лопастями, назначение которых в этом случае состоит в раскру-

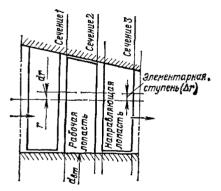


Рис. 12.1. Ступень осевого компрессора. Выделение элементарной ступени

чивании потока и уменьшении выходных потерь энергии.

Выделим, как указано на рис. 12.1 и 12.2, ступень малой радиальной протяженности Δr , называемую элементарной ступенью. В пределах длины элементарной ступени параллелограммы скорости неизменны.

Радиус элементарной ступени r=const, и энергия, передавасмая газу рабочими лопастями осевого компрессора, при $u_1 = u_2 = u$ определяется формулой (см. § 6.2)

$$L_{u} = u (c_{2u} - c_{1u}) = u \Delta c_{u}. \tag{12.1}$$

Используя уравнение неразрывности и геометрические соотношения между элементами параллелограммов скоростей, получаем

$$L_{\rm T} = uc_{1\alpha} \left(\operatorname{ctg} \beta_1 - \frac{\rho_1}{\rho_2} \operatorname{ctg} \beta_2 \right). \tag{12.2}$$

Приближенно, полагая $\rho_1 \approx \rho_2$, получаем

$$L_{\mathbf{T}} = uc_{1a} \left(\operatorname{ctg} \beta_1 - \operatorname{ctg} \beta_2 \right). \tag{12.3}$$

Если полагать, что процесс в рабочем колесе протекает бсз потерь, то энергия, подводимая к газу, определяемая

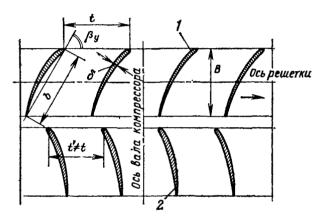


Рис. 12.2. Решетки лопастей ступени осевого компрессора:

t — шаг рабочих лопастей: t' — шаг направляющих лопаток; b — хорда профиля; B — ширина решетки; β у — угол установки профиля; δ — максимальная толщина профиля, t — рабочие лопасти; t — направляющие лопасти

по (12.2) или (12.3), повышает его энергию и определяется разностью энтальпий заторможенного потока i_2^* — i_1^* .

Следовательно,

$$uc_a(\operatorname{ctg}\beta_1 - \operatorname{ctg}\beta_2) = i_2^* - i_1^*.$$
 (12.4)

КПД элементарной ступени. Уравнение энергии потока

$$L_{\rm r} = \int_{1}^{2} \frac{dp}{\rho} + \frac{c_2^2 - c_1^2}{2} + l_{\rm p. \kappa} + \int_{2}^{3} \frac{dp}{\rho} + \frac{c_3^2 - c_2^2}{2} + l_{\rm B.a.}$$
(12.5)

где $l_{\rm p.r}+l_{\rm H.a}=l_{\rm cr}$ — потери энергии ступени, слагающиеся из потерь энергии в рабочих каналах и направляющих апнаратах.

Последнее уравнение приводится к виду

$$L_{\rm T} = \int_{1}^{3} \frac{dp}{\rho} + \frac{c_3^2 - c_1^2}{2} + l_{\rm CT}.$$

Действительная энергия, которую приобретает поток газа в компрессорной ступени,

$$L = L_{\rm T} - l_{\rm cr} = \int_{1}^{3} \frac{dp}{\rho} + \frac{c_3^2 - c_1^2}{2} . \tag{12.6}$$

Аэродинамическое совершенство ступени принято оценивать отношением $L/L_{\rm T}$, называемым внутренним КПД (отмечается индексом i):

$$\eta_{\rm f} = \frac{L}{L_{\rm T}} = \frac{\int\limits_{1}^{3} \frac{dp}{\rho} + \frac{c_3^2 - c_1^2}{2}}{\int\limits_{1}^{3} \frac{dp}{\rho} + \frac{c_3^2 - c_1^2}{2} + l_{\rm cr}}.$$
 (12.7)

Если процесс ступени протекает политропно, то действительная удельная энергия вычисляется по известному соотношению

$$L = \frac{n}{n-1} RT_1 \left[\left(\frac{p_3}{p_1} \right)^{\frac{n-1}{n}} - 1 \right] + \frac{c_3^2 - c_1^2}{2},$$

и в этом случае внутренний КПД ступени, вычисляемый по (12.7), называют внутренним политропным КПД η_{in} .

В § 10.3 было указано, что оценка совершенства компрессоров с неинтенсивным охлаждением производится при помощи изоэнтропного КПД. Поэтому для ступеней осевых компрессоров удобно применять внутренний изоэнтропный КПД, значение которого можно вычислить по (12.7), полагая процесс, описываемый числителем этой формулы, изоэнгропным. Преобразования равенства (12.7) в этом слу-

чае приводят к следующим формулам для вычисления η_{ia} по параметрам торможения:

$$\eta_{la} = \frac{\left(\frac{p_3^*}{p_1^*}\right)^{\frac{k-1}{k}} - 1}{\frac{T_3^*}{T_1^*} - 1};$$
(12.8)

$$\eta_{ia} = \frac{i_{3a}^* - i_{ia}^*}{i_{3}^* - i_{1}^*}.$$
 (12.9)

Значения η_{ia} и η_{in} ступени осевого компрессора отличаются не более чем на 0,5 %, и поэтому использование η_{ia} практически вполне допустимо.

Для ступеней современных стационарных осевых воздушных компрессоров степень повышения давления $\epsilon = 1,1 \div 1,3$. При этих условиях

$$\eta_{ia} = 0.85 \div 0.95$$
.

Степень реактивности ступени. Ступени осевых компрессоров принято характеризовать степенью реактивности р (см. гл. 3 и 4). Используем формулу

$$\rho = \frac{L_{\text{CTATMq}}}{L} = \frac{u(c_{2u} - c_{1u}) - \left(\frac{c_2^2}{2} - \frac{c_1^2}{2}\right)}{u(c_{2u} - c_{1u})}.$$

Преобразование этого равенства с учетом соотношений $c_1^2 = c_{1u}^2 + c_{1a}^2$, $c_2^2 = c_{2u}^2 + c_{2a}^2$, следующих из параллелограммов скоростей, приводит к простейшему типу выражения для степени реактивности

$$\rho = 1 - \frac{c_{1u} + c_{2u}}{2u}. \tag{12.10}$$

Ступени осевых компрессоров выполняются с $\rho = 0.5 \div 1.0$. Рассмотрим особениости решеток ступени со степенями реактивности 0.5 и 1.0.

Ступень с $\rho = 0.5$. Из (12.10) следует: $c_{1u} = u - c_{2u}$; $c_{2u} = u - c_{1u}$. Параллелограммы скоростей, удовлетворяющие этим условиям, показаны на рис. 12.3, из которого очевидны соотношения

$$w_1^2 = c_{2u}^2 + c_a^2$$
; $w_2^2 = c_{1u}^2 + c_a^2$; $w_2^2 - w_1^2 = c_{1u}^2 - c_{2u}^2$.

Решетка рабочих лопастей увеличивает закрутку потока: $c_{2u} > c_{1u}$, следовательно, $c_{1u}^2 - c_{2u}^2 < 0$ и $w_2^2 - w_1^2 < 0$. От-

сюда следует $w_2 < w_1$.

Последнее неравенство показывает, что межлопастные каналы рабочего колеса ступени с ρ =0,5 являются диффузорами. В них происходит уменьшение относительной скорости и превращение кинетической энергии относительного движения в потенциальную эпергию.

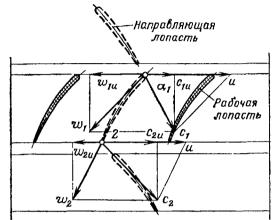


Рис 12.3. Паралленограммы скоростей ступени, $\rho = 0.5$

Степень реактивности $\rho = 0.5$ обусловливает такое соотношение между элементами планов скоростей и такие формы межлопастных каналов, при которых потери энергии в ступени оказываются малыми. Этим объясняется широкое применение ступеней с $\rho = 0.5$ в стационарных осевых компрессорах.

Ступень с $\rho = 1,0$. Из уравнения (12.10) для этого случая имеем $c_{1u} = -c_{2u}$; параллелограммы скоростей даны на

рис. 12.4.

Геометрически очевидны соотношения

$$w_1^2 = c_a^2 + (u + c_{1u})^2;$$

 $w_2^2 = c_a^2 + (u - c_{2u})^2,$

из которых следует $w_2 < w_1$; $w_1^2 - w_2^2 = 4uc_{1u}$.

Поэтому увеличение энергин давления (сжатие) в рабочем колесе ступени без учета потерь составляет

$$\frac{w_1^2 - w_2^2}{2} = 2uc_{1u}.$$

Из параллелограммов скоростей (рис. 12.4) при усло-

вин $c_{1u} = -c_{2u}$ следует $c_1 = c_2$.

В ступенях с $\rho = 1$ (100%-ная реактивность) энергия получается в ступени только в потенциальной форме (дав-

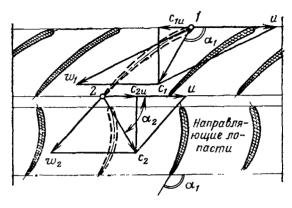


Рис. 12.4. Параллелограммы скоростей ступени, $\rho = 1.0$

ление). Сжатие происходит в межлопастных каналах рабочего колеса.

Направляющие лопаточные венцы, расположенные между рабочими лопастными решетками, в этом случае не меняют значения абсолютной скорости, но изменяют лишь ее направление соответственно требуемым углам α_1 и α_2 .

Ступень с осевыми входом и выходом. Рассмотрим случай, когда газ подводится к ступени и отводится от нее в следующую ступень в осевом направлении: $c_{1u} = c_{3u} = 0$ (рис. 12.5).

Пусть $c_{2u} = 0.5u$. Степень реактивности такой ступени по-

(12.10)

$$\rho = 1 - \frac{c_{1u} + c_{2u}}{2u} = 0.75.$$

Очевидно, $w_2 < w_1$, и, следовательно, в межлопастных каналах рабочего колеса происходит повышение давления как результат уменьшения кинетической энергии относительного движения.

Без учета потерь энергии прирост энергии давления, Дж/кг,

$$\frac{w_1^2 - w_2^2}{2} = \frac{c_a^2 + u^2 - c_a^2 - \frac{u^2}{4}}{2} = \frac{3}{8} u^2.$$

Направляющий аппарат ступени с $\rho = 0.75$ обладает свойствами диффузора, потому что в нем происходит понижение скорости абсолютного движения от c_2 до $c_3 = c_1$. Результатом этого является повышение давления, эквива-

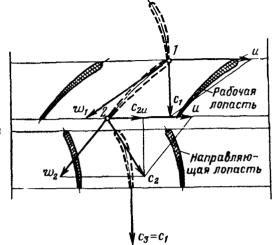


Рис. 125. Параллелограммы скоростей ступени, $\rho = 0.75$

лентное уменьшению кинетической энергии абсолютного движения.

Ступени такого типа находят широкое применение в стационарном компрессоростроении.

12.2. Конструктивные формы осевых компрессоров

Осевые компрессоры строятся, как правило, многоступенчатыми. Проточная полость образуется межлопастными каналами венцов рабочих и направляющих лопастей и поверхностями корпуса и втулки.

В зависимости от формы внутренней поверхности корпуса и наружной поверхности втулки различают два основных геометрических типа проточной полости (рис. 12.6):

1)
$$d_{BT} = \text{const}; d_{R} = \text{var};$$

2) $d_{BT} = \text{var}; d_{R} = \text{const}.$ (12.11)

В обоих случаях радиальная длина рабочих и направляющих лопастей уменьшается в направлении от первой ступени к последней.

Изменение длины лопасти обусловлено уменьшением объема газа при сохранении постоянного значения осевой скорости. Последнее условне не является обязательным, и в некоторых случаях уменьшают осевую скорость в последних ступсиях с целью уменьшения потерь энергии в них.

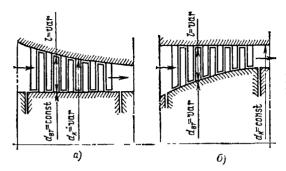


Рис. 12.6. Проточиая полость осевого компрессора

Минимальная высота лопасти последней ступени приблизительно 40 мм.

Изменение длины лопасти в направлении движения газа приводит к изменению характерного для осевых машин значения втулочного отношения $v = d_{\rm BT}/d_{\rm K}$.

Для первых ступеней $v_{\text{вх}} = 0.5 \div 0.8$, для носледних $v_{\text{вых}} = 0.7 \div 0.9$.

Выясним особенности геометрических типов компрессоров, определяемых условиями (12.11).

1) $d_{\rm BT} = {\rm const}; \ d_{\rm K} = {\rm var}. \ {\rm B}$ этом случае втулка — цилиндрическая и изготовление се несложно. Корневые части и крепления рабочих лопастей всех ступеней во втулке совершенно одинаковы. Последние лопасти в этом варианте имеют при прочих равных условиях длины, большие, чем в варианте с $d_{\rm K} = {\rm const.} \ {\rm B}$ этом легко убедиться, составляя уравнения неразрывности для обоих вариантов и полагая осевые скорости одинаковыми.

Увеличенная длина лопастей хвостовых ступеней уменьшает потери энергии в них.

2) $d_{\text{вт}} = \text{var}$; $d_{\text{к}} = \text{const.}$ В этой схеме упрощаются обработка корпуса и крепление в нем направляющих лопаток. Упрощаются и являются более надежными обработка и пригонка внешних концов рабочих лопастей. Благодаря этому допускаются меньшие радиальные зазоры между концами рабочих лопастей и внутренней поверхностью корпуса, что повышает объемный КПД ступени. Окружные скорости лопастей в этом случае выше, чем при $d_{\rm вт}$ = const; это увеличивает работу ступсней, и при заданной степени сжатия компрессора количество ступеней получается меньшим, чем в первом случае. Недостатком этой конструктивной схемы применительно к малым подачам являются малые длины лопастей хвостовых ступеней: КПД хвостовых ступеней снижается.

Кроме рассмотренных схем построения проточной полости иногда применяют и другие схемы с $d_{\text{вт}}$ — var и $d_{\text{к}}$ — var, не имеющие, однако, преимуществ перед рассмот-

ренными.

Для стационарных оссвых компрессоров применяют в

большинстве случаев схему с $d_{\text{вт}}$ = const.

Сущсственное влияние на энергстическую эффективность осевого компрессора оказывает аэродинамика подводящего и отводящего каналов. Они конструируются, как правило, в виде спиральных и осевых каналов переменного сечения (конфузоров и диффузоров).

Рассмотрим конструктивные формы рабочих и направляющих лопастей и способ их крепления во втулке и кор-

пусе компрессора.

Лопасти осевых компрессоров в редких случаях являются цилиндрическими. Обычно они рассчитываются с переменным по длине коэффициентом реактивности или по условию rc_u =const. Это приводит к изменению угла установки элементов лопасти по се длине, и лопасть получается винтовой.

Корневое сечение лопасти 1 жсстко сопрягастся с сухарем 2, служащим для закрепления лопасти во втулке. Лопасть и сухарь обычно выполняются из одного куска металла; в некоторых случаях свариваются. Боковые грани сухаря имеют криволинейные рифы (зубцы) 3 для креплення в канавках, проточенных во втулке. Сухари вводятся в канавку через специальный замковый колодец и разводятся по канавке до плотного соприкосновения торцовыми плоскостями (рис. 12.7).

После набора в канавку сухарей полного венца лопастей в замковый колодец закладывается с небольшим натягом холостой (без лопасти) сухарь, стопорящийся специ-

альным винтом.

В некоторых конструкциях колодец для введения хвостовиков лопастей выполняется один на две кольцевые канавки. Это упрощает конструкцию крепления.

Направляющие лопасти могут крепиться к корпусу, или аналогично креплению рабочих лопастей к втулке, или

способом, показанным на рис. 12.8. В этом случае лопатки группируются при помощи цилиндрических бандажных лент 1 и 2 в две секции; одна крепится к верхней половине корпуса компрессора, другая — к нижней. Стыки секций — в привалочных плоскостях половин корпуса. Способы крепления лопаток к бандажам и бандажей к корпусу ясны из



Рис. 12.7. Конструкция рабочей лопасти

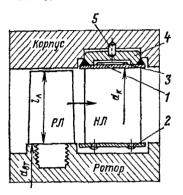


Рис. 12.8. Крепление направляющей лопасти

рис. 12.8. На наружных концах направляющих лопаток отфрезерованы хвостовики 3, проходящие через сквозные отверстия в бандаже. С наружной стороны хвостовик приваривается к бандажу.

На внутренних концах направляющих лопаток отфрезерованы стерженьки, пропускаемые через отверстия в бандаж 2 и расклепываемые в нем.

Для увеличения жесткости пакета к наружному бандажу 1 приваривается кольцо жесткости 4, плотно входящее в цилиндрическую выточку в корпусе. Весь пакет предохраняется от проворачивания в корпусе штифтом 5.

12.3. Метод расчета основных размеров ступени

Рассмотрим метод приближенного расчета ступени, основывающийся из использовании опытных данных продувки плоских решеток лопастей.

В этом методе используются следующие безразмерные коэффициситы ступени:

коэффициент расхода
$$\phi=c_a/u;$$
 коэффициент напора $\psi=\frac{L_a}{u^2/2}$) степень реактивиости $\rho=L_{\rm CT}/L;$ коэффициент закрутки $\mu=\Delta c_u/u,$

где c_a — осевая скорость, осредненная по сечению проточной полости, ногмальному осв компрессора; L_a — изоэнтропная удельная работа ступени; $L_{\rm cr}$ — статическая удельная работа ступени; L — полная удельная работа ступени; $\Delta c_u = c_{2u} - c_{1u}$ — абсолютное значение закрутки потока рабочим колесом ступени.

Многократно проведенные исследования компрессорных решеток показывают, что давление, создаваемое ступенью, приблизительно равно давлению элементарной ступени, лежащей на средием диаметре ступени Поэтому в нестрогих приближенных расчетах, проводимых с привлечением опытных материалов по продувке решеток, скорость и, определяющая коэффициенты ф, ф и µ, является средней скоростью лопасти

$$u_{\rm cp} = \frac{\pi d_{\rm cp} \, n}{60} \, , \tag{12.13}$$

где $d_{\rm cp} = (d_{\rm BT} + d_{\rm K})/2$. Здесь $d_{\rm BT}$ и $d_{\rm K}$ — диаметры втулки и концов ло-пастей

Для расчета должны быть заданы: массовая подача M, газовая постоянная R, начальное и конечное давления p_1 и p_2 , начальная температура газа T_1 .

Окружную скорость u_κ концов рабочих лопастей дозвуковых компрессоров принимают до 250 м/с.

Коэффициент расхода и втулочное отношение задают в пределах

$$\varphi = 0.45 \div 0.7$$
; $v = 0.5 \div 0.9$.

