
Vibration Simulation Using

M a tla b
and ANSYS

© 2001 by Chapman & Hall/CRC

Vibration Simulation Using

M a t l a b
and ANSYS

M I C H A E L R. H A T C H

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Hatch, Michael R.
Vibration simulation using MATLAB and ANSYS / Michael R. Hatch.

p. cm.
Includes bibliographical references and index.
ISBN 1-58488-205-0 (alk. paper)
1. Vibration--Computer simulation. 2. MATLAB. 3. ANSYS (Computer system) I.
Title.

TJ177 .H38 2000
620.3/01/13--dc21 00-055517

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-205-0

Library of Congress Card Number 00-055517
Printed in the United States of America 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

http://www.crcpress.com

PREFACE

B ack g ro u n d

This book resulted from using, docum enting and teaching various analysis
techniques during a 30-year m echanical engineering career in the disk drive
industry. D isk drives use high perform ance servo systems to control actuator
position. Both experim ental and analytical techniques are used to understand
the dynam ic characteristics of the systems being controlled. Constant in ­
depth com m unications between m echanical and control engineers are required
to bring high perform ance electro-m echanical systems to m arket. Having
m echanical engineers who can discuss dynam ic characteristics o f mechanical
systems w ith servo engineers is very valuable in bringing these high-
perform ance systems into production. This book should be useful to both the
m echanical and control com m unities in enhancing their com m unication.

P u rp o se o f th e B ook

The book has three m ain purposes. The first purpose is to collect in one
docum ent various m ethods o f constructing and representing dynam ic
m echanical models. For someone learning dynam ics for the first tim e or for
an experienced engineer who uses the tools infrequently, the options available
for m odeling can be daunting: transfer function form, zpk form, state space
form, modal form, state space modal form, etc. Seeing all the m ethods in one
book, with background theory, an exam ple problem and accom panying
M ATLAB ® (M athW orks, Inc., Natick, M A) code listing for each method,
will help put them in perspective and m ake them readily available for quick
reference. (Also, having equation listings w ith their accom panying M ATLAB
code is a good way to develop or reinforce M ATLAB program m ing skills.)

The second purpose is to help the reader develop a strong understanding of
modal analysis, where the total response o f a system can be constructed by
com binations o f the individual m odes o f vibration.

The third purpose is to show how to take the results o f large dynam ic finite
elem ent m odels and build small M ATLAB state space dynam ic mechanical
m odels for use in m echanical or servo/m echanical system models.

A udience / P re req u is ites

This book is m eant to be used as a reference book in senior and early
graduate-level vibration and servo courses as well as for practicing servo and
m echanical engineers. It should be especially useful for engineers who have
lim ited experience with state space. It assumes the reader has a background in
basic vibration theory and elem entary Laplace transforms.

© 2001 by Chapman & Hall/CRC

For those w ith a strong linear systems background, the first 12 chapters will
provide little new information. Chapters 13 and 14, the finite element
chapters, may prove interesting for those with little fam iliarity with finite
elements. Chapters 15 to 19 cover m ethods for creating state space M ATLAB
m odels from A N SY S finite elem ent results, then reducing the models.

P ro g ram s U sed

It is assum ed that the reader has access to M ATLAB and the Control System
Toolbox and is fam iliar w ith their basic use. The M ATLAB block diagram
graphical m odeling tool S im ulink is used for several exam ples through the
book but is not required. Several excellent texts covering the basics o f
M ATLAB usage can be found on the M athW orks W eb page,
w w w .m athw orks.com . A ll the program s were developed using M ATLAB
Version 5.3.1.

Lum ped m ass and cantilever exam ples using the AN SY S® (ANSYS, Inc.,
Canonsburg, PA) finite elem ent program are used throughout the text. W here
A N SY S results are required for input into M ATLAB models, they are
available by download w ithout having to run the AN SY S code. For those
with access to ANSYS, input code is available by download. The last three
chapters contain com plete ANSYS/M ATLAB dynam ic analyses of SISO
(Single Input Single O utput) and M IM O (M ultiple Input M ultiple Output)
disk drive actuator/suspension systems. Revisions 5.5 and 5.6 o f ANSYS
were used for the examples.

O rg a n iz a tio n

The unifying them e throughout m ost o f the book is a th re e degree of
freed o m (tdof) system, sim ple enough to be solved for all o f its dynam ic
characteristics in closed form, but com plex enough to be able to visualize
m ode shapes and to have interesting dynamics.

Chapters 1 to 16 contain background theoretical material, closed form
solutions to the example problem and M ATLAB and/or ANSYS code for
solving the problems. All closed form solutions are shown in their entirety.

Chapters 17 to 19 analyze com plete disk drive actuator/suspension systems
using ANSYS and M ATLAB. A ll chapters list and discuss the related
M ATLAB code, and all but the last three chapters list the related ANSYS
code. All the M ATLAB and ANSYS input codes, as well as selected output
results, are available for downloading from both the M athW orks F TP site and
the author’s FTP site, both listed at the end o f the preface. Reviewers have
provided different inputs on the am ount and location o f M ATLAB and
ANSYS code in the book. Engineers for w hom the m aterial is new have

© 2001 by Chapman & Hall/CRC

http://www.mathworks.com

requested that the code be broken up, interspersed with the text and explained,
section by section. Others for whom M ATLAB code is second nature have
suggested either rem oving the code listings altogether or providing them at the
end o f the chapters or in an appendix. My apologies to the latter, but I have
chosen to intersperse code in the associated text for the new user.

A problem set accom panies the early chapters. A two degree o f freedom
system, very am enable to hand calculations, is used in the problem sets to
allow one to follow through the derivations and codes with less w ork than the
three degree o f freedom (tdof) system used in the text. Some o f the problem s
involve m odifying the supplied tdo f M ATLAB code to simulate the two
degree o f freedom problem , allowing one to becom e fam iliar with M ATLAB
coding techniques and usage.

Follow ing an introductory chapter, Chapter 2 starts w ith transfer function
analysis. A systematic m ethod for creating mass and stiffness m atrices is
introduced. Laplace transform s and the transfer function m atrix are then
discussed. The characteristic equation, poles and zeros are defined.

Chapter 3 develops an intuitive m ethod o f sketching frequency responses by
hand, and the significance o f the m agnitudes and phases o f various frequency
ranges are discussed. Follow ing a developm ent o f the imaginary plane and
plotting o f poles and zeros for the various transfer functions, the relationship
between the transfer function and poles and zeros is discussed. Finally, mode
shapes are defined, calculated and plotted.

Chapter 4 discusses the origin and interpretation o f zeros in Single Input and
Single Output (SISO) m echanical systems. Various transfer functions are
taken for a lum ped param eter system to show the origin o f the zeros and how
they vary depending on where the force is applied and where the output is
taken. A n ANSYS finite elem ent model o f a tip-loaded cantilever is analyzed
and the results are converted into a M ATLAB modal state space model to
show an overlay o f the poles o f the “constrained” system and their
relationship with the zeros o f the original model.

Chapter 5, the state space chapter, takes the basic tdof model and uses it to
develop the concept of state space representation o f equations o f motion. A
detailed discussion o f com plex m odes o f vibration is then presented, including
the use o f A rgand diagram s and individual m ode transient responses.

Chapter 6 uses the state space form ulation o f Chapter 5 to solve for frequency
responses and tim e dom ain responses. The matrix exponential is introduced
both as an inverse Laplace transform and as a pow er series solution for a
single degree o f freedom (sdof) m ass system. The tdof transient problem is

© 2001 by Chapman & Hall/CRC

solved using both the M ATLAB function ode45 and a M ATLAB Simulink
model.

Chapter 7, the modal analysis chapter, begins with a definition o f principal
m odes o f vibration, then develops the eigenvalue problem. The relationship
between the determ inant o f the coefficient m atrix and the characteristic
equation is shown. Eigenvectors are calculated and interpreted, and the modal
m atrix is defined. Next, the relationship between physical and principal
coordinate systems is developed and the concept o f diagonalizing or
uncoupling the equations o f m otion is shown. Several m ethods of
norm alization are developed and compared. The transform ation o f initial
conditions and forces from physical to principal coordinates is developed.
Once the solution in principal coordinates is available, the back
transform ation to physical coordinates is shown. The chapter then goes on to
develop various types o f dam ping typically used in sim ulation and discusses
dam ping requirem ents for the existence o f principal modes. A two degree of
freedom model is used to illustrate the form o f the dam ping m atrix when
proportional dam ping is assumed, showing that the answer is not intuitive.

In Chapters 8 and 9 the tdo f model is solved for both frequency responses and
transient responses in closed form and using M ATLAB. A description o f how
individual m odes com bine to create the overall frequency response is
provided, one o f several discussions throughout the book which will help to
develop a strong mental image o f the basics o f the m odal analysis method.

Chapter 10, the state space modal analysis chapter, shows how to solve the
norm al mode eigenvalue problem in state space form, discussing the
interpretation o f the resulting eigenvectors. Equations o f m otion are
developed in the principal coordinates system and again, individual mode
contributions to the overall frequency response are discussed. Real m odes are
discussed in the same context as for com plex modes, using Argand diagrams
and individual mode transient responses to illustrate.

Chapter 11 continues the modal state space form by solving for the frequency
response. Chapter 12 covers tim e dom ain response in modal state space form
using the M ATLAB “ode45” com m and and “function” files.

Chapters 13 and 14 discuss the basics o f static and dynam ic analysis using
finite elements, the generation o f global stiffness and m ass matrices from
elem ent matrices, m ass m atrix forms, static condensation and Guyan
Reduction. The purpose o f the finite elem ent chapters is to familiarize the
reader with basic analysis m ethods used in finite elements. This fam iliarity
should allow a better understanding o f how to interpret the results o f the
m odels w ithout necessarily becom ing a finite elem ent practitioner. A
cantilever beam is used as an example in both chapters. In Chapter 14 a

© 2001 by Chapman & Hall/CRC

com plete eigenvalue analysis w ith Guyan Reduction is carried out by hand for
a tw o-elem ent beam. Then, M ATLAB and ANSYS are used to solve the
eigenvalue problem with arbitrary cantilever models.

Chapters 15 and 16 use eigenvalue results from ANSYS beam m odels to
develop state space M ATLAB m odels for frequency and tim e domain
analyses. Both chapters discuss sim ple m ethods for reducing the size of
ANSYS finite elem ent results to generate small, efficient M ATLAB state
space models which can be used to describe the dynam ic m echanical portion
o f a servo-m echanical model.

Chapter 17 uses an ANSYS m odel o f a single stage SISO disk drive
actuator/suspension system to illustrate using dc or peak gains o f individual
m odes to rank m odes for elim ination when creating a low order state space
M ATLAB model.

Chapter 18 introduces balanced reduction, another m ethod o f ranking m odes
for elimination, and uses it to produce a reduced model o f the SISO disk drive
actuator/suspension m odel from Chapter 17.

In Chapter 19 a com plete ANSYS/M ATLAB analysis o f a two stage M IM O
actuator/suspension system is carried out, with balanced reduction used to
create a low order model.

A ppendix 1 lists the nam es o f all the M ATLAB and ANSYS codes used in the
book, separated by chapter. It also contains instruction for downloading the
M ATLAB and ANSYS files from the M athW orks FTP site as well as the
author’s W eb site, w w w .hatchcon.com .

Appendix 2 contains a short introduction to Laplace transforms.

For M ATLAB product inform ation, contact:

The M athW orks, Inc.
3 Apple Hill Drive
Natick, M A, 01760-2098 U.S.A.

Tel: 508-647-7000

Fax: 508-647-7101

E-mail: info@ m athworks.com

Web: w ww.m athworks.com

© 2001 by Chapman & Hall/CRC

http://www.hatchcon.com
mailto:info@mathworks.com
http://www.mathworks.com

For ANSYS product inform ation, contact:

ANSYS, Inc.
Southpointe
275 Technology Drive
Canonsburg, PA 15317

Tel: 724-746-3304

Fax: 724-514-9494

Web: www.ansys.com

A cknow ledgm ents

There are many people whom I would like to thank for their assistance in the
creation o f this book, some o f whom contributed directly and some o f whom
contributed indirectly.

First, I w ould like to acknowledge the influence o f the late W illiam W eaver,
Jr., Professor Emeritus, Civil Engineering D epartm ent, Stanford University. I
first learned finite elem ents and modal analysis when taking Professor
W eaver’s courses in the early 1970s and his teachings have stood me in good
stead for the last 30 years.

Dr. H aithum Hindi kindly allowed the use o f a portion o f his unpublished
notes for the Laplace transform presentation in Appendix 2 and provided
valuable feedback on the nuances o f “m odred” and balanced reduction.

I would like to thank my review ers for their thorough and tim e-consum ing
reviews o f the document: Stephen Birn, M arianne Crowder, Dr. Y.C. Fu,
Dr. H aithum Hindi, Dr. M ichael Lu, Dr. B abu Rahm an, K athryn Tao and
Yimin Niu. M ark Rodam aker, an ANSYS distributor, kindly review ed the
book from an ANSYS perspective. My daughter-in-law, Stephanie Hatch,
provided valuable editing input throughout the book.

I would also like to thank Dr. W odek Gawronski for his w ords of
encouragem ent and his helpful suggestions to a new author. Dr. G aw ronski’s
two advanced texts on the subject are highly recom m ended for those w ishing
additional inform ation (see References).

© 2001 by Chapman & Hall/CRC

http://www.ansys.com

TABLE OF CONTENTS

C H A P T E R 1: IN T R O D U C T IO N

1.1 Representing Dynam ic M echanical Systems
1.2 M odal Analysis
1.3 M odel Size Reduction

C H A P T E R 2: T R A N S F E R F U N C T IO N A N ALY SIS

2 .1 Introduction
2.2 D eriving M atrix Equations of M otion

2.2.1 Three D egree o f Freedom (tdof) System, Identifying
Com ponents and D egrees o f Freedom

2.2.2 D efining the Stiffness, D am ping and M ass M atrices
2.2.3 Checks on Equations o f M otion for L inear M echanical

Systems
2.2.4 Six D egree o f Freedom (6 dof) M odel - Stiffness M atrix
2.2.5 Rotary A ctuator M odel - Stiffness and M ass M atrices

2.3 Single D egree o f Freedom (sdof) System Transfer Function
and Frequency Response

2.3.1 sdof System Definition, Equations o f M otion
2.3.2 T ransfer F unction
2.3.3 Frequency Response
2.3.4 M ATLAB Code sdofxfer.m Description
2.3.5 M ATLAB Code sdofxfer.m Listing

2.4 tdof Laplace Transform, Transfer Functions, Characteristic
Equation, Poles, Zeros

2.4.1 Laplace Transform s w ith Zero Initial Conditions
2.4.2 Solving for Transfer Functions
2.4.3 Transfer Function M atrix for U ndam ped M odel
2.4.4 Four D istinct Transfer Functions
2.4.5 Poles
2.4.6 Zeros
2.4.7 Sum m arizing Poles and Zeros, M atrix Format

2.5 M ATLAB Code tdofpz3x3 .m - P lot Poles and Zeros
2.5.1 Code D escription
2.5.2 Code Listing
2.5.3 Code Output - Pole/Zero Plots in Com plex Plane

2.5.3.1 U ndam ped M odel - Pole/Zero Plots
2.5.3.2 D am ped M odel - Pole/Zero Plots
2.5.3.3 Root Locus, tdo fpz3x3_rlocus.m
2.5.3.4 U ndam ped and D am ped M odel - tf and zpk Forms

Problems

© 2001 by Chapman & Hall/CRC

C H A P T E R 3: F R E Q U E N C Y R E S PO N SE A N A LY SIS

3. 1 Introduction
3.2 Low and H igh Frequency A sym ptotic Behavior
3.3 H and Sketching Frequency Responses
3.4 Interpreting Frequency Response Graphically in Complex

Plane
3.5 M ATLAB Code tdo fx fe r.m - P lot Frequency Responses

3.5.1 Code D escription
3.5.2 Polynom ial Form, For-Loop Calculation, Code Listing
3.5.3 Polynom ial Form , Vector Calculation, Code Listing
3.5.4 T ransfer F unction F orm -

Bode Calculation, Code Listing
3.5.5 Transfer Function Form, Bode Calculation with

Frequency, Code Listing
3.5.6 Zero/Pole/Gain Function Form , Bode Calculation with

Frequency, Code Listing
3.5.7 Code Output - Frequency Response M agnitude

and Phase Plots
3.6 O ther Form s o f Frequency Response Plots

3.6.1 Log M agnitude versus Log Frequency
3.6.2 db M agnitude versus Log Frequency
3.6.3 db M agnitude versus L inear Frequency
3.6.4 L inear M agnitude versus L inear Frequency
3.6.5 Real and Imaginary M agnitudes versus Log

and Linear Frequency
3.6.6 Real versus Imaginary (Nyquist)

3.7 Solving for Eigenvectors (M ode Shapes) U sing the Transfer
Function M atrix

Problem s

C H A P T E R 4: Z E R O S IN SISO M E C H A N IC A L SY STEM S

4.1 Introduction
4.2 “n” dof Exam ple

4.2.1 M ATLAB Code ndof_num zeros.m ,
Usage Instructions

4.2.2 Seven dof M odel - z7/F1 Frequency Response
4.2.3 Seven dof M odel - z3/F4 Frequency Response
4.2.4 Seven dof M odel - z3/F3, D riving Point Frequency

Response
4.3 Cantilever M odel - ANSYS

4.3.1 Introduction
4.3.2 ANSYS Code can tfem .inp D escription and Listing

© 2001 by Chapman & Hall/CRC

4.3.3 ANSYS Code can tzero .inp D escription and Listing
4.3.4 ANSYS Results, can tzero .m

Problem

C H A P T E R 5: S TA TE SPA C E A N A LY SIS

5.1 Introduction
5.2 State Space Form ulation
5.3 D efinition o f State Space Equations o f M otion
5.4 Input M atrix Forms
5.5 Output M atrix Forms
5.6 Com plex E igenvalues and Eigenvectors - State Space Form
5.7 M ATLAB Code tdo f_non_prop_dam ped .m :

M ethodology, M odel Setup, E igenvalue Calculation Listing
5.8 Eigenvectors - N orm alized to Unity
5.9 Eigenvectors - M agnitude and Phase Angle Representation
5.10 Com plex Eigenvectors Com bining to Give Real M otions
5.11 A rgand D iagram Introduction
5.12 Calculating Z , P lotting Eigenvalues in Com plex Plane,

Frequency Response
5.13 Initial Condition Responses o f Individual M odes
5.14 Plotting Initial Condition Response, Listing
5.15 Plotted Results: Argand and Initial Condition Responses

5.15.1 A rgand D iagram , M ode 2
5.15.2 Time Dom ain Responses, M ode 2
5.15.3 A rgand D iagram , M ode 3
5.15.4 Time Dom ain Responses, M ode 3

Problem s

C H A P T E R 6: S TA TE SPA C E : F R E Q U E N C Y R E S PO N SE ,
T IM E D O M A IN

6.1 Introduction - Frequency Response
6.2 Solving for Transfer Functions in State Space Form Using

Laplace Transform s
6.3 Transfer Function M atrix
6.4 M ATLAB Code tdofss.m - Frequency Response U sing

State Space
6.4.1 Code Description, Plot
6.4.2 Code Listing

6.5 Introduction - Time Dom ain
6 .6 M atrix Laplace Transform - w ith Initial Conditions
6.7 Inverse M atrix Laplace Transform, M atrix Exponential
6 .8 Back-Transform ing to Time Domain
6.9 Single D egree o f Freedom System - Calculating M atrix

© 2001 by Chapman & Hall/CRC

Exponential in Closed Form
6.9.1 Equations o f M otion, Laplace Transform
6.9.2 D efining the M atrix Exponential - T aking Inverse

Laplace Transform
6.9.3 D efining the M atrix Exponential - U sing Series

Expansion
6.9.4 Solving for T ime Dom ain Response

6 .10 M ATLAB Code tdof_ss_ tim e_ode45_slnk .m -
T ime Dom ain Response o f tdof M odel

6.10.1 Equation o f M otion Review
6 .10.2 Code D escription
6.10.3 Code Results - Time Dom ain Responses
6.10.4 Code Listing
6.10.5 M ATLAB Function td o fssfun .m -

Called by tdof_ss_ tim e_ode45_slnk .m
6.10.6 Simulink M odel tdo fss_sim ulink .m dl

Problem s

C H A P T E R 7: M O D A L A N ALY SIS

7.1 Introduction
7.2 Eigenvalue Problem

7.2.1 Equations o f M otion
7.2.2 Principal (Normal) M ode Definition
7.2.3 Eigenvalues / Characteristic Equation
7.2.4 E igenvectors
7.2.5 Interpreting Eigenvectors
7.2.6 M odal M atrix

7.3 U ncoupling the Equations o f M otion
7.4 Norm alizing Eigenvectors

7.4.1 N orm alizing w ith Respect to Unity
7.4.2 N orm alizing w ith Respect to M ass

7.5 Reviewing Equations o f M otion in Principal Coordinates -
M ass Norm alization

7.5.1 Equations o f M otion in Physical Coordinate System
7.5.2 Equations o f M otion in Principal Coordinate System
7.5.3 Expanding M atrix Equations o f M otion in Both

Coordinate Systems
7.6 Transform ing Initial Conditions and Forces
7.7 Summarizing Equations o f M otion in Both Coordinate

Systems
7.8 Back-Transform ing from Principal to Physical Coordinates
7.9 Reducing the M odel Size W hen Only Selected Degrees of

Freedom are Required
7.10 D am ping in Systems w ith Principal M odes

© 2001 by Chapman & Hall/CRC

7.10.1 Overview
7.10.2 Conditions Necessary for Existence o f Principal M odes

in D am ped System
7.10.3 D ifferent Types o f D am ping

7.10.3.1 Simple Proportional Dam ping
7.10.3.2 Proportional to Stiffness M atrix -

“Relative” D am ping
7.10.3.3 Proportional to M ass M atrix -

“Absolute” D am ping
7.10.4 D efining D am ping M atrix W hen Proportional

D am ping is Assum ed
7.10.4.1 Solving for D am ping Values
7.10.4.2 Checking Rayleigh Form o f D am ping M atrix

Problem s

C H A P T E R 8: F R E Q U E N C Y R E S PO N SE : M O D A L F O R M

8 .1 Introduction
8 .2 Review from Previous Results
8.3 Transfer Functions - L aplace Transform s

in Principal Coordinates
8.4 Back-Transform ing M ode Contributions to Transfer

Functions in Physical Coordinates
8.5 Partial Fraction Expansion and the M odal Form
8 .6 Forcing Function Com binations to Excite Single M ode
8.7 H ow M odes Com bine to Create Transfer Functions
8 .8 Plotting Individual M ode Contributions
8.9 M ATLAB Code tdo f_m odal_x fer.m - P lotting Frequency

Responses, M odal Contributions
8.9.1 Code Overview
8.9.2 Code Listing, Partial

8.10 tdof Eigenvalue Problem U sing ANSYS
8 .10.1 ANSYS Code th reed o f.in p Description
8 .10.2 ANSYS Code Listing
8.10.3 ANSYS Results

Problem s

C H A P T E R 9 T R A N SIE N T R E S P O N S E : M O D A L F O R M

9.1 Introduction
9.2 Review o f Previous Results
9.3 Transform ing Initial Conditions and Forces

9.3.1 Transform ing Initial Conditions
9.3.2 Transform ing Forces

9.4 Com plete Equations o f M otion in Principal Coordinates

© 2001 by Chapman & Hall/CRC

9.5 Solving Equations o f M otion U sing Laplace Transform
9.6 M ATLAB Code tdo f_m odal_ tim e.m - Time D om ain

D isplacem ents in Physical/Principal Coordinates
9.6.1 Code D escription
9.6.2 Code Results
9.6.3 Code Listing

Problem s

C H A P T E R 10: M O D A L A N A LY SIS: STA T E S PA C E F O R M

10.1 Introduction
10.2 Eigenvalue Problem
10.3 Eigenvalue Problem - Laplace Transform
10.4 Eigenvalue Problem - Eigenvectors
10.5 M odal M atrix
10.6 M ATLAB Code tdofss_eig .m : Solving for Eigenvalues

and Eigenvectors
1 0 .6.1 Code D escription
1 0 .6 .2 Eigenvalue Calculation
10.6.3 Eigenvector Calculation
10.6.4 M ATLAB Eigenvectors - Real and Imaginary Values
10.6.5 Sorting Eigenvalues / E igenvectors
1 0 .6 .6 Norm alizing Eigenvectors
10.6.7 W riting H om ogeneous Equations o f M otion

10.6.7.1 Equations o f M otion - Physical Coordinates
10.6.7.2 Equations o f M otion - Principal Coordinates

10.6.8 Individual M ode Contributions,
M odal State Space Form

10.7 Real M odes - A rgand Diagram s, Initial Condition
Responses o f Individual M odes

10.7.1 Undam ped M odel, Eigenvectors, Real M odes
10.7.2 Principal Coordinate Eigenvalue Problem
10.7.3 D am ping Calculation, E igenvalue Com plex Plane Plot
10.7.4 Principal D isplacem ent Calculations
10.7.5 Transform ation to Physical Coordinates
10.7.6 P lotting Results
10.7.7 Undam ped/Proportionally D am ped Argand Diagram,

M ode 2
10.7.8 Undam ped/Proportionally D am ped Argand Diagram,

M ode 3
10.7.9 Proportionally D am ped Initial Condition Response,

M ode 2
10.7.10 Proportionally D am ped Initial Condition Response,

M ode 3
Problem s

© 2001 by Chapman & Hall/CRC

C H A P T E R 11: F R E Q U E N C Y R E SPO N SE :
M O D A L S TA TE SPA C E F O R M

11 .1 Introduction
1 1 .2 M odal State Space Setup, tdofss_m odal_xfer_m odes.m

Listing
11.3 Frequency Response Calculation
11.4 Frequency Response Plotting
11.5 Code Results - Frequency Response Plots,

2% o f Critical Damping
1 1 .6 Form s o f Frequency Response Plotting
Problem

C H A P T E R 12: T IM E D O M A IN : M O D A L S TA TE SPA CE
F O R M

12.1 Introduction
12.2 Equations o f M otion - M odal Form
12.3 Solving Equations o f M otion U sing Laplace Transforms
12.4 M ATLAB Code tdofss_m odal_ tim e_ode45 .m -

Time Dom ain M odal Contributions
12.4.1 M odal State Space M odel Setup, Code Listing
12.4.2 Problem Setup, Initial Conditions, Code Listing
12.4.3 Solving Equations U sing ode45, Code Listing
12.4.4 Plotting, Code Listing
12.4.5 Functions Called: tdo fssm odalfun .m ,

tdofssm odal1 fun .m , tdo fssm odal2 fun .m ,
tdofssm odal3 fun .m

12.5 Plotted Results
Problem

C H A P T E R 13: F IN IT E E L E M E N T S : S T IF FN E SS M A T R IC E S

13.1 Introduction
13.2 Six dof M odel - Elem ent and Global Stiffness M atrices

13.2.1 Overview
13.2.2 E lem ent Stiffness M atrix
13.2.3 Building Global Stiffness M atrix U sing Elem ent

Stiffness M atrices
13.3 Two-Elem ent Cantilever Beam

13.3.1 E lem ent Stiffness M atrix
13.3.2 D egree o f Freedom D efinition - Beam Stiffness M atrix
13.3.3 Building Global Stiffness M atrix U sing Elem ent

Stiffness M atrices

© 2001 by Chapman & Hall/CRC

13.3.4 E lim inating Constraint Degrees o f Freedom from
Stiffness M atrix

13.3.5 Static Solution: Force Applied at Tip
13.4 Static Condensation

13.4.1 Derivation
13.4.2 Solving Two-Elem ent Cantilever B eam Static Problem

Problem s

C H A P T E R 14: F IN IT E E L E M E N T S : D Y N A M IC S

14.1 Introduction
14.2 Six dof Global M ass M atrix
14.3 Cantilever D ynam ics

14.3.1 Overview - M ass M atrix Forms
14.3.2 Lum ped M ass
14.3.3 Consistent M ass

14.4 D ynam ics o f Two-Elem ent Cantilever -
Consistent M ass M atrix

14.5 Guy an Reduction
14.5.1 Guy an Reduction Derivation
14.5.2 Two-Elem ent Cantilever E igenvalues Closed Form

Solution U sing Guyan Reduction
14.6 Eigenvalues o f Reduced Equations for Two-Element

Cantilever, State Space Form
14.7 M ATLAB Code can t_2el_guyan .m -

Two-Elem ent Cantilever E igenvalues/Eigenvectors
14.7.1 Code D escription
14.7.2 Code Results

14.8 M ATLAB Code can tb eam _ g u y an .m -
User-Defined Cantilever Eigenvalues/Eigenvectors

14.9 ANSYS Code can tbeam .inp , Code D escription
14.10 M ATLAB can tb eam _ g u y an .m / A NSYS can tb e am .in p

Results Summary
14.10.1 10-Element Beam Frequency Comparison
14.10.2 20-Elem ent B eam M ode Shape Plots, M odes 1 to 5

14.11 M ATLAB Code can tb eam _ g u y an .m Listing
14.12 ANSYS Code can tb eam .in p Listing
Problem s

C H A P T E R 15: SISO STA T E S PA C E M A T L A B M O D E L
F R O M ANSYS M O D E L

15.1 Introduction
15.2 ANSYS Eigenvalue Extraction M ethods

© 2001 by Chapman & Hall/CRC

15.3 Cantilever M odel, ANSYS Code can tbeam _ss.inp ,
M ATLAB Code can tbeam _ss_ freq .m

15.4 ANSYS 10-Element M odel Eigenvalue/Eigenvector
Summary

15.5 M odal M atrix
15.6 M ATLAB State Space M odel from ANSY S Eigenvalue

Run - can tbeam _ss_m odred .m
15.6.1 Input
15.6.2 D efining D egrees o f Freedom and N um ber o f M odes
15.6.3 Sorting M odes by dc Gain and Peak Gain,

Selecting M odes U sed
15.6.4 Dam ping, D efining Reduced Frequencies and M odal

M atrices
15.6.5 Setting up System M atrix “a”
15.6.6 Setting up Input M atrix “b”
15.6.7 Setting up Output M atrix “c” and D irect Transmission

M atrix “d”
15.6.8 Frequency Range, “ss” Setup, Bode Calculations
15.6.9 Full M odel - P lotting Frequency Response,

Step Response
15.6.10 Reduced M odels - P lotting Frequency Response,

Step Response
15.6.11 Reduced M odels - P lotted Results - Four M odes Used
15.6.12 M odred D escription
15.6.13 D efining Sorted or Unsorted M odes to be Used
15.6.14 D efining System for Reduction
15.6.15 M odred Calculations - “m dc” and “del”
15.6.16 Reduced M odred M odels - P lotting Commands
15.6.17 Plotting U nsorted M odred Reduced Results -

E lim inating High Frequency M odes
15.6.18 Plotting Sorted M odred Reduced Results -

E lim inating Low er dc Gain M odes
15.6.19 M odred Summary

15.7 ANSYS Code can tbeam _ss.inp Listing

C H A P T E R 16: G R O U N D A C C E L E R A T IO N M A TLA B
M O D E L F R O M ANSYS M O D E L

16.1 Introduction
16.2 M odel D escription
16.3 Initial ANSYS M odel Com parison - Constrained-Tip and

Spring-Tip Frequencies/M ode Shapes
16.4 M ATLAB State Space M odel from ANSY S Eigenvalue

Run - can tb eam _ ss_ sh k r_ m o d red .m

© 2001 by Chapman & Hall/CRC

16.4.1 Input
16.4.2 Shaker, Spring, Gram Force Definitions
16.4.3 D efining D egrees o f Freedom and N um ber o f M odes
16.4.4 Frequency Range, Sorting M odes by dc Gain and

Plotting, Selecting M odes Used
16.4.5 Dam ping, D efining Reduced Frequencies and M odal

M atrices
16.4.6 Setting Up System M atrix “a”
16.4.7 Setting Up M atrices “b ,” “c” and “d”
16.4.8 “ss” Setup, Bode Calculations
16.4.9 Full M odel - P lotting Frequency Response,

Shock Response
16.4.10 Reduced M odels - P lotting Frequency Response,

Shock Response
16.4.11 Reduced M odels - P lotted Results, Four M odes Used
16.4.12 M odred - Setting up, “m dc” and “del” Reduction,

Bode Calculation
16.4.13 Reduced M odred M odels - P lotting Commands
16.4.14 Plotting U nsorted M odred Reduced Results -

E lim inating High Frequency M odes
16.4.15 Plotting Sorted M odred Reduced Results -

E lim inating Low er dc Gain M odes
16.4.16 M odel Reduction Summary

16.5 ANSYS Code ca n tb eam _ ss_ sp rin g _ sh k r.in p Listing

C H A P T E R 17: SISO D IS K D R IV E A C T U A T O R M O D E L

17.1 Introduction
17.2 A ctuator D escription
17.3 ANSY S Suspension M odel Description
17.4 ANSYS Suspension M odel Results

17.4.1 Frequency Response
17.4.2 M ode Shape Plots

17.5 ANSYS Actuator/Suspension M odel D escription
17.6 ANSYS Actuator/Suspension M odel Results

17.6.1 Eigenvalues, Frequency Responses
17.6.2 M ode Shape Plots
17.6.3 M ode Shape D iscussion
17.6.4 ANSYS O utput Exam ple Listing

17.7 M ATLAB M odel, M ATLAB Code act8 .m Listing
and Results

17.7.1 Code D escription
17.7.2 Input, dof D efinition
17.7.3 Forcing Function Definition, dc Gain Calculation
17.7.4 Ranking Results

© 2001 by Chapman & Hall/CRC

17.7.5 Building State Space M atrices
17.7.6 Define State Space Systems, Original and Reduced
17.7.7 P lotting o f Results

17.8 U niform and Non-U niform D am ping Com parison
17.9 Sample Rate and A liasing Effects
17.10 Reduced Truncation and M atched dc Gain Results

C H A P T E R 18: B A LA N C ED R E D U C T IO N

18.1 Introduction
18.2 Reviewing dc Gain Ranking, M ATLAB Code b a lred .m
18.3 Controllability, Observability
18.4 Controllability, Observability Gramians
18.5 Ranking U sing Controllability/Observability
18.6 Balanced Reduction
18.7 Balanced and dc Gain R anking Frequency Response

Com parison
18.8 Balanced and dc Gain R anking Impulse Response

Com parison

C H A P T E R 19: M IM O T W O -ST A G E A C T U A T O R M O D E L

19.1 Introduction
19.2 A ctuator D escription
19.3 ANSYS M odel D escription
19.4 ANSYS Piezo A ctuator/Suspension M odel Results

19.4.1 Eigenvalues, Frequency Response
19.4.2 M ode Shape Plots
19.4.3 M ode Shape D iscussion
19.4.4 ANSYS Output Listing

M ATLAB M odel, M ATLAB Code ac t8pz .m Listing
and Results

19.5.1 Input, dof D efinition
19.5.2 Forcing Function Definition, dc Gain Calculations
19.5.3 Building State Space M atrices
19.5.4 Balancing, Reduction
19.5.5 Frequency Responses for D ifferent Num bers of

Retained States
19.5.6 “del” and “m dc” Frequency Response Com parison
19.5.7 Impulse Response

19.6 M IM O Summary
Problem s

A PP E N D IX 1: M A T L A B an d ANSYS P ro g ram s

© 2001 by Chapman & Hall/CRC

A PP E N D IX 2: L ap lace T ran sfo rm s
A2.1 Definitions
A2.2 Exam ples, Laplace Transform Table
A2.3 Duality
A2.4 D ifferentiation and Integration
A2.5 Applying Laplace Transform s to L O D E ’s

w ith Zero Initial Conditions
A2.6 Transfer Function D efinition
A2.7 Frequency Response D efinition
A2.8 Applying Laplace Transform s to L O D E ’s

w ith Initial Conditions
A2.9 Applying Laplace Transform to State Space

R eferences

© 2001 by Chapman & Hall/CRC

CHAPTER 1

INTRODUCTION

This book has three main purposes. The first purpose is to collect in one
document the various methods of constructing and representing dynamic
mechanical models. The second purpose is to help the reader develop a strong
understanding of the modal analysis technique, where the total response of a
system can be constructed by combinations of individual modes of vibration.
The third purpose is to show how to take the results of large finite element
models and reduce the size of the model (model reduction), extracting lower
order state space models for use in MATLAB.

1.1 Representing Dynamic Mechanical Systems

We will see that the nature of damping in the system will determine which
representation will be required. In lightly damped structures, where the
damping comes from losses at the joints and the material losses, we will be
able to use “modal analysis,” enabling us to restructure the problem in terms
of individual modes of vibration with a particular type of damping called
“proportional damping.” For systems which have significant damping, as in
systems with a specific “damper” element, we will have to use the original,
coupled differential equations for solution.

The left-hand block in Figure 1.1 represents a damped dynamic model with
coupled equations of motion, a set of initial conditions and a definition of the
forcing function to be applied. If damping in the system is significant, then
the equations of motion need to be solved in their original form. The option
of using the normal modes approach is not feasible. The three methods of
solving for time and frequency domain responses for highly damped, coupled
equations are shown.

1.2 Modal Analysis

Most practical problems require using the finite element method to define a
model. The finite element method can be formulated with specific damping
elements in addition to structural elements for highly damped systems, but its
most common use is to model lightly damped structures.

© 2001 by Chapman & Hall/CRC

Figure 1.1: Coupled equations of motion flowchart.

The diagram in Figure 1.2 shows the methodology for analyzing a lightly
damped structure using normal modes. As with the coupled equation solution
above, the solution starts with deriving the undamped equations of motion in
physical coordinates. The next step is solving the eigenvalue problem,
yielding eigenvalues (natural frequencies) and eigenvectors (mode shapes).
This is the most intuitive part of the problem and gives one considerable
insight into the dynamics of the structure by understanding the mode shapes
and natural frequencies.

© 2001 by Chapman & Hall/CRC

Transform № Solution in
Physical Coordinates

Time Domain
Frequency Domain

(Chapter 10-12)

Figure 1.2: Modal analysis method flowchart.

To solve for frequency and time domain responses, it is necessary to
transform the model from the original physical coordinate system to a new
coordinate system, the modal or principal coordinate system, by operating on
the original equations with the eigenvector matrix. In the modal coordinate
system the original undamped coupled equations of motion are transformed to
the same number of undamped uncoupled equations. Each uncoupled
equation represents the motion of a particular mode of vibration of the system.
It is at this step that proportional damping is applied. It is trivial to solve
these uncoupled equations for the responses of the modes of vibration to the
forcing function and/or initial conditions because each equation is the
equation of motion of a simple single degree of freedom system. The desired
responses are then back-transformed into the physical coordinate system,
again using the eigenvector matrix for conversion, yielding the solution in
physical coordinates.

The modal analysis sequence of taking a complicated system, (1) transforming
to a simpler coordinate system, (2) solving equations in that coordinate system
and then (3) back-transforming into the original coordinate system is

(Chapter 10)

Solution in Modal
Coordinates

(Chapter 11,12)

© 2001 by Chapman & Hall/CRC

analogous to using Laplace transforms to solve differential equations. The
original differential equation is (1) transformed to the “s” domain by using a
Laplace transform, (2) the algebraic solution is then obtained and is (3) back-
transformed using an inverse Laplace transform.

It will be shown that once the eigenvalue problem has been solved, setting up
the zero initial condition state space form of the uncoupled equations of
motion in principal coordinates can be performed by inspection. The solution
and back-transformation to physical coordinates can be performed in one step
in the MATLAB solution.

The advantage of the modal solution is the insight developed from
understanding the modes of vibration and how each mode contributes to the
total solution.

1.3 Model Size Reduction

It is useful to be able to provide a model of the mechanical system to control
engineers using the fewest states possible, while still providing a
representative model. The mechanical model can then be inserted into the
complete mechanical/control system model and be used to define the system
dynamics.

Figure 1.3 shows how to convert a large finite element model (and most real
finite element models are “large,” with thousands to hundreds of thousands of
degrees of freedom) to a smaller model which still provides correct responses
for the forcing function input and desired output points.

The problem starts out with the finite element model which is solved for its
eigenvalues and eigenvectors (resonant frequencies and mode shapes). There
are as many eigenvalues and eigenvectors as degrees of freedom for the
model, typically too large to be used in a MATLAB model.

Once again, the eigenvalues and eigenvectors provide considerable insight
into the system dynamics, but the objective is to provide an efficient, “small”
model for inclusion into the mechanical/servo system model. This requires
reducing the size of the model while still maintaining the desired input/output
relationships.

© 2001 by Chapman & Hall/CRC

© 2001 by Chapman & Hall/CRC

set to a new set which includes only those degrees of freedom where forces
are applied and/or where responses are desired.

The second step for Single Input Single Output (SISO) systems is to reduce
the number of modes of vibration used for the solution by ranking the relative
importance of each mode to the overall response. For Multi Input Multi
Output (MIMO) systems, a more sophisticated method of reduction which
simultaneously takes into account the controllability and observability of the
system is required.

Figure 1.4 shows the overall frequency response for a SISO cantilever beam
model discussed in Chapter 15. Superimposed over the overall frequency
response is the contribution of each of the individual 10 modes of vibration
which make up the overall response.

cantilever tip displacement for mid-length force, all 10 modes included

Figure 1.4: Individual mode contribution to overall frequency response.

We will show that modes with little or no displacement at the reduced set of
degrees of freedom are candidates for elimination. For example, the three
modes which have low frequency magnitudes of less than -120db in Figure
1.4 have no effect on the overall frequency response - their peaks do not show
up on the overall frequency response. The less important modes either can be
eliminated directly or a more sophisticated method can be used which takes
into account the low frequency effects of the removed modes. Both types are
discussed in detail, accompanied by examples.

A reduced solution can provide very good results with a significant reduction
in number of states - a model which is very amenable to being combined with
a servo model for a complete servo mechanical system model.

© 2001 by Chapman & Hall/CRC

CHAPTER 2

TRANSFER FUNCTION ANALYSIS

2.1 In tro d u c tio n

The purpose o f this chapter is to illustrate how to derive equations o f m otion
for M ulti Degree o f Freedom (mdof) systems and how to solve for their
transfer functions.

The chapter starts by developing equations o f m otion for a specific th re e
degree of freed o m dam ped system (indicated throughout the book by the
acronym “td o f ’). A systematic m ethod o f creating “global” mass, damping
and stiffness matrices is borrow ed from the stiffness m ethod o f m atrix
structural analysis. The tdo f model will be used for the various analysis
techniques through most o f the book, providing a com mon thread that links the
pieces into a whole.

Two additional examples are used to illustrate the m ethod for building m atrix
equations o f motion. The first is a lumped mass six degree o f freedom (6 dof)
system for which the stiffness m atrix is developed. The second is a simplified
rotary actuator system from a disk drive, for which the com plete undam ped
equations o f m otion are developed.

Following the equations o f m otion sections, the chapter continues with a
review o f the transfer function and frequency response analyses o f a single
degree o f freed o m (sdof) dam ped example. A fter developing the closed form
solution o f the equations, M ATLAB code is used to calculate and plot
m agnitude and phase versus frequency for a range o f dam ping values.

The tdof model is then reintroduced and Laplace transforms are used to
develop its transfer functions. In order to facilitate hand calculations o f poles
and zeros, dam ping is set to zero. The characteristic equation, poles and zeros
are then defined and calculated in closed form. M ATLAB code is used to plot
the pole/zero locations for the nine transfer functions using M A TLA B ’s
“pzm ap” command.

M ATLAB is used to calculate and plot poles and zeros for values o f dam ping
greater than zero and we will see that additional real values zeros start
appearing as dam ping is increased from zero. The significance o f the real axis
zeros is discussed.

© 2001 by Chapman & Hall/CRC

2.2.1 T h ree D egree o f F reed o m (tdof) System , Iden tify ing C om ponents
an d D egrees o f F reedom

2.2 Deriving Matrix Equations of Motion

The first step in analyzing a mechanical system is to sketch the system,
showing the degrees o f freedom, the masses, stiffnesses and dam ping present,
and showing applied forces. The tdof system to be followed throughout the
book, shown in Figure 2.1, consists o f three masses, num bered 1 to 3, two
springs between the m asses and two dam pers also between the masses. The
model is purposely not connected to ground to allow a “rigid body” degree of
freedom, m eaning that at “low” frequencies the set o f three m asses can all
move in one direction or the other as a single rigid body, w ith no relative
m otion between them.

The num ber o f degrees o f freed o m (dof) for a model is the num ber of
geometrically independent coordinates required to specify the configuration
for the model. For consistency, the notation “z” will be used for degrees of
freedom, saving “x” and “y ” for state space representations later in the book.
For the system shown in Figure 2.1 where each mass can move only along the
z axis, a single degree of freedom for each mass is sufficient, hence the
degrees o f freedom z1, z 2 and z3 .

2.2.2 D efin ing th e S tiffness, D am ping an d M ass M atrices

The equations o f m otion will be derived in m atrix form using a m ethod
derived from the stiffness m ethod o f structural analysis, as follows:

Stiffness M a trix : A pply a u n it d isp lacem ent to each dof, one at a
time. Constrain the dof’s not displaced and define the stiffness
d ep en d en t co n s tra in t fo rce required for all dof’s to hold the system
in the constrained position.

F 3

Figure 2.1: tdof system schematic.

© 2001 by Chapman & Hall/CRC

The row elements o f each column o f the stiffness matrix are then
defined by the constraints associated with each dof that are required
to hold the system in the constrained position.

D am ping M a trix : A pply a u n it velocity to each dof, one at a time.
Constrain the do f’s not m oving and define th e velocity -dependen t
c o n s tra in t fo rce required to keep the system in that state.

The row elements o f each column o f the dam ping m atrix are then
defined by the constraints associated with each dof that are required
to keep the system in that state - with one dof m oving with constant
velocity and all the other dof’s not moving.

M ass M a tr ix : A pp ly a u n it acce le ra tion to each dof, one at a time.
Constrain the dof’s not being accelerated and define the
acce le ra tio n -d ep en d en t c o n s tra in t forces required.

The row elements o f each column of the mass m atrix are then defined
by the constraints associated with keeping one dof accelerating at a
constant rate and the other dof’s stationary. Since in this model the
only forces transm itted between the m asses are proportional to
displacem ent (the springs) and velocity (viscous damping), no forces
are transm itted between m asses due to one o f the m asses accelerating.
This leads to a diagonal m ass m atrix in cases where the origin o f the
coordinate systems are taken through the center o f m ass o f the bodies
and the coordinate axes are aligned with the principal moments of
inertia o f the body.

Table 2.1 shows how the three matrices are filled out. To fill out column 1 of
the mass, dam ping and stiffness matrices, mass 1 is given a unit acceleration,
velocity and displacement, respectively. Then the constraining forces required
to keep the system in that state are defined for each dof, where row 1 is for dof
1, row 2 is for dof 2 and row 3 is for dof 3.

© 2001 by Chapman & Hall/CRC

Column 1 Column 2 Column 3

accel accel accel

UNIT vel dof1 Unit< vel d o f2 Unit< vel

disp disp disp

dof3

m 1 0 0 dof1

0 m 2 0 dof 2

0 0 m 3 dof3

c 1 - c 1 0 dof1

- c 1 c1 + c2 - c 2 dof 2

0 - c 2 c 2 dof3

k 1 - k 1 0 dof1

- k 1 k 1 + k 2 k 2 dof 2

0 k 2 k 2 dof3

Table 2.1: m, c, k columns and associated dof displacements. The cross-hatched masses in
the figures above each column are constrained and non-cross-hatched mass is moved a unit

displacement.

The general m atrix form for a tdof system is shown below, where the “ij”
subscripts in mjj, Cjj, k are defined as follows: “i” is the row num ber and

“j ” is the column number.

j=1 j=2 j=3

i = 1 ' m n m 12 m 13 ' z1 c11 c12 c13 z 1

1I

Z1 ' F '
i = 2 21 22m 23m z 2 + c21 c22 c23 Z 2 + 2k 2k 2k Z2 = F2 (2.1)
i = 3 _ m 31m 32 m 33 _ _Z3 _ _ c31 c32 c33 _ _ Z 3 _ 3k 3k 33k _ Z3 _ . F3 .

M ass Damping Stiffness

© 2001 by Chapman & Hall/CRC

Expanding the matrix equations o f m otion by multiplying across and down:

m 11z1 + m 12z 2 + m 13z 3 + c11z 1 + c12z 2 + c13Z3 + k 11Z1 + k 12Z2 + k 13Z3 F1 (2 '2)

m 21Z1 + m 22Z 2 + m 23Z 3 + c21Z 1 + c22Z 2 + c23Z 3 + k 2lz1 + k 22z2 + k 23z3 = F2 (2.3)

m 31Z1 + m 32Z 2 + m 33Z 3 + c31Z 1 + c32Z 2 + c33Z3 + k 31Z1 + k 32Z2 + k 33Z3 = F3 (2 .4)

The matrix equations o f m otion for our tdof problem , from Table 2 .1 , is:

m 1 0 0 " Z1"

1

- 1 0
1

"Z1
0 m 2 0 Z 2 + - c (c1 + c2) -c2 Z 2
0 0 m 3 _Z3 _ 0 - c 2 c2 _ Z 3

" k 1 - k 1 0 " Z1 ■ F1 ■

- k 1 (k1+ k2) k 2 Z2 = F2

0 k 2 k 2 _ _ Z3 _ . F3 _

Expanding:

m ^ + c1Z 1 - c1Z 2 + k 1Z1 - k 1Z2 = F1

m 2Z2 - c1Z1 + (c1 + c2)Z2 - c2Z3 - k 1Z1 + (k 1 + k 2)Z2 - k 2Z3 = F2 (2.6a,b,c)

m 3Z3 - c2Z2 + c2Z3 - k 2Z2 + k 2Z3 = F3

2.2.3 C hecks on E quations o f M otion fo r L in e a r M echan ica l System s

Two quick checks w hich should always be carried out for linear mechanical
systems are the following:

1) All diagonal term s must be positive.

2) The mass, dam ping and stiffness matrices must be symmetrical.
For example Ц = k ji for the stiffness matrix.

2.2.4 Six D egree o f F reed o m (6dof) M odel - Stiffness M a trix

The stiffness m atrix developm ent for a more com plicated model than the tdof
model used so far is shown below. The figure below shows a 6dof system
with a rigid body m ode and no damping.

© 2001 by Chapman & Hall/CRC

M oving each dof a unit displacem ent and then writing down the reaction
forces to constrain that configuration for each o f the column elements, the
stiffness matrix for this example can be written by inspection as shown in
Table 2 .2 . N ote that the symmetry and positive diagonal checks are satisfied.

