
Yii2 Application Development Cookbook Third
Edition

Table of Contents

Yii2 Application Development Cookbook Third Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why Subscribe?

Preface
What this book covers
What you need for this book
Who this book is for
Sections

Getting ready
How to do it…
How it works…
There's more…
See also

Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Fundamentals
Introduction
Installing the framework

Getting ready
How to do it…

Installing a basic project template
Installing advanced project template

How it works…
See also

Application templates
How to do it…
How it works…

Dependency injection container
Getting ready
How to do it…
How it works…
See also

Service locator

Getting ready
How to do it…
How it works…
See also

Code generation
Getting ready
How to do it…
How it works…

Configuring components
Getting ready
How to do it…
How it works…

Built-in components
See also

Working with events
Getting ready
How to do it…
How it works…
See also

Using external code
Getting ready
How to do it… 

Installing a library via Composer
Installing libraries manually
Using Yii2 code in other frameworks

How it works…
See also

2. Routing, Controllers, and Views
Introduction
Configuring URL rules

Getting ready
How to do it…
How it works…
There's more…
See also

Generating URLs
Getting ready
How to do it…
How it works...
There's more...
See also

Using regular expressions in URL rules
Getting ready
How to do it…
How it works…
There's more…
See also

Using a base controller
Getting ready
How to do it…
How it works…
There's more…

Using standalone actions
Getting ready
How to do it…
How it works…
See also

Creating a custom filter
Getting ready
How to do it…
How it works…
See also

Displaying static pages
Getting ready
How to do it…
How it works…
There's more…

About ViewAction
Configuring URL rules

See also
Using flash messages

Getting ready
How to do it…
How it works…
There's more…

The getAllFlashes() method
The removeAllFlashes() method
The removeFlash() method

See also
Using the controller context in a view

Getting ready
How to do it…
How it works…
There's more…

Reusing views with partials
Getting ready
How to do it…
How it works…
There's more…

Using blocks
Getting ready
How to do it…
How it works…
There's more…

Using decorators
Getting ready
How to do it…
How it works…
See also

Defining multiple layouts
Getting ready
How to do it…
How it works…
See also

Pagination and sorting data
Getting ready
How to do it…
How it works...
See also

3. ActiveRecord, Model, and Database
Introduction
Getting data from a database

Getting ready
How to do it…
How it works…
There's more...

Defining and using multiple DB connections
Getting ready
How to do it...
How it works...
There's more...

Cross-database relations
See also

Customizing the ActiveQuery class
Getting ready
How to do it...
How it works...
There's more…
See also

Processing model fields with AR event-like methods
Getting ready
How to do it...
How it works...
See also

Automating timestamps
Getting ready
How to do it...
How it works…
There's more…

In addition...
See also

Setting up an author automatically
Getting ready
How to do it…
How it works...
There's more…
See also

Setting up a slug automatically
Getting ready
How to do it…
How it works…
There's more…
See also

Transactions
Getting ready...
How to do it…
See also

Replication and read-write splitting
Getting ready
How to do it…
How it works…
There's more…
See also

Implementing single table inheritance
Getting ready
How to do it…
How it works…
See also

4. Forms
Introduction
Writing your own validators

Getting ready
How to do it...
How it works...
See also

Uploading files
Getting ready
How to do it...
How it works...
There's more...
See also

Adding and customizing CaptchaWidget
Getting ready
How to do it...
How it works...
There's more...

Customizing Captcha
Getting ready

How to do it...
See also

Creating a custom input widget
Getting ready
How to do it...
How it works...
There's more...
See also

Tabular input
Getting ready
How to do it...
How it works...
See also

Conditional validation
Getting ready
How to do it...
How it works...
See also

Complex forms with multiple models
Getting ready
How to do it...
How it works...
See also

AJAX-dependent drop-down list
Getting ready
How to do it...
How it works...

AJAX validation
Getting ready
How to do it...
How it works...
See also

Creating a custom client-side validation
Getting ready
How to do it...
How it works...
There's more...
See also

5. Security
Introduction
Authentication

Getting ready
How to do it...
How it works...
See also

Using controller filters
Getting ready

How to do it...
How it works...
See also

Preventing XSS
Getting ready
How to do it...
How it works...
There's more…

XSS types
See also

Preventing SQL injections
Getting ready
How to do it...
How it works...
See also

Preventing CSRF
Getting ready
How to do it...
How it works...
There's more...

Disabling CSRF-tokens for a specific action
CSRF validation for Ajax-calls
Additionally [rename]
Using GET and POST properly

See also
Using RBAC

Getting ready
How to do it...
How it works…
There's more…

Keeping hierarchy simple and efficient
Naming RBAC nodes

See also
Encrypting/Decrypting data

Getting ready
How to do it...
How it works...
There's more…

Working with passwords
See also

6. RESTful Web Services
Introduction
Creating a REST server

Getting ready
How to do it…
How it works…
There's more…

Content negotiation
Customizing the Rest URL rule

See also
Authentication

Getting ready
How to do it...
How it works…
There's more…
See also

Rate limiting
Getting ready
How to do it…
How it works…
See also

Versioning
Getting ready
How to do it…
How it works…
There's more…

Error handling
Getting ready
How to do it…
How it works…
See also

7. Official Extensions
Introduction
Authentication client

Getting ready
How to do it…
How it works…
See also

SwiftMailer e-mail library
Getting ready
How to do it…

Sending plain text e-mails
Sending HTML content
Working with SMTP transport
Attaching file and embedding images

How it works…
See also

Faker fixture data generator
Getting ready
How to do it…

Working with your own data types
How it works…
See also

Imagine library

Getting ready
How to do it…

Using it as a factory
Using inner methods

How it works…
See also

MongoDB driver
Getting ready
How to do it…

Basic usage
How it works…
See also

ElasticSearch engine adapter
Getting ready
How to do it…

Using the Query class
Using ActiveRecord
Using the ElasticSearch DebugPanel

How it works…
See also

Gii code generator
Getting ready
How to do it…

Working with GUI
Working with CLI

How it works…
See also

Pjax jQuery plugin
Getting ready
How to do it…

Specifying a custom ID
Using ActiveForm
Working with the client-side script

How it works…
See also

Redis database driver
Getting ready
How to do it…

Direct usage
Using ActiveRecord

How it works…
See also

8. Extending Yii
Introduction
Creating helpers

Getting ready
How to do it…

How it works…
See also

Creating model behaviors
Getting ready
How to do it…
How it works…
See also

Creating components
Getting ready
How to do it…

Overriding existing application components
How it works…
See also

Creating reusable controller actions
Getting ready
How to do it…
How it works…
See also

Creating reusable controllers
Getting ready
How to do it…
How it works…
See also

Creating a widget
Getting ready
How to do it…
How it works…
See also

Creating CLI commands
Getting ready
How to do it…
How it works…
See also

Creating filters
Getting ready
How to do it…
How it works…
See also

Creating modules
Getting ready
How to do it…
How it works...
See also

Creating a custom view renderer
Getting ready
How to do it…
How it works…

See also
Creating a multilanguage application

Getting ready
How to do it…
How it works…
See also

Making extensions distribution-ready
Getting ready
How to do it…
How it works…
See also

9. Performance Tuning
Following best practices

Getting ready
How to do it…
How it works…
See also

Speeding up session handling
Getting ready
How to do it…
How it works…
There's more…
See also

Using cache dependencies and chains
Getting ready
How to do it…
How it works…
See also

Profiling an application with Yii
Getting ready
How to do it…
How it works…
See also

Leveraging HTTP caching
Getting ready
How to do it…
How it works…

Last-Modified
Entity Tag

See also
Combining and minimizing assets

Getting ready
How to do it…
How it works…
See also

Running Yii2 on HHVM
Getting ready

How to do it…
How it works…
See also

10. Deployment
Introduction
Changing the Yii directory layout

Getting ready
How to do it...

Changing the location of the runtime directory
Changing the location of the vendor directory
Changing the location of the controllers
Changing the locations of the views directory

How it works...
See also

Moving an application webroot
Getting ready
How to do it...

Placing files in the root
Placing files in a subdirectory

How it works...
See also

Changing an advanced application template
Getting ready
How to do it...
How it works...
See also

Moving configuration parts into separate files
Getting ready
How to do it...
How it works...
See also

Using multiple configurations to simplify the deployment
Getting ready
How to do it...
How it works...
See also

Implementing and executing cron jobs
Getting ready
How to do it...

Running the Hello command
Creating your own command
Setting the cron schedule

How it works...
See also

Maintenance mode
Getting ready
How to do it...

How it works...
See also

Deployment tools
Getting ready
How to do it...

Step 1 - Preparing the remote host
Step 2 - Preparing the localhost
Step 3 - Adding remote configuration
Step 4 - Trying to deploy

How it works...
See also

11. Testing
Introduction
Testing application with Codeception

Getting ready
How to do it…

Preparing for the tests
Running unit and functional tests
Getting coverage reports
Running acceptance tests
Creating database fixtures
Writing unit or integration test
Writing functional test
Writing acceptance test
Creating API test suite

How it works…
See also

Unit testing with PHPUnit
Getting ready
How to do it…

Preparing extension structure
Writing extension code
Writing extension tests
Running tests
Analyzing code coverage
Usage of component

How it works…
See also

Unit testing with Atoum
Getting ready
How to do it…

Preparing the extension structure
Writing the extension code
Writing the extension tests
Running tests
Analyzing code coverage

How it works…

See also
Unit testing with Behat

Getting ready
How to do it…

Preparing extension structure
Writing extension code
Writing extension tests
Running tests

How it works…
See also

12. Debugging, Logging, and Error Handling
Introduction
Using different log routes

Getting ready
How to do it...
How it works...
There's more…

Yii::trace versus Yii::getLogger()->log
Yii::beginProfile and Yii::endProfile
Log messages immediately

See also
Analyzing the Yii error stack trace

Getting ready
How to do it...
How it works...
See also

Logging and using the context information
Getting ready
How to do it...
How it works...
See also

Displaying custom errors
Getting ready
How to do it...
How it works...
See also

Custom panel for debug extension
Getting ready
How to do it...
How it works...

Handling events
See also

Index

Yii2 Application Development Cookbook Third
Edition

Yii2 Application Development Cookbook Third
Edition
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: August 2011

Second edition: April 2013

Third edition: October 2016

Production reference: 1261016

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-176-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Andrew Bogdanov

Dmitry Eliseev

Alexander Makarov

Reviewer

Maurizio Domba Cerin

Commissioning Editor

Ashwin Nair

Acquisition Editors

Vivek Anantharaman

James Jones

Aaron Lazar

Content Development Editor

Sanjeet Rao

Technical Editors

Bhagyashree Rai

Nidhisha Shetty

Copy Editor

Tom Jacob

Project Coordinator

Judie Jose

Proofreader

Safis Editing

Indexer

Pratik Shirodkar

Graphics

Kirk D'Penha

Production Coordinator

Deepika Naik

Cover Work

Deepika Naik

About the Authors
Andrew Bogdanov is a seasoned web developer from Yekaterinburg, Russia with more than six years of
experience in industrial development. Since 2010 he has been interested in Yii and MVC frameworks.
He has taken part in projects written in Yii such as a work aggregator for a UK company, high-load
projects, real-estate projects, and development of private projects for the government.

He has worked on various CMS and frameworks using PHP and MySQL, which includes Yii, Kohana,
Symphony, Joomla, WordPress, CakePHP, and so on. Also, having good hands in integrating third-party
APIs such as Payment gateways (Paypal, Facebook, Twitter, and LinkedIn), he is very good in slicing
and frontend. So he can provide full information about Yii framework.

He is also well-versed in PHP/MYSQL, Yii 1.x.x, Yii 2.x.x, Ajax, JQuery, MVC frameworks, Python,
LAMP, HTML/CSS, Mercurial, Git, AngularJs, and adaptive markup. You can also visit his blog
http://jehkinen.com.

In his free time he likes to visit and talk with new people and discuss web development problems. He is
currently working with professionals http://2amigos.us.

Dmitry Eliseev has been a web developer since 2008 and specializes in server-side programming on
PHP and PHP frameworks.

Since 2012 he has authored his personal blog, http://elisdn.ru, about web development in general and
about the Yii Framework particularly. His blog became a well-known resource in the Russian Yii
community. He is an active member of a Russian-language forum http://yiiframework.ru.

Dmitry is interested in developmental best practices, software architectures, object-oriented
programming, and other approaches.

He is an author and a presenter of practical courses about principles and best practices of object oriented
programming and the use of version control systems. And also he is an author of webinars, the Yii2
Framework, and common developmental subjects. He practices teaching and counseling by development
on frameworks and using of principles of software design and improvements of common code quality.
This is his first book.

Alexander Makarov is an experienced engineer from Russia and has been a Yii framework core team
member since 2010. Before joining the Yii core team, he participated in the CodeIgniter community
growth in Russia. In 2009, he finished the Russian translation of the framework documentation and
created the Russian community website. In 2012, he released the Russian version of the book along with
Russian community members. In the same year, he was the technical reviewer for three more books:

• The Yii Book: Developing Web Applications Using the Yii PHP Framework, Larry Ullman
• Web Application Development with Yii and PHP, Jeff Winesett
• Yii Rapid Application Development Hotshot, Lauren O'Meara and James Hamilton

http://jehkinen.com
http://2amigos.us
http://elisdn.ru
http://yiiframework.ru

In his free time, Alexander writes technical blog at http://rmcreative.ru/, speaks at conferences, and
enjoys movies, music, traveling, photography, and languages. He currently resides in Voronezh, Russia
with his beloved wife and daughter.

http://rmcreative.ru/

About the Reviewer
Maurizio Domba Cerin is a frontend and backend web developer with over 24 years of professional
experience in computer programming and 13 years in web development. He is an active member of the
Yii community. At the moment he is developing intranet web applications for an export-import
enterprise and working on other international projects, always trying to help others to improve their code
and project usability. When not programming the Web, he is programming his wife and kids, always
with a smile on his face, open-hearted and open-minded. He loves climbing, martial arts, meditation, and
salsa.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at
<customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and advance
your career.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com
https://www.packtpub.com/mapt

Preface
Yii is a free, open source web application development framework, written in PHP5, that promotes clean
DRY design and encourages rapid development. It works to streamline your application development
time and helps to ensure an extremely efficient, extensible, and maintainable end product. Being
extremely performance-optimized, Yii is a perfect choice for any size project. However, it has been built
with sophisticated, enterprise applications in mind. You have full control over the configuration from
head-to-toe (presentation-to-persistence) to conform to your enterprise development guidelines. It comes
packaged with tools to help test and debug your application, and has clear and comprehensive
documentation.

This book is a collection of Yii2 recipes. Each recipe is represented as a full and independent item,
which showcases solutions from real web applications. So you can easily reproduce them in your
environment and learn Yii2 fast and without tears. All recipes are explained with step-by-step code
examples and clear screenshots. Yii2 is like a suit that looks great off the rack, but is also very easy to
tailor to fit your needs. Virtually every component of the framework is extensible. This book will show
how to use official extensions, extend any component, or write a new one.

This book will help you create modern web applications quickly, and make sure they perform well using
examples and business logic from real life. You will deal with the Yii command line, migrations, and
assets. You will learn about role-based access, security, and deployment. We'll show you how to easily
get started, configure your environment, and be ready to write web applications efficiently and quickly.

What this book covers
Chapter 1, Fundamentals, covers how to install the Yii Framework and different ways to install it. We
will introduce you to application templates: basic and advanced and what is difference between them.
Then you will learn about dependency injection container. This chapter contains info about model
events, which are triggered after some simple actions such as model saving and updating and another.
We will learn how to use external code which will include ZendFramework, Laravel, and Sympony in
examples. We will also learn how to update your yii-1.x.x based application to yii2 step-by-step. A few
more recipes are available at https://www.packtpub.com/sites/default/files/downloads/
4270OS_Chapter1.pdf.

Chapter 2, Routing, Controllers, and Views, teaches some handy things about the Yii URL router,
controllers, and views. You will be able to make your controllers and views more flexible.

Chapter 3, ActiveRecord, Model, and Database, discusses the three main methods to work with
databases in Yii: Active Record, query builder, and direct SQL queries through DAO. All three are
different in terms of syntax, features, and performance. In this chapter we will learn how to work with
the database efficiently, when to use models and when not to, how to work with multiple databases, how
to automatically preprocess Active Record fields, and how to use powerful database criteria.

Chapter 4, Forms, covers how Yii makes working with forms a breeze and the documentation on it is
almost complete. Still, there are some areas that need clarification and examples.

https://www.packtpub.com/sites/default/files/downloads/4270OS_Chapter1.pdf
https://www.packtpub.com/sites/default/files/downloads/4270OS_Chapter1.pdf

Chapter 5, Security, discusses how to keep your application secure according to the general web
application security principle "filter input, escape output." We will cover topics such as creating your
own controller filters, preventing XSS, CSRF, and SQL injections, escaping output, and using role-based
access control.

Chapter 6, RESTful Web Services, covers how to write RESTful Web Services using Yii2 and built-in
features.

Chapter 7, Official Extensions, explains us how to install and use official extensions in your project. You
will learn how to write your own extension and share it for another developers.

Chapter 8, Extending Yii, covers not only how to implement your own Yii extension, but also how to
make your extension reusable and useful for the community. In addition, we will focus on many things
you should do in order to make your extension as efficient as possible.

Chapter 9, Performance Tuning, teaches some best practices of developing an application that will run
smoothly until you have very high loads. Yii is one of the fastest frameworks out there. Still, when
developing and deploying an application, it is good to have some extra performance for free, as well as
following best practices for the application itself. In this chapter, we will see how to configure Yii to
gain extra performance. In addition, we will learn some best practices for developing an application that
will run smoothly until we have very high loads.

Chapter 10, Deployment, covers various tips, which are especially useful on application deployment and
when developing an application in a team, or when you just want to make your development
environment more comfortable.

Chapter 11, Testing, teaches us how to use the best technologies for testing such as Codeception,
PhpUnit, Atoum, and Behat. You will be introduced how to write simple tests and how to avoid
regression errors in your applicaiton.

Chapter 12, Debugging, Logging, and Error Handling, discusses review logging, analyzing the
exception stack trace, and implementing our own error handler. It is not possible to create a bug-free
application if it is relatively complex, so developers have to detect errors and deal with them as fast as
possible. Yii has a good set of utility features to handle logging and handling errors. Moreover, in the
debug mode, Yii gives you a stack trace if there is an error. Using it, you can fix errors faster.

What you need for this book
In order to run the examples in this book, the following software will be required:

• Web server
• Database server
• PHP
• Yii2

Who this book is for
This book is for developers with good PHP5 knowledge and MVC-frameworks who have tried to
develop applications using the Yii 1.x.x version. This book will be very useful for all those who would
like to try Yii2, or those who are afraid to move from Yii 1.x.x. to Yii2. If you have still not tried Yii2,
this book is definitely for you!

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How it
works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There's more…

This section consists of additional information about the recipe in order to make the reader more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "we are defining an alias parameter that
should be specified in the URL after /page/."

A block of code is set as follows:

'urlManager' => array(
'enablePrettyUrl' => true,
'showScriptName' => false,

),

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are
set in bold:

'urlManager' => array(
'enablePrettyUrl' => true,
'showScriptName' => false,

),

Any command-line input or output is written as follows:

./yii migrate up

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "Generate a Post model using Gii with an enabled
Generate ActiveQuery option that generates the PostQuery class."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/
Yii2-Application-Development-Cookbook-Third-Edition. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book.
The color images will help you better understand the changes in the output. You can download this file
from http://www.packtpub.com/sites/default/files/downloads/
Yii2ApplicationDevelopmentCookbookThirdEdition_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your submission will be

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Yii2-Application-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/Yii2-Application-Development-Cookbook-Third-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Yii2ApplicationDevelopmentCookbookThirdEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Yii2ApplicationDevelopmentCookbookThirdEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata

accepted and the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Fundamentals
In this chapter, we will cover the following topics:

• Installing the framework
• Application templates
• Dependency injection container
• Service locator
• Code generation
• Configuring components
• Working with events
• Using external code

Introduction
In this chapter we will cover how to install Yii Framework and about possible techniques of installation.
We will introduce you to application templates: basic and advanced and their difference between them.
Then you will learn about dependency injection container. This chapter contains info about model
events, which trigger after some actions such as model saving, updating and others. We will learn how to
use external code which will include ZendFramework, Laravel, or Symfony. We will also be learning
about how to update your yii-1.x.x based application to yii2 step-by-step.

Installing the framework
Yii2 is a modern PHP framework provided as a Composer package. In this recipe, we will install the
framework via the Composer package manager and configure the database connection for our
application.

Getting ready

First of all, install the Composer package manager on your system.

Note

Note: If you use the OpenServer application on Windows, than the composer command already exists
in the OpenServer terminal.

In Mac or Linux download the installer from https://getcomposer.org/download/ and install it globally
by using the following command:

sudo php composer-setup.php --install-dir=/usr/local/bin
--filename=composer

In Windows without OpenServer download and run Composer-Setup.exe from the
https://getcomposer.org/doc/00-intro.md page.

If you do not have administrative privileges on the system then as an alternative you can just download
the https://getcomposer.org/composer.phar raw file and use the php composer.phar call instead of
single the composer command.

After installation run in your terminal:

composer

Or (if you just download archive) its alternative:

php composer.phar

When the installation succeeds you will see the following response:

/ ____/___ ____ ___ ____ ____ ________ _____

/ / / __ \/ __ '__ \/ __ \/ __ \/ ___/ _ \/ ___/
/ /___/ /_/ / / / / / / /_/ / /_/ (__) __/ /
____/____/_/ /_/ /_/ .___/____/____/___/_/

/_/
Composer version 1.2.0 2016-07-18 11:27:19

Right now you can install any package from the https://packagist.org repository.

https://getcomposer.org/download/
https://getcomposer.org/doc/00-intro.md
https://getcomposer.org/composer.phar
https://packagist.org

How to do it…

You can install basic or advanced application templates. In order to learn about the differences between
the templates see the Application templates recipe.

Note

Note that during installation the Composer package manager gets a lot of information from the GitHub
site. GitHub may limit requests for anonymous users. In this case Composer asks you to input your
access token. You should just register the https://github.com site and generate a new token via the
https://github.com/blog/1509-personal-api-tokens guide.

Installing a basic project template

Carry out the following steps for installing basic project template:

1. As the first step open your terminal and install Bower-to-Composer adapter:

composer global require "fxp/composer-asset-plugin:^1.2.0"

It provides a simple way to load related non-PHP packages (JavaScript and CSS) from the
Bower repository.

2. Create a new application in the new basic directory:

composer create-project --prefer-dist yiisoft/yii2-app-basic
basic

3. Check that your PHP contains the required extensions:

cd basic
php requirements.php

Note

Note: PHP in command-mode and in web-interface mode can use different php.ini files with
different configurations and different extensions.

4. Create a new database (if it is needle for your project) and configure it in the config/
db.php file.

5. Try to run application via the following console command:

php yii serve

6. Check in your browser that the application works by the http://localhost:8080
address:

https://github.com
https://github.com/blog/1509-personal-api-tokens

For permanent working create a new host in your server (Apache, Nginx, and so on) and set the web
directory as a document root of the host.

Installing advanced project template

Carry out the following steps for installing advanced project template:

1. As the first step open your terminal install Bower-to-Composer adapter:

composer global require "fxp/composer-asset-plugin:^1.2.0"

It provides a simple way to load related non-PHP packages (JavaScript and CSS) from the
Bower repository.

2. Create a new application in the new basic directory:

composer create-project --prefer-dist yiisoft/yii2-app-advanced
advanced

3. The new application does not contains local configuration files and index.php entry scripts
yet. To generate the files just init a working environment:

cd advanced
php init

During initialization select the Development environment.
4. Check that your PHP contains the required extensions:

php requirements.php

Note

Note: PHP in command-line mode and in web-interface mode can use different php.ini
files with different configuration and different extensions.

5. Create a new database and configure it in the generated common/config/main-
local.php file.

6. Apply the application migrations:

php yii migrate

This command will automatically create a user table in your database.
7. Try to run a frontend application by the following console command:

php yii serve --docroot=@frontend/web --port=8080

Then run the backend in an other terminal window:

php yii serve --docroot=@backend/web --port=8090

8. Check in your browser that the application works via the http://localhost:8080 and
http://localhost:8090 addresses:

Create two new hosts for backend and frontend application in your server (Apache, Nginx, and so on)
and set the backend/web and frontend/web directories as document roots of the hosts.

How it works…

First of all, we installed the Composer package manager and the Bower asset plugin.

After we installed the application via the composer create-project command, the command
creates a new empty directory, clones the source code of application template and loads all its inner
dependencies (framework and other components) into the vendor subdirectory.

If needed, we will initialize application configuration and set up a new database.

We can check system requirements via running the requirements.php script in console or browser
mode.

And after cloning of the code we can configure our own PHP server to work with the web directories as
the server's document roots.

See also
• For more information about installing yii2-app-basic refer to,

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
• Refer to, https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-

installation.md for yii2-app-advanced.
• Refer to, https://getcomposer.org for the Composer package manager.
• For creating a GitHub access token for Composer refer to https://github.com/blog/

1509-personal-api-tokens.

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-installation.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-installation.md
https://getcomposer.org
https://github.com/blog/1509-personal-api-tokens
https://github.com/blog/1509-personal-api-tokens

Application templates
Yii2 has two application templates for development: basic and advanced. What is the difference between
basic and advanced templates?

The names are confusing. Some people in the end choose basic because advanced may sound repulsive.
In this chapter we will look at the differences.

How to do it…

Please refer to the Installing the framework recipe's How to do it… section to understand and learn how
to install different templates.

How it works…

The advanced template has a custom system of configurations. It is developed so that a team can work
together on a project but each developer can customize their own configurations for development,
testing, and other environments.

Configuration environments can be complicated and normally aren't used when you develop alone.

The advanced template has frontend and backend folders for the frontend and backend parts of the web
application accordingly. So you can configure a separate host for each folder and thereby isolate the
frontend and backend part.

This is a simple way to organize files into directories and configure the web server. You can easily do
the same thing in the basic template.

Neither front/back-end separation nor user management is on its own a good reason to choose the
advanced template. It's better to adapt these features to your app—you'll learn more and won't get the
difficult config problem.

If you will be working on the project with a team and you might need configuration flexibility, use
different environments to develop and in this case a better choice would be the advanced application
template. If you will be working alone and your project is simple you should choose the basic
application template.

Dependency injection container
Dependency Inversion Principle (DIP) suggests we create modular low-coupling code with the help of
extracting clear abstraction subsystems.

For example, if you want to simplify a big class you can split it into many chunks of routine code and
extract every chunk into a new simple separated class.

The principle says that your low-level chunks should implement an all-sufficient and clear abstraction,
and high-level code should work only with this abstraction and not low-level implementation.

When we split a big multitask class into small specialized classes, we face the issue of creating
dependent objects and injecting them into each other.

If we could create one instance before:

$service = new MyGiantSuperService();

And after splitting we will create or get all dependent items and build our service:

$service = new MyService(
new Repository(new PDO('dsn', 'username', 'password')),
new Session(),
new Mailer(new SmtpMailerTransport('username', 'password',

host')),
new Cache(new FileSystem('/tmp/cache')),

);

Dependency injection container is a factory that allows us to not care about building our objects. In Yii2
we can configure a container only once and use it for retrieving our service like this:

$service = Yii::$container->get('app\services\MyService')

We can also use this:

$service = Yii::createObject('app\services\MyService')

Or we ask the container to inject it as a dependency in the constructor of an other service:

use app\services\MyService;
class OtherService
{

public function __construct(MyService $myService) { … }
}

When we will get the OtherService instance:

$otherService = Yii::createObject('app\services\OtherService')

In all cases the container will resolve all dependencies and inject dependent objects in each other.

In the recipe we create shopping cart with storage subsystem and inject the cart automatically into
controller.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it…

Carry out the following steps:

1. Create a shopping cart class:

<?php
namespace app\cart;

use app\cart\storage\StorageInterface;

class ShoppingCart
{

private $storage;

private $_items = [];

public function __construct(StorageInterface $storage)
{

$this->storage = $storage;
}

public function add($id, $amount)
{

$this->loadItems();
if (array_key_exists($id, $this->_items)) {

$this->_items[$id]['amount'] += $amount;
} else {

$this->_items[$id] = [
'id' => $id,
'amount' => $amount,

];
}
$this->saveItems();

}

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

public function remove($id)
{

$this->loadItems();
$this->_items = array_diff_key($this->_items, [$id =>

[]]);
$this->saveItems();

}

public function clear()
{

$this->_items = [];
$this->saveItems();

}

public function getItems()
{

$this->loadItems();
return $this->_items;

}

private function loadItems()
{

$this->_items = $this->storage->load();
}

private function saveItems()
{

$this->storage->save($this->_items);
}

}

2. It will work only with own items. Instead of built-in storing items to session it will delegate this
responsibility to any external storage class, which will implement the StorageInterface
interface.

3. The cart class just gets the storage object in its own constructor, saves it instance into private
$storage field and calls its load() and save() methods.

4. Define a common cart storage interface with the required methods:

<?php
namespace app\cart\storage;

interface StorageInterface
{

/**
* @return array of cart items
*/
public function load();

/**
* @param array $items from cart
*/
public function save(array $items);

}

5. Create a simple storage implementation. It will store selected items in a server session:

<?php
namespace app\cart\storage;

use yii\web\Session;

class SessionStorage implements StorageInterface
{

private $session;
private $key;

public function __construct(Session $session, $key)
{

$this->key = $key;
$this->session = $session;

}

public function load()
{

return $this->session->get($this->key, []);
}

public function save(array $items)
{

$this->session->set($this->key, $items);
}

}

6. The storage gets any framework session instance in the constructor and uses it later for
retrieving and storing items.

7. Configure the ShoppingCart class and its dependencies in the config/web.php file:

<?php
use app\cart\storage\SessionStorage;

Yii::$container->setSingleton('app\cart\ShoppingCart');

Yii::$container->set('app\cart\storage\StorageInterface',
function() {

return new SessionStorage(Yii::$app->session,

'primary-cart');
});

$params = require(__DIR__ . '/params.php');

//…

8. Create the cart controller with an extended constructor:

<?php
namespace app\controllers;

use app\cart\ShoppingCart;
use app\models\CartAddForm;
use Yii;
use yii\data\ArrayDataProvider;
use yii\filters\VerbFilter;
use yii\web\Controller;

class CartController extends Controller
{

private $cart;

public function __construct($id, $module, ShoppingCart
$cart, $config = [])

{
$this->cart = $cart;
parent::__construct($id, $module, $config);

}

public function behaviors()
{

return [
'verbs' => [

'class' => VerbFilter::className(),
'actions' => [

'delete' => ['post'],
],

],
];

}

public function actionIndex()
{

$dataProvider = new ArrayDataProvider([
'allModels' => $this->cart->getItems(),

]);

return $this->render('index', [
'dataProvider' => $dataProvider,

]);
}

public function actionAdd()
{

$form = new CartAddForm();

if ($form->load(Yii::$app->request->post()) &&
$form->validate()) {

$this->cart->add($form->productId, $form->amount);
return $this->redirect(['index']);

}

return $this->render('add', [
'model' => $form,

]);
}

public function actionDelete($id)
{

$this->cart->remove($id);

return $this->redirect(['index']);
}

}

9. Create a form:

<?php
namespace app\models;

use yii\base\Model;

class CartAddForm extends Model
{

public $productId;
public $amount;

public function rules()
{

return [
[['productId', 'amount'], 'required'],
[['amount'], 'integer', 'min' => 1],

];
}

}

10. Create the views/cart/index.php view:

<?php
use yii\grid\ActionColumn;
use yii\grid\GridView;
use yii\grid\SerialColumn;
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $dataProvider yii\data\ArrayDataProvider */

$this->title = 'Cart';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="cart-index">

<h1><?= Html::encode($this->title) ?></h1>

<p><?= Html::a('Add Item', ['add'], ['class' => 'btn
btn-success']) ?></p>

<?= GridView::widget([
'dataProvider' => $dataProvider,
'columns' => [

['class' => SerialColumn::className()],

'id:text:Product ID',
'amount:text:Amount',

[
'class' => ActionColumn::className(),
'template' => '{delete}',

]
],

]) ?>
</div>

11. Create the views/cart/add.php view:

<?php
use yii\helpers\Html;
use yii\bootstrap\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\bootstrap\ActiveForm */
/* @var $model app\models\CartAddForm */

$this->title = 'Add item';

$this->params['breadcrumbs'][] = ['label' => 'Cart', 'url' =>
['index']];
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="cart-add">

<h1><?= Html::encode($this->title) ?></h1>

<?php $form = ActiveForm::begin(['id' => 'contact-form']);
?>

<?= $form->field($model, 'productId') ?>
<?= $form->field($model, 'amount') ?>
<div class="form-group">

<?= Html::submitButton('Add', ['class' => 'btn
btn-primary']) ?>

</div>
<?php ActiveForm::end(); ?>

</div>

12. Add link items into the main menu:

['label' => 'Home', 'url' => ['/site/index']],
['label' => 'Cart', 'url' => ['/cart/index']],
['label' => 'About', 'url' => ['/site/about']],
// …

13. Open the cart page and try to add rows:

How it works…

In this case we have the main ShoppingCart class with a low-level dependency, defined by an
abstraction interface:

class ShoppingCart
{

public function __construct(StorageInterface $storage) { … }
}

interface StorageInterface
{

public function load();
public function save(array $items);

}

And we have some an implementation of the abstraction:

class SessionStorage implements StorageInterface
{

public function __construct(Session $session, $key) { … }
}

Right now we can create an instance of the cart manually like this:

$storage = new SessionStorage(Yii::$app->session, 'primary-cart');
$cart = new ShoppingCart($storage)

It allows us to create a lot of different implementations such as SessionStorage,
CookieStorage, or DbStorage. And we can reuse the framework-independent ShoppingCart
class with StorageInterface in different projects and different frameworks. We must only
implement the storage class with the interface's methods for needed framework.

But instead of manually creating an instance with all dependencies, we can use a dependency injection
container.

By default the container parses the constructors of all classes and recursively creates all the required
instances. For example, if we have four classes:

class A {
public function __construct(B $b, C $c) { … }

}

class B {
...

}

class C {
public function __construct(D $d) { … }

}

class D {
...

}

We can retrieve the instance of class A in two ways:

$a = Yii::$container->get('app\services\A')
// or
$a = Yii::createObject('app\services\A')

And the container automatically creates instances of the B, D, C, and A classes and injects them into each
other.

In our case we mark the cart instance as a singleton:

Yii::$container->setSingleton('app\cart\ShoppingCart');

This means that the container will return a single instance for every repeated call instead of creating the
cart again and again.

Besides, our ShoppingCart has the StorageInterface type in its own constructor and the
container does know what class it must instantiate for this type. We must manually bind the class to the
interface like this:

Yii::$container->set('app\cart\storage\StorageInterface', 'app\cart\
storage\CustomStorage',);

But our SessionStorage class has non-standard constructor:

class SessionStorage implements StorageInterface
{

public function __construct(Session $session, $key) { … }
}

Therefore we use an anonymous function to manually creatie the instance:

Yii::$container->set('app\cart\storage\StorageInterface', function()
{

return new SessionStorage(Yii::$app->session, 'primary-cart');
});

And after all we can retrieve the cart object from the container manually in our own controllers, widgets,
and other places:

$cart = Yii::createObject('app\cart\ShoppingCart')

But every controller and other object will be created via the createObject method inside the
framework. And we can use injection of cart via the controller constructor:

class CartController extends Controller
{

private $cart;

public function __construct($id, $module, ShoppingCart $cart,
$config = [])

{
$this->cart = $cart;
parent::__construct($id, $module, $config);

}

// ...
}

Use this injected cart object:

public function actionDelete($id)
{

$this->cart->remove($id);
return $this->redirect(['index']);

}

See also
• For more information about DIP refer to https://en.wikipedia.org/wiki/

Dependency_inversion_principle
• In order to learn more about dependency injection container refer to

http://www.yiiframework.com/doc-2.0/guide-concept-di-container.html

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
http://www.yiiframework.com/doc-2.0/guide-concept-di-container.html

Service locator
Instead of manually creating instances of different shared services (application components) we can get
them from a special global object, which contains configurations and instances of all components.

A service locator is a global object that contains a list of components or definitions, uniquely identified
by an ID, and allow us to retrieve any needed instance by its ID. The locator creates a single instance of
the component on-the-fly at the first call and returns a previous instance at the subsequent calls.

In this recipe, we will create a shopping cart component and will write a cart controller for working with
it.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

Carry out the following steps to create a shopping cart component:

1. Create a shopping cart component. It will store selected items in a user session:

<?php
namespace app\components;

use Yii;
use yii\base\Component;

class ShoppingCart extends Component
{

public $sessionKey = 'cart';

private $_items = [];

public function add($id, $amount)
{

$this->loadItems();
if (array_key_exists($id, $this->_items)) {

$this->_items[$id]['amount'] += $amount;
} else {

$this->_items[$id] = [
'id' => $id,
'amount' => $amount,

];
}

$this->saveItems();

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

}

public function remove($id)
{

$this->loadItems();
$this->_items = array_diff_key($this->_items, [$id =>

[]]);
$this->saveItems();

}

public function clear()
{

$this->_items = [];
$this->saveItems();

}

public function getItems()
{

$this->loadItems();
return $this->_items;

}

private function loadItems()
{

$this->_items =
Yii::$app->session->get($this->sessionKey, []);

}

private function saveItems()
{

Yii::$app->session->set($this->sessionKey,
$this->_items);

}
}

2. Register the ShoppingCart in service locator as an application component in the config/
web.php file:

'components' => [
…
'cart => [

'class' => 'app\components\ShoppingCart',
'sessionKey' => 'primary-cart',

],
]

3. Create a cart controller:

<?php
namespace app\controllers;

use app\models\CartAddForm;
use Yii;
use yii\data\ArrayDataProvider;
use yii\filters\VerbFilter;
use yii\web\Controller;

class CartController extends Controller
{

public function behaviors()
{

return [
'verbs' => [

'class' => VerbFilter::className(),
'actions' => [

'delete' => ['post'],
],

],
];

}

public function actionIndex()
{

$dataProvider = new ArrayDataProvider([
'allModels' => Yii::$app->cart->getItems(),

]);

return $this->render('index', [
'dataProvider' => $dataProvider,

]);
}

public function actionAdd()
{

$form = new CartAddForm();

if ($form->load(Yii::$app->request->post()) &&
$form->validate()) {

Yii::$app->cart->add($form->productId,
$form->amount);

return $this->redirect(['index']);
}

return $this->render('add', [
'model' => $form,

]);
}

public function actionDelete($id)
{

Yii::$app->cart->remove($id);

return $this->redirect(['index']);
}

}

4. Create a form:

<?php
namespace app\models;

use yii\base\Model;

class CartAddForm extends Model
{

public $productId;
public $amount;

public function rules()
{

return [
[['productId', 'amount'], 'required'],
[['amount'], 'integer', 'min' => 1],

];
}

}

5. Create the views/cart/index.php view:

<?php
use yii\grid\ActionColumn;
use yii\grid\GridView;
use yii\grid\SerialColumn;
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $dataProvider yii\data\ArrayDataProvider */

$this->title = 'Cart';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-contact">

<h1><?= Html::encode($this->title) ?></h1>

<p><?= Html::a('Add Item', ['add'], ['class' => 'btn
btn-success']) ?></p>

<?= GridView::widget([
'dataProvider' => $dataProvider,
'columns' => [

['class' => SerialColumn::className()],

'id:text:Product ID',
'amount:text:Amount',

[
'class' => ActionColumn::className(),
'template' => '{delete}',

]
],

]) ?>
</div>

6. Create the views/cart/add.php view:

<?php
use yii\helpers\Html;
use yii\bootstrap\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\bootstrap\ActiveForm */
/* @var $model app\models\CartAddForm */

$this->title = 'Add item';
$this->params['breadcrumbs'][] = ['label' => 'Cart', 'url' =>
['index']];
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-contact">

<h1><?= Html::encode($this->title) ?></h1>

<?php $form = ActiveForm::begin(['id' => 'contact-form']);
?>

<?= $form->field($model, 'productId') ?>
<?= $form->field($model, 'amount') ?>
<div class="form-group">

<?= Html::submitButton('Add', ['class' => 'btn
btn-primary']) ?>

</div>

<?php ActiveForm::end(); ?>
</div>

7. Add a link item into the main menu:

['label' => 'Home', 'url' => ['/site/index']],
['label' => 'Cart', 'url' => ['/cart/index']],
['label' => 'About', 'url' => ['/site/about']],
// …

8. Open the cart page and try to add rows:

How it works…

First of all we created our own class with a public sessionKey option:

<?php
namespace app\components;
use yii\base\Component;

class ShoppingCart extends Component

{
public $sessionKey = 'cart';

// …
}

Secondly, we added the component definition into the components section of the configuration file:

'components' => [
…
'cart => [

'class' => 'app\components\ShoppingCart',
'sessionKey' => 'primary-cart',

],
]

Right now we can retrieve the component instance in two ways:

$cart = Yii::$app->cart;
$cart = Yii::$app->get('cart');

And we can use this object in our own controllers, widgets, and other places.

When we call any component such as cart:

Yii::$app->cart

We call the virtual property of the Application class instance in the Yii::$app static variable.
But the yii\base\Application class extends the yii\base\Module class, which extends the
yii\di\ServiceLocator class with the __get magic method. This magic method just calls the
get() method of the yii\di\ServiceLocator class:

namespace yii\di;

class ServiceLocator extends Component
{

private $_components = [];
private $_definitions = [];

public function __get($name)
{

if ($this->has($name)) {
return $this->get($name);

} else {
return parent::__get($name);

}
}

// …
}

As a result it is an alternative to directly calling the service via the get method:

Yii::$app->get('cart);

When we get a component from the get method of service locator, the locator finds needed definition
in its _definitions list and if successful it creates a new object by the definition on the fly, registers
it in its own list of complete instances _components and returns the object.

If we get some component, multiplying the locator will always return the previous saved instance again
and again:

$cart1 = Yii::$app->cart;
$cart2 = Yii::$app->cart;
var_dump($cart1 === $cart2); // bool(true)

It allows us to use the shared single cart instance Yii::$app->cart or single database connection
Yii::$app->db instead of creating one large set from scratch again and again.

See also
• For more information about the service locator and about core framework components refer to

http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
• The Configuring components recipe
• The Creating components recipe in Chapter 8, Extending Yii

http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html

Code generation
Yii2 provides the powerful module Gii to generate models, controllers, and views, which you can easily
modify and customize. It's a really helpful tool for fast and quick development.

In this section we will explore how to use Gii and generate code. For example you have a database with
one table named film and you would like to create an application with CRUD operations for this table.
It's easy.

Getting ready
1. Create a new application by using composer as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Download the Sakila database from http://dev.mysql.com/doc/index-other.html.
3. Execute the downloaded SQLs: first the schema then the data.
4. Configure the database connection in config/main.php to use the Sakila database.
5. Run your web-server by ./yii serve.

How to do it…
1. Go to http://localhost:8080/index.php?r=gii and select Model Generator.
2. Fill out Table Name as actor and Model Class as Actor and press button Generate at the

bottom of page.

3. Return tothe main Gii menu by clicking the yii code generator logo on the header and choose
CRUD Generator.

4. Fill out the Model Class field as app\models\Actor and Controller Class as app\
controllers\ActorController.

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://dev.mysql.com/doc/index-other.html

5. Press the Preview button at the bottom of page and then press green button Generate.
6. Check the result via http://localhost:8080/index.php?actor/create.

How it works…

If you check your project structure you will see autogenerated code:

Firstly we've created an Actor model. Gii automatically creates all model rules which depends on
mysql field types. For example, if in your MySQL actor table's fields first_name and
last_name have IS NOT NULL flag then Yii automatically creates rule for it required and sets
max length 45 symbols because in our database max length of this field is set up as 45.

public function rules()
{

return [
[['first_name', 'last_name'], 'required'],
[['last_update'], 'safe'],
[['first_name', 'last_name'], 'string', 'max' => 45],

];
}

Also Yii creates relationship between models automatically, based on foreign keys you added to your
database. In our case two relations were created automatically.

public function getFilmActors()
{

return $this->hasMany(FilmActor::className(), ['actor_id' =>
'actor_id']);
}

public function getFilms()
{

return $this->hasMany(Film::className(), ['film_id' =>
'film_id'])->viaTable('film_actor', ['actor_id' => 'actor_id']);
}

This relationship has been created because we have two foreign keys in our database. The
film_actor table has foreign key fk_film_actor_actor which points to actor table fields
actor_id and fk_film_actor_film which points to film table field film_id.

Notice that you haven't generated FilmActor model yet. So if you would develop full-app versus
demo you had to generate Film, FilmActor models also. For the rest of the pieces, refer to
http://www.yiiframework.com/doc-2.0/guide-start-gii.html.

http://www.yiiframework.com/doc-2.0/guide-start-gii.html

Configuring components
Yii is a very customizable framework. Moreover, as in all customizable code, there should be a
convenient way to set up different application parts. In Yii, this is provided through configuration files
located at config.

Getting ready

Create a new application by using the Composer package manager as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it…

If you have worked with Yii before, then you have probably configured a database connection:

return [
…
'components' => [

'db' => [
'class' => 'system.db.CDbConnection',
'dsn' => 'mysql:host=localhost;dbname=database_name',
'username' => 'root',
'password' => '',
'charset' => 'utf8',

],
…

],
…

];

This way of configuring components is used when you want to use a component across all application
parts. With the preceding configuration, you can access a component by its name, such as
Yii::$app->db.

How it works…

When you are using the Yii::$app->db component for the first time directly or through an Active
Record model, Yii creates a component and initializes its public properties with the corresponding
values provided in db array under the components section of the application configuration file. In the
preceding code, dsn value will be assigned to yii\db\Connection::dsn, username will be
assigned to Connection::username, and so on.

If you want to find out what charset stands for or want to know what else you can configure in the
db component, then you need to know its class. In the case of the db component, the class is yii\db\
Connection. You can just open the class and look for its public properties, which you can set from
config.

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

In the preceding code, the class property is a bit special because it is used to specify the component
class name. It does not exist in the yii\db\Connection class. Therefore, it can be used to override
a class as follows:

return [
…
'components' => [

'db' => [
'class' => app\components\MyConnection',
…

],
…

],
…

);

This way, you can override each application component; this is very useful whenever a standard
component does not fit your application.

Built-in components

Now, let's find out which standard Yii application components you can configure. There are two
application types bundled with Yii:

• Web application (yii\webApplication)
• Console application (yii\console\Application)

Both are extended from yii\base\Application, so both console and web applications share its
components.

You can get the component names from the source code of the coreComponents() application's
method.

You can add your own application components (classes extended from yii\base\Component) by
simply adding new configuration items and pointing their class properties to your custom classes.

See also
• Both console and web application components are listed in the list at

http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html
• For more information on creating your own components see:

◦ The Service locator recipe
◦ The Creating components recipe in Chapter 8, Extending Yii

http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html

Working with events
Yii's events provide a simple implementation, which allows you to listen and subscribe to various events
that occur in your web-application. For example, you may wish to send a notification about a new article
to followers each time you publish new material.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Execute the following SQL code on your server to create the article table:

CREATE TABLE 'article' (
'id' int(11) NOT NULL AUTO_INCREMENT,
'name' varchar(255) DEFAULT NULL,
'description' text,
PRIMARY KEY ('id')

) ENGINE=InnoDB AUTO_INCREMENT=29 DEFAULT CHARSET=utf8;

3. Generate the Article model using Gii.
4. Run your webserver by ./yii serve command.

How to do it…
1. Add an action test to \controllers\SiteController:

public function actionTest()
{

$article = new Article();
$article->name = 'Valentine\'s Day\'s coming? Aw crap! I

forgot to get a girlfriend again!';
$article->description = 'Bender is angry at Fry for dating

a robot. Stay away from our women.
You've got metal fever, boy. Metal fever';

// $event is an object of yii\base\Event or a child class
$article->on(ActiveRecord::EVENT_AFTER_INSERT,

function($event) {
$followers = ['john2@teleworm.us',

'shivawhite@cuvox.de', 'kate@dayrep.com'];
foreach($followers as $follower) {

Yii::$app->mailer->compose()
->setFrom('techblog@teleworm.us')
->setTo($follower)
->setSubject($event->sender->name)
->setTextBody($event->sender->description)
->send();

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

}
echo 'Emails has been sent';

});

if (!$article->save()) {
echo VarDumper::dumpAsString($article->getErrors());

};
}

2. Update the config/web.php component mailer using the following code.

'mailer' => [
'class' => 'yii\swiftmailer\Mailer',
'useFileTransport' => false,

],

3. Run this URL in your browser: http://localhost:8080/index.php?r=site/
test.

4. Also check http://www.fakemailgenerator.com/inbox/teleworm.us/
john2/.

How it works…

We've created an Article model and added a handler for the
ActiveRecord::EVENT_AFTER_INSERT event to our Article model. It means that every time
we save a new article an event is triggered and our attached handler will be called.

In the real-world, we would like to notify our blog followers each time we publish a new article. In a
real application we would have a follower or user table and with different blog sections not only
single blog. In this example, after saving our model we notify our followers john2@teleworm.us,
shivawhite@cuvox.de, and kate@dayrep.com. In the last step we just prove that users have
received our notifications, particularly john2. You can create your own event with any name. In this
example we use a built-in event called ActiveRecord::EVENT_AFTER_INSERT, which is called
after each insert to the database.

For example, we can create our own event. Just add a new actionTestNew with the following code:

public function actionTestNew()
{

$article = new Article();
$article->name = 'Valentine\'s Day\'s coming? Aw crap! I forgot

to get a girlfriend again!';
$article->description = 'Bender is angry at Fry for dating a

robot. Stay away from our women.
You've got metal fever, boy. Metal fever';

// $event is an object of yii\base\Event or a child class
$article->on(Article::EVENT_OUR_CUSTOM_EVENT, function($event) {

$followers = ['john2@teleworm.us', 'shivawhite@cuvox.de',
'kate@dayrep.com'];

foreach($followers as $follower) {
Yii::$app->mailer->compose()

->setFrom('techblog@teleworm.us')
->setTo($follower)
->setSubject($event->sender->name)
->setTextBody($event->sender->description)
->send();

}
echo 'Emails have been sent';

});

if ($article->save()) {
$article->trigger(Article::EVENT_OUR_CUSTOM_EVENT);

}
}

Also add the EVENT_OUR_CUSTOM_EVENT constant to models/Article as:

class Article extends \yii\db\ActiveRecord
{

CONST EVENT_OUR_CUSTOM_EVENT = 'eventOurCustomEvent';
…
}

Run http://localhost:8080/index.php?r=site/test-new.

You should see the same result and all notifications to followers will be sent again. The main difference
is we used our custom event name.

After the save, we've triggered our event. Events may be triggered by calling the yii\base\
Component::trigger() method. The method requires an event name, and optionally an event
object that describes the parameters to be passed to the event handlers.

See also

For more information about events refer to http://www.yiiframework.com/doc-2.0/guide-concept-
events.html

http://www.yiiframework.com/doc-2.0/guide-concept-events.html
http://www.yiiframework.com/doc-2.0/guide-concept-events.html

Using external code
Package repositories, PSR standards, and social coding provide us with lots of high-quality reusable
libraries and other components with free licenses. We can just install any external component in project
instead of reengineering them from scratch. It improves development performance and makes for
higher-quality code.

Getting ready

Create a new application by using the Composer package manager as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it… 

In this recipe we will try to attach some libraries manually and via Composer.

Installing a library via Composer

When you use NoSQL or other databases without autoincrement primary keys, you must generate
unique identifiers manually. For example, you can use Universally Unique Identifier (UUID) instead
of a numerical one. Let's do it:

1. Install https://github.com/ramsey/uuid component via Composer:

composer require ramsey/uuid

2. Create a demonstration console controller:

<?php
namespace app\commands;

use Ramsey\Uuid\Uuid;
use yii\console\Controller;

class UuidController extends Controller
{

public function actionGenerate()
{

$this->stdout(Uuid::uuid4()->toString() . PHP_EOL);
$this->stdout(Uuid::uuid4()->toString() . PHP_EOL);
$this->stdout(Uuid::uuid4()->toString() . PHP_EOL);
$this->stdout(Uuid::uuid4()->toString() . PHP_EOL);
$this->stdout(Uuid::uuid4()->toString() . PHP_EOL);

}
}

3. And just run it:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://github.com/ramsey/uuid

./yii uuid/generate

4. If successful, you'll see the following output:

25841e6c-6060-4a81-8368-4d99aa3617dd
fcac910a-a9dc-4760-8528-491c17591a26
4d745da3-0a6c-47df-aee7-993a42ed915c
0f3e6da5-88f1-4385-9334-b47d1801ca0f
21a28940-c749-430d-908e-1893c52f1fe0

5. That's it! Now you can use the Ramsey\Uuid\Uuid class in your project.

Installing libraries manually

We can install a library automatically when it is provided as a Composer package. In other cases we
must install it manually.

For example, create some library examples:

1. Create the awesome/namespaced/Library.php file with the following code:

<?php
namespace awesome\namespaced;

class Library
{

public function method()
{

return 'I am an awesome library with namespace.';
}

}

2. Create the old/OldLibrary.php file:

<?php
class OldLibrary
{

function method()
{

return 'I am an old library without namespace.';
}

}

3. Create a set of functions as an old/functions.php file:

<?php
function simpleFunction()
{

return 'I am a simple function.';
}

And now set up this file in our application:
4. Define the new alias for the awesome library namespace root in the config/web.php file

(in aliases section):

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'aliases' => [

'@awesome' => '@app/awesome',
],
'components' => [

// …
],
'params' => // …

];

or via the setAlias method:

Yii::setAlias('@awesome', '@app/awesome');

5. Define a simple class file path at the top of the config/web.php file:

Yii::$classMap['OldLibrary'] = '@old/OldLibrary.php';

6. Configure autoloading of the functions.php file in composer.json:

"require-dev": {
...

},
"autoload": {

"files": ["old/functions.php"]
},
"config": {

...
},

And apply the changes:

composer update

7. And now create an example controller:

<?php
namespace app\controllers;

use yii\base\Controller;

class LibraryController extends Controller

{
public function actionIndex()
{

$awesome = new \awesome\namespaced\Library();
echo '<pre>' . $awesome->method() . '</pre>';

$old = new \OldLibrary();
echo '<pre>' . $old->method() . '</pre>';

echo '<pre>' . simpleFunction() . '</pre>';
}

}

And open the page:

Using Yii2 code in other frameworks

If you want to use Yii2 framework code with other frameworks just add Yii2-specific parameters in
composer.json:

{
...
"extra": {

"asset-installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

}
}

}

And install the framework:

composer require yiisoft/yii2

Now open the entry script of your application (on ZendFramework, Laravel, Symfony, and many more),
require the Yii2 autoloader, and create the Yii application instance:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
$config = require(__DIR__ . '/../config/yii/web.php');
new yii\web\Application($config);

That's it! Now you can use Yii::$app instances, models, widgets and other components from Yii2.

How it works…

In the first case we just install a new Composer package in our project and use it, because its
composer.json file defines all aspects of autoloading library files.

But in the second case we did not have Composer packages and registered the files in the autoloading
mechanism manually. In Yii2 we can use aliases and Yii::$classMap for registering the roots of
PSR-4 namespaces and for single files.

But as an alternative we can use Composer autoloader for all cases. Just define an extended autoload
section in the composer.json file like this:

"autoload": {
"psr-0": { "": "old/" },
"psr-4": {"awesome\\": "awesome/"},
"files": ["old/functions.php"]

}

Apply the changes using this command:

composer update

Right now you can remove aliases and $classMap definitions from your configuration files and
ensure the example page still works correctly:

This example completely uses Composer's autoloader instead of the framework's autoloader.

See also
• For more information about integrating external code in Yii2 and framework code into our

projects see the guide at http://www.yiiframework.com/doc-2.0/guide-tutorial-yii-
integration.html

• For more on aliases refer to http://www.yiiframework.com/doc-2.0/guide-concept-aliases.html
• For more on the autoload section of composer.json refer to https://getcomposer.org/doc/

01-basic-usage.md#autoloading
• And also you can browse or search any Composer packages on https://packagist.org

http://www.yiiframework.com/doc-2.0/guide-tutorial-yii-integration.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-yii-integration.html
http://www.yiiframework.com/doc-2.0/guide-concept-aliases.html
https://getcomposer.org/doc/01-basic-usage.md#autoloading
https://getcomposer.org/doc/01-basic-usage.md#autoloading
https://packagist.org

Chapter 2. Routing, Controllers, and Views
In this chapter, we will cover the following topics:

• Configuring URL rules
• Generating URLs
• Using regular expressions in URL rules
• Using a base controller
• Using standalone actions
• Creating a custom filter
• Displaying static pages
• Using flash messages
• Using the controller context in a view
• Reusing views with partials
• Using blocks
• Using decorators
• Defining multiple layouts
• Pagination and sorting data

Introduction
This chapter will help you to learn some handy things about the Yii URL router, controllers, and views.
You will be able to make your controllers and views more flexible.

Configuring URL rules
In this recipe, we will learn how to configure URL rules. Before we begin lets set up an application.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create the @app/controllers/TestController.php controller with the following

code inside:

<?php

namespace app\controllers;

use yii\helpers\Html;
use yii\web\Controller;

class TestController extends Controller
{

public function actionIndex()
{

return $this->renderContent(Html::tag('h2',
'Index action'

));
}

public function actionPage($alias)
{

return $this->renderContent(Html::tag('h2',
'Page is '. Html::encode($alias)

));
}

}

This is the application controller that we are going to customize URLs for.
3. Configure your application server to use clean URLs. If you are using Apache with

mod_rewrite and AllowOverride turned on, then you should add the following lines to
the .htaccess file under your @web directory:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on
if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

otherwise forward it to index.php
RewriteRule . index.php

How to do it…

Our website should display the index page at /home and all other pages at /page/<alias_ here>.
Additionally, /about should lead to a page with the alias about:

1. Add the following config of the urlManager component in @app/config/web.php:

'components' => [
// ..
'urlManager' => [

'enablePrettyUrl' => true,
'rules' => [

'home' => 'test/index',
'<alias:about>' => 'test/page',
'page/<alias>' => 'test/page',

]
],
// ..

],

After saving your changes, you should be able to browse the following URLs:

‰/home
‰/about
‰/page/about
/page/test

2. Try running the /home URL and you will get the following:

3. Then try running the /about page:

How it works…

Let's review what was done and why it works. We'll start with the right-most part of the first rule:

'home' => 'test/index',

What is test/index exactly? In the Yii application, each controller and its actions have
corresponding internal routes. A format for an internal route is moduleID/controllerID/
actionID. For example, the actionPage method of TestController corresponds to the
test/page route. So, in order to get the controller ID, you should take its name without the Controller
postfix and make its first letter lowercase. To get an action ID, you should take the action method name
without the action prefix, and again, make its first letter lowercase.

Now, what is home? To understand it in a better way, we need to know, at least superficially, what's
happening when we access our application using different URLs.

When we use /home, the URL router checks our rules one by one starting from the top, trying to match
the URL entered with the rule. If a match is found, then the router gets the controller and its action from
an internal route assigned to the rule and executes it. So, /home is the URL pattern that defines which
URLs will be processed by the rule it belongs to.

There's more…

You can also create parameterized rules using a special syntax. Let's review the third rule:

'page/<alias>' => test/page',

Here, we are defining an alias parameter that should be specified in the URL after /page/. It can be
virtually anything and it will be passed as the $alias parameter to the following:

TestController::actionPage($alias).

You can define a pattern for such a parameter. We did it for the second rule, as follows:

'<alias:about>' => test/page',

The alias here should match about, otherwise, the rule will not be applied.

See also

Refer to the following links for further reading:

• http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html
• http://www.yiiframework.com/doc-2.0/guide-runtime-url-handling.html
• http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html
• The Using regular expressions in URL rules recipe

http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html
http://www.yiiframework.com/doc-2.0/guide-runtime-url-handling.html
http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html

Generating URLs
Yii allows you to not only route your URLs to different controller actions, but also to generate a URL by
specifying a proper internal route and its parameters. This is really useful because you can focus on
internal routes while developing your application, and only worry about real URLs before going live.
Never specify URLs directly and make sure that you use the Yii URL toolset. It will allow you to change
URLs without rewriting a lot of application code.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Find your @app/config/web.php file and replace the rules array as follows:

'urlManager' => array(
'enablePrettyUrl' => true,
'showScriptName' => false,

),

3. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following lines to
the .htaccess file under your @app/web folder:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on
if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
otherwise forward it to index.php
RewriteRule . index.php

How to do it…
1. In your @app/controllers directory, create BlogController with the following code

inside:

<?php

namespace app\controllers;
use yii\web\Controller;

class BlogController extends Controller
{

public function actionIndex()
{

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

return $this->render('index');
}

public function actionRssFeed($param)
{

return $this->renderContent('This is RSS feed for our
blog and ' . $param);

}

public function actionArticle($alias)
{

return $this->renderContent('This is an article with
alias ' . $alias);

}

public function actionList()
{

return $this->renderContent('Blog\'s articles here');
}

public function actionHiTech()
{

return $this->renderContent('Just a test of action
which contains more than one words in the name') ;

}
}

This is our blog controller that we are going to generate custom URLs for.
2. In your @app/controllers directory, create TestController with the following code

inside:

<?php

namespace app\controllers;
use Yii;
use yii\web\Controller;

class TestController extends Controller
{

public function actionUrls()
{

return $this->render('urls');
}

}

3. In the @app/views directory, create the test directory and the urls.php view file, and
place the following code inside:

<?php
use yii\helpers\Url;
use yii\helpers\Html;

?>
<h1>Generating URLs</h1>

<h3>Generating a link with URL to <i>blog</i> controller and
<i>article</i> action with alias as param</h3>
<?= Html::a('Link Name', ['blog/article', 'alias' =>
'someAlias']); ?>

<h3>Current url</h3>
<?=Url::to('')?>

<h3>Current Controller, but you can specify an action</h3>
<?=Url::toRoute(['view', 'id' => 'contact']);?>

<h3>Current module, but you can specify controller and
action</h3>
<?= Url::toRoute('blog/article')?>

<h3>An absolute route to blog/list </h3>
<?= Url::toRoute('/blog/list')?>

<h3> URL for <i>blog</i> controller and action <i>HiTech</i>
</h3>
<?= Url::toRoute('blog/hi-tech')?>

<h3>Canonical URL for current page</h3>
<?= Url::canonical()?>

<h3>Getting a home URL</h3>
<?= Url::home()?>

<h3>Saving a URL of the current page and getting it for
re-use</h3>
<?php Url::remember()?>
<?=Url::previous()?>

<h3>Creating URL to <i>blog</i> controller and <i>rss-feed</i>
action while URL helper isn't available</h3>
<?=Yii::$app->urlManager->createUrl(['blog/rss-feed', 'param'
=> 'someParam'])?>

<h3>Creating an absolute URL to <i>blog</i> controller and
<i>rss-feed</i></h3>
<p>It's very useful for emails and console applications</p>

<?=Yii::$app->urlManager->createAbsoluteUrl(['blog/rss-feed',
'param' => 'someParam'])?>

4. Go to the URL http://yii-book.app/test/urls and you will see the output. (Refer
to the full list of methods in the preceding code.):

How it works...

We need to generate URLs pointing to the controller actions (RssFeed, Article, List, HiTech) of
BlogController.

Depending on where we need it, there are different ways of doing it, but the basics are the same. Let's
list some methods that generate URLs.

What is an internal route? Each controller and its actions have corresponding routes. A format for a
route is moduleID/controllerID/actionID. For example, the actionHiTech method of
BlogController corresponds to the blog/hi-tech route.

To get a controller ID, you should take its name without the Controller postfix and make its first letter
lowercase. To get an action ID, you should take the action method name without the action prefix and
make the first letter in each word lowercase, and separate them with a dash (-) sign (for example,
actionHiTech will be hi-tech).

The $_GET variables are the parameters that will be passed to an action with an internal route specified.
For example, if we want to create a URL to a BlogController::action article that passes the
$_GET['name'] parameter to it, it can be done as follows:

<?= Html::a('Link Name', ['blog/article', 'alias' => 'someAlias']);
?>

Relative URLs can be used inside your application, while absolute ones should be used for pointing to
locations outside your website (such as other websites) or for linking to resources meant to be accessed
from outside (RSS feeds, e-mails, and so on).

You can do it easily with the URL manager. The URL manager is a built-in application component
named urlManager. You have to use this component, which is accessible from both web and console
applications via Yii::$app->urlManager.