Среднее значение осевой скорости рассчитывают по коэффициенту расхода $\varepsilon_a = \phi u_{cp}$.

Применяя уравнение неразрывности, рассчитывают диаметр окружности концов рабочих лопастей:

$$Q = 0.785 \left(d_{\rm H}^2 - d_{\rm BT}^2 \right) c_a = 0.785 d_{\rm K}^2 (1 - v^2) c_a,$$

$$d_{\rm H} = \sqrt{\frac{Q}{0.785 (1 - v^2) c_a}}.$$
(12.14)

[•] При точном расчете ступень компрессора разбивают на элементарные ступени, работающие при разных окружных скоростях.

По получениому значению a_{κ} и принятому значению \tilde{u}_{κ} определяют необходимую частоту вращения вала компрессора, об/мин,

$$n = \frac{60u_{\rm R}}{\pi d_{\rm R}}.$$

Днаметр втулки, м,

$$d_{\rm BT} = v d_{\rm R}$$
.

Средний диаметр, м,

 $d_{\rm CP} = (d_{\rm R} + d_{\rm BT})/2.$

Длина лопасти, м,

 $l = (d_{\rm H} - d_{\rm DT})/2.$

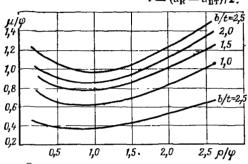


Рис. 12.9. Графнк зависнмости между относительными значениями коэффициента закрутки и степени реактивности для решеток различной густоты

Окружная скорость на среднем диаметре, м/с,

$$u_{\rm cp} = (\pi d_{\rm cp} n)/60$$

Коэффициент расхода ϕ ступени рассчитывается по средней окружной скорости

$$\varphi = c_{1a}/u_{cp}.$$

Принимают соответственно указаниям § 12.1 ρ = 0,5 ÷ 1,0 и густоту b/t = 1 ÷ 2.

Пользуясь опытными графиками, полученными продувкой решеток (рис. 12.9), по ρ/ϕ (имея в виду принятое значение густоты решетки) определяют μ/ϕ и из него коэффициент закрутки μ . Далее можно воспользоваться известной связью между коэффициентами напора и закрутки и изоэнтропным КПД: $\psi=2\mu\eta_a$, из которого, приняв $\eta_a=0.85\pm0.95$, определить ψ .

По (12.12) определяют изоэнтропиую работу ступени

$$L_{act} = \psi u_{cp}^2/2.$$

По изоэнтропной работе компрессора L_a и полученной изоэнтропной работе ступени определяют ориентировочно количество ступеией.

Далее распределяют работу между ступенями, относя на последние из них несколько меньшие значения.

После ориентнровочного расчета последней ступени находят длину лопатки ее: приняв схему компрессора с $d_{\rm BT}$ —const или d_{κ} —const и выполнив по первой и последней ступеням очертание проточной полости, выполняют детальный термогазодинамический расчет всех ступеней.

Обычно при проектировании компрессоров проводят расчет ряда вариантов с различными характеристическими коэффициентами и геометрическими характеристиками решеток. Наилучшим является вариант, дающий при заданных условиях наименьшие габариты и массу компрессора при высоких энергетических показателях.

Пример 12.1. Рассчятать основные размеры первой ступени оссвого компрессора. Определить ориентировочно количество ступеней. Данные для расчета: M=50 кг/с; $p_1=100$ кПа; $\epsilon_{\kappa}=5$; $t_1=20$ °C.

Решение. Из уравнения состояния

$$\rho_1 = \frac{p_1}{RT_1} = \frac{100\,000}{287 \cdot 293} = 1,2 \text{ Kr/M}^3; \quad Q_1 = \frac{50}{1,2} = 41,5 \text{ M}^3/c.$$

Принимаем $u_x = 220$ м/с; $v_1 = 0.65$; $\phi_1 = 0.60$. Осевая скорость, осредненная по сечению,

$$c_a = \varphi_i u_{\rm R} = 0.6 \cdot 220 = 132 \text{ M/c.}$$

Наружный диаметр первой ступени по (12.14)

$$d_{h1} = \sqrt{\frac{41.5}{0.785 (1 - 0.65^2) \, 132}} = 83 \text{ M}.$$

Необходимая частота вращения

$$n = \frac{60 \cdot 220}{3.14 \cdot 0.83} = 5100$$
 of/MuH.

Полученная частота вращення возможна при паро- и газотурбиином приводе. В случае привода от электродвигателя с синхронной частотой вращения 3000 об/мии иеобходимо включение между двигателем в компрессором повышающей передачи с отношением 1:1,7.

Диаметр втулки $d_{\text{eri}} = 0.65 \cdot 0.83 = 0.54$ м.

Длина лопатки первой ступени $l_1 = \frac{0.83 - 0.54}{2} = 0.145$ м.

Средний диаметр ступени $d_{top} = \frac{0.54 + 0.83}{2} = 0.685$ м.

Средняя окруживя скорость лопатки $u_{\text{tep}} = \frac{3,14 \cdot 0,685 \cdot 5100}{60} = 183 \text{ м/c}$

Коэффициент расхода по средней скорости $\phi = c_{ia}/u_{icp} = 132/183 = 0.72$.

Принимаем $\rho = 0.75$; b/t = 1.5.

По графику рис. 12.9 при $\rho/\phi = \frac{0.75}{0.72} = 1.04$ нмеем $\mu/\phi = 0.75$, откуда получаем $\mu = 0.75$ $\phi = 0.75 \cdot 0.72 = 0.54$.

Принимая $\eta_a = 0.9$, определяем коэффициент напора

$$\psi = 2\mu\eta_a = 2.0,54.0,9 = 0,98.$$

Изоэнтропная работа ступени

$$L_{acr} = 0.98 \frac{183^2}{2} = 16400 \text{ Mm/kr}.$$

Изоэнтропиая работа компрессора по заданным параметрам

$$L_a = \frac{1}{1.4-1}$$
 287 • 293 $\left[5^{\frac{1.4-1}{1.4}} - 1 \right] = 168\,000$ Дж/кг. Количество ступеней $z = \frac{L_a}{L_{act}} = \frac{168\,000}{16\,400} \approx 10$.

12.4. Примеры конструкций

На рис. 12.10 (с. 346) изображены боковой вид и продольный разрез двадцатиступенчатого осевого компрессора. Компрессор имсет промежуточный отбор после восьмой ступени и, следовательно, подает воздух двух давлений.

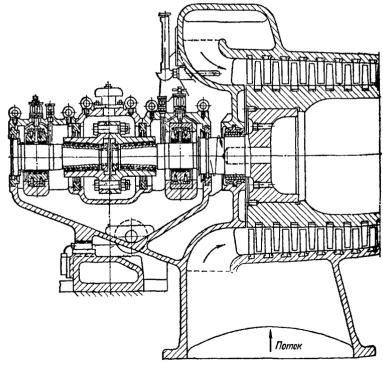
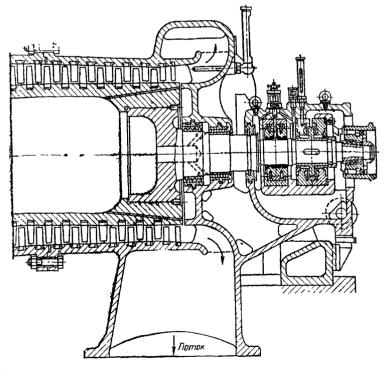


Рис. 12.11. Осевой компрессор с

Компрессор выполнен с постоянным внутренним диаметром корпуса (см. § 12.2). Корпус имеет разъем в горизонтальной плоскости. Подвод и вывод воздуха — в осевом направлении. Ротор массивный, большой массы.

Подшипники скользящего трения. Восприятие осевой силы — упорным подшипником, расположенным со стороны

двигателя.


Для облегчения технологии корпуса входная и выходная крышки его выполнены отъемными.

Уплотнения вала на входе и выходе гребенчатые.

Конструкция в целом типична для стационарных ком-

прессоров.

Рисунок 12.11 дает представление о конструкции стационарного осевого компрессора. Компрессор выполнен по схеме с постоянными диаметром ротора и коническим корнусом. Подвод и отвод воздуха в поперечном направлении снизу через патрубки, составляющие одно целое с левой и правой половинами корпуса.

постоянным диаметром ротора

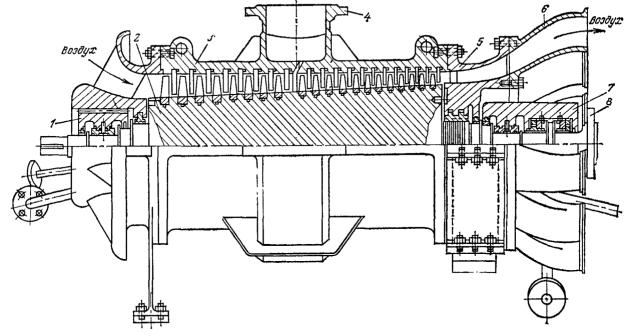


Рис. 12.10. Осевой компрессор:

1 — опорный подшинник; 2 — барабан; 3 — корпус; 4 — патрубок промежуточного отбора; 5 — диффузор; 6 — переходные патрубки; 7 — опорно-упорный подшинник; 8 — фланец жесткой муфты

Ввиду большой длины корпуса он выполнен из двух половин, стыкующихся в плоскости, нормальной к оси вала.

Ротор облегченный, оригинальной конструкции, выполиен из двух основных частей: цилиндра, несущего венцы рабочих лопастей, и торцовых вставок, жестко посаженных в цилиндр, составляющих одно целое с валами. Подшипники скользящего трения. Подпятник гидродинамический, сегментного типа. Концевые уплотнения гребенчатые с защитой шеек валов специальными втулками. Соединение с двигателем жесткой муфтой. Подача компрессора около 70 000 м³/ч при степени повышения давления 3,4.

ГЛАВА ТРИНАДЦАТАЯ

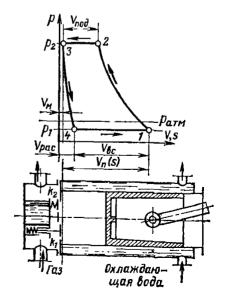
поршневые компрессоры

BOOKS.PROEKTANT.ORG BUBAHOTEKA ЭЛЕКТРОННЫХ

КОПИЙ КНИГ

для проектировщиков
и технических специалистов

13.1. Индикаторная диаграмма


Схема компрессора и его индикаторная диаграмма представлены на рис. 13.1.

Проследим порядок работы компрессора при помощи днаграммы p=f(V), где V — объем, замыкаемый поршнем в цилиндре и зависящий от положения поршня.

Двигаясь от правого крайнего положения влево, поршень сжимает газ, находящийся в цилиндре. Всасывающий

закрыт в течение всего процесса сжатия. Нагистательный клапан закрыт до тех пор, пока разность давлений в цилиндре и напорном патрубке преодолепружины. eт натяжения Когда это произойдет, нагиетательный клапан откроется и поршень будет вытеснять газ в напорный трубопровод. Процесс повышення давления изображается

рис 13.1. Схема и индикаторная драграмма компрессора

на диаграмме линией 1-2, а процесс подачи газа — линией 2-3.

Если p_2 — давление в цилиндре при подаче газа, то объем газа, подаваемого компрессором при этом давлении.

будет $V_{\text{под}}$.

При сжатии температура газа повышается, так как охлаждающая вода не отнимает от газа всю теплоту, выделяющуюся при сжатии. Линия сжатия — политропа, описываемая в системе координат V, p уравнением

$$pV^n = \text{const.} \tag{13.1}$$

Линия подачи 2-3 теоретически является изобарои

$$p_2 = \text{const.} \tag{13.2}$$

В действительности же благодаря влиянию инерции гавовых масс, действию клапанов и их пружин давление нагнетасмого газа не удерживается строго постоянным.

Когда поршень придет в крайнее левое положение, он вытеснит из цилиндра не весь газ, и часть газа в количествс $V_{\rm M}$ останстся в цилиндре ($V_{\rm M}$ называют мертвым объемом или мертвым пространством).

В начале хода поршня вправо нагнетательный клапан закростся и остаток газа в мертвом пространстве объема $V_{\rm M}$ будет расширяться по линии 3-4.

Линия расширения — политропа с показателем $n_{\rm p}$, ее

уравнение

$$pV^{n_p} = \text{const.} \tag{13.3}$$

Расширение газа будет происходить до тех пор, пока давление в цилиндре не понизится до $p_1 < p_0$, где p_0 — давление в пространстве, из которого компрессор всасывает газ.

Под влиянием разности давлений р₀—р₁ всасывающий клапан откростся и поршень, двигаясь вправо, будет всасывать газ в цилиндр.

Давление p_1 всегда меньше p_0 вследствие газового сопротивления тракта всасывания. Процесс всасывания представляется изобарой 4-1.

Полученная замкнутая фигура 1-2-3-4-1 является теоретической индикаторной диаграммой компрессора.

Действительная индикаторная диаграмма несколько отличается от теоретической (в основном в линиях всасываиня и подачи).

43.2. Процессы сжатия и расширения газа в поршневом компрессоре

В поршневых компрессорах теоретически возможны термодинамические процессы, указанные в § 10.2.

Протскание процессов сжатия и расширения существенно зависит от теплообмена между сжимаемым газом и окружающей средой и в большой мере от герметичности рабочего объема цилиндра.

Герметичность определяется конструкцией и состоянием

клапанов, сальников и уплотняющих колец поршня.
Поршневые компрессоры выполняются обычно с водяным охлаждением цилиндра и его крышки. При этом обеспечивается довольно интенсивный теплообмен и процессы сжатия и расширения являются политропными со средними значениями показателей n=1,35 и 1,2 (для двухатомных газов).

Процесс сжатия в поршневых компрессорах с воздушным охлаждением или с водяным при высокой температуре охлаждающей воды приближается к адпабатному.

Строгос исследование термодинамики действующих компрессоров приводит к выводу, что показатели отдельных участков линий сжатия и расширения неодинаковы.

Это объясняется различием условий теплообмена влиянием негерметичности в разных фазах процессов.

13.3. Мощность и КПД

Точный расчет работы цикла компрессора производится по урависниям термодинамики реальных газов.

Расчет компрессоров с конечным давлением сжатия до 10 МПа по уравнениям термодинамики пдсального газа дает результаты, близкие к действительным.

При высоких давлениях, примсняющихся, напримср, при сингезе химических продуктов, учет свойств реальных газов при расчете компрессора совершенно необходим.

Последующее изложение материала основано на тео-

рии компрессора идеального газа,

Вычисляя работу, затрачиваемую на валу компрессора, можно пренебрегать влиянием мертвого пространства. Последнее не оказывает заметного влияния на потребление энергии компрессором, потому что работа, затрачиваемая на сжатие газа в объеме мертвого пространства, в значительной мерс возвращается на вал в процессе расширспия.

Для вычисления мощности компрессора воспользуемся относительным изотермическим КПД [формула (10.23)], откуда получим

$$N = \frac{N_{\text{M3}}}{\eta_{\text{M3}} \eta_{\text{M}}} \,. \tag{13.4}$$

Используя (10.15) и (13.4), получаем

$$N = \frac{ML_{R3}}{1000\eta_{R3}\eta_{M}} = \frac{p_1Q_1 \ln \frac{p_2}{p_1}}{1000\eta_{R3}\eta_{M}}.$$
 (13.5)

Для поршиевых компрессоров различных конструкций $\eta_{\rm M} = 0.80 \div 0.93.$

Изотермический КПД зависит от интенсивности охлаждения компрессора и лежит в предслах $\eta_{\rm H3} = 0.65 \div 0.85$.

13.4. Мертвое пространство. Подача

Цилиндры компрессоров всегда выполняются с мертвым пространством; это необходимо во избежание удара поршия о крышку при подходе его к крайнсму положению.

Объсм мертвого пространства обычно оценивается в долях или процентах рабочего объема цилиндра и называстся относительным объемом мертвого пространства:

$$a = V_{\text{M}}/V_{\text{p.}} \tag{13.6}$$

В современных одноступенчатых компрессорах при расположении клапанов в крышках цилиндров $a=0,025\div0,060$. При ступенчатом сжатии клапаны располагаются на боковой поверхности цилиндра и мертвое пространство в ступенях высокого давления не удается выполнить малым по конструктивным соображениям: здесь $a\approx0,2$.

Наличие мертвого пространства приводит к тому, что всасывание начинается не в начале обратного хода поршня, а в конце процесса расширения (точка 4 на рис. 13.2). Следовательно, объем $V_{\rm BC}$, фактически всасываемый порш-

нем, меньше рабочего объема цилипдра.

Отношение всасываемого объсма к рабочему объему цилиндра называют объемным коэффициентом компрессора:

$$\lambda_0 = V_{\rm pc}/V_{\rm p}. \tag{13.7}$$

Объемный коэффициент характеризует использование рабочего объема цилиндра.

110 уравнению политропы для начала и конца процесса расширсния имеем

$$\rho_{2}V_{\mathrm{M}}^{n}\mathbf{p} = \rho_{1}V_{\mathrm{pacm}^{\bullet}}^{n}\mathbf{p}$$

Но по выражению (13.6) $V_{\rm M} = aV_{\rm p}$. Следовательно,

$$p_2 (aV_p)^{n_p} = p_1 V_{pacm}^{n_p}; \ V_{pacm} = \left(\frac{p_2}{p_1}\right)^{1/n_p} aV_p,$$

или

$$V_{\text{pacm}} = aV_{p} \, \epsilon^{1/n_{p}}$$
,

где є — степень повышения давления.

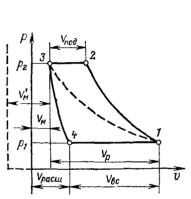


Рис. 13.2. Индикаторная диаграмма компрессора с мертвым простраиством

Рис. 13.3. Влняние степени повышения давлення є на подачу компрессора

Из диаграммы на рис. 13.2 следует

$$V_{\rm вc} = V_{\rm p} + V_{\rm m} - V_{\rm pacm} = V_{\rm p} + aV_{\rm p} - aV_{\rm p} \, {\rm e}^{{\rm i}\hbar\imath_{\rm l}}$$
 ; поэтому

$$\lambda_0 = \frac{V_p + aV_p - aV_p \, \varepsilon^{1/n_p}}{V_p} = 1 + a - a\varepsilon^{1/n_p},$$

ИЛИ

$$\lambda_0 = 1 - a(e^{1/n}p - 1).$$
 (13.8)

Объсм всасывания

$$V_{\rm BC} = \lambda_0 V_{\rm p} = [1 - a(\epsilon^{1/n_{\rm p}} - 1)]V_{\rm p}.$$
 (13.9)

Однако действительный объсм газа, подавасмого компрессором, при условиях псред всасывающим патрубком компрессора будст меньше определяемого по выражению (13.9). Это объясняется двумя причинами: по-первых, нагревом газа при всасывании от горячих поверхностей клапана и стенок цилиндра и, во-вторых, неполной герметичностью цилиндра компрессора (утечками через клапаны сальника и между поршневыми кольцами и внутренней поверхностью цилиндра).

