
M A N N I N G

Vlad Riscutia

Examples in TypeScript

Types and possible values

Name [Section] TypeScript type Possible values

Empty type [2.1.1] never No possible values

Unit type [2.1.2] void One possible value

Sum type [3.4.2] number | string A value from number or a value from
string

Tuple (product type)
[3.1.1]

[number, string] A value from number and a value from
string

Record (product
type) [3.1.2]

{ a: number; b: string; } A (named) value from number and a
(named) value from string

Function type [5.1.2] (value: number) => string A function number  string

Top type [7.2.1] unknown A value of any type

Bottom type [7.2.2] never No possible values (the bottom type is the
subtype of any other type)

Interface [8.1] interface ILogger { /* ... */ } Object of a type that implements the
ILogger interface

Class [8.2.1] class Square { /* ... */ } Object of type Square

Intersection type
[8.4.3]

Square & Loggable Object with members of both Square and
of Loggable

Generic class
[9.2.1]

class List<T> { /* ... */ } A generic class List with a type
parameter T

Generic function
[9.1.1]

type Func<T, U> = (arg: T) => U; A function from T  U where T and U are
type parameters

Programming
with Types

WITH EXAMPLES IN TYPESCRIPT

VLAD RISCUTIA

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Elesha HydeManning Publications Co.
20 Baldwin Road Technical development editor: Mike Shepard
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project manager: Lori Weidert

Copy editor: Kathy Simpson
Proofreader: Melody Dolab

Technical proofreader: German Gonzalez-Morris
Typesetter and cover designer: Marija Tudor

ISBN 9781617296413
Printed in the United States of America

www.manning.com

To my wife, Diana, for her infinite patience

iv

contents
preface xi
acknowledgments xiii
about this book xiv
about the cover illustration xvii

1 Introduction to typing 1
1.1 Whom this book is for 2
1.2 Why types exist 2

0s and 1s 3 ■ What are types and type systems? 4

1.3 Benefits of type systems 5
Correctness 6 ■ Immutability 7 ■ Encapsulation 9
Composability 10 ■ Readability 12

1.4 Types of type systems 13
Dynamic and static typing 13 ■ Weak and strong typing 15
Type inference 16

1.5 In this book 17

2 Basic types 19
2.1 Designing functions that don’t return values 20

The empty type 20 ■ The unit type 22 ■ Exercises 23

2.2 Boolean logic and short circuits 23
Boolean expressions 24 ■ Short circuit evaluation 24
Exercise 26
v

CONTENTSvi
2.3 Common pitfalls of numerical types 26
Integer types and overflow 27 ■ Floating-point types and
rounding 30 ■ Arbitrarily large numbers 33
Exercises 33

2.4 Encoding text 34
Breaking text 34 ■ Encodings 35 ■ Encoding libraries 36
Exercises 38

2.5 Building data structures with arrays and references 38
Fixed-size arrays 39 ■ References 40 ■ Efficient lists 40
Binary trees 43 ■ Associative arrays 45 ■ Implementation
trade-offs 46 ■ Exercise 47

3 Composition 49
3.1 Compound types 50

Tuples 50 ■ Assigning meaning 52 ■ Maintaining
invariants 53 ■ Exercise 56

3.2 Expressing either-or with types 56
Enumerations 57 ■ Optional types 58 ■ Result or error 61
Variants 65 ■ Exercises 68

3.3 The visitor pattern 69
A naïve implementation 69 ■ Using the visitor pattern 70
Visiting a variant 73 ■ Exercise 75

3.4 Algebraic data types 75
Product types 75 ■ Sum types 76 ■ Exercises 76

4 Type safety 79
4.1 Avoiding primitive obsession to prevent misinterpretation 80

The Mars Climate Orbiter 81 ■ The primitive obsession
antipattern 83 ■ Exercise 83

4.2 Enforcing constraints 84
Enforcing constraints with the constructor 84 ■ Enforcing
constraints with a factory 85 ■ Exercise 86

4.3 Adding type information 86
Type casting 86 ■ Tracking types outside the type system 87
Common type casts 90 ■ Exercises 93

4.4 Hiding and restoring type information 93
Heterogenous collections 94 ■ Serialization 96
Exercises 100

CONTENTS vii
5 Function types 102
5.1 A simple strategy pattern 103

A functional strategy 104 ■ Typing functions 106
Strategy implementations 106 ■ First-class functions 107
Exercises 107

5.2 A state machine without switch statements 108
Early Programming with Types 108 ■ State
machines 110 ■ State machine implementation
recap 116 ■ Exercises 117

5.3 Avoiding expensive computation with lazy values 117
Lambdas 118 ■ Exercise 120

5.4 Using map, filter, and reduce 120
map() 120 ■ filter() 122 ■ reduce() 124 ■ Library
support 128 ■ Exercises 128

5.5 Functional programming 128

6 Advanced applications of function types 131
6.1 A simple decorator pattern 132

A functional decorator 133 ■ Decorator implementations 135
Closures 135 ■ Exercises 137

6.2 Implementing a counter 137
An object-oriented counter 137 ■ A functional counter 138
A resumable counter 139 ■ Counter implementations recap 140
Exercises 140

6.3 Executing long-running operations asynchronously 141
Synchronous execution 141 ■ Asynchronous execution:
callbacks 142 ■ Asynchronous execution models 143
Asynchronous functions recap 146 ■ Exercises 147

6.4 Simplifying asynchronous code 147
Chaining promises 149 ■ Creating promises 150
More about promises 152 ■ async/await 156 ■ Clean
asynchronous code recap 157 ■ Exercises 158

7 Subtyping 161
7.1 Distinguishing between similar types in TypeScript 162

Structural and nominal subtyping pros and cons 164
Simulating nominal subtyping in TypeScript 165
Exercises 166

CONTENTSviii
7.2 Assigning anything to, assigning to anything 167
Safe deserialization 167 ■ Values for error cases 171
Top and bottom types recap 174 ■ Exercises 174

7.3 Allowed substitutions 174
Subtyping and sum types 175 ■ Subtyping and collections 177
Subtyping and function return types 179 ■ Subtyping and
function argument types 180 ■ Variance recap 184
Exercises 184

8 Elements of object-oriented programming 187
8.1 Defining contracts with interfaces 188

Exercises 191

8.2 Inheriting data and behavior 191
The is-a rule of thumb 191 ■ Modeling a hierarchy 192
Parameterizing behavior of expressions 193 ■ Exercises 194

8.3 Composing data and behavior 195
The has-a rule of thumb 196 ■ Composite classes 196
Implementing the adapter pattern 198 ■ Exercises 200

8.4 Extending data and behavior 200
Extending behavior with composition 202 ■ Extending behavior
with mix-ins 203 ■ Mix-in in TypeScript 204
Exercise 206

8.5 Alternatives to purely object-oriented code 206
Sum types 206 ■ Functional programming 209
Generic programming 210

9 Generic data structures 213
9.1 Decoupling concerns 214

A reusable identity function 216 ■ The optional type 217
Generic types 218 ■ Exercises 219

9.2 Generic data layout 219
Generic data structures 220 ■ What is a data structure? 220
Exercises 221

9.3 Traversing any data structure 221
Using iterators 223 ■ Streamlining iteration code 227
Iterators recap 232 ■ Exercises 233

9.4 Streaming data 233
Processing pipelines 234 ■ Exercises 236

CONTENTS ix
10 Generic algorithms and iterators 239
10.1 Better map(), filter(), reduce() 240

map() 240 ■ filter() 241 ■ reduce() 242 ■ filter()/reduce()
pipeline 242 ■ Exercises 243

10.2 Common algorithms 243
Algorithms instead of loops 244 ■ Implementing a fluent
pipeline 245 ■ Exercises 248

10.3 Constraining type parameters 248
Generic data structures with type constraints 249
Generic algorithms with type constraints 251 ■ Exercise 252

10.4 Efficient reverse and other algorithms using iterators 253
Iterator building blocks 254 ■ A useful find() 259
An efficient reverse() 262 ■ Efficient element retrieval 265
Iterator recap 267 ■ Exercises 268

10.5 Adaptive algorithms 268
Exercise 270

11 Higher kinded types and beyond 275
11.1 An even more general map 276

Processing results or propagating errors 279 ■ Mix-and-match
function application 281 ■ Functors and higher kinded
types 282 ■ Functors for functions 285 ■ Exercise 287

11.2 Monads 287
Result or error 287 ■ Difference between map() and bind() 291
The monad pattern 293 ■ The continuation monad 294
The list monad 295 ■ Other monads 298 ■ Exercise 298

11.3 Where to next? 298
Functional programming 298 ■ Generic programming 299
Higher kinded types and category theory 299 ■ Dependent
types 299 ■ Linear types 300

appendix A TypeScript installation and source code 303

appendix B TypeScript cheat sheet 305

index 309

CONTENTSx

preface
Programming with Types is the culmination of multiple years of learning about type
systems and software correctness, distilled into a practical book with real-world
applications.

I’ve always liked learning how to write better code, but if I were to point out exactly
when I started down this path, I’d say it was 2015. I was switching teams at that point
and wanted to get up to speed on modern C++. I started watching C++ conference vid-
eos, picked up Alexander Stepanov’s books on generic programming, and gained a
completely different perspective on how to write code.

In parallel, I was learning Haskell in my spare time and working my way through
the advanced features of its type system. Programming in a functional language makes
it obvious how some of the features taken for granted in such languages get adopted
by more mainstream languages as time goes by.

I read several books on the topic, from Stepanov’s Elements of Programming and From
Mathematics to Generic Programming to Bartosz Milewski’s Category Theory for Programmers
and Benjamin Pierce’s Types and Programming Languages. As you might be able to tell
from the titles, these books are more on the theoretical/mathematical side. While
learning more about type systems, I could tell that the code I was writing at work
became better. There is a direct link between the more theoretical realm of type sys-
tem design and the day-to-day production software. This isn’t a revolutionary discov-
ery: fancy type system features exist to address real-world problems.

I realized that not every practicing programmer has the time and patience to read
dense books with mathematical proofs. On the other hand, my time wasn’t wasted
reading such books: they made me a better software engineer. I figured there is room
for a book that covers type systems and the benefits they provide more informally,
focusing on practical applications anyone can use in their day job.
xi

PREFACExii
 Programming with Types aims to provide a walk-through of type system features start-
ing from basic types, covering function types and subtyping, OOP, generic program-
ming, and higher kinded types such as functors and monads. Instead of focusing on
the theory behind these features, I describe each one of them in terms of practical
applications. The book shows how and when to use each of these features to improve
your code.

 The code samples were originally supposed to be in C++. The C++ type system is
powerful and more feature-rich than languages such as Java and C#. On the other
hand, C++ is a complex language, and I didn’t want to limit the audience of the book,
so I decided to use TypeScript instead. TypeScript has a powerful type system too, but
its syntax is more accessible, so it should be easy to work through most examples even
if you’re coming from another language. Appendix B provides a quick cheat sheet for
the subset of TypeScript used in this book.

 I hope you enjoy reading this book and learn some new techniques that you can
apply to your projects right away.

acknowledgments
First, I want to thank my family for their support and understanding. My wife, Diana,
and my daughter, Ada, were with me every step of the way, giving me all the encour-
agement and space I needed to complete this book.

 Writing a book is most definitely a team effort. I’m grateful for Michael Stephens’
initial feedback, which helped shape the book into what you are reading today. I want
to thank my editor, Elesha Hyde, for all her help, advice, and feedback. Thanks to
Mike Shepard for reviewing every chapter and keeping me honest. Also, thanks to
German Gonzales for going through each and every code sample and making sure
that everything works as described. I want to thank all reviewers for taking their time
and providing invaluable feedback. Thanks to Viktor Bek, Roberto Casadei, Ahmed
Chicktay, John Corley, Justin Coulston, Theo Despoudis, David DiMaria, Christopher
Fry, German Gonzalez-Morris, Vipul Gupta, Peter Hampton, Clive Harber, Fred
Heath, Ryan Huber, Des Horsley, Kevin Norman D. Kapchan, Jose San Leandro,
James Liu, Wayne Mather, Arnaldo Gabriel Ayala Meyer, Riccardo Noviello, Marco
Perone, Jermal Prestwood, Borja Quevedo, Domingo Sebastián Sastre, Rohit Sharm,
and Greg Wright.

 I want to thank my colleagues and mentors for everything they taught me. As I was
learning about leveraging types to improve our codebase, I was lucky to have some
great, supportive managers. Thanks to Mike Navarro, David Hansen, and Ben Ross for
your trust.

 Thanks to the whole C++ community from which I learned so much and especially
to Sean Parent for his inspiring talks and his great advice.
xiii

about this book
Programming with Types aims to show how you can use type systems to write better, safer
code. Although most books discussing type systems focus on more formal aspects, this
book takes a pragmatic approach. It contains numerous examples, applications, and
scenarios that you will encounter in your day job.

Who should read this book

This book is for practicing programmers who want to learn more about how type sys-
tems work and how to use them to improve code quality. You should have some expe-
rience using an object-oriented language such as Java, C#, C++, or JavaScript/
TypeScript. You should also have some minimum software design experience. Although
the book will provide various techniques for writing robust, composable, and better-
encapsulated code, it assumes that you know why these properties are desirable.

How this book is organized: a road map

This book has 11 chapters covering various aspects of programming with types:

 Chapter 1 introduces types and type systems, discussing why they exist and how
they are useful. We go over types of type systems and talk about typing strength,
static typing, and dynamic typing.

 Chapter 2 covers basic types common across most languages and gotchas to be
aware of when using them. Common basic types are the empty and unit types,
Booleans, numbers, strings, arrays, and references.

 Chapter 3 is about composition: various ways in which types can be combined to
define new types. The chapter also shows different ways to implement the visi-
tor design pattern and defines algebraic data types.
xiv

ABOUT THIS BOOK xv
 Chapter 4 talks about type safety—how we can use types to reduce ambiguity
and prevent errors. The chapter also shows how we can add or remove typing
information from our code by using type casting.

 Chapter 5 introduces function types and what we can do when we have the abil-
ity to create function variables. The chapter shows alternative ways to imple-
ment the strategy pattern and state machines, and introduces the fundamental
map(), filter(), and reduce() algorithms.

 Chapter 6 builds on the preceding chapter and shows a few advanced applica-
tions of function types, from a simplified decorator pattern to resumable func-
tions and asynchronous functions.

 Chapter 7 introduces subtyping and discusses type compatibility. We look at
applications of top and bottom types and then see how sum types, collections,
and function types relate to one another from a subtyping perspective.

 Chapter 8 talks about the key elements of object-oriented programming and
when to use each one. The chapter covers interfaces, inheritance, composition,
and mix-ins.

 Chapter 9 introduces generic programming and its first application: generic
data structures. Generic data structures separate the layout of the data from the
data itself; iterators enable traversal of these data structures.

 Chapter 10 continues the topic of generic programming and discusses generic
algorithms and iterator categories. Generic algorithms are algorithms we can
reuse across different types of data. Iterators act as an interface between data
structures and algorithms, and depending on their capabilities, they enable dif-
ferent algorithms.

 Chapter 11, the final chapter, introduces higher kinded types and explains what
functors and monads are and how they can be used. The chapter ends with
some pointers for further study.

 The chapters in the book build on concepts introduced in earlier chapters, so
you should read them in order. That being said, there are four major topics in
the book that are fairly independent. The first four chapters cover fundamen-
tals; chapters 5 and 6 cover function types; chapters 7 and 8 cover subtyping;
and chapters 9, 10, and 11 are about generic programming.

About the code

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes, code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

ABOUT THIS BOOKxvi
 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 All the code samples in this book are available on GitHub at https://
github.com/vladris/programming-with-types/. The code was built with version 3.3 of
TypeScript, targeting the ES6 standard, with strict settings.

About the author

Vlad Riscutia is a software engineer at Microsoft with more than a decade of experi-
ence. During this time, he has led several major software projects and mentored many
junior engineers.

Book forum

Purchase of Programming with Types includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/programming-with-types. You can
also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/vladris/programming-with-types/
https://github.com/vladris/programming-with-types/
https://forums.manning.com/forums/about
https://forums.manning.com/forums/programming-with-types

about the cover illustration
Saint-Sauver

The figure on the cover of Programming with Types is captioned “Fille Lipporette en
habit de Noce,” or “Liporette girl in wedding dress.” The illustration is taken from a
collection of dress costumes from various countries by Jacques Grasset de Saint-
Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797.
Each illustration is finely drawn and colored by hand. The rich variety of Grasset de
Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns
and regions were just 200 years ago. Isolated from each other, people spoke different
dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xvii

ABOUT THE COVER ILLUSTRATIONxviii

Introduction to typing
This chapter covers
 Why type systems exist

 Benefits of strongly typed code

 Types of type systems

 Common features of type systems

The Mars Climate Orbiter disintegrated in the planet’s atmosphere because a com-
ponent developed by Lockheed produced momentum measurements in pound-
force seconds (U.S. units), whereas another component developed by NASA
expected momentum to be measured in Newton seconds (metric units). Using dif-
ferent types for the two measures would have prevented the catastrophe.

As we will see throughout this book, type checkers provide powerful ways to
eliminate whole classes of errors, provided they are given enough information. As
software complexity increases, so does the need to provide better correctness guar-
antees. Monitoring and testing can show that the software is behaving according to
spec at a given point in time, given specific input. Types give us more general
proofs that the code will behave according to spec regardless of input.
1

2 CHAPTER 1 Introduction to typing
 Programming language research is coming up with ever-more-powerful type
systems. (See, for example, languages like Elm and Idris.) Haskell is gaining in popu-
larity. At the same time, there are ongoing efforts to bring compile-time type checking
to dynamically typed languages: Python added support for type hints, and TypeScript
is a language created for the sole purpose of providing compile-time type checking to
JavaScript.

 There clearly is value in typing code, and leveraging the features of the type sys-
tems that your programming languages provide will help you write better, safer code.

Whom this book is for1.1
This is a book for practicing programmers. You should be comfortable writing code in
a mainstream programming language like Java, C#, C++, or JavaScript/TypeScript.
The code examples in this book are in TypeScript, but most of the content is
language-agnostic. In fact, the examples don’t always use idiomatic TypeScript. Where
possible, code examples are written to be accessible to programmers coming from
other languages. See appendix A for how to build the code samples in this book and
appendix B for a short TypeScript cheat sheet.

 If you are developing object-oriented code at your day job, you might have heard
of algebraic data types (ADTs), lambdas, generics, functors, or monads, and would
like to better understand what these are and how they are relevant to your work.

 This book will teach you how to rely on the type system of your programming lan-
guage to design code that is less error-prone, better componentized, and easier to
understand. We’ll see how errors which could happen at run time and cause an entire
system to malfunction can be transformed into compilation errors and caught before
they can cause any damage.

 A lot of the literature on type systems is formal. This book focuses on practical
applications of type systems; thus, math is kept to a minimum. That being said, you
should be familiar with basic algebra concepts like functions and sets. We will rely on
these to explain some of the relevant concepts.

Why types exist1.2
At the low level of hardware and machine code, the program logic (the code) and the
data it operates on are both represented as bits. At this level, there is no difference
between the code and the data, so errors can easily happen when the system mistakes
one for the other. These errors range from program crashes to severe security vulner-
abilities in which an attacker “tricks” the system into executing their input data
as code.

 An example of this kind of loose interpretation is the JavaScript eval() function,
which evaluates a string as code. It works well when the string provided is valid Java-
Script code but causes a run-time error when it isn’t, as shown in the next listing.

3Why types exist

console.log(eval("40+2"));

console.log(eval("Hello world!"));

0s and 1s1.2.1

Beyond distinguishing between code and data, we need to know how to interpret a
piece of data. The 16-bit sequence 1100001010100011 can represent the unsigned
16-bit integer 49827, the signed 16-bit integer -15709, the UTF-8 encoded character
'£', or something completely different, as we can see in figure 1.1. The hardware our
programs run on stores everything as sequences of bits, so we need an extra layer to
give meaning to this data.

Figure 1.1 A sequence of bits can be interpreted in multiple ways.

Types give meaning to this data and tell our software how to interpret a given
sequence of bits in a given context so that it preserves the intended meaning.

 Types also constrain the set of valid values a variable can take. A signed 16-bit inte-
ger can represent any integer value from -32768 to 32767 but nothing else. The abil-
ity to restrict the range of allowed values helps eliminate whole classes of errors by not
allowing invalid values to appear at run time, as shown in figure 1.2. Viewing types as
sets of possible values is important to understanding many of the concepts covered in
this book.

Trying to interpret data as codeListing 1.1

Prints “42” to
the console

Raises “SyntaxError:
unexpected token: identifier”

...0011010011101100001010100011010111100101...

49827 ...'£'–15709

...0011010011101100001010100011010111100101...

-15708-15710 –15709

Type: signed 16-bit integer

Figure 1.2 The sequence of bits typed as a
signed 16-bit integer. The type information
(16-bit signed integer) tells the compiler
and/or run time that the sequence of bits
represents an integer value between -32768
and 32767, ensuring the correct
interpretation as -15709.

4 CHAPTER 1 Introduction to typing
As we will see in section 1.3, many other safety properties are enforced by the system
when we add properties to our code, such as marking a value as const or a member
as private.

What are types and type systems?1.2.2

Because this book talks about types and type systems, let’s define these terms before
moving forward.

TYPE A type is a classification of data that defines the operations that can be
done on that data, the meaning of the data, and the set of allowed values.
Typing is checked by the compiler and/or run time to ensure the integrity of
the data, enforce access restrictions, and interpret the data as meant by the
developer.

In some cases, we will simplify our discussion and ignore the operations part, so we’ll
look at types simply as sets, which represent all the possible values an instance of that
type can take.

TYPE SYSTEM A type system is a set of rules that assigns and enforces types to
elements of a programming language. These elements can be variables, func-
tions, and other higher-level constructs. Type systems assign types through
notation you provide in the code or implicitly by deducing the type of a cer-
tain element based on context. They allow various conversions between types
and disallow others.

Now that we’ve defined types and type systems, let’s see how the rules of a type system
are enforced. Figure 1.3 shows, at a high-level, how source code gets executed.

Figure 1.3 Source code is transformed by a compiler or interpreter
into code that can be executed by a run time. The run time is a
physical computer or a virtual machine, such as Java’s JVM,
or a browser’s JavaScript engine.

At a very high level, the source code we write gets transformed by a compiler or inter-
preter into instructions for a machine, or run time. This run time can be a physical
computer, in which case the instructions are CPU instructions, or it can be a virtual
machine, with its own instruction set and facilities.

CompilerSource code
Run-time-interpretable

code Run time

5Benefits of type systems
TYPE CHECKING The process of type checking ensures that the rules of the type
system are respected by the program. This type checking is done by the com-
piler when converting the code or by the run time while executing the code.
The component of the compiler that handles enforcement of the typing rules
is called a type checker.

If type checking fails, meaning that the rules of the type system are not respected by
the program, we end up with a failure to compile or with a run-time error. We will go
over the difference between compile-time type checking versus execution-time (or
run-time) type checking in more detail in section 1.4.

Benefits of type systems1.3
Because ultimately data is all 0s and 1s, properties of the data, such as how to interpret
it, whether it is immutable, and its visibility, are type-level properties. We declare a vari-
able as a number, and the type checker ensures that we don’t interpret its data as a
string. We declare a variable as private or read-only, and although the data itself in

Type checking and proofs
There is a lot of formal theory behind type systems. The remarkable Curry-Howard
correspondence, also known as proofs-as-programs, shows the close connection
between logic and type theory. It shows that we can view a type as a logic proposition,
and a function from one type to another as a logic implication. A value of a type is
equivalent to evidence that the proposition is true.

Take a function that receives as argument a boolean and returns a string.

Boolean to string
function booleanToString(b: boolean): string {
 if (b) {
 return "true";
 } else {
 return "false";
 }
}

This function can also be interpreted as “boolean implies string.” Given evidence
of the proposition boolean, this function (implication) can produce evidence of the
proposition string. Evidence of boolean is a value of that type, true or false.
When we have that, this function (implication) will give us evidence of string as
either the string "true" or the string "false".

The close relationship between logic and type theory shows that a program that
respects the type system rules is equivalent to a logic proof. In other words, the type
system is the language in which we write these proofs. The Curry-Howard correspon-
dence is important because it brings logic rigor to the guarantees that a program will
behave correctly.

6 CHAPTER 1 Introduction to typing

memory is no different from public mutable data, the type checker can make sure we
do not refer to a private variable outside its scope or try to change read-only data.

 The main benefits of typing are correctness, immutability, encapsulation, composability,
and readability. All five are fundamental features of good software design and behavior.
Systems evolve over time. These features counterbalance the entropy that inevitably
tries to creep into the system.

Correctness1.3.1

Correct code means code that behaves according to its specification, producing
expected results without creating run-time errors or crashes. Types help us add more
strictness to the code to ensure that it behaves correctly.

 As an example, let’s say we want to find the index of the string "Script" within
another string. Without providing enough type information, we can allow a value of
any type to be passed as an argument to our function. We are going to hit run-time
errors if the argument is not a string, as the next listing shows.

function scriptAt(s: any): number {
 return s.indexOf("Script");
}

console.log(scriptAt("TypeScript"));
console.log(scriptAt(42));

The program is incorrect, as 42 is not a valid argument to the scriptAt function, but
the compiler did not reject it because we hadn’t provided enough type information.
Let’s refine the code by constraining the argument to a value of type string in the
next listing.

function scriptAt(s: string): number {
 return s.indexOf("Script");
}

console.log(scriptAt("TypeScript"));
console.log(scriptAt(42));

Insufficient type informationListing 1.2

Refined type informationListing 1.3

Argument s has type any, which
allows a value of any type.

This line correctly prints
“4” to the console.

Passing a number as an argument
causes a run-time TypeError.

Argument s now
has type string.

Code fails to compile at this
line due to type mismatch.

Now the incorrect program is rejected by the compiler with this error message:

Argument of type '42' is not assignable to parameter of type 'string'

Leveraging the type system, we transformed what used to be a run-time issue that
could have been hit in production, affecting our customers, into a harmless compile-
time issue that we must fix before deploying our code. The type checker makes sure
we never try to pass apples as oranges; thus, our code becomes more robust.

7Benefits of type systems

 Errors occur when a program gets into a bad state, which means that the current
combination of all its live variables is invalid for whatever reason. One technique for
eliminating some of these bad states is reducing the state space by constraining the
number of possible values that variables can take, like in figure 1.4.

Figure 1.4 Declaring a type correctly, we can disallow invalid values. The first type is too loose and
allows for values we don’t want. The second, more restrictive type won’t compile if the code tries to
assign an unwanted value to a variable.

We can define the state space of a running program as the combination of all possible
values of all its live variables. That is, the Cartesian product of the type of each variable.
Remember, a type can be viewed as a set of possible values for a variable. The Cartesian
product of two sets is the set comprised of all ordered pairs from the two sets.

1.3.2

Security
An important byproduct of disallowing potential bad states is more secure code.
Many attacks rely on executing user-provided data, buffer overruns, and other such
techniques, which can often be mitigated with a strong-enough type system and good
type definitions.

Code correctness goes beyond eliminating innocent bugs in the code to preventing
malicious attacks.

Type allowing more values than strictly required

x = ; // bad x = ; // compile error

Type restricted to only valid values

Immutability

Immutability is another property closely related to viewing our running system as mov-
ing through its state space. When we are in a known-good state, if we can keep parts of
that state from changing, we reduce the possibility of errors.

Let’s take a simple example in which we attempt to prevent division by 0 by
checking the value of our divisor and throwing an error if the divisor is 0, as shown in
the following listing. If the value can change after we inspect it, the check is not very
valuable.

8 CHAPTER 1 Introduction to typing

function safeDivide(): number {
 let x: number = 42;

 if (x == 0) throw new Error("x should not be 0");

 x = x - 42;

 return 42 / x;
}

This happens all the time in real programs, in subtle ways: a variable gets changed
concurrently by a different thread or obscurely by another called function. Just as in
this example, as soon as a value changes, we lose any guarantees we were hoping to get
from the checks we performed. Making x a constant, we get a compilation error when
we try to mutate it in the next listing.

function safeDivide(): number {
 const x: number = 42;

 if (x == 0) throw new Error("x should not be 0");

 x = x - 42;

 return 42 / x;
}

The bug is rejected by the compiler with the following error message:

Cannot assign to 'x' because it is a constant.

In terms of in-memory representation, there is no difference between a mutable and
an immutable x. The constness property is meaningful only for the compiler. It is a
property enabled by the type system.

 Marking state that shouldn’t change as such by adding the const notation to our
type prevents the kind of mutations with which we lose guarantees we previously
checked for. Immutability is especially useful when concurrency is involved, as data
races become impossible if data is immutable.

 Optimizing compilers can emit more-efficient code when dealing with immutable
variables, as their values can be inlined. Some functional programming languages
make all data immutable: a function takes some data as input and returns other data
without ever changing its input. In such cases, when we validate a variable and con-
firm that it is in a good state, we are guaranteed it will be in a good state for its whole
lifetime. The trade-off, of course, is that we end up copying data when we could have
operated on it in-place, which is not always desirable.

Bad mutationListing 1.4

ImmutabilityListing 1.5

Check if x
is valid.

Bug: x becomes 0
after the check.

Division by 0 results
in Infinity.

x is declared using the
keyword const instead
of the keyword let.

This line no longer compiles
as x is immutable and
cannot be reassigned.

9Benefits of type systems
 Making everything immutable might not always be feasible. That being said, mak-
ing as much of the data immutable as you reasonably can will tremendously reduce
the opportunity for issues such as preconditions not being met and data races.

1.3.3 Encapsulation

Encapsulation is the ability to hide some of the internals of our code, be it a function, a
class, or a module. As you probably know, encapsulation is desirable, as it helps us deal
with complexity: we split the code into smaller components, and each component
exposes only what is strictly needed to the outside world, while its implementation
details are kept hidden and isolated.

 In the next listing, let’s extend our safe division example to a class that tries to
ensure that division by 0 never happens.

class SafeDivisor {
 divisor: number = 1;

 setDivisor(value: number) {
 if (value == 0) throw new Error("Value should not be 0");

 this.divisor = value;
 }

 divide(x: number): number {
 return x / this.divisor;
 }
}

function exploit(): number {
 let sd = new SafeDivisor();

 sd.divisor = 0;
 return sd.divide(42);
}

In this case we can no longer make the divisor immutable, as we do want to give callers
of our API the ability to update it. The problem is that callers can bypass the 0 check
and directly set divisor to any value because it is visible to them. The fix in this case
is to mark it as private and scope it to the class, as the following listing shows.

class SafeDivisor {
 private divisor: number = 1;

 setDivisor(value: number) {
 if (value == 0) throw new Error("Value should not be 0");

Not enough encapsulationListing 1.6

EncapsulationListing 1.7

Ensure that divisor does
not become 0 by checking

value before assigning

Division by 0 should
never happen.

Because the divisor
member is public, the
check can be bypassed.

Division by 0
returns Infinity.

Member is now
marked as private.

10 CHAPTER 1 Introduction to typing
 this.divisor = value;
 }

 divide(x: number): number {
 return x / this.divisor;
 }
}

function exploit() {
 let sd = new SafeDivisor();

 sd.divisor = 0;
 sd.divide(42);
}

A public and a private member have the same in-memory representation; the fact
that the problematic code no longer compiles in the second example is simply due to
the type notations we provided. In fact, public, private, and other visibility kinds
are properties of the type in which they appear.

 Encapsulation, or information hiding, enables us to split logic and data across a
public interface and a nonpublic implementation. This is extremely helpful in large
systems, as working against interfaces (or abstractions) reduces the mental effort it
takes to understand what a particular piece of code does. We need to understand and
reason about only the interfaces of components, not all their implementation details.
It also helps by scoping nonpublic information within a boundary and guarantees that
external code cannot modify it, as it simply does not have access to it.

 Encapsulation appears at multiple layers: a service exposes its API as an interface, a
module exports its interface and hides implementation details, a class exposes only its
public members, and so on. Like nesting dolls, the weaker the relationship between
two parts of the code, the less information they share. This strengthens the guarantees
a component can make about the data it manages internally, as no outside code can
be allowed to modify it without going through the component’s interface.

1.3.4 Composability

Let’s say we want to find the first negative number in an array of numbers and the first
one-character string in an array of strings. Without thinking about how we can break
down this problem into composable pieces and put them back together into a com-
posable system, we could end up with two functions: findFirstNegativeNumber()
and findFirstOneCharacterString(), as shown in the following listing.

Noncomposable systemListing 1.8

This line fails to compile as
divisor can no longer be
referenced outside the class.

function findFirstNegativeNumber(numbers: number[])
: number | undefined {
for (let i of numbers) {

if (i < 0) return i;
}

}

11Benefits of type systems
function findFirstOneCharacterString(strings: string[])
 : string | undefined {
 for (let str of strings) {
 if (str.length == 1) return str;
 }
}

The two functions search for the first negative number and for the first one-character
string, respectively. If no such element is found, the functions return undefined
(implicitly, by exiting the function without a return statement).

 If a new requirement comes in that we should also log an error whenever we fail to
find an element, we need to update both functions, as shown in the next listing.

function findFirstNegativeNumber(numbers: number[])
 : number | undefined {
 for (let i of numbers) {
 if (i < 0) return i;
 }
 console.error("No matching value found");
}

function findFirstOneCharacterString(strings: string[])
 : string | undefined {
 for (let str of strings) {
 if (str.length == 1) return str;
 }
 console.error("No matching value found");
}

This is already less than ideal. What if we forget to apply the update everywhere? Such
issues compound in large systems. Looking more closely at what each function does,
we can tell that the algorithm is the same; but in one case, we operate on numbers
with one condition, and in the other, we operate on strings with a different condition.
We can provide a generic algorithm parameterized on the type it operates on and the
condition it checks for, as shown in the following listing. Such an algorithm does not
depend on the other parts of the system, and we can reason about it in isolation.

Noncomposable system updateListing 1.9

Composable systemListing 1.10

function first<T>(range: T[], p: (elem: T) => boolean)
: T | undefined {
for (let elem of range) {

if (p (elem)) return elem;
}

}

function findFirstNegativeNumber(numbers: number[])
: number | undefined {
return first(numbers, n => n < 0);

}

12 CHAPTER 1 Introduction to typing
function findFirstOneCharacterString(strings: string[])
 : string | undefined {
 return first(strings, str => str.length == 1);
}

Don’t worry if the syntax of this looks a bit strange; we’ll cover inline functions such as
n => n < 0 in chapter 5 and generics in chapters 9 and 10.

 If we want to add logging to this implementation, we need only to update the
implementation of first. Better still, if we figure out a more efficient algorithm, sim-
ply updating the implementation benefits all callers.

 As we’ll learn in chapter 10 when we discuss generic algorithms and iterators, we
can make this function even more general. Currently, it only operates on an array of
some type T. It can be extended to traverse any data structure.

 If the code is not composable, we need a different function for each data type, data
structure, and condition, even though they all fundamentally implement the same
abstraction. Having the ability to abstract and then mix and match components reduces
a lot of duplication. Generic types enable us to express these kinds of abstractions.

 Having the ability to combine independent components yields a modular system
and less code to maintain. Composability becomes important as the size of the code and
the number of components increase. In a composable system, the parts are loosely cou-
pled; at the same time, code does not get duplicated in each subsystem. New require-
ments can usually be incorporated by updating a single component instead of making
large changes across the whole system, at the same time understanding that such a sys-
tem requires less thought, as we can reason about its parts in isolation.

Readability1.3.5

Code is read many more times than it is written. Typing makes it clear what a function
expects from its arguments, what the prerequisites for a generic algorithm are, what
interfaces a class implements, and so on. This information is valuable because we can
reason about readable code in isolation: just by looking at a definition, we should be
able to easily understand how the code is supposed to work without having to navigate
the sources to find callers and callees.

 Naming and comments are important parts of this, too, but typing adds another
layer of information, as it allows us to name constraints. Let’s look at an untyped
find() function declaration in the following listing.

declare function find(range: any, pred: any): any;

Just looking at this function, it’s hard to tell what kind of arguments it expects. We
need to read the implementation, pass in our best guess, and see whether we get a
run-time error or hope that the documentation covers this.

Untyped find()Listing 1.11

13Types of type systems
 Contrast the following code with the previous declaration.

declare function first<T>(range: T[],
 p: (elem: T) => boolean): T | undefined;

Reading this declaration, we see that for any type T, we need to provide an array T[]
as the range argument and a function that takes a T and returns a boolean as the
p argument. We can also immediately see that the function is going to return a T or
undefined.

 Instead of having to find the implementation or look up the documentation, just
reading this declaration tells us exactly what type of arguments to pass and reduces
our cognitive load, as we can treat it as a self-contained, separate entity. Having such
type information explicit, available not only to the compiler but also to the developer,
makes understanding the code a lot easier.

 Most modern languages provide some level of type inference, which means deducing
the type of a variable based on context. This is useful, as it saves us redundant typing,
but becomes a problem when the compiler can understand the code easily while it
becomes too effortful for people to do so. A spelled-out type is much more valuable
than a comment, as it is enforced by the compiler.

1.4 Types of type systems
Nowadays, most languages and run times provide some form of typing. We realized
long ago that being able to interpret code as data and data as code can lead to cata-
strophic results. The main distinction between contemporary type systems lies in
when types get checked and how strict the checks are.

 With static typing, type checking is performed at compile time, so when compila-
tion is done, the run-time values are guaranteed to have correct types. Dynamic typ-
ing, on the other hand, defers type checking to the run time, so type mismatches
become run-time errors.

 Strong typing does few if any implicit type conversions, whereas weaker type sys-
tems allow more implicit type conversions.

1.4.1 Dynamic and static typing

JavaScript is dynamically typed, and TypeScript is statically typed. In fact, TypeScript
was created to add static type checking to JavaScript. Converting what would otherwise
be run-time errors to compilation errors, especially in large applications, makes code
more maintainable and resilient. This book focuses on static typing and statically
typed languages, but it’s good to understand the alternative.

 Dynamic typing does not impose any typing constraints at compile time. The collo-
quial name duck typing comes from the phrase “If it waddles like a duck and it quacks
like a duck, it must be a duck.” Code can attempt to freely use a variable in any way it

TypedListing 1.12 find()

14 CHAPTER 1 Introduction to typing
wants, and typing is applied by the run time. We can simulate dynamic typing in Type-
Script by using the any keyword, which allows untyped variables.

 We can implement a quacker() function that takes a duck argument of type any
and calls quack() on it. As long as we pass it an object that has a quack() method,
everything works. If, on the other hand, we pass something that can’t quack(), we get
a run-time TypeError, as shown in the following listing.

function quacker(duck: any) {
 duck.quack();
}

quacker({ quack: function () { console.log("quack"); } });
quacker(42);

Static typing, on the other hand, performs type checks at compile time, so attempting
to pass an argument of the wrong type causes a compilation error. To leverage the
static typing features of TypeScript, we can update the code by declaring a Duck inter-
face and properly typing the function’s argument, as shown in listing 1.14. Note that
in TypeScript, we do not have to explicitly declare that we are implementing the Duck
interface. As long as we provide a quack() function, the compiler considers the inter-
face to be implemented. In other languages, we would have to be explicit by declaring
a class as implementing the interface.

interface Duck {
 quack(): void;
}

function quacker(duck: Duck) {
 duck.quack();
}

quacker({ quack: function () { console.log("quack"); } });
quacker(42);

Catching these types of errors at compile time, before they can cause a running pro-
gram to malfunction, is the key benefit of static typing.

Dynamic typingListing 1.13

Static typingListing 1.14

The function takes an argument
of type any, so it bypasses
compile-time type checking.

We pass an object with
a quack() method, so

the call prints “quack.”

This causes a run-time error: TypeError:
duck.quack is not a function.

Interface declaration for an object
we expect has a quack() method

Updated function now requires
an argument of type Duck.

Compile error: Argument of
type '42' is not assignable to
parameter of type 'Duck'.

15Types of type systems
Weak and strong typing1.4.2

We often hear the terms strong typing and weak typing to describe a type system. The
strength of a type system describes how strict the system is with regard to enforcing
type constraints. A weak type system implicitly tries to convert values from their actual
types to the types expected when the value is used.

 Consider this question: Does milk equal white? In a strongly typed world, no, milk
is a liquid, and it makes no sense to compare it to a color. In a weakly typed world, we
can say, “Well, milk’s color is white, so yes, it does equal white.” In the strongly typed
world, we can explicitly convert milk to a color by making the question more explicit:
Does the color of milk equal white? In the weakly typed world, we don’t need this
refinement.

 JavaScript is weakly typed. We can see this by using the any type in TypeScript and
deferring to JavaScript to handle typing at run time. JavaScript provides two equality
operators: ==, which checks whether two values are equal, and ===, which checks
both that the values and the type of the values are equal, as shown in the next listing.
Because JavaScript is weakly typed, an expression such as "42" == 42 evaluates to
true. This is surprising, because "42" is text, whereas 42 is a number.

const a: any = "hello world";
const b: any = 42;

console.log(a == b);

console.log("42" == b);

console.log("42" === b);

Implicit type conversions are handy in that we don’t have to write more code to explic-
itly convert between types, but they are dangerous because in many cases we do not
want conversions to happen and are surprised by the results. TypeScript, being
strongly typed, doesn’t compile any of the preceding comparisons when we properly
declare a to be a string and b to be a number, as the following listing shows.

const a: string =c"hello world";
const b: number = 42;

console.log(a == b);

console.log("42" == b);

console.log("42" === b);

Weak typingListing 1.15

Strong typingListing 1.16

Prints “false,” though
comparing a string to
a number is allowed. Prints “true”; the JavaScript

run time implicitly converts
the values to the same type.

Prints “false”; the === operator
also compares the types.

a and b are no longer declared as
any, so they get type checked.

All three comparisons fail to
compile, as TypeScript doesn’t
allow comparing different types.

16 CHAPTER 1 Introduction to typing

All the comparisons now cause the error "This condition will always return
'false' since the types 'string' and 'number' have no overlap". The type
checker determines that we are trying to compare values of different types and rejects
the code.

 Although a weak type system is easier to work with in the short term, as it doesn’t
force programmers to explicitly convert values between types, it does not provide the
same guarantees we get from a stronger type system. Most of the benefits described in
this chapter and the techniques employed in the rest of this book lose their effective-
ness if they are not properly enforced.

 Note that although a type system is either dynamic (type checking at run time) or
static (type checking at compile time), its strength lies on a spectrum: the more implicit
conversions it performs, the weaker it is. Most type systems, even strong ones, do pro-
vide some limited implicit casting for conversions that are deemed safe. A common
example is conversions to boolean: if (a) in most languages would compile even if
a is a number or a reference type. Another example is widening casts, which we’ll cover
in detail in chapter 4. TypeScript uses only the number type to represent numeric val-
ues, but in languages in which, for example, we need a 16-bit integer but pass in an 8-
bit integer, the conversion is usually done automatically, as there is no risk of data cor-
ruption. (A 16-bit integer can represent any value that an 8-bit integer can, and more.)

Type inference1.4.3

In some cases, the compiler can infer the type of a variable or a function without us
having to specify it explicitly. If we assign the value 42 to a variable, for example, the
TypeScript compiler can infer that its type is number, so we don’t need to provide the
type notations. We can do so if we want to be explicit and make the type clear to read-
ers of the code, but the notation is not strictly required.

 Similarly, if a function returns a value of the same type on each return statement,
we don’t need to spell out its return type explicitly in the function definition. The
compiler can infer it from the code, as shown in the next listing.

function add(x: number, y: number) {
 return x + y;
}

let sum = add(40, 2);

Type inferenceListing 1.17

The function does not have an
explicit return type, but the
compiler infers it as number.

The type of the variable sum is
not explicitly declared as
number; rather, it is inferred.

Unlike dynamic typing, in which typing is performed only at run time, in these cases
the typing is still determined and checked at compile time, but we don’t have to sup-
ply it explicitly. If typing is ambiguous, the compiler will issue an error and ask us to be
more explicit by providing type notations.

17Summary

1.5 In this book
A strong, static type system enables us to write code that is more correct, more com-
posable, and more readable. This book will cover common features of such modern
type systems with a focus on practical applications of these features.

We’ll start with primitive types, the out-of-the-box types available in most languages.
We’ll cover using them correctly and avoiding some common pitfalls. In some cases,
we show how to implement some of these types if your particular language does not
provide them natively.

Next, we’ll look at composition and how primitive types can be put together to
build a large universe of types supporting your particular problem domain. There are
multiple ways to combine types, so you’ll learn how to pick the right tool for the job
depending on the particular problem you are trying to solve.

Then we will cover function types and the new implementations that open to us
when a type system can type functions and treat them as regular values. Functional
programming is a very deep topic, so instead of attempting to explain it fully, we’ll
borrow a set of useful concepts and apply them to a nonfunctional language to solve
real-world problems.

The next step in the evolution of type systems, after being able to type values, com-
pose types, and type functions, is subtyping. We’ll go over what makes a type a subtype of
another type and see how we can apply some object-oriented programming concepts to
our code. We’ll discuss inheritance, composition, and the less-traditional mix-ins.

We’ll continue with generics, which enable type variables and allow us to parameter-
ize code on types. Generics open a whole new level of abstraction and composability,
decoupling data from data structures, data structures from algorithms, and enabling
adaptive algorithms.

Last, we’ll cover higher kinded types, which are the next level of abstraction, parame-
terizing generic types. Higher kinded types formalize data structures such as monoids
and monads. Many programming languages do not support higher kinded types
today, but their extensive use in languages such as Haskell and increasing popularity
will eventually lead to their adoption across more established languages.

Summary
 A type is a classification of data that defines the operations that can be done on

that data, the meaning of the data, and the set of allowed values.
 A type system is a set of rules that assigns and enforces types to elements of a pro-

gramming language.
 Types restrict the range of values a variable can take, so in some cases, what

would’ve been a run-time error becomes a compile-time error.
 Immutability is a property of the data enabled by typing, which ensures that val-

ues don’t change when they’re not supposed to.
 Visibility is another type-level property that determines which components are

allowed to access which data.

18 CHAPTER 1 Introduction to typing
 Generic programming enables powerful decoupling and code reuse.
 Type notations make code easier to understand for readers of the code.
 Dynamic typing (or duck typing) determines types at run time.
 Static typing checks types at compile time, catching type errors that otherwise

would’ve become run-time errors.
 The strength of a type system is a measure of how many implicit conversions

between types are allowed.
 Modern type checkers have powerful type inference algorithms that enable

them to determine the types of variables, functions, and so on without your hav-
ing to write them out explicitly.

In chapter 2, we will look at primitive types, which are the building blocks of the type
system. We’ll learn how to avoid some common mistakes that arise when using these
types and see how we can build almost any data structure from arrays and references.

Basic types
This chapter covers
 Common primitive types and their uses

 How Boolean expressions are evaluated

 Pitfalls of numerical types and text encoding

 Fundamental types for building data structures

Computers represent data internally as sequences of bits. Types give meaning to
these sequences. At the same time, types restrict the range of possible values any
piece of data can take. Type systems provide a set of primitive or built-in types and a
set of rules for combining these types.

In this chapter we will look at some of the commonly available primitive types
(empty, unit, Booleans, numbers, strings, arrays, and references), their uses, and
common pitfalls to be aware of. Although we use primitive types every day, each
comes with subtle nuances we must be aware of to use them effectively. Boolean
expressions can be short-circuited, for example, and numerical expressions can
overflow.

We’ll start with some of the simplest types, which carry little or no information,
and move on to types that represent data via various encodings. Finally, we’ll look at
19

20 CHAPTER 2 Basic types
arrays and references, which are building blocks for all other more-complex data
structures.

Designing functions that don’t return values2.1
Viewing types as sets of possible values, you may wonder whether there is a type to rep-
resent the empty set. The empty set has no elements, so this would be a type for which
we can never create an instance. Would such a type be useful?

The empty type2.1.1

As part of a utility library, let’s see how we would define a function that, given a mes-
sage, logs the fact that an error occurred, including a timestamp and the message, and
then throws an exception, as shown in the next listing. Such a function is a wrapper
over throw, so it is not meant to return a value.

const fs = require("fs");

function raise(message: string): never {
 console.error(`Error "${message}" raised at ${new Date()}`);
 throw new Error(message);
}

function readConfig(configFile: string): string {
 if (!fs.existsSync(configFile))
 raise(`Configuration file ${configFile} missing`);

 return fs.readFileSync(configFile, "utf-8");
}

Note that the return type of the function in the example is never. This makes it clear
to readers of the code that raise() is never meant to return. Even better, if someone
accidentally updates the function later and makes it return, the code no longer com-
piles. Absolutely no value can be assigned to never, so the compiler ensures that the
function keeps behaving as designed and never returns.

 Such a type is named an uninhabitable type or empty type because no instance of it can
be created.

EMPTY TYPE An empty type is a type that cannot have any value: its set of possi-
ble values is the empty set. We can never instantiate a variable of such a type.
We use an empty type to denote impossibility, such as by using it as the return
type of a function that never returns (throws or loops forever).

An uninhabitable type is used to declare a function that never returns. A function
might not return for several reasons: it might throw an exception on all code paths, it
might loop forever, or it might crash the program. All these scenarios are valid. We

Listing 2.1 Raising and logging an error if a config file is not found

The function never returns (always
throws), so its return type is never.

Example use: if a config
file is not found, we want

to log and throw an error.

21Designing functions that don’t return values
might want to implement a function that does some logging or sends some telemetry
before throwing an exception or crashing in case of unrecoverable error. We can have
code that we want to run continuously on a loop until the whole system is shut down,
such as the event-processing loop of the system.

 Declaring such a function as returning void, which is the type used by most pro-
gramming languages to indicate the absence of a meaningful value, is misleading. Our
function not only doesn’t return a meaningful value, but also doesn’t return at all!

Consider using an empty type whenever you have a nonreturning function or other-
wise want to explicitly show that it’s impossible to have a value.

DIY EMPTY TYPE

Not all mainstream languages provide a built-in empty type like never in TypeScript,
but you can implement one in most of them. You can do this by defining an enumera-
tion with no elements or a structure with only a private constructor such that it can
never be called.

 Listing 2.2 shows how we would implement an empty type in TypeScript as a class
that can’t be instantiated. Note that TypeScript considers two types to be compatible
if they have similar structure, so we need to add a dummy void property to ensure
that other code cannot end up with a value that can be typed as Empty. Other lan-
guages, such as Java and C#, would not need this additional property, as they
wouldn’t consider types to be compatible based on shape. We’ll cover this in more
detail in chapter 7.

declare const EmptyType: unique symbol;

class Empty {
 [EmptyType]: void;
 private constructor() { }
}

Nonterminating functions
The empty type might seem trivial, but it shows a fundamental difference between
mathematics and computer science: in mathematics, we cannot define a function
from a nonempty set to an empty set. This simply doesn’t make sense. Functions in
mathematics are not “evaluated”; they simply “are.”

Computers, on the other hand, evaluate programs; they execute instructions step by
step. Computers can end up evaluating an infinite loop, which means that they would
never stop their execution. For this reason, a computer program can define a mean-
ingful function to the empty set, as in the preceding examples.

Empty type implemented as an uninstantiable classListing 2.2

A TypeScript-specific way to ensure
that other objects with the same shape
can’t be interpreted as this type

Private constructor ensures that other
code cannot instantiate this type

22 CHAPTER 2 Basic types

function raise(message: string): Empty {
 console.error(`Error "${message}" raised at ${new Date()}`);
 throw new Error(message);
}

The code compiles, as the compiler performs control flow analysis and determines no
return statement is needed. On the other hand, it should be impossible to add a
return statement, as we cannot create an instance of Empty.

2.1.2 The unit type

In the previous section, we looked at functions that never return. What about func-
tions that do return but don’t return anything useful? There are many functions like
this, which we call only for their side effects: they do something, change some external
state, but don’t perform any useful computation to return to us.

 Let’s take console.log() as an example: it outputs its argument to the debug con-
sole, but doesn’t return anything meaningful. On the other hand, the function does
return control to the caller when it finishes executing, so its return type can’t be never.

 The classic "Hello world!" function shown in the next listing is another good
example. We call it to print a greeting (which is a side effect), not to return a value, so
we specify its return value as void.

function greet(): void {
 console.log("Hello world!");
}

greet();

A "Hello world!" functionListing 2.3

This function is the same as in the
previous example, this time using

Empty instead of never.

The function prints a greeting and
doesn’t return anything useful.

We usually just ignore the
result of such functions.

The return type of such a function is called a unit type, a type that allows just one value,
and its name in TypeScript and most other languages is void. The reason why we usu-
ally don’t have variables of type void and can simply return from a void function
without providing an actual value is that the value of a unit type is not important.

UNIT TYPE A unit type is a type that has only one possible value. If we have a vari-
able of such a type, there is no point in checking its value; it can only be the one
value. We use unit types when the result of a function is not meaningful.

Functions that take any number of arguments but don’t return any meaningful value are
also called actions (because they usually perform one or more operations that change
the state of the world) or consumers (because arguments go in but nothing comes out).

DIY UNIT TYPE

Although a type like void is available in most programming languages, some lan-
guages treat void in a special way and may not allow you to use it exactly the same way
as any other type. In such situations, you can create your own unit type by defining an

23Boolean logic and short circuits

enumeration with a single element or a singleton without state. Because a unit type
has only one possible value, it doesn’t really matter what that value is; all unit types are
equivalent. It’s trivial to convert from one unit type to another, as there is no choice to
be made: the single value of one type maps to the single value of the other one.

 Listing 2.4 shows how we would implement a unit type in TypeScript. As for the
DIY empty type, we are using a void property to ensure that another type with a com-
patible structure is not implicitly converted to Unit. Other languages, such as Java
and C#, would not need this additional property.

declare const UnitType: unique symbol;

class Unit {
 [UnitType]: void;
 static readonly value: Unit = new Unit();
 private constructor() { };
}

function greet(): Unit {
 console.log("Hello world!”);
 return Unit.value;
}

2.1.3

2.2

Listing 2.4 Unit type implemented as a singleton without state

Unique symbol property ensures
that types with similar shape
cannot be interpreted as Unit.

Static read-only
property of type
Unit is the only
possible instance
of Unit.

Private constructor ensures
that other code cannot
instantiate this type.

Equivalent to a function
returning void, this
always returns exactly
the same value.

Exercises

1 What should be the return type of a set() function that takes a value and
assigns it to a global variable?
a never

b undefined

c void

d any

2 What should be the return type of a terminate() function that immediately
stops execution of the program?
a never

b undefined

c void

d any

Boolean logic and short circuits
After types with no possible values (empty types such as never) and types with one pos-
sible value (unit types such as void), come types with two possible values. The canoni-
cal two-valued type, available in most programming languages, is the Boolean type.

Boolean values encode truthiness. The name comes from George Boole, who
introduced what is now called Boolean algebra, an algebra consisting of truth (1) and
falseness (0) values and logical operations on them such as AND, OR, and NOT.

24 CHAPTER 2 Basic types
 Some type systems provide Booleans as a built-in type with values true and false.
Other systems rely on numbers, considering 0 to mean false and any other number
to mean true (that is, whatever is not false is true). TypeScript has a built-in boolean
type with possible values true and false.

 Regardless of whether a primitive Boolean type exists or truthiness values are
inferred from values of other types, most programming languages use some form of
Boolean semantics to enable conditional branching. A statement such as if (condi-
tion) { ... } will execute the part between curly brackets only if the condition
evaluates to something true. Loops rely on conditions to determine whether to iterate
or finish: while (condition) { ... }. Without conditional branching, we
wouldn’t be able to write very useful code. Think about how you would implement a
very simple algorithm, such as finding the first even number in a list of numbers, with-
out any loops or conditional statements.

Boolean expressions2.2.1

Many programming languages use the following symbols for common Boolean opera-
tions: && for AND, || for OR, and ! for NOT. Boolean expressions are usually described
with truth tables (figure 2.1).

Short circuit evaluation2.2.2

Suppose that you must build a gatekeeper for a commenting system as shown in listing
2.5: as users attempt to post comments, the gatekeeper rejects comments posted
within 10 seconds of each other (the user is spamming) and comments with empty
contents (the user accidentally clicked Comment before typing anything).

 The gatekeeper function takes as arguments the comment and the user ID. You have
a secondsSinceLastComment() function already implemented; this function, given
the user ID, queries the database and returns the number of seconds since the last post.

 If both conditions are met, post the comment to the database; if not, return false.

declare function secondsSinceLastComment(userId: string): number;
declare function postComment(comment: string, userId: string): void;

GatekeeperListing 2.5

a

true

true

false

false

b

true

false

true

false

a && b

true

false

false

false

a || b

true

true

true

false

!a

false

false

true

true
Figure 2.1 AND, OR,
and NOT truth tables

secondsSinceLastComment queries the
database for the age of the user’s last post.

postComment writes the
comment to the database.

25Boolean logic and short circuits

function commentGatekeeper(comment: string, userId: string): boolean {
 if ((secondsSinceLastComment(userId) < 10) || (comment == ""))
 return false;

 postComment(comment, userId);

 return true;
}

Listing 2.5 is a possible implementation of the gatekeeper. Note the OR expression
where we return false if either the age of the last comment in seconds is less than 10
or the current comment is empty.

 Another way to implement the same logic is to switch the two operands, as shown
in the following listing. First check whether the current comment is empty; then
check the age of the last posted comment, as in listing 2.5.

declare function secondsSinceLastComment(userId: string): number;
declare function postComment(comment: string, userId: string): void;

function commentGatekeeper(comment: string, userId: string): boolean {
 if ((comment == "") || (secondsSinceLastComment(userId) < 10))
 return false;

 postComment(comment, userId);

Alternative gatekeeper implementationListing 2.6

If one of the conditions isn’t
met, return false. Otherwise,

post comment and return true.

The only difference between
this version and the previous
one is the flipped conditions.

return true;
}

Is one version better in any way than the other? They define the same checks—just in
a different order. As it turns out, they are different. Depending on the input received,
they behave differently at run time due to the way Boolean expressions are evaluated.

Most compilers and run times perform an optimization called short circuit for Bool-
ean expressions. Expressions of the form a AND b are translated to if a then b

else false. This respects the truth table for AND: if the first operand is false, then
regardless of what the second operand is, the whole expression is false. On the other
hand, if the first operand is true, then the whole expression is true if the second oper-
and is also true.

A similar translation happens for a OR b, which becomes if a then true else b.
Looking at the truth table for OR, if the first operand is true, then the whole expression
is true regardless of what the second operand is; otherwise, if the first operand is false,
then the expression is true if the second operand is true.

The reason for this translation and the name short circuit come from the fact that if
evaluating the first operand provides enough information to evaluate the whole
expression, the second operand is not evaluated at all. The gatekeeper function must
perform two checks: a relatively inexpensive one, to make sure that the comment it

26 CHAPTER 2 Basic types
receives is not empty, and a potentially expensive one, which involves querying the
comment database. In listing 2.5, the database query happens first. If the last posted
comment is more recent than 10 seconds, short-circuiting will not even look at the
current comment and will simply return false. In listing 2.6, if the current comment
is empty, the database doesn’t get queried. The second version can potentially skip an
expensive check by evaluating a cheap check.

 This property of Boolean expression evaluation is important and something to
remember when you are combining conditions: short-circuiting can skip evaluation of
the expression on the right, depending on the result of evaluating the expression on
the left, so prefer ordering conditions from cheapest to most expensive.

Exercise2.2.3

1 What will the following code print?

let counter: number = 0;

function condition(value: boolean): boolean {
 counter++;
 return value;
}

if (condition(false) && condition(true)) {
 // ...
}

console.log(counter)

a 0
b 1
c 2
d Nothing; it throws an error.

Common pitfalls of numerical types2.3
Numbers are usually provided as one or more primitive types in most programming
languages. There are several gotchas you should be aware of when working with num-
bers. Take, for example, a simple function that adds up a shopping total. If a user
purchases three sticks of bubble gum at 10 cents each, we would expect the total to be
30 cents. Depending on how we use numerical types, we might be in for a surprise.

type Item = { name: string, price: number };

function getTotal(items: Item[]): number {
 let total: number = 0;

 for (let item of items) {
 total += item.price;
 }

Function adding up item totalListing 2.7

We represent an item by a
name and a price (number).

The getTotal function returns
a number as the total.

27Common pitfalls of numerical types
 return total;
}

let total: number = getTotal(
 [{ name: "Cherry bubblegum", price: 0.10 },
 { name: "Mint bubblegum", price: 0.10 },
 { name: "Strawberry bubblegum", price: 0.10 }]
);

console.log(total == 0.30);

Why does adding up 0.10 three times not give us 0.30? To understand this, we need to
look at how numerical types are represented by computers. The two defining charac-
teristics of a numerical type are its width and its encoding.

 The width is the number of bits used to represent a value. This can range from 8
bits (a byte) or even 1 bit up to 64 bits or more. Bit widths have a lot to do with the
underlying chip architecture: a 64-bit CPU has 64-bit registers, thus allowing
extremely fast operations on 64-bit values. There are three common ways to encode
numbers of a given width: unsigned binary, two’s complement, and IEEE 754.

2.3.1 Integer types and overflow

An unsigned binary encoding uses every bit to represent part of the value. A 4-bit
unsigned integer, for example, can represent any value from 0 to 15. In general, an
N-bit unsigned integer can represent values from 0 (all bits are 0) up to 2N-1 (all bits
are 1). Figure 2.2 shows a few possible values of a 4-bit unsigned integer. You can con-
vert a sequence of N binary digits (bN–1bN–2…b1b0) to a decimal number with the for-
mula bN–1 * 2N–1 + bN–2 * 2N–2 + … + b1 * 21 + b0 * 20.

Figure 2.2 4-bit unsigned integer encoding. Smallest possible value, when
all 4 bits are 0, is 0. Largest possible value, when all bits are 1,
is 15 (1 * 23 + 1 * 22 + 1 * 21 + 1 * 20).

This encoding is very straightforward but can represent only positive numbers. If we
also want to represent negative numbers, we need a different encoding, which is usu-
ally two’s complement. In two’s complement encoding, we reserve a bit to encode the
sign. Positive numbers are represented exactly as before, whereas negative numbers

Compute total for three sticks
of bubble gum, 10 cents each.

This prints "false," even though we would
expect 0.10 + 0.10 + 0.10 to be 0.30.

Smallest possible
value; all bits are 0

Value

0

1

2

10

15
Largest possible
value; all bits are 1

4-bit unsigned encoding

0000

0001

0010

1010

1111

28 CHAPTER 2 Basic types

are encoded by subtracting their absolute value from 2N, where N is the number of
bits. Figure 2.3 shows a few possible values of a 4-bit signed integer.

 With this encoding, all negative numbers have the first bit 1, and all positive num-
bers and 0 have the first bit 0. A 4-bit signed integer can represent values from –8 to 7.
The more bits we use to represent a value, the larger the value range we can represent.

OVERFLOW AND UNDERFLOW

What happens, though, when the result of an arithmetic operation can’t be repre-
sented within the given number of bits? What if we are using a 4-bit unsigned encoding
and try to add 10 + 10, even though the maximum value we can represent in 4 bits is 15?

 Such a situation is called an arithmetic overflow. The opposite situation, in which we
end up with a number that is too small to represent, is called an arithmetic underflow.
Different languages treat these situations in different ways (figure 2.4).

Smallest possible value; all
bits are 0 except the sign bit

Value

–8

–3

0

3

7
Largest possible value; all
bits are 1 except the sign bit

4-bit signed encoding

1000

1101

0000

0011

0111

Figure 2.3 4-bit signed integer encoding. –8 is encoded as 24 – 8 (1000 binary),
and –3 is encoded as 24 – 3 (1101 binary). The first bit is always 1 for negative numbers
and 0 for positive numbers.

A pocket calculator errors outA dial knob saturatesAn odometer wraps around

9 9 9 9 9 9
0

Figure 2.4 Different ways to handle arithmetic overflow. An odometer wraps around
from 999999 back to 0; a dial knob simply stops at the maximum possible value;
a pocket calculator prints Error and stops.

The three main ways to handle arithmetic overflow and underflow are to wrap
around, saturate, or error out.

Wrap around is what the hardware usually does, as it simply discards the bits that
don’t fit. For a 4-bit unsigned integer, if the bits are 1111 and we add 1, the result is
10000, but because only 4 bits are allowed, one gets discarded, and we end up with
0000, wrapping back around to 0. This is the most efficient way to handle overflow
but also the most dangerous, as it can cause unexpected results. Adding $1 to my $15,
I can end up with $0.

29Common pitfalls of numerical types
 Saturation is another way to handle overflow. If the result of an operation exceeds
the maximum representable value, we simply stop at the maximum. This maps well to
the physical world: if your thermostat only goes up to some temperature, trying to
make it warmer won’t change that. On the other hand, using saturation, arithmetic
operations are no longer always associative. If 7 is our maximum value, 7 + (2 – 2) =
7 + 0 = 7 but (7 + 2) – 2 = 7 – 2 = 5.

 The third possibility, error out, is to throw an error when an overflow happens. This
is the safest approach but has the drawback that every single arithmetic operation
needs to be checked, and whenever you perform any arithmetic, your code needs to
handle exceptional cases.

DETECTING OVERFLOW AND UNDERFLOW

Depending on the language you are using, arithmetic overflows and underflows could
be handled in any one of these ways. If your scenario requires different handling from
the language default, you need to check whether an operation would overflow or
underflow and handle that scenario separately. The trick is to do this within the range
of allowed values.

 To check whether adding values a and b would overflow or underflow a [MIN,
MAX] range, for example, we need to ensure that we don’t have a + b < MIN (when
adding two negative numbers) or a + b > MAX.

 If b is positive, we can’t possibly have a + b < MIN, as we’re making a bigger, not
smaller. In this case, we only need to check for overflow. We can rewrite a + b > MAX as
a > MAX – b (subtract b on both sides). Because we’re subtracting a positive number,
we are making the value smaller, so there is no risk of overflowing (MAX – b is within
the [MIN, MAX] range). So we overflow if b > 0 and a > MAX – b.

 If b is negative, we can’t possibly have a + b > MAX, as we’re making a smaller, not
bigger. In this case, we only need to check for underflow. We can rewrite a + b < MIN
as a < MIN – b (subtract b on both sides). Because we’re subtracting a negative num-
ber, we are making the value larger, so there is no risk of underflowing (MIN – b is
within the [MIN, MAX] range). So we underflow if b < 0 and a < MIN – b, as shown in
the next listing.

function addError(a: number, b: number,
 min: number, max: number): boolean {
 if (b >= 0) {
 return a > max - b;
 } else {
 return a < min - b;
 }
}

We can use similar logic for subtraction.

Checking for addition overflowListing 2.8

The function takes the numbers
a and b, and the minimum and
maximum allowed values.

If b is positive, we have an
overflow if a > max – b.

If b is negative, we have an
underflow if a < min – b.

30 CHAPTER 2 Basic types

 For multiplication, we check for overflow and underflow by dividing on both sides
by b. Here, we need to consider the signs of both numbers, as multiplying two nega-
tive numbers yields a positive number, whereas multiplying a positive and a negative
number yields a negative number.

 We overflow if

 b > 0, a > 0, and a > MAX / b
 b < 0, a < 0, and a < MAX / b

 We underflow if

 b > 0, a < 0, and a < MIN / b
 b < 0, a > 0, and a > MIN / b

For integer division, the value of a / b is always an integer whose value is between -a
and a. We only need to check for overflow and underflow if [-a,a] is not fully within
[MIN,MAX]. Going back to our 4-bit signed integer example, where MIN is –8 and MAX
is 7, the only case where division overflows is –8 / –1 (because [–8,8] is not fully within
[–8,7]). In fact, for signed integers, the only overflow scenario is when a is the mini-
mum representable value and b is –1. Unsigned integer division can never overflow.

 Tables 2.1 and 2.2 summarize the steps necessary to check for overflow and under-
flow when special handling is required.

2.3.2

Detecting integer overflow for a and b in a [MIN, MAX] range with MIN = –MAX-1Table 2.1

Addition Subtraction Multiplication Division

b > 0 and b < 0a > MAX – b and b > 0a > MAX + b , a > 0, and
a > MAX / b

a == MIN and
b == -1

b < 0, a < 0, and
a < MAX / b

Detecting integer underflow for a and b in [MIN, MAX] range with MIN = –MAX-1Table 2.2

Addition Subtraction Multiplication Division

b < 0 and b > 0a < MIN – b and b > 0a < MIN + b , a < 0, and
a < MIN / b

N/A

b < 0, a > 0, and
a > MIN / b

Floating-point types and rounding

IEEE 754 is the Institute of Electrical and Electronics Engineers standard for repre-
senting floating-point numbers, or numbers with a fractional part. In TypeScript (and
JavaScript), numbers are represented as 64-bit floating-point using the binary64
encoding. Figure 2.5 details this representation.

The three components of a floating-point number are the sign, the exponent, and
the mantissa. The sign is a single bit that is 0 for positive numbers or 1 for negative

31Common pitfalls of numerical types

Binary representation of a floating-point number (0.10)

Formula to convert binary representation to actual value

(−1)sign ×(1 + Mantissa52–i

52

i =1

00111111101110011001100110011001100110011001100110011001100110101

Actual value (approximation of 0.10)

0.100000000000000005551115123126

Sign

Exponent Mantissa

 ×2–i)×2Exponent –1023

Figure 2.5 Floating-point representation of 0.10. First, we see the in-memory binary
representation of the three components: sign bit, exponent, and mantissa. Below, we have
the formula to convert the binary representation to a number. Finally, we see the result of
applying the formula: 0.10 is approximated to 0.100000000000000005551115123126.

numbers. The mantissa is a fraction as described by the formula in figure 2.2. This
fraction is multiplied by 2 raised to the biased exponent.

The exponent is called biased because from the unsigned integer represented by
the exponent, we subtract a value so that it can represent both positive and negative
numbers. In the binary64 case, the value is 1023. The IEEE 754 standard defines sev-
eral encodings, some using base 10 instead of base 2, though base 2 appears more
often in practice.

The standard also defines special values:

 NaN, which stands for not a number and is used to represent the result of invalid
operations, such as division by 0.

 Positive and negative infinity (Inf), which are used when operations overflow
as saturation values

 Even though 0.10 becomes 0.100000000000000005551115123126 according
to the formula, it is rounded down to 0.1. In fact, 0.10 and
0.100000000000000005551115123126 compare as equal in JavaScript. The only
way floating-point can represent fractional numbers across a huge range of val-
ues using a relatively small number of bits is by rounding and approximating.

PRECISION VALUES

If precision is needed—in dealing with currency, for example—avoid using floating-
point numbers. The reason why adding 0.10 together three times doesn’t equal 0.30 is
that although each individual 0.10 representation gets rounded to 0.10, adding them
yields a number that rounds to 0.30000000000000004.

Small integer numbers can safely be represented without rounding, so it is a better
idea to encode a price as a pair of dollars and cents integers. JavaScript provides

32 CHAPTER 2 Basic types

mply
unts.