When you cannot get a controller instance, for example, when you implement a console application, you
can use the two following urlManager creation methods:

<?=Yii::$app->urlManager->createUrl(['blog/rss-feed', 'param' =>
'someParam'])?>
<?=Yii::$app->urlManager->createAbsoluteUrl(['blog/rss-feed',
'param' => 'someParam'])?>

There's more...

For further information, refer to the following URLs:

• https://en.wikipedia.org/wiki/Canonical_link_element
• http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html
• http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html
• http://www.yiiframework.com/doc-2.0/guide-helper-url.html
• http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html

See also
• The Configuring URL rules recipe

https://en.wikipedia.org/wiki/Canonical_link_element
http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html
http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html
http://www.yiiframework.com/doc-2.0/guide-helper-url.html
http://www.yiiframework.com/doc-2.0/yii-web-urlmanager.html

Using regular expressions in URL rules
One of the hidden features of the Yii URL router is that you can use regular expressions that are pretty
powerful for handling strings.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. In your @app/controllers directory, create PostController.php using the

following:

<?php

namespace app\controllers;

use yii\helpers\Html;
use yii\web\Controller;

class PostController extends Controller
{

public function actionView($alias)
{

return $this->renderContent(Html::tag('h2',
'Showing post with alias ' . Html::encode($alias)

));
}

public function actionIndex($type = 'posts', $order =
'DESC')

{
return $this->renderContent(Html::tag('h2',

'Showing ' . Html::encode($type) . ' ordered ' .
Html::encode($order)

));
}

public function actionHello($name)
{

return $this->renderContent(Html::tag('h2',
'Hello, ' . Html::encode($name) . '!'

));
}

}

This is our application controller that we are going to access using our custom URLs.

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

3. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following lines to
the .htaccess file under your @web folder:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on
if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
otherwise forward it to index.php
RewriteRule . index.php

How to do it…

We want our PostController action to accept parameters according to some specified rules and
give the 404 not found HTTP response for all parameters that do not match. In addition, post/index
should have an alias URL archive.

Add the following config of the urlManager component to @app/config/web.php:

'components' => [
// ..
'urlManager' => [

'enablePrettyUrl' => true,
'rules' => [

'post/<alias:[-a-z]+>' => 'post/view',
'<type:(archive|posts)>' => 'post/index',
'<type:(archive|posts)>/<order:(DESC|ASC)>' => 'post/

index',
'sayhello/<name>' => 'post/hello',

]
],
// ..

],

The following URLs will be successful:

• http://yii-book.app/post/test
• http://yii-book.app/posts
• http://yii-book.app/archive
• http://yii-book.app/posts/ASC
• http://yii-book.app/sayhello

The following URLs will fail:

• http://yii-book.app/archive/test

• http://yii-book.app/post/another_post

The following screenshot shows that the URL http://yii-book.app/post/test has run
successfully:

The following screenshot shows that the URL http://yii-book.app/archive has run
successfully too:

The following screenshot shows that the URL http://yii-book.app/archive/test did not
run successfully and encountered an error:

How it works…

You can use regular expressions in both the parameter definition and the rest of the rule. Let's read our
rules one by one:

'post/<alias:[-a-z]+>' => 'post/view',

The alias parameter should contain one or more English letters or a dash. No other symbols are allowed.

'(posts|archive)' => 'post/index',
'(posts|archive)/<order:(DESC|ASC)>' => 'post/index',

Both posts and archive lead to post/index. The order parameter can only accept two
values—DESC and ASC:

'sayhello/<name>' => 'post/hello',

You should specify the name part but there are no restrictions on what characters are allowed. Note that
regardless of the rule used, the developer should never assume that the input data is safe.

There's more…

To learn more about regular expressions, you can use the following sources:

• http://www.php.net/manual/en/reference.pcre.pattern.syntax.php
• Mastering Regular Expressions, Jeffrey Friedl available at http://regex.info/.

See also
• The Configuring URL rules recipe

http://www.php.net/manual/en/reference.pcre.pattern.syntax.php
http://regex.info/

Using a base controller
In many frameworks, the concept of a base controller that is being extended by other ones is described
right in the guide. In Yii, it is not in the guide, as you can achieve flexibility in many other ways. Still,
using a base controller is possible and can be useful.

Let's say we want to add some controllers that will be accessible only when the user is logged in. We can
certainly set this constraint for each controller separately, but we will do it in a better way.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it…
1. First, we will need a base controller that our user-only controllers will use. Let's create @app/

components/BaseController.php with the following code:

<?php

namespace app\components;

use Yii;
use yii\web\Controller;
use yii\filters\AccessControl;

class BaseController extends Controller
{

public function actions()
{

return [
'error' => ['class' => 'yii\web\ErrorAction'],

];
}

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
'rules' => [

[
'allow' => true,
'actions' => 'error'

],
[

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

'allow' => true,
'roles' => ['@'],

],
],

]
];

}
}

This controller has an action map with an error action also.
2. Now, create TestController by Gii, but set the value of the base class field as app/

components/BaseController:

You will get something similar to the following:

<?php
namespace app\controllers;
class TestController extends \app\components\BaseController
{

public function actionIndex()
{

return $this->render('index');

}
}

3. Now, your TestController will be only accessible if the user is logged in, even though we
have not declared it explicitly in the TestController class. You can check it by visiting
http://yii-book.app/index.php?r=test/index while logged out.

How it works…

The trick is nothing more than a basic class inheritance. If filters or access control rules are not found in
TestController, then they will be called from SecureController.

There's more…

If you need to extend the base controller's method, keep in the mind that it must not be overridden. For
example, we need to add a page action to the controller's action map:

<?php

namespace app\controllers;

use yii\helpers\ArrayHelper;
use app\components\BaseController;

class TestController extends BaseController
{

public function actions()
{

return ArrayHelper::merge(parent::actions(), [
'page' => [

'class' => 'yii\web\ViewAction',
],

]);
}

public function behaviors()
{

$behaviors = parent::behaviors();

$rules = $behaviors['access']['rules'];

$rules = ArrayHelper::merge(
$rules,
[

[
'allow' => true,
'actions' => ['page']

]
]

);

$behaviors['access']['rules'] = $rules;

return $behaviors;
}

public function actionIndex()
{

return $this->render('index');
}

}

For further information, refer to http://www.yiiframework.com/doc-2.0/yii-base-controller.html.

http://www.yiiframework.com/doc-2.0/yii-base-controller.html

Using standalone actions
In Yii, you can define controller actions as separate classes and then connect them to your controllers.
This will help you to reuse some common functionality.

For example, you can move the backend for autocomplete fields to an action and save some time by not
having to write it over and over again.

Another example is that we can create all CRUD operations as separate standalone actions. We will
write, create, view, and delete operations of the model and view the list operation of models.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Let's create post table. Create migration for this using the following command:

./yii migrate/create create_post_table

3. Update the just-created migration's methods and list of imported classes as follows:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150719_152435_create_post_table extends Migration
{

const TABLE_NAME = '{{%post}}';

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}

$this->createTable(self::TABLE_NAME, [
'id' => Schema::TYPE_PK,
'title' => Schema::TYPE_STRING.'(255) NOT NULL',
'content' => Schema::TYPE_TEXT.' NOT NULL',

], $tableOptions);

for ($i = 1; $i < 7; $i++) {
$this->insert(self::TABLE_NAME, [

'title' => 'Test article #'.$i,

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

'content' => 'Lorem ipsum dolor sit amet,
consectetur adipiscing elit. '

.'Sed sit amet mauris est. Sed at dignissim
dui. '

.'Phasellus arcu massa, facilisis a fringilla
sit amet, '

.'rhoncus ut enim.',
]);

}
}

public function down()
{

$this->dropTable(self::TABLE_NAME);
}

}

4. Install all migrations using the following command:

./yii migrate up

5. Create the Post model using Gii.

How to do it…
1. Create the standalone action @app/actions/CreateAction.php as follows:

<?php

namespace app\actions;

use Yii;
use yii\base\Action;

class CreateAction extends Action
{

public $modelClass;

public function run()
{

$model = new $this->modelClass();

if ($model->load(Yii::$app->request->post()) &&
$model->save()) {

$this->controller->redirect(['view', 'id' =>
$model->getPrimaryKey()]);

} else {
return $this->controller->render('//crud/create', [

'model' => $model
]);

}
}

}

2. Create the standalone action @app/actions/DeleteAction.php as follows:

<?php

namespace app\actions;

use yii\base\Action;
use yii\web\NotFoundHttpException;

class DeleteAction extends Action
{

public $modelClass;

public function run($id)
{

$class = $this->modelClass;

if (($model = $class::findOne($id)) === null) {
throw new NotFoundHttpException('The requested page

does not exist.');
}

$model->delete();

return $this->controller->redirect(['index']);
}

}

3. Create the standalone action @app/actions/IndexAction.php as follows:

<?php

namespace app\actions;

use yii\base\Action;
use yii\data\Pagination;

class IndexAction extends Action
{

public $modelClass;
public $pageSize = 3;

public function run()
{

$class = $this->modelClass;
$query = $class::find();
$countQuery = clone $query;

$pages = new Pagination([
'totalCount' => $countQuery->count(),

]);
$pages->setPageSize($this->pageSize);

$models = $query->offset($pages->offset)
->limit($pages->limit)
->all();

return $this->controller->render('//crud/index', [
'pages' => $pages,
'models' => $models

]);
}

}

4. Create the standalone action @app/actions/ViewAction.php as follows:

<?php

namespace app\actions;

use yii\base\Action;
use yii\web\NotFoundHttpException;

class ViewAction extends Action
{

public $modelClass;

public function run($id)
{

$class = $this->modelClass;

if (($model = $class::findOne($id)) === null) {
throw new NotFoundHttpException('The requested

page does not exist.');
}

return $this->controller->render('//crud/view', [
'model' => $model

]);

}
}

5. Create the view file @app/views/crud/create.php as follows:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/*
* @var yii\web\View $this
*/

?>
<h1><?= Yii::t('app', 'Create post'); ?></h1>
<?php $form = ActiveForm::begin();?>
<?php $form->errorSummary($model); ?>

<?= $form->field($model, 'title')->textInput() ?>
<?= $form->field($model, 'content')->textarea() ?>

<?= Html::submitButton(Yii::t('app', 'Create'), ['class' =>
'btn btn-primary']) ?>

<?php ActiveForm::end(); ?>

6. Create the view file @app/views/crud/index.php as follows:

<?php

use yii\widgets\LinkPager;
use yii\helpers\Html;
use yii\helpers\Url;

/*
* @var yii\web\View $this
* @var yii\data\Pagination $pages
* @var array $models
*/

?>
<h1>Posts</h1>
<?= Html::a('+ Create a post', Url::toRoute('post/create')); ?>

<?php foreach ($models as $model):?>
<h3><?= Html::encode($model->title);?></h3>
<p><?= Html::encode($model->content);?></p>

<p>
<?= Html::a('view', Url::toRoute(['post/view', 'id' =>

$model->id]));?> |
<?= Html::a('delete', Url::toRoute(['post/delete', 'id'

=> $model->id]));?>
</p>

<?php endforeach; ?>

<?= LinkPager::widget([
'pagination' => $pages,

]); ?>

7. Create the view file @app/views/crud/view.php as follows:

<?php

use yii\helpers\Html;
use yii\helpers\Url;

/*
* @var yii\web\View $this
* @var app\models\Post $model
*/

?>
<p><?= Html::a('< back to posts', Url::toRoute('post/index'));
?></p>

<h2><?= Html::encode($model->title);?></h2>
<p><?= Html::encode($model->content);?></p>

To use standalone actions, we declared it in the action map by overriding the actions method.
8. Run post/index:

How it works…

Every controller can be built from standalone actions, like a puzzle from pieces. The difference is that
you can make standalone actions very flexible and reuse them in many places.

In our actions, we defined the modelClass public property, which helps to set up a specific Model
class in the acti ons method of PostController.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-structure-
controllers.html#standalone-actions.

http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html#standalone-actions
http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html#standalone-actions

Creating a custom filter
Filters are objects that run before and/or after controller actions. For example, an access control filter
may run before actions to ensure that they are allowed to be accessed by particular end users; a content
compression filter may run after actions to compress the response content before sending them out to
end users.

A filter may consist of a prefilter (filtering logic applied before actions) and/or a postfilter (logic applied
after actions). Filters are essentially a special kind of behavior. Therefore, using filters is the same as
using behaviors.

Let's assume that we have a web application, which provides a user interface for working only at
specified hours, for example, from 10 AM to 6 PM.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Create a controller, @app/controllers/TestController.php, as follows:

<?php

namespace app\controllers;

use app\components\CustomFilter;
use yii\helpers\Html;
use yii\web\Controller;

class TestController extends Controller
{

public function behaviors()
{

return [
'access' => [

'class' => CustomFilter::className(),
],

];
}

public function actionIndex()
{

return $this->renderContent(Html::tag('h1',
'This is a test content'

));

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

}
}

2. Create a new filter, @app/components/CustomFilter.php, as follows:

<?php
namespace app\components;

use Yii;
use yii\base\ActionFilter;
use yii\web\HttpException;

class CustomFilter extends ActionFilter
{

const WORK_TIME_BEGIN = 10;
const WORK_TIME_END = 18;

protected function canBeDisplayed()
{

$hours = date('G');

return $hours >= self::WORK_TIME_BEGIN && $hours <=
self::WORK_TIME_END;

}

public function beforeAction($action)
{

if (!$this->canBeDisplayed())
{

$error = 'This part of website works from '
. self::WORK_TIME_BEGIN . ' to '
. self::WORK_TIME_END . ' hours.';

throw new HttpException(403, $error);
}

return parent::beforeAction($action);
}

public function afterAction($action, $result)
{

if (Yii::$app->request->url == '/test/index') {
Yii::trace("This is the index action");

}

return parent::afterAction($action, $result);

}
}

3. If you've visited this page outside of the specified time period, you'll get the following:

How it works…

At first, we added a piece of code to our controller, which implements our custom filter:

public function behaviors()
{

return [
'access' => [

'class' => CustomFilter::className(),
],

];
}

By default, the filter applies to all actions of the controller, but we can specify actions for which it will
be applied, or even exclude actions from our filter.

You have two actions inside it—beforeAction and afterActions. The first one runs before the
controller's actions and the next one after.

In our simple example, we defined a condition which doesn't allow access to website if the time is
earlier than 10 AM, and in the after method we just run a trace method if the current path is test/
index.

You can see the result in the debugger, in the log section:

In real applications, filters are more complex and also, Yii2 provides a lot of built-in filters, such as core,
authentication, content negotiator, HTTP cache end, and so on.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guidestructure-filters.html.

http://www.yiiframework.com/doc-2.0/guidestructure-filters.html

Displaying static pages
If you have a few static pages and aren't going to change them very frequently, then it's not worth
querying the database and implementing page management for them.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it…
1. Create the test controller file, @app/controllers/TestController.php, as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class TestController extends Controller
{

public function actions()
{

return [
'page' => [

'class' => 'yii\web\ViewAction',
]

];
}

}

2. Now, put your pages into views/test/pages, and name them index.php and
contact.php. The content of index.php is as follows:

<h1>Index</h1>
content of index file

Contact.php content is:

<h2>Contacts</h2>
<p>Our contact: contact@localhost</p>

3. Now you can check your pages by typing in the URL,
4. http://yii-book.app/index.php?r=test/page&view=contact:

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

5. Alternatively, you can type in the URL http://yii-book.app/test/page/view/
about, if you have configured clean URLs with a path format.

How it works…

We connect the external action named \yii\web\ViewAction, which simply tries to find a view
named the same as the $_GET parameter supplied. If it is there, it displays it. If not, then it will give you
a 404 not found page. In case viewParam is not set, the defaultView value will be used.

There's more…

About ViewAction

There are some useful \yii\web\ViewAction parameters we can use. These are listed in the
following table:

Parameter
name Description

defaultView The name of the default view when the yii\web\ViewAction::$viewParam
GET parameter is not provided by the user. Defaults to 'index'. This should be in
the format of path/to/view, similar to that given in the GET parameter.

layout The name of the layout to be applied to the requested view. This will be assigned to
yii\base\Controller::$layout before the view is rendered. Defaults to
null, meaning the controller's layout will be used. If false, no layout will be applied.

viewParam The name of the GET parameter that contains the requested view name.

Parameter
name Description

viewPrefix A string to be prefixed to the user-specified view name to form a complete view
name. For example, if a user requests tutorial/chap1, the corresponding view
name will be pages/tutorial/chap1, assuming that the prefix is pages. The
actual view file is determined by yii\base\View::findViewFile().

Configuring URL rules

The ViewAction action provides you a way to minify your controller, but the URLs look like
http://yii-book.app/index.php?r=test/page&page=about. To make URLs short and
more readable, add a URL rule to urlManager component:

'<view:about>' => 'test/page'

If the urlManager component configures properly you will get the following:

To configure the urlManager component, refer to the Configuring URL rules recipe.

See also

For further information, refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/yii-web-viewaction.html
• http://www.yiiframework.com/doc-2.0/guide-structure-views.html#rendering-static-pages
• The Configuring URL rules recipe

http://www.yiiframework.com/doc-2.0/yii-web-viewaction.html
http://www.yiiframework.com/doc-2.0/guide-structure-views.html#rendering-static-pages

Using flash messages
When you are editing a model with a form, deleting a model, or doing any other operation, it is good to
tell users if it went well or if there was an error. Typically, after some kind of action, such as editing a
form, a redirect will happen and we need to display a message on the page we want to go to. However,
how do we pass it from the current page to the redirect target and clean up afterwards? Flash messages
will help us do this.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Let's create a @app/controllers/TestController.php controller as follows:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use yii\filters\AccessControl;

class TestController extends Controller
{

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
'rules' => [

[
'allow' => true,
'roles' => ['@'],
'actions' => ['user']

],
[

'allow' => true,
'roles' => ['?'],
'actions' => ['index', 'success',

'error']
],

],
'denyCallback' => function ($rule, $action) {

Yii::$app->session->setFlash('error',

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

'This section is only for registered
users.');

$this->redirect(['index']);
},

],
];

}

public function actionUser()
{

return $this->renderContent('user');
}

public function actionSuccess()
{

Yii::$app->session->setFlash('success', 'Everything
went fine!');

$this->redirect(['index']);
}

public function actionError()
{

Yii::$app->session->setFlash('error', 'Everything went
wrong!');

$this->redirect(['index']);
}

public function actionIndex()
{

return $this->render('index');
}

}

2. Additionally, create the @app/views/common/alert.php view as follows:

<?php
use yii\bootstrap\Alert;

?>
<?php if (Yii::$app->session->hasFlash('success')):?>

<?= Alert::widget([
'options' => ['class' => 'alert-success'],
'body' => Yii::$app->session->getFlash('success'),

]);?>
<?php endif ?>

<?php if (Yii::$app->session->hasFlash('error')) :?>
<?= Alert::widget([

'options' => ['class' => 'alert-danger'],
'body' => Yii::$app->session->getFlash('error'),

]);?>
<?php endif; ?>

3. Create the @app/views/test/index.php file view as follows:

<?php

/* @var $this yii\web\View */

?>

<?= $this->render('//common/alert') ?>

<h2>Guest page</h2>
<p>There's a content of guest page</p>

4. Create the @app/views/test/user.php file view as follows:

<?php

/* @var $this yii\web\View */

?>

<?= $this->render('//common/alert') ?>

<h2>User page</h2>
<p>There's a content of user page</p>

5. Now, if you go to http://yii-book.app/index.php?r=test/success, you will
be redirected to http://yii-book.app/index.php?r=test/index and a success
message will be displayed as follows:

6. Moreover, if you go to http://yii-book.app/index.php?r=test/error, you will
be redirected to the same page, but with an error message. Refreshing the index page will hide
the message:

7. Then try running http://yii-book.app/index.php?r=test/user. You will be
redirected to http://yii-book.app/index.php?r=test/index and an error
message will be displayed that executed in the denyCallback function:

How it works…

We set a flash message with Yii::$app->session->('success', 'Everything went
fine!'). Internally, it saves a message into a session state, so at the lowest level, our message is being
kept in $_SESSION until Yii::$app->session->getFlash('success') is called and the
$_SESSION key is deleted.

The flash message will be automatically deleted after it is accessed in a request.

There's more…

The getAllFlashes() method

Sometimes you need to handle all flashes. You can do it in a simple manner, as follows:

$flashes = Yii::$app->session->getAllFlashes();

<?php foreach ($flashes as $key => $message): ?>
<?= Alert::widget([

'options' => ['class' => 'alert-info'],
'body' => $message,

]);
?>

<?php endforeach; ?>

The removeAllFlashes() method

When you need to flush all your flashes, use the following:

Yii::$app->session->removeAllFlashes();

The removeFlash() method

When you need to remove the flash method with a specified key, use the following:

Yii::$app->session->removeFlash('success');

In this example, we added a very useful callback function, which sets up an error message and does a
redirect to the test/ind ex page.

See also

For further information, refer to:

• http://www.yiiframework.com/doc-2.0/yii-web-session.html
• http://www.yiiframework.com/doc-2.0/yii-bootstrap-alert.html

http://www.yiiframework.com/doc-2.0/yii-web-session.html
http://www.yiiframework.com/doc-2.0/yii-bootstrap-alert.html

Using the controller context in a view
Yii views are pretty powerful and have many features. One of them is that you can use the controller
context in a view. So, let's try it.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Create a controllers/ViewController.php as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class ViewController extends Controller
{

public $pageTitle;

public function actionIndex()
{

$this->pageTitle = 'Controller context test';

return $this->render('index');
}

public function hello()
{

if (!empty($_GET['name'])) {
echo 'Hello, ' . $_GET['name'] . '!';

}
}

}

2. Now, we will create a views/view.php showing what we can do:

<h1><?= $this->context->pageTitle ?></h1>
<p>Hello call. <?php $this->context->hello() ?></p>

3. In order to test it, you can follow /index.php?r=view/index&name=Alex:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

How it works…

We are using $this in a view to refer to a currently running controller. When doing this, we can call a
controller method and access its properties. The most useful property is pageTitle, which refers to
the current page title. There are many built-in methods that are extremely useful in views such as
renderPartials and widget.

There's more…

The http://www.yiiframework.com/doc-2.0/guide-structure-views.html#accessing-data-in-views URL
contains the API documentation for CController, where you can get a good list of methods you can
use in your view.

http://www.yiiframework.com/doc-2.0/guide-structure-views.html#accessing-data-in-views

Reusing views with partials
Yii supports partials, so if you have a block without much logic that you want to reuse or want to
implement e-mail templates, partials are the right way to go about this.

Imagine that we have two Twitter accounts, one for our blog and another for company activity, and our
goal is to output Twitter timelines on specified pages.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create Twitter widgets at https://twitter.com/settings/widgets/ for php_net and

yiiframework users, and find a data-widget-id value for each widget created.

How to do it…
1. Create a controller, @app/controllers/BlogController.php, as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class BlogController extends Controller
{

public function actionIndex()
{

$posts = [
[

'title' => 'First post',
'content' => 'There\'s an example of reusing

views with partials.',
],
[

'title' => 'Second post',
'content' => 'We use twitter widget.'

],
];

return $this->render('index', [
'posts' => $posts

]);
}

}

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://twitter.com/settings/widgets/

2. Create a view file named @app/views/common/twitter.php and paste an embed code
from Twitter. You will get something like the following:

<?php

/* @var $this \yii\web\View */
/* @var $widget_id integer */
/* @var $screen_name string */

?>
<script>!function(d,s,id){var
js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?
'http':'https';if(!d.getElementById(id)){js=d.createElement(s);j
s.id=id;js.src=p+"://platform.twitter.com/
widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"scr
ipt","twitter-wjs");</script>

<?php if ($widget_id && $screen_name): ?>
<a class="twitter-timeline"

data-widget-id="<?= $widget_id?>"
href="https://twitter.com/<?= $screen_name?>"
height="300">
Tweets by @<?= $screen_name?>

<?php endif;?>

3. Create a view @app/views/blog/index.php file as follows:

<?php

/* @var $category string */
/* @var $posts array */
/* @var $this \yii\web\View */

?>

<div class="row">
<div class="col-xs-7">

<h1>Posts</h1>
<hr>
<?php foreach ($posts as $post): ?>

<h3><?= $post['title']?></h3>
<p><?= $post['content']?></p>

<?php endforeach;?>
</div>
<div class="col-xs-5">

<?= $this->render('//common/twitter', [

'widget_id' => '620531418213576704',
'screen_name' => 'php_net',

]);?>
</div>

</div>

4. Replace the @app/views/site/about.php file's content with the following:

<?php

use yii\helpers\Html;
/* @var $this yii\web\View */
$this->title = 'About';
?>

<div class="col-xs-7">
<h1><?= Html::encode($this->title) ?></h1>
<p>

This is the About page. You may modify this page.
</p>

</div>
<div class="col-xs-5">

<?= $this->render('//common/twitter', [
'widget_id' => '620526086343012352',
'screen_name' => 'yiiframework'

]);?>
</div>

5. Try to run index.php?r=blog/index:

6. Try to run index.php?r=site/about:

How it works…

In the current example, two views render @app/views/common/twitter.php with additional
parameters for forming Twitter widgets inside themselves. Note that views can be rendered in
controllers, widgets, or any other place, by calling the view rendering methods. For example, \yii\
base\Controller::render does the same template processing as \yii\base\
View::render, except the former does not use layout.

In each view file, we can access two instances of the View class using $this, so any view file can be
rendered in an other view by calling the render method.

There's more…

For further information, refer to http://www.yiiframework.com/doc-2.0/guidestructure-
views.html#rendering-views.

http://www.yiiframework.com/doc-2.0/guidestructure-views.html#rendering-views
http://www.yiiframework.com/doc-2.0/guidestructure-views.html#rendering-views

Using blocks
One of the Yii features you can use in your views is blocks. The basic idea is that you can record some
output and then reuse it later in a view. A good example would be to define additional content regions
for your layout and filling them elsewhere.

In the previous version, Yii 1.1, blocks were called clips.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. For our example, we need to define two regions in our layout—beforeContent and

footer.
2. Open @app/views/layouts/main.php and insert the following code line just before the

content output:

<?php if(!empty($this->blocks['beforeContent'])) echo
$this->blocks['beforeContent']; ?>

3. Then, replace the footer code with the following code:

<footer class="footer">
<div class="container">

<?php if (!empty($this->blocks['footer'])):
echo $this->blocks['footer'] ?>

<?php else: ?>
<p class="pull-left">© My Company <?= date('Y')

?></p>
<p class="pull-right"><?= Yii::powered() ?></p>

<?php endif; ?>
</div>

</footer>

4. That is it! Then, add a new action to controllers/SiteController.php, named
blocks:

public function actionBlocks()
{

return $this->render('blocks');
}

5. Now, create a view file, views/site/blocks.php, with the following content:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

<?php

use \yii\Helpers\Html;

/* @var $this \yii\web\View */
?>

<?php $this->beginBlock('beforeContent');
echo Html::tag('pre', 'Your IP is ' .

Yii::$app->request->userIP);
$this->endBlock(); ?>

<?php $this->beginBlock('footer');
echo Html::tag('h3', 'My custom footer block');

$this->endBlock(); ?>

<h1>Blocks usage example</h1>

6. Now, when you open your /index.php?r=site/blocks page, you should get your IP
just before the page content and a built-with note in the footer:

How it works…

We mark regions with the code that just checks for the existence of a specific block, and if the block
exists, the code outputs it. Then, we record content for blocks we defined using the special controller
methods named beginBlock and endBlock.

From controller, you can easily access our block's variables via $this->view-
>blocks['blockID'].

There's more…
• The Using the controller context in a view recipe
• http://www.yiiframework.com/doc-2.0/guide-structure-views.html#using-blocks

http://www.yiiframework.com/doc-2.0/guide-structure-views.html#using-blocks

Using decorators
In Yii, we can enclose content into a decorator. The common usage of decorators is layout. When you
are rendering a view using the render method of your controller, Yii automatically decorates it with the
main layout. Let's create a simple decorator that will properly format quotes.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. First, we will create a decorator file, @app/views/decorators/quote.php:

<div class="quote">
<h2>“<?= $content?>”, <?= $author?></h2>

</div>

2. Now, replace the content of @app/views/site/index.php with the following code:

<?php

use yii\widgets\ContentDecorator;

/* @var */
?>

<?php ContentDecorator::begin([
'viewFile' => '@app/views/decorators/quote.php',
'view' => $this,
'params' => ['author' => 'S. Freud']

]
);?>
Time spent with cats is never wasted.
<?php ContentDecorator::end();?>

3. Now, your Home page should look like the following:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

How it works…

Decorators are pretty simple. Everything between ContentDecorator::begin() and
ContentDecorator::end() is rendered into a $content variable and passed into a decorator
template. Then, the decorator template is rendered and inserted in the place where
ContentDecorator::end() was called.

We can pass additional variables into the decorator template using a second parameter of
ContentDecorator::begin(), such as the one we did for the author.

Note that we have used @app/views/decorators/quot e.php as the view path.

See also
• The http://www.yiiframework.com/doc-2.0/yii-widgets-contentdecorator.html URL provides

more details about decorators:
• The Using the controller context in a view recipe

http://www.yiiframework.com/doc-2.0/yii-widgets-contentdecorator.html

Defining multiple layouts
Most applications use a single layout for all their views. However, there are situations when multiple
layouts are needed. For example, an application can use different layouts on different pages: two
additional columns for blogs, one additional column for articles, and no additional columns for
portfolios.

Getting ready

Create a new application using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it…
1. Create two layouts in views/layouts: blog and articles. Blog will contain the following

code:

<?php $this->beginContent('//layouts/main')?>
<div>

<?= $content ?>
</div>
<div class="sidebar tags">

PHP
Yii

</div>
<div class="sidebar links">

Yiiframework
PHP

</div>

<?php $this->endContent()?>

2. Articles will contain the following code:

<?php

/* @var $this yii\web\View */
?>

<?php $this->beginContent('@app/views/layouts/main.php'); ?>
<div class="container">

<div class="col-xs-8">
<?= $content ?>

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

</div>
<div class="col-xs-4">

<h4>Table of contents</h4>

Introduction
Quick start
..

</div>

</div>
<?php $this->endContent() ?>

3. Create a view file, views/site/content.php, as follows:

<h1>Title</h1>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.</p>

4. Create three controllers named BlogController, ArticleController, and
PortfolioController, with index actions in all three. The content of the
controllers/BlogController.php file is as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class BlogController extends Controller
{

public $layout = 'blog';

public function actionIndex()
{

return $this->render('//site/content');
}

}

5. The content of the controllers/ArticleController.php file is as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class ArticleController extends Controller
{

public $layout = 'articles';

public function actionIndex()
{

return $this->render('//site/content');
}

}

6. The content of the controllers/PortfolioController.php file is as follows:

<?php

namespace app\controllers;

use yii\web\Controller;

class PortfolioController extends Controller
{

public function actionIndex()
{

return $this->render('//site/content');
}

}

7. Now try running http://yii-book.app/?r=blog/index:

8. Then try running http://yii-book.app/?r=article/index:

9. Finally, try running http://yii-book.app/?r=portfolio/index:

How it works…

We defined two additional layouts for the blog and articles. As we don't want to copy and paste common
parts from the main layout, we apply additional layout decorators using $this->beginContent
and $this->endContent.

So, we use a view rendered inside the articles layout as the main layout's $content.

See also
• The http://www.yiiframework.com/doc-2.0/guide-structure-views.html#nested-layouts URL

provides more details about layouts.
• The Using the controller context in a view recipe
• The Using decorators recipe

http://www.yiiframework.com/doc-2.0/guide-structure-views.html#nested-layouts

Pagination and sorting data
In the latest Yii releases, the focus was moved from using Active Record directly, to grids, lists, and data
providers. Still, sometimes it is better to use Active Record directly. Let's see how to list paginated AR
records with the ability to sort them. In this section, we would like to create a list of films and sort them
by some attributes from a database. In our example, we will sort our films by film title and rental rate
attributes.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Download the Sakila database from http://dev.mysql.com/doc/index-other.html.
3. Execute the downloaded SQLs; first schema, then data.
4. Configure the DB connection in config/main.php to use the Sakila database.
5. Use Gii to create the Film model.

How to do it…
1. First, you need to create @app/controllers/FilmController.php:

<?php

namespace app\controllers;

use app\models\Film;
use yii\web\Controller;
use yii\data\Pagination;
use yii\data\Sort;

class FilmController extends Controller
{

public function actionIndex()
{

$query = Film::find();
$countQuery = clone $query;
$pages = new Pagination(['totalCount' =>

$countQuery->count()]);
$pages->pageSize = 5;

$sort = new Sort([
'attributes' => [

'title',
'rental_rate'

]
]);

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://dev.mysql.com/doc/index-other.html

$models = $query->offset($pages->offset)
->limit($pages->limit)
->orderBy($sort->orders)
->all();

return $this->render('index', [
'models' => $models,
'sort' => $sort,
'pages' => $pages

]);
}

}

2. Now, let's implement @app/views/film/index.php, as follows:

<?php

use yii\widgets\LinkPager;

/**
* @var \app\models\Film $models
* @var \yii\web\View $this
* @var \yii\data\Pagination $pages
* @var \yii\data\Sort $sort
*/

?>

<h1>Films List</h1>

<p><?=$sort->link('title')?> |
<?=$sort->link('rental_rate')?></p>

<?php foreach ($models as $model): ?>
<div class="list-group">

<h4 class="list-group-item-heading"> <?=$model->title ?>
<label class="label label-default">

<?=$model->rental_rate ?>
</label>

</h4>
<p class="list-group-item-text"><?=$model->description

?></p>
</div>

<?php endforeach ?>

<?=LinkPager::widget([

'pagination' => $pages
]); ?>

3. Try to load http://yii-book.app/index.php?r=film/index. You should get a
working pagination and links that allow sorting of list by the film's title or by rental rate:

How it works...

First, we got the total models count and initialized the new pagination component instance with it by
passing the totalCount variable to our Pagination instance. Then, we used the $pages-
>pageSize field to set up the page size for our pagination. After that, we created a sorter instance for
the model, specifying model attributes we wanted to sort by and applying order conditions to the query
by calling orderBy and passing $sort->orders as a parameter. Then, we called all() to get
records from the DB.

At this point, we have the models list, pages, and data used for the link pager, and the sorter that we use
to generate sorting links.

In a view, we use the data we have gathered. First, we generate links with the Sort::link method.
Then, we list the models. Finally, using the LinkPager widgets, we render the pagination control.

See also

Visit the following links to get more information about pagination and sorting:

• http://www.yiiframework.com/doc-2.0/yii-data-pagination.html
• http://www.yiiframework.com/doc-2.0/yii-data-sort.html
• http://www.yiiframework.com/doc-2.0/guide-output-pagination.html
• http://www.yiiframework.com/doc-2.0/guide-output-sorting.html

http://www.yiiframework.com/doc-2.0/yii-data-pagination.html
http://www.yiiframework.com/doc-2.0/yii-data-sort.html
http://www.yiiframework.com/doc-2.0/guide-output-pagination.html
http://www.yiiframework.com/doc-2.0/guide-output-sorting.html

Chapter 3. ActiveRecord, Model, and Database
In this chapter, we will cover the following topics:

• Getting data from a database
• Defining and using multiple DB connections
• Customizing the ActiveQuery class
• Processing model fields with AR event-like methods
• Automating timestamps
• Setting up an author automatically
• Setting up a slug automatically
• Transactions
• Replication and read-write splitting
• Implementing single table inheritance

Introduction
In this chapter, you will learn how to work with a database efficiently, when to use models and when not
to, how to work with multiple databases, how to automatically preprocess Active Record fields, how to
use transactions, and so on.

Getting data from a database
Most applications use databases today. Be it a small website or a social network, at least some parts are
powered by databases.

Yii introduces three ways to allow you to work with databases. They are as follows:

• Active Record
• Query Builder
• SQL via DAO

We will use all these methods to get data from the film, film_actor, and actor tables and show it
in a list. Also, we will compare the execution time and memory usage to determine in which cases we
should use these methods.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Download the Sakila database from http://dev.mysql.com/doc/index-other.html.
3. Execute the downloaded SQLs; first schema, then data.
4. Configure the DB connection in config/main.php to use the Sakila database.
5. Use Gii to create models for the actor and film tables.

How to do it…
1. Create app/controllers/DbController.php as follows:

<?php

namespace app\controllers;

use app\models\Actor;
use Yii;
use yii\db\Query;
use yii\helpers\ArrayHelper;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class DbController
* @package app\controllers
*/
class DbController extends Controller
{

/**
* Example of Active Record usage.

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://dev.mysql.com/doc/index-other.html

*
* @return string
*/
public function actionAr()
{

$records = Actor::find()
->joinWith('films')
->orderBy('actor.first_name,

actor.last_name, film.title')
->all();

return $this->renderRecords($records);
}

/**
* Example of Query class usage.
*
* @return string
*/
public function actionQuery()
{

$rows = (new Query())
->from('actor')
->innerJoin('film_actor',

'actor.actor_id=film_actor.actor_id')
->leftJoin('film',

'film.film_id=film_actor.film_id')
->orderBy('actor.first_name, actor.last_name,

actor.actor_id, film.title')
->all();

return $this->renderRows($rows);
}

/**
* Example of SQL execution usage.
*
* @return string
*/
public function actionSql()
{

$sql = 'SELECT *
FROM actor a
JOIN film_actor fa ON fa.actor_id = a.actor_id
JOIN film f ON fa.film_id = f.film_id
ORDER BY a.first_name, a.last_name, a.actor_id,

f.title';

$rows = Yii::$app->db->createCommand($sql)->queryAll();

return $this->renderRows($rows);
}

/**
* Render records for Active Record array.
*
* @param array $records
*
* @return string
*/
protected function renderRecords(array $records = [])
{

if (!$records) {
return $this->renderContent('Actor list is empty.');

}

$items = [];

foreach ($records as $record) {
$actorFilms = $record->films

?
Html::ol(ArrayHelper::getColumn($record->films, 'title')): null;

$actorName = $record->first_name.'
'.$record->last_name;

$items[] = $actorName.$actorFilms;
}

return $this->renderContent(Html::ol($items, [
'encode' => false,

]));
}

/**
* Render rows for result of query.
*
* @param array $rows
*
* @return string
*/
protected function renderRows(array $rows = [])
{

if (!$rows) {
return $this->renderContent('Actor list is empty.');

}

$items = [];
$films = [];

$actorId = null;
$actorName = null;
$actorFilms = null;

$lastActorId = $rows[0]['actor_id'];

foreach ($rows as $row) {
$actorId = $row['actor_id'];
$films[] = $row['title'];

if ($actorId != $lastActorId) {
$actorName = $row['first_name'].'

'.$row['last_name'];
$actorFilms = $films ? Html::ol($films) : null;

$items[] = $actorName.$actorFilms;
$films = [];
$lastActorId = $actorId;

}
}

if ($actorId == $lastActorId) {
$actorFilms = $films ? Html::ol($films) : null;
$items[] = $actorName.$actorFilms;

}

return $this->renderContent(Html::ol($items, [
'encode' => false,

]));
}

}

2. Here, we have three actions corresponding to the three different methods of getting data from a
database.

3. After running the preceding db/ar, db/query and db/sql actions, you should get a tree
showing 200 actors and 1,000 films they have acted in, as shown in the following screenshot:

4. At the bottom, there are statistics that give information about the memory usage and execution
time. Absolute numbers can be different if you run this code, but the difference between the
methods used should be about the same:

Method Memory usage (megabytes) Execution time (seconds)

Active Record 21.4 2.398

Query Builder 28.3 0.477

SQL (DAO) 27.6 0.481

How it works…

The actionAr action method gets model instances using the Active Record approach.

We start with the Actor model generated with Gii to get all the actors, and specify joinWith =>
'films' to get the corresponding films using a single query or eager loading through relation, which
Gii builds for us from InnoDB table foreign keys. We then simply iterate over all the actors and for
each actor, over each film. Then, for each item, we print its name.

The actionQuery function uses Query Builder. First, we create a query for the current DB
connection with \yii\db\Query. We then add query parts one by one with from, joinInner, and
leftJoin. These methods escape values, tables, and field names automatically. The all() function
of \yii\db\Query returns an array of raw database rows. Each row is also an array, indexed with
result field names. We pass the result to renderRows, which renders it.

With actionSql, we do the same, except that we pass SQL directly instead of adding its parts one by
one. It's worth mentioning that we should escape parameter values manually using Yii::app()-
>db->quoteValue before using them in the query string:

The renderRows method renders the Query Builder.

The renderRecords method renders the active records.

Method Active Record Query Builder SQL (DAO)

Syntax This will do SQL for you.

Gii will generate models and
relations for you.

Works with models, completely
OO-style, and a very clean API.

Produces an array of properly
nested models as the result.

Clean API, suitable
for building query on
the fly.

Produces raw data
arrays as the result.

Good for complex SQL.

Manual values and keyword
quoting.

Not very suitable for building a
query on the fly.

Produces raw data arrays as the
result.

Performance Higher memory usage and
execution time compared to SQL
and Query Builder.

Okay. Okay.

Extra
features

Quotes values and names
automatically.

Behaviors. Before/after hooks.

Validation. Prototyping selects.

Quotes values and
names automatically.

None.

Best for Update, delete, and create actions
for single models (the model gives
a huge benefit when using with
forms).

Working with large
amount of data and
building queries on
the fly.

Complex queries you want to
complete with pure SQL and
have maximum possible
performance.

There's more...

In order to learn more about working with databases in Yii, refer to the following resources:

• http://www.yiiframework.com/doc-2.0/guide-db-dao.html
• http://www.yiiframework.com/doc-2.0/guide-db-query-builder.html
• http://www.yiiframework.com/doc-2.0/guide-db-active-record.html

http://www.yiiframework.com/doc-2.0/guide-db-dao.html
http://www.yiiframework.com/doc-2.0/guide-db-query-builder.html
http://www.yiiframework.com/doc-2.0/guide-db-active-record.html

Defining and using multiple DB connections
Multiple database connections are not used very often for new standalone web applications. However,
when you are building an add-on application for an existing system, you will most probably need
another database connection.

From this recipe, you will learn how to define multiple DB connections and use them with DAO, Query
Builder, and Active Record models.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create two MySQL databases named db1 and db2.
3. Create a table named post in db1, as follows:

DROP TABLE IF EXISTS 'post';
CREATE TABLE IF NOT EXISTS 'post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
PRIMARY KEY ('id')

);

4. Create a table named comment in db2, as follows:

DROP TABLE IF EXISTS 'comment';
CREATE TABLE IF NOT EXISTS 'comment' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'text' TEXT NOT NULL,
'post_id' INT(10) UNSIGNED NOT NULL,
PRIMARY KEY ('id')

);

How to do it...
1. We will start with configuring the DB connections. Open config/main.php and define a

primary connection as described in the official guide:

'db' => [
'connectionString' =>'mysql:host=localhost;dbname=db1',
'username' => 'root',
'password' => '',
'charset' => 'utf8',

],

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

2. Copy it, rename the db component to db2, and change the connection string accordingly. Also,
you need to add the class name as follows:

'db2' => [
'class'=>'yii\db\Connection',
'connectionString' => 'mysql:host=localhost;dbname=db2',
'username' => 'root',
'password' => '',
'charset' => 'utf8',

],

3. That is it. Now you have two database connections and you can use them with DAO and Query
Builder, as follows:

$rows1 = Yii::$app->db->createCommand($sql)->queryAll();
$rows2 = Yii::$app->db2->createCommand($sql)->queryAll();

4. Now, if we need to use Active Record models, we first need to create the Post and Comment
models with Gii. You can select an appropriate connection for each model. Set the db2 for
database connection ID when you create the Comment model, as shown in the following
screenshot:

5. Now you can use the Comment model as usual and create controllers/
DbController.php, as follows:

<?php

namespace app\controllers;

use app\models\Post;
use app\models\Comment;
use yii\helpers\ArrayHelper;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class DbController.
* @package app\controllers
*/

class DbController extends Controller
{

public function actionIndex()
{

$post = new Post();
$post->title = 'Post #'.rand(1, 1000);
$post->text = 'text';
$post->save();

$posts = Post::find()->all();

echo Html::tag('h1', 'Posts');
echo Html::ul(ArrayHelper::getColumn($posts, 'title'));

$comment = new Comment();
$comment->post_id = $post->id;
$comment->text = 'comment #'.rand(1, 1000);
$comment->save();

$comments = Comment::find()->all();

echo Html::tag('h1', 'Comments');
echo Html::ul(ArrayHelper::getColumn($comments,

'text'));
}

}

6. Run db/index multiple times and you should see records added to both databases, as shown
in the following screenshot:

How it works...

In Yii, you can add and configure your own components through the configuration file. For nonstandard
components such as db2, you have to specify the component class. Similarly, you can add db3, db4, or
any other component, for example, facebookApi. The remaining array key/value pairs are assigned
to the component's public properties, respectively.

There's more...

Depending on the RDBMS used, there are additional things we can do to make it easier to use multiple
databases.

Cross-database relations

If you are using MySQL, it is possible to create cross-database relations for your models. In order to do
this, you should prefix the Comment model's table name with the database name, as follows:

class Comment extends \yii\db\ActiveRecord
{

//...
public function tableName()
{

return 'db2.comment';
}
//...

}

Now, if you have a comments relation defined in the Post model relations method, you can use the
following code:

$posts = Post::find()->joinWith('comments')->all();

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-db-dao.html#creating-db-
connections.

http://www.yiiframework.com/doc-2.0/guide-db-dao.html#creating-db-connections
http://www.yiiframework.com/doc-2.0/guide-db-dao.html#creating-db-connections

Customizing the ActiveQuery class
By default, all Active Record queries are supported by yii\db\ActiveQuery. To use a customized
query class in an Active Record class, you should override the yii\db\ActiveRecord::find()
method and return an instance of your customized query class.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named post, as follows:

DROP TABLE IF EXISTS 'post';
CREATE TABLE IF NOT EXISTS 'post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'lang' VARCHAR(5) NOT NULL DEFAULT 'en',
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
PRIMARY KEY ('id')

);
INSERT INTO 'post'('id','lang','title','text')
VALUES (1,'en_us','Yii news','Text in English'),
(2,'de','Yii Nachrichten','Text in Deutsch');

3. Generate a Post model using Gii with an enabled Generate ActiveQuery option that
generates the PostQuery class.

How to do it...
1. Add the following method to models/PostQuery.php:

<?php

namespace app\models;

/**
* This is the ActiveQuery class for [[Post]].
*
* @see Post
*/
class PostQuery extends \yii\db\ActiveQuery
{

/**
* @param $lang
*
* @return $this
*/

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public function lang($lang)
{

return $this->where(['lang' => $lang]);
}

}

2. That is it. Now, we can use our model. Create controllers/DbController.php as
follows:

<?php

namespace app\controllers;

use app\models\Post;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class DbController.
* @package app\controllers
*/
class DbController extends Controller
{

public function actionIndex()
{

// Get posts written in default application language
$posts = Post::find()->all();

echo Html::tag('h1', 'Default language');
foreach ($posts as $post) {

echo Html::tag('h2', $post->title);
echo $post->text;

}

// Get posts written in German
$posts = Post::find()->lang('de')->all();

echo Html::tag('h1', 'German');
foreach ($posts as $post) {

echo Html::tag('h2', $post->title);
echo $post->text;

}
}

}

3. Now, run db/index and you should get an output similar to the one shown in the following
screenshot:

How it works...

We have rewritten the find method in the Post model and extended the ActiveQuery class. The lang
method returns ActiveQuery with the specified language value. In order to support chained calls, lang
returns the model instance by itself.

There's more…

According to the Yii2 Guide, in Yii 1.1, there was a concept called scope. Scope is no longer directly
supported in Yii 2.0, and you should use customized query classes and query methods to achieve the
same goal.

See also

For further information, refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-db-active-record.html#customizing-query-classes
• http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html#active-record

http://www.yiiframework.com/doc-2.0/guide-db-active-record.html#customizing-query-classes
http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html#active-record

Processing model fields with AR event-like
methods
Active Record implementation in Yii is very powerful and has many features. One of these features is
the event-like methods, which you can use to preprocess model fields before putting them into the
database or getting them from a database, as well as to delete data related to the model, and so on.

In this recipe, we will link all URLs in the post text and list all existing Active Record event-like
methods.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named post, as follows:

DROP TABLE IF EXISTS 'post';
CREATE TABLE IF NOT EXISTS 'post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
PRIMARY KEY ('id')

);

3. Generate the post model using Gii.

How to do it...
1. Add the following method to models/Post.php:

/**
* @param bool $insert
*
* @return bool
*/
public function beforeSave($insert)
{

$this->text = preg_replace('~((?:https?|ftps?)://.*?)(
|$)~iu',

'\1\2', $this->text);

return parent::beforeSave($insert);
}

2. That is it. Now, try saving a post containing a link. Create controllers/
TestController.php as follows:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

<?php

namespace app\controllers;

use app\models\Post;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class TestController.
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex()
{

$post = new Post();
$post->title = 'links test';
$post->text = 'before http://www.yiiframework.com/

after';
$post->save();

return $this->renderContent(Html::tag('pre',
VarDumper::dumpAsString(

$post->attributes
)));

}
}

3. That is it. Now, run test/index. You should get the following result:

How it works...

The beforeSave method is implemented in the ActiveRecord class and executed just before
saving a model. Using a regular expression, we replace everything that looks like a URL with a link that
uses this URL and call the parent implementation, so that real events are raised properly. In order to
prevent saving, you can return false.

See also
• For further information, refer to http://www.yiiframework.com/doc-2.0/guide-db-active-

record.html#active-record-life-cycles.
• The Working with events recipe in Chapter 1, Fundamentals
• The Automating timestamps recipe
• The Setting up an author automatically recipe
• The Setting up a slug automatically recipe

http://www.yiiframework.com/doc-2.0/guide-db-active-record.html#active-record-life-cycles
http://www.yiiframework.com/doc-2.0/guide-db-active-record.html#active-record-life-cycles

Automating timestamps
For instance, we have a simple blog application. As in any blog, it has posts, comments, and so on. We
would like to populate the timestamps during the create/update events for posts. Let us assume that our
post model is named BlogPost model.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named blog_post, as follows:

DROP TABLE IF EXISTS 'blog_post';
CREATE TABLE IF NOT EXISTS 'blog_post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
'created_date' INTEGER,
'modified_date'INTEGER,
PRIMARY KEY ('id')

);

3. Use Gii to create a model for the blog_post table.

How to do it...
1. Add the following method to models/BlogPost.php:

/**
* @return array
*/
public function behaviors()
{

return [
'timestamp'=> [

'class' => 'yii\behaviors\TimestampBehavior',
'createdAtAttribute' => 'creation_date',
'updatedAtAttribute' => 'modified_date'

]
];

}

2. Create controllers/TestController.php as follows:

<?php

namespace app\controllers;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

use app\models\BlogPost;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class TestController.
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex()
{

$blogPost = new BlogPost();
$blogPost->title = 'Gotcha!';
$blogPost->text = 'We need some laughter to ease the

tension of holiday shopping.';
$blogPost->save();

return $this->renderContent(Html::tag('pre',
VarDumper::dumpAsString($blogPost->attributes)
));

}
}

3. That is it. Now, run test/index. You should get the following result:

How it works…

By default, the Timestamp behavior populates created_at (the timestamp which points to the time
when the model was created) and updated_at (the time when the model was updated). It's a standard

practice to name these fields, but if we would like to make a change, we can specify fields, which will
be updated, and model events.

There's more…

For instance, our fields are named creation_date and modified_date.

Let's configure our model with behavior according to these fields. In addition, we should add our
behavior's code to our Post model:

<?php

namespace app\models;

use Yii;
use yii\db\BaseActiveRecord;

class Post extends \yii\db\ActiveRecord
{

// ..
public function behaviors()
{

return [
[

'class' => 'yii\behaviors\TimestampBehavior',
'attributes' => [

BaseActiveRecord::EVENT_BEFORE_INSERT =>
'creation_date',

BaseActiveRecord::EVENT_BEFORE_UPDATE =>
'modified_date',

]
]

];
}
// ..

}

In this example, we've pointed to the creation_date and modified_date attributes before
creating and updating our model accordingly by dint of using special ActiveRecord events:
EVENT_BEFORE_INSERT and EVENT_BEFORE_UPDATE.

In addition...

You may want to save the timestamp for custom scenarios. Let's say you want to update the
last_login field, for example, for a specific controller action. In this situation, you can trigger the
timestamp update for your specific attribute using the following:

$model->touch('last_login');

Be aware that touch() can't be used for new models. You will get InvalidCallException in
this case:

$model = new Post();
$model->touch('creation_date');

The touch() method calls model saving inside itself so you don't need to save the model after calling
it.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-concept-
behaviors.html#using-timestampbehavior.

http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html#using-timestampbehavior
http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html#using-timestampbehavior

Setting up an author automatically
The Blameable behavior allows you to update one or more authors' fields automatically. This is
primarily used to populate data into the created_by and updated_by fields. Similar to the
Timestamp behavior, you can easily specify some special parameters and essential events for this
behavior.

Let us return to the example from the previous section. We also have posts in our blog application. For
example, let's assume that our blog model is called BlogPost. The model has author_id, the field
which points to who created this post, and updater_id, the field which points to who updated it. We
would like to populate these attributes automatically during the create/update model events. Now you
can learn how to do it.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named blog_post, as follows:

DROP TABLE IF EXISTS 'blog_post';
CREATE TABLE IF NOT EXISTS 'blog_post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'author_id' INT(10) UNSIGNED DEFAULT NULL,
'updater_id' INT(10) UNSIGNED DEFAULT NULL,
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
PRIMARY KEY ('id')

);

3. Use Gii to create the BlogPost model for the blost_post table.

How to do it…
1. Add the following behaviors method to models/BlogPost.php:

<?php

namespace app\models;

use Yii;
use yii\db\BaseActiveRecord;

/**
* This is the model class for table "blog_post".
*
* @property integer $id
* @property integer $author_id

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

* @property integer $updater_id
* @property string $title
* @property string $text
*/
class BlogPost extends \yii\db\ActiveRecord
{

/**
* @return array
*/
public function behaviors()
{

return [
[

'class' => 'yii\behaviors\BlameableBehavior',
'attributes' => [

BaseActiveRecord::EVENT_BEFORE_INSERT =>
'author_id',

BaseActiveRecord::EVENT_BEFORE_UPDATE =>
'updater_id'

]
]

];
}

}

2. Create controllers/TestController.php as follows:

<?php

namespace app\controllers;

use app\models\BlogPost;
use app\models\User;
use Yii;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class TestController.
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex()
{

$users = new User();

$identity = $users->findIdentity(100);

Yii::$app->user->setIdentity($identity);

$blogPost = new BlogPost();
$blogPost->title = 'Very pretty title';
$blogPost->text = 'Success is not final, failure is not

fatal...';
$blogPost->save();

return $this->renderContent(Html::tag('pre',
VarDumper::dumpAsString(

$blogPost->attributes
)));

}
}

3. That is it. Now, run test/index. You will get the following result:

How it works...

By default, the Blameable behavior populates the created_by and updated_by attributes, but
we will make a change and set up our behavior according to our own fields.

We also specified model events and fields in the model, so, during the model creation, author_id
will be populated. Similarly, during the model update, we will populate updater_id.

What Blameable does is insert the current user id value into the created_by and updated_by
fields during the create/update model events. This is a super-convenient way of doing things. Every time
a model gets created or updated, we automatically fill out the essential fields.

This works out really well for little projects such as for large systems, where multiple users are admin
and you need to keep track of who is doing what. You can also use this for frontend implementations, for
example, if you had a blog_comment table and you wanted to use this method to keep track of the
author of a comment. Also, you could set the author's fields in the controller, but the behavior helps you
to avoid writing unnecessary and additional code. This is a very effective and easy way to implement
this thing.

There's more…

Sometimes we need to fill out author_id and updater_id by an id other than that of the current
user. In such a case, we may detach our behavior as follows:

$model->detachBehavior('blammable');

We can detach any behavior we like in this way.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/yii-behaviors-
blameablebehavior.html.

http://www.yiiframework.com/doc-2.0/yii-behaviors-blameablebehavior.html
http://www.yiiframework.com/doc-2.0/yii-behaviors-blameablebehavior.html

Setting up a slug automatically
On the web, slug is a short text used in a URL to identify and describe a resource. A slug is the part of a
URL which identifies a page using human-readable keywords. Sluggable behavior is the Yii2 model
behavior that allows us to generate unique slugs.

In this section, we will be guiding you through modifying Yii's default view URL routes for model
objects to be more user-friendly and search engine-friendly. Yii provides built-in support for this via its
sluggable behaviors.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named blog_post, as follows:

DROP TABLE IF EXISTS 'blog_post';
CREATE TABLE IF NOT EXISTS 'blog_post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'title' VARCHAR(255) NOT NULL,
'slug' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
PRIMARY KEY ('id')

);

3. Use Gii to create a model for the post table.

How to do it…
1. Add the following behaviors method to models/BlogPost.php:

<?php

namespace app\models;

use Yii;
use yii\db\BaseActiveRecord;

class BlogPost extends \yii\db\ActiveRecord
{

// ..
public function behaviors()
{

return [
[

'class' => 'yii\behaviors\SluggableBehavior',
'attribute' => 'title',

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

'slugAttribute' => 'slug',
'immutable'=> false,
'ensureUnique' => true

]
];

}
// ..

}

2. Create controllers/TestController.php as follows:

<?php

namespace app\controllers;

use app\models\BlogPost;
use Yii;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class TestController
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex()
{

$blogPostA = new BlogPost();
$blogPostA->title = 'Super Quote title 1';
$blogPostA->text = 'The price of success is hard work,

dedication to the job at hand';
$blogPostA->save();

$blogPostB = new BlogPost();
$blogPostB->title = 'Super Quote title 2';
$blogPostB->text = 'Happiness lies in the joy of

achievement...';
$blogPostB->save();

return $this->renderContent(
'<pre>' .
VarDumper::dumpAsString(

$blogPostA->attributes
).
VarDumper::dumpAsString(

$blogPostB->attributes
) .
'</pre>'

);
}

}

3. The result will be as follows:

How it works…
• Yii offers some nice enhancements to SluggableBehavior for useful scenarios.
• For example, once a search engine records a slug, you probably don't want the page URL to

change.
• The immutable attribute tells Yii to keep the slug the same after it's first created—even if the

title will be updated.
• If users enter messages that overlap in content, the ensureUnique property will

automatically append a unique suffix to duplicates. This makes certain that each message has a
unique URL, even if the message is identical.

• If you go ahead and create another post with the exact same title, you'll see that its slug is
incremented to hot-update-for-ios-devices-2.

Note

Note: If you get an error related to the immutable property, it may be that you need to run a Composer
update to get the latest version of Yii.

There's more…
1. Use Gii to generate CRUD for the model class app\models\Post and the controller class

app\controllers\BlogPostController.
2. Add the following action to controllers/BlogPostController.php:

/**
* @param $slug
*
* @return string
* @throws NotFoundHttpException
*/
public function actionSlug($slug)
{

$model = BlogPost::findOne(['slug'=>$slug]);

if ($model === null) {
throw new NotFoundHttpException('The requested page

does not exist.');
}

return $this->render('view', [
'model' => $model,
]);

}

3. That it is. If you run blogpost/slug with the slug value as sluggablebehavior-
test, you will get the following result:

4. It's suggested that the previous slug recipe be successfully completed with a created instance of
Post model.

5. To beautify the URL, add the following urlManager component in config\web.php:

//..
'urlManager' => [

'enablePrettyUrl' => true,
'rules' => [

'blog-post' => 'blog-post/index',
'blog-post/index' => 'blog-post/index',
'blog-post/create' => 'blog-post/create',
'blog-post/view/<id:\d+>' => 'blog-post/view',
'blog-post/update/<id:\d+>' => 'blog-post/update',
'blog-post/delete/<id:\d+>' => 'blog-post/delete',
'blog-post/<slug>' => 'blog-post/slug',
'defaultRoute' => '/site/index',

],
]
//..

6. It's important that the 'blog-post/<slug>' => 'blog-post/slug' rule is the last in
the post URL rule list.

7. Now, if you go to the page using your slug URL, such as index.php/blog-post/super-
quote-title-1/, you will get a result like similar to that in step 3:

See also

For further information, refer to:

• http://www.yiiframework.com/doc-2.0/yii-behaviors-sluggablebehavior.html
• http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#url-rules

http://www.yiiframework.com/doc-2.0/yii-behaviors-sluggablebehavior.html
http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#url-rules

Transactions
In modern databases, transactions also do some other things, such as ensuring that you can't access data
that another person has written halfway. However, the basic idea is the same—transactions are there to
ensure that no matter what happens, the data you work with will be in a sensible state. They guarantee
that there will not be a situation where money is withdrawn from one account, but not deposited to
another.

Yii2 supports a powerful transaction mechanism with savepoints.

A classic example is of transferring money from one bank account to another. To do that, you have to
first withdraw the amount from the source account, and then deposit it to the destination account. The
operation has to succeed in full. If you stop halfway, the money will be lost, and that is very bad. For
instance, we have a recipient account and a sender account. We would like to transfer money from
sender to recipient. Let's assume that we have an account model.

Getting ready...

Our account model will be very simple and it will contain only the id and balance fields.

1. Create a new application using the Composer package manager, as described in the official
guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

2. Create a migration, which adds an account table, using the following command:

./yii migrate/create create_account_table

3. Also, update the just- created migration using the following code:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150620_062034_create_account_table extends Migration
{

const TABLE_NAME = '{{%account}}';

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}

$this->createTable(self::TABLE_NAME, [
'id' => Schema::TYPE_PK,

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

'balance' => ' NUMERIC(15,2) DEFAULT NULL',
], $tableOptions);

}

public function down()
{

$this->dropTable(self::TABLE_NAME);
}

}

4. Then, install migration with the following command:

./yii migrate up

5. Use Gii to create a model for the account table.
6. Create a migration, which adds some test Account models with balance for our table:

./yii migrate/create add_account_records

7. Also, update the just-created migration using the following code:

<?php

use yii\db\Migration;
use app\models\Account;

class m150620_063252_add_account_records extends Migration
{

public function up()
{

$accountFirst = new Account();
$accountFirst->balance = 1110;
$accountFirst->save();

$accountSecond = new Account();
$accountSecond->balance = 779;
$accountSecond->save();

$accountThird = new Account();
$accountThird->balance = 568;
$accountThird->save();
return true;

}

public function down()
{

$this->truncateTable('{{%account}}');
return false;

}
}

How to do it…
1. Add the following rule to the rules method, to models/Account.php:

public function rules()
{

return [
//..
[['balance'], 'number', 'min' => 0],
//..

];
}

2. Let us assume that our balance may be only positive and that it can't be negative.
3. Create TestController with success and error actions:

<?php

namespace app\controllers;

use app\models\Account;
use Yii;
use yii\db\Exception;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

class TestController extends Controller
{

public function actionSuccess()
{

$transaction = Yii::$app->db->beginTransaction();

try {
$recipient = Account::findOne(1);
$sender = Account::findOne(2);

$transferAmount = 177;
$recipient->balance += $transferAmount;
$sender->balance -= $transferAmount;

if ($sender->save() && $recipient->save()) {
$transaction->commit();

return $this->renderContent(
Html::tag('h1', 'Money transfer was

successfully')
);

} else {
$transaction->rollBack();
throw new Exception('Money transfer failed:' .
VarDumper::dumpAsString($sender->getErrors()) .
VarDumper::dumpAsString($recipient->getErrors())
);

}
} catch (Exception $e) {

$transaction->rollBack();
throw $e;

}
}

public function actionError()
{

$transaction = Yii::$app->db->beginTransaction();

try {
$recipient = Account::findOne(1);
$sender = Account::findOne(3);

$transferAmount = 1000;
$recipient->balance += $transferAmount;
$sender->balance -= $transferAmount;

if ($sender->save() && $recipient->save()) {
$transaction->commit();

return $this->renderContent(
Html::tag('h1', 'Money transfer was

successfully')
);

} else {
$transaction->rollBack();

throw new Exception('Money transfer failed: ' .
VarDumper::dumpAsString($sender->getErrors()) .
VarDumper::dumpAsString($recipient->getErrors())

);
}

} catch (Exception $e) {

$transaction->rollBack();
throw $e;

}
}

}

4. Run test/success and you should get the output shown in the following screenshot:

5. In this case, the transaction mechanism will not update the recipient and sender balance if some
error occurred.

6. Run test/error and you should get the output shown in the following screenshot:

As you will remember, we added a rule to the Account model, so our account balance can be only
positive. The transaction will roll back in this case and it prevents a situation where money is withdrawn
from a sender's account but not deposited to the recipient's account.