Первое из указанных обстоятельств учитывается термическим коэффициентом $\lambda_{\rm T}$, второе — коэффициентом герметичности $\lambda_{\rm L}$. Поэтому действительный объем, всасывае-

мый компрессором,

$$V_1 = \lambda_0 \lambda_{\bf r} \, \lambda_{\bf r} \, V_{\bf p}.$$
 Произведение
$$\lambda_0 \lambda_{\bf r} \, \lambda_{\bf r} = \lambda \tag{13.10}$$

называют коэффициентом подачи.

Следовательно,

$$V_{1} = \left[1 - a\left(\varepsilon^{1 n_{p}} - 1\right)\right] \lambda_{r} \lambda_{r} V_{p}. \tag{13.11}$$

Подача компрессора одностороннего действия с одним цилиндром

$$Q_1 = V_1 n = [1 - a(e^{1/n}p - 1)] \lambda_r \lambda_r V_p n,$$
 (13.12)

где п — число двойных ходов поршия в минуту.

Из уравнения (13.12) ясны факторы, определяющие подачу компрессора. Основной величиной является рабочий объем цилиндра, равный произведению площади порш-

ня на его ход:
$$V_p = \frac{\pi}{4} D^2 S$$
.

Объем мертвого пространства влияет на подачу компрессора отрицательно. Увеличивая относительную величину мертвого пространства, можно добиться равенства $a(\epsilon^{1/n_p}-1)=1$, и подача по выражению (13.12) станет равной нулю. Это наглядно видно из диаграммы, представленной на рис. 13.2: при увеличении $V_{\rm M}$ ось ординат переносится влево, политропа сжатия располагается более полого и при некотором предслычом значении $V_{\rm M}$ попадает в точку 3; подаваемый объем становится равным нулю. При этом линии сжатия и расширения совпадают; компрессор не всасывает и не подает.

Увеличение степени повышения давления при заданном $V_{\rm M}$ уменьшает подачу. Это ясно из формулы (13.12) и со-

поставления диаграмм p, V, приведенных для разных зна-

чений в на рис. 13.3.

Мертвое пространство влияет на подачу тем сильнее, чем выше степень повышения давления; поэтому относительное значение мертвого пространства выбирается тем меньше, чем больше степень повышения давления компрессора.

Для современных компрессоров $\lambda_0 = 0.7 \div 0.9$; $\lambda_T = 0.90 \div$

 $0.95, \lambda_r = 0.95 \div 0.98.$

13.5. Многоступенчатое сжатие

При сжатии газа темпсратура его повышается. В табл. 13.1 приведсны конечные температуры воздуха, сжимаемого при различных условиях в компрессоре с D=0.7 м, от начальной температуры $t_1=293$ К. Так как компрессорные смазочные масла имеют температуру вспышки по Бренкену 493—533 К, то конечные температуры сжатия 493—413 К, получаемые при $\varepsilon=8$, являются опасными. Электрические разряды невысокого потенциала, возникающие в проточной части компрессоров, могут вызвать возгорание нагара и затем при достаточной концентрации масляных паров в воздухе взрыв компрессора.

Приведенные соображения ограничивают стспень по-

вышения давления в одном цилиндре компрессора.

В современных компрессорах с водяным охлаждением степени повышения давления в одном цилиндре выше 7 встречаются редко. В отечественных конструкциях большой подачи € 4. Если степень повышения давления компрессора превышает 7, то процесс сжатия ведут в нескольких последовательно включенных полостях — ступенях давления. При переходе из одной ступени в другую газ охлаждают в промежуточных охладителях.

Таблица 13.1. Температура сжатия при адиабатном и политропном процессах

	Қонечная температура воздуха, Қ			
ε=ρ₂/ρ ₁	эонтвденд Л энтежэ	Политропное сжатие с оклаждением цилиидра	Политропное сжатие с охлаждением цилиндра и крынки	
2 4 6 8	358 438 493 536	337 402 454 493	325 372 409 443	

Количество ступеней, необходимое для достижения заданной степени повышения давления, принимают в пределах:

e _r	2
До 6	1
6-30	2
30100	4
100150	5
Выше 150	6 и более

Увсличение количества ступсней усложняет конструкцию и увеличивает стоимость компрессора. Это обстоятельство обусловливает предел увеличения количества ступсней современных компрессоров.

Многоступснчатое сжатие с промежуточным охлаждением приближает рабочий процесс компрессора к изотермическому. Поэтому при заданной степени повышения давления компрессора применение ступенчатого сжатия обусловливает существенную экономию монциости приводного двигателя (см. § 10.4).

13.6. Мощность многоступенчатого компрессора

В многоступенчатых компрессорах с числом ступсней z при одинаковых работах отдельных ступеней изотермическая монность компрессора определяется формулой

$$N_{\rm ns} = \frac{p_1 Q_1}{1000} \ln \frac{p_2}{p_1} z. \tag{13.13}$$

Монность компрессора при указанном условии

$$N = \frac{p_1 Q_1}{1000 \eta_{13} \eta_{M}} \ln \frac{p_2}{p_1} z.$$
 (13.14)

Если работа отдельных ступеней неодинакова, то мощность на валу компрессора определяется как сумма мощностей отдельных ступеней.

13.7. Конструктивные типы компрессоров

Многоступенчатые компрессоры выполняются в двух основных вариантах: с дифференциальными поришями и несколькими ступсиями сжатия в одном цилиндре; со ступенями сжатия в отдельных цилиндрах. Рассмотрим некоторые из них.

Двухступенчатый компрессор с дифференциальным поршнем двустороннего действия. В компрессоре этого

типа (рис. 13.4) ступени сжатия разнессны по обе стороны дифференциального поршия. Способ работы наглядно изображается индикаторными диаграммами, построенными совместно для обеих ступсней (рис. 13.5).

Если полагать, что компрессор всасывает воздух из атмосферы, то линия всасывания первой ступени будет лежать несколько ниже линии атмосферного давления. При движении поршня вправо происходит всасывание в первую

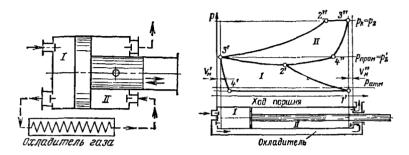
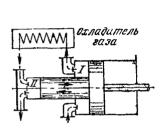


Рис. 13.4. Двухступенчатый компрессор прямоточного типа с днфференциальным порщнем

Рнс. 13.5. Теоретические индикаторные диаграммы двухступенчатого прямоточного компрессора с дифференциальным поршнем

ступень (линия 4'-1'), сжатие и выталкивание во второй ступени (линии 3'-2'' и 2''-3'').


Когда поршень начинает двигаться влево, в первой стунени происходит сжатие, а во второй — расширение газа. Последний процесс идет до тех пор, нока давление в цилиндре не достигнет р 2' в точке 4". В этот момент открываегся всасывающий клапан второй ступени и поршень, двигаясь влево, будет всасывать газ из замкнутого пространства охладителя. При этом давление газа будет понижаться. Когда поршень займет положение, определяемое точкой 2', давление газа в охладителе понизится пастолько, что откростся напорный клапан первой ступени и газ будет поступать из нее через охладитель во вторую ступень. Давление газа будет изменяться по линин 2'-3'.

В начале хода вправо в первой ступсии происходит расширение газа по политропс 3'-4'.

Объемы цилиндров первой и второй ступсией неодинаковы, поэтому рассмотренные диаграммы имеют различные масштабы абсцисс. В компрессоре этого типа процессы сжатия в ступенях осуществляются на разных ходах пориня, и поэтому рабочие усилия на ходовые части распределяются довольно

равномерно.

Двухступенчатый компрессор с дифференциальным поршнем одностороннего действия. Особенностью компрессора этого типа (рис. 13.6) является расположение первой и второй ступсней по одну сторону поршня; это приводит

р 31 211 р 31 411 р 1 21 11 Р 2 1 11 Р 2 1 11 Р 2 1 11

Рис 13 6 Двухступенчатый компрессор с диффереиплалызым поршнем одвостороннего действия

Рис. 13.7. Теоретические индикаторные диаграммы двухступенчатого компрессора с дифференциальным поршнем одностороннего действия

к тому, что всасывание, как и подача, происходит в обеих

ступснях одновременно.

Начиная от точки 3'' (рис. 13.7), при движении поршня вправо происходит расширение во второй ступени до давления p_2 , которое было создано в охладителс ступенью при ходс поршня влсво. В положении поршня, определяемом точкой 4'', открывается всасывающий клапан второй ступени и происходит всасывание газа из замкнутого объема охладителя. Это также процесс расширения газа по политропе 4''-1''. В конце этого процесса давление во второй ступени понижается до p_1^* . Далсе при ходе поршня влево во второй ступени газ сжимается по линии 1''-2'' и подается по линии 2''-3'' в напорный трубопровод. В это же время в первой ступени происходит сжатие на политропе 1-2'' до давления p_1^* . В точке 2' открывается напорный клапан первой ступени и газ вытесняется из нес в замкнутый объем охладителя. Этот процесс протекает по политропе 2'-3' и сопровождается повышением давления от p_1'' до p_2' .

При ходе поршия вправо происходят расширение и всасы-

вание в первой ступени.

В компрессоре этого типа полосги псрвой и второй ступеней всегда разобщены закрытыми клапанами, по имеются процессы, протекающие совместно в полостях какойлибо ступени и охладителей. Охладитель кроме своего прямого назначения играет роль ресивера, т. е. емкости, принимающей газ из первой ступени.

В компрессорах с дифференциальными поршнями одностороннего действия (см. рис. 13.6) процессы сжатия и

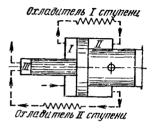


Рис. 138 Трекступенчатый компрессор с дифференциальным поршнем

Рис. 139 Трехступенчатый компрессор с дифференциальным поршнем и разделенной первой ступенью

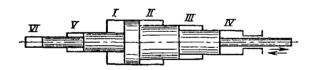


Рис 13.10. Схема шестиступенчатого компрессора с дифференциальным поришем

подачи протекают в обеих ступенях одновременно. Благодаря этому в ходовых частях компрессора возникают высокие, неравномерно распределенные усилня, требующие примснения махового колеса большой массы. Такая схема применяется обычно в комбинации с прямоточной схемой для компрессоров с количеством ступсней больше двух.

Трехступенчатый компрессор с дифференциальным поршнем. Ступени компрессора (рис. 13.8) комбинируются так, что каждые две соседние ступени представляют собой двухступенчатый компрессор. При равенстве работ отдельных ступеней, что диктуется условнями энергетической

Таблица 13.2. Характеристики компрессоров общего назначения

Тип компрессора		Номинальиая подача при условнях всасывання (предельное отклонение 5%), м ⁹ /с (м ⁹ /мни)	Удельный расход мощности, кВт/(м³/мин), не более	Масса, ку ие более
ВУ	С воздушиым ох- лаждением	0,050 (3) 0,100 (6)	6,5	540 690
	С водяным охлаж- дением	0,100 (6) 0,050 (3)	6,2	690 540
ВП		0,166 (10) 0,332 (20) 0,500 (30)	5,7 5,6 5,3	1350 2800 4000
Вм	_	0,830 (50) 1,660 (100)	5,4 5,4	7900 14 500

П р и м е ч а и и е. Избыточное конечное давленне компрессоров $\rho_{_{\rm H}} = 0.88\,$ МПа.

эффективности, такая схема дает значительные неравномерные усилия в ходовых частях. Чтобы уменьшить эти усилия и распределить их более равномерно, применяют схему трехступенчатого компрессора с разделением первой ступени (рис. 13.9).

Многоступенчатые компрессоры с дифференциальным поршнем. Используя принцип создания ступеней при помощи поршня переменного диаметра, можно сконструировать компрессор с большим количеством ступеней. На рис. 13.10 приведена схема шестиступенчатого компрессора. Компрессоры общего назначения со ступенями давле-

Компрессоры общего назначения со ступенями давления в отдельных цилиндрах. В соответствии с ГОСТ эти компрессоры вынолняют следующих типов (рис. 13.11, табл. 13.2): а — бескрейцкопфные с V-образным расположением цилиндров (обозначение типа ВУ); б — крейцкопфные с прямоугольным расположением цилиндров — ВП; в — крейцкопфные с горизонтальным оппозитным расположением цилиндров — ВМ.

Эти типы компрессоров рекомендованы ГОСТ как наиболее компактные, экономичные и удобные в эксплуатации при двухступенчатом сжатии. Конструктивный принцип, заложенный в ГОСТ, может быть распространен на компрессоры с количеством ступеней больше двух. При этом конструкции получаются многорядными. Компрессоры типов ВУ и ВП с расположением осей цилиндров в вертикальной плоскости трудно сбалансировать динамически, они тихоходны, требуют тяжелых фундаментов и, с учетом проведения монтажных работ, относительно больших высот здания. Вместе с тем площадь, требуемая для их установки, невелика.

Компрессоры типа ВМ, называемые оппозитными, получают в последнее время широкое распространение. Это объясняется многими причинами и главным образом тем,

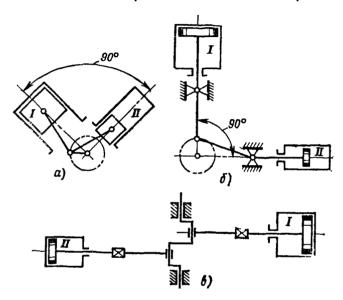


Рис. 13.11. Схемы двухступенчатых компрессоров со ступенями в отдельных цилипдрах

что благодаря взаимно противоположному движению поршней (при угле между коленами вала 180°) они легко балансируются динамически и допускают частоту вращения, в 2,5—3 раза большую, чем компрессоры других типов. Компрессоры ВМ горизонтальные и требуют малых высот при относительно больших площадях помещений.

При большом количестве ступеней давления или высокой подаче компрессора с разделением ее на два цилиндра онпозитный компрессор может быть выполнен многорядным. Подробный анализ схем поршневых компрессоров — см. [25].

13.8. Действительная индикаторная диаграмма

Индикатор мощности (называемый обычно просто индикатором), присоединенный к мертвому объему цилиндра и приводимый через ходоуменьшитель от штока компрессора, вычерчивает диаграмму зависимости между давлени-

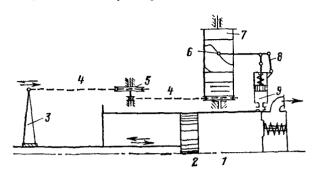


Рис. 13.12. Схема действия иидикатора:

I — цилиндр компрессора; 2 — поршень компрессора; 3 — вожак индикатора; 4 — шнуры индикатора; 5 — ходоуменьцитель; 6 — карандаш индикатора, 7 — барабан индикатора; 8 — спрямляющий механизм; 9 — цилиндр индикатора

ем и объемом газа в цилиндре — действительную индикаторную диаграмму. Схема индикатора показана на рис. 13.12.

В конструкции индикатора рабочий цилиндр, барабан и пишущее устройство комбинируются в единый компактный блок (рис. 13.13).

Теоретическая индикаторная диаграмма, получаемая построением, несколько отличается от действительной. На рис. 13.14 для сравнения приведены оба вида диаграмм. В теоретической диаграмме линия всасывания — изобара, а в действительной она представляется волнистой лииией, имеющей резкое понижение в момент открытия всасывающего клапана. Последнее объясняется инерцией и прилипанием пластины или тарелки всасывающего клапана к седлу. Непостоянство давления на ходе всасывающего тракта и инерцией газовых масс, движущихся в нем.

Инерция газовых масс в напорной трубе компрессора, а также инерция и прилипание пластии напорного клапана оказывают аналогичное влияние-на линию подачи в действительной диаграмме. Здесь замечается довольно резко

выраженный пик в момент открывания напорного клапана. Линин сжатия и расширения в действительной диаграмме несколько отличаются от теоретических политроп. Это объясияется непостоянством показателя *п* процессов сжатия и расширения.

Повреждение и неправильное действие отдельных элементов компрессоров (клапанов, клапанных пружин,

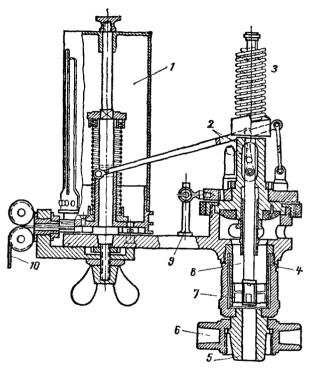
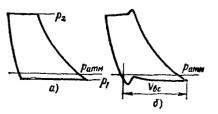
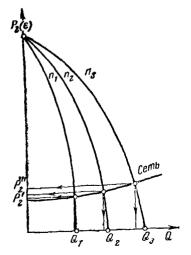



Рис. 13 13. Конструкция индикатора:

I — барабан, 2 — спрямляющий механизм; 3 — пружина; 4 — сменная втулка; 5 — ссединительный комус; 6 — соединительная гайка, 7 — поршень; 8 — цилиндр; 9 — упорный штифт, 10 — шкур

Рис 13.14 Индикаторные днаграммы компрессора

а теоретическая; **6 — действи-**


поришевых колец), а также нарушение правильной работы автоматического регулирования приводят к отклоненыю действительной индикаторной диаграммы от ее нормальной формы. Таким образом, по индикаторной диаграмме можно обнаружить ненормальности в работе компрессора.

13.9. Подача и давление поршневого компрессора, работающего на трубопровод

Подача одноцилиндрового компрессора с поршнем одностороннего действия определяется по формуле (13.12). Если компрессор двустороннего действия, то его подача определяется как сумма подач обеих сторон поршия. При этом рабочие объемы и мертвые пространства с обеих сторон поршия обычно различны. Подача компрессора с несколькими цилиндрами первой ступени рассчитывается как сумма подач этих цилиндров.

Во всех случаях подача поршневого компрессора про-порциональна частоте вращения его вала. Поэтому теоретические характеристики при различных частотах вращения изобразятся рядом линий, параллельных оси ординат.

Однако если компрессор с заданными V_p и a первых ступеней будет работать на трубопровод с изменяющимся давлением, то степень повышения давления его будет переменна и, как видно из формулы (13.12), компрессор будет давать переменную подачу, тем меньшую, чем больше ϵ . Вследствие этого действительная характеристика Q - p

компрессора при постоянной частоте вращения изображается кривой линией, существенно отклоняющейся от верхарактеристика тикали. Эта может быть построена по формуле (13.12) подстановкой в произвольных зн**ачений** $\varepsilon = p_2/p_1$. Ha phc. 13.15 nokaзаны действительные характеристики компрессора для трех вращения: различных частот $n_1, n_2 \text{ if } n_3.$

Рис. 13.15. Характеристики поршиевого компрессора, работающего при различной частоте вращения на заданный трубопровод

Действительные подача и давление компрессора определяются как координаты точек пересечения характеристик компрессора и сети воздухопроводов.