Number.isSafeInteger(), which tells us whether an integer value can be repre-
sented without rounding, so relying on that, we can design a Currency type that
encodes two integer values and protects against rounding issues, as the next listing
shows.

class Currency {
 private dollars: number;
 private cents: number;

 constructor(dollars: number, cents: number) {
 if (!Number.isSafeInteger(dollars))
 throw new Error("Cannot safely represent dollar amount");

 if (!Number.isSafeInteger(cents))
 throw new Error("Cannot safely represent cents amount");

 this.dollars = dollars;
 this.cents = cents;
 }

 getDollars(): number {
 return this.dollars;
 }

 getCents(): number {
 return this.cents;
 }
}

function add(currency1: Currency, currency2: Currency): Currency {
 return new Currency(
 currency1.getDollars() + currency2.getDollars(),
 currency1.getCents() + currency2.getCents());
}

Currency class and currency addition functionListing 2.9

We store dollars and cents amounts
in separate variables.

Constructor ensures that we store
only values that can be safely

represented without rounding.

The amounts are accessed
via getters, so external code
cannot modify them.

Adding two Currency values si
adds the dollar and cents amo

In another language we would’ve used two integer types and protected against over-
flow/underflow. Because JavaScript does not provide an integer primitive type, we
rely on Number.isSafeInteger() to protect against rounding. When dealing with
currency, it’s better to error out than to have money mysteriously appear or disappear.

The class in listing 2.9 is still pretty bare-bones. A good exercise is to extend it so
that every 100 cents gets automatically converted to a dollar. You must be careful
about where to check for safe integers: what if the dollar amount is a safe integer but
adding 1 to it (from 100 cents) makes it unsafe?

COMPARING FLOATING-POINT NUMBERS

As we’ve seen, because of rounding, it’s usually not a good idea to compare floating-
point numbers for equality. There is a better way to tell whether two values are approx-
imately the same: we can make sure that their difference is within a given threshold.

What should this threshold be? It should be the maximum possible rounding
error. This value is called a machine epsilon and is encoding-specific. JavaScript provides

33Common pitfalls of numerical types

this value as Number.EPSILON. Using this value, we can implement an equality com-
parison between two numbers, taking the absolute value of their difference and
checking whether it is smaller than the machine epsilon. If it is, the values are within
rounding error of each other, so we can consider them equal.

function epsilonEqual(a: number, b: number): boolean {
 return Math.abs(a - b) <= Number.EPSILON;
}

console.log(0.1 + 0.1 + 0.1 == 0.3);
console.log(epsilonEqual(0.1 + 0.1 + 0.1, 0.3));

2.3.3

2.3.4

Floating-point equality within epsilonListing 2.10

Check whether the two
numbers are within rounding
error of each other.

Prints “false” because 0.1 + 0.1 + 0.1
rounds to 0.30000000000000004.

Prints “true” because 0.3 and
0.30000000000000004 are within
rounding error of each other.

It’s a good idea in general to use something like epsilonEqual() whenever compar-
ing two floating-point numbers, as arithmetic operations can cause rounding errors
that lead to unexpected results.

Arbitrarily large numbers

Most languages have libraries that provide arbitrarily large numbers. These types extend
their width to as many bits as needed to represent any value. Python provides such a type
as the default numerical type, and an arbitrarily largeBigInt type is currently proposed
for standardization for JavaScript. That being said, we won’t treat arbitrarily large num-
bers as primitive types because they can be built out of fixed-width numerical types. They
are convenient, but many run times do not provide them natively, as there is no hard-
ware equivalent. (Chips always operate on a fixed number of bits.)

Exercises

1 What will the following code print?

let a: number = 0.3;
let b: number = 0.9;

console.log(a * 3 == b);

a Nothing; it throws an error.
b true

c false

d 0.9

2 What should be the overflow behavior of a number that tracks unique identifiers?

a Saturate on overflow.
b Wrap around on overflow.
c Error on overflow.
d Any of them is OK.

34 CHAPTER 2 Basic types

Encoding text2.4
Another common primitive type is the string, which is used to represent text. A string
consists of zero or more characters, which makes it the first primitive type we are cov-
ering that can have an infinite set of values.

 In the early days of computers, each character was represented by a single byte, so
computers had at most 256 characters available to represent text. With the standard-
ization of Unicode, which aims to provide a way to represent all the world’s alphabets
and other characters (such as emojis), 256 characters obviously are not enough. In
fact, Unicode defines more than one million characters!

Breaking text2.4.1

Let’s take as an example a simple text-breaking function that takes a string and splits it
into multiple strings of a given length so that it can fit within the width of a text-editor
control, as shown in the following code.

function lineBreak(text: string, lineLength: number): string[] {
 let lines: string[] = [];

 while (text.length > lineLength) {
 lines.push(text.substr(0, lineLength));
 text = text.substr(lineLength);
 }

 lines.push(text);
 return lines;
}

At first look, this implementation seems to be correct. For input text such as "Test-
ing, testing" and a line length of 5, the resulting lines are ["Testi", "ng, t",
"estin", "g"]. This is what we expect, as the text is divided into multiple lines at
every fifth character.

 Other symbols have more complex encodings, though. Take, for example, “ ”,
the woman police-officer emoji. Even though this looks like a single character, Java-
Script represents it with five characters. " ".length returns 5. If we try to break a
string containing this emoji, depending on where it appears in the text, we can get
unexpected results. If we try to break the text “... ” with a line length of 5, we get
back the array ["... ", " "].

Simple text-breaking functionListing 2.11

The lines array will
contain the split text.

Repeat as long as the length of the
text is larger than the length of a line.

Add the first lineLength
characters of text as a

new line; then chop
them from the text.

Add the remaining text
(smaller than lineLength) to
the result as the final line.

The woman police-officer emoji is composed of two separate emojis: the police-
officer emoji and the female-sign emoji. The two emojis are combined with the
zero-width joined character "\ud002". This character does not have a graphical rep-
resentation; rather, it is used for combining other characters.

35Encoding text
 The police-officer emoji, “ ”, is represented with two adjacent characters, as we
can observe if we try to split the longer string “.... ” with a line length of 5. This
ends up splitting the police-officer emoji, giving us ["....\ud83d", "\udc6e "].
\uXXXX are Unicode escape sequences that represent a character that cannot be
printed as is. The woman police-officer emoji, even though it gets rendered as a single
symbol, is represented by the five distinct escape sequences \ud83d, \udc6e,
\u200d, \u2640, and \ufe0e.

 Naïvely breaking text at character boundaries can give results that can’t be ren-
dered and can even change the meaning of the text.

2.4.2 Encodings

We need to look at character encodings to better understand how to handle text prop-
erly. The Unicode standard works with two similar but distinct concepts: characters
and graphemes. Characters are the computer representations of text (police-officer
emoji, zero-width joiner, and female sign), and graphemes are the symbols users see
(woman police officer). When rendering text, we work with graphemes, and we don’t
want to break apart a multiple-character grapheme. When encoding text, we work
with characters.

GLYPHS AND GRAPHEMES A glyph is a particular representation of a character. “C”
(bold) and “C ” (italic) are two different visual renderings of the character “C”.

A grapheme is an indivisible unit, which would lose its meaning if it were split into
components, such as the woman police-officer example. A grapheme can be rep-
resented by various glyphs. The Apple emoji for woman police officer looks dif-
ferent from the Microsoft one; they are different glyphs rendering the same
grapheme (figure 2.6).

U+200DU+1F46E

Unicode characters/code points

Grapheme

U+2640 U+FEOF

Police
officer emoji

Woman
police officer

Female sign

Zero-width
joiner (invisible)

Figure 2.6 Character encoding
of the woman police-officer emoji
(police-officer emoji character +
zero-width joiner + female sign
emoji) and resulting grapheme
(woman police officer).

36 CHAPTER 2 Basic types
Each Unicode character is defined as a code point. This is a value between 0x0 and
0x10FFFF, so there are 1,114,111 possible code points. These code points represent
all the world’s alphabets, emojis, and many other symbols, with plenty of room for
future additions.

UTF-32
The most straightforward way of encoding these code points is UTF-32, which uses 32
bits for each character. A 32-bit integer can represent values between 0x0 and
0xFFFFFFFF, so it can fit any code point with room to spare. The problem with
UTF-32 is that it’s very inefficient, as it wastes a lot of space with unused bits. Because
of that, several more compact encodings were developed that use fewer bits for
smaller code points and more bits as the values get larger. These are also called
variable-length encodings.

UTF-16 AND UTF-8
The most commonly used encodings are UTF-16 and UTF-8. UTF-16 is the encoding
used by JavaScript. In UTF-16, the unit is 16 bits. Code points that fit in 16 bits (from
0x0 to 0xFFFF) are represented with a single 16-bit integer, whereas code points that
require more than 16 bits (from 0x10000 to 0x10FFFF) are represented by two 16-bit
values.

 UTF-8, the most popular encoding, takes this approach a step further: the unit is 8
bits and code points are represented by one, two, three, or four 8-bit values.

Encoding libraries2.4.3

Text encoding and manipulation is a complex topic, with whole books dedicated to it.
The good news is that you don’t need to learn all the details to effectively work with
strings, but you do need to be aware of the complexity and look for opportunities to
replace naïve text manipulation, as in our text-breaking example, with calls to librar-
ies that encapsulate this complexity.

 grapheme-splitter, for example, is a JavaScript text library that works with both
characters and graphemes. You can install it by running npm install grapheme-
splitter. With grapheme-splitter, we can implement the lineBreak() func-
tion to break the text at grapheme level by splitting the text into an array of graph-
emes and then grouping them in strings of lineLength graphemes, as the following
listing shows.

Text-breaking function using grapheme-splitter libraryListing 2.12

import GraphemeSplitter = require("grapheme-splitter");
const splitter = new GraphemeSplitter();

function lineBreak(text: string, lineLength: number) {
let graphemes: string[] = splitter.splitGraphemes(text);
let lines: string[] = [];

The splitGraphemes
function splits a string into

an array of graphemes.

37Encoding text
 for (let i = 0; i < graphemes.length; i += lineLength) {
 lines.push(graphemes.slice(i, i + lineLength).join(""));
 }

 return lines;
}

With this implementation, the strings “... ” and “.... ” for a line length of 5 do
not split the string at all, as none of the strings is larger than five graphemes, and the
string “..... ” correctly gets split into [".....", " "].

 The grapheme-splitter library helps prevent one of the three common classes
of errors in dealing with strings:

 Manipulating encoded text at character level instead of grapheme level—This example
was covered in section 2.4.1, where we broke text at character level, even
though for rendering purposes we wanted to break it at the grapheme level.
Breaking at the fifth character can split a grapheme into multiple graphemes.
When displaying text, we also need to be aware of how sequences of characters
combine into graphemes.

 Manipulating encoded text at byte level instead of character level—This situation hap-
pens when we incorrectly handle a sequence of variable-length encoded text
without being aware of the encoding, in which case we might split a character
into multiple characters by, for example, breaking at the fifth byte even though
we meant to break at the fifth character. Depending on the encoding of the
actual character, it might take up one or more bytes, so we shouldn’t make any
assumptions that ignore encoding.

 Interpreting a sequence of bytes as text with the wrong encoding (such as trying to inter-
pret UTF-16 encoded text as UTF-8 encoded, or vice-versa)—When receiving
text from another component as a sequence of bytes, you must know what
encoding the text uses. Different languages have different default encodings
for text, so simply interpreting byte sequences as strings may give you wrong
interpretations.

Figure 2.7 shows how the woman police-officer grapheme is composed out of two
Unicode characters. The figure also shows their UTF-16 encoding and binary
representation.

 Note that for the same grapheme, the UTF-8 encoding, even though it ends up
having the same representation on screen, is different. The UTF-8 encoding is 0xF0
0x9F 0x91 0xAE 0xE2 0x80 0x8D 0xE2 0x99 0x80 0xEF 0xB8 0x8F.

 Always make sure you are interpreting byte sequences with the right encoding, and
rely on string libraries to manipulate strings at character and grapheme levels.

We then get slices of
lineLength graphemes and
join them into lines of text.

38 CHAPTER 2 Basic types

2.4.4 Exercises

1 How many bytes are needed to encode a UTF-8 character?

a 1 byte
b 2 bytes
c 4 bytes
d It depends on the character.

2 How many bytes are needed to encode a UTF-32 character?

a 1 byte
b 2 bytes
c 4 bytes
d It depends on the character.

2.5 Building data structures with arrays and references
The last two common primitive types we will discuss are arrays and references. With
these, we can build up any of the other more advanced data structures, such as lists
and trees. These two primitives offer different trade-offs in implementing data struc-
tures. We’ll explore how to best leverage them depending on expected access patterns
(read versus write frequency) and data density (sparse versus dense).

Bits (UFT-16)

0xD8 0x3D 0xDC 0x6E 0x20 0x0D 0x26 0x40 0xFE 0x0F

U+200DU+1F46E

Unicode characters/code points

Grapheme

U+2640 U+FEOF

Bits (UFT-16)

11011000001111011101110001101110001000000000110100100110010000001111111000001111

Figure 2.7 Woman police-officer emoji viewed as UTF-16 string encoding of bits in memory,
UTF-16 byte sequence, sequence of Unicode code points, and grapheme.

39Building data structures with arrays and references

 Fixed-size arrays store several values of a given type one after the other, enabling
efficient access. Reference types allow us to split a data structure across multiple loca-
tions by having components reference other components.

 We will not consider variable-size arrays to be primitive types, because these are
implemented with fixed-size arrays and/or references, as we’ll see in this section.

2.5.1 Fixed-size arrays

Fixed-size arrays represent a contiguous range of memory that contains several values
of the same type. An array of five 32-bit integers, for example, is a range of 160 bits
(5 * 32) in which the first 32 bits store the first number, the second 32 bits store the
next, and so on.

 The reason why arrays are a common primitive as opposed to, say, linked lists is effi-
ciency: because the values are stored one after the other, accessing any one of them is
a fast operation. If an array of 32-bit integers starts at memory address 101, which is the
same as saying that the first integer (at index 0) is stored as the 32 bits between 101 and
132, the integer at index N in the array is at 101 + N * 32. In general, if the list starts at
address base, and the size of an element is M, the element at index N can be found at base
+ N * M. Because the memory is contiguous, there is a high chance the array will get
paged into memory and cached all at once, which enables very fast access.

 By contrast, for a linked list, accessing the Nth element requires us to start from the
head of the list and follow the next pointers of each node until we reach the Nth one.
There is no way to compute the address of a node directly. Nodes are not necessarily

Memory locations

2A2A2A2A

101

head

Pointers point to arbitrary
memory locations.

2A2A2A2A

133

2A2A2A2A

165

Fixed-sized array containing five 32-bit integers

Linked list containing five 32-bit integers

head + 2 * 32

2A2A2A2A

197

2A2A2A2A

229

2A2A2A2A

head

2A2A2A2A

head.next.next

2A2A2A2A

2A2A2A2A

2A2A2A2A

Figure 2.8 Five 32-bit integers stored in a fixed-size array and in a linked list. Finding an element
is extremely fast in the fixed-size array, as we can compute its exact location. On the other hand,
a linked list requires us to follow the next elements until we find the element we are looking
for. Elements can be anywhere in memory.

40 CHAPTER 2 Basic types
allocated one after the other, so memory might have to be paged in and out until we
reach the node we want. Figure 2.8 shows in-memory representations of an array and
a linked-list of integers.

 The term fixed-size comes from the fact that arrays can’t be grown or shrunk in place.
If we ever want to make our array store six integers instead of five, we would have to allo-
cate a new array that can fit six integers and copy the first five over from the original
array. Contrast this with a linked list, in which we can append a node without having to
modify any of the existing nodes. Depending on the expected access pattern (more
reads or more appends), one representation would work better than the other.

References2.5.2

Reference types hold pointers to objects. The value of a reference type—the actual
bits of a variable—do not represent the content of an object, but where the object can
be found. Multiple references to a single object do not duplicate the state of the
object, so changes made to the object through one of the references are visible
through all other references.

 Reference types are commonly used in data structure implementations, as they
provide a way to connect separate components that can be added to or removed from
the data structure at run time.

 In the following sections, we will look at a few common data structures and how
they can be implemented with arrays, references, or a combination of the two.

Efficient lists2.5.3

Many languages provide a list data structure as part of their library. Note this data
structure is not a primitive, but a data structure implemented with primitives. Lists can
shrink and grow as items are added or removed.

 If lists were implemented as linked lists, we could add and remove nodes without
having to copy any data, but traversing the list would be expensive (linear time or
O(n) complexity, where n is the length of the list). In listing 2.13, Number-
LinkedList is such a list implementation that provides two functions: at(), which
retrieves the value at the given index, and append(), which adds a value to the end of
the list. The implementation keeps two references: one to the beginning of the list,
from which we can start a traversal, and one to the end of the list, which allows us to
append elements without having to traverse the list.

class NumberListNode {
 value: number;
 next: NumberListNode | undefined;

 constructor(value: number) {
 this.value = value;
 this.next = undefined;

Linked-list implementationListing 2.13

A node in the list has a value and a
reference to the next node or is

undefined if this is the last node.

41Building data structures with arrays and references
 }
}

class NumberLinkedList {
 private tail: NumberListNode = { value: 0, next: undefined };
 private head: NumberListNode = this.tail;

 at(index: number): number {
 let result: NumberListNode | undefined = this.head.next;
 while (index > 0 && result != undefined) {
 result = result.next;
 index--;
 }

 if (result == undefined) throw new RangeError();

 return result.value;
 }

 append(value: number) {
 this.tail.next = { value: value, next: undefined };
 this.tail = this.tail.next;
 }
}

As we can see, append() is very efficient in this case, as it only needs to add a node to
the tail and then make that new node the tail. On the other hand, at() requires us to
start from the head and move along next references until we reach the node we were
looking for.

 In the next listing, let’s contrast this with an array-based implementation, in which
accessing an element can be done efficiently, but appending an element is the expen-
sive operation.

class NumberArrayList {
 private numbers: number[] = [];
 private length: number = 0;

 at(index: number): number {
 if (index >= this.length) throw new RangeError();
 return this.numbers[index];
 }

 append(value: number) {
 let newNumbers: number[] = new Array(this.length + 1);
 for (let i = 0; i < this.length; i++) {
 newNumbers[i] = this.numbers[i];
 }
 newNumbers[this.length] = value;
 this.numbers = newNumbers;
 this.length++;
 }
}

Array-based list implementationListing 2.14

The list starts as empty, with both head
and tail pointing to a dummy node.

To get the node at a given index,
we must start from the head

and follow the next references.

Appending a node is efficient:
we just add it to the tail and

then update the tail property.

We store the values in a number
array, originally of 0 length.

Accessing an element simply
means indexing in the array.

Appending a number
requires us to allocate
a new array and copy

the old elements.Finally, the last
element is added to the

end of the new array.

42 CHAPTER 2 Basic types
Here, accessing the element at a given index simply means indexing in the underlying
numbers array. On the other hand, appending a value becomes an involved operation:

1 We must allocate a new array one element larger than the current array.
2 Then we must copy over all the elements from the current array to the newly

allocated one.
3 We append the value as the last element in the new array.
4 We replace the current array with the new one.

Copying all the elements of the array whenever we need to append a new value is,
again, not very efficient.

 In practice, most libraries implement lists as an array with extra capacity. The array
has a larger size than initially needed, so new elements can be appended without hav-
ing to create a new array and copy data. When the array gets filled up, a new array is
allocated, and elements do get copied over, but the new array has double the capacity
(figure 2.9).

Figure 2.9 An array-based list with 9 elements and capacity for 16. Seven more elements can be
appended before the data has to be moved to a larger array.

With this heuristic, the array capacity grows exponentially, so data doesn’t get copied
as much as it would if the array grew by only one element every time.

class NumberList {
 private numbers: number[] = new Array(1);
 private length: number = 0;
 private capacity: number = 1;

 at(index: number): number {
 if (index >= this.length) throw new RangeError();
 return this.numbers[index];
 }

 append(value: number) {
 if (this.length < this.capacity) {
 this.numbers[length] = value;
 this.length++;

Array-based list implementation with additional capacityListing 2.15

The length of the list is 9 elemen Next elets. ment will be added here.

The capacity of the list is 16.

42 5 100 6 32 8 10 1 2

Array-based list with extra capacity

Even though the list is empty,
we start with a capacity of 1.

Accessing an element is identical
to the previous implementation.

If the array is not filled to capacity,
we can simply add the element
and update the length.

43Building data structures with arrays and references
 return;
 }

 this.capacity = this.capacity * 2;
 let newNumbers: number[] = new Array(this.capacity);
 for (let i = 0; i < this.length; i++) {
 newNumbers[i] = this.numbers[i];
 }
 newNumbers[this.length] = value;
 this.numbers = newNumbers;
 this.length++;
 }
}

Other linear data structures, such as stacks and heaps, can be implemented in a simi-
lar way. These data structures are optimized for read access, which is always extremely
efficient. Using the extra capacity makes most writes efficient, but some writes, when
the data structure is filled to capacity, require moving all elements to a new array,
which is inefficient. There is also memory overhead, as the list allocates more ele-
ments than there are in use to make room for future appends.

2.5.4 Binary trees

Let’s look at another type of data structure: a data structure in which we can append
items in multiple places. An example of such a data structure is a binary tree, in which
nodes can be appended to any node that doesn’t have two children.

 One option is to represent a binary tree as an array. The first level of the tree,
the root, has at most one node. The second level of the tree has at most two nodes: the
children of the root. The third level has at
most four nodes: the children of the previ-
ous two nodes and so on. In general, for a
tree with N levels, a binary tree can have at
most 1 + 2 + ... + 2N–1 nodes, which is 2N–1.

 We can store a binary tree in an array by
placing each level after the previous one. If
the tree is not complete (not all levels have
all the nodes), we mark the missing nodes
as undefined. An advantage of this repre-
sentation is that it’s very easy to get from a
parent to its children: if the parent is at
index i, the left child node is at index 2*i,
and the right child node is at index 2*i+1.

 Figure 2.10 shows how we can represent
a binary tree as a fixed-size array.

 Appending a node is also efficient as
long as we don’t change the number of

If we’re at capacity, we need to
allocate a new array and copy

elements, but we do this by doubling
the capacity so that future appends

do not require a reallocation.

2 4

3 9 10

1

1 2 4 3 9 10

Level 3Level 2Root

Figure 2.10 Binary tree represented as a
fixed-size array. The missing node (right
child of 2) is an unused element in the array.
The parent–child relation between the nodes
is implicit, as the index of a child can be
computed from the index of the parent, and
vice versa.

44 CHAPTER 2 Basic types
levels in the tree. As soon as we increase the level, though, we not only have to copy
the whole tree, but also need to double the size of the array to make room for all the
new possible nodes, as shown in the following listing. This is similar to the efficient list
implementation.

class Tree {
 nodes: (number | undefined)[] = [];

 left_child_index(index: number): number {
 return index * 2;
 }

 right_child_index(index: number): number {
 return index * 2 + 1;
 }

 add_level() {
 let newNodes: (number | undefined)[] =
 new Array(this.nodes.length * 2 + 1);

 for (let i = 0; i < this.nodes.length; i++) {
 newNodes[i] = this.nodes[i];
 }
 this.nodes = newNodes;
 }
}

The drawback of this implementation is that the amount of additional space required
can be unacceptable if the tree is sparse (figure 2.11).

 Because of the extra-space overhead, binary trees are usually represented with a
more compact representation using references. A node stores a value and references
to its children.

Array-based binary tree implementationListing 2.16

Nodes are stored as an array of number
values or undefined to represent gaps.

Compute the index of left
and right children nodes
given the index of the parent.

Adding capacity for a new
level doubles the size of the
array and relocates nodes.

4

9

1

1 4 9

Figure 2.11 A sparse binary tree with only three
nodes still requires an array with seven elements to
be represented correctly. If node 9 had a child, the
array size would become 15.

45Building data structures with arrays and references

class TreeNode {
 value: number;
 left: TreeNode | undefined;
 right: TreeNode | undefined;

 constructor(value: number) {
 this.value = value;
 this.left = undefined;
 this.right = undefined;
 }
}

With this implementation, a tree is
represented by a reference to its root
node. From there, following left and
right children, we can access any node
in the tree. Appending a node any-
where involves just allocating a new
node and setting the left or right
property of its parent. Figure 2.12
shows how we can represent a sparse
tree using references.

 Although the references them-
selves require some nonzero memory
to represent, the amount of space
required is proportional to the number of nodes. For sparse trees, this is much better
than the array-based implementation, in which space grows exponentially with the
number of levels.

 In general, sparse data structures where elements can be added in multiple places
and we expect to have a lot of “gaps” are better represented by having elements refer
to other elements, as opposed to placing the whole data structure in a fixed-size array
that would end up having unacceptable overhead.

2.5.5 Associative arrays

Some programming languages provide other types of data structures as primitives,
with built-in syntax support. A common such type is the associative array, also known as
dictionary or hash table. This type of data structure represents a set of key-value pairs
where, given a key, the value can be retrieved efficiently.

 Despite what you may have thought as you followed the previous code examples,
JavaScript/TypeScript arrays are associative arrays. The languages do not provide a
fixed-size array primitive type. The code examples show how data structures can be

Listing 2.17 Compact binary tree implementation

Each node stores a value.

Left and right refer to other
nodes or are undefined if the
node doesn’t have a child.

4

9

1
1

right node
reference

left node
reference

9

4

Figure 2.12 Sparse tree represented by using
references. The diagram on the right represents
the node data structure as value, left reference,
right reference.

46 CHAPTER 2 Basic types
implemented over fixed-size arrays. A fixed-size array assumes extremely efficient
indexing and immutable size. This is not really the case in JavaScript/TypeScript. The
reason we looked at fixed-size arrays instead of associative arrays is that an associative
array data structure can be implemented with arrays and references. For illustrative
purposes, we treated TypeScript arrays as fixed-size, so the code samples can be
directly translated into most other popular programming languages.

 Languages such as Java and C# provide dictionaries or hash maps as part of their
library, whereas arrays and references are primitives. JavaScript and Python provide
associative arrays as primitive types, but their run times also implement them with
arrays and references. Arrays and references are lower-level constructs that represent
certain memory layouts and access models, whereas associative arrays are higher-level
abstractions.

 An associative array is often implemented as a fixed-size array of lists. A hash func-
tion takes a key of an arbitrary type and returns an index to the fixed-size array. The
key-value pair is added to or retrieved from the list at the given index in the array. The
list is used because multiple keys can hash to the same index (figure 2.13).

Looking up a value by key involves finding the list where the key-value pair sits, travers-
ing it until the key is found, and returning the value. If lists become too long, lookup
time increases, so efficient associative array implementations rebalance by increasing
the size of the array, thus making the lists smaller.

 A good hashing function ensures that keys usually get distributed across the lists
evenly so that the lists are similar in length.

2.5.6 Implementation trade-offs

In the preceding section, we saw how arrays and references are enough to implement
other data structures. Depending on the expected access patterns (such as read versus
write frequency) and expected shape of the data (dense versus sparse), we can pick
the right primitives to represent components of the data structure and combine them
to get the most efficient implementation.

Lists

Fixed-size array

key: 0
value: 10

key: 5
value: 10

key: 42
value: 0

key: 2
value: 9

Figure 2.13 Associative array implemented as an
array of lists. This instance contains the key-value
mappings 0  10, 2  9, 5  10, and 42  0.

47Answers to exercises
 Fixed-size arrays have extremely fast read/update capabilities and can easily repre-
sent dense data. For variable-size data structures, references perform better on
append and can represent sparse data more easily.

2.5.7 Exercise

1 Which data structure is best suited for accessing its elements in random order?

a Linked list
b Array
c Dictionary
d Queue

Summary
 Functions that never return (run forever or throw exceptions) should be

declared as returning the empty type. An empty type can be implemented as a
class that cannot be instantiated or an enum with no elements.

 Functions that finish executing but don’t return a meaningful result should be
declared as returning the unit type (void in most languages). A unit type can
be implemented as a singleton or an enum with a single element.

 Boolean expression evaluation is usually short-circuited, so the order of the
operands can affect which of them get evaluated.

 Fixed-width integer types can overflow. The default behavior on overflow is
language-specific. The desired behavior depends on the scenario.

 Floating-point numbers are represented approximately, so instead of compar-
ing two values for equality, it’s better to check whether they are within EPSILON
of each other.

 Text consists of graphemes, which are represented by one or more Unicode
code points, each of which is encoded as one or more bytes. String-
manipulation libraries shield us from the complexities of encoding and repre-
sentation, so it’s best to rely on them rather than manipulate text directly.

 Fixed-size arrays and references are the building blocks of data structures.
Depending on data access patterns and density, we can choose one or the other,
or a combination of the two, to implement any data structure efficiently, no
matter how complex.

Answers to exercises
DESIGNING FUNCTIONS THAT DON’T RETURN VALUES

1 c—The function doesn’t return anything meaningful, so the void unit type is a
good return type.

2 a—The function never returns, so the empty type never is a good return type.

48 CHAPTER 2 Basic types
BOOLEAN LOGIC AND SHORT CIRCUITS

1 b—The counter is incremented only once because the function returns false,
so the Boolean expression is short-circuited.

COMMON PITFALLS OF NUMERICAL TYPES

1 c—The expression evaluates to false because of float rounding.
2 c—Because identifiers need to be unique, erroring out is the preferred

behavior.

ENCODING TEXT

1 d—UTF-8 is a variable-length encoding.
2 c—UTF-32 is a fixed-length encoding; all characters are encoded in four bytes.

BUILDING DATA STRUCTURES WITH ARRAYS AND REFERENCES

3 b—Arrays are best suited for random access.

Composition
This chapter covers
 Combining types into compound types

 Combining types as either-or types

 Implementing visitor patterns

 Algebraic data types

In chapter 2, we looked at some common primitive types that form the building
blocks of a type system. In this chapter, we’ll look at ways to combine them to
define new types.

We’ll cover compound types, which group values of several types. We’ll look at
how naming members gives meaning to data and lowers the chance of misinterpre-
tation, and how we can ensure that values are well-formed when they need to meet
certain constraints.

Next, we’ll go over either-or types, which contain a single value from one of sev-
eral types. We will look at some common types such as optional types, either types,
and variants, as well as a few applications of these types. We’ll see, for example, how
returning a result or an error is usually safer than returning a result and an error.
49

50 CHAPTER 3 Composition

 As an application of either-or types, we’ll take a look at the visitor design pattern
and contrast an implementation that leverages class-hierarchies with an implementa-
tion that uses a variant to store and operate on objects.

 Finally, we’ll provide a description of algebraic data types (ADTs) and see how they
relate to the topics discussed in this chapter.

Compound types3.1
The most obvious way to combine types is to group them to form new types. Let’s take
a pair of X and Y coordinates on a plane. Both X and Y coordinates have the type
number. A point on the plane has both an X and a Y coordinate, so it combines the
two types into a new type in which values are pairs of numbers.

 In general, combining one or more types this way gives us a new type in which the
values are all the possible combinations of the component types (figure 3.1).

3.1.1

And

Figure 3.1 Combining two types so that the resulting type contains a value from each
of them. Each emoji represents a value from one of the types. The parentheses
represent the values of the combined type as pairs of values from the original types.

Note that we’re talking about combining values of the types, not their operations.
We’ll see how operations combine when we look at elements of object-oriented pro-
gramming in chapter 8. For now, we’ll stick to values.

Tuples

Let’s say we want to compute the distance between two points defined as pairs of coor-
dinates. We can define a function that takes the X coordinate and Y coordinate of the
first point, and the X coordinate and the Y coordinate of the second point, and then
computes the distance between the two, as shown in the following listing.

51Compound types

function distance(x1: number, y1: number, x2: number, y2: number)
 : number {
 return Math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2);
}

This works, but it’s not ideal: if we are dealing with points, x1 is meaningless without
the corresponding Y coordinate. Our application likely needs to manipulate points in
multiple places, so instead of passing around independent X and Y coordinates, we
could group them in a tuple.

TUPLE TYPES Tuple types consist of a set of component types, which we can
access by their position in the tuple. Tuples provide a way to group data in an
ad hoc way, allowing us to pass around several values of different types as a
single variable.

Using tuples, we can pass around pairs of X and Y coordinates together as points. This
makes the code both easier to read and easier to write. It’s easier to read as it is now
clear that we are dealing with points, and it’s easier to write as we can simply use
point: Point instead of x: number, y: number, as shown in the next listing.

type Point = [number, number];

function distance(point1: Point, point2: Point): number {
 return Math.sqrt(
 (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2);
}

Tuples are also useful when we need to return multiple values from a function, which
we can’t easily do without a way to group values. The alternative is to use out parameters,
arguments that are updated by the function, but that makes the code harder to follow.

DIY TUPLE

Most languages offer tuples as built-in syntax or as part of their library, but let’s look at
how we would implement a tuple if it were unavailable. In the following code we’ll
implement a generic tuple with two component types, also known as a pair.

class Pair<T1, T2> {
 m0: T1;
 m1: T2;

Distance between two pointsListing 3.1

Distance between two points defined as tuplesListing 3.2

Pair typeListing 3.3

We define a new type Point
to be a tuple of numbers.

The Pair type contains a value of
type T1 and a value of type T2.

constructor(m0: T1, m1: T2) {
this.m0 = m0;

52 CHAPTER 3 Composition

 this.m1 = m1;
 }
}

type Point = Pair<number, number>;

function distance(point1: Point, point2: Point): number {
 return Math.sqrt(
 (point1.m0 - point2.m0) ** 2 + (point1.m1 - point2.m1) ** 2);
}

Looking at types as sets of possible values, if the X coordinate can be any value in the
set defined by number and, similarly, the Y coordinate can be any value in the set
defined by number, the Point tuple can be any value in the set defined as the pair
<number, number>.

Assigning meaning3.1.2

Defining points as pairs of numbers works, but we lose some meaning: we can interpret
a pair of numbers as either X and Y coordinates or Y and X coordinates (figure 3.2).

A
5

B
1

50 1

Figure 3.2 Two ways to interpret the pair (1, 5): as
point A with X coordinate 1 and Y coordinate 5, or as
point B with X coordinate 5 and Y coordinate 1.

In our examples so far, we assumed that the first component is the X coordinate and
the second the Y coordinate. This works but leaves room for error. It is better if we can
encode the meaning within the type system and ensure that there is no room to misin-
terpret X as Y or Y as X. We can do this by using a record type.

RECORD TYPES Record types, similar to tuples, combine multiple other types.
Instead of the component values being accessed by their position in the tuple,
record types allow us to give their components names and access them by
name. Record types are known as record or struct in different languages.

If we define our Point as a record, we can assign the names x and y to the two com-
ponents and leave no room for ambiguity, as the next listing shows.

53Compound types

class Point {
 x: number;
 y: number;

3.1.3

Distance between two points defined as recordsListing 3.4

Point defines x and y members, so it is clear which
coordinate is encoded by which component.

constructor(x: number, y: number) {
this.x = x;
this.y = y;

}
}

function distance(point1: Point, point2: Point): number {
return Math.sqrt(

(point1.x - point2.x) ** 2 + (point1.y - point2.y) ** 2);
}

As a rule of thumb, it’s usually best to define records with named components instead
of passing tuples around. The fact that tuples do not name their components leaves
room for misinterpretation. Tuples don’t really provide anything better than records
in terms of efficiency or functionality, except that we can usually declare them inline
where we are using them, whereas we usually have to provide a separate definition for
records. In most cases, the separate definition is worth adding, as it provides extra
meaning to our variables.

Maintaining invariants

In languages in which record types can have associated methods, there is usually a way
to define the visibility of their members. A member can be defined as public (acces-
sible from anywhere), private (accessible only from within the record), and so on.
In TypeScript, members are public by default.

In general, when we define record types, if the members are independent and can
vary without causing issues, it’s fine to mark them as public. This is the case with
points defined as pairs of X and Y coordinates: one of the coordinates can change
independently of the other coordinate as a point moves on the plane.

Let’s take another example in which the members can’t vary independently with-
out causing issues: the currency type we looked at in chapter 2, formed by a dollar

amount and a cents amount. Let’s enhance the definition of the type with the follow-
ing rules that define a well-formed currency amount:

 The dollar amount must be an integer equal to or greater than 0 and safely rep-
resentable as a number type.

 The cent amount must be an integer equal to or greater than 0 and safely repre-
sentable as a number type.

 We shouldn’t have more than 99 cents; every 100 cents should be converted to a
dollar.

Such rules that ensure a value is well-formed are also called invariants, as they
shouldn’t change even as the values that make up the composite type change. If we

54 CHAPTER 3 Composition

E
co
make the members public, external code can change them, and we can end up with
ill-formed records, as shown in the next listing.

class Currency {
 dollars: number;
 cents: number;

 constructor(dollars: number, cents: number) {
 if (!Number.isSafeInteger(cents) || cents < 0)
 throw new Error();

 dollars = dollars + Math.floor(cents / 100);
 cents = cents % 100;

 if (!Number.isSafeInteger(dollars) || dollars < 0)
 throw new Error();

 this.dollars = dollars;
 this.cents = cents;
 }
}

let amount: Currency = new Currency(5, 50);
amount.cents = 300;

This situation can be prevented by making the members private and providing methods
to update them that ensure the invariants are maintained, as shown in the following list-
ing. If we handle all cases in which invariants would be invalidated, we can ensure that
an object is always in a valid state, as changing it would give us another well-formed
object or result in an exception.

class Currency {
 private dollars: number = 0;
 private cents: number = 0;

 constructor(dollars: number, cents: number) {
 this.assignDollars(dollars);
 this.assignCents(cents);
 }

 getDollars(): number {
 return this.dollars;
 }

 assignDollars(dollars: number) {
 if (!Number.isSafeInteger(dollars) || dollars < 0)
 throw new Error();

 this.dollars = dollars;
 }

Ill-formed currencyListing 3.5

Currency maintaining invariantsListing 3.6

Constructor
ensures that we
have valid dollars
and cents values.

very 100 cents gets
nverted to a dollar.

Unfortunately, having the members
public still allows external code to
make an invalid object.

Making dollars and cents private ensures
that external code can’t bypass validation.

If the dollar or cent amount is
invalid (negative or nonsafe

integer), throw an exception.

55Compound types
 getCents(): number {
 return this.cents;
 }

 assignCents(cents: number) {
 if (!Number.isSafeInteger(cents) || cents < 0)
 throw new Error();

 this.assignDollars(this.dollars + Math.floor(cents / 100));
 this.cents = cents % 100;
 }
}

External code now has to go through the assignDollars() and assignCents()
functions, which ensure that all invariants are maintained: if the provided values are
invalid, exceptions are thrown. If the number of cents is larger than 100, it is con-
verted to dollars.

 In general, we should be fine providing direct access to public members of a
record if there are no invariants to be enforced, such as the independent X and Y
components of a point on a plane. On the other hand, if we have a set of rules that
define what it means for a record to be well-formed, we should use private members
and methods to update them to ensure that the rules are enforced.

 Another option is to make the members immutable, as shown in the following list-
ing, in which case we can ensure during initialization that the record is well-formed,
but then we can allow direct access to the members because they can’t be changed by
external code.

class Currency {
 readonly dollars: number;
 readonly cents: number;

 constructor(dollars: number, cents: number) {
 if (!Number.isSafeInteger(cents) || cents < 0)
 throw new Error();

 dollars = dollars + Math.floor(cents / 100);
 cents = cents % 100;

 if (!Number.isSafeInteger(dollars) || dollars < 0)
 throw new Error();

 this.dollars = dollars;
 this.cents = cents;
 }
}

If the members are immutable, we no longer need functions for them to uphold the
invariants. The only time when the members are set is during construction, so we can

Immutable CurrencyListing 3.7

If the dollar or cent amount is
invalid (negative or nonsafe

integer), throw an exception.

Normalize the value by
converting 100 cents to dollars.

Dollars and cents are public but read-only
and can’t be changed after initialization.

All validation takes
place in the
constructor now.

56 CHAPTER 3 Composition
move all the validation logic there. Immutable data has other advantages: accessing
this data concurrently from different threads is guaranteed to be safe, as the data can’t
change. Mutability can cause data races, when one thread modifies a value while
another thread is using it.

 The drawback of records with immutable members is that we need to create a new
instance whenever we want a new value. Depending on how expensive it is to create
new instances, we might opt for a record in which the members can be updated in
place by using getter and setter methods, or we might go with an implementation in
which each update requires creating a new object.

 The goal is to prevent external code from making changes that bypass our valida-
tion rules, either by making members private and routing all access through methods
or by making the members immutable and applying validation in the constructor.

Exercise3.1.4

1 What is the preferred way of defining a point in 3D space?

a type Point = [number, number, number];

b type Point = number | number | number;

c type Point = { x: number, y: number, z: number };

d type Point = any;

Expressing either-or with types3.2
So far, we’ve looked at combining types by grouping them such that values are com-
posed of one value from each of the member types. Another fundamental way in
which we can combine types is either-or, in which a value is any one of a possible set of
values of one or more underlying types (figure 3.3).

Or

Figure 3.3 Combining two types so
that the resulting type allows values
from either of the two types.

57Expressing either-or with types

Enumerations3.2.1

Let’s start with a very simple task: encoding a day of the week in the type systems. We
could say the day of the week is a number between 0 and 6, 0 being the first day of the
week and 6 being the last one. This is less than ideal, because multiple engineers
working on the code might have different opinions of what the first day of the week is.
Countries such as the United States, Canada, and Japan consider Sunday to be the
first day of the week, whereas the ISO 8601 standard and most European countries
consider Monday to be the first day of the week.

function isWeekend(dayOfWeek: number): boolean {
 return dayOfWeek == 5 || dayOfWeek == 6;
}

function isWeekday(dayOfWeek: number): boolean {
 return dayOfWeek >= 1 && dayOfWeek <= 5;
}

It should be obvious from this code example that the two functions can’t both be cor-
rect. If 0 represents Sunday, isWeekend() is incorrect; if 0 represents Monday,
isWeekday() is incorrect. Unfortunately, because the meaning of 0 is not enforced
but determined by convention, there is no automatic way to prevent this error.

 An alternative is to declare a set of constant values to represent the days of the week
and make sure that these constants are used whenever a day of the week is expected.

const Sunday: number = 0;
const Monday: number = 1;
const Tuesday: number = 2;
const Wednesday: number = 3;
const Thursday: number = 4;
const Friday: number = 5;
const Saturday: number = 6;

function isWeekend(dayOfWeek: number): boolean {
 return dayOfWeek == Saturday || dayOfWeek == Sunday;
}

function isWeekday(dayOfWeek: number): boolean {
 return dayOfWeek >= Monday && dayOfWeek <= Friday;
}

Encoding day of week as a numberListing 3.8

Encoding day of week with constantsListing 3.9

A European developer would
consider days 5 and 6 to be the
weekend (Saturday and Sunday).

An American developer would
consider days 1 to 5 to be weekdays
(Monday through Friday).

Instead of numbers,
we now use named
constants to ensure
consistency.

This implementation is slightly better than the previous implementation, but there’s
still a problem: looking at the declaration of a function, it’s not clear what the
expected values are for an argument of type number. How is someone who’s new to
the code supposed to know that whenever they see a dayOfWeek: number, they

58 CHAPTER 3 Composition
should use one of the constants? They may not be aware that these constants exist
somewhere in some module, and instead, they could interpret the number them-
selves, as in our first example in listing 3.8. Someone can also call the function with
completely invalid values, such as -1 or 10. An even better solution is to declare an
enumeration for the days of the week.

enum DayOfWeek {
 Sunday,
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday
}

function isWeekend(dayOfWeek: DayOfWeek): boolean {
 return dayOfWeek == DayOfWeek.Saturday
 || dayOfWeek == DayOfWeek.Sunday;
}

function isWeekday(dayOfWeek: DayOfWeek): boolean {
 return dayOfWeek >= DayOfWeek.Monday
 && dayOfWeek <= DayOfWeek.Friday;
}

With this approach, we directly encode the days of the week in an enumeration that
has two big advantages: there is no ambiguity about what is Monday and what is Sun-
day, as they are spelled out in the code. Also, it’s very clear, when looking at a function
declaration expecting a dayOfWeek: DayOfWeek argument, that we should pass in a
member of DayOfWeek, such as DayOfWeek.Tuesday, not a number.

 This is a basic example of combining a set of values into a new type. A variable of
that type can be one of the provided values. We would use enumerations whenever we
have a small set of possible values and want to represent them in an unambiguous
manner. Next, let’s see how we apply this concept to types instead of values.

3.2.2 Optional types

Let’s say we want to convert a string, provided as user input, to a DayOfWeek. If we
can interpret the string as a day of week, we want to return a DayOfWeek value, but if
we can’t interpret it, we want to explicitly say that the day of the week is undefined.
We can implement this in TypeScript by using the | type operator, which allows us to
combine types, as shown in the following code.

function parseDayOfWeek(input: string): DayOfWeek | undefined {
 switch (input.toLowerCase()) {
 case "sunday": return DayOfWeek.Sunday;

Encoding day of week as an enumListing 3.10

Parsing input into aListing 3.11 DayOfWeek or undefined

An enum replaces
the constants.

We now have a distinct
type that represents a
day of the week.

The function returns a
DayOfWeek or undefined.

59Expressing either-or with types
 case "monday": return DayOfWeek.Monday;
 case "tuesday": return DayOfWeek.Tuesday;
 case "wednesday": return DayOfWeek.Wednesday;
 case "thursday": return DayOfWeek.Thursday;
 case "friday": return DayOfWeek.Friday;
 case "saturday": return DayOfWeek.Saturday;
 default: return undefined;
 }
}

function useInput(input: string) {
 let result: DayOfWeek | undefined = parseDayOfWeek(input);

 if (result === undefined) {
 console.log(`Failed to parse "${input}"`);
 } else {
 let dayOfWeek: DayOfWeek = result;
 /* Use dayOfWeek */
 }
}

This parseDayOfWeek() function returns a DayOfWeek or undefined. The use-
Input() function calls this function and then tries to unwrap the result, logging an
error or ending up with a DayOfWeek value that it can use.

OPTIONAL TYPES An optional type, also known as a maybe type, represents an
optional value of another type T. An instance of the optional type can hold a
value (any value) of type T or a special value indicating the absence of a value
of type T.

DIY OPTIONAL

Some mainstream programming languages do not have syntax-level support for com-
bining types this way, but a set of common constructs is available as libraries. Our
DayOfWeek or undefined example is an optional type. An optional contains either a
value of its underlying type or no value.

 An optional type usually wraps another type provided as a generic type argument
and provides a couple of methods: a hasValue() method, which tells us whether we
have an actual value, and a getValue(), which returns that value. Attempting to call
getValue() when no value is set causes an exception to be thrown, as shown in the
next listing.

class Optional<T> {
 private value: T | undefined;
 private assigned: boolean;

 constructor(value?: T) {
 if (value) {
 this.value = value;
 this.assigned = true;

Optional typeListing 3.12

If neither case matches, we
return undefined to signal that
we couldn’t parse the input.

Check whether we failed to parse,
in which case we log an error.

If result is not undefined, we can
extract a DayOfWeek value from
it and use it going forward.

Optional wraps a
generic type T.

value is an optional argument,
because TypeScript doesn’t
support constructor overloads.

60 CHAPTER 3 Composition
 } else {
 this.value = undefined;
 this.assigned = false;
 }
 }

 hasValue(): boolean {
 return this.assigned;
 }

 getValue(): T {
 if (!this.assigned) throw Error();

 return <T>this.value;
 }
}

In other languages that don’t have a | type operator that allows us to define a T |
undefined type, we would use a nullable type instead. A nullable type allows for any
value of the type or null, which represents the absence of a value.

 You might wonder why this optional type is useful, considering that in most lan-
guages, reference types are allowed to be null, so there is already a way to encode “no
value available” without needing such a type.

 The difference is that using null is error-prone (see the sidebar “A billion-dollar mis-
take”), as it’s hard to tell when a variable can or can’t be null. We must add null checks
all over the code or risk dereferencing a null variable, which results in a run-time error.
The idea behind an optional type is to decouple the null from the range of allowed
values. Whenever we see an optional, we know that it can have no value. After we check
that we indeed have a value, we unwrap it from the optional and get a variable of the
underlying type. From here on, we know that the variable cannot be null. This distinc-
tion is captured in the type system, as the “might be null” variable has a different type
(DayOfWeek | undefined or Optional<DayOfWeek>) from the unwrapped value,
which we know can’t be null (DayOfWeek). It helps that an optional type and its under-
lying type are incompatible, so we can’t accidentally use an optional (which may not
have a value) instead of its underlying type without explicitly unwrapping the value.

A billion-dollar mistake
Famous computer scientist and Turing Award winner Sir Tony Hoare calls null refer-
ences his “billion-dollar mistake.” He is quoted as saying:

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965.
At that time, I was designing the first comprehensive type system for references in
an object oriented language. My goal was to ensure that all use of references should
be absolutely safe, with checking performed automatically by the compiler. But I
couldn't resist the temptation to put in a null reference, simply because it was so
easy to implement. This has led to innumerable errors, vulnerabilities, and system

If this Optional is not assigned,
attempting to get a value
throws an exception.

61Expressing either-or with types

We
p

Result or error3.2.3

Let’s extend our DayOfWeek string conversion example so that instead of simply
returning no value when we cannot determine the DayOfWeek value, we return more
detailed error information. We want to distinguish between when the string is empty
and when we are unable to parse it. This is useful if we run this code behind a text
input control, as we want to show different error messages to the user, depending on
the error (Please enter a day of week versus Invalid day of week).

 A common antipattern returns both a DayOfWeek and an error code, as shown in
the next listing. If the error code indicates success, we use the DayOfWeek value. If the
error code indicates an error, the DayOfWeek value is invalid, and we shouldn’t use it.

enum InputError {
 OK,
 NoInput,
 Invalid
}

class Result { #B
 error: InputError;
 value: DayOfWeek;

 constructor(error: InputError, value: DayOfWeek) {
 this.error = error;
 this.value = value;
 }
}

function parseDayOfWeek(input: string): Result {
 if (input == "")
 return new Result(InputError.NoInput, DayOfWeek.Sunday);

 switch (input.toLowerCase()) {
 case "sunday":
 return new Result(InputError.OK, DayOfWeek.Sunday);
 case "monday":
 return new Result(InputError.OK, DayOfWeek.Monday);
 case "tuesday":
 return new Result(InputError.OK, DayOfWeek.Tuesday);
 case "wednesday":
 return new Result(InputError.OK, DayOfWeek.Wednesday);

crashes, which have probably caused a billion dollars of pain and damage in the last
forty years.”

After decades of null dereference errors, it’s becoming clear that it is better if
null, or the absence of the value, is not itself a valid value of a type.

Listing 3.13 Returning result and error from a function

InputError represents
the error code.

Result combines the error code
and the DayOfWeek value.

We return NoInput if the string is
empty and a default DayOfWeek.

 return OK and the
arsed DayOfWeek if
we can successfully

parse the input.

62 CHAPTER 3 Composition
 case "thursday":
 return new Result(InputError.OK, DayOfWeek.Thursday);
 case "friday":
 return new Result(InputError.OK, DayOfWeek.Friday);
 case "saturday":
 return new Result(InputError.OK, DayOfWeek.Saturday);
 default:
 return new Result(InputError.Invalid, DayOfWeek.Sunday);
 }
}

This is not ideal because if we accidentally forget to check the error code, nothing
prevents us from using the DayOfWeek member. Now the value can be a default, and
we aren’t necessarily able to tell that it is invalid. We might propagate the error
through the system, such as writing it to a database, without realizing that we
shouldn’t have used the value at all.

 Looking at this from the lens of types as sets, our result contains the combination
of all possible error codes and all possible results (figure 3.4).

Figure 3.4 All possible values of the Result type as combinations of InputError and
DayOfWeek. That’s 21 values (3 InputError x 7 DayOfWeek).

Instead, we should try to return either an error or a valid value. If we manage to do that,
the set of possible values is drastically decreased, and we eliminate the possibility of
using the DayOfWeek component of a Result in which the InputError component
is NoInput or Invalid (figure 3.5).

Otherwise, we return Invalid and a
default DayOfWeek if we fail to parse.

(OK, Sunday)

(OK, Monday)

(OK, Tuesday)

(NoInput, Sunday)

(NoInput, Wednesday)

(NoInput, Saturday)

(NoInput, Friday)

(OK, Friday)

(NoInput, Thursday)

(OK, Thursday)

(Invalid, Thursday)

(Invalid, Saturday)(OK, Saturday)

(Invalid, Friday)

(NoInput, Tuesday)

(NoInput, Monday)

(Invalid, Sunday)

(Invalid, Tuesday)

(Invalid, Wednesday)

(OK, Wednesday)

(Invalid, Monday)

63Expressing either-or with types

DIY EITHER

An Either type wraps two types, TLeft and TRight, the convention being that
TLeft stores the error type and TRight stores the valid value type. (If there’s no
error, the value is “right”.) Again, some programming languages provide this as part
of their library, but if necessary, we can easily implement such a type.

class Either<TLeft, TRight> {
 private readonly value: TLeft | TRight;
 private readonly left: boolean;

 private constructor(value: TLeft | TRight, left: boolean) {
 this.value = value;
 this.left = left;
 }

 isLeft(): boolean {
 return this.left;
 }

 getLeft(): TLeft {
 if (!this.isLeft()) throw new Error();

 return <TLeft>this.value;
 }

Listing 3.14 Either type

Or

Sunday
Monday

Tuesday
Wednesday

Thursday
Friday

Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

NoInput

Invalid

NoInput

Invalid

Figure 3.5 All possible values of Result type as a combination of
InputError or DayOfWeek. That’s 9 values (2 InputError + 7
DayOfWeek). We no longer need an OK InputError, as the absence of
an error is indicated by the fact that we have a DayOfWeek value.

The type wraps a value of TLeft or TRight and
a flag to keep track of which type is used.

Private constructor, as we need
to make sure that the value and

boolean flag are in sync

Attempting to get a TLeft
when we have a TRight or
vice versa throws an error.

64 CHAPTER 3 Composition
 isRight(): boolean {
 return !this.left;
 }

 getRight(): TRight {
 if (!this.isRight()) throw new Error();

 return <TRight>this.value;
 }

 static makeLeft<TLeft, TRight>(value: TLeft) {
 return new Either<TLeft, TRight>(value, true);
 }

 static makeRight<TLeft, TRight>(value: TRight) {
 return new Either<TLeft, TRight>(value, false);
 }
}

In a language that’s missing the type operator |, we could simply make the value a
common type, such as Object in Java and C#. The getLeft() and getRight()
methods handle conversion back to the TLeft and TRight types.

 With such a type, we can update our parseDayOfWeek() implementation to
return an Either<InputError, DayOfWeek> result and make it impossible to prop-
agate an invalid or default DayOfWeek value. If the function returns an InputError,
there is no DayOfWeek in the result, and attempting to unwrap one via a call to
getLeft() throws an error.

 Again, we have to be explicit about unpacking the value. When we know that we
have a valid value (isLeft() returns true), and we extract it with getLeft(), we
are guaranteed to have valid data.

enum InputError {
 NoInput,
 Invalid
}

type Result = Either<InputError, DayOfWeek>;

function parseDayOfWeek(input: string): Result {
 if (input == "")
 return Either.makeLeft(InputError.NoInput);

 switch (input.toLowerCase()) {
 case "sunday":
 return Either.makeRight(DayOfWeek.Sunday);
 case "monday":
 return Either.makeRight(DayOfWeek.Monday);
 case "tuesday":
 return Either.makeRight(DayOfWeek.Tuesday);

Returning result or error from a functionListing 3.15

Attempting to get a TLeft
when we have a TRight or
vice versa throws an error.

Factory functions call the
constructor and ensure
that the boolean flag is
consistent with the value.

We no longer need an OK
InputError. If we don’t have
an error, we have a value.

We update Result to be an
InputError or a DayOfWeek instead
of a combination of the two.

We return a result or an
error by Either.makeRight
and Either.makeLeft.

65Expressing either-or with types

 case "wednesday":
 return Either.makeRight(DayOfWeek.Wednesday);
 case "thursday":
 return Either.makeRight(DayOfWeek.Thursday);
 case "friday":
 return Either.makeRight(DayOfWeek.Friday);
 case "saturday":
 return Either.makeRight(DayOfWeek.Saturday);
 default:
 return Either.makeLeft(InputError.Invalid);
 }
}

The updated implementation leverages the type system to eliminate invalid states
such as (NoInput, Sunday) from which we could’ve accidentally used the Sunday
value. Also, there’s no need for an OK value for InputError because we don’t have an
error if parsing succeeds.

EXCEPTIONS

Throwing an exception on error is a perfectly valid example of result or error: the
function either returns a result or throws an exception. In several situations, excep-
tions cannot be used and an Either type is preferred, such as when propagating
errors across processes or across threads; as a design principle, when the error itself is
not exceptional (often the case when we deal with user input); when calling operating
system APIs that use error codes; and so on. In these situations, when we can’t or don’t
want to throw an exception but need to communicate that we got a value or failed, it’s
best to encode this as an either value or error as opposed to value and error.

 When throwing exceptions is acceptable, we can use them as another way to ensure
that we don’t end up with an invalid result and an error. When an exception is thrown,
the function no longer returns the “normal” way, by passing back a value to the caller
with a return statement. Rather, it propagates the exception object until a matching
catch is found. This way, we get a result or an exception. We won’t cover throwing
exceptions in depth, because although many languages provide facilities for exceptions
to be thrown and caught, from a type perspective, exceptions aren’t very special.

3.2.4 Variants

We’ve looked at optional types, which contain a value of the underlying type or no
value. Then we looked at either types, which contain a TLeft or a TRight value.
The generalizations of these types are the variant types.

VARIANT TYPES Variant types, also known as tagged union types, contain a value
of any number of underlying types. Tagged comes from the fact that even if
the underlying types have overlapping values, we are still able to tell exactly
which type the value comes from.

Let’s look at an example of a collection of geometric shapes in listing 3.16. Each shape
has a different set of properties and a tag (implemented as a kind property). We can

We return a result or an
error by Either.makeRight
and Either.makeLeft.

66 CHAPTER 3 Composition

define a type that is the union of all these shapes. Then, when we want to (for exam-
ple) render these shapes, we can use their kind property to determine which of the
possible shapes an instance is, then cast it to that shape. This process is the same as the
unwrapping in previous examples.

class Point {
 readonly kind: string = "Point";
 x: number = 0;
 y: number = 0;
}

class Circle {
 readonly kind: string = "Circle";
 x: number = 0;
 y: number = 0;
 radius: number = 0;
}

class Rectangle {
 readonly kind: string = "Rectangle";
 x: number = 0;
 y: number = 0;
 width: number = 0;
 height: number = 0;
}

type Shape = Point | Circle | Rectangle;

let shapes: Shape[] = [new Circle(), new Rectangle()];

for (let shape of shapes) {
 switch (shape.kind) {
 case "Point":
 let point: Point = <Point>shape;
 console.log(`Point ${JSON.stringify(point)}`);
 break;
 case "Circle":
 let circle: Circle = <Circle>shape;
 console.log(`Circle ${JSON.stringify(circle)}`);
 break;
 case "Rectangle":
 let rectangle: Rectangle = <Rectangle>shape;
 console.log(`Rectangle ${JSON.stringify(rectangle)}`);
 break;
 default:
 throw new Error();
 }
}

Tagged union of shapesListing 3.16

We iterate over the shapes and
check the kind property of each.

If the kind is "Point",
we can safely use the
shape as a Point. The
same is true for
Circle and Rectangle.

We throw an error if the kind is
unknown. This means that some other
type somehow made its way into the
union, which should never be the case.

In the preceding example, the kind member of each class represents the tag which
tells us the actual type of a value. The value of shape.kind tells us whether the Shape

67Expressing either-or with types
instance is a Point, Circle, or Rectangle. We can also implement a general-
purpose variant that keeps track of the types without requiring the types themselves to
store a tag.

 Let’s implement a simple variant that can store a value of up to three types and
keep track of the actual type stored based on a type index.

DIY VARIANT

Different programming languages provide different generic and type-checking fea-
tures. Some languages allow a variable number of generic arguments, for example (so
we can have variants of any number of types); others provide different ways to deter-
mine whether a value is of a certain type at both compile and run time.

 The following TypeScript implementation has some trade-offs that don’t necessar-
ily translate to other programming languages. It’s a starting point for a general-
purpose variant, but it would be implemented differently in, say, Java or C#. Type-
Script doesn’t support method overloads, for example, but in other languages, we
could get away with a single make() function overloaded on each generic type.

class Variant<T1, T2, T3> {
 readonly value: T1 | T2 | T3;
 readonly index: number;

 private constructor(value: T1 | T2 | T3, index: number) {
 this.value = value;
 this.index = index;
 }

 static make1<T1, T2, T3>(value: T1): Variant<T1, T2, T3> {
 return new Variant<T1, T2, T3>(value, 0);
 }

 static make2<T1, T2, T3>(value: T2): Variant<T1, T2, T3> {
 return new Variant<T1, T2, T3>(value, 1);
 }

 static make3<T1, T2, T3>(value: T3): Variant<T1, T2, T3> {
 return new Variant<T1, T2, T3>(value, 2);
 }
}

This implementation takes on the responsibility of maintaining the tags, so now we
can remove them from our geometric shapes.

class Point {
 x: number = 0;
 y: number = 0;
}

Listing 3.17 Variant type

Listing 3.18 Union of shapes as variant

Shapes no longer need
to store tags themselves.

68 CHAPTER 3 Composition
class Circle {
 x: number = 0;
 y: number = 0;
 radius: number = 0;
}

class Rectangle {
 x: number = 0;
 y: number = 0;
 width: number = 0;
 height: number = 0;
}

type Shape = Variant<Point, Circle, Rectangle>;

let shapes: Shape[] = [
 Variant.make2(new Circle()),
 Variant.make3(new Rectangle())
];

for (let shape of shapes) {
 switch (shape.index) {
 case 0:
 let point: Point = <Point>shape.value;
 console.log(`Point ${JSON.stringify(point)}`);
 break;
 case 1:
 let circle: Circle = <Circle>shape.value;
 console.log(`Circle ${JSON.stringify(circle)}`);
 break;
 case 2:
 let rectangle: Rectangle = <Rectangle>shape.value;
 console.log(`Rectangle ${JSON.stringify(rectangle)}`);
 break;
 default:
 throw new Error();
 }
}

This implementation might not look as though it adds a lot of benefit; we ended up
using numeric tags and arbitrarily decided that 0 is a Point and 1 is a Circle. You
might also wonder why we didn’t use a class hierarchy for our shapes, where we have a
base method that each type implements instead of switching on tags.

 For that task, we need to take a look at the visitor design pattern and the ways in
which it can be implemented.

3.2.5 Exercises

1 Users can provide a selection among the colors red, green, and blue. What
should be the type of this selection?

a number with Red = 0, Green = 1, Blue = 2
b string with Red = "Red", Green = "Green", Blue = "Blue"

Shapes no longer need
to store tags themselves.

Shape is now a Variant
of these three types.

We look at the index
property to find the tag
and the value property
to get the actual object.

69The visitor pattern
c enum Colors { Red, Green, Blue }

d type Colors = Red | Green | Blue where the colors are classes

2 What should be the return type of a function that takes a string as input and
parses it into a number? The function does not throw.

a number

b number | undefined

c Optional<number>

d Either b or c

3 Operating systems usually use numbers to represent error codes. What should
be the return type of a function that can return either a numerical value or a
numerical error code?

a number

b { value: number, error: number }

c number | number

d Either<number, number>

3.3 The visitor pattern
Let’s go over the visitor design pattern and look at traversing the items that make up a
document—first through an object-oriented lens and then with the generic tagged
union type we implemented. Don’t worry if you aren’t very familiar with the visitor
design pattern; we’ll review how it works as we’re working through our example.

 We’ll start with a naïve implementation, show how the visitor design pattern
improves the design, and then show an alternative implementation that removes the
need for class hierarchies.

 We start with three document items: paragraph, picture, and table. We want to
either render them onscreen or have a screen reader read them aloud for visually
impaired users.

3.3.1 A naïve implementation

One approach we can take is to provide a common interface to ensure that each item
knows how to draw itself on a screen and read itself, as shown in the next listing.

class Renderer { /* Rendering methods */ }
class ScreenReader { /* Screen reading methods */ }

interface IDocumentItem {
 render(renderer: Renderer): void;
 read(screenReader: ScreenReader): void;
}

Naïve implementationListing 3.19

The two classes provide
methods to render and read,
omitted here for brevity.

The IDocumentItem interface
specifies that each item can
render itself and read itself.

70 CHAPTER 3 Composition
class Paragraph implements IDocumentItem {
 /* Paragraph members omitted */
 render(renderer: Renderer) {
 /* Uses renderer to draw itself on screen */
 }

 read(screenReader: ScreenReader) {
 /* Uses screenReader to read itself */
 }
}

class Picture implements IDocumentItem {
 /* Picture members omitted */
 render(renderer: Renderer) {
 /* Uses renderer to draw itself on screen */
 }

 read(screenReader: ScreenReader) {
 /* Uses screenReader to read itself */
 }
}

class Table implements IDocumentItem {
 /* Table members omitted */
 render(renderer: Renderer) {
 /* Uses renderer to draw itself on screen */
 }

 read(screenReader: ScreenReader) {
 /* Uses screenReader to read itself */
 }
}

let doc: IDocumentItem[] = [new Paragraph(), new Table()];
let renderer: Renderer = new Renderer();

for (let item of doc) {
 item.render(renderer);
}

This approach is not great from a design point of view. The document items store
information that describes document content, such as text or an image, and should
not be responsible for other things, such as rendering and accessibility. Having ren-
dering and accessibility code in each document item class bloats the code. Worse, if
we need to add a new capability—say, for printing—we need to update the interface
and all implementing classes to implement the new capability.

3.3.2 Using the visitor pattern

The visitor pattern is an operation to be performed on elements of an object struc-
ture. This pattern lets you define a new operation without changing the classes of the
elements on which it operates.

 In our example shown in listing 3.20, the pattern should allow us to add a new
capability without having to touch the code of the document items. We can achieve

Document elements implement
IDocumentItem and, given a
renderer or screen reader,
draw themselves or read
themselves aloud.

71The visitor pattern
this task with the double-dispatch mechanism, in which document items accept any visi-
tor and then pass themselves to it. The visitor knows how to process each individual
item (by rendering it, reading it aloud, and so on), so given an instance of the item, it
performs the right operation (figure 3.6).

 Double dispatch comes from the fact that, given an IDocumentItem, the right
accept() method is called first; then, given the IVisitor argument, the right oper-
ation is performed.

interface IVisitor {
 visitParagraph(paragraph: Paragraph): void;
 visitPicture(picture: Picture): void;
 visitTable(table: Table): void;
}

Processing with the visitor patternListing 3.20

Every document item
accepts a visitor and
calls the corresponding
visitor method.

Every visitor provides
methods to render
any document item.

Calls
visitor.VisitTable(this)

IDocumentItem

accept(visitor: IVisitor)

Paragraph

accept(visitor: IVisitor)

Table

accept(visitor: IVisitor)

Picture

accept(visitor: IVisitor)

IVisitor

renderParagraph(paragraph: Paragraph)
renderPicture(picture: Picture)
renderTable(table: Table)

Renderer

renderParagraph(paragraph: Paragraph)
renderPicture(picture: Picture)
renderTable(table: Table)

ScreenReader

renderParagraph(paragraph: Paragraph)
renderPicture(picture: Picture)
renderTable(table: Table)

Figure 3.6 A visitor pattern. The IDocumentItem interface ensures that every document item has
an accept() method that takes an IVisitor. IVisitor ensures that every visitor can handle
all possible document item types. Each document item implements accept() to send itself to the
visitor. With this pattern, we can separate responsibilities, such as screen rendering and accessibility,
to individual components (visitors) and abstract them away from the document items.

The IVisitor interface specifies
that each visitor should be able
to process all shapes.

72 CHAPTER 3 Composition
class Renderer implements IVisitor {
 visitParagraph(paragraph: Paragraph) { /* ... */ }
 visitPicture(picture: Picture) { /* ... */ }
 visitTable(table: Table) { /* ... */ }
}

class ScreenReader implements IVisitor {
 visitParagraph(paragraph: Paragraph) { /* ... */ }
 visitPicture(picture: Picture) { /* ... */ }
 visitTable(table: Table) { /* ... */ }
}

interface IDocumentItem {
 accept(visitor: IVisitor): void;
}

class Paragraph implements IDocumentItem {
 /* Paragraph members omitted */
 accept(visitor: IVisitor) {
 visitor.visitParagraph(this);
 }
}

class Picture implements IDocumentItem {
 /* Picture members omitted */
 accept(visitor: IVisitor) {
 visitor.visitPicture(this);
 }
}

class Table implements IDocumentItem {
 /* Table members omitted */
 accept(visitor: IVisitor) {
 visitor.visitTable(this);
 }
}

let doc: IDocumentItem[] = [new Paragraph(), new Table()];
let renderer: IVisitor = new Renderer();

for (let item of doc) {
 item.accept(renderer);
}

Now a visitor can go over a collection of IDocumentItem objects and process them by
calling accept() on each. The responsibility of processing is moved from the items
themselves to the visitors. Adding a new visitor does not affect the document items;
the new visitor just needs to implement the IVisitor interface, and document items
would accept it as they would any other.

 A new Printer visitor class would implement logic to print a paragraph, a pic-
ture, and a table in the visitParagraph(), visitPicture(), and visitTable()
methods. The document items themselves would become printable without having
to change.

The concrete Renderer
and ScreenReader
implement this interface.

Now document items need only
implement an accept() method
that takes any visitor.

Items call the appropriate
method on the visitor and pass
themselves as arguments.

73The visitor pattern
 This example is a classical implementation of the visitor pattern. Next, let’s look at
how we could achieve something similar by using a variant instead.

3.3.3 Visiting a variant

First, let’s go back to our generic variant type and implement a visit() function that
takes a variant and a set of functions, one for each type, and (depending on the value
stored in the variant) applies the right function to it.

function visit<T1, T2, T3>(
 variant: Variant<T1, T2, T3>,
 func1: (value: T1) => void,
 func2: (value: T2) => void,
 func3: (value: T3) => void
): void {
 switch (variant.index) {
 case 0: func1(<T1>variant.value); break;
 case 1: func2(<T2>variant.value); break;
 case 2: func3(<T3>variant.value); break;
 default: throw new Error();
 }
}

If we place our document items in a variant, we can use this function to select the
appropriate visitor method. If we do this, we no longer have to force any of our classes
to implement certain interfaces: responsibility for matching the right document item
with the right processing method is moved to this generic visit() function.

 Document items no longer need to know anything about visitors and don’t need to
“accept” them, as the following listing shows.

class Renderer {
 renderParagraph(paragraph: Paragraph) { /* ... */ }
 renderPicture(picture: Picture) { /* ... */ }
 renderTable(table: Table) { /* ... */ }
}

class ScreenReader {
 readParagraph(paragraph: Paragraph) { /* ... */ }
 readPicture(picture: Picture) { /* ... */ }
 readTable(table: Table) { /* ... */ }
}

class Paragraph {
 /* Paragraph members omitted */
}

class Picture {

Variant visitorListing 3.21

Alternative processing with variant visitorListing 3.22

The visit function takes as arguments a function
for each type that makes up the variant.