See also

For further information, refer to:

• http://www.yiiframework.com/doc-2.0/guide-db-dao.html#performing-transactions
• http://www.yiiframework.com/doc-2.0/guide-db-dao.html#nesting-transactions

http://www.yiiframework.com/doc-2.0/guide-db-dao.html#performing-transactions
http://www.yiiframework.com/doc-2.0/guide-db-dao.html#nesting-transactions

Replication and read-write splitting
In this recipe we will have a look at how to do replication and read-write splitting. We will see how
slave and master servers help us in getting these done.

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named post, as follows:

DROP TABLE IF EXISTS 'blog_post';
CREATE TABLE IF NOT EXISTS 'blog_post' (

'id' INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'title' VARCHAR(255) NOT NULL,
'text' TEXT NOT NULL,
'created_at' INTEGER,
'modified_at'INTEGER,
PRIMARY KEY ('id')

);

3. Generate the BlogPost model for the table blog_post.
4. Configure master-slave replication between your database servers, for example, as in the article

at https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-in-
mysql/.

5. Configure the db component in config/main.php; here's an example of configuration:

'components' =>
// ..
'db' => [

'class' => 'yii\db\Connection',

'dsn' => 'mysql:host=4.4.4.4;dbname=masterdb',
'username' => 'master',
'password' => 'pass',
'charset' => 'utf8',

'slaveConfig' => [
'username' => 'slave',
'password' => 'pass',

],

// list of slave configurations
'slaves' => [

['dsn' => 'mysql:host=5.5.5.5;dbname=slavedb']
]

],

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-in-mysql/
https://www.digitalocean.com/community/tutorials/how-to-set-up-master-slave-replication-in-mysql/

// ..
]

How to do it…
1. Create TestController.php as follows:

<?php

namespace app\controllers;

use app\models\BlogPost;
use Yii;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class TestController
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex(){

$masterModel = new BlogPost();
$masterModel->title = 'Awesome';
$masterModel->text = 'Something is going on..';
$masterModel->save();

$postId = $masterModel->id;

$replModel = BlogPost::findOne($postId);

return $this->renderContent(
Html::tag('h2', 'Master') .
Html::tag('pre', VarDumper::dumpAsString(

$masterModel
? $masterModel->attributes
: null

)) .
Html::tag('h2', 'Slave') .
Html::tag('pre', VarDumper::dumpAsString(

$replModel
? $replModel->attributes
: null

))
);

}

}

2. Run test/index and you should get the output shown in the following screenshot:

How it works…

Slave servers are used for data reading, whereas the master server is used for writing. After the
ActiveRecord model is saved at the master server, new records, replicate to the slave server and then
$replModel finds records on it.

There's more…

The \yii\db\Connection component supports load balancing and failover between slaves. When
performing a read query for the first time, the \yii\db\Connection component will randomly pick
a slave and try connecting to it. If the slave is found dead, it will try another one. If none of the slaves
are available, it will connect to the master. By configuring a server status cache, a dead server can be
remembered so that it will not be tried again during a certain period of time.

See also

For further information, refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-db-dao.html#replication-and-read-write-splitting
• http://dev.mysql.com/doc/refman/5.6/en/replication.html
• http://docs.mongodb.org/manual/tutorial/deploy-replica-set/
• http://docs.mongodb.org/manual/tutorial/deploy-replica-set-for-testing/

http://www.yiiframework.com/doc-2.0/guide-db-dao.html#replication-and-read-write-splitting
http://dev.mysql.com/doc/refman/5.6/en/replication.html
http://docs.mongodb.org/manual/tutorial/deploy-replica-set/
http://docs.mongodb.org/manual/tutorial/deploy-replica-set-for-testing/

Implementing single table inheritance
Relational databases do not support inheritance. If we need to store inheritance in the database, we
should somehow support it through code. This code should be efficient, so that it should generate as few
JOINs as possible. A common solution to this problem was described by Martin Fowler and is named
single table inheritance.

When we use this pattern, we store all the class tree data in a single table and use the type field to
determine a model for each row.

As an example, we will implement the single table inheritance for the following class tree:

Car

|- SportCar

|- FamilyCar

Getting ready
1. Create a new application using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create and set up a database. Add the following table:

DROP TABLE IF EXISTS 'car';
CREATE TABLE 'car' (

'id' int(10) UNSIGNED NOT NULL AUTO_INCREMENT,
'name' varchar(255) NOT NULL,
'type' varchar(100) NOT NULL,
PRIMARY KEY ('id')

);

INSERT INTO 'car' ('name', 'type')
VALUES ('Ford Focus', 'family'),
('Opel Astra', 'family'),
('Kia Ceed', 'family'),
('Porsche Boxster', 'sport'),
('Ferrari 550', 'sport');

3. Use Gii to create a Car model for the car table and generate ActiveQuery for the Car model.

How to do it…
1. Add the following method and property to models/CarQuery.php:

/**
* @var
*/

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public $type;

/**
* @param \yii\db\QueryBuilder $builder
*
* @return \yii\db\Query
*/
public function prepare($builder)

{
if ($this->type !== null) {

$this->andWhere(['type' => $this->type]);
}
return parent::prepare($builder);

}

2. Create models/SportCar.php as follows:

<?php

namespace app\models;

use Yii;

/**
* Class SportCar
* @package app\models
*/
class SportCar extends Car
{

const TYPE = 'sport';

/**
* @return CarQuery
*/
public static function find()
{

return new CarQuery(get_called_class(), ['where' =>
['type' => self::TYPE]]);

}

/**
* @param bool $insert
*
* @return bool
*/
public function beforeSave($insert)
{

$this->type = self::TYPE;
return parent::beforeSave($insert);

}
}

3. Create models/FamilyCar.php as follows:

<?php

namespace app\models;

use Yii;

/**
* Class FamilyCar
* @package app\models
*/
class FamilyCar extends Car
{

const TYPE = 'family';

/**
* @return CarQuery
*/
public static function find()
{

return new CarQuery(get_called_class(), ['where' =>
['type' => self::TYPE]]);

}

/**
* @param bool $insert
*
* @return bool
*/
public function beforeSave($insert)
{

$this->type = self::TYPE;
return parent::beforeSave($insert);

}
}

4. Add the following method to models/Car.php:

/**
* @param array $row
*
* @return Car|FamilyCar|SportCar

*/
public static function instantiate($row)
{

switch ($row['type']) {
case SportCar::TYPE:

return new SportCar();
case FamilyCar::TYPE:

return new FamilyCar();
default:

return new self;
}

}

5. Add TestController with the following code:

<?php

namespace app\controllers;

use app\models\Car;
use app\models\FamilyCar;
use Yii;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class TestController
* @package app\controllers
*/
class TestController extends Controller
{

public function actionIndex()
{

echo Html::tag('h1', 'All cars');

$cars = Car::find()->all();
foreach ($cars as $car) {

// Each car can be of class Car, SportCar or
FamilyCar

echo get_class($car).' '.$car->name."
";
}

echo Html::tag('h1', 'Family cars');

$familyCars = FamilyCar::find()->all();
foreach($familyCars as $car)
{

// Each car should be FamilyCar
echo get_class($car).' '.$car->name."
";

}
}

}

6. Run test/index and you should get the output shown in the following screenshot:

How it works…

The base model Car is a typically-used Yii AR model except that it has two added methods. The
tableName method explicitly declares the table name to be used for the model. For the Car model
alone, this does not make sense, but for child models, it will return the same car table, which is just what
we want—a single table for the entire class tree. The instantiate method is used by AR internally to
create a model instance from the raw data when we call methods such as Car:::find()->all().
We use a switch statement to create different classes based on the type attribute and use the same class
if the attribute value is either not specified or points to the non-existing class.

The SportCar and FamilyCar models simply set the default AR scope, so when we search for
models with the SportCar:: model()-> methods, we will get the SportCar model only.

See also

Use the following references to learn more about the single table inheritance pattern and Yii Active
Record implementation:

• http://martinfowler.com/eaaCatalog/singleTableInheritance.html
• https://blog.liip.ch/archive/2012/03/27/table-inheritance-with-doctrine.html
• http://www.yiiframework.com/doc/api/CActiveRecord/

http://martinfowler.com/eaaCatalog/singleTableInheritance.html
https://blog.liip.ch/archive/2012/03/27/table-inheritance-with-doctrine.html
http://www.yiiframework.com/doc/api/CActiveRecord/

Chapter 4. Forms
In this chapter, we will cover the following topics:

• Writing your own validators
• Uploading files
• Adding and customizing CaptchaWidget
• Customizing Captcha
• Creating a custom input widget
• Tabular input
• Conditional validation
• Complex forms with multiple models
• AJAX-dependent drop-down list
• AJAX validation
• Creating a custom client-side validation

Introduction
Yii makes working with forms a breeze and the documentation on it is almost complete. Still, there are
some areas that need clarification and examples. We will describe them in this chapter.

Writing your own validators
Yii provides a good set of built-in form validators that cover the most typical developer needs and are
highly configurable. However, in some cases, a developer may need to create a custom validator.

This recipe is a good example of creating a standalone validator that checks the number of words.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it...
1. Create a standalone validator at @app/components/WordsValidator.php as follows:

<?php
namespace app\components;
use yii\validators\Validator;
class WordsValidator extends Validator
{

public $size = 50;
public function validateValue($value){

if (str_word_count($value) > $this->size) {
return ['The number of words must be less than

{size}', ['size' => $this->size]];
}
return false;

}
}

2. Create an Article model at @app/models/Article.php as follows:

<?php
namespace app\models;
use app\components\WordsValidator;
use yii\base\Model;
class Article extends Model
{

public $title;
public function rules()
{

return [
['title', 'string'],
['title', WordsValidator::className(), 'size' =>

10],
];

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

}
}

3. Create @app/controllers/ModelValidationController.php as follows:

<?php
namespace app\controllers;
use app\models\Article;
use yii\helpers\Html;
use yii\web\Controller;
class ModelValidationController extends Controller
{

private function getLongTitle()
{

return 'There is a very long content for current
article, '.'it should be less then ten words';

}
private function getShortTitle()
{

return 'There is a shot title';
}
private function renderContentByModel($title)
{

$model = new Article();
$model->title = $title;
if ($model->validate()) {

$content = Html::tag('div', 'Model is valid.',[
'class' => 'alert alert-success',

]);
} else {

$content = Html::errorSummary($model, [
'class' => 'alert alert-danger',

]);
}
return $this->renderContent($content);

}
public function actionSuccess()
{

$title = $this->getShortTitle();
return $this->renderContentByModel($title);

}
public function actionFailure()
{

$title = $this->getLongTitle();
return $this->renderContentByModel($title);

}
}

4. Run the success action of the modelValidation controller by opening the
index.php?r=model-validation/success URL, and you'll get the following:

5. Run the failure action of the modelValidation controller by opening the
index.php?r=model-validation/failure URL, and you'll get the following:

6. Create @app/controllers/AdhocValidationController.php as follows:

<?php
namespace app\controllers;
use app\components\WordsValidator;
use app\models\Article;
use yii\helpers\Html;
use yii\web\Controller;
class AdhocValidationController extends Controller
{

private function getLongTitle()
{

return 'There is a very long content for current
article, '.'it should be less then ten words';

}
private function getShortTitle()
{

return 'There is a shot title';
}
private function renderContentByTitle($title)

{
$validator = new WordsValidator([

'size' => 10,
]);
if ($validator->validate($title, $error)) {

$content = Html::tag('div', 'Value is valid.',[
'class' => 'alert alert-success',

]);
} else {

$content = Html::tag('div', $error, [
'class' => 'alert alert-danger',

]);
}
return $this->renderContent($content);

}
public function actionSuccess()
{

$title = $this->getShortTitle();
return $this->renderContentByTitle($title);

}
public function actionFailure()
{

$title = $this->getLongTitle();
return $this->renderContentByTitle($title);

}
}

7. Run the success action of the AdhocValidationController by opening the
index.php?r=adhoc-validation/success URL, and you'll get the following:

8. Run the failure action of the adhocValidation controller by opening the
index.php?r=adhoc-validation/failure URL, and you'll get the following:

How it works...

First, we created a standalone validator that checks the number of words by using the standard
str_word_count PHP function, and then demonstrated two validator use cases:

• Using the validator as a validation rule in the Article model
• Using the validator as an ad hoc validator

The validator has a size attribute, which sets the maximum value for the number of words.

See also

For further information, refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-input-validation.html
• http://www.yiiframework.com/doc-2.0/guide-tutorial-corevalidators.html

http://www.yiiframework.com/doc-2.0/guide-input-validation.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-corevalidators.html

Uploading files
Handling file uploads is a pretty common task for a web application. Yii has some helpful classes built
in to do this. Let's create a simple form that will allow the upload of ZIP archives and store them in
/uploads.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create the @app/web/uploads directory.

How to do it...
1. We will start with the model, so create the @app/models/Upload.php model as follows:

<?php
namespace app\models;
use yii\base\Model;
use yii\web\UploadedFile;
class UploadForm extends Model
{

/**
* @var UploadedFile
*/
public $file;
public function rules()
{

return [
['file', 'file', 'skipOnEmpty' => false,

'extensions' => 'zip'],
];

}
public function upload()
{

if ($this->validate()) {
$this->file->saveAs('uploads/' .

$this->file->baseName . '.' . $this->file->extension);
return true;

} else {
return false;

}
}

}

2. Now we will move on to the controller, so create @app/controllers/
UploadController.php as follows:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

<?php
namespace app\controllers;
use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;
class UploadController extends Controller
{

public function actionUpload()
{

$model = new UploadForm();
if (Yii::$app->request->isPost) {

$model->file = UploadedFile::getInstance($model,
'file');

if ($model->upload()) {
return $this->renderContent("File

{$model->file->name} is uploaded successfully");
}

}
return $this->render('index', ['model' => $model]);

}
}

3. Finally, you can view @app/views/upload/index.php as follows:

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>
<?php $form = ActiveForm::begin(['options' => ['enctype' =>
'multipart/form-data']]) ?>

<?= $form->field($model, 'file')->fileInput() ?>
<?= Html::submitButton('Upload', ['class' =>

'btn-success'])?>
<?php ActiveForm::end() ?>

4. That is it. Now, run the upload controller and try uploading both ZIP archives and other files, as
shown in the following screenshot:

How it works...

The model we use is pretty simple. We define only one field, named $file, and a validation rule that
uses the FileValidator file validator, which reads only ZIP files.

We create a model instance and fill it with data from $_POST if the form is submitted:

$model->file = UploadedFile::getInstance($model, 'file');
if ($model->upload()) {

return $this->renderContent("File {$model->file->name} is
uploaded successfully");
}

We then use UploadedFile::getInstance, which gives us access to use the UploadedFile
instance. This class is a wrapper around the $_FILE array that PHP fills when the file is uploaded. We
make sure that the file is a ZIP archive by calling the model's validate method, then we save the file
using UploadedFile::saveAs.

In order to upload a file, the HTML form must meet the following two important requirements:

• Method must be set to POST
• The enctype attribute must be set to multipart/form-data

It is important to remember that you add the enctype option to the form so that the file can be
properly uploaded.

We can generate this HTML using the Html helper or ActiveForm with htmlOptions set. Here,
HTML was used:

<?= Html::beginForm('', 'post', ['enctype'=>'multipart/form-data'])?>

In the end, we display an error and a field for the model's file attribute, and render a submit button.

There's more...

To upload multiple files, Yii2 implements two special methods.

For instance, you have defined $imageFiles in your model in the view file in common all will be the
same with a little difference:

..
<?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' =>
true, 'accept' => 'image/*']) ?>
..

To get all file instances, you have to call UploadedFile::getInstances() instead of
UploadedFile::getInstance():

..
$model->imageFiles = UploadedFile::getInstances($model,
'imageFiles');
..

Handling and saving multiple files can be done with a simple code snippet:

foreach ($this->imageFiles as $file) {
$file->saveAs('uploads/' . $file->baseName . '.' .

$file->extension);
}

See also

For further information, refer to:

• http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html
• http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html#uploading-multiple-files

http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html
http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html#uploading-multiple-files

Adding and customizing CaptchaWidget
Nowadays, on the Internet, if you leave a form without spam protection, you will get a ton of spam data
entered in a short time. Yii includes a Captcha component that makes adding such protection a breeze.
The only problem is that there is no systematic guide on how to use it.

In the following example, we will add Captcha protection to a simple form.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create a form model, @app/models/EmailForm.php, as follows:

<?php
namespace app\models;
use yii\base\Model;
class EmailForm extends Model
{

public $email;
public function rules()
{

return [
['email', 'email']

];
}

}

3. Create a controller, @app/controllers/EmailController.php, as follows:

<?php
namespace app\controllers;
use Yii;
use yii\web\Controller;
use app\models\EmailForm;
class EmailController extends Controller
{

public function actionIndex(){
$success = false;
$model = new EmailForm();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
Yii::$app->session->setFlash('success', 'Success!');

}
return $this->render('index', [

'model' => $model,
'success' => $success,

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

]);
}

}

4. Create a view, @app/views/email/index.php, as follows:

<?php
use yii\helpers\Html;
use yii\captcha\Captcha;
use yii\widgets\ActiveForm;
?>
<?php if (Yii::$app->session->hasFlash('success')): ?>

<div class="alert
alert-success"><?=Yii::$app->session->getFlash('success')?></div
>
<?php else: ?>

<?php $form = ActiveForm::begin()?>
<div class="control-group">

<div class="controls">
<?= $form->field($model,

'email')->textInput(['class' => 'form-control']); ?>
<?php echo Html::error($model, 'email',

['class' => 'help-block'])?>
</div>

</div>
<?php if (Captcha::checkRequirements() &&

Yii::$app->user->isGuest): ?>
<div class="control-group">

<?= $form->field($model,
'verifyCode')->widget(\yii\captcha\Captcha::classname(), [

'captchaAction' => 'email/captcha'
]) ?>

</div>
<?php endif; ?>
<div class="control-group">

<label class="control-label" for=""></label>
<div class="controls">

<?=Html::submitButton('Submit', ['class' =>
'btn btn-success'])?>

</div>
</div>

<?php ActiveForm::end()?>
<?php endif;?>

5. Now, we have an e-mail submission form, as shown in the following screenshot, which
validates the e-mail field. Let's add Captcha:

How to do it...
1. First, we need to customize the form model. We need to add $verifyCode, which will hold

the verification code entered and add a validation rule for it:

<?php
namespace app\models;
use yii\base\Model;
use yii\captcha\Captcha;
class EmailForm extends Model
{

public $email;
public $verifyCode;
public function rules()
{

return [
['email', 'email'],
['verifyCode', 'captcha', 'skipOnEmpty' =>

!Captcha::checkRequirements(), 'captchaAction' => 'email/
captcha']

];
}

}

2. We then need to add an external action to the controller. Add the following code to it:

public function actions()
{

return [
'captcha' => [

'class' => 'yii\captcha\CaptchaAction',
],

];
}

3. In a view, we need to show an additional field and the Captcha image. The following code will
do this for us:

...
<?php if (Captcha::checkRequirements() &&
Yii::$app->user->isGuest): ?>

<div class="control-group">
<?=Captcha::widget([

'model' => $model,
'attribute' => 'verifyCode',

]);?>
<?php echo Html::error($model, 'verifyCode')?>

</div>
<?php endif; ?>
...

4. Also, do not forget to add the Captcha import in the header section of the view:

<?php
use yii\helpers\Html;
use yii\captcha\Captcha;

?>
….

5. That is it. Now, you can run the e-mail controller and see Captcha in action, as shown in the
following screenshot:

If there are no errors on the screen and no Captcha field on the form, most probably, you don't have
the GD PHP or Imagick extensions installed and configured. Imagick or GD is required for Captcha
because it generates images. We have added several Captcha::checkRequirements() checks,
so the application will not use Captcha if the image cannot be displayed, but it will still work.

How it works...

In a view, we call the Captcha widget that renders the img tag with a src attribute pointing to the
Captcha action we added to the controller. In this action, an image with a random word is generated. The
word generated is a code that the user should enter into the form. It is stored in a user session and an
image is displayed to the user. When the user enters the e-mail and verification code into the form, we
assign these values to the form model and then validate it. For the verification of the code field, we use
CaptchaValidator. It gets the code from the user session and compares it to the code entered. If
they don't match, the model data is considered invalid.

There's more...

If you restrict access to controller actions by using the accessRules controller method, don't forget to
grant everyone access to them:

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
'rules' => [

[
'actions' => ['index', 'captcha'],
'allow' => true,

]
],

],
];

}

Customizing Captcha
A standard Yii Captcha is good enough to protect you from spam, but there are situations where you
may want to customize it, such as the following:

• You face a spam bot that can read image text and you need to add more security
• You want to make it more interesting or easier to enter the Captcha text

In our example, we will modify Yii's Captcha so it will require the user to solve a really simple
arithmetic puzzle instead of just repeating the text in an image.

Getting ready

As a starting point for this example, we will take the result of the Adding and customizing
CaptchaWidget recipe. Alternatively, you can take any form that uses Captcha, as we are not modifying
the existing code a lot.

How to do it...

We need to customize CaptchaAction, which generates the code and renders its image
representation. The code should be a random number and the representation should be an arithmetic
expression that gives the same result:

1. Create an @app/components/MathCaptchaAction.php action as follows:

<?php
namespace app\components;
use \Yii;
use yii\captcha\CaptchaAction;
class MathCaptchaAction extends CaptchaAction
{

protected function renderImage($code)
{

return parent::renderImage($this->getText($code));
}
protected function generateVerifyCode()
{

return mt_rand((int)$this->minLength,
(int)$this->maxLength);

}
protected function getText($code)
{

$code = (int) $code;
$rand = mt_rand(1, $code-1);
$op = mt_rand(0, 1);
if ($op) {

return $code - $rand . " + " . $rand;

}
else {

return $code + $rand . " - " . " " . $rand;
}

}
}

2. Now, in our controller's actions method, we need to replace CaptchaAction with our
own Captcha action, as follows:

public function actions()
{

return [
'captcha' => [

'class' => 'app\components\MathCaptchaAction',
'minLength' => 1,
'maxLength' => 10,

],
];

}

3. Now, run your form and try the new Captcha. It will show arithmetic expressions with numbers
from 1 to 10 and will require entering an answer, as shown in the following screenshot:

We override two CaptchaAction methods. In generateVerifyCode(), we generate a random
number instead of text. Then, as we need to render an expression instead of just showing text, we
override renderImage. The expression itself is generated in our custom getText() method.

The $minLength and $maxLenght properties are already defined in CaptchaAction, so we
don't have to add them to our Math CaptchaAction class.

See also

For further information, refer to the following:

• http://www.yiiframework.com/doc-2.0/yii-captcha-captcha.html
• http://www.yiiframework.com/doc-2.0/yii-captcha-captchaaction.html
• The Using standalone actions recipe in Chapter 2, Routing, Controllers, and Views

http://www.yiiframework.com/doc-2.0/yii-captcha-captcha.html
http://www.yiiframework.com/doc-2.0/yii-captcha-captchaaction.html

Creating a custom input widget
Yii has a very good set of form widgets, but as with every framework out there, Yii does not have them
all. In this recipe, we will learn how to create your own input widget. For our example, we will create a
range input widget.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it...
1. Create a widget file, @app/components/RangeInputWidget.php, as follows:

<?php
namespace app\components;
use yii\base\Exception;
use yii\base\Model;
use yii\base\Widget;
use yii\helpers\Html;
class RangeInputWidget extends Widget
{

public $model;
public $attributeFrom;
public $attributeTo;
public $htmlOptions = [];
protected function hasModel()
{

return $this->model instanceof Model&&
$this->attributeFrom !== null&& $this->attributeTo !== null;}

public function run()
{

if (!$this->hasModel()) {
throw new Exception('Model must be set');

}
return Html::activeTextInput($this->model,

$this->attributeFrom, $this->htmlOptions)
.' → '
.Html::activeTextInput($this->model,

$this->attributeTo, $this->htmlOptions);
}

}

2. Create a controller file, @app/controllers/RangeController.php, as follows:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

<?php
namespace app\controllers;
use Yii;
use yii\web\Controller;
use app\models\RangeForm;
class RangeController extends Controller
{

public function actionIndex()
{

$model = new RangeForm();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
Yii::$app->session->setFlash('rangeFormSubmitted',

'The form was successfully processed!'
);

}
return $this->render('index', array(

'model' => $model,
));

}
}

3. Create a form file, @app/models/RangeForm.php, as follows:

<?php
namespace app\models;
use yii\base\Model;
class RangeForm extends Model
{

public $from;
public $to;
public function rules()
{

return [
[['from', 'to'], 'number', 'integerOnly' => true],
['from', 'compare', 'compareAttribute' => 'to',

'operator' => '<='],
];

}
}

4. Create a view file, @app/views/range/index.php, as follows:

<?php
use yii\helpers\Html;
use yii\bootstrap\ActiveForm;
use app\components\RangeInputWidget;
?>

<h1>Range form</h1>
<?php if (Yii::$app->session->hasFlash('rangeFormSubmitted')):
?>

<div class="alert alert-success">
<?= Yii::$app->session->getFlash('rangeFormSubmitted');

?>
</div>

<?php endif?>
<?= Html::errorSummary($model, ['class'=>'alert
alert-danger'])?>
<?php $form = ActiveForm::begin([

'options' => [
'class' => 'form-inline'

]
]); ?>

<div class="form-group">
<?= RangeInputWidget::widget([

'model' => $model,
'attributeFrom' => 'from',
'attributeTo' => 'to',
'htmlOptions' => [

'class' =>'form-control'
]

]) ?>
</div>
<?= Html::submitButton('Submit', ['class' => 'btn

btn-primary', 'name' => 'contact-button']) ?>
<?php ActiveForm::end(); ?>

5. Run a range controller by opening index.php?r=range and you'll get the following:

6. Enter 200 in the first text input field and 300 in the second, and you'll get the following:

7. The widget outputs an error if the first value is bigger than the second; that is it. Try to input
correct values, 100 and 200, for the first and second inputs, respectively:

How it works...

We write the range input widget, which requires four parameters:

• model: If it is not set, an exception will be thrown
• attributeFrom: This is used to set minimum range value
• attributeTo: This is used to set maximum range value
• htmlOptions: It is passed to each input

This widget is used in form validation, and is set to check that the first value is less than or equal to the
second value.

There's more...

The Yii2 framework has an official Twitter Bootstrap extension that provides you with a pack of PHP
wrappers over Twitter Bootstrap widgets. Before you write your own widget, check whether a Bootstrap
widget exists at http://www.yiiframework.com/doc-2.0/extbootstrap-index.html.

See also

In order to learn more about widgets, you can use the following resources:

• http://www.yiiframework.com/doc-2.0/yii-base-widget.html
• https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/usage-widgets.md

http://www.yiiframework.com/doc-2.0/extbootstrap-index.html
http://www.yiiframework.com/doc-2.0/yii-base-widget.html
https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/usage-widgets.md

Tabular input
In this section, we will show you how to use a model to save and validate related models. Sometimes
you will need to handle multiple models of the same kind in a single form.

For instance, we have contests and prizes for contests. Any contest might contain an unlimited number
of prizes. So, we need the ability to create a contest with prizes, validate them, display all errors, and
save the primary model (contest model) and all related models (prize models) to the database.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create migrations for contest and prize tables with the following commands:

./yii migrate/create create_table_contest_and_prize_table
Update just created migration's methods up() and down() by
following code
public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}
$this->createTable('{{%contest}}', [

'id' => Schema::TYPE_PK,
'name' => Schema::TYPE_STRING . ' NOT NULL',

], $tableOptions);
$this->createTable('{{%prize}}', [

'id' => Schema::TYPE_PK,
'name' => Schema::TYPE_STRING,
'amount' => Schema::TYPE_INTEGER,

], $tableOptions);
$this->createTable('{{%contest_prize_assn}}', [

'contest_id' => Schema::TYPE_INTEGER,
'prize_id' => Schema::TYPE_INTEGER,

], $tableOptions);
$this-addForeignKey('fk_contest_prize_assn_contest_id',

'{{%contest_prize_assn}}', 'contest_id', {{%contest}}', 'id');
$this->addForeignKey('fk_contest_prize_assn_prize_id',

'{{%contest_prize_assn}}', 'prize_id', '{{%prize}}', 'id');
}
public function down()
{

$this-dropForeignKey('fk_contest_prize_assn_contest_id',
'{{%contest_prize_assn}}');

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

$this->dropForeignKey('fk_contest_prize_assn_prize_id',
'{{%contest_prize_assn}}');

$this->dropTable('{{%contest_prize_assn}}');
$this->dropTable('{{%prize}}');
$this->dropTable('{{%contest}}');

}

3. Then, install migration with the following command:

./yii migrate/up

4. With Gii, generate contest, prize, and ContestPrizeAssn models.

How to do it...
1. Let's create @app/controllers/ContestController.php with the following code:

<?php
namespace app\controllers;
use app\models\Contest;
use app\models\ContestPrizeAssn;
use app\models\Prize;
use Yii;
use yii\base\Model;
use yii\helpers\VarDumper;
use yii\web\Controller;
class ContestController extends Controller
{

public function actionCreate()
{

$contestName = 'Happy New Year';
$firstPrize = new Prize();
$firstPrize->name = 'Iphone 6s';
$firstPrize->amount = 4;
$secondPrize = new Prize();
$secondPrize->name = 'Sony Playstation 4';
$secondPrize->amount = 2;
$contest = new Contest();
$contest->name = $contestName;
$prizes = [$firstPrize, $secondPrize];
if ($contest->validate() &&

Model::validateMultiple($prizes)) {
$contest->save(false);
foreach ($prizes as $prize) {

$prize->save(false);
$contestPrizeAssn = new ContestPrizeAssn();
$contestPrizeAssn->prize_id = $prize->id;
$contestPrizeAssn->contest_id = $contest>id;

$contestPrizeAssn->save(false);
}
return $this->renderContent(

'All prizes have been successfully saved!'
);

} else {
return $this->renderContent(

VarDumper::dumpAsString($contest->getErrors())
);

}
}
public function actionUpdate()
{

$prizes = Prize::find()->all();
if (Model::loadMultiple($prizes,

Yii::$app->request->post()) &&
Model::validateMultiple($prizes)) {

foreach ($prizes as $prize) {
$prize->save(false);

}
return $this->renderContent(

'All prizes have been successfully saved!'
);

}
return $this->render('update', ['prizes' => $prizes]);

}
}

2. Create @app/views/contest/update.php and place the following code inside it:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
$form = ActiveForm::begin();
foreach ($prizes as $i => $prize) {

echo $form->field($prize,
"[$i]amount")->label($prize->name);
}
echo Html::submitButton('submit' , ['class' => 'btn
btn-success']);
ActiveForm::end();

How it works...

The following information shows how to implement tabular input with Yii.

In the contest/update action, we will be able to display all prizes with their amounts and edit them
all at once. We've used two special Yii methods:

• Model::loadMultiple(): This method populates a set of models with data from the end
user

• Model::validateMultiple(): This methods takes a set of models and validates them all
at once

Because we've validated our models before with validateMultiple(), we're passing false as a
parameter to save() to avoid running validation twice.

First, visit /index.php?r=contest/create page. After visiting, you will see the page that will
validate and create 'Happy New Year' with two prizes, and will pass the prizes to the current
contest model. You should note that we will only save the contest model and prizes to the database if
they are valid:

It is provided by following condition:

if ($contest->validate() && Model::validateMultiple($prizes)) { ...}

Go to the /index.php?r=contest/update page and you will see this form:

In the @app/views/contest/update.php for each prize, we render a name and an input with an
amount. We must add an index to each input name so that Model::loadMultiple() may identify
which model to fill with which values.

In conclusion, this approach is used for collecting tabular input data when you process all your attributes
from a view form and populate parent and related models from the form.

See also

For further information, refer to the following URL:

http://www.yiiframework.com/doc-2.0/guide-input-tabular-input.html#collecting-tabular-input

http://www.yiiframework.com/doc-2.0/guide-input-tabular-input.html#collecting-tabular-input

Conditional validation
There are cases when it is necessary to enable or disable specific validation rules in the model. Yii2
provides a mechanism to do that.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it...
1. Create a form file, @app/models/DeliveryForm.php, as follows:

<?php
namespace app\models;
use app\components\WordsValidator;
use yii\base\Model;
class DeliveryForm extends Model
{

const TYPE_PICKUP = 1;
const TYPE_COURIER = 2;
public $type;
public $address;
public function rules()
{

return [
['type', 'required'],
['type', 'in', 'range'=>[self::TYPE_PICKUP,

self::TYPE_COURIER]],
['address', 'required', 'when' => function ($model)

{
return $model->type == self::TYPE_COURIER;

}, 'whenClient' => "function (attribute, value) {
return $('#deliveryform-type').val() ==

'".self::TYPE_COURIER."';
}"]

];
}
public function typeList()
{

return [
self::TYPE_PICKUP => 'Pickup',
self::TYPE_COURIER => 'Courier delivery',

];
}

}

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

2. Create a controller file, @app/controllers/ValidationController.php, as
follows:

<?php
namespace app\controllers;
use Yii;
use yii\web\Controller;
use app\models\DeliveryForm;
class ValidationController extends Controller
{

public function actionIndex()
{

$model = new DeliveryForm();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
Yii::$app->session->setFlash('success',

'The form was successfully processed!'
);

}
return $this->render('index', array(

'model' => $model,
));

}
}

3. Create a view file, @app/views/validation/index.php, as follows:

<?php
use yii\bootstrap\ActiveForm;
use yii\helpers\Html;
?>

<h1>Delivery form</h1>
<?php if (Yii::$app->session->hasFlash('success')): ?>
<div class="alert alert-success"><?=

Yii::$app->session->getFlash('success'); ?></div>
<?php endif; ?>
<?php $form = ActiveForm::begin(); ?>
<?= $form->field($model,

'type')->dropDownList($model->typeList(), [
'prompt'=>'Select delivery type']

) ?>
<?= $form->field($model, 'address') ?>
<div class="form-group">

<?= Html::submitButton('Submit', ['class' => 'btn
btn-primary']) ?>

</div>
<?php ActiveForm::end(); ?>

4. Run the validation controller by opening the index.php?r=validation URL, and
choose the courier delivery value for type input; then you'll get the following:

How it works...

The DeliveryForm address attribute is required when the type attribute is set to
DeliveryForm::TYPE_COURIER; otherwise, we choose the Courier delivery option in
type select.

Also, to support client-side conditional validation, we configure the whenClient property, which
takes a string representing a JavaScript function whose return value determines whether to apply the rule
or not.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guideinput-
validation.html#conditional-validation

http://www.yiiframework.com/doc-2.0/guideinput-validation.html#conditional-validation
http://www.yiiframework.com/doc-2.0/guideinput-validation.html#conditional-validation

Complex forms with multiple models
When dealing with some complex data, it is possible that you may need to use multiple different models
to collect the user input. For example, you have an order form with user information such as first name,
last name, and phone number; you also have a delivery address and some kind of product.

You would like to save all this data in one form. With Yii models and support forms, you can easily do
this. Assuming that the user info will be stored in the user table and in the order form, we will save
product information and the user_id of the user who has ordered a product. We also have a product
table with some information in it.

Getting ready
1. Create a new application by using the Composer package manger, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create migrations for contest and prize tables with the following commands:

./yii migrate/create create_order_tables

3. Update the newly-created migration's up() and down() methods with the following code:

<?php
use yii\db\Schema;
use yii\db\Migration;
use app\models\Product;
class m150813_161817_create_order_form_tables extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}
$this->createTable('user', [

'id' => Schema::TYPE_PK,
'first_name' => Schema::TYPE_STRING . ' NOT NULL',
'last_name' => Schema::TYPE_STRING . ' NOT NULL',
'phone' => Schema::TYPE_STRING . ' NOT NULL',

], $tableOptions);
$this->createTable('product', [

'id' => Schema::TYPE_PK,
'title' => Schema::TYPE_STRING . ' NOT NULL',
'price' => Schema::TYPE_FLOAT . '(6,2) ',

], $tableOptions);
$this->createTable('order', [

'id' => Schema::TYPE_PK,

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

'user_id' => Schema::TYPE_INTEGER . ' NULL',
'address' => Schema::TYPE_STRING . ' NOT NULL',
'product_id' => Schema::TYPE_INTEGER . ' NOT NULL',

], $tableOptions);
$product1 = new Product();
$product1->title = 'Iphone 6';
$product1->price = 400.5;
$product1->save();
$product3 = new Product();
$product3->title = 'Samsung Galaxy Note 5';
$product3->price = 900;
$product3->save();
$this->addForeignKey('fk_order_product_id', 'order',

'product_id', 'product', 'id');
}
public function down()
{

$this->dropTable('order');
$this->dropTable('user');
$this->dropTable('product');

}
}

4. Then, install migration with the following command:

./yii migrate/up

5. With Gii, generate user, order, and product models.

How to do it...
1. Create @app/controllers/TestController with the following code:

<?php
namespace app\controllers;
use app\models\Order;
use app\models\User;
use Yii;
use yii\web\Controller;
class TestController extends Controller
{

public function actionOrder()
{

$user = new User();
$order = new Order();
if ($user->load(Yii::$app->request->post()) &&

$order->load(Yii::$app->request->post())) {
if ($user->validate() && $order->validate()) {

$user->save(false);
$order->user_id = $user->id;
$order->save(false);
$this->redirect(['/test/result', 'id' =>

$order->id]);
}

}
return $this->render('order', ['user' => $user, 'order'

=> $order]);
}
public function actionResult($id)
{

$order = Order::find($id)->with('product',
'user')->one();

return $this->renderContent(
'Product: ' . $order->product->title . '</br>' .
'Price: ' . $order->product->price . '</br>' .
'Customer: ' . $order->user->first_name . ' ' .

$order->user->last_name . '</br>' .
'Address: ' . $order->address

);
}

}

2. Then create a view file, @app/views/test/order.php, and add the following code:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
use app\models\Product;
use yii\helpers\ArrayHelper;
/**
* @var $user \app\models\User
* @var $order \app\models\Order
*/
$form = ActiveForm::begin([

'id' => 'order-form',
'options' => ['class' => 'form-horizontal'],

]) ?>
<?= $form->field($user, 'first_name')->textInput(); ?>
<?= $form->field($user, 'last_name')->textInput(); ?>
<?= $form->field($user, 'phone')->textInput(); ?>
<?= $form->field($order,
'product_id')->dropDownList(ArrayHelper::map(Product::find()->al
l(), 'id', 'title')); ?>
<?= $form->field($order, 'address')->textInput(); ?>
<?= Html::submitButton('Save', ['class' => 'btn btn-primary'])

?>
<?php ActiveForm::end() ?>

How it works...

You can see the form at http://yii-book.app/index.php?r=test/order. Our form
collects information from the user and order models.

Let's fill out our form:

After saving, you will see the following result:

In the controller, we validate and store it. Of course, this example is very simple. In real projects, you
may have more than one model and you will be able to use this approach for them. This approach is very
useful when you want to create or update more than one instance in the same form.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-input-multiple-
models.html

http://www.yiiframework.com/doc-2.0/guide-input-multiple-models.html
http://www.yiiframework.com/doc-2.0/guide-input-multiple-models.html

AJAX-dependent drop-down list
Often, you'll need a form with two dropdowns, and one dropdown's values will be dependent on the
value of the other dropdown. Using Yii's built-in AJAX functionality, you can create such a dropdown.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create an @app/model/Product.php model as follows:

<?php
namespace app\models;
use yii\db\ActiveRecord;
class Product extends ActiveRecord
{

public function rules()
{

return [
['title', 'string'],
[['title', 'category_id', 'sub_category_id'],

'required'],
['category_id', 'exist', 'targetAttribute' => 'id',

'targetClass' => 'app\models\Category'],
['sub_category_id', 'exist', 'targetAttribute' =>

'id', 'targetClass' => 'app\models\Category'],
];

}
public function attributeLabels()
{

return [
'category_id' => 'Category',
'sub_category_id' => 'Sub category',

];  }
}

3. Create an @app/models/Category.php model as follows:

<?php
namespace app\models;
use yii\db\ActiveRecord;
class Category extends ActiveRecord
{

public function rules()
{

return [
['title', 'string'],

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

];
}
/**
* @return array
*/
public static function getSubCategories($categoryId)
{

$subCategories = [];
if ($categoryId) {

$subCategories = self::find()
->where(['category_id' => $categoryId])
->asArray()
->all();

}
return $subCategories;

}
}

4. Create a create_category_and_product_tables migration with the following
command:

./yii migrate/create create_category_and_product_tables

5. Update the just-created migration's methods and list of imported classes as follows:

<?php
use yii\db\Schema;
use yii\db\Migration;
class m150813_005030_create_categories extends Migration
{

public function up()
{

$tableOptions = null;
$this->createTable('{{%product}}', [

'id' => Schema::TYPE_PK,
'category_id' => Schema::TYPE_INTEGER . ' NOT NULL',
'sub_category_id' => Schema::TYPE_INTEGER . ' NOT

NULL',
'title' => Schema::TYPE_STRING . ' NOT NULL',

], $tableOptions);
$this->createTable('{{%category}}', [

'id' => Schema::TYPE_PK,
'category_id' => Schema::TYPE_INTEGER,
'title' => Schema::TYPE_STRING . ' NOT NULL',

], $tableOptions);
$this->addForeignKey('fk_product_category_id',

'{{%product}}', 'category_id', '{{%category}}', 'id');
$this->addForeignKey('fk_product_sub_category_id',

'{{%product}}', 'category_id', '{{%category}}', 'id');
$this->batchInsert('{{%category}}', ['id', 'title'], [

[1, 'TV, Audio/Video'],
[2, 'Photo'],
[3, 'Video']

]);
$this->batchInsert('{{%category}}', ['category_id',

'title'], [
[1, 'TV'],
[1, 'Acoustic System'],
[2, 'Cameras'],
[2, 'Flashes and Lenses '],
[3, 'Video Cams'],
[3, 'Action Cams'],
[3, 'Accessories']

]);
}
public function down()
{

$this->dropTable('{{%product}}');
$this->dropTable('{{%category}}');

}
}

How to do it...
1. Create a controller file, @app/controllers/DropdownController.php, as follows:

<?php
namespace app\controllers;
use app\models\Product;
use app\models\Category;
use app\models\SubCategory;
use Yii;
use yii\helpers\ArrayHelper;
use yii\helpers\Json;
use yii\web\Controller;
use yii\web\HttpException;
class DropdownController extends Controller
{

public function actionGetSubCategories($id)
{

if (!Yii::$app->request->isAjax) {
throw new HttpException(400, 'Only ajax request is

allowed.');
}
return Json::encode(Category::getSubCategories($id));

}
public function actionIndex()
{

$model = new Product();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
Yii::$app->session->setFlash('success',
'Model was successfully saved'
);

}
return $this->render('index', [

'model' => $model,
]);

}
}

2. Create a view file, @app/views/dropdown/index.php, as follows:

<?php
use yii\bootstrap\ActiveForm;
use yii\helpers\Html;
use yii\helpers\Url;
use app\models\Category;
use yii\helpers\ArrayHelper;
use yii\web\View;
$url = Url::toRoute(['dropdown/get-sub-categories']);
$this->registerJs("
(function(){

var select = $('#product-sub_category_id');
var buildOptions = function(options) {

if (typeof options === 'object') {
select.children('option').remove();
$('<option />')

.appendTo(select)

.html('Select a sub category')
$.each(options, function(index, option) {

$('<option />', {value:option.id})
.appendTo(select)
.html(option.title);

});
}

};
var categoryOnChange = function(category_id){

$.ajax({
dataType: 'json',
url: '" . $url . "&id=' + category_id ,
success: buildOptions

});
};
window.buildOptions = buildOptions;
window.categoryOnChange = categoryOnChange;

})();
", View::POS_READY);
?>
<h1>Product</h1>
<?php if (Yii::$app->session->hasFlash('success')): ?>

<div class="alert alert-success"><?=
Yii::$app->session->getFlash('success'); ?></div>
<?php endif; ?>
<?php $form = ActiveForm::begin(); ?>

<?= $form->field($model, 'title')->textInput() ?>
<?= $form->field($model,

'category_id')->dropDownList(ArrayHelper::map(
Category::find()->where('category_id IS

NULL')->asArray()->all(),'id', 'title'), [
'prompt' => 'Select a category',
'onChange' => 'categoryOnChange($(this).val());',

]) ?>
<?= $form->field($model, 'sub_category_id')->dropDownList(

ArrayHelper::map(Category::getSubCategories($model->sub_category
_id), 'id' ,'title'), [

'prompt' => 'Select a sub category',
]) ?>
<div class="form-group">

<?= Html::submitButton('Submit', ['class' => 'btn
btn-primary']) ?>

</div>
<?php ActiveForm::end(); ?>

3. Run the dropdown controller by opening index.php?r=dropdown, then add a new
product with the value Canon - EOS Rebel T6i DSLR for the title field:

4. As you can see, the Category input has three options. Let's select the Photo option and after
that, the second input selection will have two further options:

5. That is it. If you select another category, you will get sub-categories of this category.

How it works...

In this example, we have two dependent lists with categories and sub-categories, and one model,
Category. The main idea is simple: we just bound the JQuery onChange event to the
category_id field in our form. Every time a user changes this field, our app sends an AJAX request
to the get-sub-categories action. This action returns a JSON-formatted list of sub-categories,
and then, on the client-side, we build a list of options for our sub-categories list.

AJAX validation
Some validations can only be done on the server-side, because only the server has the necessary
information. For example, to validate that a company name or user e-mail is unique, we have to check
the corresponding tables on the server side. In this case, you should use built-in AJAX validation. Yii2
supports AJAX form validation, which essentially sends the form values to the server, validates them,
and sends back the validation errors, all without leaving the page. It does this every time you tab out of a
(changed) field.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it...
1. In the basic app template, we have a simple contact form. You can see this page at

http://yii-book.app/index.php?r=site/contact. Open and modify the related
view form, @app/views/site/contact.php. To enable AJAX validation for the whole
form, set up the enableAjaxValidation option as true in the form config:

$form = ActiveForm::begin([
'id' => 'contact-form',
'enableAjaxValidation' => true,

]);

2. Also, you should add handling for the AJAX validation on the server-side. This code snippet
just checks whether the current request is AJAX and if it's a POST request. If it is, we will
receive errors in JSON format:

if (Yii::$app->request->isAjax &&
$model->load(Yii::$app->request->post())) {

Yii::$app->response->format = Response::FORMAT_JSON;
return ActiveForm::validate($model);

}

3. Let's modify our actionContact() in the SiteController with the following code:

public function actionContact()
{

$model = new ContactForm();
if (Yii::$app->request->isAjax &&

$model->load(Yii::$app->request->post())) {
Yii::$app->response->format = Response::FORMAT_JSON;
return ActiveForm::validate($model);

}
if ($model->load(Yii::$app->request->post()) &&

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

$model->contact(Yii::$app->params['adminEmail'])) {
Yii::$app->session->setFlash('contactFormSubmitted');
return $this->refresh();

} else {
return $this->render('contact', [

'model' => $model,
]);

}
}

How it works...

The previous code will check whether the current request is AJAX. If it is, it will respond to this request
by running the validation and returning the errors in JSON format.

You can check the response from the server in the debug panel in the browser. Try to submit an empty
form and you will see the response.

For example, in the Google Chrome browser, press F12 and select the Network tab in the development
toolbar. You will see the JSON array with errors and messages:

See also

http://www.yiiframework.com/doc-2.0/guide-input-validation.html#ajaxvalidation

http://www.yiiframework.com/doc-2.0/guide-input-validation.html#ajaxvalidation

Creating a custom client-side validation
In the Writing your own validators recipe, we created a standalone validator. In this recipe, we will
modify a validator to create extra client-side validation, which also checks the number of words.

Getting ready

Create a new application by using the Composer package manger, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it...
1. Create @app/components/WordsValidator.php as follows:

<?php
namespace app\components;
use yii\validators\Validator;
class WordsValidator extends Validator
{

public $size = 50;
public $message = 'The number of words must be less than

{size}';
public function validateValue($value)
{

preg_match_all('/(\w+)/i', $value, $matches);
if (count($matches[0]) > $this->size) {

return [$this->message, ['size' => $this->size]];
}

}
public function clientValidateAttribute($model, $attribute,

$view)
{

$message = strtr($this->message, ['{size}' =>
$this->size]);

return <<<JS
if (value.split(/\w+/gi).length > $this->size) {

messages.push("$message");
}
JS;

}
}

2. Create @app/models/Article.php as follows:

<?php
namespace app\models;
use app\components\WordsValidator;

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

use yii\base\Model;
class Article extends Model
{

public $title;
public function rules()
{

return [
['title', 'string'],
['title', WordsValidator::className(), 'size' =>

10],
];

}
}

3. Create @app/controllers/ValidationController.php as follows:

<?php
namespace app\controllers;
use app\models\Article;
use Yii;
use yii\web\Controller;
class ValidationController extends Controller
{

public function actionIndex()
{

$model = new Article();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
Yii::$app->session->setFlash('success', 'Model is

valid');
}
return $this->render('index', [

'model' => $model,
]);

}
}

4. Create @app/views/validation/index.php as follows:

<?php
use yii\bootstrap\ActiveForm;
use yii\helpers\Html;
?>
<h1>Article form</h1>
<?php if (Yii::$app->session->hasFlash('success')): ?>

<div class="alert alert-success"><?=
Yii::$app->session->getFlash('success'); ?></div>
<?php endif; ?>

<?php $form = ActiveForm::begin(); ?>
<?= $form->field($model, 'title') ?>
<div class="form-group">

<?= Html::submitButton('Submit', ['class' => 'btn
btn-primary']) ?>

</div>
<?php ActiveForm::end(); ?>

How it works...

Run the validation controller by opening index.php?r=validation. You will see an example of
an incorrect value if you enter more than ten words:

If you enter fewer than ten words, client-side validation will be successful:

First, we created @app/components/WordsValidator.php, which extends the @yii\
validators\Validator class, and added the newly-created validator class to the title attribute of
the Article model:

..
['title', WordsValidator::className(), 'size' => 10],
..

Inside our validator, we've defined two special methods: validateValue() and
clientValidateAttribute().

Our validator class implements the validateValue() method to support data validation out of the
context of a data model. The second method just returns the JavaScript needed for performing client-side
validation.

There's more...

If we would like to hide validator realization, or want to control all validation processes only on the
server-side, we can create a Deferred object.

First, modify the WordsValidator validator as follows:

<?php
namespace app\components;
use yii\validators\Validator;
use yii\helpers\Url;
class WordsValidator extends Validator
{

public $size = 50;
public $message = 'The number of words must be less than {size}';
public function validateValue($value)
{

if (str_word_count($value) > $this->size) {
return ['The number of words must be less than {size}',

['size' => $this->size]];
}
return false;

}
public function clientValidateAttribute($model, $attribute,

$view)
{

$url = Url::toRoute(['validation/check-words']);
return <<<JS
deferred.push($.get("$url", {words:

value}).done(function(data) {

if (!data.result) {
messages.push(data.error);

}
}));
JS;

}
}

In the preceding code, the deferred variable is provided by Yii, which is an array of Deferred objects.
The $.get() jQuery method creates a Deferred object, which is pushed to the deferred array.

Second, add this checkWords action to the validation controller:

public function actionCheckWords()
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
$value = Yii::$app->getRequest()->get('words');
$validator = new WordsValidator([
'size' => 10,
]);
$result = $validator->validate($value, $error);
return ['result' => $result,'error' => $error
];

}

See also

For further information, refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-input-validation.html#implementing-client-side-
validation

• http://www.yiiframework.com/doc-2.0/guide-input-validation.html#deferred-validation

http://www.yiiframework.com/doc-2.0/guide-input-validation.html#implementing-client-side-validation
http://www.yiiframework.com/doc-2.0/guide-input-validation.html#implementing-client-side-validation
http://www.yiiframework.com/doc-2.0/guide-input-validation.html#deferred-validation

Chapter 5. Security
In this chapter, we will cover the following topics:

• Authentication
• Using controller filters
• Preventing XSS
• Preventing SQL injections
• Preventing CSRF
• Using RBAC
• Encrypting/Decrypting data

Introduction
Security is a crucial part of any web application.

In this chapter, you will learn how to keep your application secure according to the general web
application security principle "filter input, escape output". We will cover topics such as creating your
own controller filters, preventing XSS, CSRF, and SQL injections, escaping output, and using role-based
access control. To know security best practices refer to http://www.yiiframework.com/doc-2.0/guide-
security-best-practices.html#avoiding-debug-info-and-tools-at-production.

http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-debug-info-and-tools-at-production
http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-debug-info-and-tools-at-production

Authentication
Most web applications provide a way for users to log in or reset their forgotten passwords. In Yii2, we
don't have this opportunity by default. For a basic application template, Yii provides only two test
users by default, which are statically described in the User model. So, we have to implement special
code to be able to enable user login from the database.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. In the component section of your config, add:

'user' => [
'identityClass' => 'app\models\User',
'enableAutoLogin' => true,

],

3. Create a User table. Create a migration by entering the following command:

./yii migrate/create create_user_table

4. Update the just created migration with the following code:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150626_112049_create_user_table extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}

$this->createTable('{{%user}}', [
'id' => Schema::TYPE_PK,
'username' => Schema::TYPE_STRING . ' NOT NULL',
'auth_key' => Schema::TYPE_STRING . '(32) NOT NULL',
'password_hash' => Schema::TYPE_STRING . ' NOT NULL',
'password_reset_token' => Schema::TYPE_STRING,

], $tableOptions);
}

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public function down()
{

$this->dropTable('{{%user}}');
}

}

5. Update the existing models/User model with the following code:

<?php

namespace app\models;
use yii\db\ActiveRecord;
use yii\web\IdentityInterface;
use yii\base\NotSupportedException;
use Yii;

class User extends ActiveRecord implements IdentityInterface
{

/**
* @inheritdoc
*/

public function rules()
{

return [

['username', 'required'],
['username', 'unique'],
['username', 'string', 'min' => 3],
['username', 'match', 'pattern' =>

'~^[A-Za-z][A-Za-z0-9]+$~', 'message' => 'Username can contain
only alphanumeric characters.'],

[['username', 'password_hash',
'password_reset_token'],

'string', 'max' => 255
],
['auth_key', 'string', 'max' => 32],

];
}

/**
* @inheritdoc
*/

public static function findIdentity($id)
{

return static::findOne($id);
}

public static function findIdentityByAccessToken($token,
$type = null)

{
throw new

NotSupportedException('"findIdentityByAccessToken" is not
implemented.');

}

/**
* Finds user by username
*
* @param string $username
* @return User
*/

public static function findByUsername($username)
{

return static::findOne(['username' => $username]);
}
/**
* @inheritdoc
*/

public function getId()
{

return $this->getPrimaryKey();
}

/**
* @inheritdoc
*/

public function getAuthKey()
{

return $this->auth_key;
}

/**
* @inheritdoc
*/

public function validateAuthKey($authKey)
{

return $this->getAuthKey() === $authKey;
}

/**
* Validates password
*
* @param string $password password to validate

* @return boolean if password provided is valid for current
user

*/
public function validatePassword($password)
{

return
Yii::$app->getSecurity()->validatePassword($password,
$this->password_hash);

}

/**
* Generates password hash from password and sets it to the

model
*
* @param string $password
*/

public function setPassword($password)
{

$this->password_hash =
Yii::$app->getSecurity()->generatePasswordHash($password);

}

/**
* Generates "remember me" authentication key
*/

public function generateAuthKey()
{

$this->auth_key =
Yii::$app->getSecurity()->generateRandomString();

}

/**
* Generates new password reset token
*/

public function generatePasswordResetToken()
{

$this->password_reset_token =
Yii::$app->getSecurity()->generateRandomString() . '_' . time();

}

/**
* Finds user by password reset token
*
* @param string $token password reset token
* @return static|null
*/

public static function findByPasswordResetToken($token)
{

$expire =
Yii::$app->params['user.passwordResetTokenExpire'];

$parts = explode('_', $token);
$timestamp = (int) end($parts);
if ($timestamp + $expire < time()) {

return null;
}
return static::findOne([

'password_reset_token' => $token
]);

}
}

6. Create a migration, which will add a test user. Use the following command:

./yii migrate/create create_test_user

7. Update the just created migration with the following code:

<?php

use yii\db\Migration;
use app\models\User;

class m150626_120355_create_test_user extends Migration
{

public function up()
{

$testUser = new User();
$testUser->username = 'admin';
$testUser->setPassword('admin');
$testUser->generateAuthKey();
$testUser->save();

}

public function down()
{

User::findByUsername('turbulence')->delete();
return false;

}
}

8. Install all migrations with the following command:

./yii migrate up

How to do it...
1. Now, follow the URL site/login action and enter admin/admin as your credentials:

2. Congratulations! If you have completed these steps, you should able to log in.

How it works...
1. First, we created a migration for the user table. Apart from our ID and username, our table

contains special fields such as auth_key (the main use of this is to authenticate the user by
cookie), password_hash (for security reasons we won't store the password as it is and will
store only the password hash), and password_reset_token (used when we need to reset
the user's password).

2. The result after installation and create_test_user migration should look like the
following screenshot:

We've also added special methods to the User model and changed the inheritance to class User
extends ActiveRecord implements IdentityInterface because we need to be able to
find users in the database.

You also can copy the User model from an advanced app at https://github.com/yiisoft/yii2-app-
advanced/blob/master/common/models/User.php.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-security-
authentication.html

https://github.com/yiisoft/yii2-app-advanced/blob/master/common/models/User.php
https://github.com/yiisoft/yii2-app-advanced/blob/master/common/models/User.php
http://www.yiiframework.com/doc-2.0/guide-security-authentication.html
http://www.yiiframework.com/doc-2.0/guide-security-authentication.html

Using controller filters
In many cases, we need to filter the incoming data or perform some actions based on the data. For
example, with custom filters, we can filter visitors by IP, force users to use HTTPS, or redirect the user
to an installation page prior to using the application.

In Yii2, filters are essentially a special kind of behavior, so using filters is the same as using behaviors.

Yii has a lot of built-in usable filters, which include:

• Core
• Custom
• Authentication
• Content Negotiator
• HttpCache
• PageCache
• RateLimiter
• Verb
• Cors

In this recipe, we will implement the following:

• Limiting access to the controller action to authorized users only
• Limiting access to the controller action to specified IPs
• Limiting access to specific user roles

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create app/components/AccessRule.php:

<?php

namespace app\components;

use app\models\User;
class AccessRule extends \yii\filters\AccessRule {

/**
* @inheritdoc
*/

protected function matchRole($user)
{

if (empty($this->roles)) {
return true;

}
$isGuest = $user->getIsGuest();

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

foreach ($this->roles as $role) {
switch($role) {

case '?':
return ($isGuest) ? true : false;

case User::ROLE_USER:
return (!$isGuest) ? true : false;

case $user->identity->role: // Check if the user
is logged in, and the roles match

return (!$isGuest) ? true : false;
default:

return false;
}

}
return false;

}
}

3. Create app/controllers/AccessController.php as follows:

<?php

namespace app\controllers;
use app\models\User;
use Yii;
use yii\filters\AccessControl;
use app\components\AccessRule;
use yii\web\Controller;

class AccessController extends Controller
{

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
// We will override the default rule config with

the new AccessRule class
'ruleConfig' => [

'class' => AccessRule::className(),
],
'rules' => [

[
'allow' => true,
'actions' => ['auth-only'],
'roles' => [User::ROLE_USER]

],

[
'allow' => true,
'actions' => ['ip'],
'ips' => ['127.0.0.1'],

],
[

'allow' => true,
'actions' => ['user'],
'roles' => [User::ROLE_ADMIN],

],
[

'allow' => false,
]

],
]

];
}

public function actionAuthOnly()
{

echo "Looks like you are authorized to run me.";
}
public function actionIp()
{

echo "Your IP is in our list. Lucky you!";
}
public function actionUser()
{

echo "You're the right man. Welcome!";
}

}

4. Modify the User class as follows:

<?php

namespace app\models;

class User extends \yii\base\Object implements \yii\web\
IdentityInterface
{
// add roles contstants
CONST ROLE_USER = 200;
CONST ROLE_ADMIN = 100;

public $id;
public $username;

public $password;
public $authKey;
public $accessToken;
public $role;

private static $users = [
'100' => [

'id' => '100',
'username' => 'admin',
'password' => 'admin',
'authKey' => 'test100key',
'accessToken' => '100-token',
'role' => USER::ROLE_ADMIN // add admin role for

admin user
],
'101' => [

'id' => '101',
'username' => 'demo',
'password' => 'demo',
'authKey' => 'test101key',
'accessToken' => '101-token',
'role' => USER::ROLE_USER // add user role for admin

user
],

];
…
}

How to do it...
1. To use AccessControl, declare it in the behaviors() method of your controller class.

We do this as follows:

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
'rules' => [

[
'allow' => true,
'actions' => ['auth-only'],
'roles' => ['@'],

],
[

'allow' => true,
'actions' => ['ip'],

'ips' => ['127.0.0.1'],
],
[

'allow' => true,
'actions' => ['user'],

'roles' => ['admin'],
],
[

'allow' => true,
'actions' => ['user'],
'matchCallback' => function ($rule, $action) {

return preg_match('/MSIE
9/',$_SERVER['HTTP_USER_AGENT']) !== false;

}
],

['allow' => false]
],

]
];

}

2. Now try to run controller actions using Internet Explorer and other browsers by using both the
admin and demo usernames.

How it works...

We will start with limiting access to the controller action to authorized users only. See the following
code in the rules array:

[
'allow' => true,
'actions' => ['auth-only'],
'roles' => [User::ROLE_USER]

],

Each array here is an access rule. You can either use allow=true or allow=false for a deny rule.
For each rule, there are several parameters.

By default, Yii does not deny everything, so consider adding ['allow' => false] to the end of
your rules list if you need maximum security.

In our rule, we use two parameters. The first is the actions parameter, which takes an array of actions to
which the rule will be applied. The second is the roles parameter, which takes an array of user roles to
determine the users this rule applies to.

Yii2's built in Access Control supports only two roles by default: guest (not logged in), represented by ?,
and authenticated, represented by @.

With simple access controls, we can just limit access to specific pages or controller actions based on the
login state. If users are not logged in when they visit these pages, Yii will redirect them to the login
page.

Rules are executed one by one, starting from the top, until one matches. If nothing matches, then the
action is treated as allowed.

The next task is to limit access to specific IPs. In this case, the following two access rules are involved:

[
'allow' => true,
'actions' => ['ip'],
'ips' => ['127.0.0.1'],

],

The first rule allows access to the IP action from a list of IPs specified. In our case, we are using a
loopback address, which always points to our own computer. Try changing it to 127.0.0.2, for
example, to see how it works when the address does not match. The second rule denies everything,
including all other IPs.

Next, we limit access to one specific user role, as follows:

[
'allow' => true,
'actions' => ['user'],
'roles' => [User::ROLE_ADMIN],

],

The preceding rule allows a user with a role equal to admin to run the user action. Therefore, if you log
in as admin, it will let you in, but if you log in as demo, it will not.

We have overridden the standard AccessRule class on our own, which is located in the
components/AccessRule.php file. Inside our AccessRule class, we have overridden the
matchRole method on our own, where we get and check the current user role and match it with roles
from our rules.

Finally, we need to deny access to a specific browser. For this recipe, we are denying only Internet
Explorer 9. The rule itself is put on top, so it executes first, as follows:

[
'allow' => true,
'actions' => ['user'],
'matchCallback' => function ($rule, $action) {

return preg_match('/MSIE 9/',$_SERVER['HTTP_USER_AGENT'])!==
false;

}
],

The detection technique that we are using is not very reliable, as MSIE is contained in many other user
agent strings. For a list of possible user agent strings, you can refer to http://www.useragentstring.com/.

In the preceding code, we used another filter rule property named 'matchCallback'. This property
will apply only when functions which are described in this property return true.

Our function checks if the user agent string contains MSIE 9.0 sting. Depending on your requirements,
you can specify any PHP code.

http://www.useragentstring.com/

See also

In order to learn more about access control and filters, refer to the following:

• http://www.yiiframework.com/doc-2.0/guide-structure-filters.html
• http://www.yiiframework.com/doc-2.0/yii-filters-accesscontrol.html
• http://www.yiiframework.com/doc-2.0/yii-filters-accessrule.html
• https://github.com/yiisoft/yii2/blob/master/docs/guide/structure-filters.md
• http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#access-control-filter
• The Using RBAC recipe

http://www.yiiframework.com/doc-2.0/guide-structure-filters.html
http://www.yiiframework.com/doc-2.0/yii-filters-accesscontrol.html
http://www.yiiframework.com/doc-2.0/yii-filters-accessrule.html
https://github.com/yiisoft/yii2/blob/master/docs/guide/structure-filters.md
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#access-control-filter

Preventing XSS
XSS stands for cross-site scripting and is a type of vulnerability that allows one to inject a client-side
script (typically JavaScript) in a page viewed by other users. Considering the power of client-side
scripting, this can lead to very serious consequences such as bypassing security checks, getting other
user's credentials, or data leaks.