13.10. Регулирование подачи

Расход газа из трубопроводной системы по условиям потребления может изменяться, поэтому компрессор должен изменять подачу так, чтобы она соответствовала расходу газа из системы. При этом в сети должно поддержи-



Рис. 13.16. Регулнрование полачи компрессора дросселированием на всасыванин

Рис. 13.17. Схема автоматического устройства для регулирования подачи дросселнрованнем на всасывании

ваться давление, требуемое потребителями. Такое регулирование подачи называют регулированием на постоянное савление.

Задача регулирования заключается в таком воздействии на компрессор, которое выравнивает подачу его с расходом газа потребителями.

Начальным импульсом для регулирования обычно служит изменение давления в сети, возникающее при изменении расхода газа потребителями. В хороших системах регулирования это изменение давления может быть очень малым (десятые и даже сотые доли атмосферы).

Ниже рассматриваются основные схемы регулирования подачи одноступенчатых компрессоров.

Изменение частоты вращения. Из формулы (13.12) ясью, что подачу компрессора можно регулировать изменением частоты вращения вала компрессора. Этот способ от онемичен в эксплуатации, по требует приводного двига-

теля с переменной частотой вращения. Поэтому регулиро. вание подачи изменением частоты вращения при электрическом приводе широкого применения не получило.

Рассматриваемый способ регулирования применяется в случаях привода компрессора от паровой машины или двигателя виутреннего сгорания, в которых изменение частоты вращения достигается сравнительно просто.

Дросселирование при всасывании. Если во всасывающий тракт компрессора вводить дополнительное сопротив~

ление, то компрессор уменьшает подачу.

Пусть 1-2-3-4 — индикаторная диаграмма без регулирующего сопротивления во всасывающей трубе 13.16). Введем регулирующее сопротивление, понижающее давление всасывания от p_1 до p_{1per} . При этом процесс расширения представится линией 3-4' линия И будет 4'-1'. Из диаграммы вилно. уменьшается от сываемый объем объем подачи V_2 до V_{2per} . Соответственно няется и подача компрессора. Схема автоматического регулирования такого типа показана на рис. 13.17. Если расход из баллона І в сеть уменьшается, то при данной подаче компрессора 5 давление в баллоне 1 возрастает и, передавясь по трубке 2 в полость поршневого механизма 3. воздействует на поршень, который, сжимая пружину, прикрывает дросселирующую заслонку 4; подача компрессора уменьшается, сравниваясь с расходом из баллона. Регулирующее устройство может быть настроено на требующуюся подачу натяжением пружины поршневого механизма 3. Благодаря простоте и автоматичности действия способ реглирования широко применяется при высоких степенях сжатия, но энергетическая эффективность его иевысока.

Отжимание пластин всасывающего клапана. Схема регулирования отжиманием пластин всасывающего клапана показана на рис. 13.18. Если вследствие уменьшения расхода из сети давление в баллоне 1 повысится, то повышенное давление, передаваясь по импульсной трубке 2 к поршневому механизму 3, преодолеет натяжение пружины и подвинет вниз поршень 4. Шток поршия имеет на коице вилку 5, рожки которой будут препятствовать пластиие всасывающего клапана садиться на седло. При этом сжатия и подачи газа не произойдет, потому что всасывающий клапан будет открыт и газ из цилиндра будет выталкиваться во всасывающий трубопровод. Вследствие этого произойдет пропуск сжатия и подачи. Это будет продолжать-

ся до тех пор, пока давление в баллоне 1 не понизится и поршень 4 не приведет вилку 5 в нормальное положение, не препятствующее пластине клапана K_1 плотно садиться на место. Таким образом, уменьшение подачи компрессора

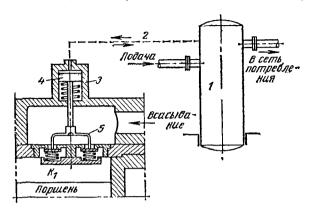
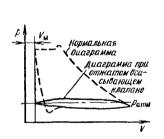



Рис 13 18 Схема регулирования подачи отжиманием пластин всасывающего клапана

Рыс. 13.19. Индикаторная днаграмма при регулировании подачи отжиманнем пластин всасывающего клапана

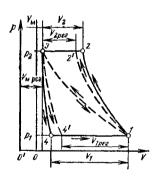


Рис. 13.20 Регулнрование подачн изменением объема мертвого пространства

достигается здесь пропусками подачи. Индикаторная диаграмма для этого случая представлена на рис. 13.19. Это счень простой способ регулирования, по энергетическая эффективность его мала, так как на холостой ход при пропуске подачи затрачивается не менее 15 % полной мощности. Такой способ регулирования применяется для компрессеров с любыми степенями сжатия и подачами.

Отжим клапанов линии всасывания в течение всего хода поршия приводит, как указано, к пропускам подачи, т. е. к снижению подачи компрессора до нуля.

В настоящее время применяют отжим клапанов на части хода поршия, получая возможность плавного изменения подачи от номинальной до 0,1 поминальной.

Изменение объема мертвого пространства. Из формулы (13.12) видно, что при постоянных $V_{\rm p}$, n и є можно регулировать подачу изменением объема мертвого пространства (p, v-диаграмма на рис. 13.20).

При объеме мертвого пространства $V_{\rm M}$ всасываемый объем газа составляет $V_{\rm I}$. Если увеличить объем мертвого пространства до $V_{\rm M, per}\!>\!V_{\rm M}$, то политропа расширения, построенная при новом положении центра системы координат 0', займет положение 3-4' и всасываемый объем газа $V_{\rm Iper}$ будет меньше $V_{\rm I}$. Новая политропа сжатия 1-2' будет соответствовать объему подаваемого газа $V_{\rm 2per}\!<\!V_{\rm 2}$. В предельном случае объем мертвого пространства

В предельном случае объем мертвого пространства можно увеличить столь значительно, что политропы расширения и сжатия совпадут и индикаторная диаграмма представится линией 1-3. При этом компрессор не всасывает и не подает: оба клапана закрыты и в цилиндре происходят расширение и сжатие постоянного количества газа. Конструктивно такое регулирование выполняется в виде дополнительных полостей постоянной или переменной емкости, присоединяемых к мертвому пространству вручную или автоматически.

Для осуществления плавного регулирования подачи дополнительный объем мертвого пространства выполняется в виде вариатора объема, состоящего из цилиндра с поршнем.

Рассмотренный способ регулирования подачи оченьэкономичен и получил распространение в компрессорах большой мощности.

Прочие способы регулирования. Кроме указанных способов применяют регулирование остановками компрессора (при мощности на валу до 200 кВт), перепуском газа из полости сжатия в полость всасывания, а также холостым выпуском из сети через автоматический клапан. Первый из этих способов вполне экономичен, а два последних неэкономичны, и применять их не следует.

При регулировании подачи многоступенчатых компрессоров необходимо регулировать подачу всех ступеней одновременно. Если в многоступенчатом компрессоре регулировать подачу только первой ступени, то автоматически

происходит перераспределение работы между ступенями и температуры конца сжатия в нерегулируемых ступенях достигают недопустимых значений.

Регулирование многоступенчатых компрессоров описано в [6].

13.11, Конструкции компрессоров

В современной промышленности используются поршневые компрессоры, значительно различающиеся по подаче п давлению. Для удовлетворення требований промышленности заводы выпускают компрессоры стандартизованного поменклатурного ряда. Этот ряд построен на основе унификации деталей компрессоров, что позволяет создавать машины различных подач и давлений с применением одипаковых конструкций основных элементов (рам, цилиндров, валов и пр.). Это значительно удешевляет производство и снижает стоимость компрессоров.

Поршневые компрессоры выполняются с вертикальным и горизонтальным расположением цилиндров. Первое создает экономию в площади компрессорной станции, а также удобство эксилуатации и монтажа, однако применимо только в компрессорах с одной или двумя ступенями сжатия в одном цилиндре. Компрессоры с дифференциальными поршиями, осуществляющие многоступенчатое сжатие в одном цилиндровом блоке, выполняются по необходимости горизонтальными.

Ступени сжатия могут осуществляться в отдельных цилиндрах; в этом случае применяют рядное расположение инлиндров с приводом от общего коленчатого вала. Встре-чаются конструкции с V-образным расположением цилиндров (см. рис. 13.11).

С конструктивной точки зрения различают бескрейц-

копфные и крейцкопфные компрессоры. В бескрейцкопфных компрессорах роль крейцкопфа (ползуна) выполняет сам поршень, обладающий в этом случае удлиненной цилиндрической поверхностью. Обычно они являются компрессорами низкого давления с одной или двумя ступенями сжатия. Крейцкопфные конструкции применяются при любых давлениях, но характерны для нысоких давлений при многоступенчатом сжатии. Это объясняется высокими значениями поперечных сил, восприятие которых поверхностью поршия оказывается недопус-THMLIM.

На рис. 13.21 дан вертикальный разрез компрессора типа ВП (углового) с шестью ступенями сжатия. Охлаждение воздуха в водяных охладителях после каждой ступени сжатия. Конструкция в целом весьма компактиа.

На рис. 13.22 представлен разрез вертикального компрессора. Конечное давление 22 МПа достигается в пяти ступенях. В правом блоке цилиндров расположены первая и четвертая, в левом — вторая, третья и пятая ступени сжатия. Компрессор — крейцкопфного типа с вильчатым шатуном.

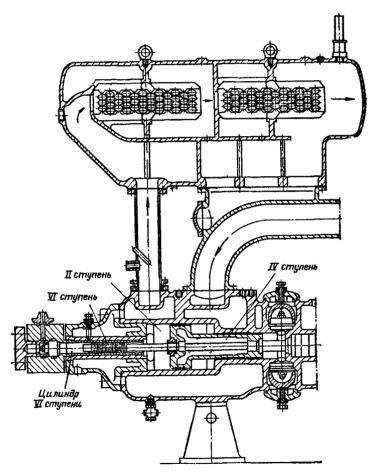
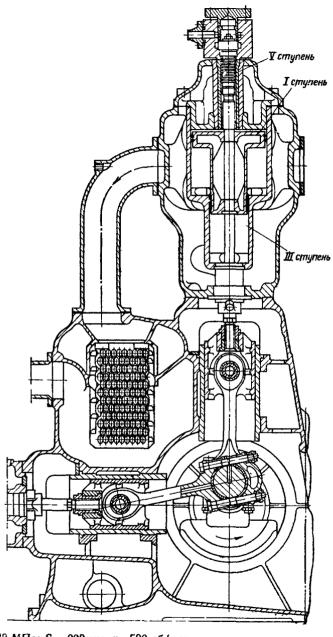



Рис. 1321. Угловой шестиступенчатый компрессор, Q=0.2 м $^3/\mathrm{c}$: $\rho_{\mathrm{H}}=$

22 МПа; S_{w} = 220 мм; n= 500 об/мин

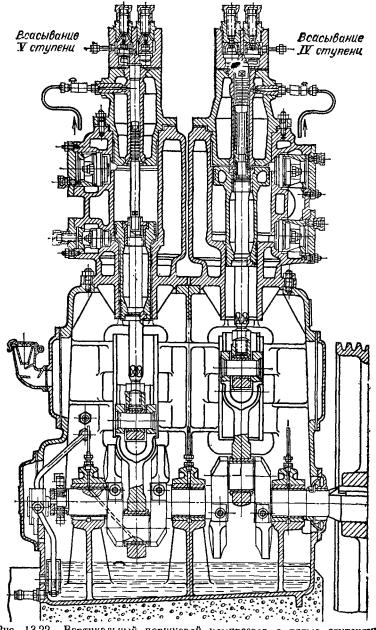


Рис. 13 22. Вертикальный поршневой компрессор с пятью ступенями сжатия 370

Компрессор снабжен масляным шестеренным насосом, подающим масло из картера к подшипникам. Масло для смазки в цилиндры подается специальным устройством — дубрикатором. Охлаждение воздуха в холодильниках осуществляется после каждой ступени.

Па рис. 13.23 представлен продольный разрез по ци-линдрам первой и второй ступеней оппозитного воздушного компрессора. Подача компрессора 100 м³/мин, конечное давление 0,9 МПа, частота вращения 500 об/мин, ход поршия 220 мм, диаметры цилиндров 620 и 370 мм. Привод компрессора от синхронного электродвигателя

мониюстью 630 кВт.

Рассмотрим кратко элементы конструкций компресcollob.

Цилиндры компрессоров с давлением до 8 МПа обычно отливают из чугуна; более высокие давления требуют применения стального литья и стальных поковок. Для улучшения условий работы поршня применяют чугунные сменные втулки. Цилиндры снабжают лапами, опирающимися на илиты, залитые в бетонный фундамент. В многоступенчетых компрессорах с дифференциальными поринями блок цилиндров состоит из отдельных частей, жестко и надежно скрепляемых болтами и шпильками. Цилиндры имеют штуцера для подвода и отвода охлаждающей воды и смазки и для установки термометров и манометров.

Поршни. Наиболее распространены дисковые поршни (рис. 13.24), применяемые для ступеней двойного действия, н дифференциальные в многоступенчатых компрессорах (рис. 13.25). Материал поршней — чугун, сталь. Форма поршней неосесимметрична; они обладают опорной поверхностью, как это показано на рис. 13.24. Поршни снабжаются чугунными уплотняющими кольцами.

Сальники применяются в компрессорах в местах прохода штоков поршней через крышки. При низких давлениях сальники выполняют с мягкой набивкой по типу, указанному для центробежных насосов. Здесь для давления до 2,5 МПа применяют пропитанную графитовой мазью хлоп-чатобумажную и асбестовую набивку. Для более высоких давлений применяют асбестово-проволочный прографиченный шнур.

В компрессорах высокого давления применяют сальниковые уплотнения в виде конических разрезных чугупных колец (рис. 13.26). Сальники выполняются почти всегда с охлаждением.

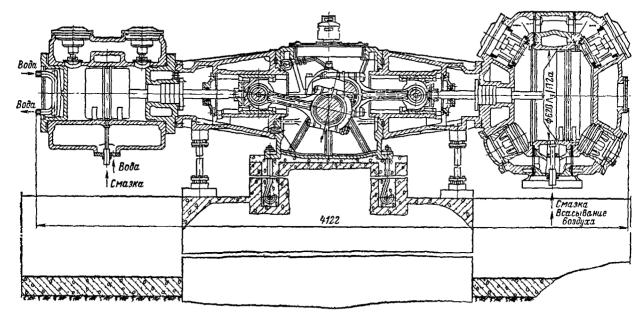


Рис 13.23. Двухступенчатый оппозитиый компрессор для подачи воздуха. Разрез по цилиндрам первой и второй ступеней

На рис. 13.27 показана конструкция сальника для давдения 75 МПа. Уплотняющие кольца выполнены из баббита и благодаря особой (угловой) форме их сечения самоуплотняются, прижимаясь давлением газа к поверхности штока.

Клапаны компрессоров преимущественио выполняются в виде самодействующих, открывающихся и закрывающих-

ся автоматически благодаря рэзности давлений, действующих по обе стороны клапана. Конструкция пластинчатого самодействующего клапана представлена на рис. 13.28.

Седло 1 клапана сажается в гиездо, проточенное в крышке цилиидра. Оно имеет две копцентрические кольценые щели 2, закрываемые стальными кольцевыми пласти-

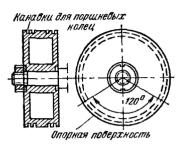


Рис. 13.24 Дисковый поршень

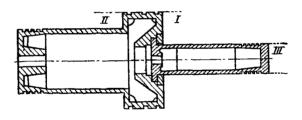
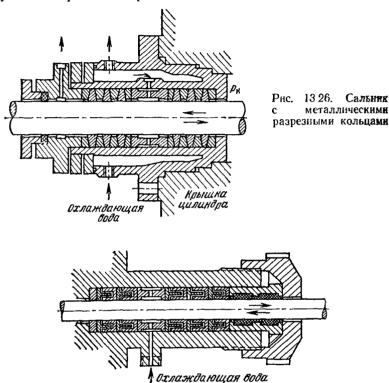


Рис. 13.25. Дифференциальный поршень компрессора с тремя ступецями ожатия


нами 3. Последние прижимаются к седлу, закрывая щели, пружинами 4, расположенными в выточках ограничительного диска 5, который скреплен с седлом клапана ценгральным болтом 6.

В иекоторых конструкциях кольцевые щели заменяют рядом параллельных прямолинейных прорезей, и тогда кланаи называют ленточным.

Конструкция тарельчатого клапана с малой инерцион-

В последнее время находят применение клапаны прямоточного типа. По сравнению с обычными пластинчатыми и тарельчатыми клапанами прямоточные имеют много преимуществ. Основное из них — малое газовое сопротив-

ление, обусловленное прямым током газа и большим проходным сечения, в 2—2,5 раза превышающим сечения обычных пластинчатых клапанов. Малое газовое сопротивление прямоточных клапанов увеличивает подачу компрессора на 8—17 %, снижает потребление мощности и удельный расход энергии соответственно на 4—7 и 8—20 %

Рнс. 1327. Сальник с металлическими упругими кольцами

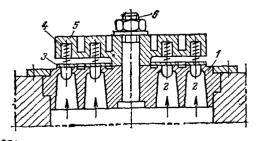


Рис. 13.28, Пластинчатый клапан с двумя кольцевыми щелямн

по сравнению с апалогичными показателями компрессоров, имсющих клапаны обычных типов.

Достоинством прямоточных клапанов является бесшумность их действия. Малая инерционность легких запорных

пластин обусловливает быстрое открывание и закрывание их и поэтому предотвращает возникновение ударных волн в трубопроводах и их вибрацию.

На рис. 13.30 показана конструктивная схема прямоточного клапана, поясняющая способ его действия. Клапан состоит из набора пластин-седел 1, в которых профрезерованы каналы 2 с прямоуголь-

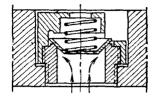


Рис. 13.29. Тарельчатый клапан компрессора малой подачи

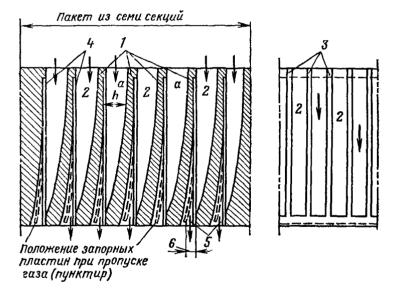


Рис. 13.30. Конструктивная схема, поясняющая принцип действия прямоточного клапана

ными сечениями переменной глубины h. Каналы разделяются ребрами 3, к которым плотно прилегает тонкая стальная пластина 4, являющаяся запорным органом. Эта пластина консольно защемлена кромкой a между двумя соседними седлами и под влиянием разности давлений газа в ка-

налах 2 и полости 5 может отгибаться, как показано штриховой линией, образуя проходные сечения 6.