Based on index, the function matching
the type of the stored value is called.

Document items no longer
need a common interface.

74 CHAPTER 3 Composition

 /* Picture members omitted */
}

class Table {
 /* Table members omitted */
}

let doc: Variant<Paragraph, Picture, Table>[] = [
 Variant.make1(new Paragraph()),
 Variant.make3(new Table())
];

let renderer: Renderer = new Renderer();

for (let item of doc) {
 visit(item,
 (paragraph: Paragraph) => renderer.renderParagraph(paragraph),
 (picture: Picture) => renderer.renderPicture(picture),
 (table: Table) => renderer.renderTable(table)
);
}

With this approach, we decouple the double-dispatch mechanism from the types we
are using and move it to the variant/visitor. The variant and visitor are generic types
that can be reused across different problem domains. The advantage of this approach
is that it lets visitors be responsible only for processing and document items be respon-
sible only for storing domain data (figure 3.7).

Document items no longer
need a common interface.

We store document items in
a variant that can hold any
of the available items.

The visit function matches the item
with the right processing method.

Document items no longer need
to implement a common interface.

Visitors also don’t need to
implement a common interface.

Calling visit() on a variant of Paragraph,
Picture, and Table handles forwarding each
type to the right visitor method.

Paragraph TablePicture

Variant<Paragraph, Picture, Table>

Renderer

renderParagraph(paragraph: Paragraph)
renderPicture(picture: Picture)
renderTable(table: Table)

ScreenReader

readParagraph(paragraph: Paragraph)
readPicture(picture: Picture)
readTable(table: Table)

Figure 3.7 A simplified visitor pattern: now the document items and visitors don’t need to implement
any interfaces. Contrast this figure with figure 3.6. Responsibility for matching a document item with the
right visitor method is encapsulated in the visit() method. As we can see from the figure, the types
are not related, which is a good thing: it makes our program more flexible.

75Algebraic data types
The visit() function we introduced is also the expected way to use a variant type.
Performing a switch on the index of the variant when we want to figure out exactly
which type it contains could be error-prone. But usually, once we have a variant, we
don’t want to extract the value; instead, we apply functions to it by using visit().
This way, the error-prone switch is handled in the visit() implementation, and we
don’t have to worry about it. Encapsulating error-prone code in a reusable compo-
nent is good practice for reducing risk, because when the implementation is stable
and tested, we can rely on it in multiple scenarios.

 Using a variant-based visitor instead of the classical OOP implementation has the
advantage that it fully separates our domain objects from the visitors. Now we don’t
even need an accept() method, and document items don’t need to know anything
about what is processing them. They also don’t have to conform to any particular
interface, such as IDocumentItem in our example. That’s because the glue code that
matches visitors with shapes is encapsulated in Variant and its visit() function.

3.3.4 Exercise

1 Our visit() implementation returns void. Extend it so that given a
Variant<T1, T2, T3>, it returns a Variant<U1, U2, U3> by applying one of
three functions: (value: T1) => U1, or (value: T2) => U2, or (value:
T3) => U3.

3.4 Algebraic data types
You might have heard the term algebraic data types (ADTs). ADTs are ways to combine
types within a type system. In fact, this is exactly what we covered during this chapter.
ADTs provide two ways to combine types: product types and sum types.

3.4.1 Product types

Product types are what we called compound types in this chapter. Tuples and records are
product types because their values are products of their composing types. The types
A = {a1, a2} (type A with possible values a1 and a2) and B = {b1, b2} (type B with
possible values b1 and b2) combine into the tuple type <A, B> as A x B = {(a1, b1),
(a1, b2), (a2, b1), (a2, b2)}.

PRODUCT TYPES Product types combine multiple other types into a new type
that stores a value from each of the combined types. The product type of
types A, B, and C—which we can write as A x B x C—contains a value from A, a
value from B, and a value from C. Tuple and record types are examples of
product types. Additionally, records allow us to assign meaningful names to
each of their components.

Record types should be very familiar, as they are usually the first composition method
that new programmers learn. Recently, tuples have made their way into mainstream
programming languages, but they shouldn’t be particularly hard to understand.

76 CHAPTER 3 Composition
Tuples are very similar to record types except that we can’t name their members and
usually can define them inline by specifying the types that make up the tuple. In
TypeScript, for example, [number, number] defines the tuple type composed of two
number values.

 We covered product types before sum types, as they should be more familiar.
Almost all programming languages provide ways to define record types. Fewer main-
stream languages provide syntactic support for sum types.

Sum types3.4.2

Sum types are what we called either-or types earlier in this chapter. They combine types
by allowing a value from any one of the types, but only one of them. The types
A = {a1, a2} and B = {b1, b2} combine into the sum type A | B as A + B = {a1, a2,
b1, b2}.

SUM TYPES Sum types combine multiple other types into a new type that stores
a value from any one of the combined types. The sum type of types A, B, and C—
which we can write as A + B + C—contains a value from A, or a value from B, or a
value from C. Optional and variant types are examples of sum types.

As we saw, TypeScript has the | type operator, but common sum types such as
Optional, Either, and Variant can be implemented without it. These types pro-
vide powerful ways for representing result or error and closed sets of types, and enable
different ways to implement the common visitor pattern.

 In general, sum types allow us to store values from unrelated types in a single vari-
able. As in the visitor pattern example, an object-oriented alternative would be to use
a common base class or interface, but that doesn’t scale as well. If we mix and match
different types in different places of our application, we end up with a lot of interfaces
or base classes that aren’t particularly reusable. Sum types provide a simple, clean way
to compose types for such scenarios.

Exercises3.4.3

1 What kind of type does the following statement declare?

let x: [number, string] = [42, "Hello"];

a A primitive type
b A sum type
c A product type
d Both a sum and a product type

2 What kind of type does the following statement declare?

let y: number | string = "Hello";

a A primitive type
b A sum type

77Summary
c A product type
d Both a sum and a product type

3 Given an enum Two { A, B } and an enum Three { C, D, E }, how many
possible values does the tuple type [Two, Three] have?

a 2
b 5
c 6
d 8

4 Given an enum Two { A, B } and an enum Three { C, D, E }, how many
possible values does the type Two | Three have?

a 2
b 5
c 6
d 8

Summary
 Product types are tuples and records that group values from multiple types.
 Records allow us to name members, thus giving them meaning. Records leave

less room for ambiguity than tuples.
 Invariants are rules that a well-formed record must obey. If a type has invariants,

making members private or readonly ensures that the invariants are
enforced and that external code cannot break them.

 Sum types group types as either-or, in which values are of one of the component
types.

 Functions should return a value or an error, not a value and an error.
 Optional types hold a value of the underlying type or nothing. It’s generally less

error-prone when the absence of a value is not itself part of the domain of a
variable (null billion-dollar mistake).

 Either types hold a value of the left or the right type. By convention, right is
right, so left is error.

 Variants can hold a value of any number of underlying types and enable us to
express values of a closed sets of types without requiring any relationship
between them (no common interfaces or base type).

 A visitor function that applies the right function to a variant enables an alterna-
tive implementation of the visitor pattern, with better division of responsibilities.

In this chapter, we covered various ways to create new types by combining existing
types. In chapter 4, we’ll see how we can increase the safety of our program by relying
on the type system to encode meaning and restricting the range of allowed values for
our types. We’ll also see how we can add and remove type information and how this
can be applied to scenarios such as serialization.

78 CHAPTER 3 Composition
Answers to exercises
COMPOUND TYPES

1 c—Naming the three components of the coordinates is the preferred approach.

EXPRESSING EITHER-OR WITH TYPES

1 c—An enum is appropriate in this case. With existing requirements, classes
aren’t needed.

2 d—Either a built-in sum type or Optional is a valid return type, as both can
represent the absence of a value

3 d—A discriminate union type is best (number | number wouldn’t be able to dis-
tinguish whether the value represents an error.)

THE VISITOR PATTERN

1 Here is a possible implementation:

function visit<T1, T2, T3, U1, U2, U3>(
 variant: Variant<T1, T2, T3>,
 func1: (value: T1) => U1,
 func2: (value: T2) => U2,
 func3: (value: T3) => U3
): Variant<U1, U2, U3> {
 switch (variant.index) {
 case 0:
 return Variant.make1(func1(<T1>variant.value));
 case 1:
 return Variant.make2(func2(<T2>variant.value));
 case 2:
 return Variant.make3(func3(<T3>variant.value));
 default: throw new Error();
 }
}

ALGEBRAIC DATA TYPES

1 c—Tuples are product types.
2 b—This is a TypeScript sum type.
3 c—Because tuples are product types, we multiply the possible values of the two

enums (2 x 3).
4 b—Because this is a sum type, we add the possible values of the two enums (2 + 3).

Type safety
Now that we know how to use the basic types provided by our programming language
and how to compose them to create new types, let’s look at how we can make our pro-
grams safer by using types. By safer, I mean reducing the opportunity for bugs.

 There are a couple of ways to achieve this by creating new types that encode
additional information: meanings and guarantees. The former, which we’ll cover in
the first section, removes the opportunity for us to misinterpret a value, such as mis-
taking a mile for a kilometer. The latter allows us to encode guarantees such as “an
instance of this type will never be less than 0” in the type system. Both techniques
make our code safer, as we eliminate invalid values from the set of possible values

This chapter covers
 Avoiding the primitive obsession antipattern

 Enforcing constraints during instance
construction

 Increasing safety by adding type information

 Increasing flexibility by hiding and restoring type
information
79

80 CHAPTER 4 Type safety
represented by a type and avoid misunderstandings as soon as we can, preferably at
compile time or as soon as we instantiate our types if at run time. When we have an
instance of one of our types, from then on we know what it represents and that it is a
valid value.

 Because we’re discussing type safety, we’ll also look at how we can add and hide
information from the type checker manually. If we somehow know more than the type
checker does, we can tell it to trust us and pass our information down to it. On the
other hand, if the type checker knows too much and ends up impeding our work, we
can make it “forget” some of the typing information, giving us more flexibility at the
cost of safety. These techniques are not to be used lightly, as they move the responsibil-
ity of proper type checking from the type checker to us as developers, but as we’ll see,
there are some legitimate scenarios in which these techniques are desired.

Avoiding primitive obsession4.1 to prevent misinterpretation
In this section, we’ll see how
using basic types to represent
values and implicitly assuming
what those values represent
can cause problems when two
different parts of the code,
often written by different
developers, make incompati-
ble assumptions (figure 4.1).
 We can rely on the type sys-
tem to make those assump-

tions explicit by defining types to describe them, in which case the type checker can
detect incompatibilities and signal them before anything bad happens.

 Let’s say we have a function addToBill() that takes as its argument a number.
The function is supposed to add the price of an item to a bill. Because the argument is
of type number, we could pass it a distance between cities in miles, also represented as a

number. We end up adding
miles to a price total, and the
type checker doesn’t suspect
anything!
 On the other hand, if we
make our addToBill()

function take an argument of
type Currency and our dis-
tance between cities is repre-
sented as a type Miles, the
code will not compile (figure
4.2).

let value: Number = 1000

1000 miles$1000

Figure 4.1 The numeric value 1000 could represent 1,000
dollars or 1,000 miles. Two different developers could interpret
it as two very different measures.

let value: Currency = new Currency(1000)

$1000$1000

Figure 4.2 Having an explicit Currency type makes it clear
that the value does not represent 1,000 miles, but rather a
dollar amount.

81Avoiding primitive obsession to prevent misinterpretation
The Mars Climate Orbiter4.1.1

The Mars Climate Orbiter disintegrated because a component developed by Lock-
heed used a different unit of measure (pound-force seconds) for momentum than a
component developed by NASA, which consumed that measure (in metric units).
Let’s imagine how the code looked for the two components. The trajectory-
Correction() function consumes a measurement as Newton-seconds, or Ns (the
metric unit for momentum), whereas the provideMomentum() function produces a
measure in pound-force seconds, or lbfs, as shown in the next listing.

function trajectoryCorrection(momentum: number) {
 if (momentum < 2 /* Ns */) {
 disintegrate();
 }

 /* ... */
}

function provideMomentum() {
 trajectoryCorrection(1.5 /* lbfs */);
}

Converting to metric, 1 lbfs equals 4.448222 Ns. From the perspective of the
provideMomentum() function, the value provided is good, because 1.5 lbfs is more
than 6 Ns. That’s way more than the 2 Ns lower limit. What went wrong? The main
issue in this case is that both components treated momentum as a number, implicitly
assuming the unit in which it was measured. trajectoryCorrection() interpreted
the momentum as 1 Ns, less than the 2 Ns lower limit, and inappropriately triggered
the disintegration.

 Let’s see whether we can leverage the type system to prevent such catastrophic mis-
understandings. Let’s make the unit of measure explicit by defining a Lbfs type and a
Ns type in listing 4.2. Both types wrap a number, as the actual measure is still a value.
We will use a unique symbol for each type because TypeScript considers types to be
compatible if they have the same shape, as we will see when we discuss subtyping. The
unique symbol trick makes it so that one type can’t be implicitly interpreted as the
other. Not all languages require this additional unique symbol member. We’ll explain
this trick in chapter 7; for now, we’ll focus on the new types defined.

declare const NsType: unique symbol;

class Ns {
 readonly value: number;
 [NsType]: void;

Sketch of incompatible componentsListing 4.1

Pound-force second and Newton-second typesListing 4.2

trajectoryCorrection takes
momentum as an argument
of type number.

If momentum is less
than 2 Ns, disintegrate.

provideMomentum passes
in a measurement of 1.5 lbfs.

TypeScript-specific way to
ensure that other objects
with the same shape can’t
be interpreted as this type

Ns effectively just wraps
a value of type number.

82 CHAPTER 4 Type safety

t

 constructor(value: number) {
 this.value = value;
 }
}

declare const LbfsType: unique symbol;

class Lbfs {
 readonly value: number;
 [LbfsType]: void;

 constructor(value: number) {
 this.value = value;
 }
}

Now that we have our two separate types, we can easily implement a conversion between
them because we know the ratio. Let’s look at the following listing to see a conversion
from lbfs to Ns, which we need in our update trajectoryCorrection() code.

function lbfsToNs(lbfs: Lbfs): Ns {
 return new Ns(lbfs.value * 4.448222);
}

Going back to the Mars Climate Orbiter, we can reimplement the two functions to use
the new types. trajectoryCorrection() expects a Ns momentum (and will still dis-
integrate if the value is less than 2 Ns), and provideMomentum() still produces values
as lbfs. But now we can’t simply take the value produced by provideMomentum() and
pass it to trajectoryCorrection(), because the returned value and the function
argument have different types. We have to explicitly convert from one to the other,
using our lbfsToNs() function, as the following listing shows.

function trajectoryCorrection(momentum: Ns) {
 if (momentum.value < new Ns(2).value) {
 disintegrate();
 }

 /* ... */
}

function provideMomentum() {
 trajectoryCorrection(lbfsToNs(new Lbfs(1.5)));

Converting lbfs to NsListing 4.3

Updated componentsListing 4.4

Similarly, Lbfs type wraps a
number and a unique symbol.

Take the lbfs value, multiply by
the ratio, and return a Ns value.

trajectoryCorrection now takes an argumen
of type Ns and compares it with 2 Ns.

provideMomentum generates
a 1.5 lbfs value and has to
convert it to Ns.

}

If we omitted the conversion lbfsToNs(), the code would simply not compile, and we
would get the following error: Argument of type 'lbfs' is not assignable to

parameter of type 'Ns'. Property '[NsType]' is missing in type 'lbfs'.

83Avoiding primitive obsession to prevent misinterpretation

4.1.2

4.1.3

Let’s review what happened: we started with two components that both manipu-
lated momentum values, but even though they used different units when handling
those values, they both represented the values simply as number. To avoid misinterpre-
tations, we created a couple of new types, one to represent each unit of measure,
which effectively left no room for misinterpretation. If a component explicitly deals
with Ns, it can’t accidentally consume a Lbfs value.

Also note that the assumptions that showed up in the code as comments in our
first example (1.5 /* lbfs */) became code in our final implementation (new
Lbfs(1.5)).

The primitive obsession antipattern

In the same way that design patterns capture reusable software designs that are highly
reliable and effective, antipatterns are common designs that are ineffective and coun-
terproductive when a better alternative exists. The preceding example is an instance
of a well-known antipattern called primitive obsession. Primitive obsession turns up
when we rely on basic types to represent everything: a postal code is a number, a
phone number is a string, and so on.

If we fall into this trap, we leave a lot of room for errors like the one we saw in this
section. That’s because the meaning of the values is not explicitly captured in the type
system. If I consume a momentum value given as a number, I, the developer, implicitly
assume that it is a Newton-second value. The type checker does not have enough
information to detect when two developers make incompatible assumptions. When
this assumption is explicitly captured as a type declaration, and I consume a momen-
tum value given as a Ns instance, the type checker can verify when someone else is
attempting to give me a Lbfs instance instead and not allow the code to compile.

Even though a postal code is a number, that doesn’t mean we should store it as a
value of type number. We should never interpret momentum as a postal code.

If the entities you represent are simple values, such as physical measurements and
postal codes, consider defining them as new types, even if these types simply wrap a
number or a string. This practice gives the type system more information to work with
in analyzing our code and eliminates a whole class of errors caused by incompatible
assumptions, not to mention that it makes the code more readable. For contrast, com-
pare the first definition of trajectoryCorrection(), which is trajectory-

Correction(momentum: number), with the second one, which is trajectory-

Correction(momentum: Ns). The second one gives more information to readers of
the code as to what its contract is. (Expected momentum is in Ns.)

So far, we’ve seen how we can wrap primitive types into other types to encode more
information. Now let’s move on to see how we can provide even more safety by
restricting the range of allowed values for a given type.

Exercise

1 What is the safest way to represent a weight measurement?
a As a number
b As a string

84 CHAPTER 4 Type safety
c As a custom Kilograms type
d As a custom Weight type

Enforcing constraints4.2
In chapter 3, we talked about composition and how to take basic types and combine
them to represent more complex concepts, such as representing a point on a 2D
plane as a pair of number values, one for each of the X and Y coordinates. Now let’s
look at what we can do when the basic types we get out of the box allow for more val-
ues than we need.

 Let’s take, as an example, a measure of temperature. We’re going to avoid primi-
tive obsession and declare a Celsius type to make it clear which unit of measure we
expect the temperature to have. This type will also simply wrap a number.

 We have an additional constraint, though: we should never have a temperature less
than absolute zero, which is –273.15 degrees Celsius. One option is to check whenever
we use an instance of this type that the value is a valid one. This option leaves room for
error, though: we always add the check, but a new developer on the team doesn’t
know the pattern and misses checking. Wouldn’t it be better to make sure that we can
never get an invalid value?

 We can do this in two ways: via the constructor or via a factory.

Enforcing constraints with the constructor4.2.1

We can implement the constraint in the constructor and handle a value that’s too
small in one of the two ways we saw when we looked at integer overflow. One option is
to throw an exception when the value is invalid and disallow creation of the object.

declare const celsiusType: unique symbol;

class Celsius {
 readonly value: number;
 [celsiusType]: void;

 constructor(value: number) {
 if (value < -273.15) throw new Error();

 this.value = value;
 }
}

We ensure that the value stays valid after construction by making it readonly.
Another option would be to make it private and access it with a getter (so that the
value can be retrieved but not set).

 We can also implement our constructor to coerce the value to be a valid one: any-
thing less than -273.15 becomes -273.15.

Constructor throwing on invalid valueListing 4.5

The value is immutable,
so when it’s initialized,
it can’t be changed.

Constructor throws if
we attempt to create
an invalid temperature.

85Enforcing constraints

declare const celsiusType: unique symbol;

class Celsius {
 readonly value: number;
 [celsiusType]: void;

 constructor(value: number) {
 if (value < -273.15) value = -273.15;

 this.value = value;
 }
}

Either of the two approaches is valid, depending on the scenario. We can also use a
factory function instead. A factory is a class or function whose main job is to create
another object.

4.2.2 Enforcing constraints with a factory

A factory is useful when we don’t want to throw an exception, but to return unde-
fined or some other value that is not a temperature and represents failure to create a
valid instance. A constructor can’t do this because it doesn’t return: it either finishes
initializing its instance or throws. Another reason to use a factory is when the logic
required to construct and validate an object is complex, in which case it might make
sense to implement it outside the constructor. As a rule of thumb, constructors
shouldn’t do heavy lifting—just get the object members initialized.

 Let’s look at how an implementation of a factory works in the following listing. We
will make the constructor private so that only the factory method can call it. The fac-
tory will be a static method on our class. It will return either a Celsius instance or
undefined.

declare const celsiusType: unique symbol;

class Celsius {
 readonly value: number;
 [celsiusType]: void;

 private constructor(value: number) {
 this.value = value;
 }

 static makeCelsius(value: number): Celsius | undefined {
 if (value < -273.15) return undefined;

 return new Celsius(value);
 }
}

Constructor coercing an invalid valueListing 4.6

Factory returningListing 4.7 undefined on invalid value

Instead of throwing,
we “fix” the value.

Constructor is now private
because it doesn’t
perform any checks itself.

Factory returns either a valid
Celsius instance or undefined.

Constraint is enforced in the
factory, which is the only way
to create Celsius instances.

86 CHAPTER 4 Type safety
In all these cases, we have the additional guarantee that if we have an instance of
Celsius, its value will never be less than -273.15. The advantage of performing the
check when an instance of the type is created and ensuring that the type can’t be cre-
ated in other ways is that you are guaranteed a valid value whenever you see an
instance of the type being passed around.

 Instead of checking whether the instance is valid when using it, which usually
means performing the check in multiple places, we perform the check just once and
make it impossible for an invalid object of the type to exist.

 This technique goes beyond simple value wrappers like Celsius, of course. We
can ensure that a Date object created from a year, a month, and a day is valid and dis-
allow dates like June 31. There are many cases in which the basic types at our disposal
don’t allow us to impose the restrictions we want directly, in which case we can create
types that encapsulate additional constraints and provide the guarantee that they
can’t exist with invalid values.

 Next, let’s look at how we can add and hide typing information throughout our
code and when this practice is useful.

Exercise4.2.3

1 Implement a Percentage type that represents a value between 0 and 100. Val-
ues smaller than 0 should become 0, and values larger than 100 should become
100.

Adding type information4.3
Although type checking has strong theoretical foundations, all programming lan-
guages provide shortcuts that allow us to bypass the type checks and tell the compiler
to treat a value as a certain type. We are effectively saying, “Trust us; we know what
this type is better than you do.” This is called a type cast—a term you might have
heard before.

TYPE CAST A type cast converts
the type of an expression to
another type. Each programming
language has its own rules about
which conversions are valid and
which are not, which can be done
automatically by the compiler,
and which must be done with
additional code (figure 4.3).

Type casting4.3.1

An explicit type cast is a cast that allows us to tell the compiler to treat a value as though
it had a certain type. In TypeScript, we do a cast to NewType by adding <NewType> in
front of the value or by adding as NewType after the value.

1100001010100011

'£'–15709

Type: UTF-8 characterType: signed 16-bit integer

Figure 4.3 With casting, we can turn a value of type
16-bit signed integer into a UTF-8 encoded character.

87Adding type information
 This technique can be dangerous when misused: if we bypass the type checker, we
get a run-time error if we attempt to use a value as something it is not. I can cast my
Bike, which I can ride(), to a SportsCar, for example, but I still won’t be able to
drive() it, as the following listing shows.

class Bike {
 ride(): void { /* ... */ }
}

class SportsCar {
 drive(): void { /* ... */ }
}

let myBike: Bike = new Bike();

myBike.ride();

let myPretendSportsCar: SportsCar = <SportsCar><unknown>myBike;

myPretendSportsCar.drive();

Here, we can tell the type checker to let us pretend that we have a SportsCar, but
that doesn’t mean we actually have one. Calling drive results in the following excep-
tion being thrown: TypeError: myPretendSportsCar.drive is not a function.

 We had to cast myBike first to the unknown type and then to a SportsCar
because the TypeScript compiler realizes that the Bike and SportsCar types don’t
overlap. (A valid value of one of the types can never be a valid value of the other.) So
simply calling <SportsCar>myBike still causes an error. Instead, we first say
<unknown>myBike, which tells the compiler to forget the type of myBike. Then we
can say, “Trust us; it’s a SportsCar.” But as we saw, this still causes a run-time error. In
other languages, it can cause a crash. In general, such a situation is not valid. So when
would this be useful?

4.3.2 Tracking types outside the type system

Sometimes, we know more than the type checker. Let’s revisit the Either implemen-
tation from chapter 3. It stores a value of TLeft or TRight type, and a boolean flag
keeps track of whether the value is TLeft, as shown in the next listing.

class Either<TLeft, TRight> {
 private readonly value: TLeft | TRight;
 private readonly left: boolean;

Type cast causing a run-time errorListing 4.8

RevisitingListing 4.9 Either implementation

myBike is created as type Bike,
so we can call ride() on it.

We can tell the compiler to treat
it as a SportsCar, which we

assign to myPretendSportsCar.Calling drive() on myPretendSportsCar
causes a run-time error.

We store a value of type
TLeft or type TRight.

We keep track of whether it is a TLeft
or not by using the left property.

88 CHAPTER 4 Type safety
 private constructor(value: TLeft | TRight, left: boolean) {
 this.value = value;
 this.left = left;
 }

 isLeft(): boolean {
 return this.left;
 }

 getLeft(): TLeft {
 if (!this.isLeft()) throw new Error();

 return <TLeft>this.value;
 }

 isRight(): boolean {
 return !this.left;
 }

 getRight(): TRight {
 if (!this.isRight()) throw new Error();

 return <TRight>this.value;
 }

 static makeLeft<TLeft, TRight>(value: TLeft) {
 return new Either<TLeft, TRight>(value, true);
 }

 static makeRight<TLeft, TRight>(value: TRight) {
 return new Either<TLeft, TRight>(value, false);
 }
}

This allows us to combine two types into a sum type that can represent a value from
either of them. If we look closely, though, the value we are storing has type TLeft |
TRight. After we assign it, the type checker no longer knows whether the actual value

we stored was a TLeft or a TRight. From now on, it
will consider value to be either of the two. This is
what we want while storing the value, but at some
point, we would like to use it.
 The compiler will not allow us to pass a value of
type TLeft | TRight to a function that expects a
TLeft value, because if our value is in fact TRight,
we are going to be in trouble. If we have a triangle or
a square, we can’t necessarily pass that through a tri-
angular slot. It would work to have a triangle to pass
through it. But what if we have a square (figure 4.4)?
 Trying to do something like this results in a compiler
error, which is good. But we know something the type

When we want to get a TLeft, we
check whether we are storing the
right type; then we cast to TLeft.

The makeLeft factory
initializes left to true;
makeRight initializes
it to false.

or

Figure 4.4 If we have a triangle
or a square, we can’t say for sure
whether the actual shape we have
will pass through a triangular slot.
It will if it’s a triangle, but it won’t
if it’s a square.

89Adding type information
checker doesn’t: we know from when we set the value whether it came from a TLeft or
a TRight. If we created our object by using makeLeft(), we set left to true. If we
created our object by using makeRight(), we set left to false, as shown in the next
listing. We are keeping track of this fact even if the type checker forgets.

class Either<TLeft, TRight> {
 private readonly value: TLeft | TRight;
 private readonly left: boolean;

 private constructor(value: TLeft | TRight, left: boolean) {
 this.value = value;
 this.left = left;
 }

 /* ... */

 static makeLeft<TLeft, TRight>(value: TLeft) {
 return new Either<TLeft, TRight>(value, true);
 }

 static makeRight<TLeft, TRight>(value: TRight) {
 return new Either<TLeft, TRight>(value, false);
 }
}

When we want to take the value out, as a caller, it is our responsibility to first check
which of the two types the value is. If we have an Either<Triangle, Square> and
want a Triangle, we start by calling isLeft(). If true is returned, we call
getLeft() and end up with a Triangle, as the following listing shows.

declare const triangleType: unique symbol;
class Triangle {
 [triangleType]: void;
 /* ... */
}

declare const squareType: unique symbol;
class Square {
 [squareType]: void;
 /* ... */
}

function slot(triangle: Triangle) {
 /* ... */
}

let myTriangle: Either<Triangle,Square>
 = Either.makeLeft(new Triangle());

Listing 4.10 makeLeft and makeRight

Listing 4.11 Triangle or Square

left tells us whether we
are storing a TLeft.

left is assigned in the private
constructor that only makeLeft
and makeRight can call.

makeLeft and makeRight
initialize left to the
appropriate value.

Triangle and
Square types

From here on, myTriangle.value is of type
Triangle | Square; the compiler no longer
knows that we placed a Triangle there.

90 CHAPTER 4 Type safety

,
,

if (myTriangle.isLeft())
 slot(myTriangle.getLeft());

Internally, our getLeft() implementation performs whatever checks it needs (in
this case by checking that this.isLeft() is true) and handles an invalid call how-
ever we want (in this case by throwing Error). When all that is out of the way, it casts
the value to the type. The type checker forgot which type the value was when we
assigned it, so now we remind it, as shown in the following code, as we were keeping
track of the type in left.

class Either<TLeft, TRight> {
 private readonly value: TLeft | TRight;
 private readonly left: boolean;

 /* ... */

 isLeft(): boolean {
 return this.left;
 }

 getLeft(): TLeft {
 if (!this.isLeft()) throw new Error();

 return <TLeft>this.value;
 }

4.3.3

Listing 4.12 isLeft() and getLeft()

getLeft() casts the value
back to a Triangle.

Clients can check whether
the value stored is of type
TLeft by calling isLeft().

In case the value is of the wrong type
we can handle the error. In this case
we throw an Error. An alternative
would be to return undefined.

The value is cast
to the type TLeft.

/* ... */
}

In this case, we don’t need the <unknown> cast: a value of the type TLeft | TRight

could be a valid value of type TLeft, so the compiler won’t complain and will trust us
with the cast.

When used correctly, casting is powerful because it allows us to refine the type of a
value. If we have a Triangle | Square, and we know that it is a Triangle, we can
cast it to a Triangle, which the compiler will allow us to fit through a triangular slot.

In fact, most type checkers do several such casts automatically without requiring us
to write any code.

IMPLICIT AND EXPLICIT TYPE CASTS An implicit type cast, also known as coercion, is
a type cast that is performed automatically by the compiler. It doesn’t require
any code to be written. Such casts are usually safe. By contrast, an explicit type
cast is a type cast that we need to specify with code. This type cast effectively
bypasses the rules of the type system, and we should use it with care.

Common type casts

Let’s look at a few common types of casts, both implicit and explicit, and see how they
can be useful.

91Adding type information
UPCASTS AND DOWNCASTS

One example of a common type cast is interpreting an object of a type that inherits
from another type as its parent type. If our base class is Shape, and we have a
Triangle, we can always use a Triangle whenever a Shape is required, as shown in
the following code.

class Shape {
 /* ... */
}

declare const triangleType: unique symbol;

class Triangle extends Shape {
 [triangleType]: void;
 /* ... */
}

function useShape(shape: Shape) {
 /* ... */
}

let myTriangle: Triangle = new Triangle();

useShape(myTriangle);

Inside the body of useShape(), the compiler treats the argument as a Shape, even if
we passed in a Triangle. Interpreting a derived class (Triangle) as a base class
(Shape) is called an upcast. If we know for sure that our Shape is actually a Triangle, we
can cast it back to Triangle, but this cast needs to be explicit. Casting from a parent
class to a derived class is called a downcast, shown in the next listing, and most strongly
typed languages don’t do this automatically.

class Shape {
 /* ... */
}

declare const triangleType: unique symbol;

class Triangle extends Shape {
 [triangleType]: void;
 /* ... */
}

function useShape(shape: Shape, isTriangle: boolean) {
 if (isTriangle) {
 let triangle: Triangle = <Triangle>shape;
 /* ... */
 }

UpcastListing 4.13

DowncastListing 4.14

The Triangle type
extends Shape.

useShape() expects an
argument of type Shape.

We can pass a Triangle to it, and
it is automatically cast to Shape.

This version of the function has an
additional argument that tracks

whether a triangle was passed in.

If the argument is in fact
a triangle, we can get the
type back with a cast.

92 CHAPTER 4 Type safety
 /* ... */
}

let myTriangle: Triangle = new Triangle();

useShape(myTriangle, true);

Unlike an upcast, a downcast is not safe. Although it’s easy to tell from a derived class
what its parent is, the compiler can’t automatically determine, given a parent class,
which of the possible derived classes a value might be.

 Some programming languages store additional type information at run time and
include an is operator, which can be used to query the type of an object. When we
are creating a new object, its associated type is stored alongside, so even if we upcast
away some of the type information from the compiler, at run time we can check
whether we have an instance of a certain type with if (shape is Triangle)

 Languages and run times that implement this kind of run-time type information
provide a safer way to store and query for types, as there is no risk that this informa-
tion will get out of sync with the objects. This comes at the cost of storing additional
data in memory for each object instance.

 In chapter 7, when we discuss subtyping, we will look at more complex upcasts and
talk about variance. For now, we’ll move on to talk about widening and narrowing casts.

WIDENING CASTS AND NARROWING CASTS

Another common implicit cast is from an integer type with a fixed number of bits—
say, an 8-bit unsigned integer—to another integer type that represents values with
more bits—say, a 16-bit unsigned integer. You can do this implicitly because a 16-bit
unsigned integer can represent any 8-bit unsigned integer value and more. This type
of cast is called a widening cast.

 On the other hand, casting a signed integer to an unsigned integer is dangerous,
as a negative number can’t be represented by an unsigned integer. Similarly, casting
an integer with more bits to an integer with fewer bits, such as a 16-bit unsigned inte-
ger to an 8-bit unsigned integer, would work only for values that the smaller type can
represent.

 This type of cast is called a narrowing cast. Some compilers force you to be explicit
when performing a narrowing cast because it’s dangerous. Being explicit helps, in
that it makes it clear you didn’t do it unintentionally. Other compilers allow narrow-
ing casts but issue a warning. Run-time behavior when the value doesn’t fit the new
type is similar to the integer overflow that we discussed in chapter 2: depending on
the language, we get an error or the value gets chopped so that it fits in the new type
(figure 4.5).

 Casts are not to be used lightly, as they bypass the type checker, effectively eliminat-
ing all the goodness that type checking brings us. They are useful tools, though, espe-
cially when we have more information than the compiler does and want to push that

The caller needs to set this
flag correctly; otherwise,
a run-time error occurs.

93Hiding and restoring type information
information back to the compiler. After we tell the compiler what we know, it can use
that information in further analysis. Going back to the Triangle | Square example,
after we tell the compiler our value is a Triangle, there can be no Square value far-
ther on. This technique is similar to the one discussed in section 4.2, in which we
looked at enforcing constraints, but here, instead of performing a run-time check, we
simply tell the compiler to trust us.

 In the next section, we’ll look at a few other situations in which it’s useful to make
the compiler “forget” typing information.

4.3.4 Exercises

1 Which of the following casts are considered to be safe?

a Upcasts
b Downcasts
c Upcasts and downcasts
d Neither

2 Which of the following casts are considered to be unsafe?

a Widening casts
b Narrowing casts
c Widening and narrowing casts
d Neither

4.4 Hiding and restoring type information
One example of hiding type information is wanting to have a collection that can con-
tain a combination of values of different types. If the collection contains values of just
one type, such as a bag of cats, it’s easy, because we know that whenever we pull some

Extra bits

Bits that no
longer fit

Widening cast

0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

Narrowing cast

0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1

Figure 4.5 Example of widening and narrowing casts. The widening cast is safe: the gray squares
represent the extra bits we get, so no information can be lost. On the other hand, the narrowing cast
is dangerous: the black squares represent bits that no longer fit in the new type.

94 CHAPTER 4 Type safety
thing out from the bag, it’s going to be a
cat. If we want to put groceries in the bag
too, when we pull something out, we might
end up with either a cat or a grocery item
(figure 4.6).
 A collection with items of the same type,
like our bag of cats, is also called a homoge-
nous collection. Because all items have the
same type, we don’t need to hide their type
information. A collection of items of differ-
ent types is also known as a heterogenous col-
lection. In this case, we need to hide some of
the typing information to declare such a
collection.

4.4.1 Heterogenous collections

A document can contain text, pictures, or
tables. When we work with the document,
we want to keep all its constituent parts
together, so we will store them in some col-

lection. But what is the type of the elements of that collection? There are several ways
to implement this, all of which involve hiding some type information.

BASE TYPE OR INTERFACE

We can create a class hierarchy and say that all items in the documents must be part of
some hierarchy. If everything is a DocumentItem, we can store a collection of
DocumentItem values even if, when we add items to the collection, we add types such
as Paragraph, Picture, and Table. Similarly, we can declare an IDocumentItem
interface and say that the array contains only types that implement this interface, as
shown in the following listing.

interface IDocumentItem {
 /* ... */
}

class Paragraph implements IDocumentItem {
 /* ... */
}

class Picture implements IDocumentItem {
 /* ... */
}

class Table implements IDocumentItem {
 /* ... */
}

A collection of types implementingListing 4.15 IDocumentItem

?

Homogenous
collection

Heterogeneous
collection

Figure 4.6 If we have a bag that contains
only cats, we can bet that whichever item we
pull out of it will be a cat. If the bag can also
contain groceries, we are no longer able to
guarantee what we will pull out.

IDocumentItem is the common
interface for document elements.

Paragraph, Picture, and
Table all implement
IDocumentItem.

95Hiding and restoring type information
class MyDocument {
 items: IDocumentItem[];

 /* ... */
}

We’ve hidden some of the typing information, so we no longer know whether a partic-
ular item in the collection is a Paragraph, a Picture, or a Table, but we know that
it implements the DocumentItem or IDocumentItem contract. If we need only
behavior specified by that contract, we can work with the elements of the collection as
is. If we need an exact type, such as a picture that we want to pass to an image-enhanc-
ing add-on, we have to downcast the DocumentItem or IDocumentItem back to a
Picture.

SUM TYPE OR VARIANT

If we know up front all the types we are dealing with, we can use a sum type, as shown
in listing 4.16. We can define our document as an array of Paragraph | Picture |
Table (in which case we must track what each item in the collection is by some other
means) or as a type such as Variant<Paragraph, Picture, Table> (which keeps
track internally of the type it stores).

class Paragraph {
 /* ... */
}

class Picture {
 /* ... */
}

class Table {
 /* ... */
}

class MyDocument {
 items: (Paragraph | Picture | Table)[];

 /* ... */
}

Both Paragraph | Picture | Table and Variant<Paragraph, Picture, Table>
options allow us to store a set of items that don’t need to have anything in common (no
common base type or implemented interface). The advantage is that we don’t impose
anything on the types in the collection. The disadvantage is that there is not much we
can do with the items in the list without casting them back down to their actual types or,
in the Variant case, calling visit()and having to provide functions for each of the
possible types in the collection.

A collection of types as a sum typeListing 4.16

We store document items as an
array of IDocumentItem objects.

Paragraph, Picture, and
Table no longer
implement an interface.

The document item collection
is now an array of objects that
can be either of the types.

96 CHAPTER 4 Type safety

 As a reminder, because a type like Variant keeps track internally of which type it
actually stores, just as Either does, it knows which function to pick from a set of func-
tions passed to visit().

UNKNOWN TYPE

At an extreme, we can say we have a collection that can contain anything. As shown in
listing 4.17, TypeScript provides the type unknown to represent that type of collection.
Most object-oriented programming languages have a common base type that is the
parent of all other types, usually called Object. We’ll cover this topic in depth in
chapter 7 when we discuss subtyping.

class MyDocument {
 items: unknown[];
 /* ... */
}

This technique allows us to have a document containing anything. Types don’t need
to have a shared contract, and we don’t even need to know beforehand what the types
do. On the other hand, there’s even less we can do with the elements of this collec-
tion. We’ll almost always have to cast them to other types, so we have to keep track of
their original types in another way.

 Table 4.1 summarizes the different approaches and trade-offs.

4.4.2

A collection ofListing 4.17 unknown type

Pros and cons of heterogenous list implementationsTable 4.1

Pros Cons

Can easily use any property or methodHierarchy
of the base type without casting

Types in the collection must be related by
base type or implemented interface

Need to cast back to actual type to useNo requirement that types be relatedSum type
items if we don’t have Variant’s visit()

Need to keep track of actual types and castCan store anythingUnknown type
back to them to use items

The elements of the
array can be anything.

All these examples have pros and cons, depending on how flexible we want our collec-
tion to be in terms of what can be stored there and how often we expect to have to
restore the items to their original types. That being said, all the examples hide some
amount of type information when we put items in the collection. Another example of
hiding and restoring type information is serialization.

Serialization

When we write information to a file and want to load it back and use it in our pro-
gram, or when we connect to an internet service and send and retrieve some data, that
data travels as a sequence of bits. Serialization is the process of taking a value of a

97Hiding and restoring type information

certain type and encoding it as a sequence of bits. The opposite operation, deserializa-
tion, involves taking a sequence of bits and decoding it into a data structure we can
work with (figure 4.7).

 The exact encoding depends on the protocol we use. It can be JSON, XML, or any
other of the multitude of available protocols. From a type perspective, the important
part is that after serialization, we end up with a value that should be equivalent to the
typed value we started with, but all typing information becomes unavailable to the
type system. Effectively, we end up with a string or an array of bytes. The
JSON.stringify() method takes an object and returns a JSON representation of
that object as a string. If we stringify a Cat, as the next listing shows, we can write the
result to disk, to the network, or even to the screen, but we cannot get it to meow().

class Cat {
 meow() {
 /* ... */
 }
}

let serializedCat: string = JSON.stringify(new Cat());

// serializeCat.meow();

Serializing aListing 4.18 cat

Compact 2 doors

Front
wheel drive

{"type":"compact","doors":2,"drive":"front-wheel"}

DeserializationSerialization

Figure 4.7 A compact car with two doors and front-wheel drive serialized as JSON and then
deserialized back into a car

A Cat type that has
a meow() method. We serialize a Cat object

as a JSON string by using
JSON.stringify().

Obviously, we can’t use a
method like meow() because
serializedCat is a string.

We still know what the value is, but the type checker no longer does. The opposite
operation involves taking a serialized object and turning it back into a typed value. In
this case, we can use the JSON.parse() method, which takes a string and returns a
JavaScript object. Because this technique works for any string, the result of calling it is
of type any.

98 CHAPTER 4 Type safety
THE ANY TYPE TypeScript provides an any type. This type is used for interop-
erability with JavaScript when typing information is unavailable. any is a dan-
gerous type because the compiler does no type checking on instances of this
type, which can be freely converted to and from any other type. It’s up to the
developer to ensure that no misinterpretations happen.

If we know that we have a serialized Cat, we can assign it to a new Cat object by using
Object.assign() as shown in the following listing, and then cast it back to its type,
as Object.assign() returns a value of type any.

class Cat {
 meow() {
 /* ... */
 }
}

let serializedCat: string = JSON.stringify(new Cat());

let deserializedCat: Cat =
 <Cat>Object.assign(new Cat(), JSON.parse(serializedCat));

deserializedCat.meow();

In some cases, we can get and deserialize any number of possible types, in which case
it might be a good idea to encode some of the typing information in the serialized
object too. We can define a protocol in which each object is prefixed with a character
that represents its type. Then we can encode a Cat and prefix the resulting string with
"c" for Cat. If we get a serialized object, we check the first character. If it’s "c", we
can safely restore our Cat. If it’s "d", for Dog, we know not to deserialize a Cat, as
shown in the following listing.

class Cat {
 meow() { /* ... */ }
}

class Dog {
 bark() { /* ... */ }
}

function serializeCat(cat: Cat): string {
 return "c" + JSON.stringify(cat);
}

function serializeDog(dog: Dog): string {
 return "d" + JSON.stringify(dog);
}

Deserializing aListing 4.19 Cat

Serializing and tracking typeListing 4.20

We deserialize the object
by using JSON.parse(),
assign it to a new Cat

instance, and cast it to
the Cat type.

We can call meow() on the object, as it
is of type Cat and has a meow() method.

We serialize a Cat object
by prefixing a "c" to the
JSON representation.

We serialize a Dog object
by prefixing a "d" to the
JSON representation.

99Hiding and restoring type information

function tryDeserializeCat(from: string): Cat | undefined {
 if (from[0] != "c") return undefined;

 return <Cat>Object.assign(new Cat(), JSON.parse(from.substr(1)));
}

If we serialize a Cat object and call tryDeserializeCat() on its serialized represen-
tation, we get back a Cat object. If, on the other hand, we serialize a Dog object and call
tryDeserializeCat(), we get back undefined. Then we can check to see whether we
got an undefined and see whether we have a Cat, as shown in the next listing.

let catString: string = serializeCat(new Cat());
let dogString: string = serializeDog(new Dog());

let maybeCat: Cat | undefined = tryDeserializeCat(catString);

if (maybeCat != undefined) {
 let cat: Cat = <Cat>maybeCat;
 cat.meow();
}

maybeCat = tryDeserializeCat(dogString);

Deserializing with tracked typeListing 4.21

Given a serialized Cat or Dog, we
can attempt to deserialize a Cat.

If the first character is not "c", return
undefined because we can’t deserialize a Cat.

Otherwise, JSON.parse()
the rest of the string and
assign it to a Cat object.

We serialize a Cat
and a Dog to strings.

Calling tryDeserializeCat gives
us either a Cat or undefined.

We can check
whether we got a Cat.

If we did, we can cast to Cat and get
an object we can call meow() on.

Attempting to deserialize a Cat
object from a serialized Dog
object will give us undefined.

The reason why we can compare maybeCat with undefined, even though we couldn’t
compare Triangle with TLeft previously, is that undefined is a special unit type in
TypeScript. The undefined type has a single possible value, which is undefined. In
the absence of this type, we can always use a type like Optional<Cat>. We described
Optional<T> in chapter 3 as a type that contains a value of type T or nothing.

As we’ve seen throughout this chapter, types enable whole new levels of safety for
our code. We can capture what would’ve been implicit assumptions in type declaration
and make them explicit by avoiding primitive obsession and letting the type checker
make sure that we don’t misinterpret values. We can further restrict the allowed values
of a certain type and ensure that constraints are met during instance creation, so that
we have a guarantee that when we have an instance of a given type, it will always be valid.

On the other hand, we want to be more flexible in some situations and handle
multiple types in the same way. In such situations, we can hide some of the type infor-
mation and expand the possible values that a variable can take. In most cases, we
would still like to keep track of the original type of the value so we can restore it later.

100 CHAPTER 4 Type safety

4.4.3

We do that outside the type system by storing the type somewhere else, such as in
another variable. As soon as we no longer need the extra flexibility and want to rely on
the type checker again, we can restore the type by using a type cast.

Exercises

1 Which type should we use if we want to assign any possible value to it?

a any

b unknown

c any | unknown

d Either any or unknown

2 What is the best way to represent an array of numbers and strings?

a (number | string)[]

b number[] | string[]

c unknown[]

d any[]

Summary
 The primitive obsession antipattern shows up when we declare values as basic

types and make implicit assumptions about their meaning.
 The alternative to using primitive obsession is defining types that explicitly cap-

ture the meaning of the values and prevent misinterpretations.
 If we have additional constraints that we want to impose but can’t at compile

time, we can enforce them in constructors or factories, so that when we have an
object of the type, we are guaranteed that it is valid.

 Sometimes, we know more than the type checker does, as we can store typing
information outside the type system itself as data.

 We can use this information to perform safe type casts, adding more informa-
tion for the type checker.

 We may want to treat different types the same way, perhaps to store values of dif-
ferent types in a single collection or serialize them.

 We can hide type information by casting to a type that includes our type, a type
our type inherits from, a sum type, or a type that can store values of any other
type.

So far we’ve looked at basic types, ways to compose them, and other ways in which we
can leverage the type systems to increase the safety of our code. In chapter 5, we’ll
look at something radically different: What new possibilities will be open to us when
we can assign types to functions and treat functions like any other values in our code?

Answers to exercises
AVOIDING PRIMITIVE OBSESSION TO PREVENT MISINTERPRETATION

1 c—Specifying the measurement unit is a safer approach.

101Answers to exercises
ENFORCING CONSTRAINTS

1 Here is a possible solution:
declare const percentageType: unique symbol;

class Percentage {
 readonly value: number;
 [percentageType]: void;

 private constructor(value: number) {
 this.value = value;
 }

 static makePercentage(value: number): Percentage {
 if (value < 0) value = 0;
 if (value > 100) value = 100;

 return new Percentage(value);
 }
}

ADDING TYPE INFORMATION

1 a—Upcasts are safe (casting child to parent type).
2 b—Narrowing casts are unsafe (might lose information).

HIDING AND RESTORING TYPE INFORMATION

1 b—unknown is a safer option than any.
2 a—unknown and any remove too much type information.

Function types
We covered basic types and types built up from them. We also looked at how we can
declare new types to increase the safety of our programs and enforce various con-
straints on their values. This is about as far as we can get with algebraic data types or
the ability to combine types as sum types and product types.

 The next feature of type systems we are going to cover, which unlocks a whole
new world of expressiveness, is the ability to type functions. If we can name func-
tion types and use functions in the same places we use values of other types—as

This chapter covers
 Simplifying the strategy pattern with function

types

 Implementing a state machine without switch
statements

 Implementing lazy values as lambdas

 Using the fundamental data processing
algorithms map, filter, and reduce to reduce
code duplication
102

103A simple strategy pattern
variables, arguments, and function returns—we can simplify the implementation of
several common constructs and abstract common algorithms to library functions.

 In this chapter, we’ll look at how we can simplify the implementation of the strat-
egy design pattern. (We’ll also have a quick refresher on the pattern, in case you for-
got it.) Then we’ll talk about state machines and how they can be implemented more
succinctly with function properties. We’ll cover lazy values, or how we can defer
expensive computation in the hope that we won’t need it. Finally, we’ll deep dive into
the fundamental map(), reduce(), and filter() algorithms.

 All these applications are enabled by function types, the next step in the evolution
of type systems after basic types and their combinations. Because most programming
languages nowadays support these types, we’ll get a fresh look at some old, tried, and
tested concepts.

5.1 A simple strategy pattern
One of the most commonly used design patterns is the strategy pattern. The strategy
design pattern is a behavioral software design pattern that enables selecting an algo-
rithm at run time from a family of algorithms. It decouples the algorithms from the
components using them, which improves the flexibility of the overall system. The pat-
tern is usually presented as in figure 5.1.

 Let’s look at a concrete example. Suppose that we have a car wash with two types of
services: a Standard wash and a Premium wash (which, for an extra $3, provides addi-
tional polish).

 We can implement this example as a strategy, in which our IWashingStrategy
interface provides a wash() method. Then we provide two implementations of this

Context uses an algorithm
through the interface.

IStrategy represents
the algorithm interface.

Concrete implementations
of the interface

Context

...

ConcreteStrategy1

execute()

ConcreteStrategy2

execute()

IStrategy

execute()

Figure 5.1 Strategy pattern made up of an IStrategy interface,
ConcreteStrategy1 and ConcreteStrategy2 implementations, and a
Context that uses the algorithms through the IStrategy interface.

104 CHAPTER 5 Function types
interface: a StandardWash and a PremiumWash. Our CarWash is the context that
applies an IWashingStrategy.wash() to a car depending on which service the cus-
tomer paid for.

class Car {
 /* Represents a car */
}

interface IWashingStrategy {
 wash(car: Car): void;
}

class StandardWash implements IWashingStrategy {
 wash(car: Car): void {
 /* Perform standard wash */
 }
}

class PremiumWash implements IWashingStrategy {
 wash(car: Car): void {
 /* Perform premium wash */
 }
}

class CarWash {
 service(car: Car, premium: boolean) {
 let washingStrategy: IWashingStrategy;

 if (premium) {
 washingStrategy = new PremiumWash();
 } else {
 washingStrategy = new StandardWash();
 }

 washingStrategy.wash(car);
 }
}

This code works, but it is needlessly verbose. We’ve introduced an interface and two
implementing types, each providing a single wash() method. These types are not
really important; the valuable part of our code is the washing logic. This code is just a
function, so we can simplify our code a lot if we move from interfaces and classes to a
function type and the two concrete implementations.

5.1.1 A functional strategy

We can define WashingStrategy to be a type representing a function that receives a
Car as an argument and returns void. Then we can implement the two types of

Car-wash strategyListing 5.1

The Car class represents
a car to be washed.

IWashingStrategy is the
interface of our strategy pattern
declaring a wash() method.

StandardWash and
PremiumWash are
concrete implementations
of the strategy.

Depending on a flag, we
select the algorithm to
use and then wash() the
car instance with it.

105A simple strategy pattern

washes as two functions—standardWash() and premimumWash()—both taking a
Car and returning void. The CarWash can select one of them to apply to a given car.

class Car {
 /* Represents a car */
}

type WashingStrategy = (car: Car) => void;

function standardWash(car: Car): void {
 /* Perform standard wash */
}

function premiumWash(car: Car): void {
 /* Perform premium wash */
}

class CarWash {
 service(car: Car, premium: boolean) {
 let washingStrategy: WashingStrategy;

 if (premium) {
 washingStrategy = premiumWash;
 } else {
 washingStrategy = standardWash;
 }

 washingStrategy(car);
 }
}

This implementation has fewer parts than the preceding one, as we can see in figure 5.2.

Car-wash strategy revisitedListing 5.2

WashingStrategy is a
function that takes a
Car and returns void.

standardWash() and
premiumWash() implement
our car-washing logic.

Now we can assign a function
directly to washingStrategy
when we select the algorithm.

Because the washingStrategy variable
is a function, we can simply call it.

Each strategy is a function.

Context

...

concreteStrategy1() concreteStrategy2()

Context uses an algorithm
provided as a function.

Figure 5.2 Strategy pattern made up of a Context that uses a function: either
concreteStrategy1() or concreteStrategy2()

Let’s zoom in on the function type declaration, because we’re using one for the first
time.

106 CHAPTER 5 Function types

5.1.2

5.1.3

Typing functions

The function standardWash() takes an argument of type Car and returns void, so
its type is function from Car to void or, in TypeScript syntax, (car: Car) => void. The
function premiumWash(), even though it has a different implementation, has exactly
the same argument type and return type, so it has the same type.

FUNCTION TYPE OR SIGNATURE The type of a function is given by the type of its
arguments and its return type. If two functions take the same arguments and
return the same type, they have the same type. The set of arguments plus
return type is also known as the signature of a function.

We want to refer to this type, so we give it a name by declaring type WashingStrategy
= (car: Car) => void. Whenever we use WashingStrategy as a type, we mean the
function type (car: Car) => void. We refer to it in the CarWash.service()

method.
Because we can type functions, we can have variables that represent functions. In

our example, the washingStrategy variable represents a function with the signa-
ture we just named. We can assign any function that takes a Car and returns void to
this variable. We can also call it as we would a function. In the first example that used
an IWashingStrategy interface, we ran our car-washing logic by calling washing-

Strategy.wash(car). In our second example, in which washingStrategy is a
function, we simply called washingStrategy(car).

FIRST-CLASS FUNCTIONS The ability to assign functions to variables and treat
them like any other values in the type system results in what are called first-
class functions. That means the language treats functions like first-class citi-
zens, granting them the same rights as other values: they have types; and they
can be assigned to variables and passed around as arguments, checked for
validity, and converted (if compatible) to other types.

Strategy implementations

Earlier, we saw two ways to implement a strategy pattern. Contrasting the two imple-
mentations, the by-the-book strategy implementation in the first example requires a
lot of extra machinery: we need to declare an interface, and we need to have multiple
classes implementing that interface to provide the concrete logic of the strategy. The
second implementation is boiled down to the essence of what we are trying to achieve:
we have two functions implementing the logic, and we refer to them directly.

Both implementations achieve the same goals. The reason why the first one, which
relies on interfaces, is more widespread is that when design patterns became all the
rage in the 1990s, not all mainstream programming languages supported first-order
functions. In fact, few of them did. This is no longer the case. Most languages can type
functions now, and we can leverage that capability to provide more-succinct imple-
mentations of some design patterns.

It’s important to keep in mind that the pattern is the same: we are still encapsulat-
ing a family of algorithms and selecting at run time the one to use. The difference is

107A simple strategy pattern

5.1.4

5.1.5

in the implementation, which modern capabilities allow us to express more easily.
We’re replacing an interface and two classes (each class implementing a method) with
a type declaration and two functions.

In most cases, the more-succinct implementation is enough. We might need to
reconsider the interface and classes implementation when the algorithms are not rep-
resentable as simple functions. Sometimes, we need multiple functions or need to
track some state, in which case the first implementation would be better suited, as it
groups the related pieces of a strategy under a common type.

First-class functions

Before we move on, let’s quickly review some of the terms introduced in this section:

 The set of arguments plus the return value of a function is called the signature of
a function. The following two functions have the same signature:

function add(x: number, y: number): number {
return x + y;

}

function subtract(x: number, y: number): number {
return x - y;

}

 The signature of a function is equivalent to its type in languages that can type
functions. The preceding two functions have the type function from (number,
number) to number, or (x: number, y: number) => number. Note that the
actual name of the arguments doesn’t matter; (a: number, b: number) =>

number has the same type as (x: number, y: number) => number.
 When languages treat functions as they do any other values, we say that they

support first-class functions. Functions can be assigned to variables, passed as
arguments, and used like other values, which makes code more expressive.

Exercises

1 What is the type of a function isEven() that takes a number as an argument
and returns true if the number is even and false otherwise?
a [number, boolean]

b (x: number) => boolean

c (x: number, isEven: boolean)

d {x: number, isEven: boolean}

2 What is the type of a function check() that takes a number and a function of
the same type as isEven() as arguments and returns the result of applying the
given function to the given value?
a (x: number, func: number) => boolean

b (x: number) => (x: number) => boolean

c (x: number, func: (x: number) => boolean) => boolean

d (x: number, func: (x: number) => boolean) => void

108 CHAPTER 5 Function types

A state machine with5.2 out switch statements
One very useful application of first-class functions enables us to define a property of a
class as having a function type. Then we can assign different functions to it, changing
the behavior at run time. This acts as a plug-in method on the class, and we can swap it
as needed.

 We can implement a pluggable Greeter, for example. Instead of implementing a
greet() method, we implement a greet property with a function type. Then we can
assign multiple greeting functions to it, such as sayGoodMorning() and sayGood-
Night().

function sayGoodMorning(): void {
 console.log("Good morning!");
}

function sayGoodNight(): void {
 console.log("Good night!");
}

class Greeter {
 greet: () => void = sayGoodMorning;
}

let greeter: Greeter = new Greeter();

greeter.greet();

greeter.greet = sayGoodNight;

greeter.greet();

5.2.1

PluggableListing 5.3 Greeter

Two greeting functions that
output their respective
greetings to the console

greet is a function with no
arguments that returns void and
defaults to sayGoodMorning().

Because greet is a function
property, we can call it as a
method of the class.

We can assign
another function to it.

The second call will
invoke sayGoodNight().

This follows from the strategy pattern implementation discussed in the previous sec-
tion, but it’s worth noting that this approach enables us to easily add pluggable behav-
ior to a class. If we want to add a new greeting, we simply need to add another
function with the same signature and assign it to the greet property.

Early Programming with Types

While working on an early draft of this book, I wrote a small script to help me keep
the source code in sync with the text. The draft was written in the popular Markdown
format. I kept the source code in separate TypeScript files so I could compile them
and ensure that even if I update the code samples, they’ll still work.

I needed a way to ensure that the Markdown text always contains the latest code
samples. The code samples always appear between a line containing ```ts and a line
containing ```. When HTML is generated from the Markdown source, ```ts is
interpreted as the beginning of a TypeScript code block, which gets rendered with

109A state machine without switch statements

Sample script

Manuscript

Markdown document

Section 1

<!-- sample1 -->
``` ts
```

Section 2

<!-- sample2 -->
``` ts
```
...

Sample1.ts

Code snippet
in Markdown

Code snippet
in MarkdownSample script

Sample2.ts

Figure 5.3 Two TypeScript (.ts) files containing code samples that
should be inlined in the Markdown document between ```ts and
``` markers. The <!-- … --> comments annotate the code 
samples for my script.

TypeScript syntax highlighting, whereas ``` marks the end of that code block. The
contents of these code blocks had to be inlined from actual TypeScript source files
that I could compile and validate outside the text (figure 5.3).

To determine which code sample went where, I relied on a small trick. Markdown
allows raw HTML in the document text, so I annotated each code sample with an
HTML comment, such as <!-- sample1 -->. HTML comments do not get rendered,
so when Markdown is converted to HTML, they became invisible. On the other hand,
my script could use these comments to determine which code sample to inline where.

When all code samples were loaded from disk, I had to process each Markdown
document of the draft and produce an updated version as follows:

 In text processing mode, simply copy each line of the input text to the output
document as is. When a marker is encountered (<!-- sample -->), grab the
corresponding code sample, and switch to marker processing mode.

 In marker processing mode, again copy each line of the input text to the output
document until we encounter a code block marker (```ts). When the code
marker is encountered, output the latest version of the code sample as loaded
from the TypeScript file, and switch to code processing mode.

 In code processing mode, we already ensured that the latest version of the code
is in the output document, so we can skip the potentially outdated version in
the code block. We skip each line until we encounter the end of code block
marker (```). Then we switch back to text processing mode.

With each run, the existing code samples in the document preceded by a <!-- ...

--> marker get updated to the latest version of the TypeScript files on disk. Other



110 CHAPTER 5 Function types

     
  

    

              
 

  
 
 
  

  

  
                
   

   
 
     
  
code blocks that aren’t preceded by <!-- ... --> don’t get updated, as they are
processed in text processing mode.

 As an example, here is a helloWorld.ts code sample.

console.log("Hello world!");

We want to embed this code in Chapter1.md and make sure that it’s kept up to date,
as shown in the next listing.

# Chapter 1

Printing "Hello world!".
<!-- helloWorld -->
```ts
console.log("Hello");
```

  

  
  

5.2.2

  

helloWorld.tsListing 5.4

Chapter1.mdListing 5.5

This is not quite up to date. The 
string here is "Hello", which 
does not match helloWorld.ts.

This document gets processed line by line as follows:

1 In text processing mode, "# Chapter 1" is copied to the output as is.
2 "" (blank line) is copied to the output as is.
3 "Printing "Hello world!"." is copied to the output as is.
4 "<!-- helloWorld -->" is copied to the output as is. This is a marker,

though, so we keep track of the code sample to be inlined (helloWorld.ts) and
switch to marker processing mode.

5 "```ts" is copied to the output as is. This marker is a code block marker, so
immediately after copying it to the output, we also output the contents of hello-
World.ts. We also switch to code processing mode.

6 "console.log("Hello");" is skipped. We don’t copy lines in code process-
ing mode, as we are replacing them with the latest in the code sample file.

7 "```" is an end-of-code-block marker. We insert it and then switch back to text
processing mode.

State machines

The behavior of our text processing script is best modeled as a state machine. A state
machine has a set of states and a set of transitions between pairs of states. The
machine starts in a given state, also known as the start state ; if certain conditions are
met, it can transition to another state.

This is exactly what our text processor does with its three processing modes. Input
lines are processed in a certain way in text processing mode. When some condition is met
(a <!-- sample --> marker is encountered), our processor transitions to marker pro-
cessing mode. Again, when some other condition is met (a ```ts code-block marker is



111A state machine without switch statements
encountered), it transitions to code pro-
cessing mode. When the end of the code-
block marker is encountered (```), it
transitions back to text processing mode
(figure 5.4).

 Now that we’ve modeled the solu-
tion, let’s look at how we would imple-
ment it. One way to implement a state
machine is to define the set of states as
an enumeration, keeping track of the
current state, and get the desired behav-
ior with a switch statement that covers
all possible states. In our case, we can
define a TextProcessingMode enum.

 Our TextProcessor class will
keep track of the current state in a
mode property and implement the switch statement in a processLine() method.
Depending on the state, this method will in turn invoke one of the three processing
methods: processTextLine(), processMarkerLine(), or processCodeLine().
These functions will implement the text processing and then, when appropriate, tran-
sition to another state by updating the current state.

 Processing a Markdown document consisting of multiple lines of text means pro-
cessing each line in turn, using our state machine, and then returning the final result
to the caller, as shown in the next listing.

enum TextProcessingMode {   
    Text,
    Marker,
    Code,
}

class TextProcessor {
    private mode: TextProcessingMode = TextProcessingMode.Text;
    private result: string[] = [];
    private codeSample: string[] = [];

    processText(lines: string[]): string[] {
        this.result = [];
        this.mode = TextProcessingMode.Text;

        for (let line of lines) {   
            this.processLine(line);
        }

        return this.result;
    }

State machine implementationListing 5.6

Text
processing

Marker
processing

Code
processing

Start state

Transition on
<!-- sample -->

Transition on
```