In this recipe, we will see how to prevent XSS by escaping the output with both \yii\helpers\
Html and \yii\helpers\HtmlPurifier.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create controllers/XssController.php:

<?php

namespace app\controllers;

use Yii;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class SiteController.
* @package app\controllers
*/
class XssController extends Controller
{

/**
* @return string
*/

public function actionIndex()
{

$username = Yii::$app->request->get('username',
'nobody');

return $this->renderContent(Html::tag('h1',
'Hello, ' . $username . '!'

));
}

}

3. Normally, it will be used as /xss/simple?username=Administrator. However, as the
main security principle filter input, escape output was not taken into account, malicious users
will be able to use it in the following way:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

/xss/simple?username=<script>alert('XSS');</script>

4. The previous code will result in a script execution, as shown in the following screenshot:

How to do it...

Carry out the following steps:

1. In order to prevent the XSS alert shown in the previous screenshot, we need to escape the data
before passing it to the browser. We do this as follows:

<?php

namespace app\controllers;

use Yii;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class SiteController.
* @package app\controllers
*/
class XssController extends Controller
{

/**
* @return string
*/

public function actionIndex()

{
$username = Yii::$app->request->get('username',

'nobody');

return $this->renderContent(Html::tag('h1',
Html::encode('Hello, ' . $username . '!')

));
}

}

2. Now instead of an alert, we will get properly escaped HTML, as shown in the following
screenshot:

3. Therefore, the basic rule is to always escape all dynamic data. For example, we should do the
same for a link name:

use \yii\helpers\Html;

echo Html::a(Html::encode($_GET['username']), array());

That's it. You have a page that is free from XSS. Now, what if we want to allow some HTML to pass?
We cannot use \yii\helpers\Html::encode anymore because it will render HTML as just a
code and we need the actual representation. Fortunately, there is a tool bundled with Yii that allows you
to filter the malicious HTML. It is named HTML Purifier and can be used in the following way:

<?php

namespace app\controllers;

use Yii;

use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
use yii\web\Controller;

/**
* Class SiteController.
* @package app\controllers
*/
class XssController extends Controller
{

/**
* @return string
*/

public function actionIndex()
{

$username = Yii::$app->request->get('username', 'nobody');

$content = Html::tag('h1', 'Hello, ' . $username . '!');

return $this->renderContent(
HtmlPurifier::process($content)

);
}

}

Now if we access the HTML action using a URL such as /xss/
index?username=<i>username</i>!<script>alert('XSS')</script>, HTML
Purifier will remove the malicious part and we will get the following result:

How it works...
1. Internally, \yii\helpers\Html::encode looks like the following:

public static function encode($content, $doubleEncode = true)
{

return htmlspecialchars($content, ENT_QUOTES |
ENT_SUBSTITUTE, Yii::$app ? Yii::$app->charset : 'UTF-8',
$doubleEncode);
}

2. So basically, we use PHP's internal htmlspecialchars function, which is pretty secure if
one does not forget to pass the correct charset in the third argument.

\yii\helpers\HtmlPurifier uses the HTML Purifier library, which is the most advanced
solution out there to prevent XSS inside of HTML. We have used its default configuration, which is
okay for most user-entered content.

There's more…

There are more things to know about XSS and HTML Purifier; they are discussed in the following
section.

XSS types

There are two main types of XSS injections, which are as follows:

• Non-persistent
• Persistent

The first type is the one we have used in the recipe and is the most common XSS type; it can be found in
most insecure web applications. Data passed by the user or through a URL is not stored anywhere, so the
injected script will be executed only once and only for the user who entered it. Still, it is not as secure as
it looks. Malicious users can include XSS in a link to another website and their core will be executed
when another user follows the link.

The second type is much more serious, as the data entered by a malicious user is stored in the database
and is shown to many, if not all, website users. Using this type of XSS, malicious users can literally
destroy your website by commanding all users to delete all data to which they have access.

See also

In order to learn more about XSS and how to deal with it, refer to the following resources:

• http://htmlpurifier.org/docs
• http://ha.ckers.org/xss.html
• http://shiflett.org/blog/2007/may/character-encoding-and-xss

http://htmlpurifier.org/docs
http://ha.ckers.org/xss.html
http://shiflett.org/blog/2007/may/character-encoding-and-xss

Preventing SQL injections
SQL injection is a type of code injection that uses vulnerability at the database level and allows you to
execute arbitrary SQL, allowing malicious users to carry out actions such as deleting data or raising their
privileges.

In this recipe, we will see examples of vulnerable code and fix them.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Execute the following SQL:

DROP TABLE IF EXISTS `user`;
CREATE TABLE `user` (

`id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`username` varchar(100) NOT NULL,
`password` varchar(32) NOT NULL,
PRIMARY KEY (`id`)

);

INSERT INTO `user`(`id`,`username`,`password`) VALUES (
'1','Alex','202cb962ac59075b964b07152d234b70');

INSERT INTO `user`(`id`,`username`,`password`) VALUES (
'2','Qiang','202cb962ac59075b964b07152d234b70');

3. Generate a User model using Gii.

How to do it...
1. First, we will implement a simple action that checks whether the username and password that

came from a URL are correct. Create app/controllers/SqlController.php:

<?php

namespace app\controllers;

use app\models\User;
use Yii;
use yii\base\Controller;
use yii\base\Exception;
use yii\helpers\ArrayHelper;
use yii\helpers\Html;

/**

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

* Class SqlController.
* @package app\controllers
*/
class SqlController extends Controller
{

protected function renderContentByResult($result)
{

if ($result) {
$content = "Success";

} else {
$content = "Failure";

}

return $this->renderContent($content);
}

public function actionSimple()
{

$userName = Yii::$app->request->get('username');
$password = Yii::$app->request->get('password');

$passwordHash = md5($password);

$sql = "SELECT * FROM `user`"
." WHERE `username` = '".$userName."'"
." AND password = '".$passwordHash."' LIMIT |1";

$result = Yii::$app->db->createCommand($sql)->queryOne();

return $this->renderContentByResult($result);
}

}

2. Let's try to access it using the /sql/simple?username=test&password=test URL.
As we are unaware of both the username and password, it will, as expected, print Failure.

3. Now try /sql/simple?username=%27+or+%271%27%3D%271%27%3B+--
&password=whatever. This time, it lets us in, even though we still don't know anything
about the actual credentials. The decoded part of usernamevalue looks like the following:

' or '1'='1'; --

4. Close the quote so that the syntax stays correct. Add OR '1'='1', which makes the
condition always true. Use ; -- to end the query and comment the rest.

5. As no escaping was done, the whole query executed was:

SELECT * FROM user WHERE username = '' or '1'='1'; --' AND
password = '008c5926ca861023c1d2a36653fd88e2' LIMIT 1;

6. The best way to fix this is to use a prepared statement, as follows:

public function actionPrepared()
{

$userName = Yii::$app->request->get('username');
$password = Yii::$app->request->get('password');

$passwordHash = md5($password);

$sql = "SELECT * FROM `user`"
." WHERE `username` = :username"
." AND password = :password LIMIT 1";

$command = Yii::$app->db->createCommand($sql);
$command->bindValue(':username', $userName);
$command->bindValue(':password', $passwordHash);
$result = $command->queryOne();

return $this->renderContentByResult($result);
}

7. Now check /sql/prepared with the same malicious parameters. This time everything was
fine and we received the Failure message. The same principle applies to ActiveRecord. The
only difference here is that AR uses other syntax:

public function actionAr()
{

$userName = Yii::$app->request->get('username');
$password = Yii::$app->request->get('password');

$passwordHash = md5($password);

$result = User::findOne([
'username' => $userName,
'password' => $passwordHash

]);

return $this->renderContentByResult($result);
}

8. In the previous code, we used the username and password parameters like an array key
with a value style. If we had written the previous code by using only the first argument, it would
be vulnerable:

public function actionWrongAr()
{

$userName = Yii::$app->request->get('username');
$password = Yii::$app->request->get('password');

$passwordHash = md5($password);

$condition = "`username` = '".$userName." AND `password` =
'".$passwordHash."'";

$result = User::find()->where($condition)->one();

return $this->renderContentByResult($result);
}

9. If used properly, prepared statements can save you from all types of SQL injections. Still, there
are some common problems:

◦ You can only bind one value to a single parameter, so if you want to query WHERE
IN(1, 2, 3, 4), you will have to create and bind four parameters.

◦ Prepared statements cannot be used for table names, column names, and other
keywords.

10. When using ActiveRecord, the first problem can be solved by adding where, as follows:

public function actionIn()
{

$names = ['Alex', 'Qiang'];
$users = User::find()->where(['username' => $names])->all();

return $this->renderContent(Html::ul(
ArrayHelper::getColumn($users, 'username')

));
}

11. The second problem can be solved in multiple ways. The first way is to rely on active record
and PDO quoting:

public function actionColumn()
{

$attr = Yii::$app->request->get('attr');
$value = Yii::$app->request->get('value');

$users = User::find()->where([$attr => $value])->all();

return $this->renderContent(Html::ul(
ArrayHelper::getColumn($users, 'username')

));
}

12. But the most secure way is to use the whitelist approach, as follows:

public function actionWhiteList()
{

$attr = Yii::$app->request->get('attr');
$value = Yii::$app->request->get('value');

$allowedAttr = ['username', 'id'];

if (!in_array($attr, $allowedAttr)) {
throw new Exception("Attribute specified is not

allowed.");
}

$users = User::find()->where([$attr => $value])->all();

return $this->renderContent(Html::ul(
ArrayHelper::getColumn($users, 'username')

));
}

How it works...

The main goal when preventing SQL injection is to properly filter the input. In all cases except table
names, we have used prepared statements—a feature supported by most relational database servers.
They allows you to build statements once and then use them multiple times, and they provide a safe way
of binding parameter values.

In Yii, you can use prepared statements for both Active Record and DAO. When using DAO, it can be
achieved by using either bindValue or bindParam. The latter is useful when we want to execute
multiple queries of the same type while varying parameter values:

public function actionBind()
{

$userName = 'Alex';
$passwordHash = md5('password1');

$sql = "INSERT INTO `user` (`username`, `password`) VALUES
(:username, :password);";

// insert first user
$command = Yii::$app->db->createCommand($sql);
$command->bindParam('username', $userName);
$command->bindParam('password', $passwordHash);
$command->execute();

// insert second user
$userName = 'Qiang';
$passwordHash = md5('password2');
$command->execute();

return $this->renderContent(Html::ul(
ArrayHelper::getColumn(User::find()->all(), 'username')

));
}

Most Active Record methods accept parameters. To be safe, you should use these instead of just passing
the raw data in.

As for quoting table names, columns, and other keywords, you can either rely on Active Record or use
the whitelist approach.

See also

In order to learn more about SQL injections and working with databases through Yii, refer to the
following:

• http://www.slideshare.net/billkarwin/sql-injection-myths-and-fallacies
• http://www.yiiframework.com/doc-2.0/yii-db-connection.html
• http://www.yiiframework.com/doc-2.0/yii-db-command.html
• http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-sql-

injections
• The Getting data from a database recipe in Chapter 3, ActiveRecord, Model, and Database

http://www.slideshare.net/billkarwin/sql-injection-myths-and-fallacies
http://www.yiiframework.com/doc-2.0/yii-db-connection.html
http://www.yiiframework.com/doc-2.0/yii-db-command.html
http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-sql-injections
http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-sql-injections

Preventing CSRF
CSRF is an abbreviation for cross-site request forgery, where a malicious user tricks the user's browser
into silently performing an HTTP request to the website when the user is logged in.

An example of such an attack is inserting an invisible image tag with src pointing to
http://example.com/site/logout. Even if the image tag is inserted in another website, you
will be immediately logged out from example.com. The consequences of CSRF can be very serious:
destroying website data, preventing all website users from logging in, exposing private data, and so on.

Some facts about CSRF:

• As CSRF should be performed by the victim user's browser, the attacker cannot normally
change the HTTP headers sent. However, there are both browser and Flash plugin
vulnerabilities that exist which allow users to spoof headers, so we should not rely on these.

• The attacker should pass the same parameters and values as the user would normally.

Considering these, a good method of dealing with CSRF is by passing and checking a unique token
during form submissions and, additionally, using GET according to the HTTP specification.

Yii includes built-in token generation and token checking. Additionally, it can automate inserting a token
into the HTML forms.

In order to avoid CSRF, you should always:

• Follow, HTTP specification, that is, GET should not change its application state
• Keep Yii CSRF protection enabled

In this recipe, we will see how to make sure our application is CSRF-resistant.

Getting ready

Create a new application by using the Composer package manager, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it...
1. In order to turn ON the anti-CSRF protection, we should add config/main.php as follows:

'components' => [
..

request => [
..

'enableCsrfValidation => true,
..

],
..

],

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

2. The option enableCsrfValidation defaults to true. When CSRF validation is enabled,
forms submitted to a Yii web application must originate from the same application. If not, a
400 HTTP exception will be raised.

Note that this feature requires that the user client accepts cookies.
3. After configuring the application, you should use ActiveForm::beginForm and

CHtml::endForm instead of HTML form tags in view with ActiveForm:

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>
<input type='text' name='name'
.........

<?php ActiveForm::end(); ?>

4. OR manually:

<form action='#' method='POST'>
<input type="hidden" name="<?= Yii::$app->request->csrfParam

?>" value="<?=Yii::$app->request->getCsrfToken()?>" />
....

</form>

5. In the first case, Yii automatically adds a hidden token field, as follows:

<form action="/csrf/create" method="post">
<div style="display:none"><input type="hidden"

value="e4d1021e79ac
269e8d6289043a7a8bc154d7115a" name="YII_CSRF_TOKEN" />

6. If you save this form as HTML and try submitting it, you will get a message like the one shown
in the following screenshot instead of regular data processing:

How it works...

Internally, during form rendering, we have code like this:

if ($request->enableCsrfValidation && !strcasecmp($method, 'post')) {
$hiddenInputs[] = static::hiddenInput($request->csrfParam,

$request->getCsrfToken());
}

if (!empty($hiddenInputs)) {
$form .= "\n" . implode("\n", $hiddenInputs);

}

In the previous code, getCsrfToken() generates a unique token value and writes it to a cookie.
Then, on subsequent requests, both the cookie and POST values are compared. If they don't match, an
error message is shown instead of usual data processing.

If you need to perform a POST request but don't want to build a form using CHtml, then you can pass a
parameter with a name from Yii::app()->request->csrfParam and a value from
Yii::$app->request->getCsrfToken().

There's more...

Lets have a look at some more features.

Disabling CSRF-tokens for all actions

1. If you have a problem with enableCsrfValidation you can switch it off.
2. To disable CSRF, add this code to your controller:

public function beforeAction($action) {
$this->enableCsrfValidation = false;
return parent::beforeAction($action);

}

Disabling CSRF-tokens for a specific action

public function beforeAction($action) {
$this->enableCsrfValidation = ($action->id !== "actionId");
return parent::beforeAction($action);

}

CSRF validation for Ajax-calls

When the enableCsrfValidation option is enabled in the main layout, add csrfMetaTags:

<head>
.......
<?= Html::csrfMetaTags() ?>

</head>

Now you will be able to simply add it to ajax-call
var csrfToken = $('meta[name="csrf-token"]').attr("content");
$.ajax({

url: 'request'
type: 'post',
dataType: 'json',
data: {param1: param1, _csrf : csrfToken},

});

Additionally [rename]

If your application requires a very high security level, such as a bank account management system, extra
measures can be taken.

First, you can turn off the remember me feature using config/main.php, as follows:

'components' => [
..

'user' => [
..

'enableAutoLogin' => false,
..

],
..

],

Note that this will not work if the enabledSession option is true.

Then, you can lower the session timeout, as follows:

'components' => [
..

'session' => [
..

'timeout' => 200,
..

],
..

],

This sets the number of seconds after which data will be seen as garbage and cleaned up.

Of course, these measures will make the user experience worse, but they will add an additional level of
security.

Using GET and POST properly

HTTP insists on not using GET operations that change data or state. Sticking to this rule is good
practice. It will not prevent all types of CSRF, but it will at least implement some injections, such as
.

See also

In order to learn more about SQL injections and working with databases through Yii, refer to the
following URLs:

• http://en.wikipedia.org/wiki/Cross-site_request_forgery
• http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-csrf
• http://www.yiiframework.com/doc-2.0/yii-web-request.html#$enableCsrfValidation-detail
• The Preventing XSS recipe.

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.yiiframework.com/doc-2.0/guide-security-best-practices.html#avoiding-csrf
http://www.yiiframework.com/doc-2.0/yii-web-request.html#%24enableCsrfValidation-detail

Using RBAC
Role-Based Access Control (RBAC) provides simple yet powerful centralized access control. It is the
most powerful access control method available in Yii. It is described in the guide, but since it is rather
complex and powerful, it is not as easy to understand without getting under the hood a little.

In this recipe, we will take the roles hierarchy from the definitive guide, import it, and explain what is
happening internally.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create a MySQL database and configure it.
3. Configure the authManager component in your config/main.php and config/

console.php as follows:

return [
// ...
'components' => [

'authManager' => [
'class' => 'yii\rbac\DbManager',

],
// ...

],
];

4. Run the migration:

yii migrate --migrationPath=@yii/rbac/migrations

How to do it...

Carry out the following steps:

1. Create the access rule rbac/AuthorRule.php:

<?php

namespace app\rbac;

use yii\rbac\Rule;

/**
* Class AuthorRule.
* @package app\rbac
*/

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

class AuthorRule extends Rule
{

public $name = 'isAuthor';

/**
* @param int|string $user
* @param \yii\rbac\Item $item
* @param array $params
*
* @return bool
*/

public function execute($user, $item, $params)
{

return isset($params['post']) ?
$params['post']->createdBy == $user : false;

}
}

2. Create a console command, command/RbacController.php, to init the RBAC rules
command:

<?php

namespace app\commands;

use app\models\User;
use Yii;
use yii\console\Controller;

/**
* Class RbacController.
* @package app\commands
*/
class RbacController extends Controller
{

public function actionInit()
{

$auth = Yii::$app->authManager;

$createPost = $auth->createPermission('createPost');
$createPost->description = 'Create a post';

$updatePost = $auth->createPermission('updatePost');
$updatePost->description = 'Update a post';

$updatePost = $auth->createPermission('updatePost');
$updatePost->description = 'Update a post';

$deletePost = $auth->createPermission('deletePost');
$deletePost->description = 'Delete a post';

$readPost = $auth->createPermission('readPost');
$readPost->description = 'Read a post';

$authorRule = new \app\rbac\AuthorRule();

// add permissions
$auth->add($createPost);
$auth->add($updatePost);
$auth->add($deletePost);
$auth->add($readPost);
$auth->add($authorRule);

// add the "updateOwnPost" permission and associate the
rule with it.

$updateOwnPost =
$auth->createPermission('updateOwnPost');

$updateOwnPost->description = 'Update own post';
$updateOwnPost->ruleName = $authorRule->name;

$auth->add($updateOwnPost);
$auth->addChild($updateOwnPost, $updatePost);

// create Author role
$author = $auth->createRole('author');
$auth->add($author);
$auth->addChild($author, $createPost);
$auth->addChild($author, $updateOwnPost);
$auth->addChild($author, $readPost);

// create Admin role
$admin = $auth->createRole('admin');
$auth->add($admin);
$auth->addChild($admin, $updatePost);
$auth->addChild($admin, $deletePost);
$auth->addChild($admin, $author);

// assign roles
$auth->assign($admin, User::findByUsername('admin')->id);
$auth->assign($author, User::findByUsername('demo')->id);

echo "Done!\n";
}

}

3. That's it. Run it in the console:

yii rbac/init

4. Create controllers/RbacController.php as follows:

<?php

namespace app\controllers;

use app\models\User;
use stdClass;
use Yii;
use yii\filters\AccessControl;
use yii\helpers\Html;
use yii\web\Controller;

/**
* Class RbacController.
*/
class RbacController extends Controller
{

public function behaviors()
{

return [
'access' => [

'class' => AccessControl::className(),
'rules' => [

[
'allow' => true,
'actions' => ['delete'],
'roles' => ['deletePost'],

],
[

'allow' => true,
'actions' => ['test'],

],
],

],
];

}

public function actionDelete()
{

return $this->renderContent(
Html::tag('h1', 'Post deleted.')

);
}

/**
* @param $description
* @param $rule
* @param array $params
*
* @return string
*/

protected function renderAccess($description, $rule, $params
= [])

{
$access = Yii::$app->user->can($rule, $params);

return $description.': '.($access ? 'yes' : 'no');
}

public function actionTest()
{

$post = new stdClass();
$post->createdBy = User::findByUsername('demo')->id;

return $this->renderContent(
Html::tag('h1', 'Current permissions').
Html::ul([

$this->renderAccess('Use can create post',
'createPost'),

$this->renderAccess('Use can read post',
'readPost'),

$this->renderAccess('Use can update post',
'updatePost'),

$this->renderAccess('Use can own update post',
'updateOwnPost', [

'post' => $post,
]),
$this->renderAccess('Use can delete post',

'deletePost'),
])

);
}

}

5. Now run rbac/test once to check access to all the created permissions of the RBAC
hierarchy:

6. Then, try to log in as demo (the password is demo) and run rbac/test again:

7. Then, try to log in as admin (the password is admin) and run rbac/test again:

8. Log in as demo user and run rbac/delete:

9. Log in as admin and run rbac/delete:

How it works…

Yii implements a general hierarchical RBAC following the NIST RBAC model. It provides RBAC
functionality through the authManagerapplication component.

The RBAC hierarchy is a directed acyclic graph, that is, a set of nodes and their directed connections or
edges. There are three types of node available: roles, permissions, and rules.

A role represents a collection of permissions (for example creating posts and updating posts). A role
may be assigned to one or multiple users. To check if a user has a specified permission, we may check
whether the user is assigned with a role that contains that permission.

Both roles and permissions can be organized in a hierarchy. In particular, a role may consist of other
roles or permissions, and a permission may consist of other permissions. Yii implements a partial-order
hierarchy, which includes the more special tree hierarchy. While a role can contain a permission, it is
not true vice versa.

For testing permissions, we have created two actions. The first action, test, contains checkers for
created permissions and roles. The second action is delete, which is limited through the access filter.
The rule for the access filter contains the following code:

[
'allow' => true,
'actions' => ['delete'],
'roles' => ['deletePost'],

],

This means that we are allowing all users who have the deletePost permission to run the
deletePost action. Yii starts checking with the deletePost permission. Besides the fact that the
access rule element is named as roles, you can specify an RBAC hierarchy node be it a role, rule, or
permission. Checking for updatePost is complex:

Yii::$app->user->can('updatePost', ['post' => $post]);

We use a second parameter to pass a post (in our case, we have simulated it with stdClass). If a user
is logged in as demo, then to get access we need to go from updatePost to author. If you're lucky,
you only have to go through updatePost, updateOwnPost, and author.

As updateOwnPost has a rule defined, it will be run with a parameter passed to checkAccess. If
the result is true, then access will be granted. As Yii does not know what the shortest way is, it tries to
check all possibilities until it is successful, or no alternatives are left.

There's more…

There are some useful tricks that will help you to use RBAC efficiently, which are discussed in the
following subsections.

Keeping hierarchy simple and efficient

Follow these recommendations where possible to maximize the performance and reduce hierarchy
complexity:

• Avoid attaching multiple roles to a single user
• Don't connect nodes of the same type; so, for example, avoid connecting one task to another

Naming RBAC nodes

A complex hierarchy becomes difficult to understand without using some kind of naming convention.
One possible convention that helps to limit confusion is as follows:

[group_][own_]entity_action

Where own is used when the rule determines an ability to modify an element only if the current user is
the owner of the element and the group is just a namespace. The entity is the name of the entity we
are working with and action is the action that we are performing.

For example, if we need to create a rule that determines whether the user can delete a blog post, we will
name it blog_post_delete. If the rule determines whether a user can edit his or her own blog
comment, the name will be blog_own_comment_edit.

See also

In order to learn more about SQL injections and working with databases through Yii, refer to the
following:

• http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

• http://en.wikipedia.org/wiki/Role-based_access_control
• http://en.wikipedia.org/wiki/Directed_acyclic_graph
• http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#role-based-access-

control-rbac
• The Using controller filters recipe

http://en.wikipedia.org/wiki/Role-based_access_control
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#role-based-access-control-rbac
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#role-based-access-control-rbac

Encrypting/Decrypting data
The Yii2 framework contains a special security component that provides a set of methods for handling
common security-related tasks. The \yii\base\Security class requires the OpenSSL PHP
extension instead of mcrypt.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Set up the database connection and create a table named order, as follows:

DROP TABLE IF EXISTS `order`;
CREATE TABLE IF NOT EXISTS `order` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`client` VARCHAR(255) NOT NULL,
`total` FLOAT NOT NULL,
`encrypted_field` BLOB NOT NULL,
PRIMARY KEY (`id`)
);

3. Generate an Order model using Gii.

How to do it...
1. Add an additional key parameter to config/params.php, as follows:

<?php

return [
'adminEmail' => 'admin@example.com',
'key' => 'mysecretkey'

];

2. Add the behaviors and helper properties to the Order model as follows:

public $encrypted_field_temp;

public function behaviors()
{

return [
[

'class' => AttributeBehavior::className(),
'attributes' => [

ActiveRecord::EVENT_BEFORE_INSERT =>
'encrypted_field',

ActiveRecord::EVENT_BEFORE_UPDATE =>
'encrypted_field',

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

],
'value' => function ($event) {

$event->sender->encrypted_field_temp =
$event->sender->encrypted_field;

return Yii::$app->security->encryptByKey(
$event->sender->encrypted_field,
Yii::$app->params['key']

);
},

],
[

'class' => AttributeBehavior::className(),
'attributes' => [

ActiveRecord::EVENT_AFTER_INSERT =>
'encrypted_field',

ActiveRecord::EVENT_AFTER_UPDATE =>
'encrypted_field',

],
'value' => function ($event) {

return $event->sender->encrypted_field_temp;
},

],
[

'class' => AttributeBehavior::className(),
'attributes' => [

ActiveRecord::EVENT_AFTER_FIND =>
'encrypted_field',

],
'value' => function ($event) {

return Yii::$app->security->decryptByKey(
$event->sender->encrypted_field,
Yii::$app->params['key']

);
},

],
];

}

3. Add controllers/CryptoController.php:

<?php

namespace app\controllers;

use app\models\Order;
use Yii;
use yii\db\Query;

use yii\helpers\ArrayHelper;
use yii\helpers\Html;
use yii\helpers\VarDumper;
use yii\web\Controller;

/**
* Class CryptoController.
* @package app\controllers
*/
class CryptoController extends Controller
{

public function actionTest()
{

$newOrder = new Order();
$newOrder->client = "Alex";
$newOrder->total = 100;
$newOrder->encrypted_field = 'very-secret-info';
$newOrder->save();

$findOrder = Order::findOne($newOrder->id);

return $this->renderContent(Html::ul([
'New model: ' .

VarDumper::dumpAsString($newOrder->attributes),
'Find model: ' .

VarDumper::dumpAsString($findOrder->attributes)
]));

}

public function actionRaw()
{

$row = (new Query())->from('order')
->where(['client' => 'Alex'])
->one();

return $this->renderContent(Html::ul(
$row

));
}

}

4. Run crypto/test and you will get the following:

5. To view raw data, run crypto/raw:

How it works...

Firstly, we have added the AttributeBehavior, which automatically processes our data when
certain events happen. Our certain events are ActiveRecord::EVENT_AFTER_INSERT,
ActiveRecord::EVENT_AFTER_UPDATE and ActiveRecord::EVENT_AFTER_FIND.

During insert and update events, we decrypt our data with a special method: Yii::$app-
>security->encryptByKey();. This method uses HKDF and a random salt to decrypt our data
before saving it to the database. After getting data from the database, we can also use the
ActiveRecord::EVENT_AFTER_FIND method to decrypt our data. In this case, we also use the
special Yii2 method Yii::$app->security->encryptByKey();.This method accepts two
params: encrypted data and key.

There's more…

Besides data encryption and data decryption, a secure component also provides key derivation using
standard algorithms, data tampering prevention, and password validation.

Working with passwords

Verifying a password:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
// all good, logging user in

} else {
// wrong password

}

See also

In order to learn more about SQL injections and working with databases through Yii, refer to
http://www.yiiframework.com/doc-2.0/guide-security-passwords.html

http://www.yiiframework.com/doc-2.0/guide-security-passwords.html

Chapter 6. RESTful Web Services
In this chapter, we will cover the following topics:

• Creating a REST server
• Authentication
• Rate limiting
• Versioning
• Error handling

Introduction
This chapter will help you to learn some handy things about the Yii URL router, controllers, and views.
You will be able to make your controllers and views more flexible.

Creating a REST server
In the following recipe, we use an example that illustrates how you can build and set up RESTful APIs
with minimal coding effort. This recipe will be reused in other recipes in this chapter.

Getting ready
1. Create a new application by using the Composer package manager, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create a migration for creating an article table with the following command:

./yii migrate/create create_film_table

3. Then, update the just-created migration method, up, with the following code:

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}
$this->createTable('{{%film}}', [

'id' => $this->primaryKey(),
'title' => $this->string(64)->notNull(),
'release_year' => $this->integer(4)->notNull(),

], $tableOptions);

$this->batchInsert('{{%film}}',
['id','title','release_year'], [

[1, 'Interstellar', 2014],
[2, "Harry Potter and the Philosopher's

Stone",2001],
[3, 'Back to the Future', 1985],
[4, 'Blade Runner', 1982],
[5, 'Dallas Buyers Club', 2013],

]);
}

Update the down method with the following code:

public function down()
{

$this->dropTable('film');
}

4. Run the created create_film_table migration.
5. Generate the Film model with the Gii module.

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

6. Configure your application server to use clean URLs. If you are using Apache with
mod_rewrite and AllowOverride turned on, then you should add the following lines to
the .htaccess file under your @web directory:

Options +FollowSymLinks
IndexIgnore */*
RewriteEngine on
if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
otherwise forward it to index.php
RewriteRule . index.php

How to do it…
1. Create a controller, @app/controller/FilmController.php, with the following

code:

<?php
namespace app\controllers;

use yii\rest\ActiveController;

class FilmController extends ActiveController
{

public $modelClass = app\models\Film';
}

Update the @app/config/web.php configuration file. Add the following config of the
urlManager component:

'urlManager' => [
'enablePrettyUrl' => true,
'enableStrictParsing' => true,
'showScriptName' => false,
'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' =>
'films'],

],
],

2. Reconfigure the request component in @app/config/web.php:

'request' => [
'cookieValidationKey' => 'mySecretKey',
'parsers' => [

'application/json' => 'yii\web\JsonParser',

],
]

How it works…

We extend \yii\rest\ActiveController to create our own controller, then for the created
controller, the modelClass property was set. The \yii\rest\ActiveController class
implements a common set of actions for supporting RESTful access to ActiveRecord.

With the above minimal amount of effort, you have already finished creating RESTful APIs for
accessing film data.

The APIs you have created include:

• GET /films: This lists all films page by page
• HEAD /films: This shows the overview information of a film listing
• POST /films: This creates a new film
• GET /films/5: This returns the details of film 5
• HEAD /films/5: This shows the overview information of film 5
• PATCH /films/5 and PUT /films/5: This updates film 5
• DELETE /films/5: This deletes film 5
• OPTIONS /films: This shows the supported verbs regarding the /films endpoint
• OPTIONS /films/5: This shows the supported verbs regarding the /films/5 endpoint

It works like this because \yii\rest\ActiveController supports the following actions:

• index: This lists the models
• view: This returns the details of a model
• create: This creates a new model
• update: This updates an existing model
• delete: This deletes an existing model
• options: This returns the allowed HTTP methods

And there's also a verbs() method that defines the allowed request methods for each action.

To check that our RESTful API is working correctly, let's send several requests.

Let's begin with the GET request. Run this in the console:

curl -i -H "Accept:application/json" "http://yii-book.app/films"

You will get the following output:

HTTP/1.1 200 OK
Date: Wed, 23 Sep 2015 17:46:35 GMT
Server: Apache
X-Powered-By: PHP/5.5.23

X-Pagination-Total-Count: 5
X-Pagination-Page-Count: 1
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://yii-book.app/films?page=1>; rel=self
Content-Length: 301
Content-Type: application/json; charset=UTF-8

[{"id":1,"title":"Interstellar","release_year":2014},{"id":2,"title":
"Harry Potter and the Philosopher's
Stone","release_year":2001},{"id":3,"title":"Back to the
Future","release_year":1985},{"id":4,"title":"Blade
Runner","release_year":1982},{"id":5,"title":"Dallas Buyers
Club","release_year":2013}]

Let's send a POST request. Run this in the console:

curl -i -H "Accept:application/json" -X POST -d title="New film" -d
release_year=2015 "http://yii-book.app/films"

You will get the following output:

HTTP/1.1 201 Created
Date: Wed, 23 Sep 2015 17:48:06 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Location: http://yii-book.app/films/6
Content-Length: 49
Content-Type: application/json; charset=UTF-8

{"title":"New film","release_year":"2015","id":6}

Let's get the created film. Run in this the console:

curl -i -H "Accept:application/json" "http://yii-book.app/films/6"

You will get the following output:

HTTP/1.1 200 OK
Date: Wed, 23 Sep 2015 17:48:36 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Content-Length: 47
Content-Type: application/json; charset=UTF-8

{"id":6,"title":"New film","release_year":2015}

Let's send a DELETE request. Run this in the console:

curl -i -H "Accept:application/json" -X DELETE "http://yii-book.app/
films/6"

And you will get the following output:

HTTP/1.1 204 No Content
Date: Wed, 23 Sep 2015 17:48:55 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Content-Length: 0
Content-Type: application/json; charset=UTF-8

There's more…

We will now look at content negotiation and customizing the Rest URL rule:

Content negotiation

You can also easily format your response with content negotiation behavior.

For example, you can put this code to your controller and all data will be returned in an XML format.

You should have a look at the full list of formats in the documentation.

use yii\web\Response;
public function behaviors()
{

$behaviors = parent::behaviors();
$behaviors['contentNegotiator']['formats']['application/xml']=

Response::FORMAT_XML;
return $behaviors;

}

Run this in the console:

curl -i -H "Accept:application/xml" "http://yii-book.app/films"

You will get the following output:

HTTP/1.1 200 OK
Date: Wed, 23 Sep 2015 18:02:47 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
X-Pagination-Total-Count: 5
X-Pagination-Page-Count: 1
X-Pagination-Current-Page: 1

X-Pagination-Per-Page: 20
Link: <http://yii-book.app/films?page=1>; rel=self
Content-Length: 516
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>
<response>

<item>
<id>1</id>
<title>Interstellar</title>
<release_year>2014
</release_year>

</item>
<item>

<id>2</id>

<title>Harry Potter and the Philosopher's Stone</title>
<release_year>2001
</release_year>

</item>
<item>

<id>3</id>
<title>Back to the Future</title>
<release_year>1985
</release_year>

</item>
<item>

<id>4</id>
<title>Blade Runner</title>
<release_year>1982
</release_year>

</item>
<item>

<id>5</id>
<title>Dallas Buyers Club</title>
<release_year>2013
</release_year>

</item>
</response>

Customizing the Rest URL rule

You have to remember a controller ID, by default, is defined in plural form. This is because yii\
rest\UrlRule automatically pluralizes controller IDs. You can simply disable this by setting yii\
rest\UrlRule::$pluralize to false:

'urlManager' => [
//..
'rules' => [

[
'class' => 'yii\rest\UrlRule',
'controller' => 'film'
'pluralize' => false

],
],
//..

]

If you would also like to specify how a controller ID should appear in the patterns, you are able to add a
custom name to an array as a key value pair, where the array key is the controller ID and the array value
is the actual controller ID. For example:

'urlManager' => [
//..
'rules' => [

[
'class' => 'yii\rest\UrlRule',
'controller' => ['super-films' => 'film']

],
],
//..

]

See also

For further information, refer to the following URL:

• http://www.yiiframework.com/doc-2.0/guide-rest-quick-start.html
• http://www.yiiframework.com/doc-2.0/yii-rest-urlrule.html
• http://www.yiiframework.com/doc-2.0/guide-rest-response-formatting.html
• http://budiirawan.com/setup-restful-api-yii2/

http://www.yiiframework.com/doc-2.0/guide-rest-quick-start.html
http://www.yiiframework.com/doc-2.0/yii-rest-urlrule.html
http://www.yiiframework.com/doc-2.0/guide-rest-response-formatting.html
http://budiirawan.com/setup-restful-api-yii2/

Authentication
In this recipe will have the authentication model set up.

Getting ready

Repeat all steps from the Creating a REST server recipe in Getting ready and How to do it sections.

How to do it...
1. Modify @app/controllers/FilmController to the following:

<?php

namespace app\controllers;

use app\models\User;
use Yii;
use yii\helpers\ArrayHelper;
use yii\rest\ActiveController;
use yii\filters\auth\HttpBasicAuth;

class FilmController extends ActiveController
{

public $modelClass = 'app\models\Film';

public function behaviors()
{

return ArrayHelper::merge(parent::behaviors(),[
'authenticator' => [
'authMethods' => [

'basicAuth' => [
'class' =>HttpBasicAuth::className(),
'auth' => function

($username,$password) {
$user

=User::findByUsername($username);

if ($user !== null &&
$user->validatePassword($password)){

return $user;
}

return null;
},

]
]

]

]);
}

}

Open http://yii-book.app/films in a browser and make sure that we configure HTTP Basic
Authentication:

Let's try to authenticate. Run this in the console:

curl -i -H "Accept:application/json" "http://yii-book.app/films"

And you will get the following:

HTTP/1.1 401 Unauthorized
Date: Thu, 24 Sep 2015 01:01:24 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Www-Authenticate: Basic realm="api"
Content-Length: 149
Content-Type: application/json; charset=UTF-8

{"name":"Unauthorized","message":"You are requesting with an invalid

credential.","code":0,"status":401,"type":"yii\\web\\UnauthorizedHttp
Exception"}

1. And now try auth with cURL:

curl -i -H "Accept:application/json" -u admin:admin
"http://yii-book.app/films"

2. You should then get a response that looks like this:

HTTP/1.1 200 OK
Date: Thu, 24 Sep 2015 01:01:40 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Set-Cookie: PHPSESSID=8b3726040bf8850ebd07209090333103; path=/;
HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate,
post-check=0, pre-check=0
Pragma: no-cache
X-Pagination-Total-Count: 5
X-Pagination-Page-Count: 1
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://yii-book.app/films?page=1>; rel=self
Content-Length: 301
Content-Type: application/json; charset=UTF-8
[{"id":1,"title":"Interstellar","release_year":2014},{"id":2,"ti
tle":"Harry Potter and the Philosopher's
Stone","release_year":2001},{"id":3,"title":"Back to the
Future","release_year":1985},{"id":4,"title":"Blade
Runner","release_year":1982},{"id":5,"title":"Dallas Buyers
Club","release_year":2013}]

How it works…

We've also added the authenticator behavior to the HttpBasicAuth class, so we will be able to
authenticate with just a login and password. You might implement any authentication method that is
described in the official guide in the RESTful web services section.

There's more…

There are different ways to send an access token:

• HTTP Basic Auth
• Query parameter
• OAuth

Yii supports all of these authentication methods.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-rest-rate-limiting.html.

http://www.yiiframework.com/doc-2.0/guide-rest-rate-limiting.html

Rate limiting
To prevent abuse, you should consider adding rate limiting to your APIs. For example, you may want to
limit the API usage of each user to be, at most, five API calls within a period of one minute. If too many
requests are received from a user within the stated period of time, a response with the status code 429
(Too Many Requests) should be returned.

Getting ready

Repeat all the steps from the Creating a REST server recipe's Getting ready and How to do it... sections.

1. Create a migration for creating a user allowance table with the following command:

./yii migrate/create create_user_allowance_table

2. Then, update the just-created migration method, up, with the following code:

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8
COLLATEutf8_general_ci ENGINE=InnoDB';

}
$this->createTable('{{%user_allowance}}', [

'user_id' => $this->primaryKey(),
'allowed_number_requests' =>

$this->integer(10)->notNull(),
'last_check_time' => $this->integer(10)->notNull()

], $tableOptions);
}

3. Update the down methodwith the following code:

public function down()
{

$this->dropTable('{{%user_allowance}}');
}

4. Run the created create_film_table migration.
5. Generate the UserAllowance model with the Gii module.

How to do it…

First, you have to update @app/controllers/FilmController.php with the following code:

<?php

namespace app\controllers;

use yii\rest\ActiveController;
use yii\filters\RateLimiter;
use yii\filters\auth\QueryParamAuth;

class FilmController extends ActiveController
{

public $modelClass = 'app\models\Film';

public function behaviors()
{

$behaviors = parent::behaviors();

$behaviors['authenticator'] = [
'class' => QueryParamAuth::className(),
];

$behaviors['rateLimiter'] = [
'class' => RateLimiter::className(),
'enableRateLimitHeaders' => true
];

return $behaviors;
}

}

To enable rate limiting, the User model class should implement yii\filters\
RateLimitInterface and requires the implementation of three methods: getRateLimit(),
loadAllowance(), and saveAllowance(). You have to add them with
RATE_LIMIT_NUMBER and RATE_LIMIT_RESET constants:

<?php

namespace app\models;

class User extends \yii\base\Object implements \yii\web\
IdentityInterface, \yii\filters\RateLimitInterface

{
public $id;
public $username;
public $password;
public $authKey;
public $accessToken;

const RATE_LIMIT_NUMBER = 5;
const RATE_LIMIT_RESET = 60;

// it means that user allowed only 5 requests per one minute
public function getRateLimit($request, $action)
{

return [self::RATE_LIMIT_NUMBER,self::RATE_LIMIT_RESET];
}

public function loadAllowance($request, $action)
{

$userAllowance = UserAllowance::findOne($this->id);

return $userAllowance ?

[$userAllowance->allowed_number_requests,$userAllowance->last_check_t
ime] :

$this->getRateLimit($request, $action);
}

public function saveAllowance($request, $action,$allowance,
$timestamp)

{
$userAllowance = ($allowanceModel

=UserAllowance::findOne($this->id)) ?$allowanceModel : new
UserAllowance();

$userAllowance->user_id = $this->id;
$userAllowance->last_check_time = $timestamp;
$userAllowance->allowed_number_requests =$allowance;
$userAllowance->save();

}

// other User model methods
}

How it works…

Once the identity class implements the required interface, Yii will automatically use [[yii\
filters\RateLimiter]] configured as an action filter for [[yii\rest\Controller]] to
perform a rate limiting check. We've also added the 'authenticator' behavior with the
QueryParamAuth class. So, we are now able to authenticate with just an access token passed through
a query parameter. You can add any authentication method that is described in the official guide in the
RESTful web services section.

Let's explain our methods. They are pretty easy to understand.

getRateLimit(): This returns the maximum number of allowed requests and the time period
(example, [100, 600] means there can be at most 100 API calls within 600 seconds)

loadAllowance(): This returns the number of remaining requests allowed and the corresponding
UNIX timestamp when the rate limit was last checked

saveAllowance(): This saves both the number of remaining requests allowed and the current UNIX
timestamp

We store our data in the MySQL database. For performance, you might use a NoSQL database or
another storage system with a higher time to get and load data.

Now let's try to check the rate limit feature. Run this in the console:

curl -i "http://yii-book.app/films?access-token=100-token"

You will get the following output:

HTTP/1.1 200 OK
Date: Thu, 24 Sep 2015 01:35:51 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Set-Cookie: PHPSESSID=495a928978cc732bee853b83f521eba2; path=/;
HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0
Pragma: no-cache
X-Rate-Limit-Limit: 5
X-Rate-Limit-Remaining: 4
X-Rate-Limit-Reset: 0
X-Pagination-Total-Count: 5
X-Pagination-Page-Count: 1
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://yii-book.app/films?access-token=100-token&page=1>;
rel=self
Content-Length: 301
Content-Type: application/json; charset=UTF-8

[{"id":1,"title":"Interstellar","release_year":2014},{"id":2,"title":
"Harry Potter and the Philosopher's
Stone","release_year":2001},{"id":3,"title":"Back to the
Future","release_year":1985},{"id":4,"title":"Blade
Runner","release_year":1982},{"id":5,"title":"Dallas Buyers
Club","release_year":2013}]

Let's learn about returned headers. When rate limiting is enabled, by default every response will be sent
with the following HTTP headers containing the current rate limiting information:

X-Rate-Limit-Limit: This is the maximum number of requests allowed within a time period

X-Rate-Limit-Remaining: This is the number of remaining requests in the current time period

X-Rate-Limit-Reset: This is the number of seconds to wait in order to get the maximum number of
allowed requests

So, now try to exceed the limit, request the following URL more than five times per minute and you will
see TooManyRequestsHttpExeption:

HTTP/1.1 429 Too Many Requests
Date: Thu, 24 Sep 2015 01:37:24 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Set-Cookie: PHPSESSID=bb630ca8a641ef92bd210c0a936e3149; path=/;
HttpOnly
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0
Pragma: no-cache
X-Rate-Limit-Limit: 5
X-Rate-Limit-Remaining: 0
X-Rate-Limit-Reset: 60
Content-Length: 131
Content-Type: application/json; charset=UTF-8
{"name":"Too Many Requests","message":"Rate limit
exceeded.","code":0,"status":429,"type":"yii\\web\\TooManyRequestsHtt
pException"}

See also

For further information, refer to the following URLs:

• https://en.wikipedia.org/wiki/Leaky_bucket
• http://www.yiiframework.com/doc-2.0/guide-rest-rate-limiting.html
• http://www.yiiframework.com/doc-2.0/yii-filters-ratelimiter.html

https://en.wikipedia.org/wiki/Leaky_bucket
http://www.yiiframework.com/doc-2.0/guide-rest-rate-limiting.html
http://www.yiiframework.com/doc-2.0/yii-filters-ratelimiter.html

Versioning
If you build your API unversioned, it's terrifying. Let's imagine you're pushing out a breaking change –
basically any change that runs counter to what client developers have planned for, such as renaming or
deleting a parameter or changing the format of the response – you run the risk of bringing down many, if
not all, of your customers' systems, leading to angry support calls or, worse, massive churn. That's why
you have to keep your API versioned. In Yii2, versioning can be easily done through modules, so
versions will be represented as isolated block of code.

Getting ready

Repeat all steps from the Creating a REST server recipe's Getting ready and How to do it… sections.

How to do it…
1. Create the following structure in your app folder. In total, you have to create the @app/

modules folder with the v1 and v2 folders inside it. In each module's folder, you must create
controllers and models folders:

app/
modules/

v1/
controllers/

FilmController.php
Module.php

v2/
controllers/

FilmController.php
Module.php

2. Add the import modules to @app/config/web.php:

'modules' => [
'v1' => [

'class' => 'app\modules\v1\Module',
],
'v2' => [

'class' => 'app\modules\v2\Module'
]

],

3. Create @app/modules/v1/controllers/FilmController.php and @app/
modules/v2/controllers/FilmController.php with the following code:

<?php

namespace app\modules\v1\controllers;

use yii\rest\ActiveController;

class FilmController extends ActiveController
{

public $modelClass = 'app\models\Film';
}

<?php

namespace app\modules\v1\controllers;

use yii\rest\ActiveController;

class FilmController extends ActiveController
{

public $modelClass = 'app\models\Film';
}

<?php
namespace app\modules\v1;

class Module extends \yii\base\Module
{

public function init()
{

parent::init();
}

}

<?php
namespace app\modules\v2;

class Module extends \yii\base\Module
{

public function init()
{

parent::init();
}

}

Create @app/modules/v1/Module.php and @app/modules/v2/Module.php with the
following code:

How it works…

Each module represents an independent version of our API.

Now you will be able to specify the API's version in two ways:

1. By the API's URL. You can specify either v1 or v2 versions. The result is that http://yii-
book.app/v1/film will return a list of films for version 1 and http://yii-
book.app/v2/film will do so for version 2.

2. You can also put a version number through HTTP request headers. As usual, it can be done
through the Accept header:

// as a vendor content type
Accept: application/vnd.company.myproject-v1+json
// via a parameter
Accept: application/json; version=v1

So, we now have two versions of our API, and we can easily modify the v2 version without any
headaches. Our old customers continue to work with the v1 version, and new customers or those who
would like to upgrade will use the v2 version.

There's more…

Fur further information, refer to:

• http://www.yiiframework.com/doc-2.0/guide-rest-versioning.html
• http://budiirawan.com/setup-restful-api-yii2/

http://www.yiiframework.com/doc-2.0/guide-rest-versioning.html
http://budiirawan.com/setup-restful-api-yii2/

Error handling
Sometimes you may want to customize the default error response format. For example, we need to know
the response timestamp and whether the response is successful. Frameworks provide an easy way to do
this.

Getting ready

Repeat all the steps from the Creating a REST server recipe's in the Getting ready and How to do it…
sections.

How to do it…

To achieve this goal, you can respond to the beforeSend event of the response component in @app/
config/web.php, as follows:

'response' => [
'class' => 'yii\web\Response',
'on beforeSend' => function ($event) {

$response = $event->sender;
if ($response->data !== null) {

$response->data = [
'success' => $response->isSuccessful,
'timestamp' => time(),
'path' => Yii::$app->request->getPathInfo(),
'data' => $response->data,
];

}
},

],

How it works…

To learn what happens in this code, let's play a bit with it. First, run this in console:

curl -i "http://yii-book.app/films/1"

You will get the following output:

HTTP/1.1 200 OK
Date: Thu, 24 Sep 2015 04:24:52 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Content-Length: 115
Content-Type: application/json; charset=UTF-8

{"success":true,"timestamp":1443068692,"path":"films/
1","data":{"id":1,"title":"Interstellar","release_year":2014}}

Secondly, run this in your console:

curl -i "http://yii-book.app/films/1000"

And you will get the following:

HTTP/1.1 404 Not Found
Date: Thu, 24 Sep 2015 04:24:26 GMT
Server: Apache
X-Powered-By: PHP/5.5.23
Content-Length: 186
Content-Type: application/json; charset=UTF-8

{"success":false,"timestamp":1443068666,"path":"films/
1000","data":{"name":"Not Found","message":"Object not found:
1000","code":0,"status":404,"type":"yii\\web\\NotFoundHttpException"}
}

We've changed the response content before sending. That way, it is easy to define whether the response
is successful or not.

See also

For further information, refer to http://www.yiiframework.com/doc-2.0/guide-rest-error-handling.html.

http://www.yiiframework.com/doc-2.0/guide-rest-error-handling.html

Chapter 7. Official Extensions
In this chapter, we will cover the following topics:

• Authentication client
• SwiftMailer e-mail library
• Faker fixture data generator
• Imagine library
• MongoDB driver
• ElasticSearch engine adapter
• Gii code generator
• Pjax jQuery plugin
• Redis database driver

Introduction
Yii2's official repository provides adapters for some popular libraries, databases, and search engines. In
this chapter, we will show you how to install and use official extensions in your project. You will also
learn how to write your own extension and share it with other developers.

Authentication client
This extension adds OpenID, OAuth, and OAuth2 consumers for the Yii 2.0 framework.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install the extension with the following command:

composer require yiisoft/yii2-authclient

How to do it…
1. Open your GitHub applications page https://github.com/settings/applications and add your own

new application:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://github.com/settings/applications

2. Get the Client ID and Client Secret:

3. Configure your web configuration and set the corresponding options for your
authClientCollection component:

'components' => [
// ...
'authClientCollection' => [

'class' => 'yii\authclient\Collection',
'clients' => [

'google' => [
'class' =>'yii\authclient\clients\GoogleOpenId'

],
'github' => [

'class' => 'yii\authclient\clients\GitHub',
'clientId' => '87f0784aae2ac48f78a',
'clientSecret'

=>'fb5953a54dea4640f3a70d8abd96fbd25592ff18',
],

// etc.
],

],
],

4. Open your SiteController and add the auth standalone action and success callback
method:

use yii\authclient\ClientInterface;

public function actions()
{

return [
// ...
'auth' => [

'class' => 'yii\authclient\AuthAction',
'successCallback' => [$this, 'onAuthSuccess'],

],
];

}

public function onAuthSuccess(ClientInterface $client)
{

$attributes = $client->getUserAttributes();
\yii\helpers\VarDumper::dump($attributes, 10, true);
exit;

}

5. Open the views/site/login.php file and insert the AuthChoice widget:

<div class="site-login">
<h1><?= Html::encode($this->title) ?></h1>

<div class="panel panel-default">
<div class="panel-body">

<?= yii\authclient\widgets\
AuthChoice::widget(['baseAuthUrl' => ['site/auth'],

'popupMode' => false,
]) ?>

</div>
</div>

<p>Please fill out the following fields to login:</p>
...

</div>

6. You will see icons for the providers you've configured:

7. Try to authorize with the GitHub provider:

8. If successful, your callback will show authorized user attributes:

[
'login' => 'Name'
'id' => 0000000
'avatar_url' =>'https://avatars.githubusercontent.com/u/

0000000?v=3'
'gravatar_id' => ''
'url' => 'https://api.github.com/users/Name'
'html_url' => 'https://github.com/Name'
...
'name' => 'YourName'
'blog' =>site.com'
'email => mail@site.com'
...

]

9. Create your own authorization code in the onAuthSuccess method, like the example at
https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/quick-start.md.

How it works…

The extension provides OpenID, OAuth, and OAuth2 auth clients for your application.

https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/quick-start.md

The AuthChoice widget opens an authenticate page on a selected service's site, storing the auth
action URL. After authentication, the current service redirects users back while sending authentication
data via a POST-request. AuthAction receives the request and calls the corresponding callback.

You can use any existing client or create your own one.

See also
• To get more information about extension usage, refer to:

◦ https://github.com/yiisoft/yii2-authclient/tree/master/docs/guide
◦ http://www.yiiframework.com/doc-2.0/ext-authclient-index.html

• To learn more about OpenID, OAuth, and OAuth2 authentication technologies, refer to:
◦ http://openid.net
◦ http://oauth.net

https://github.com/yiisoft/yii2-authclient/tree/master/docs/guide
http://www.yiiframework.com/doc-2.0/ext-authclient-index.html
http://openid.net
http://oauth.net

SwiftMailer e-mail library
Many web applications need to send notifications and confirm client actions by e-mail for security
reasons. The Yii2 framework provides a wrapper, yiisoft/yii2-swiftmailer, for the
established library SwiftMailer.

Getting ready

Create a new application by using composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

Both basic and advanced applications contain this extension out of the box.

How to do it…

Now we will try to send any kind of e-mails from our own application.

Sending plain text e-mails

1. Set the mailer configuration into the config/console.php file:

'components' => [
// ...
'mailer' => [

'class' => 'yii\swiftmailer\Mailer',
'useFileTransport' => true,

],
// ...

],

2. Create a test console controller, MailController, with the following code:

<?php

namespace app\commands;

use yii\console\Controller;
use Yii;

class MailController extends Controller
{

public function actionSend()
{

Yii::$app->mailer->compose()
->setTo('to@yii-book.app')
->setFrom(['from@yii-book.app' => Yii::$app->name])
->setSubject('My Test Message')

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

->setTextBody('My Text Body')
->send();

}
}

3. Run the following console command:

php yii mail/send

4. Examine your runtime/mail directory. It should contain files with your mails.

Note

Note: Mail files contain messages in the special e-mail source format, compatible with any
mailing software. You can open this field as a plain text too.

5. Set the useFileTransport parameter as false or remove this string from the configuration:

'mailer' => [
'class' => 'yii\swiftmailer\Mailer',

],

Then put your real e-mail ID into the setTo() method:

->setTo('my@real-email.com')

6. Run the console command again:

php yii mail/send

7. Check your inbox directory.

Note

Note: SwiftMailer uses a standard PHP function, mail(), for sending mails by default. Please check
that your server is correctly configured for sending mails via the mail() function.

Many mail systems reject mails without DKIM and SPF signatures (sent by the mail() function as
example) or put them into a Spam folder.

Sending HTML content

1. Check that your application contains the mail/layouts/html.php file and add the
mail/layouts/text.php file with the following content:

<?php
/* @var $this \yii\web\View */
/* @var $message \yii\mail\MessageInterface */
/* @var $content string */
?>
<?php $this->beginPage() ?>

<?php $this->beginBody() ?>
<?= $content ?>
<?php $this->endBody() ?>
<?php $this->endPage() ?>

2. Create your own view in the mail/message-html.php file:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $name string */
?>

<p>Hello, <?= Html::encode($name) ?>!</p>

Create a mail/message-text.php file with the same content, but without HTML tags:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $name string */
?>

Hello, <?= Html::encode($name) ?>!

3. Create a console controller, MailController, with the following code:

<?php

namespace app\commands;

use yii\console\Controller;
use Yii;

class MailController extends Controller
{

public function actionSendHtml()
{

$name = 'John';

Yii::$app->mailer->compose('message-html',['name'
=> $name])

->setTo('to@yii-book.app')
->setFrom(['from@yii-book.app' => Yii::$app->name])
->setSubject('My Test Message')
->send();

}

public function actionSendCombine()
{

$name = 'John';

Yii::$app->mailer->compose(['html' =>
'message-html', 'text' => 'message-text'], [
'name' => $name,
])
->setTo('to@yii-book.app')
->setFrom(['from@yii-book.app'

=> Yii::$app->name])
->setSubject('My Test Message')
->send();

}
}

4. Run the following console commands:

php yii mail/send-html
php yii mail/se
nd-combine

Working with SMTP transport

1. Set the transport parameter for the mailer component like this:

'mailer' => [
'class' => 'yii\swiftmailer\Mailer',
'transport' => [

'class' => 'Swift_SmtpTransport',
'host' => 'smtp.gmail.com',
'username' => 'username@gmail.com',
'password' => 'password',
'port' => '587',
'encryption' => 'tls',

],
],

2. Write and run the following code:

Yii::$app->mailer->compose()
->setTo('to@yii-book.app')
->setFrom('username@gmail.com')
->setSubject('My Test Message')
->setTextBody('My Text Body')
->send();

3. Check your Gmail inbox.

Note

Note: Gmail automatically rewrites the From field to your default profile e-mail ID, but other e-mail
systems do not do the same. Always use an identical e-mail ID in the transport configuration and in the
setFrom() method for passing antispam policies for other e-mail systems.

Attaching file and embedding images

Add the corresponding method to attach any file to your mail:

class MailController extends Controller
{

public function actionSendAttach()
{

Yii::$app->mailer->compose()
->setTo('to@yii-book.app')
->setFrom(['from@yii-book.app' => Yii::$app->name])
->setSubject('My Test Message')
->setTextBody('My Text Body')
->attach(Yii::getAlias('@app/README.md'))
->send();

}
}

Or use the embed() method in your e-mail view file to paste an image in your e-mail content:

<img src="<?= $message->embed($imageFile); ?>">

It automatically attaches an image file and inserts its unique identifier.

How it works…

The wrapper implements the base \yii\mail\MailerInterface. Its compose() method
returns a message object (an implementation of \yii\mail\MessageInterface).

You can manually set plain text and HTML contents with the help of methods setTextBody() and
setHtmlBody(), or you can pass your view and view parameters into the compose() method. In
this case, the mailer calls the \yii\web\View::render() method for rendering corresponding
content.

The useFileTransport parameter stores mails in files instead of real sending. It is helpful for local
development and application testing.

See also
• For more information about the yii2-swiftmailer extension, visit the following guides:

◦ http://www.yiiframework.com/doc-2.0/guide-tutorial-mailing.html
◦ http://www.yiiframework.com/doc-2.0/ext-swiftmailer-index.html

• In order to learn more about the original SwiftMailer library, refer to the following URLs:
◦ http://swiftmailer.org/docs/introduction.html
◦ https://github.com/swiftmailer/swiftmailer

http://www.yiiframework.com/doc-2.0/guide-tutorial-mailing.html
http://www.yiiframework.com/doc-2.0/ext-swiftmailer-index.html
http://swiftmailer.org/docs/introduction.html
https://github.com/swiftmailer/swiftmailer

Faker fixture data generator
The fzaninotto/faker is a PHP library that generates fake data of many kinds: names, phones,
addresses, random strings and numbers, and so on. It can help you to generate many randomized records
for performance and logic testing. You can extend your supported types collection by writing your own
formatters and generators.

In the Yii2 application skeletons, the yiisoft/yii2-faker wrapper is included in the require-
dev section of the composer.json file and is used for testing code (Chapter 11, Testing). This
wrapper provides the FixtureController console for use in your console application and test
environment.

Getting ready

Create a new application by using composer as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Open the directory tests/codeception/templates and add the fixture template file,

users.txt:

<?php
/**
* @var $faker \Faker\Generator
* @var $index integer
*/

return [
'name' => $faker->firstName,
'phone' => $faker->phoneNumber,
'city' => $faker->city,
'about' => $faker->sentence(7, true),
'password' => Yii::$app->getSecurity()
->generatePasswordHash('password_' . $index),
'auth_key' => Yii::$app->getSecurity()
->generateRandomString(),

];

2. Run the test console yii command:

php tests/codeception/bin/yii fixture/generate users --count=2

3. Confirm migration generation.
4. Check that the tests/codeception/fixtures directory contains the new users.php

file, with autogenerated data like this:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

return [
[

'name' => 'Isadore',
'phone' => '952.877.8545x190',
'city' => 'New Marvinburgh',
'about' => 'Ut quidem voluptatem itaque veniam voluptas

dolores.',
'password' => '$2y$13$Fi3LOl/sKlomUH.DLgqBkOB/

uCLmgCoPPL1KXiW0hffnkrdkjCzAC',
'auth_key' => '1m05hlgaAG8zfm0cyDyoRGMkbQ9W6hj1',

],
[

'name' => 'Raleigh',
'phone' => '1-655-488-3585x699',
'city' => 'Reedstad',
'about' => 'Dolorem quae impedit tempore libero

doloribus nobis dicta tempora facere.',
'password' => '$2y$13$U7Qte5Y1jVLrx/

pnhwdwt.1uXDegGXuNVzEQyUsb65WkBtjyjUuYm',
'auth_key' => 'uWWJDgy5jNRk6KjqpxS5JuPv0OHearqE',

],
],

Working with your own data types

1. Create your own provider with your custom value generating logic:

<?php
namespace tests\codeception\faker\providers;

use Faker\Provider\Base;

class UserStatus extends Base
{

public function userStatus()
{

return $this->randomElement([0, 10, 20, 30]);
}

}

2. Add the provider into the providers list in the /tests/codeception/config/
config.php file:

return [
'controllerMap' => [

'fixture' => [
'class' => 'yii\faker\FixtureController',
'fixtureDataPath' => '@tests/codeception/fixtures',

'templatePath' => '@tests/codeception/templates',
'namespace' => 'tests\codeception\fixtures',
'providers' => [

'tests\codeception\faker\providers\UserStatus',
],

],
],
// ...

];

3. Add the status field into your fixture template file:

<?php
/**
* @var $faker \Faker\Generator
* @var $index integer
*/

return [
'name' => $faker->firstName,
'status' => $faker->userStatus,

];

4. Regenerate fixtures with the console command:

php tests/codeception/bin/yii fixture/generate users --count=2

5. Check that the generated code in the fixtures/users.php file contains your custom
values:

return [
[

'name' => 'Christelle',
'status' => 30,

],
[

'name' => 'Theo',
'status' => 10,

],
];

How it works…

The yii2-faker extension contains a console generator (which uses your templates for generating
fixture data files) and gives you a prepared instance of the original Faker object. You can generate all
or specific fixtures and can pass custom counts or language in console arguments.

Note

Note: Be careful with the existing test files if your tests use these fixtures, because autogenerating
totally rewrites old data.