Тыловая сторона седла обработана так, что запирающая стальная пластина 4, отнибаясь под действием газового потока, почти соприкасается с кривой поверхностью седла.

Наборы седел и пластии комбинируют в пакеты круглой или прямоугольной формы и скрепляют соответствены по стяжным кольцом или хомутом.

Конструктивные формы прямоточных клапанов удобны и допускают применение их не только для вновь изготавливаемых компрессоров, но и для замены обычных пластинчатых клапанов в эксплуатируемых компрессорах.

Приведенная на рис. 13.30 конструктивная схема нескольких ячеек прямоточного клапана применяется для ступеней визкого давления.

13.12. Компрессоры со свободно движущимися поршнями

В компрессорах с электрическим приводом преобразование вращательного движения вала в поступательное движение поршней осуществляется кривошипно-шатунным механизмом. Последний существенно усложияет конструк-

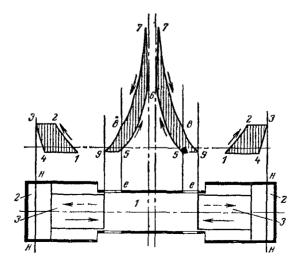


Рис 13.31. Схема и нидикаторные днаграммы компрессора со своболпо движущимися порициями

цию компрессора и вызывает значительные потери энергии. Пзвестны конструкции компрессоров со свободными поршнями (рис. 13.31). В таких машинах энергия получается за счет сжигания жидкого топлива в цилиндах, и передача се поршиям компрессора происходит непосредственно.

Основные элементы компрессора со свободными поршнями следующие: 1 — цилиндр двухтактного двигателя; 2 — цилиндр компрессора; 3 — ступенчатые поршни. Пусть поршни находятся в крайних наружных положениях n-n. Давление p_2 воздуха в объемах мертвых пространств цилиндров компрессора приведет поршии в движение в направлениях, указанных стрелками. При этом давление в цилиндрах компрессоров будет снижаться по линиям 3-4, а поршии будут приобретать кинетическую энергию. В определенном положении поршней всасывающие клапаны компрессоров открываются и начинаются процессы всасывания по линиям 4-1. В процессе всасывания поршни движутся по инерции, теряя скорость. Одновременно с процессом всасывания внутренние стороны поршней перекроют выхлопные окна цилиндра двигателя и в нем произойдет сжатие по линии 5-6. В момент, отмеченный точкой 6 на диаграмме, происходит впрыскивание топлива; оно само воспламеняется, и давление в цилиндре 1 резко повышается по линии 6-7. Под влиянием высокого давления поршни будут двигаться в направлениях, указанных штриховыми стрелками; давление в цилиндре 1 будет снижаться по липиям 7-8. В момент открытия окон е произойдет выхлоп продуктов сгорания и далее продувка и наполнение цилиндра 1 воздухом. Одновременно с этим в цилиндрах 2 компрессора произойдет сжатие воздуха по линиям 1-2, а затем выталкивание его по линиям 2-3. При этом поршни потеряют кинетическую эпергию и начнут вновь описанный выше цикл движения из крайних паружных положений под влиянием давления воздуха в объемах мертвых пространств цилиндров.

В действительных условиях схема такого компрессора усложняется мехапизмом, сипхронизирующим движение поршней.

13.13. Компрессорные установки

Компрессоры устанавливаются единично или группами и снабжаются вспомогательным оборудованием и приборами, необходимыми для их пормальной эксплуатации.

На рис. 13.32 дана схема компрессорной установки. Основным оборудованием установки являются компрессор с двигателем, маслоотделитель, охладители и ресивер (воздушный баллон). Вспомогательное оборудование включает фильтр на всасывающей трубе компрессора, предохранительные клапаны и контрольно-измерительную аппаратуру.

Каждый компрессор снабжается ресивером (воздушным или газовым баллоном), основное назначение которорого состоит в выравнивании колебаний давления в возду-

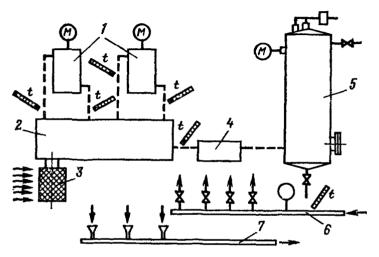


Рис. 13.32. Схема блока компрессорной установки:

1 — охладитель; 2 — компрессор; 3 — фильтр; 4 — маслоуловитель; 5 — ресивер; 6, 7 — коллекторы холодной и сбросной воды

хопроводах. Кроме того, ресивер служит для отделения влаги и паров масла из газа; с этой целью в нем устанавливают сепарирующие устройства.

Ресиверы помещают снаружи помещения, потому что они варывоопасны.

Охладители газа, располагаемые между ступенями компрессоров, обычно представляют собой трубчатые вертикальные или горизонтальные теплообменники. В компрессорных установках небольшой подачи они располагаются непосредственно на цилиндровом блоке компрессора. В установках большой подачи охладители располагают вблизи компрессоров как отдельно стоящие аппараты.

С целью очистки газа, подаваемого компрессором, и для поддержания в чистоте прогочной полости на всасыва-

ющей трубе компрессора ставят газовый фильтр. Ранее применялись главным образом матерчатые фильтры. В настоящее время применяются масляные фильтры. Они представляют собой цилиндрические или прямоугольные замкпутые резервуары, наполненные рыхлым материалом (металлическая стружка, кольца Рашига), смоченным в вязком масле. Поток газа, проходящий через слой такого материала, хорошо очищается от пыли. Промывка и регенерация фильтра просты; он надежен в эксплуатации.

Маслоотделители располагают между ступенями ком-

прессора за охладителями. Их назначение — удалять из газа, подаваемого компрессором, взвешенные капельки мас-за, использованного в предыдущей ступени. Действне мас-лоотделителей основано на выбрасывании частичек масла из потока под действием сил инерции, возникающих при изменениях направления движения газа. Маслоотделители бывают с рыхлой засыпкой подобно воздушным фильтрам или в виде цилиндрических центробежных аппаратов — циклонов.

Предохранительные клапаны устанавливаются между ступенями компрессора на промежуточных охладителях и ресивере. Их назначение состоит в предохранении установки от чрезмерного повышения давления. Предохранительные клананы бывают грузовыми и пружниными.

Коммуникация компрессорной установки состоит из системы газопроводов и трубопроводов охлаждающей воды. Большое значение для правильной эксплуатации компрессорной установки имеет контрольно-измерительная аппаратура, по показаниям которой судят о правильности работы установки.

Манометры устанавливают на промежуточных охладителях и ресивере для наблюдения за давлением газа, подаваемого компрессором. Для контроля за давлением масла в системе смазки ставится манометр на напорном патрубке масляного насоса.

Давление охлаждающей воды контролируется по ма-пометру на коллекторе, от которого устраивают водопроводы к отдельным компрессорам.

Наличие охлаждающей воды в системе охлаждения обязательно контролируется по сливу воды в воронки на сбросном коллекторе.

Обязательному контролю подлежат температуры воздуха перед каждым охладителем и за ним, а также конечная температура газа на выходе из компрессора; контро-

лируются температуры охлаждающей воды в коллекторен на выходе из рубашек цилиндров и всех охладителей.

В мелких установках контроль за температурой осуществляется ртутными термометрами, поставленными в гильзы с маслом.

В крупных компрессорных установках показания всех контрольно-измерительных приборов компрессоров передаются дистанционно на центральный щит. Сюда же поступают показания электрических приборов, контролирующих мощность, потребляемую электродвигателями компрессоров, а также показания расходомеров компрессоров.

13.14. Испытание компрессора. Энергетический баланс компрессора

Испытание компрессора производится для определения его действительной подачи, потребляемой энергии и составления энергетического баланса на 1 м³ газа при нормальных условиях. При испытании производят снятие индикаторных диаграмм со всех ступеней компрессора 1.

Непосредственному измерению при испытании компрессора подлежат: частота вращения вала, начальные и конечные давления и температуры газа во входном и выходном патрубках, количество и температуры охлаждающей воды на входе и выходе, объем всасываемого газа, электрическая мощность, подводимая к двигателю компрессоpa.

Частоту вращения измеряют точным тахочетром или

счетчиком оборотов и хронометром.

Начальное давление измеряют при помощи дифференциального жидкостного манометра, конечное — точно проверенцым пружинным манометром.

Температуры газа и воды измеряют обычными ртутными термометрами, помещаемыми в гильзы, врезанные в

трубопроводы и заполненные маслом.

Количество охлаждающей воды удобно измерять объ-

емным методом при помощи мерных баков.

Объем всасываемого воздуха измеряют при помощи сопла или диафрагмы, устанавливаемых в нагнетательной трубе компрессора. Измеряя перепад давления h_{π} в диафрагме, рассчитывают по нему подачу. Для уменьшения пульсаций давления в потоке воздука,

затрудняющих отсчет h_{π} между выходными патрубком

¹ Точные методы испытаний приведены в ГОСТ 18985-79 и 20073-81>

компрессора и измерительной диафрагмой, должна быть включена демпфирующая емкость.

Мощность, потребляемая компрессором, определяется измерением электрической мощности на зажимах двигателя. Умножая значение электрической мощности на КПД двигателя, взятый из характеристики двигателя, получают мощность на валу двигателя. Последняя непосредственно через муфту передается на вал компрессора.

На основании проведенных измерений составляется

энергетический баланс компрессора.

Энергия, подводимая на вал компрессора, составит $1000\ N/M$, где N — мощность на валу, M — массовая подача компрессора.

Энергия, получаемая газом в компрессоре, равиа

 $c_{\rm p}(T_{\rm K}-T_{\rm 1})+c^{2}/2.$

Во всех охлаждаемых полостях компрессора отводится с охлаждающей водой количество энергии $\Sigma M_{\rm B}(t''_{\rm B}-t'_{\rm B})/M;$ здесь $M_{\rm B}$ — секундная масса воды, проходящей в отдельные охлаждаемые полости компрессора; $t'_{\rm B}$ и $t''_{\rm B}$ — температуры воды на входе и выходе полостей охлаждения. Знак сумм указывает на суммирование количества теплоты, уносимой водой из отдельных полостей охлаждения.

Обозначим $Q_{\text{ост}}$ — остаточный член баланса, учитывающий рассеяние теплоты в окружающую среду, не входящей в прочие члены баланса.

Уравнение энергетического баланса, Дж/кг,

$$\frac{1000N}{M} = c_p (T_{\rm R} - T_{\rm I}) + \frac{c^2}{2} + \Sigma M_{\rm B} (t'_{\rm B} - t'_{\rm B}) + Q_{\rm oct} \quad (13.15)$$

или на 1 м³ газа, всасываемого компрессором,

$$\frac{1000N}{Q_1} = \rho c_p (T_R - T_1) + \rho \frac{c^2}{2} + \rho M_B (t_B'' - t_B') + \rho Q_{\text{oct}} (13.16)$$

Делением всех членов уравнения баланса (13.16) на $1000\ N/Q_1$ получаем баланс в отвлеченной (безразмерной) форме. Такое уравнение позволяет судить об энергетической эффективности испытанного компрессора сравнением членов уравнения с соответствующими членами уравиения баланса аналогичных нормально работающих компрессоров.

13.15. Экономичность работы компрессора

Основным показателем экономичности работы компрессора является расход энергии на его эксплуатацию. Этот

расход энергии удобно относить иа 1000 ма газа при нор-

мальных условиях, подаваемого компрессором.

Пусть мощность на валу компрессора с электроприводом равна N при непосредственном соединении валов с помощью муфты. Если компрессор всасывает в минуту $Q_{\text{мив,}}$ м³, газа при нормальных условиях, то удельный расход энергии, кВт ч/(1000 м³)

$$\vartheta_{\rm vn} = 1000 N / (60 Q_{\rm MHH}).$$
 (13.17)

Этот удельный расход энергии соответствует определенной степени сжатия. Изменение степени сжатия при прочих равных условиях изменяет и $\partial_{yд}$. Поэтому сравнение удельных расходов энергии с целью выяснения энергетической эффективности данного компрессора можно производить только для компрессоров, нагнетающих одинаковые газы с одинаковыми степенями сжатия.

Показателем экономичности по ГОСТ является удельный расход мощности (см. табл. 13.2).

13.16. Расчет основных размеров ступеней компрессора

Расчет основных размеров ступеней компрессора состоит в определении хода поршней, их площадей и диаметров. В основе расчета лежит формула подачи (13.12), из которой следует

$$V_{\rm p} = \frac{Q_{\rm f}}{\left[1 - a \left(e^{1/n_{\rm p}} - 1\right)\right] \lambda_{\rm T} \lambda_{\rm F} n}.$$
 (13.18)

Для расчета рабочего объема $V_{\rm p}$, м³, цилиндра ступени необходимо иметь числовые значения $Q_{\rm l}$, a, ϵ , $n_{\rm p}$, n, $\lambda_{\rm T}$, $\lambda_{\rm T}$.

Подача Q_1 при условиях всасывания должна быть задана; относительный объем мертвого пространства a, показатель политропы расширения $n_{\rm p}$ и коэффициенты $\lambda_{\rm r}$ и $\lambda_{\rm r}$ задаются, как указано в § 13.2 и 13.4.

Частоту вращения принимают в зависимости от подачи компрессора. Компрессоры малой подачи соединяются с двигателем непосредственно эластичной муфтой, и для иих n=730 об/мин. Компрессоры средней подачи приводятся в движение также от асинхропных электродвигателей, но через клиноременную передачу, и в этом случае $n=400\div500$ об/мин. Крупные компрессоры приводятся в движение сипхронными двигателями с n=125 и 167 об/мин.

Степень повышения давления ступени компрессора определяется по данным § 13.5.

При принятом числе ступеней z и заданных начальном и конечном давлениях p_1 и p_k степень сжатия ступени определяется соотношением

$$\epsilon = \sqrt[z]{\frac{\epsilon_{\rm k}}{\lambda_{\rm e}^{z-1}}},$$

где $\varepsilon_{\rm H} = p_{\rm H}/p_1$; λ_{ϵ} — коэффициент, учитывающий потери давления в промежуточных охладителях. В ориентировочных расчетах можно принимать $\lambda_{\epsilon} \approx 0.93$ одинаковым для всех ступеней.

Рабочий объем цилиндра определяется площадью поршня и его ходом:

$$V_{\rm p} = S\Omega_{\rm n} \tag{13.19}$$

Для ступени компрессора, образованной поршнем одно-10 диаметра D_1 ,

$$V_{\rm p} = 0.785 D_1^2 S. \tag{13.20}$$

Для ступени, образованной дифференциальным поринем с диаметрами D_1 и D_2 ,

$$V_{\rm p} = 0.785 (D_1^2 - D) S.$$
 (13.21)

11з уравнений (13.20) и (13.21) можно определить ход поршня и диаметры, приняв отношение S/D_1 , рекомендуемое практикой. Для вертикальных бескрейцкопфных компрессоров $S/D_1 = 0.5$, для горизонтальных крейцкопфных $S/D_1 = 0.6 \div 0.9$.

Определение размеров цилиндров отдельных ступеней многоступенчатых компрессоров производится с учетом последовательного уменьшения объема сжимаемого газа.

Пример 13.1. Определить основные размеры и мощность горизонтального компрессора с дифференциальным поршнем, если известно, что $Q_1 = 10 \text{ м}^3/\text{мин}$; $p_1 = 0,1 \text{ МПа}$; $p_8 = 0,9 \text{ МПа}$.

Охлаждение происходит в промежуточном охладителе до начальной температуры $t{=}25\,^{\circ}\mathrm{C}.$

Решение. Принимаем количество ступеней z=2 Газовым сопротивлением при входе в цилиндр пренебрегаем.

По указанному в § 10.5

$$\varepsilon = \sqrt{\frac{0.9}{0.1 \cdot 0.93}} = 3.1.$$

Промежуточное давление за первой ступенью

$$p_{\text{IID}} = \varepsilon p_1 = 3, 1.0, 1 = 0.31 \text{ MHa.}$$

Рабочнй объем цилиндра первой ступени по формуле (12.12) при $a=0.03;\ n_{\rm P}=1.2;\ \lambda_{\rm T}=0.92;\ \lambda_{\rm T}=0.97;\ n=500$ об/мин

$$V_{\mathbf{p}}^{'} = \frac{10}{[1 - 0.03(3.1^{0.833} - 1)]0.92 \cdot 0.97 \cdot 500} = 0.0235 \text{ m}^3,$$

поэтому 0,785 D_1^2S =0,0235. Принимаем S/D_1 =0,7. Для определения D_1 имеем уравнение 0,0235=0,55 D_1^3 , откуда следует D_1 =350 мм; S==250 мм.

При охлаждении в промежуточном охладителе до начальной температуры

$$V_{\rm p}^{"} = V_{\rm p}^{'} \frac{\rho_{\rm 1}}{\rho_{\rm mp} \lambda_{\rm E}} = 0.0235 \frac{0.1}{0.31 \cdot 0.93} = 0.0082 \text{ M}^3.$$

Из уравнения (13.21) получаем

$$D_2 = \sqrt{\frac{V_p^{''}}{0.785S}} = \sqrt{\frac{0.35^2 - \frac{0.0082}{0.785 \cdot 0.250}}{0.785 \cdot 0.250}} = 0.285 \text{ m};$$

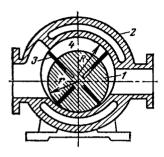
ГЛАВА ЧЕТЫРНАДЦАТАЯ

РОТОРНЫЕ КОМПРЕССОРЫ

14.1. Способ действия. Подача

Роториые компрессоры относятся к классу объемных машин; по способу действия они сходны с роторными насосами.

Наиболее распространены роторные пластинчатые компрессоры; последнее время находят применение винтовые компрессоры.


Схема пластинчатого компрессора дана на рис. 14.1.

При вращении ротора 1, расположенного эксцентрично в корпусе 2, пластины 3 образуют замкнутые пространства 4, переносящие газ из полости всасывания в полость нагнетания. При этом происходит сжатие газа. Такая схема компрессора, обладая хорошей уравновешениостью движущихся масс, позволяет сообщить ротору высокую частоту вращения и соединить машииу непосредственно с электрическим двигателем.

При работе пластинчатого компрессора выделяется большое колячество теплоты вследствие механического трения. Поэтому при степенях повышения давления выше 1,5 корпус компрессора выполияют с воляным охлажлением.

Пластинчатые компрессоры могут использоваться для отсасывания газов и паров из пространств с давлением, меньшим атмосферного. В таких случаях компрессор является вакуум-насосом. Вакуум, создаваемый пластинчатыми вакуум-насосами, достигает 95 %.

Подача пластинчатого компрессора зависит от его 1еометрических размеров и частоты вращения Если полагать пластины радиальными, то объем газа, заключенного между двумя из инх, по рис. 14.2 будет V=fl, где f — максимальная площадь поперечного сечения между пластинами; l — длина пластины.