Transition on
```ts

Figure 5.4 Text processing state machine with the 
three states (text processing, marker processing, 
code processing) and transitions between the 
states based on input. Text processing is the initial 
state or start state.

States are represented 
as an enum.

Processing a text document means 
processing each line and returning 
the resulting string array.



112 CHAPTER 5 Function types

 
le 

tarts 
le and 
    private processLine(line: string): void {
        switch (this.mode) {    
            case TextProcessingMode.Text:
                this.processTextLine(line);
                break;
            case TextProcessingMode.Marker:
                this.processMarkerLine(line);
                break;
            case TextProcessingMode.Code:
                this.processCodeLine(line);
                break;
        }
    }

    private processTextLine(line: string): void {    
        this.result.push(line);

        if (line.startsWith("<!--")) {    
            this.loadCodeSample(line);
            
            this.mode = TextProcessingMode.Marker;
        }
    }

    private processMarkerLine(line: string): void {    
        this.result.push(line);

        if (line.startsWith("```ts")) {    
            this.result = this.result.concat(this.codeSample);

            this.mode = TextProcessingMode.Code;
        }
    }

    private processCodeLine(line: string): void {    
        if (line.startsWith("```")) {    
            this.result.push(line);

            this.mode = TextProcessingMode.Text;
        }        
    }

    private loadCodeSample(line: string) {  
        /* Load sample based on marker, store in this.codeSample  */
    }
}

We omitted the code to load a sample from an external file, as it isn’t particularly rele-
vant to our state machine discussion. This implementation works but can be simpli-
fied if we use a pluggable function.

 Note that all our text processing functions have the same signature: they take a
line of text as a string argument and return void. What if, instead of having
processLine() implement a big switch statement and forward to the appropriate
function, we make processLine() one of those functions?

The state machine switch statement 
calls the appropriate processor 
based on the current state.

Processes a line of text. If the line
starts with "<!--", load code samp
and transition to next state.

Processes marker. If the line s
with "```ts", inline code samp
transition to next state.

Process code by skipping 
lines. If the line starts 
with "```", transition to 
text processing state.

The body of this function 
is omitted, as it’s not 
important for this example.



113A state machine without switch statements
 Instead of implementing processLine() as a method, we can define it as a prop-
erty of the class with type (line: string) => void and initialize it with process-
TextLine(), as shown in the following code. Then, in each of the three text
processing methods, instead of setting mode to a different enum value, we set
processLine to a different method. In fact, we no longer need to keep track of our
state externally. We don’t even need an enum!

class TextProcessor {
    private result: string[] = [];
    private processLine: (line: string) => void = this.processTextLine;
    private codeSample: string[] = [];

    processText(lines: string[]): string[] {
        this.result = [];
        this.processLine = this.processTextLine;

        for (let line of lines) {
            this.processLine(line);
        }

        return this.result;
    }

    private processTextLine(line: string): void {
        this.result.push(line);

        if (line.startsWith("<!--")) {
            this.loadCodeSample(line);
            
            this.processLine = this.processMarkerLine;    
        }
    }

    private processMarkerLine(line: string): void {
        this.result.push(line);

        if (line.startsWith("```ts")) {
            this.result = this.result.concat(this.codeSample);

            this.processLine = this.processCodeLine;    
        }
    }

    private processCodeLine(line: string): void {
        if (line.startsWith("```")) {
            this.result.push(line);

            this.processLine = this.processTextLine;   
        }        
    }

    private loadCodeSample(line: string) {

Alternative state machine implementationListing 5.7

State transitions 
are now done by 
updating 
this.processLine 
to the appropriate 
method.



114 CHAPTER 5 Function types
        /* Load sample based on marker, store in this.codeSample  */
    }
}

The second implementation gets rid of the TextProcessingMode enum, the mode
property, and the switch statement that forwarded processing to the appropriate
method. Instead of handling forwarding, processLine now is the appropriate pro-
cessing method.

 This implementation removes the need to keep track of states separately and keep
that in sync with the processing logic. If we ever wanted to introduce a new state, the old
implementation would’ve forced us to update the code in several places. Besides imple-
menting the new processing logic and state transitions, we would’ve had to update the
enum and add another case to the switch statement. Our alternative implementation
removes the need for that task: a state is represented purely by a function.

 
 
State machines with sum types
One caveat is that for state machines with many states, capturing states and even
transitions explicitly might make the code easier to understand. Even so, instead of
using enums and switch statements, another possible implementation represents
each state as a separate type and the whole state machine as a sum type of the
possible states, allowing us to break it apart into type-safe components. Following
is an example of how we would implement the state machine by using a sum type.
The code is a bit more verbose, so if possible, we should try the implementation
we’ve discussed so far, which is another alternative to a switch-based state
machine.

When a sum type is used, each state is represented by a different type, so we have
a TextLineProcessor, a MarkerLineProcessor, and a CodeLine-
Processor. Each keeps track of the processed lines so far in a result member
and provides a process() method to handle a line of text.

State machine with sum type
class TextLineProcessor {
    result: string[];

    constructor(result: string[]) {
        this.result = result;
    }

    process(line: string): TextLineProcessor | MarkerLineProcessor {
        this.result.push(line);

        if (line.startsWith("<!--")) {   
            return new MarkerLineProcessor(
                this.result, this.loadCodeSample(line));
        } else {
            return this;
        }
    }

TextLineProcessor returns
either a TextLineProcessor
or a MarkerLineProcessor

to process the next line.

If the line starts with 
"<!--", return a new 
MarkerLineProcessor; 
otherwise, return 
this processor.



115A state machine without switch statements
    private loadCodeSample(line: string): string[] {
        /* Load sample based on marker, store in this.codeSample */
    }
}

class MarkerLineProcessor {
    result: string[];
    codeSample: string[]

    constructor(result: string[], codeSample: string[]) {
        this.result = result;
        this.codeSample = codeSample;
    }

    process(line: string): MarkerLineProcessor | CodeLineProcessor {
        this.result.push(line);

        if (line.startsWith("```ts")) {   
            this.result = this.result.concat(this.codeSample);

            return new CodeLineProcessor(this.result);
        } else {
            return this;
        } 
    }
}

class CodeLineProcessor {
    result: string[];

    constructor(result: string[]) {
        this.result = result;
    }

    process(line: string): CodeLineProcessor | TextLineProcessor {   
        if (line.startsWith("```")) {   
            this.result.push(line);

            return new TextLineProcessor(this.result);
        } else {
            return this;
        }
    }
}

function processText(lines: string): string[] {
    let processor: TextLineProcessor | MarkerLineProcessor    
        | CodeLineProcessor = new TextLineProcessor([]);

    for (let line of lines) {
        processor = processor.process(line);   
    }

    return processor.result;
}

MarkerLineProcessor returns
either a MarkerLineProcessor or

a CodeLineProcessor.

If we encounter "```ts", load the
code sample and return a new
CodeLineProcessor; otherwise,

return this processor.

CodeLineProcessor returns
a CodeLineProcessor

or a TextLineProcessor.

If the line starts with 
"```", append it to 
the result and return a 
new TextLineProcessor; 
otherwise, return this 
processor.

The states are represented by the processor,
which is a sum type of TextLineProcessor,

MarkerLineProcessor, and CodeLineProcessor.

processor gets updated 
after each line processed, in 
case there is a state change.



116 CHAPTER 5 Function types

 

 

               
            
           
           
          
 
             
   
  
  
  
  
 
 
  
  

            
 

            
(continued)
All our processors return a processor instance: this, if there is no state change, or
a new processor as state changes. The processText() runs the state machine by
calling process() on each line of text and updating processor as state changes
by reassigning it to the result of the method call.

Now the set of states is spelled out explicitly in the signature of the processor vari-
able, which can be a TextLineProcessor, a MarkerLineProcessor, or a
CodeLineProcessor.

The possible transitions are captured in the signatures of the process() methods.
TextLineProcessor.process returns TextLineProcessor | MarkerLine-
Processor, for example, so it can stay in the same state (TextLineProcessor)
or transition to the MarkerLineProcessor state. These state classes can have
more properties and members if needed. This implementation is slightly longer than
the one that relies on functions, so if we don’t need the extra features, we are better
off using the simpler solution.

5.2.3 State machine implementation recap

Let’s quickly review the alternative implementations discussed in this section and then
look at other applications of function types:

 The “classical” implementation of a state machine uses an enum to define all
the possible states, a variable of that enum type to keep track of the current
state, and a big switch statement to determine which processing should be
performed based on the current state. State transitions are implemented by
updating the current state variable. The drawback of this implementation is
that states are removed from the processing that we want to run during each
state, so the compiler can’t prevent mistakes when we run the wrong processing
while in a given state. Nothing stops us, for example, from calling process-

CodeLine() even when we’re in TextProcessingMode.Text. We also have
to maintain state and transitions as a separate enum, with the risk of running
out of sync. (We might add a new value to the enum but forget to add a case for
it in the switch statement, for example.)

 The functional implementation represents each processing state as a function
and relies on a function property to track the current state. State transitions are
implemented by assigning the function property to another state. This imple-
mentation is lightweight and should work for many cases. There are two draw-
backs: sometimes, we need to associate more information with each state; and
we might want to be explicit when declaring the possible states and transitions.

 The sum type implementation represents each processing state as a class and
relies on a variable representing the sum type of all the possible states to keep
track of the current state. State transitions are implemented by reassigning the
variable to another state, which allows us to add properties and members to



117Avoiding expensive computation with lazy values
each state and keep them grouped together. The drawback is that the code is
more verbose than the functional alternative.

This concludes our discussion of state machines. In the next section, we look at
another use of function types: implementing lazy evaluation.

5.2.4 Exercises

1 Model a simple connection that can be open or closed as a state machine. A
connection is opened with connect and closed with disconnect.

2 Implement the preceding connection as a functional state machine with a
process() function. In a closed connection, process() opens a connection.
In an open connection, process() calls a read() function that returns a string.
If the string is empty, the connection is closed; otherwise, the read string is
logged to the console. read() is given as declare function read(): string;.

5.3 Avoiding expensive computation with lazy values
Another advantage of being able to use functions as any other value is that we can
store them and invoke them only when needed. Sometimes, a value we may want is
expensive to compute. Let’s say that my program can build a Bike and a Car. I may
want a Car. But a Car is expensive to build, so I might decide to ride my bike instead.
A Bike is extremely cheap to build, so I’m not worried about the cost. Instead of
always building a Car with each run of the program, just so I can use it if I want it,
wouldn’t it be better to give me the ability to ask for a Car? In that case, I would ask
for it when I really needed it and execute the expensive building logic then. If I never
asked for it, no resources would be wasted.

 The idea is to postpone expensive computation as much as possible, in the hope
that it may not be needed at all. Because computation is expressed as functions, we
can pass around functions instead of actual values and call them when and whether
we need the values. This process is called lazy evaluation. The opposite is eager evalua-
tion, in which we produce the values immediately and pass them around even if we
decide later to discard them.

class Bike { }    
class Car { }   

function chooseMyRide(bike: Bike, car: Car): Bike | Car {    
    if (isItRaining()) {
        return car;
    } else {
        return bike;
    }
}

chooseMyRide(new Bike(), new Car());    

EagerListing 5.8 Car production

Car and Bike. Let’s assume 
that Car is expensive to create.

The chooseMyRide() function
will pick Bike or Car,

depending on some condition.

To call chooseMyRide(), 
we need to create a Car.



118 CHAPTER 5 Function types
In our eager Car production example, to call chooseMyRide(), we need to supply a
Car object, so we’re already paying the cost of building a Car. If the weather is nice
and I decide to ride my bike, the Car instance was created for nothing.

 Let’s switch to a lazy approach. Instead of providing a Car, let’s provide a function
that returns a Car when called.

class Bike { }
class Car { }

function chooseMyRide(bike: Bike, car: () => Car): Bike | Car {   
    if (isItRaining()) {
        return car();    
    } else {
        return bike;
    }
}

function makeCar(): Car {    
    return new Car();
}

chooseMyRide(new Bike(), makeCar);  

The lazy version will not create an expensive Car unless it’s really needed. If I decide
to ride my bike instead, the function never gets called, and no Car gets created.

 This is something we could achieve with pure object-oriented constructs, albeit
with a lot more code. We could declare a CarFactory class that wraps a makeCar()
method and use that as the argument to chooseMyRide(). We would then create a
new instance of CarFactory when calling chooseMyRide(), which would invoke
the method when needed. But why write more code when we can write less? In fact, we
can make our code even shorter.

5.3.1 Lambdas

Most modern programming languages support anonymous functions, or lambdas. Lamb-
das are similar to normal functions but don’t have names. We would use lambdas
whenever we have a one-off function: a function we usually refer to only once, so
going through the trouble of naming it becomes extra work. Instead, we can provide
an inline implementation.

 In our lazy car example, a good candidate is makeCar(). Because choose-
MyRide() needs a function with no arguments that returns a Car, we had to declare
this new function that we refer to only once: when we pass it as an argument to
chooseMyRide(). Instead of this function, we can use an anonymous function, as
shown in the following listing.

LazyListing 5.9 Car production

Instead of a Car argument,
chooseMyRide() now takes a
function that returns a Car.

We call this function only 
when we know for sure 
that we need a Car.

We wrap car-making in a function 
and pass that to chooseMyRide().



119Avoiding expensive computation with lazy values
 

class Bike { }
class Car { }

function chooseMyRide(bike: Bike, car: () => Car): Bike | Car {
    if (isItRaining()) {
        return car();
    } else {
        return bike;
    }
}

chooseMyRide(new Bike(), () => new Car());    

The TypeScript lambda syntax is very similar to the function type declaration: we have
the list of arguments (none in this particular case) in parentheses, then =>, and then
the body of the function. If the function had multiple lines, we would’ve put them
between { and }, but because we have only a single call to new Car(), this is implic-
itly considered to be the return statement for the lambda, so we get rid of makeCar()
and put the construction logic in a one-liner.

LAMBDA OR ANONYMOUS FUNCTION A lambda, or anonymous function, is a
function definition that doesn’t have a name. Lambdas are usually used for
one-off, short-lived processing and are passed around like data.

Lambdas wouldn’t be very useful if we were unable to type functions. What would we
do with an expression such as () => new Car()? If we couldn’t store it in a variable or
pass it as an argument to another function, there really wouldn’t be much use for it.
On the other hand, having the ability to pass functions around like values enables sce-
narios like the preceding one, in which producing a Car instance lazily is just a few
characters longer than the eager version.

AnonymousListing 5.10 Car production

Lazy evaluation
A common feature of many functional programming languages is lazy evaluation. In
such languages, everything is evaluated as late as possible, and we don’t have to be
explicit about it. In such languages, chooseMyRide() would by default construct
neither a Bike nor a Car. Only when we actually try to use the object returned by
chooseMyRide()—by calling ride() on it, for example—would the Bike or Car
be created.

Imperative programming languages such as TypeScript, Java, C#, and C++ are
eagerly evaluated. That being said, as we saw previously, we can simulate lazy eval-
uation fairly easily when necessary. We’ll see more examples of this when we discuss
generators later.

A lambda that doesn’t take any 
arguments and returns a Car



120 CHAPTER 5 Function types
Exercise5.3.2

1 Which of the following implements a lambda that adds two numbers?
a function add(x: number, y: number)=> number { return x + y; }
b add(x: number, y: number) => number { return x + y; }
c add(x: number, y: number) { return x + y; }
d (x: number, y: number) => x + y;

Using map, filter, and reduce5.4
Let’s look at another capability unlocked by typed functions: functions that take as
arguments or return other functions. A “normal” function that accepts one or more
nonfunction arguments and returns a nonfunction type is also known as a first-order
function, or a regular, run-of-the-mill function. A function that takes a first-order func-
tion as an argument or returns a first-order function is called a second-order function.

 We could climb up the ladder and say that a function that takes a second-order
function as an argument or returns a second-order function is called a third-order func-
tion, but in practice, we simply refer to all functions that take or return other functions
as higher-order functions.

 An example of a higher-order function is the second iteration of choose-
MyRide() from the preceding section. That function requires an argument of type
() => Car, which would be a function itself.

 In fact, it turns out that several very useful algorithms can be implemented as higher-
order functions, the most fundamental ones being map(), filter(), and reduce().
Most programming languages ship with libraries that provide versions of these func-
tions, but in DIY fashion, we’ll look at possible implementations and go over the details.

map()5.4.1

The premise behind map() is very straightforward: given a collection of values of
some type, call a function on each of those values, and return the collection of results.
This type of processing shows up over and over in practice, so it makes sense to reduce
code duplication.

 Let’s take two scenarios as examples. First, we have an array of numbers, and we
want to square each number in the array. Second, we have an array of strings, and we
want to compute the length of each string in the array.

 We could implement these examples with a couple of for loops, but looking at
them side by side, as shown in the next listing, should give us a feeling that some of
the commonality could be abstracted away into shared code.

let numbers: number[] = [1, 2, 3, 4, 5];   
let squares: number[] = [];

for (const n of numbers) {
    squares.push(n * n);    
}

Ad hoc mappingListing 5.11

Array of numbers

For each number in the array, we square 
it and add it to the squares array.



121Using map, filter, and reduce
let strings: string[] = ["apple", "orange", "peach"];   
let lengths: number[] = [];

for (const s of strings) {
    lengths.push(s.length);   
}

Although the arrays and transformations are different, the structure is obviously very
similar (figure 5.5).

DIY MAP

Let’s look at an implementation of map() for arrays and see how we can avoid writing
this kind of loop over and over. We’ll use generic types T and U, as the implementation
works regardless of what T and U are. This way, we can use this function with different
types, as opposed to restricting it to, say, arrays of numbers.

 Our function takes an array of Ts and a function that takes an item T as argument
and returns a value of type U. It collects the result in an array of Us. The implementa-
tion in the next listing simply goes over each item in the array of Ts, applies the given
function to it, and then stores the result in the array of Us.

function map<T, U>(items: T[], func: (item: T) => U): U[] {    
    let result: U[] = [];   

    for (const item of items) {
        result.push(func(item));   
    }

    return result;    
}

Listing 5.12  map()

Array of strings

For each string in the array, we 
add its length to the lengths array.

1 2 3 4 5 item * item

1 4 9 16 25

"apple" "orange" "peach" item.length

5 6 5

Figure 5.5 Squaring numbers and 
getting string lengths are very different 
scenarios, but the overall structure of 
the transformation is the same: take an 
input array, apply a function, and 
produce an output array.

map() takes an array of items of
type T and a function from T to
U, and returns an array of Us.

Start with an empty 
array of Us.

For each item, push the result 
of func(item) to the array of Us.

Return the 
array of Us.



122 CHAPTER 5 Function types
This simple function encapsulates the common processing of the preceding example.
With map(), we can produce the array of squares and the array of string lengths with a
couple of one-liners, as the following listing shows.

let numbers: number[] = [1, 2, 3, 4, 5];
let squares: number[] = map(numbers, (item) => item * item);   

let strings: string[] = ["apple", "orange", "peach"];
let lengths: number[] = map(strings, (item) => item.length);    

map() encapsulates the application of the function that we give it as argument. We
just hand it an array of items and a function, and we get back the array resulting from
the application of the function. Later, when we discuss generics, we’ll see how we can
generalize this even further to make it work with any data structure, not only arrays.
Even with the current implementation, though, we get a very good abstraction for
applying functions to sets of items, which we can reuse in many situations.

5.4.2 filter()

The next very common scenario, the cousin of map(), is filter(). Given a collec-
tion of items and a condition, filter out the items that don’t meet the condition and
return the collection of items that do.

 Going back to our numbers and strings examples, let’s filter the list so that we keep
only the even numbers and the strings of length 5. map() can’t help us here, as it pro-
cesses all elements in the collection, but in this case, we want to discard some. The ad-
hoc implementation would again consist of looping over the collections and checking
whether the condition is met, as shown in the next listing.

let numbers: number[] = [1, 2, 3, 4, 5];
let evens: number[] = []

for (const n of numbers) {
    if (n % 2 == 0) {   
        evens.push(n);
    }
}

let strings: string[] = ["apple", "orange", "peach"];
let length5Strings: string[] = [];

UsingListing 5.13 map()

Ad hoc filteringListing 5.14

Call map() with the lambda (item) => item
* item. (In this case, item is a number.)

Call map() with the lambda (item) => item.length.
(In this case, item is a string.)

Push item only 
if it is even



123Using map, filter, and reduce
for (const s of strings) {
    if (s.length == 5) {   
        length5Strings.push(s);
    }
}

Again, we immediately see a common underlying structure (figure 5.6).

DIY FILTER

Just as we did with map(), we can implement a generic filter() higher-order func-
tion that takes as arguments an input array and a filter function, and returns the fil-
tered output, as shown in the following code. In this case, if the input array is of type T,
the filter function is a function that takes a T as argument and returns a boolean. A
function that takes a single argument and returns a boolean is also called a predicate.

function filter<T>(items: T[], pred: (item: T) => boolean): T[] {    
    let result: T[] = [];

    for (const item of items) {
        if (pred(item)) {    
            result.push(item);
        }
    }

    return result;
}

Let’s see what the filtering code looks like when we use the common structure that we
implemented in our filter() function. Both the even numbers and strings of
length 5 become one-liners in the next listing.

Listing 5.15  filter()

Push item only 
if it has length 5

1 2 3 4 5 item % 2 == 0

2 4

"apple" "orange" "peach" item.length == 5

"apple" "peach"

Figure 5.6 Even numbers and 
strings with length 5 share a 
structure. We traverse the input, 
apply the filter, and output the items 
for which the filter returns true.

filter() takes an array of Ts
and a predicate (a function

from T to boolean).

If the predicate returns true, the 
item is added to the result array; 
otherwise, it’s skipped.



124 CHAPTER 5 Function types
 

let numbers: number[] = [1, 2, 3, 4, 5];
let evens: number[] = filter(numbers, (item) => item % 2 == 0);

let strings: string[] = ["apple", "orange", "peach"];
let length5Strings: string[] = filter(strings, (item) => item.length == 5);

The arrays are filtered by using a predicate—in the first case, a lambda that returns
true if the number is divisible by 2, and in the second case, a lambda that returns
true if the string has length 5.

 With the second common operation implemented as a generic function, let’s
move on to the third and last operation covered in this chapter.

5.4.3 reduce()

So far, we can apply a function to a collection of items by using map(), and we can
remove items that don’t meet certain criteria from a collection by using filter().
The third common operation involves merging all the collection items into a
single value.

 We might want to calculate the product of all numbers in a number array, for
example, and concatenate all the strings in a string array to form one big string. These
scenarios are different but have a common underlying structure. First, let’s look at the
ad hoc implementation.

let numbers: number[] = [1, 2, 3, 4, 5];
let product: number = 1;    

for (const n of numbers) {
    product = product * n;   
}

let strings: string[] = ["apple", "orange", "peach"];
let longString: string = "";   

for (const s of strings) {
    longString = longString + s;   
}

In both scenarios, we start with an initial value; then we accumulate the result by
going over the collections and combining each item with the accumulator. When
we’re done going over the collections, product contains the product of all the num-
bers in the numbers array, and longString is the concatenation of all strings in the
strings array (figure 5.7).

UsingListing 5.16 filter()

Ad hoc reducingListing 5.17

In the product case, we start 
with an initial value of 1.

We proceed to multiply product by every number 
in our collection, accumulating the result.

In the string case, we start 
with an empty string.

We append each string to the empty 
string, accumulating the result.



125Using map, filter, and reduce
 

Figure 5.7 Common structure of combining the numbers in a number array and strings in a string array. 
In the first case, the initial value is 1, and the combination we apply is multiplication with each item. In 
the second case, the initial value is "", and the combination we apply is concatenation with each item.

DIY REDUCE

In listing 5.18, we’ll implement a generic function that takes an array of Ts, an initial
value of type T, and a function that takes two arguments of type T and returns a T.
We’ll store the running total in a local variable and update it by applying the function
to it and each element of the input array in turn.

function reduce<T>(items: T[], init: T, op: (x: T, y: T) => T): T {    
    let result: T = init;

    for (const item of items) {
        result = op(result, item);    
    }

    return result;
}

This function has three arguments, and the others have two. The reason why we need
an initial value instead of starting with, say, the first element of the array is that we
need to handle the case when the input array is empty. What would result be if there
was no item in the collection? Having an initial value covers that case, as we would sim-
ply return that.

Listing 5.18  reduce()

1 2 3 4 5 acc = acc * item

1 120

"apple" "orange" "peach" acc = acc + item

Initial value

Initial value

"" "appleorangepeach"

acc is the accumulator,
which starts with the initial
value and ends up with the final
combination of all elements.

reduce() takes an array of Ts, an
initial value, and an operation

combining two Ts into one.

Each item in the array is 
combined with the running total 
by using the given operation.



126 CHAPTER 5 Function types

   
  
         
   
       
 Let’s see how we can update our ad-hoc implementations to use reduce().

let numbers: number[] = [1, 2, 3, 4, 5];
let product: number = reduce(numbers, 1, (x, y) => x * y);    

let strings: string[] = ["apple", "orange", "peach"];
let longString: string = reduce(strings, "", (x, y) => x + y);    

reduce() has a few subtleties that the other two functions don’t. Besides requiring an
initial value, the order in which the items are combined may affect the final result. For
the operations and initial values in our example, that’s not the case. But what if our
initial string was "banana"? Then, concatenating from left to right, we would get
"bananaappleorangepeach". But if we traversed the array from right to left, always
adding the item to the beginning of the string, we would get "appleorangepeach-
banana".

 Or if our combining operation appended the first letters of each string together,
applying that to "apple" and "orange" first would give us "ao". Applying it again to
"ao" and "peach" would give us "ap". On the other hand, if we started with
"orange" and "peach", we would have "op". Then "apple" and "op" would give
us "ao" (figure 5.8).

UsingListing 5.19 reduce()

For numbers, we start with an
initial value of 1 and the operation

(x, y) => x * y (multiplication).

For strings, we start with an initial
value of "" and the operation

(x, y) => x + y (concatenation).

"apple" "orange" "peach"Combining two first
letters left to right

Combining two first
letters right to left

"a" "ao""" "ap"

"apple" "orange" "peach"

"ao" "op" """p"

Figure 5.8 Combining an array of strings with the operation “first letter of both strings” gives us
different results when applied from left to right and when applied from right to left. In the first case,
we start with an empty string and "apple", then "a" and "orange" , then "ao" and "peach",
giving us "ap". In the second case, we start with "peach" and an empty string, followed by
"orange" and "p", giving us "op"; and then "apple" and "op", giving us "ao".



127Using map, filter, and reduce
Conventionally, reduce() is applied left to right, so whenever you encounter it as a
library function, it should be safe to assume that’s how it works. Some libraries also
provide a right-to-left version. The JavaScript Array type, for example, has both
reduce() and reduceRight() methods. See the sidebar “Monoids” if you want to
learn more about the math behind this.

Monoids
In abstract algebra, we deal with sets and operations on those sets. As we saw pre-
viously, we can think of a type as a set of possible values. An operation on type T
that takes two Ts and returns another T, (T, T) => T, can be interpreted as an oper-
ation on the set of values T. The set of number and +, which is (x, y) => x + y,
for example, forms an algebraic structure.

These structures are defined by the properties of their operations. An identity is an
element id of T for which the operation op(x, id) == op(id, x) == x. In other
words, combining id with any other element leaves the other element unchanged.
Identity is 0 when the set is number and the operation is addition, 1 when the set is
number and the operation is multiplication, and "" (the empty string) when the set
is string and the operation is string concatenation.

Associativity is a property of the operation that says the order in which we apply it to
a sequence of elements doesn’t matter, as we’ll get the same result in the end. For
any x, y, z of T, op(x, op(y, z)) == op(op(x, y), z). This is true, for example,
for number addition and multiplication but not true for subtraction or our “first letter
of both strings” operation.

If a set T with an operation op has an identity element and the operation is associa-
tive, the resulting algebraic structure is called a monoid. For a monoid, starting with
the identity as the initial value, reducing from left to right or right to left yields the
same result. We can even remove the requirement for an initial value and default to
the identity if the collection is empty. We can also parallelize reduction. We could
reduce the first half and the second half of the collection in parallel and combine the
results, for example, because the associativity property guarantees that we’ll get the
same result. For [1, 2, 3, 4, 5, 6], we can combine 1 + 2 + 3 and, in parallel,
4 + 5 + 6, and then add the results together.

As soon as we drop one of the properties, we lose these guarantees. If we don’t have
associativity, but just a set, an operation, and an identity element, although we still
don’t require an initial value (we use the identity element), the direction in which we
apply the operations becomes important. If we drop the identity element but keep
associativity, we have a semigroup. Without an identity, it matters whether we put
the initial value on the left of the first element or the right of the last element.

The key takeaway is that reduce() works seamlessly on a monoid, but if we don’t
have a monoid, we should be careful what we use for our initial value and the direc-
tion we’re reducing on.



128 CHAPTER 5 Function types
Library support5.4.4

As mentioned at the start of this section, most programming languages have library
support for these common algorithms. They may show up under different names,
though, as there is no golden standard for naming them.

 In C#, map(), filter(), and reduce() show up in the System.Linq
namespace as Select(), Where(), and Aggregate() respectively. In Java, they show
up as map(), filter(), and reduce() in java.util.stream.

 map() is also known as  Select() or transform(). filter() is also known as
Where(). reduce() is also known as accumulate(), Aggregate(), or fold(),
depending on the language and library.

 Even though they have many names, these algorithms are fundamental and useful
across a broad range of applications. We’ll discuss many similar algorithms later in the
book, but these three form the foundation of data processing using higher-order
functions.

 Google’s famous MapReduce large-scale data processing framework uses the same
underlying principles of the map() and reduce() algorithms by running a massively
parallel map() operation on multiple nodes and combining the results via a
reduce()-like operation.

Exercises5.4.5

1 Implement a first() function that takes an array of Ts and a function pred
(for predicate) that takes a T as an argument and returns a boolean. first()
will return the first element of the array for which pred() returns true or
undefined if pred() returns false for all elements.

2 Implement an all() function that takes an array of Ts and a function pred
(for predicate) that takes a T as an argument and returns a boolean. all()
will return true if pred() is true for all the elements of the array; otherwise, it
will return false.

Functional programming5.5
Although the material covered in this chapter was a bit more complex, the good news
is that we went over most of the key ingredients of functional programming. The syn-
tax of some functional languages may be off-putting if you’re used to imperative,
object-oriented languages. Their type systems usually offer some combinations of sum
types, product types, and first-order function support, as well as a set of library func-
tions such as map(), filter(), and reduce() to process data. Many functional lan-
guages employ lazy evaluation, which we also discussed in this chapter.

 With the ability to type functions, many of the concepts originating from func-
tional programming languages can be implemented in languages that aren’t func-
tional (or purely functional). We saw this throughout this chapter; we touched on all
these topics and provided imperative implementations for all these key components.



129Answers to exercises

 

  

 

             
           
 
   
 
 

 
  

 

              

         

               
 
              
             

   

  

        

     

             
      
   
 

  

   

    

Summary
 If we can type functions, we can implement the strategy pattern in a much sim-

pler way by focusing on the functions that implement the logic and discarding
the surrounding scaffolding.

 The ability to plug a function into a class as a property and call it as a method
allows us to implement state machines that don’t rely on big switch state-
ments. This way, the compiler can prevent mistakes like accidentally applying
the wrong processing in some given state.

 Another alternative to switch statements for a state machine implementation
is a sum type in which each state is captured by a different type.

 We can defer expensive computation by relying on lazy values, which are func-
tions we pass around that wrap the expensive computation. We call them when
needed to produce a value, but if we never need them, we can skip the expen-
sive computation.

 Lambdas are nameless functions we can use for one-off logic in which naming a
function wouldn’t be very useful.

 A higher order function is a function that takes another function as an argu-
ment or returns a function.

 map(), filter(), and reduce() are three fundamental higher-order func-
tions, with many applications in data processing.

In chapter 6, we’ll look at a few more applications of typed functions. We’ll learn
about closures and how we can use them to simplify another common design pattern:
the decorator pattern. We’ll also talk about promises, as well as tasking and event-
driven systems. All these applications are made possible by the ability to represent
computation (functions) as first-class citizens of the type system.

Answers to exercises
A SIMPLE STRATEGY PATTERN

1 b—That is the only function type; the other declarations do not represent func-
tions.

2 c—The function takes a number and an (x: number) => boolean and returns
boolean.

A STATE MACHINE WITHOUT SWITCH STATEMENTS

1 We can model the connection as a state machine with two states—open and
closed—and two transitions—connect transitions from closed to open and
disconnect transitions from open to closed.

2 A possible implementation:

declare function read(): string;

class Connection {
private doProcess: () => void = this.processClosedConnection;



130 CHAPTER 5 Function types
    public process(): void {
        this.doProcess();
    }

    private processClosedConnection() {
        this.doProcess = this.processOpenConnection;
    }

    private processOpenConnection() {
        const value: string = read();

        if (value.length == 0) {
            this.doProcess = this.processClosedConnection;
        } else {
            console.log(value);
        }
    }
}

AVOIDING EXPENSIVE COMPUTATION WITH LAZY VALUES

1 d—The other implement named functions; this is the only anonymous imple-
mentation.

USING MAP, FILTER, AND REDUCE

1 A possible implementation for first():

function first<T>(items: T[], pred: (item: T) => boolean):
    T | undefined {
    for (const item of items) {
        if (pred(item)) {
            return item;
        }
    }

    return undefined;
}

2 A possible implementation for all():

function all<T>(items: T[], pred: (item: T) => boolean): boolean {
    for (const item of items) {
        if (!pred(item)) {
            return false;
        }
    }

    return true;
}



 
  
  
   
   
            
          
 
                
              
Advanced applications
of function types
This chapter covers
 Using a simplified decorator pattern

 Implementing a resumable counter

 Handling long-running operations

 Writing clean asynchronous code by using 
promises and async/await

In chapter 5, we covered the basics of function types and scenarios enabled by the
ability to treat functions like other values by passing them as arguments and return-
ing them as results. We also looked at some powerful abstractions that implement
common data processing patterns: map(), filter(), and reduce().

In this chapter, we’ll continue our discussion of function types with some more
advanced applications. We’ll start by looking at the decorator pattern, its by-the-
book implementation, and an alternative implementation. (Again, don’t worry if
you forgot it; we’ll have a quick refresher.) We’ll introduce the concept of a closure
and see how we can use it to implement a simple counter. Then we’ll look at
another way to implement a counter, this time with a generator: a function that
yields multiple results.
131



132 CHAPTER 6 Advanced applications of function types

 

 Next, we’ll talk about asynchronous operations. We’ll go over the two main asyn-
chronous execution models—threads and event loops—and look at how we can
sequence several long-running operations. We’ll start with callbacks; then we’ll look at
promises, and finally, we’ll cover the async/await syntax provided nowadays by most
mainstream programming languages.

 All the topics discussed in this chapter are made possible because we can use func-
tions as values, as we’ll see in the following pages.

A simple decorator pattern6.1
The decorator pattern is a behavioral software design pattern that extends the behav-
ior of an object without modifying the class of the object. A decorated object can per-
form work beyond what its original implementation provides. The pattern looks like
figure 6.1.

Figure 6.1 Decorator pattern: an IComponent interface, a concrete implementation via 
ConcreteComponent, and a Decorator that enhances an IComponent with additional behavior

As an example, suppose that we have an IWidgetFactory that declares a make-
Widget() method returning a Widget. The concrete implementation, Widget-
Factory, implements the method to instantiate new Widget objects.

 Suppose that we want to reuse a Widget, so instead of always creating a new one, we
want to create just one and keep returning it (that is, have a singleton). Without

An interface declaring
an operation

Implementation
of the interface

Decorator wraps an
IComponent instance
and enhances its
behavior.

IComponent

operation()

Decorator

component

ConcreteComponent

operation()

operation()

IWidgetFactory

makeWidget()

SingletonDecorator

factory

WidgetFactory

makeWidget()

makeWidget()

Figure 6.2 Decorator pattern for the 
widget factory. IWidgetFactory 
is the interface, WidgetFactory 
is a concrete implementation, and 
SingletonDecorator adds singleton 
behavior to an IWidgetFactory.



133A simple decorator pattern

  
   
          
            
  

             
              
               
   
              
           
             
 

modifying our WidgetFactory, we can create a decorator called Singleton-
Decorator, which wraps an IWidgetFactory, as shown in the next listing, and
extends its behavior to ensure that only a single Widget gets created (figure 6.2).

class Widget { }

interface IWidgetFactory {
    makeWidget(): Widget;
}

class WidgetFactory implements IWidgetFactory {
    public makeWidget(): Widget {
        return new Widget();    
    }
}

class SingletonDecorator implements IWidgetFactory {
    private factory: IWidgetFactory;    
    private instance: Widget | undefined = undefined;

    constructor(factory: IWidgetFactory) {
        this.factory = factory;
    }

    public makeWidget(): Widget {
        if (this.instance == undefined) {    
            this.instance = this.factory.makeWidget();    
        }

        return this.instance;
    }

6.1.1

  

  

Listing 6.1 WidgetFactory decorator

WidgetFactory simply 
creates a new Widget.

SingletonDecorator 
wraps an IWidgetFactory.

makeWidget() implements 
the singleton logic and 
ensures that only a single 
Widget is created.

}

The advantage of using this pattern is that it supports the single-responsibility principle,
which says that a class should have just one responsibility. In this case, the Widget-

Factory is responsible for creating widgets, whereas the SingletonDecorator is
responsible for the singleton behavior. If we want multiple instances, we use the
WidgetFactory directly. If we want a single instance, we use SingletonDecorator.

A functional decorator

Let’s see how we can simplify this implementation, again by using typed functions.
First, let’s get rid of the IWidgetFactory interface and replace it with a function
type. That would be the type of a function that takes no arguments and returns a
Widget: () => Widget.

Now we can replace our WidgetFactory class with a simple function, make-
Widget(). Whenever we would’ve used an IWidgetFactory before, passing in an
instance of WidgetFactory, we now require a function of type () => Widget and
pass in makeWidget(), as the following listing shows.



134 CHAPTER 6 Advanced applications of function types

 

class Widget { }

type WidgetFactory = () => Widget;    

function makeWidget(): Widget {    
    return new Widget();
}

function use10Widgets(factory: WidgetFactory) {    
    for (let i = 0; i < 10; i++) {
        let widget = factory();
        /* ... */
    }
}

use10Widgets(makeWidget);    

With the functional widget factory, we use a technique very similar to the strategy pat-
tern in chapter 5: we get a function as an argument and call it when needed. Now let’s
see how we can add the singleton behavior.

  We provide a new function,
singletonDecorator(), that takes
a WidgetFactory-type function and
returns another WidgetFactory-
type function. Remember from chap-
ter 5 that a lambda is a function with-
out a name, which we can return
from another function. In the next
listing, our decorator will take a fac-
tory and use it to build a new function
that handles the singleton behavior
(figure 6.3).

class Widget { }

type WidgetFactory = () => Widget;

function makeWidget(): Widget {
    return new Widget();
}

function singletonDecorator(factory: WidgetFactory): WidgetFactory {
    let instance: Widget | undefined = undefined;

    return (): Widget => {    
        if (instance == undefined) {
            instance = factory();
        }

Functional widget factoryListing 6.2

Functional widget factory decoratorListing 6.3

Function type for 
a widget factory

makeWidget() is of 
type WidgetFactory.

use10Widgets() requires a 
WidgetFactory, which it uses 
to create 10 Widget instances.

Example call: we pass the makeWidget 
function as an argument.

makeWidget()

singletonDecorator()

Concrete operation

Decorator wraps the
operation and adds
behavior.

Figure 6.3 Functional decorator: we now have 
only a makeWidget() function and a 
singletonDecorator() function.

singletonDecorator() returns a lambda that 
implements the singleton behavior and uses 
the given factory to create a Widget.



135A simple decorator pattern
        return instance;
    };
}

function use10Widgets(factory: WidgetFactory) {
    for (let i = 0; i < 10; i++) {
        let widget = factory();
        /* ... */
    }
}

use10Widgets(singletonDecorator(makeWidget));   

Now, instead of constructing 10 Widget objects, use10Widgets() will call the
lambda, which will reuse the same Widget instance for all calls.

 This code reduces the number of components from an interface and two classes,
each with a method (the concrete operation and the decorator) to two functions.

6.1.2 Decorator implementations

As with our strategy pattern, the object-oriented and functional approaches imple-
ment the same decorator pattern. The object-oriented version requires an interface
declaration (IWidgetFactory), at least one implementation of that interface
(WidgetFactory), and a decorator class that handles the added behavior
(SingletonDecorator). By contrast, the functional implementation simply declares
the type of the factory function (() => Widget) and uses two functions: a factory
function (makeWidget()) and a decorator function (singletonDecorator()).

 One thing to note is that in the functional case, the decorator does not have the
same type as makeWidget(). Whereas the factory doesn’t expect any arguments and
returns a Widget, the decorator takes a widget factory and returns another widget fac-
tory. In other words, singletonDecorator() takes a function as an argument and
returns a function as its result. This wouldn’t be possible without first-class functions:
the ability to treat functions as any other variables and use them as arguments and
return values.

 The more-succinct implementation, enabled by modern type systems, is good for
many situations. We can use the more-verbose object-oriented solution when we are
dealing with more than a single function. If our interface declares several methods,
we can’t replace it with a single function type.

6.1.3 Closures

Let’s zoom in on the singletonDecorator() implementation in listing 6.4. You
may have noticed something interesting: even though the function returns a lambda,
the lambda references both the factory argument and the variable instance,
which should be local to the singletonDecorator() function.

Because singletonDecorator() 
returns a WidgetFactory, we 
can pass it as an argument to 
use10Widgets().



 
  

 
 

                
   
136 CHAPTER 6 Advanced applications of function types

 

function singletonDecorator(factory: WidgetFactory): WidgetFactory {
    let instance: Widget | undefined = undefined;

    return (): Widget => {
        if (instance == undefined) {
            instance = factory();
        }

        return instance;
    };
}

Even after we return from singletonDecorator(), the instance variable is still
alive, as it was “captured” by the lambda, which is known as a lambda capture.

CLOSURES AND LAMBDA CAPTURES A lambda capture is an external variable
captured within a lambda. Programming languages implement lambda cap-
tures through closures. A closure is something more than a simple function: it
also records the environment in which the function was created, so it can
maintain state between calls.

In our case, the instance variable in singletonDecorator() is part of that envi-
ronment. The lambda we return will still be able to reference instance (figure 6.4).

Decorator functionListing 6.4

console.log(text); text: "Hello world!"

A function that
returns a closure

The closure doesn’t
contain only the code;
it also captures the
text variable.

function getClosure(): () => void {
    const text: string = "Hello world!";

    return () => { console.log(text); };
}

Returns

Figure 6.4 A simple function that returns a closure: a lambda that references a
variable local to the function. Even after getClosure() returns, the variable is still
referenced by the closure, so it outlives the function in which it appeared.

Closures make sense only if we have higher-order functions. If we can’t return a function
from another function, there is no environment to capture. In that case, all functions
are in the global scope, which is their environment. They can reference global variables.

Another way to think about closures is to contrast them with objects. An object
represents some state with a set of methods; a closure represents a function with some
captured state. Let’s look at another example in which closures can be used: imple-
menting a counter.



137Implementing a counter
Exercises6.1.4

1 Implement a function, loggingDecorator(), that takes as argument another
function, factory(), that takes no arguments and returns a Widget object.
Decorate the given function so that whenever it is called, it logs "Widget
created" before returning a Widget object.

Implementing a counter6.2
Let’s look at a very simple scenario: we want to create a counter that gives us consecu-
tive numbers starting from 1. Although this example may seem trivial, it covers several
possible implementations that generalize to any scenario in which we need to gener-
ate values. One way is to use a global variable and a function that returns that variable
and then increments, as shown in the following code.

let n: number = 1;   

function next() {
    return n++;    
}

console.log(next());    
console.log(next());    
console.log(next());    

This implementation works, but it’s not ideal. First, n is a global variable, so anyone has
access to it. Other code might change it from underneath us. Second, this implemen-
tation gives us a single counter. What if we want two counters, both starting from 1?

6.2.1 An object-oriented counter

The first implementation we will look at is an object-oriented one, which should be
familiar. We create a Counter class, which stores the state of the counter as a private
member. We provide a next() method, which returns and increments that counter.
In this way, we encapsulate the counter so that external code can’t change it and we
can create as many counters as we want as instances of this class.

class Counter {
    private n: number = 1;   

    next(): number {
        return this.n++;
    }
}

let counter1: Counter = new Counter();   
let counter2: Counter = new Counter();   

Global counterListing 6.5

Object-oriented counterListing 6.6

The counter is stored 
in a global variable.

next() returns n 
and increments.

This will log 1 2 3.

The counter value is 
now private to the class.

We can create 
multiple counters.



138 CHAPTER 6 Advanced applications of function types
console.log(counter1.next());    
console.log(counter2.next());    
console.log(counter1.next());   
console.log(counter2.next());   

This approach works better. In fact, most modern programming languages provide an
interface for types such as our counter, which provides a value on each call and has
special syntax to iterate over it. In TypeScript, this is done with the Iterable inter-
face and for ... of loop. We cover this topic later in the book, when we discuss
generic programming. For now, we’ll just note that this pattern is common. C# imple-
ments it with the IEnumerable interface and the foreach loop, whereas Java does it
with the Iterable interface and the for : loop.

 Next, let’s look at a functional alternative that leverages closures to implement the
counter.

6.2.2 A functional counter

In the next listing, we’ll implement the functional counter through a makeCounter()
function that returns a counter function when called. We will initialize the counter as
a variable local to makeCounter() and then capture it in the return function.

type Counter = () => number;  

function makeCounter(): Counter {
    let n: number = 1;   

    return () => n++;    
}

let counter1: Counter = makeCounter();
let counter2: Counter = makeCounter();

console.log(counter1());    
console.log(counter2());    
console.log(counter1());    
console.log(counter2());   

Each counter is a function now, so instead of calling counter1.next(), we simply
call counter1(). We also see that each counter captures a separate value: calling
counter1() does not affect counter2() because whenever we call make-
Counter(), a new n gets created. Each function returned keeps its own n. The coun-
ters are closures. Also, these values persist between calls. This behavior is different
from that of variables that are local to a function, which are created when the function
is called and disposed of when the function returns (figure 6.5).

Functional counterListing 6.7

This will log 1 1 2 2.

We define a Counter type as a 
function that takes no arguments 
and returns a number.

The counter value is declared as a 
variable and captured by the lambda.

This will log 1 1 2 2.



ng 
139Implementing a counter

 

Figure 6.5 It’s important to understand that each closure (in our case, counter1 and counter2) ends up with 
a different n. Whenever we call makeCounter(), a new n is initialized to 1 and captured by the returned closure. 
Because the values are separate, they don’t interfere with each other.

A resumable counter6.2.3

Another way to define a counter is to use a resumable function. An object-oriented
counter keeps track of state via a private member. A functional counter keeps track of
state in its captured context.

RESUMABLE FUNCTIONS A resumable function is a function that keeps track of its
own state and, whenever it gets called, doesn’t run from the beginning;
rather, it resumes executing from where it left off the last time it returned.

In TypeScript, instead of using the keyword return to exit the function, we use the key-
word yield, as shown in listing 6.8. This keyword suspends the function, giving control
back to the caller. When called again, execution is resumed from the yield statement.

 There are a couple more constraints for using yield: the function must be
declared as a generator, and its return type must be an iterable iterator. A generator is
declared by prefixing the function name with an asterisk.

function* counter(): IterableIterator<number> {    
    let n: number = 1;

    while (true) {
        yield n++;    
    }
}

let counter1: IterableIterator<number> = counter();    
let counter2: IterableIterator<number> = counter();   

console.log(counter1.next());   
console.log(counter2.next());   
console.log(counter1.next());    
console.log(counter2.next());   

Resumable counterListing 6.8

return n++; n: <counter value>

makeCounter()

return n++; n: <counter value>

The function returns a
new closure on each call.

Each counter holds on
to a                n value.

counter2counter1

different

The function is declared 
as a generator.

We call yield 
instead of return.

Our counters are objects implementi
the IterableIterator interface.

This logs 1 1 2 2.



140 CHAPTER 6 Advanced applications of function types

             
             
 
  
   
               
 
  

      
                
          
     

  

 

 

        
   
   

  
 

   
              
 
 

          

  

  
 

  

6.2.4

6.2.5

This implementation is in a way a mix between our object-oriented and functional
counters. The implementation of the counter reads like a function: we start with n

being 1 and then loop forever, yielding the counter value and incrementing it. On the
other hand, the code generated by the compiler is object-oriented: our counter is actu-
ally an IterableIterator<number>, and we call next() on it to get the next value.

Even though we implement this with a while (true) statement, we don’t get
stuck in an infinite loop; the function keeps yielding values and gets suspended after
each yield. Behind the scenes, the compiler translates the code we wrote into some-
thing that looks more like our previous implementations.

The type of this function is () => IterableIterator<number>. Notice that the
fact that it is a generator doesn’t affect its type. A function with no arguments that
would return an IterableIterator<number> would have exactly the same type.
The * declaration is used by the compiler to allow yield statements but is transpar-
ent to the type system.

We will come back to iterators and generators in a later chapter and discuss them
at length.

Counter implementations recap

Before moving on, let’s quickly recap the four ways to implement a counter and the
various language features we learned about:

 A global counter is implemented as a simple function that references a global
variable. This counter has multiple drawbacks: the counter value is not properly
encapsulated, and we cannot have two separate instances of the counter.

 The object-oriented counter implementation is straightforward: the counter
value is private state, and we expose a next() method to read and increment it.
Most languages declare an interface like Iterable to support such scenarios
and provide syntactic sugar to consume them.

 A functional counter is a function that returns a function. The returned function
is a counter. This implementation leverages lambda captures to hold the state of
the counter. The code is more succinct than the object-oriented version.

 A generator employs special syntax to create a resumable function. Instead of
returning, a generator yields; it provides a value to the caller but also keeps
track of where it was and picks up from there on subsequent calls. A generator
function must return an iterable iterator.

Next, we’ll look at another common application of function types: asynchronous
functions.

Exercises

1 Implement a function that returns the next number in the Fibonacci sequence
whenever it is called by using a closure.

2 Implement a function that returns the next number in the Fibonacci sequence
whenever it is called by using a generator.



141Executing long-running operations asynchronously
6.3 Executing long-running operations asynchronously
We want our applications to be as fast and responsive as possible, even when certain
operations take longer to complete. Running all our code sequentially might intro-
duce unacceptable delays. If we can’t respond to our users clicking a button because
we’re waiting for a download to complete, the users get frustrated.

 In general, we don’t want to wait for a long-running operation to execute a faster
operation. It’s best to execute such long-running tasks asynchronously so we can keep
the UI interactive while our download completes. Asynchronous execution means
that the operations don’t run one after another, in the order in which they show up in
the code. They could be running in parallel, but that’s not mandatory. JavaScript is
single-threaded, so asynchronous execution is achieved by the run time with an event
loop. We’ll go over a high-level description of both parallel execution using multiple
threads and event loop–based execution with a single thread, but first, let’s look at an
example in which running code asynchronously comes in handy.

 Suppose that we want to perform two operations: greet our users and take them to
www.weather.com so that they can see today’s weather. We’ll do this with two func-
tions: a greet() function that asks for the user’s name and greets them, and a
weather() function, which launches a browser for today’s weather. Let’s look at a
synchronous implementation and then contrast it with an asynchronous one.

6.3.1 Synchronous execution

We will implement greet() by using the readline-sync node package, as shown in
listing 6.9. This package provides a way to read input from stdin with the ques-
tion() function. The function returns the string typed by the user. Execution blocks
until the user types their answer and presses return. We can install the package with
npm install –save readline-sync.

 To implement weather(), we will use the open Node package, which allows us to
launch a URL in the browser. We can install the package with npm install --save
open.

function greet(): void {
    const readlineSync = require('readline-sync');

    let name: string = readlineSync.question("What is your name? ");    
    console.log(`Hi ${name}!`);
}

function weather(): void {
    const open = require('open');
    open('https://www.weather.com/');
}

greet();    
weather();    

Synchronous executionListing 6.9

Calling question() blocks
execution until the user

enters their answer.

We first call greet(); 
then we call weather().

www.weather.com


142 CHAPTER 6 Advanced applications of function types
Let’s step through what happens when we run this code. First, greet() is called, and
we ask the user to give us their name. Execution stops here until we receive a reply
from the user, after which it proceeds by outputting a greeting. After greet()
returns, weather() is called, launching www.weather.com.

 This implementation works, but it’s not optimal. The two functions—greeting the
user and taking them to a website—are independent in this case, so one of them
shouldn’t be blocked until the other one finishes. We could call the functions in a
different order, because in this case, it’s obvious that requesting user input takes lon-
ger than launching an application. But in practice, we can’t always tell which one of
two functions will take longer to complete. A better approach is to run the functions
asynchronously.

Asynchronous execution: callbacks6.3.2

An asynchronous version of greet() prompts the user for their name but does not
block and wait for the reply. Execution will continue by calling weather(). We still
want to print the user’s name after they enter it, so we need a way to be notified of
their answer. This is done with a callback.

 A callback is a function that we provide to an asynchronous function as an argu-
ment. The asynchronous function does not block execution; the next line of code gets
executed. When the long-running operation completes (in this case, waiting for the
user to answer with their name), the callback function is executed, so we can handle
the result.

 Let’s see the asynchronous greet() implementation in the next listing. We will
use the readline module provided by Node. In this case, the question() function
does not block execution; rather, it takes a callback as an argument.

function greet(): void {
    const readline = require('readline');    
    

    const rl = readline.createInterface({   
        input: process.stdin,
        output: process.stdout
    });

    rl.question("What is your name? ", (name: string) => {    
        console.log(`Hi ${name}!`);
        rl.close();
    });
}

function weather(): void {
    const open = require('open');
    open('https://www.weather.com/');
}

greet();
weather();

Asynchronous execution with callbackListing 6.10

Using readline instead 
of readline-sync

createInterface() is extra setup 
required by readline and not 
important for our example.

The callback is a lambda
that will receive the

name and print it.

www.weather.com


143Executing long-running operations asynchronously

  
   
Stepping through this program, as soon as question() is called and the user is
prompted, execution continues without waiting for the user’s answer, returning from
greet() and calling weather(). Running this program prints "What is your
name?" on the terminal, but www.weather.com will be open before the user provides
their answer.

 When an answer comes in, the lambda gets called. The lambda prints the greeting
to the screen with console.log() and closes the interactive session (so that no more
user input is requested) with rl.close().

6.3.3 Asynchronous execution models

As briefly mentioned at the start of this section, asynchronous execution can be
achieved with threads or with an event loop. The choice depends on how your run
time and the library you are using implement asynchronous operations. In JavaScript,
asynchronous execution is implemented with an event loop.

THREADS

Each application runs as a process. A process starts with a main thread, but we can cre-
ate multiple other threads on which to run code. On POSIX-compliant systems such
as Linux and macOS, new threads are created with pthread_create(), whereas
Windows provides CreateThread(). These APIs are provided by the operating sys-
tems. Programming languages provide libraries with different interfaces, but those
libraries end up using the OS APIs internally.

 Separate threads can run at the same time. Multiple CPU cores can execute instruc-
tions in parallel, each handling a different thread. If the number of threads is larger
than the hardware can run in parallel, the operating system ensures that each thread
gets a fair amount of run time. Threads get paused and resumed by the thread sched-
uler to achieve this result. The thread scheduler is a core component of the OS kernel.

 We won’t look at a code sample for threads, as JavaScript (and, thus, TypeScript) has
been historically single-threaded. Node recently enabled experimental support for
worker threads, but this development is fairly recent at the time of this writing. That
being said, if you program in any other mainstream language, you are probably familiar
with how to create new threads and execute code on them in parallel (figure 6.6).

 

createThread()

A function that
creates a new thread

operation1() operation2()

longOperation()

Time axis

Original thread

New threadThe long-running
operation executes
independently of
the original thread.

Figure 6.6 createThread() creates a new thread. The original thread continues to execute
operation1() and then operation2(), and the new thread executes longRunningOperation()
in parallel.

www.weather.com


144 CHAPTER 6 Advanced applications of function types
EVENT LOOPS

An alternative to multiple threads is an event loop. An event loop uses a queue: asynchro-
nous functions get enqueued, and they themselves can enqueue other functions. As
long as the queue is not empty, the first function in line gets dequeued and executed.

 As an example, let’s look at a function that counts down from a given number,
shown in the following listing. Instead of blocking execution until the countdown is
complete, this function will use an event queue and enqueue another call to itself
until it reaches 0 (figure 6.7).

type AsyncFunction = () => void;   

let queue: AsyncFunction[] = [];   

function countDown(counterId: string, from: number): void {    
    console.log(`${counterId}: ${from}`);    

    if (from > 0)
        queue.push(() => countDown(counterId, from - 1));   
}

queue.push(() => countDown('counter1', 4));  

while (queue.length > 0) {   
    let func: AsyncFunction = <AsyncFunction>queue.shift();
    func();
}

Figure 6.7 countDown() counts one step; then it yields and allows other code to run. It also 
enqueus another call to countDown() with the decremented counter value. If the counter 
reaches 0, countDown() doesn’t enqueue another call to itself.

Listing 6.11 Counting down in an event loop

We’ll restrict our asynchronous 
functions to functions without 
arguments that return void.

Our queue will be 
an array of functions.

The counter prints its
id and current value.

If greater than 0, the counter enqueues
another call to countDown(),

decrementing the value.

We kick off the process by queueing 
a call to countDown() from 4.

While there is a function in the
queue, dequeue it and call it.

countDown()

Enqueue
countdown(3)

Enqueue
countdown(2)

Yield

... countDown() ... countDown()

Time axis



145Executing long-running operations asynchronously
This code will output

counter1: 4
counter1: 3
counter1: 2
counter1: 1
counter1: 0

When the counter reaches 0, it will not enqueue another call, so the program will
stop. So far, this isn’t much more interesting than simply counting in a loop. But what
happens if we start by enqueuing two counters?

type AsyncFunction = () => void;

let queue: AsyncFunction[] = [];

function countDown(counterId: string, from: number): void {    
    console.log(`${counterId}: ${from}`);

    if (from > 0)
        queue.push(() => countDown(counterId, from - 1));
}

queue.push(() => countDown('counter1', 4));
queue.push(() => countDown('counter2', 2));    

while (queue.length > 0) {
    let func: AsyncFunction = <AsyncFunction>queue.shift();
    func();
}

This time around, the output is

counter1: 4
counter2: 2
counter1: 3
counter2: 1
counter1: 2
counter2: 0
counter1: 1
counter1: 0

As we can see, this time the counters are interleaved. Each counter counts down one
step; then the other one gets a chance to count. We couldn’t achieve this result if we
just counted down in a loop. Using the queue, the two functions yield after each step
of the countdown and allow other code to run before they count down again.

 The two counters do not run at the same time; either counter1 or counter2 gets
some time to run. But they do run asynchronously, or independently, of each other.

Two counters in an event loopListing 6.12

The only difference from the 
preceding sample is that now 
we enqueue a second counter.



146 CHAPTER 6 Advanced applications of function types

 

              

          
 
                
  
 
 
               
              
 

            
         
 

             
  
  

   
 
           
             
     

                 
 
             
6.3.4

counter1()

Enqueue

Enqueue YieldYield

counter2() counter1() counter2() counter1()

Time axis

Figure 6.8 Each counter runs and then enqueues another operation. Execution proceeds in the order
in which operations are enqueued. Everything runs on a single thread.

Either of them can finish execution first, regardless of how much longer the other
one takes (figure 6.8).

For operations that wait for input, such as from the keyboard, the run time can
ensure that an operation to handle that input is queued only after input is received, in
which case other code can run while the input is being provided. This way, a long-
running operation that requires input can be split into two shorter-running ones; the
first requests input and returns, and the second processes input when it arrives. The
run time handles scheduling the second operation after input is available.

Event loops don’t work as well for long-running operations that cannot be split
into multiple chunks. If we enqueue an operation that doesn’t yield and runs for a
long time, the event loop will be stuck until it finishes.

Asynchronous functions recap

If we execute long-running operations synchronously, no other code runs until the
long-running operation completes. Input/output operations are good examples of
long-running operations, as reading from disk or from the network has higher latency
than reading from memory.

Instead of executing such operations synchronously, we can execute them asyn-
chronously and provide a callback function to be called when the long-running opera-
tion completes. There are two main models of executing asynchronous code: one that
uses multiple threads and one that uses an event loop.

Threads can run in parallel on separate CPU cores, which is their main advantage,
as different pieces of code can run at the same time, and the overall program finishes
faster. A drawback is the synchronization overhead: passing data between threads
requires careful synchronization. We won’t cover the topic in this book, but you’ve
probably heard of problems such as deadlock and livelock, in which two threads never
complete because they wait on each other.

An event loop runs on a single thread but enables a mechanism to put long-
running code at the back of the queue while it awaits input. The advantage of using an
event loop is that it doesn’t require synchronization, as everything runs on a single



147Simplifying asynchronous code
thread. The disadvantage is that although queuing up I/O operations as they wait for
data works fine, CPU-intensive operations still block. A CPU-intensive operation, like a
complex computation, can’t just be queued; as it’s not waiting for data, it requires
CPU cycles. Threads are much better suited to this task.

 Most mainstream programming languages use threads, JavaScript being a notable
exception. That being said, even JavaScript is being extended with support for web
worker threads (background threads running in the browser), and Node has experi-
mental support for similar worker threads outside the browser.

 In the next section, we look at how we can make our asynchronous code cleaner
and easier to read.

6.3.5 Exercises

1 Which of the following can be used to implement an asynchronous execution
model?

a Threads
b An event loop
c Neither a nor b
d Both a and b

2 Can two functions execute at the same time in an event-loop-based asynchro-
nous system?

a Yes
b No

3 Can two functions execute at the same time in a thread-based asynchronous
system?

a Yes
b No

6.4 Simplifying asynchronous code
Callbacks work in the same way as our counter in the preceding example. Whereas the
counter enqueues another call to itself after each run, an asynchronous function can
take another function as an argument and enqueue a call to that function when it
completes execution.

 As an example, let’s enhance our counter in the next listing with a callback that
gets queued after the counter reaches 0.

function countDown(counterId: string, from: number, 
    callback: () => void): void {      
    console.log(`${counterId}: ${from}`);

    if (from > 0)

Counter with callbackListing 6.13

We add the callback argument, 
which is a function with no 
arguments that returns void.

queue.push(() => countDown(counterId, from – 1, callback));



148 CHAPTER 6 Advanced applications of function types

    
 
  
     
 
 

    else    
        queue.push(callback);   
}

queue.push(() => countDown('counter1', 4, 
    () => console.log('Done')));   

Callbacks are a common pattern for dealing with asynchronous code. In our example,
we used a callback without arguments, but callbacks can also receive arguments from
the asynchronous function. That was the case with our asynchronous question()
call from the readline module, which passed the string provided by the user to the
callback.

 Chaining multiple asynchronous functions with callbacks leads to a lot of nested
functions, as we can see in listing 6.14, in which we want to ask the user’s name with a
getUserName() function, ask their birthday with a getUserBirthday() function,
ask their email address, and so on. The functions depend on one another because
each of them requires some information from the preceding one. (getUser-
Birthday() requires the user’s name, for example.) Each function is also asynchro-
nous, as it is potentially long-running, so it takes a callback to provide its result. We use
these callbacks to call the next function in the chain.

declare function getUserName(
    callback: (name: string) => void): void;    
declare function getUserBirthday(name: string, 
    callback: (birthday: Date) => void): void;    
declare function getUserEmail(birthday: Date,
    callback: (email: string) => void): void;    

getUserName((name: string) => {
    console.log(`Hi ${name}!`);
    getUserBirthday(name, (birthday: Date) => {   
        const today: Date = new Date();
        if (birthday.getMonth() == today.getMonth() &&
            birthday.getDay() == today.getDay())
            console.log('Happy birthday!');

        getUserEmail(birthday, (email: string) => {    
            /* ... */
        });
    })
});

Chaining callbacksListing 6.14

When we’re done counting down, we 
queue the callback to be executed.

We provide a callback that prints 
“Done” when the counter completes.

We won’t provide 
implementations for these 
functions—just declarations.

The callback to 
getUserName() 
calls getUserBirthday().

The callback to 
getUserBirthday() calls 
getUserEmail() and so on.

In the callback invoked when getUserName() obtains the name, we call getUser-
Birthday(), passing it the name. In the callback invoked when getUserBirthday()

obtains the birthday, we call getUserEmail() passing in the birthday and so on.
We won’t go over the actual implementation of all the getUser... functions in

this example, as they would be similar to the greet()implementation in the preced-
ing section. We’re more concerned here with the overall structure of the calling code.



149Simplifying asynchronous code
Structuring code this way makes it hard to read, as the more callbacks we chain
together, the more nested lambdas inside lambdas we end up with. It turns out that
there is a better abstraction for this pattern of asynchronous function calls: promises.

6.4.1 Chaining promises

We start by observing that a function such as getUserName(callback: (name:
string) => void) is an asynchronous function that will, at some point in time, deter-
mine the user’s name and then hand it over to a callback we provide. In other words,
getUserName() “promises” to give back a name string eventually. We also observe
that whenever the function has the promised value, we want it to call another func-
tion, passing that value as an argument.

PROMISES AND CONTINUATIONS A promise is a proxy for a value that will be
available at a future point in time. Until the code that produces the value
runs, other code can use the promise to set up how the value will be pro-
cessed when it arrives, what to do in case of error, and even to cancel the
future execution. A function set up to be called when the result of a promise
is available is called a continuation.

The two main ingredients of a promise are a value of some type T that our function
“promises” to give us and the ability to specify a function from T to some other type U
((value: T) => U), to be called when the promise is fulfilled and we have our value
(a continuation). This is an alternative to supplying the callback directly to a function.

 First, let’s update the declarations of our functions in listing 6.15 so that instead of
taking a callback argument, they return a Promise. getUserName() will return a
Promise<string>, getUserBirthday() will return a Promise<Date>, and
getUserEmail() will return another Promise<string>.

declare function getUserName(): Promise<string>;
declare function getUserBirthday(name: string): Promise<Date>;
declare function getUserEmail(birthday: Date): Promise<string>;

JavaScript (and, thus, TypeScript) provides a built-in Promise<T> type that imple-
ments this abstraction. In C#, Task<T> implements this, and in Java, Completable-
Future<T> provides similar functionality.

 A promise provides a then() method that allows us to pass in our continuation.
Each then() function returns another promise, so we can chain then() calls together.
This process eliminates the nesting we saw in the callback-based implementation.

getUserName()
    .then((name: string) => {  
        console.log(`Hi ${name}!`);

Functions returning promisesListing 6.15

Chaining promisesListing 6.16

We call then() on the promise 
returned by getUserName().



150 CHAPTER 6 Advanced applications of function types
        return getUserBirthday(name);   
    })
    .then((birthday: Date) => {    
        const today: Date = new Date();
        if (birthday.getMonth() == today.getMonth() &&
            birthday.getDay() == today.getDay())
            console.log('Happy birthday!');
        return getUserEmail(birthday);
    })
    .then((email: string) => {  
        /* ... */
    });

As we can see, instead of having a callback within a callback within a callback, continu-
ations are chained together in a pattern that’s easier to follow: we run a function,
then() we run another function, and so on.

6.4.2 Creating promises

If we want to use this pattern, we should also look at how we can create a promise. The
principle is straightforward, though it relies on higher-order functions—a promise
takes as argument a function that takes as argument another function—so it may seem
mind-bending at first.

 A promise for a value of a certain type, such as Promise<string>, doesn’t really
know how to compute that value. It provides a then() method for the continuation
chaining we saw before, but it cannot determine what the string is. In the case of
getUserName(), the promised string is the name of the user, and in the case of
getUserEmail(), the promised string is an email address. How, then, could a
generic Promise<string> be able to determine that value? The answer is that it
can’t without help. The constructor of a promise takes as an argument a function that
actually handles computing the value. For getUserName(), that function would
prompt the user for their name and get their reply. The promise can then use this
function by calling it directly, queuing it for the event loop, or scheduling its execu-
tion on a thread, depending on the implementation, which differs from language to
language and library to library.

 So far, so good. The Promise<string> gets some code that will provide the value.
But because that code might run at a later time, we also need a mechanism for that
code to tell the promise that the value has arrived. For that task, the promise will pass