(ki + k2) - k l 0 0 0 - k

- k i (k1 + k 3 + k 7) - k 3 0 - k 7 0

0 - k 3 (k3 + k 4 + k 6) k 4 - k 6 0

0 0 k 4 (k4 + k j) k 5 0

0 k 7 k 6 k 5 (k 5 + k 6 + k 7) 0

- k 2 0 0 0 0 k 2

Table 2.2: Stiffness matrix terms for 6dof system.

2.2.5 R o ta ry A c tu a to r M odel - S tiffness an d M ass M atrices

The technique is also applicable to systems with rotations com bined with
translations, as long as rotations are kept small. The system shown below
represents a sim plified rotary actuator from a disk drive that pivots about its
m ass center, has force applied at the left-hand end (representing the rotary
voice coil motor) and has a “recording head” m 2 at the right-hand end. The

“head” is connected to the end o f the actuator with a spring and the pivot
bearing is connected to ground through the radial stiffness o f its bearing.

© 2001 by Chapman & Hall/CRC

Figure 2.3: Rotary actuator schematic.

Starting off by defining the degrees o f freedom, stiffnesses, m ass and inertia
terms:

dof:
z 1 translation o f actuator
z2 rotation o f actuator
z3 translation o f head

Stiffnesses:
k 1 actuator bearing radial stiffness
k2 “suspension” stiffness

Inertias:
m 1,J1 actuator mass, inertia
m 2 “head” mass

© 2001 by Chapman & Hall/CRC

First Column: z1 = 1

Second Column: z2 = 1

Third Column: z3 = 1

Rotary Actuator Stiffness Example

Figure 2.4: Unit displacements to define mass and stiffeness matrices.

See Figure 2.4 to define the entries o f each column o f (2.7), the
forces/m om ents required to constrain the respective dof in the configuration
shown.

© 2001 by Chapman & Hall/CRC

m, 0 0 z i
0 J, 0 z 2 +

0 0 m 2 _z 3 _

(k, + k 2) l2k 2 - k 2

l2k 2 l2k2 l2k2

—k 2 - l 2k 2 k 2

1N"
1 I 1 I

— c
1

z 2 = T2 = Fclj

1I I 0 1 1 0 1

(2.7)

F, = — Fc (2.8)

T2 = Fcl, (2.9)

2.3 Single D egree o f F reed o m (sdof) System T ra n s fe r F u n ctio n
an d F req u en cy R esponse

2.3.1 sdof System D efin ition , E q u atio n s of M otion

The sdof system to be analyzed is shown below. The system consists o f a
mass, m, connected to ground by a spring o f stiffness k and a dam per with
viscous dam ping coefficient c. Since the m ass can only move in the z
direction, a single degree of freedom is sufficient to define the system
configuration. Force F is applied to the mass.

k
-» z r F

— 3D—
c

m

О О\ \ \ \

Figure 2.5: Single degree of freedom system.

The equation o f m otion for this system is given by:

mz + cZ + kz = F (2.10)

2.3.2 T ra n s fe r F unction

Taking the Laplace transform o f a general second order differential equation
(DE) with initial conditions is:

© 2001 by Chapman & Hall/CRC

Second Order DE: L {z(t)} = s2z(s) — sz(0) — z (0) , (2.11)

where z(0) and z (0) are position and velocity initial conditions, respectively,

and z(s) is the Laplace transform o f z(t). See Appendix 2 for more on Laplace
transforms.

Because we are taking a transfer function, representing the steady state
response o f the system to a sinusoidal input, initial conditions are set to zero,
leaving

L {z (t)} = s2z(s) (2.12)

The Laplace transform o f the sdof equation o f m otion (2.10), where F(s)
represents the Laplace transform o f F, is:

m s2z(s) + csz(s) + kz(s) = F(s) (2.13)

Solving for the transfer function:

z(s) 1 1 /m

F(s) m s2 + cs + k s 2 + _ c s + _k_
(2.14)

m m

W e can simplify the equation above by applying the following definitions:

2 k
1) ran = — , where ran is the undam ped natural frequency,

m
rad/sec

2) ccr = 2>/km , where is the “critical” dam ping value

3) Z is the amount o f proportional damping, typically

stated as a percentage o f critical dam ping

4) 2Zffln is the m ultiplier o f the velocity term, z ,

developed below:

© 2001 by Chapman & Hall/CRC

- = 2 Z 4
m

= 2
c k

ccr ' m

2c Vk

2>/km Vm
c
m

(2.15)

Rewriting, using the above substitutions:

1 /mz(s) = ______________
F(s) s2 + 2^rnns + юП

(2.16)

2.3.3 F req u en cy R esponse

Substituting “ jra ” for “s” to calculate the frequency response, where “j ” is the

imaginary operator:

z(jra) = 1 /m

F(jfij) (jca)2 + 2£юпаю) + ю2

= 1 /m

_ю 2 + 2 ^ r n J + mj;

= 1/(шю2)

- 1 + 2^ j + ю 2
ю ю2

1/(шю2)

Ю! _ 1 1+ 2Z^ j
ю) Ю

21/(шю)

[f ̂ 12 _ 1] + j2Z f)
Ll ю) j l ю)

(2 .17a,b,c,d,e)

The frequency response equation above shows how the ratio (z/F) varies as a
function o f frequency, ю . The ratio is a com plex num ber that has some

interesting properties at different values o f the ratio (<an / ю) .

© 2001 by Chapman & Hall/CRC

A t low frequencies relative to the resonant frequency, ю; >> ююп >> ю2 , and

the transfer function is given by:

z(jo>) = 1 /m

F(jю) _ю 2 + 2 £ ю о у + ю ̂

1 /m 1 1

ю; шю; m | —
m

1

k

(2.18)

Since the frequency response value at any frequency is a com plex number, we
can take the magnitude and phase.

z(jю)

F(jю)

Z j = 0
F j)

(2.19a,b)

Thus, the gain at low frequencies is a constant, (1/k) or the inverse o f the
stiffness. Phase is 0° because the sign is positive.

A t high frequencies, ю 2 >> юю; >> ю; , the transfer function is given by:

z(jo>) = 1 /m

F j) _ю 2 + 2£юю; ! + ю;;

1 /m _1
(2.20)

_ю шю

Once again, taking the magnitude and phase:

z(jff>) _1 1

F j) шю2 шю2

(2 .2 1 a,b)

Z = _ 180-
F(jю)

A t high frequencies, the gain is given by 1/(шю2) and the phase is _180°

because the sign is negative.

© 2001 by Chapman & Hall/CRC

A t resonance, ю = ю; , the transfer function is given by:

z(jo>) = 1 /m

F(jff>) _ю 2 + 2 ^ юю; ! + ю;;

1 /m 1 /m 1

(2.22)

1 1 1 /k _ _ j / k

2Сюю;! 2СюП! 2Сю^ш! 2Zk—j 2Zkj 2Z
m

Taking m agnitude and phase at resonance:

2Z

z(jff>) _ j / k 1 /k

F j) 2Z = 2Z
(2.23a,b)

Z
z j)

F j)
= _ 90°

The m agnitude at resonance is seen to be the gain at low frequency, 1/k,
divided by 2 Z . Since Z is typically a small number, for example 1% of

critical dam ping or 0.01, the magnitude at resonance is seen to be amplified.
A t resonance the phase angle is _ 9 0 ° .

frequency, rad/sec

Figure 2.6: sdof magnitude versus frequency for different damping ratios.

© 2001 by Chapman & Hall/CRC

The M ATLAB code sdofxfer.m , listed in the next section, is used to p lot the
frequency responses from (2.17) for a range o f dam ping values for
m = k = 1.0, shown in Figures 2.6 and 2 .7 . These m and k values give a ю;

value o f 1.0 rad/sec.

Since ю; is 1.0 rad/sec, the resonant peak in Figure 2.6 should occur at that

frequency. The low frequency magnitude was shown above to be equal to
1/k = 1.0. The curves for all the dam ping values approach 1.0 (10° = 1.0) at

low frequencies. A t high frequencies the magnitude is given by 1/ (ш ю 2) ,

and since m = 1, we should have m agnitude o f 1/ ю2 . Checking the plot
above, at a frequency o f 10 rad/sec, the m agnitude should be 1/100 or 0.01.

Note that the slope o f the low frequency asymptote is zero, m eaning it is not
changing with frequency. However, the slope o f the high frequency asymptote
is “ _ 2 ,” m eaning that for every decade increase in frequency the magnitude at
high frequency decreases by two orders o f m agnitude by virtue o f the ю2 term
in the denominator. The “ _2 ” slope on a log magnitude versus log frequency
plot com es from the following:

log |h igh frequency! ^ l o g = lo g (ю_2) = _ 2 lo g (ю) (2.24)

SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1

frequency, rad/sec

Figure 2.7: sdof phase versus frequency for different damping ratios.

© 2001 by Chapman & Hall/CRC

From Figure 2.7, note that at resonance (ю; = 1.0 r a d /s e c) the phase for all

values o f dam ping is _ 9 0 ° . A t low frequencies phase is approaching 0° and
at high frequencies it is approaching _ 1 8 0 ° .

2.3.4 M A T L A B C ode sdofxfer.m D escrip tion

The code uses the transfer function form shown in (2.14) to calculate the
com plex quantity “xfer,” where s = j ю , using a vector o f defined ю values.

M agnitude and phase o f the com plex value o f the transfer function are then
plotted versus frequency.

2.3.5 M A T L A B C ode sdofxfer.m L isting

% sdofxfer.m plotting frequency responses of sdof model for different damping values

clf;

clear all;

% assign values for mass, percentage of critical damping, and stiffnesses
% zeta is a vector of damping values from 10% to 100% in steps of 10%

m = 1;
zeta = 0.1:0.1:1; % 0.1 = 10% of critical
k = 1;

wn = sqrt(k/m);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 400 defines 400 frequency points.

w = logspace(-1,1,400);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

s = j*w;

% define a for loop to cycle through all the damping values for calculating
% magnitude and phase

for cnt = 1:length(zeta)

% define the frequency response to be evaluated

xfer(cnt,:) = (1/m) ./ (s.A2 + 2*zeta(cnt)*wn*s + wnA2);

© 2001 by Chapman & Hall/CRC

% calculate the magnitude and phase of each frequency response

mag(cnt,:) = abs(xfer(cnt,:));

phs(cnt,:) = angle(xfer(cnt,:))*rad2deg;

end

% define a for loop to cycle through all the damping values for plotting magnitude

for cnt = 1:length(zeta)

loglog(w,mag(cnt, :),'k-')
title('SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1')
xlabel('frequency, rad/sec')
ylabel('magnitude')
grid

hold on

end

hold off

grid on

disp('execution paused to display figure, "enter" to continue'); pause

% define a for loop to cycle through all the damping values for plotting phase

for cnt = 1:length(zeta)

semilogx(w,phs(cnt,:),'k-')
title('SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1')
xlabel('frequency, rad/sec')
ylabel('magnitude')
grid

hold on

end

hold off

grid on

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

2.4 td o f L ap lace T ra n sfo rm , T ra n s fe r F unctions,
C h a ra c te ris tic E q u a tio n , Poles, Z eros

W e now return to the original tdof model as shown in Figure 2 .1 . In order to
define transfer functions and understand poles and zeros o f the system, we
need to transform from the tim e dom ain to the frequency domain. W e do this
by taking Laplace transform s o f the equations o f motion.

2.4.1 L ap lace T ran sfo rm s w ith Z ero In itia l C onditions

Repeating (2.5) for the tdof system:

m 1 0 0 " z 1" c1 - c1 0 "z 1
0 m 2 0 z 2 + - c (c1 + c 2) - c 2 z 2
0 0 m 3 _z3 _ 0 - c 2 c 2 _ z 3

■ k 1 - k 1 0 " z 1 'F 1 ■

- k 1 (k + k 2) - k 2 z 2 = F2

0 - k 2 k 2 _ _z3 _ F3 _

(2.25)

Taking Laplace transforms assuming initial conditions o f zero, where
z 1; z 2 z 3 now represent the Laplace transforms o f the original z 1; z 2 z 3 :

m 1 0 0

0 m 2 0

0 0 m 3

s2z1

s2 z

s2 z

■ c 1 - c1 0 sz1

- c 1 (c + c 2) - c 2 sz2

0 - c 2 c 2 _ sz3

1■ 0 " z 1 " F '
+ - k (k 1 + k 2) - k 2 z 2 = F2

0 - k 2 k 2 _ _ z3 _ i F3 _

(2.26)

Rearranging:

(m 1s2 + c1s + k 1) (- c 1s - k 1) 0

(—c1s - k 1) (m 2s2 + c1s + c2s + k 1 + k 2) (- c 2s - k 2)

0 (- c2s - k 2) (m 3s2 + c2s + k 2)

(2.27)

© 2001 by Chapman & Hall/CRC

2.4.2 Solving fo r T ra n s fe r F unctions

In this section we solve for the nine possible transfer functions for all
com binations o f degrees o f freedom where force is applied and where
displacem ents are taken. Solving for the transfer functions for greater than a
2dof system is a task not to be taken lightly - symbolic algebra program s such
as M athem atica, M aple or the M ATLAB Symbolic Toolbox should be used.

Table 2.3: Nine possible transfer functions for tdof system.

The results below were obtained by use o f a symbolic algebra program.

z | s 4 (m 2m 3) + s3 (m 3c1 + m 3c2 + m 2c2) I
^ = J v 2 37 v 3 1 3 2 2 2 7 l /D e n (2.28)
F1 I+ s2 (c1c2 + m 2k 2 + m 3k 1 + m 3k 2) + s (c1k 2 + c2k 1) + k 1k 2 1

— = {s3 (m 3c1) + s2 (c1c2 + m 3k 1) + s (c 1k 2 + k 1c2) + k 1k 2) /D e n (2.29)
F2

— = {s2 (c1c2) + s (c1k 2 + c2k 1) + k 1k 2) /D e n (2.30)
F3

— = {s3 (m 3c1) + s2 (c1c2 + m 3k 1) + s (c 1k 2 + c2k 1) + k 1k 2} /D e n (2.31)

F2

s4 (m 1m 3) + s3 (m 1c2 + m 3c ^

+ s2 (m 1k 2 + c1c2 + m 3k 1)

+s (c1k 2 + c2k 1) + k 1k 2

/D e n (2.32)

— = {s3 (m 1c2) + s3 (m 1k 2 + c1c2) + s (c 1k 2 + c2k 1) + k 1k 2) /D e n (2.33)
F3

z 2

© 2001 by Chapman & Hall/CRC

— = {s2 (c1c2) + s (c 1k 2 + c2k 1) + k 1k 2) /D e n
F1

(2.34)

■ = {s3 (m 1c2) + s2 (m 1k 2 + c1c2) + s (c1k 2 + c2k 1) + k 1k 2 } /D e n (2.35)

s4 (m 1m 2) + s3 (m 1c2 + m 1c1 + m 2c^

+ s2 (m 2k 1 + m 1k 1 + m 1k 2 + c1c2)

+s (c 2k 1 + c1k 2) + (k 1k 2)

/D e n (2.36)

W here D en is:

D en = s

s4 (m 1m 2m 3) + s3 (m 2m 3c1 + m 1m 3c1 + m 1m 2c2 + m 1m 3c2)

+ s2 (m 1m 3k 1 + m 1m 3k 2 + m 1m 2k 2 + m 2c1c2 + m 3c1c2 + m 1c1c2

+ k 1m 2m 3)

+ s (m 3c1k 2 + m 2c2k 1 + m 1c2k 1 + m 1c1k 2 + m 3c2k 1 + m 2c1k 2)

+ (m 1k 1k 2 + m 2k 1k 2 + m 3k 1k 2)

(2.37)

Note that all the transfer functions have the same denom inator, Den, called the
ch a rac te ris tic equation .

To simplify the system for hand calculations, take:

(2.38)

k 1 = k 2 = k

z11 = — = (2s4 + 3mcs3 + (2 + 3mk) 2 + 2cks + k 2 j /D e n i (2.39)
F1

z12 = — = (m cs3 + f c 2 + m k) 2 + 2cks + k 2)/D en1 (2.40)

z13 = — = (c s + 2cks + k i / D e ^ (2.41)

z3
F2

z3
F

2

3

© 2001 by Chapman & Hall/CRC

z oo — —

z 23 tj23 F3

z„ — — —

z32 tj32 F2

z „ — — —

m cs3 + (2 + m k) 2 + (2 c k)s + k 2) /D e n i (2.42)

m s + 2mcs + (2 m k + c)s + 2cks + k) /D e n i (2.43)

mcs + (c + m k Is + 2cks + k I /D e n i (2.44)

c2s2 + 2cks + k 2) /D e n i (2.45)

mcs + (c + m k)s + 2cks + k I /D e n i (2.46)

m 2s4 + 3mcs3 + (c 2 + 3 m k)s2 + 2cks + k 2) /D e n i (2.47)

Where:

D en i — {m3s4 + 4m 2cs3 + (4 m 2k + 3m c2) 2 + 6mcks + 3m k2) s2 (2.48)

To enable hand calculations o f roots, simplify another level by making
dam ping equal to zero:

1 — (m 2s4 + 3mks2 + k 2)/D en 2
Fi

(2.49)

— (m ks2 + k 2) /D e n 2
F2

(2.50)

— k 2 /D en 2 (2.51)

— (m ks2 + k 2) /D e n 2
Fi 1 1

(2.52)

© 2001 by Chapman & Hall/CRC

2

z

F3

— — (m s + 2m ks + k) /D e n 2
F2

(2.53)

- — (m ks + k)/D en2 (2.54)

F1
(2.55)

■ — (m ks + k)/D en2 (2.56)

— — (m s + 3mks + k)/D en 2
F3 1 1

D en2 — s2 (m 3s4 + 4m 2k s2 + 3m k2)

2.4.3 T ra n s fe r F u n c tio n M a trix fo r U ndam ped M odel

(2.57)

(2.58)

A more convenient m ethod o f arranging and keeping track o f the various
transfer functions is to use a matrix form for the transfer function, called the
tra n s fe r fu n ctio n m atrix :

11 12 13
(2.59)

Where:

z 1 z 11 z i2 z i3 ' F i'

z 2 = z 21 z 22 z23 F2 (2.60)

_ z3 _ _ z3i z32 z33 _ _ F3 _

z 2
F3

z3
F2

The transfer function m atrix can then be written for the undam ped case as
follows, where each term o f the num erator m atrix is divided by the com mon
denominator:

© 2001 by Chapman & Hall/CRC

(m 2s4 + 3mks2 + k 2) (m ks2 + k 2)

(m ks2 + k 2) (m 2s4 + 2m ks2 + k 2)

k 2 (m ks2 + k 2)

k 2

„2 , 1,2ч(mks + k)

(m 2s4 + 3m ks2 + k 2)

s (m s + 4m ks + 3mk

2.4.4 F o u r D istinct T ra n s fe r F unctions

Fi

(2.61)

W e will be dealing with only Single Input Single Output (SISO) systems until
Chapter 19, when a M ulti Input M ulti Output (M IM O) system is examined.
This means that we will be applying only a single force to the system at any
time, F1; F2 or F3 ,and will only be taking the displacem ent o f a single degree

o f freedom, z1, z 2 or z3 .

Because there are three inputs and three outputs, there are nine possible SISO
transfer functions to investigate. However, because o f the symmetry of the
system (zjj = zJi) there are only four distinct transfer functions. Expanding the
denom inator into factors and simplifying:

zi _ m 2s4 + 3m ks2 + k 2

F1 s2 (m 3s4 + 4m 2k s2 + 3m k2) (.)

z 2 (m ks2 + k 2)

F1 s2 (m 3s4 + 4m 2k s2 + 3m k2)

_ k (m s2 + k)

s2(m s2 + k)(m 2s2 + 3km)

k

s2(m 2s2 + 3km)

k 2

F1 s2 (m 3s4 + 4m 2ks2 + 3m k2

(note cancelling of pole/zero) (2.63)

(2.64)
z3

© 2001 by Chapman & Hall/CRC

z 2 m 2s4 + 2m ks2 + k 2

F2 s2 (m 3s4 + 4m 2k s2 + 3m k2)
(2.65)

2.4.5 Poles

The poles, eigenvalues, or reso n an t frequencies, are the roots o f the
characteristic equation. Poles show the frequencies where the system will
amplify inputs, and are a basic characteristic o f the system. The poles are not
a function o f w hich transfer function is used since all the transfer functions for
a given system have the same characteristic equation, as shown by the
com mon denom inator o f (2.61).

T he poles fo r a system depend only on th e d is trib u tio n o f m ass, stiffness,
an d dam ping th ro u g h o u t th e system , n o t on w h ere th e forces a re app lied
o r w h ere d isp lacem ents a re m easured .

Setting the characteristic equation equal to zero and solving for the roots
(poles):

(2.66)

s2 _ 0 is a double root at the origin s12 _ 0 (2.67)

Now taking the term in parentheses and setting equal to zero:

(2.68)

Solving as a quadratic in s2:

- 4 m 2k ± (1 6 m 4k 2 - 12m4k 2)2
s2

2m 3

- 4 m 2k ± (4 m 4k 2) 2

2m

- 4 m 2k ± 2m 2k - 2 m 2k

2m ; m

© 2001 by Chapman & Hall/CRC

- 2 k -6 k

2m ’ 2m

- k -3 k
(2.69)

m m

(2.70)

s5,6 = ± j ± j 1.732 (2.71)

Because there is no damping, the poles all fall on the s-plane imaginary axis.

2.4.6 Z eros

The zeros of each SISO transfer function are defined by the roots o f its
numerator. Zeros show the frequencies where the system will attenuate inputs.
Unlike the poles, which are a characteristic o f the system and are the same for
every transfer function, zeros can be different for every transfer function and
some transfer functions may have no zeros. Chapter 4 will discuss one
physical interpretation o f zeros, showing how to calculate the num ber o f zeros
for various transfer functions for a series-connected lumped mass system.

Calculate the z1/F 1 zeros:

Taking the square root o f the two values above gives two pair o f com plex
conjugate roots:

m 2s4 + 3m ks2 + k 2 = 0 (2.72)

-3 m k ± (9m 2k 2 - 4m 2k 2) 2
s2

2m 2

3mk ±V 5m k - 3 k ± \ /5 k

2m 2 2m2m

(̂ — J (-0 .3 8 2 0), |̂ — j (-2 .6 1 8) (2.73)
m Jl 2v j

© 2001 by Chapman & Hall/CRC

s12 = ± j0 .6 1 8 J — = ± j 0.618
m

m
sM = ± j 1 . 6 1 8 j - = ± j 1 .618

Calculate the z2 /Fj zeros:

m ks2 + k 2 = 0

2 = z k l = z k
m k m

s1,2= ± jJ — = ± jm

Calculate the z3/Fj zeros:

k 2 = 0 there are no zeros.

Calculate the z 2 /F 2 zeros:

m 2s4 + 2m ks2 + k 2 = 0

-2 m k ± (4 m 2k 2 - 4m 2k 2^
s2 = --------------------2--------------2m 2

= z k ± 0
2 m 2 m

ms1,2 = ± j — = ± j

s3,4 = ± j

As with the poles, since there is no dam ping in the system,
also on the imaginary axis.

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

all the zeros are

© 2001 by Chapman & Hall/CRC

2.4.7 S um m ariz ing Poles an d Z eros, M a trix F o rm a t

(±0.62, ±1.62) ± j none

± j (± j, ± j) ± j
none ± j (±0.62, ±1.62)

none

(2.84)
(±0j)(±1, ±1.732)j

The 3x3 m atrix o f zero values for the 3x3 transfer function matrix is in the
num erator of (2.82) and the pole values are in the denominator.

2.5 M A T L A B C ode tdofpz3x3.m - P lo t Poles an d Z eros

2.5.1 C ode D escrip tion

The program listing below uses the “num /den” form o f the transfer function
and calculates and plots all nine pole/zero com binations for the nine different
transfer functions. It prom pts for values o f the two dam pers, c1 and c2, where
the default values (hitting the “enter” key) are set to zero to m atch the hand-
calculated values in (2.82). The “transfer function” form s o f the transfer
functions are then converted to “zpk - zero/pole/gain” form to enable graphical
construction o f frequency response in the next chapter.

The values o f the poles and zeros as well as the “zpk” form s of the transfer
functions are listed in the M ATLAB command window.

N ote that in most M ATLAB code, the critical definitions and calculations take
only a few com mands while plotting and annotating the plots take the bulk of
the space.

2.5.2 C ode L isting

% tdofpz3x3.m plotting poles/zeros of tdof model, all 9 plots

clf;

clear all;

%
%
%

using MATLAB's pzmap function with the "tf" form using num/den
to define the numerator and denominator terms of the different
transfer functionx

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;

© 2001 by Chapman & Hall/CRC

m3 = 1;
k1 = 1;
k2 = 1;

% prompt for c1 and c2 values, set to zero to match closed form solution

c1 = input('enter value for damper c1, default is zero, ... ');

if isempty(c1)
c 1 = 0;

end

c2 = input('enter value for damper c2, default is zero, ... ');

if isempty(c2)
c2 = 0;

end

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
m1*c1*c2 + k1*m2*m3) ...

(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + ...
m3*c2*k1 + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 +...
m3*k1 + m3*k2) (c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

sysz 11 = tf(z 11num,den)

sysz21 = tf(z21num,den)

sysz31 = tf(z31num,den)

sysz22 = tf(z22num,den)

% use the "zpk" function to convert from transfer function to zero/pole/gain form

zpkz11 = zpk(sysz11)

zpkz21 = zpk(sysz21)

zpkz31 = zpk(sysz31)

© 2001 by Chapman & Hall/CRC

zpkz22 = zpk(sysz22)

% use the "pzmap" function to map the poles and zeros of each transfer function

[p11,z11] = pzmap(sysz11);

[p21,z21] = pzmap(sysz21);

[p31,z31] = pzmap(sysz31);

[p22,z22] = pzmap(sysz22);

p n

z11

z21

z31

z22

% plot z11 for later use

subplot(1,1,1)
plot(real(p11),imag(p11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

% plot all 9 plots on a 3x3 grid

subplot(3,3,1)
plot(real(p 11),imag(p 11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,2)
plot(real(p21),imag(p21),'k*')
hold on
plot(real(z21), imag(z21), 'ko')
title('Poles and Zeros of z12')

© 2001 by Chapman & Hall/CRC

ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,3)
plot(real(p31),imag(p31),'k*')
hold on
plot(real(z31),imag(z31),'ko')
title('Poles and Zeros of z13')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,4)
plot(real(p21),imag(p21),'k*')
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z21')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,5)
plot(real(p22),imag(p22),'k*')
hold on
plot(real(z22),imag(z22),'ko')
title('Poles and Zeros of z22')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,6)
plot(real(p21),imag(p21),'k*')
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z23')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,7)
plot(real(p31),imag(p31),'k*')
hold on
plot(real(z31),imag(z31),'ko')
title('Poles and Zeros of z31')

© 2001 by Chapman & Hall/CRC

xlabel('Real')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,8)
plot(real(p21),imag(p21),'k*')
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z32')
xlabel('Real')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,9)
plot(real(p11),imag(p11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z33')
xlabel('Real')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

% check for real axis values to set plot scale

z11_realmax = max(abs(real(z11)));
z21_realmax = max(abs(real(z21)));
z31_realmax = max(abs(real(z31)));
z22_realmax = max(abs(real(z22)));

maxplot = max([z11_realmax z21_realmax z31_realmax z22_realmax]);

if maxplot > 2

maxplot = ceil(maxplot);

else

maxplot = 2.0;

end

z11_realmax = max(abs(real(z11)));
subplot(1,1,1)

© 2001 by Chapman & Hall/CRC

plot(real(p11),imag(p11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11, z33')
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p21),imag(p21),'k*')
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z21, z12, z23, z32')
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p31),imag(p31),'k*')
hold on
plot(real(z31),imag(z31),'ko')
title('Poles and Zeros of z31, z13')
xlabel('Real')
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p22),imag(p22),'k*')
hold on
plot(real(z22),imag(z22),'ko')
title('Poles and Zeros of z22')
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

© 2001 by Chapman & Hall/CRC

2.5.3 C ode O u tp u t - P o le/Z ero P lo ts in C om plex P lane

2.5.3.1 U n d am p ed M odel - P o le/Z ero P lots

The pole/zero plot and pole/zero calculated values for c1 = c2 = 0 are shown
below. Poles are plotted as asterisks and zeros as circles.

Poles and Zeros of z11

-
0

Poles and Zeros of z21

_ J :_______
0

Poles and Zeros of z31

i
i
i

i

0
Real

Poles and Zeros of z12

Poles and Zeros of z22

_ J :_____
о :

Poles and Zeros of z32

о
Real

Poles and Zeros of z13
2 1-------------------■-------------------1-*•

i

1 -----------------± ----------------i
to 1
с 0 -----------------4 - ----------------
JE ii

- 1 -----------------4 - ----------------

- 2 ----------------- ± -----------------
-2 0 2

Poles and Zeros of z23
2 [-------------------■-------------------,*

i

1 -----------------ф ----------------
i

to 1
я о -------------------------------------
jE i

i
- 1 -----------------^ ---------------

- 2 ----------------- ± -----------------
-2 0 2

Poles and Zeros of z33
2 I-------------------■-------------------1

<*>
1 -----------------+ ----------------

*
£ 0 -----------------+ ---------------
iE

ffi
- 1 -----------------f ----------------

2I У
-2 0 2

Real

0 2 0 2

2

2 2

Figure 2.8: Pole/zero plots for nine transfer functions. Poles are indicated by asterisks and
zeros by circles.

The first thing to notice about the pole/zero plots is that they all have the same
poles. The rigid body m ode (resonant frequency = 0 hz) is evident by the pair
o f zeros at the origin, ± 0j . The zeros o f each particular transfer function are

seen to be dependent upon which transfer function is taken. Note that with
zero damping, all the poles and zeros are on the im aginary axis, indicating that
the real portions o f their com plex values are zero and that there is no damping.

© 2001 by Chapman & Hall/CRC

In the next chapter we will discuss frequency responses o f transfer functions
and will link the pole/zero locations in the com plex plane to
am plification/attenuation regions o f the frequency response plots.

The poles and zeros from the M ATLAB output are listed below:

poles =

0
0
0 + 1.7321i
0 - 1.7321i
0 + 1.0000i
0 - 1.0000i

zeros_z11 =

0 + 1.6180i
0 - 1.6180i
0 + 0.6180i
0 - 0.6180i

zeros_z21 =

0 + 1.0000i
0 - 1.0000i

zeros_z31 =

Empty matrix: 0-by-1

zeros_z22 =

-0.0000 + 1.0000i
-0.0000 - 1.0000i
0.0000 + 1.0000i
0.0000 - 1.0000i

Table 2.3: Poles and zeros of tdof transfer functions, undamped.

Repeating the matrix listing o f pole/zero locations from previous analysis:

(±0.62, ±1.62) ± j none

± j (± j, ± j) ± j
none ± j (±0.62, ±1.62)

(±0j)(±1, ±1.732)j
(2.85)

© 2001 by Chapman & Hall/CRC

Note that MATLAB calculates an “Empty matrix 0 by 1” for the zeros of z31,
which matches our calculations which show “none.” Also note that several of
the plots, z12, z21, z22, z23 and z32, have zeros and poles overlaying each
other, where the pole cancels the effect of the zero. We will discuss this
cancellation further in the next chapter.

2.5.3.2 D am ped M odel - Pole/Zero Plots

If damping is not set to zero for c1 and/or c2, the poles (with the exception of
the two poles at the origin) and zeros will move from the imaginary axis to the
left hand side of the complex plane, with the real parts of the poles and zeros
having negative values. The pole/zero plot and MATLAB output listing
below are for values of c1 = c2 = 0.1, arbitrarily chosen to illustrate the
“damped” case.

Poles and Zeros o f z11
2

1

g
ma 0

-1

-2

2

1

g
ma 0

-1

-2
-2 0 2

Poles and Zeros o f z31
2

1

g
a 0

0
Real

Poles and Zeros of z12 Poles and Zeros o f z13

2|-------- ^----------
1 ---------------A---------------------i

g
0 -------------------^-------------------

I
- 1 ----------------4---------------------i
-2 I-----------------Zi--------------------1

-2 0 2

Poles and Zeros o f z23

* !
2

+!
2

* !

------- 4 -------------------- 1 ------- -4 -------------------- 1 ---------------4 --------------------

g
g 0 ---------------+ -----------------

g
g 0

i

+

t
-1

-2 T
-1

-2 t
-2 0 2

Poles and Zeros of z32

-2 0 2

Poles and Zeros o f z33

*
2

1

2

1

d

+
g

g 0

-1

------- + --------
g

g 0

-1------- ^---------- ---------<---------
+! -2 -2

0
Real

0
Real

2 2 2

Figure 2.9: Pole/zero plots for nine transfer functions for c l = c2 = 0.1. Poles are indicated
by asterisks and zeros by circles. Negative real axis zeros not shown because o f plot

scaling.

© 2001 by Chapman & Hall/CRC

The limited scale for the nine plots above do not show the real axis zeros, see
the figures below for the entire plot. The only poles/zeros that are on the
imaginary axis are the two poles at zero, the rigid body mode - which will be
described in detail in Chapter 3.

10

8

6

4

2

-2

-4

-6

-8

•10
-10 -5 0 5 10

Poles and Zeros of z11, z33

1
1"ffi

Figure 2.10: Expanded scale pole/zero plots for z l l , z33 transfer functions — no real axis
zeros.

1 0 r

8 -

Poles and Zeros of z21, z12, z23, z32

Figure 2.11: Expanded scale pole/zero plots for z21, z12, z23 and z32 transfer functions —
one real axis zero at -10.

6

4

2

0 5 10

© 2001 by Chapman & Hall/CRC

1 0 г

8 -

Poles and Zeros of z31, z13

4

+. 4--

0
Real

Figure 2.12: Expanded scale pole/zero plots for z31 and z13 transfer functions — two real
axis zeros at -10.

1 0 г

8 -

Poles and Zeros o f z22

6

4

2

5 10

6

4

2

0

0 5 10

Figure 2.13: Expanded scale pole/zero plots for z31 and z13 transfer functions — no real
axis zeros.

The MATLAB calculated values for the poles and zeros for the damped case
are below:

© 2001 by Chapman & Hall/CRC

p11 =

0
0

-0.1500 + 1.7255i
-0.1500 - 1.7255i
-0.0500 + 0.9987i
-0.0500 - 0.9987i

z11 =

-0.1309 + 1.6127i
-0.1309 - 1.6127i
-0.0191 + 0.6177i
-0.0191 - 0.6177i

z21 =

-10.0000
-0.0500 + 0.9987i
-0.0500 - 0.9987i

z31 =

-10.0000 + 0.0000i
-10.0000 - 0.0000i

z22 =

-0.0500 + 0.9987i
-0.0500 - 0.9987i
-0.0500 + 0.9987i

-0.0500 - 0.9987i

Table 2.4: Poles and zeros o f tdof transfer functions, damped.

Several observations can be made about the poles and zeros above. First, all
of the poles with the exception of the two rigid body poles p11 = 0 are to the
left of the imaginary axis, indicating that the system now has damping. Note
that there are several new zeros. The z21 transfer function now has a real zero
at -10.0 in addition to the two complex zeros. The z31 transfer function has
two zeros now at -10 , whereas for the no damping case it had no zeros. These
extra zeros do not show up on Figure 2.9 because of plot axis scaling but with
the real axis expanded in Figures 2.10 to 2.13 they appear. The reason for
these “additional” zeros can be seen if we look at the z21 and z31 transfer
functions, repeated from (2.31) and (2.34):

© 2001 by Chapman & Hall/CRC

■F = {s2 (c1c2) + s(c1k 2 + c2k 1) + k 1k 2}/D en (2.87)

With values for c1 and c2 not equal to zero, the z21 transfer function is third
degree, meaning that it should have three roots. With damping equal to zero,
only two complex zeros are calculated by MATLAB and by hand. The third
root is located at - ^ . As damping values for c1 and c2 are increased the root
at -ro moves to the right, towards the origin.

The z31 transfer function has no zeros with zero damping, but is second
degree and with infinitely small damping values has two roots at - ^ . As the
values of c1 and c2 increase, the two zeros at - ^ start moving toward the
origin.

2.5.3.3 Root Locus, tdofpz3x3_rlocus.m

In the last two sections we have discussed pole/zero plots for undamped and
damped models. For the damped model we chose values of 0.1 for c1 and c2.
It would be nice to have a systematic method to display poles and zeros for a
range of damping values. There is a MATLAB Control Toolbox function
“rlocus” which plots the root locus for an open-loop SISO system. We could
use this function if the damping values could be broken out of the system and
be treated as a feedback gain. Unfortunately for our tdof system this is not
possible, but we can still plot a locus by using a for-loop.

The code listed below, tdofpz3x3_rlocus.m , is taken from the initial section
of tdofpz3x3.m. A for-loop cycles through a vector of damping values,
calculating and plotting the poles and zeroes for each damping value.

%
%

echo off
tdofpz3x3_rlocus.m plotting locus of poles/zeros of z11 for tdof
model for range of damping values.

clf;

clear all;

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;

© 2001 by Chapman & Hall/CRC

k1 = 1;
k2 = 1;

% define vector of damping values for c1 and c2

cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16];

for cnt = 1:length(cvec)

c1 = cvec(cnt);

c2 = cvec(cnt);

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
m1*c1*c2 + k1*m2*m3) ...

(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + ...
m3*c2*k1 + m2*c1*k2) ...

(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) ...
(c1*c2 + m2*k2 + m3*k1 + m3*k2) .(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

sysz 11 = tf(z 11num,den);

sysz21 = tf(z21num,den);

sysz31 = tf(z31num,den);

sysz22 = tf(z22num,den);

% use the "pzmap" function to map the poles and zeros of each transfer function

[p11,z11] = pzmap(sysz11);

[p21,z21] = pzmap(sysz21);

[p31,z31] = pzmap(sysz31);

[p22,z22] = pzmap(sysz22);

% plot poles and zeros of z11

subplot(1,1,1)

© 2001 by Chapman & Hall/CRC

plot(real(p 11),imag(p 11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11 for range of damping values c1 and c2')
xlabel('Real')
ylabel('Imag')
axis([-3 1 -2 2])
axis('square')
grid on

end

hold off

The root locus plot below is for the following values of damping:

cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16];

Poles and Zeros of z11 for range of damping values c l and c2
2 г

1.5

0.5

| 0

-0.5

-1.5

1 1
' U ^' о ©

-----------Г*ь' -------------+ Q i

ф© С®Ф1 1 1 1 ф 1 1 -ф- -ф- J- -ф- •+ I I 1 1 1 1
+© Г ошЬ+Q 1 ^

+стЬ 1 1,
1

1

1 <о1
иТТ3

*
11

1

1

1
1

1

1

1

+° 9 1 1
-1

Real

Figure 2.14: Pole zero plot for z11 transfer function.

The plot starts out with damping values of zero for c1 and c2. The poles and
zeros for zero damping are located on the imaginary axis. The poles are
located at 0, 0, ±1j , ±1.732j . The zeros are located at ±0.62j and ±1.62j .
As damping is increased from zero, the poles and zeros (except the two poles
at the origin) start moving to the left, away from the imaginary axis. The poles
and zeros move at different rates as damping is increased. The poles at ±1j

0

© 2001 by Chapman & Hall/CRC

and zeros at ±0.62j move to the left less than the poles at ±1.732j and the

zeros at ±1.62j. In fact, the two poles at ±1.732j move so much that at
damping values of 1.16 the poles intercept the real axis and split. One moves
to the left and the other to the right along the real axis.

Plotting pole and zero locations as a function of system parameters was
introduced in 1949 (Evans 1949), as the Evans root locus technique. The
hand plotting originally used has been largely replaced with computer plotting
techniques as shown above or by using the “rlocus” function. However,
because the ability to hand sketch root loci is such a powerful tool, it is still
taught in beginning control theory courses (Franklin 1994).

2.5.3.4 U ndam ped and Dam ped M odel - t f and zpk Form s

This section is included to start familiarizing the reader with the various forms
of transfer functions available with MATLAB and to prepare for issues in the
next chapter.

Table 2.6 shows the transfer function form of the four distinct transfer
functions for the tdof model for the undamped (c1 = c2 = 0) and damped
(c1 = c2 = 0.1) cases run earlier. The numerator and denominator are both
arranged in polynomial form. Table 2.7 shows the zpk form, where the
numerator and denominator are both arranged as products of the zeros and
poles with a gain term multiplying the numerator.

Note that the denominators of all the undamped transfer functions are the
same, as are the denominators of all the damped transfer functions. However,
the numerators are all different because of the different number of poles and
zeros for each transfer function. For instance the z31 undamped transfer
function has no zeros, only a gain term of 1.0, while the z11 undamped
transfer function has two sets of complex zeros.

In going from the undamped to damped case, we showed that extra zeros
appeared in the z21 and z31 transfer functions. It is easier to see where the
extra zeros originate using the zpk form than using the tf form. Comparing the
undamped and damped numerators of the z31 zpk transfer function form
shows the extra (s + 10)2 term, from which the two real axis zeros arise. We
will use the zpk form of the transfer functions in the next chapter to calculate
frequency response at a specific frequency.

© 2001 by Chapman & Hall/CRC

z11 Undamped Transfer function: z11 Damped Transfer function:

sA4 + 3 sA2 + 1 sA4 + 0.3 sA3 + 3.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z21 Undamped Transfer function: z21 Damped Transfer function:

sA2 + 1 0.1 sA3 + 1.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z31 Undamped Transfer function: z31 Damped Transfer function:

1 0.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z22 Undamped Transfer function: z22 Damped Transfer function:

sA4 + 2 sA2 + 1 sA4 + 0.2 sA3 + 2.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

Table 2.5: Transfer function (tf) form o f undamped and damped tdof transfer functions.

z11 Undamped Zero/pole/gain: z11 Damped Zero/pole/gain:

(sA2 + 0.382) (sA2 + 2.618) (sA2 + 0.0382s + 0.382) (sA2 + 0.2618s + 2.618)

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z21 Undamped Zero/pole/gain: z21 Damped Zero/pole/gain:

(sA2 + 1) 0.1 (s+10) (sA2 + 0.1s + 1)

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z31 Undamped Zero/pole/gain: z31 Damped Zero/pole/gain:

1 0.01 (s+10)A2

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z22 Undamped Zero/pole/gain: z22 Damped Zero/pole/gain:

(sA2 + 1)A2 (sA2 + 0.1s + 1)A2

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

Table 2.6: Zero/Pole/Gain (zpk) for undamped and damped tdof transfer functions.

© 2001 by Chapman & Hall/CRC

Problem s

Figure P2.1: four dof system.

P2.1 Derive the global stiffness and mass matrices for the four dof system in
Figure P2.1.

Figure P2.2: two d of problem.

P2.2 Derive the equations of motion in matrix form for the two dof model in
Figure P2.2. Check for signs of diagonal terms and symmetry of off-diagonal
terms.

P2.3 Solve for the four transfer functions for the two dof problem and define
the 2x2 transfer function matrix. Are the denominators of all four transfer
functions the same? How many unique transfer functions are there for this
problem?

P2.4 Set m 1 = m 2 = m = 1, k 1 = k 2 = k = 1 and c1 = c2 = 0 and solve for the
eigenvalues for the system. Solve for the zeros of the system and use the form

© 2001 by Chapman & Hall/CRC

shown in (2.84) to summarize the poles and zeros. Hand sketch the poles and
zeros in the s-plane.

P2.5 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1. Modify the
tdofpz3x3.m file to plot the poles and zeros of the undamped two dof system.
Identify the poles and zeros in the MATLAB output listing and compare with
the hand-calculated values.

P2.6 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, add damping values

of c1 = c2 = 0.1 and plot the poles and zeros in the s-plane. List the poles and
zeros from MATLAB and correlate the listed values with the plots. Are there
any real axis zeros? How do the real axis zero(s) change with different values
of c1 and c2 , where c1 = c2 .

© 2001 by Chapman & Hall/CRC

CHAPTER 3

FREQUENCY RESPONSE ANALYSIS

In Chapter 2 we calculated the transfer functions and identified the poles and
zeros for the undamped system, which are repeated as (3.1) and (3.2) below,
respectively. The next step in understanding the system is to plot the
frequency domain behavior of each transfer function. Frequency domain
behavior means identifying the magnitude and phase characteristics of each
transfer function, showing how they change as the frequency of the forcing
function is varied over a frequency range. Each transfer function is evaluated
in the frequency domain by evaluating it at s = j ю , where ю is the frequency
of the forcing function, radians/sec.

3.1 Introduction

(m2s4 + 3mks2 + k 2) (mks2 + k 2)

(mks2 + k 2) (m2s4 + 2mks2 + k 2)
k 2 (mks2 + k 2)

k 2

„2 , 1,2ч(mks + k)

(m2s4 + 3mks2 + k 2)

s (m s + 4m ks + 3mk

(3.1)

(±0.62, ±1.62) ± j

± j (± j, ± j)
none ±j

none

± j
(±0.62, ±1.62)

(±0j)(±1, ±1.732)j
(3.2)

Instead of going directly into MATLAB to calculate and plot the frequency
responses, we will first sketch them by hand, using information about the low
and high frequency asymptotes and the locations of the poles and zeros. We
will discuss how to find the gain and phase of a transfer function at a given
frequency graphically using the locations of the poles and zeros in the
complex plane and then use MATLAB to plot. Finally, mode shapes are
defined, then calculated using transfer function information and plotted.

© 2001 by Chapman & Hall/CRC

3.2 Low and High Frequency Asymptotic Behavior

It is always good to check either a system’s rigid body or spring-like low
frequency nature by hand. For this tdof system at very low frequencies there
are no spring connections to ground so the system moves as a rigid body, no
matter where the force is applied, to F1, F2, or F3.

Figure 3.1: Rigid body mode o f vibration.

The rigid body equation of motion (where z is the motion of all three masses
together) is:

(3m)Z = F

z = _ ± _ (3.3a,b)

F 3ms2

Now we can solve for the frequency domain behavior of the system by
substituting j ю for s.

At a radian frequency of 0.1 rad/sec, a frequency taken to be an order of
magnitude less than the lowest resonant frequency of 1 rad/sec, the transfer
function is:

z
F 3m 0 ю)2 3m [j (0.1)]2

-1 -100 -33.3
3m (.01) 3m

= -33.3
m

(3.4)

© 2001 by Chapman & Hall/CRC

Converting from vector (real/imaginary) form to magnitude/phase (polar) form
and using the definition of db as follows:

db = 20*log10(z /F) (3.5)

= 33.3, or 30.45db
(3.6a,b)

Z — = -180°
F

These results show that at a frequency of 0.1 rad/sec, the magnitude of the
motion of the masses is 33.3*F and the motion is -180° out of phase with the
force input.

We will now look at each individual transfer function, checking asymptotic
behavior at both low and high frequencies. To do this, the four transfer
functions are divided by the mass terms to give coefficients that are
proportional to ю2 = k /m :

Starting with the z1 /Fj transfer function:

z1 = m 2s4 + 3mks2 + k 2
F^= s2(m3s4 + 4m2ks2 + 3mk2) (.)

Dividing numerator and denominator by m 3 allows redefining the equation in
terms of ran :

Substituting s = jffl and looking at low and high frequency behaviors:

© 2001 by Chapman & Hall/CRC

(ю4+ з ю; (- ю2) + ю)

m (-ю 2)(ю 4 - 4ю2ю2 + 3ю4)
Юп

- т ю 2 Юю4'

-1
З тю 2 (3.9)

ю<< ю„

z

At low frequencies, the rigid body motion of z1 is falling off at a (-1 / ю2)

rate, and with a gain of (1 /3m). A rate of (-1 / ю2) means that every decade
of frequency shift, the amplitude drops by a factor of 100. Since a factor of
100 is -4 0 d b , we should see the low frequency amplitude change
40db/decade.

-ю -1

mo>2 (ю4) mo>2 (3.10)

ю>> ю„

At high frequencies, the rigid body motion of z1 is again falling at a (-1 / ю2)

rate, but the gain is only (1/m) instead of (1 /3m). This is because at high

frequencies z1 moves more as a result of F1; the other two masses do not want

to move, as will be seen from the high frequency asymptotes of the z2 /F1 and

z3/F1 transfer functions.

z

Checking

F1

mks2

m m (s 2 + ю4

s21 s4 + 4ks2 + 3k2 ^ s2m (s4 + 4o>4s2 + 3ю4) (3.11)
m m

z 2

2 2 4
z^ -ю „ю + юп

F1 -mffl2 (ю4 - 4ю2ю2 + 3ю4)

ю<< юп

© 2001 by Chapman & Hall/CRC

юп

W (3ю4'

-1
Зmю2

(3.12)

F1

2 2 -ю 2 ю2 2 2 -ю 2 (ю2

-m ro2 (ю4 - 4ю2 ю2 + 3ю4)

ю„
mю4 o>4m 2 (3.13)

ю>> ю„

At low frequencies, z2 looks exactly like z1. But at high frequencies, z2 is
dropping off at a (1/ ю4) rate, or 80db/decade, with a gain of (k /m 2) .

Checking -̂ T now:

F1
m ю„

2\ 4 4ks2 3k21 ms2 (s4 + 4o>2s2 + 3ю4) (3.14)
s2 1 s4 + ------ + — v n n'

m m

z

2k
z3

F1

ю„ ю„ -1

-m o >2 (ю4 - 4ю2ю2 + 3ю4) -m ro2 (ю 4) Зmю2 (3.15)

ю<< ю„

F1

ю„ ю„

-m ro2 (ю4 -m o >6 { m3 I ю6 (3.16)

ю>> ю„

At low frequencies, z3 looks exactly like z 1 and z2, but at high frequencies z3 is
dropping at a (1 /ю6) rate, or 120db/decade, with a gain of (- k 2 /m 3) .

Checking —
F2

z

z

© 2001 by Chapman & Hall/CRC

m 2s4 2mks2 k 2
~mr + “ m ^ + m 3

s +-
4m ks 3mk

m m

(s4 + 2^ s 2 + ^)

s 2 (s4 + 4 ю У + 3ш:) (3.17)

z 2
F

(4 + ((- ю2) + юП) юП

(со4 - 4юПю2 + 3ю4) -m m 2 (3юП-m m '

-1
Зтсо2 (3.18)

ю<< ю„

z

ю -1

-m m 2 (ю4) mm2 (3.19)

m>> mn

z 2
F2

At low frequencies, z2 /F2 looks exactly like z1 /F1, z2 /F1, and z3 /F1. But at

high frequencies z2/F2 is dropping at a (-1 / m2) rate and has a higher gain of

(1/m) instead of (1/3m). Thus, the low and high frequency asymptotes look

exactly like z1 / F1.