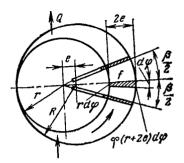


Рис. 14.1. Конструктивная схема пластинчатого компрессора

Рис. 14.2. К расчету подачи пластинчатого компрессора

Можно приближенно полагать

$$df = \frac{rd\varphi + (r+2e) d\varphi}{2} 2e = 2e (r+e) d\varphi.$$

Поэтому

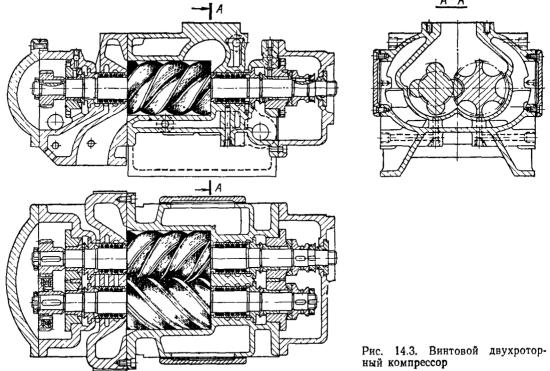
$$f = \int_{0}^{\beta/2} 4e (r + e) d\varphi = 2e (r + e) \beta.$$
 (14.1)

Так как r+e=R и $\beta=2\pi/z$, где z — количество пластин, то

$$f = 4\pi e R/z. \tag{14.2}$$

Объем газа между пластинами по рис. 14.2

$$V = \frac{4\pi eR}{z} t. \tag{14.3}$$


За один оборот вала компрессора каждое пространство между пластинами заполняется газом 1 раз, поэтому действительная подача компрессора

$$Q = Vzn\lambda_0 = 4\pi e Rln\lambda_0, \qquad (14.4)$$

где λ_0 — коэффициент подачи, лежащий в пределах 0,5—0,8.

Коэффициент подачи зависит от внутренних утечек газа через радиальные и осевые зазоры, толщины рабочих пластин и количества их.

Способ действия винтового компрессора с двумя червяками поясняется рис. 14.3.

Основными рабочими деталями компрессора являются червяки (винты) специального профиля; взаимное расположение червяков строго фиксировано сцепляющимися зубчатыми колесами, посаженными на концы валов. Зазор в зацеплении у этих синхронизирующих зубчаток меньше, чем у червяков, и поэтому механическое трение у последних исключено. Червяк с впадинами является замыкающим распределительным органом, поэтому мощность, передаваемая синхронизирующими зубчатками, невелика, следовательно, незначителен и их износ. Это обстоятельство очень важно ввиду необходимости сохранения достаточных зазоров у червячной пары.

При вращении червяков в результате периодического попадания головок зубьев червяков во впадины последовательно осуществляются процессы всасывания, сжатия и нагнетания.

Подача винтового компрессора определяется по формуле

$$Q = (\Omega_1 z_1 + \Omega_2 z_2) \ln \lambda_0,$$

где Ω_1 и Ω_2 — площади впадин первого и второго червяков; z_1 и z_2 — числа зубьев червяков; l — длина червяков; n — частота вращения; λ_0 — коэффициент подачи.

Винтовые компрессоры выполняются с водяным охлаждением корпуса и внутренним охлаждением червяков.

Внутренние зазоры червячной пары составляют 0,1—0,4 мм, механического трения иет, поэтому компрессоры работают без смазки и подаваемый газ не загрязняется масляными парами.

14.2. Мощность и КПД

Мощность ступени роторного компрессора с водяным охлаждением рассчитывается по изотермической работе

$$N = \frac{N_{\text{MB}}}{\eta_{\text{HB}}} \eta_{\text{M}} = \frac{p_1 Q_1 \ln \varepsilon}{1000 \eta_{\text{HB}} \eta_{\text{M}}}, \qquad (14 5)$$

где p_1 — начальное давление; Q_1 — подача при условиях всасывания. Для компрессоров с неинтенсивным воздушным охлаждением

$$N = \frac{N_{\alpha}}{1000\eta_{\alpha}\eta_{\rm M}}.$$
 (14.6)

Адиабатная мощность определяется по формуле

$$N_a = \frac{k}{k-1} p_1 Q_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} - 1 \right]. \tag{14.7}$$

Произведения КПД пластинчатых компрессоров лежат в пределах $\eta_{\text{из}}$ $\eta_{\text{м}}{=}0,5\div0,6$; η_{α} $\eta_{\text{м}}{=}0,6\div0,7$. Для винтовых компрессоров эти произведения несколько выше, в основном вследствие отсутствия механического трения в червячной паре.

14.3. Регулирование подачи роторных компрессоров

Из уравнения для определения подачи роторных компрессоров видно, что подача пропорциональна частоте вращения вала компрессора. Отсюда вытекает способ регулирования Q изменением n.

Пластинчатые компрессоры соединяются с электродвигателями чаще всего непосредственно, и частота вращения их составляет 1450, 960, 735 об/мин. Для регулирования подачи в этом случае требуется включение между валами двигателя и компрессора вариатора скорости.

Частота вращения винтовых компрессоров очень высока, она достигает в случае привода от газовых турбин 15 000 об/мии. Обычного исполнения крупные винтовые компрессоры работают с частотой вращения 3000 об/мин.

Для обоих типов роторных компрессоров применяются способы регулирования подачи дросселированием на всасывании, перепуском сжатого газа во всасывающий трубопровод и периодическими остановками

14.4. Конструкции роторных компрессоров

Пластинчатые компрессоры выполняются для подач до 500 м³/мии и при двух ступенях сжатия с промежуточным охлаждением создают давления до 1,5 МПа.

На рис. 14.4 представлены продольный и поперечиый разрезы двухступенчатого компрессора Осиовные элементы конструкции: ротор 1, корпус 2, крышки 3, охладитель 0 и валы 4. Корпус и крышки компрессора охлаждаются водой. У конструктивных элементов имеются некоторые особенности. Для уменьшения потерь энергии механического трения концов пластин о корпус в нем располагают два свободно вращающихся в корпусе разгрузочных кольца. К их наружной поверхности подводится смазиа. При вращении ротора концы пластии упираются в разгрузочные кольца и частичио скользят по их внутренией поверхности; разгрузочные кольца вместе с тем вращаются в корпусе.

С целью уменывения сил трения в пазах пластины располагают не радиально, а отклоняя их вперед по направлению вращения. Угол отклонения составляет 7—10°. При этом направление силы, действующей на пластины со стороны корпуса и разгрузочных колец, приближается к направлению перемешения пластины в пазах и сила трения уменьшается.

Для уменьшения утечек газа через осевые зазоры в ступице ротора располагаются уплотнительные кольца, прижимаемые пружинами **к** поверхностям крышек.

Со стороны выхода вала через крышку установлено сальниковое уплотнение с пружинной натяжкой.

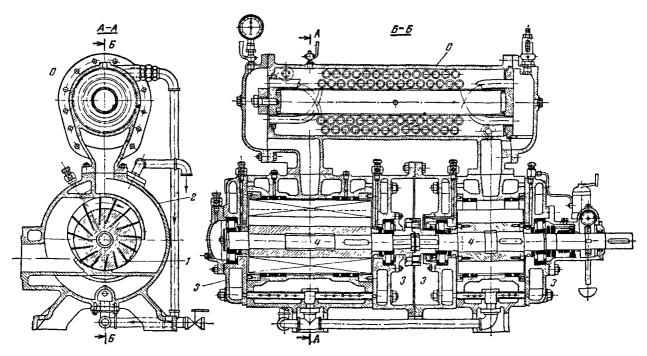


Рис. 14.4. Продольный и поперечный разрезы двухступенчатого пластинчатого компрессора

В конструкции применены роликовые подшинники. Смазка осуществляется машинными маслами средией вязкости через контрольные капельные указатели. Места смазки — разгрузочные кольца, торцовые уплотнительные кольца и сальниковое уплотнение.

Винтовые компрессоры имеют подачи до 20 000 м 3 /ч со степенью повышения давления в ступени до ε =3. Двухступенчатые конструкции с промежуточным охлаждением дают общую степень повышения давления до ε =10.

Конструкция виитового компрессора с двумя червяками представлена на рис. 14.3.

МАШИНЫ СПЕЦИАЛЬНЫХ ТИПОВ

ГЛАВА ПЯТНАДЦАТАЯ

ВИХРЕВЫЕ НАСОСЫ

15.1. Способ действия вихревого насоса

Конструктивная схема вихревого насоса показана на рис. 15.1. Рабочее колесо a с плоскими радиальными лопастями b, образующими криволинейные каналы b, охватывается отводом c. Внутренний выступ c, входящий в отвод и охватывающий каналы b рабочего колеса, служит для разделения потоков всасывания d и подачи e.

В жидкости, заполняющей межлопастные каналы \boldsymbol{s} , при вращении рабочего колеса развиваются центробежные силы. Они вызывают непрерывное движение жидкости из межлопастных каналов через цилиндрическое сечение $\pi D_2 b_2$ в отвод \boldsymbol{s} .

Ввиду неразрывности течения жидкость непрерывно втекает в межлопастные каналы из отвода z через плоское кольцевое сечение $\frac{\pi}{4}(D_2^2-D_1^2)$. Таким образом, в отводе образуется вихревое течение, показанное на левой проекции на рис. 15.1 штриховой стрелкой.

Кроме того, в отводе ε возникает переносное тангенциальное течение, обусловленное тем, что массы жидкости, выбрасываемые из каналов ε в отвод, обладают тангенциальной скоростью ε_{2u} . Следовательно, принцип работы вихревого насоса состоит в том, что энергия жидкости, протекающей через межлопаточные каналы рабочего колеса, повышается за счет действия центробежных сил в ней; жидкость с повышенной энергией выносится вихревым потоком в отвод и вытесняется далее в напорный патрубок ε . Взамен вытесняемой жидкости происходит непрерывное всасывание ее через патрубок δ .

15.2. Основы теории

Теоретические (без учета потерь) значения основных параметров — давления и подачи вихревого насоса — могут быть получены из уравнения количества движения.

Пусть q — расход через межлопаточные каналы на единице длины отвода, м³/(с·м); c_{2u} — среднее значение тангенциальной составляющей абсолютной скорости на выхо

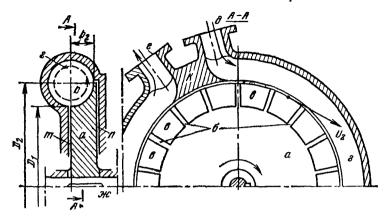


Рис. 15 1. Конструктивная схема вихревого насоса:

a — рабочее колесо; δ — лопасти рабочего колеса; ϵ — межлопастные каналы; ϵ — отвод; δ — всасывающий патрубок; m — вал рабочего колеса; κ —разделитель потока

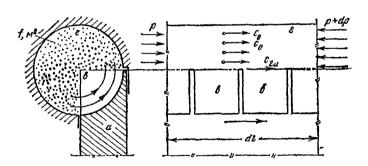


Рис. 15.2. К расчету давления, развиваемого вихревым насосом

де из межлопаточных каналов в отвод, м/с; c_0 — средняя скорость потока в отводе, м/с.

Если полагать приближенно ось отвода прямолинейной, то по схеме на рис. 15.2 уравнение количества движения для потока, выходящего из колеса в отвод,

$$[fp - f(p + dp)]_{T} \Delta t = \rho q dl \Delta t c_{0} - \rho q dl \Delta t c_{2u}$$

$$dp_{\tau} = \rho \frac{q}{f} (c_{2u} - c_0) dl^*. \tag{15.1}$$

Из (15.1) видно, что давление в отводе нарастает в направлении движения пропорционально длине отвода.

Интегрирование (15.1) дает теоретическое повышение

давления на длиие 1 отвода

$$p_{\mathrm{T}} = \rho \frac{q}{f} \left(c_{2u} - c_0 \right) l.$$

Теоретическое повышение напора на длине І отвода

$$H_{T} = \frac{p_{T}}{\rho g} = \frac{ql}{gf} (c_{2u} - c_{0}). \tag{15.2}$$

Расход в сечении отвода $Q = fc_0$, поэтому (15.2) приводит к следующему уравнению теоретической характеристики вихревого насоса:

$$H_{\rm T} = \frac{ql}{gf} \left(c_{2u} - \frac{Q}{f} \right). \tag{15.3}$$

Вследствие постоянства q и c_{2u} по длине отвода уравиение (15.3) графически изображается прямой линией (рис. 15.3).

Полезная теоретическая мощность вихревого насоса

$$N_{\rm T} = \rho g Q H_{\rm T}$$

или, учитывая (15.3),

$$N_{T} = \rho \frac{ql}{gf} \left(c_{2u} - \frac{Q}{f} \right) Q. \tag{15.4}$$

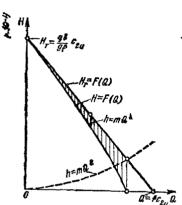
Это уравнение графически изображается квадратичной параболой c осью, параллельной оси ординат. Очевидно, что N_{τ} =0 при Q=0 и Q= fc_{2u} (рис. 15.4).

Максимум $N_{\rm T}$ находится дифференцированием $N_{\rm T}$ по Q:

$$\frac{dN_{\mathrm{T}}}{dQ} = \rho \frac{ql}{gf} \left(c_{2u} - 2 \frac{Q}{f} \right) = 0.$$

^{*} В основу вывода формулы положена предельно упрощенная модель течения. Действительная картина течения и количественные зависимости чрезвычайно сложны.

Отсюда получим значение Q, при котором достигается $(N_{\mathtt{T}})_{\mathtt{Make}}$,


$$c_{2u} - 2Q/f = 0$$
, или $Q = fc_{2u}/2$.

Максимальное значение $N_{\rm T}$ по уравнению (15.4)

$$(N_{\tau})_{\text{Makg}} = \rho q l c_{2u}^2 / 4 = m c_{2u}^2 / 4,$$

где m — масса жидкости, проходящей в 1 с через межлопаточные каналы рабочего колеса.

Характеристика $N_T = F(Q)$ показана на рис. 15.4.

 $\frac{1}{2} pqlc_{zu}^{2}$ $\frac{1}{4} pqlc_{zu}^{2}$ $\frac{1}$

Рис. 15.3. Характеристнки теоретического и действительного напоров вихревого иасоса [к уравнению (15.3)]

Рис. 15.4. Характеристики мощностей и КПД вихревого насоса

Рабочее колесо вихревого насоса увеличивает тангенциальную составляющую скорости жидкости, проходящей через иего, от c_0 до c_{2u} ; составляющая скорости вихревого течения в отводе и рабочем колесе по условию иеразрывности сохраияется постояиной. Поэтому мощность, затрачиваемую рабочим колесом вихревого насоса, можно вычислить как разность секундных кинетических энергий потока на выходе и входе:

$$N_{p.\kappa} = \frac{mc_{2u}^2}{2} - \frac{mc_0^2}{2} = \frac{\rho ql}{2} \left(c_{2u}^2 - \frac{Q^2}{f^2} \right). \tag{15.5}$$

Значения $N_{\mathbf{p},\kappa}$ для характерных подач, использованных при построении графика $N_{\mathbf{r}} = F(Q)$,

$$Q = 0; \ N_{p,R} = \frac{\rho q l}{2} c_{2u}^2;$$

$$Q = \frac{c_{2u} f}{2}; \ N_{p,R} = \frac{3}{8} \rho q l c_{2u}^2; \quad Q = c_{2u} f; \ N_{p,R} = 0.$$

По этим данным построен график $N_{p,\kappa} = F(Q)$ (рис. 15.4). Ввиду того что N_{τ} — полезная теоретическая мощность, а $N_{p,\kappa}$ — теоретическая мощность, затрачиваемая колесом, внутренний КПД вихревого насоса вычисляется как отношение N_{τ} к $N_{p,\kappa}$, определяемое по (15.4) и (15.5),

$$\eta_i = \frac{N_{\text{\tiny T}}}{N_{\text{\tiny p,R}}} = \frac{2Q}{f\left(c_{2u} + \frac{Q}{f}\right)}.$$

Окоичательное выражение для η_i получается подстановкой в последнее равенство $Q = f c_0$:

$$\eta_i = \frac{2c_0}{c_{2\mu} + c_0} \,. \tag{15.6}$$

Величины η_i для некоторых значений Q:

$$Q = 0; c_0 = 0; \eta_i = 0;$$

$$Q = fc_{2u}/2; c_0 = c_{2u}/2; \eta_i = 0.66;$$

$$Q = fc_{2u}; c_0 = c_{2u}; \eta_i = 1.$$

Характеристика внутреннего КПД показана на рис. 15.4 штриховой линией.

Внутренние потери энергии, обусловленные псредачей энергии от рабочего колеса потоку жидкости в отводе, представляются отрезками ординат между кривыми $N_{p,\kappa} = F(Q)$ и $N_{\tau} = f(Q)$.

Из изложенного следует, что при постоянной частоте вращения рабочего колеса виутренние потери энергии в вихревом насосе тем больше, чем меньше подача. Следовательно, эксплуатация вихревого насоса в режиме значительного дросселирования нежелательна.

15.3. Действительные характеристики

Кроме внутренних потерь, свойственных процессу передачи энергии от рабочего колеса потоку в отводе и оцениваемых вяутренним КПД по (15.6), в вихревых насосах наблюдаются объемные, гидравлические и механические по-

тери энергии. Объемные потери энергии здесь зиачительны и составляют до 20 % энергии, подводимой к валу вихревого насоса. Они обусловлены перетеканием жидкости через зазоры между поверхностями разделителя κ (см. рис. 15.1) и кромками лопастей б рабочего колеса из полости

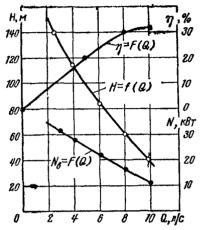


Рис. 15.5. Характеристики вихревого насоса ЭВ-2,7

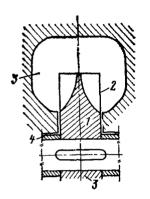
напориого патрубка в полость всасывания вследствие перавенства давлений $(p_2 > p_1)$.

Гидравлические потери энергии возиикают вследствие трения и вихреобразования при поступательном и циркуляционном движениях жидкости в криволинейном отводе вихревого насоса. Ввиду того что скорости этих движений значительны, гидравлические потери энергии составляют до 30 % энергии из валу.

Механические потери, как и в центробежных насосах, обусловлены треиием в сальниках и подшип-

никах и трением нерабочих поверхностей колеса насоса о жидкость в осевых зазорах. Эти потери составляют до 10 % подводимой к насосу энергии.

Столь значительные потери энергии приводят к тому, что при наиболее благоприятных для вихревых насосов режимах высокой подачи КПД, учитывающий все потери в лучших конструкциях, не превышает 0,5.


На рис. 15.5 показаны опытные характеристики вихревого насоса ЭВ-2,7. Максимум КПД для него составляет всего 32 %.