a function called resolve() to that code. When the value is determined, the code
can call resolve() and hand the value back to the promise (figure 6.9).

 

In this continuation, we use the 
value provided by getUserName().

Because then() returns
another promise, we can

call then() on the
returned value again . . .

. . . and again.



151Simplifying asynchronous code
Let’s look at how we can implement getUserName() in the next listing to return a
promise.

function getUserName(): Promise<string> {
    return new Promise<string>(
        (resolve: (value: string) => void) => {    
        const readline = require('readline');    
    
        const rl = readline.createInterface({    
            input: process.stdin,
            output: process.stdout
        });

        rl.question("What is your name? ", (name: string) => {   
            rl.close();
            resolve(name);   
        });
    });
}

getUserName() simply creates and returns a promise. The promise is initialized with
a function that takes a resolve argument of type (value: string) => void. This
function contains the code to ask the user to provide their name, and when the name
is provided, the function calls resolve() to pass the value to the promise.

 If we implement long-running functions to return promises, we can chain these
asynchronous calls together by using Promise.then() to make our code more
readable.

Listing 6.17 getUserName() returning a promise

Returns promise

Enqueues execution
of the promise code

Promise code executes
and invokes resolve().

Caller hooks up a getUserEmail()
continuation by calling then().

getUserEmail()
continuation
gets called.

getUserName() then() ... resolve() getUserEmail()

Time axis

Figure 6.9 getUserName() enqueues the code to get the username and returns a 
Promise<string>. The caller of getUserName() can call then() on the promise to hook up the 
getUserEmail() continuation—code to be run when we have a username. At some later time, the 
code to get the user name runs and calls resolve() with the username. At this point, the 
continuation getUserEmail() gets called with the now-available user name.

We pass a lambda to the Promise 
constructor, which expects as 
argument a resolve() function.

We use the same code
as in greet() to read a

string from stdin.

Finally, when we have a name, 
we call the provided resolve() 
function and pass it the name.



152 CHAPTER 6 Advanced applications of function types

      
       
  
   
More about promises6.4.3

There’s more to promises than providing continuations. Let’s see how promises han-
dle errors and a couple more ways to sequence their execution beyond using then().

HANDLING ERRORS

A promise can be in one of three states: pending, settled, and rejected. Pending means
that the promise has been created but not yet resolved (that is, the provided function
responsible for providing a value hasn’t called resolve() yet). Settled means that
resolve() was called and a value is provided, at which point continuations are
called. But what happens if there is an error? When the function responsible for pro-
viding a value throws an exception, the promise enters the rejected state.

 In fact, the function responsible for providing a value to the promise can take an
additional function as an argument, so it can set the promise in the rejected state and
provide a reason for that. Instead of providing

(resolve: (value: T) => void) => void 

to the constructor, callers can provide a

(resolve: (value: T) => void, reject: (reason: any) => void) => void 

The second argument is a function (reason: any) => void, which can provide a
reason of any type to the promise and mark it as rejected.

 Even without calling reject(), if the function throws an exception, the promise
will automatically consider itself to be rejected. Besides the then() function, a prom-
ise exposes a catch() function in which we can provide a continuation to be called
when the promise is rejected for whatever reason (figure 6.10).

Settled Continuation

Continuation

Pending

Rejected

A promise starts in
the pending state.

The code to get the
user name runs.

getUserName() creates a
promise, but the call to
question() hasn’t
returned yet.

resolve() moves it
to the settled state.

reject() moves it
to the rejected state.

Error-handling continuation
is called with the reason for rejection.

Continuation is called
with the value.

getUserEmail()
is called.

Figure 6.10 A promise starts in the pending state. (getUserName() scheduled the code to prompt
the user, but question() hasn’t returned yet.) resolve() transitions it to the settled state and
invokes a continuation if one is provided (after the user provided their name). A value is available so the
continuation can be called (getUserEmail(), in our case). reject() transitions the promise to the
rejected state and invokes an error-handling continuation, if one is provided. A value is not available; a
reason for the error is available instead.



153Simplifying asynchronous code
Let’s extend our getUserName() function to reject an empty string in the next listing.

function getUserName(): Promise<string> {
    const readline = require('readline');
    

    const rl = readline.createInterface({
        input: process.stdin,
        output: process.stdout
    });

    return new Promise<string>(
        (resolve: (value: string) => void,
         reject: (reason: string) => void) => {    
        rl.question("What is your name? ", (name: string) => {
            rl.close();

            if (name.length != 0) {
                resolve(name);
            } else {
                reject("Name can't be empty");    
            }
        });
    });
}

getUserName()
    .then((name: string) => { console.log(`Hi ${name}!`); })
    .catch((reason: string) => { console.log(`Error: ${reason}`); });    

Not only does a promise get rejected, either via a call to reject() or due to an error
being thrown, but also all other promises chained to it via then() get rejected. A
catch() continuation added at the end of a chain of then() calls will get called if
any of the promises in the chain is rejected.

CHAINING SYNCHRONOUS FUNCTIONS

There are more ways to chain continuations together than what we’ve covered so far.
First, a continuation doesn’t have to return a promise. We don’t always chain asyn-
chronous functions; maybe the continuation is short-running and can be executed
synchronously. Let’s take another look at our original example in the following listing,
in which all our continuations returned promises.

getUserName()  
    .then((name: string) => {
        console.log(`Hi ${name}!`);
        return getUserBirthday(name);    
    })
    .then((birthday: Date) => {
        const today: Date = new Date();

Rejecting a promiseListing 6.18

Chaining functions returning promisesListing 6.19

We provide the 
additional reject 
argument.

If name.length is 0, 
we reject the promise.

The new continuation hooked up
with catch() gets called on reject

(or if an exception is thrown).

getUserName() returns 
a Promise<string>.

getUserBirthday() returns 
a Promise<Date>.

if (birthday.getMonth() == today.getMonth() &&
birthday.getDay() == today.getDay())



154 CHAPTER 6 Advanced applications of function types
            console.log('Happy birthday!');
        return getUserEmail(birthday);    
    })
    .then((email: string) => {
        /* ... */
    });

In this case, all our functions need to run asynchronously, as they expect user input.
But what if after we get the user’s name, we simply want to splice it inside a string and
return that? If our continuation is just return `Hi ${name}!`, it returns a string,
not a promise. But that’s OK; the then() function automatically converts it in a
Promise<string> so that it can be further processed by another continuation, as
shown in the following code.

getUserName()
    .then((name: string) => {
        return `Hi ${name}!`;   
    })
    .then((greeting: string) => {
        console.log(greeting);
    });

This should make sense intuitively: even if our continuation just returns a string,
because it is chained to a promise, it can’t execute right away. That fact automatically
makes it a promise to be settled when the original promise is settled.

OTHER WAYS TO COMPOSE PROMISES

So far, we’ve looked at then() (and catch()), which chain promises together so that
they settle one after the other. There are a couple more ways to schedule the execu-
tion of asynchronous functions: via Promise.all() and Promise.race(). These
are static methods provided on the Promise class. Promise.all() takes as argu-
ments a set of promises and returns a promise that is settled when all the provided
promises are settled. Promise.race() takes a set of promises and returns a promise
that is settled when any one of the promises is settled.

 We can use Promise.all() when we want to schedule a set of independent asyn-
chronous functions, such as fetching user inbox messages from a database and their
profile picture from a CDN, and then passing both values to the UI, as shown in listing
6.21. We don’t want to sequence these fetching functions one after another, because
they don’t depend on one another. On the other hand, we do want to gather their
results and pass them to another function.

class InboxMessage { /* ... */ }
class ProfilePicture { /* ... */ }

Chaining functions that don’t return promisesListing 6.20

UsingListing 6.21 Promise.all() to sequence execution

getUserEmail() returns a 
Promise<string>.

In this case, we don’t return a 
promise, but then() converts 
this to a Promise<string>.

getInboxMessages() and getProfilePicture() are
independent asynchronous functions.

declare function getInboxMessages(): Promise<InboxMessage[]>;
declare function getProfilePicture(): Promise<ProfilePicture>;



155Simplifying asynchronous code

v

co
both

e 

     
         
    
     
 

declare function renderUI(  
    messages: InboxMessage[], picture: ProfilePicture): void;

Promise.all([getInboxMessages(), getProfilePicture()])  
    .then((values: [InboxMessage[], ProfilePicture]) => {    
        renderUI(values[0], values[1]);   
    });

A pattern like this would be significantly harder to achieve with callbacks, as there is
no mechanism to join them. 

 Let’s look at an example of using Promise.race() in the next listing. Suppose
that the user profile is replicated across two nodes. We try to fetch it from both, and
whichever is the fastest wins. In this case, as soon as we get a result from any one of the
nodes, we can proceed.

class UserProfile { /* ... */ }

declare function getProfile(node: string): Promise<UserProfile>;

declare function renderUI(profile: UserProfile): void;

Promise.race([getProfile("node1"), getProfile("node2")])    
    .then((profile: UserProfile) => {    
        renderUI(profile);
    });

This scenario would be more difficult to achieve by using callbacks without promises
(figure 6.11).

  
 

UsingListing 6.22 Promise.race() to sequence execution

renderUI() needs 
the result from 
both functions.

Promise.all() creates a
promise settled when

both functions resolve
their promises.

alues is
a tuple

ntaining
 results. We pass the values

retrieved to renderUI().

We call getProfile() onc
for each of the nodes.

The argument to the continuation 
is a single UserProfile in this 
case—the one that won the race.

Then

Promise 1

Value 1
Promise 2

Value 2
Promise 3

Promise 1

Promise 2

Promise 3

Value 2
Promise

race

RaceAll

Promise 1

Promise 2

Value
[1, 2, 3]
Promise

all

Promise 3

Figure 6.11 Different ways to combine a promise. Then: Promise 1 settles and hands out Value 1
to Promise 2; Promise 2 settles and hands out Value 2 to Promise 3. All: Promise 1, 2, and
3 settle. When all of them are settled, Promise.all gets all their values and can proceed, settling its
own value. Race: One of the promises settles first (in this case, Promise 2). Promise.race gets
Value 2 and can proceed, settling its own value.



156 CHAPTER 6 Advanced applications of function types
Promises provide a clean abstraction for running asynchronous functions. They not
only make code more readable than using callbacks through the then() and
catch() methods, which enable sequencing, but also handle error propagation and
joining or racing multiple promises via Promise.all() and Promise.race().
Promise libraries are available in most mainstream programming languages, and they
all provide similar functionality, even if the name of the methods is slightly different.
(race() is sometimes called any(), for example.)

 This is about as far as libraries can go in helping us write clean asynchronous code.
Making asynchronous code more readable requires updates to the syntax of the lan-
guage itself. Much as a yield statement allows us to more easily express a generator
function, many languages extended their syntax with async and await to enable us
to write asynchronous functions more easily.

async/await6.4.4

Using promises, we prompted our user for various pieces of information, using con-
tinuations to sequence the questions. Let’s take another look at that implementation
in the next listing. We’re going to wrap it into a getUserData() function.

function getUserData(): void {
    getUserName()
        .then((name: string) => {
            console.log(`Hi ${name}!`);
            return getUserBirthday(name);
        })
        .then((birthday: Date) => {
            const today: Date = new Date();
            if (birthday.getMonth() == today.getMonth() &&
                birthday.getDay() == today.getDay())
                console.log('Happy birthday!');
            return getUserEmail(birthday);
        })
        .then((email: string) => {
            /* ... */
        });
}

Notice again that each continuation takes as argument a value of the same type as the
type of the promise from the preceding function. async/await allows us to express
this better in code. We can draw a parallel with generators and the */yield syntax we
discussed in a previous section.

 async is a keyword that comes before the keyword function, much as the *
appears after the keyword function in generators. In the same way that * can be
used only if the function returns an Iterator, async can appear only in a function
that returns a Promise, just as *, async does not change the type of the function.

Chaining promises reviewListing 6.23



157Simplifying asynchronous code

   
           
  
 
  
  
    
  
  
 
    
    

 

function getUserData(): Promise<string> and async function getUser-
Data(): Promise<string> have the same type: () => Promise<string>. The
same way that * marks a function as a generator and allows us to call yield inside it,
async marks a function as asynchronous and allows us to call await inside it.

 We can use await before a function that returns a promise to get the value
returned when that promise settles. Instead of writing getUserName().then
((name: string) => { /* … */ }), we write let name: string = await
getUserName(). Before walking through how this works, let’s look at how we would
write getUserData() with async and await.

async function getUserData(): Promise<void> {    
    let name: string = await getUserName();    
    console.log(`Hi ${name}!`);   

    let birthday: Date = await getUserBirthday(name);   
    const today: Date = new Date();
    if (birthday.getMonth() == today.getMonth() &&
        birthday.getDay() == today.getDay())
        console.log('Happy birthday!');

    let email: string = await getUserEmail(birthday);   
    /* ... */
}

6.4.5

UsingListing 6.24 async/await

getUserData() must return 
a Promise because it is 
marked as async.

We await 
getUserName() 
to settle and give 
us a name string.

We can use this name string 
in this same function.

We await 
getUserBirthday() 
to settle and give 
us a birthday.

The same is true for getUserEmail();
we await the settled promise and

get the string value.

We immediately see that writing our getUserData() this way makes it even more read-
able than chaining promises with then(). The compiler generates the same code;
there is nothing special under the hood. This technique is simply a nicer way to express
a chain of continuations. Instead of putting each continuation in a separate function
and connecting them via then(), we can write all the code in a single function, and
whenever we call another function that returns a promise, we await its result.

Each await is the equivalent of taking the code after it and placing it in a then()
continuation: this reduces the number of lambdas we need to write and makes asyn-
chronous code read just like synchronous code. As for catch(), if there is no value to
return, perhaps because we encountered an exception, the exception is thrown from
the await call and can be caught with a regular try/catch statement. Simply wrap
the await call in a try block to catch the expected errors.

Clean asynchronous code recap

Let’s quickly review the approaches to writing asynchronous code that we covered in
this section. We started with callbacks, passing a callback function to an asynchronous
function that calls it when its work is done. This approach works, but we’ll usually end



158 CHAPTER 6 Advanced applications of function types
up with a lot of nested callbacks within callbacks, which makes code harder to follow.
It’s also very difficult to join several independent asynchronous functions if we need
the results from all of them to proceed.

 Next, we looked at promises. Promises provide an abstraction for writing asynchro-
nous code. They handle scheduling the execution of the code (in languages that rely
on threads, they get scheduled on threads) and provide a way for us to provide func-
tions called continuations, which get called when the promise is settled (has a value)
or rejected (encountered an error). Promises also provide ways to join and race a set
of promises via Promise.all() and Promise.race().

 Finally, async/await syntax, now common in most mainstream programming
languages, provides an even-cleaner way to write asynchronous code that reads just
like regular code. Instead of providing a continuation with then(), we await the
result of a promise and continue from there. The underlying code executed by the
computer is the same, but the syntax is much nicer to read.

Exercises6.4.6

1 Which state does a promise start in?

a Settled
b Rejected
c Pending
d Any

2 Which of the following chains a continuation to be called when the promise is
rejected?

a then()

b catch()

c all()

d race()

3 Which of the following chains a continuation to be called when a whole set of
promises is settled?

a then()

b catch()

c all()

d race()

Summary
 A closure is a lambda that also holds on to a piece of state from its surrounding

function.
 We can implement a simpler decorator pattern by using a closure and captur-

ing the decorated function instead of implementing a whole new type.
 We can implement a counter by using a closure that tracks the counter state.



159Answers to exercises
 A generator, written using */yield syntax, is a resumable function.
 Long-running operations should run asynchronously so that they don’t block

the rest of the program.
 The two main models for asynchronous execution are threads and event loops.
 A callback is a function passed to an asynchronous function that is invoked

when the asynchronous function completes.
 Promises provide a common abstraction for running asynchronous functions

and provide continuations as an alternative to callbacks. A promise can be
pending, settled (value obtained), or rejected (error encountered).

 Promise.all() and Promise.race() are mechanisms for joining and racing
a set of promises.

 async/await is modern syntax for writing promise-based code as though it
were synchronous code.

Now that we’ve covered applications of function types in depth, from the basics of
passing functions as arguments all the way to generators and asynchronous functions,
we’ll move on to the next major topic: subtypes. As we’ll see in chapter 7, there is a lot
more to subtypes than inheritance.

Answers to exercises
A SIMPLE DECORATOR PATTERN

1 A possible implementation returning a function that adds logging to the
wrapped factory:

function loggingDecorator(factory: () => Widget): () => Widget {
    return () => {
        console.log("Widget created");
        return factory();
    }
}

IMPLEMENTING A COUNTER

2 A possible implementation using a closure that captures a and b from the wrap-
ping function:

function fib(): () => number {
    let a: number = 0;
    let b: number = 1;

    return () => {
        let next: number = a;
        a = b;
        b = b + next;
        return next;
    }
}



160 CHAPTER 6 Advanced applications of function types
3 A possible implementation using a generator that yields the next number in the
sequence:

function *fib2(): IterableIterator<number> {
    let a: number = 0;
    let b: number = 1;

    while (true) {
        let next: number = a;
        a = b;
        b = a + next;
        yield next;
    }
}

EXECUTING LONG-RUNNING OPERATIONS ASYNCHRONOUSLY

1 d—Both threads and an event loop can be used to implement asynchronous
execution.

2 b—An event loop does not execute code in parallel. It can queue and execute
functions asynchronously, but not at the same time.

3 a—Threads allow parallel execution; multiple threads can run multiple func-
tions at the same time.

SIMPLIFYING ASYNCHRONOUS CODE

1 c—A promise starts in the pending state.
2 c—We use catch() to chain a continuation that gets called when a promise is

rejected.
3 c—We use all() to chain a continuation that gets called when all promises are

settled.



 
  
 
 
 
    
 
   

   
Subtyping
This chapter covers
 Disambiguating types in TypeScript

 Safe deserialization

 Values for error cases

 Type compatibility for sum types, collections, and 
functions

Now that we’ve covered primitive types, composition, and function types, it’s time
to look at another aspect of type systems: relationships between types. In this chap-
ter, we’ll introduce the subtyping relationship. Although you may be familiar with it
from object-oriented programming, we will not cover inheritance in this chapter.
Instead, we will focus on a different set of applications of subtyping.

First, we’ll talk about what subtyping is and the two ways in which programming
languages implement it: structural and nominal. Then we will revisit our Mars Cli-
mate Orbiter example and explain the unique symbol trick we used in chapter 4
when discussing type safety.

Because a type can be a subtype of another type, and it can also have other sub-
types, we will look at this type hierarchy: we usually have a type that sits at the top of
161



162 CHAPTER 7 Subtyping
this hierarchy and, sometimes, a type that sits at the bottom. We’ll see how we can use
this top type in a scenario such as deserialization, in which we don’t have a lot of typ-
ing information readily available. We’ll also see how to use a bottom type as a value for
error cases.

 In the second half of the chapter, we will look at how more-complex subtyping
relationships are established. This helps us understand what values we can substitute
for what other values. Do we need to implement wrappers, or can we simply pass a
value of another type as is? If a type is a subtype of another type, what is the subtyping
relationship between collections of those two types? What about functions that take or
return arguments of these types? We’ll take a simple example involving shapes and see
how we can pass them around as sum types, collections, and functions, a process also
known as variance. We’ll also learn about the different types of variance. But first, let’s
see what subtyping means in TypeScript.

Distinguishing between si7.1 milar types in TypeScript
Most of the examples in this book, even though presented in TypeScript, are
language-agnostic and can be translated for most other mainstream programming
languages. This section is an exception; we’ll discuss a technique specific to Type-
Script. We’ll do this because it’s a great segue into a discussion of subtyping.

 Let’s revisit the pound-force second/Newton-second example from chapter 4.
Remember that we were modeling two different units of measurements as two differ-
ent classes. We wanted to make sure that the type checker wouldn’t allow us to misin-
terpret a value of one type as the other, so we used unique symbol to disambiguate
them. We didn’t go into the details of why we had to do this then, but let’s do it now in
the following listing.

declare const NsType: unique symbol;   

class Ns {
    value: number;
    [NsType]: void;    

    constructor(value: number) {
        this.value = value;
    }
}

declare const LbfsType: unique symbol;    

class Lbfs {
    value: number;
    [LbfsType]: void;    

    constructor(value: number) {
        this.value = value;
    }
}

Pound-force second and Newton-second typesListing 7.1

We declare NsType as a unique 
symbol and add a property named 
[NsType] of type void to Ns.

We also declare a LbfsType as a 
unique symbol and add a [LbfsType] 
property of type void to Lbfs.



163Distinguishing between similar types in TypeScript

             
 

 

       
  

  
 

   

               
     
     
    
 
            
              
If we omit these two declarations, an interesting thing happens: we can pass a Ns object
as a Lbfs object, and vice versa, without getting any errors from the compiler. Let’s
implement a function to demonstrate this process: a function named acceptNs()
that expects a Ns argument. Then we’ll try to pass a Lbfs object to acceptNs() in the
next listing.

class Ns {    
    value: number;

    constructor(value: number) {
        this.value = value;
    }
}

class Lbfs {  
    value: number;

    constructor(value: number) {
        this.value = value;
    }
}

function acceptNs(momentum: Ns): void {    
    console.log(`Momentum: ${momentum.value} Ns`);
}

acceptNs(new Lbfs(10));    

   

Pound-force second and Newton-second without unique symbolsListing 7.2

Ns and Lbfs no longer have 
a unique symbol property.

acceptNs() takes a Ns object as 
an argument and logs its value.

We pass a Lbfs 
instance to acceptNs().

Surprisingly, this code works and logs Momentum: 10 Ns., which is definitely not
what we want. The reason why we defined these two separate types was to avoid confus-
ing the two units of measure and crashing the Mars Climate Orbiter. What’s going on?
To understand what is happening, we need to understand subtyping.

SUBTYPING A type S is a subtype of a type T if an instance of S can be safely
used anywhere an instance of T is expected.

This is an informal definition of the famous Liskov substitution principle. Two types are
in a subtype-supertype relationship if we can use an instance of the subtype whenever
an instance of the supertype is expected without having to change the code.

There are two ways in which subtyping relationships are established. The first one,
which most mainstream programming languages (such as Java and C#) use, is called
nominal subtyping. In nominal subtyping, a type is the subtype of another type if we
explicitly declare it as such, using syntax like class Triangle extends Shape. Now
we can use an instance of Triangle whenever an instance of Shape is expected (such
as as argument to a function). If we don’t declare Triangle as extending Shape, the
compiler won’t allow us to use it as a Shape.

On the other hand, structural subtyping doesn’t require us to state the subtyping
relationship explicitly in code. An instance of a type, such as Lbfs, can be used



164 CHAPTER 7 Subtyping

    
  
               
instead of another type, such as Ns, as long as it has all the members that the other
type declares. In other words, if a type has a similar structure to another type (the
same members and optionally additional members), it is automatically considered to
be a subtype of that other type.

NOMINAL AND STRUCTURAL SUBTYPING In nominal subtyping, a type is a sub-
type of another type if we explicitly declare it as such. In structural subtyping,
a type is a subtype of another type if it has all the members of the supertype
and, optionally, additional members.

Unlike C# and Java, TypeScript uses structural subtyping. That’s the reason why, if we
declare Ns and Lbfs as classes with only a value member of type number, they can
still be used interchangeably.

Structural and nominal subtyping pros and cons7.1.1

In many cases, structural subtyping is useful, as it allows us to establish relationships
between types even if they are not under our control. Suppose that a library we use
defines a User type as having a name and age. In our code, we have a Named inter-
face that requires a name property on implementing types. We can use an instance of
User whenever a Named is expected, even though User does not explicitly implement
Named, as shown in the next listing. (We don’t have the declaration class User
implements Named.)

/* Library code */
class User {    
    name: string;
    age: number;

    constructor(name: string, age: number) {
        this.name = name;
        this.age = age;
    }
}

/* Our code */
interface Named {
    name: string;
}

function greet(named: Named): void {   
    console.log(`Hi ${named.name}!`);
}

greet(new User("Alice", 25));    

Listing 7.3 User is structurally a subtype of Named

User is a type from 
an external library that 
we can’t modify.

greet() expects an instance 
conforming to the Named interface.

We can pass a User 
instance as a Named.

If we had to explicitly declare that User implements Named, we would be in trouble,
because User is a type that comes from an external library. We can’t change library
code, so we would have to work around this situation by declaring a new type that



165Distinguishing between similar types in TypeScript
extends User and implements Named (class NamedUser extends User imple-
ments Named {}) just to connect the two types. We don’t need to do this if our type
system uses structural subtyping.

 On the other hand, in some situations we absolutely don’t want a type to be consid-
ered a subtype of another type based simply on its structure. A Lbfs instance should
never be used instead of a Ns instance, for example. In nominal subtyping, this is the
default, which makes it very easy to avoid mistakes. On the other hand, structural sub-
typing requires us to do more work to ensure that a value is of the type we expect it to
be rather than a value of a type with a similar shape. In such scenarios, structural sub-
typing is much better.

 If we want to use nominal subtyping, we can use several techniques to enforce it in
TypeScript. One of them is the unique symbol trick we’ve used throughout the book.
Let’s zoom in on it.

7.1.2 Simulating nominal subtyping in TypeScript

In our Ns/Lbfs case, we are effectively trying to simulate nominal subtyping. We want
to make sure that the compiler considers a type to be a subtype of Ns only if we explic-
itly declare it as such, not just because it has a value member.

 To achieve this, we need to add a member to Ns that no other type can declare
accidentally. In TypeScript, unique symbol generates a “name” that’s guaranteed to
be unique across all the code. Different unique symbol declarations will generate
different names, and no user-declared name can ever match a generated name.

 We declare a unique symbol to represent our Ns type as NsType. The unique sym-
bol declaration looks like this: declare const NsType: unique symbol (as in list-
ing 7.1). Now that we have a unique name, we can create a property with that name by
putting the name in square brackets. We need to define a type for this property, but
we aren’t really going to assign anything to it because we’re just using it to disambigu-
ate types. Because we don’t care about its actual value, a unit type is best suited for this
purpose, so we use void.

 We do the same for Lbfs, and now the types have different structures: one of them
has a [NsType] property, and the other has a [LbfsType] property, as shown in list-
ing 7.4. Because we used unique symbol, it’s impossible to accidentally define a
property with the same name on another type. The only way to come up with a sub-
type for Ns and Lbfs now is to explicitly inherit from them.

    

Simulating nominal subtypingListing 7.4

declare const NsType: unique symbol;

class Ns {
value: number;
[NsType]: void;

constructor(value: number) {
this.value = value;



166 CHAPTER 7 Subtyping
    }
}

declare const LbfsType: unique symbol;

class Lbfs {
    value: number;
    [LbfsType]: void;

    constructor(value: number) {
        this.value = value;
    }
}

function acceptNs(momentum: Ns): void {
    console.log(`Momentum: ${momentum.value} Ns`);
}

acceptNs(new Lbfs(10));   

When we try to pass a Lbfs instance as a Ns, we get the following error:

Argument of type 'Lbfs' is not assignable to parameter of
type 'Ns'. Property '[NsType]' is missing in type 'Lbfs'
but required in type 'Ns'.

In this section, we saw a definition of subtyping and learned about the two ways in
which the subtyping relationship between two types can be established: nominally
(because we say so) and structurally (because the types have the same structure). We
also saw how, even though TypeScript uses structural subtyping, we can simulate nom-
inal subtyping by using unique symbols for the situations in which structural subtyping
is not appropriate.

7.1.3 Exercises

1 In TypeScript, is Painting a subtype of Wine for the types defined as

class Wine {
    name: string;
    year: number;
}

class Painting {
    name: string;
    year: number;
    painter: Painter; 
}

2 In TypeScript, is Car a subtype of Wine for the types defined as
class Wine {
    name: string;
    year: number;
}

This no longer 
compiles.



167Assigning anything to, assigning to anything
class Car {
    make: string;
    model: string;
    year: number;
}

7.2 Assigning anything to, assigning to anything
Now that we’ve learned about subtyping, let’s look at a couple of extremes: a type to
which we can assign anything and a type that we can assign to anything. The first one
is a type we can use to store absolutely anything. The second is a type we can use
instead of any other type if we don’t have an instance of that other type handy.

7.2.1 Safe deserialization

We covered the unknown and any types in chapter 4. unknown is a type that can store
a value of any other type. We mentioned that other object-oriented languages usually
provide a type named Object with similar behavior. In fact, TypeScript has an
Object type too; it provides a few common methods such as toString(). But the
story doesn’t end there, as we’ll see in this section.

 The any type is more dangerous. We can not only assign any value to it, but also
assign an any value to any other type, bypassing type checking. This type is used for
interoperability with JavaScript code but may have unintended consequences. Suppose
that we have a function that deserializes an object using the standard JSON.parse(),
as shown in the next listing. Because JSON.parse() is a JavaScript function with
which TypeScript interoperates, it is not strongly typed; its return type is any. Assume
that we are expecting to deserialize a User instance that has a name property.

class User {
    name: string;   

    constructor(name: string) {
        this.name = name;
    }
}

function deserialize(input: string): any {
    return JSON.parse(input);   
}

function greet(user: User): void {
    console.log(`Hi ${user.name}!`);    
}

greet(deserialize('{ "name": "Alice" }'));    
greet(deserialize('{}'));  

DeserializingListing 7.5 any

The User type has 
a name property.

deserialize() simply wraps 
JSON.parse() and returns 
a value of type any.

greet() uses the name property 
of the given User object.

We deserialize a 
valid User JSON.

We can also deserialize an 
object that is not a User object.



168 CHAPTER 7 Subtyping

     
   
   
               
            
  
The last call to greet() will log "Hi undefined!" because any bypasses type check-
ing, and the compiler allows us to treat the returned value as a value of type User,
even when we didn’t get a value of that type. This result is clearly not ideal. We need to
check that we have the right type before we call greet().

 In this case, we’d want to ensure that the object we have has a name property of
type string, which in our case is enough to cast it into a User. We should also check
that our object is not null or undefined, which are special types in TypeScript. One
way of doing this is to update our code with such a check and call it before calling
greet(). Note that this type check is done at run time, because it depends on the
input value and is not something that can be enforced statically.

class User {
    name: string;

    constructor(name: string) {
        this.name = name;
    }
}

function deserialize(input: string): any {
    return JSON.parse(input);
}

function greet(user: User): void {
    console.log(`Hi ${user.name}!`);
}

function isUser(user: any): user is User {    
    if (user === null || user === undefined)
        return false;
        
    return typeof user.name === 'string';
}

let user: any = deserialize('{ "name": "Alice" }');
if (isUser(user))    
    greet(user);

user = undefined;
if (isUser(user))   
    greet(user);

Run-time type checking forListing 7.6 User

This function checks whether 
the given argument is of type 
User. We consider a variable 
with a name property of type 
string to be of User type.

Checks that user has a 
property name of type 
string before each use.

The user is User return type of isUser() is a bit of TypeScript-specific syntax, but
I hope that it’s not too confusing. This type is very much like a boolean return type,
but it carries extra meaning for the compiler. If the function returns true, the vari-
able user has type User, and the compiler can use that information in the caller.
Effectively, within each if block in which isUser() returned true, user has type
User instead of any.



169Assigning anything to, assigning to anything

              
              
 
              
 
  
        
        
  
  
 
   
 This approach works. Running the code executes only the first call when our user-
name is Alice. The second call to greet() will not be executed because in this case,
there is no name property on user. There’s still a problem with this approach,
though: we are not forced to implement this check. Because no enforcement is going
on, we could make a mistake and forget to call it, which would allow an arbitrary result
from deserialize() to make its way to greet(), and there’s nothing to stop it from
doing so.

 Wouldn’t it be great if we had another way of saying, “This object can be of abso-
lutely any type” but without the additional “Trust me, I know what I’m doing” that any
implies? We need another type—a type that is a supertype of any other type in the sys-
tem, which means that regardless of what JSON.parse()returns, it will be a subtype
of this type. From there on, the type system will ensure that we add the proper type
checking before we cast it to User.

TOP TYPE A type to which we can assign any value is also called a top type
because any other type is a subtype of this type. In other words, this type sits at
the top of the subtyping hierarchy (figure 7.1).

A top type is the
supertype of any
other type.

We can define an
infinite number
of types.

Figure 7.1 A top type is 
the supertype of any other 
type. We can define any 
number of types, but any of 
them would be a subtype of 
the top type. We can use a 
value of any type wherever 
the top type is expected.

Let’s update our implementation. We can start with the Object type, which is the
supertype of most types in the type systems, with two exceptions: null and unde-

fined. The TypeScript type system has some great safety features, one of them being
the ability to keep null and undefined values outside the domain of other types.
Remember the billion-dollar-mistake sidebar in chapter 3—the fact that in most lan-
guages, we can assign null to any type. This is not allowed in TypeScript if we use the
--strictNullChecks compiler flag (which is strongly recommended). TypeScript
considers null to be of type null and undefined to be of type undefined. So our
top type, the supertype of absolutely anything, is the sum of these three types: Object
| null | undefined. This type is actually defined out of the box as unknown. Let’s
rewrite our code to use unknown, as shown in the next listing, and then we can discuss
the differences between using any and unknown.



e 
n.
170 CHAPTER 7 Subtyping

 

class User {
    name: string;

    constructor(name: string) {
        this.name = name;
    }
}

function deserialize(input: string): unknown {    
    return JSON.parse(input);
}

function greet(user: User): void {
    console.log(`Hi ${user.name}!`);
}

function isUser(user: any): user is User {   
    if (user === null || user === undefined)
        return false;

    return typeof user.name === 'string';
}

let user: unknown = deserialize('{ "name": "Alice" }');   
if (isUser(user))
    greet(user);

user = deserialize("null");
if (isUser(user))
    greet(user);

The change is subtle but powerful: as soon as we get a value from JSON.parse(), we
convert it from any to unknown. This process is safe, because anything can be con-
verted to unknown. We keep the argument of isUser() as any, because it makes our
implementation easier. (We wouldn’t be allowed to perform a check such as typeof
user.name on an unknown without extra casting.)

 The code works as before, the distinction being that if we remove any of the
isUser() calls, the code no longer compiles. The compiler issues the following error:

Argument of type 'unknown' is not assignable to parameter
of type 'User'.

We can’t simply pass a variable of type unknown to greet(), which expects a User.
The function isUser() helps, as whenever it returns true, the compiler automati-
cally considers the variable to have type User.

 With this implementation, we simply cannot forget to check; the compiler will not
allow us. It allows us to use our object as a User only after we confirm that user is User.

Stronger typing usingListing 7.7 unknown

We make deserialize() 
return unknown.

We keep the isUser()
argument as any.

We declare our variabl
as having type unknow



171Assigning anything to, assigning to anything
DIFFERENCE BETWEEN UNKNOWN AND ANY Although we can assign anything to
both unknown and any, there is a difference in how we use a variable of one
of these types. In the unknown case, we can use the value as some type (such
as User) only after we confirm that the value actually has that type (as we did
with the function that returns the user as User). In the any case, we can use
the value as a value of any other type right away. any bypasses type checking.

Other languages provide different mechanisms to determine whether a value is of a
given type. C# has the is keyword, for example, and Java has instanceof. In gen-
eral, when we deal with a value that could be anything, we start by considering it to be
a top type. Then we use the appropriate checks to ensure that it is of the type we need
before we downcast it to the required type.

7.2.2 Values for error cases

Now let’s look at an opposite problem: a type that can be used instead of any other
type. Let’s take a simple example in listing 7.8. In our game, we can turn our space-
ship Left or Right. We’ll represent these possible directions as an enumeration. We
want to implement a function that takes a direction and converts it to an angle by
which we rotate our spaceship. Because we want to make sure that we cover all cases,
we’ll throw an error if the enumeration has a value different from the two expected
Left and Right values.

enum TurnDirection {
    Left,
    Right
}

function turnAngle(turn: TurnDirection): number {
    switch (turn) {
        case TurnDirection.Left: return -90;    
        case TurnDirection.Right: return 90;   
        default: throw new Error("Unknown TurnDirection");    
    }
}

So far, so good. But what if we have a function that handles error scenarios? Suppose
that we want to log the error before throwing it. This function would always throw, so
we’ll declare it as returning the type never, as we saw in chapter 2. As a reminder,
never is the empty type that cannot be assigned any value. We use it to explicitly show
that a function never returns, either because it loops forever or because it throws, as
shown in the next listing.

Listing 7.8 TurnDirection to angle conversion

A Left turn becomes –90 
degrees; a Right turn 
becomes 90 degrees.

We throw an error in
case we encounter an

unexpected value.



  
  
  
172 CHAPTER 7 Subtyping

 

function fail(message: string): never {   
    console.error(message);   
    throw new Error(message);   
}

If we want to replace the throw statement in turnAngle() with fail(), we end up
with something like the following.

function turnAngle(turn: TurnDirection): number {
    switch (turn) {
        case TurnDirection.Left: return -90;
        case TurnDirection.Right: return 90;
        default: fail("Unknown TurnDirection");   
    }
}

This code almost works, but not quite. Compilation fails in strict mode (with
--strict flag) with the following error:

Function lacks ending return statement and return type
does not include "undefined".

The compiler doesn’t see a return statement on the default branch and flags that
as an error. One fix would be to return a dummy value as shown in the next listing,
knowing that we throw before reaching it anyway.

enum TurnDirection {
    Left,
    Right
}

function turnAngle(turn: TurnDirection): number {
    switch (turn) {
        case TurnDirection.Left: return -90;
        case TurnDirection.Right: return 90;
        default: {
            fail("Unknown TurnDirection");
            return -1;    
        }
    }
}

Error reportingListing 7.9

Listing 7.10 turnAngle() using fail()

Listing 7.11 turnAgain() using fail() and returning a dummy value

fail() never returns (always 
throws), so we declare it as 
returning never.Print error to 

console and 
then throw.

We replace throw 
with a call to fail().

Dummy value that will 
never actually be returned 
because fail() throws

But what if, at some point in the future, we update fail()in such a way that it doesn’t
always throw? Then our code would end up returning a dummy value, even though it
should never do so. There’s a better solution: return the result of fail(), as the fol-
lowing listing shows.



 

173Assigning anything to, assigning to anything

 

function turnAngle(turn: TurnDirection): number {
    switch (turn) {
        case TurnDirection.Left: return -90;
        case TurnDirection.Right: return 90;
        default: return fail("Unknown TurnDirection");   
    }
}

The reason why this code works is that besides being the type without values, never is
the type that is the subtype of all other types in the system.

BOTTOM TYPE A type that is the subtype of any other type is called a bottom
type because it sits at the bottom of the subtyping hierarchy. To be a subtype
of any other possible type, it must have the members of any other possible
type. Because we can have an infinite number of types and members, the bot-
tom type would also have to have an infinite number of members. Because
that is impossible, the bottom type is always an empty type: a type for which we
can’t create an actual value (figure 7.2).

Because we can assign never to any other type, due to it being a bottom type, we can
return it from the function. The compiler will not complain, as this is an upcast (con-
verting a value from a subtype to a supertype), which can be done implicitly. We’re
saying, “Take this value that is impossible to create and turn it into a string,” which is
fine. Because the fail() function never returns, we never end up in a situation in
which we actually have something to turn into a string.

Listing 7.12 turnAngle() using fail() and returning its result

Just return whatever 
fail() returns.

You can define an
infinite number
of types.

A bottom type is
the subtype of
any other type.

Figure 7.2 A bottom type is the subtype of any other type. We can
define any number of types, but any of these would be a supertype of
the bottom type. We can pass a value of the bottom type wherever
a value of any type is required (although we can never produce such
a value).



174 CHAPTER 7 Subtyping

   
   
     
   
  
 

 
  
 

   
   
 
 
 
   
   

               
               
  

 

    
    

    
    

 
    
7.2.3

7.2.4

7.3

This approach is better than the preceding one because, if we update fail() so that
it doesn’t throw in some cases, the compiler will force us to fix all our code. First, it
will force us to change the return type of fail() from never to something else, such
as void. Then it will see that we are trying to pass that as a string, which does not
type-check. We will have to update our implementation of turnAngle(), perhaps by
bringing back the explicit throw.

A bottom type allows us to pretend that we have a value of any type even if we can’t
come up with one.

Top and bottom types recap

Let’s quickly recap what we covered in this section. Two types can be in a subtyping
relationship, in which one of them is the supertype and the other is the subtype. At
the extreme, we have a type that is the supertype of any other type and a type that is
the subtype of any other type.

The supertype of any other type, called the top type, can be used to hold a value of
any other type. That type is unknown in TypeScript. One situation in which this comes
in handy is when we are dealing with data that can be anything, such as as a JSON doc-
ument read from a NoSQL database. We initially type such data as the top type and
then perform the required checks to cast it down to a type we can work with.

The subtype of any other type, called the bottom type, can be used to produce a
value of any other type. This type is never in TypeScript. One example application is
producing a return value when none can be produced via a function that always throws.

Note that although most mainstream languages provide a top type, few of them
provide a bottom type. The DIY implementation we saw in chapter 2 makes a type
empty but not bottom. Unless worked into the compiler, there is no way to define our
custom bottom type.

Next, let’s look at subtyping for more complex types and see how that works.

Exercises

1 If we have a function makeNothing() that returns never, can we initialize a
variable x of type number with its result (without casting)?

declare function makeNothing(): never;

let x: number = makeNothing();

2 If we have a function makeSomething() that returns unknown, can we initial-
ize a variable x of type number with its result (without casting)?

declare function makeSomething(): unknown;

let x: number = makeSomething();

Allowed substitutions
So far, we’ve looked at a few simple examples of subtyping. We observed, for example,
that if Triangle extends Shape, Triangle is a subtype of Shape. Now let’s try to
answer a few trickier questions:



175Allowed substitutions
 What is the subtyping relationship between the sum types Triangle |

Square and Triangle | Square | Circle?
 What is the subtyping relationship between an array of triangles (Triangle[])

and an array of shapes (Shape[])?
 What is the subtyping relationship between a generic data structure such as

List<T>, for List<Triangle> and List<Shape>?
 What about the function types () => Shape and () => Triangle?
 Conversely, what about the function type (argument: Shape) => void and

the function type (argument: Triangle) => void? 

These questions are important, as they tell us which of these types can be substituted
for their subtypes. Whenever we see a function that expects an argument of one of
these types, we should understand whether we can provide a subtype instead.

 The challenge in the preceding examples is that things aren’t as straightforward as
Triangle extends Shape. We are looking at types that are defined based on Tri-
angle and Shape. Triangle and Shape are part of the sum types, the types of ele-
ments of a collection, or a function’s argument types or return types.

7.3.1 Subtyping and sum types

Let’s take the simplest example first: the sum type. Suppose that we have a draw()
function that can draw a Triangle, a Square, or a Circle. Can we pass a Triangle
or Square to it? As you might have guessed, the answer is yes. We can check that such
code compiles in the following listing.

declare const TriangleType: unique symbol; 
class Triangle {
    [TriangleType]: void;
    /* Triangle members */
}

declare const SquareType: unique symbol;
class Square {
    [SquareType]: void;
    /* Square members */
}

declare const CircleType: unique symbol;
class Circle {
    [CircleType]: void;
    /* Circle members */
}

declare function makeShape(): Triangle | Square;    
declare function draw(shape: Triangle | Square | Circle): void;   

draw(makeShape());

Listing 7.13 Triangle | Square as Triangle | Square | Circle

makeShape() returns a 
Triangle or a Square 
(implementation omitted).

draw() accepts a Triangle,
a Square, or a Circle

(implementation omitted).



176 CHAPTER 7 Subtyping
We enforce nominal subtyping throughout these examples because we’re not provid-
ing full implementations for these types. In practice, they would have various different
properties and methods to distinguish them. We simulate these different properties
with unique symbols for our examples, as leaving the classes empty would make all of
them equivalent due to TypeScript’s structural subtyping.

 As expected, this code compiles. The opposite doesn’t: if we can draw a Triangle
or a Square and attempt to draw a Triangle, Square, or Circle, the compiler will
complain, because we might end up passing a Circle to the draw() function, which
wouldn’t know what to do with it. We can confirm that the following code doesn’t
compile.

declare function makeShape(): Triangle | Square | Circle;    
declare function draw(shape: Triangle | Square): void;    

draw(makeShape());    

Triangle | Square is a subtype of Triangle | Square | Circle: we can always
substitute a Triangle or Square for a Triangle, Square, or Circle but not the
other way around.

 This situation may seem to be counterintuitive, because Triangle | Square is
“less” than Triangle | Square | Circle. Whenever we use inheritance, we end up
with a subtype that has more properties than its supertype. For sum types, it works the
opposite way: the supertype has more types than the subtype (figure 7.3).

Say we have an EquilateralTriangle which inherits from Triangle, as shown in
the next listing.

Listing 7.14 Triangle | Square | Circle as Triangle | Square 

Listing 7.15 EquilateralTriangle declaration

We flipped the types so 
that makeShape() could 
also return a Circle, 
whereas draw() no 
longer accepts a Circle.

This no longer 
compiles.

Sum type

Subtype of

Triangle | Square | Circle

Sum type
Triangle | Square

oror

or

Figure 7.3 Triangle | 
Square is a subtype of 
Triangle | Square | 
Circle because whenever a 
Triangle, Square, or 
Circle is expected, we can 
use a Triangle or a Square. 

declare const EquilateralTriangleType: unique symbol;
class EquilateralTriangle extends Triangle {

[EquilateralTriangleType]: void;
/* EquilateralTriangle members */

}



177Allowed substitutions

    
   
    
As an exercise, check what happens when we mix sum types with inheritance. Does
makeShape() returning EquilateralTriangle | Square and draw() accepting
Triangle | Square | Circle work? What about makeShape() returning Trian-
gle | Square and draw() accepting EquilateralTriangle | Square | Circle?

 This form of subtyping is something that has to be supported by the compiler.
With a DIY sum type like the Variant we looked at in chapter 3, we would not get the
same subtyping behavior. Remember the Variant can wrap a value of one of several
types, but it is not itself any of those types.

7.3.2 Subtyping and collections

Now let’s look at types that contain a set of values of some other type. Let’s start with
arrays in the next listing. Can we pass an array of Triangle objects to a draw() func-
tion that accepts an array of Shape objects if Triangle is a subtype of Shape?

class Shape {
    /* Shape members */
}

declare const TriangleType: unique symbol; 
class Triangle extends Shape {    
    [TriangleType]: void;
    /* Triangle members */
}

declare function makeTriangles(): Triangle[];   
declare function draw(shapes: Shape[]): void;    

draw(makeTriangles());   

This observation may not be surprising, but it is important: arrays preserve the subtyping
relationship of the underlying types that they are storing. As expected, the opposite doesn’t
work: if we try to pass an array of Shape objects when an array of Triangle objects is
expected, the code won’t compile (figure 7.4).

Listing 7.16 Triangle[] as Shape[]

Triangle is a 
subtype of Shape.

makeTriangles() returns an 
array of Triangle objects.

draw() accepts an 
array of Shape objects.

We can use an array of 
Triangle objects as an 
array of Shape objects.

Subtype of

Subtype of

Triangle is a
subtype of
Shape.

Triangle[] is
a subtype of
Shape[].

Figure 7.4 If Triangle is a subtype of Shape, an array of triangles is a
subtype of an array of shapes. If we can use a Triangle as a Shape, we
can use an array of Triangle objects as an array of Shape objects.



178 CHAPTER 7 Subtyping

          
           
   

 
  
            
 

  
    
          

   
   
  
   
  

 
    
       
  
As we saw in chapter 2, arrays are basic types that come out of the box in many program-
ming languages. What if we define a custom collection, such as a LinkedList<T>?

class LinkedList<T> {   
    value: T;
    next: LinkedList<T> | undefined = undefined;

    constructor(value: T) {
        this.value = value;
    }

    append(value: T): LinkedList<T> {
        this.next = new LinkedList(value);
        return this.next;
    }
}

declare function makeTriangles(): LinkedList<Triangle>;   
declare function draw(shapes: LinkedList<Shape>): void;    

draw(makeTriangles());   

 

     

Listing 7.17 LinkedList<Triangle> as LinkedList<Shape>

A generic linked 
list collection

makeTriangle() now 
returns a linked list 
of triangles.

draw() accepts a 
linked list of shapes.

The code 
compiles.

Even without a primitive type, TypeScript correctly establishes that LinkedList-

<Triangle> is a subtype of LinkedList<Shape>. As before, the opposite doesn’t
compile; we can’t pass a LinkedList<Shape> as a LinkedList<Triangle>.

COVARIANCE A type that preserves the subtyping relationship of its underly-
ing type is called covariant. An array is covariant because it preserves the sub-
typing relationship: Triangle is a subtype of Shape, so Triangle[] is a
subtype of Shape[].

Various languages behave differently when dealing with arrays and collections such as
LinkedList<T>. In C#, for example, we would have to explicitly state covariance for
a type such as LinkedList<T> by declaring an interface and using the out keyword
(ILinkedList<out T>). Otherwise, the compiler will not deduce the subtyping
relationship.

An alternative to covariance is to simply ignore the subtyping relationship between
two given types and consider a LinkedList<Shape> and LinkedList<Triangle>

to be types with no subtyping relationship between them. (Neither is a subtype of the
other.) This is not the case in TypeScript, but it is in C#, in which a List<Shape> and
a List<Triangle> have no subtyping relationship.

INVARIANCE A type that ignores the subtyping relationship of its underlying
type is called invariant. A C# List<T> is invariant because it ignores the sub-
typing relationship "Triangle is a subtype of Shape", so List<Shape>
and List<Triangle> have no subtype–supertype relationship.



179Allowed substitutions
Now that we’ve looked at how collections relate to one another in terms of subtyping
and have seen two common types of variance, let’s see how function types are related.

7.3.3 Subtyping and function return types

We’ll start with the simpler case first: let’s see what substitutions we can make between
a function that returns a Triangle and a function that returns a Shape, as shown in
listing 7.18. We’ll declare two factory functions: a makeShape() that returns a Shape
and a makeTriangle() that returns a Triangle.

 Then we’ll implement a useFactory() function that takes a function of type
() => Shape as argument and returns a Shape. We’ll try passing makeTriangle() to it.

declare function makeTriangle(): Triangle;
declare function makeShape(): Shape;

function useFactory(factory: () => Shape): Shape {    
    return factory();    
}

let shape1: Shape = useFactory(makeShape);    
let shape2: Shape = useFactory(makeTriangle);    

Nothing is out of the ordinary here: we can pass a function that returns a Triangle as
a function that returns a Shape because the return value (a Triangle) is a subtype of
Shape, so we can assign it to a Shape (figure 7.5).

Figure 7.5 If Triangle is a subtype of Shape, we can use a function that 
returns a Triangle instead of a function that returns a Shape because 
we can always assign a Triangle to a caller that expects a Shape.

The opposite doesn’t work: if we change our useFactory() to expect a () => Tri-
angle argument and try to pass it makeShape(), the following code won’t compile.

Listing 7.18 () => Triangle as () => Shape

Listing 7.19 () => Shape as () => Triangle

useFactory() takes a function
with no arguments that 
returns a Shape and calls it.

Both makeTriangle() and 
makeShape() can be used as 
arguments to useFactory().

() =>

Subtype of

Subtype of

Triangle is a
subtype of
Shape.

() => Triangle
is a subtype of
() => Shape.

() =>

declare function makeTriangle(): Triangle;
declare function makeShape(): Shape;



180 CHAPTER 7 Subtyping

  
 

 
    
         
         
     
function useFactory(factory: () => Triangle): Triangle {   
    return factory();
}

let shape1: Shape = useFactory(makeShape);   
let shape2: Shape = useFactory(makeTriangle);

Again, this code is pretty straightforward: we can’t use makeShape() as a function of
type () => Triangle because makeShape() returns a Shape object. That object could
be a Triangle, but it also might be a Square. useFactory() promises to return a
Triangle, so it can’t return a supertype of Triangle. It could, of course, return a sub-
type such as EquilateralTriangle, given a makeEquilateralTriangle().

 Functions are covariant in their return types. In other words, if Triangle is a sub-
type of Shape, a function type such as () => Triangle is a subtype of a function ()
=> Shape. Note that the function types don’t have to describe functions that don’t take
any arguments. If both makeTriangle() and makeShape() took a couple of number
arguments, they would still be covariant, as we just saw.

 This behavior is followed by most mainstream programming languages. The same
rules are followed for overriding methods in inherited types, changing their return
type. If we implement a ShapeMaker class that provides a make() method that
returns a Shape, we can override it in a derived class MakeTriangle to return Tri-
angle instead, as shown in the following listing. The compiler allows this, as calling
either of the make() methods will give us a Shape object.

class ShapeMaker {
    make(): Shape {   
        return new Shape();
    }
}

class TriangleMaker extends ShapeMaker {   
    make(): Triangle {   
        return new Triangle();
    }
}

7.3.4

   
   

Overriding a method with a subtype as return typeListing 7.20

We replace Shape 
with Triangle here.

Code fails to compile; we can’t use 
makeShape() as a () => Triangle.

ShapeMaker defines a 
method make(), which 
returns a Shape object.

TriangleMaker inherits 
from ShapeMaker.

TriangleMaker overrides 
make() and changes its 
return type to Triangle.

Again, this behavior is allowed in most mainstream programming languages, as most
consider functions to be covariant in their return type. Let’s see what happens to func-
tion types whose argument types are subtypes of one another.

Subtyping and function argument types

We’ll turn things inside out here, so instead of using a function that returns a Shape

and a function that returns a Triangle, we’ll take a function that takes a Shape as
argument and a function that takes a Triangle as argument. We’ll call these func-
tions drawShape() and drawTriangle(). How do (argument: Shape) => void

and (argument: Triangle) => void relate to each other?



181Allowed substitutions

 

     
    
   
 Let’s introduce another function, render(), that takes as arguments a Triangle
and an (argument: Triangle) => void function, as the next listing shows. It simply
calls the given function with the given Triangle.

declare function drawShape(shape: Shape): void;    
declare function drawTriangle(triangle: Triangle): void;   

function render(
    triangle: Triangle,  
    drawFunc: (argument: Triangle) => void): void {    
    drawFunc(triangle);    
}

Here comes the interesting bit: in this case, we can safely pass drawShape() to the
render() function! We can use a (argument: Shape) => void where an (argu-
ment: Triangle) => void is expected.

 Logically, it makes sense: we have a Triangle, and we pass it to a drawing function
that can use it as an argument. If the function itself expects a Triangle, like our
drawTriangle() function, it of course works. But it should also work for a function
that expects a supertype of Triangle. drawShape() wants a shape—any shape—to
draw. Because it doesn’t use anything that’s triangle-specific, it is more general than
drawTriangle(); it can accept any shape as argument, be it Triangle or Square.
So in this particular case, the subtyping relationship is reversed.

CONTRAVARIANCE A type that reverses the subtyping relationship of its
underlying type is called contravariant. In most programming languages, func-
tions are contravariant with regard to their arguments. A function that
expects a Triangle as argument can be substituted for a function that
expects a Shape as argument. The relationship of the functions is the reverse
of the relationship of the argument types. If Triangle is a subtype of Shape,
the type of function that takes a Triangle as an argument is a supertype of
the type of function that takes a Shape as an argument (figure 7.6).

Draw and render functionsListing 7.21

drawShape() takes a Shape
argument; drawTriangle() 
takes a Triangle argument.

render() expects a Triangle 
and a function that takes 
a Triangle as argument.render() simply calls the 

provided function, passing 
it the triangle it received.

Subtype of

Subtype of

Triangle is a
subtype of
Shape.

(Triangle) => void
is a supertype of
(Shape) => void.

) => void( ) => void(

Figure 7.6 If Triangle is a subtype of Shape, we can use a function that expects
a Shape as argument instead of a function that expects a Triangle as argument
because we can always pass a Triangle to a function that takes a Shape.



182 CHAPTER 7 Subtyping

   
  
    
We said “most programming languages” earlier. A notable exception is TypeScript. In
TypeScript, we can also do the opposite: pass a function that expects a subtype instead
of a function that expects a supertype. This choice was an explicit design choice  made
to facilitate common JavaScript programming patterns. It can lead to run-time issues,
though.

 Let’s look at an example in the next listing. First, we’ll define a method isRight-
Angled() on our Triangle type, which would determine whether a given instance
describes a right-angled triangle. The implementation of the method is not important.

class Shape {
    /* Shape members */
}

declare const TriangleType: unique symbol; 
class Triangle extends Shape {
    [TriangleType]: void;

    isRightAngled(): boolean {    
        let result: boolean = false;

        /* Determine whether it is a right-angled triangle */

        return result;
    } 
 
    /* More Triangle members */
}

Now let’s reverse the drawing example, as shown in listing 7.23. Suppose that our
render() function expects a Shape instead of a Triangle and a function that can
draw shapes (argument: Shape) => void instead of a function that can draw only
triangles (argument: Triangle) => void.

declare function drawShape(shape: Shape): void;    
declare function drawTriangle(triangle: Triangle): void;    

function render(
    shape: Shape,   
    drawFunc: (argument: Shape) => void): void {   
    drawFunc(shape);   
}

Listing 7.22 Shape and Triangle with isRightAngled() method

Updated draw and render functionsListing 7.23

The isRightAngled() method tells 
us whether an instance describes 
a right-angled triangle.

drawShape() and 
drawTriangle() are 
just like before.

render() expects a Shape 
and a function that takes 
a Shape as argument.render() simply calls the 

provided function passing it 
the shape it received.

Here’s how we can cause a run-time error: we can define drawTriangle() to use some-
thing that is triangle-specific, such as the isRightAngled() method we just added.
Then we call render with a Shape object (not a Triangle) and drawTriangle().



183Allowed substitutions

    
   
  
 

 Now drawTriangle() will receive a Shape object and attempt to call isRight-
Angled() on it in the next listing, but because the Shape is not a Triangle, this will
cause an error.

function drawTriangle(triangle: Triangle): void {
    console.log(triangle.isRightAngled());   
    /* ... */
}

function render(
    shape: Shape,    
    drawFunc: (argument: Shape) => void): void {    
    drawFunc(shape);  
}

render(new Shape(), drawTriangle);    

This code will compile, but it will fail at run time with a JavaScript error, because the
run time won’t be able to find isRightAngled() on the Shape object we gave to
drawTriangle(). This result is not ideal, but as mentioned before, it was a conscious
decision made during the implementation of TypeScript.

 In TypeScript, if Triangle is a subtype of Shape, a function of type (argument:
Shape) => void and a function of type (argument: Triangle) => void can be
substituted for each other. Effectively, they are subtypes of each other. This property is
called bivariance.

BIVARIANCE Types are bivariant if, from the subtyping relationship of their
underlying types, they become subtypes of each other. In TypeScript, if Tri-
angle is a subtype of Shape, the function types (argument: Shape) => void
and (argument: Triangle) => void are subtypes of each other (figure 7.7).

Again, the bivariance of functions with respect to their arguments in TypeScript allows
incorrect code to compile. A major theme of this book is relying on the type system to

Listing 7.24 Attempting to call isRightAngled() on a supertype of Triangle

drawTriangle() calls a 
Triangle-specific method 
on the given argument.

We can pass a Shape and 
drawTriangle() to render.

Subtype of

Subtype of

Subtype of

Triangle is a
subtype of
Shape.

(Triangle) => void
is both a subtype
and supertype of
(Shape) => void.

) => void( ) => void(

Figure 7.7 If Triangle is a subtype of Shape, in TypeScript, a function that
expects a Triangle can be used instead of a function that expects a Shape,
and a function that expects a Shape can be used instead of a function that
expects a Triangle.



184 CHAPTER 7 Subtyping

            
 

 
          
  
              
 
 

 

 

     
  

 

       
             
             

 

           
      
   

            
              
           
 
            
  
 

    

     

          
 

    
  
7.3.5

  
  

    
 

7.3.6

 

 

  

eliminate run-time errors at compile time. In TypeScript, it was a deliberate design
decision to enable common JavaScript programming patterns.

Variance recap

Throughout this section, we’ve looked at what types can be substituted for what other
types. Although subtyping is straightforward for dealing with simple inheritance,
things get more complicated when we add types parameterized on other types. These
types could be collections, function types, or other generic types. The way that the
subtyping relationships of these parameterized types is removed, preserved, reversed,
or made two-way based on the relationship of their underlying types is called variance:

 Invariant types ignore the subtyping relationship of their underlying types.
 Covariant types preserve the subtyping relationship of their underlying types. If

Triangle is a subtype of Shape, an array of type Triangle[] is a subtype of
an array of type Shape[]. In most programming languages, function types are
covariant in their return types.

 Contravariant types reverse the subtyping relationship of their underlying types.
If Triangle is a subtype of Shape, the function type (argument: Shape) =>

void is a subtype of the function type (argument: Triangle) => void in
most languages. This is not true for TypeScript, in which function types are
bivariant with regard to their argument types.

 Bivariant types are subtypes of each other when their underlying types are in a
subtyping relationship. If Triangle is a subtype of Shape, the function type
(argument: Shape) => void and the function type (argument: Triangle)
=> void are subtypes of each other. (Functions of both types can be substituted
for each other.)

Although some common rules exist across programming languages, there is no one
way to support variance. You should understand what the type system of your pro-
gramming language does and how it establishes subtyping relationships. This is
important to know, as these rules tell us what can be substituted for what. Do you need
to implement a function to transform a List<Triangle> into a List<Shape>, or
can you just use the List<Triangle> as is? The answer depends on the variance of
List<T> in your programming language of choice.

Exercises

In the following exercises, Triangle is a subtype of Shape. We are going to use the
variance rules of TypeScript.

1 Can we pass a Triangle variable to a function drawShape(shape: Shape):

void?
2 Can we pass a Shape variable to a function drawTriangle(triangle:

Triangle): void?
3 Can we pass an array of Triangle objects (Triangle[]) to a function draw-

Shapes(shapes: Shape[]): void?



185Answers to exercises

    
   

            
   

     
  

  

             

  

 

 
            

           

           
 
           
            

   
 

         
 

 
           

     

     
   
             
   
   

   
 

  

    

4 Can we assign the drawShape() function to a variable of function type (tri-

angle: Triangle) => void?
5 Can we assign the drawTriangle() function to a variable of function type

(shape: Shape) => void?
6 Can we assign a function getShape(): Shape to a variable of function type

() => Triangle?

Summary
 We defined subtyping and the two ways that programming languages determine

whether a type is a subtype of another type: structural or nominal.
 We looked at a TypeScript technique to simulate nominal subtyping in a lan-

guage with structural subtyping.
 We saw an application for the top type, the type that sits at the top of the subtyp-

ing hierarchy: safe deserialization.
 We also saw an application for the bottom type, the type that sits at the bottom

of the subtyping hierarchy: as a value type for error scenarios.
 We covered subtyping between sum types. The sum type composed of fewer

types is the supertype of the sum type composed of more types.
 We learned about covariant types. Arrays and collections are often covariant,

and function types are covariant in their return types.
 In some languages, types can be invariant (have no subtyping relationship)

even if their underlying types have a subtyping relationship.
 Function types are usually contravariant in their argument types. In other

words, their subtyping relationship is the reverse of that of their argument
types.

 In TypeScript, functions are bivariant in their argument types. As long as their
argument types have a subtyping relationship, each function type is a subtype of
the other.

 Variance is implemented differently in different programming languages. It’s
good to know how your programming language of choice establishes subtyping
relationships.

Now that we’ve covered subtyping at length, we’ll move on to the one major applica-
tion of subtyping we haven’t talked about much: object-oriented programming. In
chapter 8, we will go over the elements of OOP and their applications.

Answers to exercises
DISTINGUISHING BETWEEN SIMILAR TYPES IN TYPESCRIPT

1 Yes—Painting has the same shape as Wine, with an additional painter prop-
erty. In TypeScript, due to structural subtyping, Painting is a subtype of Wine.

2 No—Car is missing the name property that Wine defines, so even with struc-
tural subtyping, Car cannot be substituted for Wine.



186 CHAPTER 7 Subtyping
ASSIGNING ANYTHING TO, ASSIGNING TO ANYTHING

1 Yes—never is a subtype of any other type, including number, so we can assign it
to a number (even though we would never be able to create an actual value, as
makeNothing() would never return).

2 No—unknown is a supertype of any other type, including number. We can
assign a number to an unknown, but not vice versa. First, we have to ensure that
the value returned from makeSomething() is a number before we can assign it
to x.

ALLOWED SUBSTITUTIONS

1 Yes—We can substitute a Triangle wherever a Shape is expected.
2 No—We cannot use a supertype instead of a subtype.
3 Yes—Arrays are covariant, so we can use an array of Triangle objects instead

of an array of Shape objects.
4 Yes—Functions are bivariant in their arguments in TypeScript, so we can use

(shape: Shape) => void as (triangle: Triangle) => void.
5 Yes—Functions are bivariant in their arguments in TypeScript, so we can use

(triangle: Triangle) => void as (shape: Shape) => void.
6 No—Functions are bivariant in their arguments but not in their return types in

TypeScript. We can’t use a function of type () => Shape as a function of type ()
=> Triangle.



 
 
 

   
             
            
             
    
 
               
Elements of object-oriented
programming
This chapter covers
 Defining contracts by using interfaces

 Implementing a hierarchy of expressions

 Implementing the adapter pattern

 Extending behavior with mix-ins

 Considering alternatives to pure OOP

In this chapter, we will cover the elements of object-oriented programming and see
how we can employ them effectively. You are probably familiar with these concepts,
as they show up in all object-oriented languages, so we’ll focus more on their use
cases.

We’ll start with interfaces and see how we can think of them as contracts. After
interfaces, we’ll look at inheritance: we can inherit both data and behavior. An
alternative to inheritance is composition. We’ll look at some of the differences
between the two approaches and when to use which. We’ll talk about extending
data and behavior with mix-ins or, in TypeScript, intersection types. Not all languages
support mix-ins. Finally, we’ll look at alternatives to OOP and when it might make
sense not to use it. This is not because there is something wrong with OOP, but
187



188 CHAPTER 8 Elements of object-oriented programming
because many developers learn it as the only approach to software engineering, and
sometimes it ends up being overused.

 Before getting started, let’s quickly define OOP.

OBJECT-ORIENTED PROGRAMMING OOP is a programming paradigm based on
the concept of objects, which contain both data and code. The data is the
state of the object. The code is one or more methods, also known as messages.
In an object-oriented system, objects can “talk” to or message one another by
invoking each other’s methods.

Two key features of OOP are encapsulation, which allows us to hide data and methods,
and inheritance, which extends a type with additional data and/or code.

Defining contracts with interfaces8.1
In this section, we’ll try to answer a common OOP question: what is the difference
between an abstract class and an interface? Let’s take as an example a logging system.
We want to provide a log() method but still have the ability to use different logging
implementations. We can go about this in a couple of ways. First, we can declare an
abstract class, ALogger, and have the actual implementations, such as Console-
Logger, inherit from it, as shown in the following listing.

abstract class ALogger {   
    abstract log(line: string): void;    
}

class ConsoleLogger extends ALogger {    
    log(line: string): void {    
        console.log(line);
    }
}

A user of the logging system would take an ALogger as a parameter. We can pass any
subtype of ALogger, such as ConsoleLoger, anywhere that an ALogger is expected.

 The alternative is to declare an ILogger interface and have ConsoleLogger
implement that interface, as shown in the next listing.

interface ILogger {   
    log(line: string): void;
}

class ConsoleLogger implements ILogger {    
    log(line: string): void {    
        console.log(line);
    }
}

Abstract loggerListing 8.1

Logger interfaceListing 8.2

ALogger is an 
abstract class.

log() is an abstract method, 
lacking implementation.

ConsoleLogger inherits from 
ALogger and provides an 
implementation for log().

ILogger interface declares 
a log() method.

ConsoleLogger implements 
ILogger interface and 
provides a log() method.



189Defining contracts with interfaces

          
 

A user of the logging system would, in this case, take an ILogger as a parameter. We
can pass any type implementing the interface, such as ConsoleLogger, anywhere
that an ILogger is expected.

 The two approaches are similar, and both work, but in a scenario like this one, we
should use an interface because an interface specifies a contract.

INTERFACES OR CONTRACTS An interface, or a contract, is a description of a set
of messages that are understood by any object implementing that interface.
The messages are methods and include name, arguments, and return type.
An interface does not have any state. Just like real-world contracts, which are
written agreements, an interface is a written agreement of what implementers
will provide.

This is exactly what we need in our case: the logging contract consisting of a log()
method that clients will call. Declaring the ILogger interface makes it clear to who-
ever reads our code that we are specifying a contract.

 An abstract class can do that, but it can do much more: it can contain nonabstract
methods or state. The only difference between an abstract and a “normal” or concrete
class is that we can’t directly create an instance of an abstract class. We know that
whenever we pass around an instance of the abstract class, such as an ALogger argu-
ment, we are in fact working with an instance of a type that inherits from ALogger,
such as ConsoleLogger.

 This is a subtle but important distinction between abstract classes and interfaces:
the relationship between ConsoleLogger and ALogger is called an is-a relationship,
as in ConsoleLogger is an ALogger, because it inherits from it. On the other hand,
there is nothing to inherit from ILogger, as it just specifies a contract. We have
ConsoleLogger implement the contract, but it doesn’t semantically create an is-a
relationship. ConsoleLogger satisfies the contract ILogger but isn’t an ILogger.
That’s the reason why even languages that enforce that a class can inherit from only
one other class, such as Java and C#, still allow classes to implement many interfaces.

 Note that we can extend an interface, creating a new interface based on it, with
additional methods. We can create an IExtendedLogger that adds a warn() and an
error() method to the ILogger contract, for example, as the following listing shows,

interface ILogger {
    log(line: string): void;
}

interface IExtendedLogger extends ILogger {    
    warn(line: string): void;
    error(line: string): void;
}

Extended logger interfaceListing 8.3

IExtendedLogger has log(), 
warn(), and error() methods.

Any object that satisfies the IExtendedLogger contract also satisfies the ILogger

contract automatically. We can also combine multiple interfaces into one. We can take



190 CHAPTER 8 Elements of object-oriented programming

 

       
           
   
  

   
  
     
  
an ISpeaker and an IVolumeControl, for example, and define an ISpeakerWith-
VolumeControl contract that combines the two, as shown in listing 8.4. This tech-
nique allows us to use as a contract both the speaker capabilities and the volume-
control capabilities while still allowing other types to implement only one of them.
(We might have volume control for a microphone, for example.)

interface ISpeaker {    
    playSound(/* ... */): void;
}

interface IVolumeControl {    
    volumeUp(): void;
    volumeDown(): void;
}

interface ISpeakerWithVolumeControl extends ISpeaker, IVolumeControl {
}   

class MySpeaker implements ISpeakerWithVolumeControl {    
    playSound(/* ... */): void {
        // Concrete implementation
    }

    volumeUp(): void {
        // Concrete implementation
    }

    volumeDown(): void {
        // Concrete implementation
    }
}

class MusicPlayer {
    speaker: ISpeakerWithVolumeControl;    

Combining interfacesListing 8.4

Speaker
interface

Volume-control
interface

Combined speaker and
volume-control interface

MySpeaker implementing
the combined interface

MusicPlayer requires a speaker 
with volume controls.

constructor(speaker: ISpeakerWithVolumeControl) {
this.speaker = speaker;

}
}

We can have MySpeaker implement both ISpeaker and IVolumeControl instead
of ISpeakerWithVolumeControl, of course, but using a single interface makes it
easier for a component such as MusicPlayer to request a speaker with volume con-
trols. The ability to combine interfaces like this allows us to create them from smaller,
reusable building blocks.