Summarizing the low and high frequency asymptotes, and solving for the gains
and phases at m = 0.1 rad/sec and m = 10 rad/sec.

-1 -1 -1 -100

F

m = 0.1

3 mm

rad
sec

3m (0.1)2 3(01) 3
= -33 = 30.46db, 180°

(3.20)

z

-1

F

m = 10

mm

rad
sec

-1

(0)

-1
100

= -.01 = -4 0 db, 180o
(3.21)

z

© 2001 by Chapman & Hall/CRC

F1

-1
3mm2

m = 0.1

= 30.46db, 180o
(3.22)

F1

m = 10

m2 m4 (10)
= 0.0001 = -80db , 0o

(3.23)

F1

-1
3mm2

= 30.46db, 180o

m = 0.1

F1

- k 2 1 -1
m3 m6 1e6

= -1 e-6 = -120db, 180o

m = 10

-1
3mm2

= 30.46db, 180o

m = 0.1

-1
mm

-1
= -.01 = -40db,180o

(3.24)

(3.25)

(3.26)

(3.27)

m = 10

3.3 H and Sketching Frequency Responses

Knowing the pole and zero locations and the asymptotes, the complete
frequency response can be sketched by hand, as shown in Figure 3.2. We will
not worry about the exact magnitudes at the poles and zeros, but will use the
hand sketch to get an idea of the overall shape and characteristics of the
frequency response. Start by drawing the low and high frequency asymptotes,
straight lines with appropriate magnitudes and slopes starting at the 0.1 and 10
rad/sec frequencies. Next, locate the poles and zeros at some distance above
and below the asymptote line at the appropriate frequency and start
“connecting the dots.” Start at the low frequency asymptote and follow it to
the first zero or pole encountered. Keep plotting, moving to the next higher
frequency pole or zero until all the poles/zeros are passed and move onto the
high frequency asymptote. Note that for z21 the pole and zero at 1 rad/sec
cancel as do one of the zeros and the pole for z22. Note that z31 has no zeros,

z 2

z 2

z3

z3

z 2

z 2

© 2001 by Chapman & Hall/CRC

only poles. Compare these plots to the MATLAB generated plots in Figure
3.5. Chapter 4 will give a physical interpretation of the zeros.

xfer function form, Bode z11, z33 db magnitude xfer function form, Bode z21, z12, z23, z32 db magnitude

xfer function form, Bode z31, z13 db mapitude xfer faction form, Bode z22 db magnitude

Figure 3.2: Hand sketch o f frequency responses using asymptotes and pole/zero locations.

3.4 In terp re ting Frequency Response G raphically in Complex Plane

There are many ways to plot frequency responses using MATLAB, as shown
in the MATLAB code tdofxfer.m in the next section. One method of
visualizing graphically what happens in calculating a frequency response is
shown below.

In Chapter 2 we defined the four unique transfer functions in both “transfer
function” and “zpk” forms. We will use the zpk form to graphically compute
the frequency response.

Start by defining a specific frequency for which to calculate the magnitude and
phase. Then locate that frequency on the positive imaginary axis.

© 2001 by Chapman & Hall/CRC

The gain and phase of the numerator term of a transfer function is the vector
product of distances from all the zeros to the frequency of interest times the dc
gain. Consider an undamped model, where all the poles and zeros lie on the
imaginary axis. If the frequency happens to lie on a zero, that distance is zero,
which multiplies all the other zero distances, resulting in a frequency response
magnitude of zero. For a damped model the distance will not be zero, as the
zeros are to the left of the imaginary axis, but the distance will be small, giving
a small multiplier at that frequency and attenuating the response.

The gain and phase of the denominator term is the product of distances from
all the poles to the frequency of interest. For an undamped model, if the
frequency happens to lie on a pole, that distance is zero, which multiplies all
the other pole distances. When the numerator is divided by the zero
denominator value, the response goes to ^ . For a damped model the distance
will not be zero as the poles are to the left of the imaginary axis; the distance
will be small, however, giving a small multiplier at that frequency and
amplifying the response.

Once the numerator and denominator are known, a vector division will give
the transfer function.

The pole/zero plot, pole/zero values and zpk form for the z11 transfer function
are shown below. We will calculate the frequency response for 0.25 rad/sec,
where the frequency is indicated in Figure 3.3.

Poles and Zeros o f z11

Figure 3.3: Interpreting the frequency response graphically for a frequency o f 0.25 rad/sec
(tdofpz3x3.m).

© 2001 by Chapman & Hall/CRC

0
0
0 + 1.7321i
0 - 1.7321i
0 + 1.0000i
0 - 1.0000i

zeros_z11 =

0 + 1.6180i
0 - 1.6180i
0 + 0.6180i
0 - 0.6180i

poles =

Table 3.1: Poles and zeros o f z11 transfer function, M ATLAB listing from tdofpz3x3.m.

z11 Undamped Zero/pole/gain:

(sA2 + 0.382) (sA2 + 2.618)

sA2 (sA2 + 1) (sA2 + 3)

Table 3.2: zpk form o f z11 transfer function, M ATLAB listing from tdofpz3x3.m.

Taking the expression for z11 from the zpk MATLAB listing in Table 3.2,
expand the terms to show explicitly the pole and zero values from Table 3.1,
substituting s = 0.25j to calculate the frequency response value at 0.25 rad/sec.

„ (s2 + 0.382)(s2 + 2.618)
z11 = ------ 2 2 2 -----------

s2(s2 + 1)(s2 + 3)

= (s + 0.618j)(s - 0.618j)(s + 1.618j)(s - 1.618j)
= s2(s + 1j)(s- 1j)(s +1.732j)(s -1 .732 j) (3 28)
= (0.25j + 0.618j)(0.25j - 0.618j)(0.25j + 1.618j)(0.25j- 1.618j)
= (0.25j)2 (0.25j + 1j)(0.25j - 1j)(0.25j + 1 .732j)(0.25j - 1 .732j)

0.172

© 2001 by Chapman & Hall/CRC

T aking the magnitude and phase of z11

z11 = 4.74
1 1 (3.29)
Zz11 = -180°

The frequency response plot from MATLAB code tdofxfer.m in Figure 3.4
shows a magnitude of 4.79 (our 4.74 above differs because of rounding
errors). The phase plot, not shown here but available by running tdofxfer.m ,
shows -180°.

frequency, rad/sec

Figure 3.4: z11 frequency response highlighting magnitude at 0.25 rad/sec.

3.5 MATLAB Code tdofxfer.m - Plot Frequency Responses

3.5.1 Code Description

Five different methods of calculating the frequency responses are used in the
tdofxfer.m code, starting with the simplest and most straightforward method,
but not necessarily the most efficient, then going to more sophisticated and
efficient methods. The methods are:

1) Polynomial descriptions of the transfer functions: Using a
for-loop to cycle through the frequency vector. MATLAB’s
complex algebra capabilities are used to evaluate the
frequency response at each frequency.

2) Polynomial descriptions of the transfer functions: Using
MATLAB’s vector capabilities instead of a for-loop to

© 2001 by Chapman & Hall/CRC

calculate the frequency response at the frequencies in the
frequency vector.

3) MATLAB’s “transfer function” representations of the transfer
functions: MATLAB’s automatic bode plotting capability is
used, where MATLAB chooses the frequency range to use
and automatically plots results.

4) Transfer function representations of the transfer functions:
MATLAB’s bode plotting capability is used, but this time
defining outputs and frequency range with the “bode”
command, controlling the output for later plotting.

5) MATLAB’s “zero/pole/gain, zpk” form of the input is used.

Because the plotting commands are so lengthy, they will be not be listed. See
the downloaded code for the complete code listing.

3.5.2 Polynom ial Form , For-Loop C alculation, Code Listing

The “polynomial form” shown below uses (2.28) through (2.36) to define the
four distinct frequency responses of the system, allowing the user to specify
any values of masses, dampers and springs. MATLAB’s complex number
calculation capabilities are used by defining a vector of radian frequencies “w”
and substituting “j*w” for “s.” A “for-loop” is then used to cycle through each
frequency in the “w” vector and calculate the complex value for the frequency
response at that frequency. Because MATLAB does not know how large all
of the vectors defined within the “for-loop” are going to be, it resizes each
vector during each calculation, a very time-consuming (relatively speaking)
operation. We could speed up the operation by defining null vectors of the
proper size for each of the “for-loop” variables before the for-loop was
entered. This would still require going through the for-loop for every entry in
the “w” vector, but would eliminate having to resize the vectors at each
calculation. Following the for-loop, magnitudes and phases are calculated
using MATLAB’s “abs” and “angle” commands and are available for plotting.

% "Polynomial Form, for-loop" frequency response plotting

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

© 2001 by Chapman & Hall/CRC

%
%
%

Define a vector of frequencies to use, radians/sec. The logspace command uses
the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

%
%

Use a for-loop to cycle through all the frequencies, using MATLAB's
complex algebra capabilities to evaluate.

for cnt = 1:length(w)

% define s as the imaginary operator times each frequency

s = j*w(cnt);

% define the frequency responses to be evaluated

den(cnt) = sA2*(sA4*(m1*m2*m3) + sA3*(m2*m3*c1 + m1*m3*c1 + m1*m2*c2
+ m1*m3*c2) + sA2*(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 ...
+ m2*c1*c2 + m3*c1*c2 + m1*c1*c2 + k1*m2*m3) ...
+ s*(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 ...
+ m3*c2*k1 + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));

z11bf(cnt) = ((m2*m3)*sA4 + (m3*c1 + m3*c2 + m2*c2)*sA3 ...
+ (c1*c2 + m2*k2 + m3*k1 + m3*k2)*sA2 ...
+ (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z21bf(cnt) = ((m3*c1)*sA3 + (c1*c2 + m3*k1)*sA2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))/den(cnt);

z31bf(cnt) = ((c1*c2)*sA2 + (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z22bf(cnt) = ((m1*m3)*sA4 + (m1*c2 + m3*c1)*sA3 + (m1*k2 + c1*c2 + ...
m3*k1)*sA2

+ (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

% calculate the magnitude and phase of each frequency response

z11bfmag(cnt) = abs(z11bf(cnt));

z21bfmag(cnt) = abs(z21bf(cnt));

z31bfmag(cnt) = abs(z31bf(cnt));

z22bfmag(cnt) = abs(z22bf(cnt));

z11bfphs(cnt) = angle(z11bf(cnt))*rad2deg;

z21bfphs(cnt) = angle(z21bf(cnt))*rad2deg;

© 2001 by Chapman & Hall/CRC

z31bfphs(cnt) = angle(z31bf(cnt))*rad2deg;

z22bfphs(cnt) = angle(z22bf(cnt))*rad2deg;

end % end of for-loop

3.5.3 Polynom ial Form , V ector C alculation, Code Listing

This section of code defines the transfer functions as in the previous section
but instead of using the for-loop for obtaining complex values of the desired
quantities at each frequency, this code uses MATLAB’s vector calculation
capability. MATLAB can perform operations on vectors directly, very
quickly and without having to resize anything as discussed in the previous
section. In order to define a vector operation between two vectors, precede
the operation symbol (*, /, л, etc) with a period (“.”). This period tells
MATLAB to perform an element-by-element operation on or between
corresponding elements of the vector(s). For example, to square every
element of a vector, “vec”, use the command “vec.A2,” and to multiply two
elements, “vec1” and “vec2” element by element, use the command
“vec1.*vec2.” This vector calculation capability will be used wherever
appropriate in the balance of the code in the text.

% "Polynomial Form, Vector" method - using MATLAB's vector capabilities instead
% of the "for" loop.

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

s = j*w;

© 2001 by Chapman & Hall/CRC

% define the frequency responses to be evaluated, using the "." prefix
% in front of each operator to indicate that each

% define the frequency responses to be evaluated

den = s.A2.*(s.A4*(m1*m2*m3) + s.A3*(m2*m3*c1 + m1*m3*c1 + m1*m2*c2
+ m1*m3*c2) + s.A2*(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 ...
+ m2*c1*c2 + m3*c1*c2 + m1*c1*c2 + k1*m2*m3) ...
+ s*(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 ...
+ m3*c2*k1 + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));

z11bfv = ((m2*m3)*s.A4 + (m3*c1 + m3*c2 + m2*c2)*s.A3 ...
+ (c1*c2 + m2*k2 + m3*k1 + m3*k2)*s.A2 ...
+ (c1*k2 + c2*k1)*s + (k1*k2))./den;

z21bfv = ((m3*c1)*s.A3 + (c1*c2 + m3*k1)*s.A2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))./den;

z31bfv = ((c1*c2)*s.A2 + (c1*k2 + c2*k1)*s + (k1*k2))./den;

z22bfv = ((m1*m3)*s.A4 + (m1*c2 + m3*c1)*s.A3 + (m1*k2 + c1*c2 + m3*k1)*s.A2
+ (c1*k2 + c2*k1)*s + (k1*k2))./den;

% calculate the magnitude and phase of each frequency response

z11bfvmag = abs(z11bfv);

z21bfvmag = abs(z21bfv);

z31bfvmag = abs(z31bfv);

z22bfvmag = abs(z22bfv);

z11bfvphs = angle(z11bfv)*rad2deg;

z21bfvphs = angle(z21bfv)*rad2deg;

z31bfvphs = angle(z31bfv)*rad2deg;

z22bfvphs = angle(z22bfv)*rad2deg;

3.5.4 T ransfer Function Form - Bode C alculation, Code Listing

This section uses MATLAB’s automatic “bode” calculation and plotting
capability, as well as the “transfer function” form of input, where the
numerator “num” and denominator “den” of each transfer function are input as
row vectors in coefficients of descending powers of “s.” Using the “bode”
command with no left-hand arguments results in MATLAB choosing the
frequency range to use and automatically generating plots of magnitude and
phase.

© 2001 by Chapman & Hall/CRC

% using MATLAB's automatic "bode" plotting capability, defining the transfer
% functions in "transfer function" form by row vectors of coefficients of "s"

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
m1*c1*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + m3*c2*k1 + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*k1 + m3*k2)
(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% the bode command with no left hand side arguments automatically chooses
% frequency limits and plots results

grid on
bode(z 11num,den);

disp('execution paused to display figure, "enter" to continue'); pause

bode(z21num,den);

disp('execution paused to display figure, "enter" to continue'); pause

bode(z31num,den);

disp('execution paused to display figure, "enter" to continue'); pause

bode(z22num,den);

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

3.5.5 T ransfer Function Form , Bode C alculation w ith Frequency,
Code Listing

This section also uses MATLAB’s “bode” plotting capability with the transfer
function form of the input but defines magnitude and phase vectors for output
and specifies the frequency vector to use. This code also calculates and plots
the low and high frequency asymptotes for the four unique transfer functions.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "transfer function" form by row vectors of coefficients of
% "s"and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ...
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ...
m1*c1*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + m3*c2*k1 + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*k1 + m3*k2)
(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% calculate the rigid-body motions for low and high frequency portions
% of all the frequency responses, the denominator entries are vectors with
% entries being coefficients of the "s" terms in the low and high frequency
% asymptotes, starting with the highest power of "s" and ending with the
% "0"th power of "s" or the constant term

© 2001 by Chapman & Hall/CRC

z11num lo = [1];

z11den_lo = [3 0 0]; % -1/(3*wA2)

z11num hi = [1];

z11den_hi = [1 0 0]; % -1/(wA2)

z21num lo = [1];

z21den_lo = [3 0 0]; % -1/(3*wA2)

z21num hi = [1];

z21den_hi = [1 0 0 0 0]; % -1/(3*wA4)

z31num lo = [1];

z31den_lo = [3 0 0]; % -1/(3*wA2)

z31num hi = [1];

z31den_hi = [1 0 0 0 0 0 0]; % -1/(wA2)

z22num lo = [1];

z22den_lo = [3 0 0]; % -1/(3*wA2)

z22num hi = [1];

z22den_hi = [1 0 0]; % -1/(wA2)

% define the "tf" models from "num

z11tf = tf(z11num,den);

z21tf = tf(z21num,den);

z31tf = tf(z31num,den);

z22tf = tf(z22num,den);

, den" combinations

z11tf lo = tf(z11num lo,z11den lo);

z11tf hi = tf(z11num hi,z11den hi);

z21tf lo = tf(z21num lo,z21den lo);

z21tf hi = tf(z21num hi,z21den hi);

z31tf lo = tf(z31num lo,z31den lo);

z31tf hi = tf(z31num hi,z31den hi);

© 2001 by Chapman & Hall/CRC

z22tf_lo = tf(z22num_lo,z22den_lo);

z22tf_hi = tf(z22num_hi,z22den_hi);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

[z11mag,z11phs] = bode(z11tf,w);

[z21mag,z21phs] = bode(z21tf,w);

[z31mag,z31phs] = bode(z31tf,w);

[z22mag,z22phs] = bode(z22tf,w);

[z11maglo,z11phslo] = bode(z11tf_lo,w);

[z21maglo,z21phslo] = bode(z21tf_lo,w);

[z31maglo,z31phslo] = bode(z31tf_lo,w);

[z22maglo,z22phslo] = bode(z22tf_lo,w);

[z11maghi,z11phshi] = bode(z11tf_hi,w);

[z21maghi,z21phshi] = bode(z21tf_hi,w);

[z31maghi,z31phshi] = bode(z31tf_hi,w);

[z22maghi,z22phshi] = bode(z22tf_hi,w);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

z11maglodb = 20*log10(z11maglo);

z21maglodb = 20*log10(z21maglo);

z31maglodb = 20*log10(z31maglo);

z22maglodb = 20*log10(z22maglo);

z11maghidb = 20*log10(z11maghi);

z21maghidb = 20*log10(z21maghi);

z31maghidb = 20*log10(z31maghi);

© 2001 by Chapman & Hall/CRC

z22maghidb = 20*log10(z22maghi);

3.5.6 Zero/Pole/Gain Function Form , Bode C alculation w ith Frequency,
Code Listing

This section also uses MATLAB’s “bode” plotting capability. This time, with
the zero/pole/gain form of the input. It defines magnitude and phase vectors
for output and specifies the frequency vector to use.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "zero/pole/gain" form by column vectors of poles and zeros
% and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

m = m1;
k = k1;

% define column vectors of poles and zeros from previous derivation
%
% there are three ways to make a column vector:
%
% 1) define a row vector and then transpose it:
%
% p = [0 0 1*j -1*j sqrt(3*k/m)*j -sqrt(3*k/m)*j]';
%
% 2) define a column vector by using semi-colons between elements:
%
% p = [0; 0; 1*j; -1*j; sqrt(3*k/m)*j; -sqrt(3*k/m)*j];
%
% 3) define a column vector directly:
%
% p = [0
% 0
% 1*j
% -1*j
% sqrt(3*k/m)*j
% -sqrt(3*k/m)*j];

% zeros for z1/f1; quartic so four zeros

z11 1 = -sqrt((-3*k-sqrt(5)*k)/(2*m));

© 2001 by Chapman & Hall/CRC

z 11_2 = sqrt((-3*k-sqrt(5)*k)/(2*m));

z11_3 = -sqrt((-3*k+sqrt(5)*k)/(2*m));
z11_4 = sqrt((-3*k+sqrt(5)*k)/(2*m));

% zeros for z2/f1; quadratic so two zeros

z21_1 = -sqrt(-k/m);
z21_2 = sqrt(-k/m);

% zeros for z3/f1; no zeros, so use empty brackets

z31_1 = [];

% zeros for z2/f2: quadratic so two zeros

z22_1 = -sqrt(-k/m);
z22_2 = sqrt(-k/m);

%

z11 = [z11_1 z11_2 z11_3 z11_4]';

z21 = [z21_1 z21_2]';

z31 = z31_1;

z22 = [z22_1 z22_2]';

p = [0 0 1*j -1*j sqrt(3*k/m)*j -sqrt(3*k/m)*j]';

gain = 1;

% use the zpk command to define the four pole/zero/gain systems

sys11pz = zpk(z11,p,gain);

sys21pz = zpk(z21,p,gain);

sys31pz = zpk(z31,p,gain);

sys22pz = zpk(z22,p,gain);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10л-1 = 0.1 rad/sec, and 1 is
% 10Л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

%
%

use the bode command with left hand magnitude and phase vector arguments
to provide values for further analysis/plotting

[z 11mag,z 11phs] = bode(sys 11pz,w);

[z21mag,z21phs] = bode(sys21pz,w);

© 2001 by Chapman & Hall/CRC

[z31mag,z31phs] = bode(sys31pz,w);

[z22mag,z22phs] = bode(sys22pz,w);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

3.5.7 Code O utput - Frequency Response M agnitude and Phase Plots

x fe r func tion form , Bode z11, z 3 3 db m agnitude x fe r func tion form, Bode z21, z12, z23, z 3 2 db m agnitude

frequency, rad /sec frequency, rad /sec

x fe r func tion form , Bode z31, z 1 3 db m agnitude x fe r func tion form , Bode z2 2 db m agnitude

frequency, rad /sec frequency, rad /sec

Figure 3.5: Magnitude versus frequency for four distinct frequency responses, including
low and high frequency asymptotes.

© 2001 by Chapman & Hall/CRC

с
-200

ф -250TD
ф"(Л
Л -300 а

-350

-150
xfer function form, Bode z11, z33 phase

-400
10- 10 10

-150

с
-200

deg -250
e,
s
ha-300
p

-350

-400
10-

frequency, rad/sec

xfer function form, Bode z31, z13 phase

o

10
frequency, rad/sec

10

xfer function form, Bode z21, z12, z23, z32 phase
-150,—

-200 -

ф -250 - d

s
Л -300 -

p

-350 -

-400 L
10-1

-150 г

10
frequency, rad/sec

xfer function form, Bode z22 phase

10

-200 -

§ -250 -

ш"s
Л -300 -

p

-350 -

-400 L
10-1 10

frequency, rad/sec
10

Figure 3.6: Phase versus frequency for four distinct frequency responses, including low
and high frequency asymptotes.

3.6 O ther Form s of Frequency Response Plots

Other forms of frequency response plots are shown for a damping value of 2%
of critical damping for each mode. The code used for the plots is from
Chapter 11, tdofss_modal_xfer_modes.m.

© 2001 by Chapman & Hall/CRC

3.6.1 Log M agnitude versus Log Frequency

z11, z33 phase versus log freq

frequency, rad/sec

Figure 3.7: Log magnitude versus log frequency.

Comments on the log-log plot:

1) The asymptotic behavior at the low and high frequency ends
are clear by checking the slopes.

2) The log frequency scale spreads out the resonances, which
otherwise would tend to clump at the lower end of the scale.

3) The log amplitude scale allows reading the gain directly
without converting from db.

4) Adding the gain from the mechanics to the gain of the
frequency response of the control system allows for
definition of the overall series (multiplicative) frequency
response.

© 2001 by Chapman & Hall/CRC

3.6.2 db Magnitude versus Log Frequency

z11, z33 db mag versus log freq

z11, z33 phase versus log freq

frequency, rad/sec

Figure 3.8: db magnitude versus log frequency.

Comments on the db-log plot:

1) The asymptotic behaviors at the low and high frequency
ends are clear by checking the slopes, i.e.

(1/Ю) = -2 0 db/decade, (1 /ffl2) = -4 0 db/decade.

2) The log frequency scale spreads out the resonances, which
otherwise would tend to clump at the lower end of the scale.

3) The db amplitude scale makes it necessary to convert to gain
if needed.

4) The product of two individual frequency response gains can
be found by adding their gains directly on the log scale.

© 2001 by Chapman & Hall/CRC

3.6.3 db M agnitude versus L inear Frequency

z11, z33 phase versus linear freq

frequency, rad/sec

Figure 3.9: db magnitude versus linear frequency.

Comments on the db-linear plot:

1) The asymptotic behaviors at the low and high frequency
ends are not clear.

2) The linear frequency scale tends to clump the resonances at
the lower end of the scale, although the scale could be
shortened since nothing significant is happening at the high
end.

3) The db amplitude scale makes it necessary to convert to
linear gain if specific gain values are needed.

© 2001 by Chapman & Hall/CRC

3.6.4 Linear Magnitude versus Linear Frequency

z11, z33 linear mag versus linear freq

0 1 2 3 4 5 6 7 8 9 10

z11, z33 phase versus linear freq

frequency, rad/sec

Figure 3.10: Linear magnitude versus linear frequency.

Comments on the linear-linear plot:

1) The asymptotic behaviors at the low and high frequency
ends are not clear.

2) The linear frequency scale tends to clump the resonances at
the lower end of the scale, although the scale could be
shortened since nothing significant is happening at the high
end.

3) The linear amplitude scale enables reading gain values
directly, but reading values for small gain values is difficult.

4) It is useful for directly adding the individual mode
contributions of a frequency response to provide the overall
response, shown in Chapter 8, Sections 8.7 and 8.8.

© 2001 by Chapman & Hall/CRC

3.6.5 Real and Imaginary Magnitudes versus Log and Linear Frequency

z11, z33 linear real mag versus log freq

z11, z33 linear imaginary versus log freq

-1 0 L-
10-1 10 10

frequency, rad/sec

Figure 3.11: Real and im aginary magnitudes versus log frequency.

z11, z33 linear real mag versus linear freq

z11, z33 linear imaginary versus linear freq

E -5 -

3 4 5 6
frequency, rad/sec

0

0

0 1 2 7 8 9 10

Figure 3.12: Real and im aginary magnitude versus linear frequency.

Comments on real versus linear frequency, imaginary versus linear frequency:

1) These plots are useful in understanding the amplitudes of
transfer functions at resonance, as the peaks of the imaginary
curve represent the amplitude at resonance.

© 2001 by Chapman & Hall/CRC

2) While the imaginary plot peaks at each resonance, the real
plot goes through zero at each resonance.

3.6.6 Real versus Im aginary (Nyquist)

z11, z33 real versus imaginary, "Nyquist"
15

10

5

-5

-10

-15
-15 -10 -5 0 5 10 15

Figure 3.13: Real versus im aginary (Nyquist).

Comments on real versus imaginary:

1) Frequency is not plotted directly on the real/imaginary plot; each
point on the plot represents a different frequency.

2) Plotting real versus imaginary is a very useful technique when
identifying resonant characteristics. The two resonances can be
readily seen, helping in identifying closely spaced resonances.

3) One method of identifying damping in a mode is to use the rate of
change of amplitude versus frequency (Maia 1997).

A
+ u -ь

ir

- - к "

© 2001 by Chapman & Hall/CRC

3.7 Solving fo r Eigenvectors (Mode Shapes) Using the T ransfer Function
M atrix

We have reviewed transfer functions, poles, zeros and frequency responses.
The next area we will cover in order to completely define the system is
eigenvectors, or mode shapes. At each natural frequency, the eigenvector
defines the relative motion between degrees of freedom. Understanding the
distribution of motion in each mode of vibration is essential in order to
intelligently modify the system’s resonant characteristic to solve resonance
problems.

Since eigenvectors define the relative motion between degrees of freedom, we
need to choose a degree of freedom against which to measure the other
motions. We can find the relative motion using any column of the transfer
function matrix. Choosing z1 as the reference and solving for z2 / z1 and

z3 / z1 using the first column of the transfer function matrix (we will compare
results using the second column later to show that they give the same results):

mks + k
m 2s4 + 3mks2 + k 2

(3.29)

F1

z2

z

F_

F1

k 2

m s + 3mks + k
(3.30)

z

Now that the ratios are known, we substitute the resonant frequencies (pole
values) one at a time to define the mode shape at that frequency, dropping the
second index, z21 ^ z2 .

For mode 1: evaluated at s = j Ю1 = 0

mks2 + k ‘ = = 4 = 1 (3.31)
z1 m s + 3mks + k k

z2 = z1 (3.32)

z2

© 2001 by Chapman & Hall/CRC

— = —л — k— 2— г = = 1 (3.33)z1 m s + 3mks + k k

z3 = z1 (3.34)

The interpretation of this mode shape is that at ю1 the ratios of motion of mass
2 and mass 3 to mass 1 are equal and are equal to 1. This is the rigid body
mode at 0 hz.

m

mk I — I + k 2

For mode 2: evaluated at s = j Ю2 = j

Zr = mks + k = _________1 m J__________= _0_ (3 3 5)
z1 = m2s4 + 3mks2 + k 2 = 2 f k 2 ^ . (—k , , 2 = k 2 (.)

1 m2 J+ 3mk f -m J + k2

z2 = 0 (3.36)

k 2
- = —1 (3.37)

z1 m s + 3mks + k 2 f k 2 | , f —k , , 2

1 m2 1 m H + 3mk 1 -m '+ k

z3 = — z1 (3.38)

The interpretation of this mode shape is that at ю2 mass 2 has zero motion
relative to mass 1 (it is stationary). Mass 3 is moving out of phase with mass 1
with equal amplitude.

For mode 3: evaluated at s = j Ю3 = j
m

z2 _ mks + k _ 1 m
mk I —— I + k 2

z1 m s + 3mks + k 2 f 9k2 | „ , f —3k, , 2
1 1 m 2") + 3™k 1“ ^ " I + (3.39)

—3k2 + k 2 —2k 2
- ^ = —2

9k2 — 9k2 + k 2

z3

© 2001 by Chapman & Hall/CRC

z 2 = - 2z1 (3.40)

z1 m 2s4 + 3mks2 + k 2 2 f 9k2 ^ „ , f - 3 k ̂ l 2
1 m 2 1 — г I + 3mk I ----- I + k 2

t m 2 J ^ m J (3.41)

= £ = J

Z3 = Zj (3.42)

The interpretation of this mode shape is that at ю3 mass 2 is moving with
twice the motion of mass 1 and out of phase with it and mass 3 is moving in
phase with mass 1 and with the same amplitude.

Showing that the second column of the transfer function matrix could have
been used and would have given the same eigenvectors:

z
F2 z2 m s + 2mks + k „ „„

2 - 2 - • (3.43)
z1 mks + k

F2

z3

For mode 1, ю1 = 0

z1 mks + k
F2

£ 2 = kL = 1
z1 k 2

^ = 1

For mode 2, evaluated at s = j Ю2 = j
m

(3.45a,b)

z3

z1

© 2001 by Chapman & Hall/CRC

z2 m s + 2mks + k
z, mks2 + k 2

m 21 k ̂+ 2m kf — I + k 2
m m

k 2 - 2k2 + k 2
- k 2 + k 2

mk I — I + k 2
m

(3.46)

=1 (3.47)

For mode 3, s = j Ю3 = j J —
V m

z2 = m s + 2mks + k
z. mks2 + k 2

9k2 - 6k2 + k 2 4k2

m
m

2| 9k ' + 2mk I — I + k 2
-3 k
m

mk I I + k 2
m

-3 k 2 + k 2 -2 k 2
• = -2

(3.48)

z . = 1 (3.49)

Summarizing the mode shapes in the m odal m atrix, z m , where the first
through third columns represent mode shapes for the first three modes,
respectively, and the first through third rows show the relative motion for the
first through third dof’s, respectively:

1 1 1

1 0 -2

1 -1 1

(3.50)

z3
z

z

Z m =

Figure 3.14 shows the mode shapes pictorially. There are many different
eigenvector scaling, or normalizing techniques, to be discussed later. It is not
important which normalization technique is used in visualizing mode shapes.
However, in using the modal matrix to calculate responses, the normalization
technique used is critical, as we will see in future chapters.

© 2001 by Chapman & Hall/CRC

Because there is no damping, these modes are known as “normal” (as opposed
to “complex”) modes. With a normal mode, if the masses are started with
some multiple of the displacements of one of the modes, the system will
respond at only that frequency. During that motion, the masses will all reach
their maximum and minimum points at the same time. Mode shapes are
plotted in Figure 3.14, assuming an arbitrary value of 1 for Z j:

Ш
—w m 2 —w m

4 , -*rnq4— ^
Rigid-Body Mode, 0 rad/sec

ПТХТ

m -4r- m„

ПТТП C) О
- w - m

v У£

-1

T X ---V
Second Mode, Middle Mass Stationary, 1 rad/sec

-2

m„

Р~Ш

te=—
m 2 V Л

/ S /"V

W m ,

\ \ — \ \ — \ \ —
Third Mode, 1.732 rad/sec

Q) . Q

1 1 1

1

1

Figure 3.14: Mode shape plots.

© 2001 by Chapman & Hall/CRC

Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P 3 .1 Set mj = m 2 = m = 1, k = k 2 = k = 1 and hand sketch the frequency
responses for the undamped system.

P3.2 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, modify the
tdofxfer.m code and plot the frequency responses of the two dof undamped
system using the transfer function and zero/pole/gain forms of Sections 3.5.5
and 3.5.6.

P3.3 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, add damping to the
model from P3.2 and plot the transfer functions in Nyquist form, being careful
to use small enough frequency spacing to identify the resonances as shown in
Figure 3.13.

P3.4 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, choose one of the
transfer functions for the undamped system and plot the poles and zeros in the
s-plane. Choose a frequency on the positive imaginary axis and hand calculate
the gain at that frequency. Correlate with the MATLAB calculated gain.

P3.5 Solve for the two eigenvectors for the system in P3.3 using the transfer
function matrix. Hand plot the mode shapes as in Figure 3.14.

© 2001 by Chapman & Hall/CRC

CHAPTER 4

ZEROS IN SISO MECHANICAL SYSTEMS

Chapters 2 and 3 discussed poles and zeros of SISO systems and their
relationship to transfer functions. The origin and influence of poles are clear.
They represent the resonant frequencies of the system, and for each resonant
frequency a mode shape can be defined to describe the motion at that
frequency. We have seen from our frequency response analyses in Chapter 3
that at the frequencies of the zeros, motions approach or go to zero, depending
on the amount of damping present. In Chapters 8 and 11 we will illustrate
how all the individual modes of vibration can combine at specific frequencies
to create zeros of the overall transfer function.

This chapter will expand on analyses shown in Miu [1993] to develop an
intuitive understanding for when to expect zeros in Single Input Single Output
(SISO) simple mechanical systems and how to predict the frequencies at
which they will occur. We will not cover the theory, but will state the
conclusions from Miu and show how the conclusions relate to two example
systems.

We will start by defining a series arrangement lumped spring/mass system.
We will develop guidelines for defining the number of zeros that should be
seen and show how to predict their frequencies. A MATLAB model is used to
illustrate the guidelines for various combinations of input and output degrees
of freedom. Only the MATLAB code results are discussed; the code itself is
not listed or discussed as it uses techniques found later in the book. However,
the reader is encouraged to run the code and experiment with various values of
the input and number of masses in the model to become familiar with the
concept.

Next, an ANSYS finite element model of a tip-excited cantilever is analyzed.
The resulting transfer function magnitude is plotted using MATLAB to show
an overlay of the poles of the “constrained” system and their relationship with
the zeros of the original model.

4.1 Introduction

© 2001 by Chapman & Hall/CRC

4.2 “n” dof Example

Figure 4.1 shows a series arrangement of masses and springs, with a total of
“n” masses and “n+1” springs. The degrees of freedom are numbered from
left to right, z1 through zn .

No Degrees of Freedom to
Left of Constrained DOF:

No Zeros

z(n)

[J
No Degrees of Freedom to
Right of Constrained DOF:

No Zeros

z(n-2)

Four Degrees of Freedom to
Left of Constrained DOF:

Four Zeros

Two Degrees of Freedom to
Right of Constrained DOF:

Two Zeros

r 1
m 1 ^ -^ m 2] - V - ^ 3 ^ -^ m 4 |л - ^ m5

Two Degrees of Freedom to
Left of Constrained DOF:

Two Zeros

(n-3) Degrees of Freedom
to Right of Constrained

DOF:
Number of Zeros for Driving (n-3) Zeros

Point Transfer Function
(n-1)

F1

F5

Figure 4.1a,b,c,d: “n ” d of system showing various SISO input/output configurations.

Miu [1993] shows that the zeros of any particular transfer function are the
poles of the constrained system(s) to the left and/or right of the system
defined by constraining the one or two dof’s defining the transfer function.
The resonances of the “overhanging appendages” of the constrained
system create the zeros.

Two limiting cases are immediately available in (1) and (3) below:

1) For the transfer function from one end of the structure to the
other, Figure 4.1b, there are no overhanging appendage

© 2001 by Chapman & Hall/CRC

structures to the left or right of the constrained structure, so there
are no zeros.

2) For an arbitrary transfer function, Figure 4.1c, there will be a
structure to the left and/or to the right of the constrained dof’s.
The total degrees of freedom of the overhanging appendage(s)
will give the total number of zeros in the transfer function.

3) For the driving point transfer function, Figure 4.1d, the force and
displacement are measured at the same dof, so there are a total of
(n -1) degrees of freedom left, hence (n -1) zeros of the
transfer function. All but one of the masses are overhanging
appendages.

In the analysis that follows, we will calculate frequency responses and
pole/zero plots for various transfer functions using the MATLAB code
ndof_numzeros.m.

4.2.1 MATLAB Code ndof_num zeros.m , Usage Instructions

The MATLAB code is based on the ndof series system in Figure 4.1. The
code allows one to choose the total number of masses in the problem and sets
the values of the masses and stiffnesses randomly between the values of 1 and
2. The program then allows one to choose which transfer function to
calculate, and shows the pole/zero plots for the original system as well as the
poles for the two structures to the left and/or right. For now, the reader should
not worry about the details of the code, which will be covered in later
chapters, but should use the code to study the pole/zero patterns in systems
with different numbers of degrees of freedom and for different input/output
dof’s. Sometimes the random values chosen for stiffnesses and damping will
cause the poles and zeros to be so close together that they will cancel each
other. If this is the case and the number of poles and zeros do not match the
expected number, rerun the code until more widely spaced poles/zeros are
randomly chosen and the required poles and zeros are apparent.

4.2.2 Seven dof M odel - z7/F1 Frequency Response

T aking a seven-mass model as an example, the resulting frequency responses
and pole-zero plots are displayed on the following pages. In all cases, the
random distribution of masses and spring stiffnesses is used, resulting in a
different set of variables for each run.

Figure 4.2 shows the frequency response for applying a force at the first mass
and looking at the output at the last (seventh) mass. Note that in accordance

© 2001 by Chapman & Hall/CRC

with the prior analysis, there should be no zeros as there are no “overhanging”
appendages. Since there are seven masses, there should be seven poles. Since
each mass provides an attenuation of -40db/decade, after the last of seven
poles the slope of the curve is 7*(-4 0 db/decade) = -280 db/decade.

transfer function, 7 dof, input at 1, output at 7
5 0 .

0

-50

■° -100
e,■o

§ -1 5 0
£

-200

-250

-300
-1 0 1

10 10 10
frequency, rad/sec

Figure 4.2: z17 transfer function frequency response, seven poles, no zeros.

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
- 2 - 1 0 1 2

Figure 4.3: z17 pole/zero plot showing only seven poles.

poles/zeros of system

- — 4 - —
-Ф-

4­
4

*i
.j'--i
+ j _
+

“i ■
*i
Жi
+

transfer function, 7 dof, input at 1, output at 7

© 2001 by Chapman & Hall/CRC

4.2.3 Seven dof M odel - z3/F4 Frequency Response

The same seven dof system provides the following frequency response when
the force is applied at mass 3 and the output is taken at mass 4. There are two
“overhanging” appendages to the left of mass 3, masses 1 and 2, and there are
three “overhanging” appendages to the right of mass 4, masses 5, 6 and 7.
These masses should combine to give a total of five zeros and once again,
seven poles as shown below.

transfer function, 7 dof, input at 3, output at 4

frequency, rad/sec

Figure 4.4: z34 transfer function frequency response, seven poles and five zeros.

poles/zeros of system
1 ----Ф---- 1 1

2 1 + i i
1.5

1-I - 1- - - 4 - -
i i -L 1 .

1
1

- +---1 + 1 1 --_l----------|_ .
1 1

0.5 T Г + T 1 '
0

11 11 1 1 1 1
-0.5 1 -ф- 1 1

-1
1_L1 L 11

-
11 1 1 -L 1 .1 1

-1.5 _ 4. --------
1

--------- -- -̂---------l_ .
1 1

-2 t -1 r ----Ш---- Г 1 • 1 1
- 2 - 1 0 1 2

Figure 4.5: z34 pole/zero plot showing seven poles and five zeros.

© 2001 by Chapman & Hall/CRC

poles/zeros of system
_ _ 4>________

poles of Ihs

+
-f-

poles of rhs
___+___

I

- i
+
00 2 0 2 2

Figure 4.6: z34 poles and zeros; poles o f left-hand and right-hand constrained systems are
the same as the zeros o f the unconstrained system.

The left-hand plot in Figure 4.6 displays the z34 poles and zeros. The middle
plot shows the poles of the system to the left of mass 3. The right plot shows
the poles of the system to the right of mass 4. It is clear that the poles of the
two right plots are the zeros of the z34 system.

4.2.4 Seven dof M odel - z3/F3, Driving Point Frequency Response

For the same seven dof system with force and output taken at the same node
(driving point transfer function), there should be six “overhanging” masses
providing zeros. Therefore the frequency response plot in Figure 4.7 shows
six zeros, with alternating pole/zero pairs.

© 2001 by Chapman & Hall/CRC

transfer function, 7 dof, input at 3, output at 3

frequency, rad/sec

Figure 4.7: z33 transfer function frequency response, seven poles and the expected six
zeros.

2 -

1.5 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

-2 -

poles/zeros of system

-------4---------

- Jfr-

Figure 4.8: z33 pole/zero plot showing seven poles and six zeros.

0 2

© 2001 by Chapman & Hall/CRC

poles/zeros of system

1 1 1 J
i ii ^

Г 1 : i
5 1 i

i
5 1

 ̂ i

2

1 к

0

-1 К

-2

poles of Ihs

2

1 h

0

-1 И

-2

poles of rhs
-----------^ —

■Ф
— Ж —

■Ф

-2

■Ф

ф- -̂ r
02 2 2

Figure 4.9: z33 poles and zeros. Poles o f left-hand and right-hand constrained systems are
the same as the zeros o f the unconstrained system.

4.3 C antilever M odel - ANSYS

4.3.1 In troduction

Now that we have seen how the “constrained” system artifice works for a
simple lumped parameter system, it is interesting to consider how the artifice
would work for a continuous system, such as a cantilever beam.

The finite element program ANSYS is used to analyze a cantilever beam with
a driving point transfer function at the tip. The transfer function we are
interested in is the displacement at the tip, z, due to a vertical force at the tip,
F, as shown in Figure 4.10. The “constrained” structure whose poles should
define the zero locations for the unconstrained system is the original cantilever
with the addition of a simple support at the tip.

© 2001 by Chapman & Hall/CRC

z , F

i t
d
П Original Cantilever,

Driving Point
Transfer Function

i
A "Constrained" ~ b -

System, with
DOF's of transfer

function
constrained

Figure 4.10: Unconstrained and constrained cantilevers used for driving point
transfer function example.

4.3.2 ANSYS Code cantfem .inp Description and Listing

The input listings for the ANSYS models of the cantilever and simply
supported tip cantilever are below. The cantilever input program is
cantfem .inp and the supported tip input program is cantzero.inp. Both
programs can be run if one has access to ANSYS by typing
“/input,cantfem,inp” or “/input,cantzero,inp” at the ANSYS program
command prompt. The programs will run with no further input and will output
graphs of the mode shapes and frequency response. Both programs build the
model, and calculate and output the eigenvalues (natural frequencies) and
eigenvectors (mode shapes). Cantfem .inp then calculates and outputs the
frequency response. The mode shapes are shown in cantfem.grp and
cantzero.grp and the frequency response is shown in cantfem.grp2. They can
all be viewed by using the ANSYS Display program and loading the
appropriate file.

/title, cantfem.inp, 0.05 x 1 x 20mm aluminum cantilever beam, 20 elements

/prep7

et,1,4 ! element type for beam

! aluminum

ex,1,71e6 ! mN/mmA2
dens,1,2.77e-6 ! kg/mmA3

© 2001 by Chapman & Hall/CRC

nuxy,1,.345

! real value to define beam characteristics

r,1,1,.00001041,.004166,.05,1 ! area, moments of inertia, thickness

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1 ! color by material
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 ! left-hand node
n,21,20,0,0 ! right-hand node

fill,1,21 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,20,1,-1

! constrain left-hand end

nall
d,1,all,0 ! constrain node 1, all dofs

! constrain all but uz and roty for all other nodes to allow only those dof’s
! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof
! can calculate a maximum of 40 eigenvalues if don’t use Guyan reduction to reduce size of
! eigenvalue problem

nall
nsel,s,node,,2,21
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
nplo

© 2001 by Chapman & Hall/CRC

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

antype,modal,new
modopt,reduc,20
expass,off
mxpand,20,,,no
total,20,0

allsel

solve

fini

! plot first mode

/post1

set,1,1

pldi,1

/output,cantfem,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! define nodes for output: forces applied or output displacements

nsel,s,node,,21 ! cantilever tip

/output,cantfem,eig ! write out eigenvectors to ascii file .eig

*do,i,1,20
set,,i
prdisp

*enddo

/output,term

eplo

! method - reduced Householder, number of modes to extract
! key = off, no expansion pass, key = on, do expansion
! nummodes to expand
! total masters, 20 to be used, 1 to exclude rotational dofs

! starts the solution of one load step of a solution sequence, modal here

© 2001 by Chapman & Hall/CRC

! pldi plots

/show,cantfem,grp,0
allsel

/view,1,,-1,,
/angle,1,0
/auto

! side view for plotting

*do,i,1,20
set, 1,i

pldi
*enddo

/show,term

! *************** calculate and plot transfer functions ****************

fini

/assign,rst,junk,rst ! reassigns a file name to an ANSYS identifier

/solu

dmprat,0.01 ! sets a constant damping ratio for all modes, zeta = 0.01

allsel
eplo ! show forces applied

f,21,fz,1 ! 1 mn force applied to node 21, tip node

/title, cantilever with tip load

antype,harmic ! harmonic (frequency response) analysis

hropt,msup,20 ! mode superposition method, nummodes modes used

harfrq,100,1000000 ! frequency range, hz, for solution, -1 to 10 rad/sec

hrout,off,off ! amplitude/phase, cluster off

kbc,1

nsubst,10000 ! 10000 frequency points for very fine resolution

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all
! frequencies, component name for selected set of nodes

solve

fini

/post26

file,,rfrq ! frequency response results

© 2001 by Chapman & Hall/CRC

xvar,0 !display versus frequency

lines,10000 !specifies the length of a printed page for frequency response listing

nsol,2,21,u,z !
!
!

specifies nodal data to be stored in results file
u - displacement, z direction
note that nsol,1 is frequency vector

! plot magnitude

plcplx,0
/grid,1
/axlab,x,frequency, hz
/axlab,y,amplitude, mm
/gropt,logx, 1 ! log plot for frequency
/gropt,logy,1 ! log plot for amplitude

/show,cantfem,grp1
plvar,2
/show,term

! file name for storing

! plot phase

plcplx,1
/grid,1
/axlab,x,freq
/axlab,y,phase, deg
/gropt,logx,1
/gropt,logy,0

! label for y axis
! log plot for frequency
! linear plot for phase

/show,cantfem,grp1
plvar,2
/show,term

! save ascii data to file

prcplx,1 ! stores phase angle in asci file .dat

/output,cantfem,dat
prvar,2
/output,term

fini

4.3.3 ANSYS Code cantzero.inp Description and Listing

/title, cantzero.inp, 0.05 x 1 x 20mm aluminum tip constrained cantilever beam, 20 elements

/prep7

et,1,4 ! element type for beam

! aluminum

© 2001 by Chapman & Hall/CRC

ex,1,71e6
dens,1,2.77e-6
nuxy,1,.345

! mN/mmA2
! kg/mmA3

! real value to define beam characteristics

r,1,1,.00001041,.004166,.05,1 ! area, moments of inertia, thickness

! define plotting characteristics

/view,1,1,-1,1
/angle,1,-60
/pnum,mat,1
/num,1
/type,1,0 !
/pbc,all,1 !

! iso view
! iso view

! color by material
numbers off
hidden plot
show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0
n,21,20,0,0

! left-hand node
! right-hand node

fill, 1,21 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,20,1,-1

! constrain left-hand end

nall
d,1,all,0
d,21,uz,0

! constrain node 1, all dofs
! constrain tip

! constrain all but uz and roty for all other nodes to allow only those dof’s
! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof
! can calculate a maximum of 40 eigenvalues if don’t use Guyan reduction to reduce size of
! eigenvalue problem

nall
nsel,s,node,,2,2]
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

© 2001 by Chapman & Hall/CRC

nall
eall
nplo
eplo

! ****************** eigenvalue run ********************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

antype,modal,new
modopt,reduc,20
expass,off
mxpand,20,,,no
total,20

! method - reduced Householder, number of modes to extract
! key = off, no expansion pass, key = on, do expansion
! nummodes to expand
! total masters, 20 to be used, exclude rotational dofs

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

set,1,1

pldi,1

! ******************** output frequencies ***********************

/output,cantzero,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ****************** output eigenvectors *********************

! define nodes for output: forces applied or output displacements

nsel,s,node,,10 ! cantilever midpoint

/output,cantzero,eig ! write out eigenvectors to ascii file .eig

*do,i,1,20
set,,i
prdisp

*enddo

© 2001 by Chapman & Hall/CRC

! pldi plots

/show,cantzero,grp,0
allsel

/view,1,,-1,, ! side view for plotting
/angle,1,0
/auto

*do,i,1,20
set,1,i

pldi
*enddo

/show,term

/output,term

4.3.4 ANSYS Results, cantzero.m

The driving point frequency response for cantfem.inp is shown in Figure 4.11.
The ANSYS frequency and magnitude output results are read into MATLAB
and plotted in order to be able to overlay the resonances from the cantzero.inp
ANSYS run. The MATLAB code to plot the overlay is cantzero.m , which
reads in two input programs, cantfem _m agphs.m and cantzero_freq.m .

The resonant frequencies (poles) of the cantilever and constrained tip
cantilever models are listed in T able 4.1.

According to the guidelines for zeros discussed earlier in the chapter, the poles
of the frequency response plot should be the same frequencies as shown in the
“cantfem freq” column above. The zeros of the frequency response should be
the same frequencies as shown in the “cantzero freq” column above.