15.4. Уравновешивание сил, действующих на колесо

Колесо работающего вихревого насоса нагружено продольной и поперечной силами, передающимися на вал.

Продольная сила возникает в результате различия давлений на торцовые поверхности колеса в осевых зазорах т и п (см. рис. 15.1). Эта сила невелика, легко воспринимается радиальным шариковым подпятником и может быть исключена применением колеса симметричной формы (рис. 15.6).

Поперечная сила обусловлена тем, что давление в отводе распределяется неравномерно и, как показывают уравнение (15.1) и опыт, пропорционально углу φ (рис. 15.7).

ony gay

Рис. 15.6. Рабочее колесо с уравновешенной осевой снлой:

Рис. 15.7. Распределение давления по длине отвода вихревого насоса

J — рабочее колесо с симметричным сечением;
 З — рабочие лопасти;
 З — отвод симметричного сечения;
 4 — пистанционные втулки

Если H — напор, создаваемый колесом, то давление в произвольном сечении отвода равно $\frac{\rho g H}{2\pi}$ φ , а его поперечная составляющая равна $\frac{\rho g H}{2\pi}$ $\varphi \sin \varphi$.

Элементарная поперечная сила, действующая на длине отвода $\frac{D}{2}\,d\phi\,$ при ширине колеса B, будет

$$B \frac{D}{2} \frac{\rho g H}{2\pi} \varphi \sin \varphi d\varphi$$
.

Полная поперечная сила

$$P_{\mathbf{u}} = \frac{\rho g H B D}{4\pi} \int_{0}^{2\pi} \varphi \sin \varphi d\varphi.$$

После интегрирования и подстановки пределов получим

$$P_{ii} = \rho g H B D / 2. \tag{15.7}$$

Поперечная сила в вихревых насосах достигает больших значений. Так, при $H\!=\!100$ м, $B\!=\!40$ мм, $D\!=\!150$ мм, $\rho\!=\!1000$ кг/м³ получаем $P_{\rm H}\!=\!3000$ Н (примерно 300 кгс).

Поперечная сила нагружает вал напряжениями переменного знака, вызывает прогиб его и смещение торцовых поверхностей колеса. Это приводит к необходимости увеличения осевых зазоров и ухудшению эксплуатационных качеств насосов.

Для уничтожения поперечной силы применяют закрытую форму рабочих колес: рабочие каналы фрезеруются в торцовых поверхностях рабочего колеса, что обусловливает уравновешивание радиальных составляющих давления в любом осевом сечении межлопаточного канала.

15.5. Центробежно-вихревой насос

В вихревых насосах жидкость подводится к рабочему колесу на его периферии, т.е. в зоне высоких скоростей. Поэтому возможность возникновения кавитации на входе в вихревое колесо весьма велика. Испытания вихревых насосов при различных частотах вращения подтверждают склонность их к кавитации.

Предупредить возникновение кавитации можно повышением давления на входе в вихревое колесо. Для этого следует установить на валу вихревого насоса дополнительное центробежное колесо. Насос такого типа, состоящий из двух последовательно включенных колес — центробежного и вихревого, называется центробежно-вихревым насосом (рис. 15.8).

На рис. 15.8 приведен продольный разрез центробежновихревого насоса типа ЦВ. Насос состоит из двух последовательно включенных колес — центробежного 1 и вихревого 2, посаженных на общий вал. Жидкость подводится к центробежному колесу, как указано стрелкой, по каналу в корпусе 3. Поток выбрасывается центробежным колесом в спиральный отвод и поступает далее по каналу, выполненному в корпусе, во входное отверстие вихревого колеса. Последнее подает жидкость через канал 4 в напорный трубопровод.

Опорой вала со стороны приводного двигателя являются два однорядных шарикоподшинника 5, воспринимаю-

щих также осевую силу. Эти подшинники монтируются в корпусе 6 и фиксируются в осевом направлении крышкой 7. Другой конец вала поддерживается одним шарикоподшиником, посаженным в крышку 8 корпуса. Корпус, крышка и центробежное колесо выполнены из чугуна, вихревое колесо — из стали.

Смазка подшинников — солидол, удерживаемый от расползания по валу войлочными кольцами.

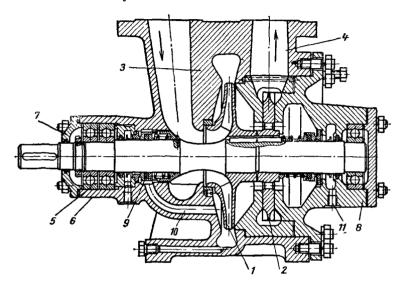


Рис. 15.8. Центробежно-вихревой насос типа ЦВ

Уплотнение вала со стороны двигателя достигается резиновым кольцом 9 и системой прижимных втулок. Кроме того, в полость уплотнения по каналу 10 подводится жидкость под давлением, развиваемым центробежным колесом. Таким образом, обеспечивается водяное уплотнение. Апалогично выполнено уплотпение вала на стороне вихревого колеса. Жидкость, проникающая сквозь уплотнения, отводится в дрепаж через отверстие 11.

Применение предвключенного центробежного колеса

Применение предвилюченного центробежного колеса позволяет существенно повысить скорость на входе в вихревое колесо и, следовательно, получить более высокое давление вихревого колеса и насоса в целом.

В центробежно-вихревом насосе часть полного давления развивается центробежным колесом, КПД которого

выше, чем у вихревого колеса. Поэтому КПД центробежно-вихревого насоса выше, чем КПД чисто вихревого насоса (для вихревых насосов $\eta = 50 \%$, для центробежно-вихревых $\eta \approx 55 \%$).

15.6. Область применения. Регулирование

Коэффициент быстроходности вихревых и центробежновихревых насосов $n_s = 10 \div 25$. Следовательно, области применения этих насосов по подаче и давлению близки к областям применения насосов объемных (поршневых и роторных).

В табл. 15.1 приведены технические данные вихревых

Таблица 15.1. Характеристики вихревых насосов

Марка насоса	Q. м³/ч	Н, м	<i>Н</i> _к , м	N, кВт	ŋ, %	n, об/мин	Н ^{вак} , м
ЭСН ЦВ СЦЛ СЦВ СВН-80 В	6—12 9—25 33 11 29 2,2— 30	24—30 120—130 58 16 32 15—60	60 340—480 150 26 80 70—180	1,5—2 — 0,28 7,5 0,32—11	22—42 — 20 34 30—40	2900 2900 1450 1425 1450 1450	5 7 7 6 7 6,5—4,5

Примечание Буквы, входящие в марку насоса, обозначают. Э-электрический; С — самовсасывающий; H — насос: U — центробежный; B — вихревой; J — лопастный вихревой

насосов, выпускаемых в СССР.

Сопоставление технических данных насосов показывает, что при одинаковых подачах вихревые и центробежновихревые насосы развивают более высокие давления по сравнению с центробежными.

Регулирование подачи вихревых насосов производится дросселированием потока на выходе или изменением частоты вращения. Чаще применяют первый способ ввиду его простоты. Однако регулирование подачи изменением частоты вращения дает существенную экономию энергии, расходуемой на привод.

ВОДОКОЛЬЦЕВЫЕ ВАКУУМНЫЕ НАСОСЫ

16.1. Способ действия

Для создания вакуума и отсасывания воздуха и технических газов широко распространены водокрльцевые насосы.

На рис. 16.1 представлена конструкция такого иасоса, поясняющая способ лействия его.

В цилиндрическом корпусе 1, снабженном крышками 2 и 3, расположена, эксцентрично (смещение центров равно e) крыльчатка 4 с ло-

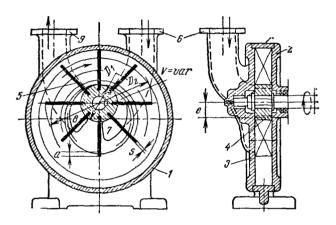


Рис 16.1. Водокольцевой вакуумный насос

пастями 5. При вращении крыльчатки вода, частично заполияющая колпус, сбрасывается к его периферии, образуя кольцевой объем. При этом в центральной части насоса поверхность втулки крыльчатки, внутренняя поверхность водяного кольца и поверхности смежных лопастей образуют объемы V, которые зависят от их положения. Так, объем V, отмеченный на рисунке, двигаясь от верхнего положения к нижнему, постепенио увелнчивается.

Поэтому возникает всасывание воздуха через патрубок 6 и приемное серповидное отверстие 7.

При движении объемов V из нижних положений вверх (в левой частн поперечного разреза насоса) происходит уменьшение их и вытеснение воздуха через напорное отверстие δ и патрубок δ . Очевидно, что машина такого рода может всасывать и подавать газ только при условии наличия в корпусе достаточного количества воды.

26--559 401

При работе водв в небольших количествах уносится потоком газа, и убыль ее в корпусе должна восполняться.

По способу действия водокольцевой явсос аналогичен роторным пластинчатым машияам.

16.2. Вакуум. Подача. Мощность

Крыльчатки водокольцевых насосов не могут быть посажены в корпус абсолютно плотно. Практически между торцовыми поверхностями корпуса и крыльчатки имеется вазор (в новых конструкциях 0,05—1,1 мм). Поэтому имеет место перетекание жидкости и газа со стороны подачи из сторону всасывания, ухудшающее работу насоса.

При абсолютно плотиой посадке крыльчатки в корпус и полном вакрытии дросесля из всасывающей трубе водокольцевой язсос может создать в полости всасывания давление, равное давлению насыщенного пара при температуре воды, находящейся в корпусе насоса. Так, при $T=293\,$ К давление всасывания при указанных условиях будет равно 2,38 кПа, т. е. при барометрической высоте 760 мм рт ст. насос будет развивать вакуум, приблизнтельно равный (103,3-2,38):103,3=98%.

Практически вакуум, развиваемый водокольцевым насосом при полном закрытии всасывающей трубы, не превышает 92 %.

Подача, м³/с, водокольцевого иасоса при условиях всасывания на осяовании элемеитарных геометрических соображений определяется формулой

$$Q = \left\{ \pi \left[\left(\frac{D_2}{2} - a \right)^2 - \left(\frac{D_1}{2} \right)^2 \right] - z (l - a) s \right\} \frac{bn}{60} \eta_0, \quad (16.1)$$

где D_2 и D_1 — внешний и внутренний диаметры крыльчатки; a — минимальное погружение лопасти в водяное кольцо; z — количество лопастей; l — радиальная длина лопасти, равная $(D_2 - D_1)/2$; s — толщина лопасти; b — ширина лопасти (внутреияяя ширииа корпуса); n — частота вращения; η_0 — объемный КПД, примеряо равный 0,96.

Расчет мощности водокольцевого вакуумного насоса производится общепринятым методом по формуле (3.52). Коэффициент полезного действия водокольцевых насосов обычных конструкций не превышает 0,50.

Водокольневые вакуумные насосы находят применение в технологических процессах для поддержания вакуума и отсасывания газов. В крупных насосных установках ими широко пользуются для заполнения центробежных и осевых насосов водой перед пуском.

В котельных установках с примененнем очистки хвостовых поверхностей котлов потоком дроби водокольцевыми иасосами пользуются для создания высоких скоростей воздуха в вертикальных трубах, транспортирующих дробь.

СТРУЙНЫЕ НАСОСЫ

17.1. Способ действия. Основные понятия

При истечении жидкости через цилиидрический насадок в сжатом сечении струй возникает вакуум (рис. 17.1) $H_{\rm Bak} \approx 0.74~H$, где H — напор перед насадком [1].

Если сечение насадка соединить прозрачной трубкой с уровнем жидкости, лежащей ниже оси насадка, то можно наглядно убедиться в наличии высоты $H_{\rm BBR}$

Повышая напор H, можно достигнуть такого подъема жидкости в трубке a, что жидкость, проходящая через насадок, будет захватывать жидкость, поднямающуюся по трубке a, и перемещать ее в направлення движения; насадок становится струйным насосом.

Цилиндрический насадок как струйный насос в практике ие используется, что объясняется большими потерями энергин в нем.

Схема струйного насоса, применяемого в промышленности, показана на рис. 17.2.

Рабочая жидкость вытекает с высокой скоростью через сопло 1 в приемную камеру 2. Струя рабочей жидкости в приемной камере соприкасается с перемещаемой жидкостью, поступающей по трубе 3. Благодаря трению и импульсному обмену на поверхности струн в приемной камере происходят захватыванне и перемещение жндкости, поступающей по трубе 3 в камеру смешения 4 и далее в конический диффузор 5. В камере смешения происходит обмен импульсами между рабочей и переме-

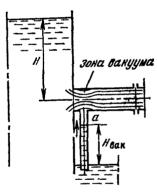


Рис. 17.1. Работа цилипдрического насадка как струйного пасоса

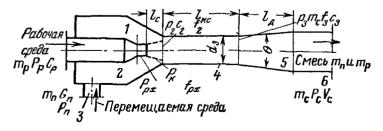


Рис. 17.2. Схема струйного яасоса

26*

щаемой жидкостями; в диффузоре протекает процесс превращения кииетической энергии в потеициальную. Из диффузора жидкость поступает в напорный трубопровод.

Основиые параметры струйного насоса (рис. 17.2): массовые расжоды рабочей и перемещаемой жидкостей — m_p и m_n , кг/с; давления рабочей и перемещаемой жидкостей иа входе в насос — p_p и p_n , Па; давление смеси рабочей и перемещаемой жидкостей на выходе — p_c .

Подачу водоструйного насоса прияято характеризовать коэффициентом инжекции $u=m_{\rm D}/m_{\rm p}=Q_{\rm n}/Q_{\rm p}$, где $Q_{\rm n}$ и $Q_{\rm p}$ —объемные подачи.

Работу водоструйного насоса со стороиы развиваемого им давления оценивают отношением перепадов давлений $\Delta p_{\rm c}/\Delta p_{\rm p}$, где $\Delta p_{\rm c}=p_{\rm c}-p_{\rm n}$ и $\Delta p_{\rm p}=p_{\rm p}-p_{\rm n}$. В основе теорни струйных насосов лежит фундаментальное уравяение мехаинки — уравнение количества движения. Это уравнение для потока в струйном насосе записывается:

$$\varphi_1 c_p m_p + \varphi_2 c_H m_H - \varphi_3 c_3 (m_p + m_H) = f_3 (p_3 - p_H),$$
 (17.1)

где c_p , c_n , c_3 — теоретические скорости в характерных сечениях насоса; ϕ_1 , ϕ_2 , ϕ_3 — коэффициенты для этих сечений, учитывающие потери напора, отнесечные к участкам потока в иасосе.

Присоединение к уравнению (17.1) уравнения расхода через выжодное сечение камеры смешения

$$m_{\rm p} + m_{\rm H} = \varphi_3 \, \epsilon_3 \, f \rho \tag{17.2}$$

дает возможность исследования рабочего процесса струйного насоса и определения оптимальных соотношений между геометрическими размерами его частей [19].

17.2. Характеристика. Основные размеры

Представление о зависимости степени повышения давления водоструйного насоса с цилиндрической камерой смешения от коэффициента, инжекции дает характеристика рис. 17.3, содержащая теоретические и

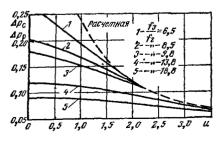


Рис. 17.3. Характеристики водоструйного насоса

опытные кривые. Из графика видно, что при любом заданном коэффициенте инжекции степень повышения давления водоструйного насоса тем выше, чем меньше площадь сечения камеры смешения относительно площади выходного сечения сопла рабочей жидкости.

Для всех типов водоструйных иасосов характерио повышение давления, нм развиваемого, при уменьшении коэффициента иижекции. Максимальное давление создается водоструйным насосом при $m_{\alpha} = 0$.

Теоретические соображения и опытные даиные приводят к следующим оптимальным геометрическим соотношениям:

$$l_{\rm R.C}=4d_3$$
 при $u < 1$; $l_{\rm R.C}=8d_3$ при $u > 3$; $l_{\rm L}=(6+7)(d_{\rm C}-d_3); \ l_{\rm C}=(1+1.5)\,d_3.$

Угол расхождения диффузора $\theta = 8 \div 10^\circ$.

Список литературы

- 1. **Агроскии И. И., Пикалов Ф. И., Дмитриев Г. Т.** Гидравлика. М.: Энергия, 1964, 352 с.
- 2. Байбаков О. В. Вихревые гидравлические машины. М.: Машиностроенне, 1981, 197 с.
- 3. Башта Т. М. Машнностроительная гидравлика. М.: Машгиз, 1963, 696 с.
- 4. Галимзянов Ф. Г. Вентиляторы. Атлас конструкций. М.: Машииостроенце, 1968, 167 с.
- 5. Гофлин А. П. Аэродинамический расчет проточной части осевых компрессоров. М.; Машгиз, 1959, 303 с
- 6. Поршневые компрессоры/С. Е. Захаренко и др. М.: Машгиз, 1961, 454 с.
- 7. Қазакевич В. В. Автоколебания в компрессорах. М.: Машнио-стросиие, 1974, 264 с.
- 8. Кириллов И. И. Теория турбомашин. М.: Машиностроение, 1972, 536 с.
- 9. Ломакии А. А. Центробежиые и осевые насосы. М.: Машиностроение. 1966. 364 с.
- 10. Малюшенко В. В., Михайлов А. К. Энергетические насосы. Справочное пособие М.: Энергоиздат, 1981, 199 с.
- 11. Малюшенко В. В., Михайлов А. К. Насосное оборудование ТЭС. М.: Энергия, 1975, 280 с.
- 12. Михайлов А. К., Малюшенко В. В. Лопастные насосы. М.: Машииостроение, 1977, 288 с.
- 13. Подобуев Ю. С., Селезнев К. П. Теория и расчет центробежных и осевых компроссоров. М.: Машгиз, 1957, 320 с
- 14. Пфлейдерер К. Лопаточиые машины для жидкостей и газов. М.: Машгиз, 1960, 683 с.

- 15. Рис В. С. Центробежные компрессорные машииы. М.: Машгиз, 1964, 335 с.
- 16. Робожев А. В. Насосы для атомных электрических станций. М.; Энергия, 1979, 135 с.
- 17. Сидоров М. Д. Справочник по воздуходувным и газодувным машинам. М.: Машгнз, 1962, 260 с.
- 18. Сииев Н. М., Удовиченко П. М. Бессальниковые водяные насосы. М.: Атомиздат, 1972, 495 с.
- 19. Соколов Е. Я., Зингер Н. М. Струйные аппараты. М.: Энергия, 1970, 287 с.
- 20. Центробежные вентиляторы/Т. С. Соломахова и др. М.: Машиностроение, 1975, 405 с.
- 21. Соломахова Т. С., Чебышева К. В. Центробежные вентиляторы. Справочник. М.: Машиностроенне, 1980, 175 с.
- 22. Степанов А. И. Центробежные я осевые компрессоры, воздуходувки и вентиляторы. М.: Машгиз, 1960, 347 с.
- 23. **Степанов А. И.** Центробежные и осевые насосы. М.: Машгиз, 1960, 320 с.
- 24. Ушаков К. А., Брусиловский И. В., Бушель А. Р. Аэродииамика осевых вентиляторов и элементы их конструкций. М.: Госгортехиздат, 1960, 422 с.
- 25. Фреикель М. И. Поршневые компрессоры. М.: Машиностроение, 1969, 743 с.
- 26. **Черкасский В. М.** Насосы, веитнляторы, компрессоры. М.: Энергия, 1977, 422 с.
- 27. **Шерстюк А. Н.** Насосы, вентиляторы, компрессоры. М.: Высшая школа, 1972, 342 с.
- 28. Яременко О. В. Испытания насосов. М.: Машниостроение, 1976, 223 с.
- 29. Атомиые электрические станции. Вып. 3. М.: Энергня, 1980, 232 с.