Interfaces ultimately benefit the consumers, not the classes that implement them,
so it’s generally a good idea to spend some time coming up with the best design. The
well-known OOP principle of coding against interfaces encourages working with inter-
faces rather than classes, as we did with MusicPlayer in our example. That principle



191Inheriting data and behavior

  
           
 
   
   
              
 
 
   

    

   
   
   
   

        
         
   

  
            
 

  
               

 

  
8.1.1

8.2

8.2.1

reduces the coupling of the components in the system, as we can modify or even swap
out MySpeaker for another type without affecting MusicPlayer, as long as the
ISpeakerWithVolumeContract is satisfied.

Dependency injection frameworks take on the responsibility of mapping the con-
crete implementation we should use for that interface, so the rest of the code simply
asks for a certain interface, and the framework provides it. This reduces the “glue”
code and allows us to focus on implementing the components themselves. We won’t
cover dependency injection at length, but it’s a good approach to reducing the cou-
pling of the code and especially useful for unit testing, as we usually set up dependen-
cies of components under test to be stubs or mocks.

Next, we’ll look at inheritance and some of its applications.

Exercises

1 Instances of types that have a getName() function can be used by an index()

function. What is the best way to model this?

a Declare a concrete BaseNamed base class
b Declare an ANamed abstract base class
c Declare an INamed interface
d Check whether getName() exists at run time

2 In TypeScript, the Iterable<T> interface declares a [Symbol.iterator]

method that returns an Iterator<T>, and the Iterator<T> interfaces
declares a next() method returning an IteratorResult<T>:

interface Iterable<T> {
[Symbol.iterator](): Iterator<T>;

}

interface Iterator<T> {
next(): IteratorResult<T>;

}

Generators return a combination of these—an IterableIterator<T>, which
is both iterable and an iterator itself. How would you define the Iterable-

Iterator<T> interface?

Inheriting data and behavior
Inheritance is one of the best-known features of object-oriented languages. It allows us
to create subclasses of a parent class. The subclasses inherit both the data and the
methods of the parent class. A subclass is, obviously, a subtype of the parent class, as an
instance of the subclass can always be used whenever the parent class is expected.

The is-a rule of thumb

There seems to be an immediate application: if we already have a class that implements
most of the behavior we want, we can inherit from it and add what is missing. The prob-
lem with doing this haphazardly is twofold. First, if we abuse inheritance, we end up



192 CHAPTER 8 Elements of object-oriented programming
with deep hierarchies of classes that are very hard to understand and navigate. Second,
we end up with an inconsistent data model in which the classes don’t make sense.

 If we have a Point class that tracks x and y coordinates, for example, we could
inherit a Circle from it and add a radius property. We can define a circle by its cen-
ter and radius, and Point can already represent the center. But this definition should
feel odd.

class Point {
    x: number;
    y: number;

    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

class Circle extends Point {   
    radius: number;

    constructor(x: number, y: number, radius: number) {
        super(x, y);
        this.radius = radius;
    }
}

To understand why this feels odd, let’s look at the is-a relationship we established. Is
an instance of the subclass logically an instance of the superclass? In this case, no. A
Circle is not a Point. We can certainly use it as one, the way we defined it, but there
doesn’t seem to be a reasonable scenario in which we would want to do that.

INHERITANCE AND THE IS-A RELATIONSHIP Inheritance establishes an is-a rela-
tionship between the child type and its parent type. If our base class is Shape,
and our derived class is Circle, the relationship is “Circle is a Shape.” This
is the semantic meaning of inheritance and a good test to apply to two types
to determine whether we should use inheritance.

We’ll go over the alternative approach of composition in section 8.3. Until then, let’s
look at a few situations in which it does make sense to use inheritance.

8.2.2 Modeling a hierarchy

One instance when we should look at inheritance is when our data model is hierarchi-
cal. This fact is fairly obvious, so we won’t cover it at length, but this is the best use of
inheritance: as we move down the inheritance chain, we refine our types by adding
more data and/or more behavior (figure 8.1).

Bad inheritanceListing 8.5

Circle inherits the x and 
y coordinates of its 
center from Point.



193Inheriting data and behavior
 The example in the figure may seem to be
simplistic, but it is a perfect use of inheritance.
A Cat is a Pet is an Animal, and as we go
deeper down the hierarchy, we get more behav-
ior and state.

 When we want to deal with a higher abstrac-
tion level, we go up the hierarchy. If we just
need to play() with our animal, we use an
argument of type Pet. If we need specific meow-
ing behavior, we use an argument of type Cat.

 This example should be very straightfor-
ward, so let’s move on to a more interesting
application of inheritance, which has a twist:
different derived classes implement some
behavior differently.

Parameterizing beha8.2.3 vior of expressions

The other situation in which we should use inheritance is when most of the behavior
and state we want is common to multiple types, but a small part of it needs to vary
across implementations. The multiple types should still pass our is-a test.

 We have an expression that can be evaluated to a number, we have binary expres-
sions that have two operands, and we have sum and multiply expressions that we eval-
uate by adding and multiplying the operands.

 We can model an expression as an IExpression interface with an eval()
method. We make it an interface because it doesn’t hold any state. Next, we imple-
ment a BinaryExpression abstract class that stores the two operands, as shown in
listing 8.6, but we keep eval() abstract and let derived classes implement it. Sum-
Expression and MulExpression each inherit the two operands from Binary-
Expression and provide their own eval() implementation (figure 8.2).

All animals
need to eat. Animal

eat()

is-a

Pet

play()

is-a

Cat

meow()

You can play
with pets.

Cats meow.

Figure 8.1 All animals eat. We can 
play with pets (but they still need to 
eat). Cats also meow (but they still 
play and eat).

IExpression

abstract eval()

eval()

is-ais-a

BinaryExpression
stores the terms.

Children
implement eval.

SumExpression

eval()

MulExpression

eval()

BinaryExpression

a
b

Figure 8.2 Expression hierarchy 
with BinaryExpression as 
parent and SumExpression and 
MulExpression as children



      
  
  
                 
  

   
 
 
  
 

   
            
   

 

   
   
194 CHAPTER 8 Elements of object-oriented programming

interface IExpression {    
    eval(): number;
}

abstract class BinaryExpression implements IExpression {    
    readonly a: number;
    readonly b: number;

    constructor(a: number, b: number) {
        this.a = a;
        this.b = b;
    }

    abstract eval(): number;   
}

class SumExpression extends BinaryExpression {    
    eval(): number {
        return this.a + this.b;
    }
}

class MulExpression extends BinaryExpression {    
    eval(): number {
        return this.a * this.b;
    }
}

8.2.4

Expression hierarchyListing 8.6

IExpression doesn’t need to be 
a class, as it doesn’t hold state.

BinaryExpression 
is a class storing 
the two operands.

eval() is abstract, as we don’t 
have an implementation for it.

Both SumExpression and 
MulExpression inherit from 
BinaryExpression and 
implement eval().

This should pass our is-a test: a SumExpression is a BinaryExpression. As we go
down the hierarchy, we inherit the common parts (in our case, the two operands) but
parameterize the eval() for each derived class.

One thing to watch out for is coming up with very deep hierarchies of classes,
which makes the code harder to navigate, as various parts of the state and methods of
an object come from different levels in the hierarchy.

Usually, it’s also good to have the children be concrete classes and all parents up
the hierarchy be abstract. This technique makes it easier to keep track of things and
avoid unexpected behavior. Unexpected behavior can happen when a child class over-
rides a parent method, but then we upcast it and pass it around as the parent type.
Such an object would behave differently from an instance of the parent class, which
might not be intuitive for maintainers of the code.

Some languages provide a way to explicitly mark a child class as noninheritable to
enforce stopping the hierarchy there. Usually, this is done with keywords such as
final or sealed. We should use these as often as we can. If we want to override or
extend behavior, we have a better alternative to inheritance: composition.

Exercises

1 Which of the following looks like a good use of inheritance?

a File extends Folder.
b Triangle extends Point.



195Composing data and behavior
c Parser extends Compiler.
d None of the above.

2 Extend the example in this section with a UnaryExpression that has a single
operand and a UnaryMinusExpression that toggles the sign of its operand.
(Example 1 becomes –1, for example, and –2 becomes 2.)

8.3 Composing data and behavior
A well-known principle of object-oriented programming is to prefer composition over
inheritance whenever possible. Let’s see what composition is about.

 Going back to our Point and Circle example, we can make a Circle a child of
Point, but that wouldn’t be quite right. Let’s expand our example and introduce a
Shape in listing 8.7. We’ll say that all shapes in our system need to have an identifier,
so Shape has an id property of type string. A Circle is a Shape, so we can inherit
the id. On the other hand, the Circle has a center, so it will contain a center prop-
erty of type Point.

class Shape {
    id: string;

    constructor(id: string) {
        this.id = id;
    }
}

class Point {
    x: number;
    y: number;

    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

class Circle extends Shape {   
    center: Point;   
    radius: number;

    constructor(id: string, center: Point, radius: number) {
        super(id);
        this.center = center;
        this.radius = radius;
    }
}

Inheritance and compositionListing 8.7

Circle inherits the id 
property from Shape.

Circle contains a Point, which defines 
the x and y coordinates of its center.



196 CHAPTER 8 Elements of object-oriented programming
The has-a rule of thumb8.3.1

Just like the is-a test we applied to determine whether we should have Circle inherit
from Point, we can apply a similar test for composition: has-a (figure 8.3).

 Instead of inheriting behavior from a type, we can define a property of that type.
This technique still gives us the state that the contained type stores but as a compo-
nent part of our type rather than an inherited part of our type.

COMPOSITION AND THE HAS-A RELATIONSHIP Composition establishes a has-a
relationship between a container type and the contained type. If our type is
Circle, and our contained class is Point, the relationship is “Circle has a
Point” (which defines its center). This is the semantic meaning of composi-
tion and a good test to apply to two types to determine whether we should use
composition.

A major benefit of composition is that all the state coming from component properties
(such as the coordinates of the center of a Circle) is encapsulated in those compo-
nents (such as the center property of type Point), so our type is much cleaner.

 An instance circle of our Circle type has a circle.id property, which it inherits
from Shape, but the x and y center coordinates from its center point are in center:
circle.center.x and circle.center.y. If we want, we can make center private,
and in that case external code wouldn’t be able to access it. We cannot do that with an
inherited property: if Shape declares id as public, Circle cannot hide it.

 We’ll go over a few applications of composition next, but in general, this method is
the preferred way of making state and behavior available to a class, as opposed to
inheriting it. Unless there is a clear is-a relationship between two types, composition is
a good default.

Composite classes8.3.2

We’ll start with another simple, straightforward example because again, this is a con-
cept you are likely familiar with. It shows up everywhere in object-oriented program-
ming (and outside it).

All shapes
have an ID.

A point
has x and y
coordinates

Shape

id: string

is-a

has-a
Circle

center: Point
radius: number

Point

x: number
y: number

Circle is a shape
and inherits the
ID property.

A circle has a
center point.

Figure 8.3 All shapes have an id. A circle is a shape, so it inherits the id. A circle has a 
point that defines its center.



197Composing data and behavior
 A company has many constituent parts: various departments, an operating budget,
a CEO, and so on. All these parts are properties of Company. We covered an aspect of
such types in chapter 3, when we talked about product types. If, for a moment, we sim-
ply look at the set of possible states a company can be in, it’s the product of the state
each department is in, the state the budget is in, the state the CEO is in, and so on. The
additional twist is that we can encapsulate parts of this state by making it private and
enhance the composite class with additional methods that can access the privates in
their implementation (something that an external function wouldn’t be able to do).

 We can’t simply get the CEO of the company and ask them a question, for exam-
ple. We can try sending a message to the CEO by contacting the company through
official channels, and the CEO might or might not get back to us, as the next listing
shows.

class CEO {   
    isBusy(): boolean {
        /* ... */
    }

    answer(question: string): string {
        /* ... */
    }
}

class Department {
    /* ... */
}

class Budget {
    /* ... */
}

class Company {   
    private ceo: CEO = new CEO();
    private departments: Department[] = [];
    private budget: Budget = new Budget();

    askCEO(question: string): string | undefined {    
        if (!this.ceo.isBusy()) {   
            return this.ceo.answer(question);    
        }
    }
}

The ability to hide class members and provide controlled access to them is one of the
key extra distinctions that encapsulation brings to the table compared with plain old
product types such as tuples and records.

Ask the CEOListing 8.8

A CEO is very busy and 
can answer questions.

A company has a CEO, a set of 
departments, and a budget.

If we want to contact 
the CEO, we do it 
through the company.

If the CEO is not busy, 
they will answer us.



198 CHAPTER 8 Elements of object-oriented programming
Next, let’s look at another, maybe not-so-obvious application of composition: the very
useful adapter pattern.

8.3.3 Implementing the adapter pattern

The adapter pattern can make two classes compatible without requiring us to modify
either of the two classes. An adapter is used very much like a physical adapter. We
might have a laptop with only USB ports and want to connect it to a wired network, for
example, which we would do with an Ethernet cable. An Ethernet-to-USB adapter
manages the translation between the two incompatible components, USB and Ether-
net, and ensures that they work together.

 As an example, let’s say we use an external geometry library that provides some
important operations we need, but it doesn’t fit our object model. It expects a circle to
be defined in terms of an ICircle interface that declares two methods to get the x
and y coordinates of the center, getCenterX() and getCenterY(), and another
method, getDiameter(), to get the diameter of the circle, as shown in the following
code.

Value types and reference types
You might also have heard of value types and reference types, or about differences
between struct and class types and so on. Although there is a lot of nuance to cover
there, unfortunately, little of it is general enough. Different programming languages
implement these types differently, so it’s more a matter of understanding how your
language handles the nuances.

In general, when we assign an instance of a value type to a variable or pass it as an
argument to a function, its content gets copied in memory, effectively creating a dis-
tinct instance. On the other hand, when we assign an instance of a reference type,
the full state doesn’t get copied—just a reference to it. Both the old and new vari-
ables point to the same object and can alter its state.

The reason why we are not covering this topic in depth here is that it might get very
confusing because of the way each language implements these concepts. In C#, for
example, a struct looks a lot like a class, but it is a value type; assigning it causes
its state to be copied. On the other hand, Java does not support proper value types
outside the primitive numerical types that come out of the box: everything is a refer-
ence type. C++, again, is different: a struct in C++ simply means that members are
public by default and private by default in classes. In C++, everything is by value,
unless we explicitly declare a value as pointer (*) or reference (&). Some functional
languages work with immutable data, in which the distinction between value and ref-
erence doesn’t exist, as everything is moved around.

Although the difference between value and reference types matters (we don’t want to
copy large amounts of data, as it affects performance; we’d rather copy than share
because it’s safer to have a single owner of the state), you should understand how
your programming language expresses and handles these nuances.



199Composing data and behavior
 

namespace GeometryLibrary {

    export interface ICircle {   
        getCenterX(): number;
        getCenterY(): number;
        getDiameter(): number; 
    }

    /* Operations on ICircle omitted */    

}

Our Circle is defined in terms of a center Point and a radius. Assuming that we
have a large codebase, and this circle is just a small piece of it, we probably don’t want
to refactor everything just to be compatible with this library. The good news is that
there is an easier solution: we can implement a CircleAdapter class, which wraps a
Circle, implements the expected interface, and handles the logic of converting from
our Circle to what the library expects.

class CircleAdapter implements GeometryLibrary.ICircle {    
    private circle: Circle;    

    constructor(circle: Circle) {
        this.circle = circle
    }

    getCenterX(): number {
        return this.circle.center.x;   
    }

    getCenterY(): number {
        return this.circle.center.y;    
    }

    getDiameter(): number {
        return this.circle.radius * 2;    
    }
}

Now, whenever we need to use the geometry library with a Circle instance, we create
a CircleAdapter for it and pass that to the geometry library. The adapter pattern is
extremely useful for dealing with code that we cannot modify, such as code that comes

Geometry libraryListing 8.9

Listing 8.10 CircleAdapter

The Geometry library 
expects circles to adhere 
to a certain contract.

We won’t go over the exact 
operations because they’re not 
important for our example.

CircleAdapter implements
the ICircle interface that

the library expects.

CircleAdapter wraps 
a Circle instance.

getCenterX() and getCenterY() 
get the corresponding x and y 
coordinates from Circle.

getDiameter() gets the radius 
and multiplies it by 2. 
(Diameter is twice the radius.)



200 CHAPTER 8 Elements of object-oriented programming
from external libraries outside our control. This is, in fact, the general structure of the
adapter pattern as shown in figure 8.4.

 The adapter can hide the actual implementation it translates from by marking it as
private. This is an interesting application of composition: instead of bringing together
several components, we wrap a single component but provide the “glue” it needs to be
consumed as another type.

 With interfaces, inheritance, and composition out of the way, we’ve covered the
most common elements of object-oriented programming. Next, we’ll look at a slightly
more advanced (and more controversial!) concept: mix-ins.

8.3.4 Exercises

1 How would you model a FileTransfer class that uses a Connection to trans-
fer files over the network?

a FileTransfer extends Connection (inherits connection behavior from
the Connection type).

b FileTransfer implements IConnection (implements an interface that
declares connection behavior).

c FileTransfer wraps a Connection (class member provides connection
functionality).

d Connection extends abstract FileTransfer (connection extends the
abstract FileTransfer class and provides the additional behavior required).

2 Implement an Airplane with two wings and an engine on each wing, given an
Engine class. Try to model this by using composition.

8.4 Extending data and behavior
Another way to bring in additional data or behavior to a type is not quite inheritance,
though unfortunately, it is mostly implemented as such in the languages that support it.

Expected interface

Actual
implementation

IExpected

expected()

Adaptee

actual()

adaptee

expected()

is-a

has-a
Adapter

Adapter implements the
expected interface and wraps
an actual implementation.

The implementation of
expected() uses adaptee
and handles translation.

Figure 8.4 We have an IExpected interface and an Adaptee actual implementation that are 
incompatible. The Adapter makes them compatible by providing an implementation of IExpected 
and handling translation between what IExpected declares and what the Adaptee provides.



201Extending data and behavior
 Let’s go back to our simplistic ani-
mal example: a Cat is a Pet is an Ani-
mal. Let’s introduce a WildAnimal
type in our hierarchy and a Wolf child
type of that. Wild animals can roam(),
and a wolf can also hunt. Hunting
consists of three separate methods:
track(), stalk(), and pounce()
(figure 8.5).

 If we want, we can even implement
an IHunter interface with the stan-
dard track(), stalk(), and
pounce() methods.

 What if we add a Tiger type to the
mix? A Tiger can also hunt, and
assuming that hunting behavior is sim-
ilar across predators, we don’t want to
duplicate the code across our Wolf and Tiger types. One option is to introduce a
common type in the hierarchy: a Hunter type, which is the child of WildAnimal and
the parent of Wolf and Tiger (figure 8.6).

 This approach works until we realize that a Cat also hunts. How do we make all
this hunter behavior available to Cat without completely rejiggering our type
hierarchy?

Figure 8.6 The Hunter type is the parent of Wolf and Tiger, 
and provides hunting behavior.

Animal

eat()

Cat

meow()

Wolf

track()
stalk()
pounce()

Pet

play()

WildAnimal

roam()

Figure 8.5 Extended animal hierarchy with 
WildAnimal and Wolf. Wild animals can roam(), 
and a wolf can hunt with its track(), stalk(), 
and pounce() methods.

Animal

eat()

Cat

meow()

Hunter

track()
stalk()
pounce()

Pet

play()

WildAnimal

roam()

Wolf Tiger



202 CHAPTER 8 Elements of object-oriented programming
Extending behavior with composition8.4.1

One way to go about it is to define an IHunter interface and a HuntingBehavior
class that encapsulates the common hunting behavior, as shown in listing 8.11. Then
we can have all three of our types—Cat, Wolf, and Tiger—wrap a Hunting-
Behavior instance and forward the implementation of the interface to it (figure 8.7).

Figure 8.7 Cat, Wolf, and Tiger wrap an instance of HunterBehavior and implement the 
IHunter interface. They forward all calls to the wrapped object. HunterBehavior provides 
an implementation of IHunter that all animals implementing IHunter can use as a component. 
HunterBehavior is no longer part of the Animal hierarchy.

interface IHunter {    
    track(): void;
    stalk(): void;
    pounce(): void;
}

class HuntingBehavior implements IHunter {   
    pray: Animal | undefined;

    track(): void {
        /* ... */
    }

    stalk(): void {
        /* ... */
    }

    pounce(): void {
        /* ... */
    }
}

Hunting behaviorListing 8.11

Pet

play()

WildAnimal

roam()

Animal

eat()

Cat

meow()

IHunter

track()
stalk()
pounce()

Tiger HunterBehaviorWolf

Common IHunter 
interface

Hunting behavior common 
to all hunting animals



203Extending data and behavior
class Cat extends Pet implements IHunter {
    private huntingBehavior: HuntingBehavior = new HuntingBehavior();    

    track(): void {
        this.huntingBehavior.track();   
    }

    stalk(): void {
        this.huntingBehavior.track();   
    }

    pounce(): void {
        this.huntingBehavior.track();
    }

    meow(): void {
        /* ... */
    }
}

This approach works, but we end up with several classes that implement IHunter by
wrapping HuntingBehavior. Adding a new hunting animal to our hierarchy now
comes with a bunch of boilerplate that we have to copy/paste from another type. Even
worse, an addition to the IHunter interface causes a cascade of changes in our code
base, as we have to update each individual animal with hunting behavior, even though
the only thing that really changes is the HuntingBehavior itself.

 Is there a better way of implementing this? The answer is both yes and no.

8.4.2 Extending behavior with mix-ins

An easier way to have all hunting animals share this behavior is to mix it into each
type. Unfortunately, the way to mix in behavior is usually achieved with multiple
inheritance. This fact is unfortunate because it is at odds with what we covered at the
beginning of the chapter with the is-a rule of thumb. We haven’t even covered all the
perils of multiple inheritance (and we won’t, but look up the diamond inheritance prob-
lem if you are curious).

 We can look at this from the multiple-inheritance point of view, creating a Hunter
class that implements the hunting behavior and have all hunting animals derive from
it. Then a Cat is both an Animal and a Hunter.

 On the other hand, mix-ins aren’t the same as inheritance. We can create a
HunterBehavior class that implements the hunting behavior and have all hunting
animals include this behavior.

MIX-INS AND THE INCLUDES RELATIONSHIP Mix-ins establish an includes rela-
tionship between a type and its mixed-in type. If our class is Cat, and our
mixed-in class is HunterBehavior, the relationship is “Cat includes
HunterBehavior.” This is the semantic meaning of mix-ins and is different
from the is-a relationship of inheritance (figure 8.8).

Cat wraps an instance
of HuntingBehavior.

All methods of IHunter 
interface are simply 
forwarded to 
huntingBehavior.



204 CHAPTER 8 Elements of object-oriented programming
The reason why mix-ins are nuanced and controversial is that many languages don’t
support them altogether to keep things simple, and in most languages that do support
them, mixing in another type is indistinguishable from inheritance. This makes sense,
as after we mix in a class such as HunterBehavior, our Cat class automatically
becomes a subtype of that class. We can pass in a Cat instance whenever we need
HunterBehavior., but the is-a test fails: a Cat is not HunterBehavior.

 Mix-ins are very useful for reducing boilerplate code. They allow us to put together
an object by mixing in different behaviors and to reuse common behavior across mul-
tiple types. They are best used to implement cross-cutting concerns: aspects of a program
that affect other concerns and can’t be easily decomposed. Think of things like refer-
ence counting, caching, persistence, and so on.

 We’ll quickly go over a TypeScript example, but the syntax is very specific to the
language. Don’t worry if it looks complicated; the underlying principle is the impor-
tant part.

8.4.3 Mix-in in TypeScript

One way to mix two types is to use an extend() function that takes two instances of two
different types and copies all members of the second instance to the first one, as shown
in listing 8.12. We can do this in TypeScript because of the dynamic nature of the under-
lying JavaScript language. In JavaScript, we can add and remove members of an object
at run time. extend() is generic, so it can work with instances of any two types.

function extend<First, Second>(first: First, second: Second): 
    First & Second {   
    const result: unknown = {};

Extending an instance with the members of another oneListing 8.12

Pet

play()

WildAnimal

roam()

Animal

eat()

Cat

meow()

HunterBehavior

track()
stalk()
pounce()

TigerWolf

Figure 8.8 Cat, Wolf, and Tiger mix in HunterBehavior, which removes a 
bunch of boilerplate: the classes no longer need to wrap a HunterBehavior 
object and forward calls. They can simply include the behavior.

The function return type 
is a combination of the First 
and Second types.



205Extending data and behavior
    for (const prop in first) {    
        if (first.hasOwnProperty(prop)) {
            (<First>result)[prop] = first[prop];
        }
    }
    for (const prop in second) {    
        if (second.hasOwnProperty(prop)) {
            (<Second>result)[prop] = second[prop];
        }
    }
    return <First & Second>result;
}

This is the first time we encounter the & syntax: First & Second defines a type that
has all the members of First and all the members of Second. This is called an inter-
section type in TypeScript. Don’t worry too much about this particular implementation;
what’s important is the concept of combining two types into a type that contains both
their members.

 Most languages don’t make it so easy to add new members to an object at run time,
but it is possible in JavaScript—thus, also in TypeScript. As a compile-time alternative,
in C++ we can use multiple-inheritance to declare a type as a combination of two other
types.

 Now that we have our extend() method, we can update our animal example as
follows in listing 8.13. Instead of Cat, we define a MeowingPet as a child of Pet,
which is an animal that can meow() but not quite a Cat yet, as it doesn’t have hunting
behavior. Next, we can define a Cat as the intersection of MeowingPet & Hunting-
Behavior. Whenever we want to create a new instance of Cat, we create a new
instance of MeowingPet and extend() it with a new instance of HuntingBehavior.

class MeowingPet extends Pet {   
    meow(): void {
        /* ... */
    }
}

class HunterBehavior {    
    track(): void {
        /* ... */
    }

    stalk(): void {
        /* ... */
    }

    pounce(): void {
        /* ... */
    }
}

Mixing in behaviorListing 8.13

First, we iterate over all 
members of the first object and 
copy them to the result.

Next, we do the same 
for the members of 
the second type.

Instead of Cat, we have a 
MeowingPet that is not quite 
a Cat, as it can’t hunt.

HunterBehavior is the same 
as in our previous examples.



206 CHAPTER 8 Elements of object-oriented programming

     
   
  
             
   
 
           

 

  

  
 
  

   
  
             

    
 
  
          

  
     

   
              
  
type Cat = MeowingPet & HunterBehavior;   

const fluffy: Cat = extend(new MeowingPet(), new HunterBehavior());   

8.4.4

8.5

8.5.1

Cat becomes an intersection type of 
MeowingPet and HunterBehavior.

We can create an instance of
Cat by extending a MeowingPet

with HunterBehavior.

We can wrap the call to extend() in a makeCat() function, which makes it easier to
create Cat objects. Unlike with inheritance, by using mix-ins, we define different types
for different aspects of behavior; then we put them together into a complete type. We
usually have some properties and methods that are very specific to one particular
type—in our case, the meow() method—and some properties and methods that cross-
cut across multiple types, such as the hunting behavior of multiple animals.

Now that we’ve covered interfaces, inheritance, composition, and mix-ins—the
main elements of OOP—let’s look at a few alternatives to purely object-oriented code.

Exercise

1 How would you model shipping letters and packages that could also have track-
ing (through an updateStatus() method)?

Alternatives to purely object-oriented code
Object-oriented programming is extremely useful. The ability to create components
with public interfaces while hiding the implementation details and have them interact
with one another is key to managing complexity and dividing and conquering com-
plex domains.

That being said, there are more ways to design software, as we’ve seen with some of
the examples in earlier chapters that showed different takes on design patterns, such
as strategy, decorator, and visitor. In some cases, the alternatives offer better decou-
pling, componentization, and reusability.

The reason why the alternatives are not as popular is that many languages started
as purely object-oriented, without support for things like function types and generics.
Although most of them evolved to support these things, many programmers are still
learning almost exclusively the purely object-oriented methods of the earlier days.
Let’s quickly go over a few available alternatives.

Sum types

We covered sum types in chapter 3, when we looked at a way to implement the visitor
pattern by using a Variant and a visit() function. Following is a quick refresher
on how the code looked like with OOP and without it.

We’ll pick another scenario this time: a simple UI framework. The UI consists of a
tree of Panel, Label, and Button objects. In one scenario, a Renderer will draw
these elements on the screen. In a second scenario, an XmlSerializer will serialize
the UI tree as XML that so we can save it and reload it later.



207Alternatives to purely object-oriented code
 Remember that we could add a method to render and a method to serialize on
each of the UI elements, but that technique is not ideal: whenever we want to add
another scenario, we have to touch all the classes that make up the UI. These classes
also end up knowing way too much about the environment in which they are used.
Instead, we can use a visitor pattern that will decouple the scenarios from the UI wid-
gets and keep them oblivious to how they will be used in our application, as shown in
the following listing.

interface IVisitor {
    visitPanel(panel: Panel): void;
    visitLabel(label: Label): void;
    visitButton(button: Button): void;
}

class Renderer implements IVisitor {
    visitPanel(panel: Panel) { /* ... */ }
    visitLabel(label: Label) { /* ... */ }
    visitButton(button: Button) { /* ... */ }
}

class XmlSerializer implements IVisitor {
    visitPanel(panel: Panel) { /* ... */ }
    visitLabel(label: Label) { /* ... */ }
    visitButton(button: Button) { /* ... */ }
}

interface IUIWidget {
    accept(visitor: IVisitor): void;
}

class Panel implements IUIWidget {
    /* Panel members omitted */
    accept(visitor: IVisitor) {
        visitor.visitPanel(this);
    }
}

class Label implements IUIWidget {
    /* Label members omitted */
    accept(visitor: IVisitor) {
        visitor.visitLabel(this);
    }
}

class Button implements IUIWidget {
    /* Button members omitted */
    accept(visitor: IVisitor) {
        visitor.visitButton(this);
    }
}

Visitor with OOPListing 8.14



208 CHAPTER 8 Elements of object-oriented programming
In the OOP implementation, we need IVisitor and IUIWidget interfaces to glue
the system together. All UI widgets need to know about IVisitor to make things
work, even though that shouldn’t be necessary.

 The alternative implementation—using a Variant—removes the need for inter-
faces, and document items don’t need to know that visitors exist.

class Renderer {
    renderPanel(panel: Panel) { /* ... */ }
    renderLabel(label: Label) { /* ... */ }
    renderButton(button: Button) { /* ... */ }
}

class XmlSerializer {
    serializePanel(panel: Panel) { /* ... */ }
    serializeLabel(label: Label) { /* ... */ }
    serializeButton(button: Button) { /* ... */ }
}

class Panel {
    /* Panel members omitted */
}

class Label {
    /* Label members omitted */
}

class Button {
    /* Button members omitted */
}

let widget: Variant<Panel, Label, Button> =
    Variant.make1(new Panel());   

let serializer: XmlSerializer = new XmlSerializer();

visit(widget,    
    (panel: Panel) => serializer.serializePanel(panel),
    (label: Label) => serializer.serializeLabel(label),
    (button: Button) => serializer.serializeButton(button)
);

Note that we are showing the Variant and visit() being used, but technically, the
equivalent of the OOP example is just the first five class definitions. Notice that no
interfaces are needed.

 In general, if we want to pass around objects of different types in the same manner
or put them in a common collection, they don’t necessarily need to implement the
same interface or have a common parent. Instead, we can use a sum type, which
enables the same behavior without enforcing any relationship between the types.

Visitor withListing 8.15 Variant

The Variant type we defined 
in chapter 3 can store types 
that are not related.

visit() glues the system 
together, matching the UI widget 
with the serializer method.



209Alternatives to purely object-oriented code
Functional programming8.5.2

Before OOP languages supported function types, we had to wrap any piece of behav-
ior in a class. As we saw in chapter 5, a typical strategy pattern implementation
required an interface for the behavior and several classes to implement the interface.

 Let’s review the figures from chapter 5, which described the two alternative imple-
mentations for the strategy pattern (figure 8.9).

Figure 8.9 Object-oriented strategy pattern. Different versions of an algorithm are
implemented in ConcreteStrategy1 and ConcreteStrategy2.

This can be simplified a lot if we can just pass the algorithm implementation as a func-
tion. Instead of an interface, we use a function type; instead of classes, we use func-
tions (figure 8.10).

 Functional programming also avoids maintaining state: a function can take a set of
arguments, perform some computation, and return the result without changing any
state.

Figure 8.10 Functional strategy pattern. Different versions of an algorithm are 
implemented as functions.

Context uses an algorithm
through the interface.

IStrategy represents
the algorithm interface.

Concrete implementations
of the interface

Context

...

ConcreteStrategy1

execute()

ConcreteStrategy2

execute()

IStrategy

execute()

Each strategy is a function.

Context

...

concreteStrategy1() concreteStrategy2()

Context uses an algorithm
provided as a function.



210 CHAPTER 8 Elements of object-oriented programming
Let’s revisit our binary expression example in listing 8.16 and see how a functional
implementation would look. If we define an expression as something that evaluates to
a number, we can replace our IExpression with a function type Expression that
takes no arguments and returns a number. Instead of a SumExpression, we can
implement a factory function makeSumExpression() that, given two numbers,
returns a closure that can add them up. Remember that a closure captures state—in
this case, the a and b arguments. The same is true for multiplication.

type Expression = () => number;    

function makeSumExpression(a: number, b: number): Expression {
    return () => a + b;    
}

function makeMulExpression(a: number, b: number): Expression {
    return () => a * b;   
}

We no longer need BinaryExpression; that class used to hold state, but now state is
wrapped in the closures.

 If our IExpression were more complex, declaring multiple methods, the object-
oriented approach might have worked better. But keep an eye out for simple cases in
which you can achieve the same behavior with much less code by using a functional
approach.

8.5.3 Generic programming

The other alternative to purely object-oriented programming is generic program-
ming. We’ve used generics in many code examples thus far but haven’t covered them
in depth yet. We’ll do that in the next two chapters, and we’ll see different ways to
abstract and reuse code.

 The takeaway from this section shouldn’t be to avoid object-oriented program-
ming; it is an important tool that we can use to solve a broad range of problems. The
takeaway is that there are alternatives that we should keep in mind. We should pick
the approach that makes our code as safe, as clear, and as loosely coupled as possible.

Summary
 We use interfaces to specify contracts. Interfaces can be extended and combined.
 The is-a rule of thumb is a good test for when we should use inheritance.
 We use inheritance to represent hierarchies or to implement parameterized

behavior by using abstract or overridden methods.

Functional expressionsListing 8.16

The Expression function 
type replaces IExpression.

makeSumExpression() returns 
the closure () => a + b.

makeMulExpression() returns the 
closure () => a * b.



211Answers to exercises
 The has-a rule of thumb is a good test for when we should use composition.
 We use composition to encapsulate multiple parts into a single type.
 The adapter pattern is an example in which we leverage encapsulation and

composition to adapt a type to a different interface without modifying it.
 We use mix-ins to add behavior into a type.
 Sum types, functional programming, and generic programming are alternatives

to pure OOP that we should keep in mind. They don’t replace OOP; rather,
they are better in some cases.

We touched only briefly on generics in this chapter, as the next two chapters will focus
exclusively on that topic. Read on!

Answers to exercises
DEFINING CONTRACTS WITH INTERFACES

1 c—From the point of view of the index() function, this is clearly a contract, so
expecting an INamed interface is the approach.

2 We can define this interface simply by combining the two other interfaces:

interface IterableIterator<T> extends Iterable<T>, Iterator<T> {
}

INHERITING DATA AND BEHAVIOR

1 d—Even by just seeing the class name, we can tell that none of the three exam-
ples describe an is-a relationship, so none of them look like a good use of inher-
itance.

2 A possible implementation using inheritance:

abstract class UnaryExpression implements IExpression {   
    readonly a: number;

    constructor(a: number) {
        this.a = a;
    }

    abstract eval(): number;
}

class UnaryMinusExpression extends UnaryExpression {
    eval(): number {
        return -this.a;
    }
}

COMPOSING DATA AND BEHAVIOR

1 c—This scenario is a good one for using composition. Connection should be a
member of FileTransfer, as it is needed by FileTransfer, but neither type
should directly extend the other.



212 CHAPTER 8 Elements of object-oriented programming
2 A possible implementation using composition:

class Wing {
    readonly engine: Engine = new Engine();
}

class Airplane {
    readonly leftWing: Wing = new Wing();
    readonly rightWing: Wing = new Wing();
}

EXTENDING DATA AND BEHAVIOR

1 One way to model this is to provide tracking behavior in a Tracking class and
then mix it in with Letter and Package classes to add tracking behavior to
them. In TypeScript, this can be done with a method like extend():

class Letter { /*...*/ }
class Package { /*...*/ }

class Tracking {
    setStatus(status: Status) { /*...*/ }
}

type LetterWithTracking = Letter & Tracking;
type PackageWithTracking = Package & Tracking;



  
 
 
 
   

               
              
  
 

Generic data structures
This chapter covers
 Separating independent concerns

 Using generic data structures for data layout

 Traversing any data structure

 Setting up a data processing pipeline

We’ll start our discussion of generic types by covering a common case in which they
should be used: making independent, reusable components. We’ll look at a couple
of scenarios in which we would benefit from an identity function (a function that
simply returns its argument) and see a generic implementation of such a function.
We’ll also review the Optional<T> type we built in chapter 3 as another simple but
powerful generic type.

Next, we’ll talk about data structures. Data structures give shape to our data
without having to be aware of what the data is. Making these structures generic
allows us to reuse the shape for all sorts of values, significantly reducing the amount
of code we need to write. We’ll start with a binary tree of numbers and a linked list
of strings, and derive a generic binary tree and linked list from them.
213



214 CHAPTER 9 Generic data structures

   
           
            
 Generic data structures don’t solve all our problems: we still need to traverse them.
We’ll see how we can use iterators to provide a common interface for traversing any
data structure. This also helps us reduce the amount of code we need, as we don’t
have to provide different versions of functions for each data structure, but a single ver-
sion that works with iterators. Again, we’ll use generators, which we introduced in
chapter 6. These resumable functions yield values, and we can use them to implement
iterators over our data structures.

 Finally, we’ll talk about chaining functions into processing pipelines and running
them over potentially infinite streams of data.

Decoupling concerns9.1
Let’s introduce generics with a simple example: we have a function, getNumbers(),
that gives us an array of numbers but allows us to apply a transformation to them
before returning them. This is done with a transform() argument that takes a num-
ber and returns a number. Callers can pass in such a transform() function, and
getNumbers() will apply it before returning its result, as shown in the next listing.

type TransformFunction = (value: number) => number;    

function getNumbers(
    transform: TransformFunction): number[] {    
    /* ... */
}

What if the callers don’t need to apply any transformation? A good default for this
transform() would be a function that doesn’t do anything—one that simply returns
its result, as shown in the following listing.

type TransformFunction = (value: number) => number;

function doNothing(value: number): number {    
    return value;
}

function getNumbers(
    transform: TransformFunction = doNothing): number[] {   
    /* ... */
}

Listing 9.1  getNumbers()

DefaultListing 9.2 transform()

The type of a function 
that takes a number 
and returns a number

Callers provide a transform() that gets
applied to each number before being

returned in the result array.

doNothing() simply returns 
its argument without 
applying any transformation.

getNumbers() uses doNothing() as a default,
so callers can skip providing an argument if
they don’t need any transformation applied.

Let’s look at another example. Assume that we have an array of Widget objects and a
way to create an AssembledWidget object out of a Widget object. An assemble-

Widgets() function handles an array of Widget objects and returns an array of



215Decoupling concerns
AssembledWidget objects. Because we don’t want to assemble more than needed,
assembleWidgets() takes as argument a pluck() function, which, given an array
of Widget objects, returns a subset of this array, as shown in the following code. This
allows callers to tell the function which widgets really need assembling, so the rest can
be ignored.

type PluckFunction = (widgets: Widget[]) => Widget[];   

function assembleWidgets(
    pluck: PluckFunction): AssembledWidget[] {   
    /* ... */
}

What would be a good default for this pluck() function? We can say that if the caller
doesn’t supply a pluck() function, we transform the whole list of widgets. Let’s call
this default pluckAll() and have it simply return its argument in the next listing.

type PluckFunction = (widgets: Widget[]) => Widget[];

function pluckAll(widgets: Widget[]): Widget[] {   
    return widgets;
}

function assembleWidgets(
    pluck: PluckFunction = pluckAll): AssembledWidget[] {    
    /* ... */
}

Looking at our two examples side by side, we can see that doNothing() and pluck-
All() are very similar: they both take an argument and return it without doing any
processing, as the following listing shows.

Listing 9.3  assembleWidgets()

DefaultListing 9.4 pluck()

Listing 9.5 doNothing() and pluckAll()

The type of a function that
takes an array of widgets and
returns a subset of that array

Callers provide pluck(), 
which assembleWidgets() 
calls to select the widgets 
that need assembly.

pluckAll() simply returns 
the whole array it gets.

We use pluckAll() as a default value
for the argument if the user doesn’t

provide a pluck() themselves.

function doNothing(value: number): number {
return value;

}

function pluckAll(widgets: Widget[]): Widget[] {
return widgets;

}



216 CHAPTER 9 Generic data structures
The difference between them is the type of the value they take and return:
doNothing() uses a number, and pluckAll() uses an array of Widget objects. Both
functions are identity functions. In algebra, an identity function is a function f(x) = x.

A reusable identity function9.1.1

It’s not great that we had to create two separate functions that are so similar. This
approach doesn’t scale well. Can we simplify this process by writing a reusable identity
function? The answer is yes.

 Let’s start with a naïve approach and say that because identity is the same for any
type, we simply use any. This would give us an identity() function that takes a
value of type any and returns a value of type any, as shown in the next listing.

function identity(value: any): any {
    return value;
}

The problem with this implementation is that when we start using any, we bypass the
type checker and lose type safety, as shown in the following listing. We can pass the
result of calling identity() with a string to a function that expects a number, and
the code will compile just fine, but it will fail at run time.

function square(x: number): number {
    return x * x;
}

square(identity("Hello!"));   

There is a safer way to do this: parameterize what is different between the functions,
namely the type of their argument. This parameter will be a type parameter.

TYPE PARAMETER A type parameter is an identifier for a generic type name.
Type parameters are used as placeholders for specific types that the client
specifies when creating an instance of the generic type.

In the next listing, our generic identity will use a type parameter T, which will be
number in the first case and Widget[] in the second case.

function identity<T>(value: T): T {    
    return value;
}

Naïve identityListing 9.6

Unsafe use ofListing 9.7 any

Generic identityListing 9.8

This compiles and fails at run 
time because any bypasses 
the normal type checks.

Generic identity function 
with a type parameter T



217Decoupling concerns
function getNumbers(
    transform: TransformFunction = identity): number[] {    
    /* ... */
}
function assembleWidgets(
    pluck: PluckFunction = identity): AssembledWidget[] {    
    /* ... */
}

The compiler is smart enough to figure out what T should be without our having to spell
it out. We no longer need doNothing() and pluckAll(), and we can reuse this with
any other type if we need an identity function. Now when the type is determined, such
as when the getNumbers() case T is number, the compiler can perform type checking,
and we no longer end up in a situation like attempting to square() a string, as shown
in the next listing.

function identity<T>(value: T): T {
    return value;
}

square(identity("Hello!"));   

We could come up with this implementation because the mechanics of the identity
function are the same regardless of the type the function is used with. We effectively
decoupled the identity logic from the problem domain of getNumbers() and
assembleWidgets() because the identity logic and the problem domain are orthogo-
nal, or independent.

9.1.2 The optional type

As another example, take a look at the Optional implementation we provided in
chapter 3. Remember that an optional type contains a value of some type T or doesn’t
contain anything.

class Optional<T> {  
    private value: T | undefined;
    private assigned: boolean;

    constructor(value?: T) {    
        if (value) {
            this.value = value;
            this.assigned = true;
        } else {
            this.value = undefined;
            this.assigned = false;
        }
    }

Type safetyListing 9.9

Listing 9.10 Optional type

We can use identity() instead of
doNothing(). T becomes number in this case.

We can use identity() instead of pluckAll().
T becomes Widget[] in this case.

This no longer 
compiles.

Optional wraps a 
generic type T.

value is an optional argument 
because TypeScript doesn’t 
support constructor overloads.



218 CHAPTER 9 Generic data structures

      
    
    hasValue(): boolean {
        return this.assigned;
    }

    getValue(): T {
        if (!this.assigned) throw Error();   

        return <T>this.value;
    }
}

The logic of handling the absence of a value is, again, independent of the actual type
of the value. We have a generic Optional type that can store any other type, as it will
handle anything in the same way. You can think of Optional as being in a completely
different dimension from T, as any changes we make to Optional do not affect T, and
any changes made to T do not affect Optional. This isolation is an extremely power-
ful feature of generic programming.

9.1.3 Generic types

We just saw two uses of generics: a generic function and a generic class. Now let’s step
back and look at what makes generic types special. We started the book by looking at
basic types and ways to combine them. We have types such as boolean and number,
and types such as boolean | number. We have function types such as () => number.
As we can see, none of these types has any type parameter. A number is a number. A
function that returns a number is a function that returns a number. 

 When we introduce generics, this situation changes. We have a generic function
(value: T) => T, with a type parameter T. We create specific functions when we spec-
ify an actual type for T. If we use Widget[], for example, we end up with a function
type (value: Widget[]) => Widget[]. This is the first time when we can plug in
types and get different type definitions (figure 9.1).

GENERIC TYPES A generic type is a generic function, class, interface, and so on that
is parameterized over one or more types. Generic types allow us to write general
code that works with different types, enabling a high level of code reuse.

If a value is not assigned, 
attempting to get a value 
throws an exception.

Generic identity
function for any
type T

Identity with
a Widget[]
type parameter

identity<T>()

(value: T) => T

identity<number>()

(value: number) => number

identity<Widget[]>()

(value: Widget[]) => Widget[]

Identity with
a number type
parameter

Figure 9.1 Generic identity with a type parameter T and two instances: identity<number>() with the
concrete type (value: number) => number and identity<Widget[]>() with the concrete type
(value: Widget[]) => Widget[]



219Generic data layout

  
   
   
As we saw in the previous examples, and as we’ll see throughout this chapter and the
next, being able to use generics makes our code much better componentized. We can
use these generic components as building blocks and combine them to achieve the
desired behavior while having minimal dependency between them. Moving beyond our
simple identity<T>() and Optional<T> examples, let’s look at data structures.

9.1.4 Exercises

1 Implement a generic Box<T> type that simply wraps a value of type T.
2 Implement a generic unbox<T>() function that takes a Box<T> and returns

the boxed value.

9.2 Generic data layout
Let’s start with a couple of nongeneric examples: a binary tree of numbers, shown in
listing 9.11, and a linked list of strings shown in listing 9.12. I’m sure that you are
familiar with these simple data structures. We will implement the tree as one or more
nodes, each node storing a number value and references to its left and right children.
These refences can be to nodes or undefined in case there is no child node.

class NumberBinaryTreeNode {
    value: number;
    left: NumberBinaryTreeNode | undefined;
    right: NumberBinaryTreeNode | undefined;

    constructor(value: number) {
        this.value = value;
    }
}

We will similarly implement the linked list as one or more nodes, each storing a
string and a reference to the next node, or undefined if there is no next node, as
the next listing shows.

Binary tree of numbersListing 9.11

Linked list of stringsListing 9.12

class StringLinkedListNode {
value: string;
next: StringLinkedListNode | undefined;

constructor(value: string) {
this.value = value;

}
}

Now what if we need, in another part of our project, a binary tree of strings? We can
implement a StringBinaryTreeNode that is identical to NumberBinaryTreeNode

and replace the type of value from number to string. This is tempting, as we can just
copy/paste the code and replace a couple of things, but copy/pasting is never a good



220 CHAPTER 9 Generic data structures

   
             
 
 

  

     
option. Imagine that our class also has a bunch of methods. If we copied/pasted those
methods and then found a bug in one of the versions, we’d likely miss fixing the bug
in the copied/pasted version. We’re sure you see where this is going: we can use
generics instead of duplication!

Generic data structures9.2.1

We can implement a generic BinaryTreeNode<T> that works for any type, as shown
in the next listing.

class BinaryTreeNode<T> {
    value: T;   
    left: BinaryTreeNode<T> | undefined;
    right: BinaryTreeNode<T> | undefined;

    constructor(value: T) {
        this.value = value;
    }
}

In fact, we shouldn’t wait for the new requirement to have a binary tree of strings to
come in: our original NumberBinaryTreeNode implementation has an unnecessary
coupling between the binary tree data structure and the type number. Similarly, we
can replace our StringLinkedListNode with a generic LinkedListNode<T>,
shown in the following listing.

9.2.2

Generic binary treeListing 9.13

Generic linked listListing 9.14

A BinaryTreeNode<T> 
stores a value of type T.

class LinkedListNode<T> {
value: T;
next: LinkedListNode<T> | undefined;

constructor(value: T) {
this.value = value;

}
}

Do keep in mind that most languages have libraries that already provide most of the
data structures you need (lists, queues, stacks, sets, dictionaries, and so on). We’re
going over implementations to better understand generics, but the best thing to do is
not to write code at all. If we can choose a generic data structure from a library, we
should do that.

What is a data structure?

Let’s get a bit philosophical and ask “What is the nature of a data structure?” A data
structure consists of three parts:

 The data itself—the number and string values in our trees and lists in the pre-
ceding example. Data structures contain data.



221Traversing any data structure
 The shape of the data—In our binary tree, the data is laid out in hierarchical fash-
ion, with one element having at most two children. In our list, the data is laid
out sequentially, one element coming after the previous one.

 A set of shape-preserving operations—Our data structure might provide this set of
operations for adding or removing an element, for example. We did not pro-
vide any such operations in the preceding examples, but it’s easy to imagine
how after removing an element from the middle of a linked list, for example,
we would still want to end up with a linked list.

There are two separate concerns here. One is the data—the type of the data and the
actual value that an instance of the data structure holds. The other is the shape of the
data and the shape-preserving operations. Generic data structures like the ones we
saw at the beginning of this section help us decouple these concerns. A generic data
structure handles the layout of the data, its shape, and any shape-preserving opera-
tions. A binary tree is a binary tree regardless of whether it contains strings or num-
bers. We can componentize our code by moving the responsibility for data layout to
generic data structures that are independent of the actual data content.

 Assuming that we have all these data structures, let’s look at how we can traverse
them and view their content.

9.2.3 Exercises

1 Implement a Stack<T> data structure representing a stack (last-in-first-out)
with the common push(), pop(), and peek() methods.

2 Implement a Pair<T, U> data structure with first and second members of
the two types.

9.3 Traversing any data structure
Let’s say we want to traverse our binary tree in order and print the value of all its ele-
ments, as shown in listing 9.15. As a quick reminder, an in-order traversal is the recur-
sive traversal left–parent–right (figure 9.2).

ParentLeft node (recursively) Right node

Right nodeParent

Figure 9.2 In-order traversal. 
Recursively go left until we reach 
the leftmost node, go to its parent, 
and then go to the right node. 
Next, we go back to the parent of 
the parent and then go to its right 
node. The order is always left; 
then, when that subtree is all 
visited, parent; and then right.



222 CHAPTER 9 Generic data structures

 

class BinaryTreeNode<T> {  
    value: T;
    left: BinaryTreeNode<T> | undefined;
    right: BinaryTreeNode<T> | undefined;

    constructor(value: T) {
        this.value = value;
    }
}

function printInOrder<T>(root: BinaryTreeNode<T>): void {
    if (root.left != undefined) {  
        printInOrder(root.left);
    }

    console.log(root.value);    

    if (root.right != undefined) {    
        printInOrder(root.right);
    }
}

As an example, let’s create a tree with a few nodes and see what printInOrder()
returns in the following code.

let root: BinaryTreeNode<number> = new BinaryTreeNode(1);
root.left = new BinaryTreeNode(2);
root.left.right = new BinaryTreeNode(3);
root.right = new BinaryTreeNode(4);

printInOrder(root);

This code creates the tree shown in figure 9.3.
 Traversing it in order will print

2
3
1
4

What if we also want to print all the values of a linked list of strings? We can imple-
ment a printList() function that traverses a list from head to tail and prints each
element, as the next listing shows.

class LinkedListNode<T> {    
    value: T;
    next: LinkedListNode<T> | undefined;

Print in orderListing 9.15

Listing 9.16 printInOrder() example

Print linked listListing 9.17

This is the same generic binary 
tree we defined before.

We recursively go to the 
left child if one exists.

Then we print the 
value of this node.

Finally, we recursively go to 
the right child if one exists.

3

1

2 4

Figure 9.3 Binary 
tree example

The generic linked list 
implementation we saw before



223Traversing any data structure

 

   
          
  

   
                   
 

    constructor(value: T) {
        this.value = value;
    }
}

function printLinkedList<T>(head: LinkedListNode<T>): void {
    let current: LinkedListNode<T> | undefined = head;   

    while (current) {   
        console.log(current.value);    
        current = current.next;   
    }
}

Taking a concrete example, we can initialize a list of strings and print it by using
printLinkedList(), shown in the following listing.

let head: LinkedListNode<string> = new LinkedListNode("Hello");
head.next = new LinkedListNode("World");
head.next.next = new LinkedListNode("!!!");

printLinkedList(head);

This code creates the list shown in figure 9.4.

9.3.1

Listing 9.18 printLinkedList() example

We start from 
the head 
of the list.

We repeat as long as 
we still have a node.

Print the node value, and 
advance to the next node.

"Hello" "World" "!!!"

Figure 9.4 Linked list example

Running the code will print

Hello
World
!!!

This works, but maybe there is a better way.

Using iterators

What if we could further split the code apart based on responsibilities? Our print-
InOrder() and printLinkedList() functions perform two tasks: traverse a data
structure and print its contents. Even worse, the second task overlaps; both functions
print values.

We can make another generalization. Let’s move traversal to its own component.
Let’s start with our binary tree. We need a way to go over every item in the tree in
order and return the value of each node. We can call this traversal iteration; we are iter-
ating over the data structure.



224 CHAPTER 9 Generic data structures
ITERATOR An iterator is an object that enables traversal of a data structure. It
provides a standard interface that hides the actual shape of the data structure
from the clients.

Let’s implement our iterators. We’ll start by defining an IteratorResult<T> as a
type that contains two properties: a value property of type T and a done property of
type boolean that simply tells us whether we’ve reached the end, as shown in the fol-
lowing listing.

type IteratorResult<T> = {
    done: boolean;
    value: T;
}

In the next listing, define an iterator interface Iterator<T> that declares a single
next() method. This method returns an IteratorResult<T>.

interface Iterator<T> {
    next(): IteratorResult<T>;
}

Now we can implement a BinaryTreeNodeIterator<T> as a class implementing
Iterator<T>, as shown in listing 9.21. We’re doing an in-order traversal with the pri-
vate method inOrder() and pushing all node values to a queue. The next()
method dequeues the values by using the array shift() method and returns Itera-
torResult<T> values until there are no more values to return (figure 9.5).

Figure 9.5 inOrder() traverses the binary tree in order and adds all values to a
queue. next() dequeues values and returns them during traversal.

Iterator resultListing 9.19

Iterator interfaceListing 9.20

1

2 3 54

next() dequeues values.

Queue storing values

inOrder() places
all values in a queue.

2 5

1 3

4



225Traversing any data structure

 

class BinaryTreeIterator<T> implements Iterator<T> {
    private values: T[];    
    private root: BinaryTreeNode<T>;

    constructor(root: BinaryTreeNode<T>) {
        this.values = [];
        this.root = root;

        this.inOrder(root);   
    }

    next(): IteratorResult<T> {
        const result: T | undefined = this.values.shift();   

        if (!result) {
            return { done: true, value: this.root.value };   
        }

        return { done: false, value: result };
    }

    private inOrder(node: BinaryTreeNode<T>): void {    
        if (node.left != undefined) {
            this.inOrder(node.left);
        }

        this.values.push(node.value);   

        if (node.right != undefined) {
            this.inOrder(node.right);
        }
    }
}

This implementation is not the most efficient, as we need a queue with the same num-
ber of elements as the number of nodes in the tree. We can do a more efficient tra-
versal that requires less memory, but the logic gets more complex. Let’s use this for
now as an example, as we’ll soon see a better and simpler way to do this.

 Let’s also implement the LinkedListIterator<T> to traverse our linked list in
the next listing.

class LinkedListIterator<T> implements Iterator<T> {
    private head: LinkedListNode<T>;
    private current: LinkedListNode<T> | undefined;

    constructor(head: LinkedListNode<T>) {
        this.head = head;
        this.current = head;
    }

Binary tree iteratorListing 9.21

Linked list iteratorListing 9.22

Queue of 
values

Constructor performs an 
in-order traversal to 
populate the queue of values.

Each call to next() 
dequeues a value 
by calling shift().

If result is undefined, we
set done as true and return

some default value.

inOrder() performs 
the in-order traversal.

We add the value of each 
node to the value queue.



226 CHAPTER 9 Generic data structures
    next(): IteratorResult<T> {
        if (!this.current) {
            return { done: true, value: this.head.value }; 
        }

        const result: T = this.current.value;    
        this.current = this.current.next;   
        return { done: false, value: result }; 
    }
}

With the plumbing out of the way, let’s see why these iterators are useful. If we want to
print the values of all the nodes in a binary tree and all the strings in a linked list of
strings, we no longer need separate functions. We can use a single common function
that takes an iterator argument, which uses it to retrieve the values to print, as shown
in the following code.

function print<T>(iterator: Iterator<T>): void {   
    let result: IteratorResult<T> = iterator.next();    

    while (!result.done) {   
        console.log(result.value);   
        result = iterator.next();   
    }
}

Because print() works with iterators, we can pass to it either a BinaryTree-
Iterator<T> or a LinkedListIterator<T>. In fact, we can use it to print any data
structure as long as we have an iterator that can traverse that data structure.

 With iterators, we can reuse a lot more code. If we need a way to determine
whether a certain value exists in a data structure, for example, we don’t need to imple-
ment a separate function for each data structure; we can simply implement a con-
tains() function that takes an iterator and a value to look for, as shown in the next
listing, and then we can use it with any iterator that implements the Iterator<T>
interface (figure 9.6).

Listing 9.23 print() using iterator

Listing 9.24 contains() using iterator

If we’ve reached the end of the list and current
is undefined, set done to true and return some

dummy value (which should never be used).

result stores the value 
of the current node.

We advance the 
current node to the 
next node in the list.Return the

stored result.

print() is a generic function that
takes an iterator as argument.

We initialize with 
next(), pulling 
the first value.Although result doesn’t return 

done as true, we can print the 
value and advance the iterator.

function contains<T>(value: T, iterator: Iterator<T>): boolean {
let result: IteratorResult<T> = iterator.next();

while (!result.done) {
if (result.value == value) return true;



227Traversing any data structure

  
 
      
  

            
 
  

  
            

            
 

      
   

  
 
 

        result = iterator.next();
    }

    return false;
}

 

9.3.2

BinaryTreeIterator LinkedListIterator

Iterator

print() contains()

Figure 9.6 BinaryTreeIterator implements binary tree traversal.
LinkedListIterator implements linked list traversal. Both
implement the Iterator contract. print() and contains() take
an Iterator as argument, so we can mix and match the functions
with different data structures.

Iterators are the glue that connects data structures and algorithms, enabling this
decoupling. With this approach, we can mix and match different data structures with
different functions if the interface between them is Iterator<T>.

Note that a data structure may have different traversals. We’ve focused on an in-order
traversal of a binary tree, but there are also pre-order and post-order traversals. We can
implement all these traversals as iterators over the same binary tree. A one-to-one
correspondence doesn’t have to exist between traversal strategies and data structures.

Streamlining iteration code

Iterators are so useful that most mainstream languages provide library support for
them and, in many cases, even special syntax. We briefly touched on this topic in chap-
ter 6, when we looked at generators, and we’ll expand on it here.

We didn’t really have to define the IteratorResult<T> and Iterator<T> types;
TypeScript has them predefined. In C#, the equivalent interface is IEnumerator<T>,
which similarly enables traversal of data structures. The Java equivalent is also named
Iterator<T>. The C++ library works with several kinds of iterators. We’ll talk more
about these categories in chapter 10, when we talk about iterator categories. The key
takeaway here is that this pattern is so useful that it has out-of-the-box support.



228 CHAPTER 9 Generic data structures

 

 Whereas iterators implement the code to traverse a data structure, another inter-
face lets us mark a type as something that can be iterated over: the Iterable<T>
interface, defined as follows.

interface Iterable<T> {
    [Symbol.iterator](): Iterator<T>;
}

The [Symbol.iterator] is a bit of TypeScript-specific syntax. It just means a special
name, very much like the symbol trick we used to implement nominal subtyping
throughout the book. The Iterable<T> interface declares a method named
[Symbol.iterator]() that returns an Iterator<T>.

 Let’s update our LinkedListNode<T> type and make it iterable in the next listing.

class LinkedListNode<T> implements Iterable<T> {
    value: T;
    next: LinkedListNode<T> | undefined;

    constructor(value: T) {
        this.value = value;
    } 

    [Symbol.iterator](): Iterator<T> {
        return new LinkedListIterator<T>(this);   
    }
}

We can also mark our binary tree as iterable by providing a similar [Symbol
.iterator]() method that creates a BinaryTreeIterator<T>.

 Iterables allow us to use the for ... of syntax in TypeScript. This syntax is spe-
cial syntax for iterating over all elements of an iterable and makes our code much
cleaner. Most mainstream languages have an equivalent. C# has IEnumerable<T>,
IEnumerator<T>, and foreach loops. Java has Iterable<T>, Iterator<T>, and
for : loops.

 Let’s quickly review the print() and contains() implementations in the next
listing and then update them to use iterables and for ... of instead.

Iterable interfaceListing 9.25

Iterable linked listListing 9.26

Listing 9.27 print() and contains() with Iterator argument

We implement the Iterable<T> 
interface by creating a new instance
of LinkedListIterator on this list.

function print<T>(iterator: Iterator<T>): void {
let result: IteratorResult<T> = iterator.next();

while (!result.done) {
console.log(result.value);
result = iterator.next();



229Traversing any data structure
    }
}

function contains<T>(value: T, iterator: Iterator<T>): boolean {
    let result: IteratorResult<T> = iterator.next();

    while (!result.done) {
        if (result.value == value) return true;

        result = iterator.next();
    }

    return false;
}

We’ll update the functions to take an Iterable<T> argument instead of an
Iterator<T> in the next listing. An Iterator<T> can always be obtained from an
Iterable<T> by calling the [Symbol.iterator]() method. 

function print<T>(iterable: Iterable<T>): void {
    for (const item of iterable) {  
        console.log(item);
    }
}

function contains<T>(value: T, iterable: Iterable<T>): boolean {
    for (const item of iterable) {   
        if (item == value) return true;
    }

    return false;
}

As we can see, the code is much more succinct. Instead of iterating over our data
structures manually, using an Iterator<T> and next(), we can do it with a one-liner
that uses for...of.

 Now let’s see how we can simplify our iterator code. We said that our in-order
binary tree traversal is inefficient, as it queues all the nodes before returning them. A
more efficient solution would traverse the tree without queuing all nodes, but the
implementation would get a bit more complex. Following is the implementation
we’ve used so far.

Listing 9.28 print() and contains() with Iterable argument

Binary tree iteratorListing 9.29

print() uses a for…of 
loop to print each 
element to the console.

contains() uses a for…of 
loop to compare each 
element to the given value.

class BinaryTreeIterator<T> implements Iterator<T> {
private values: T[];
private root: BinaryTreeNode<T>;

constructor(root: BinaryTreeNode<T>) {
this.values = [];
this.root = root;



230 CHAPTER 9 Generic data structures
        this.inOrder(root);
    }

    next(): IteratorResult<T> {
        const result: T | undefined = this.values.shift();

        if (!result) {
            return { done: true, value: this.root.value };
        }

        return { done: false, value: result };
    }

    private inOrder(node: BinaryTreeNode<T>): void {
        if (node.left != undefined) {
            this.inOrder(node.left);
        }

        this.values.push(node.value);

        if (node.right != undefined) {
            this.inOrder(node.right);
        }
    }
}

What we can do is replace this code with a generator. (We briefly talked about genera-
tors in chapter 6.) A generator is a resumable function that returns using a yield
statement and, when called again, resumes execution from where it left off. Genera-
tors in TypeScript return an IterableIterator<T>, which is simply a combination
of the two interfaces we’ve learned about: Iterable<T> and Iterator<T>. An
object that implements both can be iterated over “manually” with next() but can also
be used in a for...of statement.

 Let’s reimplement our binary tree traversal as a generator in listing 9.30. With gen-
erators, we can implement traversal recursively and keep yielding values until we’ve
gone over the whole data structure (figure 9.7).

inOrderIterator()
recursively yields values
in order.

next() resumes the
inOrderIterator()
function and yields the
next value.

2 5

1 3

4

2

Figure 9.7 inOrderIterator() 
is a generator, so it returns an 
IterableIterator<T> . Like 
inOrder(), this function 
recursively traverses the tree, but 
instead of queuing items, it yields 
them. Calling next() on the 
returned iterator resumes the 
generator and yields the next value.



 

231Traversing any data structure

  

function* inOrderIterator<T>(root: BinaryTreeNode<T>):    
    IterableIterator<T> {
    if (root.left) {
        for (const value of inOrderIterator(root.left)) {
            yield value;    
        }
    }

    yield root.value;   

    if (root.right) {
        for (const value of inOrderIterator(root.right)) {
            yield value;  
        }
    }
}

This implementation is much more succinct. Note that inOrderIterator() is recur-
sive. At each level, values are yielded “up” until they propagate to the original caller.

 Similarly, we can traverse our linked list with a generator, simplifying the logic. Our
original implementation looked like the following listing.

class LinkedListIterator<T> implements Iterator<T> {
    private head: LinkedListNode<T>;
    private current: LinkedListNode<T> | undefined;

    constructor(head: LinkedListNode<T>) {
        this.head = head;
        this.current = head;
    }

    next(): IteratorResult<T> {
        if (!this.current) {
            return { done: true, value: this.head.value };
        }

        const result: T = this.current.value;
        this.current = this.current.next;
        return { done: false, value: result };
    }
}

We can replace this with another generator that yields values as it traverses the list, as
shown in the following listing.

Binary tree iterator using generatorListing 9.30

Linked list iteratorListing 9.31

Linked list iterator using generatorListing 9.32

function* defines this 
function as a generator, so
it can yield and resume.

First, traverse the left 
subtree and yield all 
returned values.

Then yield the 
current value.

Then traverse the right 
subtree and yield all 
returned values.

function* linkedListIterator<T>(head: LinkedListNode<T>):
IterableIterator<T> {
let current: LinkedListNode<T> | undefined = head;



232 CHAPTER 9 Generic data structures
    while (current) {
        yield current.value;   
        current = current.next;
    }
}

The compiler translates this into an iterator that provides IteratorResult<T> val-
ues from each yield. When the function reaches the end and exits (without yielding
a value), a final IteratorResult<T> with done set to true is returned.

 The final step is plugging these generators into the data structures themselves as
implementations of [Symbol.iterator](). Let’s see what our final version of the
linked list looks like.

class LinkedListNode<T> implements Iterable<T> {
    value: T;
    next: LinkedListNode<T> | undefined;

    constructor(value: T) {
        this.value = value;
    } 

    [Symbol.iterator](): Iterator<T> {
        return linkedListIterator(this);    
    }
}

This works because the generator returns an IterableIterator<T>. Sometimes we
want an Iterable<T> so we can embed a call to the generator inside a for...of
loop (for example, for (const value of linkedListIterator(...)). Some-
times we want an Iterator<T> instead, as in the preceding example, so we can use a
for...of loop on an instance of the data structure itself.

9.3.3 Iterators recap

We started with a couple of generic data structures that took care of the shape of the
data, regardless of what that data was. We saw that this abstraction is powerful. But if we
write code to traverse each data structure whenever we want to apply an operation over
it, such as print() or contains(), we end up with multiple versions of each function.

 Enter Iterator<T>, an interface that decouples the shape of the data from the
functions by providing a unified traversal interface using next(). This interface
allows us to write a single version of print() and a single version of contains(),
both operating on iterators.

 Iterating by calling next() and checking done is still cumbersome, though. Turns
out Iterable<T> is an interface that declares a [Symbol.iterator]() method.
We can use this method to get an iterator. Better yet, we can put an Iterable<T> in a

Iterable linked list using generatorListing 9.33

We yield each value as 
we traverse the linked list.

[Symbol.iterator]() simply 
returns the result of 
linkedListIterator().



233Streaming data
for...of statement. Not only is this syntax cleaner, but we also never have to deal
with the iterator explicitly, as on each iteration of the loop, we get the actual element.

 Finally, we saw that we can simplify the traversal code if we use a generator that
yields values as it traverses the data structure. Generators return an Iterable-
Iterator<T>, so we can use them both directly inside for...of loops or to imple-
ment a data structure’s Iterable<T> interface.

 As mentioned earlier, most mainstream programming languages have an equiva-
lent special type that enables a for loop that traverses over elements. As for genera-
tors, although Java lacks a built-in yield statement, C# supports them, using a syntax
very similar to TypeScript’s.

 In general, when defining a data structure, make sure that it implements
Iterable<T>. Avoid writing functions that embed traversal of one particular data
structure; rather, have them work with iterators so that the same logic can be reused
with different data structures. Consider yield when implementing the traversal logic,
as it usually makes code cleaner and more concise.

Exercises9.3.4

1 Implement a pre-order traversal for a generic binary tree. Pre-order traversal is
parent first, followed by left subtree and then right subtree. Try implementing it
with a generator.

2 Implement a function that iterates over an array backward (from back to front).

Streaming data9.4
In this last section, we will look at a very interesting aspect of iterators: the fact that
they don’t necessarily have to be finite. In the next listing, let’s implement a function
that generates an infinite stream of random numbers. We’ll call it generateRandom-
Numbers() and have it yield these numbers from an infinite loop.

A better IteratorResult<T>
It’s unfortunate that we have to use IteratorResult<T> as the return type of
next(). This is how the interface is defined out of the box in TypeScript. It goes
against the principle we outlined in chapter 3 to return result or error from a function
as opposed to both. IteratorResult<T> contains a boolean property done and
a value property of type T. When the iterator has traversed the whole list, it returns
done as true but also needs to return something for value. This value must be
some default, as it is mandatory, but the data structure was fully traversed. Calling
code is never meant to use value if done is true. Unfortunately, there is no way
to enforce this rule.

A better contract would be a sum type such as Optional<T> or T | undefined.
This will return Ts as long as values are available and then nothing when traversal is
finished.



234 CHAPTER 9 Generic data structures
 

function* generateRandomNumbers(): IterableIterator<number> {
    while (true) {   
        yield Math.random();    
    }
}

We can call this function to get an IterableIterator<T> and then call next() on
it a few times to get random numbers, as shown in the following listing.

let iter: IterableIterator<number> = generateRandomNumbers();

console.log(iter.next().value);
console.log(iter.next().value);
console.log(iter.next().value);

There are many examples of infinite streams of data in real life: reading characters
from the keyboard, receiving data over a network connection, collecting sensor data,
and so on. We can process such data by using pipelines.

9.4.1 Processing pipelines

The components of processing pipelines are functions that take an iterator as argu-
ment, do some processing, and return an iterator. Such functions can be chained
together to process data as it arrives. This pattern is common in functional program-
ming languages and the basis of reactive programming.

 As an example, let’s implement a square() function that squares all numbers of
its input iterator. We can do this easily with a generator that takes an Iterable
<number> argument and yields squares of its values, as shown in listing 9.36. Note that
we don’t need an IterableIterator<number> as input—just an Iterable
<number>—but passing one in will work, as an IterableIterator<number> also
satisfies the Iterable<number> interface.

function* square(iter: Iterable<number>):    
    IterableIterator<number> {    
    for (const value of iter) {
        yield value ** 2;
    }
}

A common function in processing pipeline is take(), a function that takes the first n