© 2001 by Chapman & Hall/CRC

mode cantfem freq, hz cantzero freq, hz

1 457.14 2004.6
2 2864.4 6495.0
3 8018.8 13548.
4 15709. 23162.
5 25961. 35336.
6 38771. 50071.
7 54147. 67380.
8 72102. 87291.
9 92672. 0.10985E+06
10 0.11592E+06 0.13520E+06
11 0.14196E+06 0.16337E+06
12 0.17098E+06 0.19495E+06
13 0.20323E+06 0.22951E+06
14 0.23907E+06 0.26909E+06
15 0.27885E+06 0.31129E+06
16 0.32274E+06 0.35968E+06
17 0.37012E+06 0.40928E+06
18 0.41860E+06 0.45602E+06
19 0.46289E+06 0.49344E+06
20 0.49490E+06 0.89212E+06

Table 4.1: Unconstrained (cantfem) and constrained tip (cantzero) cantilever resonances.

The constrained system poles in Figure 4.11 are shown below the curve with
“o” symbols. Note that the “o ’s” align with the zeros of the unconstrained
system.

Cantilever Driving Point Transfer Function and Constrained Pole Frequencies

frequency, hz

Figure 4.11: Cantilever driving point transfer function frequency response plot w ith
overlaid frequencies o f contrained-tip cantilever poles — which should match the

unconstrained system zeros.

© 2001 by Chapman & Hall/CRC

Problem

Note: The problem refers to the two dof system shown in Figure P2.2.

P4.1 Use the MATLAB code ndof_num zeros.m to identify the number of
poles and zeros for a five dof system for the following: z11, z23, z33.
Correlate the poles of the constrained system with the zeros of the original
system.

© 2001 by Chapman & Hall/CRC

CHAPTER 5

STATE SPACE ANALYSIS

In Chapter 2 we derived the equations of motion for the tdof system shown in
Figure 5.1, and showed how to solve the coupled differential equations for
various transfer functions. In order to solve time domain problems using a
computer, it is desirable to change the form of the equations for an n dof
system with n second order differential equations to 2n first order differential
equations. The first order form of equations of motion is known as state
space form.

This chapter will develop the state space formulation for the tdof example.
Once the state space formulation is completed, the subject of complex
eigenvalues and eigenvectors, resulting in complex modes of vibration, will
be covered in some detail. Once complex modes are understood,
comprehending real modes which arise from the undamped case in the modal
analysis section (Chapter 7) is simple.

Having an understanding of complex modes is especially helpful in working
with experimental modal analysis. There are some very powerful
experimental techniques available for testing and then visualizing the modes
of vibration of structures. Frequency response data is taken at a number of
selected positions on the structure and software is available to fit the data and
define modes of vibration. The software identifies the resonant frequencies of
the system and defines a damping value for each mode. It is then possible to
create a model of the geometry of the test point locations and build a virtual
model which can be animated to display the shape of motion of each mode.

The software has options which allow one to view the mode as either “real” or
“complex.” When the mode is viewed as “real,” all the points on the structure
move such that they all reach their maximum or minimum positions at the
same point in time, which is consistent with our definition of “principal” or
“real” modes defined in Chapter 7.

When the mode is viewed as “complex,” the structure does not move such that
all points reach either their minimum or maximum positions at the same point
in time. Instead there appears to be a wave that moves along the structure as
the different points reach their minimum or maximum positions at different
times. For lightly damped mechanical structures, the assumption is often
made that the modes are “real,” allowing use of modal analysis methods and
efficient finite element models. For structures that are not “lightly damped,”

5.1 Introduction

© 2001 by Chapman & Hall/CRC

the modal analysis method cannot be used and the state space formulation is
the only practical method of solving the problem.

It is difficult to visualize complex modes without an animated structure
model, but we will use a graphical method called an A rgand diagram to
explain how modes described by complex eigenvectors and complex
eigenvalues combine to create physical motion of the system. We will find
that if the unforced system is started from a set of initial conditions that match
the complex eigenvector then only a single mode is excited. We will show
how to calculate the transient response of the system for that specific initial
condition case and illustrate how only a single mode is excited.

Chapter 6 will cover how to use the state space formulation to obtain both
frequency and time domain results with MATLAB.

5.2 State Space Form ulation

- z 1 r F i
k 1

^ Z 2 F 2

k 2

^ Z 3

m 1 m 2

c

m 3

\ v —

F 3

Figure 5.1: Original damped tdof system model.

Repeating the matrix equations of motion from (2.25):

4 0 0 " " z1" " c1 - c 1 0 " " z 1 "
0 m 2 0 z 2 + - c 1 (c1+ c2) - c 2 z 2
0 0 m3 _ _ z3 _ 0 - c 2 c2 _ _ z3 _

" k 1 - k 1 0 " z 1 'F1 ■

- k 1 (k1 + k 2) k 2 z 2 = F2
0 k 2 k 2 _ _z3 _ „F3 _

Expanding the equations:

m1 z1 + c1z 1 - c1z 2 + k 1z1 - k 1z 2 = F1

m 2z2 - c1z1 + (c1 + c2)z2 - c2z3 - k 1z1 + (k1 + k 2)z2 - k 2z3 = F2 (5.2a,b,c)

m3z3 - c2z2 + c2z3 - k 2z2 + k 2z3 = F3

© 2001 by Chapman & Hall/CRC

The three equations above are second order differential equations which
require knowledge of the initial states of position and velocity for all three
degrees of freedom in order to solve for the transient response.

In the state space formulation, the three second order differential equations are
converted to six first order differential equations. Following typical state
space notation, we will refer to the states as “x” and the output as “y.”

Start by solving (5.2) for the three equations for the highest derivatives, in this
case the three second derivatives, z1, z2, z3:

z1 = (F1 - c1z1 + c1z2 - k 1z1 + k 1z2) /m 1

z2 = (F2 + c1z1 - (c1 + c2)z2 + c2z3 + k 1z1 - (k1 + k 2)z2 + k z3) /m 2

z3 = (F3 + c2z2 - c2z3 + k 2z2 - k 2z3) / m3
(5.3a,b,c)

We now change notation, using “x” to define the six states; three positions
and three velocities:

x1 = z1 Position of Mass 1 (5.4)

x2 = z1 Velocity of Mass 1 (5.5)
x3 = z2 Position of Mass 2 (5.6)

x4 = z2 Velocity of Mass 2 (5.7)
x5 = z3 Position of Mass 3 (5.8)

x6 = z3 Velocity of Mass 3 (5.9)

By using this notation, we observe the relationship between the state and its
first derivatives:

z1 = x2 = x1 (5.10)

z2 = x 4 = x3 (5.11)

(5.12)

Also between the first and second derivatives:

(5.13)
(5.14)

(5.15)

© 2001 by Chapman & Hall/CRC

Rewriting the three equations for z1, z2, z3 in terms of the six states x1

through x6 and adding the three equations defining the position and velocity
relationships:

x1 = x 2
x2 = (F1 - c1x 2 + c1x4 - k 1x1 + k 1x3) /m 1

x3 = x 4
3 4 (5.16a-f)

x4 = (F2 + c1x2 - (c + c2)x4 + c2x6 + k1x1 - (k1 + k 2 ^ + k2x5)/m 2

x5 = x6

x6 = (F3 + c2x 4 - c2x 6 + k 2x3 - k 2x5) /m 3

Rewriting the equations above in matrix form as:

0 1 0 0 0 0 0

V - k 1 - c 1 h . _c_ 0 0 Y
F1

x 1
m 1 m1 m 1 m1

x 1
m1

x 2
0 0 0 1 0 0

x 2
0

x 3 x3
= _k_ J L - (k 1+ k 2) - (c 1 + c2) _ka_ S i . + F2

x 4 x 4m 2 m 2 m 2 m 2 m 2 m 2 m 2
x5 x 50 0 0 0 0 1 0
x 6 x 66 _

0 0
к 2_ _̂ 2_ k 2 - c 2

6
F3

m3 m 3 m 3 m3 _ _ m 3

x = A x + B u
(5.17a,b)

5.3 Definition of State Space Equations of M otion

Schematically, a SISO state space system is represented as shown in Figure
5.2. We will define the blocks in the following sections. The scalar input u(t)
is fed into both the input matrix B and the direct transmission matrix D. The
output of the input matrix is an nx1 vector, where “n” is the number of states.
For a SISO system, the direct transmission matrix is a scalar, and its output is
fed into a summing junction to be added to the output of the C matrix.

The output of the B matrix is added to the feedback term coming from the
system matrix and is fed into an integrator block, where “I” is an nxn identify
matrix. The output matrix has as many rows as outputs, a single row for a

© 2001 by Chapman & Hall/CRC

SISO system, and has as many columns as states, n. The output y(t) is the
sum of the output of the C and D matrices.

Direct
Transmission

Matrix

u(t)

Input

Figure 5.2: State space system block diagram.

Notation for equations of motion in state space form is:

x = Ax + Bu (5.18)

where the A and B matrices are shown in (5.17a). Matrix A is known as
the system matrix, matrix B is the input matrix, and scalar u is the input. The
column vector x is the state of the system.

5.4 Inpu t M atrix Form s

Because “u” is a scalar, the nature of the input matrix B changes depending
on what input is used. If the system is a Single Input (SI) system with a force
either at mass 1, 2 or 3, the B matrix changes as follows:

© 2001 by Chapman & Hall/CRC

"1 : B =

“ 0 " " 0 " " 0 '

F1 0 0

m 1 0 0

0 =B

Рч4 F2 =B

l-C 0

0 m 2 0

0 0 F3
0 0 _ m3 _

(5.19a,b,c)

If the same forcing function u (for example, a step function or sine function) is
applied to several degrees of freedom simultaneously (for example, a force of
magnitude F1 to mass 1 and a force of magnitude F3 to mass 3) the input
matrix would become:

B

mi
0

0

0

_Fl
m3

(5.20)

For a Multi Input (MI) system, where forces are applied independent of one
another to the separate masses, a multiple column input matrix is appropriate.
For example, for different inputs at mass 1 and mass 2, none at mass 3, the
input matrix would become:

B

0 0

H _ 0

m1 0
0 _F2_
0 m 2

0 0

0 0

(5.21)

0

© 2001 by Chapman & Hall/CRC

5.5 Output Matrix Forms

To account for the case a
some linear combination
the outputs to the states.
matrix, is multiplied by t
the inputs but that bypass

The output matrix C ha
columns as states. The d:
columns as the input matr

In our example, we are i
velocities, so the matrix
matrix and D is assumed

У1

У2

У3 =

У4

У5

_ Уб _

Expanding, the matrix eqi

ere the desired output i
the states, an output ma
lso, a matrix D , known
input “u” to account for
e states.

y = Cx + Du

as many rows as outpu
ct transmission matrix D
B and as many rows as t

erested in all six of the
tput equation becomes,

to be zero:

1 0 0 0 0 0 x
0 1 0 0 0 0 x

0 0 1 0 0 0 x

0 0 0 1 0 0 x
0 0 0 0 1 0 x

0 0 0 0 0 1 x

become:

У1 = x1 (= Z1)

У2 = x 2 (= Z1)

У3 = x3 (= z2)

У4 = x 4 (= Z2)

У5 = x5 (= Z3)

Уб = x6 (= Z3)

; not just the states but is
rix C is defined to relate
as the direct transmission
outputs that are related to

(5.22)

ts required and as many
has the same number of

he output matrix C.

states, displacements and
where C is the identity

0

0

0

0_

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

© 2001 by Chapman & Hall/CRC

If we were only interested in the three displacements and not the three
velocities, the output equation would be, assuming D is Zero:

У1 1 0 0 0 0 0]

У2 = 0 0 1 0 0 0

_ У3 _ 0 0 0 0 1 0_
+ (0)(1) (5.30)

Expanding:

У1 = x1

У2 = x3

У3 = x5

(= Z1)

(= Z2)

(= Z3)

(5.31)

(5.32)

(5.33)

On the other hand, if the outputs are linear combinations of the states, as in a
control system problem, the output equation could look like (where a, b and c
are scalars), assuming D is Zero:

У1 "0

У2 c

У3 1

У4 _ 0

0 0 a 0 b 0

0 1 0 0 0
+ (0)(1) (5.34)

Expanding:

y 1 = ax3 + bx5

У2 = c x 1 + x3

У3 = x 1

У4 = x 4

(= aZ2 + bZ3)

(= cZ1 + Z2)

(= Z1)

(= Z2)

(5.35)

(5.36)

(5.37)

(5.38)

© 2001 by Chapman & Hall/CRC

If a single force is applied and a single output is desired (SISO), for example,
a force applied at mass 1 and the output displacement at mass 3, assuming D
is zero:

x
x'2

y =[0 0 0 0 1 0]
x

+ (0)(1) (5.39)
x 4
x

x6

With all the possible variations of the output equation, the state equation never
changes; it is always:

5.6 Complex Eigenvalues and Eigenvectors - State Space Form

The most basic analysis one can perform on a dynamic system is to solve for
its eigenvalues (natural frequencies) and eigenvectors (mode shapes). In this
section we will develop the most general case where there are no limitations
on the presence or magnitude of the two damping terms, which could result in
complex eigenvalues and eigenvectors.

Start by postulating that there is a set of initial conditions such that if the
system is released with that set, the system will respond in one of its natural
modes of vibration. To that end, we set the forcing function to zero and write
the homogeneous state space equations of motion:

is the ith eigenvalue, the natural frequency of the ith mode of vibration

xi is the vector of states at the ift frequency

xmi is the ith eigenvector, the mode shape for the ith mode

x = Ax + Bu (5.40)

x = Ax (5.41)

We define motion in a principal mode as:

(5.42)

Where:

© 2001 by Chapman & Hall/CRC

For our tdof (z1 to z3), six state (x1 to x6) system, for the ith eigenvalue and
eigenvector, the equation would appear as:

z1i x1i xm1i

z1i x 2i xm2i

Z2i = x3i = x eX,‘ = mi
xm3i

Z 2i x 4i xm4i

Z3j x5i xm5i

_z3i _ _ x6i _ _ xm6i _

e * (5.43)

Differentiating the modal displacement equation above to get the modal
velocity equation:

xmi = d - [x rn ^] = K ,dt
(5.44)

Substituting into the state equation and canceling the exponential terms leads
to:

x = Ax

= AxmieX‘

= Axmi
(^ - A)xDj = 0

(5.45a-d)

Equation (5.45c) is the classic “eigenvalue problem.” If xmi is not equal to
zero in (5.45d), a solution exists only if the determinant below is zero (Strang
1998):

|((I - A) = 0 (5.46)

Taking the system matrix A from (5.17a) and inserting in (5.45):

© 2001 by Chapman & Hall/CRC

0 1 0 0 0 0

- k 1 - c 1 -k_ _c_ 0 0
m1 m1 m1 m 1
0 0 0 1 0 0

k J L - (k + k2) - (c + c2) _ka_ -£2_
m2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 0 1

0 0
_k^ _̂ 2_ k 2 - c 2
m3 m3 m 3 m 3 .

(5.47)

In Chapter 10 we will use the undamped version of (5.46) with c l = c2 = 0 to
discuss “normal” modes, where we will find that taking the determinant in
closed form is practical. For the tdof damped system matrix, taking the closed
form determinant is far too complicated so we will use MATLAB’s “eig”
function to solve the eigenvalue problem numerically, using specific values of
m, c and k. We will use the MATLAB code tdof_non_prop_dam ped.m as
we continue our exploration of complex modes.

5.7 MATLAB Code tdof_non_prop_dam ped.m : M ethodology, Model
Setup, Eigenvalue C alculation Listing

The sequence of development of complex modes is as follows:

1) solve original damped system equation for
complex eigenvalues and eigenvectors

2) normalize the eigenvector entries to unity

3) calculate magnitude and phase angle of each of the
eigenvector entries

4) use the Argand diagram to visualize the motion of
a complex mode

5) calculate the percentage of critical damping
(damping ratio) for each mode

6) calculate the motions of the three masses for all
three modes

© 2001 by Chapman & Hall/CRC

7) plot the real and imaginary displacements of each
of the degrees of freedom separately

We have explored how to calculate the eigenvectors or mode shapes for an
undamped problem using the transfer function matrix (Chapter 3). The modes
for the undamped problem were real modes, meaning that the position
elements of the eigenvectors were real, not complex, and we were able to plot
diagrams showing the shape of the modes. For complex modes, it is not
possible to draw a picture of the deformed mode shape because there are
phase differences between the various degrees of freedom which prevent them
from reaching their maximum/minimum points at the same point in time.
This leads to the apparent “traveling wave” in an animated mode.

The first section of tdof_non_prop_dam ped.m sets up the state space
equations of motion and solves the eigenvalue problem for damping values of
c1 = 0.1, c2 = 0.2 :

% tdof_non_prop_damped.m non-proportionally damped tdof model

clf;

legend off;

subplot(1,1,1);

clear all;

% define the values of masses, springs, dampers

m1 = 1;
m2 = 1;
m3 = 1;

k1 = 1;
k2 = 1;

% define arbitrary damping values

c1 = input('input value for c1, default 0.1, ... ');

if (isempty(c1))
c 1 = 0.1;

else
end

c2 = input('input value for c1, default 0.2, ... ');

if (isempty(c2))
c2 = 0.2;

else
end

© 2001 by Chapman & Hall/CRC

% define the system matrix, aphys, in physical coordinates

0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

% solve for the eigenvalues of the system matrix

[xm,lambda] = eig(aphys);

% take the diagonal elements of the generalized eigenvalue matrix lambda

lambdad = diag(lambda);

The six eigenvalues, lambda values, are listed below. Since we have three
degrees of freedom, there should be three sets of complex conjugate
eigenvalues.

xm =

Columns 1 through 4

-0.0567 - 0.1940i -0.0567 + 0.1940i
0.3452 - 0.0535i 0.3452 + 0.0535i
0.0624 + 0.4029i 0.0624 - 0.4029i
-0.7046 + 0.0162i -0.7046 - 0.0162i
-0.0057 - 0.2089i -0.0057 + 0.2089i
0.3593 + 0.0373i 0.3593 - 0.0373i

0.2886 - 0.4085i 0.2886 + 0.4085i
0.3865 + 0.3190i 0.3865 - 0.3190i
-0.0218 - 0.0123i -0.0218 + 0.0123i
0.0139 - 0.0209i 0.0139 + 0.0209i
-0.2668 + 0.4208i -0.2668 - 0.4208i
-0.4004 - 0.2981i -0.4004 + 0.2981i

Columns 5 through 6

0.0000 - 0.5774i
0.0000 + 0.0000i
0.0000 - 0.5774i
0.0000 + 0.0000i
0.0000 - 0.5774i
0.0000 + 0.0000i

0.0000 + 0.5774i
0.0000 - 0.0000i
0.0000 + 0.5774i
0.0000 - 0.0000i
0.0000 + 0.5774i
0.0000 - 0.0000i

lambda =

Columns 1 through 4

0
0
0
0.9991i

-0.2250 + 1.7141i 0 0
0 -0.2250 - 1.7141i 0
0 0 -0.0750 + 0.9991i
0 0 0 -0.0750 -
0 0 0 0

© 2001 by Chapman & Hall/CRC

0 0 0 0

Columns 5 through 6

0 0
0 0
0 0
0 0

-0.0000 + 0.0000i 0
0 -0.0000 - 0.0000i

lambdad =

-0.2250 + 1.7141i
-0.2250 - 1.7141i
-0.0750 + 0.9991i
-0.0750 - 0.9991i
-0.0000 + 0.0000i
-0.0000 - 0.0000i

Note that the two eigenvalues which correspond to each of the three modes
are complex conjugates of each other, and that the real parts of the second and
third mode eigenvalues are all negative.

We did not specify the form of the eigenvalues, which in the most general
case can be complex, as in the second and third modes above. We will now
discuss the components of complex eigenvalues. We use the term Xn1 to
describe the first complex eigenvalue of any of the three sets of eigenvalues
above. The term Xn2 is used to describe the second complex eigenvalue of

the set, and the complex conjugacy of the two is stated as: Xn2 = , where
the “*” indicates a complex conjugate. The real and imaginary parts will be
defined using o nx and ranx, respectively:

X n1 = о n1 + jffln1
. (5.48)

Xn2 = K 1 = °n! - j®n1

See Figure 5.3 for graphical descriptions of the components of a complex
eigenvalue. The figure shows two complex conjugate eigenvalues (poles) in
the left half plane as “x” symbols. The real parts of the two eigenvalues are
the same and are given the symbol о , with the imaginary parts both having a
distance from the origin of ю , referred to as the damped natural frequency.
The radial distance from the origin to the poles is given by юп and is referred
to as the undamped natural frequency. The angle between the imaginary axis
and the line from the origin to the pole is used to define the amount of

© 2001 by Chapman & Hall/CRC

damping of the mode, referred to as Z , the damping ratio or percentage of
critical damping. If о = 0 , 0 = 0 and there is no damping, therefore

ю = юп.

Im(s)

Re(s)

о

Figure 5.3: Complex eigenvalue (pole) nomenclature in complex plane.

Referring to Figure 5.3 for the definition of 0 , the equation for calculating Z
for a mode from the real and imaginary components of the eigenvalue is:

Z = sin 0

5.8 Eigenvectors - Norm alized to Unity

The section of code below reorders the eigenvectors from low to high
frequency and normalizes them. The normalization procedure is to divide
each eigenvector by its position state for mass 1, the first term in each
eigenvector.

% now reorder the eigenvalues and eigenvectors from low to high frequency,

© 2001 by Chapman & Hall/CRC

% keeping track of how the eigenvalues are ordered in reorder the
% eigenvectors to match, using indexhz

[lambdaorder,indexhz] = sort(abs(imag(lambdad)));

for cnt = 1:length(lambdad)

lambdao(cnt,1) = lambdad(indexhz(cnt)); % reorder eigenvalues

xmo(:,cnt) = xm(:,indexhz(cnt)); % reorder eigenvector columns

end

% now normalize the eigenvectors with respect to the position of mass 1, which
% will be set to 1.0

for cnt = 1:length(lambdad)

xmon1(:,cnt) = xmo(:,cnt)/xmo(1,cnt);

end

The eigenvectors, normalized such that the displacements of mass 1 are set to
1.0 are shown below as xm onl.

lambdao =

-0.0000 + 0.0000i
-0.0000 - 0.0000i
-0.0750 + 0.9991i
-0.0750 - 0.9991i
-0.2250 + 1.7141i
-0.2250 - 1.7141i

xmo =

Columns 1 through 4

0.0000 - 0.5774i 0.0000 + 0.5774i 0.2886 - 0.4085i 0.2886 + 0.4085i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.3865 + 0.3190i 0.3865 - 0.3190i
0.0000 - 0.5774i 0.0000 + 0.5774i -0.0218 - 0.0123i -0.0218 + 0.0123i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.0139 - 0.0209i 0.0139 + 0.0209i
0.0000 - 0.5774i 0.0000 + 0.5774i -0.2668 + 0.4208i -0.2668 - 0.4208i
0.0000 + 0.0000i 0.0000 - 0.0000i -0.4004 - 0.2981i -0.4004 + 0.2981i

Columns 5 through 6

-0.0567 - 0.1940i -0.0567 + 0.1940i
0.3452 - 0.0535i 0.3452 + 0.0535i
0.0624 + 0.4029i 0.0624 - 0.4029i
-0.7046 + 0.0162i -0.7046 - 0.0162i
-0.0057 - 0.2089i -0.0057 + 0.2089i

© 2001 by Chapman & Hall/CRC

0.3593 + 0.0373i 0.3593 - 0.0373i

xmon1 =

Columns 1 through 4

1.0000 - 0.0000i 1.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 + 0.0000i

-0.0000 + 0.0000i -0.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 0.0000i

1.0000 1.0000
-0.0750 + 0.9991i -0.0750 - 0.9991i
-0.0050 - 0.0498i -0.0050 + 0.0498i
0.0502 - 0.0013i 0.0502 + 0.0013i

-0.9950 + 0.0498i -0.9950 - 0.0498i
0.0248 - 0.9978i 0.0248 + 0.9978i

Columns 5 through 6

1.0000 - 0.0000i 1.0000 + 0.0000i
-0.2250 + 1.7141i -0.2250 - 1.7141i
-2.0001 - 0.2630i -2.0001 + 0.2630i
0.9009 - 3.3691i 0.9009 + 3.3691i
1.0001 + 0.2630i 1.0001 - 0.2630i

-0.6759 + 1.6550i -0.6759 - 1.6550i

The six rows of each eigenvector are related to the six states, x1 to x 6, where

x1; x3, x5 are the displacement states and x2, x 4, x 6 are the velocity states.
Each velocity row is equal to the displacement row associated with it times its
eigenvector, as can be seen by repeating (5.41) and differentiating it.

(5.50)
X i =X . (x ^)

The tdof model has three degrees of freedom, so we should have three modes
of vibration. The first two columns of the eigenvector matrix define mode 1,
the third and fourth define mode 2 and the fifth and sixth columns define
mode 3. Like the two complex conjugate eigenvalues for each mode, the two
eigenvector columns for each of the modes are complex conjugates of each
other.

5.9 Eigenvectors - M agnitude and Phase Angle R epresentation

Another way of looking at the eigenvectors is to calculate the magnitude and
phase angle for each entry. The code for doing this follows.

% now calculate the magnitude and phase angle of each of the eigenvector
% entries

for row = 1:length(lambdad)

© 2001 by Chapman & Hall/CRC

for col= 1 :length(lambdad)

xmon1mag(row,col) = abs(xmon1(row,col));

xmon1ang(row,col) = (180/pi)*angle(xmon1(row,col));

end

end

lambdao

xmo

xmon1

xmon1mag

xmon1ang

The magnitude and phase angles are:

xmon1mag =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 1.0019 1.0019 1.7288 1.7288
1.0000 1.0000 0.0501 0.0501 2.0173 2.0173
0.0000 0.0000 0.0502 0.0502 3.4875 3.4875
1.0000 1.0000 0.9962 0.9962 1.0341 1.0341
0.0000 0.0000 0.9981 0.9981 1.7877 1.7877

xmon1ang
0 0 0 0 0 0

90.0000 -90.0000 94.2930 -94.2930 97.4782 -97.4782
0.0000 0.0000 -95.7723 95.7723 -172.5081 172.5081

90.0000 -90.0000 -1.4793 1.4793 -75.0299 75.0299
0.0000 0.0000 177.1334 -177.1334 14.7356 -14.7356

90.0000 -90.0000 -88.5736 88.5736 112.2138 -112.2138

We will see in Chapter 7 that undamped eigenvector oscillatory modes have
phases that are multiples of 90°. For the damped complex eigenvectors the
phases are slightly offset from being 90° multiples of each other.

5.10 Complex Eigenvectors Com bining to Give Real M otions

Now that we have solved for the complex eigenvalues and eigenvectors, we
will discuss how we can have the system respond in only a single mode of
vibration by releasing the system with a particular set of initial conditions.
We will answer the following question:

© 2001 by Chapman & Hall/CRC

How does a mode that is described by complex eigenvalues and
eigenvectors give “real,” physically observable motions
(Newland 1989)?

For the nth mode, the motion in that mode is defined as the sum of the motions
due to the two conjugate eigenvalues/eigenvectors for that mode, as shown in
(5.51). Substituting the complex conjugate value and collecting exponential
terms:

x (t) = ^ x -1 + ^ x - 2

= e ^ x - 1 + e ° x - 1

= e(°n1 + j“n1)t x :1 + e(°n1 -j“n1)t x - 1 (5.51)

= e°n1t (e j“n1tx - 1 + e-j“n1tx - 1)

= 2e°n1t R e(x^)

The ej“n1tx :1 term represents a vector of magnitude |x :1 | which is rotating

counter-clockwise at the rate of ю:1 radians/sec. The e-j“n1tx-1 term represents

a vector of magnitude |x-J which is rotating clockwise at the rate of ю:1

radians/sec. This counter-rotation is the key to understanding how the sum of
two complex numbers becomes real. Since the two counter-rotating
eigenvector terms are complex conjugates, their imaginary portions are of
opposite sign and as they rotate, the sum of the two results in only a real
component as the two imaginary portions cancel each other. See the Argand
diagram in the next section for a graphical representation.

The e0n1t term is an exponentially decreasing scalar which multiplies the sum
of the two counter-rotating vectors. The o :1 term is the real value of the
eigenvalue, and for a stable mode, with the poles in the left half of the s-plane,
the value is always negative. Thus, e0n1t is exponentially decreasing with a
time constant of 1/ o :1 .

For real modes, the poles are on the imaginary axis, so o :1 = 0 and e(0)t = 1.
The two counter-rotating vectors are not attenuated in amplitude with time, so
the motion is undamped.

If the initial conditions for the system are set at one of the eigenvectors, the
system will respond in only that mode. For systems w ith complex modes,
initial conditions of both displacem ents and velocities of all the masses
m ust be set sim ultaneously in o rd er for the system to respond only in tha t
mode. If the initial conditions for the system are set at any other value, the

© 2001 by Chapman & Hall/CRC

resulting motion will be composed of a superposition of the motions of
several modes.

For undamped systems with normal modes, either the displacement or
velocity initial conditions can be set and the system will respond only in that
mode (see Chapter 7 for more details).

Equation (5.51) will be used in the MATLAB code for plotting the motion of
the system for the two oscillatory modes.

5.11 A rgand D iagram Introduction

Since we are dealing with complex modes where different parts of the
structure reach their maximum and minimum positions at different times, we
cannot plot deformed mode shape plots as we did for the undamped model in
Chapter 3. The best way to visualize complex modes is by animating the
mode shape, allowing one to see the different parts of the structure moving in
time.

The use of an Argand or Phasor diagram is another way to visualize the
motion. It plots rotating eigenvectors of position and velocity in the complex
plane for each degree of freedom in the eigenvector and shows how the
complex conjugate eigenvector components add to create the “real” motion.

The normalized eigenvector matrix, xmon1, is repeated below. The first two
states, position and velocity of mass 1, dof z1, are highlighted in bold type for
the second mode of vibration.

Figure 5.4 shows Argand diagrams for the highlighted mode and states in the
eigenvector matrix below. All three plots are in the complex plane. The
upper left-hand plot shows the position and velocity eigenvector components
for the third column of the eigenvector matrix, where the position component
is 1+0j and the velocity component is -0.075+0.999j. The position
component plots from 0 to 1 on the real axis. Notice that the tip of the
velocity vector is slightly to the left of the imaginary axis. The ej“zt term
indicates that the position and velocity vectors are both rotating in the
counter-clockwise direction at a speed of ю radians/sec, starting from the
initial locations defined by the eigenvector components.

© 2001 by Chapman & Hall/CRC

xmonl =
1.0000
0.0000 + 0.0000i
1.0000 + 0.0000i
0.0000 + 0.0000i
1.0000 + 0.0000i
0.0000 + 0.0000i

1.0000
0.0000 - 0.0000i
1.0000 - 0.0000i
0.0000 - 0.0000i
1.0000 - 0.0000i
0.0000 - 0.0000i

1.0000
-0.0750 + 0.9991i
-0.0050 - 0.0498i
0.0502 - 0.0013i
-0.9950 + 0.0498i
0.0248 - 0.9978i

1.0000
-0.0750 - 0.9991i
-0.0050 + 0.0498i
0.0502 + 0.0013i
-0.9950 - 0.0498i
0.0248 + 0.9978i

1.0000
-0.2250 + 1.7141i
-2.0001 - 0.2630i
0.9009 - 3.3691i
1.0001 + 0.2630i

-0.6759 + 1.6550i

1.0000
-0.2250 - 1.7141i
-2.0001 + 0.2630i
0.9009 + 3.3691i
1.0001 - 0.2630i

-0.6759 - 1.6550i

Im

Figure 5.4: Argand diagram explanation.

The upper right-hand plot is similar to the left-hand plot except that the fourth
column entries of the eigenvector matrix for the first two states are plotted and
the two vectors are rotating in the clockwise direction. Note that the real
components of the position and velocity components are the same as the third
column, but that the imaginary components are complex conjugates of each
other.

© 2001 by Chapman & Hall/CRC

The lower plot illustrates the complex plane with both third and fourth
eigenvectors shown on the same plot after rotating through the angle ra2t . At
any time “t,” the two counter-rotating position vectors can be added to give
the current position. At any time, the two imaginary components cancel out,
leaving only the sum of the two real axis components as the “real” position.
The same vector addition of the two counter-rotating velocity vectors will
give the “real” velocity.

For an undamped model, the lengths of the two original eigenvector
components stay the same. For the damped model, the lengths of all the
vectors decrease continuously with a time constant of 1/ o 2 .

Looking at the Argand diagram above, which shows the “real” motion as
twice the real axis component of the vector, it is clear that the motion as a
function of time can also be written as:

x(t) = 2 e°"1‘ |xn1|cos(mt + фш)
~ t (5-52)

= 2e°n1‘ Re(xn1)

where the phase angle Фп is given by:

t a n ^ J = Im(zm)/R e (zm) (5.53)

5.12 C alculating Z , P lotting Eigenvalues in Complex Plane,
Frequency Response

This section of code calculates the percentage of critical damping for each of
the three modes, Z using (5.49).

% calculate the percentage of critical damping for each mode

zeta1 = 0

theta2 = atan(real(lambdao(3))/imag(lambdao(3)));
zeta2 = abs(sin(theta2))

theta3 = atan(real(lambdao(5))/imag(lambdao(5)));
zeta3 = abs(sin(theta3))

plot(lambda,'k*')
grid on
axis([-3 1 -2 2])
axis('square')
title('Damped Eigenvalues')
xlabel('real')

© 2001 by Chapman & Hall/CRC

ylabel('imaginary')
text(real(lambdao(3))-1,imag(lambdao(3))+0.1,['zeta = ',num2str(zeta2)])
text(real(lambdao(5))-1,imag(lambdao(5))+0.1,['zeta = ',num2str(zeta3)])
disp('execution paused to display figure, "enter" to continue'); pause

Damped Eigenvalues

1

0.5

1 z e t a = 0 .1 3 0 1 5 , i

-L

1
_L
1
1
1
1

z e t a = 0 . 0 7 4 8 5 7 ^

i i
i i
i i
i i

1
1
1
1

T
1

- i f '
i i
i i

i i
1---------- h - -
1

i i
------------------ 1----------------------- ф.,---------------------------

i i
1---------- k - -
1
1

i i

*

-1
real

Figure 5.5: Plot of eigenvalues in complex plane for tdof model w ith c1 = 0.1, c2 = 0.2.

state space, z11, z33 db magnitude state space, z21, z12, z23, z32 db magnitude

state space, z31, z13 db magnitude state space, z22 db magnitude

frequency, rad/sec frequency, rad/sec

Figure 5.6: Frequency response magnitude plots.

2

1.5

i 0

-0.5

-1.5

0

© 2001 by Chapman & Hall/CRC

state space, z11, z33 phase state space, z21, z12, z23, z32 phase

state space, z31, z13 phase state space, z22 phase

frequency, rad/sec frequency, rad/sec

Figure 5.7: Frequency response phase plots.

The magnitude and phase frequency response plots for the system with
c1 = 0.1 and c2 = 0.2 are shown above, using tdofss.m to plot. Note the
significant attenuation of the resonances with zetas of 7.5% and 13% for
modes 1 and 2, respectively. (Note: This amount of damping is very difficult
to obtain in most practical structures without the use of additive damping.)

5.13 In itial Condition Responses of Individual Modes

The code below calculates the initial condition response for the oscillatory
(not rigid body) second and third modes of the system when started with
initial conditions defined by the appropriate eigenvector. Equation (5.51) is
repeated below to show the form of the equation for x(t) that is used in the
code.

x (t) = e°"1t(e j“”1t x„1 + e-j“”2t x ^)

= e ^ e ^ x„1) + e0n1t(e -j“"2t xn2)

The real and imaginary components of the eigenvalues are calculated to give
O and ffl in the equation above. The real and imaginary displacements of
each of the three masses are then calculated for both oscillatory modes for a
time period of 15 seconds.

% calculate the motions of the three masses for all three modes - damped case

t = 0:.12:15;

© 2001 by Chapman & Hall/CRC

sigmall = real(lambdao(1));
omegall = imag(lambdao(1));

sigmal2 = real(lambdao(2));
omega12 = imag(lambdao(2));

sigma2l = real(lambdao(3));
omega21 = imag(lambdao(3));

sigma22 = real(lambdao(4));
omega22 = imag(lambdao(4));

sigma31 = real(lambdao(5));
omega31 = imag(lambdao(5));

sigma32 = real(lambdao(6));
omega32 = imag(lambdao(6));

% sigma for first eigenvalue for mode 1
% omega for first eigenvalue for mode 1

% sigma for second eigenvalue for mode 1
% omega for second eigenvalue for mode 1

% sigma for first eigenvalue for mode 2
% omega for first eigenvalue for mode 2

% sigma for second eigenvalue for mode 2
% omega for second eigenvalue for mode 2

% sigma for first eigenvalue for mode 3
% omega for first eigenvalue for mode 3

% sigma for second eigenvalue for mode 3
% omega for second eigenvalue for mode 3

% motion of three masses for mode 1

z111r = exp(sigma11*t).*(exp(i*omega11*t
z112r = exp(sigma12*t).*(exp(i*omega12*t

z121r = exp(sigma11*t).*(exp(i*omega11*t
z122r = exp(sigma12*t).*(exp(i*omega12*t

z131r = exp(sigma11*t).*(exp(i*omega11*t
z132r = exp(sigma12*t).*(exp(i*omega12*t

% motion of three masses for mode 2

z211r = exp(sigma21*t).*(exp(i*omega21*t
z212r = exp(sigma22*t).*(exp(i*omega22*t

z221r = exp(sigma21*t).*(exp(i*omega21*t
z222r = exp(sigma22*t).*(exp(i*omega22*t

z231r = exp(sigma21*t).*(exp(i*omega21*t
z232r = exp(sigma22*t).*(exp(i*omega22*t

% motion of three masses for mode 3

n1omx 1,1)); %% mass 1

n1omx4̂

1,2)); % mass 1

n1omx4̂

3,1)); % mass 2

* m 0 1 3,2)); % mass 2

* X m 0 1 5,1)); % mass 3

n1omx 5,2)); % mass 3

n1omx4̂ (1,3)); % mass 1

n1omx4̂ (1,4)); % mass 1

* X m 0 1 (3,3)); % mass 2

* X m 0 1 (3,4)); % mass 2

n1omx)* (5,3)); % mass 3

n1omx)* (5,4)); % mass 3

z311r= exp(sigma31*t).*(exp(i*omega31*t * X m 0 1 1,5)); % mass 1
z312r= exp(sigma32*t).*(exp(i*omega32*t *xmon1 1,6)); % mass 1

z321r = exp(sigma31*t).*(exp(i*omega31*t *xmon1 3,5)); % mass 2
z322r = exp(sigma32*t).*(exp(i*omega32*t *xmon1 3,6)); % mass 2

z331r = *31agemoi*p(xp(e.**31amig(sip(xpe *xmon1 5,5)); % mass 3
z332r = exp(sigma32*t).*(exp(i*omega32*t *xmon1 5,6)); % mass 3

© 2001 by Chapman & Hall/CRC

The code listing below is to plot various combinations of real and imaginary
components of the displacements of the three masses when released in states
which match the eigenvectors.

5.14 Plotting Initial Condition Response, Listing

% plot real and imaginary motions of each mass for the two complex conjugate
% eigenvectors of mode 2

plot(t,real(z211),'k-',t,real(z212),'k+-',t,imag(z211),'k.-',t,imag(z212),'ko-')
title('non-prop damped real and imag for z1, mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z221),'k-',t,real(z222),'k+-',t,imag(z221),'k.-',t,imag(z222),'ko-')
title('non-prop damped real and imag for z2 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z231),'k-',t,real(z232),'k+-',t,imag(z231),'k.-',t,imag(z232),'ko-')
title('non-prop damped real and imag for z3 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z211+z212),'k-',t,real(z221+z222),'k+-',t,real(z231+z232),'k.-')
title('non-prop damped, z1, z2, z3 mode 2')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')
axis([0 max(t) -2 2])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot subplots for notes

subplot(2,2,1)
plot(t,real(z211),'k-',t,real(z212),'k+',t,imag(z211),'k. -',t,imag(z212),'ko-')
title('non-prop damped real and imag for z1, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

© 2001 by Chapman & Hall/CRC

subplot(2,2,2)
plot(t,real(z221),'k-',t,real(z222),'k+',t,imag(z221),'k.-',t,imag(z222),'ko-')
title('non-prop damped real and imag for z2 mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

subplot(2,2,3)
plot(t,real(z231),'k-',t,real(z232),'k+',t,imag(z231),'k.-',t,imag(z232),'ko-')
title('non-prop damped real and imag for z3 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

subplot(2,2,4)
plot(t,real(z211+z212),'k-',t,real(z221+z222),'k+-',t,real(z231+z232),'k.-')
title('non-prop damped, z1, z2, z3 mode 2')
legend('mass 1','mass 2','mass 3')
grid on
xlabel('time, sec')
axis([0 max(t) -2 2])

disp('execution paused to display figure, "enter" to continue'); pause

subplot(1,1,1)

% plot mode 3

plot(t,real(z311),'k-',t,real(z312),'k+-',t,imag(z311),'k.-',t,imag(z312),'ko-')
title('non-prop damped real and imag for z1, mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z321),'k-',t,real(z322),'k+-',t,imag(z321),'k.-',t,imag(z322),'ko-')
title('non-prop damped real and imag for z2 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -2 2])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z331),'k-',t,real(z332),'k+-',t,imag(z331),'k.-',t,imag(z332),'ko-')
title('non-prop damped real and imag for z3 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

________plot(t,real(z311+z312),'k-',t,real(z321+z322),'k+-',t,real(z331+z332),'k.-')

© 2001 by Chapman & Hall/CRC

title('non-prop damped, z1, z2, z3 mode 3')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')
axis([0 max(t) -4 4])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot subplots for notes

subplot(2,2,1)
plot(t,real(z311),'k-',t,real(z312),'k+-',t,imag(z311),'k.-',t,imag(z312),'ko-')
title('non-prop damped real and imag for z1, mode 3')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

subplot(2,2,2)
plot(t,real(z321),'k-',t,real(z322),'k+-',t,imag(z321),'k.-',t,imag(z322),'ko-')
title('non-prop damped real and imag for z2 mode 3')
legend('real','real','imag','imag')
axis([0 max(t) -2 2])
grid on

subplot(2,2,3)
plot(t,real(z331),'k-',t,real(z332),'k+-',t,imag(z331),'k.-',t,imag(z332),'ko-')
title('non-prop damped real and imag for z3 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

subplot(2,2,4)
plot(t,real(z311+z312),'k-',t,real(z321+z322),'k+-',t,real(z331+z332),'k.-')
title('non-prop damped, z1, z2, z3 mode 3')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')
axis([0 max(t) -4 4])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

5.15 P lotted Results: A rgand and In itial Condition Responses

The next four sections plot Argand and initial condition transient responses
for the two oscillatory modes, illustrating the canceling of the imaginary
components and the doubling of the real components.

© 2001 by Chapman & Hall/CRC

5.15.1 Argand Diagram, Mode 2

Im Im

Pos = 1 + 0j
Vel = -.075 + .99

Г
I— h

4 POSITION
- 4 - -----1 Re

Mode 2
dof 1

i— h

Pos = -.0050 - .0498j
Vel = .0502 - .0013j

I------h
-0.10 -0.05

-0.05

POSITION

Pos = 1 + 0j
Vel = -.075 - .99!

POSITION

—Г-Н--------- 1 Re
J 2

e J

VELOCITY

Mode 2
dof 2 T

-И------1 Re I------h

J. Im

I------h

Im

-0.10 -0.05

-0.05

- 0.10

-0.10 -0.05

-0.05

I

t f - 0.10

Pos = -.0050 + .0498j
Vel = -.0502 + .0013j

VELOCITY
- Г & Г - ---- 1 Re
У 0.05 0.10

j l

Im 2 т

Mode 2
dof 3

POSITION

i------b-
Im

2 “Г

i— \ /

Pos = -.995 - .049;
Vel = .0248 +

.9978j

V 4--------1 Re

Complex Mode
Argand Diagrams

e

-ja

Figure 5.8 Argand diagram for three degrees o f freedom for mode 2, complex damping.

© 2001 by Chapman & Hall/CRC

The plots below show the motions of the masses decreasing due to the
damping. Once again, the imaginary components are out o f phase and cancel
each other, leaving only twice the real component as the final motion. Unlike
the undamped case, the three masses do not reach their maximum or minimum
positions at the same time. Since the damping is quite small, it is hard to see
on the plots the small differences in times at which the maxima and minima
are reached. Note that the unequal damping values for the two dampers make
the center mass have a small motion in mode 2. We showed in Chapter 3 that
for the undamped case mass 2 has no motion for mode 2.

5.15.2 Time Domain Responses, Mode 2

non-prop damped real and imag for z1, mode 2 non-prop damped real and imag for z2 mode 2

non-prop damped real and imag for z3 mode 2 non-prop damped, z1, z2, z3 mode 2

time, sec time, sec

Figure 5.9: Initial condition transient response for mode 2.

© 2001 by Chapman & Hall/CRC

5.15.3 Argand Diagram, Mode 3

Figure 5.10: Argand diagram for three degrees o f freedom for mode 3, complex damping.

© 2001 by Chapman & Hall/CRC

Compared to the responses for the mode 2 in Figure 5.9, the response for
mode 3 damps out faster for two reasons. First, it has higher damping, 13%
versus 7.5%, as shown in Figure 5.5. Secondly, even if zeta were the same for
the two modes, the higher frequency of mode 3 will create higher velocities,
hence higher damping from the velocity-dependent damping term.

non-prop damped real and imag for z1, mode 3 non-prop damped real and imag for z2 mode 3

5.15.4 Time Domain Responses, Mode 3

non-prop damped real and imag for z3 mode 3 non-prop damped, z1, z2, z3 mode 3

time, sec time, sec

Figure 5.11: Initial condition transient response for mode 3.

© 2001 by Chapman & Hall/CRC

Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P5.1 Write the damped equations for the two dof system in state space form,
both expanded and matrix. Show the input matrix B for a step force of
magnitude 1 to mass 1 and magnitude -2 for mass 2. Show the output matrix
C for the following outputs:

a) Position of masses 1 and 2

b) Position and velocity of mass 1

c) 2 times velocity of mass 1 plus 3 times the position of mass 2

P5.2 Set up the eigenvalue problem for the damped two dof problem as in
(5.46).

P5.3 (MATLAB) With m 1 = m 2 = m = 1, k 1 = k 2 = k = 1, modify the code
in tdof_non_prop_dam ped.m for the two dof damped model with
c1 = c2 = 0.1 and:

a) list the complex eigenvalues, real and imaginary form

b) list the complex eigenvalues, magnitude and phase angle form

c) normalize the eigenvectors for unity values of the position of mass 1
and hand plot the Argand diagrams for the system

d) list the percentage of critical damping for each mode

e) plot the complex eigenvalues in the s-plane and correlate the three
different descriptions in (a), (b) and (d)

P5.4 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1 and plot the initial
condition responses for the system in initial conditions which match the two
damped eigenvectors.

P5.5 Set m 1 = m 2 = m = 1, k 1 = k 2 = k = 1 and hand plot the Argand
diagrams for modes 1 and 2.

© 2001 by Chapman & Hall/CRC

CHAPTER 6

STATE SPACE:

FREQUENCY RESPONSE, TIME DOMAIN

6.1 In troduction - Frequency Response

This chapter will begin with the state space form of the equations of motion.
We will use Laplace transforms to define the transfer function matrix. Next
we will solve for the closed form transfer function matrix of the undamped
tdof model using a symbolic algebra program and compare the answer with
the solution presented in Chapter 2. MATLAB code will be used to set up
frequency response calculations, using the full system matrix which allows the
user to define damping values.

6.2 Solving fo r T ransfer Functions in State Space Form Using Laplace
T ransform s

Starting with the complete set of state space equations:

Ignoring initial conditions to solve for steady state frequency response, take
the matrix Laplace transform of the state equation and solve for x(s)
(Appendix 2):

x = Ax + Bu

y = Cx + Du
(6.1)

sIx(s) = Ax(s) + Bu(s) (6.2)

(sI - A)x(s) = Bu(s) (6.3)

x(s) = (sI - A) 1 Bu(s) (6.4)

Substituting into the Laplace transform of the output equation:

y(s) = C (sI - A)-1 Bu(s) + Du(s) (6.5)

y(s)
Solving for the transfer fu nc tion------ :

u(s)

© 2001 by Chapman & Hall/CRC

— = C (s I - A)-1 B + D
u(s)

(6.6)

nx1 = (nxn)x(nxn)x(nx1) + (nx1)

Checking consistency of sizes

Letting m1 = m 2 = m 3 = m, k 1 = k 2 = k 3 = k, c1 = c2 = 0 and rewriting the
matrix equations of motion to match the original undamped problem used in
Section 2.4.3 allows calculation of results by hand. The MATLAB code
which follows, however, will allow any values to be used for the individual
masses, dampers and stiffnesses.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

- k 1 - c 1 h . _c_ 0 0
m1 m 1 m1 m 1
0 0 0 1 0 0

k J L -(k1 + k2) -(c1 + c2) k ^ _£2_
m 2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 0 1

0 0
k ^ i L k 2 - c 2
m 3 m3 m 3 m3 .

© 2001 by Chapman & Hall/CRC

s -1 0 0 0 0

k c1
s + —

m1
- k 1 - c 1 0 0

m1 m 1 m1
0 0 s -1 0 0

- k 1 - c 1 (k1 + k2) s + (c1 + c2) k 2 - c 2
m 2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 s -1

0 0 k 2 - c 2 к 2_ c2
s + —

m3 m 3 m3 m3

s -1 0 0 0 0

k
s

- k
0 0 0

m m
0 0 s -1 0 0

- k
0

2k s - k
0

m m m
0 0 0 0 s -1

0 0
- k
m

0
k
m

s

(6.8)

Here, in order to develop the entire 3x3 transfer function matrix, we will use a
MIMO representation of B and C.

Taking B equal to the 6x3 matrix gives transfer functions for all three forces:

B

0 0 0

1/m 1 0 0

0 0 0

0 1 /m 2 0

0 0 0

0 0 1/m.