Предметный указатель

Аэродинамическая схема вентилятора 207, 251

Баланс энергии поршневого компрессора 380 — центробежной машины 37 Баллон компрессорной установки 378

Валы центробежных насосов 137
Вентилятор осевой 251
— центробежный высокого давления 222, 223
— пизкого давления 221

Вентиляторные установки 229 Вентиляторы тепловых электростанций 224 Вихревые насосы 391 Водокольцевые насосы 401 Воздушные колпаки поршиевых насосов 264 Выбор вентиляторов 211 - насосов 198 Высота всасывания геометрическая 125 — допустимая 130, 271 — критическая 129 Гидродвигатель 13 Гидропередача 13 Гидропята 63 Давление, развиваемое вентилитором 208 — насосом 33 Двигатели приводные 204 Диффузор 48 Дымосос осевой 257 центробежный 224 Заливка насосов 204 Индикатор 361 Иидикаторная диаграмма поршневого компрессора 361 --- -- Hacoca 259 Испытание компрессоров 380 — поршневых насосов 279 центробежных насосов 84 Кавитация 124 Кавитационный запас энергии 130 Клапаны поршневых компрессоров 373 — насосов 279 - приемиме 204 — прямоточные 375 Классификация гидромашин 13 — иасосов 14 Кожух вентилятора 207 Колесо насоса 117. 136 центробежиого вентилятора 207, 216 Компенсация тепловых деформаций иасосов Компрессорные установки 377 Компрессоры бескрейцкопфные 358 - винтовые 390 — оппозитные 358, 372 — осевые 297, 298, 331 - поршиевые 347 прямоугольные 359 - роторные 384 — с дифференциальным поршием 357 Коэффициент аэродинамический 239 -- быстроходности 77 - герметичности компрессора 352 запаса мощности двигателя 202

```
Коэффициент объемный поршисвого компрессора 3!

    подачи поршневого компрессора

                                 352

    полезного действии вентилятора

— — гидравлический 35
— — компрессоров
— — объемиый 53, 119
— установки 26
— — центробежного насоса 119

    полного давлении вентилятора

                                      352

    термический поршиевого компрессора

Лопасти рабочих колес 39, 45
Лопастиой угол на входе 43
—— — выходе 43
Маркировка насосов 145
Маслоотделители 379
Мертвое пространство цилиндра 348
Моделирование лопастных насосов 71
Момент на валу насоса 32, 87
Мощность дискового треиия 55
— индикаториая 267
— насоса
          54
— полезиая 25

    поршневого насоса

                     266
— компрессора
                 354
— теоретическая
                 32

    центробежного компрессора

Напор полный
— скоростиой 24
— статический —
 – теоретический 33
Направляющий аппарат 58
Насосы (термины, определение)
— бустерные 163
-- винтовые
            289

    вихревые 391

    водокольцевые 401

— герметичные 157, 187

    главные циркуляционные АЭС

— грунтовые 152

гуммированные 161

 дознровочные 273

конденсатные 149, 168

    консольные 146

            15
— лопастные
— многопоточные 56

    многоступеичатые 56

    моноблочные 155

— объемиме 17
— паровые 272
               163
— питательные
— пластинчатые
— пластмассовые
                 160
— роторные 283
```

Насосы с вращающимся корпусом 158 — секционные 145 **— струйные** 403 — центробежные 116 — центробежио-вихревые 398 - шестеренные 283 --- шламовые 152 — энергоблоков АЭС 170 Неисправности поршиевых насосов 279 Неисправность работы лопастных насосов 109 Неравномерность подачи поршневого насоса 261 — — роторного насоса 289 Обозначение вентиляторов 208 — насосов 145 Обратный клапан 204 Обрезка рабочего колеса 98 Основной диск рабочего колеса 29 Основиые уравнения центробежной машины 59 Останов иасосов 205 Отводы центробежных машин 46 Охлаждение компрессоров 308 Параметры торможения 304 Пересчет характеристик лопастных машин Пневматический подъемник жидкости Подача (определение термина) поршневого компрессора 352 — насоса 259 центробежного насоса 53 Подводы центробежных машии 46 Подобие кавитационное 129 лопастных машин 71 Подшипники насосов 138 Поля рабочих параметров 97 Помпаж 109 Поршни компрессоров 371 — насосов 274 Пуск иасосов 205 Работа насоса на сеть 26 — машины 26 — полезная 25 Рабочие колеса вентиляторов 216 — насосов 135 Реактивность 41 Регулирование подачи вентиляторов 212 —— насосов 88, 268 — поршневых компрессоров 363 — роториых насосов 291 Резерв насосиой установки 101 Решетка профилей Ротор насоса 137 Роторный компрессор 384 —— насос 17, 283 поршневой аксиальный 286 — поршневой радиальный 287

Сальники компрессоров 371 насосов 140 Самотяга Сила осевая 59 — радиальная 65 Смазка подшипников 138 Соединение насосов параллельное 101 — последовательное 107 Степень неравномерности подачи 265 — повышения давления 13 – реактивности 41 Ступенчатое сжатие 308 Ступень осевого компрессора 331 поршневого компрессора центробежного компрессора 318 Температура торможения 304 Термодинамика компрессорного процесса Угол атаки 43 -- отставания потока 43 установки лопасти 38 Уплотнения сальниковые 140 с контролируемой протечкой 189 — торцевые 141 Уравнение количества движения решетки профилей 236 циркуляции решетки профилей 238 -- Эйлера для лопастного насоса энергии рабочего колеса 36, 235 Фильтры воздушиые компрессоров Формула Жуковского 238 Формулы пропорциональности 75 Фундаментные плиты насосов 27 Характеристикя водопроводной сети Характеристики безразмерные - вихревых насосов 394, 396 — действительные 68 коэффициента полезного действия 70 — мощности 70 напора (теоретические) поршневых насосов — роторных насосов 291 струйных насосов 404 универсальные 84 центробежных насосов 134 Цилиндры поршневых компрессоров 371 Экономичность поршневых компрессоров 381 Энергия удельнаи 37

BOOKS.PROEKTANT.ORG

БИБЛИОТЕКА ЭЛЕКТРОННЫХ КОПИЙ КНИГ

для проектировщиков и технических специалистов

Предисловне	3 5 8
рведение	_
Часть Т	
ОБЩИЕ СВЕДЕНИЯ ПО МАШИНАМ ДЛЯ ПОДАЧИ ЖИД-	
KOCTEM H TASOB	13
Глава первая. Классификация. Области применения	13
1.1. Определения и классификация	13
1.2. Динамические машины	15 17
1.3. Объемные машины	
жидкостей	18
1.5. Подача и напор объемных и динамических машин	2 0
1.6. Области использования различиых мяшин	21
Глава вторая. Основные положения и определения	23
2.1. Параметры машин, подающих жидкости и газы	23
2.2. Мощность и КПД	25
2.3. Совместная работа насоса н трубопроводной системы .	2 6
Часть 11	
Tucio II	
ЦЕНТРОБЕЖНЫЕ НАСОСЫ И ВЕНТИЛЯТОРЫ	29
Глава третья. Основы теорин	29
3.1. Способ действия	2 9
3.2. Уравнение Эйлера. Теоретический и действительный па-	
поры, развиваемые рабочим колесом	31
3.3. Уравнения энергии потока в рабочем колесе машины .	36
3.4. Влияние угла β ₂ на напор, развиваемый центробежной машиной	37
3.5. Теченне в межлопастиых каналах. Основные размеры	٠.
рабочего колеса	42

411

3.8.	Мощность и КПД
	Многоступенчатые и многопоточные центробежные ма-
	шины
39.	Осевые и радиальные силы в центробежных насосах .
3.10.	Теоретические характеристики
8.11.	Действительные характеристики при постоянной часто-
0.10	те вращения
3.12.	Подобие центробежных машин. Коэффициент быстро-
0.10	ходности. Формулы пропорциональности
3.13.	Пересчет характеристик при изменении частоты враще-
	иия машины и вязкости среды
	Безразмерные и универсальные карактеристики
	Испытания насосов
3.16.	Регулирование подачи
5.17.	Поля рабочих параметров при различиых способах регу-
	лирования. Сводные графики
3.18.	Параллельное и последовательное соединения центро-
• • •	бежных насосов
3.19.	Неустойчивость работы. Помпаж
7	HATROTTO C. HOUTDONOWING MOCOCIA
. лава	четвертая. Центробежиме иасосы
4.1.	Формы рабочих колес насосов различной быстроходности
4.2.	Коэффициенты полезного действия центробежных насосов
4.3.	Упрошенный способ расчета рабочего колеса насоса
	малой быстроходиости
4 4	
4.4.	мавитания, лопустимая высота всасывания
4.4. 4.5.	Кавитация. Допустимая высота всасывания
4.5.	Типы характеристик
4.5.	Типы характеристик Основные части коиструкций центробежных иасосов.
4.5. 4.6	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы
4.5. 4.6 4.7.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов
4.5. 4.6 4.7.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центро-
4.5. 4.6 4.7. 4.8.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов
4.5. 4.6 4.7. 4.8.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасо-
4.5. 4.6 4.7. 4.8. 4.9.	Типы характеристик Основные части коиструкций центробежных насосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных насосов Особые конструкции агрегатов с центробежными насосами
4.5. 4.6 4.7. 4.8. 4.9.	Типы характеристик Основные части коиструкций центробежиых насосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными насосами Насосное оборудование тепловых электрических станций
4.5. 4.6 4.7. 4.8. 4.9.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей
4.5. 4.6 4.7. 4.8. 4.9. 4.10.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций
4.5. 4.6 4.7. 4.8. 4.9. 4.10.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. При-
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. При-
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежных иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций и тепловых сетей Насосное оборудование атомных электрических станций выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок пятая. Центробежные вентиляторы Основные понятия. Применение
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок пятая. Центробежные вентиляторы Основные понятия. Применение Давление, развиваемое вентилятором. Влняние самотяги.
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13. Глава 5.1. 5.2.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок Пятая. Центробежные вентиляторы Основные понятия. Применение Лавление, развиваемое веитилятором. Влняние самотяги. Коэффициент полного давления
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13. Глава 5.1. 5.2.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок Пятая. Центробежные вентиляторы Основные понятия. Применение Лавление, развиваемое веитилятором. Влняние самотяги. Коэффициент полного давления
4.5. 4.6 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13.	Типы характеристик Основные части коиструкций центробежиых иасосов. Применяемые материалы Конструкции центробежных насосов Влияние температуры жидкости на конструкцию центробежных иасосов Особые конструкции агрегатов с центробежными иасосами Насосное оборудование тепловых электрических станций и тепловых сетей Насосное оборудование атомных электрических станций Выбор насосов по заданным рабочим параметрам. Приводные двигатели Устройство и эксплуатация насосных установок пятая. Центробежные вентиляторы Основные понятия. Применение Давление, развиваемое вентилятором. Влняние самотяги.

b.4.	Характеристики, торов		ование	цен	троб	ежи	ых :	веит	ИЛЯ	[-	212
5.5.	торов Конструктивиое		ие це	Іт р об	ежи і	ax e	еити	ГЛ Я Т	оро	ь В	212
	общего яазначен	ия									216
0.0.	Тягодутьевые ве ций				эле	стри	ческ	их (тан] -	224
	Вентиляторные у	становки			•						229
5.8.	Влияние механич					-	абот	у в	HTH	!-	230
	лятора		•	•	•	•	•	•	•	•	200
7.7	***										
Часть	111										
осевы	Е НАСОСЫ И Е	ВЕ НТИЛЯ	TOPE	<i>.</i>						,	233
_	_										
Глава	шестая. Осн	к овы тео р	ни	• •	•	•	•	•	•	•	233
_	Решетка проф		•			٠					233
6.2.	Осиовные ураві	иеиня .		•	٠	•	•	•	•	•	235 240
6.0.	Напор, потери э Миогоступенчата	иергии, к	ДЦ		DOM	· Tun	, 7700		•	•	243
	Особенности усл								•	•	244
	Расчет осевых и					nac.	C	:	:	•	244
	Характеристики.					:	:	:		:	247
	седьмая. К					· OD	17 D4	ALC THE	пит	Λ	
POB.		· · ·		BDIA :	nacu	.UB	n D'	eri i m	JIPI I	,	249
7.1	Осевые насосы	_	_	_			_	_		_	249
	Осевые вентил	яторы	,	•		•	•	:	•		251
Часть	IV										
ОБЪЕЛ	иные поршне	ВЫЕ И В	POTO	Р НЫ І	E HA	CO	СЫ				258
							•	•	-	-	258
	восьмая. П	-			•	•	•	•	٠	٠	258
	Способ действия				грам		•	•	•	•	259
0.2. 8.3	Подача порицие Неравномерност	BMX HACO	anna r	. non	มขะ	:	•	•	•	•	261
8.4	Мощность и КГ	в всасыва П		і под	a 7 h	:	:		•	•	266
	Характеристики						:	:	:	:	268
8.6.	Совместная раб	ота пори	іневого	о и	coca		груб	onp	ово,	ца	270
8.7.	Допустимая вы	сота всас	ывани	я.			•		•		271
8.8.	Конструкции по	ошневых	Hacoco	Эв .		•	•	•	•	•	272
8.9.	Испытание порт	шневых н			пред	елен	ие і	неис	npa	B-	070
	ностей в рабо	те	•	• •	•	•	•	•	•	٠	279
	девятая. І	_				•	•	•	•	٠	2 83
9.1.	Основные коист	груктивяы	е тип	ы.					•	•	283
9.2.	Неравномерност	ъ подачи	•	• •	•	•	•	•	٠	•	289
											413

9.4. Характеристики. Регулирование подачи		291 293
Часть V		
КОМПРЕССОРНЫЕ МАШИНЫ		296
NOMINI ECCOTIONE MAMMINION	•	250
Глава десятая. Основы теории		296
10.1. Основные понятия. Типы компрессоров		2 96
10.2. Термодинамнка компрессорного процесса		298
10.3. Коэффициенты полезного действия компрессоров		306
10.4., Охлаждение. Ступенчатое сжатие		308
10.5. Количество ступеней. Промежуточное давление		310
10.6. Характеристики лопастных компрессоров. Пересчет	xa-	
рактеристик		312
10.7. Особенности регулирования лопастных компрессоров		316
Глава одиннадцатая. Центробежные компрессоры		318
тива одиниадцатам. щентросемные компрессоры	• •	010
11.1. Ступень центробежного компрессора		318
11.2. Мощность центробежного компрессора		32
11.3. Приближенный расчет ступени		32
11.4. Конструкции центробежных компрессоров		326
Глава двенадцатая. Осевые компрессоры		33
		33
10.0 1/200000000000000000000000000000000000	• •	337
	• •	340
12.3. Метод расчета основных размеров ступени	• •	34
12.4. Примеры конструкций	• •	UT
Глава тринадцатая. Поршиевые компрессоры .		347
13.1. Индикаторная днаграмма		34
13.2. Процессы сжатия и расширения газа в поршиевом	KOM-	
прессоре		349
19.9 Manusage & VIII		349
13.4. Мертвое пространство. Подача		350
10 ° M		353
10 C Management and the second and th		354
13.7. Конструктивные типы компрессоров		35
13.8. Действительнан индикаторная диаграмма		3 6 (
13.9. Подача и давление портиневого компрессора; рабо	гаю-	
щего на трубопровод		362
13.10. Регулирование подачи		363
13.11. Коиструкции компрессоров		367
13 12. Компрессоры со свободно движущимися поршнями		376
13.13. Компрессорные установки		377
13.13. Компрессорные установки	KOM-	-00
прессора		380
19 15 Output pomy no forms your possess		38
13.16. Расчет основных размеров ступеней компрессора		38

9.3. Мощность н КПД . .

I Лава четы рвадцатая. Роторные компрессоры	•	•	•	J04
14.1. Способ действия. Подача				384
14.2. Мощность и КПД	-	-	•	387
14.2. Мощноств и Ктід	•	•	•	
14.3. Регулирование подачи роторных компрессоров			٠	388
14.4. Конструкции роторных компрессоров				38 8
** ***				
Часть VI				
				001
МАШИНЫ СПЕЦИАЛЬНЫХ ТИПОВ			•	391
_				001
Глава пятнадцатая. Вихревые иасосы		•		391
15.1. Способ действия вихревого насоса				391
	•	•	•	391
15.2. Основы теории	•		•	
15.3. Действительные характеристики		•	•	395
15.4. Уравновешивание сил, действующих на коле	CO			396
15.5. Центробежно-вихревой насос			-	398
	•	•	•	400
15.6. Область применения. Регулирование		•	•	
Глава шестнадцатая. Водокольцевые вакуумин	эk	насо	СЫ	401
16.1. Способ действия				401
	•	•	•	402
16.2. Вакуум. Подача. Мощность		•	•	
Глава семнадцатая. Струйные насосы				403
17.1. Способ действия. Основные понятия		_		403
	•	•	•	404
17.2. Характеристика. Основные размеры	٠	-	•	
Список литературы				407
Предметный указатель	_	_		406
requestion fluorities	•	•	•	

ВЛАДИМИР МИХАМЛОВИЧ ЧЕРКАССКИМ

Насосы, вентиляторы, компрессоры

Редактор А. К. Михайлов Редактор издательства Н. М. Пеуиова Художественный редактор В. А. Гозак-Хозак Технический редактор В. В. Хапаева Корректор З. Б. Драновская ИБ № 3262

Сдано в набор 24.03.83 Подписано в печать 20.01.84. Т-04153. Формат 84×1081/₉₂. Бумага типографская № 3 Гариитура литературная. Печать высокая, Усл. печ. л. 21.84 Усл. кр.-отт. 21,84. Уч.-изд. л. 23,17. Тираж 45 000 экз. Заказ № 559. Цена 1 р. 10 к.

Энергоатомиздат, 113114, Москва. М 114, Шлюзовая наб. 10

Владимирская типография «Союзполиграфпрома» при Государствениом, комитете СССР по делам издательств, полиграфии и кпижиой торговли. 600000, г. Владимир, Октябрьский проспект, д. 7