elements of its input iterator and returns them, discarding the rest, as shown in the
following code.

Inifinite stream of random numbersListing 9.34

Consuming values from the streamListing 9.35

Listing 9.36  square()

Loop forever.
Yields a random 
number at each step.

The function takes an 
Iterable<number> and returns 
an IterableIterator<number>.



235Streaming data
 

function* take<T>(iter: Iterable<T>, n: number):
    IterableIterator<T> {
    for (const value of iter) {
        if (n-- <= 0) return;   

        yield value;   
    }
}

Now let’s create a pipeline in listing 9.38 that squares numbers from an infinite stream
and takes the first five results, which we print to the console (figure 9.8).

Figure 9.8 Pipeline and call sequence. take() requests a value from square()’s iterator. square() 
requests a value from generateRandomNumber()’s iterator. generateRandomNumbers() yields a 
value to square(). square() yields a value to take().

const values: IterableIterator<number> =
    take(square(generateRandomNumbers()), 5);    

for (const value of values) {
    console.log(value);
}

Iterators are the key to creating this type of pipeline, as they enable one-by-one process-
ing of values. It’s also important to understand that these pipelines are evaluated lazily.
In our example in this listing, values is an IterableIterator<number>. Even
though it is created by calling our pipeline, none of the code is executed yet. Only when
we start consuming values in the for...of loop do values start flowing through.

 In one iteration of the loop, next() is called on the values iterator, which invokes
take(). take() needs a value, so it in turn calls square(). Similarly, square() needs

Listing 9.37  take()

PipelineListing 9.38

We decrement n and stop 
when we’ve yielded n values.

Yield 
one value.

*generateRandomNumbers()

generateRandomNumbers()
yields a value.

*square()

2

square()
requests a
value.

square()
requests a
value.

*take()
4

1

take()
requests a
value. 3

take() takes five values from 
square, which takes values from 
generateRandomNumbers().



236 CHAPTER 9 Generic data structures

         
             
  

   
  

            
            
  

 

  

  
    

 

           

 

 

     

 

 

 

9.4.2

 

a value to square, so it calls generateRandomNumbers(). generateRandom-

Numbers() yields a random value to square(), which squares it and yields it to
take(). take() yields it to the loop, where it is printed to the console.

Because pipelines are evaluated lazily, we can work with infinite generators, such as
generateRandomNumbers(). We’ll cover algorithms in more depth in chapter 10.

Exercises

1 drop() is another common function. This function is the opposite of take(),
as it discards the first n elements of an iterator and returns the rest. Implement
drop().

2 Create a pipeline that, given an iterator, returns the sixth, seventh, eighth,
ninth, and tenth elements. Hint: this can be done with a combination of
drop() and take().

Summary
 Generics are useful for separating independent concerns.
 Generic data structures are responsible for the shape of the data, regardless of

what that data is.
 Iterators provide a common interface for traversing data structures.
 Iterator<T> represents an iterator, whereas Iterable<T> represents some-

thing that can be iterated over.
 Iterators can be implemented by using generators.
 Most programming languages have iterators and special syntax to loop over

them.
 Iterators don’t have to be finite: they can produce values forever.
 Using functions that take and return iterators, we can build processing pipelines.

Now that we’ve covered generic data structures, chapter 10 looks at the other main
ingredients of programing: algorithms.

Answers to exercises
DECOUPLING CONCERNS

1 A possible implementation:

class Box<T> {
readonly value: T;

constructor(value: T) {
this.value = value;

}
}

2 A possible implementation:

function unbox<T>(boxed: Box<T>): T {
return boxed.value;

}



237Answers to exercises

  

  
   

 

   

            
 

  

   

GENERIC DATA LAYOUT

1 A possible implementation backed by an array (in JavaScript, arrays come with
pop() and push() out of the box):

class Stack<T> {
private values: T[] = [];

public push(value: T) {
this.values.push(value);

}

public pop(): T {
if (this.values.length == 0) throw Error();

return this.values.pop();
}

public peek(): T {
if (this.values.length == 0) throw Error();

return this.values[this.values.length - 1];
}

}

2 A possible implementation:

class Pair<T, U> {
readonly first: T;
readonly second: U;

constructor(first: T, second: U) {
this.first = first;
this.second = second;

}
}

TRAVERSING ANY DATA STRUCTURE

1 This implementation is very similar to the in-order one; we just yield
root.value before we yield the left subtree:

function* preOrderIterator<T>(root: BinaryTreeNode<T>):
IterableIterator<T> {
yield root.value;

if (root.left) {
for (const value of preOrderIterator(root.left)) {

yield value;
}

}

if (root.right) {
for (const value of preOrderIterator(root.right)) {

yield value;
}

}
}



238 CHAPTER 9 Generic data structures
2 This implementation does use a for loop to traverse the array backward so call-
ers don’t have to.

function* backwardsArrayIterator<T>(array: T[]): IterableIterator<T> {
    for (let i = array.length - 1; i >= 0; i--) {
        yield array[i];
    }
}

STREAMING DATA

1 A possible implementation:

function* drop<T>(iter: Iterable<T>, n: number):
    IterableIterator<T> {
    for (const value of iter) {
        if (n-- > 0) continue;

        yield value;
    }
}

2 We can define count(), a counter that yields numbers starting from 1 and
keeps going. Taking the stream of value it produces, we drop() the first five
and then take() the next five:

function* count(): IterableIterator<number> {
    let n: number = 0;

    while (true) {
        n++;
        yield n;
    }
}

for (let value of take(drop(count(), 5), 5)) {
    console.log(value);



  

       
 
 
            
   
 

Generic algorithms
and iterators
This chapter covers
 Using map(), filter(), and reduce()beyond arrays

 Using a set of common algorithms to solve a wide range 
of problems

 Ensuring that a generic type supports a required 
contract

 Enabling various algorithms with different iterator 
categories

 Implementing adaptive algorithms

This chapter is all about generic algorithms—reusable algorithms that work on var-
ious data types and data structures.

We looked at one version each of map(), filter(), and reduce() in chapter
5, when we discussed higher-order functions. Those functions operated on arrays,
but as we saw in the previous chapters, iterators provide a nice abstraction over any
data structure. We’ll start by implementing generic versions of these three algo-
rithms that work with iterators, so we can apply them to binary trees, lists, arrays,
and any other iterable data structures.
239



240 CHAPTER 10 Generic algorithms and iterators
 map(), filter(), and reduce() are not unique. We’ll talk about other generic
algorithms and algorithm libraries that are available to most modern programming
languages. We’ll see why we should replace most loops with calls to library algorithms.
We’ll also briefly talk about fluent APIs and what a user-friendly interface for algo-
rithms looks like.

 Next, we’ll go over type parameter constraints; generic data structures and algo-
rithms can specify certain features they need available on their parameter types. This
type of specialization allows for generic data structures and algorithms that don’t work
everywhere; they are somewhat less general.

 We’ll zoom in on iterators and talk about all the different categories of iterators.
More specialized iterators enable more efficient algorithms. The trade-off is that not
all data structures can support specialized iterators.

 Finally, we’ll take a quick look at adaptive algorithms. Such algorithms provide
more general, less efficient implementations for iterators with fewer capabilities and
more efficient, less general implementations for iterators with more capabilities.

10.1 Better map(), filter(), reduce()
In chapter 5, we talked about map(), filter(), and reduce(), and looked at a pos-
sible implementation of each of them. These algorithms are higher-order functions,
as they each take another function as an argument and apply it over a sequence.

 map() applies the function to each element of the sequence and returns the
results. filter() applies a filtering function to each element and returns only the
elements for which that function returns true. reduce() combines all the values in
the sequence, using the given function, and returns a single value as the result.

 Our implementation in chapter 5 used a generic type parameter T, and the
sequences were represented as arrays of T.

10.1.1 map()

Let’s take a look at how we implemented map(). We used two type parameters: T and
U. The function takes an array of T values as the first argument and a function from T
to U as the second argument. It returns an array of U values, as shown in the next listing.

function map<T, U>(items: T[], func: (item: T) => U): U[] {    
    let result: U[] = [];    

    for (const item of items) {
        result.push(func(item));    
    }

    return result;   

Listing 10.1  map()

map() takes an array of items of
type T and a function from T to
U, and returns an array of Us.

Start with an empty 
array of Us.

For each item, push the result 
of func(item) to the array of Us.Return the 

array of Us.
}



241Better map(), filter(), reduce()
Now that we know about iterators and generators, let’s see in the next listing how we
can implement map() to work on any Iterable<T>, not only arrays.

function* map<T, U>(iter: Iterable<T>, func: (item: T) => U):    
    IterableIterator<U> {    
    for (const value of iter) {
        yield func(value);   
    }
}

Whereas the original implementation was restricted to arrays, this one works with any
data structure that provides an iterator. Not only that, but it is also more concise.

10.1.2 filter()

Let’s do the same for filter(). Our original implementation expected an array of
type T and a predicate. As a reminder, a predicate is a function that takes one argument
of some type and returns a boolean. We say that a value satisfies the predicate if the
function returns true for that value.

function filter<T>(items: T[], pred: (item: T) => boolean): T[] {   
    let result: T[] = [];

    for (const item of items) {
        if (pred(item)) {   
            result.push(item);
        }
    }

    return result;
}

Just as we did with map(), we are going to use an Iterable<T> instead of an array
and implement this iterable as a generator that yields values that satisfy the predicate,
as shown in the following listing.

function* filter<T>(iter: Iterable<T>, pred: (item: T) => boolean):    
    IterableIterator<T> {    
    for (const value of iter) {
        if (pred(value)) {

Listing 10.2 map() with iterator

Listing 10.3  filter()

Listing 10.4 filter() with iterator

map() is now a generator
that takes an Iterable<T>

as the first argument.

map() returns an 
IterableIterator<U>.

The given function is applied to each 
value retrieved from the iterator, 
and the result is yielded.

filter() takes an array of Ts
and a predicate (a function

from T to boolean).

If the predicate returns true, 
the item is added to the result 
array; otherwise, it’s skipped.

filter() is now a generator
that takes an Iterable<T>

as the first argument.
filter() returns an 
IterableIterator<T>.



242 CHAPTER 10 Generic algorithms and iterators

 

 
 

            yield value;    
        }
    }
}

We again end up with a shorter implementation that works with more than arrays.
Finally, let’s update reduce().

10.1.3 reduce()

Our original implementation of reduce() expected an array of T, an initial value of
type T (in case the array is empty), and an operation op(). The operation is a func-
tion that takes two values of type T and returns a value of type T. reduce() applies the
operation to the initial value and the first element of the array, stores the result,
applies the operation to the result and the next element of the array, and so on.

function reduce<T>(items: T[], init: T, op: (x: T, y: T) => T): T {   
    let result: T = init;

    for (const item of items) {
        result = op(result, item);    
    }

    return result;
}

We can rewrite this to use an Iterable<T> instead so that it works with any sequence,
as shown in the following code. In this case, we don’t need a generator. Unlike the
previous two functions, reduce() does not return a sequence of elements, but a sin-
gle value.

function reduce<T>(iter: Iterable<T>, init: T,   
    op: (x: T, y: T) => T): T {
    let result: T = init;

Listing 10.5  reduce()

Listing 10.6 reduce() with iterator

If a value satisfies the 
predicate, it is yielded.

reduce() takes an array of Ts, an
initial value, and an operation

combining two Ts into one.

Each item in the array is 
combined with the running 
total, using the given operation.

Instead of an array of T, 
reduce() takes an Iterable<T> 
as its first argument.

for (const value of iter) {
result = op(result, value);

}

return result;
}

The rest of the implementation is unchanged.

10.1.4 filter()/reduce() pipeline

Let’s see how we can combine these algorithms into a pipeline that takes only the even
numbers from a binary tree and sums them up. We’ll use our BinaryTreeNode<T>



243Common algorithms

   
 
 

 

   

   

 
      
 
            
  

               
   
  
        
   
  
    
        
  
    
from chapter 9, with its in-order traversal, and chain this with an even number filter
and a reduce() using addition as the operation.

let root: BinaryTreeNode<number> = new BinaryTreeNode(1);   
root.left = new BinaryTreeNode(2);
root.left.right = new BinaryTreeNode(3);
root.right = new BinaryTreeNode(4);

const result: number = 
    reduce(
        filter(
            inOrderIterator(root),    
            (value) => value % 2 == 0),    
        0, (x, y) => x + y);   

console.log(result);

   

   

    

Listing 10.7 filter()/reduce() pipeline

The same example
binary tree we used in

the previous chapter

We get an 
IterableIterator<number> that 
traverses the tree in order.

We filter using a lambda
that returns true only if

a number is even.
We reduce from an initial
value of 0 with a lambda
that sums two numbers.

This example should reinforce how powerful generics are. Instead of having to imple-
ment a new function to traverse the binary tree and sum up even numbers, we simply
put together a processing pipeline customized for this scenario.

10.1.5 Exercises

1 Build a pipeline that processes an iterable of type string by concatenating all
nonempty strings.

2 Build a pipeline that processes an iterable of type number by selecting all odd
numbers and squaring them.

10.2 Common algorithms
We looked at map(), filter(), and reduce(), and also mentioned take() in chap-
ter 9. Many other algorithms are commonly used in pipelines. Let’s list a few of them.
We will not look at the implementations—just describe what arguments besides the
iterable they expect and how they process the data. We’ll also mention some synonyms
under which the algorithm might appear:

 map() takes a sequence of T values and a function (value: T) => U, and
returns a sequence of U values, applying the function to all the elements in the
sequence. It is also known as fmap(), select().

 filter() takes a sequence of T values and a predicate (value: T) => bool-
ean, and returns a sequence of T values containing all the items for which the
predicate returns true. It is also known as where().

 reduce()takes a sequence of T values, an initial value of type T, and an opera-
tion that combines two T values into one (x: T, y: T) => T. It returns a single
value T after combining all the elements in the sequence using the operation. It
is also known as fold(), collect(), accumulate(), aggregate().



244 CHAPTER 10 Generic algorithms and iterators
 any()takes a sequence of T values and a predicate (value: T) => boolean. It
returns true if any one of the elements of the sequence satisfies the predicate.

 all()takes a sequence of T values and a predicate (value: T) => boolean. It
returns true if all the elements of the sequence satisfy the predicate.

 none()takes a sequence of T values and a predicate (value: T) => boolean.
It returns true if none of the elements of the sequence satisfies the predicate.

 take() takes a sequence of T values and a number n. It returns a sequence con-
sisting of the first n elements of the original sequence. It is also known as
limit().

 drop() takes a sequence of T values and a number n. It returns a sequence con-
sisting of all the elements of the original sequence except the first n. The first n
elements are dropped. It is also known as skip().

 zip() takes a sequence of T values and a sequence of U values. It returns a
sequence containing pairs of T and U values, effectively zipping together the
two sequences.

There are many more algorithms for sorting, reversing, splitting, and concatenating
sequences. The good news is that because these algorithms are so useful and generally
applicable, we don’t need to implement them. Most languages have libraries that pro-
vide these algorithms and more. JavaScript has the underscore.js package and the
lodash package, both of which provide a plethora of such algorithms. (At the time of
writing, these libraries don’t support iterators—only the JavaScript built-in array and
object types.) In Java, they are in the java.util.stream package. In C#, they are in
the System.Linq namespace. In C++, they are in the <algorithm> standard library
header.

10.2.1 Algorithms instead of loops

You may be surprised that a good rule of thumb is to check, whenever you find your-
self writing a loop, whether a library algorithm or a pipeline can do the job. Usually,
we write loops to process a sequence, which is exactly what the algorithms we talked
about do.

 The reason to prefer library algorithms to custom code in loops is that there is less
opportunity for mistakes. Library algorithms are tried and tested and implemented
efficiently, and the code we end up with is easier to understand, as the operations are
spelled out.

 We’ve looked at a few implementations throughout this book to get a better under-
standing of how things work under the hood, but you’ll rarely need to implement an
algorithm yourself. If you do end up with a problem that the available algorithms can’t
solve, consider making a generic, reusable implementation of your solution rather
than a one-off specific implementation.



245Common algorithms
10.2.2 Implementing a fluent pipeline

Most libraries also provide a fluent API to chain algorithms into a pipeline. Fluent
APIs are APIs based on method chaining, making the code much easier to read. To
see the difference between a fluent and a nonfluent API, let’s take another look at the
filter/reduce pipeline from section 10.1.4.

let root: BinaryTreeNode<number> = new BinaryTreeNode(1);
root.left = new BinaryTreeNode(2);
root.left.right = new BinaryTreeNode(3);
root.right = new BinaryTreeNode(4);

const result: number = 
    reduce(
        filter(
            inOrderBinaryTreeIterator(root),
            (value) => value % 2 == 0),
        0, (x, y) => x + y);

console.log(result);

Even though we apply filter() first and then pass the result to reduce(), if we
read the code from left to right, we see reduce() before filter(). It’s also a bit
hard to make sense of which arguments go with which function in the pipeline. Fluent
APIs make the code much easier to read.

 Currently, all our algorithms take an iterable as the first argument and return an
iterator. We can use object-oriented programming to improve our API. We can put all
our algorithms in a class that wraps an iterable. Then we can call any of the iterables
without explicitly providing an iterable as the first argument; the iterable is a member
of the class. Let’s do this for map(), filter(), and reduce() by grouping them into
a new FluentIterable<T> class wrapping an iterable, as shown in the next listing.

class FluentIterable<T> {    
    iter: Iterable<T>;    

    constructor(iter: Iterable<T>) {
        this.iter = iter;
    }

    *map<U>(func: (item: T) => U): IterableIterator<U> {   
        for (const value of this.iter) {
            yield func(value);
        }
    }

filter/reduce pipelineListing 10.8

Fluent iterableListing 10.9

FluentIterable<T> 
wraps an Iterable<T>.

map(), filter(), and reduce() are similar to
the previous implementations, but

instead of taking an iterable as the first
argument, they use the this.iter iterable.

*filter(pred: (item: T) => boolean): IterableIterator<T> {
for (const value of this.iter) {



246 CHAPTER 10 Generic algorithms and iterators
            if (pred(value)) {
                yield value;
            }
        }
    }

    reduce(init: T, op: (x: T, y: T) => T): T {   
        let result: T = init;

        for (const value of this.iter) {
            result = op(result, value);
        }

        return result;
    }
}

We can create a FluentIterable<T> out of an Iterable<T>, so we can rewrite our
filter()/reduce() pipeline into a more fluent form. We create a Fluent-
Iterable<T>, call filter() on it, create a new FluentIterable<T> from its result,
and call reduce() on it, as the following listing shows.

let root: BinaryTreeNode<number> = new BinaryTreeNode(1);
root.left = new BinaryTreeNode(2);
root.left.right = new BinaryTreeNode(3);
root.right = new BinaryTreeNode(4);

const result: number =
    new FluentIterable(
        new FluentIterable(
            inOrderIterator(root)    
        ).filter((value) => value % 2 == 0)   
    ).reduce(0, (x, y) => x + y);    

console.log(result);

Now filter() appears before reduce(), and it’s very clear that arguments go to
that function. The only problem is that we need to create a new Fluent-
Iterable<T> after each function call. We can improve our API by having our map()
and filter() functions return a FluentIterable<T> instead of the default
IterableIterator<T>. Note that we don’t need to change reduce(), because
reduce() returns a single value of type T, not an iterable.

 Because we’re using generators, we can’t simply change the return type. Genera-
tors exist to provide convenient syntax for functions, but they always return an
IterableIterator<T>. Instead, we can move the implementations to a couple of
private methods—mapImpl() and filterImpl()—and handle the conversion from

Fluent filter/reduce pipelineListing 10.10

map(), filter(), and reduce() are similar to
the previous implementations, but

instead of taking an iterable as the first
argument, they use the this.iter iterable.

We get an iterable over the binary 
tree from inOrderIterator and use it 
to initialize a FluentIterable.

We call filter() on the
FluentIterable and then

create another FluentIterable
from the result.

Finally, we call reduce()
on the FluentIterable
to get the final result.



247Common algorithms
IterableIterator<T> to FluentIterable<T> in the public map() and
reduce() methods, as shown in the following listing.

class FluentIterable<T> {
    iter: Iterable<T>;

    constructor(iter: Iterable<T>) {
        this.iter = iter;
    }

    map<U>(func: (item: T) => U): FluentIterable<U> {
        return new FluentIterable(this.mapImpl(func));    
    }

    private *mapImpl<U>(func: (item: T) => U): IterableIterator<U> {
        for (const value of this.iter) {   
            yield func(value);
        }
    }

    filter<U>(pred: (item: T) => boolean): FluentIterable<T> {
        return new FluentIterable(this.filterImpl(pred));   
    }

    private *filterImpl(pred: (item: T) => boolean): IterableIterator<T> {
        for (const value of this.iter) {    
            if (pred(value)) {
                yield value;
            }
        }
    }

    reduce(init: T, op: (x: T, y: T) => T): T {    
        let result: T = init;

        for (const value of this.iter) {
            result = op(result, value);
        }

        return result;
    }
}

With this updated implementation, we can more easily chain the algorithms, as each
returns a FluentIterable that contains all the algorithms as methods, as shown in
the next listing.

Better fluent iterableListing 10.11

Better fluent filter/reduce pipelineListing 10.12

map() forwards its argument to
mapImpl() and converts the

result to a FluentIterable.

mapImpl() is the original map() 
implementation with a generator.

Like map(), filter() forwards
its argument to filterImpl()

and converts the result
to a FluentIterable.

filterImpl() is the
original filter()

implementation
with a generator.

reduce() stays unchanged 
because it doesn’t return 
an iterator.

let root: BinaryTreeNode<number> = new BinaryTreeNode(1);
root.left = new BinaryTreeNode(2);
root.left.right = new BinaryTreeNode(3);
root.right = new BinaryTreeNode(4);



248 CHAPTER 10 Generic algorithms and iterators
const result: number =
    new FluentIterable(inOrderIterator(root))    
    .filter((value) => value % 2 == 0)    
    .reduce(0, (x, y) => x + y);    

console.log(result);

Now, in true fluent fashion, the code reads easily from left to right, and we can chain
any number of algorithms that make up our pipeline with a very natural syntax. Most
algorithm libraries take a similar approach, making it as easy as possible to chain mul-
tiple algorithms.

 Depending on the programming language, one downside of a fluent API
approach is that our FluentIterable ends up containing all the algorithms, so it is
difficult to extend. If it is part of a library, calling code can’t easily add a new algo-
rithm without modifying the class. C# provides extension methods, which enable us to
add methods to a class or interface without modifying its code. Not all languages have
such features, though. That being said, in most situations, we should be using an exist-
ing algorithm library, not implementing a new one from scratch.

10.2.3 Exercises

1 Extend FluentIterable with take(), the algorithm that returns the first n
elements from an iterator.

2 Extend FluentIterable with drop(), the algorithm that skips the first n ele-
ments of an iterator and returns the rest.

10.3 Constraining type parameters
We saw how a generic data structure gives shape to the data, regardless of what its spe-
cific type parameter T is. We also looked at a set of algorithms that uses iterators to
process sequences of values of some type T, regardless of what that type is. Now let’s
look at a scenario in the following listing in which the type matters: we have a
renderAll() generic function that takes an Iterable<T> as argument and calls the
render() method on each element of the iterator.

function renderAll<T>(iter: Iterable<T>): void {    
    for (const item of iter) {
        item.render();   
    }
}.

The function fails to compile, with the following error message:

Property 'render' does not exist on type 'T'.

Listing 10.13 renderAll sketch

We need to explicitly new up a 
FluentIterable only once, from the 
original iterator over the tree.

filter() is a method of 
FluentIterable and returns 
a FluentIterable itself.We can call reduce() 

on the result of filter().

renderAll() takes an 
Iterable<T> as argument.

We call render() on each item 
returned by the iterator.



249Constraining type parameters
We are attempting to call render() on a generic type T, but we have no guarantee that
such a method exists on the type. For this type of scenario, we need a way to constrain
the type T so that it can be instantiated only with types that have a render() method.

CONSTRAINTS ON TYPE PARAMETERS Constraints inform the compiler about
the capabilities that a type argument must have. Without any constraints, the
type argument could be any type. As soon as we require certain members to
be available on a generic type, we use constraints to restrict the set of allowed
types to those that have the required members.

In our case, we can define an IRenderable interface that declares a render()
method, as shown in the next listing. Then we can add a constraint on T by using the
extends keyword to tell the compiler that we accept only type arguments that are
IRenderable.

interface IRenderable {    
    render(): void;
}

function renderAll<T extends IRenderable>(iter: Iterable<T>): void {    
    for (const item of iter) {
        item.render();
    }
}

10.3.1 Generic data structures with type constraints

Most generic data structures don’t need to constrain their type parameters. We can
store values of any type in a linked list, a tree, or an array. There are a few exceptions,
though, such as a hash set.

 A set data structure models a mathematical set, so it stores unique values, discard-
ing duplicates. Set data structures usually provide methods to union, intersect, and
subtract other sets. They also provide a way to check whether a given value is already
part of the set. To check whether a value is already part of a set, we can compare it
with every element of the set, but that approach is not the most efficient. Comparing
with every element in the set requires us, in the worst case, to traverse the whole set.
Such a traversal requires linear time, or O(n). See the sidebar “Big O notation” on the
next page for a refresher.

 A more efficient implementation can hash each value and store it in a key-value
data structure like a hash map or dictionary. Such data structures can retrieve a value
in constant time, or O(1), making them more efficient. A hash set wraps a hash map
and can provide efficient membership checks. But it does come with a constraint: the
type T needs to provide a hash function, which takes a value of type T and returns a
number: its hash value.

Listing 10.14 renderAll with constraint

IRenderable interface 
requires implementers to 
provide a render() method.

T extends IRenderable and tells
the compiler to accept only types
that implement IRenderable as T.



250 CHAPTER 10 Generic algorithms and iterators
 Some languages ensure that all values can be hashed by providing a hash method
on their top type. The Java top type, Object, has a hashCode() method, whereas the
C# Object top type has a GetHashCode() method. But if a language doesn’t have
that, we need a type constraint to ensure that only hash-able types can be stored in the
data structures. We could define an IHashable interface, for example, and make it a
type constraint on the key type of our generic hash map or dictionary.

Big O notation
Big O notation provides an upper bound to the time and space required by a function
to execute as its arguments tend toward a particular value n. We won’t go too deep
into this topic; instead we’ll outline a few common upper bounds and explain what
they mean.

Constant time, or O(1), means that a function’s execution time does not depend on
the number of items it has to process. The function first(), which takes the first
element of a sequence, runs just as fast for a sequence of 2 or 2 million items, for
example.

Logarithmic time, or O(log n), means that the function halves its input with each step,
so it is very efficient even for large values of n. An example is binary search in a
sorted sequence.

Linear time, or O(n), means that the function run time grows proportionally with its
input. Looping over a sequence is O(n), such as determining whether all elements of
a sequence satisfy some predicate.

Quadratic time, or O(n2), is much less efficient than linear, as the run time grows
much faster than the size of the input. Two nested loops over a sequence have a run
time of O(n2).

Linearithmic, or O(n log n), is not as efficient as linear but more efficient than qua-
dratic. The most efficient comparison sort algorithms are O(n log n); we can’t sort a
sequence with a single loop, but we can do it faster than two nested loops.

Just as time complexity sets an upper bound on how the run time of a function
increases with the size of its input, space complexity sets an upper bound on the
amount of additional memory a function needs as the size of its input grows.

Constant space, or O(1), means that a function doesn’t need more space as the size
of the input grows. Our max() function, for example, requires some extra memory to
store the running maximum and the iterator, but the amount of memory is constant
regardless of how large the sequence is.

Linear space, or O(n), means that the amount of memory a function needs is propor-
tional to the size of its input. An example of such a function is our original
inOrder() binary tree traversal, which copied the values of all nodes into an array
to provide an iterator over the tree.



251Constraining type parameters

 

g
fir
10.3.2 Generic algorithms with type constraints

Algorithms tend to have more constraints on their types than data structures. If we
want to sort a set of values, we need a way to compare those values. Similarly, if we
want to determine the minimum or maximum element of a sequence, the elements of
that sequence need to be comparable.

 Let’s look at a possible implementation of a max() generic algorithm in the next
listing. First, we will declare an IComparable<T> interface and constrain our algo-
rithm to use it. The interface declares a single compareTo() method.

enum ComparisonResult {    
    LessThan,
    Equal,
    GreaterThan
}

interface IComparable<T> {
    compareTo(value: T): ComparisonResult;    
}

Now let’s implement a max() generic algorithm that expects an iterator over an
IComparable set of values and returns the maximum element, as shown in listing
10.16. We will need to handle the case in which the iterator has no values, in which
case max() will return undefined. For that reason, we won’t use a for...of loop;
rather, we will advance the iterator manually by using next().

function max<T extends IComparable<T>>(iter: Iterable<T>)
    : T | undefined {    
    let iterator: Iterator<T> = iter[Symbol.iterator]();   

    let current: IteratorResult<T> = iterator.next(); 

    if (current.done) return undefined;   

    let result: T = current.value;    

    while (true) {
        current = iterator.next();

        if (current.done) return result;  

        if (current.value.compareTo(result) ==
            ComparisonResult.GreaterThan) {
            result = current.value;   
        }

Listing 10.15 IComparable interface

Listing 10.16 max() algorithm

ComparisonResult represents 
the result of a comparison.

IComparable declares a compareTo 
interface that compares the current 
instance with another value of the same 
type and returns a Comparison result.

max() puts an 
IComparable<T> 
constraint on the type T.

We get an Iterator<T>
from the Iterable<T> 
argument.We call

next()
once to

et to the
st value.

In case there is no first 
value, we return undefined.

We initialize result to be the first 
value returned by the iterator.

When the
iterator is
done, we

return the
result.

Whenever the current value is 
greater than the currently stored 
maximum, we update the result 
with the current value.

}
}



252 CHAPTER 10 Generic algorithms and iterators
Many algorithms, such as max(), require certain things from the types they operate
on. An alternative is to make the comparison an argument to the function itself as
opposed to a generic type constraint. Instead of IComparable<T>, max() can expect
a second argument—a compare() function—from two arguments of type T to a
ComparisonResult, as shown in the following code.

function max<T>(iter: Iterable<T>, 
    compare: (x: T, y: T) => ComparisonResult)    
    : T | undefined {
    let iterator: Iterator<T> = iter[Symbol.iterator]();

    let current: IteratorResult<T> = iterator.next();

    if (current.done) return undefined;

    let result: T = current.value;

    while (true) {
        current = iterator.next();

        if (current.done) return result;

        if (compare(current.value, result)
            == ComparisonResult.GreaterThan) {    
            result = current.value;
        }
    }
}

The advantage of this implementation is that the type T is no longer constrained, and
we can plug in any comparison function. The disadvantage is that for types that have a
natural order (numbers, temperatures, distances, and so on), we have to keep supply-
ing a compare function explicitly. Good algorithm libraries usually provide both ver-
sions of an algorithm: one that uses a type’s natural comparison and another for
which callers can supply their own.

 The more an algorithm knows about the methods and properties that a type T it
operates on provides, the more it can leverage those in its implementation. Next, let’s
see how algorithms can use iterators to provide more efficient implementations.

10.3.3 Exercise

1 Implement a generic function clamp() that takes a value, a low, and a high. If
the value is within the low-high range, it returns the values. If the value is less
than low, it returns low. If the value is larger than high, it returns high. Use the
IComparable interface defined in this section.

Listing 10.17 max() algorithm with compare() argument

compare() is a function that 
takes two Ts and returns a 
ComparisonResult.

Instead of the 
IComparable.compareTo() method, 
we call the compare() argument.



253Efficient reverse and other algorithms using iterators
Efficient reverse and other10.4 algorithms using iterators
So far, we’ve looked at algorithms that process a sequence in a linear fashion. map(),
filter(), reduce(), and max() all iterate over a sequence of values from start to
finish. They all run in linear time (proportionate to the size of the sequence) and con-
stant space. (Memory requirements are constant regardless of the size of the
sequence.) Let’s look at another algorithm: reverse().

 This algorithm takes a sequence and reverses it, making the last element the first
one, the second-to-last element the second one, and so on. One way to implement
reverse() is to push all elements of its input into a stack and then pop them out, as
shown in figure 10.1 and listing 10.18.

 

function *reverse<T>(iter: Iterable<T>): IterableIterator<T> {    
    let stack: T[] = [];    

    for (const value of iter) {
        stack.push(value);   
    }

    while (true) {
        let value: T | undefined = stack.pop();   

        if (value == undefined) return;    

        yield value;    
    }
}

Listing 10.18 reverse() with stack

StackOriginal sequence Reversed sequence

1 2 3 4 5 5 4 3 2 1

1

2

3

4

5

Figure 10.1 Reversing a sequence with a 
stack: elements from the original sequence 
get pushed on the stack and then popped to 
produce the reversed sequence.

reverse() is a generator,
following the same pattern

as our other algorithms.

JavaScript arrays provide 
push() and pop() methods, 
so we use one as a stack.

We push all values from 
the sequence on the stack.

We pop a value from the 
stack; this is undefined if 
the stack is empty.

If we emptied the stack, 
return, as we are done.

Yield the value 
and repeat.



254 CHAPTER 10 Generic algorithms and iterators

  
                
 
 
   
   
  
   

 

 

             
 
 
               
This implementation is straightforward but not the most efficient.
Although it runs in linear time, it also requires linear space. The
larger the input sequence, the more memory this algorithm will need
to push all its elements onto the stack.
    Let’s set iterators aside for now and look at how we would implement
an efficient reverse over an array, as shown in listing 10.19. We can do
this in-place, swapping the elements of the array starting from both
ends without requiring an additional stack (figure 10.2).

Figure 10.2 Reversing an array in place by swapping its elements
 

function reverse<T>(values: T[]): void {   
    let begin: number = 0;   
    let end: number = values.length;   

    while (begin < end) {    
        const temp: T = values[begin];    
        values[begin] = values[end - 1];   
        values[end - 1] = temp;    

        begin++;    
        end--;   

Listing 10.19 reverse() for array

1 2 3 4 5

5 4 3 2 1

This version of reverse() expects 
an array of Ts, not an Iterable.

begin and end originally point to 
the beginning and end of the array.

Repeat until the two 
meet or pass each other.

Swap the value at begin with 
the value at end - 1. (Originally, 
end was one element after 
the last one in the array.)Increment the begin index 

and decrement the end index.
}

}

As we can see, this implementation is more efficient than the preceding one. It is still
linear time, as we need to touch every element of the sequence (it is impossible to
reverse a sequence without touching each element), but it requires constant space to
run. Unlike the previous version, which needed a stack as large as its input, this one
uses the temporary temp of type T, regardless of how large the input is.

Can we generalize this example and provide an efficient reverse algorithm for any
data structure? We can, but we need to tweak our notion of iterators. Iterator<T>,
Iterable<T>, and the combination of the two, IterableIterator<T>, are inter-
faces that TypeScript provides over the JavaScript ES6 standard. Now we’ll go beyond
that and look at some iterators that are not part of the language standard.

10.4.1 Iterator building blocks

JavaScript iterators allow us to retrieve values and advance until the sequence is
exhausted. If we want to run an in-place algorithm, we need a few more capabilities.
We also need to be able not only to read values at a given position, but also set them.
In our reverse() case, we start from both ends of the sequence and end in the



255Efficient reverse and other algorithms using iterators
middle, which means that an iterator can’t tell when it is done all by itself. We know
that reverse() is done when begin and end pass each other, so we need a way to tell
when two iterators are the same.

 To support efficient algorithms, let’s redefine our iterators as a set of interfaces,
each describing additional capabilities. First, let’s define an IReadable<T> that
exposes a get() method returning a value of type T. We will use this method to read a
value from an iterator. We’ll also define an IIncrementable<T> that exposes an
increment() method we can use to advance our iterator, as the following listing
shows.

interface IReadable<T> {
    get(): T;   
}

interface IIncrementable<T> {
    increment(): void;   
}

These two interfaces are almost enough to support our original linear traversal algo-
rithms such as map(). The last thing missing is figuring out when we should stop. We
know that an iterator can’t tell by itself when it is done, as sometimes it doesn’t need to
traverse the whole sequence. We’ll introduce the concept of equality: an iterator
begin and an iterator end are equal when they point to the same element. This is much
more flexible than the standard Iterator
<T> implementation. We can initialize end to
be one element after the last element of a
sequence. Then we can advance begin until it
is equal to end, in which case we’ll know that
we’ve traversed the whole sequence. But we
can also move end back until it points to the
first element of the sequence—something
we couldn’t have done with the standard
Iterator<T>. (figure 10.3).

 Let’s define an IInputIterator<T> interface in the next listing as an interface
that implements both IReadable<T> and IIncrementable<T>, plus an equals()
method we can use to compare two iterators.

Listing 10.20 IReadable<T> and IIncrementable<T>

Listing 10.21  IInputIterator<T>

IReadable declares a single 
method, get(), that retrieves the 
current value T of an iterator.

IIncrementable declares a single 
method, increment(), that advances 
an iterator to the next element.

begin end

Figure 10.3 begin and end iterators 
define a range: begin points to the first 
element, and end points past the last 
element.

interface IInputIterator<T> extends IReadable<T>, IIncrementable<T> {
equals(other: IInputIterator<T>): boolean;

}



256 CHAPTER 10 Generic algorithms and iterators
The iterator itself can no longer determine when it has traversed the whole sequence.
A sequence is now defined by two iterators—an iterator pointing to the start of the
sequence and an iterator pointing to one past the last element of the sequence.

 With these interfaces available, let’s update our linked list iterator from chapter 9
in the next listing. Our linked list is implemented as the type LinkedListNode<T>
with a value property and a next property that can be a LinkedListNode<T> or
undefined for the last node in the list.

class LinkedListNode<T> {
    value: T;
    next: LinkedListNode<T> | undefined;

    constructor(value: T) {
        this.value = value;
    }
}

Let’s see how we can model a pair of iterators over this linked list in the following list-
ing. First, we’ll need to implement a LinkedListInputIterator<T> that satisfies
our new IInputIterator<T> interface for a linked list.

class LinkedListInputIterator<T> implements IInputIterator<T> {
    private node: LinkedListNode<T> | undefined;

    constructor(node: LinkedListNode<T> | undefined) {
        this.node = node;
    }

    increment(): void {   
        if (!this.node) throw Error();

        this.node = this.node.next;
    }

    get(): T {    
        if (!this.node) throw Error();

        return this.node.value;
    }

    equals(other: IInputIterator<T>): boolean {   
        return this.node == (<LinkedListInputIterator<T>>other).node;
    }
}

Linked list implementationListing 10.22

Linked list input iteratorListing 10.23

If the current node is undefined, 
throw an error; otherwise, 
advance to the next node.

If the current node is 
undefined, throw an error; 
otherwise, get its value.

Iterators are considered to be equal if they
wrap the same node. We can cast to

LinkedListInputIterator<T> because callers
shouldn’t compare iterators of different types.



257Efficient reverse and other algorithms using iterators
Now we can create a pair of iterators over a linked list by initializing begin to be the
head of the list and end to be undefined, as shown in the following code.

const head: LinkedListNode<number> = new LinkedListNode(0);   
head.next = new LinkedListNode(1);
head.next.next = new LinkedListNode(2);

let begin: IInputIterator<number> = new LinkedListInputIterator(head);    
let end: IInputIterator<number> = new LinkedListInputIterator(undefined);  

 
We call this an input iterator because we can read values from it by using the get()
method.

INPUT ITERATORS An input iterator is an iterator that can traverse a sequence
once and provide its values. It can’t replay the values a second time, as the val-
ues may no longer be available. An input iterator doesn’t have to traverse a
persistent data structure; it can also provide values from a generator or some
other source (figure 10.4).

Let’s also define an output iterator as an iterator we can write to. For that, we’ll
declare an IWritable<T> interface with a set() method and have our IOutput-
Iterator<T> be the combination of IWritable<T>, IIncrementable<T>, and an
equals() method, as shown in the next listing.

Pair of iterators over linked listListing 10.24

Listing 10.25 IWritable<T> and IOutputIterator<T>

A list with a 
few nodes

begin is the head of the linked
list passed as an argument.

end is undefined.

1 2

2

3 4

An input iterator can
get() the current
value and advance.

1 2 3 4

3

Figure 10.4 An input iterator 
can retrieve the value of the 
current element and advance 
to the next element.

interface IWritable<T> {
set(value: T): void;

}



258 CHAPTER 10 Generic algorithms and iterators
interface IOutputIterator<T> extends IWritable<T>, IIncrementable<T> {
    equals(other: IOutputIterator<T>): boolean;
}

We can write values to this type of iterator, but we can’t read them back.

OUTPUT ITERATORS An output iterator is an iterator that can traverse a
sequence and write values to it; it doesn’t have to be able to read them back.
An output iterator doesn’t have to traverse a persistent data structure; it can
also write values to other outputs.

Let’s implement an output iterator that writes to the console. Writing to an output
stream is the most common use case for an output iterator: that’s when we can output
data but can’t read it back. We can write data (without being able to read it) to a net-
work connection, standard output, standard error, and so on. In our case, advancing
the iterator doesn’t do anything, whereas setting a value calls console.log(), as
shown in the next listing.

class ConsoleOutputIterator<T> implements IOutputIterator<T> {
    set(value: T): void {
        console.log(value);    
    }

    increment(): void { }   

    equals(other: IOutputIterator<T>): boolean {
        return false;    
    }
}

Now we have an interface that describes an input iterator and a concrete instance of an
implementation over our linked list. We also have an interface that describes an output
iterator and a concrete implementation that logs to the console. With these pieces in
place, we can provide an alternative implementation of map() in listing 10.27.

 This new version of map() will take as argument a pair of begin and end input
iterators that define a sequence and an output iterator out, where it will write the
results of mapping the given function over the sequence. Because we are no longer
using standard JavaScript, we lose some of the syntactic sugar—no yield and no
for...of loops.

function map<T, U>(
    begin: IInputIterator<T>, end: IInputIterator<T>,    
    out: IOutputIterator<U>,   
    func: (value: T) => U): void {

Console output iteratorListing 10.26

Listing 10.27 map() with input and output iterators 

set() logs to the console.

increment() doesn’t have to do 
anything because we’re not traversing 
a data structure in this case.

equals() can safely always return false, 
as writing to the console doesn’t have 
an end to compare against.

begin and end iterators 
define the input sequence.

out is an output iterator for 
the result of the function.



259Efficient reverse and other algorithms using iterators

 
   
 
                 
           
  
  

   

             
    while (!begin.equals(end)) {   
        out.set(func(begin.get()));    

        begin.increment();   
        out.increment();   
    }
}

This version of map() is as general as the one based on the native Iterable-
Iterator<T>: we can provide any IInputIterator<T>, one that traverses a linked
list, one that traverses a tree in order, and so on. We can also provide any IOutput-
Iterator<T>—one that writes to the console or one that writes to an array.

 So far, this doesn’t gain us much. We have an alternative implementation that can’t
leverage the special syntax that TypeScript provides. But these iterators are just the basic
building blocks. We can define more-powerful iterators, and we’ll look at these next.

10.4.2 A useful find()

Let’s take another common algorithm: find(). This algorithm takes a sequence of
values and a predicate, and returns the first element for which the predicate returns
true. We can implement this by using the standard Iterable<T>, as the following
listing shows.

Listing 10.28 find() with iterable

Repeat until we traverse the whole 
sequence and begin becomes end.

Output the result of 
applying the function 
to the current element.Increment both the input 

and the output iterators.

function find<T>(iter: Iterable<T>,
pred: (value: T) => boolean): T | undefined {
for (const value of iter) {

if (pred(value)) {
return value;

}
}

return undefined;
}

This works, but it’s not that useful. What if we want to change the value after we find it?
If we are searching over a linked list of numbers for the first occurrence of 42 so that
we can replace it with 0, it doesn’t help us that find() returns 42. The result may as well
be a boolean, as this function tells us only whether the value exists in the sequence.

What if, instead of returning the value itself, we get an iterator pointing to that
value? The out-of-the-box JavaScript Iterator<T> is read-only. We’ve seen how to
create an iterator through which we can also set values. For this scenario, we’ll need a
combination of readable and writable iterators. Let’s define a forward iterator.

FORWARD ITERATORS A forward iterator is an iterator that can be advanced, can
read the value at its current position, and update that value. A forward itera-
tor can also be cloned, so that advancing one copy of the iterator does not



260 CHAPTER 10 Generic algorithms and iterators
advance the clone. This is important, as it allows us to traverse a sequence
multiple times, unlike input and output iterators (figure 10.5).

Our IForwardIterator<T> interface shown in the next listing is a combination of
IReadable<T>, IWritable<T>, IIncrementable<T>, and the equals() and
clone() methods.

interface IForwardIterator<T> extends 
    IReadable<T>, IWritable<T>, IIncrementable<T> {
    equals(other: IForwardIterator<T>): boolean;
    clone(): IForwardIterator<T>;
}

As an example, let’s implement the interface to iterate over our linked list in the fol-
lowing listing. We’ll update our LinkedListIterator<T> to also provide the addi-
tional methods required by our new interface.

class LinkedListIterator<T> implements IForwardIterator<T> {    
    private node: LinkedListNode<T> | undefined;

    constructor(node: LinkedListNode<T> | undefined) {
        this.node = node;
    }

    increment(): void {
        if (!this.node) return;

Listing 10.29  IForwardIterator<T>

Listing 10.30 LinkedListIterator<T> implementing IForwardIterator<T>

A forward iterator can
clone() itself, creating
another iterator on the
same element.   

The clone is a new iterator
that moves independently
of the original.

Like input iterators,
it can also advance
to the next element.

Figure 10.5 A forward iterator can read and write the value of the current element, advance to the 
next element, and create a clone of itself that enables multiple traversals. In this figure, we see 
how clone() creates a copy of the iterator. As we advance the original, the clone doesn’t move.

This version of
LinkedListIterator<T>

implements the new
IForwardIterator<T>

interface.



261Efficient reverse and other algorithms using iterators

Re
 we

t
s

        this.node = this.node.next;
    }

    get(): T {
        if (!this.node) throw Error();

        return this.node.value;
    }

    set(value: T): void {   
        if (!this.node) throw Error();

        this.node.value = value;
    }

    equals(other: IForwardIterator<T>): boolean {   
        return this.node == (<LinkedListIterator<T>>other).node;
    }

    clone(): IForwardIterator<T> {   
        return new LinkedListIterator(this.node);
    }
}

Now let’s look at a version of find() that takes a pair of begin and end iterators, and
returns an iterator pointing to the first element satisfying the predicate, shown in the
next listing. With this version, we can update the value when we find it.

function find<T>(
    begin: IForwardIterator<T>, end: IForwardIterator<T>,   
    pred: (value: T) => boolean): IForwardIterator<T> {   
    while (!begin.equals(end)) {    
        if (pred(begin.get())) {
            return begin;    
        }

        begin.increment();    
    }

    return end;    
}

Let’s use a linked list of numbers, the iterator we just implemented to traverse a linked
list, and apply this algorithm to find the first value equal to 42 and replace it with a 0,
as shown in the following code.

let head: LinkedListNode<number> = new LinkedListNode(1);    
head.next = new LinkedListNode(2);
head.next.next = new LinkedListNode(42);

Listing 10.31 find() with forward iterator

ReplacingListing 10.32 42 with 0 in a linked list

set() is an additional method required 
by IWritable<T> that updates the 
value of a linked list node.

equals() now 
expects another 
IForwardIterator<T>.

clone() creates a new 
iterator pointing to the 
same node as this iterator.

begin and end forward
iterators define the sequence.

The function returns 
a forward iterator 
pointing to the 
found element.

peat until
 traverse
he whole
equence.

If we found the element we were 
looking for, return the iterator.

Increment iterator and advance to 
the next element in the sequence.

If we’ve reached the end, we haven’t found 
an element. We return the end iterator.

Create a linked list containing
the sequence 1, 2, 42.



262 CHAPTER 10 Generic algorithms and iterators

 

let begin: IForwardIterator<number> =
    new LinkedListIterator(head);   
let end: IForwardIterator<number> =
    new LinkedListIterator(undefined);    

let iter: IForwardIterator<number> =
    find(begin, end, (value: number) => value == 42);   

if (!iter.equals(end)) {   
    iter.set(0);   
}

Forward iterators are extremely powerful, as they can traverse a sequence any number
of times and also modify it. This feature allows us to implement in-place algorithms
that don’t need to copy over a whole sequence of data to transform it. Finally, let’s
tackle the algorithm with which we started this section: reverse().

10.4.3 An efficient reverse()

As we saw in the array implementation, an in-place reverse() starts from both ends
of the array and swaps elements, incrementing the front index and decrementing the
back index until the two cross.

 We can generalize the array implementation to work with any sequence, but we
need one extra capability on our iterator: the ability to decrement its position. An iter-
ator with this ability is called a bidirectional iterator.

BIDIRECTIONAL ITERATOR A bidirectional iterator has the same capabilities as a
forward iterator; additionally, it can be decremented. In other words, a bidi-
rectional iterator can traverse a sequence both forward and backward (figure
10.6).

Initialize begin and end forward 
iterators for the linked list.

Call find and get an 
iterator to the first 
node with the value 42.

We need to ensure that we found 
a node with value 42; otherwise, 
we are past the end of the list.

If we did, we can 
update its value to 0.

The other iterator
moves to the previous
element.

A bidirectional iterator can
clone() itself and move
in both directions.

One iterator moves
to the next element.

Figure 10.6 A bidirectional iterator can read and write the value of the current element, clone
itself, and step both forward and backward.



263Efficient reverse and other algorithms using iterators

      
  
Let’s define an IBidirectionalIterator<T> interface similar to IForward-
Iterator<T> interface with an additional decrement() method. Note that not all
data structures can support such an iterator, such as our linked list. Because a node
has a reference only to its successor, we cannot move backward to the preceding node.
But we can provide a bidirectional iterator over a doubly linked list, in which a node
holds references to both its successor and its predecessor or an array. Let’s implement
an ArrayIterator<T> as an IBidirectionalIterator<T> in the next listing.

interface IBidirectionalIterator<T> extends 
    IReadable<T>, IWritable<T>, IIncrementable<T> {
    decrement(): void;    
    equals(other: IBidirectionalIterator<T>): boolean;
    clone(): IBidirectionalIterator<T>;
}

Listing 10.33 IBidirectionalIterator<T> and ArrayIterator<T>

IBidirectioanlIterator<T> 
has an extra decrement() 
method compared with 
IForwardIterator<T>.

class ArrayIterator<T> implements IBidirectionalIterator<T> {
private array: T[];
private index: number;

constructor(array: T[], index: number) {
this.array = array;
this.index = index;

}

get(): T {
return this.array[this.index];

}

set(value: T): void {
this.array[this.index] = value;

}

increment(): void {
this.index++;

}

decrement(): void {
this.index--;

}

equals(other: IBidirectionalIterator<T>): boolean {
return this.index == (<ArrayIterator<T>>other).index;

}

clone(): IBidirectionalIterator<T> {
return new ArrayIterator(this.array, this.index);

}
}

Now let’s implement reverse() in terms of a pair of begin and end bidirectional
iterators. We will swap the values, increment begin, decrement end, and stop when



264 CHAPTER 10 Generic algorithms and iterators

           
            
  
  

   
  
  
  
  
the two iterators meet. We must make sure that the two iterators never pass each
other, so as soon as we move one of them, we check whether they met.

function reverse<T>(
    begin: IBidirectionalIterator<T>, end: IBidirectionalIterator<T>
    ): void {
    while (!begin.equals(end)) {    
        end.decrement();  
        if (begin.equals(end)) return;   

        const temp: T = begin.get();   
        begin.set(end.get());    
        end.set(temp);    

        begin.increment();    
    }
}

Let’s try it out on an array of numbers in the following listing.

let array: number[] = [1, 2, 3, 4, 5];

let begin: IBidirectionalIterator<number>
    = new ArrayIterator(array, 0);    
let end: IBidirectionalIterator<number>
    = new ArrayIterator(array, array.length);    

reverse(begin, end);

console.log(array);   

Listing 10.34 reverse() with bidirectional iterator

Reversing an array of numbersListing 10.35

Repeat until begin
and end meet.

Decrement end. Remember that 
end starts at one element past 
the end of the array, so we need 
to decrement it before using it.

Check again that decrementing 
end didn’t get the two iterators 
pointing to the same element.

Swap the values.

Finally, increment start and then repeat.
(The while loop condition checks again

whether the two iterators met.)

Initialize begin over 
the array at index 0.

Initialize end over the 
array at index length (one 
past the last element).

This will log 
[5, 4, 3, 2, 1].

Using bidirectional iterators, we can generalize an efficient, in-place reverse() to
work on any data structure that we can traverse in two directions. We extended the
original algorithm, which was limited to arrays to work with any IBidirectional-
Iterator<T>. We can apply the same algorithm to reverse a doubly linked list and
any other data structure over which we can move an iterator backward and forward.

Note that we can also reverse a singly linked list, of course, but such an algorithm
does not generalize. When we reverse a singly linked list, we alter the structure, as we’re
flipping references to each next element to refer to the previous element instead. Such
an algorithm is tightly coupled to the data structure it operates on and can’t be gener-
alized. By contrast, our generic reverse() that requires a bidirectional iterator works
the same way for any data structure that can provide such an iterator.



265Efficient reverse and other algorithms using iterators
10.4.4 Efficient element retrieval

There are algorithms that require more from their iterators than increment() and
decrement(). A good example is sorting algorithms. An efficient, O(n log n) sort
such as quicksort will have to jump around the data structure that it is sorting, access-
ing elements at arbitrary locations. For this purpose, a bidirectional iterator is not
enough. We need a random-access iterator.

RANDOM-ACCESS ITERATORS A random-access iterator can jump forward and
backward any given number of elements in constant time. Unlike a bidirec-
tional iterator, which can be incremented or decremented one step at a time,
a random-access iterator can move any number of elements (figure 10.7).

Figure 10.7 A random-access iterator can read and write the value of the current 
element, clone itself, and move backward or forward any number of steps.

Arrays are good examples of random-accessible data structures, in which we can index
and quickly retrieve any element. By contrast, with a doubly linked list, we need to tra-
verse through successor or predecessor references to reach an element. A doubly
linked list cannot support a random-access iterator.

 Let’s define an IRandomAccessIterator<T> as an iterator that supports not
only all the capabilities of IBidirectionalIterator<T>, but also a move()
method that moves the iterator n elements. With random access iterators, it’s also use-
ful to tell how far apart two iterators are. We will add a distance() method that
returns the difference between two iterators in the following listing.

Listing 10.36  IRandomAccessIterator<T>

Random-access iterators
can “jump” to any position
in one step.

interface IRandomAccessIterator<T>
extends IReadable<T>, IWritable<T>, IIncrementable<T> {
decrement(): void;



266 CHAPTER 10 Generic algorithms and iterators

           
    
    equals(other: IRandomAccessIterator<T>): boolean;
    clone(): IRandomAccessIterator<T>;
    move(n: number): void;
    distance(other: IRandomAccessIterator<T>): number;
}

Let’s update our ArrayIterator<T> in the next listing to implement IRandom-
AccessIterator<T>.

class ArrayIterator<T> implements IRandomAccessIterator<T> {
    private array: T[];
    private index: number;

    constructor(array: T[], index: number) {
        this.array = array;
        this.index = index;
    }

    get(): T {
        return this.array[this.index];
    }

    set(value: T): void {
        this.array[this.index] = value;
    }

    increment(): void {
        this.index++;
    }

    decrement(): void {
        this.index--;
    }

    equals(other: IRandomAccessIterator<T>): boolean {
        return this.index == (<ArrayIterator<T>>other).index;
    }

    clone(): IRandomAccessIterator<T> {
        return new ArrayIterator(this.array, this.index);
    }

    move(n: number): void {
        this.index += n;   
    }

    distance(other: IRandomAccessIterator<T>): number {    
        return this.index - (<ArrayIterator<T>>other).index;
    }
}

Listing 10.37 ArrayIterator<T> implementing a random-access iterator

move() advances the iterator 
n steps. (n can be negative to 
move backward.)

distance() determines
the distance between

two iterators

Let’s take a very simple algorithm that benefits from a random-access iterator:
elementAt(). This algorithm takes as arguments a begin and end iterator defining



267Efficient reverse and other algorithms using iterators
a sequence and a number n. It will return an iterator to the nth element of the
sequence or the end iterator if n is larger than the length of the sequence.

 We can implement this algorithm with an input iterator, but we would have to
increment the iterator n times to reach the element. That is linear time complexity, or
O(n). With a random-access iterator, we can do this in constant time, or O(1), as
shown in the next listing.

function elementAtRandomAccessIterator<T>(
    begin: IRandomAccessIterator<T>, end: IRandomAccessIterator<T>,
    n: number): IRandomAccessIterator<T> {
    begin.move(n);    

    if (begin.distance(end) <= 0) return end;    

    return begin;    
}

Random-access iterators enable the most efficient algorithms, but fewer data struc-
tures can provide such iterators.

10.4.5 Iterator recap

We’ve looked at the various categories of iterators and how their different capabilities
enable more efficient algorithms. We started with input and output iterators, which
perform a one-pass traversal over a sequence. Input iterators allow us to read values,
whereas output iterators allow us to set values.

 This is all we need for algorithms such as map(), filter(), and reduce(), which
process their input in linear fashion. Most programming languages provide algorithm
libraries for only this type of iterator, including Java and C#, with their Iterable<T>
and IEnumerable<T>.

 Next, we saw that adding the ability to both read and write a value, and to create a
copy of an iterator, enables other useful algorithms that can modify data in place.
These new capabilities were supplied by a forward iterator.

 In some cases, such as the reverse() example, moving only forward through a
sequence is not enough. We need to move both ways. An iterator that can step both
forward and backward is called a bidirectional iterator.

 Finally, some algorithms perform better if they can jump around a sequence and
access items at arbitrary locations without needing to traverse step by step. Sorting
algorithms are good examples; so is the simple elementAt() that we just saw. To sup-
port such algorithms, we introduced the random-access iterator, which can move over
multiple elements in one step.

 These ideas are not new; the C++ standard library provides a set of efficient algo-
rithms that use iterators with similar capabilities. Other languages limit themselves to
a smaller set of algorithms or less-efficient implementations.

Element atListing 10.38

Move begin n 
elements forward.

If it is equal or larger than 
end, n is larger than the 
sequence, so return end.

Otherwise, return an 
iterator to the element.



268 CHAPTER 10 Generic algorithms and iterators

   
   
 
     
  
  
  

 

   

 

 

 

 

            
 
 
  
 

 

 

 

 

 
  
 
 
  
 
   
 
             
 
             

     
 
 

You may have noticed that the iterator-based algorithms were not fluent, as they
took a pair of iterators as input and returned either void or an iterator. C++ is moving
from iterators to ranges. We won’t cover this topic deeply in this book, but at a high
level, a range can be thought of as a pair of begin/end iterators. Updating the algo-
rithms to take ranges as arguments and to return ranges sets the stage for a more flu-
ent API in which we can chain operations on ranges. It is likely that at some point in
the future, range-based algorithms will make their way into other languages. The abil-
ity to run efficient, in-place, generic algorithms over any data structure with a capable-
enough iterator is extremely useful.

10.4.6 Exercises

1 What is the minimum iterator category required to support drop() that skips
the first n elements of a range?

a InputIterator

b ForwardIterator

c BidirectionalIterator

d RandomAccessIterator

2 What is the minimum iterator category required to support a binary search
algorithm (with O(log n))? As a reminder, binary search checks the middle ele-
ment of a range. If it’s larger than the value searched for, it splits the range in
halves and looks at the first half. If not, it looks at the second half of the range
and then repeats. The idea is that the search space is halved at each step, so the
complexity of the algorithm is O(log n).

a InputIterator

b ForwardIterator

c BidirectionalIterator

d RandomAccessIterator

10.5 Adaptive algorithms
The more we ask of an iterator, the fewer the data structures that can supply it. We saw
that we can create a forward iterator over a singly linked list, a doubly linked list, or an
array. If we want a bidirectional iterator, singly linked lists are out of the picture. We
can get a bidirectional iterator over doubly linked lists and arrays but not singly linked
lists. If we want a random-access iterator, we need to drop doubly linked lists.

We want generic algorithms to be as general as possible, and they require the least
capable iterator that is good enough to support the algorithm. But as we just saw, less
efficient versions of an algorithm don’t require that much from their iterators. For
some algorithms, we can provide multiple versions: a less-efficient version that works
with a less-capable iterator and a more-efficient version that works with a more-
capable iterator.

Let’s revisit our elementAt() example. This algorithm will return the nth value in
a sequence or the end of the sequence if n is larger than the length of the sequence. If
we have a forward iterator, we can increment it n times and return the value. This has



269Adaptive algorithms
linear, or O(n) complexity, as we need to perform more steps as n increases. On the
other hand, if we have a random-access iterator, we can retrieve the element in con-
stant, or O(1), time.

 Do we want to provide a more-general, less-efficient algorithm or a more-efficient
algorithm that is limited to fewer data structures? The answer is that we don’t have to
choose: we can provide two versions of the algorithm, and depending on the type of
iterator we get, we can leverage the most-efficient implementation.

 Let’s implement an elementAtForwardIterator() that retrieves the element
in linear time and an elementAtRandomAccessIterator() that retrieves the ele-
ment in constant time, as shown in the following listing.

function elementAtForwardIterator<T>(
    begin: IForwardIterator<T>, end: IForwardIterator<T>,
    n: number): IForwardIterator<T> {
    while (!begin.equals(end) && n > 0) {
        begin.increment();    
        n--;    
    }

    return begin;    
}

function elementAtRandomAccessIterator<T>(    
    begin: IRandomAccessIterator<T>, end: IRandomAccessIterator<T>,
    n: number): IRandomAccessIterator<T> {
    begin.move(n);

    if (begin.distance(end) <= 0) return end;

    return begin;
}

Now we can implement an elementAt() that picks the algorithm to apply based on
the capabilities of the iterators it receives as arguments, as shown in listing 10.40. Note
that TypeScript doesn’t support function overloading, so we need to use a function
that determines the type of the iterator. In other languages, such as C# and Java, we
can simply provide methods that have the same name but take different arguments.

function isRandomAccessIterator<T>(
    iter: IForwardIterator<T>): iter is IRandomAccessIterator<T> {
    return "distance" in iter;    
}

function elementAt<T>(
    begin: IForwardIterator<T>, end: IForwardIterator<T>,

Listing 10.39 elementAt() with input and random-access iterators

AdaptiveListing 10.40 elementAt()

While n is greater than 0 and we haven’t 
reached the end of the sequence, move the 
iterator to the next element and decrement n.

Return begin. This will be either the nth 
element or the end of the sequence.

This is the elementAt()
implementation from

the preceding section.

We consider iter to be a 
random-access iterator if 
it has a distance method.



270 CHAPTER 10 Generic algorithms and iterators
    n: number): IForwardIterator<T> {
    if (isRandomAccessIterator(begin) && isRandomAccessIterator(end)) {
        return elementAtRandomAccessIterator(begin, end, n);    
    } else {
        return elementAtForwardIterator(begin, end, n);    
    }
}

A good algorithm works with what it has; it adapts to a less-capable iterator with a less-
efficient implementation while enabling the most-efficient implementation for more-
capable iterators.

10.5.1 Exercise

1 Implement nthLast(), a function that returns an iterator to the nth-last ele-
ment of a range (or end if the range is too small). If n is 1, we return an iterator
pointing to the last element; if n is 2, we return an iterator pointing to the sec-
ond to last element, and so on. If n is 0, we return the end iterator pointing one
past the last element of the range.

2 Hint: we can implement this with a ForwardIterator with two passes. The
first pass counts the elements of the range. In the second pass, because we know
the size of the range, we know when to stop to be n items from the end.

Summary
 Generic algorithms operate on iterators, so they can be reused across different

data structures.
 Whenever you write a loop, consider whether a library algorithm or a composi-

tion of algorithms can achieve the same result.
 Fluent APIs provide a nice interface for chaining algorithms.
 Type constraints allow algorithms to require certain capabilities from the types

they operate on.
 Input iterators can read values and can be advanced. We read from a stream,

like standard input, with an input iterator. After we read a value, we can’t
reread; we can only move forward.

 Output iterators can be written to and can be advanced. We write to a stream,
like standard output, with an output iterator. After we write a value, we can’t
read it back.

 Forward iterators can read values and be written to, advanced, and cloned. A
linked list is a good example of a data structure that can support a forward iter-
ator. We can move to the next element and hold multiple references to the

If iterators are random-access, we call the
efficient elementAtRandomAccessIterator()

function.

If not, we fall back to the less-efficient
elementAtForwardIterator() function.



271Answers to exercises
current element, but we can’t move to the previous element unless we save a
reference to it when we are initially on it.

 Bidirectional iterators have all the features of forward iterators but can also
move backward. A doubly linked list is an example of a data structure that sup-
ports a bidirectional iterator. We can move to both the next and the previous
element as needed.

 Random-access iterators can freely move to any position in a sequence. An array
is a data structure that supports a random-access iterator. We can jump in one
step to any element.

 Most mainstream languages provide algorithm libraries for input iterators.
 More-capable iterators enable more-efficient algorithms.
 Adaptive algorithms provide multiple implementations: the more capable the

iterators, the more efficient the algorithm.

In chapter 11, we’ll step it up to the next level of abstraction—higher kinded types—
and explain what a monad is and what we can do with it.

Answers to exercises
BETTER MAP(), FILTER(), REDUCE()

1 A possible implementation using reduce() and filter():

function concatenateNonEmpty(iter: Iterable<string>): string {
    return reduce(
        filter(
            iter,
            (value) => value.length > 0),
        "", (str1: string, str2: string) => str1 + str2);
}

2 A possible implementation using map() and filter():

function squareOdds(iter: Iterable<number>): IterableIterator<number> {
    return map(
        filter(
            iter,
            (value) => value % 2 == 1),
        (x) => x * x
        );
}

COMMON ALGORITHMS

1 A possible implementation:

class FluentIterable<T> {
    /* ... */

    take(n: number): FluentIterable<T> {
        return new FluentIterable (this.takeImpl(n));
    }



272 CHAPTER 10 Generic algorithms and iterators
    private *takeImpl(n: number): IterableIterator<T> {
        for (const value of this.iter) {
            if (n-- <= 0) return;

            yield value;
         }
    }
}

2 A possible implementation:

class FluentIterable<T> {
    /* ... */

    drop(n: number): FluentIterable<T> {
        return new FluentIterable(this.dropImpl(n));
    }

    private *dropImpl(n: number): IterableIterator<T> {
        for (const value of this.iter) {
            if (n-- > 0) continue;

            yield value;
        }
    }
}

CONSTRAINING TYPE PARAMETERS

1 A possible solution using a generic type constraint to ensure that T is
IComparable:

function clamp<T extends IComparable<T>>(value: T, low: T, high: T): T {
    if (value.compareTo(low) == ComparisonResult.LessThan) {
        return low;
    }

    if (value.compareTo(high) == ComparisonResult.GreaterThan) {
        return high;
    }

    return value;
}

EFFICIENT REVERSE AND OTHER ALGORITHMS USING ITERATORS

1 a—drop() can be used even on potentially infinite streams of data. Being able
simply to advance is sufficient.

2 d—Binary search needs to be able to jump to the middle of the range at each
step to be efficient. A bidirectional iterator would still have to step element by
element to reach the half of the range, which would not make it O(log n).
(Step by step is O(n) or linear.)



273Answers to exercises
ADAPTIVE ALGORITHMS

1 An adaptive algorithm will decrement from the back if it receives bidirectional
iterators and use the two-pass approach when it receives forward iterators. Here
is a possible implementation:

function nthLastForwardIterator<T>(
    begin: IForwardIterator<T>, end: IForwardIterator<T>, n: number)
    : IForwardIterator<T> {
    let length: number = 0;
    let begin2: IForwardIterator<T> = begin.clone();

    // Determine the length of the range
    while (!begin.equals(end)) {
        begin.increment();
        length++;
    }

    if (length < n) return end;

    let curr: number = 0;

    // Advance until the current element is the nth from the back
    while (!begin2.equals(end) && curr < length - n) {
        begin2.increment();
        curr++;
    }

    return begin2;
}

function nthLastBidirectionalIterator<T>(
    begin: IBidirectionalIterator<T>, end: IBidirectionalIterator<T>, 
n: number)
    : IBidirectionalIterator<T> {
    let curr: IBidirectionalIterator<T> = end.clone();

    while (n > 0 && !curr.equals(begin)) {
        curr.decrement();
        n--;
    }

    // Range is too small if we reached begin before decrementing n 
times 
    if (n > 0) return end;

    return curr; 
}

function isBidirectionalIterator<T>(
    iter: IForwardIterator<T>): iter is IBidirectionalIterator<T> {
    return "decrement" in iter;
}



274 CHAPTER 10 Generic algorithms and iterators
function nthLast<T>(
    begin: IForwardIterator<T>, end: IForwardIterator<T>, n: number)
    : IForwardIterator<T> {
    if (isBidirectionalIterator(begin) && isBidirectionalIterator(end)) 
{
        return nthLastBidirectionalIterator(begin, end, n);
    } else {
        return nthLastForwardIterator(begin, end, n);
    }
}



             
  
 
 
 

   
 
 
 
    
           
Higher kinded types
and beyond
This chapter covers
 Applying map() to various other types

 Encapsulating error propagation

 Understanding monads and their applications

 Finding resources for further study

Throughout the book, we’ve looked at various versions of a very common algo-
rithm, map(), and in chapter 10 we saw how iterators provide an abstraction that
allows us to reuse it across various data structures. In this chapter, we’ll see how we
can extend this algorithm beyond iterators and provide an even more general ver-
sion. This powerful algorithm allows us to mix and match generic types and func-
tions, and can help by providing a uniform way to handle errors.

After we go over a few examples, we’ll provide a definition for this broadly appli-
cable family of functions, known as functors. We’ll also explain what higher kinded
types are and how they help us define such generic functions. We’ll look at the lim-
itations we run into with languages that lack support for higher kinded types.

Next, we’ll look at monads. The term shows up in multiple places, and although
it might sound intimidating, the concept is straightforward. We’ll explain what a
275



276 CHAPTER 11 Higher kinded types and beyond
monad is and go over multiple applications, from better error propagation to asyn-
chronous code and sequence flattening.

 We will wrap up with a section that discusses some of the topics we learned about in
this book and a couple of other kinds of types we did not cover: dependent types and
linear types. We won’t go into details here; rather, we’ll provide a quick summary and
list some resources in case you want to learn more. We recommend several books to
learn more about each of these topics, as well as programming languages that provide
support for some of these features.

An even more general map11.1
In chapter 10, we updated our map() implementation from chapter 5, which worked
only on arrays, to a generic implementation that worked on iterators, shown in listing
11.1. We talked about how iterators abstract data structure traversal, so our new ver-
sion of map() can apply a function to elements in any data structure (figure 11.1).

Figure 11.1 map() takes an iterator over a sequence, in this case a list of circles, and a function that 
transforms a circle. map() applies the function to each element in the sequence and produces a new 
sequence with the transformed elements.

 

function* map<T, U>(iter: Iterable<T>, func: (item: T) => U):
    IterableIterator<U> {
    for (const value of iter) {
        yield func(value);
    }
}

This implementation works on iterators, but we should be able to apply a function of
the form (item: T) => U to other types too. Let’s take, as an example, the
Optional<T> type we defined in chapter 3, shown in the next listing.

GenericListing 11.1 map()

map

Sequence of

Sequence of

Function from to



277An even more general map
 

class Optional<T> {
    private value: T | undefined;
    private assigned: boolean;

    constructor(value?: T) {
        if (value) {
            this.value = value;
            this.assigned = true;
        } else {
            this.value = undefined;
            this.assigned = false;
        }
    }

    hasValue(): boolean {
        return this.assigned;
    }

    getValue(): T {
        if (!this.assigned) throw Error();

        return <T>this.value;
    }
}

It feels natural to be able to map a function (value: T) => U over an Optional<T>.
If the optional contains a value of type T, mapping the function over it should return
an Optional<U> containing the result of applying the function. On the other hand,
if the optional doesn’t contain a value, mapping would result in an empty
Optional<U> (figure 11.2).

Figure 11.2 Mapping a function over an optional value. If the optional is empty, 
map() returns an empty optional; otherwise, it applies the function to the value and 
returns an optional containing the result.

Optional typeListing 11.2

map

| undefined

| undefinedOptional

Function from to

Optional



278 CHAPTER 11 Higher kinded types and beyond
Let’s sketch out an implementation. We’ll put this function in a namespace. Because
TypeScript doesn’t support function overloading, to have multiple functions with the
same name, we need to put them in different namespaces so the compiler can deter-
mine the function we are calling.

namespace Optional {
    export function map<T, U>(   
        optional: Optional<T>, func: (value: T) => U): Optional<U> {
        if (optional.hasValue()) {
            return new Optional<U>(func(optional.getValue()));   
        } else {
            return new Optional<U>();  
        }
    }
}

We can do something very similar with the TypeScript sum type T or undefined.
Remember, Optional<T> is a DIY version of such a type that works even in languages