(6.9)

Taking C equal to the 3x6 matrix below gives the three displacement transfer
functions as outputs:

© 2001 by Chapman & Hall/CRC

C =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

(6.10)

6.3 T ransfer Function M atrix

Now that we have the terms required, we can substitute into the equation for
the transfer function matrix:

y (s) = C (s I - A)-1 B + D
u(s)

(6.11)

We have an expression for (sI - A) above, but need to have its inverse.
Using a symbolic algebra program to calculate the inverse even for this
relatively small 3x3 problem yields a result which is too lengthy to be listed
here in its entirety. To show that the calculation by hand really works,
however, we will expand the equation above symbolically and then substitute
the appropriate terms from the inverse to give the results for several of the
transfer functions. We will refer to the (s I - A)-1 matrix by the notation
“sia” and expand it as follows:

y (s) = C (s I - A)-1 B
u(s)

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

siai,

siai2

siai3

siai.

siai5

siab

siair

siai2

siai3

siai4

siai5

siai6

siai1

siai2

siai3

siai4

siai5

siai6

siai14 siai15 siai

siai24 siai25 siai

siai34 siai35 siai

siai44 siai45 siai

siai54 siai55 siai

siai64 siai65 siai

0 0 0

1/m 0 0

0 0 0

0 1/m 0

0 0 0

0 0 1/m

16

26

36

46

56

66

© 2001 by Chapman & Hall/CRC

siai11 siai12 siai13 siai14 siai15 siai

siai31 siai32 siai33 siai34 siai35 siai

siai51 siai52 siai53 siai54 siai55 siai

0 0 0

1/m 0 0

0 0 0

0 1/m 0

0 0 0

0 0 1/m

i14/m siai16/msiai12 / m siai14 / m siai16

siai32 / m siai34 / m siai36 / m

siai54 / m siai56 / msiai52 / m

(6.12)

Listing the values for the siaixx terms used above from the symbolic algebra
solution:

siai12 = siai56 = (m3s4 + 3m2ks2 + m k2)/D en

siai32 = siai14 = siai54 = siai36 = (m2ks2 + mk2)/D en

siai34 = (m3s4 + 2m 2ks2 + mk2)/D en

siai52 = siai16 = m k2 / Den

where Den = s (m s + 4m ks + 3mk)

(6.13a-e)

Dividing each of the above terms by “m” and presenting in the transfer
function matrix form of (2.61):

(m2s4 + 3mks2 + k 2) (mks2 + k 2) k 2

(mks2 + k 2) (m2s4 + 2mks2 + k 2) (mks2 + k 2)

k 2 (mks2 + k 2) (m2s4 + 3mks2 + k 2)

s2 (m 3s4 + 4m2ks2 + 3mk2

F

(6.14)

The two derivations are identical.

© 2001 by Chapman & Hall/CRC

6.4 MATLAB Code tdofss.m - Frequency Response Using State Space

6.4.1 Code Description, Plot

The four distinct transfer functions for the default values of m, k and c are
plotted using MATLAB in tdofss.m, listed below. The four plots are
displayed in Figure 6.1. The A, B, C and D matrices shown in (5.17a) are
used as inputs to the program. A MIMO state space model is constructed and
the MATLAB function bode.m is used to calculate the magnitude and phase
of the resulting frequency responses. As described in the code, the resulting
frequency response has dimensions of 6x3x200, where the “6” represents the
6 outputs in the output matrix C, the “3” represents the three columns of the
input matrix B and the “200” represents the 200 frequency points in the
frequency vector. The desired magnitude and phase can be extracted from the
6x3x200 matrix by defining the appropriate indices. The default values of c1
and c2 are zero.

state space, z11, z33 db magnitude state space, z21, z12, z23, z32 db magnitude

state space, z31, z13 db magnitude state space, z22 db magnitude

frequency, rad/sec frequency, rad/sec

Figure 6.1: Four distinct frequency response amplitudes.

6.4.2 Code Listing

% tdofss.m state-space transfer function solution of tdof undamped model using
% state-space matrices directly and the bode command

clf;

legend off;

subplot(1,1,1);

© 2001 by Chapman & Hall/CRC

clear all;

% define the values of masses, springs, dampers and Forces

m1 = 1;
m2 = 1;
m3 = 1;

c1 = input('input value for c1, default 0, ... ');

if (isempty(c1))
c1 = 0;

else
end

c2 = input('input value for c2, default 0, ... ');

if (isempty(c2))
c2 = 0;

else
end

%

%

%

%

k1 = 1;
k2 = 1;

F1 = 1;
F2 = 1;
F3 = 1;

define the system matrix, a

a = [0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

define the input matrix, b, a 6x3 matrix

b = [0 0 0
F1/m1 0 0

0 0 0
0 F2/m2 0
0 0 0

0 0 F3/m3];

define the output matrix, c, the 6x6 identify matrix

c = eye(6,6);

define the direct transmission matrix

d = 0;

% solve for the eigenvalues of the system matrix

© 2001 by Chapman & Hall/CRC

[xm,omega] = eig(a);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% use the "ss" function to define state space system for three inputs, forces at
% masses 1, 2 and 3 and for all 6 states, three displacements and three velocities

sssys = ss(a,b,c,d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

% the mag and phs matrices below will be 6x3x200 in size
% the appropriate magnitude and phase to plot for each transfer function
% are called by appropriate indexing

% first index 1-6: z1 z1dot z2 z2dot z3 z3dot
% second index 1-3: F1 F2 F3
% third index 1-200: all frequency points, use ":"

[mag,phs] = bode(sssys,w);

z11mag = mag(1,1,:);
z11phs = phs(1,1,:);

z21mag = mag(3,1,:);
z21phs = phs(3,1,:);

z31mag = mag(5,1,:);
z31phs = phs(5,1,:);

z22mag = mag(3,2,:);
z22phs = phs(3,2,:);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

% plot the four transfer functions separately, in a 2x2 subplot form

subplot(2,2,1)
semilogx(w,z11magdb(1,:),'k-')
title('state space, z11, z33 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

© 2001 by Chapman & Hall/CRC

subplot(2,2,2)
semilogx(w,z21magdb(1,:),'k-')
title('state space, z21, z12, z23, z32 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,3)
semilogx(w,z31magdb(1,:),'k-')
title('state space, z31, z13 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,4)
semilogx(w,z22magdb(1,:),'k-')
title('state space, z22 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),'k-')
title('state space, z11, z33 phase')
ylabel('phase, deg')
%axis([.1 10 -400 -150])
grid

subplot(2,2,2)
semilogx(w,z21phs(1,:),'k-')
title('state space, z21, z12, z23, z32 phase')
ylabel('phase, deg')
%axis([.1 10 -400 -150])
grid

subplot(2,2,3)
semilogx(w,z31phs(1,:),'k-')
title('state space, z31, z13 phase')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
%axis([.1 10 -400 -150])
grid

subplot(2,2,4)
semilogx(w,z22phs(1,:),'k-')
title('state space, z22 phase')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
%axis([.1 10 -400 -150])
grid

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

6.5 Introduction - Time Domain

Starting with the equations of motion in state space, we will use Laplace
transforms to discuss the theoretical solution to the time domain problem. We
will define and discuss two methods of calculating the matrix exponential.
Then we will use a sdof forced system with position and velocity initial
conditions to illustrate the technique. The closed form solution for our tdof
example problem with step forces applied to all three masses and with
different initial conditions for each mass is too complicated to be shown so we
will use only MATLAB for its solution.

6.6 M atrix Laplace T ransform - w ith In itial Conditions

We start with the state equations in general form, (6.1). Taking the matrix
Laplace transform of a first order differential equation (DE) with initial
conditions (Appendix 2):

L{x(t)} = sx(s) - x(0)
(6.15)

L {x(t)} = x(s)

Taking the matrix Laplace transform of (6.1) and solving for x(s):

sx(s) - x(0) = Ax(s) + B u(s)

(si - A)x(s) = x(0) + B u(s) (6.16a,b,c)

x(s) = (si - A)-1 x(0) + (si - A)-1 B u(s)

Solving for the output vector y(s):

У (s) = CX<s) 1 1 (6.17)
= C (si - A)-1 x(0) + C (si - A)-1 B u(s)

The input matrix B and output matrix C are familiar from earlier state space
presentations. There is a new term in the equation for the Laplace transform
of y(s), the term (si - A)-1.

There are many methods of calculating the inverse (si - A) 1 (Chen 1999).
If the problem is small, for example 2x2, the inverse can be handled in closed
form. Then y(s) can be back-transformed term by term to get the solution in
the time domain, as we shall see in the example in the next section.

© 2001 by Chapman & Hall/CRC

For another solution method it is useful to recall the geometric series
expansion below, for Irl < 1:

1
1 - r

= 1 + r + r2 + r3 + ... (6.18)

Expanding (sI - A) 1 with the series expansion analogy above, the inverse
results in the infinite series in (6.19).

(si - A)-1 =
s i - A

_ _ 1
A s
s

T A A 2 A 3
1 + — + — + — + s s s

I A A 2 A 3
_ - + — + — + — + ...

s s s s

6.7 Inverse M atrix Laplace T ransform , M atrix Exponential

(6.19)

Now that we have the inverse in series form, it is easy to back-transform to
the time domain, term by term. We introduce two new terms, Ф ^) , the

inverse Laplace transfo rm of (si - A)-1 which equals eAt, the m atrix
exponential.

Ф (0 _ L -1 {(si - A)-1}

L -1 11 + — + — + — + ...
s s s s

(A t)2 (A t)3
_ I + At + -—- + -— - + ...

(6.20)

2! 3!
= e

6.8 B ack-Transform ing to Time Domain

Now that the form of the matrix exponential is known, we can back-transform
the entire equation of motion, from (6.16c):

L -1(x(s)) _ L -1 [(sI - A)-1 x(0) + (sI - A)-1 B u(s)] (6.21)

The result is:

© 2001 by Chapman & Hall/CRC

x(t) _ eAt x(0) + 10 eA(t-T) B u(x)dx (6.22)

The first term in (6.22) is the response due to the initial condition of the state
and the second term is the response due to the forcing function. The second
term is the convolution integral, or Duham el integral, and results from
back-transforming the product of two Laplace transforms.

6.9 Single Degree of Freedom System - C alculating M atrix Exponential
in Closed Form

Calculating the matrix exponential in closed form for greater than a 2x2
matrix is difficult without the aid of a symbolic algebra program. Even with
the program the result can be quite complicated.

A simple, rigid body example will be used to demonstrate how a matrix
exponential and transient response are calculated.

We will use the system in Figure 6.2, a mass with position and velocity initial
conditions and a step force applied.

-> z Г F

m

() ()\ \ \ \ \ \ \ \

Figure 6.2: sdof system with initial conditions and step force applied

6.9.1 Equations of M otion, Laplace T ransform

Start with the equation of motion:

mz _ F

Defining the states:

x j _ z

x2 _ Z

(6.23)

(6.24)

© 2001 by Chapman & Hall/CRC

Defining derivatives and inserting the value for acceleration:

_F
m

(6.25)

The above can be written in matrix form, recognizing that F/m is the
acceleration and applying a unity magnitude step:

0 1

0 0 (1) (6.26)

Defining the system matrix:

A =
0 1

0 0 (6.27)

X 2 =

Taking the inverse of the (sI - A) 1 term:

(sI - A)-1 =
f s 0 "0 1" >-1

s -1

V 0 s 0 0_ V 0 s

1 J_
s s2

0 I
(6.28)

6.9.2 Defining the M atrix Exponential - Taking Inverse Laplace
T ransform

Using the table of inverse Laplace transforms from Appendix 2 yields the
matrix exponential.

eAt = L -1

1 1
1 t

0 1
(6.29)

© 2001 by Chapman & Hall/CRC

6.9.3 Defining the Matrix Exponential - Using Series Expansion

A Power Series Expansion can also be used to find the matrix exponential for
this simple example because higher powers of At go to zero quickly:

eAt = I + A t +
(A t)2 , (A t)3

2! 3!
+ ...

1 0
+

0 t
+

0 0

0 1 0 0 0 0
+ (all other terms zero) (6.30)

1 t

0 1

This is the same solution as (6.29).

6.9.4 Solving fo r Time Domain Response

Thus, the general solution for x(t) as a function of time becomes:

x(t) = eAt x(0) + 10 eA(t-T) B u(t)dT

"1 t" " x ,(0)" rt "1 t - T
" 0 "

+ 10 f F ^0 1 _ x2(0)_ 0 1 [“ I_V m

(1) dT

xj(0) + 1 x2 (0)

x 2(0)

xj(0) + 1 x2 (0)

x 2(0)

(t - t)
V m

_F
m

dT

m

© 2001 by Chapman & Hall/CRC

x^0) + tx2(0)

x2(0)

xj(0) + tx2(0)

x2(0)
t

m

(6.31)

This result is the same as the familiar equations for the position and velocity
of a mass undergoing a constant acceleration:

x1(t)

_ x2(t)_

initialposition+ time x (initial velocity) +
(acceleration) x (time2)

initial velocity + (acceleration) x (time)
(6.32)

6.10 MATLAB Code tdof_ss_time_ode45_slnk.m - Time Domain
Response of tdo f Model

6.10.1 Equations of M otion Review

There are several ways to numerically solve for transient responses using
MATLAB. One method uses numerical integration, calling the integration
routine from a command line and defining the state equation in a separate
MATLAB function. Another method uses Simulink, a linear/nonlinear
graphical block diagram model building tool linked to MATLAB.

We will solve for the transient response of our tdof model using both methods
and compare the results with the closed form solution calculated using the
modal transient response method in Chapter 9.

© 2001 by Chapman & Hall/CRC

^ Z1 r* F i= 1

ki

"*■ Z2 ,-9-F2=0

k2

Z3

m1

c„

m2

c

m3

() 1
\ V ----- и ____и . г г ^ г .^Г\ \ \

Figure 6.3: tdof model with damping for use in M ATLAB/Simulink models.

z ,(0) = x ,(0) = 0 z2(0) = x3(0) = - 1 Z3 (0) = x5(0) = 1

Z,(0) = x 2(0) = - 1 z 2(0) = x 4(0) = 2 z 3 (0) = x6(0) = - 2

Table 6.1: Initial conditions for tdof model in Figure 6.3.

Step function forces of amplitudes indicated in Figure 6.3 are applied to
masses 1 and 3; mass 2 has no force applied. Initial conditions of position and
velocity for each mass are shown in T able 6 .1.

The equations of motion in state space are then:

" 0 1 0 0 0 0 " 0 "

-k j -c i k 1 c1
0 0

1
x1

m 1 m1 m 1 m1
1

x 2 m1
0 0 0 1 0 0

x3
0

k J L -(k 1 + k2) -(c1 + c2) _ka_ S i. + 0
x 4m 2 m 2 m 2 m 2 m 2 m 2 m 2
x5
x 6

0 0 0 0 0 1 0

0 0 _c_ k 2 - c 2 -2

m3 m 3 m 3 m3 _ _ m 3 _

(1)

(6.33)

The initial condition vector, x(0) is:

- ^ = - 2

© 2001 by Chapman & Hall/CRC

x(0) =

' x ,(0) ' ' z ,(0)' " 0 '

x2(0) z,(0) -1

x3(0) z2(0) -1

x4(0) z 2(0) 2

x5(0) z3(0) 1

_ x6(0)_ _z3(0)_ _-2_

(6.34)

The output equation for the displacement outputs (no velocities included) with
no feedthrough term is:

y1 1 0 0 0 0 0]

У 2 = 0 0 1 0 0 0

_У3 _ 0 0 0 0 1 0 J

+ (0)(1) (6.35)

These are the system matrices that are used in the MATLAB code below.

6.10.2 Code Description

Two methods will be used to solve for the time domain response. The
MATLAB code tdof_ss_time_ode45_slnk.m is used for both methods,
prompting the user to define which solution technique is desired.

The first method uses the MATLAB Runge Kutta method ODE45 and calls
the function file tdofssfun.m , which contains the state equations. The results
are then plotted. To use the ODE45 solver, type “tdof_ss_time_ode45_slnk”
from the MATLAB prompt and use the default selection.

The second solution uses the Simulink model tdof_ss_sim ulink.m dl and the
plotting file tdof_ss_time_slnk_plot.m.

To use the Simulink solver:

1) Type “tdof_ss_time_ode45_slnk” and choose the Simulink
solver.

2) The program will prompt the reader to type
“tdof_ss_simulink” at the MATLAB command prompt.
This will bring up the Simulink model on the screen.

© 2001 by Chapman & Hall/CRC

3) Click on the “simulation” choice in the model screen and
then choose “start.” The Simulink model will then run.

4) To see the plotted results, type “tdof_ss_time_slnk_plot.”

6.10.3 Code Results - Time Domain Responses

State-Space Displacements of dof 1, 2 and 3

Time, sec

Figure 6.4: ODE45 simulation motion o f tdof model.

State Space S im ulink Calculation of Displacements of dof 1, 2 and 3

Time, sec

Figure 6.5: Simulink simulation motion o f tdof model.

© 2001 by Chapman & Hall/CRC

Displacements of dof 1, 2 and 3 from S imulink (s lnk) and Closed Form (cf)

Time, sec

Figure 6.6: Overlay of closed form solution from Chapter 9, Figure 9.4, w ith Simulink
solution.

6.10.4 Code Listing

% tdof_ss_time_ode45_slnk.m state-space solution of tdof model with
% initial conditions, step function forcing function and displacement outputs
% using the ode45 solver or Simulink, user is prompted for damping values

clear all;

global a b u % this is required to have the parameters available
% for the function

which_run = input('enter "1" for Simulink or "enter" for ode45 run ... ');

if isempty(which_run)
which_run = 0

end

% define the values of masses, springs, dampers and Forces

m1 = 1;
m2 = 1;
m3 = 1;

c1 = input('input value for c1, default 0.0, ... ');

if (isempty(c1))
c 1 = 0.0;

else
end

c2 = input('input value for c2, default 0.0, ... ');

© 2001 by Chapman & Hall/CRC

if (isempty(c2))
c2 = 0.0;

else
end

k1 = 1;
k2 = 1;

F1 = 1;
F2 = 0;
F3 = -2;

% define the system matrix, a

a = [0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

% define the input matrix, b

b = [0
F1/m1

0
F2/m2

0
F3/m3];

% define the output matrix for transient response, c, displacements only

c = [1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0];

% define the direct transmission matrix for transient response, d, the same number of
rows as c and the same number of columns as b

d = zeros(3, 1);

if which_run == 0 % transient response using the ode45 command

u = 1;

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

if (isempty(ttotal))
ttotal = 10;
else
end

tspan = [0 ttotal];

x0 = [0 -1 -1 2 1 -2]'; % initial condition vector, note transpose

© 2001 by Chapman & Hall/CRC

options = []; % no options specified for ode45 command

[t,x] = ode45('tdofssfun',tspan,x0,options);

y = c*x'; % note transpose, x is calculated as a column vector in time

plot(t,y(1,:),'k+-',t,y(2,:),'kx-',t,y(3,:),'k-')
title('State-Space Displacements of dof 1, 2 and 3')
xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('dof 1','dof 2','dof 3')
grid

else % setup Simulink run

% define the direct transmission matrix for transient response, d, the same number of
rows as c and the same number of columns as b

% define time for simulink model

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

if (isempty(ttotal))
ttotal = 10;
else
end

disp(' ');
disp(' ');
disp(' ');
disp(' ');
disp(' ');
disp(' ');
disp('Run the Simulink model "tdof_ss_simulink.mdl" and then');
disp('run the plotting file "tdof_ss_time_slnk_plot.m"');

end

6.10.5 MATLAB Function tdofssfun.m -
Called by tdof_ ss_time_ode45_slnk.m

function xprime = tdofssfun(t,x)

% function for calculating the transient response of tdof_ss_time_ode45.m

global a b u

xprime = a*x + b*u;

© 2001 by Chapman & Hall/CRC

6.10.6 Sim ulink M odel tdofss simulink.mdl

Figure 6.7: Block diagram o f Simulink model tdofss_simulink.mdl.

The block diagram was constructed by dragging and dropping blocks from the
appropriate Simulink block library and connecting the blocks. The input is
the step block. The clock block is used to output time to the tout block for
plotting in MATLAB. The model is defined in the state space block, reading
in values for the a, b, c and d matrices from the MATLAB workspace, created
during execution of tdof_ss_time_ode45_slnk.m. The demux block
separates the vector output of the state space block and sends the
displacements of the three masses to three blocks for storing for plotting in
MATLAB. The scope block brings up a scope screen and shows the position
of dof3 versus time as the program executes. This example is so small that
the screen displays instantly for the default 10 sec time period, but for a longer
time period the scope traces the progress of the simulation.

© 2001 by Chapman & Hall/CRC

Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P 6 .1 Set mj = m 2 = m = 1, kj = k 2 = k = 1, c = c2 = 0 and define the state
space matrices for a step force applied to mass 1 and for output o f position of
mass 2. Write out by hand the equation for the transfer functions matrix as
shown in (6.11). Extra credit: use a symbolic algebra program to take the
inverse of the (sI - A) term and then multiply out the equations to see that
they match the results of P2.2.

P6.2 (MATLAB) Modify the code tdofss.m for the two dof system and plot
the distinct frequency responses.

P6.3 (MATLAB) Modify the code tdof_ss_time_ode45_slnk.m for the two
dof system with mj = m 2 = m = 1, kj = k 2 = k = 1 and c = c2 = 0 for the
following step forces and initial conditions:

a) Fj = 0, F2 = -3

b) Zj = 0, Zj = -2 , z2 = -1, Z2 = 2

Plot the time domain responses using both MATLAB and Simulink.

© 2001 by Chapman & Hall/CRC

CHAPTER 7

MODAL ANALYSIS

7.1 Introduction

In Chapter 2 we systematically defined the equations of motion for a multi dof
(mdof) system and transformed to the “s” domain using the Laplace transform.
Chapter 3 discussed frequency responses and undamped mode shapes.

Chapter 5 discussed the state space form of equations of motion with arbitrary
damping. It also covered the subject of complex modes. Heavily damped
structures or structures with explicit damping elements, such as dashpots,
result in complex modes and require state space solution techniques using the
original coupled equations of motion.

Lightly damped structures are typically analyzed with the “normal mode”
method, which is the subject of this chapter. The ability to think about
vibrating systems in terms of modal properties is a very powerful technique
that serves one well in both performing analysis and in understanding test data.
The key to normal mode analysis is to develop tools which allow one to
reconstruct the overall response of the system as a superposition of the
responses of the different modes of the system. In analysis, the modal method
allows one to replace the n-coupled differential equations with n-uncoupled
equations, where each uncoupled equation represents the motion of the system
for that mode of vibration. If natural frequencies and mode shapes are
available for the system, then it is easy to visualize the motion of the system in
each mode, which is the first step in being able to understand how to modify
the system to change its characteristics.

Summarizing the modal analysis method of analyzing linear mechanical
systems and the benefits derived:

1) Solve the undamped eigenvalue problem, which identifies the
resonant frequencies and mode shapes (eigenvalues and
eigenvectors), useful in themselves for understanding basic
motions of the system.

2) Use the eigenvectors to uncouple or diagonalize the original
set of coupled equations, allowing the solution of n-uncoupled
sdof problems instead of solving a set of n-coupled equations.

© 2001 by Chapman & Hall/CRC

3) Calculate the contribution of each mode to the overall
response. This also allows one to reduce the size of the
problem by eliminating modes that cannot be excited and/or
modes that have no outputs at the desired dof’s. Also, high
frequency modes that have little contribution to the system at
lower frequencies can be eliminated or approximately
accounted for, further reducing the size of the system to be
analyzed.

4) Write the system matrix, A, by inspection. Assemble the input
and output matrices, B and C, using appropriate eigenvector
terms. Frequency domain and forced transient response
problems can be solved at this point. If complete eigenvectors
are available, initial condition transient problems can also be
solved. For lightly damped systems, proportional damping can
be added, while still allowing the equations to be uncoupled.

7.2 Eigenvalue Problem

7.2.1 Equations of Motion

We will start by writing the undamped homogeneous (unforced) equations of
motion for the model in Figure 7.1. Then we w ill define and solve the
eigenvalue problem.

^ z 1 - F i ^ Z2 ^ 2 ^ Z3 - F 3

m 1
k i

m 2
k 2

m 3

C) () О о () ()
\ \ \ \ 4 \ \ \

Figure 7.1: Undamped tdof model.

mz + kz = 0 (7.1)

From (2.5) with k 1 = k 2 = k and c l = c2 = 0:

© 2001 by Chapman & Hall/CRC

m 0 0" z1 ' k - k 0 " z1 "0“
0 m 0 Z 2 + - k 2k - k Z2 = 0
0 0 m _z3 _ 0 - k k _z3 _ 0

7.2.2 Principal (Normal) Mode Definition

Since the system is conservative (it has no damping), normal modes of
vibration w ill exist. Having normal modes means that at certain frequencies
all points in the system will vibrate at the same frequency and in phase, i.e., all
points in the system w ill reach their minimum and maximum
displacements at the same point in time. Having normal modes can be
expressed as (Weaver 1990):

z! = zmt sin (+ ф1) = zmiIrn(emt+ф-) (7.3)

Where:

zi = vector of displacements for all dof’s at the i ft frequency

zmi = the i th eigenvector, the mode shape for the i th resonant
frequency

ffli = the ith eigenvalue, ith resonant frequency

Ф1 = an arbitrary initial phase angle

For our tdof system, for the i ft frequency, the equation would appear as:

sin (rait + Ф1) , (7.4)

where the indices in the zmki term represent the kth dof and the ith mode of the
modal matrix zm .

7.2.3 Eigenvalues / C haracteristic Equation

Since the equation of motion

mz + kz = 0 (7.5)

z1 Zm1i
z2 = Zm2i
z3 Zm3i

© 2001 by Chapman & Hall/CRC

and the form of the motion

Zi = Zmi sin (ю^ + фi) (7.6)

are known, zi can be differentiated twice and substituted into the equation of
motion:

Zi = -ю 2zmi sin (+ ф;) (7.7)

m [-ю 2 z mi sin (rnit + фi)] + k [z mi sin (rnit + фi)] = 0 (7.8)

Canceling the sine terms:

- ^ mz mi + kzmi = 0 (7.9)

kz mi = ^ mz mi (7.10)

Equation (7.10) is the eigenvalue problem in nonstandard form, where the
standard form is (Strang 1998):

Az = Xz (7.11)

The solution of the simultaneous equations which make up the standard form
eigenvalue problem is a vector z such that when z is multiplied by A , the
product is a scalar multiple of z itself.

The nonstandard problem is “nonstandard” because the mass matrix m falls
on the right-hand side. The form of the matrix presents no problem for hand
calculations, but for computer calculations it is best transformed to standard
form.

Rewriting the nonstandard form eigenvalue problem as a homogeneous
equation:

(k -ff>2m)z ml = 0 (7.12)

A trivial solution, z mi = 0 , exists but is of no consequence. The only
possibility for a nontrivial solution is if the determinant of the coefficient
matrix is zero (Strang 1998). Expanding the matrix entries:

© 2001 by Chapman & Hall/CRC

" k - k 0 “ m 0 0 “
- k 2k - k -ю 2 0 m 0
0 - k k 0 0 m

= 0

Performing the matrix subtraction:

k -o>2m - k 0
- k 2k -ra fm - k
0 - k k -ra,2m

Setting the determinant of the coefficient matrix equal to zero:

k - r a 2m - k 0
- k 2k - r a 2m - k
0 - k k - r a 2m

= 0

(7.13)

(7.14)

(7.15)

The determinant results in a polynomial in ю2 , the characteristic equation,
where the roots of the polynomial are the eigenvalues, poles, or resonant
frequencies of the system.

-2 m 3

-4k m 2 ± 2km2
-2 m 3

(7.16a,b)
-ш 3ю6 + 4km2rn4 - 3k2mrn2 = 0

ю2 (-m 3rn4 + 4km2ю2 - 3k2m) = 0

Two of the roots are at the origin:

ю1 = 0 (7.17)

Solving for ю2 as a quadratic in (7.16b) above:

-4k m 2 ±(16k2m4 - 12k2m4) 2
ю2 = ---------

© 2001 by Chapman & Hall/CRC

-6 k -2 k
- 2 ш ’ - 2 ш

3k k
m m

± /3k
“ s = 4 m

®з= ^ IE

(7.18)

(7.19)

For each of the three eigenvalue pairs, there exists an eigenvector z ; , which
gives the mode shape of the vibration at that frequency.

7.2.4 Eigenvectors

To obtain the eigenvectors of the system, any one of the degrees of freedom,
say z1, is selected as a reference. Then, all but one of the equations of motion
is written with that value on the right-hand side:

(к -Ю- m I z . = 0 (7.20)

(-ю 2ш) - k 0

- k (2k -ю 2ш) - k

0 - k к -ю 2ш)

= 0 (7.21)

Expanding the first and second equations, dropping the subscripts “ i ” and
“m”:

(к - ю2ш) z1 - kz2 = 0

-k z 1 + (k -o > 2m)z2 - kz3 = 0
(7.22a,b)

Rewriting with the z1 term on the right-hand side and solving for the (z 2 /z1 ̂

ratio from (7.22a):

- k z 2 = -(k - ff l?m)z 1 (7.23)

© 2001 by Chapman & Hall/CRC

z2 k -Ю; m

z

z3 = m ю1 - Skmoij + k
z1 k 2

(7.24)

Solving for the (z3/z1) ratio from (7.22b):

(2k-o>2m) 2 - k z 3 = kz1 (7.25)

(2k - Ю ») |- = k (7.26)

i 2 M k-o>2m) kz3 ,12k - Ю ^)) ------- -— I------- = k (7.27)

z (2k -Ю: m f Z - m m)
- 3 = -̂------------ ^ - 1 (7.28)

(7.29)

We now have the general equations for the eigenvector values. If a value is
chosen for z1, say 1.0, then the two ratios above can be solved for
corresponding values of z2 and z3 for each of the three eigenvalues.

z1

Since at each eigenvalue there are (n+1) unknowns (ю; , zmi) for a system with
n equations of motion, the eigenvectors are only known as ratio s of
displacements, not as absolute magnitudes. For the first mode of our tdof
system the unknowns are ю; , zm11, zm21 and zm31 and we have only three
equations of motion.

Substituting values for the three eigenvalues into the general eigenvector ratio
equations above, assuming m1 = m2 = m = 1, k 1 = k 2 = k = 1:

For mode 1, ff)j2 = 0

© 2001 by Chapman & Hall/CRC

(2 k) (k)
1 = 2 - 1 = 1

z1 k

(7.31)

(7.32)

(7.33)

Arbitrarily assigning z1=1:

(7.34)

z3

z1 =

-
1

-
1

-
1

-

— w — w

(X J C X J (Ю Ш u O (Ю\ \ \ \ \ \ \ \
Rigid-Body Mode, 0 rad/sec

Figure 7.2: Mode shape plot for rigid body mode, where all masses move together with no
stress in the connecting springs.

2 kFor mode 2, ю2 = —
m

k - (m 1 ш^ Vш) = 0 (7.35)
z1 k

z2 = 0 (7.36)

2k - 1 — | ш || k - 1 — I m
- 1 = -1 (7.37)

k2 v s
z3

© 2001 by Chapman & Hall/CRC

z3 = - z1 (7.38)

1
0

-1
(7.39)z 2

1

1

-1

--W — - t o -

()()()() О О (X) () ()
X v X \ \ \

Second Mode, Middle Mass Stationary, 1 rad/sec

Figure 7.3: Mode shape plot for second mode, middle mass stationary and the two end
masses move out of phase with each other with equal amplitude.

For node 3, Ю3 =
2 3k

m

. (3k .k - 1 — I m
z2 I m) -2 k

k k

z2 = - 2z1

= -2 (7.40)

(7.41)

2 k - l f 1 m) [k - (' m л (- k) (- 2k) - 1 = 2 ^ = 1 (7.42)

(7.43)

1
-2
1

(7.44)

z3
z

z3 =

© 2001 by Chapman & Hall/CRC

г
-2

i W

ООО
Third Mode, 1.732 rad/sec

О СО\ \

1 1

Figure 7.4: Mode shape plot for third mode, with two end masses moving in phase with
each other and out of phase with the middle mass, which is moving with twice the

amplitude of the end masses.

7.2.5 Interpreting Eigenvectors

For the first mode, if all the masses start with either zero or the same initial

velocity and with initial displacements of some scalar multiple of [1 1 1]T ,

where “T” is the transpose, the system will either remain at rest or will
continue moving at that velocity with no relative motion between the masses.

For the second and third modes, if the system is released with zero initial
velocities but with initial displacements of some scalar multiple of that
eigenvector, then the system will vibrate in only that mode with all the masses
reaching their minimum and maximum points at the same point in time.

Any other combination of initial displacements w ill result in a motion which is
a combination of the three eigenvectors.

7.2.6 M odal M atrix

Now that the three eigenvectors have been defined, the modal matrix w ill be
introduced. The modal matrix is an (nxn) matrix with columns corresponding
to the n system eigenvectors, starting with the first mode in the first column
and so on:

© 2001 by Chapman & Hall/CRC

mode: 1 2 3

'm11 Zm12 7m13
'm21 Zm22 7m23
■m31 7m32 7m33

т т т

z1 z 2 z3

^ DOF 1
^ DOF 2
^ DOF3

(7.45)

For our tdof problem:

z m =

1 1
1 0
1 -1

1
-2
1

(7.46)

7.3 Uncoupling the Equations of Motion

At this point the system is well defined in terms of natural frequencies and
modes of vibration. If any further information such as transient or frequency
response is desired, solving for it would be laborious because the system
equations are still coupled. For transient response, the equations would have to
be solved simultaneously using a numerical integration scheme unless the
problem were simple enough to allow a closed form solution. To calculate the
damped frequency response, a complex equation solving routine would have
to be used to invert the complex coefficient matrix at each frequency.

z m =

In order to facilitate solving for the transient or frequency responses, it is
useful to transform the n-coupled second order differential equations to n-
uncoupled second order differential equations by transforming from the
physical coordinate system to a principal coordinate system. In linear algebra
terms, the transformation from physical to principal coordinates is known as a
change of basis. There are many options for change of basis, but we w ill show
that when eigenvectors are used for the transformation the principal coordinate
system has a physical meaning; each of the uncoupled sdof systems represents
the motion of a specific mode of vibration. The n-uncoupled equations in the
principal coordinate system can then be solved for the responses in the
principal coordinate system using well-known solutions for single degree of
freedom systems. The n-responses in the principal coordinate system can then
be transformed back to the physical coordinate system to provide the actual

© 2001 by Chapman & Hall/CRC

response in physical coordinates. This procedure is shown schematically in
Figure 7.5.

Figure 7.5: Roadmap for Modal Solution

The procedure above is analogous to using Laplace transforms for solving
differential equations, where the differential equation is transformed to an
algebraic equation, solved algebraically, and back transformed to get the
solution of the original problem.

We now need a means of diagonalizing the mass and stiffness matrices, which
w ill yield a set of uncoupled equations.

The condition to guarantee diagonalization is the existence of n-linearly
independent eigenvectors, which is always the case if the mass and stiffness
matrices are both symmetric or if there are n-different (nonrepeated)
eigenvalues (Strang 1998).

Going back to the original homogeneous equation of motion:

mz + kz = 0 (7.47)

© 2001 by Chapman & Hall/CRC

Differentiating twice to get acceleration:

zi = -ra?zmi sin (rnit + Ф1) (7.49)

Substituting back into the equation of motion:

m{-mi2zmi sin(rnit + Ф1)} + k{zmi sin(rnit + Ф1)} = 0 (7.50)

Canceling sine terms:

- ® > z mi + kzmi = 0 (7.5 1)

Rearranging and writing the above equation for both the “ith” and “j th” modes:

kz mi = ® > z mi (7.52)

kz mj = ®2 mzmj (7.53)

zmi and z mj are the “ith” and “j th” eigenvectors, the “ith” and “j th” columns of

the modal matrix.

Premultiplying (7.52) by the transpose of zmj, z^ :

z ^ m i =®f z ĵm zmi (7.54)

Taking the transpose of (7.53), where the transpose of a product is the product

of the individual transposes taken in reverse order, i.e., [AB]T = BTAT :

z I jkT = m2 z > T, (7.55)

since m and k are symmetrical, m T = m, and k T = k :

z j = m2 zT.m (7.56)

Having normal modes means that at frequency “i”:

zi = z ml sin (ffljt + ф1) (7.48)

© 2001 by Chapman & Hall/CRC

Postmultiplying (7.56) by z mi

z mjkz mi = j mjmz mi (7.57)

Now, subtracting (7.57) from (7.54):

z ̂ jkz mi = Ю" z ̂ jmz mi
- (zIjkzmi = Ю"z'I'„jmzmi)

0 = (raf- ш2)z ̂ mz mi
(7.58)

When i = j , the term (ю2 — Ю2) cannot be equal to zero, meaning that the

term z m.mz mi must be equal to zero.

z > z „i = 0 (7.59)

Looking at the sizes of the matrices multiplied:

z „j = 1xn
m = nxn (7.60)

z mi = nxl

(1xn) x (nxn) x (n x i) = (1x1) = scalar (7.61)

Equation (7.59) can be rewritten:

z „jmz mi = „ ij= 0 , (7^ 2)

where mij is an off-diagonal term in the mass matrix of the principal coordinate
system.

The two eigenvectors zmj and zmi are said to be orthogonal with respect to m ,

where orthogonality is defined as the property that causes all the off-diagonal
terms in the principal mass matrix to be zero.

Returning to (7.62), for i = j, (— Ю2) = 0 . Thus the product z„im zmi can

be set equal to any arbitrary constant mii ,, a diagonal term in the principal
mass matrix.

© 2001 by Chapman & Hall/CRC

(7.63)

This is where various normali7ation techniques for eigenvectors come into
play, discussed in the next section.

The stiffness matrix, k, is normali7ed in the same manner.

In practice, instead of diagonali7ing the mass and stiffness matrices term by
term by pre- and postmultiplying by individual eigenvectors, the entire modal
matrix is used to diagonali7e in one operation using two matrix
multiplications:

m n = z Tmmz m (7.64)

k n = z m kz m (7.65)

7.4 Normalizing Eigenvectors

Because eigenvectors are only known as ratios of displacements, not as
absolute magnitudes, we can choose how to normalize them. Up to now, when
calculating eigenvectors we have arbitrarily set the amplitude of the first dof to
1. We will now discuss two of the most commonly used eigenvector
normalization techniques. Different normalizing techniques result in different
forms of the resulting uncoupled differential equations.

7.4.1 Normalizing w ith Respect to Unity

One method is to normalize with respect to unity, making the largest element
in each eigenvector equal to unity by dividing each column by its largest
value. We now add the notation zn , where the “n” refers to a “norm alized”
modal matrix.

“1 1 1" “1 1 -0 .5 “
1 0 -2 ^ zn = 1 0 1
1 -1 1 1 -1 -0 .5

Using the unity normalized modal matrix to transform the mass matrix in two
matrix multiplications:

© 2001 by Chapman & Hall/CRC

" 1 1 1] m 0 0] m m m
T

z n m = 1 0 -1 0 m 0 = m 0 -m
-0 .5 1 -0 .5 0 0 m -.5m m -.5m

(7.67)

m m m "1 1 - . 5] 3m 0 0

mn = z T mz n = m 0 -m 1 0 1 = 0 2m 0
-.5m m -.5m 1 -1 -.5 0 0 1.5m

(7.68)

Similarly transforming the stiffness matrix:

" 1 1 1] " k - k 0] " 0 0 0]

z T k = 1 0 -1 - k 2k - k = k 0 - k

1 J 5 .1 5 1 0 - k k -1 .5k 3k -1 .5k
(7.69)

" 0 0 0] "1 1 - . 5] "0 0 0]

k n = z T kz n = - k 0 - k 1 0 1 = 0 2k 0
-1 .5k 3k -1 .5k 1 -1 -.5 0 0 4.5k

(7.70)

Note that the original filled stiffness matrix is now diagonal. Also note that if
the diagonal elements of the stiffness matrix (7.70) are divided by the
corresponding diagonal elements of the mass matrix (7.69), the three terms are
the squares of the respective eigenvalues.

7.4.2 Normalizing w ith Respect to Mass

Another method is to normalize with respect to mass using the equation:

z Timz * = 1.0, (7.71)

making each diagonal mass term equal 1.0. This is the method used by
default in ANSYS.

Once again, note that modal matrix subscript “ni” in z ni signifies the
normalized ith eigenvector. Each normalized eigenvector is defined as follows:

[z m mz mi]
qi

(7.72)

© 2001 by Chapman & Hall/CRC

Where qi is defined as:

Qi = Z Tnji I S “ jkT. (7.73)

For a diagonal mass matrix, q can be simplified since all the mjk terms are

zero:

Qi = Z ’
.k=1 _

g on m by z n ,the mass m
. Starting with z m and the

“1 1 1

z m = 1 0 -2
1 -1 1

q1 = [m (1)2 + m (1)2 + m (1

(7.74)

1
q2 = “m (1)2 + m (0)2 + m (-1)2 J2 = \l 2m

_1
q3 = “m (1)2 + m (-2)2 + m (1)2 J 2 = V 6m

The modal matrix normalized with respect to mass becomes:

“ 1 1 1 “ “ 1 1 1 “
V 3m V2m Vsm V3 46

1
0

-2 1 1
0

-2
V 3m V6m Vm л/б

1 -1 1 1 -1 1
V 3m >/2m V6m _ l_V3 V2 Ve _

(7.75)

(7.76a,b,c)

(7.77)

Using z n to transform the mass matrix:

z n =

© 2001 by Chapman & Hall/CRC

1 1 1 “m 0 0 “ m m m
V 3m V3m V3m 4 3m •\/3m 43m

T
z n m =

1

4 2m
0

-1
V2m

0 m 0 = m

4 2m
0

-m
V2m

1 -2 1
0 0

m - 2m m

_%/ 6m V6m V6m _
m

_>/6m V6m V6m _

m m m “ 1 1 1 “

4 3m ^3m V3m 4 3m -s/2m V6m

m n = z T mz n =
m

V 2m
0

-m
V2m

1

4 3m
0

-2
V6m

m -2m m 1 -1 1

_4 6m %/6m V6m _ _4 3m >/2m V6m _

mn

m + m + m
3m 3m 3m

m
r + 0 - -

m

m 4243 4243
m 2m m

m
m4342

m

+ 0 -
m

+ 0 +
2m 2m

mV3V2

m

mV3V6 mV3V6 mV3V6 J v m4246
m

r+ 0 —
m

m4642

1 0 0
0 1 0
0 0 1

m 2m m

m 4346 4346 4346
m л mГ+ 0 -

m4246 4246
m + 4m + m

6m 6m 6m

The original mass matrix has been transformed to the identity matrix.

Similarly transforming the stiffness matrix:

(7.78)

(7.79)

(7.80)

© 2001 by Chapman & Hall/CRC

" 1 1 1] " 1 - 1 0]
V3 V3 л/3

1 1
0

-1 \r - 1 2 - 1
-v/m V2 V2

k

1 -2 1
0 - 1 1

_л/6 V6 V6 _

j ____П (^ 1 _2_- X I 10 - J _____L
V T V s J L/3 + V T V 3 j I V3 + V3

j m (j ? +0 +°) (v ? +0 + ;й :) (0 +0 " J ?) <7-81)

V6 + V 6 + 0) b s - 7 Г ^) (0 +V6 + V6

" 1 1 1]
0 0 0 V3 V2 V6
1

0
- 1 1

0
- 2

V2 V2 V3 V6
3 - 6 3 1 - 1 1

[V 6 V6 V6 _ V2 V6 _

k n =
m

0

1 1
V2 V3 V2 V3

3 6 3
7 3 7 6 V3 V6 ТэТб J CV2 V6 V6 V2

0

1 + 0 + 1
2 2

- 0 —

(7.83)

r + 0 - -
V2 V6 V2 V6

3 1 2 3
— I----------1-----
6 6 6

0

© 2001 by Chapman & Hall/CRC

0 0 0
k n = 0 1 0

0 0 3
m
k

(7.84)

Note that the normalized stiffness matrix is now diagonal and that the diagonal
terms are the squares of the corresponding three eigenvalues. The normalized
stiffness matrix is also known as the spectral m atrix (Weaver 1990).

Because normalizing with respect to mass results in an identity principal mass
matrix and squares of the eigenvalues on the diagonal in the principal stiffness
matrix, we w ill use only this normalization in the future. Since we know the
form of the principal matrices when normalizing with respect to mass, no
multiplying of modal matrices is actually required: the homogeneous
principal equations of motion can be w ritten by inspection knowing only
the eigenvalues.

7.5 Reviewing Equations of Motion in P rincipal Coordinates -
M ass Normalization

7.5.1 Equations of Motion in Physical Coordinate System

m 0 0 z, k - k 0- k 0 z1
2k - k z2 = [0] (7.85)
- k k z3

0 m 0 z2 + - k
0 0 m z3 00 - k k

Eigenvalues:

tt), = 0 (7.86)

(7.87a,b)

Eigenvectors, normalized with respect to mass:

© 2001 by Chapman & Hall/CRC

1 1 1

1 1
0

-2
Vm 7 3

1 -1 1
V2 46

(7.88)z n =

7.5.2 Equations of Motion in P rincipal Coordinate System

1 0 0
0 1 0
0 0 1

p2

0 0 0
k

0 0
m

3k
0 0

m

Jp2
p̂3

= [0] (7.89)

7.5.3 Expanding M atrix Equations of Motion in Both Coordinate
Systems

Physical Coordinates

mZj + kzj - kz2 = 0
mz2 - kzj + 2kz2 - kz3 = 0
mz3 - kz2 + kz3 = 0

Principal Coordinates

z p1 = 0
k

z p2 + m zp2 = 0

•• 3k A
zp3 ^ — zp3 = 0m m F

These equations are coupled and
have to be solved
simultaneously.

These homogeneous equations
are uncoupled and can be solved
independently.

Table 7.1: Summary of equations of motion in physical and principal coordinates.

© 2001 by Chapman & Hall/CRC

Now that we know how to construct the homogeneous uncoupled equations of
motion for the system, we need to know how to transform initial conditions
and forces to the principal coordinate system. We can then solve for transient
and forced responses in the principal coordinate system using the uncoupled
equations.

Starting with the original non-homogeneous equations of motion in physical
coordinates:

mz + kz = F (7.90)

Premultiplying by zT , the transpose of the modal matrix:

z T mz + z T kz = z T F (7.91)

Inserting the identify matrix, I = z n z-1 :

zT m { z-1 Z + zT k Z z -1 { = zT F (7.92)
" " T

Rewriting and regrouping terms:

z> zn z 1z+Z kz n z 1z= Z F , (7.93)

7.6 Transforming Initial Conditions and Forces

where zTmzn and zTkzn were shown to diagonalize the mass and stiffness
matrices in the previous section.

Defining terms:

mp = (nxn) diagonal principal mass matrix

k p = (nxn) diagonal principal stiffness matrix

z -1z = z p = acceleration vector in principal coordinates

z -1z = z p = displacement vector in principal coordinates

© 2001 by Chapman & Hall/CRC

zT F = Fp = force vector in principal coordinates

In the previous section, the definitions for accelerations and displacements in
physical and principal coordinates were shown to be:

z = z 'z
p ", (7.94)

zp = zn z

The same relationships hold for initial conditions of displacement and
velocity:

z = z *z
op n o (7.95)

z op = z-1z o

In (7.95), zop and zop are vectors of initial displacements and velocities,

respectively, in the principal coordinate system, and z o and z o are vectors of
initial displacements and velocities, respectively, in the physical coordinate
system.

Taking the inverse of the modal matrix to convert initial conditions requires
that the modal matrix be square, with as many eigenvectors as number of
degrees of freedom. We will see in future chapters that there are instances
where not all eigenvectors are available. In one case, we may choose to only
calculate eigenvalues and eigenvectors up to a certain frequency in order to
save calculation time or because the problem only requires knowledge of
response in a certain frequency range. In another case, we may build a
“reduced” model where only the most significant modes are retained.
Fortunately, a large majority of real life problems involve zero initial
conditions.

7.7 Sum m arizing Equations of Motion in Both Coordinate Systems

The two sets of equations, in physical and principal coordinates, are shown in
Table 7 .2 :

© 2001 by Chapman & Hall/CRC

Physical Coordinates Principal Coordinates

mZ1 + kZ1 - kZ2 = F1
mZ2 - kZ1 + 2kZ2 - kZ3 = F2
mZ3 - kZ2 + kZ3 = F3

IC ' s : ZX,Z2,Ẑ ,ZX,Z2Z

Z = Fp1 p1

•• + k = FZp2 + Zp2 = Fp2 m F F

•• + 3k F
Zp3 + — Zp3 = Fp3m
IC s - Zp1, Zp2 , Zp3 , Zp1, Zp2 , Zp3

Table 7.2: Summary of equations of motion in physical and principal coordinates.

The variab les in physical coordinates are the positions and velocities of
the masses. The variab les in principal coordinates are the displacements
and velocities of each mode of vibration.

The equations in principal coordinates can be easily solved, since the
equations are uncoupled, yielding the displacements. We now need to back
transform the results in the principal coordinate system to the physical
coordinate system to get the final answer.

7.8 Back-Transform ing from Principal to Physical Coordinates

We showed previously that the relationship between physical and principal
coordinates is:

z -1z = zp (7.96)

Premultiplying by zn :

V C 3 z) = znzp (7.97)
I

z = z n z p (7.98)

Thus, the displacement vector in physical coordinates is obtained by
premultiplying the vector of displacements in principal coordinates by the
normaliZed modal matrix zn .

© 2001 by Chapman & Hall/CRC

Similarly for velocity:

7.9 Reducing the Model Size W hen Only Selected Degrees of Freedom
are Required

So far we have hinted at the fact that only portions of the eigenvector matrix
are needed if selected dof’s have forces applied and other (or the same) dof’s
are needed for output. This section w ill show how the reduction in dof’s
occurs. This reduction is one of the key steps to be used later in the book
when we cover how to reduce the size of models derived from large finite
element simulations.

Reviewing the steps in the modal solution, starting with the equations of
motion and initial conditions in physical coordinates:

mZj + kzj - kz2 = Fj
mZ2 - kz1 + 2kz2 - kz3 = F2

mz3 - kz2 + kz3 = F3 (7.100)

z = z n z p (7.99)

Initial Conditions: zJ,z 2,z 3,ZJ,Z2,Z3 = 0

Solve for eigenvalues: ю1, Ю2, Ю3

Solve for eigenvectors, normalize with respect to mass and form the modal
matrix from columns of eigenvectors:

Zn11 Zn12 Zn13
z n = Zn21 Zn22 Zn23 (7.101)

_Zn31 Zn32 Zn33 _

Transform forces from physical to principal coordinates:

Fp = z T F (7.102)

Write the equations of motion in principal coordinates:

© 2001 by Chapman & Hall/CRC

Zp1 = Fp1

Zp2 + ®2Zp2 = Fp2

Zp3 + Ю3Ч 3 = Fp3
IC 's : zp1 ,

О
=p3

•N
p2

•N
p1

•N
p3

N
p2

N

(7.103a,b,c,d)

Solve the equations in principal coordinates in either time or frequency
domain and then back transform to physical coordinates:

(7.104)

z = z nz p

Note that the two critical transformations (assuming zero initial conditions)
involve premultiplying by the transpose of the modal matrix (F ^ Fp) in

(7.102) or the modal matrix (zp ^ z) in (7.104).