See also
• For the source code and more information about the extension, see:

◦ https://github.com/yiisoft/yii2-faker/tree/master/docs/guide
◦ http://www.yiiframework.com/doc-2.0/ext-faker-index.html

• And to learn more about the original library, refer to:
◦ https://github.com/fzaninotto/Faker
◦ Chapter 11, Testing

https://github.com/yiisoft/yii2-faker/tree/master/docs/guide
http://www.yiiframework.com/doc-2.0/ext-faker-index.html
https://github.com/fzaninotto/Faker

Imagine library
Imagine is an OOP library for image manipulation. It allows you to crop, resize, and perform other
manipulations with different images with the help of GD, Imagic, and Gmagic PHP extensions.
Yii2-Imagine is a lightweight static wrapper for the library.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install the extension with the following command:

composer require yiisoft/yii2-imagine

How to do it…

In your projects, you can use the extension in two ways:

• Using it as a factory
• Using inner methods

Using it as a factory

You can use an instance of the original Imagine library class:

$imagine = new Imagine\Gd\Imagine();
// or
$imagine = new Imagine\Imagick\Imagine();
// or
$imagine = new Imagine\Gmagick\Imagine();

However, this depends on the existing corresponding PHP extensions in your system. You can use the
getImagine() method:

$imagine = \yii\imagine\Image::getImagine();

Using inner methods

You can use the crop(), thumbnail(), watermark(), text(), and frame() methods for
common high-level manipulations like this:

<?php
use yii\imagine\Image;
Image::crop('path/to/image.jpg', 100, 100,

ManipulatorInterface::THUMBNAIL_OUTBOUND)
->save('path/to/destination/image.jpg', ['quality' => 90]);

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

See the signatures of all supported methods in the source code of the \yii\imagine\BaseIm age
class for more details.

How it works…

The extension prepares user data, creates an original Imagine object, and calls the corresponding method
on it. All methods return this original image object. You can continue to manipulate the image or save
the result to your disk.

See also
• For more information about the extension, refer to the following URLs:

◦ http://www.yiiframework.com/doc-2.0/ext-imagine-index.html
◦ https://github.com/yiisoft/yii2-imagine

• For information about the original library, refer to http://imagine.readthedocs.org/en/latest/

http://www.yiiframework.com/doc-2.0/ext-imagine-index.html
https://github.com/yiisoft/yii2-imagine
http://imagine.readthedocs.org/en/latest/

MongoDB driver
This extension provides the MongoDB integration for the Yii2 framework and allows you to work with
MongoDB collection's records via the ActiveRecord-style model.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install MongoDB using the correct installation process from https://docs.mongodb.org/manual/

installation/ for your system.
3. Install the php5-mongo PHP extension.
4. Install the component with the following command:

composer require yiisoft/yii2-mongodb

How to do it…
1. First of all, create the new MongoDB database. Run it in the mongo-client shell and type

the database name:

mongo
> use mydatabase

2. Add this connection information to your components config section:

return [
// ...
'components' => [

// ...
'mongodb' => [

'class' => '\yii\mongodb\Connection',
'dsn' =>

'mongodb://localhost:27017/mydatabase',
],

],
];

3. Add the new console controller to your console configuration file:

return [
// ...
'controllerMap' => [

'mongodb-migrate' =>
'yii\mongodb\console\controllers\MigrateController'

],
];

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/

4. Create the new migration with the shell command:

php yii mongodb-migrate/create create_customer_collection

5. Type the following code into the up() and down() methods:

<?php

use yii\mongodb\Migration;

class m160201_102003_create_customer_collection extends
Migration

{
public function up()
{

$this->createCollection('customer');
}

public function down()
{

$this->dropCollection('customer');
}

}

6. Apply the migration:

php yii mongodb-migrate/up

7. Put the MongoDB debug panel and models generator into your configuration:

if (YII_ENV_DEV) {
// configuration adjustments for 'dev' environment
$config['bootstrap'][] = 'debug';
$config['modules']['debug'] = [

'class' => 'yii\debug\Module',
'panels' => [

'mongodb' => [
'class' => 'yii\mongodb\debug\MongoDbPanel',

],
],

];

$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = [

'class' => 'yii\gii\Module',
'generators' => [

'mongoDbModel' => [
'class' => 'yii\mongodb\gii\model\Generator'

]

],
];

}

8. Run the Gii generator:

9. Start the new MongoDB Model Generator to generate the new model for your own
collection:

10. Click the Preview and Generate buttons.
11. Check that you have the new model, app\models\Customer:

<?php

namespace app\models;

use Yii;
use yii\mongodb\ActiveRecord;

/**
* This is the model class for collection "customer".
*
* @property \MongoId|string $_id
* @property mixed $name
* @property mixed $email
* @property mixed $address
* @property mixed $status
*/

class Customer extends ActiveRecord
{

public static function collectionName()
{

return 'customer';
}

public function attributes()
{

return [
'_id',
'name',
'email',
'address',
'status',

];
}

public function rules()
{

return [
[['name', 'email', 'address', 'status'], 'safe']
];

}

public function attributeLabels()
{

return [
'_id' => 'ID',
'name' => 'Name',
'email' => 'Email',

'address' => 'Address',
'status' => 'Status',

];
}

}

12. Run Gii again and generate the CRUD:

13. Check that you have generated the CustomerController class and run the new customer
manager page:

14. You may create, update, and delete your customers' data right now.
15. Look for the Debug panel in the page footer:

16. You can see the total MongoDB query count and total execution time. Click on the count badge
and inspect the queries:

Basic usage

You may access databases and collections via the \yii\mongodb\Collection instance:

$collection =
Yii::$app->mongodb->getCollection('customer');$collection->insert(['n
ame' => 'John Smith', 'status' => 1]);

To perform the find queries, you should use \yii\mongodb\Query:

use yii\mongodb\Query;
$query = new Query;
// compose the query
$query->select(['name', 'status'])

->from('customer')
->limit(10);

// execute the query
$rows = $query->all();

Note

Note: The MongoDB document id ("_id" field) is not scalar, but an instance of the \MongoId class.

You must not care about the conversion from integer or string $id values to \MongoId, because query
builder converts it automatically:

$query = new \yii\mongodb\Query;
$row = $query->from('item')

->where(['_id' => $id]) // implicit typecast to \MongoId
->one();

To get the actual Mongo ID string, you should typecast the \MongoId instance to a string:

$query = new Query;

$row = $query->from('customer')->one();
var_dump($row['_id']); // outputs:
"object(MongoId)"var_dump((string)$row['_id']);

How it works…

The Query, ActiveQuery, and ActiveRecord classes of this extension extends yii\db\
QueryInterface and yii\db\BaseActiveRecord, and therefore they are compatible with the
built-in framework Query, ActiveQuery, and ActiveRecord classes.

You can use the yii\mongodb\ActiveRecord class for your models and the yii\mongodb\
ActiveQuery builder to retrieve your models and use them in your data provider:

use yii\data\ActiveDataProvider;
use app\models\Customer;
$provider = new ActiveDataProvider([

'query' => Customer::find(),
'pagination' => [

'pageSize' => 10,
]

]);

For general information on how to use Yii's ActiveRecord, please refer to the Chapter 3, ActiveRecord,
Model, and Database.

See also
• For more information about the extension, refer to the following URLs:

◦ https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide/README.md
◦ http://www.yiiframework.com/doc-2.0/ext-mongodb-index.html

• And for information about the original library, refer to:
◦ https://docs.mongodb.org/manual/

• For ActiveRecord usage refer to the Chapter 3, ActiveRecord, Model, and Database

https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide/README.md
http://www.yiiframework.com/doc-2.0/ext-mongodb-index.html
https://docs.mongodb.org/manual/

ElasticSearch engine adapter
This extension is an ActiveRecord-like wrapper for ElasticSearch full text search engine integration into
the Yii2 framework. It allows you to work with any model data and use the ActiveRecord pattern to
retrieve and store records in ElasticSearch collections.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install the ElasticSearch service found at https://www.elastic.co/downloads/elasticsearch.
3. Install the extension with the following command:

compose
r require yiisoft/yii2-elasticsearch

How to do it…

Set the new ElasticSearch connection in your application configuration:

return [
//....
'components' => [

'elasticsearch' => [
'class' => 'yii\elasticsearch\Connection',
'nodes' => [

['http_address' => '127.0.0.1:9200'],
// configure more hosts if you have a cluster

],
],

]
];

Using the Query class

You can use the Query class for the low-level querying of records from any collection:

use \yii\elasticsearch\Query;

$query = new Query;
$query->fields('id, name')

->from('myindex', 'users')
->limit(10);

$query->search();

You can also create a command and run it directly:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://www.elastic.co/downloads/elasticsearch

$command = $query->create
Command();
$rows = $command->search();

Using ActiveRecord

Using ActiveRecord is a common way to access your records. Just extend the yii\
elasticsearch\ActiveRecord class and implement the attributes() method to define the
attributes of your documents.

For example, you can write the Customer model:

class Buyer extends \yii\elasticsearch\ActiveRecord
{

public function attributes()
{

return ['id', 'name', 'address', 'registration_date'];
}
public function getOrders()
{

return $this->hasMany(Order::className(), ['buyer_id' =>
'id'])->orderBy('id');

}
}

Then write the Order model:

class Order extends \yii\elasticsearch\ActiveRecord
{

public function attributes()
{

return ['id', 'user_id', 'date'];
}

public function getBuyer()
{

return $this->hasOne(Customer::className(), ['id' =>
'buyer_id']);

}
}

You may override index() and type() to define the index and type this record represents.

The following is a usage example:

$buyer = new Buyer();
$buyer>primaryKey = 1; // it equivalent to $customer->id = 1;
$buyer>name = 'test';

$buyer>save();

$buyer = Buyer::get(1);

$buyer = Buyer::mget([1,2,3]);

$buyer = Buyer::find()->where(['name' => 'test'])->one();

You can use Query DSL for specific queries:

$result = Article::find()->query(["match" => ["title" =>
"yii"]])->all();

$query = Article::find()->query([
"fuzzy_like_this" => [

"fields" => ["title", "description"],
"like_text" => "Some search text",
"max_query_terms" => 12

]
]);
$query->all();

You can add facets to your search:

$query->addStatisticalFacet('click_stats', ['field' =>
'visit_count']);
$query->search();

Using the ElasticSearch DebugPanel

This extension contains a special panel for the yii2-debug module. It allows you to view all executed
queries. You can include this panel in your configuration file:

if (YII_ENV_DEV) {
// configuration adjustments for 'dev' environment
$config['bootstrap'][] = 'debug';
$config['modules']['debug'] = [

'class' => 'yii\debug\Module',
'panels' => [

'elasticsearch' => [
'class' => 'yii\elasticsearch\DebugPanel',

],
],

];

$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = 'yii\gii\Module';

}

How it works…

The extension provides a low-level command builder and high-level ActiveRecord implementation
for querying records from the ElasticSearch index.

The extension's ActiveRecord usage is very similar to the database ActiveRecord as described in
Chapter 3, ActiveRecord, Model, and Database, besides the join(), groupBy(), having(), and
union() ActiveQuery operators.

Note

Note: ElasticSearch limits the number of returned records to ten items by default. Take care with
limits if you use relations with the via() option.

See also
• For more information about the extension, see:

◦ https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md
◦ http://www.yiiframework.com/doc-2.0/ext-elasticsearch-index.html

• You can also visit the official extension site at https://www.elastic.co/products/elasticsearch.
• For more information about Query DSL, you can visit:

◦ http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-
query.html

◦ http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-flt-query.html
• For ActiveRecord usage refer to the Chapter 3, ActiveRecord, Model, and Database

https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md
http://www.yiiframework.com/doc-2.0/ext-elasticsearch-index.html
https://www.elastic.co/products/elasticsearch
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-flt-query.html

Gii code generator
This extension provides a web-based code generator called Gii for Yii 2 applications. You can use Gii to
quickly generate models, forms, modules, CRUD, and many more.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create a new migration with the shell command:

php yii migrate/create create_customer_table

3. Put the following code into the up() and down() methods:

use yii\db\Schema;
use yii\db\Migration;
class m160201_154207_create_customer_table extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions =
'CHARACTER SET utf8 COLLATE utf8_unicode_ci

ENGINE=InnoDB';
}
$this->createTable('{{%customer}}', [

'id' => Schema::TYPE_PK,
'name' => Schema::TYPE_STRING . ' NOT NULL',
'email' => Schema::TYPE_STRING . ' NOT NULL',
'address' => Schema::TYPE_STRING,

], $tableOptions);
}

public function down()
{

$this->dropTable('{{%customer}}');
}

}

4. Apply the migration:

php yii migrate/up

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

How to do it…

In your projects, you can use this extension in two ways:

• Working with GUI
• Working with CLI

Working with GUI

1. Check that your web configuration file contains the following code:

if (YII_ENV_DEV) {
$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = [

'class' => 'yii\gii\Module',
];

}

2. Your web/index.php file will define the development environment:

defined('YII_ENV') or define('YII_ENV', 'dev');

The previous configuration states that when in a development environment, the application
should include a module named gii, which is of the class yii\gii\Module.

By default, the module allows access from the IP address, 127.0.0.1. If you work from
another location, add your address in the allowedIPs property:

$config['modules']['gii'] = [
'class' => 'yii\gii\Module',
allowedIPs = ['127.0.0.1', '::1', '192.168.0.*'],

];

3. Go to the gii route of your application: http://localhost/index.php?r=gii.

4. Click on the Model Generator button and type your table name and model name in the form:

5. Click the Preview button. You must view the featured files list:

6. If you want to regenerate existing files, Gii will mark those in yellow:

7. In this case, you can view the difference between existing and new files and overwrite the target
if needed.

8. After all that, click the Generate button:

9. Check that the new class, \app\models\Customer, exists.
10. CRUD is an abbreviation for the four common tasks using data on most websites: Create, Read,

Update, and Delete. To create CRUD using Gii, select the CRUD Generator section. Specify
your model class and type the other fields:

11. Generate the new items:

12. After that, try to open the new controller:

You will see a data grid showing the customers in the database table. Try to create a new item. You may
sort the grid or filter it by entering filter conditions in the column headers.

Working with CLI

Gii also provides a console controller for code generation.

1. Check that your console configuration contains the Gii module settings:

return [
// ...
'modules' => [

'gii' => 'yii\gii\Module',
],
// ...

];

2. Run any shell command for help:

php yii help gii
php yii help gii/model

3. Type the following command to start the model generation process:

php yii gii/model --tableName=customer --modelClass=Customer
--useTablePrefix=1

4. Check that the new class, \app\models\Customer, exists.
5. Generate CRUD for your model:

php yii gii/crud --modelClass=app\\models\\Customer \
--searchModelClass=app\\models\\CustomerSearch \
--controllerClass=app\\controllers\\CustomerController

How it works…

Gii allows you to generate some standard code elements instead of manually typing. It provides web-
based and console interfaces to work with every generator.

See also
• For more information about the extension's usage, see:

◦ http://www.yiiframework.com/doc-2.0/guide-start-gii.html
◦ http://www.yiiframework.com/doc-2.0/ext-gii-index.html
◦ https://github.com/yiisoft/yii2-gii/tree/master/docs/guide

• For MongoDB integration refer to the Creating a widget recipe in Chapter 8, Extending Yii

http://www.yiiframework.com/doc-2.0/guide-start-gii.html
http://www.yiiframework.com/doc-2.0/ext-gii-index.html
https://github.com/yiisoft/yii2-gii/tree/master/docs/guide

Pjax jQuery plugin
Pjax is a widget that integrates the pjax jQuery plugin. All content that is wrapped by this widget will
be reloaded by AJAX without refreshing the current page. The widget also uses the HTML5 History
API to change the current URL in your browser's address line.

Getting ready

Create a new application by using composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

In the following example, you can see how you use Pjax with the yii\grid\GridView widget:

<?php
use yii\widgets\Pjax;

?>
<?php Pjax::begin(); ?>

<?= GridView::widget([...]); ?>
<?php Pjax::end(); ?>

Just wrap any code fragment in the Pjax::begin() and Pjax::end() calls.

This will render the following HTML code:

<div id="w1">
<div id="w2" class="grid-view">...</div>

</div>

<script type="text/javascript">jQuery(document).ready(function () {
jQuery(document).pjax("#w1 a", "#w1", {...});

});</script>

All the wrapped content with pagination and sorting links will be reloaded by AJAX.

Specifying a custom ID

Pjax gets page content from AJAX requests and then extracts its own DOM element with the same ID.
You can optimize page rendering performance by rendering content without layout, especially for Pjax
requests:

public function actionIndex()
{

$dataProvider = …;

if (Yii::$app->request->isPjax) {

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

return $this->renderPartial('_items', [
'dataProvider' => $dataProvider,

]);
} else {

return $this->render('index', [
'dataProvider' => $dataProvider,

]);
}

}

By default, the yii\base\Widget::getId method increments identifiers, and therefore widgets,
on any page that has incremented attributes:

<nav id="w0">...</nav> // Main navigation
<ul id="w1">... // Breadcrumbs widget
<div id="w2">...</div> // Pjax widget

To render using the renderPartial() or renderAjax() methods, without rendering the layout,
your own page will have only one widget with the number 0:

<div id="w0">...</div> // Pjax widget

In the result, your own widget will not have found its own block with the w2 selector at the next request.

However, Pjax will find the same block with the w2 selector in the Ajax response. In the result, your
own widget will not have found the block with the w2 selector at the next request.

Therefore, you must manually specify a unique identifier for all your Pjax widgets to avoid different
conflicts:

<?php Pjax::begin(['id' => 'countries']) ?>
<?= GridView::widget([...]); ?>

<?php Pjax::end() ?>

Using ActiveForm

By default, Pjax works only with links in the wrapped block. If you want to use it with the
ActiveForm widget, you must use the data-pjax option of the form:

<?php
use \yii\widgets\Pjax
use \yii\widgets\ActiveForm;

<?php yii\widgets\Pjax::begin(['id' => 'my-block']) ?>
<?php $form = ActiveForm::begin(['options' => [

'data-pjax' => true,
]]); ?>

<?= $form->field($model, 'name') ?>

<?php ActiveForm::end(); ?>
<?php Pjax::end(); ?>

It adds corresponding listeners on the form submitting event.

You can also use the $formSelector option of the Pjax widget to specify which form submission
may trigger pjax.

Working with the client-side script

You can subscribe to container events:

<?php $this->registerJs('
$("#my-block").on("pjax:complete", function() {

alert('Pjax is completed');
});

'); ?>

Or, you can reload the container manually by using its selector:

<?php $this->registerJs('
$("#my-button").on("click", function() {

$.pjax.reload({container:"#my-block"});
});

'); ?>

How it works…

Pjax is a simple wrapper for any code fragment. It subscribes to click events of all links in the fragment
and replaces the whole page, reloading it into Ajax calls. We can use the data-pjax attribute for
wrapped forms, and any form submissions will trigger an Ajax request.

The widget will load and update on-the-fly widget body content without, loading the layout resources
(JS, CSS).

You may configure the $linkSelector of the widget to specify which links should trigger Pjax, and
configure $formSelector to specify which form submission may trigger Pjax.

You may disable Pjax for a specific link inside the container by adding the data-pjax="0" attribute
to this link.

See also
• For more information about the extension's usage, see:

◦ http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html
◦ https://github.com/yiisoft/jquery-pjax

• For more information about client-side options and methods, refer to https://github.com/yiisoft/
jquery-pjax#usage

http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html
https://github.com/yiisoft/jquery-pjax
https://github.com/yiisoft/jquery-pjax#usage
https://github.com/yiisoft/jquery-pjax#usage

Redis database driver
This extension allows you to use Redis key-value storage in any project on the Yii2 framework. It
contains the Cache and Session storage handlers, as well as the extension, which implements the
ActiveRecord pattern for access to the Redis database records.

Getting ready
1. Create a new application by using composer, as described in the official guide at

http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install the storage: http://redis.io.
3. Install all migrations with the following command:

composer require yiisoft/yii2-redis

How to do it…

First of all, configure the Connection class in your configuration file:

return [
//....
'components' => [

'redis' => [
'class' => 'yii\redis\Connection',
'hostname' => 'localhost',
'port' => 6379,
'database' => 0,

],
]

];

Direct usage

For low-level working with Redis commands, you can use the executeCommand method of the
connection component:

Yii::$app->redis->executeCommand('hmset', ['test_collection',
'key1', 'val1', 'key2', 'val2']);

You can also use simplified shortcuts instead of executeCommand calls:

Yii::$app->redi
s->hmset('test_collection', 'key1', 'val1', 'key2', 'val2')

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://redis.io

Using ActiveRecord

For access to Redis records via the ActiveRecord pattern, your record class needs to extend from the
yii\redis\ActiveRecord base class and implement the attributes() method:

class Customer extends \yii\redis\ActiveRecord
{

public function attributes()
{

return ['id', 'name', 'address', 'registration_date'];
}
public function getOrders()
{

return $this->hasMany(Order::className(), ['customer_id' =>
'id']);

}
}

A primary key of any model can be defined via the primaryKey() method, which defaults to id if
not specified. The primary key needs to be placed in the attribute list if you do not manually specify it in
the primaryKey() method.

The following is a usage example:

$customer = new Customer();
$customer->name = 'test';
$customer->save();
echo $customer->id; // id will automatically be incremented if not
set explicitly
// find by query
$customer = Customer::find()->where(['name' => 'test'])->one();

How it works…

The extension provides a Connection component for low-level access to Redis storage records.

You can also use an ActiveRecord-like model with a limited set of methods (where(), limit(),
offset(), and indexBy()). Other methods do not exist because Redis does not support SQL
queries.

There are no tables in Redis, so you cannot define via relations via a junction table name. You can only
define many-to-many relations via other hasMany relations.

For general information on how to use Yii's ActiveRecord, please refer to Chapter 3, ActiveRecord,
Model, and Database.

See also
• For more information about the extension's usage, see:

◦ https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md
◦ http://www.yiiframework.com/doc-2.0/ext-redis-index.html

• For information about Redis key-value storage, refer: http://redis.io/documentation
• Chapter 3, ActiveRecord, Model, and Database for ActiveRecord usage

https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md
http://www.yiiframework.com/doc-2.0/ext-redis-index.html
http://redis.io/documentation

Chapter 8. Extending Yii
In this chapter, we will cover the following topics:

• Creating helpers
• Creating model behaviors
• Creating components
• Creating reusable controller actions
• Creating reusable controllers
• Creating a widget
• Creating CLI commands
• Creating filters
• Creating modules
• Creating a custom view renderer
• Creating a multilanguage application
• Making extensions distribution-ready

Introduction
In this chapter, we will show you not only how to implement your own Yii extension, but also how to
make your extension reusable and useful for the community. In addition, we will focus on many things
you should do in order to make your extension as efficient as possible.

Creating helpers
There are a lot of built-in framework helpers such as StringHelper in the yii\helpers
namespace. These contain sets of helpful static methods for manipulating strings, files, arrays, and other
subjects.

In many cases, for additional behavior you can create a own helper and put any static function into one.
For example, we implement the number helper in this recipe.

Getting ready

Create a new yii2-app-basic application using the composer package manager as described in the
official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Create the helpers directory in your project and write the NumberHelper class:

<?php
namespace app\helpers;

class NumberHelper
{

public static function format($value, $decimal = 2)
{

return number_format($value, $decimal, '.', ',');
}

}

2. Add the actionNumbers method to SiteController:

<?php
...
class SiteController extends Controller
{

…

public function actionNumbers()
{

return $this->render('numbers', ['value' =>
18878334526.3]);

}
}

3. Add the views/site/numbers.php view:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

<?php
use app\helpers\NumberHelper;
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $value float */

$this->title = 'Numbers';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-numbers">

<h1><?= Html::encode($this->title) ?></h1>

<p>
Raw number:

<?= $value ?>

</p>
<p>

Formatted number:

<?= NumberHelper::format($value) ?>

</p>
</div>

4. Open the action. You should see the following result:

In other cases, you can specify another count of decimal numbers. Observe the following example:

NumberHelper::format($value, 3)

How it works…

Any helper in Yii2 is just a set of functions, implemented as static methods in the corresponding classes.

You can use a helper for implementing any different formats of output, for manipulations with values of
any variables, and for other cases.

Note

Usually, static helpers are lightweight clean functions with a small count of arguments. Avoid putting
your business logic and other complicated manipulations into helpers. Use widgets or other components
instead of helpers in other cases.

See also

For more information about helpers, refer to:

http://www.yiiframework.com/doc-2.0/guide-helper-overview.html.

For examples of built-in helpers, refer to sources in the helpers directory of framework. For the
framework, refer to:

https://github.com/yiisoft/yii2/tree/master/framework/helpers.

http://www.yiiframework.com/doc-2.0/guide-helper-overview.html
https://github.com/yiisoft/yii2/tree/master/framework/helpers

Creating model behaviors
There are many similar solutions in today's web applications. Leading products such as Google's Gmail
are defining nice UI patterns. One of these is soft delete. Instead of a permanent deletion with tons of
confirmations, Gmail allows us to immediately mark messages as deleted and then easily undo it. The
same behavior can be applied to any object such as blog posts, comments, and so on.

Let's create a behavior that will allow marking models as deleted, restoring models, selecting not yet
deleted models, deleted models, and all models. In this recipe, we'll follow a test-driven development
approach to plan the behavior and test if the implementation is correct.

Getting ready
1. Create a new yii2-app-basic application using the composer as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create two databases for working and for tests.
3. Configure Yii to use the first database in your primary application in config/db.php. Make

sure the test application uses the second database in tests/codeception/config/
config.php.

4. Create a new migration:

<?php
use yii\db\Migration;

class m160427_103115_create_post_table extends Migration
{

public function up()
{

$this->createTable('{{%post}}', [
'id' => $this->primaryKey(),
'title' => $this->string()->notNull(),
'content_markdown' => $this->text(),
'content_html' => $this->text(),

]);
}

public function down()
{

$this->dropTable('{{%post}}');
}

}

5. Apply the migration to both the working and test databases:

./yii migrate
tests/codeception/bin/yii migrate

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

6. Create the Post model:

<?php
namespace app\models;

use app\behaviors\MarkdownBehavior;
use yii\db\ActiveRecord;

/**
* @property integer $id
* @property string $title
* @property string $content_markdown
* @property string $content_html
*/

class Post extends ActiveRecord
{

public static function tableName()
{

return '{{%post}}';
}

public function rules()
{

return [
[['title'], 'required'],
[['content_markdown'], 'string'],
[['title'], 'string', 'max' => 255],

];
}

}

How to do it…

Let's prepare a test environment first starting with defining fixtures for the Post model. Create the
tests/codeception/unit/fixtures/PostFixture.php file:

<?php
namespace app\tests\codeception\unit\fixtures;

use yii\test\ActiveFixture;

class PostFixture extends ActiveFixture
{

public $modelClass = 'app\models\Post';
public $dataFile = '@tests/codeception/unit/fixtures/data/

post.php';
}

1. Add a fixture data file to tests/codeception/unit/fixtures/data/post.php:

<?php
return [

[
'id' => 1,
'title' => 'Post 1',
'content_markdown' => 'Stored *markdown* text 1',
'content_html' => "<p>Stored markdown text

1</p>\n",
],

];

2. Then, we need to create a test case, tests/codeception/unit/
MarkdownBehaviorTest.php:

<?php
namespace app\tests\codeception\unit;

use app\models\Post;
use app\tests\codeception\unit\fixtures\PostFixture;
use yii\codeception\DbTestCase;

class MarkdownBehaviorTest extends DbTestCase
{

public function testNewModelSave()
{

$post = new Post();
$post->title = 'Title';
$post->content_markdown = 'New *markdown* text';

$this->assertTrue($post->save());
$this->assertEquals("<p>New markdown

text</p>\n", $post->content_html);
}

public function testExistingModelSave()
{

$post = Post::findOne(1);

$post->content_markdown = 'Other *markdown* text';
$this->assertTrue($post->save());

$this->assertEquals("<p>Other markdown
text</p>\n", $post->content_html);

}

public function fixtures()
{

return [
'posts' => [

'class' => PostFixture::className(),
]

];
}

}

3. Run the unit tests:

codecept run unit MarkdownBehaviorTest
Ensure that tests has not passed:
Codeception PHP Testing Framework v2.0.9
Powered by PHPUnit 4.8.27 by Sebastian Bergmann and
contributors.

Unit Tests (2)
--

Trying to test ...
MarkdownBehaviorTest::testNewModelSave Error
Trying to test ...
MarkdownBehaviorTest::testExistingModelSave Error
--

Time: 289 ms, Memory: 16.75MB

4. Now we need to implement behavior, attach it to the model, and make sure the test passes.
Create a new directory, behaviors. Under this directory, create a MarkdownBehavior
class:

<?php
namespace app\behaviors;

use yii\base\Behavior;
use yii\base\Event;
use yii\base\InvalidConfigException;
use yii\db\ActiveRecord;
use yii\helpers\Markdown;

class MarkdownBehavior extends Behavior
{

public $sourceAttribute;

public $targetAttribute;

public function init()
{

if (empty($this->sourceAttribute) ||
empty($this->targetAttribute)) {

throw new InvalidConfigException('Source and target
must be set.');

}
parent::init();

}

public function events()
{

return [
ActiveRecord::EVENT_BEFORE_INSERT => 'onBeforeSave',
ActiveRecord::EVENT_BEFORE_UPDATE => 'onBeforeSave',

];
}

public function onBeforeSave(Event $event)
{

if
($this->owner->isAttributeChanged($this->sourceAttribute)) {

$this->processContent();
}

}

private function processContent()
{

$model = $this->owner;
$source = $model->{$this->sourceAttribute};
$model->{$this->targetAttribute} =

Markdown::process($source);
}

}

5. Let's attach the behavior to the Post model:

class Post extends ActiveRecord
{

...

public function behaviors()
{

return [
'markdown' => [

'class' => MarkdownBehavior::className(),

'sourceAttribute' => 'content_markdown',
'targetAttribute' => 'content_html',

],
];

}
}

6. Run the test and make sure it passes:

Codeception PHP Testing Framework v2.0.9
Powered by PHPUnit 4.8.27 by Sebastian Bergmann and
contributors.

Unit Tests (2)
--

Trying to test ...
MarkdownBehaviorTest::testNewModelSave Ok
Trying to test ...
MarkdownBehaviorTest::testExistingModelSave Ok
--

Time: 329 ms, Memory: 17.00MB

7. That's it. We've created a reusable behavior and can use it for all future projects by just
connecting it to a model.

How it works…

Let's start with the test case. Since we want to use a set of models, we are defining fixtures. A fixture set
is put into the "database" each time the test method is executed.

We prepare unit tests for specifying how the behavior must work:

• First, we are testing a processing of a new model content. The behavior must convert the
Markdown text from the source attribute to HTML and store the second one to the target
attribute.

• Second, we are testing to update the content of the existing model. After changing the
Markdown content and saving the model, we must get the updated HTML content.

Now let's move to the interesting implementation details. In behavior, we can add our own methods,
which will be mixed into the model that the behavior is attached to. Also, we can subscribe to the owner
component events. We are using it to add an own listener:

public function events()
{

return [

ActiveRecord::EVENT_BEFORE_INSERT => 'onBeforeSave',
ActiveRecord::EVENT_BEFORE_UPDATE => 'onBeforeSave',

];
}

Now we can implement this listener:

public function onBeforeSave(Event $event)
{

if ($this->owner->isAttributeChanged($this->sourceAttribute))
{

$this->processContent();
}

}

In all the methods, we can use the owner property to get the object the behavior is attached to. In
general, we can attach any behavior to our models, controllers, applications, and other components that
extend the yii\base\Component class. Also, we can attach one behavior repeatedly to the model
for processing different attributes:

class Post extends ActiveRecord
{

...

public function behaviors()
{

return [
[

'class' => MarkdownBehavior::className(),
'sourceAttribute' => 'description_markdown',
'targetAttribute' => 'description_html',

],
[

'class' => MarkdownBehavior::className(),
'sourceAttribute' => 'content_markdown',
'targetAttribute' => 'content_html',

],
];

}
}

Besides, we can extend the yii\base\AttributeBehavior class like yii\behaviors\
TimestampBehavior for updating specified attributes for any events.

See also

To learn more about behaviors and events, refer to the following pages:

• http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html
• http://www.yiiframework.com/doc-2.0/guide-concept-events.html

For more information about the Markdown syntax, refer to http://daringfireball.net/projects/markdown/.

Also, refer to the Making extensions distribution-ready recipe of this chapter.

http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html
http://www.yiiframework.com/doc-2.0/guide-concept-events.html
http://daringfireball.net/projects/markdown/

Creating components
If you have some code that looks like it can be reused but you don't know if it's a behavior, widget, or
something else, most probably it's a component. A component should be inherited from the yii\
base\Component class. Later on, the component can be attached to the application and configured
using the components section of the configuration file. That's the main advantage compared with
using just a plain PHP class. Additionally, we are getting behavior, event, getter, and setter support.

For our example, we'll implement a simple Exchange application component that will be able to get
currency rates from the http://fixer.io site, attach it to the application, and use it.

Getting ready

Create a new yii2-app-basic application using the composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

For getting the currency rates, our component should send a HTTP GET query to a service URL such as
http://api.fixer.io/2016-05-14?base=USD.

The service must return all supported rates on the nearest working day:

{
"base":"USD",
"date":"2016-05-13",
"rates": {

"AUD":1.3728,
"BGN":1.7235,
...
"ZAR":15.168,
"EUR":0.88121

}
}

The component should extract needle currency from the response in JSON format and return a target
rate:

1. Create the components directory in your application structure.
2. Create the component class example with the following interface:

<?php
namespace app\components;

use yii\base\Component;

class Exchange extends Component

http://fixer.io
http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://api.fixer.io/2016-05-14?base=USD

{
public function getRate($source, $destination, $date = null)
{

}
}

3. Implement the component functional:

<?php
namespace app\components;

use yii\base\Component;
use yii\base\InvalidConfigException;
use yii\base\InvalidParamException;
use yii\caching\Cache;
use yii\di\Instance;
use yii\helpers\Json;

class Exchange extends Component
{

/**
* @var string remote host
*/
public $host = 'http://api.fixer.io';
/**
* @var bool cache results or not
*/
public $enableCaching = false;
/**
* @var string|Cache component ID
*/
public $cache = 'cache';

public function init()
{

if (empty($this->host)) {
throw new InvalidConfigException('Host must be

set.');
}
if ($this->enableCaching) {

$this->cache = Instance::ensure($this->cache,
Cache::className());

}
parent::init();

}

public function getRate($source, $destination, $date = null)
{

$this->validateCurrency($source);
$this->validateCurrency($destination);
$date = $this->validateDate($date);
$cacheKey = $this->generateCacheKey($source,

$destination, $date);
if (!$this->enableCaching || ($result =

$this->cache->get($cacheKey)) === false) {
$result = $this->getRemoteRate($source,

$destination, $date);
if ($this->enableCaching) {

$this->cache->set($cacheKey, $result);
}

}
return $result;

}

private function getRemoteRate($source, $destination, $date)
{

$url = $this->host . '/' . $date . '?base=' . $source;
$response = Json::decode(file_get_contents($url));
if (!isset($response['rates'][$destination])) {

throw new \RuntimeException('Rate not found.');
}
return $response['rates'][$destination];

}

private function validateCurrency($source)
{

if (!preg_match('#^[A-Z]{3}$#s', $source)) {
throw new InvalidParamException('Invalid currency

format.');
}

}

private function validateDate($date)
{

if (!empty($date) &&
!preg_match('#\d{4}\-\d{2}-\d{2}#s', $date)) {

throw new InvalidParamException('Invalid date
format.');

}
if (empty($date)) {

$date = date('Y-m-d');
}
return $date;

}

private function generateCacheKey($source, $destination,
$date)

{
return [__CLASS__, $source, $destination, $date];

}
}

4. Attach the component to your config/console.php or config/web.php configuration
files:

'components' => [
'cache' => [

'class' => 'yii\caching\FileCache',
],
'exchange' => [

'class' => 'app\components\Exchange',
'enableCaching' => true,

],
// ...
db' => $db,

],

5. Right now, we can use a new component directly or via the get method:

echo \Yii::$app->exchange->getRate('USD', 'EUR');
echo \Yii::$app->get('exchange')->getRate('USD', 'EUR',
'2014-04-12');

6. Create a demonstration console controller:

<?php
namespace app\commands;

use yii\console\Controller;

class ExchangeController extends Controller
{

public function actionTest($currency, $date = null)
{

echo \Yii::$app->exchange->getRate('USD', $currency,
$date) . PHP_EOL;

}
}

7. Now try to run any command:

$./yii exchange/test EUR
> 0.90196

$./yii exchange/test EUR 2015-11-24
> 0.93888

$./yii exchange/test OTHER
> Exception 'yii\base\InvalidParamException' with message
'Invalid currency format.'

$./yii exchange/test EUR 2015/24/11
Exception 'yii\base\InvalidParamException' with message
'Invalid date format.'

$./yii exchange/test ASD
> Exception 'RuntimeException' with message 'Rate not found.'

As a result, you must see the rate values in the success cases or specific exceptions in the error ones.
Besides creating your own components, you can do more.

Overriding existing application components

Most of the time, there will be no need to create your own application components since other types of
extension such as widgets or behaviors, cover almost all types of reusable codes. However, overriding
core framework components is a common practice and can be used to customize the framework's
behavior for your specific needs without hacking into the core.

For example, to be able to format numbers using the Yii::app()->formatter-
>asNumber($value) method instead of our NumberHelper::format method from the
Creating helpers recipe, you can follow the next steps:

1. Extend the yii\i18n\Formatter component as follows:

<?php
namespace app\components;

class Formatter extends \yii\i18n\Formatter
{

public function asNumber($value, $decimal = 2)
{

return number_format($value, $decimal, '.', ',');
}

}

2. Override the class of the built-in formatter component:

'components' => [
// ...
formatter => [

'class' => 'app\components\Formatter,
],
// ...

],

3. Right now, we can use this method directly:

echo Yii::app()->formatter->asNumber(1534635.2, 3);

Alternatively, it can be used as a new format for the GridView and DetailView widgets:

<?= \yii\grid\GridView::widget([
'dataProvider' => $dataProvider,
'columns' => [

'id',
'created_at:datetime',
'title',
'value:number',

],
]) ?>

4. Also, you can extend every existing component without overwriting its source code.

How it works…

To be able to attach a component to an application, it can be extended from the yii\base\
Component class. Attaching is as simple as adding a new array to the components section of
configuration. There, a class value specifies the component's class, and all other values are set to a
component through the corresponding component's public properties and setter methods.

Implementation itself is very straightforward; we are wrapping the http://api.fixer.io calls into a
comfortable API with validators and caching. We can access our class by its component name using
Yii::$app. In our case, it will be Yii::$app->exchange.

See also

For official information about components, refer to http://www.yiiframework.com/doc-2.0/guide-
concept-components.html.

For the NumberHelper class sources, refer to the Creating helpers recipe.

http://api.fixer.io
http://www.yiiframework.com/doc-2.0/guide-concept-components.html
http://www.yiiframework.com/doc-2.0/guide-concept-components.html

Creating reusable controller actions
Common actions such as deleting the AR model by the primary key or getting data for AJAX
autocomplete could be moved into reusable controller actions and later attached to controllers as needed.

In this recipe, we will create a reusable delete action that will delete the specified AR model by its
primary key.

Getting ready
1. Create a new yii2-app-basic application using the composer as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Create a new database and configure it.
3. Create and apply the following migration:

<?php
use yii\db\Migration;

class m160308_093233_create_post_table extends Migration
{

public function up()
{

$this->createTable('{{%post}}', [
'id' => $this->primaryKey(),
'title' => $this->string()->notNull(),
'text' => $this->text()->notNull(),

]);
}

public function down()
{

$this->dropTable('{{%post}}');
}

}

4. Generate models for posts and comments using Gii.
5. Generate the standard CRUD controller app\controllers\PostController in Gii.
6. Ensure that CRUD properly works:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

7. In a success case, add a set of example posts.

How to do it…

Carry out the following steps:

1. Create the actions directory and add the DeleteAction standalone action:

<?php
namespace app\actions;

use yii\base\Action;
use yii\base\InvalidConfigException;
use yii\web\MethodNotAllowedHttpException;
use yii\web\NotFoundHttpException;

class DeleteAction extends Action
{

public $modelClass;
public $redirectTo = ['index'];

public function init()

{
if (empty($this->modelClass)) {

throw new InvalidConfigException('Empty model
class.');

}
parent::init();

}

public function run($id)
{

if (!\Yii::$app->getRequest()->getIsPost()) {
throw new MethodNotAllowedHttpException('Method not

allowed.');
}
$model = $this->findModel($id);
$model->delete();
return $this->controller->redirect($this->redirectTo);

}

/**
* @param $id
* @return \yii\db\ActiveRecord
* @throws NotFoundHttpException
*/
private function findModel($id)
{

$class = $this->modelClass;
if (($model = $class::findOne($id)) !== null) {

return $model;
} else {

throw new NotFoundHttpException('Page does not
exist.');

}
}

}

2. Now we need to attach it to the controllers/PostController.php controller. Remove
the controller's actionDelete and behaviors methods and attach your own action in the
action method:

<?php
namespace app\controllers;

use app\actions\DeleteAction;
use Yii;
use app\models\Post;
use app\models\PostSearch;

use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{

public function actions()
{

return [
'delete' => [

'class' => DeleteAction::className(),
'modelClass' => Post::className(),

],
];

}

public function actionIndex() { ... }

public function actionView($id) { ... }

public function actionCreate() { ... }

public function actionUpdate($id) { ... }

protected function findModel($id)
{

if (($model = Post::findOne($id)) !== null) {
return $model;

} else {
throw new NotFoundHttpException('The requested page

does not exist.');
}

}
}

3. That is it. Ensure that the delete operation still works correctly, and after the deletion, you will
be redirected to a corresponding index action.

How it works…

To create an external controller action, you need to extend your class from yii\base\Action. The
only mandatory method to implement is run. In our case, it accepts the parameter named $id from
$_GET using the automatic parameter binding feature of Yii and tries to delete a corresponding model.

To make it customizable, we've created two public properties configurable from the controller. These are
modelName, which holds the name of the model we are working with, and redirectTo that
specifies a route the user will be redirected to.

The configuration itself is done by implementing the actions method in your controller. There, you can
attach the action once or multiple times and configure its public properties.

You can access the original controller object via the controller property if you need it to redirect to
another action or render a specific view.

See also
• To learn more about controllers and actions refer, to http://www.yiiframework.com/doc-2.0/

guide-structure-controllers.html
• The Creating reusable controllers recipe in this chapter

http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html
http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html

Creating reusable controllers
In Yii, you can create reusable controllers. If you are creating a lot of applications or controllers that are
of the same type, moving all common code into a reusable controller will save you a lot of time.

In this recipe, we try to create a common CleanController, which will clear temporary directories
and flush cached data.

Getting ready

Create a new yii2-app-basic application using the composer as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

Carry out the following steps to create reusable controllers:

1. Create the cleaner directory and add the standalone CleanController controller:

<?php
namespace app\cleaner;

use Yii;
use yii\filters\VerbFilter;
use yii\helpers\FileHelper;
use yii\web\Controller;

class CleanController extends Controller
{

public $assetPaths = ['@app/web/assets'];
public $runtimePaths = ['@runtime'];
public $caches = ['cache'];

public function behaviors()
{

return [
'verbs' => [

'class' => VerbFilter::className(),
'actions' => [

'assets' => ['post'],
'runtime' => ['post'],
'cache' => ['post'],

],
],

];
}

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public function actionIndex()
{

return $this->render('@app/cleaner/views/index');
}

public function actionAssets()
{

foreach ((array)$this->assetPaths as $path) {
$this->cleanDir($path);
Yii::$app->session->addFlash(

'cleaner',
'Assets path "' . $path . '" is cleaned.'

);
}
return $this->redirect(['index']);

}

public function actionRuntime()
{

foreach ((array)$this->runtimePaths as $path) {
$this->cleanDir($path);
Yii::$app->session->addFlash(

'cleaner',
'Runtime path "' . $path . '" is cleaned.'

);
}
return $this->redirect(['index']);

}

public function actionCache()
{

foreach ((array)$this->caches as $cache) {
Yii::$app->get($cache)->flush();
Yii::$app->session->addFlash(

'cleaner',
'Cache "' . $cache . '" is cleaned.'

);
}
return $this->redirect(['index']);

}

private function cleanDir($dir)
{

$iterator = new \DirectoryIterator(Yii::getAlias($dir));
foreach($iterator as $sub) {

if(!$sub->isDot() && $sub->isDir()) {

FileHelper::removeDirectory($sub->getPathname());
}

}
}

}

2. Create the cleaner/views/index.php view file for the actionIndex method:

<?php
use yii\helpers\Html;
/* @var $this yii\web\View */
$this->title = 'Cleaner';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="clean-index">

<h1><?= Html::encode($this->title) ?></h1>

<?php if (Yii::$app->session->hasFlash('cleaner')): ?>
<?php foreach

((array)Yii::$app->session->getFlash('cleaner', []) as
$message): ?>

<div class="alert alert-success">
<?= $message ?>

</div>
<?php endforeach; ?>
<?php endif; ?>

<p>
<?= Html::a('Clear Caches', ['cache'], [

'class' => 'btn btn-primary',
'data' => [

'confirm' => 'Are you sure you want to clear
all cache data?',

'method' => 'post',
],

]) ?>
<?= Html::a('Clear Assets', ['assets'],

['class' => 'btn btn-primary',
'data' => [

'confirm' => 'Are you sure you want to
clear all temporary assets?',

'method' => 'post',
],

]) ?>
<?= Html::a('Clear Runtime', ['runtime'],

['class' => 'btn btn-primary',
'data' => [

'confirm' => 'Are you sure you want to
clear all runtime files?',

'method' => 'post',
],

]) ?>
</p>

</div>

3. Attach the controller to application via the controllerMap section of the config/
web.php configuration file:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'controllerMap' => [

'clean' => 'app\cleaner\CleanController',
],
'components' => [

...
]
...

];

4. Add a new item to the main menu:

echo Nav::widget([
'options' => ['class' => 'navbar-nav navbar-right'],
'items' => [

['label' => 'Home', 'url' => ['/site/index']],
['label' => 'Cleaner', 'url' => ['/clean/index']],
['label' => 'About', 'url' => ['/site/about']],
...

],
]);

5. Open the controller and clear the assets:

6. In case you use the yii2-app-advanced application template, just specify the correct paths in the
configuration:

'controllerMap' => [
'clean' => 'app\cleaner\CleanController',
'assetPaths' => [

'@backend/web/assets',
'@frontend/web/assets',

],
'runtimePaths' => [

'@backend/runtime',
'@frontend/runtime',
'@console/runtime',

],
],

Now we can attach the controller to any application.

How it works…

When you are running an application and passing a route such as clean/index, prior to executing
CleanController::actionIndex, Yii checks if there is controllerMap defined. Since we
have a clean controller defined there, Yii executes it instead of going the usual way.

In the controller itself we defined the assetPaths, runtimePaths, and caches properties to be
able to connect the controller to applications with different directory and cache structures. We are setting
it when attaching the controller.

See also
• In order to learn more about controllers and about the controllers map, refer to

http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html
• The Creating reusable controllers recipe in this chapter

http://www.yiiframework.com/doc-2.0/guide-structure-controllers.html

Creating a widget
A widget is a reusable part of a view that not only renders some data but also does it according to some
logic. It can even get data from models and use its own views, so it is like a reduced reusable version of
a module.

Let's create a widget that will draw a pie chart using Google APIs.

Getting ready

Create a new yii2-app-basic application using the composer as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Create the widgets directory and add the ChartWidget class:

<?php
namespace app\widgets;

use yii\base\Widget;

class ChartWidget extends Widget
{

public $title;
public $width = 300;
public $height = 200;
public $data = [];
public $labels = [];

public function run()
{

$path = 'http://chart.apis.google.com/chart';

$query = http_build_query([
'chtt' => $this->title,
'cht' => 'pc',
'chs' => $this->width . 'x' . $this->height,
'chd' => 't:' . implode(',', $this->data),
'chds' => 'a',
'chl' => implode('|', $this->labels),
'chxt' => 'y',
'chxl' => '0:|0|' . max($this->data)

]);

$url = $path . '?' . $query;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

return $this->render('chart', [
'url' => $url,

]);
}

}

2. Create the widgets/views/chart.php view:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $url string */
?>

<div class="chart">
<?= Html::img($url) ?>

</div>

3. Now create a ChartController controller:

<?php
namespace app\controllers;

use yii\base\Controller;

class ChartController extends Controller
{

public function actionIndex()
{

return $this->render('index');
}

}

4. Add the views/chart/index.php view:

<?php
use app\widgets\ChartWidget;
use yii\helpers\Html;

/* @var $this yii\web\View */

$this->title = 'Chart';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-about">

<h1><?= Html::encode($this->title) ?></h1>

<?= ChartWidget::widget([
'title' => 'My Chart Diagram',
'data' => [

100 - 32,
32,

],
'labels' => [

'Big',
'Small',

],
]) ?>

</div>

5. Now try to run the index action of the controller. You should see a pie chart like the following:

6. You can show any chart with different sizes and data sets.

How it works…

As in every other type of extension, we are creating some public properties we can configure when
calling a widget using its widget method. In this case, we are configuring the title, data set, and data
labels.

The main method of a widget is run(). In our widget, we are generating a URL and rendering the
widget view, which uses the Google charting API for printing the tag.

See also
• To learn more about widgets, refer to http://www.yiiframework.com/doc-2.0/guide-structure-

widgets.html
• The Making extensions distribution-ready recipe in this chapter

http://www.yiiframework.com/doc-2.0/guide-structure-widgets.html
http://www.yiiframework.com/doc-2.0/guide-structure-widgets.html

Creating CLI commands
Yii has good command-line support and allows creating reusable console commands. Console
commands are faster to create than web GUIs. If you need to create some kind of utility for your
application that will be used by developers or administrators, console commands are the right tool.

To show how to create a console command, we'll create a simple command that will clean up various
things, such as assets and temp directories.

Getting ready

Create a new yii2-app-basic application using the composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

Carry out the following steps to create CLI commands:

1. Create the commands/CleanController.php file with the following code:

<?php
namespace app\commands;

use yii\console\Controller;
use yii\helpers\FileHelper;

/**
* Removes content of assets and runtime directories.
*/
class CleanController extends Controller
{

public $assetPaths = ['@app/web/assets'];
public $runtimePaths = ['@runtime'];

/**
* Removes temporary assets.
*/
public function actionAssets()
{

foreach ((array)$this->assetPaths as $path) {
$this->cleanDir($path);

}

$this->stdout('Done' . PHP_EOL);
}

/**

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

* Removes runtime content.
*/
public function actionRuntime()
{

foreach ((array)$this->runtimePaths as $path) {
$this->cleanDir($path);

}

$this->stdout('Done' . PHP_EOL);
}

private function cleanDir($dir)
{

$iterator = new
\DirectoryIterator(\Yii::getAlias($dir));

foreach($iterator as $sub) {
if(!$sub->isDot() && $sub->isDir()) {

$this->stdout('Removed ' . $sub->getPathname()
. PHP_EOL);

FileHelper::removeDirectory($sub->getPathname());
}

}
}

}

2. Now we can use our own console controller with default settings. Just run the yii shell script:

./yii

3. Look for own clean commands:

This is Yii version 2.0.7.

The following commands are available:

- asset Allows you to combine...
asset/compress Combines and compresses the asset...
asset/template Creates template of configuration

file...

...

- clean Removes content of assets and
runtime directories.

clean/assets Removes temporary assets.
clean/runtime Removes runtime content.

- fixture Manages fixture data loading and
unloading.

fixture/load (default) Loads the specified fixture data.
fixture/unload Unloads the specified fixtures.

...

4. Right now run asset cleaning:

.yii clean/assets

5. See the process report:

Removed /yii-book.app/web/assets/25f82b8a
Removed /yii-book.app/web/assets/9b3b2888
Removed /yii-book.app/web/assets/f4307424
Done

6. If you want to use this controller in the yii2-app-advanced application, just specify the
custom working paths:

return [
'id' => 'app-console',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'controllerNamespace' => 'console\controllers',
'controllerMap' => [

'clean' => [
'class' => 'console\controllers\CleanController',
'assetPaths' => [

'@backend/web/assets',
'@frontend/web/assets',

],
'runtimePaths' => [

'@backend/runtime',
'@frontend/runtime',
'@console/runtime',

],
],

],
// ...

];

How it works…

All console commands should be extended from the yii\console\Controller class. Since all
console commands are run in yii\console\Application instead of yii\web\Application,
we don't have a way to determine the value of the @webroot alias. Also, in the yii2-app-

advanced template we have backend, frontend, and console subdirectories by default. For this
purpose, we are creating configurable public properties called assetPaths and runtimePaths.

The console command structure itself is like a typical controller. We are defining several actions we can
run via yii <console command>/<command action>.

As you can see, there are no views used, so we can focus on programming tasks instead of design,
markup, and so on. Still, you need to provide some useful output so that users will know what is going
on. This is done through simple PHP echo statements.

If your command is relatively complex such as message or migrate bundled with Yii, it's a good decision
to provide some extra description of the available options and actions. It can be done by overriding the
getHelp method:

public function getHelp()
{

$out = "Clean command allows you to clean up various temporary
data Yii and an application are generating.\n\n";

return $out . parent::getHelp();
}

Run the following command:

./yii help clean

You can see the full output as follows:

DESCRIPTION
Clean command allows you to clean up various temporary data Yii and
an application are generating.
Removes content of assets and runtime directories.
SUB-COMMANDS
- clean/assets Removes temporary assets.
- clean/runtime Removes runtime content.

By default, when we run the shell command:

./yii

We have seen simplified description of all commands in the output list:

- clean Removes content of assets and runtime
directories.

clean/assets Removes temporary assets.
clean/runtime Removes runtime content.

This description will be taken from comments before class and actions:

/**
* Removes content of assets and runtime directories.
*/
class CleanController extends Controller
{

/**
* Removes temporary assets.
*/
public function actionAssets() { … }

* Removes runtime content.
*/
public function actionRuntime() { … }

}

It is optional to add descriptions for your classes. You must not do it for your own CLI commands.

See also
• The Creating reusable controllers recipe in this chapter
• The Making extensions distribution-ready recipe in this chapter

Creating filters
A filter is a class that can run before/after an action is executed. It can be used to modify execution
context or decorate output. In our example, we'll implement a simple access filter that will allow the user
to see private content only after accepting the User agreement.

Getting ready

Create a new yii2-app-basic application using the composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Create the agreement form model:

<?php
namespace app\models;

use yii\base\Model;

class AgreementForm extends Model
{

public $accept;

public function rules()
{

return [
['accept', 'required'],
['accept', 'compare', 'compareValue' => 1,

'message' => 'You must agree the rules.'],
];

}

public function attributeLabels()
{

return [
'accept' => 'I completely accept the rules.'

];
}

}

2. Create the agreement checker service:

<?php
namespace app\services;

use Yii;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

use yii\web\Cookie;

class AgreementChecker
{

public function isAllowed()
{

return Yii::$app->request->cookies->has('agree');
}

public function allowAccess()
{

Yii::$app->response->cookies->add(new Cookie([
'name' => 'agree',
'value' => 'on',
'expire' => time() + 3600 * 24 * 90, // 90 days

]));
}

}

1. It encapsulates work with the agreement cookies.

3. Create the filter class:

<?php
namespace app\filters;

use app\services\AgreementChecker;
use Yii;
use yii\base\ActionFilter;

class AgreementFilter extends ActionFilter
{

public function beforeAction($action)
{

$checker = new AgreementChecker();
if (!$checker->isAllowed()) {

Yii::$app->response->redirect(['/content/
agreement'])->send();

return false;
}
return true;

}
}

4. Create the content controller and attach the filter to its behaviors:

<?php
namespace app\controllers;

use app\filters\AgreementFilter;
use app\models\AgreementForm;
use app\services\AgreementChecker;
use Yii;
use yii\web\Controller;

class ContentController extends Controller
{

public function behaviors()
{

return [
[

'class' => AgreementFilter::className(),
'only' => ['index'],

],
];

}

public function actionIndex()
{

return $this->render('index');
}

public function actionAgreement()
{

$model = new AgreementForm();
if ($model->load(Yii::$app->request->post()) &&

$model->validate()) {
$checker = new AgreementChecker();
$checker->allowAccess();
return $this->redirect(['index']);

} else {
return $this->render('agreement', [

'model' => $model,
]);

}
}

}

5. Add the views/content/index.php view with private content:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
$this->title = 'Content';
$this->params['breadcrumbs'][] = $this->title;

?>
<div class="site-about">

<h1><?= Html::encode($this->title) ?></h1>

<div class="well">
This is our private page.

</div>
</div>

6. Add the views/content/agreement.php view with the form:

<?php
use yii\helpers\Html;
use yii\bootstrap\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\bootstrap\ActiveForm */
/* @var $model app\models\AgreementForm */

$this->title = 'User agreement';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-login">

<h1><?= Html::encode($this->title) ?></h1>

<p>Please agree with our rules:</p>

<?php $form = ActiveForm::begin(); ?>

<?= $form->field($model, 'accept')->checkbox() ?>

<div class="form-group">
<?= Html::submitButton('Accept', ['class' => 'btn

btn-success']) ?>
<?= Html::a('Cancel', ['/site/index'], ['class' => 'btn

btn-danger']) ?>
</div>

<?php ActiveForm::end(); ?>
</div>

7. Add the main menu item to the views/layouts/main.php file:

echo Nav::widget([
'options' => ['class' => 'navbar-nav navbar-right'],
'items' => [

['label' => 'Home', 'url' => ['/site/index']],
['label' => 'Content', 'url' => ['/content/index']],

['label' => 'About', 'url' => ['/site/about']],
...

],
]);

8. Try to open the content page. The filter must redirect you to the agreement page:

9. Only after accepting the rules can you see the private content:

10. Also, you can attach the filter to other controllers or modules.

How it works…

A filter should extend the yii\base\ActionFilter class, which extends yii\base\
Behavior. We can override the beforeAction or afterAction method if we want to do post-
and pre-filtering.

For example, we can check user access and throw corresponding HTTP-exceptions in a fail case. In this
recipe, we redirect the user to the agreement page if the specific cookie value does not exist:

class AgreementFilter extends ActionFilter
{

public function beforeAction($action)
{

$checker = new AgreementChecker();
if (!$checker->isAllowed()) {

Yii::$app->response->redirect(['/content/
agreement'])->send();

return false;
}
return true;

}
}

You can attach filters to any controller or module. To specify the list of necessary routes, just use the
only or except options. For example, we apply our filter only for the index action of the controller:

public function behaviors()
{

return [
[

'class' => AgreementFilter::className(),
'only' => ['index'],

],
];

}

Note

Do not forget to return a true value in the success case from the beforeAction method. Otherwise,
the controller action will not be executed.

See also

For more information about filters, refer to http://www.yiiframework.com/doc-2.0/guide-structure-
filters.html.

For build-in cache and access control filters, refer to:

http://www.yiiframework.com/doc-2.0/guide-structure-filters.html
http://www.yiiframework.com/doc-2.0/guide-structure-filters.html

• http://www.yiiframework.com/doc-2.0/guide-caching-http.html
• http://www.yiiframework.com/doc-2.0/guide-securityauthorization.html
• The Creating model behaviors recipe

http://www.yiiframework.com/doc-2.0/guide-caching-http.html
http://www.yiiframework.com/doc-2.0/guide-securityauthorization.html

Creating modules
If you have created a complex application part and want to use it with some degree of customization in
your next project, most probably you need to create a module. In this recipe, we will see how to create
an application log view module.

Getting ready

Create a new yii2-app-basic application using the composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…

Let's do some planning first.

In yii2-app-basic with default configuration, all log entries are stored in the runtime/logs/
app.log file. We can extract all messages from this file with help of regular expressions and display
them on the GridView widget. Besides, we must allow the user to configure the path to the custom log
file.

Carry out the following steps:

1. Create the modules/log directory and create the Module class with the new file option:

<?php
namespace app\modules\log;

class Module extends \yii\base\Module
{

public $file = '@runtime/logs/app.log';
}

2. Create a simple model for transferring rows from the log file:

<?php
namespace app\modules\log\models;

use yii\base\Object;

class LogRow extends Object
{

public $time;
public $ip;
public $userId;
public $sessionId;
public $level;
public $category;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public $text;
}

3. Write a log file reader class that will parse file rows, reverse its order, and return array of
instances of the LogRow models:

<?php
namespace app\modules\log\services;

use app\modules\log\models\LogRow;

class LogReader
{

public function getRows($file)
{

$result = [];
$handle = @fopen($file, "r");
if ($handle) {

while (($row = fgets($handle)) !== false) {
$pattern =

'#^' .
'(?P<time>\d{4}\-\d{2}\-\d{2}

\d{2}:\d{2}:\d{2}) ' .
'\[(?P<ip>[^\]]+)\]' .
'\[(?P<userId>[^\]]+)\]' .
'\[(?P<sessionId>[^\]]+)\]' .
'\[(?P<level>[^\]]+)\]' .
'\[(?P<category>[^\]]+)\]' .
' (?P<text>.*?)' .
'(\$_(GET|POST|REQUEST|COOKIE|SERVER) =

\[)?' .
'$#i';

if (preg_match($pattern, $row, $matches)) {
if ($matches['text']) {

$result[] = new LogRow([
'time' => $matches['time'],
'ip' => $matches['ip'],
'userId' => $matches['userId'],
'sessionId' =>

$matches['sessionId'],
'level' => $matches['level'],
'category' => $matches['category'],
'text' => $matches['text'],

]);
}

}
}

fclose($handle);
}
return array_reverse($result);

}
}

4. Add a helper for displaying pretty HTML-badges for the log levels:

<?php
namespace app\modules\log\helpers;

use yii\helpers\ArrayHelper;
use yii\helpers\Html;

class LogHelper
{

public static function levelLabel($level)
{

$classes = [
'error' => 'danger',
'warning' => 'warning',
'info' => 'primary',
'trace' => 'default',
'profile' => 'success',
'profile begin' => 'info',
'profile end' => 'info',

];

$class = ArrayHelper::getValue($classes, $level,
'default');

return Html::tag('span', Html::encode($level), ['class'
=> 'label-' . $class]);

}
}

5. Create a module controller that will get an array of rows from the reader and pass them into
ArrayDataProvider:

<?php
namespace app\modules\log\controllers;

use app\modules\log\services\LogReader;
use yii\data\ArrayDataProvider;
use yii\web\Controller;

class DefaultController extends Controller
{

public function actionIndex()

{
$reader = new LogReader();
$dataProvider = new ArrayDataProvider([

'allModels' => $reader->getRows($this->getFile()),
]);
return $this->render('index', [

'dataProvider' => $dataProvider,
]);

}

private function getFile()
{

return \Yii::getAlias($this->module->file);
}

}

6. Now, create the modules/log/default/index.php view file:

<?php
use app\modules\log\helpers\LogHelper;
use app\modules\log\models\LogRow;
use yii\grid\GridView;
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $dataProvider yii\data\ArrayDataProvider */

$this->title = 'Application log';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="log-index">

<h1><?= Html::encode($this->title) ?></h1>

<?= GridView::widget([
'dataProvider' => $dataProvider,
'columns' => [

[

'attribute' => 'time',
'format' => 'datetime',
'contentOptions' => [

'style' => 'white-space: nowrap',
],

],
'ip:text:IP',

'userId:text:User',
[

'attribute' => 'level',
'value' => function (LogRow $row) {

return LogHelper::levelLabel($row->level);
},
'format' => 'raw',

],
'category',
'text',

],
]) ?>

</div>

7. Attach the module to your application in the config/web.php file:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'modules' => [

'log' => 'app\modules\log\Module',
],
'components' => [

],
...

];

8. Add a link to the controller in the views/layouts/main.php file:

echo Nav::widget([
'options' => ['class' => 'navbar-nav navbar-right'],
'items' => [

['label' => 'Home', 'url' => ['/site/index']],
['label' => 'Log', 'url' => ['/log/default/index']],
['label' => 'About', 'url' => ['/site/about']],
['label' => 'Contact', 'url' => ['/site/contact']],
...

],
]);
NavBar::end();

9. Go to url /index.php?r=log and ensure that the module works:

How it works...

You can group your controllers, models, views, and other components by separated modules and attach
them into your application. You can generate a module template with the help of Gii or make it
manually.

Each module contains a main module class where we can define configurable properties, define change
paths, attach controllers, and so on. By default, a module generated with Gii runs the index action of
the default controller.

See also
• For more information about modules and about best practices, refer to

http://www.yiiframework.com/doc-2.0/guide-structure-modules.html
• The Making extensions distribution-ready recipe

http://www.yiiframework.com/doc-2.0/guide-structure-modules.html

Creating a custom view renderer
There are many PHP template engines out there. Yii2 only offers native PHP templates. If you want to
use one of the existing template engines or create your own one, you have to implement it—of course, if
it's not yet implemented by the Yii community.

In this recipe we'll re-implement the Smarty templates support.