that don’t support sum types natively, but TypeScript does. Let’s see how we can map
over a “native” optional type T | undefined.

 Mapping a function (value: T) => U over T | undefined should apply the func-
tion and return its result if we have a value of type T, or return undefined if we start
with undefined.

namespace SumType {
    export function map<T, U>(
        value: T | undefined, func: (value: T) => U): U | undefined {
        if (value == undefined) {
            return undefined;
        } else {
            return func(value);
        }
    }
}

These types can’t be iterated over, but it still makes sense for a map() function to exist
for them. Let’s define another simple generic type, Box<T>, shown in the following
listing. This type simply wraps a value of type T. 

class Box<T> {
    value: T;    

OptionalListing 11.3 map()

Sum typeListing 11.4 map()

Box typeListing 11.5

export simply makes the function
visible outside the namespace.

If the optional has a value,
we extract it, pass it to

func(), and use its result to
initialize an Optional<U>.If the optional is empty, we create

a new empty Optional<U>.

Box<T> simply wraps 
a value of type T.



279An even more general map
    constructor(value: T) {
        this.value = value;
    }
}

Can we map a function (value: T) => U over this type? We can. As you might have
guessed, map() for Box<T> would return a Box<U>: it will take the value T out of
Box<T>, apply the function to it, and put the result back into a Box<U>, as shown in
figure 11.3 and listing 11.6..

namespace Box {
    export function map<T, U>(
        box: Box<T>, func: (value: T) => U): Box<U> {
        return new Box<U>(func(box.value));   
    }
}

We can map functions over many generic types. Why is this capability useful? It’s use-
ful because map(), like iterators, provides another way to decouple types that store
data from functions that operate on that data.

11.1.1 Processing results or propagating errors

As a concrete example, let’s take a couple of functions that process a numerical value.
We’ll implement a simple square(), a function that takes a number as an argument
and returns its square. We’ll also implement stringify(), a function that takes a num-
ber as an argument and returns its string representation, as shown in the next listing. 

Listing 11.6  Box map()

Listing 11.7 square() and stringify()

map

In a Box

In a Box

Function from to

Figure 11.3 Mapping a function 
over a value in a Box. map() 
unpacks the value from the Box, 
applies the function, and then 
places the value back into a Box.

map() over Box<T> extracts the 
values, calls func() on it, and puts 
the result into a Box<U>.

function square(value: number): number {
return value ** 2;

}



280 CHAPTER 11 Higher kinded types and beyond
function stringify(value: number): string {
    return value.toString();
}

Now let’s say that we have a readNumber() function, which reads a numeric value
from a file, as shown in listing 11.8. Because we are dealing with input, we might run
into some problems. What if the file doesn’t exist or can’t be opened, for example? In
that case, readNumber() will return undefined. We won’t look at the implementa-
tion of this function; the important thing for our example is its return type.

function readNumber(): number | undefined {
    /* Implementation omitted */
}

If we want to read a number and process it by applying square() to it first and then
stringify(), we need to ensure that we actually have a numerical value as opposed
to undefined. A possible implementation is to convert from number | undefined to
number, using if statements wherever needed, as the next listing shows.

function process(): string | undefined {
    let value: number | undefined = readNumber();

    if (value == undefined) return undefined;  

    return stringify(square(value));   
}

We have two functions that operate on numbers, but because our input can also be
undefined, we need to handle that case explicitly. This is not particularly bad, but in
general, the less branching our code has, the less complex it is. It is easier to under-
stand and to maintain, and there are fewer opportunities for bugs. Another way to
look at this is that process() itself simply propagates undefined; it doesn’t do any-
thing useful with it. It would be better if we could keep process() responsible for
processing and let someone else handle error cases. How can we do this? With the
map() we implemented for sum types, as shown in the following listing.

namespace SumType {
    export function map<T, U>(  
        value: T | undefined, func: (value: T) => U): U | undefined {
        if (value == undefined) {
            return undefined;

Listing 11.8 readNumber() return type

Processing a numberListing 11.9

Processing withListing 11.10 map()

We need to check whether value 
is undefined. In that case, we 
immediately return undefined.

We process the value
and return the result.

This is the map() for sum types we
implemented in listing 11.4.



281An even more general map

, 
        } else {
            return func(value);
        }
    }
}

function process(): string | undefined {
    let value: number | undefined = readNumber();
    

    let squaredValue: number | undefined =
        SumType.map(value, square);  

    return SumType.map(squaredValue, stringify);    
}

Now our process() implementation has no branching. The responsibility for
unpacking number | undefined into a number and checking for undefined is han-
dled by map(). map() is generic and can be used across many other types (such as
string | undefined) and in many other processing functions.

 In our case, because square() is guaranteed to return a number, we can create a
small lambda that chains square() and stringify(), and pass that to map() in the
next listing.

function process(): string | undefined {
    let value: number | undefined = readNumber();

    return SumType.map(value,
        (value: number) => stringify(square(value)));    
}

This implementation is a functional implementation of process(), in that the error
propagation is delegated to map(). We’ll talk more about error handling in section
11.2, which discusses monads. For now, let’s look at another application of map().

11.1.2 Mix-and-match function application

Without the map() family of functions, if we have a square() function that squares a
number, we would have to implement some additional logic to get a number from a
number | undefined sum type. Similarly, we would have to implement some addi-
tional logic to get a value from a Box<number> and package it back in a Box<number>,
as the following listing shows.

function squareSumType(value: number | undefined)   
    : number | undefined {
    if (value == undefined) return undefined;

Processing with lambdaListing 11.11

Unpacking values forListing 11.12 square()

Instead of explicitly checking for 
undefined, we call map() to apply 
square() on the value. If it is undefined
map() will give us back undefined.

Just as with square(), we map() 
our stringify() function on the 
squaredValue. If it is undefined, 
map() will return undefined.

Lambda that passes 
the result of square() 
to stringify()

This function wraps 
the undefined check.



282 CHAPTER 11 Higher kinded types and beyond

 

    return square(value);
}

function squareBox(box: Box<number>): Box<number> {    
    return new Box(square(box.value));
}

So far, this isn’t too bad. But what if we want something similar with stringify()?
Again, we’ll end up writing two functions that look a lot like the previous ones, as
shown in the following code.

function stringifySumType(value: number | undefined)
    : string | undefined {
    if (value == undefined) return undefined;

    return stringify(value);
}

function stringifyBox(box: Box<number>): Box<string> {
    return new Box(stringify(box.value))
}

This starts to look like duplicate code, which is never good. If we have map() func-
tions available for number | undefined and Box, they provide the abstraction to
remove the duplicate code. We can pass either square() or stringify() to either
SumType.map() or to Box.map() in the next listing; no additional code is needed.

let x: number | undefined = 1;
let y: Box<number> = new Box(42);

console.log(SumType.map(x, stringify));
console.log(Box.map(y, stringify));

console.log(SumType.map(x, square));
console.log(Box.map(y, square));

Now let’s define this family of map() functions.

11.1.3 Functors and higher kinded types

What we talked about in the preceding section are functors.

FUNCTORS A functor is a generalization of functions that perform mapping
operations. For any generic type like Box<T>, a map() operation that takes a
Box<T> and a function from T to U and produces a Box<U> is a functor
(figure 11.4).

Unpacking values forListing 11.13 stringify()

UsingListing 11.14 map()

This function unpacks the 
value from Box and then puts
the result into another Box.



283An even more general map
Figure 11.4 We have a generic type H that contains 0, 1, or more values of some type 
T and a function from T to U. In this case, T is an empty circle, and U is a full circle. 
The map() functor unpacks the T or Ts from the H<T> instance, applies the function, 
and then places the result back into an H<U>.

Functors are extremely powerful concepts, but most mainstream languages do not
have a good way to express them because the general definition of a functor relies on
higher kinded types.

HIGHER KINDED TYPES A generic type is a type that has a type parameter, such
as a generic type T, or a type like Box<T> that has a type parameter T. A higher
kinded type, just like a higher-order function, represents a type parameter with
another type parameter. T<U> or Box<T<U>>, for example, have a type
parameter T that in turn has a type parameter U.

Type constructors
In type systems, we can consider a type constructor to be a function that returns a
type. This is not something that we would implement ourselves; this is how the type
system looks at types internally.

Every type has a constructor. Some constructors are trivial. The constructor for the
type number can be thought of as a function that takes no arguments and returns
the type number. This would be () -> [number type].

Even a function, such as square(), that has the type (value: number) => num-
ber still has a type constructor with no arguments () -> [(value: number) =>
number type] because even though the function takes an argument, its type
doesn’t; it’s always the same.

Things get more interesting when we get to generics. A generic type, such as T[],
does need an actual type parameter to produce a concrete type. Its type constructor
is (T) -> [T[] type]. When T is number, for example, we get an array of numbers
number[] as our type, but when T is string, we get an array of strings type
string[]. Such a constructor is also called a kind—that is, the kind of types T[].

map

A generic type H< >

A generic type H< >

Function from to



284 CHAPTER 11 Higher kinded types and beyond
Because we don’t have a good way to express higher kinded types in TypeScript, C#, or
Java, we can’t define a construct by using the type system to express a functor. Lan-
guages such as Haskell and Idris, which have more powerful type systems, make these
definitions possible. In our case, though, because we can’t enforce this capability
through the type system, we can think of it as more of a pattern.

 We can say that a functor is any type H with a type parameter T (H<T>) for which
we have a function map() that takes an argument of type H<T> and a function from T
to U, and returns a value of type H<U>.

 Alternatively, if we want to be more object-oriented, we can make map() a member
function and say that H<T> is a functor if it has a method map() that takes a function
from T to U and returns a value of type H<U>. To see exactly where the type system is
lacking, we can try to sketch out an interface for it. Let’s call this interface Functor
and have it declare map() in the next listing.

interface Functor<T> {
    map<U>(func: (value: T) => U): Functor<U>;
}

We can update Box<T> to implement this interface in the following listing.

class Box<T> implements Functor<T> {
    value: T;

(continued)
Higher kinded types, like higher-order functions, take things one level up. In this case,
our type constructor can take another type constructor as an argument. Let’s take
the type T<U>[], which is an array of some type T that also has a type argument U.
Our first type constructor takes a U and produces a T<U>. We need to pass this to a
second type constructor that produces T<U>[] from it ((U) -> [T<U> type]) ->
[T<U>[] type].

Just as higher-order functions are functions that take other functions as argument,
higher kinded types are kinds (parameterized type constructors) that take other kinds
as arguments.

In theory, we can go any number of levels deep to something like T<U<V<W>>>, but
in practice, things become less useful after the first T<U> level.

Sketch ofListing 11.15 Functor interface

Box implementing the interfaceListing 11.16



285An even more general map
    constructor(value: T) {
        this.value = value;
    }

    map<U>(func: (value: T) => U): Box<U> {
        return new Box(func(this.value));
    }
}

This code compiles; the only problem is that it isn’t specific enough. Calling map() on
Box<T> returns an instance of type Box<U>. But if we work with Functor interfaces,
we see that the map() declaration specifies that it returns a Functor<U>, not a
Box<U>. This isn’t specific enough. We need a way to specify, when we declare the
interface, exactly what the return type of map() will be (in this case, Box<U>).

 We would like to be able to say, “This interface will be implemented by a type H
with a type argument T.” The following code shows how this declaration would look
like if TypeScript supported higher kinded types. It obviously doesn’t compile.

interface Functor<H<T>> {
    map<U>(func: (value: T) => U): H<U>;
}

class Box<T> implements Functor<Box<T>> {
    value: T;

    constructor(value: T) {
        this.value = value;
    }

    map<U>(func: (value: T) => U): Box<U> {
        return new Box(func(this.value));
    }
}

Lacking this, let’s just think of our map() implementations as a pattern for applying
functions to generic types or values in some box.

11.1.4 Functors for functions

Note that we also have functors over functions. Given a function with any number of
arguments that returns a value of type T, we can map a function that takes a T and pro-
duces a U over it, ending up with a function that takes the same inputs as the original
function and returns a value of type U. map() in this case is simply function composi-
tion as shown in figure 11.5.

Listing 11.17 Functor interface



286 CHAPTER 11 Higher kinded types and beyond

 

Figure 11.5 Mapping a function over another function composes the two functions. 
The result is a function that takes the same arguments as the original function and 
returns a value of the second function’s return type. The two functions need to be 
compatible; the second function must expect an argument of the same type as the one 
returned by the original function.

As an example, let’s take a function that takes two arguments of type T and produces a
value of type T, and implement its corresponding map() in the next listing. This
returns a function that takes two arguments of type T and returns a value of type U.

namespace Function {
    export function map<T, U>(
        f: (arg1: T, arg2: T) => T, func: (value: T) => U)    
        : (arg1: T, arg2: T) => U {   
        return (arg1: T, arg2: T) => func(f(arg1, arg2)); 
    }
}

Let’s map stringify() over an add() function that takes two numbers and returns
their sum. The result is a function that takes two numbers and returns a string—the
stringified result of adding the two numbers, as shown in the following listing.

function add(x: number, y: number): number {    
    return x + y;
}

function stringify(value: number): string {    
    return value.toString();
}

FunctionListing 11.18 map()

ApplyingListing 11.19 map() over a function

map

Function from to

Function from to

Function from to

map() takes a function (T, T) => T,
and a function T => U to map over it.

map() returns 
a function 
(T, T) => U.

The implementation simply returns
a lambda that composes func() and f()

by calling func() on the result of f().

add() simply sums 
its arguments.

stringify() has the same 
implementation as before.

We map the stringify() function over add(). Then
we call the returned functions with the

arguments 40 and 2. The result is the string "42".

const result: string = Function.map(add, stringify)(40, 2);



287Monads
After functors, we’ll cover one final construct: the monad.

11.1.5 Exercise

1 We have an interface IReader<T> that defines a single method, read(): T.
Implement a functor that maps a function (value: T) => U over an
IReader<T> and returns an IReader<U>.

11.2 Monads
You have probably heard the term monad, as it’s been getting a lot of attention lately.
Monads are making their way into mainstream programming, so you should know one
when you see it. Building on top of section 11.1, in this section we will explain what a
monad is and how it is useful. We’ll start with a few examples and then look at the gen-
eral definition.

11.2.1 Result or error

In section 11.1, we had a readNumber() function that returned number | unde-
fined. We used functors to sequence processing with square() and stringify(),
so that if readNumber() returns undefined, no processing happens, and the unde-
fined is propagated through the pipeline.

 This type of sequencing works with functors as long as only the first function—in this
case, readNumber()—can return an error. But what happens if any of the functions we
want to chain can error out? Let’s say that we want to open a file, read its content as a
string, and  then deserialize that string into a Cat object, as shown in listing 11.20.

 We have an openFile() function that returns an Error or a FileHandle. Errors
can occur if the file doesn’t exist, if it is locked by another process, or if the user doesn’t
have permission to open it. If the operation succeeds, we get back a handle to the file.

 We have a readFile() function that takes a FileHandle and returns either an
Error or a string. Errors can occur if the file can’t be read, perhaps due to being
too large to fit in memory. If the file can be read, we get back a string.

 Finally, deserializeCat() function takes a string and returns an Error or a Cat
instance. Errors can occur if the string can’t be deserialized into a Cat object, perhaps
due to missing properties.

 All these functions follow the “return result or error” pattern from chapter 3,
which suggests returning either a valid result or an error from a function, but not
both. The return type will be an Either<Error, ...>.

Functions returning result or errorListing 11.20

openFile() returns an
Error or a FileHandle.

readFile() returns 
an Error or a string.

declare function openFile(path: string): Either<Error, FileHandle>;

declare function readFile(handle: FileHandle): Either<Error, string>;



288 CHAPTER 11 Higher kinded types and beyond
declare function deserializeCat(
    serializedCat: string): Either<Error, Cat>;   

We are omitting the implementations, as they are not important. Let’s also quickly
review the implementation of Either from chapter 3 in the next listing.

class Either<TLeft, TRight> {
    private readonly value: TLeft | TRight;    
    private readonly left: boolean;    

    private constructor(value: TLeft | TRight, left: boolean) {   
        this.value = value;
        this.left = left;
    }

    isLeft(): boolean {
        return this.left;
    }

    getLeft(): TLeft {   
        if (!this.isLeft()) throw new Error();

        return <TLeft>this.value;
    }

    isRight(): boolean {
        return !this.left;
    }

    getRight(): TRight {    
        if (this.isRight()) throw new Error();

        return <TRight>this.value;
    }

    static makeLeft<TLeft, TRight>(value: TLeft) {   
        return new Either<TLeft, TRight>(value, true);
    }

    static makeRight<TLeft, TRight>(value: TRight) {  
        return new Either<TLeft, TRight>(value, false);
    }
}

Now let’s see in the next listing how we could chain these functions together into a
readCatFromFile() function that takes a file path as an argument and returns a
Cat instance, or an Error if anything went wrong along the way.

 

Listing 11.21 Either type

deserializeCat() returns 
an Error or a Cat.

The type wraps a value of either 
TLeft or TRight and a flag to 
keep track of that type is used.

Private constructor, as we need
to make sure that the value and

boolean flag are in sync

Attempting to get a TLeft 
when we have a TRight, or 
vice versa, throws an error.

Factory functions call the 
constructor and ensure 
that the boolean flag is 
consistent with the value.



If
File

attem
t

289Monads

 

function readCatFromFile(path: string): Either<Error, Cat> {   
    let handle: Either<Error, FileHandle> = openFile(path);    

    if (handle.isLeft()) return Either.makeLeft(handle.getLeft());   

    let content: Either<Error, string> = readFile(handle.getRight());   

    if (content.isLeft()) return Either.makeLeft(content.getLeft());    

    return deserializeCat(content.getRight());    
}

This function is very similar to the first implementation of process() earlier in this
chapter. There, we provided an updated implementation that removed all the branch-
ing and error checking from the function and delegated those tasks to map(). Let’s
see what a map() for Either<TLeft, TRight> would look like in listing 11.23. We
will follow the convention “Right is right; left is error,” which means that TLeft con-
tains an error, so map() will just propagate it. map() will apply a given function only if
the Either contains a TRight.

namespace Either {
    export function map<TLeft, TRight, URight>(
        value: Either<TLeft, TRight>, 
        func: (value: TRight) => URight): Either<TLeft, URight> {   
        if (value.isLeft()) return Either.makeLeft(value.getLeft());   

        return Either.makeRight(func(value.getRight()));    
    }
}

Processing and explicitly checking for errorsListing 11.22

Listing 11.23  Either map()

readCatFromFile() 
returns either an Error 
or a Cat instance.

First, we attempt to open
the file. We get back either

an Error or a FileHandle.

If we have an Error,
we return early. We call

Either.makeLeft(), as
we need to convert from

Either<Error, FileHandle>
to Either<Error, Cat>.

We unpack the Error from
Either<Error, FileHandle>

and pack it back into an
Either<Error, Cat>.

 we have a
Handle, we
pt to read
he content
of the file.

Similarly, we return early 
if we encountered an 
error reading the file.

Finally, if we have the content, we
call deserializeCat(). Because this

function has the same return
type as readCatFromFile(), we

simply return its result.

func() is only applied if the input Either 
contains a value of type TRight, so its 
argument must be of type TRight.

If the input contains a TLeft, we
unpack it from Either<TLeft,

TRight> and repack it into
Either<TLeft, URight>.

If the input contains a TRight, we unpack it,
apply func() to it, and pack the result it into an

Either<TLeft, URight>.



290 CHAPTER 11 Higher kinded types and beyond

 
   
  
There is a problem with using map(), though: the types of the functions it expects as
arguments are incompatible with the functions we are using. With map(), after we call
openFile() and get back an Either<Error, FileHandle>, we would need a func-
tion (value: FileHandle) => string to read its content. That function can’t itself
return an Error, like square() or stringify(). But in our case, readFile() can
fail, so it doesn’t return string; it returns Either<Error, string>. If we attempt
to use it in our readCatFromFile(), we get a compilation error, as the next listing
shows.

function readCatFromFile(path: string): Either<Error, Cat> {
    let handle: Either<Error, FileHandle> = openFile(path);

    let content: Either<Error, string> = Either.map(handle, readFile);   

    /* ... */
}

The error message we get is

Type 'Either<Error, Either<Error, string>>' is not
assignable to type 'Either<Error, string>'.

Our functor falls short here. Functors can propagate an initial error through the pro-
cessing pipeline, but if every step in the pipeline can fail, functors no longer work. In
figure 11.6, the black square represents an Error, and the white and black circles rep-
resent two types, such as FileHandle and string.

Incompatible typesListing 11.24

This fails to compile due
to a type mismatch.

Either< , >

?

Either< , >

Either< , >

We can’t use map() here.
We defined it to need a
function from to .

Function from
,to Either< >

Figure 11.6  We can’t use a functor in this case because the functor is defined to map
a function from a white circle to a black circle. Unfortunately, our function returns a type
already wrapped in an Either (an Either<black square, black circle>). We
need an alternative to map() that can deal with this type of function.



291Monads

 

       
   
  

 

  
    
 
        
map() from Either<Error, FileHandle> would need a function from File-
Handle to string to produce an Either<Error, string>. Our readFile() func-
tion, on the other hand, is from FileHandle to Either<Error, string>.

 This problem is easy to fix. We need a function similar to map() that goes from T
to Either<Error, U>, as shown in the next listing. The standard name for such a
function is bind().

namespace Either {
    export function bind<TLeft, TRight, URight>(
        value: Either<TLeft, TRight>,
        func: (value: TRight) => Either<TLeft, URight>   
        ): Either<TLeft, URight> {
        if (value.isLeft()) return Either.makeLeft(value.getLeft());

        return func(value.getRight());    
    }
}

As we can see, the implementation is even simpler than the one for map(): after we
unpack the value, we simply return the result of applying func() to it. Let’s use
bind() to implement our readCatFromFile() function in the next listing and get
the desired branchless error propagation behavior.

function readCatFromFile(path: string): Either<Error, Cat> {
    let handle: Either<Error, FileHandle> = openFile(path)

    let content: Either<Error, string> =
        Either.bind(handle, readFile);   

    return Either.bind(content, deserializeCat);   
}

Listing 11.25  Either bind()

BranchlessListing 11.26 readCatFromFile()

func() has a different type
from the func() in map().

We can simply return the result 
of func(), as it has the same 
type as the result of bind().

Unlike map(), this code works. 
Applying readFile() to handle gives 
us back an Either<Error, string>.

deserializeCat() has 
the same return type as 
readCatFromFile(), so we simply 
return the result of bind().

This version seamlessly chains together openFile(), readFile(), and
deserializeCat() so that if any of the functions fails, the error gets propagated as
the result of readCatFromFile(). Again, branching is encapsulated in the bind()

implementation, so our processing function is linear.

11.2.2 Difference between map() and bind()

Before moving on to define monads, let’s take another simplified example and contrast
map() and bind(). We’ll again use Box<T>, a generic type that simply wraps a value of
type T. Although this type is not particularly useful, it is the simplest generic type we can
have. We want to focus on how map() and bind() work with values of types T and U in



292 CHAPTER 11 Higher kinded types and beyond

 

some generic context, such as Box<T>, Box<U> (or T[], U[]; or Optional<T>,
Optional<U>; or Either<Error, T>, Either<Error, U>, and so on).

 For a Box<T>, a functor (map()) takes a Box<T> and a function from T to U and
returns a Box<U>. The problem is that we have scenarios in which our functions are
directly from T to Box<U>. This is what bind() is for. bind() takes a Box<T> and a
function from T to Box<U> and returns the result of applying the function to the T
inside Box<T> (figure 11.7).

Figure 11.7 Contrasting map() and bind(). map() applies a function 
T => U over a Box<T> and returns a Box<U>. bind() applies a function 
T => Box<U> over a Box<T> and returns a Box<U>.

If we have a function stringify() that takes a number and returns its string repre-
sentation, we can map() it on a Box<number> and get back a Box<string>, as shown
in the following listing.

namespace Box {
    export function map<T, U>(    
        box: Box<T>, func: (value: T) => U): Box<U> {

Listing 11.27 map() on Box 

map

In a Box

In a Box

bind

In a Box

In a Box

Function from to

Function from to

map() implementation for Box
from earlier in this chapter.



293Monads

 

.

        return new Box<U>(func(box.value));
    }
}

function stringify(value: number): string {   
    return value.toString();
}

const s: Box<string> = Box.map(new Box(42), stringify);    

If instead of stringify(), which goes from number to string, we have a boxify()
function that goes from number directly to Box<string>, map() won’t work. We’ll
need bind() instead, as shown in the next listing..

namespace Box {
    export function bind<T, U>(
        box: Box<T>, func: (value: T) => Box<U>): Box<U> {    
        return func(box.value);    
    }
}

function boxify(value: number): Box<string> {    
    return new Box(value.toString());
}

const b: Box<string> = Box.bind(new Box(42), boxify);    

The result of both map() and bind() is still a Box<string>. We still go from
Box<T> to Box<U>; the difference is how we get there. In the map() case, we need a
function from T to U. In the bind() case, we need a function from T to Box<U>.

11.2.3 The monad pattern

A monad consists of bind() and one more, simpler function. This other function
takes a type T and wraps it into the generic type, such as Box<T>, T[], Optional<T>,
or Either<Error, T>. This function is usually called return() or unit().

 A monad allows structuring programs generically while encapsulating away boiler-
plate code needed by the program logic. With monads, a sequence of function calls
can be expressed as a pipeline that abstracts away data management, control flow, or
side effects.

 Let’s look at a few examples of monads. We can start with our simple Box<T> type
and add unit() to it in the next listing to complete the monad.

namespace Box {
    export function unit<T>(value: T): Box<T> {   
        return new Box(value);
    }

Listing 11.28 bind() on Box

Listing 11.29 Box monad

stringify() implementation from 
earlier in this chapter takes a 
number and returns a string.

We can map stringify() 
on a Box<number> and
get back a Box<string>.

bind() unpacks the value from
Box and calls func() on it.

boxify() differs from stringify() in 
that it returns a Box<string> 
instead of a string.

We can bind boxify() 
on a Box<number> and 
get back a Box<string>.

unit() simply calls Box’s 
constructor to wrap the given 
value into an instance of Box<T>



294 CHAPTER 11 Higher kinded types and beyond

 
                

   
     
              
    

 
   
 

 

 

 
   
   
  
    export function bind<T, U>(
        box: Box<T>, func: (value: T) => Box<U>): Box<U> {   
        return func(box.value);    
    }
}

The implementation is very straightforward. Let’s look at the Optional<T> monad
functions in the following listing.

namespace Optional {
    export function unit<T>(value: T): Optional<T> {   
        return new Optional(value);
    }

    export function bind<T, U>(
        optional: Optional<T>,
        func: (value: T) => Optional<U>): Optional<U> {
        if (!optional.hasValue()) return new Optional();    

        return func(optional.getValue());   
    }
}

Optional monadListing 11.30

bind() unpacks the 
value from Box and 
calls func() on it.

unit() takes a value of 
type T and wraps it into 
an Optional<T>.

If the optional is empty, bind()
returns an empty optional of

type Optional<U>.If the optional contains a
value, bind() returns the

result of calling func() on it.

Very much as with functors, if a programming language can’t express higher kinded
types, we don’t have a good way to specify a Monad interface. Instead, let’s think of
monads as a pattern.

MONAD PATTERN A monad is a generic type H<T> for which we have a func-
tion like unit() that takes a value of type T and returns a value of type H<T>,
and a function like bind() that takes a value of type H<T> and a function
from T to H<U>, and returns a value of type H<U>.

Bear in mind that because most languages use this pattern, without a way to specify an
interface for the compiler to check, in many instances the two functions, unit() and
bind(), may show up under different names. You may hear the term monadic, as in
monadic error handling, which means that error handling follows the monad pattern.

Next, we’ll look at another example. You may be surprised to see that this example
showed up much earlier in this book, in chapter 6; we just didn’t have a name for it yet.

11.2.4 The continuation monad

In chapter 6, we looked at ways to simplify asynchronous code. We ended up looking
at promises. A promise represents the result of a computation that will happen some-
time in the future. Promise<T> is the promise of a value of type T. We can schedule
execution of asynchronous code by chaining promises, using the then() function.



295Monads
 Let’s say we have a function that determines our location on the map. Because this
function will work with the GPS, it may take longer to finish, so we make it asynchro-
nous. It will return a promise of type Promise<Location>. Next, we have a function
that, given a location, will contact a ride-sharing service to get us a Car, as the next list-
ing shows.

declare function getLocation(): Promise<Location>;
declare function hailRideshare(location: Location): Promise<Car>;

let car: Promise<Car> = getLocation().then(hailRideshare);    

This should look very familiar to you at this point. then() is just how Promise<T>
spells bind()!

 As we saw in chapter 6, we can also create an instantly resolved promise by using
Promise.resolve(). This takes a value and returns a resolved promise containing
that value, which is the Promise<T> equivalent of unit().

 It turns out that chaining promises, an API available in virtually all mainstream
programming languages, is monadic. It follows the same pattern that we saw in this
section, but in a different domain. While dealing with error propagation, our monad
encapsulated checking whether we have a value that we can continue operating on or
have an error that we should propagate. With promises, the monad encapsulates the
intricacies of scheduling and resuming execution. The pattern is the same, though.

11.2.5 The list monad

Another commonly used monad is the list monad. Let’s look at an implementation
over sequences: a divisors() function that takes a number n and returns an array
containing all of its divisors except 1 and n itself, as shown in listing 11.32.

 This straightforward implementation starts from 2 and goes up to half of n, and
adds all numbers it finds that divide n without a remainder. There are more efficient
ways to find all divisors of a number, but we’ll stick to a simple algorithm in this case.

Chaining promisesListing 11.31

DivisorsListing 11.32

When getLocation() returns, hailRideshare()
will be invoked with its result.

function divisors(n: number): number[] {
let result: number[] = [];

for (let i = 2; i <= n / 2; i++) {
if (n % i == 0) {

result.push(i);
}

}

return result;
}



296 CHAPTER 11 Higher kinded types and beyond
Now let’s say we want to take an array of numbers and return an array containing all
their divisors. We don’t need to worry about dupes. One way to do this is to provide a
function that takes an array of input numbers, applies divisors() to each of them,
and joins the results of all the calls to divisors() into a final result, as shown in the
following code.

function allDivisors(ns: number[]): number[] {
    let result: number[] = [];

    for (const n of ns) {
        result = result.concat(divisors(n));
    }

    return result;
}

It turns out that this pattern is common. Let’s say that we have another function, ana-
grams(), that generates all permutations of a string and returns an array of strings. If
we want to get the set of all anagrams of an array of strings, we would end up imple-
menting a very similar function, as the next listing shows.

declare function anagram(input: string): string[];    

function allAnagrams(inputs: string[]): string[] {   
    let result: string[] = [];

    for (const input of inputs) {
        result = result.concat(anagram(input));
    }

    return result;
}

Now let’s see whether we can replace allDivisors() and allAnagrams() with a
generic function in the next listing. This function would take an array of Ts and a
function from T to an array of Us, and return an array of Us.

function bind<T, U>(inputs: T[], func: (value: T) => U[]): U[] {    
    let result: U[] = [];

    for (const input of inputs) {
        result = result.concat(func(input));  
    }

    return result;

All divisorsListing 11.33

All anagramsListing 11.34

ListListing 11.35 bind()

anagram() implementation 
omitted

allAnagrams() is very 
similar to allDivisors().

bind() takes an array of Ts, a function
that returns an array of Us given a T,

and returns an array of Us.

We apply func() to each input 
T and concatenate the results.

}



297Monads

 

function allDivisors(ns: number[]): number[] {    
    return bind(ns, divisors);
}

function allAnagrams(inputs: string[]): string[] {   
    return bind(inputs, anagram);
}

As you’ve probably guessed, this is the bind() implementation for the list monad. In
the case of lists, bind() flattens the arrays returned by each call of the given function
into a single array. While the error-propagating monad decides whether to propagate
an error or apply a function and the continuation monad wraps scheduling, the list
monad combines a set of results (a list of lists) into a single flat list. In this case, the
box is a sequence of values (figure 11.8).

Figure 11.8 List monad: bind() takes a sequence of Ts (white circles, in this case) and a function 
T => sequence of Us (black circles, in this case). The result is a flattened list of Us (black circles).

The unit() implementation is trivial. Given a value of type T, it returns a list contain-
ing just that value. This monad generalizes to all kinds of lists: arrays, linked lists, and
iterator ranges.

Category theory
Functors and monads come from category theory, a branch of mathematics that
deals with structures consisting of objects and arrows between these objects. With
these small building blocks, we can build up structures such as functors and
monads. We won’t go into its details now; we’ll just say that multiple domains, like
set theory and even type systems, can be expressed in category theory.

Haskell is a programming language that took a lot of inspiration from category theory,
so its syntax and standard library make it easy to express concepts such as functors,
monads, and other structures. Haskell fully supports higher kinded types.

allDivisors() can be expressed 
by binding divisors() to an 
array of numbers.

allAnagrams() can be expressed
by binding anagram() to an 
array of strings.

bind

Sequence of

Flattened sequence

Function from
sequence of

to



298 CHAPTER 11 Higher kinded types and beyond

 

   
 
  
 

   
 
             
 
 
    
  
 
          

 

      
    
    

 
 
             
 
  

 

 
 

  

(continued)
Perhaps because the building blocks of category theory are so simple, the abstrac-
tions we’ve been talking about are applicable across so many domains. We just saw
that monads are useful in the context of error propagation, asynchronous code, and
sequence processing.

Although most mainstream languages still treat monads as patterns instead of
proper constructs, they are definitely useful structures that show up over and over in
different contexts.

11.2.6 Other monads

A couple of other common monads, which are popular in functional programming
languages with pure functions (functions that don’t have side effects) and immutable
data, are the state monad and the IO monad. We’ll provide only a high-level overview
of these monads, but if you decide to learn a functional programming language such
as Haskell, you will likely encounter them early in your journey.

The state monad encapsulates a piece of state that it passes along with a value. This
monad enables us to write pure functions that, given a current state, produce a value
and an updated state. Chaining these together with bind() allows us to propagate
and update state through a pipeline without explicitly storing it in a variable, enabling
purely functional code to process and update state.

The IO monad encapsulates side effects. It allows us to implement pure functions
that can still read user input or write to a file or terminal because the impure behavior
is removed from the function and wrapped in the IO monad.

If you are interested in learning more, section 11.3 provides some resources for
further study.

11.2.7 Exercise

1 Let’s take the function type Lazy<T> defined as () => T, a function that takes no
arguments and returns a value of type T. It’s Lazy because it produces a T, but
only when we ask it to. Implement unit(), map(), and bind() for this type.

11.3 Where to next?
We have covered a lot of ground, from primitive types and composition, to function
types, subtyping, generics, and a sliver of higher kinded types. Still, we’ve barely
scratched the surface of the world of type systems. In this final section, we’ll look at a
few topics you may be interested in learning more about and provide some starting
points for each one.

11.3.1 Functional programming

Functional programming is a very different paradigm from object-oriented program-
ming. Learning a functional programming language gives you another way to think



299Where to next?

 

    
            
          

   
 
  
  

 

           
          
 

   
           
            
           

    
 
              

 

  
   

    
 
                 

 

 

 
 

               
about code. The more ways you have to approach a problem, the easier it is to break it
down and solve it.

More and more features and patterns from functional programming are making
their way into nonfunctional languages, which is a testament to their applicability.
Lambdas and closures, immutable data structures, and reactive programming all
come from the functional world.

The best way to get started is to pick up a functional programming language. I rec-
ommend Haskell as a starting language. It has a fairly simple syntax and a very power-
ful type system, and it stands on a solid theoretical foundation. A good, easy-to-read
introductory book on the topic is Learn You a Haskell for Great Good! by Miran Lipovaca,
published by No Starch Press.

11.3.2 Generic programming

As we saw in previous chapters, generic programming enables extremely powerful
abstractions and code reusability. Generic programming became popular with the
C++ standard template library and its mix-and-match collection of data structures and
algorithms.

Generic programming has its roots in abstract algebra. Alexander Stepanov, who
coined the term generic programming and implemented the original template library,
wrote two books on the subject: Elements of Programming (coauthored with Paul
McJones) and From Mathematics to Generic Programming (coauthored with Daniel E.
Rose), both published by Addison-Wesley Professional.

Both books leverage some math, but I hope that fact won’t discourage you. The
elegance and beauty of the code are astonishing. The underlying theme is that with
the right abstractions, we don’t need to compromise: we can have code that is suc-
cinct, performant, easy to read, and elegant.

11.3.3 Higher kinded types and category theory

As we mentioned earlier, constructs such as functors come directly from category the-
ory. Bartosz Milewski’s Category Theory for Programmers (self-published) is a surprisingly
easy-to-read introduction to this field.

We talked about functors and monads, but there is a lot more to higher kinded
types. It will probably take a while for things to trickle down to more mainstream lan-
guages, but if you want to get ahead of the curve, Haskell is a good language with
which to grasp these concepts.

Having the ability to specify higher-level abstractions such as monads enables us to
write even-more-reusable code.

11.3.4 Dependent types

We didn’t have space to cover dependent types in this book, but if you want to know
more ways that a powerful type system makes code safer, this topic is another good one.

Very briefly, we saw how a type can dictate the values that a variable can take. We
also looked at generics, in that a type can dictate what another type can be (type



300 CHAPTER 11 Higher kinded types and beyond

 
 
               
 
 

    
 

 

             
 
                

              
 
 
  
  
              
  

               
   
          

  

         

  

  
        

 

  

  
 

parameters). Dependent types flip this situation around: we have values that dictate
types. The classic example is encoding the length of a list in the type system. A list of
numbers with two elements ends up having a different type from a list of numbers
with five elements, for example. Concatenating them gives us another type: a list with
seven elements. You can imagine how encoding such information in the type system
can guarantee, for example, that we never index out of bounds.

If you want to learn more about dependent types, I recommend Type Driven Devel-
opment with Idris by Edwin Brady, published by Manning. Idris is a programming lan-
guage with a syntax very similar to Haskell’s, but it adds support for dependent types.

11.3.5 Linear types

In chapter 1, we briefly mentioned the deep connection between type systems and
logic. Linear logic is a different take on classic logic that deals with resources. Unlike
classic logic, in which a deduction, if true, is true forever, a linear logic proof con-
sumes deductions.

This has a direct application in programming languages, in which using linear
types in a type system encodes resource use tracking. Rust is a programming language
that is steadily gaining in popularity; it uses linear types to ensure resource safety. Its
borrow checker ensures that there is always a single owner of a resource. If we pass an
object to a function, we transfer ownership of the resource, and the compiler no lon-
ger allows us to reference the resource until the function hands back the resource.
This situation aims to eliminate concurrency issues, as well as the dreaded “use after
free” and “double free” of C.

Rust is another good language to learn for its powerful generic support and
unique safety features. The Rust Programming Language book is available for free on the
Rust website and provides a good introduction to the language (https://doc.rust
-lang.org/book).

Summary
 map() generalizes beyond iterators to other generic types.
 Functors encapsulate data unboxing with applications in composition and

error propagation.
 With higher kinded types, we can express constructs such as functors by using

generics that themselves have type parameters.
 Monads allow us to chain operations that return values in a Box.
 Error monads allow us to chain together operations that return result or fail-

ure, encapsulating the error-propagation logic.
 Promises are monads that encapsulate scheduling/asynchronous execution.
 The list monad applies a function that produces a sequence to a sequence of

values and returns a flattened sequence.
 In languages that don’t support higher kinded types, we can think of functors

and monads as being patterns that we can apply to various problems.

https://doc.rust-lang.org/book
https://doc.rust-lang.org/book


301Answers to exercises

 

 

             

 
 

    

         
   
            

   
11.4
    

        

 Haskell is a good language to learn for understanding functional programming
and higher kinded types.

 Idris is a good language to learn for understanding dependent types and their
applications.

 Rust is a good language to learn for understanding linear types and their
applications.

I hope that you enjoyed this book, learned something you can use in your work, and
gained some new perspectives. Happy, type-safe programming!

Answers to exercises
AN EVEN MORE GENERAL MAP

1 A possible implementation uses the object-oriented decorator pattern we
recapped in chapter 5 to provide another type implementing IReader<U> that
wraps an IReader<T> and, when read() is called, maps the given function
over the original value:

interface IReader<T> {
read(): T;

}

namespace IReader {
class MappedReader<T, U> implements IReader<U> {

reader: IReader<T>;
func: (value: T) => U;

constructor(reader: IReader<T>, func: (value: T) => U) {
this.reader = reader;
this.func = func;

}

read(): U {
return this.func(this.reader.read());

}
}

export function map<T, U>(reader: IReader<T>, func: (value: T) => U)
: IReader<U> {
return new MappedReader(reader, func);

}
}

MONADS

1 A possible implementation follows. Notice the difference between map() and
bind().

type Lazy<T> = () => T;

namespace Lazy {
export function unit<T>(value: T): Lazy<T> {

return () => value;
}



302 CHAPTER 11 Higher kinded types and beyond
    export function map<T, U>(lazy: Lazy<T>, func: (value: T) => U)
        : Lazy<U> {
        return () => func(lazy());
    }

    export function bind<T, U>(lazy: Lazy<T>, func: (value: T) => 
Lazy<U>)
    : Lazy<U> {
        return func(lazy());
    }
}



appendix A
TypeScript installation

and source code

ONLINE

For simple code, such as trying out some code samples without dependencies, you
can use the online TypeScript playground at https://www.typescriptlang.org/play.

LOCAL

To install locally, you first need Node.js and npm, the Node Package Manager. You
can get them at https://www.npmjs.com/get-npm. When you have those, run npm
install -g typescript to install the TypeScript compiler.

 You can compile a single TypeScript file by passing it as an argument to the Type-
Script compiler, such as tsc helloworld.ts. TypeScript compiles to JavaScript.

 For projects that contain multiple files, a tsconfig.json file is used to configure
the compiler. Running tsc with no arguments from a directory with a tsconfig.json
file will compile the whole project according to the configuration.

SOURCE CODE

The code samples in this book are available at https://github.com/vladris/
programming-with-types. Each chapter is in its own separate directory and has its
own tsconfig.json.

 Code was built with version 3.3 of TypeScript, targeting the ES6 standard, with
strict settings.

 Each sample file is stand-alone, so all types and functions required to run a code
sample are inlined within each sample file. Each sample file uses a unique
namespace to prevent naming conflicts, because some examples present different
implementations of the same function or pattern.
303

https://www.typescriptlang.org/play
https://www.npmjs.com/get-npm
https://github.com/vladris/programming-with-types
https://github.com/vladris/programming-with-types


304  APPENDIX A TypeScript installation and source code
 To run a sample file, compile by using tsc; then run the compiled JavaScript file
with Node. After compiling with tsc helloworld.ts, for example, run with node
helloworld.js.

DIY
The book covers DIY implementations for variant and other types in TypeScript. For
C# and Java versions of these types, check out the Maki type library: https://
github.com/vladris/maki.

https://github.com/vladris/maki
https://github.com/vladris/maki


appendix B
TypeScript cheat sheet

This cheat sheet is not exhaustive. It covers the TypeScript syntax subset used in
this book. For a full TypeScript reference, see http://www.typescriptlang.org/docs.

Table B.1 Primitive types

Type Description

boolean Can be true or false.

number 64-bit floating-point number.

string UTF-16 Unicode string.

void Type used as return type for functions that don’t return meaningful values.

undefined Can be only undefined. Represents, for example, a variable that was 
declared but not initialized.

null Can be only null.

object Represents an object or nonprimitive type.

unknown Can represent any value. Type-safe, so it isn’t implicitly converted to another 
type.

Any Bypasses type checking. Type-unsafe and automatically converted to any 
other type.

Never Cannot represent any value
305

http://www.typescriptlang.org/docs


306  APPENDIX B TypeScript cheat sheet
 

Nonprimitive typesTable B.2 (continued)

Example Description

string[] Array types are denoted by [] after the type name—in 
this case, an array of strings.

[number, string] Tuples are declared as a list of types within []—in 
this case, a number and a string, such as [0, 
"hello"].

(x: number, y: number) => number; Function types are declared as a list of arguments in 
(), then =>, then the return type.

enum Direction {
    North,
    East,
    South,
    West,
}

Enumerations are declared with the keyword enum. In 
this case, a value can be one of the literals North, 
East, South, or  West.

type Point {
    X: number,
    Y: number
}

A type with X and Y properties of type number.

interface IExpression {
    evaluate(): number;
}

An interface with an evaluate() method that returns 
a number.

class Circle extends Shape 
    implements IGeometry {
    // ...
}

Circle class extending the Shape base class and 
implementing the IGeometry interface.

type Shape = Circle | Square; Union types are declared as an |-separated list of 
types. Shape is either a Circle or a Square.

type SerializableExpression
    = Serializable & Expression;

Intersection types are declared as a &-separated list of 
types. SerializableExpression has both all 
members of Serializable and all members of 
Expression.

DeclarationsTable B.3

Declaration Description

let x: number = 0; Declares a variable named x of type number with the 
initial value 0.

let x: number; Declares a variable named x of type number. Must be 
assigned a value before use.

const x: number = 0; Declares a constant name x of type number with the 
value 0. x can’t be changed.



307TypeScript cheat sheet
function add(x: number, y: number)
: number {
return x + y;
}

Declares a function add() that takes two arguments, 
x and y of type number, and returns a number.

(x: number, y: number) => x + y; A lambda (anonymous function) that takes two argu-
ments and returns their sum.

namespace Ns {
    export function func(): void {
    }
}

Ns.func();

Namespaces are declared with the namespace key-
word. Declarations inside a namespace must be pre-
fixed with export to be visible outside the 
namespace.

class Example {
    a: number = 0;
    private b: number = 0;
    protected c: number = 0;
    readonly d: number;

    constructor(d: number) {
        this.d = d;
    }

    getD(): number {
        return this.d;
    }
}

let instance: Example 
  = new Example(5);

All class members are public by default. Can also 
be protected (visible to derived classes) and 
private (visible only inside the class).
Properties can also be readonly, in which case they 
can’t be modified after they are assigned.
Unless properties allow undefined as a value, they 
must be initialized either inline or with the constructor.
The constructor of any class is constructor().
References to class members within the class must 
always be prefixed with this.
Objects are instantiated with new, which invokes the 
constructor.

declare const Sym: unique symbol; A Symbol guaranteed to be unique. No two constants 
declared as unique symbol can ever be equal.

GenericsTable B.4

Example Description

function identity<T>(value: T): T {
    return value;
}

let str: string =
    identity<string>("Hello");

A generic function has one or more type parameters 
between <>, before the argument list. identity() 
has one type argument T. It takes a value of type T 
and returns it.
Specifying a concrete type between <> instantiates 
the generic function. identity<string>() is the 
identity() function where T is string.

DeclarationsTable B.3  (continued)

Declaration Description



308  APPENDIX B TypeScript cheat sheet
 

 

class Box<T> {
    value: T;

    constructor(value: T) {
        this.value = value;
    }
}

let x: Box<number> = new Box(0);

A generic class has one or more type parameters 
between <>, after the class name. Box has a prop-
erty value of type T.
Specifying a concrete type between <> instantiates 
the generic class. Box<number> is the Box class 
where T is number.

class Expr<T extends IExpression> {
    /* ... */
}

A generic constraint is declared after the generic 
type parameter. In this example, T must support the 
IExpression interface.

Type casts and type guardsTable B.5

Example Description

let x: unknown = 0;

let y: number = <number>x;

Specifying a type between <> before a value reinter-
prets the value as that type. x can be assigned to y 
only after being explicitly reinterpreted as number.

type Point = {
    x: number;
    y: number;
}

function isPoint(p: unknown):
    p is Point {
 return
    ((<Point>p).x 
            !== undefined) &&
       ((<Point>p).y 
            !== undefined);
}

let p: unknown = { x: 10, y: 10 };

if (isPoint(p)) {
    // p is of type Point here
    p.x -= 10;
}

A type predicate is a boolean that states that a vari-
able is of a certain type. If we reinterpret p as a 
Point, and it has both an x and a y member (neither 
is undefined), p is a Point.
Within an if statement where a type predicate is 
true, the tested value is automatically reinterpreted 
as having that type.

GenericsTable B.4  (continued)

Example Description



index
Symbols

! character 24
&& characters 24
| type operator 58, 60, 76
|| characters 24

Numerics

32-bit integer 36
4-bit signed integer encoding 28
4-bit unsigned integer 27
8-bit unsigned integer 92

A

abstract class 189
accumulate() function 243
actions 22
adapter pattern 198–200
adaptive algorithms 268–271
ADTs (algebraic data types) 2, 50, 75–77

product types 75–76
sum types 76

Aggregate() function 128
aggregate() function 243
algebraic data types see ADTs (algebraic data 

types)
all() function 128, 244
AND operator 23–25
anonymous function 119
anonymous functions 118
anonymous functions (lambdas) 118–119
any keyword 14
Any type 305

any type 98, 167–168, 170, 216
any() function 156, 244
arithmetic overflow 28
arrays 38, 46–47, 177

associative arrays 45–46
binary trees 43–45
fixed-size arrays 39–40
implementation trade-offs 46–47
list efficiency 40–43

associative arrays 45–46
associativity 127
asterisks 139
async/await function 156–157
asynchronous code, simplifying 147–159

async/await function 156–157
promises 152–156

chaining 149–150
chaining synchronous functions 153–154
creating 150–151, 154–156
handling errors 152–153

asynchronous execution
callbacks 142–143
models for 143–146

B

bad state 7
begin iterator 255, 257–258, 261, 263, 266
biased exponent 31
bidirectional iterators 262, 264
Big O notation 250
BigInt type 33
binary trees 43–45
binary64 encoding 30
bind() function 291–294, 297
309



INDEX310
bit widths 27
bivariance 183
bivariant types 183–184
Boolean expressions 24
Boolean types 23–26, 123, 218, 241, 305

Boolean expressions 24
short circuit evaluation 24–26

bottom type 173

C

callbacks 147–148
catch() function 152–153, 157
category theory 297, 299
clone() function 260
closed type 117
closures 135–136
code points 36
coding against interfaces 190
coercion 90
collections, subtyping and 177–179
composability 10–12
composition 17, 49–78, 195–200

algebraic data types 75–77
product types 75–76
sum types 76

composite classes 196–198
compound types 50–56

assigning meaning 52–53
maintaining invariants 53–56
tuples 50–52

either-or types 56–69
enumerations 57–58
optional types 58–60
result or error 61–65
variants 65–68

extending behavior with 202–203
has-a rule of thumb 196
implementing 198–200
visitor design pattern 69–75

alternative implementation of 70–73
naïve implementation of 69–70
variant visitor function 73–75

compound types 50–56, 75
assigning meaning 52–53
maintaining invariants 53–56
tuples 50–52

conditional branching 24
const notation 8
constant space (O(1)) 250
constant time (O(1)) 249–250
constness property 8
constraints

enforcing 84–86
with constructor 84–85
with factory 85–86

type parameter constraints 248–252
generic algorithms with 251–252
generic data structures with 249–250

continuation monad 294–295
continuations 149
contracts 189
contracts (interfaces) 188–191
contravariant type 181, 184
correctness 6–7
counters 137–140

functional counters 138
implementing 140
object-oriented counters 137–138
resumable counters 139–140

covariant types 178, 184
cross-cutting concerns 204
currency addition function 32
Curry-Howard correspondence 5

D

data structures, defined 220–221
declarations 306
decorator pattern 132–137

closures 135–136
functional decorator 133–135
implementing 135

decoupling independent concerns 214–219
generic types 218–219
optional types 217–218
reusable identity functions 216–217

dependent types 299–300
deserialization 167–171
design patterns

adapter pattern 198–200
decorator pattern 132–137
strategy pattern 103–107
visitor pattern 67–75

diamond inheritance problem 203
dictionaries 45–46
downcasts 91–92
drop() function 244
dynamic typing 13–14

E

eager evaluation 117, 119
Either type 63, 65, 76, 87, 96, 289
either value or error 65
either-or types 56–69, 76

enumerations 57–58
optional types 58–60
result or error 61–65

exceptions 65
variants 65–68



INDEX 311
empty types 20–23, 171
encapsulation 9–10, 188
encoding libraries 36–37
encodings 35–36

UTF-16 36
UTF-32 36
UTF-8 36

end iterator 255, 257–258, 261, 263, 266
enum keyword 58, 306
error cases

higher kinded types 279–281
promises 152–153
values for 171–174

error codes 62
errors 7, 60–61, 172, 287
event loops 144–146
explicit type cast 86, 90
exponents 31
extend() method 204–206
extending behavior 200–206

with composition 202–203
with mix-ins 203–204

extends keyword 249

F

filter function 122–124
filter/reduce pipeline 242–243
generic versions of 241–242

filter() function 103, 123, 128, 131, 239, 243
final keyword 194
find() function 12, 259, 261
first-class functions 106–107
first-order function 120
first() function 128
fixed-size arrays 39–40, 43, 46
floating-point numbers 30–31
floating-point types 30–33

comparing floating-point numbers 32–33
precision values 31–32

fmap() function 243
fold() function 128, 243
forward iterators 259–262
function argument types, subtyping and 180–184
function keyword 156
function map 286
function return types, subtyping and 179–180
function types 17, 102–160

adapter pattern 198–200
counters 137–140

functional counters 138
implementing 140
object-oriented counters 137–138
resumable counters 139–140

decorator pattern 132–137

closures 135–136
functional decorator 133–135
implementing 135

functional programming 128–129
higher-order functions 120–128

filter 122–124
library support 128
map 120–122
reduce 124–127

lazy values 117–120
lambdas 118–119

long-running operations 141–147
asynchronous execution 142–146
synchronous execution 141–142

simplifying asynchronous code 147–159
async/await 156–157
promises 149–156

state machines without switch statements
108–117
early programming with types 108–110
implementing 116–117
overview 110–116

strategy pattern 103–107
first-class functions 107
implementing 106–107
typing functions 104–106

functional counters 138
functional programming 128–129, 209–210, 

298–299
functors 282–287

G

generic algorithms 239–273
adaptive algorithms 268–271
common algorithms 243–248
higher-order functions 240–243

filter 241–242
filter/reduce pipeline 242–243
map 240–241
reduce 242

implementing fluent pipeline 245–248
loops vs. 244
type parameter constraints 248–252

generic algorithms with type constraints
251–252

generic data structures with type 
constraints 249–250

using iterators 253–268
generic data structures 213–238

data structures, defined 220–221
decoupling independent concerns 214–219

generic types 218–219
optional types 217–218
reusable identity function 216–217



INDEX312
generic data structures (continued)
overview 220–221
streaming data 233–236

processing pipelines 234–236
traversing data structures 221–233

streamlining iteration code 227–232
using iterators 223–227

with type parameter constraints 249–250
generic function 307
generic programming 210–211, 299
generic types 218–219
generics 17
glyphs 35
grapheme-splitter library 36–37
graphemes 35

H

has-a rule of thumb 196
hash function 46
hash maps 46
hash tables 45
Haskell language 17, 297
heaps 43
heterogenous collections 94–96

base type or interface 94–95
sum type or variant 95–96
unknown type 96

higher kinded types 275–301
category theory and 299
dependent types 299–300
functional programming 298–299
generic programming 299
linear types 300–301
map 276–287

functors 282–287
mix-and-match function application 281–282
processing results or propagating errors

279–281
monads 287–298

common monads 298
continuation monad 294–295
list monad 295–298
map vs. bind 291, 293
monad pattern 293–294
result or error 287–291

higher-kinded types 17, 283, 299
higher-order functions 120–128, 150

filter 122–124
filter/reduce pipeline 242–243
generic versions of 241–242

library support 128
map 120–122, 276–287

bind vs. 291–293
functors 282–287

generic versions of 240–241
mix-and-match function application 281–282
processing results or propagating errors

279–281
reduce 124–127

filter/reduce pipeline 242–243
generic versions of 242

homogenous collection 94

I

identities 127
identity() function 216, 219, 307
IEEE 754 27, 30
IForwardIteratorinterface 260, 263
IIncrementable 260
IInputIteratorinterface 255–256
immutability 7–9
implicit type cast 90
inheritance 191–195

is-a rule of thumb 191–192
modeling hierarchies 192–193
parameterizing behavior 193–194

input iterators 257
instance of keyword 171
integer types 27–30

overflow and underflow 28–30
interfaces (contracts) 188–191
intersection types 205
invariant types 178, 184
invariants 53
IOutputIterator 257
IRandomAccessIterator 265
IReadable 260
is keyword 171
is-a rule of thumb 191–192
Iterable argument 229–230, 234, 241
Iterable interface 138, 140, 191, 234
IterableIterator interface 191, 230, 233–234, 246, 

254, 259
iteration 223
Iterator interface 226–227, 230, 254
IteratorResult type 224, 227, 232–233
iterators

algorithms using 253–268
bidirectional iterators 262–264
forward iterators 259–262
iterator building blocks 254–259
random-access iterators 265–267

defined 224
streamlining iteration code 227–232
traversing data structures using 223–227

IWritable interface 257, 260



INDEX 313
J

java.util.stream package 244
JSON.parse() method 97, 167, 169–170
JSON.stringify() method 97

K

kind property 65–66, 283

L

lambdas (anonymous functions) 118–119
lazy evaluation 117, 119
lazy values 117–120
linear space (O(n)) 250
linear time (O(n)) 249–250
linear types 300–301
linearithmic (O(n log n)) 250
linked lists 39
LinkedList 178
Liskov substitution principle 163
list efficiency 40–43
list monad 295–298
long-running operations 141–147

asynchronous execution
callbacks 142–143
models for 143–146

synchronous execution 141–142
loops, algorithms vs. 244

M

machine epsilon 32
mantissa 31
map() function 103, 120–122, 128, 131, 239, 243, 

258–259, 275–276, 278, 280, 282, 285–287
bind vs. 291–293
functors 282–287
generic versions of 240–241
mix-and-match function application 281–282
processing results or propagating errors

279–281
max() function 251–252
maybe type 59
maybe types (optional types) 58, 60, 217–218
mix-ins 203–206
monadic error handling 294
monads 287–298

common monads 298
continuation monad 294–295
list monad 295–298
map vs. bind 291–293
monad pattern 293–294
result or error 287–291

monoids 127

N

N-bit unsigned integer 27
name property 164, 168–169
namespace keyword 307
NaN (not a number) 31
narrowing casts 92–93
negative infinity 31
never type 21, 23, 171, 173, 305
next elements 39
next() method 137, 140, 191, 224, 232–234
nominal subtyping 163

pros and cons of 164–165
simulating 165–166

none() function 244
nonprimitive types 306
nonterminating functions 21
NOT operator 23–24
null type 60, 168–169, 305
nullable type 60
number type 50, 52–53, 57, 80, 83, 218, 305
Number.isSafeInteger() function 32
numerical types 26–33

arbitrarily large numbers 33
floating-point types 30–33

comparing floating-point numbers 32–33
precision values 31–32

integer types 27–30
overflow and underflow 28–30

O

object type 96, 167, 169, 305
object-oriented counters 137–138
OOP (object-oriented programming) 187–212

alternatives to 206–211
functional programming 209–210
generic programming 210–211
sum types 206–208

composition 195–200
composite classes 196–198
has-a rule of thumb 196
implementing 198–200

extending behavior 200–206
with composition 202–203
with mix-ins 203–204

inheritance 191–195
is-a rule of thumb 191–192
modeling hierarchies 192–193
parameterizing behavior 193–194

interfaces 188–191
Optional class 217
optional type 59, 76
optional types (maybe types) 58–60, 217–218
Optionaltype 99, 213, 219, 276



INDEX314
OR operator 23–25
out keyword 178
out parameters 51
overflow 32

detecting 29–30
overview 28–29

P

Pair type 51
parameterizing behavior 193–194
positive infinity 31
predicates 123, 128, 241
primitive obsession antipattern 83
primitive types 17, 305
private property 10
private variables 5
product types 75–76
product types. See also compound types
Promise 149–150, 154, 294–295
Promise class 154
Promise.all() function 154, 158
Promise.race() function 154–155, 158
Promise.resolve() function 295
Promise.then() function 151
promises 149, 152–156, 294

chaining 149–150
chaining synchronous functions 153–154
creating 150–151, 154–156
handling errors 152–153

proofs 5
proofs-as-programs 5
property 165
pthread_create() function 143
public property 10

Q

quadratic time (O(n^2)) 250

R

random-access iterators 265–267
read-only variables 5
readonly properties 307
record types 52–53
reduce() function 103, 124, 126–128, 131, 239, 243

filter/reduce pipeline 242–243
generic versions of 242

reduceRight() method 127
reference types 198
references 38–47

associative arrays 45–46
binary trees 43–45
implementation trade-offs 46–47

list efficiency 40–43
overview 40

reject() function 152–153
rejected state, promise 152
resolve() function 150–152
resumable counters 139–140
reusable identity functions 216–217
reverse() function 253–254, 262–264, 267
run time 4

S

saturation 29
sealed keyword 194
second-order function 120
security 7
select() function 128, 243
serialization 96–100
settled state, promise 152
shape-preserving operations 221
short circuit evaluation 24–26
single-responsibility principle 133
skip() function 244
state machines 108, 114–117

early programming with types 108–110
implementing 116–117
overview 110–116

state space 7
static typing 13–14
strategy pattern 103–107

first-class functions 107
function types 104–106
implementing 106–107

streaming data 233–236
strict settings 303
string type 34, 168, 174, 305
strings 34–38

breaking text 34–35
encoding libraries 36–37
encodings 35–36

UTF-16 36
UTF-32 36
UTF-8 36

strong typing 15–16
struct type 52, 198
structural subtyping 163–165
subtyping 17, 114, 161, 177–186

collections and 177–179
distinguishing between similar types 162–166

simulating nominal subtyping 165–166
structural vs. nominal subtyping 164–165

function argument types and 180–184
function return types and 179–180
sum types and 175–177
types that can be assigned to anything 167–174
types to which anything can be assigned 167–174



INDEX 315
sum types 76
as alternative to OOP 206–208
heterogenous collections 95–96
subtyping and 175–177

sum types. See also either-or types
switch statements 102, 108–117
synchronous execution

chaining synchronous functions 153–154
of long-running operations 141–142

System.Linq namespace 128, 244

T

tagged union types 65
tagged union types (Variant types) 65–68
take() function 234–235, 244
Task 149
text-breaking function 34
then() function 149–150, 152–153, 157, 294
third-order function 120
threads 143
throw statement 172
top types 169
transform() function 128, 214
traversing data structures 221–233

streamlining iteration code 227–232
using iterators 223–227

tuple types 50–52
two’s complement encoding 27
type casting 86, 90–93, 308

common type casts 90–93
downcasts 91–92
narrowing casts 92–93
upcasts 91–92
widening casts 92–93

overview 86–87
tracking types outside type system 87–90

type checking 5
type constructors 283
type guards 308
type inference 13, 16
type parameter constraints 248–252

generic algorithms with 251–252
generic data structures with 249–250

type safety 79–101
enforcing constraints 84–86

with constructor 84–85
with factory 85–86

hiding and restoring type information 93–101
heterogenous collections 94–96
serialization 96–100

preventing misinterpretation 80–84
Mars Climate Orbiter 81–83
primitive obsession antipattern 83

type casting 86–93

common type casts 90–93
overview 86–87
tracking types outside type system 87–90

type systems 1–18
benefits of 5–13

composability 10–12
correctness 6–7
encapsulation 9–10
immutability 7–9
readability 12–13

data interpretation 3–4
defined 4–5
purpose of 2–5
types of 13–16

dynamic typing 13–14
static typing 13–14
strong typing 15–16
type inference 16
weak typing 15–16

types, defined 4–5
types 19–48

arrays and references 38–47
associative arrays 45–46
binary trees 43–45
fixed-size arrays 39–40
implementation trade-offs 46–47
list efficiency 40–43
references 40

Boolean types 23–26
Boolean expressions 24
short circuit evaluation 24–26

combining 49–78
algebraic data types 75–77
compound types 50–56
either-or types 56–69
visitor design pattern 69–75

defined 4–5
empty types 20–22
function types 102–160

counters 137–140
decorator pattern 132–137
higher-order functions 120–128
lazy values 117–120
long-running operations 141–147
simplifying asynchronous code 147–159
state machines without switch 

statements 108–117
strategy pattern 103–107

higher kinded types 275–301
category theory and 299
dependent types 299–300
functional programming 298–299
generic programming 299
linear types 300–301
map 276–287
monads 287–298



INDEX316
types (continued)
numerical types 26–33

arbitrarily large numbers 33
floating-point types 30–33
integer types 27–30

strings 34–38
breaking text 34–35
encoding libraries 36–37
encodings 35–36

unit types 22–23
TypeScript 13, 16, 21, 23, 45, 53, 67, 76, 81, 

108–109, 143, 166, 174, 182, 269, 278, 
303–304

cheat sheet 305–308
installing locally 303
online playground 303
source code 303–304

U

undefined type 43, 85, 99, 168–169, 219, 257, 278, 
280, 305

underflow 32
detecting 29–30
overview 28–29

underscore.js package 244
Unicode 34, 36
uninhabitable types 20
unique symbol trick 81, 161–162, 165
unit types 22–23
unit() function 293–294, 297
unknown type 87, 167, 169–170, 174, 305
upcasts 91–92
UTF-16 encoding 36

UTF-32 encoding 36
UTF-8 encoding 36

V

value property 224, 256
value types 198
variable-length encodings 36
Variant types (tagged union types) 65–68, 76
visit() function 73–75, 95, 206, 208
visitor design pattern 69–75

alternative implementation of 70–73
naïve implementation 70
naïve implementation of 69
variant visitor function 73–75

void property 21, 23
void type 21–23, 104, 112, 174, 305

W

weak typing 15–16
well-formed values 53
where() function 128, 243
widening casts 16, 92–93
wrap around 28

Y

yield keyword 139
yield statement 156, 230, 232

Z

zip() function 244



2 CHAPTER 

Common algorithms

map()
map() applies a function to each value of a range and returns the results of applying
that function.

map(["apple", "orange", "peach"], (item) => item.length)

filter()
filter() applies a predicate to each value of a range and filters out the values for
which the predicate is false.

filter(["apple", "orange", "peach"], (item) => item.length == 5)

reduce()
reduce() combines the values of a range using a given function and returns a single
value.

reduce(["apple", "orange", "peach"], "", (acc, item) => acc + item)

"apple" "orange" "peach" item.length

5 6 5

"apple" "orange" "peach" item.length == 5

"apple" "peach"

"apple" "orange" "peach" acc = acc + item

Initial value

"" "appleorangepeach"

acc is the accumulator, which
starts with the initial value and
ends up with the final combination
of all elements.



Vlad Riscutia

ISBN-13: 978-1-61729-641-3
ISBN-10: 1-61729-641-4

C
ommon bugs often result from mismatched data types. 
By precisely naming and controlling which data are allow-
able in a calculation, a strong type system can eliminate 

whole classes of errors and ensure data integrity throughout 
an application. As a developer, skillfully using types in your 
everyday practice leads to better code and saves time tracking 
down tricky data-related errors.

Programming with Types teaches type-based techniques for 
writing software that’s safe, correct, easy to maintain, and 
practically self-documenting. Designed for working develop-
ers, this clearly written tutorial sticks with the practical ben-
efi ts of type systems for everyday programming tasks. Follow-
ing real-world examples coded in TypeScript, you’ll build your 
skills from primitive types up to more-advanced concepts like 
functors and monads. 

What’s Inside
●  Building data structures with primitive types, arrays, 
   and references
●  How types affect functions, inheritance, and composition
●  Object-oriented programming with types
●  Applying generics and higher-kinded types

You’ll need experience with a mainstream programming lan-
guage like TypeScript, Java, JavaScript, C#, or C++.

Vlad Riscutia is a principal software engineer at Microsoft. He 
has headed up several major software projects and mentors 
up-and-coming software engineers.

To download their free eBook in PDF, ePub, and Kindle formats, owners 
of this book should visit manning.com/books/programming-with-types

$49.99 / Can $65.99  [INCLUDING eBOOK]

Programming with Types

SOFTWARE DEVELOPMENT

M A N N I N G

“Well-presented, valuable 
knowledge on type systems, 
data structures, algorithms, 

and programming paradigms 
  (functional and OO).” 

—Fred Heath
Faria Education Group

“A triumph of types 
exploration, with concise 

examples of how types 
can make programs more

  robust and sound.”—Theo Despoudis, Teckro

“Everything you need to 
know about types, from 

Booleans to monads. This 
 book has you covered.”—Desmond Horsley

NSW Health Pathology

“Finally, a book that fi lls 
the gap between theory and 
practice in type systems.” 

—Domingo Sebastián, Fundació Bit

See first page


	Programming with Types
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a road map
	About the code
	About the author
	Book forum

	about the cover illustration
	Saint-Sauver

	1 Introduction to typing
	1.1 Whom this book is for
	1.2 Why types exist
	1.2.1 0s and 1s
	1.2.2 What are types and type systems?

	1.3 Benefits of type systems
	1.3.1 Correctness
	1.3.2 Immutability
	1.3.3 Encapsulation
	1.3.4 Composability
	1.3.5 Readability

	1.4 Types of type systems
	1.4.1 Dynamic and static typing
	1.4.2 Weak and strong typing
	1.4.3 Type inference

	1.5 In this book
	Summary

	2 Basic types
	2.1 Designing functions that don’t return values
	2.1.1 The empty type
	2.1.2 The unit type
	2.1.3 Exercises

	2.2 Boolean logic and short circuits
	2.2.1 Boolean expressions
	2.2.2 Short circuit evaluation
	2.2.3 Exercise

	2.3 Common pitfalls of numerical types
	2.3.1 Integer types and overflow
	2.3.2 Floating-point types and rounding
	2.3.3 Arbitrarily large numbers
	2.3.4 Exercises

	2.4 Encoding text
	2.4.1 Breaking text
	2.4.2 Encodings
	2.4.3 Encoding libraries
	2.4.4 Exercises

	2.5 Building data structures with arrays and references
	2.5.1 Fixed-size arrays
	2.5.2 References
	2.5.3 Efficient lists
	2.5.4 Binary trees
	2.5.5 Associative arrays
	2.5.6 Implementation trade-offs
	2.5.7 Exercise

	Summary
	Answers to exercises

	3 Composition
	3.1 Compound types
	3.1.1 Tuples
	3.1.2 Assigning meaning
	3.1.3 Maintaining invariants
	3.1.4 Exercise

	3.2 Expressing either-or with types
	3.2.1 Enumerations
	3.2.2 Optional types
	3.2.3 Result or error
	3.2.4 Variants
	3.2.5 Exercises

	3.3 The visitor pattern
	3.3.1 A naïve implementation
	3.3.2 Using the visitor pattern
	3.3.3 Visiting a variant
	3.3.4 Exercise

	3.4 Algebraic data types
	3.4.1 Product types
	3.4.2 Sum types
	3.4.3 Exercises

	Summary
	Answers to exercises

	4 Type safety
	4.1 Avoiding primitive obsession to prevent misinterpretation
	4.1.1 The Mars Climate Orbiter
	4.1.2 The primitive obsession antipattern
	4.1.3 Exercise

	4.2 Enforcing constraints
	4.2.1 Enforcing constraints with the constructor
	4.2.2 Enforcing constraints with a factory
	4.2.3 Exercise

	4.3 Adding type information
	4.3.1 Type casting
	4.3.2 Tracking types outside the type system
	4.3.3 Common type casts
	4.3.4 Exercises

	4.4 Hiding and restoring type information
	4.4.1 Heterogenous collections
	4.4.2 Serialization
	4.4.3 Exercises

	Summary
	Answers to exercises

	5 Function types
	5.1 A simple strategy pattern
	5.1.1 A functional strategy
	5.1.2 Typing functions
	5.1.3 Strategy implementations
	5.1.4 First-class functions
	5.1.5 Exercises

	5.2 A state machine without switch statements
	5.2.1 Early Programming with Types
	5.2.2 State machines
	5.2.3 State machine implementation recap
	5.2.4 Exercises

	5.3 Avoiding expensive computation with lazy values
	5.3.1 Lambdas
	5.3.2 Exercise

	5.4 Using map, filter, and reduce
	5.4.1 map()
	5.4.2 filter()
	5.4.3 reduce()
	5.4.4 Library support
	5.4.5 Exercises

	5.5 Functional programming
	Summary
	Answers to exercises

	6 Advanced applications of function types
	6.1 A simple decorator pattern
	6.1.1 A functional decorator
	6.1.2 Decorator implementations
	6.1.3 Closures
	6.1.4 Exercises

	6.2 Implementing a counter
	6.2.1 An object-oriented counter
	6.2.2 A functional counter
	6.2.3 A resumable counter
	6.2.4 Counter implementations recap
	6.2.5 Exercises

	6.3 Executing long-running operations asynchronously
	6.3.1 Synchronous execution
	6.3.2 Asynchronous execution: callbacks
	6.3.3 Asynchronous execution models
	6.3.4 Asynchronous functions recap
	6.3.5 Exercises

	6.4 Simplifying asynchronous code
	6.4.1 Chaining promises
	6.4.2 Creating promises
	6.4.3 More about promises
	6.4.4 async/await
	6.4.5 Clean asynchronous code recap
	6.4.6 Exercises

	Summary
	Answers to exercises

	7 Subtyping
	7.1 Distinguishing between similar types in TypeScript
	7.1.1 Structural and nominal subtyping pros and cons
	7.1.2 Simulating nominal subtyping in TypeScript
	7.1.3 Exercises

	7.2 Assigning anything to, assigning to anything
	7.2.1 Safe deserialization
	7.2.2 Values for error cases
	7.2.3 Top and bottom types recap
	7.2.4 Exercises

	7.3 Allowed substitutions
	7.3.1 Subtyping and sum types
	7.3.2 Subtyping and collections
	7.3.3 Subtyping and function return types
	7.3.4 Subtyping and function argument types
	7.3.5 Variance recap
	7.3.6 Exercises

	Summary
	Answers to exercises

	8 Elements of object-oriented programming
	8.1 Defining contracts with interfaces
	8.1.1 Exercises

	8.2 Inheriting data and behavior
	8.2.1 The is-a rule of thumb
	8.2.2 Modeling a hierarchy
	8.2.3 Parameterizing behavior of expressions
	8.2.4 Exercises

	8.3 Composing data and behavior
	8.3.1 The has-a rule of thumb
	8.3.2 Composite classes
	8.3.3 Implementing the adapter pattern
	8.3.4 Exercises

	8.4 Extending data and behavior
	8.4.1 Extending behavior with composition
	8.4.2 Extending behavior with mix-ins
	8.4.3 Mix-in in TypeScript
	8.4.4 Exercise

	8.5 Alternatives to purely object-oriented code
	8.5.1 Sum types
	8.5.2 Functional programming
	8.5.3 Generic programming

	Summary
	Answers to exercises

	9 Generic data structures
	9.1 Decoupling concerns
	9.1.1 A reusable identity function
	9.1.2 The optional type
	9.1.3 Generic types
	9.1.4 Exercises

	9.2 Generic data layout
	9.2.1 Generic data structures
	9.2.2 What is a data structure?
	9.2.3 Exercises

	9.3 Traversing any data structure
	9.3.1 Using iterators
	9.3.2 Streamlining iteration code
	9.3.3 Iterators recap
	9.3.4 Exercises

	9.4 Streaming data
	9.4.1 Processing pipelines
	9.4.2 Exercises

	Summary
	Answers to exercises

	10 Generic algorithms and iterators
	10.1 Better map(), filter(), reduce()
	10.1.1 map()
	10.1.2 filter()
	10.1.3 reduce()
	10.1.4 filter()/reduce() pipeline
	10.1.5 Exercises

	10.2 Common algorithms
	10.2.1 Algorithms instead of loops
	10.2.2 Implementing a fluent pipeline
	10.2.3 Exercises

	10.3 Constraining type parameters
	10.3.1 Generic data structures with type constraints
	10.3.2 Generic algorithms with type constraints
	10.3.3 Exercise

	10.4 Efficient reverse and other algorithms using iterators
	10.4.1 Iterator building blocks
	10.4.2 A useful find()
	10.4.3 An efficient reverse()
	10.4.4 Efficient element retrieval
	10.4.5 Iterator recap
	10.4.6 Exercises

	10.5 Adaptive algorithms
	10.5.1 Exercise

	Summary
	Answers to exercises

	11 Higher kinded types and beyond
	11.1 An even more general map
	11.1.1 Processing results or propagating errors
	11.1.2 Mix-and-match function application
	11.1.3 Functors and higher kinded types
	11.1.4 Functors for functions
	11.1.5 Exercise

	11.2 Monads
	11.2.1 Result or error
	11.2.2 Difference between map() and bind()
	11.2.3 The monad pattern
	11.2.4 The continuation monad
	11.2.5 The list monad
	11.2.6 Other monads
	11.2.7 Exercise

	11.3 Where to next?
	11.3.1 Functional programming
	11.3.2 Generic programming
	11.3.3 Higher kinded types and category theory
	11.3.4 Dependent types
	11.3.5 Linear types

	Summary
	11.4 Answers to exercises

	appendix A TypeScript installation and source code
	appendix B TypeScript cheat sheet
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Programming with Types-back