Let us first examine the force transformation by expanding the equations:

Fp = z T F (7.105)

Zn11 Zn12 Zn13
T

' F1 '
zTF = Zn21 Zn22 Zn23 F2 =

_ Zn31 Zn32 Zn33 _ . F3 _

z F + z F + z F^п11а1 ~ n21 2 n31 3
7 F + 7 F + 7 Fn12 1 n22 2 n32 3
z F + z F + z Fn13 1 n23 2 n33 3

n12 n22 n32
Zn13 Zn 23 Zn33

F1

(7.106)

Note that the multipliers of F1 in the first column are the elements of the first
row of the modal matrix, the multipliers of F2 in the second column are the
elements of the second row of the modal matrix and the multipliers of F3 in
the third column are the elements of the third row of the modal matrix.

Suppose that force is to be applied at only mass 1, F1 , then only the first row
of the modal matrix is required to transform the force in physical coordinates
to the force in principal coordinates.

© 2001 by Chapman & Hall/CRC

Now let us examine the displacement transformation by expanding the
equations:

z = z n z p (7.107)

Z1 Zn11 Zn12 Zn13 Zp1 Zn11Zp1 + Zn12Zp2 + Zn13Zp3
z = Z2 = z z =np Z Z Zn21 n22 n23 Zp2 = Zn21Zp1 + Zn22Zp2 + Zn23 Zp3

_ Z3 _ _ Zn31 Zn32 Zn33 _ _ Zp3 _ Zn31Zp1 + Zn32Zp2 + Zn33Zp3

(7.108)

Note that the coefficients of the principal displacements in the first row above
are the elements of the first row of the modal matrix. Similarly, coefficients of
the second and third rows are the elements of the second and third rows of the
modal matrix.

Suppose that the only physical displacement we are interested in is that of
mass 2, Z2 , then only the second row of the modal matrix is required to
transform the three displacements Zp1, Zp2, Zp3 in principal coordinates to Z2 .

This leads to the following conclusion about reducing the siZe of the model:

Only the rows of the modal m atrix that correspond to
degrees of freedom to which forces are applied and/or for
which displacements are desired are required to complete the
model.

For this tdof model, reducing the siZe of the problem is not required; however,
we w ill see later that a realistic finite element model, with hundreds of
thousands of degrees of freedom, presents an entirely different problem.
Having the ability to reduce the problem siZe is critical in order to use the
detailed results of a complicated finite element model to provide accurate
results in a lower order MATLAB model.

7.10 Damping in Systems w ith P rincipal Modes

7.10.1 Overview

Damping in complex built-up mechanical systems is impossible to predict with
the present state of the art. We will discuss in this section the conditions
which determine if a damping matrix can be diagonaliZed, and the criterion to
enable the damped equations to be diagonaliZed. In general, an arbitrary
damping matrix cannot be diagonaliZed by the undamped eigenvectors, as the

© 2001 by Chapman & Hall/CRC

mass and stiffness matrices can. This leads to using what is called
“proportional damping” in most finite element simulations.

If a mechanical system is designed with a specific viscous damping element,
for example a dashpot, that dominates the small amount of inherent structural
damping present, then that element can be added to the system as a viscous
damper. The resulting system is linear, but probably does not exhibit normal
modes as discussed in Section 7.2.2. In general this leads to the inability to
diagonalize and uncouple the equations of motion, requiring a state space
solution of the original, coupled equations of motion.

Viscoelastic damping treatments (damping elastomers) have been used for
years in disk drives, most typically as constrained layer dampers on the thin
sheet metal suspensions which support the read/write head. The effect of this
viscoelastic damping can be approximated at a specific temperature and
frequency as proportional damping by using the “modal strain energy”
technique in association with a finite element structural model (Johnson 1982).

Ignoring specific viscous, coulomb, and viscoelastic damping elements,
damping in typical structures arises from hysteresis losses in the materials as
they are strained, in some cases from viscous losses due to structure/fluid
interaction but more importantly from relative motion at the interfaces and
boundaries where different parts are attached or grounded. Unless a specific
damping element is used in a structural design, most structures have damping
which varies from mode to mode and w ill be in the range of 0.05% to 2% of
critical damping.

The modes in this chapter are all “real” or “normal” modes as defined earlier.
Once again, having normal modes means that at certain frequencies all points
in the system will vibrate at the same frequency and in phase, i.e., all points in
the system w ill reach their minimum and maximum displacements at the same
point in time. Chapter 5 discussed “complex” modes, modes in which all
points in the system do not reach their minimum and maximum displacements
at the same point in time.

7.10.2 Conditions Necessary for Existence of P rincipal Modes in Damped
System

With a conservative (no damping) system, normal modes of vibration will
exist. In order to have normal modes in a damped system, the mode shapes
must be the same as for the undamped case, and the various parts of the system
must pass through their minimum and maximum positions at the same instant
in time, expressed as:

© 2001 by Chapman & Hall/CRC

Zj = zmi cos (c^t + ф;) for the 1th mode (7.109)

A sufficient condition for the existence of damped normal modes is that the
damping matrix be a linear combination of the mass and stiffness matrices.
We know that m and k are diagonalized by operating on them with the
modal matrix. When c is a linear combination of m and k , then the
damping matrix c is also uncoupled (diagonalized) by the same pre- and
postmultiplication operations by the modal matrix as with the m and k
matrices (Weaver 1990, Craig 1981).

The damped equations of motion then become:

mz + cz + kz = F , (7.110)

where the damping matrix is a linear combination of m and k :

c = am + bk (7.111)

Cp = zT cz n , (7.112)

and where z n is the normalized (with respect to mass) modal matrix.

Writing out the complete equation:

mz + cz + kz = F (7.113)

z > z „ { z + + z T kz „ z -,1 z = z TF a 114)

V fT
Looking at the c to cp conversion where c = am + bk :

c = am + bk (7.115)

zTczn = azTmz„ + bzTkz„

= a l + bkp, (7.116)

where k p is a diagonal matrix whose elements are the squares of the

eigenvalues.

© 2001 by Chapman & Hall/CRC

The equation for the ith mode is:

zpi + (a + bra, = Fp, (7.117)

Rewriting, defining cp, the (a + bra2) term, using notation:

cpi = a + Ъю2 = 2Zi rai (7.118)

Where Z, is the percentage of critical damping for the ith mode, defined as:

Z i =
i 2^/kpimpi 2шрЛ /ю.

(7.119)

Then:

z i =
a + bra,

2ю,
(7.120)

Rewriting the equation in principal coordinates:

Zp + 2Zi ra,Zpi +ra2Zpi = Fp, (7.121)

This type of damping is known as proportional damping, where the damping
for each mode (they can all be different) is proportional to the critical damping
for that mode. Since the damping is also proportional to velocity, it is of a
viscous nature. If the same damping value is used for all modes, it w ill be
referred to as “uniform” damping. Damping in which the damping value for
each mode can be set individually w ill be referred to as “non-uniform”
damping.

7.10.3 Different Types of Damping

7.10.3.1 Simple Proportional Damping

Viscous damping in each mode is taken to be an arbitrary percentage, Z, of
critical damping:

© 2001 by Chapman & Hall/CRC

zpi + 2ZraiZpi + ra2Zpi = Fpip1 1 p1 p1
1

z p+ 2Z [k p] 2 z p+k p zp = Fp
(7.122)

This is analogous to the familiar notation used for a single degree of freedom
system:

mz + cZ + kz = F

c . k F
z +---- z +-----z = —

m m m

(7.123)

Define critical damping ccr = 2Vkm and define the term multiplying velocity
to be:

m■ = 2 Z 4

= 2
c Гк

co ^ m
2c Vk

2>/km Vm

(7.124)

Rewriting:

m

Z + 2ZranZ + ra2z = —
m

(7.125)

7.10.3.2 Proportional to Stiffness M atrix - “R elative” Damping

Recognizing that the higher modes of vibration damp out quickly, “relative”
damping yields damping in proportion to frequencies in normal modes,
basically letting the “a” term for Z, go to zero:

Z1 =
a + bra,2

2ra,
bra,

2 7.126)

a = 0

If a value of Z1, for the first mode, is assumed, a value can be defined for “b”

c

c

© 2001 by Chapman & Hall/CRC

b = 2^1
ra,

(7.127)

and the value for any other mode i is:

Z - = Z1-
ra1

(7.128)

7.10.3.3 Proportional to M ass M atrix - “Absolute” Damping

Absolute damping is based on making “b” equal to zero, in which case the
percentage of critical damping is inversely proportional to the natural
frequency of each mode. This w ill give decreasing damping for modes as their
frequencies increase.

Z1 =
a + bra,

2ra,
a

2ra, (7.129)

Ъ = 0

If a value of Z1, for the first mode, is assumed, a value can be defined for “a” :

(7.130)

and the value for any other mode i is:

Z i =
ra1Z1
ra,

(7.131)

© 2001 by Chapman & Hall/CRC

7.10.4 Defining Damping M atrix W hen Proportional Damping is
Assumed

Figure 7.6: Two degree of freedom for damping example.

An interesting question to ask is what the elements of the damping matrix
should be in the two degree of freedom (2dof) problem shown in Figure 7.6 in
order to be able to diagonalize the equations of motion. We will use the
eigenvectors from the undamped case to normalize the damping matrix. Then
we w ill solve for the specific values of the individual dampers which will
allow the diagonalization. We will see how non-intuitive the values of
c1, c2 and c3 are in order to be able to diagonalize. (See Craig [1981] for a
general expression to calculate the physical damping matrix when given
proportional damping values, the original mass matrix, the diagonalized mass
matrix and the eigenvalues and eigenvectors.)

7.10.4.1 Solving for Damping Values

Starting with the undamped eigenvalues and eigenvectors:

m =
m 0"

k =
' 2k - k '

c =
c1 + c2 - c 2

0 m - k 2k _ - c 2 c2 + c3 _

"1 1 " 1 "1 1 '
z m = 1 -1 zn = fZ---

V2m 1 -1

" k
0

k = m
p

0
3k
—
m

(7.132)

Solve for the diagonalized damping matrix, assuming proportional damping,
and knowing that the diagonalized stiffness matrix elements are squares of the
eigenvalues:

© 2001 by Chapman & Hall/CRC

cp = zT cz n = 2Z
ra1 0
0 ra2

= 2Zk (7.133)

Premultiplying by (zT) and postmultiplying by (zn

(zT) zT c zn (z = 2Z(zT) 1 k p2 (zn)-1 (7.134)

c = 2Z(zT) 1 k p2 (z n) (7.135)

Solving for the inverses above, noting that for this 2dof system, zn = zT , and
then performing the operations on k p :

The inverse of a 2 x 2 matrix can be found by:

1. Interchanging the two diagonal elements.

2. Changing the signs of the two off-diagonal elements.

3. Dividing by the determinant of the original matrix.

" d -b
a b] 1 - c a
c d a b

c d

Table 7.2: Inverse of 2x2 matrix.

-1 -1
-1 1

\/2m
\/2m

n \ n (-1 -1)
1 1
1 -1

(7.136)

II

© 2001 by Chapman & Hall/CRC

_1, 1 V2m
z „ k p2 = ——

“1 1" “1 0 '

1 „1 Vm 0 7 3

V2k 1 S '
1 „ 7 3

z _1k P z -1 =■
72 k "1 7 3 ■ “1 1 ■

2 _1 „73_ 1 „1
V2m

W km 1 + V3 1 „ 7 3

1 —s/3 1+ 7 3

Vkm
c = 2Z

= Z7km

1+ 7 3 1 „ 7 3

1 „ 7 3 1 + 73

1+ 73 1 „ 7 3

1 „ 7 3 1 + 73

Now we can solve for the specific values for the three dampers:

_c2 = ZVkm (1 „ 7 3)

c2 = Z7km (7 3 „ 1)

= Z7km (.732)

2

4

2

(7.137)

(7.138)

(7.139)

(7.140)

© 2001 by Chapman & Hall/CRC

c1 + c2 = c2 + c3 = ^л/km (1 + V 3)

1 + V3 „1

Summarizing:

c1 = c3 = ^л/km (i + V3)„ c

= ^Vkm

= ^Vkm (2)

= 2^Vkm

c1 = c3 = 2^Vkm

c2 = ^Vkm (.732)

(7.141)

(7.142)

(7.143)

Note that the values for the three dampers are not at all intuitive and would
have been very difficult if impossible to guess to be able to construct a
diagonalizable damping matrix. If defining the diagonalizable damping matrix
for this 2x2 problem is difficult, imagine trying to define it for a real life finite
element problem with thousands of degrees of freedom. Also, it is highly
improbable that the back-calculated damping values in physical coordinates
would match the actual damping in the structure.

7.10.4.2 Checking R ayleigh Form of Damping M atrix

We have now defined the values of the c1, c2 and c3, dampers which allow
diagonalizing the equations of motion. Another interesting question is whether
the Rayleigh form has been satisfied: Is c a linear combination of k and m ?

= ^Vkm
1+ V3 1 „V 3

1 „V 3 1+V3
? f “1 0" “ 2 „1"
= a i m + b k

I 0 1_ _ „1 2 _
(7.144)

We have two unknowns, a and b, and essentially two equations, since the two
diagonal elements are the same and the two off diagonal elements are the
same. First, let us look at the two off diagonal terms, equating terms on the
two sides above:

© 2001 by Chapman & Hall/CRC

^л/km (1 - V 3) = am (0) + bk (-1)

b = ^N/km = z -1

Now, equating the diagonal terms:

ZV km (i + V3) = am + 2bk

= am + 2

= am + 2ZVmk (3 -1

am = ^л/km + V3) - 2ZVmk ((-1)

= Z%/km [1 + V3 - 2n/3 + 2]

= ^Vkm "3 - > / 3 J

a = Z ^ [3 ^ J

Checking the two values for a and b by substituting back into (7.146).

(7.145)

(7.146)

(7.147)

(7.148)

© 2001 by Chapman & Hall/CRC

= ZVkm

(7.149)

So c is a linear combination of k and m and the Rayleigh criterion holds.

Problems

Note: A ll the problems refer to the two dof system shown in Figure P2.2.

P7.1 Set m1 = m2 = m = 1, k 1 = k 2 = k = 1 and solve for the eigenvalues and
eigenvectors of the undamped system. Normalize the eigenvectors to unity,
write out the modal matrix and hand plot the mode shapes

P7.2 Normalize the eigenvectors in P7.1 with respect to mass and diagonalize
the mass and stiffness matrices. Identify the terms in the normalized mass and
stiffness matrices. Write the homogeneous equations of motion in physical
and principal coordinates.

P7.3 Convert the following step forcing function and initial conditions in
physical coordinates to principal coordinates:

a) F1 = 1, F2 = -3

b) z1 = 0, z1 = -2 , z2 = -1 , z2 = 2

P7.4 Using the results of P7.2 and P7.3, write the complete equations of
motion in physical and principal coordinates assuming proportional damping.

© 2001 by Chapman & Hall/CRC

CHAPTER 8

FREQUENCY RESPONSE: MODAL FORM

Now that the theory behind the modal analysis method has been covered, we
w ill solve our tdof problem for its frequency response.

8.1 Introduction

^ z 1
r F i

^ z 2 F 2 ^ z 3 F 3

m 1
k 1

m 2
k 2

m 3

О () C) C) о ()\ V 4 \ ч 4 \ \

Figure 8.1: tdof undamped model for modal analysis.

We will use eigenvalue/eigenvector results from Chapter 7 to define the
equations of motion in principal coordinates and to transform forces to
principal coordinates. We will then use Laplace transforms to solve for the
transfer functions in principal coordinates and back-transform to physical
coordinates, where the individual mode contributions w ill be evident. We will
discuss the relationship between the partial fraction expansion transfer
function form and the modal form derived here. We discussed in Section 5.13
how to excite only a single mode of vibration by judicious choice of initial
conditions. Here we w ill describe the forcing function combination required
to excite only a single mode.

We will spend considerable time in this chapter on developing a greater
understanding of how individual modes of vibration combine to give the
overall frequency response. MATLAB code is supplied for the tdof problem
to illustrate the point. ANSYS is also used to solve the tdof problem and the
ANSYS results are described and compared with the MATLAB results.

© 2001 by Chapman & Hall/CRC

8.2 Review from Previous Results

Since the problem we are solving is frequency response, or finding the steady
state motion of each mass as a function of frequency and of applied forces,
initial conditions are not required.

From previous analyses, (7.85) to (7.88), we know the eigenvalues and
eigenvectors normalized with respect to mass, Wj, zn :

W = 0 ю, =±.

\/m

k
m W3 =±

1 1 1
S V2 V6
1 r\ - 2

0

1 - 1 1

V3 7 2 V6

(8.1)

(8.2)

Knowing that in principal coordinates the mass matrix is the identity matrix
and the stiffness matrix is a diagonal matrix with the squares of the respective
eigenvalues as terms, we can write the matrices by inspection:

"1 0 0 " f 1, л "0 0 0"
m = 0 1 0 k = f —1 0 1 0p p I m J0 0 1 0 0 3

(8.3)

The force vector in principal coordinates is:

Fp = z ; F =
F1

(8.4)

© 2001 by Chapman & Hall/CRC

Expanding:

Fp1 _ Zn11F1 + Zn21F2 + Zn31F3

Fp2 _ Zn12F1 + Zn22F2 + Zn32F3

Fp1 _ Zn13F1 + Zn23F2 + Zn33F3

Performing the actual problem multiplication:

(8.5a,b,c)

Fp = z n F =

" 1 1 1 " F + F2 + F3 '
7 3 7 3 7 3 Г F, 1 7 3 + 7 3 + 7 3

1 1
0

-1
1

T? _ 1 F + 0 - F3
7m 7 2 7 2

F2
F3

7m 7 2 + 7 2
1 -2 1 3

F 2F2 F3
_76 7 6 7 6 _ _76 - 7 6 + 7 6 _

p2

(8.6)

Writing the resulting equations of motion in principal coordinates in matrix
form:

1 0 0
0 1 0
0 0 1

p2

0 0 0
0 1 0
0 0 3

p2
1

7m

A + + J l
7 3 + 7 3 + 7 3

^ + 0 - A
7 2 + 0 7 2

F
7 6

2El + F_
7 6 7 6 .

(8.7)

Writing out the equations in expanded form:

Z p1 = (F1 + F2 + F3
)3 m Fp1

(8.8)

© 2001 by Chapman & Hall/CRC

Zp2 + -Z p 2 = (- F3)) = L = Fp, - = w2 (8.9)
m V2 m m

3k 1 3k
Zp3 + — Zp3 = (1 - 2F, + F3) _ = Fp3 — = ю2 (8.10)

m V6 m m

8.3 T ransfer Functions - Laplace Transforms in P rincipal Coordinates

We now solve for the transfer functions. Taking the Laplace transform of
each equation, ignoring initial conditions and collecting the displacement
terms, where zp1 (s) is the Laplace transform of zp1 (Appendix 2):

2 ̂ _ 1s2Zp1 (s) = (F1 (s) + Fj(s) + F ,(s))
V im

Zp2 (s) (s2 +ю2) = (F1 (s) - F3 (s)) -) = (8.11a,b,c)
V2 m

Zp3 (s) (s2 +ю32) = (F1 (s) - 2 F2 (s) + F3 (s)))
V6 m

Solving for the three principal displacements and eliminating the “(s)” for
simplicity:

Zp1 = (F1 + F2 + F3) 2 3---
" V3ms

Zp2 =(F 1 - F3) — ----- (8 . 1 2 a,b,c)

Zp3 = (- 2 F2 + F3)

s2+ю2)) —

1
(s2+ю2)V6—

Taking the forces one at a time, the elements of a transfer function matrix can
be defined.

1
F1 s2V 3 -
z 1 1
-p1 = -TW = (8.13a,b,c)
F2 s v3m

zp, 1
F3 s2V 3 -

zp1

© 2001 by Chapman & Hall/CRC

p2 ______
F I 2 +ю2) 2 m

p2 _ 0 (8.14a,b,c)

p2 -1

Is + ю:)V2m

p3 ______
F I 2 + ffl?) 6 m

Zp3 _ -2
Ё Г _ f s 2 + Ю?IV6m

(8.15a,b,c)

p3
Is + ю:) 6 m

Writing out the principal coordinate transfer functions for each external force,
F1 , F2, and F3:

Zp1
F1

Zp _ Zp2
F1 F1

Zp3
. F1 _

Г zp1 "
F2

Z Z 2p _ p2 _
F2 F2

Zp3
L F2 J

1
s2V3m

1
(s2 + ffl2)V2m

1

(s2 +)V6m

p̂n
p21

p31

(8.16)

sV 3m Zp12
0 _ Zp22 (8.17)

-2 Zp32
+ o>2)V6m

F2

F

1
F3

© 2001 by Chapman & Hall/CRC

" Zp1 " 1
F3 sV 3m
Zp2 - 1
F3 (s2 + ю2) 2 m

Zp3 1
L F3 J (s2 +o>2) 6 m

p13
p23
p33

(8.18)

8.4 Back-Transform ing Mode Contributions to T ransfer Functions in
Physical Coordinates

Now the transfer functions in principal coordinates can be back-transformed to
physical coordinates. This allows one to see the contributions of each mode,
where Zj- is the physical displacement at dof “ i ” due to a force at dof “j . ”

Zn11 Zn12 Zn13 Zp11 Zp12 Zp13 Z11 Z12 Z13
z = z n z p = Zn21 Zn22 Zn23 Zp21 Zp22 Zp23 N Z21 Z22 Z23

_Zn31 Zn32 Zn33 . _Zp31 Zp32 Zp33 _ _Z31 Z32 z33 _

(8.19)

The equations below show how the results from each of the principal
equations (modes) combine to give the overall response. The overall transfer
function is seen to be a combination of the three modes of vibration and is
referred to as the “modal form.”

Z;UZpU + Zn12Zp21 + Z;13Zp31 contributions to total — transfer function.
F1

Z;21Zp11 + Z;22Zp21 + Zn23Zp31 contributions to total — transfer function.
F1

Z;31Zp11 + Z;32Zp21 + Z;33Ẑ 31 contributions to total — transfer function.
F1

z

2nd mode

z 2

2nd mode

z3

2nd mode 3rd mode

F = z ;1 1 z p12 + z ;1 2 z p22 + z ;1 3 z p32 contributions to total F l transfer function.
2 1st mode 2nd mode 3rd mode 2

© 2001 by Chapman & Hall/CRC

Zn21Zp12 + Zn22Zp22 + Zn23Zp32 contributions to total — transfer function.
F,

Zn31Zp12 + Zn32Zp22 + Zn33Zp32 contributions to total — transfer function.
F2

Z2
F2 2nd mode 3rd mode

Z3
F2 2nd mode

Z1
F _ Zn11Zp13 + Zn12Zp23 + Zn13Ẑ 33
3 1st mode 2nd mode 3rd mode

contributions to total — transfer function.
F3

Z2
F _ Zn21Zp13 + Zn22Ẑ 23 + Zn23Zp33
3 1st mode 2nd mode 3rd mode

contributions to total — transfer function.
F3

Z3
F _ Zn31Zp13 + Zn32Ẑ 23 + Zn33Ẑ 33
3 1st mode 2nd mode 3rd mode

contributions to total — transfer function.
F3

We saw earlier that because of symmetry there are only four distinctly
different transfer functions of the total of nine:

к ъ ъ , and ^
F1 F1 F1 F2

Expanding the four transfer functions:

ZL _ J_
F1 Vm

p11 p21
V3 V2

^31
V6

1

Vm 2V 3 W 3 (2+ю2)V 2m V2 (2 + o>2)V6m V6

s2 (3m) (2 + ю2) m (s2 +o>2)6m

© 2001 by Chapman & Hall/CRC

2 2 s2 + ю:
(8.20)

F1 л/— 2V 3 -V 3
+ 0 -

(s2 + ю?

z2

+ 0 - 2 2 s2 + W2
(8.21)

F1 v — 2V3—л/э (2+ю2)) — /2 (2+o>2)) —V6

(8.22)

z

f2 V— 2V 3 -/ 3
+ 0

(s2 +ю2
z2

2 2 s2 + W2
(8.23)

k 3k
Taking m = k = 1 yields: Wj2 = 0, o>2 = — = 1, Wp = — = 3, and

m m
substituting above:

1

+ (8.24)Zl = A + 2 + _ 6
F1 s2 s2 +1 s2 + 3

F, s2 s2 + 3
(8.25)

z 2

© 2001 by Chapman & Hall/CRC

(8.26)
1 I I

_ 3 ^ + 6
F1 s2 s2 +1 s2 + 3

I 2

^ = 4 + 1 — (8.27)
F2 s2 s2 + 3

8.5 P artia l Fraction Expansion and the M odal Form

Another way of finding the modal form (not as insightful, but does not require
solving the eigenvalue problem) is to take the original transfer functions
derived in the Chapter 2 and perform a partial fraction expansion. Partial
fraction expansion gives the same results as the modal form in Section 8.4.
The four unique transfer functions from (2.62) to (2.65) are repeated below:

z1 _ m2s4 + 3mks2 + k 2
F^_ s2 (m 3s4 + 4m2ks2 + 3mk2

z2 k
F1 s2(m2s2 + 3km)

z3 _ k 2

F1 s2 (m 3s4 + 4m2ks2 + 3mk2

z2 _ m s + 2mks + k
F _ s2 (m 3s4 + 4m2ks2 + 3mk2

(8.28)

(8.29)

(8.30)

(8.31)

In order to perform a partial fraction expansion, we need the roots of the
characteristic equation, found earlier to be:

k 3k
Ю2 _ 0 ю2 _ — ю3 _ — (8.32)

m m

Taking the z1/F1 transfer function and expanding in partial fraction form,
setting m = k = 1;

© 2001 by Chapman & Hall/CRC

m s + 3mks + k s4 + 3s2 +1 s4 + 3s2 +1
F, s2 (m 3s4 + 4m2ks2 + 3mk2) s2(s4 +4s2 +3) s2(s2 +rn^)(s2 + ю32)
z

s4 + 3s2 +1 A B C
_2/_2 i r->.2 \ /-.2 , r-.2\ _2 i r-.2 _22 _2 . r..2 s (s + Ю2)(s + Ю3) s +w, s + Ю2 s +W3

(8.33a,b)

The terms A, B and C, known as “residues,” are evaluated using the “cover-
up” method, where each coefficient is evaluated by “covering up” its term in
the transfer function and evaluating the remaining expression at s2 = - W2.

Evaluating A:

. s + 3s +1] . 2 2A = —--------— -------— evaluated at s = -ю, = 0
(s2 +rn2)(s2 +ю32) 1

= 1 = 1 = 1
= ю2ю32 = (1)(3) = 3

Evaluating B:

-n s4 + 3s2 +1 t j 2 2B = ——------ — evaluated at s = -ю 2 = -1
s2(s2 + ю3) 2

ю4 - 3ю2 +1 1 - 3 +1 -1 1

(8.34)

(8.35)

- w2 (-w2 +ю32) -1 (-1 + 3) - 2 2

© 2001 by Chapman & Hall/CRC

Evaluating C:

C = ——2S + 35 + 1— — evaluated at s2 = -ю^ = - 3
s2(s2 + ю2)(s2 + ю32) 3

= ю34 - 3ю2 +1 = 32 - 3(-3) +1 = 1
-ю2(-ю2+ю2) —3(—3+1) 6

(8.36)

Combining terms:

1 1 1
z1 s4 + 3s2 +1 _ 3 _ + _ 2 _ + _ 6 _
F1 s2(s2 + ю^)(52 + ю2) S2 +ю2 s2 + ю2 s2 + ю3

This expression is the same as the term for z1 /F1 in (8.20). Converting the
other three transfer functions to partial fraction form also reveals their modal
form.

8.6 Forcing Function Combinations to Excite Single Mode

It is instructive at this point to see what types of forcing function combinations
w ill excite each of the three modes separately. From the definition of normal
modes, we know that if the system is started from initial displacement
conditions that match one of the normal modes, the system will respond at
only that mode. An analogous situation exists for combinations of forcing
functions. Repeating the transformed equations of motion in principal
coordinates from (8.12a,b,c) with m = 1.

Zp1 (F1 + F2 + F3) s2 ^ Fp1

Zp2 = (F1 - F3
____ 1_

(2 +ю2
p2 (8.38a,b,c)

Zp3 = (F1 - 2F2 + F3
s + ю

= Fpp3

To excite only the first mode, we can start with initial displacements being any
multiple of the first eigenvector, which has equal displacements for all masses.

© 2001 by Chapman & Hall/CRC

Now let us see if applying equal forces to all three masses with zero initial
conditions excites only the first mode. Set F, = F2 = F3 Ф 0 , which should
excite only the first, rigid body mode:

Zp1 (+ F2 + F3) s2V3 3 F , s2V3

p2 = (- F3
____ 1_

(s2 + ю2
= 0 (8.39a,b,c)

Zp3 = (F1 - 2F2 + F3
Is +Ю3)V6

= 0

We can see above that the motion for the second and third modes is zero. It is
the information contained in the eigenvector, which, when multiplied by the
force vector in physical coordinates, determines the force vector in principal
coordinates.

To excite the second mode only, applying zero force at mass 1 and equal and
opposite sign forces at masses 1 and 2 should work: F, = —F3, F2 =0:

Zp1 = (F1 + F2 + F3

Zp2 = (F1 - F3

1

s2V3
1

= 0

Is +W
= 2F,

(2 +ю2))
(8.40a,b,c)

Zp3 = (- 2F2 + F33 / / 2 2 s2 + w;)V6
= 0

In this case the combination of the eigenvectors and forcing function signs
cancel out the first and third modes, leaving only the second mode.

To excite the third mode only, applying the same force to masses 1 and 3 and
twice the force with opposite sign to mass 2 should work: F, = F3, F2 = -2 F ,:

© 2001 by Chapman & Hall/CRC

zp1 = (F1 + F2 + F3

zp2 = (F1 - F3

1
s2V3

1

= 0

(2 + «2))
= 0 (8.41a,b,c)

zp3 = (F1 2F2 + F3
(s2 + «2))

= 6F1
(2 + «3))

In this case the combination of the eigenvectors and forcing function signs
cancel out the first and second modes, leaving only the third mode.

8.7 How Modes Combine to C reate T ransfer Functions

We have shown that both the normal mode method and partial fraction
expansion of transfer functions yield additive combinations of sdof systems for
the overall response. The purpose of this section is to develop a general
equation for any transfer function, again showing that the system frequency
response is an additive combination of sdof systems. Each sdof system has a
gain determined by the appropriate eigenvector entries and a resonant
frequency given by the appropriate eigenvalue.

The three equations of motion in principal coordinates are:

«if = 0

;p1 + « Ч 1 = Fp1

;p2 + «2 zp2 = Fp2

'p3 + « Ч 3 = Fp3

2 k 2 3k
ю2 = «3 == —

m m

(8.42a,b,c)

(8.43a,b,c)

Where the forces in principal coordinates are given by:

Fp = zT F =
F1

z F + z F + z Fи̂11А1 “ n21 2 n31 3
z F + z F + z Fn12 1 n22 2 n32 3
z F + z F + z Fn13 1 n23 2 n33 3

(8.44)

© 2001 by Chapman & Hall/CRC

Taking the Laplace transform of the differential equations (8.42a,b,c) and
dividing by the coefficients of each principal displacement:

p2
^3

Г Fpi 1 z F + z F + z F;̂11а1 ~ ^21 2 ;̂31а32 2 s2 + Wj2 2 2 s2 + W2

Fp2 7 F + 7 F + z F^2 1 ;̂22а2 ~ 3̂2A3
2 2 s2 + w2 2 2 s2 + w2

Fp3 z F + z F + z FпП 1 n23 2 ;̂33а3
2 2 s2 + w2 2 2 s2 + w2

(8.45)

The equation above shows how the individual eigenvector matrix elements
contribute to the displacements in principal coordinates.

Since we are only interested in SISO transfer functions that arise from a force
applied to a single dof, we w ill look at the F,, F2, F3 cases individually.

For force F1 :

Fp1 z; 11F1
_ _

2 2 s2 + Wj2 s2 + w2

z p =
zpi

Fp2 z F ^ ;12а1
Zp2

_ zp3 _

2 2 s2 + w2

Fp3

2 2 s2 + w2
z F ̂;13 1

2 2 s2 + 2 2 s2 + w2

(8.46)

For force F2

p2
p3

Г Fpi 1 z F^21 22 2 s2 + Wj2 s2 + w2

Fp2 z Fn22 2
2 2 s2 + w2 2 2 s2 + w2

Fp3 z Fn23 2
2 2 s2 + w2 2 2 s2 + w2

(8.47)

z p =

z p =

© 2001 by Chapman & Hall/CRC

For force F3

p2
p3

Г Fp1 1 zn31F3
2 2 s2 + «2 s2+«2

Fp2 3z 3F

2 2 s2 + «2 s2 + «2

Fp3 zn33F3
2 2 s2 + «2 s2 + «3

The equations for displacements in physical coordinates are
premultiplying the above three equations by z n (7.107).

For F1:

z z F z z F z zn11 n11 1 ‘-‘■пЛП ПА 1z F z z Fn12̂ n12A1 + ^п13̂ п13х1

zn21zn11F1 zn22znnF1 zn23z.
2 2 s2 + «2

z F z z F'n22 n12 1 + n23 n13 1
2 2 s2 + «2 2 2 s2 + « ;

z z F z z F z z Fn31 n11 1 + n32 n12 1 + n33 n13 1
2 2 s2 + «2 2 2 s2 + «2 2 2 s2 + «2

z p =

z =

Dividing by F1:

z1
F1
z2

F1

zn11zn11 + zn12zn12 + zn13zn13
2 2 s2 + ю,2 2 2 s2 + «2 2 2 s2 + « :

zn21zn11 + zn22zn12 + zn23zn13
2 2 s2 +«2 2 2 s2 + «2

2 2 s2 + «2

2 2 s2 + o>:
z

(8.48)

found by

(8.49)

(8.50)

© 2001 by Chapman & Hall/CRC

Similarly for F, andF2

zi z znll n-l
F-

- - s2 + ю-
z Z2 z zn-l n-l

F = F-
2 2 s2 +W,

Z3 z z^31 n-l
_ F- _

2 2 s2 + ю-

zi z znll ^ 1
F3 s2 +W-

z Z2 Z;21Z;31
F = F3 2 2 s2 + w;

Z3 z z^31 ^ 1
_ F3 _ 2 2 s2 +W-

z z z z+ ^2 n22 + n13 n23

+ z ; 22z ;2 2 + z ; 23z ;2 3
2 2 s2 + W- 2 2 s2 + w;

z z z z_ + n32 n22 + n33 n23
2 2 s2 + w;; 2 2 s2 + w;

z z z z+ nl- n32 + n13 n33

z z z z+ n32 n32 + n33 n33
2 2 s2 + ю2 2 2 s2 + w;

(8.51)

(8.52)

The nine transfer functions above may be generalized by the following
equation. For the transfer function with the force applied at dof “k,” the
displacement taken at dof “j ” and for mode “i” :

zj = Znj1Ziik1 + Z;j2Z;k2 + Z;j3Z;k3
Fk 2 2 s2 + w,2 2 2 s2 + ю2 2 2 s2 + w;

(8.53)

Rewriting in summation form, and generalizing from our tdof system to a
general system where “m” is the total number of modes for the system for an
undamped (8.54a) and damped (8.54b) system:

._. 2 2i“1 s2 + w2
(8.54a,b)

/ . 111
F- = 2“ 1 s2 + 2Zi Wis + w2

Equations (8.54a,b) shows that in general every transfer function is made
up of additive combinations of single degree of freedom systems, w ith
each system having its dc gain (transfer function evaluated w ith s = j0)
determined by the appropriate eigenvector entry product divided by the

© 2001 by Chapman & Hall/CRC

square of the eigenvalue, znjiznki / « 2 , and w ith resonant frequency

defined by the appropriate eigenvalue, .

For our tdof system, substituting for the « ; values:

nj2 Л2 nj3 11KJ

2 ' + 2 . , ,— + 2 ,— (8.55)
zj = znj1znk1 + znj2znk2 + znj3znk3
Fk s2 s2 + k/m s2 + 3k/m

This equation makes the graphical combining of modal contributions to the
final transfer function more clear. The contribution of each mode is a simple
harmonic oscillator at frequency « ; with dc gain znjiznki / « 2, where “ i ” is the

mode number.

8.8 Plotting Individual Mode Contributions

Taking z 1 /F1 for example, the separate contributions of each mode to the total
response can be plotted as follows. First we calculate the DC response of the
non-rigid body mode:

R igid body response: at « = 0.1 rad/sec z 111 = 0 ^ = 33.33 = 30.457 db,

slope = - 2

Now we calculate the dc gain of the non-rigid body modes:

Second mode response: at DC , z 112 = 2 = 0.5 = - 6db, slope = 0

resonance at « 2 = 1 , slope at ^ = - 2

Third mode response: at DC , z 113 = 1 8 = 0.0555 = -25.1db, slope = 0

resonance at « 2 = 3 , slope at ^ = - 2 , where the
“ijk” notation in zijk indicates: dof “i,” due to force
“j , ” for mode k.

Thus, the total response is defined by the additive combination of three single
degree of freedom responses, each with its own spring-dominated low

© 2001 by Chapman & Hall/CRC

frequency section, damping dominated resonant section and mass dominated
high frequency section.

The MATLAB code tdof_modal_xfer.m is used to calculate and plot the
individual mode contributions to the overall frequency response of all four
unique transfer functions for the tdof model. The program plots the frequency
responses using several different magnitude scalings. We will discuss below
the results for the z 1 /Fj frequency response, using plots from the MATLAB
code to illustrate. The notation “z 113” below signifies the transfer function
z1/F1 for mode 3, and so forth.

Transfer Function - z111, z112, z113 and z11 Magnitude

Frequency, rad/sec

Figure 8.2: z11 transfer function frequency response plot with individual mode
contributions overlaid.

Figure 8.2 shows the overall z 1 /F1 (z11) transfer function and the individual
modal contributions which add to create it. Because the magnitude scale in
Figure 8.2 is in log or “db” units, the individual mode contributions cannot be
added graphically. To add graphically requires a linear magnitude axis. We
cannot use the log magnitude or db scale for adding directly because adding
with log or db coordinates is equivalent to the multiplication of responses, not
addition.

There is zero damping in this model, so the amplitudes at the two poles in
Figure 8.2 should go to infinity. The peak amplitudes do not go to infinity
because they are limited by the resolution of the frequency scale chosen for the
plot. The two zeros should go to zero, but once again they do not because of
the frequency resolution chosen.

© 2001 by Chapman & Hall/CRC

Figures 8.3 and 8.4 show the same frequency responses plotted on a linear
magnitude scale.

Transfer Function - z111, z112, z113 and z11 Linear Magnitude

Figure 8.3: z11 frequency response and modal contributions plotted with linear magnitude
scale.

Figure 8.4 uses an expanded magnitude axis to more clearly show how the
three individual mode sdof responses combine graphically to create the overall
frequency response. It also contains notation that shows how the signs change
through the resonance. In Chapter 3 we learned how to sketch frequency
response plots by hand, knowing the high and low frequency asymptotes and
the locations of the poles and zeros. Similarly, we can combine modes by
hand if we know the signs (phases) of the individual modes that are being
combined. In our tdof example, it just so happens that the signs of the low
frequency portions of the second and third modes (1.0 and 1.7 rps) were both
positive. In general, it is not the case that all low frequency signs w ill be
positive (see the z31 example below). The discussion below w ill show how to
define the sign (phase) of the low frequency portion of each mode by knowing
the signs of the eigenvector entries for the input and output degrees of
freedom.

© 2001 by Chapman & Hall/CRC

Figure 8.4: z11 frequency response with expanded magnitude scale to see contributors to
the zeros.

Since the phase at frequencies much lower than the resonant frequency is zero
for a spring mass sdof system (2.19b), and since each mode in principal
coordinates is a sdof system, the phase for each mode contribution to the
overall response at low frequency is given by the sign of the eigenvector
for the dof whose displacement is desired times the sign of the dof where
the force is applied. For the three modes and the transfer function z11, where
we are interested in measuring the displacement of mass 1 and in the force
being applied to mass 1, the signs for the three modes at low frequencies are
found as follows. The normalized modal matrix is repeated to see the signs of
the entries:

© 2001 by Chapman & Hall/CRC

Mode 1 Mode 2 Mode 3

dof 1 -0.5774 -0.7071 0.4082

dof2 -0.5774 0.0000 -0.8165

dof3 -0.5774 0.7071 0.4082

Table 8.1: Normalized modal matrix.

Sign of mode 1 low frequency asymptote for z11 frequency response:

dof 1, mode 1: -0 .5774 (-)

dof 1, mode 1: -0 .5774 4 (-)

Low frequency sign (phase) = (-) times (-) = (+), but since
resonance is rigid body at zero rad/sec, all frequencies of interest to
us are “after resonance” and thus the sign is (-) because the phase is

-180°.

Sign of mode 2 low frequency asymptote for z11 frequency response:

dof 1, mode 2: -0.7071 (-)

dof 1, mode 2: -0.7071 (-)

Low frequency sign (phase) = (-) times (-) = (+), 0°

Sign of mode 3 low frequency asymptote for z11 frequency response:

dof 1, mode 3: +0.4082 (-)

dof 1, mode 3: +0.4082 (-)

Low frequency sign (phase) = (+) times (+) = (+), 0°

As mentioned earlier, the signs of the low frequency portions of the second
and third modes were both (+). The signs of the eigenvector entries above
show why this was the case.

© 2001 by Chapman & Hall/CRC

The “sign” of the rigid body mode is always “ - ” because the phase is always
-180°. The signs of the 1 rad/sec (rps) and 1.732 rps modes are both “+” at
low frequencies because their phases are 0°. After the resonance, their signs
change to “ - ” as phase goes to -180°. Exactly at resonance the phase of
each is -90 ° , however, away from resonance the phases are either 0° or
-18 0° because the problem has no damping.

Thus, if the low frequency asymptote sign (phase) is known for each mode, the
SISO frequency response zeros can be identified as frequencies where the
appropriate modes add to zero algebraically , as can be seen graphically on
Figure 8.4.

The z11 zeros at 0.62 and 1.62 rps arise when the contributions of the three
modes combine algebraically to zero.

For other transfer functions, for example z31, the low frequency signs would
be different, as can be seen below:

Sign of mode 1 low frequency asymptote for z31 frequency response:

dof 3, mode 1: -0 .5774 (-)

dof 1, mode 1: -0 .5774 (-)

Low frequency sign (phase) = (-) times (-) = (+), but is after
resonance so sign is (-)

Sign of mode 2 low frequency asymptote for z31 frequency response:

dof 3, mode 2: +0.7071 (-)

dof 1, mode 2: -0.7071 (-)

Low frequency sign (phase) = (+) times (-) = (-) , -18 0°

Sign of mode 3 low frequency asymptote for z31 frequency response:

dof 3, mode 3: +0.4082 (-)

dof 1, mode 3: +0.4082 (-)

© 2001 by Chapman & Hall/CRC

Low frequency sign (phase) = (+) times (+) = (+), 0°

Now that the low frequency phases o f the individual modes are defined, we
can follow the combining o f modes to get the overall response, indicated by
the “ +” signs.

Because we are dealing with a linear magnitude axis above, we can
graphically add or subtract the contribution o f each to get the overall response.

To get the overall response we combine the amplitudes o f each mode
depending on its sign. For example, at 0.4 rad/sec frequency, we combine the
amplitude o f the rigid body mode with a negative sign with the two oscillatory
modes, each o f which has a positive sign:

Rigid body response: at ю = 0.4 rad/sec, ю1 = 0 :

1 1 -1 -1
3s2 3(jo>r 3ю2 3(0.4)

Second mode response: at ю = 0.4 rad/sec, ю2 = 1

= - 2.083 (8.56)

1
= 0.595

112 2(s2 +ю 2) 2 [(jra)2 + ю2] 2 [- ю 2 +ю2] 2 [- (0 .4)2 +1]

(8.57)

Third mode response: at ю = 0.4 rad/sec, ю3 = 1.732 :

1 1 1 1
= 0.0586

113 6(s2 + ю32) 6 [(jra)2 + ю32] 6 [- ю 2 + ю 32] 6 [- (0 .4)2 + 3]

(8.58)

Adding (with proper signs) the three contributions at 0.4 rad/sec gives the
amplitude and phase o f the overall response at 0.4 rad/sec:

-2 .083 + 0.595 + 0.0586 = -1 .4294 (8.59)

The amplitude is 1.4294 and the phase is -1 8 0 ° , as indicated by the negative
sign. Because the model has no damping, each mode has 0° phase before

© 2001 by Chapman & Hall/CRC

resonance and immediately after resonance switches phase to -1 8 0 °. Exactly
at resonance the amplitudes are theoretically infinite.

Let us now track what happens at the frequency o f the first zero, which we
showed in (2.85) to be 0.618 rad/sec. W e will carry out the same calculations
as above for a frequency o f 0.618 rad/sec:

Rigid body response: at ю = 0.618 rad/sec, ю1 = 0 :

z111 = “ T = —^ = — г = --------= - 0-8727 (8.60)
111 3s2 3(jo>)2 3ю2 3(0.618)2

Second mode response: at ю = 0.618 rad/sec, ю2 = 1:

z112 =
2(s2 +ю 2) 2 [(jra)2 +ю2] 2 [-(0 .6 1 8)2 + i]

= 0.8089

(8.61)

Third mode response: at ю = 0.618 rad/sec, ю3 = 1.732 :

6(s2 +ю3) 6 [(jtt>) 2+®2] 6 [- (0 .6 1 8)2 + 3]
= 0.0636

(8.62)

Adding (with proper signs) the three contributions gives the amplitude and
phase o f the overall response at 0.618 rad/sec:

-0 .8727 + 0.8089 + 0.0636 = -0 .0002 = 0 (8.63)

The amplitude is -0.0002. With greater accuracy in the values used for the
eigenvalues and the frequency o f the zero, the solution would have been
exactly zero.

In Chapter 2, we showed that the zeros for SISO transfer functions arose from
the roots o f the numerator. The modal analysis method shows another
explanation o f how zeros o f transfer functions arise: when modes combine
with appropriate signs (phases) it is possible at some frequencies to have
no motion.

W e will calculate the response at one more frequency to show how the phase
changes for a mode when the frequency is higher than the resonant frequency.

© 2001 by Chapman & Hall/CRC

W e will choose a frequency o f 1.3 rad/sec, which is higher than the second
mode but lower than the third mode. We should see that the sign o f the
contribution for the second mode changes sign from positive to negative.
Signs for the first and third mode should remain unchanged.

Rigid body response: at ю = 1.3 rad/sec, ю1 = 0 :

1 1 -1 -1
3s2 3(jff>)2 3ю2 3(1.3)

Second mode response: at ю = 1.3 rad/sec, ю2 = 1:

= - 0.1972 (8.64)

Z112 —
2(s2 + ю2) 2 [j) 2 + ю2] 2 [-(1 .3)2 +1]

— - 0.7246

(8.65)

Third mode response: at ю = 1.3 rad/sec, ю3 — 1.732 :

6(s2 +ю3) 6 [(jtt>)2+ю2] 6 [-(1 .3)2 + 3]
— 0.1272

(8.66)

Adding (with proper signs) the three contributions at 1.3 rad/sec gives the
amplitude and phase o f the overall response at 1.3 rad/sec:

-0 .1972 - 0.7246 + 0.1272 — -0 .7946 (8.67)

The amplitude is 0.7946 and the phase is -1 8 0 °. Note that the sign o f the
second mode contribution changed from positive to negative when the
resonant frequency was passed.

The same calculations can be repeated for any desired frequency. Also,
knowing the high and low frequency asymptotes, their signs and resonant
frequencies, one can plot the overall frequency response roughly by hand,
similar to what was done in Section 3.3. Here, unlike the previous hand
plotting, we have not calculated any zeros; they occur by additive
combinations o f individual modes.

© 2001 by Chapman & Hall/CRC

8.9 M A TL A B Code tdof_m odal_xfer.m - Plotting Frequency Responses,
M odal Contributions

8.9.1 Code Overview

Figures 8.2 to 8.4 were plotted using this code. The code uses (8.24 to 8.27)
to evaluate the four transfer functions z11, z21, z31 and z22. Each o f the
transfer functions also has its modal contributions calculated and plotted as
overlays. The frequency response plots are all plotted with log and db
magnitude scales as well as a linear scale which is expanded in the fourth plot
o f the series. Because o f the amount o f code used for the plotting, only the
code for the z11 transfer function will be listed. All the other transfer
functions are calculated in a similar fashion.