Getting ready
1. Create a new yii2-app-basic application using the composer, as described in the official

guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.
2. Install the Smarty library:

composer require smarty/smarty

How to do it…

Carry out the following steps for creating a custom view renderer:

1. Create the smarty/ViewRenderer.php file:

<?php
namespace app\smarty;

use Smarty;
use Yii;

class ViewRenderer extends \yii\base\ViewRenderer
{

public $cachePath = '@runtime/smarty/cache';
public $compilePath = '@runtime/smarty/compile';

/**
* @var Smarty
*/
private $smarty;

public function init()
{

$this->smarty = new Smarty();

$this->smarty->setCompileDir(Yii::getAlias($this->compilePath));

$this->smarty->setCacheDir(Yii::getAlias($this->cachePath));
$this->smarty->setTemplateDir([

dirname(Yii::$app->getView()->getViewFile()),

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

Yii::$app->getViewPath(),
]);

}

public function render($view, $file, $params)
{

$templateParams = empty($params) ? null : $params;
$template = $this->smarty->createTemplate($file, null,

null, $templateParams, false);
$template->assign('app', \Yii::$app);
$template->assign('this', $view);
return $template->fetch();

}
}

2. Now we need to connect the view renderer to the application. In config/web php, we need
to add renderers of the view component:

'components' => [
....
'view' => [

'renderers' => [
'tpl' => [

'class' => 'app\smarty\ViewRenderer',
],

],
],
...

];

3. Now let's test it. Create a new SmartyController:

<?php
namespace app\controllers;

use yii\web\Controller;

class SmartyController extends Controller
{

public function actionIndex()
{

return $this->render('index.tpl', [
'name' => 'Bond',

]);
}

}

4. Next, we need to create the views/smarty/index.tpl view:

<div class="smarty-index">
<h1>Smarty Example</h1>
<p>Hello, {$name}!</p>

</div>

5. Now try running the controller. In a success case, you should get the following as output:

How it works…

A view renderer is a child of the yii\base\ViewRenderer abstract class that implements only one
method, called render:

<?php
namespace yii\base;

abstract class ViewRenderer extends Component
{

/**
* Renders a view file.
*
* This method is invoked by [[View]] whenever it tries to render

a view.
* Child classes must implement this method to render the given

view file.
*
* @param View $view the view object used for rendering the file.
* @param string $file the view file.
* @param array $params the parameters to be passed to the view

file.
* @return string the rendering result
*/

abstract public function render($view, $file, $params);
}

Therefore, we are getting a view component, file path, and render variables. We need to process the file
and return the rendered result. In our case, processing itself is done by the Smarty template engine, so
we need to properly initialize it and call its processing methods:

class ViewRenderer extends \yii\base\ViewRenderer
{

public $cachePath = '@runtime/smarty/cache';
public $compilePath = '@runtime/smarty/compile';
private $smarty;

public function init()
{

$this->smarty = new Smarty();

$this->smarty->setCompileDir(Yii::getAlias($this->compilePath));
$this->smarty->setCacheDir(Yii::getAlias($this->cachePath));
$this->smarty->setTemplateDir([

dirname(Yii::$app->getView()->getViewFile()),
Yii::$app->getViewPath(),

]);
}
…

}

It is a good practice to store Yii temporary files in the application runtime directory. That is why we are
setting the compile directory, where Smarty stores its templates compiled into PHP, to runtime/
smarty/compile.

Rendering itself is a bit simpler:

public function render($view, $file, $params)
{

$templateParams = empty($params) ? null : $params;
$template = $this->smarty->createTemplate($file, null, null,

$templateParams, false);
$template->assign('app', \Yii::$app);
$template->assign('this', $view);
return $template->fetch();

}

All data set via $this->render is passed to the Smarty template as it is. Also, we are creating
special Smarty template variables named app and this that point to Yii::$app and Yii::$app-
>view and allow us to get application properties inside a template.

Then, we are rendering the templates.

See also

You can get ready to use Smarty view renderer with plugins and configuration support at
https://github.com/yiisoft/yii2-smarty.

To learn more about Smarty and view renderers in general, refer to the following URLs:

• http://www.smarty.net
• http://www.yiiframework.com/doc-2.0/guide-tutorial-templateengines.html
• http://www.yiiframework.com/doc-2.0/guide-structure-views.html

https://github.com/yiisoft/yii2-smarty
http://www.smarty.net
http://www.yiiframework.com/doc-2.0/guide-tutorial-templateengines.html
http://www.yiiframework.com/doc-2.0/guide-structure-views.html

Creating a multilanguage application
Every day, we meet more and more international companies, software products, and information
resources that publish content on multiple languages. Yii2 provides built-in i18n support for making
multilanguage applications.

In this recipe, we are translating the application interface to different languages.

Getting ready

Create a new yii2-app-basic application using the composer, as described in the official guide at
http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it…
1. Change the main menu labels in the views/layouts/main.php file to use the

Yii::t('app/nav', '...') method:

echo Nav::widget([
'options' => ['class' => 'navbar-nav navbar-right'],
'items' => [

['label' => Yii::t('app/nav', 'Home'), 'url' => ['/site/
index']],

['label' => Yii::t('app/nav', 'About'), 'url' =>
['/site/about']],

['label' => Yii::t('app/nav', 'Contact'), 'url' =>
['/site/contact']],

...
],

]);

2. Change all your titles and breadcrumbs to use the common Yii::t('app, '...')
method:

$this->title = Yii::t('app', 'Contact');
$this->params['breadcrumbs'][] = $this->title;

3. Also, change all the labels of your buttons:

<div class="form-group">
<?= Html::submitButton(Yii::t('app', 'Submit'), ['class' =>

'btn btn-primary'']) ?>
</div>

Change other hard-coded messages as well:

<p>
<?= Yii::t('app', 'The above error occurred while the Web

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

server was processing your request.') ?>
</p>

4. Change the attribute labels of your ContactForm model:

class LoginForm extends Model
{

...

public function attributeLabels()
{

return [
'username' => Yii::t('app/user', 'Username'),
'password' => Yii::t('app/user', 'Password'),
'rememberMe' => Yii::t('app/user', 'Remember Me'),

];
}

}

Also, change the attribute labels of the LoginForm model:

class ContactForm extends Model
{

...

public function attributeLabels()
{

return [
'name' => Yii::t('app/contact', 'Name'),
'email' => Yii::t('app/contact', 'Email'),
'subject' => Yii::t('app/contact', 'Subject'),
'body' => Yii::t('app/contact', 'Body'),
'verifyCode' => Yii::t('app', 'Verification Code'),

];
}

}

It will output translated labels for the current language instead of originals.
5. To prepare translations, create the messages directory. Right now, we can create translation

files for all needed languages. We can do it manually, but there is a helpful crawler that can scan
all project files and extract all messages from Yii::t() constructions. Let's use it.

6. Generate the configuration file for the message scanner:

./yii message/config-template config/messages.php

7. Open the configuration file and set the following values:

<?php

return [
'sourcePath' => '@app',
'languages' => ['de', 'fr'],
'translator' => 'Yii::t',
'sort' => false,
'removeUnused' => false,
'markUnused' => true,
'only' => ['*.php'],
'except' => [

'.svn',
'.git',
'.gitignore',
'.gitkeep',
'.hgignore',
'.hgkeep',
'/messages',
'/vendor',

],

'format' => 'php',
'messagePath' => '@app/messages',
'overwrite' => true,

'ignoreCategories' => [
'yii',

],
];

8. Run crawler while passing this configuration file to it:

./yii message config/messages.php

9. After the process, we must get the following directory structure:

messages
├── de
│ ├── app
│ │ ├── contact.php
│ │ ├── nav.php
│ │ └── user.php
│ └── app.php
└── fr

├── app
│ ├── contact.php
│ ├── nav.php

│ └── user.php
└── app.php

10. For example, the messages/de/app/contact file contains the following content:

<?php
...
return [

'Body' => '',
'Email' => '',
'Name' => '',
'Subject' => '',

];

11. It is a plain PHP array with original sentences in keys and translated messages in values.
12. Just put in the values needed to translate messages from Deutsch:

<?php
...
return [

'Password' => 'Passwort',
'Remember Me' => 'Erinnere dich an mich',
'Username' => 'Benutzername',

];

13. Attach these translations to the i18n component of application in the config/web.php file:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'components' => [

…
'i18n' => [

'translations' => [
'app*' => [

'class' => 'yii\i18n\PhpMessageSource',
'sourceLanguage' => 'en-US',

],
],

],
'db' => require(__DIR__ . '/db.php'),

],
'params' => $params,

];

14. Open the login page with the default language:

15. Switch the application language to de:

$config = [
'id' => 'basic',
'language' => 'de',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
...

];

Then refresh the login page:

16. The built-in frameworks messages and default validation errors will be translated automatically.

How it works…

Yii2 provides the Yii::t() method for translating interface messages via the i18n component,
which supports different types of sources. In this recipe, we use yii\i18n\hpMessageSource,
which stores translated messages in plain PHP files.

The framework does not have artificial intelligence and does not translate messages by itself. You must
put prepared translations in files or in the database and framework to get the needed message from this
message source.

You can set the current language manually:

$config = [
'id' => 'basic',
'language' => 'de',
...

];

Instead of setting the language in the configuration file, you can switch the application language in
runtime:

Yii::$app->language = 'fr';

For example, if you store the user language in the lang field of the User model, you can create the
language loader:

<?php
namespace app\bootstrap;

use yii\base\BootstrapInterface;

class LanguageBootstrap implements BootstrapInterface
{

public function bootstrap($app)
{

if (!$app->user->isGuest) {
$app->language = $app->user->identity->lang;

}
}

}

Register this class in the bootstrapping list:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log', 'app'bootstrap\LanguageBoostrap'],
...

];

Now, every authenticated user will see the interface in their own language.

Also, you can override the yii\web\UrlManager class for passing the current language as a GET
parameter or as a prefix of a URL. Also, as an alternative you can store selected languages in browser
cookies.

When you generate models and another code with Gii, you can check the following option:

All labels in the generated code will be embraced into the Yii::t() calls.

Note

We did not cover the translating of model content in this recipe. However, for example, you can store
translated texts in separate tables (such as the post_lang table for post model table) in a database and
use the value of the Yii::$app->language property to get the current language and extract needed
content for your models by the value.

See also

For more information about internationalization in Yii2, refer to http://www.yiiframework.com/doc-2.0/
guide-tutorial-i18n.html.

http://www.yiiframework.com/doc-2.0/guide-tutorial-i18n.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-i18n.html

Making extensions distribution-ready
In this chapter, you learned how to create various types of Yii extensions. Now we'll talk about how to
share your results with people and why it's important.

Getting ready

Let's form a checklist for a good extension first. A good programming product should follow these
points:

• Good coding style
• People should be able to find it
• A consistent, easy to read, and easy to use API
• Good documentation
• Extension should apply to the most common use cases
• Should be maintained
• Well-tested code, ideally with unit tests
• You need to provide support for it

Of course, having all these requires a lot of work, but these are necessary to create a good product.

How to do it…
1. Every modern PHP product must follow the PSR4 standards of autoloading and the PSR1 and

PSR2 standards of the coding style from the http://www.php-fig.org/psr/ guide.
2. Let's review our list in more detail, starting with the API. The API should be consistent, easy to

read, and easy to use. Consistent means that the overall style should not change, so no different
variable naming, no inconsistent names such as isFlag1() and isNotFlag2(), and so on.
Everything should obey the rules you've defined for your code. This allows less checking of
documentation and allows you to focus on coding.

3. A code without any documentation is almost useless. An exception is a relatively simple code,
but even if it's only a few lines, it doesn't feel right if there is not a single word about how to
install and use it. What makes good documentation? The purpose of the code and its pros should
be as visible as possible and should be written loud and clear.

4. A code is useless if developers don't know where to put it and what should be in the application
configuration. Don't expect that people know how to do framework-specific things. The
installation guide should be verbose. A step-by-step form is preferred by a majority of
developers. If the code needs SQL schema to work, provide it.

5. Even if your API methods and properties are named properly, you still need to document them
with PHPDoc comments specifying argument types and return types, providing a brief
description for each method. Don't forget protected and private methods and properties since
sometimes it's necessary to read these to understand the details of how code works. Also,
consider listing public methods and properties in documentation so it can be used as a reference.

6. Provide use case examples with well-commented code. Try to cover the most common ways of
extension usage.

7. In an example, don't try to solve multiple problems at a time since it can be confusing.

http://www.php-fig.org/psr/

8. It's important to make your code flexible so it will apply to many use cases. However, since it's
not possible to create code for every possible use case, try to cover the most common ones.

9. It's important to make people feel comfortable. Providing a good documentation is a first step.
The second is providing a proof that your code works as expected and will work with further
updates. The best way to do it is a set of unit tests.

10. Extension should be maintained, at least until it's stable and there are no more feature requests
and bug reports. So expect questions and reports, and reserve some time to work on the code
further. If you can't devote more time to maintain extensions, but it's very innovative and no one
did it before, it's still worth sharing. If the community likes it, someone will definitely offer his
or her help.

11. Finally, you need to make extensions available. Create the Composer package from your
extension, push it on GitHub or other shared repository storage, and publish it on the
https://packagist.org site.

12. Each extension should have a version number and a change log. It will allow the community to
check if they have the latest version and check what is changed before upgrading. We
recommend to follow the Semantic Versioning rules from the http://semver.org site.

13. Even if your extension is relatively simple and documentation is good, there could be questions,
and for the first time, the only person who can answer them is you. Typically, questions are
asked at official forums, so it is better to create a topic where people can discuss your code and
provide a link at the extension page.

How it works…

If you want to share an extension with the community and be sure it will be useful and popular, you need
to do more than just write code. Making extensions distribution-ready is much more work to do. It can
be even more than creating an extension itself. So, why is it good to share extensions with the
community in the first place?

Making the code you use in your own projects open source has its pros. You are getting people, a lot
more people than you can get to test your closed source project. People who are using your extension are
testing it, giving valuable feedback, and reporting bugs. If your code is popular, there will be passionate
developers who will try to improve your code, to make it more extensive, more stable, and reusable.
Moreover, it just feels good because you are doing a good thing.

We have covered the most important things. Still, there are more things to check out. Try existing
extensions before writing your own. If an extension almost fits, try contacting the extension author and
contributing ideas you have. Reviewing existing code helps you find out useful tricks, dos, and don'ts.
Also, check wiki articles and the official forum from time to time; there is a lot of useful information
about creating extensions and developing using Yii in general.

See also
• For modern information about PHP coding standards, refer to http://www.php-fig.org/psr/
• To learn more about semantic versioning, refer to http://semver.org

https://packagist.org
http://semver.org
http://www.php-fig.org/psr/
http://semver.org

Chapter 9. Performance Tuning
In this chapter, we will cover the following topics:

• Following best practices
• Speeding up session handling
• Using cache dependencies and chains
• Profiling an application with Yii
• Leveraging HTTP caching
• Combining and minimizing assets
• Running Yii2 on HHVM

Yii is one of the fastest frameworks available. Nevertheless, when developing and deploying an
application, it is good to have some extra performance for free, and to follow the best practices for the
application itself. In this chapter, you will see how to configure Yii to gain extra performance. In
addition, you will learn some best practices for developing an application that will run smoothly until
you have very high loads.

Following best practices
In this recipe, you will see how to configure Yii2 for the best performance and some additional
principles of building responsive applications. These principles are both general and Yii-related.
Therefore, we will be able to apply some of these even without using Yii2.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it…
1. Update your PHP to the latest stable version. Major releases of PHP may bring significant

performance improvements. Turn off the debug mode and set the prod environment. This can
be done by editing web/index.php as follows:

defined('YII_DEBUG') or define('YII_DEBUG', false);
defined('YII_ENV') or define('YII_ENV', 'prod');

Note

Note: In the yii2-app-advanced application skeleton, you can use the shell command php
init and opt production environment for loading optimized index.php and configuration
files.

2. Enable the cache component:

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

'components' => [
'cache' => [

'class' => 'yii\caching\FileCache',
],

],

You can use any cache storage instead of FileCache. Also, you can register multiple cache
application components and use Yii::$app->cache and Yii::$app->cache2 for
different data types:

'components' => [
'cache' => [

'class' => 'yii\caching\MemCache',
'useMemcached' => true,

],
'cache2' => [

'class' => 'yii\caching\FileCache',
],

],

The framework uses the cache component by default in its own classes.
3. Enable table schema caching for the db component as follows:

return [
// ...
'components' => [

// ...
'cache' => [

'class' => 'yii\caching\FileCache',
],
'db' => [

'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=localhost;dbname=mydatabase',
'username' => 'root',
'password' => '',
'enableSchemaCache' => true,

// Optional. Default value is 3600 seconds
schemaCacheDuration' => 3600,

// Optional. Default value is 'cache'
'schemaCache' => 'cache',

],
],

];

4. Use plain arrays instead of Active Record objects for listing sets of elements:

$categoriesArray = Categories::find()->asArray()->all();

5. Use each() instead of all() in foreach for a large count of results:

foreach (Post::find()->each() as $post) {
// ...

}

6. Because Composer's autoloader is used to include most third-party class files, you should
consider optimizing it by executing the following command:

composer dump-autoload
-o

How it works…

When YII_DEBUG is set to false, Yii turns OFF all the trace level logging and uses less error
handling code. Also, when you set YII_ENV to prod your application does not load Yii and Debug
panel modules.

Setting schemaCachingDuration to a number of seconds allows caching the database schema used
by Yii's Active Record. This is highly recommended for production servers and it significantly improves
the Active Record performance. In order for it to work, you need to properly configure the cache
component as follows:

'cache' => [
'class' => 'yii\cache\FileCache',

],

Enabling the cache also has a positive effect on other Yii components. For example, Yii router or
urlManager starts to cache routes.

Of course, you can get into a situation where the preceding settings will not help to achieve a sufficient
performance level. In most cases, it means that either the application itself is a bottleneck or you need
more hardware.

• Server-side performance is just a part of the big picture: Server-side performance is only
one of the things that affect the overall performance. By optimizing the client side such as
serving CSS, images, and JavaScript files, proper caching and minimizing the amount of HTTP-
requests can give a good visual performance gain even without optimizing the PHP code.

• Things to be done without using Yii: Some things are best done without Yii. For example,
image resizing on-the-fly is better in a separate PHP script in order to avoid the extra overhead.

• Active Record versus Query Builder and SQL: Use Query Builder or SQL in performance-
critical application parts. Generally, AR is most useful when adding and editing records, as it
adds a convenient validation layer, and is less useful when selecting records.

• Always check for slow queries first: Database can become a bottleneck in a second if a
developer accidentally forgets to add an index to a table that is being read often or vice versa, or

adds too many indexes to a table we are writing to very often. The same goes for selecting
unnecessary data and unneeded JOINs.

• Cache or save results of heavy processes: If you can avoid running a heavy process in every
page load, it is better to do so. For example, it is a good practice to save or cache results of
parsing the markdown text, purify it (this is a very resource-intensive process) once, and then to
use the ready-to-display HTML.

• Handling too much processing: Sometimes there is too much processing to be handled
immediately. It can be building complex reports or simply sending e-mails (if your project is
heavily loaded). In this case, it is better to put it into a queue and process it later using cron or
other specialized tools.

See also

For more information about performance tuning and caching refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html
• http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html
http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

Speeding up session handling
Native session handling in PHP is fine in most cases. There are at least two possible reasons why you
will want to change the way sessions are handled:

• When using multiple servers, you need to have common session storage for both servers.
• Default PHP sessions use files, so the maximum performance possible is limited by disk I/O.
• Default PHP sessions are blocking concurrent session storages. In this recipe, we will see how

to use efficient storage for Yii sessions.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html, and install the
Memcache server and the memcache PHP extension.

How to do it…

We will stress-test the website using the Apache ab tool. It is distributed with Apache binaries, so if you
are using Apache, you will find it inside the bin directory.

1. Run the following command replacing your website with the actual hostname you are using:

ab -n 1000 -c 5 http://yii-book.app/index.php?r=site/contact

This will send 1,000 requests, five at a time, and will output stats as follows:

This is ApacheBench, Version 2.3 <$Revision: 1528965 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/
Licensed to The Apache Software Foundation,
http://www.apache.org/
...
Server Software: nginx
Server Hostname: yii-book.app
Server Port: 80

Document Path: /index.php?r=site/contact
Document Length: 14866 bytes
Concurrency Level: 5
Time taken for tests: 10.961 seconds
Complete requests: 1000
Failed requests: 0
Total transferred: 15442000 bytes
HTML transferred: 14866000 bytes
Requests per second: 91.24 [#/sec] (mean)
Time per request: 54.803 [ms] (mean)

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

Time per request: 10.961 [ms] (mean, across all
concurrent requests)
Transfer rate: 1375.84 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 0 0.0 0 0
Processing: 18 55 324.9 29 4702
Waiting: 15 41 255.1 24 4695
Total: 18 55 324.9 29 4702

We are interested in the requests-per-second metric. The number means that the website can
process 91.24 requests per second if there are five requests at a time.

Note

Note that debuging is not turned off since we are interested in changes to the session handling
speed.

2. Now add the following to the /config/web.php components section:

'session' => array(
'class' => 'yii\web\CacheSession',
'cache' => 'sessionCache',

),
'sessionCache' => array(

'class' => 'yii\caching\MemCache',
),

3. Run ab again with the same settings. This time, you should get better results. In my case, it was
139.07 requests per second. This means Memcache, as a session handler, performed 52% better
than the default file-based session handler.

Note

Don't rely on the exact results provided here. It all depends on software versions, settings, and
hardware used. Always try to run all tests yourself in an environment where you are going to
deploy your application.

4. You can get a significant performance gain by choosing the right session handling backend. Yii
supports more caching backends out-of-the-box, including WinCache, XCache, and Zend data
cache, which comes with the Zend Server. Moreover, you can implement your own cache
backend to use fast noSQL storage, such as Redis.

How it works…

By default, Yii uses native PHP sessions; this means that the filesystem is used in most cases. A
filesystem cannot deal with high concurrency efficiently.

Memcache or other platforms perform fine in the following situation:

'session' => array(
'class' => 'yii\web\CacheSession',
'cache' => 'sessionCache',

),
'sessionCache' => array(

'class' => 'yii\caching\MemCache',
),

In the preceding config section, we instruct Yii to use CacheSession as a session handler. With this
component, we can delegate session handling to the cache component specified in cache. This time we
are using MemCache.

When using a memcached backend, you should take into account the fact that when using these
solutions the application user can possibly lose the session if the maximum cache capacity is reached.

Note

Note that, when using a cache backend for a session, you cannot rely on a session as a temporary data
storage, since then there will be no memory to store more data in memcached. In such a case, this will
just purge all data or delete some of it.

If you are using multiple servers, you cannot use file storage. There is no way to share the session data
between servers. In the case of memcached, it is easy because it can be easily accessed from as many
servers as you want.

Also, for sharing the session data you can use DbSession:

return [
// ...
'components' => [

'session' => [
'class' => 'yii\web\DbSession',

],
],

];

Now, create a new table in your database:

CREATE TABLE session (
id CHAR(40) NOT NULL PRIMARY KEY,
expire INTEGER,
data BLOB

)

There's more…

It is a good idea to close the session as soon as possible. If you're not going to store anything in the
session during the current request, you can even close it at the very beginning of your controller action.
This way, even when using files as storage your application should be fine.

Use the following command:

Yii:$app->session->close();

See also

For more information about performance and caching refer to the following URLs:

• http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html
• http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html
http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

Using cache dependencies and chains
Yii supports many cache backends, but what really makes the Yii cache flexible is the dependency and
dependency chaining support. There are situations when you cannot simply cache data for an hour
because the information cached can be changed at any time.

In this recipe, we will see how to cache a whole page and still always get fresh data when it is updated.
The page will be of the dashboard-type and will show the five latest articles added and a total calculated
for an account.

Note

Note that an operation cannot be edited as it is added, but an article can be.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

1. Activate the caching component in config/web.php as follows:

return [
// ...
'components' => [

cache => ['class' => 'yii\caching\FileCache,
],

],
];

2. Set up a fresh database and configure it into config/db.php.
3. Run the following migration:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m160308_093233_create_example_tables extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

$this->createTable('{{%account}}', [
'id' => Schema::TYPE_PK,
'amount' => Schema::TYPE_DECIMAL . '(10,2) NOT

NULL',
], $tableOptions);

$this->createTable('{{%article}}', [
'id' => Schema::TYPE_PK,
'title' => Schema::TYPE_STRING . ' NOT NULL',
'text' => Schema::TYPE_TEXT . ' NOT NULL',

], $tableOptions);
}

public function down()
{

$this->dropTable('{{%article}}');
$this->dropTable('{{%account}}');

}
}

4. Generate models for the account and article tables using Yii.
5. Create protected/controllers/DashboardController.php as follows:

<?php

namespace app\controllers;

use app\models\Account;
use app\models\Article;
use yii\web\Controller;

class DashboardController extends Controller
{

public function actionIndex()
{

$total = Account::find()->sum('amount');
$articles = Article::find()->orderBy('id

DESC')->limit(5)->all();

return $this->render('index', array(
'total' => $total,
'articles' => $articles,

));
}

public function actionRandomOperation()
{

$rec = new Account();
$rec->amount = rand(-1000, 1000);
$rec->save();

echo 'OK';
}

public function actionRandomArticle()
{

$n = rand(0, 1000);

$article = new Article();
$article->title = "Title #".$n;
$article->text = "Text #".$n;
$article->save();

echo 'OK';
}

}

6. Create views/dashboard/index.php as follows:

<?php
use yii\helpers\Html;
/* @var $this yii\web\View */
/* @var $total int */
/* @var $articles app\models\Article[] */
?>

<h1>Total: <?= $total ?></h1>
<h2>5 latest articles:</h2>
<?php foreach($articles as $article): ?>

<h3><?= Html::encode($article->title) ?></h3>
<div><?= Html::encode($article->text) ?></div>

<?php endforeach ?>

7. Run dashboard/random-operation and dashboard/random-article several
times. Then, run dashboard/index and you should see a screen similar to the one shown in
the following screenshot:

8. Click on the number of database queries in the debug panel at the bottom of the page:

See a query list:

How to do it…

Carry out the following steps:

1. We need to modify the controller code as follows:

<?php

namespace app\controllers;

use app\models\Account;
use app\models\Article;
use yii\caching\DbDependency;
use yii\caching\TagDependency;
use yii\web\Controller;

class DashboardController extends Controller
{

public function behaviors()

{
return [

'pageCache' => [
'class' => 'yii\filters\PageCache',
'only' => ['index'],
'duration' => 24 * 3600 * 365, // 1 year
'dependency' => [

'class' => 'yii\caching\ChainedDependency',
'dependencies' => [

new TagDependency(['tags' =>
['articles']]),
new DbDependency(['sql' => 'SELECT

MAX(id) FROM ' . Account::tableName()])
]

],
],

];
}

public function actionIndex()
{

$total = Account::find()->sum('amount');
$articles = Article::find()->orderBy('id

DESC')->limit(5)->all();

return $this->render('index', array(
'total' => $total,
'articles' => $articles,

));
}

public function actionRandomOperation()
{

$rec = new Account();
$rec->amount = rand(-1000, 1000);
$rec->save();

echo 'OK';
}

public function actionRandomArticle()
{

$n = rand(0, 1000);

$article = new Article();
$article->title = "Title #".$n;
$article->text = "Text #".$n;

$article->save();

TagDependency::invalidate(\Yii::$app->cache,
'articles');

echo 'OK';
}

}

2. That is it. Now, after loading dashboard/index several times, you will get only one simple
query in the latest snapshot, as shown in the following screenshot:

Also, try to run either dashboard/random-operation or dashboard/random-
article and refresh dashboard/index after that. The data should change as follows:

How it works…

In order to achieve maximum performance while doing minimal code modification, we use a full-page
cache using a filter as follows:

public function behaviors()
{

return [
'pageCache' => [

'class' => 'yii\filters\PageCache',
'only' => ['index'],
'duration' => 24 * 3600 * 365, // 1 year
'dependency' => [

'class' => 'yii\caching\ChainedDependency',
'dependencies' => [

new TagDependency(['tags' => ['articles']]),
new DbDependency(['sql' => 'SELECT MAX(id) FROM

account'])
]

],
],

];
}

The preceding code means that we apply a full-page cache to the index action. The page will be
cached for a year and the cache will refresh if one of the dependency data changes. Therefore, in
general, the dependency works as follows:

• The first run gets the fresh data as described in the dependency, saves it for future reference, and
updates the cache

• It gets the fresh data as described in dependency, gets the saved data, and then compares the two
• If they are equal, it uses the cached data
• If not, it updates the cache, uses the fresh data, and saves the fresh dependency data for future

reference

In our case, two dependency types are used—tag and DB. A tag dependency marks data with the custom
string tag and checks it to decide if we need to invalidate the cache, while a DB dependency uses the
SQL query result for the same purpose.

The question that you have now is probably, "Why have we used DB for one case and tags for another?"
That is a good question!

The goal of using the DB dependency is to replace heavy calculations and select a light query that gets
as little data as possible. The best thing about this type of dependency is that we don't need to embed any
additional logic in the existing code. In our case, we can use this type of dependency for account
operations, but cannot use it for articles as the article content can be changed. Therefore, for articles, we
set a global tag named article which basically means that we can manually call the following when we
want to invalidate total the article cache:

TagDependency::invalidate(\Yii::$app->cache, 'articles');

See also

In order to learn more about caching and using cache dependencies, refer to
http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

http://www.yiiframework.com/doc-2.0/guide-caching-overview.html

Profiling an application with Yii
If all of the best practices for deploying a Yii application are applied and you still do not have the
performance you want, then most probably there are some bottlenecks with the application itself. The
main principle while dealing with these bottlenecks is that you should never assume anything and
always test and profile the code before trying to optimize it.

In this recipe, we will try to find bottlenecks in the Yii2 mini application.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

1. Set up your database connection and apply the following migration:

<?php
use yii\db\Migration;

class m160308_093233_create_example_tables extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === 'mysql') {

$tableOptions = 'CHARACTER SET utf8 COLLATE
utf8_general_ci ENGINE=InnoDB';

}

$this->createTable('{{%category}}', [
'id' => $this->primaryKey(),
'name' => $this->string()->notNull(),

], $tableOptions);

$this->createTable('{{%article}}', [
'id' => $this->primaryKey(),
'category_id' => $this->integer()->notNull(),
'title' => $this->string()->notNull(),
'text' => $this->text()->notNull(),

], $tableOptions);

$this->createIndex('idx-article-category_id',
'{{%article}}', 'category_id');

$this->addForeignKey('fk-article-category_id',
'{{%article}}', 'category_id', '{{%category}}', 'id');

}

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

public function down()
{

$this->dropTable('{{%article}}');
$this->dropTable('{{%category}}');

}
}

2. Generate models for each table in Yii.
3. Write the following console command:

<?php
namespace app\commands;

use app\models\Article;
use app\models\Category;
use Faker\Factory;
use yii\console\Controller;

class DataController extends Controller
{

public function actionInit()
{

$db = \Yii::$app->db;
$faker = Factory::create();

$transaction = $db->beginTransaction();
try {

$categories = [];
for ($id = 1; $id <= 100; $id++) {

$categories[] = [
'id' => $id,
'name' => $faker->name,

];
}

$db->createCommand()->batchInsert(Category::tableName(), ['id',
'name'], $categories)->execute();

$articles = [];
for ($id = 1; $id <= 100; $id++) {

$articles[] = [
'id' => $id,
'category_id' => $faker->numberBetween(1,

100),
'title' => $faker->text($maxNbChars = 100),
'text' => $faker->text($maxNbChars = 200),

];

}

$db->createCommand()
->batchInsert(Article::tableName(), ['id',

'category_id', 'title', 'text'], $articles)->execute();

$transaction->commit();
} catch (\Exception $e) {

$transaction->rollBack();
throw $e;

}
}

}

And execute it:

./yii data/init

4. Add the ArticleController class as follows:

<?php
namespace app\controllers;

use Yii;
use app\models\Article;
use yii\data\ActiveDataProvider;
use yii\web\Controller;

class ArticleController extends Controller
{

public function actionIndex()
{

$query = Article::find();
$dataProvider = new ActiveDataProvider([

'query' => $query,
]);

return $this->render('index', [
'dataProvider' => $dataProvider,

]);
}

}

5. Add the views/article/index.php view as follows:

<?php
use yii\helpers\Html;
use yii\widgets\ListView;

/* @var $this yii\web\View */
/* @var $dataProvider yii\data\ActiveDataProvider */

$this->title = 'Articles';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="article-index">

<h1><?= Html::encode($this->title) ?></h1>
<?= ListView::widget([

'dataProvider' => $dataProvider,
'itemOptions' => ['class' => 'item'],
'itemView' => '_item',

]) ?>
/div>

Then add views/article/_item.php:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $model app\models\Article */
?>

<div class="panel panel-default">
<div class="panel-heading"><?= Html::encode($model->title);

?></div>
<div class="panel-body">

Category: <?= Html::encode($model->category->name) ?>
</div>

</div>

How to do it…

Follow these steps to profile an application with Yii:

1. Open the articles page:

2. Open the views/article/index.php file and add profiler calls before and after the
ListView widget:

<div class="article-index">
<h1><?= Html::encode($this->title) ?></h1>

<?php Yii::beginProfile('articles') ?>

<?= ListView::widget([
'dataProvider' => $dataProvider,
'itemOptions' => ['class' => 'item'],
'itemView' => '_item',

]) ?>

<?php Yii::endProfile('articles') ?>

</div>

Now refresh the page.
3. Expand the debug panel at the bottom of page and click on the timing badge (73 ms in our

case):

Now examine the Profiling report:

We can see that our articles block has taken close to 40 milliseconds.
4. Open our controller and add eager loading for article's category relation as follows:

class ArticleController extends Controller
{

public function actionIndex()
{

$query = Article::find()->with('category');

$dataProvider = new ActiveDataProvider([
'query' => $query,

]);
return $this->render('index', [

'dataProvider' => $dataProvider,
]);

}
}

5. Go back to the site, refresh the page, and open the Profiling report again:

Right now the articles listing has taken close to 25 milliseconds because the application makes fewer
SQL queries with eager loading of related models.

How it works…

You can enclose any fragment of source code with Yii::beginProfile and Yii::endProfile
calls:

Yii::beginProfile('articles');
// ...
Yii::endProfile('articles');

After executing the page, you can see the report with all timings on the Profiling page of the debug
module.

Also, you can use nested profiling calls as follows:

Yii::beginProfile('outer');
Yii::beginProfile('inner');

// ...
Yii::endProfile('inner');

Yii::endProfile('outer');

Note

Note: Take care with correct opening and closing calls in this case and correct block naming. If you the
miss Yii::endProfile call or switch the order of Yii::endProfile('inner') and
Yii::endProfile('outer'), performance profiling will not work.

See also
• For more information about logging refer to the following URL: http://www.yiiframework.com/

doc-2.0/guide-runtime-logging.html#performance-profiling
• About tuning of the application performance refer to the following URL:

http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html

http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html#performance-profiling
http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html#performance-profiling
http://www.yiiframework.com/doc-2.0/guide-tutorial-performance-tuning.html

Leveraging HTTP caching
Instead of only server-side caching implementation you can use client-side caching via specific HTTP-
headers.

In this recipe, we will cover full-page caching on the basis of the Last-Modified and ETag headers.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

1. Create and run migration as follows:

<?php
use yii\db\Migration;

class m160308_093233_create_example_tables extends Migration
{

public function up()
{

$this->createTable('{{%article}}', [
'id' => $this->primaryKey(),
'created_at' => $this->integer()->unsigned()-
>notNull(),
'updated_at' =>

$this->integer()->unsigned()->notNull(),
'title' => $this->string()->notNull(),
'text' => $this->text()->notNull(),

]);
}

public function down()
{

$this->dropTable('{{%article}}');
}

}

2. Create an Article model as follows:

<?php
namespace app\models;

use Yii;
use yii\behaviors\TimestampBehavior;
use yii\db\ActiveRecord;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

class Article extends ActiveRecord
{

public static function tableName()
{

return '{{%article}}';
}

public function behaviors()
{

return [
TimestampBehavior::className(),

];
}

}

3. Create a blog controller with the following actions:

<?php
namespace app\controllers;

use app\models\Article;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
class BlogController extends Controller
{

public function actionIndex()
{

$articles = Article::find()->orderBy(['id' =>
SORT_DESC])->all();

return $this->render('index', array(
'articles' => $articles,

));
}

public function actionView($id)
{

$article = $this->findModel($id);
return $this->render('view', array(

'article' => $article,
));

}

public function actionCreate()
{

$n = rand(0, 1000);
$article = new Article();
$article->title = 'Title #' . $n;
$article->text = 'Text #' . $n;

$article->save();
echo 'OK';

}

public function actionUpdate($id)
{

$article = $this->findModel($id);
$n = rand(0, 1000);
$article->title = 'Title #' . $n;
$article->text = 'Text #' . $n;
$article->save();
echo 'OK';

}
private function findModel($id)
{

if (($model = Article::findOne($id)) !== null) {
return $model;

} else {
throw new NotFoundHttpException('The requested page

does not exist.');
}

}
}

4. Add the views/blog/index.php view:

<?php
use yii\helpers\Html;

$this->title = 'Articles';;
$this->params['breadcrumbs'][] = $this->title;
?>

<?php foreach($articles as $article): ?>
<h3><?= Html::a(Html::encode($article->title), ['view',

'id' => $article->id]) ?></h3>
<div>Created <?=

Yii::$app->formatter->asDatetime($article->created_at) ?></div>
<div>Updated <?=

Yii::$app->formatter->asDatetime($article->updated_at) ?></div>
<?php endforeach ?>

5. Add the views/blog/view.php view file:

<?php
use yii\helpers\Html;

$this->title = $article->title;

$this->params['breadcrumbs'][] = ['label' => 'Articles', 'url'
=> ['index']];
$this->params['breadcrumbs'][] = $this->title;
?>

<h1><?= Html::encode($article->title) ?></h1>
<div>Created <?=
Yii::$app->formatter->asDatetime($article->created_at) ?></div>
<div>Updated <?=
Yii::$app->formatter->asDatetime($article->updated_at) ?></div>
<hr />
<p><?= Yii::$app->formatter->asNtext($article->text) ?></p>

How to do it…

Follow these steps to leverage HTTP caching:

1. Access this URL http://yii-book.app/index.php?r=blog/create three times to generate three
articles.

2. Open the following blog page:

http://yii-book.app/index.php?r=blog/create

3. Open the developer console in your browser and see the 200 OK response status for each
reloading of the blog page:

4. Open BlogController and attach the following behaviors:

class BlogController extends Controller
{

public function behaviors()
{

return [
[

'class' => 'yii\filters\HttpCache',
'only' => ['index'],
'lastModified' => function ($action, $params) {

return Article::find()->max('updated_at');
},

],
[

'class' => 'yii\filters\HttpCache',
'only' => ['view'],
'etagSeed' => function ($action, $params) {

$article =
$this->findModel(\Yii::$app->request->get('id'));

return serialize([$article->title,

$article->text]);
},

],
];

}

// ...
}

5. Next, reload the page a few times and check that the server returns the 304 Not Modified
status instead of 200 OK:

6. Open the relevant page using the following URL to update random articles: http://yii-
book.app/index.php?r=blog/update.

7. After updating the blog page, check that the server returns 200 OK the first time and 304 Not
Modified thereafter, and verify that you see the new updated time on the page:

8. Open any page from our article, as follows:

Verify that the server returns 200 OK the first time and 304 Not Modified on subsequent requests.

How it works…

There are time-based and content-based approaches to check the availability of the cached response
content for your browser with the help of HTTP-headers.

Last-Modified

This approach suggests that the server must return the last modification date of every document. After
storing the date, our browser can attach it in the If-Modified-Since header for every subsequent
request.

We must attach the action filter to our controller and specify the lastModified callback as
follows:

class BlogController extends Controller
{

public function behaviors()
{

return [
[

'class' => 'yii\filters\HttpCache',
'only' => ['index'],
'lastModified' => function ($action, $params) {

return Article::find()->max('updated_at');
},

],
// ...

];
}

// ...
}

The \yii\filters\HttpCache class calls the callback and compares the returned value with the
$_SERVER['HTTP_IF_MODIFIED_SINCE'] system variable. If the document has still not
changed, HttpCache will send a lightweight 304 response header without running the action.

However, if the document has been updated, the cache will be ignored and the server will return a full
response.

Request Response

First request with full response

GET /index.php?r=blog HTTP 1.1 HTTP/1.1 200 OK
Cache-Control: public,
max-age=3600
Last-Modified: Thu, 21 Apr 2016
00:56:02 GMT

<!DOCTYPE html>
<html lang="en-US">
...

Second request with If-Modified-Since with blank response

GET /index.php?r=blog HTTP 1.1
If-Modified-Since: Thu, 21 Apr
2016 00:56:02 GMT

HTTP/1.1 304 Not Modified
Cache-Control: public,
max-age=3600

Third request after updating the posts with a full response

GET /index.php?r=blog HTTP 1.1
If-Modified-Since: Thu, 21 Apr
2016 00:56:02 GMT

HTTP/1.1 200 OK
Cache-Control: public,
max-age=3600
Last-Modified: Thu, 21 Apr 2016
01:12:02 GMT

<!DOCTYPE html>
<html lang="en-US">
...

As an alternative or an addition to the Last-Modified header variable, you can use ETag.

Entity Tag

In cases when we do not store the last modified date in our documents or pages, we can use custom
hashes, which can be generated at the base of the document content.

For example, we can use a content title for our document to hash a specific tag:

class BlogController extends Controller
{

public function behaviors()
{

return [
[

'class' => 'yii\filters\HttpCache',
'only' => ['view'],
'etagSeed' => function ($action, $params) {

$article =
$this->findModel(\Yii::$app->request->get('id'));

return serialize([$article->title,
$article->text]);

},
],

];
}
// ...

}

The HttpCache filter will attach this tag to the server response as an ETag header variable.

After storing ETag, our browser can attach it in the If-None-Match header for every subsequent
request.

If the document still has not changed, HttpCache will send a lightweight 304 response header
without running the action.

Request Response

First request with full response

GET index.php?r=blog/
view&id=3 HTTP 1.1

HTTP/1.1 200 OK
Cache-Control: public, max-age=3600
Etag: "VYkwdOXBzV23KhnzTTJXU"

<!DOCTYPE html>
<html lang="en-US">
...

Second request with If-None-Match and blank response

Request Response

GET index.php?r=blog/
view&id=3 HTTP 1.1
If-None-Match:
"VYkwdOXBzV23KhnzTTJXU"

HTTP/1.1 304 Not Modified
Cache-Control: public, max-age=3600
Etag: "VYkwdOXBzV23KhnzTTJXU"

Third request after updating the post with a full response

GET index.php?r=blog/
view&id=3 HTTP 1.1
If-None-Match:
"VYkwdOXBzV23KhnzTTJXU"

HTTP/1.1 200 OK
Cache-Control: public, max-age=3600Etag:
"Ur4Ghd6hdYthrn82Ph44dhF"

<!DOCTYPE html>
<html lang="en-US">
...

When the cache is valid, our application will send the 304 Not Modified response HTTP-headers
instead of the page content and will not run controllers and actions repeatedly.

See also
• For more information about HTTP caching refer to https://developers.google.com/web/

fundamentals/performance/optimizing-content-efficiency/http-caching
• For HTTP-caching in Yii2 refer to http://www.yiiframework.com/doc-2.0/guide-caching-

http.html

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching
http://www.yiiframework.com/doc-2.0/guide-caching-http.html
http://www.yiiframework.com/doc-2.0/guide-caching-http.html

Combining and minimizing assets
If your web page includes many CSS and/or JavaScript files, the page will open very slowly because the
browser sends a large number of HTTP requests to download each file in separated threads. To reduce
the number of requests and connections, we can combine and compress multiple CSS/JavaScript files
into one or very few files in production mode, and then include these compressed files on the page
instead of the original ones.

Getting ready
• Create a new yii2-app-basic application using the Composer package manager, as

described in the official guide at http://www.yiiframework.com/doc-2.0/guide-start-
installation.html

• Download the compiler.jar file from https://developers.google.com/closure/compiler/
• Download the yuicompressor.jar file from https://github.com/yui/yuicompressor/releases
• Download and install the Java Runtime Environment (JRE) from http://www.java.com

How to do it…

Follow these steps to combine and minimize assets:

1. Open the source HTML code of the index page of your application. Check whether it is
similar to the following structure:

<!DOCTYPE html>
<html lang="en-US">
<head>

...
<title>My Yii Application</title>
<link href="/assets/9b3b2888/css/bootstrap.css"

rel="stylesheet">
<link href="/css/site.css" rel="stylesheet">

</head>
<body>

...
<script src="/assets/25f82b8a/jquery.js"></script>
<script src="/assets/f4307424/yii.js"></script>
<script src="/assets/9b3b2888/js/bootstrap.js"></script>

</body>
</html>

The page includes three JavaScript files.
2. Open the config/console.php file and add the @webroot and @web alias definitions:

<?php
Yii::setAlias('@webroot', __DIR__ . '/../web');
Yii::setAlias('@web', '/');

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html
https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/releases
http://www.java.com

3. Open a console and run the following command:

yii asset/template assets.php

4. Open the generated assets.php file and configure it as follows:

<?php
return [

'jsCompressor' => 'java -jar compiler.jar --js {from}
--js_output_file {to}',

'cssCompressor' => 'java -jar yuicompressor.jar --type css
{from} -o {to}',

'bundles' => [
'app\assets\AppAsset',
'yii\bootstrap\BootstrapPluginAsset',

],
'targets' => [

'all' => [
'class' => 'yii\web\AssetBundle',
'basePath' => '@webroot/assets',
'baseUrl' => '@web/assets',
'js' => 'all-{hash}.js',
'css' => 'all-{hash}.css',

],
],
'assetManager' => [

'basePath' => '@webroot/assets',
'baseUrl' => '@web/assets',

],
];

5. Run the combining command yii asset assets.php config/assets-prod.php.
If this is successful you must get the config/assets-prod.php file with the following
configuration:

<?php
return [

'all' => [
'class' => 'yii\\web\\AssetBundle',
'basePath' => '@webroot/assets',
'baseUrl' => '@web/assets',
'js' => [

'all-fe792d4766bead53e7a9d851adfc6ec2.js',
],
'css' => [

'all-37cfb42649f74eb0a4bfe0d0e715c420.css',
],

],

'yii\\web\\JqueryAsset' => [
'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'all',
],

],
'yii\\web\\YiiAsset' => [

'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'yii\\web\\JqueryAsset',
'all',

],
],
'yii\\bootstrap\\BootstrapAsset' => [

'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'all',
],

],
'app\\assets\\AppAsset' => [

'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'yii\\web\\YiiAsset',
'yii\\bootstrap\\BootstrapAsset',
'all',

],
],
'yii\\bootstrap\\BootstrapPluginAsset' => [

'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'yii\\web\\JqueryAsset',
'yii\\bootstrap\\BootstrapAsset',
'all',

],
],

];

6. Add the configuration for the assetManager component into the config/web.php file:

'components' => [
// ...
'assetManager' => [

'bundles' => YII_ENV_PROD ? require(__DIR__ .
'/assets-prod.php') : [],

],
],

7. Turn on production mode in web/index.php:

defined('YII_ENV') or define('YII_ENV', 'prod');

8. Reload the page in your browser and see the HTML code again. Now it must contain single
lines to include our compressed files:

<!DOCTYPE html>
<html lang="en-US">

<head>
...
<title>My Yii Application</title>
<link href="/assets/

all-37cfb42649f74eb0a4bfe0d0e715c420.css" rel="stylesheet">
</head>
<body>

...
<script src="/assets/

all-fe792d4766bead53e7a9d851adfc6ec2.js"></script>
</body>

</html>

How it works…

First of all, our page had a set of included files:

<link href="/assets/9b3b2888/css/bootstrap.css" rel="stylesheet">
<link href="/css/site.css" rel="stylesheet">
...
<script src="/assets/25f82b8a/jquery.js"></script>
<script src="/assets/f4307424/yii.js"></script>
<script src="/assets/9b3b2888/js/bootstrap.js"></script>

Next, we generated the assets.php configuration file and specified bundles for compressing:

'bundles' => [
'app\assets\AppAsset',

'yii\bootstrap\BootstrapPluginAsset',
],

Note

Note: We could specify all intermediate asset bundles such as yii\web\JqueryAsset and yii\
web\YiiAsset, but these assets are already specified as dependencies of AppAsset and
BootstrapPluginAsset, and the compressing command automatically resolves all these
dependencies.

The AssetManager publishes all assets into the classic subdirectories in web/assets and after
publishing it runs compressors to combine all CSS and JS files into all-{hash}.js and all-
{hash}.css.

Check whether the CSS file includes other resources by relative paths such as the bootstrap.css
file:

@font-face {
font-family: 'Glyphicons Halflings';
src: url('../fonts/glyphicons-halflings-regular.eot');

}

If it is so, then in the combined file, our compressor changes all relative paths for storing all
relationships as follows:

@font-face{
font-family: 'Glyphicons Halflings';
src: url('9b3b2888/fonts/glyphicons-halflings-regular.eot');

}

After processing, we get the assets-prod.php file with the bundles configuration of the
assetManager component. It defines the new virtual asset as a dependency of clean copies of the
original bundles:

return [
'all' => [

'class' => 'yii\\web\\AssetBundle',
'basePath' => '@webroot/assets',
'baseUrl' => '@web/assets',
'js' => [

'all-fe792d4766bead53e7a9d851adfc6ec2.js',
],
'css' => [

'all-37cfb42649f74eb0a4bfe0d0e715c420.css',
],

],
'yii\\web\\JqueryAsset' => [

'sourcePath' => null,
'js' => [],
'css' => [],
'depends' => [

'all',
],

],
// ...

]

Now we can require this configuration into the config/web.php file:

'components' => [
// ...
'assetManager' => [

'bundles' => require(__DIR__ . '/assets-prod.php'),
],

],

Alternatively, we can require the file for the production environment only:

'components' => [
// ...
'assetManager' => [

'bundles' => YII_ENV_PROD ? require(__DIR__ .
'/assets-prod.php') : [],

],
],

Note

Note: Do not forget to regenerate all compressed and combining files after any updates of the original
resources.

See also
• For more information about assets refer to the following URL: http://www.yiiframework.com/

doc-2.0/guide-structure-assets.html
• For Closure Compiler refer to the following URL: https://developers.google.com/closure/

compiler/
• For YUI Compressor refer to the following URL: https://github.com/yui/yuicompressor/

http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/

Running Yii2 on HHVM
HipHop Virtual Machine (HHVM) is a process virtual machine from Facebook based on just-in-time
(JIT) compilation. HHVM transforms PHP code into intermediate HipHop bytecode (HHBC) and
dynamically translates PHP code into machine code, which will be optimized and natively executed.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it…

Follow these steps to run Yii on HHVM:

1. Install the Apache2 or Nginx web server.
2. Follow the guide for installing HHVM on Linux or Mac available at https://docs.hhvm.com/

hhvm/installation/introduction. For example, on Ubuntu you must run the following commands:

sudo apt-get install software-properties-common
sudo apt-key adv --recv-keys --keyserver
hkp://keyserver.ubuntu.com:80 0x5a16e7281be7a449
sudo add-apt-repository "deb http://dl.hhvm.com/ubuntu
$(lsb_release -sc) main"
sudo apt-get update
sudo apt-get install hhvm
After installing, you will see the following tips in your
terminal:
**

* HHVM is installed.
*
* Running PHP web scripts with HHVM is done by having your
* webserver talk to HHVM over FastCGI. Install nginx or Apache,
* and then:
* $ sudo /usr/share/hhvm/install_fastcgi.sh
* $ sudo /etc/init.d/hhvm restart
* (if using nginx) $ sudo /etc/init.d/nginx restart
* (if using apache) $ sudo /etc/init.d/apache restart
*
* Detailed FastCGI directions are online at:
* https://github.com/facebook/hhvm/wiki/FastCGI
*
* If you're using HHVM to run web scripts, you probably want it
* to start at boot:
* $ sudo update-rc.d hhvm defaults
*

http://www.yiiframework.com/doc-2.0/guidestart-installation.html
https://docs.hhvm.com/hhvm/installation/introduction
https://docs.hhvm.com/hhvm/installation/introduction

* Running command-line scripts with HHVM requires no special
setup:
* $ hhvm whatever.php
*
* You can use HHVM for /usr/bin/php even if you have php-cli
* installed:
* $ sudo /usr/bin/update-alternatives \
* --install /usr/bin/php php /usr/bin/hhvm 60
**

3. Try to start the built-in server manually for your site:

cd web
hhvm -m server -p 8080

Open the localhost:8080 host in your browser:

Right now you can use HHVM to develop your project.
4. If you use the Nginx or Apache2 server, then HHVM automatically creates its own

configuration files in the /etc/nginx and /etc/apache2 directories. In the case of Nginx,
it creates the /etc/nginx/hhvm.conf template to include configuration file to your
projects. For example, let's create a new virtual host called yii-book-hhvm.app:

server {
listen 127.0.0.1:80;
server_name .yii-book-hhvm.app;

root /var/www/yii-book-hhvm.app/web;
charset utf-8;
index index.php index.html index.htm;
include /etc/nginx/hhvm.conf;

}

Add the hostname into your /etc/hosts:

127.0.0.1 yii-book-hhvm.app

Now restart the Nginx server:

sudo service nginx restart

Finally, open the new host in your browser.

Your server is successfully set up.

How it works…

You can use HHVM as an alternative PHP process in the fastcgi mode. By default, it listens to the
9000 port. You can change the default port of the fastcgi process in the /etc/hhvm/
server.ini file:

hhvm.server.port = 9000

Configure the specific PHP options in the /etc/hhvm/php.ini file.

See also

For more information about installing HHVM, refer to the following URLs:

• https://docs.hhvm.com/hhvm/installation/linux
• https://docs.hhvm.com/hhvm/installation/mac

In order to learn more information about HHVM usage refer to https://docs.hhvm.com/hhvm/.

https://docs.hhvm.com/hhvm/installation/linux
https://docs.hhvm.com/hhvm/installation/mac
https://docs.hhvm.com/hhvm/

Chapter 10. Deployment
In this chapter, we will cover the following recipes:

• Changing the Yii directory layout
• Moving an application webroot
• Changing an advanced application template
• Moving configuration parts into separate files
• Using multiple configurations to simplify the deployment
• Implementing and executing cron jobs
• Maintenance mode
• Deployment tools

Introduction
In this chapter, we will cover various tips that are especially useful during application deployment; these
tips will also come in handy when developing an application in a team or when you just want to make
your development environment more comfortable.

Changing the Yii directory layout
By default, we have the Basic and Advanced Yii2 application skeletons with different directory
structures. But these structures are not dogmatic, and we can customize them if required.

For example, we can move the runtime directory out of the project.

Getting ready

Create a new yii2-app-basic application by using the Composer the package manager, as
described in the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...

Changing the location of the runtime directory

Open config/web.php and config/console.php and define the runtimePath parameter:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'runtimePath' => '/tmp/runtime',
'components' => [

// ...
],

]

Move the runtime directory to the new location.

Changing the location of the vendor directory

1. Open config/web.php and config/console.php and define the vendorPath
parameter:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'vendorPath' => dirname(__DIR__), '/../vendor,
'components' => [

// ...
],

]

2. Move the vendor directory with the composer.json and composer.lock files to the
new location.

3. Open the web/index.php and yii files and find these rows:

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

4. Change the including paths.

Changing the location of the controllers

1. Rename the commands directory to console.
2. Change the namespace of app\commands\HelloController to app\console\

HelloController.
3. Open config/console.php and redefine the controllerNamespace parameter:

$config = [
'id' => 'basic-console',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'controllerNamespace' => 'app\console,
'components' => [

// ...
],

]

Changing the locations of the views directory

1. Open config/web.php and define viewPath parameter:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'viewPath' => '@app/myviews',
'components' => [

// ...
],

]

2. Rename your views directory.

How it works...

In the yii\base\Application::preInit method our application defines basePath,
runtimePath, and vendorPath parameters.

By default, these values lead to the root application directory, runtime and vendor path in the root
respectively.

For example, you can redefine vendorPath if you want to share the vendor directory with some
instances of the same projects. But take care of the package's versions compatibility.

The yii\base\Application class extends yii\base\Module, which contains the
controllerNamespace and viewPath parameters. The first one allows you to change the base
namespace of the application and modules. It is helpful if you want to provide frontend and backend
controllers in the same module directory. Just change the controllers directory to frontend and
backend or create subdirectories and configure your frontend and backend applications:

return [
'id' => 'app-frontend',
'basePath' => dirname(__DIR__),
'controllerNamespace' => frontend\controllers',
'bootstrap' => ['log'],
'modules' => [

'user' => [
'my\user\Module',
'controllerNamespace' => 'my\user\controllers\frontend',

]
],
// ...

]
return [

'id' => 'app-backend',
'basePath' => dirname(__DIR__),
'controllerNamespace' => 'backend\controllers',
'bootstrap' => ['log'],
'modules' => [

'user' => [
'my\user\Module',
'controllerNamespace' => 'my\user\controllers\backend',

]
],
// ...

]

See also

In order to learn more about application structures, refer to http://www.yiiframework.com/doc-2.0/
guide-structure-applications.html.

http://www.yiiframework.com/doc-2.0/guide-structure-applications.html
http://www.yiiframework.com/doc-2.0/guide-structure-applications.html

Moving an application webroot
By default, Yii2 applications work from the web directory for your site's entry script. But shared hosting
environments are often quite limited when it comes to the configuration and directory structure. You
cannot change the working directory for your site. Most servers provide only the public_html
directory for your site entry scripts.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...

Let's discuss the ways to move an application webroot.

Placing files in the root

1. Upload the application files into your hosting.
2. Rename the web directory to public_html.
3. Check that the site works correctly.

Placing files in a subdirectory

A hosting user directory may contain other files and folders. Here's how you can move files to a
subdirectory:

1. Create the application and public_html directories.
2. Move the application files to the application directory.
3. Move the content of the application/web directory to public_html.
4. Open the public_html/index.php file and change the include paths:

require(__DIR__ . '/../application/vendor/autoload.php');
require(__DIR__ . '/../application/vendor/yiisoft/yii2/
Yii.php');

How it works...

The Yii2 application automatically sets the @web and @webroot alias paths on the base of the entry
script location. Therefore we can easily move or rename a web directory without changing the
application configurations.

For yii2-app-advanced, you can move the web directory content from backend to a
subdirectory, such as admin:

public_html
index.php

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

...
admin

index.php
...

backend
common
console
frontend
...

See also

To get more information on installing Yii on a shared hosting environment, refer to
http://www.yiiframework.com/doc-2.0/guide-tutorial-shared-hosting.html.

http://www.yiiframework.com/doc-2.0/guide-tutorial-shared-hosting.html

Changing an advanced application template
By default, Yii2's Advanced template has console, frontend, and backend applications.
However, in your specific case, you can rename the existing ones and create your own applications. For
example you can add the api application if you develop an API for your site.

Getting ready

Create a new yii2-app-advanced project by using the Composer package manager, as described in
the official guide at https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-
installation.md.

How to do it...
1. Copy the backend directory content to a new api directory in the root of your application.
2. Open the api/config/main.php file and change the controllerNamespace option

value:

return [
'id' => 'app-manager',
'basePath' => dirname(__DIR__),
'controllerNamespace' =>
'api\controllers',
//

]

3. Open api/assets/AppAsset.php and api/controllers/SiteController.php
and change the namespaces from backend to api like this:

namespaces api\assets;
namespaces api\controllers;

4. Open the api/views/layouts/main.php file and find the following row:

use backend\assets\AppAsset;

Change it to this:

use api\assets\AppAsset;

5. Open common/config/bootstrap.php and add the @api alias for the new application:

<?php
Yii::setAlias('@common', dirname(__DIR__));
Yii::setAlias('@frontend', dirname(dirname(__DIR__)) .
'/frontend');
Yii::setAlias('@backend', dirname(dirname(__DIR__)) .
'/backend');

https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-installation.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-installation.md

Yii::setAlias('@console', dirname(dirname(__DIR__)) .
'/console');
Yii::setAlias('@api', dirname(dirname(__DIR__)) . '/api);

6. Open the environments directory, and in the dev and prod subdirectories make the api
directories copies of backend.

7. Open the environments/index.php file and add rows for the api application:

return [
'Development' => [

'path' => 'dev',
'setWritable' => [

'backend/runtime',
'backend/web/assets',
'frontend/runtime',
'frontend/web/assets',
'api/runtime',
'api/web/assets',

],
'setExecutable' => [

'yii',
'tests/codeception/bin/yii',

],
'setCookieValidationKey' => [

'backend/config/main-local.php',
'frontend/config/main-local.php',
'api/config/main-local.php',

],
],
'Production' => [

'path' => 'prod',
'setWritable' => [

'backend/runtime',
'backend/web/assets',
'frontend/runtime',
'frontend/web/assets',
'api/runtime',
'api/web/assets',

],
'setExecutable' => [

'yii',
],
'setCookieValidationKey' => [

'backend/config/main-local.php',
'frontend/config/main-local.php',
'api/config/main-local.php',

],

],
];

Now you have the console, frontend, backend, and api applications.

How it works...

The Advanced application template is a set of applications with custom aliases, such as @frontend,
@backend, @common, and @console and corresponding namespaces instead of the simple @app
alias for the Basic template.

You can easily add, remove, or rename this applications (with their aliases and namespaces) if needed.

See also

For getting more information about the usage of application directory structures refer to
https://github.com/yiisoft/yii2-app-advanced/tree/master/docs/guide.

https://github.com/yiisoft/yii2-app-advanced/tree/master/docs/guide

Moving configuration parts into separate files
In the basic application template we have separated web and console configuration files. And usually we
set some application components in the both the configuration files.

Moreover, when we develop a big application, we may face some inconvenience. For example, if we
need to adjust some settings, we would most probably end up repeating the changes in both the web
application config and console application config.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...
1. Open the config/web.php file and add the urlManager section to the components

configuration:

'components' => [
// ...
'db' => require(__DIR__ . '/db.php'),
'urlManager' => [

'class' => 'yii\web\UrlManager',
'enablePrettyUrl' => true,
'showScriptName' => false,
'rules' => [

'' => 'site/index',
'<_c:[\w\-]+>/<id:\d+>' => '<_c>/view',
'<_c:[\w\-]+/<_a:[\w\-]+>>/<id:\d+>' => '<_c>/<_a>',
'<_c:[\w\-]+>' =>
'<_c>/index',

],
],

],

2. Create the config/urlRules.php file and move rules array into it:

<?php
return [

'' => 'site/index',
'<_c:[\w\-]+>/<id:\d+>' => '<_c>/view',
'<_c:[\w\-]+/<_a:[\w\-]+>>/<id:\d+>' => '<_c>/<_a>',
'<_c:[\w\-]+>' => '<_c>/index',

];

3. Replace the rule array with the file that requires this:

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

'urlManager' => [
'class' => 'yii\web\UrlManager',
'enablePrettyUrl' => true,
'showScriptName' => false,
'rules' => require(__DIR__ . '/urlRules.php'),

],

How it works...

The preceding technique relies on the fact that Yii configuration files are native PHP files with arrays:

<?php
return [...];

Let's look at the require construct:

'rules' => require(__DIR__ . '/urlRules.php'),

When we use this, it reads the file specified, and, if there is a return statement inside this file, it
returns a value.

Therefore, moving a part out of the main configuration file into a separate file requires creating a
separate file, moving the configuration part into it right after the return statement, and using
require in the main configuration file.

If separate applications (in our example, these are web applications and console applications) require
some common configuration parts, then we can use require to move them into a separate file.

See also

In order to learn more about PHP require and include statements, refer to the following URLs:

• http://php.net/manual/en/function.require.php
• http://php.net/manual/en/function.include.php

http://php.net/manual/en/function.require.php
http://php.net/manual/en/function.include.php

Using multiple configurations to simplify the
deployment
The Advanced application template uses different configuration files for each of its applications:

common
config

main.php
main-local.php
params.php
params-local.php

console
config

main.php
main-local.php
params.php
params-local.php

backend
config

main.php
main-local.php
params.php
params-local.php

frontend
config

main.php
main-local.php
params.php
params-local.php

Each entry web/index.php script merges own set of configuration files:

$config = yii\helpers\ArrayHelper::merge(
require(__DIR__ . '/../../common/config/main.php'),
require(__DIR__ . '/../../common/config/main-local.php'),
require(__DIR__ . '/../config/main.php'),
require(__DIR__ . '/../config/main-local.php')

);
$application = new yii\web\Application($config);
$application->run();

Each config/main.php file merges parameters:

<?php
$params = array_merge(

require(__DIR__ . '/../../common/config/params.php'),
require(__DIR__ . '/../../common/config/params-local.php'),
require(__DIR__ . '/params.php'),
require(__DIR__ . '/params-local.php')

);
return [

// ...
'params' => $params,

];

This system allows you to configure both common and specific application properties and components
of our applications. And we can store default configuration files on the version control system and
ignore all the *-local.php files.

All local files templates are prepared in the environments directory. When you run php init in
your console and choose a needle environment, this initialization script makes copies of the
corresponded files and places them into target folders.

But the Basic application template does not contain an agile configuration system and provides only the
following files:

config
console.php
web.php
db.php
params.php

Let's try to add an advanced configuration system to the yii2-app -basic application template.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...
1. Create the config/common.php file:

<?php
$params = array_merge(

require(__DIR__ . '/params.php'),
require(__DIR__ . '/params-local.php')

);
return [

'basePath' => dirname(__DIR__),
'components' => [

'cache' => [
'class' => 'yii\caching\FileCache',

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

],
'mailer' => [

'class' => 'yii\swiftmailer\Mailer',
],
'db' => [],

],
'params' => $params,

];

2. Create the config/common-local file:

<?php
return [

'components' => [
'db' => [

'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=localhost;dbname=yii2basic',
'username' => 'root',
'password' => '',
'charset' => 'utf8',

],
'mailer' => [

'useFileTransport' => true,
],

],
];

3. Remove the config/db.php file.
4. Remove repetitive code from config/console.php:

<?php
Yii::setAlias('@tests', dirname(__DIR__) . '/tests');
return [

'id' => 'basic-console',
'bootstrap' => ['log', 'gii'],
'controllerNamespace' => 'app\commands',
'modules' => [

'gii' => 'yii\gii\Module',
],
'components' => [

'log' => [
'targets' => [

[
'class' => 'yii\log\FileTarget',
'levels' => ['error', 'warning'],

],
],

],

],
];

5. Create the config/console-local.php file with an empty array:

<?php
return [
];

6. Change the config/web.php file:

$config = [
'id' => 'basic',
'bootstrap' => ['log'],
'components' => [

'user' => [
'identityClass' => 'app\models\User',
'enableAutoLogin' => true,

],
'errorHandler' => [

'errorAction' => 'site/error',
],
'log' => [

'traceLevel' => YII_DEBUG ? 3 : 0,
'targets' => [

[
'class' => 'yii\log\FileTarget',
'levels' => ['error', 'warning'],

],
],

],
],

];
if (YII_ENV_DEV) {

// configuration adjustments for 'dev' environment
$config['bootstrap'][] = 'debug';
$config['modules']['debug'] = 'yii\debug\Module';

$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = 'yii\gii\Module';

}
return $config;

7. Move the request configuration into config/web-local.php:

<?php
return [

'components' => [

'request' => [
'cookieValidationKey' =>

'TRk9G1La5kvLFwqMEQTp6PmC1NHdjtkq',
],

],
];

8. Remove the e-mail ID from config/params.php:

<?php
return [

'adminEmail' => '',
];

9. Paste the ID into config/params-local.php:

<?php
return [

'adminEmail' => 'admin@example.com',
];

10. Remove the dsn string from tests/codeception/config/config.php:

<?php
/**
* Application configuration shared by all test types
*/

return [
'controllerMap' => [

// ...
],
'components' => [

'db' => [
'dsn' => '',

],
'mailer' => [

'useFileTransport' => true,
],
'urlManager' => [

'showScriptName' => true,
],

],
];

11. Put the string into a new tests/codeception/config/config-local.php file:

<?php
return [

'components' => [

'db' => [
'dsn' =>

'mysql:host=localhost;dbname=yii2_basic_tests',
],

],
];

12. Add configuration merging to the web/index.php file:

$config = yii\helpers\ArrayHelper::merge(
require(__DIR__ . '/../config/common.php'),
require(__DIR__ . '/../config/common-local.php'),
require(__DIR__ . '/../config/web.php'),
require(__DIR__ . '/../config/web-local.php')

);

13. Add configuration merging to the console entry script, yii:

$config = yii\helpers\ArrayHelper::merge(
require(__DIR__ . '/config/common.php'),
require(__DIR__ . '/config/common-local.php'),
require(__DIR__ . '/config/console.php'),
require(__DIR__ . '/config/console-local.php')

);

14. Add configuration merging to the testing configurations of the unit, functional, and acceptance
tests from tests/codeception/config:

return yii\helpers\ArrayHelper::merge(
require(__DIR__ . '/../../../config/common.php'),
require(__DIR__ . '/../../../config/common-local.php'),
require(__DIR__ . '/../../../config/web.php'),
require(__DIR__ . '/../../../config/web-local.php'),
require(__DIR__ . '/config.php'),
require(__DIR__ . '/config-local.php'),
[

// ...
]

);

15. Add configuration merging to the testing environment console's entry script, tests/
codeception/bin/yii:

$config = yii\helpers\ArrayHelper::merge(
require(YII_APP_BASE_PATH . '/config/common.php'),
require(YII_APP_BASE_PATH . '/config/common-local.php'),
require(YII_APP_BASE_PATH . '/config/console.php'),
require(YII_APP_BASE_PATH . '/config/console-local.php'),
require(__DIR__ . '/../config/config.php'),

require(__DIR__ . '/../config/config-local.php')
);

16. As a result, you must get the following content in your configuration directory:

config
common.php
common-local.php
console.php
console-local.php
web.php
web-local.php
params.php
params-local.php

17. After all, you can add a new .gitignore file with this content into your config and
tests/codeception/config directories so you can ignore local configuration files by
the Git version control system:

/*-local.php

How it works...

You can store common application components configuration in the config/common.php file and
also set specific configurations for web and console applications. You can put your temporary and secure
configuration data into the *-local.php files.

Also, you can copy the initialization shell script from yii2-app-advanced.

1. Create a new environments directory and copy your templates into it:

environments
dev

config
common-local.php
console-local.php
web-local.php
params-local.php

web
index.php
index-test.php

tests
codeception

config
config.php
config-local.php

yii
prod

config
common-local.php
console-local.php
web-local.php
params-local.php

web
index.php

yii

2. Create the environments/index.php file with this code:

<?php
return [

'Development' => [
'path' => 'dev',
'setWritable' => [

'runtime',
'web/assets',

],
'setExecutable' => [

'yii',
'tests/codeception/bin/yii',

],
'setCookieValidationKey' => [

'config/web-local.php',
],

],
'Production' => [

'path' => 'prod',
'setWritable' => [

'runtime',
'web/assets',

],
'setExecutable' => [

'yii',
],
'setCookieValidationKey' => [

'config/web-local.php',
],

],
];

3. Remove the default Installer::postCreateProject configuration from your
composer.json:

"extra": {
"asset-installer-paths": {

"npm-asset-library": "vendor/npm",

"bower-asset-library": "vendor/bower"
}

}

4. Copy the init and init.bat scripts from the Advanced template, https://github.com/yiisoft/
yii2-app-advanced and you can run the initialization process using the command php init
after the cloning of the project from the repository.

See also

For more information about application configurations refer to http://www.yiiframework.com/doc-2.0/
guide-concept-configurations.html.

https://github.com/yiisoft/yii2-app-advanced
https://github.com/yiisoft/yii2-app-advanced
http://www.yiiframework.com/doc-2.0/guide-concept-configurations.html
http://www.yiiframework.com/doc-2.0/guide-concept-configurations.html

Implementing and executing cron jobs
Sometimes, an application requires some background tasks, such as regenerating a site map or refreshing
statistics. A common way to implement this is by using cron jobs. When using Yii, there is a way to use
a command to run as a job.

In this recipe, we will see how to implement both. For our recipe, we will implement writing the current
timestamp into a t imestamp.txt file under the protected directory.

Getting ready

Create a new yii2-app-basic application by using the Composer, as described in the official guide
at http://www.yiiframework.com/doc-2.0/guide-startinstallation.html.

How to do it...

Running the Hello command

Let us try to run app\commands\HelloController::actionIndex as a shell command:

<?php
namespace app\commands;
use yii\console\Controller;

/**
* This command echoes the first argument that you have entered.
*/

class HelloController extends Controller
{

/**
* This command echoes what you have entered as the message.
* @param string $message the message to be echoed.
*/
public function actionIndex($message = 'hello world')
{

echo $message . "\n";
}

}

1. Open the shell in your application directory and execute this command:

php yii

Alternatively, you also can call the following and ensure that the shell works:

./yii

2. Type the following command for the display hello:

http://www.yiiframework.com/doc-2.0/guide-startinstallation.html

./yii help hello

3. The framework must display some information:

DESCRIPTION
This command echoes what you have entered as the message.

USAGE
yii hello [message] [...options...]
- message: string (defaults to 'hello world')

the message to be echoed.

4. Run the default command action:

./yii hello

Alternatively, run the concrete index action:

./yii hello/index

5. You must now see the default phrase:

Hello world

6. Run the command with any parameter and see the response:

./yii hello 'Bond, James Bond'

Creating your own command

You also can create your own console controllers. For example, create a commands/
CronController.php file with the sample code:

<?php
namespace app\commands;

use yii\console\Controller;
use yii\helpers\Console;
use Yii;

/**
* Console crontab actions
*/
class CronController extends Controller
{

/**
* Regenerates timestamp
*/
public function actionTimestamp()

{
file_put_contents(Yii::getAlias('@app/timestamp.txt'),

time());
$this->stdout('Done!', Console::FG_GREEN, Console::BOLD);
$this->stdout(PHP_EOL);

}
}

After all is done, run the command in a shell:

./yii cron/timestamp

Then, check the response text and the existence of a new file, namely timestamp.txt.

Setting the cron schedule

Create /etc/cron.d/myapp on your Linux server and add the following row to run our command at
every midnight:

0 0
* * * www-data /path/to/yii cron/timestamp >/dev/null

How it works...

A console command is defined as a controller class that extends from yii\console\Controller.
In the controller class, you define one or more actions that correspond to the subcommands of the
controller. Within each action, you write code that implements the appropriate tasks for that particular
sub-command.

When running a command, you need to specify the route to the controller action. For example, the route
migrate/create invokes the sub-command that corresponds to the
MigrateController::actionCreate() action method. If a route offered during the execution
does not contain an action ID, the default action will be executed (as with a web controller).

Take care that your console controllers are placed in the directory defined in the c
ontrollerNamespace option in your web/console.php config.

See also
• For getting more information about Yii2 console commands, refer to

http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html
• In order to learn more about the Cron daemon, refer to https://en.wikipedia.org/wiki/Cron
• The Changing the Yii directory layout recipe for controllerNamespace

http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html
https://en.wikipedia.org/wiki/Cron

Maintenance mode
Sometimes, there is a need to fine tune some application settings or restore a database from a backup.
When working on tasks such as these, it is not desirable to allow everyone to use the application because
it can lead to losing the recent user messages or showing the application implementation details.

In this recipe, we will see how to show everyone except the developer a maintenance message.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...

Carry out the following steps:

1. First, we need to create protected/controllers/MaintenanceController.php.
We do this as follows:

class MaintenanceController extends Controller
{

public function actionIndex()
{

$this->renderPartial("index");
}

}

2. Then we create a view named views/maintenance/index.php, as follows:

<?php
use yii\helpers\Html;
?>
<!doctype html>
<head>

<meta charset="utf-8" />
<title><?php echo
Html::encode(Yii::$app->name)?>is under maintenance</title>

</head>
<body>

<h1><?php echo CHtml::encode(Yii::$app->name)?>is under
maintenance</h1>

<p>We'll be back soon. If we aren't back for too
long,please drop a message to <?php echo
Yii::$app->params['adminEmail']?>.</p>

<p>Meanwhile, it's a good time to get a cup of coffee,to

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

read a book or to check email.</p>
</body>

3. Now we need to add a single line of code to config/web.php, as follows:

$config = [
'catchAll' => file_exists(dirname(__DIR__)

.'/.maintenance')
&& !(isset($_COOKIE['secret']) &&

$_COOKIE['secret']=="password") ?
['maintenance/index'] : null,
// …

]

4. Now in order to go into the maintenance mode, you need to create a file named
.maintenance in your site directory. After you do this, you should see this page.

In order to get it back to normal, you just need to delete it. To view the website in the maintenance
mode, you can create a cookie named secret with its value equal to password.

How it works...

A Yii web application offers a way to intercept all the possible requests and route these to a single
controller action. You can do this by setting yii\web\Application::catchAll to an array
containing the application route as follows:

'catchAll' => ['maintenance/index'],

The maintenance controller itself is nothing special; it just renders a view with some text.

We need an easy way to turn the maintenance mode on and off. As the application config is a regular
PHP file, we can achieve it with a simple check to confirm the file exists, as follows:

file_exists(dirname(__DIR__) . '/.maintenance')

In addition, we check for the cookie value to be able to override the maintenance mode. We do this as
follows:

!
(isset($_COOKIE['secret']) && $_COOKIE['secret']=="password")

See also

In order to learn more about how to catch all the requests in a Yii application and check the production
ready solution for maintenance, refer to http://www.yiiframework.com/doc-2.0/yii-web-
application.html#$catchAll-detail.

http://www.yiiframework.com/doc-2.0/yii-web-application.html#%24catchAll-detail
http://www.yiiframework.com/doc-2.0/yii-web-application.html#%24catchAll-detail

Deployment tools
If you are using a version control system such as Git, for your project's code and pushing releases into
remote repository, you can use Git to deploy code to your production server via the git pull shell
command instead of uploading files manually. Also, you can write your own shell script to pull new
repository commits, update vendors, apply migrations, and do more things.

However, there are many tools available for automating the deployment process. In this recipe, we
consider the tool named Deployer.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...

If you have a shared remote repository, you can use it for deployment source.

Step 1 - Preparing the remote host

1. Go to your remote host and install Composer and asset-plugin too:

global require 'fxp/composer-asset-plugin:~1.1.1'

2. Generate the SSH key via ssh-keygen.
3. Add the ~/.ssh/id_rsa.pub file content into deployment the SSH keys page of your

repository settings on GitHub, Bitbucket, or other repositories storage.
4. Try to clone your repository manually:

git clone git@github.com:user/repo.git

5. Add the Github address and the list of known hosts if the system asks you to do it.

Step 2 - Preparing the localhost

1. Install deploy.phar globally on your local host:

sudo wget http://deployer.org/deployer.phar
sudo mv deployer.phar /usr/local/bin/dep
sudo chmod +x /usr/local/bin/dep

2. Add the deploy.php file with the deployment configuration:

<?php
require 'recipe/yii2-app-basic.php';

set('shared_files', [
'config/db.php',

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

'config/params.php',
'web/index.php',
'yii',

]);

server('prod', 'site.com', 22) // SSH access to remote server
->user('user')
// ->password(password) // uncomment for authentication by

password
// ->identityFile() // uncomment for

authentication by SSH key
->stage('production')
->env('deploy_path', '/var/www/project');

set('repository', 'git@github.com:user/repo.git');

3. Try to prepare remote project directories structure:

dep deploy:prepare prod

Step 3 - Adding remote configuration

1. Open the server's /var/www/project directory. It has two subdirectories after the
initialization:

project
├── releases
└── shared

2. Create original files with private configurations in a shared directory like this:

project
├── releases
└── shared

├── config
│ ├── db.php
│ └── params.php
├── web
│ └── index.php
└── yii

The Deployer tool will include these files in every release subdirectory via symbolic links.

Specify your private configuration in share/config/db.php:

<?php
return [

'class' => 'yii\db\Connection',
dsn' => 'mysql:host=localhost;dbname=catalog',
'username' => 'root',
'password' => 'root',
'charset' => 'utf8',

];

Also, specify it in share/config/params.php:

<?php
return [

'adminEmail' => 'admin@example.com',
];

Set the content of share/web/index.php:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', false);
defined('YII_ENV') or define('YII_ENV', 'prod');

$dir = dirname($_SERVER['SCRIPT_FILENAME']);

require($dir . '/../vendor/autoload.php');
require($dir . '/../vendor/yiisoft/yii2/Yii.php');

$config = require($dir . '/../config/web.php');

(new yii\web\Application($config))->run();

Also, set the content of the share/yii file:

#!/usr/bin/env php
<?php
defined('YII_DEBUG') or define('YII_DEBUG', false);
defined('YII_ENV') or define('YII_ENV', 'prod');

$dir = dirname($_SERVER['SCRIPT_FILENAME']);

require($dir . '/vendor/autoload.php');
require($dir . '/vendor/yiisoft/yii2/Yii.php');

$config = require($dir. '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

Note

Note: We deliberately use the dirname($_SERVER['SCRIPT_FILENAME']) code instead of the
original __DIR__ constant because __DIR__ will return incorrect value when the file is included via
symbolic link.

Note: If you use the yii2-app-advanced template you can redeclare only the config/main-
local.php and config/params-local.php files of every (backend, frontend, console, and
common) because web/index.php and yii files will be created automatically by the init
command.

Step 4 - Trying to deploy

1. Come back to the localhost with the deploy.php file and run the deploy command:

dep deploy prod

2. If successful, you will see the deployment report:

3. Deployer created a new release subdirectory on your remote server and added symlinks from
your project to the shared items and from the current directory to the current release:

project
├── current -> releases/20160412140556
├── releases
│ └── 20160412140556
│ ├── ...
│ ├── runtime -> /../../shared/runtime
│ ├── web
│ ├── vendor
│ ├── ...
│ └── yii -> /../../shared/yii

└── shared
├── config
│ ├── db.php
│ └── params.php
├── runtime
├── web
│ └── index.php
└── yii

4. After all is done, you must set up the DocumentRoot of your server in project/
current/web directory.

5. If something goes wrong during the deployment process you can roll back to the previous
working release:

dep rollback prod

The current directory will lead to your previous release files.

How it works...

Most of the deployment tools do the same tasks:

• Create a new release subdirectory
• Clone repository files
• Make symlinks from the project to shared directories and to local configuration files
• Install Composer packages
• Apply project migrations
• Switch the symlink from the server's DocumentRoot path to the current release directory

The Deployer tool has predefined recipes for popular frameworks. You can extend any existing recipe or
write a new one for your specific case.

See also
• For more information about Deployer, refer to http://deployer.org/docs
• And about creating SSH keys refer to https://git-scm.com/book/en/v2/Git-on-the-Server-

Generating-Your-SSH-Public-Key

http://deployer.org/docs
https://git-scm.com/book/en/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key
https://git-scm.com/book/en/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key

Chapter 11. Testing
In this chapter, we will cover the following topics:

• Testing application with Codeception
• Unit testing with PHPUnit
• Unit testing with Atoum
• Unit testing with Behat

Introduction
In this chapter, you will learn how to use the best technologies for testing, such as Codeception,
PhpUnit, Atoum, and Behat. You will be introduced to how to write simple tests and how to avoid
regression errors in your application.

Testing application with Codeception
By default, the basic and advanced Yii2 application skeletons use Codeception as a testing framework.
Codeception supports writing of unit, functional, and acceptance tests out of the box. For unit tests, it
uses the PHPUnit test framework, which will be covered in the next recipe.

Getting ready
1. Create a new yii2-app-basic application using the Composer package manager, as

described in the official guide at http://www.yiiframework.com/doc-2.0/guide-start-
installation.html.

Note

Note: If your use version 2.0.9 (or earlier) of the basic application just upgrade manually
tests directory, and also add config/test.php, config/test_db.php and web/
index-test.php files. Besides you must copy require and require-dev sections of
composer.json file and run composer updat e.

2. Create and apply the following migration:

<?php
use yii\db\Migration;

class m160309_070856_create_post extends Migration
{

public function up()
{

$this->createTable('{{%post}}', [
'id' => $this->primaryKey(),
'title' => $this->string()->notNull(),
'text' => $this->text()->notNull(),
'status' => $this->smallInteger()->notNull()-
>defaultValue(0),

]);
}

public function down()
{

$this->dropTable('{{%post}}');
}

}

3. Create the Post model:

namespace app\models;

use Yii;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

use yii\db\ActiveRecord;

/**
* @property integer $id
* @property string $title
* @property string $text
* @property integer $status
* @property integer $created_at
* @property integer $updated_at
*/

class Post extends ActiveRecord
{

const STATUS_DRAFT = 0;
const STATUS_ACTIVE = 1;

public static function tableName()
{

return '{{%post}}';
}

public function rules()
{

return [
[['title', 'text'], 'required'],
[['text'], 'string'],
['status', 'in', 'range' => [self::STATUS_DRAFT,

self::STATUS_ACTIVE]],
['status', 'default', 'value' =>

self::STATUS_DRAFT],
[['title'], 'string', 'max' => 255],

];
}

public function behaviors()
{

return [
TimestampBehavior::className(),

];
}

public static function getStatusList()
{

return [
self::STATUS_DRAFT => 'Draft',
self::STATUS_ACTIVE => 'Active',

];
}

public function publish()
{

if ($this->status == self::STATUS_ACTIVE) {
throw new \DomainException('Post is already

published.');
}
$this->status = self::STATUS_ACTIVE;

}

public function draft()
{

if ($this->status == self::STATUS_DRAFT) {
throw new \DomainException('Post is already

drafted.');
}
$this->status = self::STATUS_DRAFT;

}
}

4. Generate CRUD:

5. Also, add the status drop-down list for the status field and name for the submit button in
views/admin/posts/_form.php:

<div class="post-form">

<?php $form = ActiveForm::begin(); ?>

<?= $form->field($model, 'title')->textInput(['maxlength'
=> true]) ?>

<?= $form->field($model, 'text')->textarea(['rows' => 6]) ?>

<?= $form->field($model,
'status')->dropDownList(Post::getStatusList()) ?>

<div class="form-group">
<?= Html::submitButton($model->isNewRecord ? 'Create' :

'Update', [
'class' => $model->isNewRecord ? 'btn btn-success'

: 'btn btn-primary',
'name' => 'submit-button',

]) ?>
</div>

<?php ActiveForm::end(); ?>

</div>

6. Now check that the controller works:

Create any demo posts.

How to do it…

Preparing for the tests

Follow these steps to prepare for the tests:

1. Create yii2_basic_tests or other test database and update it by applying migrations:

tests/bin/yii migrate

The command needs to be run in the tests directory. You can specify your test database options
in configuration file /config/test_db.php.

2. Codeception uses autogenerated Actor classes for own test suites. Build them with this
command:

composer exec codecep
t build

Running unit and functional tests

We can run any types of the application's tests right now:

run all available tests
composer exec codecept run

run functional tests
composer exec codecept run functional

run unit tests
composer exec codecept run unit

As a result, you can view, testing report like this:

Getting coverage reports

You can get code coverage reports for your code. By default, code coverage is disabled in the tests/
codeception.yml configuration file; you should uncomment the necessary rows to be able to
collect code coverage:

coverage:
enabled: true

whitelist:
include:

- models/*
- controllers/*
- commands/*
- mail/*

blacklist:
include:

- assets/*
- config/*
- runtime/*
- vendor/*
- views/*
- web/*
- tests/*

You must install the XDebug PHP extension from https://xdebug.org. For example, on Ubuntu or
Debian you can type the following in your terminal:

sudo apt-get install php5-xdebug

On Windows, you must open the php.ini file and add the custom code with the path to your PHP
installation directory:

[xdebug]
zend_extension_ts=C:/php/ext/php_xdebug.dll

Alternatively, if you use the non-thread safe edition, type the following:

[xdebug]
zend_extension=C:/php/ext/php_xdebug.dll

Finally, you can run tests and collect the coverage report with the following command:

#collect coverage for all tests
composer exec codecept run --coverage-html

#collect coverage only for unit tests
composer exec codecept run unit --coverage-html

#collect coverage for unit and functional tests
composer exec codecept run functional,unit --coverage-html

You can see the text code coverage output in the terminal:

Code Coverage Report:
2016-03-31 08:13:05

https://xdebug.org

Summary:
Classes: 20.00% (1/5)
Methods: 40.91% (9/22)
Lines: 30.65% (38/124)

\app\models::ContactForm
Methods: 33.33% (1/ 3) Lines: 80.00% (12/ 15)

\app\models::LoginForm
Methods: 100.00% (4/ 4) Lines: 100.00% (18/ 18)

\app\models::User
Methods: 57.14% (4/ 7) Lines: 53.33% (8/ 15)

Remote CodeCoverage reports are not printed to console

HTML report generated in coverage

Also, you can see HTML-report under the tests/codeception/_output/coverage directory:

You can click on any class and analyze which lines of code have not been executed during the testing
process.

Running acceptance tests

In acceptance tests you can use PhpBrowser for requesting server via Curl. It helps to check your site
controllers and to parse HTTP and HTML response codes. But if you want to test your CSS or
JavaScript behavior, you must use real browser.

Selenium Server is an interactive tool, which integrates into Firefox and other browsers and allows to
open site pages and emulate human actions.

For working with real browser we must install Selenium Server:

1. Require full Codeception package instead of basic:

composer require --dev codeception/codeception
composer remove --dev codeception/base

2. Download the following software:
◦ Install Mozilla Firefox browser from https://www.mozilla.org
◦ Install Java Runtime Environment from https://www.java.com/en/download/
◦ Download Selenium Standalone Server from http://www.seleniumhq.org/download/
◦ Download Geckodriver from https://github.com/mozilla/geckodriver/releases

3. Launch server with the driver in new terminal window:

java -jar -Dwebdriver.gecko.driver=~/geckodriver
~/selenium-server-standalone-x.xx.x.jar

4. Copy tests/acceptance.suite.yml.example to tests/
acceptance.suite.yml file and configure one like this:

class_name: AcceptanceTester
modules:

enabled:
- WebDriver:

url: http://127.0.0.1:8080/
browser: firefox

- Yii2:
part: orm
entryScript: index-test.php
cleanup: false

5. Open new terminal frame and start web server:

tests/bin/yii serve

6. Run acceptance tests:

composer exec codecept run acceptance

And you should see how Selenium starts the browser and check all site pages.

Creating database fixtures

Before running own tests, we must clear the own test database and load specific test data into it. The
yii2-codeception extension provides the ActiveFixture base class for creating test data sets
for own models. Follow these steps to create database fixtures:

1. Create the fixture class for the Post model:

<?php
namespace tests\fixtures;

use yii\test\ActiveFixture;

class PostFixture extends ActiveFixture
{

public $modelClass = 'app\modules\Post';
public $dataFile = '@tests/_data/post.php';

}

2. Add a demonstration data set in test/_data/post.php file:

<?php
return [

[
'id' => 1,
'title' => 'First Post',
'text' => 'First Post Text',
'status' => 1,
'created_at' => 1457211600,
'updated_at' => 1457211600,

],
[

'id' => 2,
'title' => 'Old Title For Updating',
'text' => 'Old Text For Updating',
'status' => 1,
'created_at' => 1457211600,
'updated_at' => 1457211600,

],
[

'id' => 3,
'title' => 'Title For Deleting',
'text' => 'Text For Deleting',
'status' => 1,
'created_at' => 1457211600,
'updated_at' => 1457211600,

],
];

3. Activate fixtures support for unit and acceptance tests. Just add fixtures part into
unit.suite.yml file:

class_name: UnitTester
modules:

enabled:
- Asserts
- Yii2:

part: [orm, fixtures, email]

Also, add the fixtures part into acceptance.suite.yml:

class_name: AcceptanceTester
modules:

enabled:
- WebDriver:

url: http://127.0.0.1:8080/
browser: firefox

- Yii2:
part: [orm, fixtures]
entryScript: index-test.php
cleanup: false

4. Regenerate tester classes for applying these changes by the following command:

composer exec codecept build

Writing unit or integration test

Unit and integration tests check the source code of our project.

Unit tests check only the current class or their method in isolation from other classes and resources such
as databases, files, and many more.

Integration tests check the working of your classes in integration with other classes and resources.

ActiveRecord models in Yii2 always use databases for loading table schema as we must create a real test
database and our tests will be integrational.

1. Write tests for checking model validation, saving, and changing its status:

<?php
namespace tests\unit\models;

use app\models\Post;
use Codeception\Test\Unit;
use tests\fixtures\PostFixture;

class PostTest extends Unit
{

/**
* @var \UnitTester
*/
protected $tester;

public function _before()
{

$this->tester->haveFixtures([
'post' => [

'class' => PostFixture::className(),

'dataFile' => codecept_data_dir() . 'post.php'
]

]);
}

public function testValidateEmpty()
{

$model = new Post();

expect('model should not validate',
$model->validate())->false();

expect('title has error',
$model->errors)->hasKey('title');

expect('title has error',
$model->errors)->hasKey('text');

}

public function testValidateCorrect()
{

$model = new Post([
'title' => 'Other Post',
'text' => 'Other Post Text',

]);

expect('model should validate',
$model->validate())->true();

}

public function testSave()
{

$model = new Post([
'title' => 'Test Post',
'text' => 'Test Post Text',

]);

expect('model should save', $model->save())->true();

expect('title is correct', $model->title)->equals('Test
Post');

expect('text is correct', $model->text)->equals('Test
Post Text');

expect('status is draft',
$model->status)->equals(Post::STATUS_DRAFT);

expect('created_at is generated',
$model->created_at)->notEmpty();

expect('updated_at is generated',

$model->updated_at)->notEmpty();
}

public function testPublish()
{

$model = new Post(['status' => Post::STATUS_DRAFT]);

expect('post is drafted',
$model->status)->equals(Post::STATUS_DRAFT);

$model->publish();
expect('post is published',

$model->status)->equals(Post::STATUS_ACTIVE);
}

public function testAlreadyPublished()
{

$model = new Post(['status' => Post::STATUS_ACTIVE]);

$this->setExpectedException('\LogicException');
$model->publish();

}

public function testDraft()
{

$model = new Post(['status' => Post::STATUS_ACTIVE]);

expect('post is published',
$model->status)->equals(Post::STATUS_ACTIVE);

$model->draft();
expect('post is drafted',

$model->status)->equals(Post::STATUS_DRAFT);
}

public function testAlreadyDrafted()
{

$model = new Post(['status' => Post::STATUS_ACTIVE]);

$this->setExpectedException('\LogicException');
$model->publish();

}
}

2. Run the tests:

composer exec codecept run unit

3. Now see the result:

That is all. If you deliberately or casually break any model's method you will see a broken test.

Writing functional test

Functional test checks that your application works correctly. This suite prepares $_GET, $_POST, and
others request variables and call the Application::handleRequest method. It helps to test your
controllers and their responses without running of real server.

Now we can write tests for our admin CRUD:

1. Generate a new test class:

codecept generate:cest functional admin/Posts

2. Fix the namespace in the generated file and write own tests:

<?php
namespace tests\functional\admin;

use app\models\Post;
use FunctionalTester;
use tests\fixtures\PostFixture;
use yii\helpers\Url;

class PostsCest
{

function _before(FunctionalTester $I)
{

$I->haveFixtures([
'user' => [

'class' => PostFixture::className(),
'dataFile' => codecept_data_dir() . 'post.php'

]
]);

}

public function testIndex(FunctionalTester $I)
{

$I->amOnPage(['admin/posts/index']);
$I->see('Posts', 'h1');

}

public function testView(FunctionalTester $I)
{

$I->amOnPage(['admin/posts/view', 'id' => 1]);
$I->see('First Post', 'h1');

}

public function testCreateInvalid(FunctionalTester $I)
{

$I->amOnPage(['admin/posts/create']);
$I->see('Create', 'h1');

$I->submitForm('#post-form', [
'Post[title]' => '',
'Post[text]' => '',

]);

$I->expectTo('see validation errors');
$I->see('Title cannot be blank.', '.help-block');

$I->see('Text cannot be blank.', '.help-block');
}

public function testCreateValid(FunctionalTester $I)
{

$I->amOnPage(['admin/posts/create']);
$I->see('Create', 'h1');

$I->submitForm('#post-form', [
'Post[title]' => 'Post Create Title',
'Post[text]' => 'Post Create Text',
'Post[status]' => 'Active',

]);

$I->expectTo('see view page');
$I->see('Post Create Title', 'h1');

}

public function testUpdate(FunctionalTester $I)
{

// ...
}
public function testDelete(FunctionalTester $I)
{

$I->amOnPage(['/admin/posts/view', 'id' => 3]);
$I->see('Title For Deleting', 'h1');

$I->amGoingTo('delete item');
$I->sendAjaxPostRequest(Url::to(['/admin/posts/delete',

'id' => 3]));
$I->expectTo('see that post is deleted');
$I->dontSeeRecord(Post::className(), [

'title' => 'Title For Deleting',
]);

}
}

3. Run tests with the command:

composer exec codecept run functional

4. Now see the results:

All tests passed. In other case you can see snapshots of tested pages in tests/_output directory for
failed tests.

Writing acceptance test

1. Acceptance tester hit the real site from test server instead of calling
Application::handleRequest method. High-level acceptance tests look like middle-
level functional tests, but in case of Selenium it allows to check JavaScript behavior in real
browser.

2. You must get the following class in tests/acceptance directory:

<?php
namespace tests\acceptance\admin;

use AcceptanceTester;
use tests\fixtures\PostFixture;

use yii\helpers\Url;

class PostsCest
{

function _before(AcceptanceTester $I)
{

$I->haveFixtures([
'post' => [

'class' => PostFixture::className(),
'dataFile' => codecept_data_dir() . 'post.php'

]
]);

}

public function testIndex(AcceptanceTester $I)
{

$I->wantTo('ensure that post index page works');
$I->amOnPage(Url::to(['/admin/posts/index']));
$I->see('Posts', 'h1');

}

public function testView(AcceptanceTester $I)
{

$I->wantTo('ensure that post view page works');
$I->amOnPage(Url::to(['/admin/posts/view', 'id' => 1]));
$I->see('First Post', 'h1');

}

public function testCreate(AcceptanceTester $I)
{

$I->wantTo('ensure that post create page works');
$I->amOnPage(Url::to(['/admin/posts/create']));
$I->see('Create', 'h1');

$I->fillField('#post-title', 'Post Create Title');
$I->fillField('#post-text', 'Post Create Text');
$I->selectOption('#post-status', 'Active');

$I->click('submit-button');
$I->wait(3);

$I->expectTo('see view page');
$I->see('Post Create Title', 'h1');

}

public function testDelete(AcceptanceTester $I)
{

$I->amOnPage(Url::to(['/admin/posts/view', 'id' => 3]));
$I->see('Title For Deleting', 'h1');

$I->click('Delete');
$I->acceptPopup();
$I->wait(3);

$I->see('Posts', 'h1');
}

}

Do not forget to call wait method for waiting for page to be opened or reloaded.
3. Run the PHP test server in a new terminal frame:

tests/bin/yii serve

4. Run the acceptance tests:

composer exec codecept run acceptance

5. See the results:

Selenium will start Firefox web browser and execute our testing commands.

Creating API test suite

Besides unit, functional, and acceptance suites, Codeception allows to create specific test suites. For
example, we can create it for API testing with support of XML and JSON parsing.

1. Create the REST API controller controllers/api/PostsController.php for the
Post model:

<?php
namespace app\controllers\api;

use yii\rest\ActiveController;

class PostsController extends ActiveController
{

public $modelClass = '\app\models\Post';
}

2. Add REST routes for the UrlManager component in config/web.php:

'components' => [
// ...
'urlManager' => [

'enablePrettyUrl' => true,
'showScriptName' => false,
'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' =>
'api/posts'],

],
],

],

and some config (but with enabled showScriptName option) in config/test.php:

'components' => [
// ...
'urlManager' => [

'enablePrettyUrl' => true,
'showScriptName' => true,
'rules' => [

['class' => 'yii\rest\UrlRule', 'controller' =>
'api/posts'],

],
],

],

3. Add the web/.htaccess file with the following content:

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . index.php

4. Check that the api/posts controller works:

5. Create the API test suite tests/api.suite.yml configuration file with the REST module:

class_name: ApiTester
modules:

enabled:
- REST:

depends: PhpBrowser
url: 'http://127.0.0.1:8080/index-test.php'
part: [json]

- Yii2:
part: [orm, fixtures]
entryScript: index-test.php

Now rebuild testers:

composer exec codecept build

6. Create tests/api directory and generate new test class:

composer exec codecept generate:cest api Posts

7. Write tests for your REST-API:

<?php
namespace tests\api;

use ApiTester;
use tests\fixtures\PostFixture;
use yii\helpers\Url;

class PostsCest
{

function _before(ApiTester $I)
{

$I->haveFixtures([
'post' => [

'class' => PostFixture::className(),
'dataFile' => codecept_data_dir() . 'post.php'

]
]);

}

public function testGetAll(ApiTester $I)
{

$I->sendGET('/api/posts');
$I->seeResponseCodeIs(200);
$I->seeResponseIsJson();
$I->seeResponseContainsJson([0 => ['title' => 'First

Post']]);
}

public function testGetOne(ApiTester $I)
{

$I->sendGET('/api/posts/1');
$I->seeResponseCodeIs(200);
$I->seeResponseIsJson();
$I->seeResponseContainsJson(['title' => 'First Post']);

}

public function testGetNotFound(ApiTester $I)
{

$I->sendGET('/api/posts/100');
$I->seeResponseCodeIs(404);
$I->seeResponseIsJson();
$I->seeResponseContainsJson(['name' => 'Not Found']);

}

public function testCreate(ApiTester $I)
{

$I->sendPOST('/api/posts', [
'title' => 'Test Title',
'text' => 'Test Text',

]);

$I->seeResponseCodeIs(201);
$I->seeResponseIsJson();
$I->seeResponseContainsJson(['title' => 'Test Title']);

}

public function testUpdate(ApiTester $I)
{

$I->sendPUT('/api/posts/2', [
'title' => 'New Title',

]);
$I->seeResponseCodeIs(200);
$I->seeResponseIsJson();
$I->seeResponseContainsJson([

'title' => 'New Title',
'text' => 'Old Text For Updating',

]);
}

public function testDelete(ApiTester $I)
{

$I->sendDELETE('/api/posts/3');
$I->seeResponseCodeIs(204);

}
}

8. Run application server:

tests/bin yii serve

9. Run API tests:

composer exec codecept run api

Now see the result:

All tests passed and our API works correctly.

How it works…

Codeception is high-level testing framework, based on the PHPUnit package for providing infrastructure
for writing unit, integration, functional, and acceptance tests.

We can use built-in Yii2 module of Codeception which allows us to load fixtures, work with models and
other things from Yii Framework.

See also
• For further information, refer to:

◦ http://codeception.com/docs/01-Introduction
◦ https://phpunit.de/manual/5.2/en/installation.html

• The tests/README.md file of your basic or advanced application:
◦ https://github.com/yiisoft/yii2-app-basic/blob/master/tests/README.md
◦ https://github.com/yiisoft/yii2-app-advanced/blob/master/tests/README.md

• The Unit testing with PHPUnit recipe

http://codeception.com/docs/01-Introduction
https://phpunit.de/manual/5.2/en/installation.html
https://github.com/yiisoft/yii2-app-basic/blob/master/tests/README.md
https://github.com/yiisoft/yii2-app-advanced/blob/master/tests/README.md

Unit testing with PHPUnit
PHPUnit is the most popular PHP testing framework. It is simple for configuration and usage. Also, the
framework supports code coverage reports and has a lot of additional plugins. Codeception from the
previous recipe uses PHPUnit for own work and writing unit tests. In this recipe, we will create a
demonstration shopping cart extension with PHPUnit tests.

Getting ready

Create a new yii2-app-basic application using the Composer package manager, as described in the
official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it…

First, we must create a new empty directory for own extension.

Preparing extension structure

1. First, create the directory structure for your extension:

book
└── cart

├── src
└── tests

To work with the extension as a Composer package, prepare the book/cart/
composer.json file like this:

{
"name": "book/cart",
"type": "yii2-extension",
"require": {

"yiisoft/yii2": "~2.0"
},
"require-dev": {

"phpunit/phpunit": "4.*"
},
"autoload": {

"psr-4": {
"book\\cart\\": "src/",
"book\\cart\\tests\\": "tests/"

}
},
"extra": {

"asset-installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

}
}

}

2. Add the book/cart/.gitignore file with the following lines:

/vendor
/composer.lock

3. Add the following lines to the PHPUnit default configuration file book/cart/
phpunit.xml.dist like this:

<?xml version="1.0" encoding="utf-8"?>
<phpunit bootstrap="./tests/bootstrap.php"

colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
stopOnFailure="false">

<testsuites>
<testsuite name="Test Suite">

<directory>./tests</directory>
</testsuite>

</testsuites>
<filter>

<whitelist>
<directory suffix=".php">./src/</directory>

</whitelist>
</filter>

</phpunit>

4. Install all the dependencies of the extension:

composer install

5. Now we must get the following structure:

book
└── cart

├── src
├── tests
├── .gitignore
├── composer.json
├── phpunit.xml.dist
└── vendor

Writing extension code

To write the extension code, follow these steps:

1. Create the book\cart\Cart class in the src directory:

<?php
namespace book\cart;

use book\cart\storage\StorageInterface;
use yii\base\Component;
use yii\base\InvalidConfigException;

class Cart extends Component
{

/**
* @var StorageInterface
*/

private $_storage;
/**
* @var array
*/

private $_items;

public function setStorage($storage)
{

if (is_array($storage)) {
$this->_storage = \Yii::createObject($storage);

} else {
$this->_storage = $storage;

}
}

public function add($id, $amount = 1)
{

$this->loadItems();
if (isset($this->_items[$id])) {

$this->_items[$id] += $amount;
} else {

$this->_items[$id] = $amount;
}
$this->saveItems();

}

public function set($id, $amount)
{

$this->loadItems();
$this->_items[$id] = $amount;
$this->saveItems();

}

public function remove($id)
{

$this->loadItems();
if (isset($this->_items[$id])) {

unset($this->_items[$id]);
}
$this->saveItems();

}

public function clear()
{

$this->loadItems();
$this->_items = [];
$this->saveItems();

}

public function getItems()
{

$this->loadItems();
return $this->_items;

}

public function getCount()
{

$this->loadItems();
return count($this->_items);

}

public function getAmount()
{

$this->loadItems();
return array_sum($this->_items);

}

private function loadItems()
{

if ($this->_storage === null) {
throw new InvalidConfigException('Storage must be

set');
}
if ($this->_items === null) {

$this->_items = $this->_storage->load();
}

}

private function saveItems()
{

$this->_storage->save($this->_items);
}

}

2. Create StorageInterface interface in the src/storage subdirectory:

<?php
namespace book\cart\storage;

interface StorageInterface
{

/**
* @return array
*/

public function load();

/**
* @param array $items
*/

public function save(array $items);
}

and SessionStorage class:

namespace book\cart\storage;

use Yii;

class SessionStorage implements StorageInterface
{

public $sessionKey = 'cart';

public function load()
{

return Yii::$app->session->get($this->sessionKey, []);
}

public function save(array $items)
{

Yii::$app->session->set($this->sessionKey, $items);
}

}

3. Now we must get the following structure:

book
└── cart

├── src

│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── tests
├── .gitignore
├── composer.json
├── phpunit.xml.dist
└── vendor

Writing extension tests

To conduct the extension test, follow these steps:

1. Add the book/cart/tests/bootstrap.php entry script for PHPUnit:

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'test');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

2. Create a test base class by initializing the Yii application before each test and by destroying the
application afterwards:

<?php
namespace book\cart\tests;

use yii\di\Container;
use yii\web\Application;

abstract class TestCase extends \PHPUnit_Framework_TestCase
{

protected function setUp()
{

parent::setUp();
$this->mockApplication();

}

protected function tearDown()
{

$this->destroyApplication();
parent::tearDown();

}

protected function mockApplication()

{
new Application([

'id' => 'testapp',
'basePath' => __DIR__,
'vendorPath' => dirname(__DIR__) . '/vendor',

]);
}

protected function destroyApplication()
{

\Yii::$app = null;
\Yii::$container = new Container();

}
}

3. Add a memory-based clean fake class that implements the StorageInterface interface:

<?php

namespace book\cart\tests\storage;

use book\cart\storage\StorageInterface;

class FakeStorage implements StorageInterface
{

private $items = [];

public function load()
{

return $this->items;
}

public function save(array $items)
{

$this->items = $items;
}

}

It will store items into a private variable instead of working with a real session. It allows to run
tests independently (without real storage driver) and also improves testing performance.

4. Add the CartTest class:

<?php
namespace book\cart\tests;

use book\cart\Cart;
use book\cart\tests\storage\FakeStorage;

class CartTest extends TestCase
{

/**
* @var Cart
*/

private $cart;

public function setUp()
{

parent::setUp();
$this->cart = new Cart(['storage' => new

FakeStorage()]);
}

public function testEmpty()
{

$this->assertEquals([], $this->cart->getItems());
$this->assertEquals(0, $this->cart->getCount());
$this->assertEquals(0, $this->cart->getAmount());

}

public function testAdd()
{

$this->cart->add(5, 3);
$this->assertEquals([5 => 3], $this->cart->getItems());

$this->cart->add(7, 14);
$this->assertEquals([5 => 3, 7 => 14],

$this->cart->getItems());

$this->cart->add(5, 10);
$this->assertEquals([5 => 13, 7 => 14],

$this->cart->getItems());
}

public function testSet()
{

$this->cart->add(5, 3);
$this->cart->add(7, 14);
$this->cart->set(5, 12);
$this->assertEquals([5 => 12, 7 => 14],

$this->cart->getItems());
}

public function testRemove()
{

$this->cart->add(5, 3);

$this->cart->remove(5);
$this->assertEquals([], $this->cart->getItems());

}

public function testClear()
{

$this->cart->add(5, 3);
$this->cart->add(7, 14);
$this->cart->clear();
$this->assertEquals([], $this->cart->getItems());

}

public function testCount()
{

$this->cart->add(5, 3);
$this->assertEquals(1, $this->cart->getCount());

$this->cart->add(7, 14);
$this->assertEquals(2, $this->cart->getCount());

}

public function testAmount()
{

$this->cart->add(5, 3);
$this->assertEquals(3, $this->cart->getAmount());

$this->cart->add(7, 14);
$this->assertEquals(17, $this->cart->getAmount());

}

public function testEmptyStorage()
{

$cart = new Cart();
$this->setExpectedException('yii\base\

InvalidConfigException');
$cart->getItems();

}
}

5. Add a separated test for checking the SessionStorage class:

<?php
namespace book\cart\tests\storage;

use book\cart\storage\SessionStorage;
use book\cart\tests\TestCase;

class SessionStorageTest extends TestCase
{

/**
* @var SessionStorage
*/

private $storage;

public function setUp()
{

parent::setUp();
$this->storage = new SessionStorage(['key' => 'test']);

}

public function testEmpty()
{

$this->assertEquals([], $this->storage->load());
}

public function testStore()
{

$this->storage->save($items = [1 => 5, 6 => 12]);

$this->assertEquals($items, $this->storage->load());
}

}

6. Right now we must get the following structure:

book
└── cart

├── src
│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── tests
│ ├── storage
│ │ ├── FakeStorage.php
│ │ └── SessionStorageTest.php
│ ├── bootstrap.php
│ ├── CartTest.php
│ └── TestCase.php
├── .gitignore
├── composer.json
├── phpunit.xml.dist
└── vendor

Running tests

During the installation of all dependencies with the composer install command, the Composer
package manager installs the PHPUnit package into the vendor directory and places the executable
file phpunit in the vendor/bin subdirectory.

Now we can run the following script:

cd book/cart
vendor/bin/phpunit

We must see the following testing report:

PHPUnit 4.8.26 by Sebastian Bergmann and contributors.

..........

Time: 906 ms, Memory: 11.50MB

OK (10 tests, 16 assertions)

Each dot shows a success result of the correspondent test.

Try to deliberately break an own cart by commenting the unset operation:

class Cart extends Component
{

…

public function remove($id)
{

$this->loadItems();
if (isset($this->_items[$id])) {

// unset($this->_items[$id]);
}
$this->saveItems();

}

...
}

Run the tests again:

PHPUnit 4.8.26 by Sebastian Bergmann and contributors.

...F......

Time: 862 ms, Memory: 11.75MB

There was 1 failure:

1) book\cart\tests\CartTest::testRemove
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
Array (

+ 5 => 3
)

/book/cart/tests/CartTest.php:52

FAILURES!
Tests: 10, Assertions: 16, Failures: 1

In this case, we have seen one failure (marked as F instead of dot) and a failure report.

Analyzing code coverage

You must install the XDebug PHP extension from https://xdebug.org. For example, on Ubuntu or
Debian, you can type the following in your terminal:

sudo apt-get install php5-xdebug

On Windows, you must open the php.ini file and add the custom code with path to your PHP
installation directory:

[xdebug]
zend_extension_ts=C:/php/ext/php_xdebug.dll

Alternatively, if you use the non-thread safe edition, type the following:

[xdebug]
zend_extension=C:/php/ext/php_xdebug.dll

After installing XDebug, run the tests again with the --coverage-html flag and specify a report
directory:

vendor/bin/phpunit --coverage-html tests/_output

After running open the tests/_output/index.html file in your browser, you will see an explicit
coverage report for each directory and class:

https://xdebug.org

You can click on any class and analyze which lines of code have not been executed during the testing
process. For example, open our Cart class report:

In our case, we forgot to test the creating storage from array configuration.

Usage of component

After publishing the extension on Packagist, we can install a one-to-any project:

composer require book/cart

Also, enable the component in the application configuration file:

'components' => [
// …
'cart' => [

'class' => 'book\cart\Cart',
'storage' => [

'class' => 'book\cart\storage\SessionStorage',
],

],
],

As an alternative way without publishing the extension on Packagist, we must set up the @book alias
for enabling correct class autoloading:

$config = [
'id' => 'basic',
'basePath' => dirname(__DIR__),
'bootstrap' => ['log'],
'aliases' => [

'@book' => dirname(__DIR__) . '/book',
],
'components' => [

'cart' => [
'class' => 'book\cart\Cart',
'storage' => [

'class' => 'book\cart\storage\SessionStorage',
],

],
// ...

],
]

Anyway, we can use it as the Yii::$app->cart component in our project:

Yii::$app->cart->add($product->id, $amount);

How it works…

Before creating your own tests, you must just create any subdirectory and add the phpunit.xml or
phpunit.xml.dist file in the root directory of your project:

<?xml version="1.0" encoding="utf-8"?>
<phpunit bootstrap="./tests/bootstrap.php"

colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
stopOnFailure="false">

<testsuites>
<testsuite name="Test Suite">

<directory>./tests</directory>
</testsuite>

</testsuites>

<filter>
<whitelist>

<directory suffix=".php">./src/</directory>
</whitelist>

</filter>
</phpunit>

PHPUnit loads configuration from the second file if the first one does not exist in the working directory.
Also, you can create the bootstrap.php file by initializing autoloader and your framework's
environments:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'test');
require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

Finally, you can install PHPUnit via Composer (locally or globally) and use the phpunit console
command in the directory with the XML configuration file.

PHPUnit scans the testing directory and finds files with the *Test.php suffix. All your test classes
must extend the PHPUnit_Framework_TestCase class and contain public methods with the
test* prefix like this:

class MyTest extends TestCase
{

public function testSomeFunction()
{

$this->assertTrue(true);
}

}

In the body of your tests, you can use any of the existing assert* methods:

$this->assertEqual('Alex', $model->name);
$this->assertTrue($model->validate());
$this->assertFalse($model->save());
$this->assertCount(3, $items);
$this->assertArrayHasKey('username', $model->getErrors());
$this->assertNotNull($model->author);
$this->assertInstanceOf('app\models\User', $model->author);

Also, you can override the setUp() or tearDown() methods for adding expressions that will be run
before and after each test method.

For example, you can define own base TestCase class by reinitializing the Yii application:

<?php
namespace book\cart\tests;

use yii\di\Container;
use yii\web\Application;

abstract class TestCase extends \PHPUnit_Framework_TestCase
{

protected function setUp()
{

parent::setUp();
$this->mockApplication();

}

protected function tearDown()
{

$this->destroyApplication();
parent::tearDown();

}

protected function mockApplication()
{

new Application([
'id' => 'testapp',
'basePath' => __DIR__,
'vendorPath' => dirname(__DIR__) . '/vendor',

]);
}

protected function destroyApplication()
{

\Yii::$app = null;
\Yii::$container = new Container();

}
}

Now you can extend this class in your subclasses. Even your test method will work with an own
instance of the application. It helps to avoid side effects and to create independent tests.

Note

Yii 2.0.* uses the old PHPUnit 4.* version for compatibility with PHP 5.4.

See also
• For all information about PHPUnit usage, refer to the official documentation at

https://phpunit.de/manual/current/en/index.html
• The Testing application with Codeception recipe

https://phpunit.de/manual/current/en/index.html

Unit testing with Atoum
Besides PHPUnit and Codeception, Atoum is a simple unit testing framework. You can use this
framework for testing your extensions or for testing a code of your application.

Getting ready

Create an empty directory for the new project.

How to do it…

In this recipe, we will create a demonstration shopping cart extension with Atoum tests.

Preparing the extension structure

1. First, create the directory structure for your extension:

book
└── cart

├── src
└── tests

2. For working with the extension as a composer package, prepare the book/cart/
composer.json file as follows:

{
"name": "book/cart",
"type": "yii2-extension",
"require": {

"yiisoft/yii2": "~2.0"
},
"require-dev": {

"atoum/atoum": "^2.7"
},
"autoload": {

"psr-4": {
"book\\cart\\": "src/",
"book\\cart\\tests\\": "tests/"

}
},
"extra": {

"asset-installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

}
}

}

3. Add the following lines to the book/cart/,gitignore file:

/vendor
/composer.lock

4. Install all the dependencies of the extension:

composer install

5. Now we will get the following structure:

book
└── cart

├── src
├── tests
├── .gitignore
├── composer.json
├── phpunit.xml.dist
└── vendor

Writing the extension code

Copy the Cart, StorageInterface, and SessionStorage classes from the Unit testing with
PHPUnit recipe.

Finally, we must get the following structure:

book
└── cart

├── src
│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── tests
├── .gitignore
├── composer.json
└── vendor

Writing the extension tests

1. Add the book/cart/tests/bootstrap.php entry script:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'test');
require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

2. Create a test base class by initializing the Yii application before each test and by destroying the
application after ones:

<?php

namespace book\cart\tests;

use yii\di\Container;
use yii\console\Application;
use mageekguy\atoum\test;

abstract class TestCase extends test
{

public function beforeTestMethod($method)
{

parent::beforeTestMethod($method);
$this->mockApplication();

}

public function afterTestMethod($method)
{

$this->destroyApplication();
parent::afterTestMethod($method);

}

protected function mockApplication()
{

new Application([
'id' => 'testapp',
'basePath' => __DIR__,
'vendorPath' => dirname(__DIR__) . '/vendor',
'components' => [

'session' => [
'class' => 'yii\web\Session',

],
]

]);
}

protected function destroyApplication()
{

\Yii::$app = null;
\Yii::$container = new Container();

}
}

3. Add a memory-based clean fake class that implements the StorageInterface interface:

<?php
namespace book\cart\tests;

use book\cart\storage\StorageInterface;

class FakeStorage implements StorageInterface
{

private $items = [];

public function load()
{

return $this->items;
}

public function save(array $items)
{

$this->items = $items;
}

}

This will store items into a private variable instead of working with the real session. It allows us
to run tests independently (without real storage driver) and also improves testing performance.

4. Add the Cart test class:

<?php
namespace book\cart\tests\units;

use book\cart\tests\FakeStorage;
use book\cart\Cart as TestedCart;
use book\cart\tests\TestCase;

class Cart extends TestCase
{

/**
* @var TestedCart
*/

private $cart;

public function beforeTestMethod($method)
{

parent::beforeTestMethod($method);
$this->cart = new TestedCart(['storage' => new

FakeStorage()]);
}

public function testEmpty()
{

$this->array($this->cart->getItems())->isEqualTo([]);
$this->integer($this->cart->getCount())->isEqualTo(0);
$this->integer($this->cart->getAmount())->isEqualTo(0);

}

public function testAdd()
{

$this->cart->add(5, 3);
$this->array($this->cart->getItems())->isEqualTo([5 =>

3]);

$this->cart->add(7, 14);
$this->array($this->cart->getItems())->isEqualTo([5 =>

3, 7 => 14]);

$this->cart->add(5, 10);
$this->array($this->cart->getItems())->isEqualTo([5 =>

13, 7 => 14]);
}

public function testSet()
{

$this->cart->add(5, 3);
$this->cart->add(7, 14);
$this->cart->set(5, 12);
$this->array($this->cart->getItems())->isEqualTo([5 =>

12, 7 => 14]);
}

public function testRemove()
{

$this->cart->add(5, 3);
$this->cart->remove(5);
$this->array($this->cart->getItems())->isEqualTo([]);

}

public function testClear()
{

$this->cart->add(5, 3);
$this->cart->add(7, 14);
$this->cart->clear();
$this->array($this->cart->getItems())->isEqualTo([]);

}

public function testCount()
{

$this->cart->add(5, 3);

$this->integer($this->cart->getCount())->isEqualTo(1);

$this->cart->add(7, 14);
$this->integer($this->cart->getCount())->isEqualTo(2);

}

public function testAmount()
{

$this->cart->add(5, 3);
$this->integer($this->cart->getAmount())->isEqualTo(3);

$this->cart->add(7, 14);
$this->integer($this->cart->getAmount())->isEqualTo(17);

}

public function testEmptyStorage()
{

$cart = new TestedCart();

$this->exception(function () use ($cart) {
$cart->getItems();

})->hasMessage('Storage must be set');
}

}

5. Add a separated test for checking the SessionStorage class:

<?php
namespace book\cart\tests\units\storage;

use book\cart\storage\SessionStorage as TestedStorage;
use book\cart\tests\TestCase;

class SessionStorage extends TestCase
{

/**
* @var TestedStorage
*/

private $storage;

public function beforeTestMethod($method)
{

parent::beforeTestMethod($method);
$this->storage = new TestedStorage(['key' => 'test']);

}

public function testEmpty()

{
$this

->given($storage = $this->storage)
->then

->array($storage->load())
->isEqualTo([]);

}

public function testStore()
{

$this
->given($storage = $this->storage)
->and($storage->save($items = [1 => 5, 6 => 12]))
->then

->array($this->storage->load())
->isEqualTo($items)

;
}

}

6. Now we will get the following structure:

book
└── cart

├── src
│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── tests
│ ├── units
│ │ ├── storage
│ │ │ └── SessionStorage.php
│ │ └── Cart.php
│ ├── bootstrap.php
│ ├── FakeStorage.php
│ └── TestCase.php
├── .gitignore
├── composer.json
└── vendor

Running tests

During the installation of all dependencies with the composer install command, the Composer
package manager installs the Atounm package into the vendor directory and places the executable file
atoum in the vendor/bin subdirectory.

Now we can run the following script:

cd book/cart
vendor/bin/atoum -d tests/units -bf tests/bootstrap.php

Also, we must see the following testing report:

> atoum path: /book/cart/vendor/atoum/atoum/vendor/bin/atoum
> atoum version: 2.7.0
> atoum path: /book/cart/vendor/atoum/atoum/vendor/bin/atoum
> atoum version: 2.7.0
> PHP path: /usr/bin/php5
> PHP version:
=> PHP 5.5.9-1ubuntu4.16 (cli)
> book\cart\tests\units\Cart...
[SSSSSSSS__][8/8]
=> Test duration: 1.13 seconds.
=> Memory usage: 3.75 Mb.
> book\cart\tests\units\storage\SessionStorage...
[SS__][2/2]
=> Test duration: 0.03 second.
=> Memory usage: 1.00 Mb.
> Total tests duration: 1.15 seconds.
> Total tests memory usage: 4.75 Mb.
> Code coverage value: 16.16%

Each S symbol shows a success result of the correspondent test.

Try to deliberately break the cart by commenting the unset operation:

class Cart extends Component
{

...

public function remove($id)
{

$this->loadItems();
if (isset($this->_items[$id])) {

// unset($this->_items[$id]);
}
$this->saveItems();

}

...
}

Run the tests again:

> atoum version: 2.7.0
> PHP path: /usr/bin/php5
> PHP version:
=> PHP 5.5.9-1ubuntu4.16 (cli)
book\cart\tests\units\Cart...
[SSFSSSSS__][8/8]
=> Test duration: 1.09 seconds.
=> Memory usage: 3.25 Mb.
> book\cart\tests\units\storage\SessionStorage...
[SS__][2/2]
=> Test duration: 0.02 second.
=> Memory usage: 1.00 Mb.
...
Failure (2 tests, 10/10 methods, 0 void method, 0 skipped method, 0
uncompleted method, 1 failure, 0 error, 0 exception)!
> There is 1 failure:
=> book\cart\tests\units\Cart::testRemove():
In file /book/cart/tests/units/Cart.php on line 53, mageekguy\atoum\
asserters\phpArray() failed: array(1) is not equal to array(0)
-Expected
+Actual
@@ -1 +1,3 @@
-array(0) {
+array(1) {
+ [5] =>
+ int(3)

In this case, we have seen one failure (marked as F instead of dot) and a failure report.

Analyzing code coverage

You must install the XDebug PHP extension from https://xdebug.org. For example, on Ubuntu or
Debian you can type the following in your terminal:

sudo apt-get install php5-xdebug

On Windows, you must open the php.ini file and add the custom code with the path to your PHP
installation directory:

[xdebug]
zend_extension_ts=C:/php/ext/php_xdebug.dll

Alternatively, if you use the non-thread safe edition, type the following:

[xdebug]
zend_extension=C:/php/ext/php_xdebug.dll

https://xdebug.org

After installing XDebug, create the book/cart/coverage.php configuration file with coverage
report options:

<?php
use \mageekguy\atoum;
/** @var atoum\scripts\runner $script */
$report = $script->addDefaultReport();
$coverageField = new atoum\report\fields\runner\coverage\
html('Cart', __DIR__ . '/tests/coverage');
$report->addField($coverageField);

Now run the tests again with the -c option to use this configuration:

vendor/bin/atoum -d tests/units -bf tests/bootstrap.php -c
coverage.php

After running the tests, open the tests/coverage/index.html file in your browser. You will see
an explicit coverage report for each directory and class:

You can click on any class and analyze which lines of code have not been executed during the testing
process.

How it works…

The Atoum testing framework supports the Behavior-Driven Design (BDD) syntax flow, as follows:

public function testSome()
{

$this
->given($cart = new TestedCart())
->and($cart->add(5, 13))
->then

->sizeof($cart->getItems())
->isEqualTo(1)

->array($cart->getItems())
->isEqualTo([5 => 3])

->integer($cart->getCount())
->isEqualTo(1)

->integer($cart->getAmount())
->isEqualTo(3);

}

However, you can use the usual PHPUnit-like syntax to write unit tests:

public function testSome()
{

$cart = new TestedCart();
$cart->add(5, 3);

$this
->array($cart->getItems())->isEqualTo([5 => 3])
->integer($cart->getCount())->isEqualTo(1)
->integer($cart->getAmount())->isEqualTo(3)

;
}

Atoum also supports code coverage reports for analyzing the testing quality.

See also
• For more information about Atoum, refer to http://docs.atoum.org/en/latest/
• For sources and usage samples, refer to https://github.com/atoum/atoum
• The Unit testing with PHPUnit recipe

http://docs.atoum.org/en/latest/
https://github.com/atoum/atoum

Unit testing with Behat
Behat is a BDD framework for testing your code with human-readable sentences that describes code
behavior in various use cases.

Getting ready

Create an empty directory for a new project.

How to do it…

In this recipe, we will create a demonstration shopping cart extension with Behat tests.

Preparing extension structure

1. First, create a directory structure for your extension:

book
└── cart

├── src
└── features

2. To work with the extension as a Composer package, prepare the book/cart/
composer.json file as follows:

{
"name": "book/cart",
"type": "yii2-extension",
"require": {

"yiisoft/yii2": "~2.0"
},
"require-dev": {

"phpunit/phpunit": "4.*",
"behat/behat": "^3.1"

},
"autoload": {

"psr-4": {
"book\\cart\\": "src/",
"book\\cart\\features\\": "features/"

}
},
"extra": {

"asset-installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

}

}
}

3. Add the following lines to the book/cart/.gitignore file:

/vendor
/composer.lock

4. Install all the dependencies of the extension:

composer install

5. Now we get the following structure:

book
└── cart

├── src
├── features
├── .gitignore
├── composer.json
└── vendor

Writing extension code

Copy the Cart, StorageInterface, and SessionStorage classes from the Unit testing with
PHPUnit recipe.