8.9.2 Code Listing, Partial

% tdof_modal_xfer.m plotting modal transfer functions of three dof model

clf;

legend off;

subplot(1,1,1);

clear all;

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,150);

% calculate the rigid-body motions for low and high frequency portions
% of all the transfer functions

% z11, output 1 due to force 1 transfer functions

z111num = 1/3;

z111den = [1 0 0];

z112num = 1/2;

z112den = [1 0 1];

z113num = 1/6;

z113den = [1 0 3];

[z111mag,z111phs] = bode(z111num,z111den,w);

© 2001 by Chapman & Hall/CRC

[z112mag,z 112phs] = bode(z 112num,z 112den,w);

[z113mag,z113phs] = bode(z113num,z113den,w);

if abs(z111phs(1)) >= 10

z111text = '(-)';

else

z111text = '(+)';

end

if abs(z112phs(1)) >= 10

z112text = '(-)';

else

z112text = '(+)';

end

if abs(z113phs(1)) >= 10

z113text = '(-)';

else

z113text = '(+)';

end

z111magdb = 20*log10(z111mag);

z112magdb = 20*log10(z112mag);

z113magdb = 20*log10(z113mag);

% calculate the complete transfer function

z11 = ((1/3)./((j*w).A2) + ((1/2)./((j*w).A2 + 1)) + ((1/6)./((j*w).A2 + 3)));

z11mag = abs(z11);

z11magdb = 20*log10(z11mag);

z11phs = 180*angle(z11)/pi ;

% truncate peaks for microsoft word plotting of expanded linear scale

z 11plotmag = z11mag;

z111plotmag = z111mag;

© 2001 by Chapman & Hall/CRC

z112plotmag = z112mag;

z113plotmag = z113mag;

for cnt = 1:length(z11mag)

if z11plotmag(cnt) >= 3.0

z11plotmag(cnt) = 3.0;

end

if z111plotmag(cnt) >= 3.0

z111plotmag(cnt) = 3.0;

end

if z112plotmag(cnt) >= 3.0

z112plotmag(cnt) = 3.0;

end

if z113plotmag(cnt) >= 3.0

z113plotmag(cnt) = 3.0;

end

end

% plot the three modal contribution transfer functions and the total using
% log magnitude versus frequency

loglog(w,z111mag,'k+-',w,z112mag,'kx-',w,z113mag,'k.-',w,z11mag,'k-')
title('Transfer Functions - z111, z112, z113 and z11 magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
text(. 11, 1.2*z111mag(1),z 111text)
text(. 11, 1.2*z112mag(1),z 112text)
text(. 11, 1.2*z113mag(1),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude')
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot the four transfer functions using db

semilogx(w,z111magdb,'k+-',w,z112magdb,'kx-',w,z113magdb,'k.-',w,z11magdb,'k-')
title('Transfer Function - z111, z112, z113 and z11 Magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')

© 2001 by Chapman & Hall/CRC

text(. 11,2+z111magdb(1),z111text)
text(. 11,2+z 112magdb(1),z 112text)
text(. 11,2+z 113magdb(1),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude, db')
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot the four transfer functions using a linear magnitude scale so that
% the amplitudes can be added directly

semilogx(w,z111mag,'k+-',w,z112mag,'kx-',w,z113mag,'k.-',w,z11mag,'k-')
title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
text(. 11,1. 0*z 111mag(1),z 111text)
text(. 11,1.1 *z 112mag(1),z 112text)
text(. 11,1.1 *z 113mag(1),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude')
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z111plotmag,'k+-',w,z112plotmag,'kx-',w,z113plotmag,' ...
k.-',w,z11plotmag,'k-')

title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
text(. 11,1. 0*z 111mag(1),z 111text)
text(. 11,1. 1*z112mag(1),z 112text)
text(. 11,1. 1*z113mag(1),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude')
axis([.1 10 0 3]);
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot phase

semilogx(w,z111phs,'k+-',w,z112phs,'kx-',w,z113phs,'k.-',w,z11phs,'k-')
title('Transfer Function - z111, z112, z113 and z11 Phase')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
xlabel('Frequency, rad/sec')
ylabel('Phase, Deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

8.10 tdo f Eigenvalue Problem Using ANSYS

An ANSYS solution to the tdof problem is now shown in order to start
becoming familiar with how ANSYS presents its eigenvalue/eigenvector
results.

8.10.1 ANSYS Code threedof.inp Description

The ANSYS code threedof.inp below is used to build the model, calculate
eigenvalues and eigenvectors, output the frequency listing and eigenvectors,
plot the mode shapes, calculate and plot all three transfer functions for a
forcing function applied to mass 1: z j /F 1; z 2/Fj,and z3/F j . The hand
calculated values for masses and stiffnesses are used, m1 = m2 = m3 = 1.0,
k1 = k2 = 1.0.

To run the code, from the “begin” level in ANSYS, type “ /input,threedof,inp,”
and the program will run unattended. The various outputs are available as
follows:

threedof.frq frequency list, ascii file

threedof.eig eigenvector list, ascii file

threedof.grp2 mode shape plots

threedof.grpl frequency response plots

Use the ANSYS Display program to load and display the two plot files.

8.10.2 ANSYS Code Listing

/title, threedof.inp, three dof vibration class model, Ansys Version 5.5

/prep7 ! enter model preparation section

! element type definitions

et,1,21
et,2,14

! element type for mass
! element type for spring

! real value definitions

r,1,1,1,1
r,2,1

! mass of 1kg
! spring stiffness of 1mn/mm, or 1n/m

! define plotting characteristics

/view,1,-1,0,0
/angle,1,0

! z-y plane
! not iso

© 2001 by Chapman & Hall/CRC

/pnum,real, 1 ! color by real
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,-1 ! left hand mass at x = -1.0 mm
n,2,0,0,0 ! middle mass at x = 0 mm
n,3,0,0,1 ! right hand mass at x = +1.0 mm

! define masses

type,1
real,1
e,1
e,2
e,3

! define springs

type,2
real,2
e,1,2
e,2,3

! define constraints, ux and uy zero, leaving only uz motion

nsel,s,node,,1,3
d,all,ux,0
d,all,uy,0

allsel
eplo

! *************** eigenvalue run ******************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

! define masters for frequency response (transfer function) run

m,1,uz
m,2,uz
m,3,uz

antype,modal,new
modopt,reduc,3 ! method - Block Lanczost
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,3,,,no ! number of modes to expand

© 2001 by Chapman & Hall/CRC

total,3,1 ! total masters, all translational dof

allsel

solve starts the solution of one load step of a solution sequence, modal

fini

! ***************** output ft'equencies *******************

/post1

/output,threedof,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ***************** output eigenvectors *********************

! define nodes for output

allsel

/output,threedof,eig ! write out eigenvectors to ascii file .eig

*do,i,1,3
set,,i
prdisp

*enddo

/output,term

/show,threedof,grp2,0 ! raster plot, 1 is vector plot, write out to graph file .grp2

allsel

*do,i,1,3
set, 1,i

pldi,1
*enddo

/show,term

calculate and plot transfer functions ******************

fini

/assign,rst,junk,rst ! reassigns a file name to an ANSYS identifier

/solu

dmprat,0 ! sets a constant damping ratio for all modes, zeta = 0

© 2001 by Chapman & Hall/CRC

allsel
eplo ! show forces applied

f,1,fz,1 ! 1 mn force applied to node 1, left-hand mass

/title, threedof.inp, tdof, force at mass 1

antype,harmic ! harmonic (frequency response) analysis

hropt,msup,3 ! mode superposition method, nummodes modes used

harfrq,0.0159,1.59 ! frequency range, hz, for solution, -1 to 10 rad/sec

hrout,off,off ! amplitude/phase, cluster off

kbc,1

nsubst,200 ! 200 frequency points

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all
! frequencies, component name for selected set of nodes

solve

fini

/post26

file,,rfrq ! frequency response results

xvar,0 ! display versus frequency

lines,10000 ! specifies the length of a printed page for frequency response listing

nsol,2,1,u,z,z1 !
!
!

specifies nodal data to be stored in results file
u - displacement, z direction
note that nsol,1 is frequency vector

nsol,3,2,u,z,z2

nsol,4,3,u,z,z3

! plot magnitude

plcplx,0
/grid,1
/axlab,x,frequency, hz
/axlab,y,amplitude, mm
/gropt,logx, 1 ! log plot for frequency
/gropt,logy,1 ! log plot for amplitude

/show,threedof,grp1
plvar,2,3,4
/show,term

! file name for storing

© 2001 by Chapman & Hall/CRC

! plot phase

plcplx,1
/grid,1
/axlab,x,freq
/axlab,y,phase, deg
/gropt,logx,1
/gropt,logy,0

! label for y axis
! log plot for frequency
! linear plot for phase

/show,threedof,grp1
plvar,2,3,4
/show,term

! save ascii data to file

prcplx,1 ! stores phase angle in asci file .dat

/output,threedof,dat
prvar,2,3,4
/output,term

fini

8.10.3 ANSYS Results

l A N

m
m

о 0

<D

■+J \\
r_, z l
q . 1 . 0ЕГ-02
e
a

\ 7.2.

z3

1 I I I , QEr-02

Г г

l
. OET-Ol

e q и e r о <
-

IT N

1 I I I, ОЕГ+ОО
. OETJ-Ol

t h r e e d o f . i n p t h r e e d e g r e e o f f reed o m , f o r c e a t mass 1

Figure 8.5: ANSYS frequency responses for force at mass 1.

© 2001 by Chapman & Hall/CRC

The resulting ANSYS transfer function plot is shown in Figure 8.5, with the
frequency axis in Hz, not rad/sec.

The ANSYS frequency listing from threedof.frq is shown below, in hz units:

***** INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE

1 0.47280E-06 1 1 1

2 0.15915 1 2 2

3 0.27566 1 3 3

Note that the rigid body mode is calculated to be 0.4726e-6, close to 0 hz.
The second and third modes are calculated to be 0.15915 and 0.27566 hz, or
0.999969 and 1.732 rad/sec, respectively. This is the same as our hand-
calculated results.

The ANSYS eigenvector listing from threedof.eig is below:

*DO LOOP ON PARAMETER= I FROM 1.0000 TO 3.0000 BY 1.0000

USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 0.47280E-06
TITLE= threedof.inp, three dof vibration class model, Ansys Version 5.5

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 0.47280E-06 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ

© 2001 by Chapman & Hall/CRC

1 0.0000 0.0000 0.57735
2 0.0000 0.0000 0.57735
3 0.0000 0.0000 0.57735

MAXIMUM ABSOLUTE VALUES
NODE 0 0 1 0 0 0
VALUE 0.0000 0.0000 0.57735 0.0000 0.0000 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 0.15915 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 -0.70711
2 0.0000 0.0000 0.75552E-14
3 0.0000 0.0000 0.70711

MAXIMUM ABSOLUTE VALUES
NODE 0 0 3 0 0 0
VALUE 0.0000 0.0000 0.70711 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 3
FREQ= 0.27566 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

EDO UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 -0.40825
2 0.0000 0.0000 0.81650
3 0.0000 0.0000 -0.40825

MAXIMUM ABSOLUTE VALUES
NODE 0 0 2 0 0 0
VALUE 0.0000 0.0000 0.81650 0.0000 0.0000 0.0000

The ANSYS calculated eigenvectors, the three “U Z” listings highlighted in
bold type above, arranged in the modal matrix:

ANSYS zn =

0.57735 -0 .707 -0.40825

0.57735
0.57735

0
0.707

0.81649
-0.40825

(8.68)

© 2001 by Chapman & Hall/CRC

The hand-calculated modal matrix is below, only differing from the ANSYS
calculated values in the arbitrary “ - 1 ” multiplier for the second and third
modes:

1 1 1

л/3 s V6
1 1

0
-2

\/m 7 3 7 6
1 -1 1

_73 7 2 7 6

0.57735

0.57735

0.707

0
0.57735 -0 .707

0.40825

-0.81649
0.40825

zn =

(8.69)

Problems

Note: All the problems refer to the two dof system shown in Figure P2.2.

P8.1 Using the eigenvalues and eigenvectors normalized with respect to mass
from P7.2 and forces F1 and F2 applied to mass 1 and mass 2, respectively,
write the equations in motion and physical and principal coordinates in matrix
form. Identify the components o f the forcing function vector in principal
coordinates - which eigenvector components and which force, F1 orF2, are
involved.

P8.2 Solve for the four transfer functions for the system o f P8.1 and write
them in transfer function matrix form. Separate each transfer function in
principal coordinates to show z p / Fj and z p /F 2 as in (8.16).

P8.3 Back transform the transfer functions in principal coordinates to physical
coordinates. Identify the contributions to the transfer function from mode 1
and from mode 2 for all transfer functions.

P8.4 Take the transfer function results o f P2.2 with m1 = m2 = m = 1,

k1 = k 2 = k = 1 and zero damping and perform a partial fraction expansion on
each transfer function. Show that the results are identical to P8.3, the modal
form.

P8.5 What is the relationship between F1 andF2 in order to excite mode 1
only? To excite only mode 2?

© 2001 by Chapman & Hall/CRC

P8.6 Plot by hand the individual mode contributions to the z 2 /Fj frequency
response for zero damping. Note the sign o f the dc gain portion o f each
contribution and add the two contributions appropriately to obtain the overall
frequency response. Extra Credit: Plot all three unique frequency responses,
showing the individual mode contributions.

P8.7 (M ATLAB) Modify tdof_m odal_xfer.m for the undamped two dof
system with mj = m2 = m = 1, kj = k 2 = k = 1 and plot the overlaid frequency
responses.

P8.8 (ANSYS) Modify the threedof.inp code for the two dof system. Run
the code and plot the frequency responses for both masses for Fj = 1, F2 = 0 .
Print out the eigenvalue and eigenvector results. Pick out the appropriate
entries o f the eigenvector output and write out the modal matrix that ANSYS
calculates. Compare it with the modal matrix from P7.1 and identify any
differences.

© 2001 by Chapman & Hall/CRC

CHAPTER 9

TRANSIENT RESPONSE: MODAL FORM

9.1 Introduction

The transient response example shown in Figure 9.1 will be solved by hand,
using the modal analysis method derivation from Chapter 7. As in the
frequency response analysis in the previous chapter, we will again start with
the eigenvalues and eigenvectors from Chapter 7. W e will use them to
transform initial conditions and forces to principal coordinates and write the
equations o f motion in principal coordinates. Laplace transforms will be used
to solve for the motions in principal coordinates and we will then back
transform to physical coordinates. Once again, the individual mode
contributions to the overall transient response o f each o f the masses will be
evident. The closed form solution is then coded in M ATLAB and the results
plotted, highlighting the individual mode contributions.

9.2 Review o f Previous Results

The applied step forces are as shown in Figure 9.1 and the initial conditions o f
position and velocity for each o f the three masses are shown in T able 9.1.

From previous results, (7.86) to (7.88), we know the eigenvalues and
eigenvectors normalized with respect to mass, z n :

(9.1)

1 1 1
43 42 46

(9.2)

_L - 1 1
43 42 46

© 2001 by Chapman & Hall/CRC

^ z 1
r F i

^ Z 2 F 2 ^ Z 3 F 3

m 1
k 1

m 2 k 2
m 3

О () С) о C) C)\ \ \ \ \ 4 ч 4

Figure 9.1: Step forces applied to tdof system.

Mass 1 Mass 2 Mass 3

z o1 = 0 zo2 = —1 z o3 = 1

z o1 = - l z o2 = 2 z o3 = - 2

Table 9.1: Initial conditions applied to tdof system.

By inspection, the mass and stiffness matrices in principal coordinates can be
written as:

"1 0 0" "0 0 0"
m = 0 1 0 , k = f — 1 0 1 0p p I m J0 0 1 0 0 3

(9.3)

9.3 Transform ing Initial Conditions and Forces

9.3.1 Transform ing Initial Conditions

The initial condition vectors are transformed to principal coordinates by:

(9.4)

The inverse o f z n , found using a symbolic algebra program:

© 2001 by Chapman & Hall/CRC

A "
3 3 3

z —1 = 4m

1

0

-46
3

-42
2

V6
6

A A "
3 3 3

" 0 "
-1

1

0

N
1 z о = m A

2
0

-V 2
2

= v m
-42

2

S -V 6 46 46
6 3 6 2 _

' Г -43
3 3 3

" - 1"

2

3

4
=о'sf

42
0

-42
л

= v m
42

2

H -46
2

V6
-2

2
-7 ^ 6

6 3 6 6

9.3.2 Transform ing Forces

The force vector in principal coordinates is:

Fp = z T F = -

" 1 1 1 " Г -43 "

43 7 3 7 3 ~ 1"

0
-2

3
1 1

0

-2

-1 1 3^2

Vm 7 2
1

7 2
1

v m 2
-V 6

46 V6 46 _ 6

(9.5)

(9.6)

(9.7)

(9.8)

9.4 Complete Equations o f M otion in Principal Coordinates

N ow the equations in principal coordinates can be written in matrix form:

© 2001 by Chapman & Hall/CRC

1 0 0

0 1 0

0 0 1
p2

+ k_

m

О 0 0
1

'лN

о 0 N

0 0 3 _ ZP3

- / 3 '

3

W 2
2

-V 6

1
v m
- i= (9.9)

With initial conditions:

= v m

- Г -43]
0 3

-V 2
, z po = Vm

V 2
2 2

46 -i4 6
_ 2 _ 6

(9.10)

Summarizing the equations in tabular form:

Equations o f Motion,
Principal Coordinates

Displacement Initial
Conditions: Principal

Coordinates

Velocity Initial
Conditions: Principal

Coordinates

z -43
Zp1 3 4 m

z . = 0p1o . -V 3m
Zp'o = 3

.. f k ̂ 342
Zp2 + 1 m J Zp2 24m

- V 2m
Zp2° = 2

. V2m
Zp2° = 2

.. f 3k ̂ -46
Zp3 + 1 m J Zp3 e v m

V6m
zp3o = 2

. -7V 6m
Zp3o = 6

Table 9.2: Equations o f motion and initial conditions in principal coordinates.

© 2001 by Chapman & Hall/CRC

W e will now take the Laplace transform o f each equation and solve for the
transient response resulting from a combination o f the forcing function and the
initial conditions.

9.5 Solving Equations of Motion Using Laplace Transform

Note that taking the Laplace transform o f first and second order differential
equations (DE) with initial conditions is (Appendix 2):

First Order DE: L {x (t) } = sX(s) - x(0) (9.11)

Second Order DE: L {x (t) } = s2X (s) - sx(0) - x (0) (9.12)

Solving for zp1 using Laplace transforms:

zp1 = - г (9 1 3)3vm

s’ z ^ s) - sz^(0) - z p,(0) = ̂ jL (9.14)
s3vm

-V s
s W s) - s(0) -

S3vm

-V 3 V im
5-v/m 3

S V3m
p1 "33\/m 3s2

-1 V3m
s^V3m 3s2

-1 V3m
s3V3m 3s2

(9.15)

s2Zp,(s) = ^ = - ^ — (9.16)
s3vm 3

zp1(s) =

(9.17)

Back-transforming to time domain, noting that:

© 2001 by Chapman & Hall/CRC

n! 2 2!
sn+l s(2+1)

Zp1 (t) = — j= Forced Re sponse
2V3m

+ 0 Initial Displacement

V3m
t (Initial V elocity)x (Time)

Substituting m = 1, k = 1:

- t 2 V 3 t
2V3 3

Solving for Zp2 using Laplace transforms:

p2Z p2 + — Zp2 =
m p2

3V 2

2yfm

s Zp2 (s) - sZp2 (0) - Zp2 (0) + | m I Zp2 (s) =
3V 2

f -%/ 2m 'I V2m f k
s' Zp2(s) - s + 1 — I Zp2 (s) =

Zp2 (s) s2 +
m

3л/2
2 V m J pz' ' 2>/ms

3\/2 sV2m V2m 3л/2 л/2ш
s2yfm 2 2 s2\/m 2 (- s +1)

Zp2(s) =

3У2

2\/ш
s

2V J
V2m

m
m

m m

Back-transforming to the time domain:

3

Z_, =p1

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

© 2001 by Chapman & Hall/CRC

zp2(t) =
3л/2

2л/ш ю:
-(1 - cos —2t)

V5m
2 V ю,

ю2
2 Isin(—2t + 90o)

cos(—2t)

V2m 1 . , ,— -------- sin W)
2 ю2

Substituting m = k = 1, ю2 =1:

_ 3л/2 3лЯ 4 i V 2 .

zp2(t) = — -----------2 cos(t) - — cos(t) + — sin(t)

Solving for z p3 using Laplace transforms:

-V 6
z p3 + Ю3ZP3 ' I—

W m

s' zp3(s) - szp3(0) - zp3 (0) + Ю32zp3 (s) =
-л /6

6^л/ш

s' zp3(s) + —3zp3(s) - s
r v 6 m | I -7 V 6 m |

2V J V 4б j 6sл/m

zp3(s) (s2 + —) =
—л/6 + sVfim 7л/6m

zp3(s) =■
-V 6 1 V 6m s

6л/ш s (s2 + —2) 2 (s2 + —2)

в^л/m 2 V6

7V6m

V 6(s2 + —

Back-transforming to the time domain:

z p3(t) =
—V6

л̂/m
- 2 (1— cos)
Юз

л/em I ю3 I . / ^ o \
3 I sin (t + 90) —

cos (—3t)

7л /6^ 1 .
---- j=------- sin —3t

V6 —3

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

© 2001 by Chapman & Hall/CRC

m
3k

Substituting m = k = 1, = —

Zp3 (t) = cos(V3t) + — cos(V3t) — sin(V3t)
18 18 V 6 V 3 k

Тб
6

_1 1 7
----- +—cos(V3t) + 3 cos(V3t) — -j= sin(V3t)
3 3 S '

(9.34)

Note: - - S S 42S 42 = ̂ and V 6 = 4 Щ = ^
\ 6 v3 V 2 v3 V3

Now that the displacements in principal coordinates are available, they can be
plotted to see the motions o f each individual mode o f vibration.

Displacements in principal coordinates can be back-transformed to physical
coordinates:

(9.35)

z p = p2

p3

- t 2 V3t
2-J3 3

3V 2 3V 2 t 7 2 t V 2 .
----------------- c o s t -------- cost +------- sint

2 2 2 2

- cosV3t + cosV3t — ^ si^V3t
18 18 2 7 3

(9.36)

z = z n z p =

1 1 1

V3 V 2 V6

7 3 0 7 6

_ L - 1 1
л/3 V 2 7 6 .

- t 2 V3t
^л/3 3

3V 2 3V 2 V 2 V 2 .
----------------- c o s t -------- cost +------- sint

2 2 2 2

+ ̂ c o s V 3 t + ̂ 6 cos-\/3t — ^ s in V 3 t
18 18 2 V3

(9.37)

© 2001 by Chapman & Hall/CRC

Rewriting the equations to highlight the contributions to the total motion in
physical coordinates o f each mode:

z1 zn11 zn12 zn13
z = z 2 = zn21 zn22 zn23

_ z3 _ _ zn31 zn32 zn33

zp1
zp2

1p3zI
(9.38)

z = z z + z z + z z1̂ 111 pi 112 p2 “ 113З
istmode 2ndmode

Mode contributions to total z1 motion

z 2 zn21zp1 + zn22zp2 + zn23zp3
2ndmode 3rdmode

Mode contributions to total z 2 motion

3rd mod e

1st mod e

z3 = zn31zp1 + zn32zp2 + zn33zp3 Mode contributions to total z3 motion

(9.39a,b,c)

1st mod e 2ndmode 3rd mod e

Because the first mode motion for each degree o f freedom is rigid body, and
its displacement eventually goes to infinity, it masks the vibration motion o f
the second and third modes for long time period simulations. If the first mode
(rigid body) motion is subtracted from the total motion o f z1, z2, and z3, the
motion due to the vibration can be seen, as shown in Figure 9.8.

9.6 M A T L A B code tdof_m odal_tim e.m - Time Domain Displacements in
Physical/Principal Coordinates

9.6.1 Code Description

The M ATLAB code tdof_m odal_tim e.m is used to plot the displacements
versus time in principal coordinates using (9.19), (9.27) and (9.34) with
m = k = 1. Displacements in physical coordinates are obtained by
premultiplying principal displacements by the modal matrix.

© 2001 by Chapman & Hall/CRC

9.6.2 Code Results

Displacements in Principal Coordinate System

Time, sec

Figure 9.2: Displacements in principal coordinates, motion o f the three modes o f vibration.

The initial conditions in principal coordinates were 0, -0 .707 and 1.225 for
z p1, z p2 andzp3, respectively, which match the results shown in Figure 9.3.

Displacements in Principal Coordinate System

Time, sec

Figure 9.3: Displacements in principal coordinates, expanded vertical scale to check initial
conditions.

© 2001 by Chapman & Hall/CRC

Plotting the displacements in physical coordinates, where the initial
displacement conditions in physical coordinates were 0, -1 and 1 for
z1, z 2 andz3, respectively.

Displacements in Physical Coordinate System

Time, sec

Figure 9.4: Displacement in physical coordinates.

Displacement of dof 1 for Modes 1, 2 and 3

Time, sec

Figure 9.5: Displacements o f mass 1 for all three modes o f vibration.

© 2001 by Chapman & Hall/CRC

Displacement of dof 2 for Modes 1, 2 and 3

Time, sec

Figure 9.6: Displacements o f mass 2 for all three modes o f vibration.

Displacement of dof 3 for Modes 1, 2 and 3

Time, sec

Figure 9.7: Displacements o f mass 3 for all three modes o f vibration.

© 2001 by Chapman & Hall/CRC

Displacements of dof 1, 2 and 3 w ith Rigid Body Removed

Time, sec

Figure 9.8: Displacements in physical coordinates, with the rigid body motion removed to
show more clearly the oscillatory motion o f the three masses.

9.6.3 Code Listing

% tdof_modal_time.m hand solution o f modal equations

clf;

clear all;

% define time vector for plotting responses

t = linspace(0,10,50);

% solve for and plot the modal displacements

zp1 = (-t.A2/(2*sqrt(3))) - sqrt(3)*t/3;

zp2 = 3*sqrt(2)/2 - (3*sqrt(2)/2)*cos(t) - (sqrt(2)/2)*cos(t) + (sqrt(2)/2)*sin(t);

zp3 = (sqrt(6)/6)*((-1/3) + (1/3)*cos(sqrt(3)*t) + 3*cos(sqrt(3)*t) - ...
(7/sqrt(3))*sin(sqrt(3)*t));

plot(t,zp1,'k+-',t,zp2,'kx-',t,zp3,'k-')
title('Displacements in Principal Coordinate System')
xlabel('Time, sec')
ylabel('Displacements')
legend('zp1','zp2','zp3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

disp('execution paused to display figure, "enter" to continue'); pause

% define the normaliZed modal matrix, m = 1

Zn = [1/sqrt(3) 1/sqrt(2) 1/sqrt(6)
1/sqrt(3) 0 -2/sqrt(6)
1/sqrt(3) -1/sqrt(2) 1/sqrt(6)];

% define the principal displacement matrix, column vectors of principal displacements
% at each time step

Zp = [Zp1; Zp2; Zp3];

% multiply Zn times Zp to get Z

Z = Zn*Zp;

z 1 = Z(1,:);
z2 = Z(2,:);
z3 = Z(3,:);

plot(t,Z1,'k+-',t,Z2,'kx-',t,Z3,'k-')
title('Displacements in Physical Coordinate System')
xlabel('Time, sec')
ylabel('Displacements')
legend('Z1','Z2','Z3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

% define the motion o f each each dof for each mode, Zij below refers to the
% motion of dof "i" due to mode "j"

z 11 = Zn(1,1)*Zp1;

z 12 = Zn(1,2)*Zp2;

z 13 = Zn(1,3)*Zp3;

z21 = Zn(2,1)*Zp1;

z22 = Zn(2,2)*Zp2;

z23 = Zn(2,3)*Zp3;

z31 = Zn(3,1)*Zp1;

z32 = Zn(3,2)*Zp2;

z33 = Zn(3,3)*Zp3;

plot(t,Z11,'k+-',t,Z12,'kx-',t,Z13,'k-')
title('Displacement of dof 1 for Modes 1, 2 and 3')

axis([0 1 -2 2])

© 2001 by Chapman & Hall/CRC

xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,z21,'k+-',t,z22,'kx-',t,z23,'k-')
title('Displacement o f dof 2 for Modes 1, 2 and 3')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,z31,'k+-',t,z32,'kx-',t,z33,'k-')
title('Displacement o f dof 3 for Modes 1, 2 and 3')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

% define the motion o f each each dof with the rigid body motion for that
% mode subtracted

z1vib = z1 - z11;

z2vib = z2 - z21;

z3vib = z3 - z31;

plot(t,z1vib,'k+-',t,z2vib,'kx-',t,z3vib,'k-')
title('Displacements o f dof 1, 2 and 3 with Rigid Body Removed')
xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('dof 1','dof 2 ','dof 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

tplot = t;

plot(tplot,z1,'k+-',t,z2,'kx-',t,z3,'k-')
title('Displacements o f dof 1, 2 and 3')
xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('dof 1','dof 2 ','dof 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

save tdof_modal_time_z1z2z3 tplot z1 z2 z3

© 2001 by Chapman & Hall/CRC

Problems

Note: All the problems refer to the two dof system shown in Figure P2.2.

P9.1 Using the equations, initial conditions and forcing functions from P7.4,
solve for the closed form time domain response in principal coordinates using
Laplace transforms. Back transform to physical coordinates and identify the
components o f the response associated with each mode.

P9.2 (M ATLAB) M odify the tdof_m odal_tim e.m code for the two dof
system and solve for the time domain responses in both principal and physical
coordinates using the equations, initial conditions and forcing functions from
P7.4.

© 2001 by Chapman & Hall/CRC

CHAPTER 10

MODAL ANALYSIS: STATE SPACE FORM

10.1 Introduction

In Chapters 5, 6 and 7 we developed the state space (first order differential
equation) form o f the equations o f motion and used them to solve for the
eigenvalues and eigenvectors (with real or complex modes) and frequency and
transient responses. The state space methodology presented so far was
independent o f the amount o f damping in the system, hence the possibility o f
complex modes.

In Chapters 8 and 9 we developed the modal analysis method using the second
order differential equation form. If the amount o f damping in the system is
low, we can make the approximation that normal modes exist and solve for the
undamped (real) modes o f the system. Proportional damping can then be
added to the equations o f motion in principal coordinates while keeping the
equations uncoupled.

In the next three chapters we will combine the state space techniques in
Chapters 5, 6 and 7 with the modal analysis techniques in Chapters 8 and 9.
In real world situations, finite element models are used to describe dynamic
systems. The finite element program is used to solve for eigenvalues and
eigenvectors, which are then used to create a state space model in MATLAB.
However, one may have the need to solve for eigenvalues and eigenvectors in
state space form for a model that is not created using finite elements. For this
reason, the chapter will start out with a closed form solution to the tdof
eigenvalue problem in state space form. The eigenvalues and eigenvectors
which result from the state space eigenvalue problem will contain the same
information as in the second order eigenvalue problem, but will be in a
different form. The differences will be highlighted and discussed.

W e then will use the eigenvalues to form the uncoupled homogeneous
equations o f motion in the state space principal coordinate system by
inspection. Forcing function and initial conditions will then be converted to
principal coordinates using the normalized modal matrix, creating the final
state equations o f motion in the principal coordinate system. As in the second
order form, proportional damping can be added to the modal formulation and
the solution in principal coordinates back-transformed to physical coordinates
for the final result. W e will use a method o f formulating the input matrix B
such that the transformation o f forces to principal coordinates and conversion
to state space form can happen in one step instead o f two. A similar

© 2001 by Chapman & Hall/CRC

formulation will be developed for the output matrix C , where we will define
the output vector and convert back to physical coordinates in one step. The
method described here can be used for both transient and frequency response
solutions.

One might ask why we are going to all the trouble o f doing a state space
version o f modal analysis. Chapter 5 showed that given the state space
equations o f motion o f a system, we can use M ATLAB to solve for both
frequency and time domain responses without knowing anything about
eigenvalues and eigenvectors. The reason we are going to this trouble is that
most mechanical simulations are performed using finite element techniques,
where the equations o f motion are too numerous to be able to be used directly
in M ATLAB or in a servo system simulation. Since modal analysis results,
the eigenvalues and eigenvectors, are available from an AN SYS eigenvalue
solution, it would be nice if we knew how to use these results by developing
them into a M ATLAB state space model. We could then use the power o f
M ATLAB to perform any further analysis.

The techniques described above can be further extended by taking the results
set from a large finite element problem and defining a small state space model
that accurately describes the pertinent dynamics o f the system (Chapters 15 to
19). The small M ATLAB state space model can then be used in lieu o f the
frequency and transient analysis capabilities in the finite element program.
The M ATLAB state space model can also be combined with a servo system
model, allowing complete servo-mechanical system simulations.

10.2 Eigenvalue Problem

W e start with the undamped homogeneous equations o f motion in state space
form:

x = A x (10.1)

In Chapter 7 we defined a normal mode as:

x; = x mi sin(+ ф;) = x mi Im(eJ“‘‘H) (10.2)

For our three degree o f freedom (z1 to z3), six state (x 1 to x 6) system, for the

ith eigenvalue and eigenvector, the equation would appear as:

© 2001 by Chapman & Hall/CRC

z11 x 11 Xm1i

z11 X2i Xm2i
Z2i = X3i

= Xmis1n (+ ф1) =
Xm3i

Z 21 X4i Xm4i
Z3i X51 Xm5i

_Z 31 _ _ X6i _ _Xm6i _

sin (ffljt + ф1) (10.3)

Differentiating the modal displacement equation above to get the modal
velocity equation:

d t [xmi sin (+ ф1)] = xmi^jtIm]

= xmiIm [j ^ e ^ +ф,)]

= xmi Im[jrai (cos(rnit + Ф1) + jsin(rait + Ф1))] (10.4)

= xmi Im [jraic os(rnit + Ф1) - ю 1 sin(rait + Ф1)]

= xmi ra1cos(rn1t + ф1)

Substituting the derivatives into the state equation we arrive at the eigenvalue
problem:

x = A x

jffli xmi sin (+ Ф1) = A x Ш1 sin (i t + Ф1)

M xmi = A xmi
(j®iI - A)x mi = 0

(10.5)

10.3 Eigenvalue Problem - Laplace Transform

W e can also use Laplace transforms to define the eigenvalue problem. Taking
the matrix Laplace transform o f the homogeneous state equation and solving
for x(s) :

sIx(s) = Ax(s)
(si - A)x(s) = 0

(10.6a,b)

This is another form o f the eigenvalue problem, again where the determinant
o f the term (si - A) has to equal zero to have anything other than a trivial
solution.

© 2001 by Chapman & Hall/CRC

|(sI - a) = 0 (10.7)

Letting m1 = m2 = m3 = m, k1 = k 2 = k, c1 = c 2 = 0 and rewriting the matrix
equations o f motion to match the original undamped problem used in (6.8).

s -1 0 0 0 0

k
s

- k
0 0 0

m m
0 0 s -1 0 0

- k
0

2k s - k
0

m m m
0 0 0 0 s -1

0 0
- k
m

0
k
m

s

In Section 6.3 we used this form o f the equation to find the state space transfer
function matrix, where we needed the inverse o f (sI - A) . Here we need the
determinant o f (sI - A) . Using a symbolic algebra program results in the
following characteristic equation:

s2 (m 3s4 + 4m 2ks2 + 3mk2) = 0
(10.9a,b)

m3s6 + 4m 2ks4 + 3mk2s2 = 0

This is the same equation we found in (2.58) for the characteristic equation,
whose roots were found to be the poles (eigenvalues). Repeating from
Chapter 2, (2.67), (2.70) and (2.71):

s1,2 0

s3,4 =±J\/— = ± j1m

s5 6 = ± j j — = ± j 1.732 (10.10a,b,c)
m

In Chapter 5, the state space chapter, we showed that for arbitrary damping the
eigenvalues would be complex numbers with both real and imaginary
components, where the real part was indicative o f there being damping in the
system as the poles were offset to the left o f the imaginary axis (Figure 5.3).

© 2001 by Chapman & Hall/CRC

W e defined the damped eigenvalues as (Xn1 n2 = О n1 ± jffln1) (5.48). Note for

the undamped eigenvalues above, the О values are zero, with all poles lying
on the imaginary aXis.

10.4 Eigenvalue Problem - Eigenvectors

Let us now solve for the eigenvectors in state space form, going back to the
original equations o f motion for the 1th mode, similar to (10.5):

j®1 -1 0 0 0 0

k
j®i

- k
0 0 0

m m
0 0 j®i -1 0 0

- k
0

2k - k
0---- ---- j®i ----

m m m
0 0 0 0 j®i -1

0 0
- k

0
k

j®im m

= 0 (10.11)

EXpanding the equations:

j ®iXm1i - Xm2i = 0
k k
— Xm1i + j ®iXm2i------Xm3i = 0m m

j ®iXm3i - Xm4i = 0
k 2k k

------Xm1i + ~ Xm3i + j ®iXm4i------ Xm5i = 0m m m

j ®iXm5i - Xm61 = 0
k k

------Xm3i + ~ Xm51 + j ®iXm6i = 0m m

(10.12a-f)

Dropping the “m” and “ i” terms from the eigenvectors:

© 2001 by Chapman & Hall/CRC

k k
— X1 + j©iX2 ------X3 = 0
m m

j® iX3 - X4 = 0
k 2k k

------X1 +------ X3 + jffl1X4 ------ X5 = 0
m m m

j ®iX5 - X6 = 0
k k

------X3 +— X5 + jraiX6 = 0
m m

jra1X1 - x2 = 0

(10.13a-f)

Selecting the first state, X1, as a reference and solving for X2 through X6 in

terms o f X1 .

Solving for X2 from (10.13a):

jra1X1 - x 2 = 0

X2 = j ®iX1
X2
— = j®1
X1

(10.14)

Solving for x 3 from (10.13b):

k k
— X1 + j©iX2 ------X3 = 0
m m

k k
j® i(j® iX 1>------X3 = ------ X1

m m
k k 2

------x 3 = ------ x 1 +ra1x 1
m m

 ̂k -r a 2m ̂

V /

x 3 k - r n m

(10.15)

Solving for x 4 from (10.13c):

© 2001 by Chapman & Hall/CRC

j® ix 3 - X4 = 0

j®,
V "

(
x 4 = j ®i x1 = j ^ A

x1 - x4 = 0

— = j®
x,

x 3
= j®i —

x.

(10.16)

Solving for x 5 from (10.13d):

k 2k k
------x 1 +------ x 3 + jfflix 4 ------ x 5 = 0

m m m
k 2k

------x 1 + —
m m

k -Ю: m

+ j®i

V "
(

j®i x 1------x 5 = 0
m

(m2o>4 - 3mko>2 + k

v k2 У
m2ra4 - 3mko>2 + k 2

k

Solving for x 6 from (10.13e):

(10.17)

j ®ix 5 - x 6 = 0

x 6 = j®i
(m2Ю4 - 3mkra2 + k

x 1 = j® ix 5

= j®i
(m2ra4 - 3mkra2 + k 2

= j® i-

(10.18)

Note that the results for the displacement eigenvector components in (10.15)
and (10.17) match the two displacement eigenvectors calculated in (7.24) and
(7.29), respectively. Also note that all three velocity eigenvector components
are equal to j® times their respective displacement eigenvector components.

x

© 2001 by Chapman & Hall/CRC

Unlike the complex eigenvectors found in Chapter 5 for the damped model,
these undamped eigenvector displacement states are all real; they have no
compleX terms.

10.5 M odal M atrix

W e will see that when we transform to principal coordinates, create the state
equations in principal coordinates and back transform results to physical
coordinates we only require a 3x3 displacement modal matrix. This is because
we can transform positions and velocities separately. The modal matrix (7.46)
and normalized modal matrix (7.77) are repeated below, again for m = k = 1:

"1 1 1

Z m = 1 0 -2

1 -1 1

1 1 1

S
1 1

0
- 2

•v/m 7 3 7 6
1 -1 1

_7 3 7 2 7 6

0.5774 -0 .707

0.5774 0
0.5774 0.707

0.4082

-0.8165
0.4082

(10.20)

10.6 M A TL A B Code tdofss_eig.m : Solving fo r Eigenvalues and
Eigenvectors

10.6.1 Code Description

The M ATLAB code tdofss_eig.m solves for the eigenvalues and eigenvectors
in the state space form o f the system. The code will be listed in sections with
commented results and eXplanations following each section.

10.6.2 Eigenvalue Calculation

zn =

% tdofss_eig.m eigenvalue problem solution for tdof undamped model

clear all;

% define the values of masses, springs, dampers and forces

m1 = 1;
m2 = 1;

© 2001 by Chapman & Hall/CRC

m3 = 1;

c1 = 0;

0;=<Nc

k1 = 1;
k2 = 1;

% define the system matrix, a

a = [0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 2£2)c1+(c1 2£k c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 k2/m3 -c2/m3];

% solve for the eigenvalues of the system matrix

[xm,omega] = eig(a)

The resulting eigenvalues, in units o f rad/sec, are below. Note that M ATLAB
uses “ i” for imaginary numbers instead o f “j ” which is used in the text.

omega =
Columns 1 through 4

0 + 1.7321i 0 0 0
0 0 - 1.7321i 0 0
0 0 0 0
0 0 0 0 + 1.0000i
0 0 0 0
0 0 0 0

Columns 5 through 6
0 0
0 0
0 0
0 0
0 - 1.0000i 0

00

The eigenvalues, what M ATLAB calls “ generalized eigenvalues,” are the
diagonal elements o f the omega matrix. The six values that M ATLAB
calculates are: 1.7321i, —1.732i, 0, 1.0000i, -1 .0 0 0 0 i, 0, in that order.
These are the same values we found using our closed form calculations. Also,
the values are all imaginary, as we would expect with a system with no
damping and as we found above from our |(sI — A) = 0 derivation.

© 2001 by Chapman & Hall/CRC

The resulting eigenvectors, directly from M ATLAB output are:

10.6.3 Eigenvector Calculation

Xm =
Columns 1 through 4
0.2041 0.2041 0.5774 0 + 0.5000i
0 + 0.3536i 0 - 0.3536i 0 -0.5000
-0.4082 -0.4082 0.5774 0 + 0.0000i
0 - 0.7071i 0 + 0.7071i 0 0.0000
0.2041 0.2041 0.5774 0 - 0.5000i
0 + 0.3536i 0 - 0.3536i 0 0.5000
Columns 5 through 6
0 - 0.5000i -0.5774
-0.5000 0.0000
0 - 0.0000i -0.5774
0.0000 0.0000
0 + 0.5000I -0.5774
0.5000 0.0000

Note that unlike the eigenvectors calculated in the Modal Analysis section,
which had three rows, these eigenvectors each have siX rows, each row
corresponding to its respective state. Repeating the state definitions from
(5.4) to (5.9):

x 1 = z1 Position o f Mass 1

x 2 = Z1 Velocity o f Mass 1
x 3 = z2 Position o f Mass 2

x 4 = Z2 Velocity o f Mass 2
x 5 = z3 Position o f Mass 3

x 6 = z 3 Velocity o f Mass 3

Thus, the first, third and fifth rows represent the positions o f the three masses
for each mode, and the second, fourth and siXth rows represent the velocities
o f the three masses for each mode. Separating into position and velocity
components:

xm(position) =
0.2041 0.2041 0.5774 0 + 0.5000i 0 - 0.5000i -0.5774
-0.4082 -0.4082 0.5774 0 + 0.0000i 0 - 0.0000i -0.5774
0.2041 0.2041 0.5774 0 - 0.5000i 0 + 0.5000i -0.5774

xm(velocity) =
0 + 0.3536i 0 - 0.3536i 0 -0.5000 0.5000 0.0000
0 - 0.7071i 0 + 0.7071i 0 0.0000 0.0000 0.0000
0 + 0.3536i 0 - 0.35361 0 0.5000 0.5000 0.0000

© 2001 by Chapman & Hall/CRC

What is the relationship between the position and velocity terms in each o f the
eigenvectors? Once again, knowing that at each undamped frequency a
normal mode eXists and that the position and velocity can be defined as:

zi = z mej“ ‘‘
(10.21a,b)

z i = jmi z mej“‘‘

Taking the amplitudes o f the position and velocity:

|zn | = ю| z n| (10.22)

The amplitude o f the velocity eigenvector terms should be equal to the
eigenvalue times its respective position eigenvector term. The fact that the
velocity entries are complex numbers by virtue o f multiplying the “real”
position eigenvector entries by the eigenvalue does not make the eigenvectors
“ complex,” but refers to the fact that in the undamped case velocity is 90° out
o f phase with position.

Checking the first eigenvector by multiplying the position term (state 1) by the
eigenvalue to get the velocity term (state 2): (highlighted in bold type above)

0.2041 * 1.7321j = . 3535j (10.23)

Note that for the third and siXth eigenvectors, which have zero eigenvalues,
the velocity entries are zero because the position entry is multiplied by zero.

10.6.4 M A TL A B Eigenvectors - Real and Imaginary Values

It is interesting to see how M ATLAB handles real and imaginary values in its
eigenvectors.

Xm =
0.2041 0.2041 0.5774 0 + 0.5000i 0 - 0.5000i -0.5774
0 + 0.3536i 0 - 0.3536i 0 -0.5000 -0.5000 0.0000

-0.4082 -0.4082 0.5774 0 + 0.0000i 0 - 0.0000i -0.5774
0 - 0.7071i 0 + 0.7071i 0 0.0000 0.0000 0.0000
0.2041 0.2041 0.5774 0 - 0.5000i 0 + 0.5000i -0.5774
0 + 0.3536i 0 - 0.3536i 0 0.5000 0.5000 0.0000

W e know that the position and velocity entries are related by “j ” times the
eigenvalue, but why are some position eigenvector entries real and some
imaginary? For example, the position eigenvector entries for all except the

© 2001 by Chapman & Hall/CRC

mode at 1 rad/sec (the fourth and fifth columns), are real, while the fourth and
fifth column position entries are imaginary. From the original normal modes
analysis, we know that only the ratios o f eigenvector entries are important,
and that the eigenvectors can be normalized in several fashions. Therefore,
each eigenvector can be multiplied by an arbitrary constant. The fourth and
fifth eigenvectors can be multiplied by “ i ” to make their position entries real
for consistency with the hand-calculated results.

10.6.5 Sorting Eigenvalues / Eigenvectors

Typically some housekeeping is done on the eigenvalues and eigenvectors
before continuing, sorting the eigenvalues from small to large (done by default
in ANSYS), rearranging the eigenvectors accordingly and checking for
eigenvectors with imaginary position entries and converting them to real by
multiplying by “ i .” Also, the signs o f the real portion o f state 1 are set
positive to ensure that sets o f eigenvectors are complex conjugates o f each
other for consistency.

Continuing the listing o f tdofss_eig.m, showing the sorting code:

% take the diagonal elements of the generalized eigenvalue matrix omega

omegad = diag(omega);

% in real problems, we would next convert to hz from radians/sec

omegahz = omegad/(2*pi);

% now reorder the eigenvalues and eigenvectors from low to high frequency,
% keeping track of how the eigenvalues are ordered to reorder the
% eigenvectors to match, using indexhz

[omegaorder,indexhz] = sort(abs(imag(omegad)))

for cnt = 1:length(omegad)

omegao(cnt,1) = omegad(indexhz(cnt)); % reorder eigenvalues

xmo(:,cnt) = xm(:,indexhz(cnt)); % reorder eigenvector columns

end

omegao

xmo

% check for any eigenvectors with imaginary position elements by checking
% the first three position entries for each eigenvector (first, third and
% and fifth rows) and convert to real

© 2001 by Chapman & Hall/CRC

for cnt = 1:length(omegad)

if (real(xmo(1,cnt)) & real(xmo(3,cnt)) & real(xmo(5,cnt))) == 0

xmo(:,cnt) = i*(xmo(:,cnt)); % convert whole column if imaginary

else

end

end

xmo

% check for any eigenvectors with negative position elements for the first
% displacement, if so change to positive to that eigenvectors for the same mode
% are complex conjugates

for cnt = 1:length(omegad)

if real(xmo(1,cnt)) < 0

xmo(:,cnt) = -1*(xmo(:,cnt)); % convert whole column if negative

else

end

end

xmo

Printing the results o f the M ATLAB reordering:

© 2001 by Chapman & Hall/CRC

omegaorder =
0
0

1.0000 These are the re-ordered eigenvalues, from low to high.
1.0000
1.7321
1.7321

indeXhz =
3
6
4 This is the ordering of the original eigenvalues.
5
1
2

omegao =
0
0
0 + 1.00001
0 - 1.00001
0 + 1.73211
0 - 1.73211

Here are the reordered eigenvectors.

Xmo =
Columns 1 through 4

0.5774 -0.5774 0 + 0.5000i 0 - 0.5000i
0 0.0000 -0.5000 -0.5000
0.5774 -0.5774 0 + 0.0000i 0 - 0.0000i
0 0.0000 0.0000 0.0000
0.5774 -0.5774 0 - 0.5000i 0 + 0.5000i
0 0.0000 0.5000 0.5000

Columns 5 through 6
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

Here the converting o f imaginary position values to real is performed, note
that the third and fourth eigenvectors are converted.

© 2001 by Chapman & Hall/CRC

xmo =
Columns 1 through 4

0.5774 -0.5774 -0.5000 0.5000
0 0.0000 0 - 0.5000i 0 - 0.5000i
0.5774 -0.5774 0.0000 0.0000
0 0.0000 0 - 0.0000i 0 - 0.0000i
0.5774 -0.5774 0.5000 -0.5000
0 0.0000 0 + 0.5000i 0 + 0.5000i

Columns 5 through 6
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

In this step the first row elements are checked to see that they are positive; if
not, the column is multiplied by -1 .

xmo =

Columns 1 through 4

0.5774 0.5774 0.5000 0.5000
0 -0.0000 0 + 0.5000i 0 - 0.5000i
0.5774 0.5774 0.0000 0.0000
0 -0.0000 0 + 0.0000i 0 - 0.0000i
0.5774 0.5774 -0.5000 -0.5000
0 -0.0000 0 - 0.5000i 0 + 0.5000i

Columns 5 through 6

0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

10.6.6 Normalizing Eigenvectors

Now that the eigenvalues and eigenvectors are available, we can normalize the
eigenvectors with respect to mass. Then we will check the resulting
diagonalization by multiplying the original mass and stiffness matrices by the
normalized eigenvectors to see if the mass matrix becomes the identity matrix
and the stiffness matrix becomes a diagonal matrix with squares o f the
eigenvalues on the diagonal (spectral matrix).

© 2001 by Chapman & Hall/CRC

Since we need to deal only with the displacement entries o f the 6x6 modal
matrix in order to transform the 3x3 mass and stiffness matrices, the xm
matrix below is a 3x3 matrix with only displacement entries.

Reviewing, the mass matrix is diagonalized by pre- and postmultiplying by the
normalized eigenvector matrix:

x > x n = I , (10.24)

yielding the identity matrix. The stiffness matrix is also diagonalized by pre-
and postmultiplying by the normalized eigenvector matrix:

x > n = kp, (10.25)

yielding the stiffness matrix in principal coordinates, the spectral matrix, a
diagonal matrix with squares o f the eigenvalues on the diagonal.