Finally, we get the following structure:

book
└── cart

├── src
│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── features
├── .gitignore
├── composer.json
└── vendor

Writing extension tests

1. Add the book/cart/features/bootstrap/bootstrap.php entry script:

<?php
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'test');

require_once __DIR__ . '/../../vendor/yiisoft/yii2/Yii.php';

2. Create the features/cart.feature file and write cart testing scenarios:

Feature: Shopping cart
In order to buy products
As a customer
I need to be able to put interesting products into a cart

Scenario: Checking empty cart
Given there is a clean cart
Then I should have 0 products
Then I should have 0 product
And the overall cart amount should be 0

Scenario: Adding products to the cart
Given there is a clean cart
When I add 3 pieces of 5 product
Then I should have 3 pieces of 5 product
And I should have 1 product
And the overall cart amount should be 3

When I add 14 pieces of 7 product
Then I should have 3 pieces of 5 product
And I should have 14 pieces of 7 product
And I should have 2 products
And the overall cart amount should be 17

When I add 10 pieces of 5 product
Then I should have 13 pieces of 5 product
And I should have 14 pieces of 7 product
And I should have 2 products
And the overall cart amount should be 27

Scenario: Change product count in the cart
Given there is a cart with 5 pieces of 7 product
When I set 3 pieces for 7 product
Then I should have 3 pieces of 7 product

Scenario: Remove products from the cart
Given there is a cart with 5 pieces of 7 product
When I add 14 pieces of 7 product
And I clear cart
Then I should have empty cart

3. Add the storage test features/storage.feature file:

Feature: Shopping cart storage
I need to be able to put items into a storage

Scenario: Checking empty storage
Given there is a clean storage
Then I should have empty storage

Scenario: Save items into storage
Given there is a clean storage
When I save 3 pieces of 7 product to the storage
Then I should have 3 pieces of 7 product in the storage

4. Add implementation for all steps in the features/bootstrap/CartContext.php file:

<?php
use Behat\Behat\Context\SnippetAcceptingContext;
use book\cart\Cart;
use book\cart\features\bootstrap\storage\FakeStorage;
use yii\di\Container;
use yii\web\Application;

require_once __DIR__ . '/bootstrap.php';

class CartContext implements SnippetAcceptingContext
{

/**
* @var Cart
* */

private $cart;

/**
* @Given there is a clean cart
*/

public function thereIsACleanCart()
{

$this->resetCart();
}

/**
* @Given there is a cart with :pieces of :product product
*/

public function thereIsAWhichCostsPs($product, $amount)
{

$this->resetCart();
$this->cart->set($product, floatval($amount));

}

/**
* @When I add :pieces of :product
*/

public function iAddTheToTheCart($product, $pieces)
{

$this->cart->add($product, $pieces);
}

/**
* @When I set :pieces for :arg2 product
*/

public function iSetPiecesForProduct($pieces, $product)
{

$this->cart->set($product, $pieces);
}

/**
* @When I clear cart
*/

public function iClearCart()
{

$this->cart->clear();
}

/**
* @Then I should have empty cart
*/

public function iShouldHaveEmptyCart()
{

PHPUnit_Framework_Assert::assertEquals(
0,
$this->cart->getCount()

);
}

/**
* @Then I should have :count product(s)
*/

public function iShouldHaveProductInTheCart($count)
{

PHPUnit_Framework_Assert::assertEquals(
intval($count),
$this->cart->getCount()

);
}

/**

* @Then the overall cart amount should be :amount
*/

public function theOverallCartPriceShouldBePs($amount)
{

PHPUnit_Framework_Assert::assertSame(
intval($amount),
$this->cart->getAmount()

);
}

/**
* @Then I should have :pieces of :product
*/

public function iShouldHavePiecesOfProduct($pieces,
$product)

{
PHPUnit_Framework_Assert::assertArraySubset(

[intval($product) => intval($pieces)],
$this->cart->getItems()

);
}

private function resetCart()
{

$this->cart = new Cart(['storage' => new
FakeStorage()]);

}
}

5. Also, in the features/bootstrap/StorageContext.php file, add the following:

<?php
use Behat\Behat\Context\SnippetAcceptingContext;
use book\cart\Cart;
use book\cart\features\bootstrap\storage\FakeStorage;
use book\cart\storage\SessionStorage;
use yii\di\Container;
use yii\web\Application;

require_once __DIR__ . '/bootstrap.php';

class StorageContext implements SnippetAcceptingContext
{

/**
* @var SessionStorage
* */

private $storage;

/**
* @Given there is a clean storage
*/

public function thereIsACleanStorage()
{

$this->mockApplication();
$this->storage = new SessionStorage(['key' => 'test']);

}

/**
* @When I save :pieces of :product to the storage
*/

public function iSavePiecesOfProductToTheStorage($pieces,
$product)

{
$this->storage->save([$product => $pieces]);

}

/**
* @Then I should have empty storage
*/

public function iShouldHaveEmptyStorage()
{

PHPUnit_Framework_Assert::assertCount(
0,
$this->storage->load()

);
}

/**
* @Then I should have :pieces of :product in the storage
*/

public function
iShouldHavePiecesOfProductInTheStorage($pieces, $product)

{
PHPUnit_Framework_Assert::assertArraySubset(

[intval($product) => intval($pieces)],
$this->storage->load()

);
}

private function mockApplication()
{

Yii::$container = new Container();
new Application([

'id' => 'testapp',

'basePath' => __DIR__,
'vendorPath' => __DIR__ . '/../../vendor',

]);
}

}

6. Add the features/bootstrap/CartContext/FakeStorage.php file with a fake
storage class:

<?php
namespace book\cart\features\bootstrap\storage;

use book\cart\storage\StorageInterface;

class FakeStorage implements StorageInterface
{

private $items = [];

public function load()
{

return $this->items;
}

public function save(array $items)
{

$this->items = $items;
}

}

7. Add book/cart/behat.yml with contexts definition:

default:
suites:

default:
contexts:

- CartContext
- StorageContext

8. Now we will get the following structure:

book
└── cart

├── src
│ ├── storage
│ │ ├── SessionStorage.php
│ │ └── StorageInterface.php
│ └── Cart.php
├── features
│ ├── bootstrap

│ │ ├── storage
│ │ │ └── FakeStorage.php
│ │ ├── bootstrap.php
│ │ ├── CartContext.php
│ │ └── StorageContext.php
│ ├── cart.feature
│ └── storage.feature
├── .gitignore
├── behat.yml
├── composer.json
└── vendor

Now we can run our tests.

Running tests

During the installation of all dependencies with the command composer install, the Composer
package manager installs the Behat package into the vendor directory and places the executable
behat file in the vendor/bin subdirectory.

Now we can run the following script:

cd book/cart
vendor/bin/behat

Also, we must see the following testing report:

Feature: Shopping cart
In order to buy products
As a customer
I need to be able to put interesting products into a cart

Scenario: Checking empty cart # features/cart.feature:6
Given there is a clean cart # thereIsACleanCart()
Then I should have 0 products #

iShouldHaveProductInTheCart()
Then I should have 0 product #

iShouldHaveProductInTheCart()
And the overall cart amount should be 0 #

theOverallCartPriceShouldBePs()

...

Feature: Shopping cart storage
I need to be able to put items into a storage

Scenario: Checking empty storage # features/storage.feature:4
Given there is a clean storage # thereIsACleanStorage()
Then I should have empty storage # iShouldHaveEmptyStorage()

...

6 scenarios (6 passed)
31 steps (31 passed)
0m0.23s (13.76Mb)

Try to deliberately break the cart by commenting the unset operation:

class Cart extends Component
{

…

public function set($id, $amount)
{

$this->loadItems();
// $this->_items[$id] = $amount;
$this->saveItems();

}

...
}

Now run the tests again:

Feature: Shopping cart
In order to buy products
As a customer

Feature: Shopping cart
In order to buy products
As a customer
I need to be able to put interesting products into a cart

...

Scenario: Change product count in the cart # features/
cart.feature:31

Given there is a cart with 5 pieces of 7 prod #
thereIsAWhichCostsPs()

When I set 3 pieces for 7 product #
iSetPiecesForProduct()

Then I should have 3 pieces of 7 product #
iShouldHavePiecesOf()

Failed asserting that an array has the subset Array &0 (
7 => 3

).

Scenario: Remove products from the cart # features/
cart.feature:36

Given there is a cart with 5 pieces of 7 prod #
thereIsAWhichCostsPs()

When I add 14 pieces of 7 product #
iAddTheToTheCart()

And I clear cart # iClearCart()
Then I should have empty cart #

iShouldHaveEmptyCart()

--- Failed scenarios:

features/cart.feature:31

6 scenarios (5 passed, 1 failed)
31 steps (30 passed, 1 failed)
0m0.22s (13.85Mb)

In this case, we have seen one failure and a failure report.

How it works…

Behat is a BDD testing framework. It facilitates writing preceding human-readable testing scenarios to
low-level technical implementation.

When we write scenarios for every feature, we can use a set of operators:

Scenario: Adding products to the cart
Given there is a clean cart
When I add 3 pieces of 5 product
Then I should have 3 pieces of 5 product
And I should have 1 product
And the overall cart amount should be 3

Behat parses our sentences and finds the associated implementation of the sentence in the context class:

class FeatureContext implements SnippetAcceptingContext
{

/**
* @When I add :pieces of :product
*/

public function iAddTheToTheCart($product, $pieces)
{

$this->cart->add($product, $pieces);
}

}

You can create a single FeatureContex t class (by default) or create a set of specific contexts for
feature groups and scenarios.

See also

For getting more information about Behat refer to the following URLs:

• http://docs.behat.org/en/v3.0/
• https://github.com/Behat/Behat

And to get more information about alternative test frameworks, see the other recipes in this chapter.

http://docs.behat.org/en/v3.0/
https://github.com/Behat/Behat

Chapter 12. Debugging, Logging, and Error
Handling
In this chapter, we will cover the following topics:

• Using different log routes
• Analyzing the Yii error stack trace
• Logging and using the context information
• Displaying custom errors
• Custom panel for debug extension

Introduction
It is not possible to create a bug-free application if it is relatively complex, so developers have to detect
errors and deal with them as fast as possible. Yii has a good set of utility features to handle logging and
handling errors. Moreover, in the debug mode, Yii gives you a stack trace if there is an error. Using it,
you can fix errors faster.

In this chapter, we will review logging, analyzing the exception stack trace, and implementing our own
error handler.

Using different log routes
Logging is the key to understanding what your application actually does when you have no chance to
debug it. Believe it or not, even if you are 100% sure that the application will behave as expected, in
production, it can do many things you were not aware of. This is OK, as no one can be aware of
everything. Therefore, if we are expecting unusual behavior, we need to know about it as soon as
possible and have enough details to reproduce it. This is where logging comes in handy.

Yii allows a developer not only to log messages but also to handle them differently depending on the
message level and category. You can, for example, write a message to the database, send an e-mail, or
just show it in the browser.

In this recipe, we will handle log messages in a wise manner: the most important message will be sent
through an e-mail, less important messages will be saved in files A and B, and the profiling will be
routed to Firebug. Additionally, in a development mode, all messages and profiling information will be
displayed on the screen.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guide-start-installation.html.

How to do it...

Carry out the following steps:

1. Configure logging using config/web.php:

'components' => [
'log' => [

'traceLevel' => 0,
'targets' => [

[
'class' => 'yii\log\EmailTarget',
'categories' => ['example'],
'levels' => ['error'],
'message' => [

'from' => ['log@example.com'],
'to' => ['developer1@example.com',

'developer2@example.com'],
'subject' => 'Log message',

],
],
[

'class' => 'yii\log\FileTarget',
'levels' => ['error'],
'logFile' => '@runtime/logs/error.log',

http://www.yiiframework.com/doc-2.0/guide-start-installation.html

],
[

'class' => 'yii\log\FileTarget',
'levels' => ['warning'],
'logFile' => '@runtime/logs/warning.log',

],
[

'class' => 'yii\log\FileTarget',
'levels' => ['info'],
'logFile' => '@runtime/logs/info.log',

],
],

],

'db' => require(__DIR__ . '/db.php'),
],

2. Now, we will produce a few log messages in protected/controllers/
LogController.php as follows:

<?php
namespace app\controllers;

use yii\web\Controller;
use Yii;

class LogController extends Controller
{

public function actionIndex()
{

Yii::trace('example trace message', 'example');
Yii::info('info', 'example');
Yii::error('error', 'example');
Yii::trace('trace', 'example');
Yii::warning('warning','example');

Yii::beginProfile('preg_replace', 'example');
for($i=0;$i<10000;$i++){

preg_replace('~^[a-z]+~', '', 'test it');
}
Yii::endProfile('preg_replace', 'example');

return $this->render('index');
}

}

and view views/log/index.php:

<div class="log-index">
<h1>Log</h1>

</div>

3. Now run the preceding action multiple times. On the screen, you should see the Log heading
and a debug panel with the log messages number:

4. If you click on 17, you will see a web log similar to the one shown in the following screenshot:

5. A log contains all the messages we have logged along with stack traces, timestamps, levels, and
categories.

6. Now open the Profiling page. You should see profiler messages, as shown in the following
screenshot:

Profiling info displays the total executing duration of own code block.
7. As we just changed the log file names and not the paths, you should look in runtime/logs

to find log files named error.log, warning.log, and info.log.
8. Inside, you will find the following messages:

2016-03-06 07:28:35 [127.0.0.1][-][-][error][example] error
...
2016-03-06 07:28:35 [127.0.0.1][-][-][warning][example] warning
...
2016-03-06 07:28:35 [127.0.0.1][-][-][info][example] inf
o

How it works...

When one logs a message using Yii::erorr, Yii::warning, Yii::info, or Yii::trace, Yii
passes it to the log router.

Depending on how it is configured, it passes messages to one or many targets, for example, e-mailing
errors, writing debug information in file A, and writing warning information in file B.

The object of the yii\log\Dispatcher class is typically attached to an application component
named log. Therefore, in order to configure it, we should set its properties in the configuration file
components section. The only configurable property there is targets that contains an array of log routes
and their configurations.

We have defined four log routes. Let's review them as follows:

[
'class' => 'yii\log\EmailTarget',
'categories' => ['example'],
'levels' => ['error'],
// 'mailer' => 'mailer',
'message' => [

'from' => ['log@example.com'],
'to' => ['developer1@example.com', 'developer2@example.com'],
'subject' => 'Log error,

],
],

EmailTarget sends log messages through an e-mail via the Yii::$app->mailer component by
default. We limit category to example and level to error. An e-mail will be sent from
log@example.com to two developers and the subject will be Log error:

[
'class' => 'yii\log\FileTarget',
'levels' => [warning],
'logFile' => '@runtime/logs/warning.log',

],

FileTarget appends error messages to a specified file. We limit the message level to warning and use
a file named warning.log. We do the same for info-level messages by using a file named
Info.log.

Also, we can use yii\log\SyslogTarget to write messages into the Unix /var/log/syslog
system file and yii\log\DbTarget to write logs into the database. For the second one, you must
apply their migrations:

./yii migrate --migrationPath=@yii/log/migrations/

There's more…

There are more interesting things about Yii logging, which are covered in the following subsections.

Yii::trace versus Yii::getLogger()->log

Yii::trace is a simple wrapper around Yii::log:

public static function trace($message, $category = 'application')
{

if (YII_DEBUG) {
static::getLogger()->log($message, Logger::LEVEL_TRACE,

$category);
}

}

Therefore, Yii::trace logs a message with a trace level, if Yii is in the debug mode.

Yii::beginProfile and Yii::endProfile

These methods are used to measure the execution time of some part of the application's code. In our
LogController, we measured 10,000 executions of preg_replace as follows:

Yii::beginProfile('preg_replace', 'example');
for($i=0;$i<10000;$i++){

preg_replace('~^[a-z]+~', '', 'test it');
}
Yii::endProfile('preg_replace', 'example');

Yii::beginProfile marks the beginning of a code block for profiling. We must set a unique token
for every code block and optionally specify a category:

public static function beginProfile($token, $category =
'application') { … }

Yii::endProfile has to be matched with a previous call to beginProfile with the same
category name:

public static function endProfile($token, $category = 'application')
{ … }

The begin- and end- calls must also be properly nested.

Log messages immediately

By default, Yii keeps all log messages in memory until the application is terminated. That's done for
performance reasons and generally works fine.

However, if there is a console application with long running duration, log messages will not be written
immediately. To make sure your messages will be logged at any moment, you can flush them explicitly
using Yii::$app->getLogger()>flush(true) or change flushInterval and
exportInterval for your console application configuration:

'components' => ['log' => ['flushInterval' => 1,'targets' =>
[['class' => 'yii\log\FileTarget','exportInterval' => 1,],],],
],

See also
• In order to learn more about logging, refer to http://www.yiiframework.com/doc-2.0/guide-

runtime-logging.html
• The Logging and using the context information recipe

http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html
http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html

Analyzing the Yii error stack trace
When an error occurs, Yii can display the error stack trace along with the error. A stack trace is
especially helpful when we need to know what really caused an error rather than just the fact that an
error occurred.

Getting ready
1. Create a new yii2-app-basic application by using the Composer package manager, as

described in the official guide at http://www.yiiframework.com/doc-2.0/guide-start-
installation.html.

2. Configure a database and import the following migration:

<?php
use yii\db\Migration;
class m160308_093234_create_article_table extends Migration
{

public function up()
{

$this->createTable('{{%article}}', [
'id' => $this->primaryKey(),
'alias' => $this->string()->notNull(),
'title' => $this->string()->notNull(),
'text' => $this->text()->notNull(),

]);
}

public function down()
{

$this->dropTable('{{%article}}');
}

}

3. Generate an Article model using Yii.

How to do it...

Carry out the following steps:

1. Now we will need to create some code to work with. Create protected/controllers/
ErrorController.php as follows:

<?php

namespace app\controllers;

use app\models\Article;

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

use yii\web\Controller;

class ErrorController extends Controller
{

public function actionIndex()
{

$article = $this->findModel('php');

return $article->title;
}

private function findModel($alias)
{

return Article::findOne(['allas' => $alias]);
}

}

2. After running the preceding action, we should get the following error:

3. Moreover, the stack trace shows the following error:

How it works...

From the error message, we know that we have no alias column in the database, but we have used it
somewhere in the code. In our case, it is very simple to find it just by searching all the project files, but
in a large project, a column can be stored in a variable. Moreover, we have everything to fix an error
without leaving the screen where the stack trace is displayed. We just need to read it carefully.

The stack trace displays a chain of calls in the reversed order starting with the one that caused an error.
Generally, we don't need to read the whole trace to get what is going on. The framework code itself is
tested well, so the probability of error is less. That is why Yii displays the application trace entries
expanded and the framework trace entries collapsed.

Therefore, we take the first expanded section and look for alias. After finding it, we can immediately tell
that it is used in ErrorController.ph p on line 19.

See also
• In order to learn more about error handling, refer to http://www.yiiframework.com/doc-2.0/

guide-runtime-handling-errors.html
• The Logging and using the context information recipe

http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html
http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html

Logging and using the context information
Sometimes a log message is not enough to fix an error. For example, if you are following best practices
and developing and testing an application with all possible errors reported, you can get an error message.
However, without the execution context, it is only telling you that there was an error and it is not clear
what actually caused it.

For our example, we will use a very simple and poorly coded action that just echoes Hello,
<username>! where the username is taken directly from $_GET.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager, as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...

Carry out the following steps:

1. First, we will need a controller to work with. Therefore, create protected/controllers/
LogController.php as follows:

<?php
namespace app\controllers;

use yii\web\Controller;

class LogController extends Controller
{

public function actionIndex()
{

return 'Hello, ' . $_GET['username'];
}

}

2. Now, if we run the index action, we will get the error message, Undefined index:
username. Let's configure the logger to write this kind of error to a file:

config/web.php:

'components'=>array(
...
'log' => [

'targets' => [
[

'class' => 'yii\log\FileTarget',
'levels' => ['error'],

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

'logFile' => '@runtime/logs/errors.log',
],

],
],

],

3. Run the index action again and check runtime/logs/errors.log. There should be log
information like the following:

2016-03-06 09:27:09 [127.0.0.1][-][-][error][yii\base\
ErrorException:8] exception 'yii\base\ErrorException' with
message 'Undefined index: username' in /controllers/
LogController.php:11
Stack trace:
#0 /yii2/base/InlineAction.php(55): ::call_user_func_array()
#1 /yii2/base/Controller.php(151): yii\base\
InlineAction->runWithParams()
#2 /yii2/base/Module.php(455): yii\base\Controller->runAction()
#3 /yii2/web/Application.php(84): yii\base\Module->runAction()
#4 /yii2/base/Application.php(375): yii\web\
Application->handleRequest()
#5 /web/index.php(12): yii\base\Application->run()
#6 {main}
2016-03-06 09:27:09 [127.0.0.1][-][-][info][application] $_GET
= [

'r' => 'log/index'
]

$_COOKIE = [
'_csrf' => 'ca689043348e...a69ea:2:{i:0;s:...\"DSS...KJ\";}'
'PHPSESSID' => '30584oqhat4ek8b0hrqsapsbf4'

]

$_SERVER = [
'USER' => 'www-data'
'HOME' => '/var/www'
'FCGI_ROLE' => 'RESPONDER'
'QUERY_STRING' => 'r=log/index'
...
'PHP_SELF' => '/index.php'
'REQUEST_TIME_FLOAT' => 1459934829.3067
'REQUEST_TIME' => 1459934829

]

4. Now we can give our application to a testing team and check the errors log from time to time.
By default, error report log contain values from all the $_GET, $_POST, $_FILES,
$_COOKIE, $_SESSION, and $_SERVER variables. If you do not want to display all values,
you can specify a custom variable list:

'log' => [
'targets' => [

[
'class' => 'yii\log\FileTarget',
'levels' => ['error'],
'logVars' => ['_GET', '_POST'],
'logFile' => '@runtime/logs/errors.log',

],
],

],

5. In this case, the report will contain only the $_GET and $_POST arrays:

...
2016-04-06 09:49:08 [127.0.0.1][-][-][info][application] $_GET
= ['r' => 'log/index'
]

How it works...

Yii adds complete information about the execution context and environment in the case of logging error
messages. If we are logging a message manually, then we probably know what information we need, so
we can set some target options to write only what we really need:

'log' => [
'targets' => [

[
'class' => 'yii\log\FileTarget',
'levels' => ['error'],
'logVars' => ['_GET', '_POST'],
'logFile' => '@runtime/logs/errors.log',

],
],

],

The preceding code will log errors to a file named errors. Additionally to a message itself, it will log
contents of the $_GET or $_POST variables if they are not empty.

See also
• In order to learn more about log filters and context information, refer to

http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html
• The Using different log routes recipe

http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html

Displaying custom errors
In Yii, the error handling is very flexible, so you can create your own error handler for errors of a
specific type. In this recipe, we will handle a 404 not found error in a smart way. We will show a custom
404 page that will suggest the content based on what was entered in the address bar.

Getting ready
1. Create a new yii2-app-basic application by using the Composer package manager, as

described in the official guide at http://www.yiiframework.com/doc-2.0/guide-start-
installation.html.

2. Add the fail action to your SiteController:

class SiteController extends Controller
{

// …

public function actionFail()
{

throw new ServerErrorHttpException('Error message
example.');

}
}

3. Add the web/.htaccess file with the following content:

RewriteEngine on
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . index.php

4. Configure pretty URLs for the urlManager component in your config/web.php file:

'components' => [
// …
'urlManager' => [

'enablePrettyUrl' => true,
'showScriptName' => false,

],
],

5. Check that framework displays the Not found exception for URLs that are not existing:

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

6. Also, check that the framework displays the Internal Server Error exception for our
actionFail:

7. Now we want to create a custom page for the Not Found page. Let's start it.

How to do it...

Now we need to change the Not Found page content, but leave it as it is for other error types. In order
to achieve this, follow these steps:

1. Open the SiteController class and look for the actions() method:

class SiteController extends Controller
{

// ...
public function actions()
{

return [
'error' => [

'class' => 'yii\web\ErrorAction',
],
'captcha' => [

'class' => 'yii\captcha\CaptchaAction',
'fixedVerifyCode' => YII_ENV_TEST ? 'testme' :

null,
],

];
}
// ...

}

2. Remove the default error section and leave actions() as follows:

class SiteController extends Controller
{

// ...
public function actions()
{

return [
'captcha' => [

'class' => 'yii\captcha\CaptchaAction',
'fixedVerifyCode' => YII_ENV_TEST ? 'testme' :

null,
],

];
}
// ...

}

3. Add the own actionError() method:

class SiteController extends Controller
{

// ...
public function actionError()
{

}
}

4. Open the original \yii\web\ErrorAction class and copy its action content into our
actionError() and customize it for the render custom error-404 view for the Not
Found error with the 404 code:

// ...
use yii\base\Exception;
use yii\base\UserException;

class SiteController extends Controller
{

// ...
public function actionError()
{

if (($exception =
Yii::$app->getErrorHandler()->exception)== null) {

$exception = new HttpException(404, Yii::t('yii',
'Page not found.'));

}

if ($exception instanceof HttpException) {
$code = $exception->statusCode;

} else {
$code = $exception->getCode();

}
if ($exception instanceof Exception) {

$name = $exception->getName();
} else {

$name = Yii::t('yii', 'Error');
}
if ($code) {

$name .= " (#$code)";
}

if ($exception instanceof UserException) {
$message = $exception->getMessage();

} else {
$message = Yii::t('yii', 'An internal server error

occurred.');
}

if (Yii::$app->getRequest()->getIsAjax()) {
return "$name: $message";

} else {
if ($code == 404) {

return $this->render('error-404');
} else {

return $this->render('error', [
'name' => $name,
'message' => $message,
'exception' => $exception,

]);
}

}
}

}

5. Add the views/site/error-404.php view file with a custom message:

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */

$this->title = 'Not Found!'
?>
<div class="site-error-404">

<h1>Oops!</h1>

<p>Sorry, but requested page not found.</p>

<p>
Please follow to <?= Html::a('index page', ['site/

index'])?>
to continue reading. Thank you.

</p>

</div>

6. That is it. Now try to follow to the non-existing URL and see our content from the
error-404.php view:

7. However, for a fail action we must see the default content from the error.php file:

How it works...

By default, in the yii2-app-basic application, we configure errorAction for the
errorHandler component in our configuration file config/web.php as site/error. It means
that the framework will use this route for displaying every handled exception:

'components' => [
'errorHandler' => [

'errorAction' => 'site/error',

],
],

In the SiteController class, we use the built-in standalone yii\web\ErrorAction class,
which renders the so-called error.php view:

class SiteController extends Controller
{

// ...
public function actions()
{

return [
'error' => [

'class' => 'yii\web\ErrorAction',
],
'captcha' => [

'class' => 'yii\captcha\CaptchaAction',
'fixedVerifyCode' => YII_ENV_TEST ? 'testme' : null,

],
];

}
// ...

}

If we want to override its implementation, we can replace it in an inline actionError() method with
our own custom content.

In this recipe, we add our own if statement for rendering a specific view on the base of error code:

if ($code == 404) {
return $this->render('error-404');

} else {
return $this->render('error', [

'name' => $name,
'message' => $message,
'exception' => $exception,

]);
}

Also, we can use a custom design for the Not Found page.

See also

In order to learn more about handling errors in Yii, refer to http://www.yiiframework.com/doc-2.0/
guide-runtime-handling-errors.html.

http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html
http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html

Custom panel for debug extension
The Yii2-debug extension is a powerful tool for debugging own code, analyzing request information
or database queries, and so on. Therefore, you can add your own panel for any custom report.

Getting ready

Create a new yii2-app-basic application by using the Composer package manager as described in
the official guide at http://www.yiiframework.com/doc-2.0/guidestart-installation.html.

How to do it...
1. Create the panels directory on the root path of your site.
2. Add a new UserPanel class:

<?php
namespace app\panels;

use yii\debug\Panel;
use Yii;

class UserPanel extends Panel
{

public function getName()
{

return 'User';
}

public function getSummary()
{

return Yii::$app->view->render('@app/panels/views/
summary', ['panel' => $this]);

}

public function getDetail()
{

return Yii::$app->view->render('@app/panels/views/
detail', ['panel' => $this]);

}

public function save()
{

$user = Yii::$app->user;

return !$user->isGuest ? [
'id' => $user->id,

http://www.yiiframework.com/doc-2.0/guidestart-installation.html

'username' => $user->identity->username,
] : null;

}
}

3. Create the panels/view/summary.php view with the following code:

<?php
/* @var $panel app\panels\UserPanel */
use yii\helpers\Html;
?>
<div class="yii-debug-toolbar__block">

<?php if (!empty($panel->data)): ?>
<a href="<?= $panel->getUrl() ?>">

User
<span class="yii-debug-toolbar__label

yii-debug-toolbar__label_info">
<?= Html::encode($panel->data['username']) ?>

<?php else: ?>
<a href="<?= $panel->getUrl() ?>">Guest session

<?php endif; ?>
</div>

4. Add the panels/view/detail.php view with the following code:

<?php
/* @var $panel app\panels\UserPanel */
use yii\widgets\DetailView;
?>
<h1>User profile</h1>
<?php if (!empty($panel->data)): ?>

<?= DetailView::widget([
'model' => $panel->data,
'attributes' => [

'id',
'username',

]
]) ?>

<?php else: ?>
<p>Guest session.</p>

<?php endif;?>

5. Turn on your toolbar in the config/web.php configuration file:

if (YII_ENV_DEV) {
$config['bootstrap'][] = 'debug';

$config['modules']['debug'] = [
'class' => 'yii\debug\Module',
'panels' => [

'views' => ['class' => 'app\panels\UserPanel'],
],

];
$config['bootstrap'][] = 'gii';
$config['modules']['gii'] = 'yii\gii\Module';

}

6. Reload the index page and look for the Guest Session cell at the end of the debug panel:

7. Log in to your site with the admin username and the admin password. In a success case, you
must see your username in the main menu:

8. Observe the debug panel again. Right now, you will see the admin username:

9. You can click on the username in the debug panel and see the detailed user information:

How it works...

To create our own panel for the yii2-debug module, we need to extend the yii\debug\Panel
class and override its template methods:

• getName(): The label for menu item on debug detail page
• getSummary(): The debug panel cell code
• getDetail(): The detail page view code
• save(): Your information which will be saved in debug storage and load back into the
$panel->data field

Your object can store any debug data and display it on the summary block of panel and on the detail
page.

In our example, we store user information:

public function save()
{

$user = Yii::$app->user;
return !$user->isGuest ? [

'id' => $user->id,
'username' => $user->identity->username,

] : null;
}

Display it on summary and detail pages from the $panel->data field.

Handling events

You can subscribe to any events of application or any component in the init() method. For example,
the built-in yii\debug\panels\MailPanel panel collects and stores all sent messages:

class MailPanel extends Panel
{

private $_messages = [];

public function init()
{

parent::init();
Event::on(

BaseMailer::className(),
BaseMailer::EVENT_AFTER_SEND,
function ($event) {

$message = $event->message;
$messageData = [

// ...
];
$this->_messages[] = $messageData;

}
);

}

// …

public function save()
{

return $this->_messages;
}

}

Also, it displays a grid with the list of stored messages on our own detail page.

See also
• In order to learn more about yii2-debug extension, refer to http://www.yiiframework.com/

doc-2.0/ext-debug-index.html
• For more information about creating a views counter panel, refer to https://github.com/yiisoft/

yii2-debug/blob/master/docs/guide/topics-creating-your-own-panels.md

http://www.yiiframework.com/doc-2.0/ext-debug-index.html
http://www.yiiframework.com/doc-2.0/ext-debug-index.html
https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/topics-creating-your-own-panels.md
https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/topics-creating-your-own-panels.md

Index
A

• access control and filters
◦ references / See also

• access control filters
◦ reference / See also

• ActiveQuery class
◦ customizing / Customizing the ActiveQuery class, How to do it..., How it works...
◦ references / See also

• Active Record
◦ reference / See also

• Active Record (AR)
◦ about / Processing model fields with AR event-like methods

• advanced application template
◦ modifying / Changing an advanced application template, How to do it..., How it

works...
• advanced project template

◦ installing / Installing advanced project template
• Advanced template

◦ URL / How it works...
• AJAX-dependent drop-down list

◦ about / AJAX-dependent drop-down list, Getting ready, How to do it...
◦ working / How it works...

• AJAX validation
◦ about / AJAX validation, How to do it...
◦ working / How it works...

• application configurations
◦ reference / See also

• application directory structures
◦ uses, reference / See also

• application structures
◦ reference / See also

• application templates / Application templates, How it works…
• application webroot

◦ moving / Moving an application webroot, How it works...
◦ files, placing / Placing files in the root
◦ files, placing in subdirectory / Placing files in a subdirectory

• AR event-like methods
◦ model fields, processing with / Processing model fields with AR event-like methods,

How to do it..., How it works...
• assets

◦ combining / Combining and minimizing assets, How to do it…, How it works…
◦ minimizing / Combining and minimizing assets, How to do it…, How it works…
◦ reference / See also

• Atoum
◦ used, for unit testing / Unit testing with Atoum, How it works…
◦ extension structure, preparing / Preparing the extension structure
◦ extension code, writing / Writing the extension code
◦ extension tests, writing / Writing the extension tests
◦ tests, executing / Running tests
◦ code coverage, analyzing / Analyzing code coverage
◦ references / See also

• authentication
◦ about / Authentication
◦ implementing / Getting ready, How it works...
◦ reference / See also

• authentication, REST web services
◦ references / See also

• authentication client
◦ about / Authentication client
◦ using / Getting ready, How to do it…
◦ working / How it works…
◦ references / How it works…

• author
◦ setting up, automatically / Setting up an author automatically, How to do it…, How it

works...

B
• base controller

◦ using / Using a base controller, How to do it…, There's more…
◦ example / There's more…
◦ reference link / There's more…

• basic project template
◦ installing / Installing a basic project template

• Behat
◦ about / Unit testing with Behat, How it works…
◦ used for creating shopping cart extension / How to do it…
◦ references / See also

• Behavior Driven Design (BDD)
◦ about / How it works…

• behaviors
◦ reference / See also

• BlameableBehavior,
◦ reference / See also

• blocks
◦ using / Using blocks, How to do it…, How it works…
◦ reference link / How it works…

• bootstrap alert
◦ reference link / See also

• Bower-to-Composer adapter
◦ about / Installing a basic project template

• build-in cache
◦ reference / See also

• built-in components / Built-in components
• built-in helpers

◦ examples, reference / See also

C
• cache chains

◦ using / Using cache dependencies and chains, Getting ready, How to do it…, How it
works…

• cache dependencies
◦ using / Using cache dependencies and chains, Getting ready, How to do it…, How it

works…
• caching

◦ reference / See also, See also
• caching overview

◦ reference / See also
• Captcha

◦ customizing / Customizing Captcha, How to do it...
◦ references / See also

• Captcha widget
◦ adding / Adding and customizing CaptchaWidget, Getting ready, How to do it..., How it

works...
◦ customizing / Adding and customizing CaptchaWidget, Getting ready, How to do it...,

How it works...
• CLI commands

◦ creating / Creating CLI commands, How to do it…
◦ working / How it works…

• Closure Compiler
◦ reference / See also

• Codeception
◦ used, for testing Yii2 application / Testing application with Codeception, Getting ready,

How it works…
◦ about / Testing application with Codeception
◦ references / See also

• code generation / Code generation, How to do it…, How it works…
• command-line mode / Installing advanced project template
• compiler.jar file

◦ URL, for downloading / Getting ready
• complex forms

◦ multiple models, using for / Complex forms with multiple models, Getting ready, How
to do it..., How it works...

• components
◦ creating / Creating components, How to do it…, Overriding existing application

components
◦ existing application components, overriding / Overriding existing application

components

◦ working / How it works…
◦ reference / See also

• Composer
◦ library, installing via / Installing a library via Composer

• composer
◦ reference / Getting ready

• Composer package
◦ about / Installing the framework
◦ references / Getting ready

• conditional validation
◦ about / Conditional validation, How to do it..., How it works...
◦ reference / See also

• configuration parts
◦ moving, into separate files / Moving configuration parts into separate files, How to do

it..., How it works...
• console components

◦ reference link / See also
• context information

◦ using / Logging and using the context information, How to do it..., How it works...
◦ logging / Logging and using the context information, How to do it..., How it works...
◦ reference link / See also

• controller context
◦ used, in view / Using the controller context in a view, How it works…

• controller filters
◦ using / Using controller filters, Getting ready, How to do it..., How it works...

• controllers
◦ reference link / How it works...
◦ reference / See also, See also

• controllers map
◦ reference / See also

• Cron daemon
◦ reference / See also

• cron jobs
◦ executing / Implementing and executing cron jobs, How it works...
◦ implementing / Implementing and executing cron jobs, How it works...
◦ Hello command, running / Running the Hello command
◦ custom command, creating / Creating your own command
◦ cron schedule, setting / Setting the cron schedule

• cross-database relations
◦ about / Cross-database relations

• CSRF
◦ about / Preventing CSRF
◦ preventing / Preventing CSRF, How to do it..., How it works...
◦ disabling, for all actions / There's more...
◦ disabling, for specification / There's more...
◦ validation, for Ajax-calls / CSRF validation for Ajax-calls
◦ extra measures / Additionally [rename]

◦ GET operations, using appropriately / Using GET and POST properly
◦ POST operations, using appropriately / Using GET and POST properly
◦ references / See also

• currency rates
◦ URL / Creating components

• custom client-side validation
◦ creating / Creating a custom client-side validation, How to do it..., How it works...
◦ references / See also

• custom errors
◦ displaying / Displaying custom errors, Getting ready, How to do it..., How it works...

• custom input widget
◦ creating / Creating a custom input widget, How to do it..., How it works...

• custom view renderer
◦ creating / Creating a custom view renderer, How to do it…
◦ working / How it works…

D
• data

◦ pagination / Pagination and sorting data, How to do it…, How it works...
◦ sorting / Pagination and sorting data, How to do it…, How it works...
◦ obtaining, from database / Getting data from a database, How to do it…, How it

works…
• database

◦ data, obtaining from / Getting data from a database, How to do it…, How it works…
• databases, in Yii

◦ references / There's more...
• data decryption

◦ about / Encrypting/Decrypting data, How to do it..., How it works...
• data encryption

◦ about / Encrypting/Decrypting data, Getting ready, How to do it..., How it works...
• decorators

◦ using / Using decorators, How it works…
◦ URL / How it works…

• dependency injection container / Dependency injection container, How to do it…, How it
works…

• Dependency Inversion Principle (DIP)
◦ about / Dependency injection container
◦ references / See also

• deployer
◦ reference / See also

• deployment
◦ simplifying, with multiple configurations / Using multiple configurations to simplify

the deployment, Getting ready, How to do it..., How it works...
• deployment tools

◦ about / Deployment tools
◦ remote host, preparing / Step 1 - Preparing the remote host
◦ localhost, preparing / Step 2 - Preparing the localhost

◦ remote configuration, adding / Step 3 - Adding remote configuration
◦ deploy command, running / Step 4 - Trying to deploy
◦ working / How it works...

E
• ElasticSearch engine adapter

◦ about / ElasticSearch engine adapter
◦ using / ElasticSearch engine adapter, How to do it…
◦ query class, using / Using the Query class
◦ ActiveRecord, using / Using ActiveRecord
◦ ElasticSearch DebugPanel, using / Using the ElasticSearch DebugPanel
◦ references / See also

• entity tag
◦ about / Entity Tag

• error handling
◦ about / Error handling, How it works…
◦ reference / See also
◦ reference link / See also

• error handling, in Yii
◦ reference link / See also

• event handling / Handling events
• events

◦ reference / See also
• external code

◦ using / Using external code
◦ Composer, installing via library / Installing a library via Composer
◦ manual library, installing / Installing libraries manually
◦ Yii2 framework code, used / Using Yii2 code in other frameworks, How it works…
◦ reference link / See also

F
• faker fixture data generator

◦ about / Faker fixture data generator
◦ using / How to do it…
◦ custom data types, working with / Working with your own data types
◦ references / See also

• files
◦ uploading / Uploading files, How to do it..., How it works..., There's more...

• file upload
◦ references / See also

• filter
◦ creating / Creating a custom filter, How to do it…, How it works…, See also, Creating

filters, How to do it…
◦ about / Creating filters
◦ working / How it works…
◦ reference / See also

• flash messages
◦ using / Using flash messages, How to do it…, The removeFlash() method
◦ getAllFlashes() method / The getAllFlashes() method
◦ removeAllFlashes() method / The removeAllFlashes() method
◦ removeFlash() method / The removeFlash() method

• fzaninotto/faker
◦ about / Faker fixture data generator

G
• Geckodriver

◦ URL, for downloading / Running acceptance tests
• getRateLimit() method / How it works…
• Gii code generator

◦ about / Gii code generator
◦ using / Getting ready
◦ GUI, working with / Working with GUI
◦ CLI, working with / Working with CLI, How it works…
◦ references / See also

• Gii module
◦ reference link / How it works…

• GridView widget
◦ about / How to do it…

H
• helpers

◦ creating / Creating helpers, How to do it…
◦ working / How it works…
◦ reference / See also

• HHVM
◦ Yii2, running on / Running Yii2 on HHVM, How to do it…, How it works…

• HHVM installation
◦ references / How to do it…, See also

• HHVM usage
◦ reference / See also

• HipHop bytecode (HHBC)
◦ about / Running Yii2 on HHVM

• HipHop Virtual Machine (HHVM)
◦ about / Running Yii2 on HHVM

• HTTP caching
◦ leveraging / Leveraging HTTP caching, Getting ready, How to do it…
◦ last-modified / Last-Modified
◦ entity tag / Entity Tag
◦ reference / See also

• HTTP caching in Yii2
◦ reference / See also

I
• Imagine library

◦ about / Imagine library
◦ using, as factory / Using it as a factory
◦ inner methods, using / Using inner methods
◦ references / See also

J
• Java Runtime Environment

◦ URL, for installation / Running acceptance tests
• Java Runtime Environment (JRE)

◦ about / Getting ready
◦ URL, for downloading / Getting ready

L
• last-modified

◦ about / Last-Modified
• layouts

◦ URL / See also
• library

◦ Composer, installing via / Installing a library via Composer
• loadAllowance() method / How it works…
• log filters

◦ reference link / See also
• logging

◦ reference link / See also
• log routes

◦ using / Using different log routes, How to do it..., How it works..., See also
◦ YiiTopicnTopicntrace, versus Yii / Yii::trace versus Yii::getLogger()->log
◦ YiiTopicnTopicngetLogger()->log, versus Yii / Yii::trace versus Yii::getLogger()->log
◦ YiiTopicnTopicnbeginProfile / Yii::beginProfile and Yii::endProfile
◦ YiiTopicnTopicnendProfile / Yii::beginProfile and Yii::endProfile
◦ messages / Log messages immediately

M
• maintenance mode

◦ displaying / Maintenance mode, How to do it..., How it works...
◦ production ready solution check, URL / See also

• manual library
◦ installing / Installing libraries manually

• Markdown syntax
◦ reference / See also

• master-slave replication
◦ reference / Getting ready

• model behaviors

◦ creating / Creating model behaviors, Getting ready, How to do it…
◦ working / How it works…

• model fields
◦ processing, with AR event-like methods / Processing model fields with AR event-like

methods, How to do it..., How it works...
• modules

◦ creating / Creating modules, How to do it…
◦ working / How it works...
◦ reference / See also

• MongoDB driver
◦ about / MongoDB driver
◦ working with / Getting ready, How to do it…, How it works…
◦ basic usage / Basic usage
◦ references / See also

• Mozilla Firefox
◦ URL, for installation / Running acceptance tests

• multilanguage application
◦ creating / Creating a multilanguage application, How to do it…
◦ working / How it works…

• multiple configurations
◦ used, for simplifying deployment / Using multiple configurations to simplify the

deployment, Getting ready, How to do it..., How it works...
• multiple DB connections

◦ defining / Defining and using multiple DB connections, How to do it..., How it works...
◦ using / Defining and using multiple DB connections, How to do it..., How it works...
◦ reference / See also

• multiple files
◦ uploading / There's more...

• multiple layouts
◦ defining / Defining multiple layouts, How to do it…, How it works…

• multiple models
◦ using, for complex forms / Complex forms with multiple models, Getting ready, How to

do it..., How it works...
◦ reference / See also

O
• OpenServer application

◦ URL, for downloading / Getting ready

P
• package

◦ URL, for installation / Getting ready
• packagist

◦ URL / How to do it…
• pagination

◦ reference link / See also

• passwords
◦ working with / There's more…
◦ reference / See also

• performance profiling
◦ reference / See also

• performance tuning
◦ reference / See also, See also, See also

• PHP coding standards
◦ reference / See also

• PHP framework
◦ installating / Installing the framework, Getting ready, How it works…
◦ basic project template, installing / Installing a basic project template
◦ advanced project template, installing / Installing advanced project template

• PHP include
◦ reference / See also

• PHP require
◦ reference / See also

• PHP standards recommendations
◦ URL / How to do it…

• PHPUnit
◦ used, for unit testing / Unit testing with PHPUnit, How it works…
◦ extension structure, preparing / Preparing extension structure
◦ extension code, writing / Writing extension code
◦ extension tests, writing / Writing extension tests
◦ tests, executing / Running tests
◦ code coverage, analyzing / Analyzing code coverage
◦ component, usage / Usage of component

• PHPUnit usage
◦ URL / See also

• Pjax jQuery plugin
◦ about / Pjax jQuery plugin
◦ using / Getting ready, How to do it…
◦ custom ID, specifying / Specifying a custom ID
◦ ActiveForm, using / Using ActiveForm
◦ client-side script, working with / Working with the client-side script, How it works…
◦ references / See also

R
• rate limiting

◦ about / Rate limiting
◦ implementing / Getting ready, How to do it…, How it works…
◦ references / See also

• read-write splitting
◦ about / Getting ready, How to do it…
◦ references / See also

• Redis database driver
◦ about / Redis database driver

◦ using / Getting ready
◦ direct usage / Direct usage
◦ ActiveRecord, using / Using ActiveRecord
◦ working / How it works…
◦ references / See also

• regular expressions
◦ used, in URL rules / Getting ready, How to do it…, How it works…, There's more…

• rendering view
◦ reference link / There's more…

• renderRecords method
◦ syntax / How it works…
◦ performance / How it works…
◦ extra features / How it works…
◦ best for / How it works…

• replication
◦ about / Getting ready, How to do it…
◦ references / See also

• RESTful web services
◦ REST server, creating / Creating a REST server
◦ authentication / Getting ready, How to do it..., How it works…
◦ rate limiting / Rate limiting, How to do it…, How it works…
◦ versioning / Versioning, How to do it…, How it works…
◦ error handling / Error handling, How it works…

• REST server
◦ creating / Creating a REST server, Getting ready, How to do it…, How it works…
◦ content negotiation / Content negotiation
◦ Rest URL rule, customizing / Customizing the Rest URL rule
◦ references / See also

• reusable controller
◦ external controller actions, creating / How it works…

• reusable controller actions
◦ creating / Creating reusable controller actions
◦ delete action, creating / Creating reusable controller actions, Getting ready, How to do

it…
• reusable controllers

◦ creating / Creating reusable controllers, How to do it…
◦ working / How it works…

• Role-Based Access Control (RBAC)
◦ about / Using RBAC
◦ using / Using RBAC, How to do it..., How it works…
◦ hierarchy, keeping simple and efficient / Keeping hierarchy simple and efficient
◦ RBAC nodes, naming / Naming RBAC nodes
◦ references / See also

• routing
◦ reference link / How it works...

S
• Sakila database

◦ URL, for downloading / Getting ready, Getting ready, Getting ready
• saveAllowance() method / How it works…
• scope

◦ about / There's more…
• security

◦ about / Introduction
• Selenium Standalone Server

◦ URL, for downloading / Running acceptance tests
• semantic versioning

◦ reference / See also
• Semantic Versioning rules

◦ URL / How to do it…
• service locator

◦ about / Service locator, How to do it…, How it works…
◦ reference link / See also

• session handling
◦ speeding, up / Speeding up session handling, How to do it…
◦ speeding up / How it works…

• shopping cart extension
◦ creating, Behat used / How to do it…
◦ structure, preparing / Preparing extension structure
◦ code, writing / Writing extension code
◦ tests, writing / Writing extension tests
◦ tests, executing / Running tests

• single table inheritance
◦ about / Implementing single table inheritance
◦ implementing / Implementing single table inheritance, How to do it…, How it works…
◦ references / See also

• slug
◦ about / Setting up a slug automatically
◦ setting up, automatically / Setting up a slug automatically, How to do it…, How it

works…
• sluggable behavior

◦ about / Setting up a slug automatically
◦ references / See also

• Smarty
◦ URL / See also

• Smarty view renderer
◦ reference / See also

• sort
◦ reference link / See also

• SQL injection
◦ about / Preventing SQL injections
◦ preventing / Getting ready, How to do it..., How it works...

◦ references / See also
• SSH keys

◦ creating, reference / See also
• standalone actions

◦ using / Using standalone actions, Getting ready, How to do it…, How it works…
◦ reference link / See also

• standalone validator
◦ creating / Writing your own validators, How to do it..., How it works...

• static pages
◦ displaying / Displaying static pages, How to do it…, About ViewAction
◦ ViewAction / About ViewAction
◦ URL rule, configuring / Configuring URL rules
◦ reference link / See also

• SwiftMailer e-mail library
◦ about / SwiftMailer e-mail library, How to do it…
◦ plain text mail, sending / Sending plain text e-mails
◦ HTML content, sending / Sending HTML content
◦ SMTP transport, working with / Working with SMTP transport
◦ file attaching / Attaching file and embedding images
◦ images, embedding / Attaching file and embedding images
◦ working / How it works…
◦ references / See also

T
• tabular input

◦ about / Tabular input, Getting ready, How to do it...
◦ implementing / How it works...
◦ reference / See also

• tests/README.md file
◦ references / See also

• timestamps
◦ automating / Automating timestamps, Getting ready, How to do it..., How it works…
◦ Post model, configuring / There's more…
◦ example, for updating last_login field / In addition...
◦ reference / See also

• transactions
◦ about / Transactions
◦ example / Getting ready..., How to do it…
◦ references / See also

• Twitter Bootstrap extension
◦ about / There's more...
◦ URL / There's more...

U
• unit testing

◦ PHPUnit, used / Unit testing with PHPUnit, How it works…

◦ Atoum, used / Unit testing with Atoum, How it works…
• Universally Unique Identifier (UUID)

◦ about / Installing a library via Composer
◦ URL, for installing / Installing a library via Composer

• URL
◦ generating / Generating URLs, How to do it…, How it works...

• urlManager
◦ reference link / There's more...

• URL rules
◦ configuring / Getting ready, How to do it…, How it works…, There's more…
◦ regular expressions, used / Using regular expressions in URL rules, How to do it…,

How it works…, There's more…
• user agent strings

◦ reference / How it works...
• User model, from advanced app

◦ reference / How it works...

V
• validator

◦ references / See also
• validator processes

◦ controlling / There's more...
• versioning

◦ about / Versioning
◦ implementing / Getting ready, How to do it…, How it works…
◦ references / There's more…

• view
◦ controller context, used / Using the controller context in a view, How it works…
◦ reference link / There's more…
◦ reusing, with partials / Reusing views with partials, How to do it…, How it works…

• ViewAction
◦ defaultView / About ViewAction
◦ layout / About ViewAction
◦ viewParam / About ViewAction
◦ viewPrefix / About ViewAction
◦ reference link / See also

• view renderers
◦ references / See also

• views counter panel, creating
◦ reference link / See also

W
• web-interface mode / Installing advanced project template
• web application components

◦ reference link / See also
• web session

◦ reference link / See also
• widget

◦ references / See also
◦ creating / Creating a widget, How to do it…
◦ working / How it works…
◦ reference / See also

X
• X-Rate-Limit-Limit / How it works…
• X-Rate-Limit-Remaining / How it works…
• X-Rate-Limit-Reset / How it works…
• XDebug PHP extension

◦ URL, for installation / Getting coverage reports, Analyzing code coverage
◦ URL / Analyzing code coverage

• XSS
◦ about / Preventing XSS
◦ preventing / Preventing XSS, Getting ready, How to do it..., How it works...
◦ types / XSS types
◦ references / See also

Y
• Yii

◦ references / See also
◦ application profiling / Profiling an application with Yii, Getting ready, How to do it…,

How it works…
◦ reference, for installing on shared hosting environment / See also

• Yii**t() method
◦ about / How it works…

• Yii2
◦ extensions / Introduction
◦ URL, for installation / Getting ready, Getting ready, Getting ready
◦ internationalization, reference / See also
◦ configuring, best practices / Following best practices, How to do it…, How it works…
◦ running, on HHVM / Running Yii2 on HHVM, How to do it…, How it works…

• Yii2 application
◦ testing, Codeception used / Testing application with Codeception, Getting ready, How it

works…
◦ tests, preparing / Preparing for the tests
◦ functional tests, executing / Running unit and functional tests
◦ unit tests, executing / Running unit and functional tests
◦ coverage reports, obtaining / Getting coverage reports
◦ acceptance tests, executing / Running acceptance tests
◦ database fixtures, creating / Creating database fixtures
◦ unit test, writing / Writing unit or integration test
◦ integration test, writing / Writing unit or integration test
◦ functional test, writing / Writing functional test

◦ acceptance test, writing / Writing acceptance test
◦ acceptance, writing / Writing acceptance test
◦ API test suite, creating / Creating API test suite

• Yii2 console commands
◦ reference / See also

• Yii2 framework code
◦ using / Using Yii2 code in other frameworks, How it works…
◦ reference link / See also

• Yii2-debug extension
◦ custom panel / Custom panel for debug extension, How to do it..., How it works...
◦ event handling / Handling events
◦ reference link / See also

• yii2-faker extension
◦ about / How it works…

• Yii Active Record implementation
◦ reference / See also

• Yii application
◦ references / See also
◦ components, configuring / Configuring components, How it works…
◦ built-in components / Built-in components
◦ events, working / Working with events, How to do it…, How it works…

• Yii application, events
◦ example / How it works…
◦ reference link / See also

• Yii directory layout
◦ modifying / Changing the Yii directory layout, Getting ready, How it works...
◦ runtime directory location, modifying / Changing the location of the runtime directory
◦ vendor directory location, modifying / Changing the location of the vendor directory
◦ controllers location, modifying / Changing the location of the controllers
◦ views directory location, modifying / Changing the locations of the views directory

• Yii error stack trace
◦ analyzing / Analyzing the Yii error stack trace, How to do it..., How it works..., See also

• Yii extensions
◦ creating / Making extensions distribution-ready, How to do it…
◦ working / How it works…

• YUI Compressor
◦ reference / See also

• yuicompressor.jar file
◦ URL, for downloading / Getting ready

	Yii2 Application Development Cookbook Third Edition
	Table of Contents
	Yii2 Application Development Cookbook Third Edition
	Yii2 Application Development Cookbook Third Edition
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Conventions
	Note
	Tip

	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Chapter 1. Fundamentals
	Introduction
	Installing the framework
	Getting ready
	Note

	How to do it…
	Note
	Installing a basic project template
	Note
	Installing advanced project template
	Note

	How it works…
	See also

	Application templates
	How to do it…
	How it works…

	Dependency injection container
	Getting ready
	How to do it…
	How it works…
	See also

	Service locator
	Getting ready
	How to do it…
	How it works…
	See also

	Code generation
	Getting ready
	How to do it…
	How it works…

	Configuring components
	Getting ready
	How to do it…
	How it works…
	Built-in components

	See also

	Working with events
	Getting ready
	How to do it…
	How it works…
	See also

	Using external code
	Getting ready
	How to do it… 
	Installing a library via Composer
	Installing libraries manually
	Using Yii2 code in other frameworks

	How it works…
	See also

	Chapter 2. Routing, Controllers, and Views
	Introduction
	Configuring URL rules
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Generating URLs
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also

	Using regular expressions in URL rules
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using a base controller
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using standalone actions
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a custom filter
	Getting ready
	How to do it…
	How it works…
	See also

	Displaying static pages
	Getting ready
	How to do it…
	How it works…
	There's more…
	About ViewAction
	Configuring URL rules

	See also

	Using flash messages
	Getting ready
	How to do it…
	How it works…
	There's more…
	The getAllFlashes() method
	The removeAllFlashes() method
	The removeFlash() method

	See also

	Using the controller context in a view
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reusing views with partials
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using blocks
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using decorators
	Getting ready
	How to do it…
	How it works…
	See also

	Defining multiple layouts
	Getting ready
	How to do it…
	How it works…
	See also

	Pagination and sorting data
	Getting ready
	How to do it…
	How it works...
	See also

	Chapter 3. ActiveRecord, Model, and Database
	Introduction
	Getting data from a database
	Getting ready
	How to do it…
	How it works…
	There's more...

	Defining and using multiple DB connections
	Getting ready
	How to do it...
	How it works...
	There's more...
	Cross-database relations

	See also

	Customizing the ActiveQuery class
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Processing model fields with AR event-like methods
	Getting ready
	How to do it...
	How it works...
	See also

	Automating timestamps
	Getting ready
	How to do it...
	How it works…
	There's more…
	In addition...

	See also

	Setting up an author automatically
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Setting up a slug automatically
	Getting ready
	How to do it…
	How it works…
	Note

	There's more…
	See also

	Transactions
	Getting ready...
	How to do it…
	See also

	Replication and read-write splitting
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Implementing single table inheritance
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 4. Forms
	Introduction
	Writing your own validators
	Getting ready
	How to do it...
	How it works...
	See also

	Uploading files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding and customizing CaptchaWidget
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing Captcha
	Getting ready
	How to do it...
	See also

	Creating a custom input widget
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Tabular input
	Getting ready
	How to do it...
	How it works...
	See also

	Conditional validation
	Getting ready
	How to do it...
	How it works...
	See also

	Complex forms with multiple models
	Getting ready
	How to do it...
	How it works...
	See also

	AJAX-dependent drop-down list
	Getting ready
	How to do it...
	How it works...

	AJAX validation
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom client-side validation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5. Security
	Introduction
	Authentication
	Getting ready
	How to do it...
	How it works...
	See also

	Using controller filters
	Getting ready
	How to do it...
	How it works...
	See also

	Preventing XSS
	Getting ready
	How to do it...
	How it works...
	There's more…
	XSS types

	See also

	Preventing SQL injections
	Getting ready
	How to do it...
	How it works...
	See also

	Preventing CSRF
	Getting ready
	How to do it...
	How it works...
	There's more...
	Disabling CSRF-tokens for a specific action
	CSRF validation for Ajax-calls
	Additionally [rename]
	Using GET and POST properly

	See also

	Using RBAC
	Getting ready
	How to do it...
	How it works…
	There's more…
	Keeping hierarchy simple and efficient
	Naming RBAC nodes

	See also

	Encrypting/Decrypting data
	Getting ready
	How to do it...
	How it works...
	There's more…
	Working with passwords

	See also

	Chapter 6. RESTful Web Services
	Introduction
	Creating a REST server
	Getting ready
	How to do it…
	How it works…
	There's more…
	Content negotiation
	Customizing the Rest URL rule

	See also

	Authentication
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Rate limiting
	Getting ready
	How to do it…
	How it works…
	See also

	Versioning
	Getting ready
	How to do it…
	How it works…
	There's more…

	Error handling
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 7. Official Extensions
	Introduction
	Authentication client
	Getting ready
	How to do it…
	How it works…
	See also

	SwiftMailer e-mail library
	Getting ready
	How to do it…
	Sending plain text e-mails
	Note
	Note
	Sending HTML content
	Working with SMTP transport
	Note
	Attaching file and embedding images

	How it works…
	See also

	Faker fixture data generator
	Getting ready
	How to do it…
	Working with your own data types

	How it works…
	Note

	See also

	Imagine library
	Getting ready
	How to do it…
	Using it as a factory
	Using inner methods

	How it works…
	See also

	MongoDB driver
	Getting ready
	How to do it…
	Basic usage
	Note

	How it works…
	See also

	ElasticSearch engine adapter
	Getting ready
	How to do it…
	Using the Query class
	Using ActiveRecord
	Using the ElasticSearch DebugPanel

	How it works…
	Note

	See also

	Gii code generator
	Getting ready
	How to do it…
	Working with GUI
	Working with CLI

	How it works…
	See also

	Pjax jQuery plugin
	Getting ready
	How to do it…
	Specifying a custom ID
	Using ActiveForm
	Working with the client-side script

	How it works…
	See also

	Redis database driver
	Getting ready
	How to do it…
	Direct usage
	Using ActiveRecord

	How it works…
	See also

	Chapter 8. Extending Yii
	Introduction
	Creating helpers
	Getting ready
	How to do it…
	How it works…
	Note

	See also

	Creating model behaviors
	Getting ready
	How to do it…
	How it works…
	See also

	Creating components
	Getting ready
	How to do it…
	Overriding existing application components

	How it works…
	See also

	Creating reusable controller actions
	Getting ready
	How to do it…
	How it works…
	See also

	Creating reusable controllers
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a widget
	Getting ready
	How to do it…
	How it works…
	See also

	Creating CLI commands
	Getting ready
	How to do it…
	How it works…
	See also

	Creating filters
	Getting ready
	How to do it…
	How it works…
	Note

	See also

	Creating modules
	Getting ready
	How to do it…
	How it works...
	See also

	Creating a custom view renderer
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a multilanguage application
	Getting ready
	How to do it…
	How it works…
	Note

	See also

	Making extensions distribution-ready
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 9. Performance Tuning
	Following best practices
	Getting ready
	How to do it…
	Note

	How it works…
	See also

	Speeding up session handling
	Getting ready
	How to do it…
	Note
	Note

	How it works…
	Note

	There's more…
	See also

	Using cache dependencies and chains
	Note
	Getting ready
	How to do it…
	How it works…
	See also

	Profiling an application with Yii
	Getting ready
	How to do it…
	How it works…
	Note

	See also

	Leveraging HTTP caching
	Getting ready
	How to do it…
	How it works…
	Last-Modified
	Entity Tag

	See also

	Combining and minimizing assets
	Getting ready
	How to do it…
	How it works…
	Note
	Note

	See also

	Running Yii2 on HHVM
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 10. Deployment
	Introduction
	Changing the Yii directory layout
	Getting ready
	How to do it...
	Changing the location of the runtime directory
	Changing the location of the vendor directory
	Changing the location of the controllers
	Changing the locations of the views directory

	How it works...
	See also

	Moving an application webroot
	Getting ready
	How to do it...
	Placing files in the root
	Placing files in a subdirectory

	How it works...
	See also

	Changing an advanced application template
	Getting ready
	How to do it...
	How it works...
	See also

	Moving configuration parts into separate files
	Getting ready
	How to do it...
	How it works...
	See also

	Using multiple configurations to simplify the deployment
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing and executing cron jobs
	Getting ready
	How to do it...
	Running the Hello command
	Creating your own command
	Setting the cron schedule

	How it works...
	See also

	Maintenance mode
	Getting ready
	How to do it...
	How it works...
	See also

	Deployment tools
	Getting ready
	How to do it...
	Step 1 - Preparing the remote host
	Step 2 - Preparing the localhost
	Step 3 - Adding remote configuration
	Note
	Step 4 - Trying to deploy

	How it works...
	See also

	Chapter 11. Testing
	Introduction
	Testing application with Codeception
	Getting ready
	Note

	How to do it…
	Preparing for the tests
	Running unit and functional tests
	Getting coverage reports
	Running acceptance tests
	Creating database fixtures
	Writing unit or integration test
	Writing functional test
	Writing acceptance test
	Creating API test suite

	How it works…
	See also

	Unit testing with PHPUnit
	Getting ready
	How to do it…
	Preparing extension structure
	Writing extension code
	Writing extension tests
	Running tests
	Analyzing code coverage
	Usage of component

	How it works…
	Note

	See also

	Unit testing with Atoum
	Getting ready
	How to do it…
	Preparing the extension structure
	Writing the extension code
	Writing the extension tests
	Running tests
	Analyzing code coverage

	How it works…
	See also

	Unit testing with Behat
	Getting ready
	How to do it…
	Preparing extension structure
	Writing extension code
	Writing extension tests
	Running tests

	How it works…
	See also

	Chapter 12. Debugging, Logging, and Error Handling
	Introduction
	Using different log routes
	Getting ready
	How to do it...
	How it works...
	There's more…
	Yii::trace versus Yii::getLogger()->log
	Yii::beginProfile and Yii::endProfile
	Log messages immediately

	See also

	Analyzing the Yii error stack trace
	Getting ready
	How to do it...
	How it works...
	See also

	Logging and using the context information
	Getting ready
	How to do it...
	How it works...
	See also

	Displaying custom errors
	Getting ready
	How to do it...
	How it works...
	See also

	Custom panel for debug extension
	Getting ready
	How to do it...
	How it works...
	Handling events

	See also

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