Repeating from Section 7.4.2, the normalized modal matrix xn is made up o f
eigenvectors as defined below:

[xmimxmi]

Imi
qi

(10.26)x =

Where qi is defined as:

qi = (10.27)

For a diagonal mass matrix, simplifying q because all the mjk terms are zero:

qi = (10.28)

Continuing with code from tdofss_eig.m:

% define the mass and stiffness matrices for normalization of eigenvectors
% and for checking values in principal coordinates

m = [m1 0 0__

© 2001 by Chapman & Hall/CRC

k = [k1 -k1 0
-k1 k1+k2 -k2
0 -k2 k2];

% define the position eigenvectors by taking the first, third and fifth
% rows of the original six rows in xmo

xmop1 = [xmo(1,:); xmo(3,:); xmo(5,:)]

% define the three eigenvectors for the three degrees of freedom by taking
% the second, fourth and sixth columns

xmop = [xmop1(:,2) xmop1(:,4) xmop1(:,6)]

% normalize with respect to mass

for mode = 1:3

xn(:,mode) = xmop(:,mode)/sqrt(xmop(:,mode)'*m*xmop(:,mode));

end

xn

% calculate the normalized mass and stiffness matrices for checking

mm = xn'*m*xn

km = xn'*k*xn

% check that the sqrt of diagonal elements of km are eigenvalues

p = (diag(km)).A0.5;

[p abs(imag(omegao(1:2:5,:)))]

% rename the three eigenvalues for convenience in later calculations

w1 = abs(imag(omegao(1)));

w2 = abs(imag(omegao(3)));

w3 = abs(imag(omegao(5)));

Back to M ATLAB output, with comments added in bold type:

Repeating xmo, the full, rearranged eigenvector matrix:

xmo =

Columns 1 through 4

0 m2 0
0 0 m3];

© 2001 by Chapman & Hall/CRC

0.5774 0.5774 0.5000 0.5000
0 -0.0000 0 + 0.5000i 0 - 0.5000i
0.5774 0.5774 0.0000 0.0000
0 -0.0000 0 + 0.0000i 0 - 0.0000i
0.5774 0.5774 -0.5000 -0.5000
0 -0.0000 0 - 0.5000i 0 + 0.5000i

Columns 5 through 6

0.2041
0 + 0.35361
-0.4082
0 - 0.7071i
0.2041
0 + 0.3536i

0.2041
0 - 0.3536i
-0.4082
0 + 0.7071i
0.2041
0 - 0.3536i

Taking only the position rows:
xmop1 =

0.5774 0.5774
0.5774 0.5774
0.5774 0.5774

0.5000
0.0000
-0.5000

0.5000 0.2041
0.0000 -0.4082
-0.5000 0.2041

0.2041
-0.4082
0.2041

Taking every other column to form the 3x3 position eigenvector matrix:
xmop =

0.5774 0.5000 0.2041
0.5774 0.0000 -0.4082
0.5774 -0.5000 0.2041

Normalizing with respect to mass:
xn =

0.5774 0.7071 0.4082
0.5774 0.0000 -0.8165
0.5774 -0.7071 0.4082

Checking the mass matrix in principal coordinates, should be the identity matrix:
mm =

1.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

Checking the stiffness matrix in principal coordinates, should be squares o f eigenvalues:
km =

0.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000
0.0000 -0.0000 3.0000

Comparing the square root o f the diagonal elements o f the stiffness matrix in principal
coordinates with the eigenvalues:
ans

© 2001 by Chapman & Hall/CRC

0.0000 0
1.0000 1.0000
1.7321 1.7321

10.6.7 W riting Hom ogeneous Equations o f M otion

Now that we know the eigenvalues, we can write the homogeneous equations
o f motion in the principal coordinate system by inspection. We can also use
the normalized eigenvectors to transform the forcing function and initial
conditions to principal coordinates, yielding the complete solution for either
transient or frequency domain problems in principal coordinates. W e can then
back-transform to the physical coordinate system to get the desired results in
physical coordinates. Through the modal formulation we can define the
contributions o f various modes to the total response.

For a problem o f this size, there is no need to use the modal formulation.
When solving real problems, however, whether they be large M ATLAB based
problems or ANSYS finite element models, using the modal formulation has
advantages. As mentioned earlier, ANSYS gives the eigenvalues and
eigenvectors normalized with respect to mass as normal output o f an
eigenvalue run. Therefore, all one has to do to solve in M ATLAB is to take
that ANSYS output information and build the equations o f motion in state
space form and solve, taking advantage o f the flexibility, plotting capability
and speed o f M ATLAB to perform other studies. The modal approach is what
gives us the capability to create complete state space models o f the system
mechanical dynamics in a form that can be used by the servo engineers in their
state space servo/mechanical models.

10.6.7.1 Equations o f M otion - Physical Coordinates

W e will start with the equations o f motion in physical coordinates with forces
as shown in (10.29) and assume zero initial conditions. The reason we are
assuming zero initial conditions is that converting initial conditions requires
the inverse o f the complete modal matrix, which is not convenient when using
ANSYS modal results to build a reduced (smaller size) model. Fortunately, a
large majority o f real life problems can be solved with zero initial conditions.

mzj + kz1 - kz2 = Fj

mz2 - kz, + 2kz2 - kz3 = F2
2 1 2 3 2 (10.29)

mz3 - kz2 + kz3 = F3

IC 's : z1,z 2,z 3,z 1,z 2,z 3 = 0

© 2001 by Chapman & Hall/CRC

Knowing the eigenvalues and eigenvectors normalized with respect to mass,
we can write the damped homogeneous equations o f motion in principal
coordinates by inspection. The forces in principal coordinates,
Fp1, Fp2 and Fp3 are obtained by premultiplying the force vector in physical
coordinates by the transpose o f the normalized eigenvector:

Fp = xT F (10.30)

xn was defined in (10.20) as a 3x3 matrix o f normalized displacement
eigenvectors. The multiplication then results in a 3x1 vector o f forces in
principal coordinates. The resulting elements are entered in the appropriate
positions in the equations in principal coordinates below.

10.6.7.2 Equations o f M otion - Principal Coordinates

The three equations o f motion in principal coordinates become:

xp1 = Fp1

xp2 + 2Z2®2x p2 + ®2 x p2 = Fp2 (10.3 l a,b ,c)

xp3 + 2^3®3x p3 + ®3 xp3 = Fp3

where ю1, Ю2, and Ю3 are the three eigenvalues, with units o f radians/sec.

The “zeta” terms, Z1, Z2 and Z3, represent the percentages o f critical damping
for each o f the three modes, all o f which can be different and are typically
obtained from experimental results. For example, 2% o f critical damping
would give a Z value o f 0.02.

Now we can convert the second order differential equations above to state
space form by solving for the highest derivative:

xp1 = F p 1

xp2 = Fp2 —®2x p2 — 2Z 2®2x p2 (10.32a,b ,c)

xp3 = F p 3 — ®3x p3 — 2Z 3®3x p3

© 2001 by Chapman & Hall/CRC

Defining states:

x 3 = x p2

displacement o f mode 1 (not o f mass 1)

derivative o f displacement o f mode 1

displacement o f mode 2

x 4 = x p2 derivative o f displacement o f mode 2

x 5 = x p3 displacement o f mode 3

x 6 = x p3 derivative o f displacement o f mode 3

Rewriting the equations o f motion using the states:

x 2 = Fp1

x 4 Fp2 ®2x 3 2Z 2®2x 4
(10.33a-f)

x 6 Fp3 ®3x 3 2C 3®3x 3

Rewriting in matrix form:

X = A x + Bu (10.34)

x 1 "0 1 0

x 2 0 0 0

x 3 0 0 0

x 4 0 0 —fi

x 5 0 0 0

x 6 _ 0 0 0

0
0

1

—2^2®2
0
0

0
0

0
0

0

— fi)2

0
0

0
0

1

—2^3®3

x 1 " 0

x 2 Fp1
x 3 +

0

x 4 Fp2
x 5 0

x 6 _ _ Fp3

u (10.35)

Now that the complete state space equations o f motion are known, the six
states in principal coordinates can be solved for their frequency and/or time
domain responses.

Let us assume that we are interested in the three displacements and the three
velocities. The output matrix equation then becomes, where y p is the

displacements in principal coordinates:

© 2001 by Chapman & Hall/CRC

1 0 0 0 0 0" X1 X1
0 1 0 0 0 0 X2 X2
0 0 1 0 0 0 X3 X3
0 0 0 1 0 0 X4 X4
0 0 0 0 1 0 X5 X5
0 0 0 0 0 1 _ _ x 6 _ _X6 _

With the six desired outputs in principal coordinates, we can back-transform
them into physical coordinates by the following transform:

Z1 Xn11 0 Xn12 0 Xn13 0 " " yp1
Z1 0 Xn11 0 Xn12 0 Xn13 yp2
Z2 Xn21 0 Xn22 0 Xn23 0 yp3
Z2

IIp
иN

0 Xn21 0 Xn22 0 Xn23 y p4

z3 Xn31 0 Xn32 0 Xn33 0 yp5

_ z3 _ 0 Xn31 0 Xn32 0 Xn33 _ _ yp6

Xn1lYp1 + Xn12yp3 + Хп1зУ p5

Xn1iyp2 + Xn12yp4 + Хп1зУ p6
= Xn21yp1 + Xn22yp3 + Хп2зУ p5

Xn21yp2 + Xn22yp4 + Хп2зУ p6
Xn31yp1 + Xn32yp3 + ХпЗзУ p5

_ Xn31yp2 + Xn32yp4 + Xn33y p6 J
(10.37)

Instead o f doing the two multiplications shown in (10.36) and (10.37), C
times x to get y p and then premultiplying y p by xn to get the displacements

and velocities in physical coordinates, we could have done a single
multiplication if C were defined as shown in (10.38), using eigenvector
entries directly in the definition:

© 2001 by Chapman & Hall/CRC

C =

n11 0 x n12 0 x n13 0
0 xn11 0 x n12 0 x n13
n21 0 x n22 0 x n23 0
0 x n21 0 x n22 0 xn23
n31 0 x n32 0 x n33 0
0 x n31 0 x n32 0 x n33

(10.38)

Rewriting the output equation using C defined in (10.38) and expanding to
see individual terms:

Z1
Z1

Z2 = Cx =
Z 2

Z3

_ Z 3 _

'n11
0

Sn21
0

n31
0

n21
0

n12
0

n̂22
0

n̂32
0

n22
0

n13
0

n̂23
0

n33
0

n23
0

" x n11x 1+ x n12x 3+ x n13x 5 " x n11yp1 + x n12yp3 + xn13yp5

xn11x 2+ x n12x 4 + x n13x 6 x 1 py + xn12yp4 + x n13yp6

x n21x 1+ x n22x 3+ x n23x 5 p1 + x n22yp3 + x n23yp5

xn21x 2+ xn22x 4+ x n23x 6 x n21yp2 + x n22yp4 + xn23yp6

x n31x 1+ x n32x 3+ x n33x 5 x n31yp1 + x n32yp3 + xn33yp5

_ x n31x 2+ x n32x 4 + x n33x 6 _ _ x n31yp2 + x n32yp4 + x n33yp6 _

(10.39)

10.6.8 Individual M ode Contributions, M odal State Space Form

In Section 8.7 we discussed in detail how individual modes contribute to the
overall frequency response. Here we will show how to calculate individual
modal contributions in modal state space form.

W e start with repeating (10.35), the modal state space equations o f motion.

x 1 0 1 0 0 0

x 2 0 0 0 0 0

x 3 0 0 0 1 0

x 4 0 0 —m2 —2^2®2 0

x 5 0 0 0 0 0

x 6 _ 0 0 0 0 —m-

0
0

0
0

1

- 2 ^ 3 .

x 1 " 0 "

x 2 Fp1
x 3

x 4

0
+

Fp2
x 5 0

_ x 6 _ _Fp3 _

u (10.40)

2

© 2001 by Chapman & Hall/CRC

Notice how the three sets o f uncoupled first order equations in (10.40) appear
as blocks o f 2x2 coefficients along the diagonal. Note also that if the
eigenvalues, ю; , and damping ratios, Z i, are known, the entire system matrix
A can be filled out by inspection, as we will do in future chapters where
ANSYS results are used to automatically build a model.

The first 2x2 block along the diagonal

0 1
0 0

(10.41)

represents the response o f the first mode, the second 2x2 block

0 1

-m2 -2 Z 2m2
(10.42)

represents the response o f the second mode and the third 2x2 block

0 1

-m 2 -2Z3®3
(10.43)

represents the response o f the third mode.

Note that the three modes are not coupled and the equations o f motion in state
space modal form may be rewritten separately as:

x 1 "0 1" x 1 +
" 0 '

_ x 2 _ 0 0 _ x 2 _ Fp1 _
u mode 1 (10.44)

1•K1■

1
0

1

x 3

_x 4 _ -m2 -2 Z 2 m2 _ x 4 _

x 5 " " 0 1 " " x 5 "

_x 6 _ _-m2 -2Z3m3 _ _ x 6 _

p2

p3.

u mode 2

u mode 3

(10.45)

(10.46)

For the output equation, defining a version o f (10.42) which will output only
displacements, not velocities:

z = y = Cx (10.47)

© 2001 by Chapman & Hall/CRC

Expanding:

z1 xn11 0 x n12 0 x n13 0

Z2 = x n21 0 xn22 0 x n23 0

Z3 _ _ xn31 0 x n32 0 x n33 0
(10.48)

Similarly, the output equations can be written separately as (10.49) to (10.51),
where the z 31 m3 subscript notation stands for the displacement o f mass 3 due

to force at mass 1 contributed by mode 3. Here we are dealing with only the
z11 transfer function. The modal contributions to any o f the four unique
transfer functions can be solved in a similar fashion.

Z11,m1 x n11 0"

Z21,m1 = x n21 0

Z31,m1 _ _ x n31 0

Z11,m2 x n12 0"

Z21,m2 = x n22 0

Z31,m2 _ _ x n32 0

Z11,m3 x n13 0"

Z21,m3 = xn23 0

Z31,m3 _ x n33 0

mode 1

mode 2

mode 3

(10.49)

(10.50)

(10.51)

x

3

5
x 6

W e are familiar with using (10.35) and (10.39) to solve for frequency
responses for systems. With the use o f (10.44) to (10.51) we can plot and see
how each individual mode contributes to the overall response. W e will
examine this further in the code seen in the next chapter.

10.7 Real M odes - Argand Diagrams, Initial Condition Responses o f
Individual M odes

In Chapter 5, we introduced the concept o f using Argand diagrams to visualize
complex modes and to show how the complex eigenvector components
combine to create “real” displacements and velocities. We will use the

© 2001 by Chapman & Hall/CRC

M ATLAB code tdof_prop_dam ped.m to define the eigenvectors for Argand
plotting and solve for the transient responses.

The methodology followed is:

1) Solve the original undamped system equation for
eigenvalues and eigenvectors.

2) Plot the eigenvectors normaliZed to unity using a
deformed mode shape plot.

3) Normalize the displacement eigenvector entries with
respect to mass to convert to principal coordinates for
the proportionally damped case.

4) Form the system matrix in principal coordinates using
proportional damping.

5) Solve for the eigenvalues and eigenvectors o f the
system matrix in principal coordinates.

6) Plot the real and imaginary displacements o f each o f the
normal modes separately, since the three modes are
uncoupled with proportional damping.

7) Back transform to physical coordinates using the
normaliZed displacement eigenvectors.

8) Plot the real and imaginary displacements o f each o f the
degrees o f freedom separately.

For the undamped case we will use c1 = c2 = 0 and the result will be “normal”
modes with “real” eigenvectors.

For proportional damping, we will start with the undamped eigenvectors and
add a percentage o f critical damping to each mode. This will result in “real”
eigenvectors since proportional damping satisfies the Rayleigh damping
criterion c = am + bk as discussed in Chapter 7.

10.7.1 Undamped M odel, Eigenvectors, Real M odes

The code starts with executing tdofss_eig.m, which calculates the eigenvalues
and eigenvectors for the undamped problem, c1 = c2 = 0. The eigenvectors
are then normaliZed with respect to unity for plotting in Argand form.

% tdof_prop_damped.m proportionally damped tdof model

% solve for the eigenvalues of the undamped system model

© 2001 by Chapman & Hall/CRC

tdofss_eig;

subplot(1,1,1);

% now normaliZe the undamped eigenvectors with respect to the position of
% mass 1, which will be set to 1.0 - for plotting of undamped Argand diagram

for cnt = 1:length(omegad)

xmon1(:,cnt) = xmo(:,cnt)/xmo(1,cnt);

end

xmon1

The eigenvalues and eigenvectors are:

omegaro =
0 (Note the two poles
0 at the origin)
0 + 1.0000i
0 - 1.0000i
0 + 1.7321i
0 - 1.7321i

xmron1 =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 0 0 + 1.0000i 0 - 1.0000i 0 + 1.7321i 0 - 1.7321i
1.0000 1.0000 0.0000 0.0000 -2.0000 -2.0000
0 0 0 + 0.0000i 0 - 0.0000i 0 - 3.4641i 0 + 3.4641i
1.0000 1.0000 -1.0000 -1.0000 1.0000 1.0000
0 0 0 - 1.0000i 0 + 1.0000i 0 + 1.7321i 0 - 1.7321i

Note that the pairs o f eigenvalues for each mode are com plex conjugates
o f each other and that the pairs o f eigenvectors fo r each mode are also
com plex conjugates o f each other.

Once again, some eigenvector elements have complex parts. W hy do we call
them “ real” when they contain imaginary parts?

“Real” eigenvectors refers to the fact that all o f the position entries in the
eigenvector are not complex numbers [i.e., not o f the form (a+jb)], but are real

© 2001 by Chapman & Hall/CRC

numbers. The fact that the velocity entries are complex numbers by virtue o f
multiplying the “real” position eigenvector entries by the eigenvalue does not
make the eigenvectors “ complex” but refers to the fact that in the undamped
case velocity is 90° out o f phase with position.

—» * - * -

m 1 —w m2 —w m 3

(X j О (' () () С С) С)0
\ \

Rigid-Body Mode, 0 rad/sec

—*

m1 - J f t - m2 - W r - m3

OCX) 0 С) о OC) CX)
Second Mode, Middle Mass Stationary, 1 rad/sec

1 -2 1

m„

ГГТТ5

1
m2 !

0 () () ()

Г
-'W - m,

a m\ \
Third Mode, 1.732 rad/sec

\ \

1 1 1

1

Figure 10.1: Mode shape plots, “ real” modes.

For “real” eigenvectors, there are two ways o f visualizing the mode shapes and
resulting motions. One method we have used several times before, the mode
shape plot, shows the deformed shapes o f the system for each eigenvector.

Since for real eigenvectors all the degrees o f freedom reach their maxima and
minima at the same times, any snapshot in time will show the relative
displacements, which is why we can plot a deformed mode plot as shown in
Figure 10.1.

© 2001 by Chapman & Hall/CRC

The section of code below prompts for the amount of proportional damping,
Zeta, and then sets up the equations of motion in principal coordinates. After
solving the eigenvalue problem, the eigenvalues and eigenvectors are sorted
and the magnitude and phase angle of the each eigenvector is defined.

10.7.2 Principal Coordinate Eigenvalue Problem

% input proportional damping for equations in principal coordinate system

zeta = input('input value for zeta, default = 0.02, 2% of critical ... ');

if (isempty(Zeta))
zeta = 0.02;

else
end

% setup proportionally damped state-space system matrix in principal coordinates

a_ss = [0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% solve for the eigenvalues of the system matrix with proportional damping

[xmp,omegap] = eig(a_ss);

% take the diagonal elements of the generalized eigenvalue matrix omegap

omegapd = diag(omegap);

% now reorder the eigenvalues and eigenvectors from low to high frequency,
% keeping track of how the eigenvalues are ordered in reorder the
% eigenvectors to match, using indexhz

[omegaporder,indexhz] = sort(abs(imag(omegapd)));

for cnt = 1:length(omegapd)

omegapo(cnt,1) = omegapd(indexhz(cnt)); % reorder eigenvalues

xmpo(:,cnt) = xmp(:,indexhz(cnt)); % reorder eigenvector columns

end

% now calculate the magnitude and phase angle of each of the eigenvector
% entries

for row = 1:length(omegapd)

© 2001 by Chapman & Hall/CRC

for col = 1:length(omegapd)

xmpomag(row,col) = abs(xmpo(row,col));

xmpoang(row,col) = (180/pi)* angle (xmpo (row, col));

end

end

omegapo

xmpo

xmpomag

xmpoang

10.7.3 D am ping C a lcu la tio n , E igenvalue Com plex P lane P lot

The section below calculates the percentage of critical damping due to the
defined amount of input damping, zeta. For example, if 2% of critical
damping is defined as input, then we should see that the eigenvalues of the
equations of motion in principal coordinates plot as shown in Figure 5 .2 .

% calculate the percentage of critical damping for each mode

zeta1 = 0

theta2 = atan(real(omegapo(3))/imag(omegapo(3)));
zeta2 = abs(sin(theta2))

theta3 = atan(real(omegapo(5))/imag(omegapo(5)));
zeta3 = abs(sin(theta3))

plot(omegap,'kx')
grid on
axis([-3 1 -2 2])
axis ('square')
title('Proportionally Damped Eigenvalues')
xlabel('real')
ylabel('imaginary')
text(real(omegapo(3))-1,imag(omegapo(3))+0.1,['zeta = ',num2str(zeta2)])
text(real(omegapo(5))-1,imag(omegapo(5))+0.1,['zeta = ',num2str(zeta3)])

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

1.5

1

0.5

naagi О

ami
-0.5

-1

-1.5

-2
-3 - 2 - 1 0 1

real

Figure 10.2: Undamped model eigenvalue plot in complex plane.

For the undamped model, we should see that the eigenvalues, poles, should lie
on the im aginary axis - and they do.

2

1.5

1

0.5

naagi 0

ami
-0.5

-1

-1.5

-2
-3 -2 -1 0 1

real

Figure 10.3: Proportionally damped eigenvalue plot, zeta = 2% was input.

The eigenvalues for zeta = 0.02 plot slightly to the left of the im aginary axis.

Proportionally Damped Eigenvalues
2

Proportionally Damped Eigenvalues

zeta = 0.02 _ _

zeta = 0.02

11-L
zeta = 0ii

if

1_L111

zeta = 0
iii

i ---------iii11111

iiiii

iiif" 'i1T1
iii

i
i1-----------h----1

i---- 1--------
i

i-4-----------i1-----------к----11

i---- 1--------
ii

i

+

© 2001 by Chapman & Hall/CRC

10.7.4 Principal Displacement Calculations

W e showed in (5 .54), repeated below, how to calculate the displacements
when the system is started with a set of in itial conditions which match the
eigenvector:

x (t) = e°n1‘ (e J“n1‘xnl + e-J“n2‘x ^)

= e°n1‘ (e J“n1tx„1) + e°n1‘ (e -J“n2‘x ^)

Since our eigenvalues lie along the im aginary axis, their о values are zero
and e0t = 1, the equations can be simplified to:

x (t) = eJ“n1‘ x„1 + e-J“n2‘ x „2 (10.53)

A time vector from 0 to 15 seconds is defined, and real and im aginary parts
are picked from the eigenvalues. Equation (10.52) is used to calculate the
motions.

% calculate the motions of the three masses for all three modes - damped case

t = 0:.12:15;

sigma11 = real(omegapo(1)); % sigma for first eigenvalue for mode 1
omegap11 = imag(omegapo(1)); % omegap for first eigenvalue for mode 1

sigma12 = real(omegapo(2)); % sigma for second eigenvalue for mode 1
omegap12 = imag(omegapo(2)); % omegap for second eigenvalue for mode 1

sigma21 = real(omegapo(3)); % sigma for first eigenvalue for mode 2
omegap21 = imag(omegapo(3)); % omegap for first eigenvalue for mode 2

sigma22 = real(omegapo(4)); % sigma for second eigenvalue for mode 2
omegap22 = imag(omegapo(4)); % omegap for second eigenvalue for mode 2
sigma31 = real(omegapo(5)); % sigma for first eigenvalue for mode 3
omegap31 = imag(omegapo(5)); % omegap for first eigenvalue for mode 3

sigma32 = real(omegapo(6)); % sigma for second eigenvalue for mode 3
omegap32 = imag(omegapo(6)); % omegap for second eigenvalue for mode 3

% displacements of mode 1 in principal coordinates

zp111 = exp(sigma11*t).*(exp(i*omegap11*t)*xmpo(1,1)); % mass 1
zp112 = exp(sigma12*t).*(exp(i*omegap12*t)*xmpo(1,2)); % mass 1

% displacements of mode 2 in principal coordinates

zp221 = exp(sigma21*t).*(exp(i*omegap21*t)*xmpo(3,3)); % mass 2

(10.52)

© 2001 by Chapman & Hall/CRC

zp222 = exp(sigma22*t).*(exp(i*omegap22*t)*xmpo(3,4)); % mass 2

% displacements of mode 3 in principal coordinates

zp331 = exp(sigma31*t).*(exp(i*omegap31*t)*xmpo(5,5)); % mass 3
zp332 = exp(sigma32*t).*(exp(i*omegap32*t)*xmpo(5,6)); % mass 3

10.7.5 T ransfo rm ation to P h ys ica l C oordinates

The section of code below sets up the appropriate size matrices to enable
back-transforming from principal to physical coordinates.

% calculate the motions of each mass for mode 2
% define matrix of displacements vs time for each eigenvector

z221 = [zeros(1,length(t))
zp221
zeros(1 ,length(t))];

z222 = [zeros(1,length(t))
zp222
zeros(1 ,length(t))];

% back-transform from principal to physical coordinates

zmode21 = xn*z221;

zmode22 = xn*z222;

z1mode21 = zmode21(1,:);

z2mode21 = zmode21(2,:);

z3mode21 = zmode21(3,:);

z1mode22 = zmode22(1,:);

z2mode22 = zmode22(2,:);

z3mode22 = zmode22(3,:);

% calculate the motions of each mass for mode 3
% define matrix of displacements vs time for each eigenvector

z331 = [zeros(1,length(t))
zeros(1,length(t))
zp331];

z332 = [zeros(1,length(t))
zeros(1,length(t))
zp332];

© 2001 by Chapman & Hall/CRC

zmode31 =xn*z331;

zmode32 =xn*z332;

z1mode31 = zmode31(1,:);

z2mode31 = zmode31(2,:);

z3mode31 = zmode31(3,:);

z1mode32 = zmode32(1,:);

z2mode32 = zmode32(2,:);

z3mode32 = zmode32(3,:);

10.7.6 P lo tting R esults

The plotting commands for mode 2 are listed below ; those for mode 3 have
been elim inated for brevity.

% plot principal displacements of mode 2

plot(t,real(zp221),'k-',t,real(zp222),'k+-',t,imag(zp221),'k.-',t,imag(zp222),'ko-')
title('principal real and imag disp for mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot physical disp of masses for mode 2

plot(t,real(z1mode21),'k-',t,real(z1mode22),'k+-',t,imag(z1mode21), ...
'k.-',t,imag(z1mode22),'ko-')

title('physical real and imag disp for mass 1, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z2mode21),'k-',t,real(z2mode22),'k+-',t,imag(z2mode21),.
'k.-',t,imag(z2mode22),'ko-')

title('physical real and imag disp for mass 2, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z3mode21),'k-',t,real(z3mode22),'k+-',t,imag(z3mode21), ...

© 2001 by Chapman & Hall/CRC

'k.-',t,imag(z3mode22),'ko-')
title('physical real and imag disp for mass 3, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z 1mode21 +z 1mode22),'k-',t,real(z2mode21 +z2mode22), ...
'k+-',t,real(z3mode21+z3mode22),'k.-')

title('physical disp z1, z2, z3 mode 2')
legend('mass 1','mass 2','mass 3')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot subplots for notes

% plot principal disp of mode 2

subplot(3,2,1)
plot(t,real(zp221),'k-',t,real(zp222),'k+-',t,imag(zp221),'k.-',t,imag(zp222),'ko-')
title('principal disp for mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

% plot physical disp of masses for mode 2

subplot(3,2,3)
plot(t,real(z1mode21),'k-',t,real(z1mode22),'k+-',t,imag(z1mode21), .

'k.-',t,imag(z1mode22),'ko-')
title('physical real and imag disp for mass 1, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,4)
plot(t,real(z2mode21),'k-',t,real(z2mode22),'k+-',t,imag(z2mode21), .

'k.-',t,imag(z2mode22),'ko-')
title('physical real and imag disp for mass 2, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,5)
plot(t,real(z3mode21),'k-',t,real(z3mode22),'k+-',t,imag(z3mode21), .

'k.-',t,imag(z3mode22),'ko-')
title('physical real and imag disp for mass 3, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

subplot(3,2,6)

© 2001 by Chapman & Hall/CRC

plot(t,real(z1mode21+z1mode22),'k+-',t,real(z2mode21+z2mode22), .
'k.-',t,real(z3mode21+z3mode22),'ko-')

title('physical disp for z1, z2, z3 mode 2')
legend('mass 1','mass 2','mass 3')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

subplot(1,1,1)

10.7.7 U ndam ped / P ro p o rtion a lly D am ped A rgan d D iagram , M ode 2

As in the Argand diagram s explained in Chapter 5, the two complex conjugate
eigenvectors for each mode are plotted side by side. The direction of the
rotation of the eigenvector is indicated by the arrow associated with the
e jmt or e-jmt terms. The addition of the two counter-rotating complex
eigenvectors for an arbitrary time “t” is shown in the m iddle and below the
two individual eigenvector plots for each dof. The addition plot shows how
the two im aginary components cancel each other out, leaving only the real
portion of the motion.

© 2001 by Chapman & Hall/CRC

Figure 10.4: Argand diagram for undamped or proportionally damped system, mode 2.

© 2001 by Chapman & Hall/CRC

10.7.8 Undamped / Proportionally Damped Argand Diagram, Mode 3

Figure 10.5: Argand diagram for undamped or proportionally damped system, mode 3.

© 2001 by Chapman & Hall/CRC

Figures 10.6 to 10.10 show the in itial condition responses for mode 2 for
proportional damping of 2%. Mode 2 is the mode where mass 2 is stationary
and masses 1 and 3 are moving out of phase with each other with equal
amplitude.

Figure 10.6 shows the real and im aginary components of the two complex
eigenvector responses that make up mode 2. Note that the two im aginary
components are out of phase and cancel each other while the two real
components are overlaid and w ill add. Figures 10.7 to 10.9 show the real and
im aginary components for each of the three masses. The motions of mass 2
are zero, while the motions of masses 1 and 3 are out of phase with each other,
consistent with the shape of mode 2 in Figure 10.1. Figure 10.10 shows the
physical displacements of the three masses versus time. The Argand diagram
vectors for mode 2, Figure 10.4, can be matched with each figure for each
degree of freedom.

10.7.9 Proportionally Damped Initial Condition Response, Mode 2

principal real and imag disp for mode 2

Figure 10.6: Principal real and imaginary displacements, mode 2.

© 2001 by Chapman & Hall/CRC

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
0 5 10 15

Figure 10.7: Physical real and imaginary displacements for mass 1, mode 2.

physical real and imag disp for mass 2, mode 2
0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
0 5 10 15

Figure 10.8: Physical real and imaginary displacements for mass 2, mode 2.

physica l real and imag disp for m ass 1, mode 2

© 2001 by Chapman & Hall/CRC

physica l real and imag disp for m ass 3, mode 2

Figure 10.9: Physical real and imaginary displacements for mass 3, mode 2.

physical disp z1 , z2 , z3 mode 2

Figure 10.10: Physical displacements for masses 1, 2 and 3, mode 2.

10.7.10 P ro p o rtion a lly D am ped In itia l Condition Response, M ode 3

Figures 10.11 to 10.15 show the in itial condition responses for mode 3 for 2%
proportional damping, where mass 2 moves tw ice as far and out of phase with
masses 1 and 3.

Figure 10.11 shows the real and im aginary components of the two complex
eigenvector responses that make up mode 2. As in the previous section, note

© 2001 by Chapman & Hall/CRC

that the two im aginary components are out of phase and cancel each other
while the two real components are overlaid and w ill add. Figures 10.12 to
10.14 display the real and im aginary components for each of the three masses.
Figure 10.15 shows the physical displacements of the three masses versus
time. The Argand diagram vectors for mode 2, Figure 10.5, can be matched
with each figure for each degree of freedom.

principal disp for mode 3

Figure 10.11: Principal real and imaginary displacements, mode 3.

physical real and imag disp for mass 1, mode 3

Figure 10.12: Physical real and imaginary displacements for mass 1, mode 3.

© 2001 by Chapman & Hall/CRC

physica l real and imag disp for mass 2, mode 3

Figure 10.13: Physical real and imaginary displacements for mass 2, mode 3.

physical real and imag disp for mass 3, mode 3

Figure 10.14: Physical real and imaginary displacements for mass 3, mode 3.

© 2001 by Chapman & Hall/CRC

physica l d isp for z 1, z2, z3 mode 3

Figure 10.15: Physical real and imaginary displacements for masses 1,2 and 3, mode 3.

Problem s

Note: A ll the problems refer to the two dof system shown in Figure P 2 .2 .

P 10 .1 W rite the homogeneous equations of motion in state space form for the
undamped two dof system with m 1 = m 2 = m = 1, k 1 = k 2 = k = 1. Set up the
eigenvalue problem and expand the determinant to reveal the characteristic
equation. Compare with the denominator terms from P2.2.

P10.2 Solve for the eigenvalues and eigenvectors in state space form.
Compare with the results from P7.1. W hat is the relationship between the
displacement and velocity eigenvector terms?

P10.3 (M ATLAB) M odify the tdofss_eig.m code for the undamped two dof
system with m1 = m 2 = m = 1, k 1 = k 2 = k = 1. Print out the eigenvalue and
eigenvector results and compare with the results from P10.2. What changes
are required to the M ATLAB eigenvectors to make them match the P10.2
results? After normalizing with respect to mass, confirm that the equations of
motion consist of an identity mass matrix and a stiffness matrix with squares
of the eigenvalues along the diagonal.

P10.4 W rite the equations of motion in principal coordinates in state space
form, knowing only the eigenvalues and eigenvectors, sim ilar to (10.35). Use
the displacements of mass 1 and mass 2 as outputs. Show how the output
matrix C can be formulated to only require a single multiplication to give

© 2001 by Chapman & Hall/CRC

outputs (Section 10.6.7.2). Identify the 2x2 submatrices which define the state
equations of each mode. Are the individual modes uncoupled?

P10.5 (M ATLAB) M odify the tdof_prop_dam ped.m code for the two dof
system with m1 = m 2 = m = 1 , k 1 = k 2 = k = 1. Plot the eigenvalue locations
in the s-plane for zero damping and for proportional damping of 2% (0.02).
L ist the eigenvalues and eigenvectors for the undamped and proportional
damping cases and note the differences. Plot the in itial condition responses
when started in in itial conditions which match each of the two eigenvectors.

P10.6 Plot Argand diagrams for the undamped system.

© 2001 by Chapman & Hall/CRC

CHAPTER 11

FREQUENCY RESPONSE: MODAL STATE SPACE
FORM

11.1 Introduction

In Chapter 10 we constructed the modal form of the state equations for the
overall frequency response as w ell as for the individual mode contributions.
This short chapter of M ATLAB code w ill carry out both overall and
individual mode frequency response calculations. The code w ill also allow us
to plot the different forms of frequency responses covered in Chapter 3.

11.2 M o dal S ta te Space Setup , tdofss_m odal_xfer_m odes.m L isting

After executing the “tdofss_eig.m ” code to provide eigenvalues and
eigenvectors, we enter a section of code that y ie lds sim ilar results to those
resulting from an A N SY S simulation. In the A N SY S case, we would have
access to the eigenvalues and mass normalized eigenvectors, sim ilar to the
“xn” and “w1, w2 and w 3” from tdofss_eig.m .

Since we can add proportional damping to our modal model, the code prompts
for a value for zeta.

Knowing zeta and the eigenvalues, the system matrix can be setup as shown in
(10.35), as 2x2 blocks along the diagonal. The three 2x2 submatrices of the
system matrix are defined for individual mode contribution calculations.

The next step is to define a 6x3 input matrix, 6 states and three possible inputs
representing forces applied to only mass 1, only mass 2 or only mass 3. We
start out by defining three separate 3x1 force vectors, one for each mass, F1,
F2 and F3. Each of these vectors is transformed from physical to principal
coordinates by prem ultiplying by xn transpose. The three 3x1 vectors are
padded with zeros resulting in three 6x1 vectors, which are then inserted as
columns in the 6x3 input matrix “b.”

The output matrix, “c,” is defined in one step as shown in (10.38) by
incorporating the appropriate elements of “xn.” However, only displacement
states are output, giving a 3x6 matrix.

The direct transmission matrix is set to zero.

© 2001 by Chapman & Hall/CRC

% tdofss_modal_xfer_modes.m state-space modal form transfer function analysis
% of tdof model, proportional damping, modal contribution plotting

clf;

clear a ll;

% run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

% note, this is the point where we would start if we had eigenvalue results from ANSYS,
% using the eigenvalues and eigenvectors to define state space equations in
% principal coordinates

% define damping ratio to be used for proportional damping in the state space equation
% in principal coordinates

zeta = input('input zeta, 0.02 = 2% of critical damping (default) ... ');

i f (isempty(zeta))
zeta = 0.02;
else
end

% setup 6x6 state-space system matrix for all three modes in principal
% coordinates, a_ss

[0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% setup three 2x2 state-space matrices, one for each individual mode

a1_ss = a_ss(1:2,1:2);

a2_ss = a_ss(3:4,3:4);

a3_ss = a_ss(5:6,5:6);

% transform the 3x1 force vectors in physical coordinates to principal coordinates and
% then insert the principal forces in the appropriate rows in the state-space
% 6x1 input matrix, padding with zeros as appropriate

% define three force vectors in physical coordinates, where each is for
% a force applied to a single mass

F1 = [1 0 0]';

F2 = [0 1 0]';

F3 = [0 0 1]';

© 2001 by Chapman & Hall/CRC

% calculate the three force vectors in principal coordinates by pre-multiplying
% by the transpose of the normalized modal matrix

Fp1 = xn’*F1;

Fp2 = xn’*F2;

Fp3 = xn’*F3;

% expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros

b1 = [0 Fp1(1) 0 Fp1(2) 0 Fp1(3)]’; % principal force applied at mass 1

b2 = [0 Fp2(1) 0 Fp2(2) 0 Fp2(3)]’; % principal force applied at mass 2

b3 = [0 Fp3(1) 0 Fp3(2) 0 Fp3(3)]’; % principal force applied at mass 3

b = [b1 b2 b3];

% the output matrix c is setup in one step, to allow the "bode" command to
% output the desired physical coordinates directly without having to go
% through any intermediate steps.

% setup the output matrix for displacement transfer functions, each row
% represents the position outputs of mass 1, mass 2 and mass 3
% velocities not included, so c is only 3x6 instead of 6x6

c = [xn(1,1) 0 xn(1,2) 0 xn(1,3) 0
xn(2,1) 0 xn(2,2) 0 xn(2,3) 0
xn(3,1) 0 xn(3,2) 0 xn(3,3) 0];

% define direct transmission matrix d

d = zeros(3,3);

11.3 F requ ency Response C alcu lation

W e w ill begin this section by defining the vector of frequencies to be used for
the frequency response plot. Then we w ill define a state space model, using
the matrices defined in the section above.

Because we are using a 6x3 input matrix and a 3x6 output matrix, we have
access to nine frequency response plots, the displacement for all three degrees
of freedom for three different force application points. To plot the four
distinct frequency responses, the appropriate indices are used to define
magnitude and phase.

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.

© 2001 by Chapman & Hall/CRC

w = logspace(-1,1,200);

% define four state-space systems using the "ss" command
% sys is for all modes for a ll 3 forcing functions
% sys1 is for mode 1 for a ll 3 forcing functions
% sys2 is for mode 2 for a ll 3 forcing functions
% sys3 is for mode 3 for a ll 3 forcing functions

sys = ss(a_ss,b,c,d);

sys1 = ss(a1_ss,b(1:2,:),c(:,1:2),d);

sys2 = ss(a2_ss,b(3:4,:),c(:,3:4),d);

sys3 = ss(a3_ss,b(5:6,:),c(:,5:6),d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

[mag,phs] = bode(sys,w);

[mag1,phs1] = bode(sys1,w);

[mag2,phs2] = bode(sys2,w);

[mag3,phs3] = bode(sys3,w);

% pick out the specific magnitudes and phases for four distinct responses

z11mag = m ag(1,1,:);

z21mag = m ag(2,1,:);

z31mag = m ag(3,1,:);

z22mag = m ag(2,2,:);

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

z11phs = phs(1,1,:);

z21phs = phs(2,1,:);

z31phs = phs(3,1,:);

z22phs = phs(2,2,:);

% p ick out the three individual mode contributions to z11

© 2001 by Chapman & Hall/CRC

z111mag = m ag1(1,1,:);

z112mag = m ag2(1,1,:);

z113mag = m ag3(1,1,:);

z111magdb = 20*log10(z111mag);

z112magdb = 20*log10(z112mag);

z113magdb = 20*log10(z113mag);

z111phs = phs1(1,1,:);

z112phs = phs2(1,1,:);

z113phs = phs3(1,1,:);

11.4 F requ ency Response P lo tting

% truncate peaks for plotting of expanded linear scale

z11plotmag = z11mag;

z111plotmag = z111mag;

z112plotmag = z112mag;

z113plotmag = z113mag;

for cnt = 1:length(z11mag)

if z11plotmag(cnt) >= 3.0

z11plotmag(cnt) = 3.0;

end

if z111plotmag(cnt) >= 3.0

z111plotmag(cnt) = 3.0;

end

if z112plotmag(cnt) >= 3.0

z112plotmag(cnt) = 3.0;

end

if z113plotmag(cnt) >= 3.0

© 2001 by Chapman & Hall/CRC

end

end

% plot the four transfer functions separately, in a 2x2 subplot form

subplot(2,2,1)
semilogx(w,z11magdb(1,:),'k-')
title('state space, z11, z33 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,2)
semilogx(w,z21magdb(1,:),'k-')
title('state space, z21, z12, z23, z32 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,3)
semilogx(w,z31magdb(1,:),'k-')
title('state space, z31, z13 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,4)
semilogx(w,z22magdb(1,:),'k-')
title('state space, z22 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),'k-')
title('state space, z11, z33 phase')
ylabel('phase, deg')
grid

subplot(2,2,2)
semilogx(w,z21phs(1,:),'k-')
title('state space, z21, z12, z23, z32 phase')
ylabel('phase, deg')
grid

subplot(2,2,3)
semilogx(w,z31phs(1,:),'k-')
title('state space, z31, z13 phase')

z113plotmag(cnt) = 3.0;

© 2001 by Chapman & Hall/CRC

xlabel(’frequency, rad/sec’)
ylabel(’phase, deg’)
grid

subplot(2,2,4)
semilogx(w,z22phs(1 ,:),'k-')
title(’state space, z22 phase’)
xlabel(’frequency, rad/sec’)
ylabel(’phase, deg’)
grid

disp(’execution paused to display figure, "enter" to continue’); pause

% plot the overall plus individual mode contributions separately

subplot(2,2,1)
semilogx(w,z11magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

subplot(2,2,2)
semilogx(w,z111magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 1’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

subplot(2,2,3)
semilogx(w,z112magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 2’)
xlabel(’frequency, rad/sec’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

subplot(2,2,4)
semilogx(w,z113magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 3’)
xlabel(’frequency, rad/sec’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

disp(’execution paused to display figure, "enter" to continue’); pause

subplot(2,2,1)
semilogx(w,z11phs(1,:),’k-’)
title(’State-Space Modal, z11 phase’)
ylabel(’phase, deg’)
grid

subplot(2,2,2)
sem ilogx(w,z111phs(1,:),’k-’)

© 2001 by Chapman & Hall/CRC

title('State-Space Modal, z11 phase of mode 1')
ylabel('phase, deg')
grid

subplot(2,2,3)
semilogx(w,z112phs(1,:),'k-')
title('State-Space Modal, z11 phase of mode 2')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

subplot(2,2,4)
semilogx(w,z 113phs(1,:),'k-')
title('State-Space Modal, z11 phase of mode 3')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(1,1,1);

% plot the overlaid transfer function and individual mode contributions

loglog(w,z11mag(1,:),'k+:',w,z111mag(1,:),'k-',w,z112mag(1,:),'k-',w, ...
z113mag(1,:),'k-')

title('State-Space Modal Mode Contributions, z11 db magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude, db')
axis([.1 10 .001 100])
grid

disp('execution paused to display figure, "enter" to continue'); pause

sem ilogx(w,z11mag(1,:),'k+:',w,z111mag(1,:),'k-',w,z112mag(1,:), ...
'k-',w,z113mag(1,:),'k-')

title('State-Space Modal Mode Contributions, z11 linear magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude')
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z11plotmag(1,:),'k+:',w,z111plotmag(1,:),'k-', ...
w,z 112plotmag(1,:),'k-',w,z 113plotmag(1,:),'k-')

title('State-Space Modal Mode Contributions, z11 linear magnitude')
xlabel('frequency, rad/sec')
ylabel('magnitude')
axis([.1 10 0 3]);
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z11phs(1,:),'k+:',w,z111phs(1,:),'k-',w,z112phs(1,:),'k-', .
w,z113phs(1,:),'k-')

© 2001 by Chapman & Hall/CRC

title(’State-Space Modal Mode Contributions, z11 phase’)
xlabel(’frequency, rad/sec’)
ylabel(’phase, deg’)
grid

11.5 Code R esu lts - F requency Response P lo ts, 2% of C r it ic a l D am ping

Figure 11.1: Magnitude output for four distinct frequency responses, proportional
damping zeta = 2%.

© 2001 by Chapman & Hall/CRC

state space, z11, z33 phase state space, z21, z12, z23, z32 phase

state space, z31, z13 phase state space, z22 phase

Figure 11.2: Phase output for four distinct frequency responses, proportional damping
zeta = 2%.

State-Space Modal, z11 db magnitude State-Space Modal, z11 db magnitude of mode 1

State-Space Modal, z11 db magnitude of mode 2 State-Space Modal, z11 db magnitude of mode 3

Figure 11.3: Magnitude output for z11 frequency response and individual mode
contributions.

© 2001 by Chapman & Hall/CRC

State-Space Modal, z11 phase State-Space Modal, z11 phase of mode 1

" T~

10 10 10

State-Space Modal, z11 phase of mode 3

-179.5

-180

-180.5

-181

Figure 11.4: Phase output for z11 frequency response and individual mode contributions.

frequency, rad/sec

Figure 11.5: Overlaid magnitude output for z11 frequency response and individual mode
contributions.

11.6 Form s of F requ ency Response P lo tting

This section of code is used to plot various forms of frequency responses for
the z11 transfer function, as shown in Chapter 3, Section 3.6. A ll the plots

© 2001 by Chapman & Hall/CRC

except the Nyquist plot use user-defined damping and 200 frequency points.
The Nyquist section recalculates the system m atrix to use a damping zeta of
0 .02 and 800 frequency points in order to plot in the designated format.

% plot only z11 transfer function in different formats

orient tall

% log mag, log freq

subplot(2,1,1)
loglog(w,z11mag(1,:),'k-')
title('z 11, z33 log mag versus log freq')
ylabel('magnitude')
grid

subplot(2,1,2)
semilogx(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus log freq')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,1,1)
semilogx(w,z11magdb(1,:),'k-')
title('z 11, z33 db mag versus log freq')
ylabel('magnitude, db')
grid

subplot(2,1,2)
semilogx(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus log freq')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,1,1)
plot(w,z11magdb(1,:),'k-')
title('z 11, z33 db mag versus linear freq')
ylabel('magnitude, db')
grid

subplot(2,1,2)
plot(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus linear freq')
xlabel('frequency, rad/sec')

% db mag, log freq

% db mag, lin freq

© 2001 by Chapman & Hall/CRC

ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

% lin mag, lin freq

subplot(2,1,1)
plot(w,z11mag(1,:),'k-')
title('z 11, z33 linear mag versus linear freq')
ylabel('magnitude')
grid

subplot(2,1,2)
plot(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus linear freq')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause

% linear real versus log freq, linear imag versus log freq

z11real = z11mag.*cos(z11phs*pi/180); % convert from mag/angle to real

z11realdb = 20*log10(z11real);

z11imag = z11mag.*sin(z11phs*pi/180); % convert from mag/angle to imag

z11imagdb = 20*log10(z11imag);

subplot(2,1,1)
sem ilogx(w,z11real(1,:),'k-')
title('z 11, z33 linear real mag versus log freq')
ylabel('real magnitude')
grid

subplot(2,1,2)
semilogx(w,z11imag(1,:),'k-')
title('z 11, z33 linear im aginary versus log freq')
xlabel('frequency, rad/sec')
ylabel('imaginary magnitude');
grid

disp('execution paused to display figure, "enter" to continue'); pause

% linear real versus linear freq, linear imag versus linear freq

subplot(2,1,1)
plot(w,z11real(1,:),'k-')
title('z 11, z33 linear real mag versus linear freq')
ylabel('real magnitude')
grid

© 2001 by Chapman & Hall/CRC

subplot(2,1,2)
plot(w,z11imag(1,:),'k-')
title('z 11, z33 linear im aginary versus linear freq')
xlabel('frequency, rad/sec')
ylabel('imaginary magnitude');
grid

disp('execution paused to display figure, "enter" to continue'); pause

real versus imaginary (Nyquist), redo frequency response with 800 points for
finer frequency resolution for Nyquist plot and use zeta = 0.02 to fit on plot

zeta = 0.02;

a_ss = [0
0
0
0
0

0

0 0
0 0
0 1

-w2A2 -2*zeta*w2
0 0
0 0

0
0
0
0
0

-w3A2

0
0
0
0
1

-2*zeta*w3];

w = logspace(-1,1,800);

sys = ss(a_ss,b,c,d);

[mag,phs] = bode(sys,w);

z11mag = m ag(1,1,:);

z11magdb = 20*log10(z11mag);

z11phs = phs(1,1,:);

z11real = z11mag.*cos(z11phs*pi/180); % convert from mag/angle to real

z11imag = z11mag.*sin(z11phs*pi/180); % convert from mag/angle to imag

subplot(1,1,1)

plot(z 11 real(1,:),z 11 imag(1,:), 'k+:')
title('z 11, z33 real versus imaginary, "Nyquist"')
ylabel('imag')
axis('square')
axis([-15 15 -15 15])
grid

© 2001 by Chapman & Hall/CRC

Problem

Note: This problem refers to the two dof system shown in Figure P 2 .2 .

P11.1 (M ATLAB) M odify the tdofss_m odal_xfer_m odes.m code for the
two dof system with m1 = m 2 = m = 1 , k 1 = k 2 = k = 1 and plot the frequency
responses with and without the individual mode contributions overlaid.

© 2001 by Chapman & Hall/CRC

CHAPTER 12

TIME DOMAIN: MODAL STATE SPACE FORM

12.1 Introduction

In Chapter 7 we derived the equations of motion in modal form for the system
in Figure 12.1. In this chapter we w ill convert the modal form to state space
modal form and obtain the closed form transient solution for the forcing
function and in itial conditions described in Figure 12.1. M ATLAB w ill then
be used to solve the same equations using the ode45 function.

12.2 E quations of M otion - M o dal Form

The applied step forces are as shown in Figure 12.1. The in itial conditions of
position and velocity for each of the three masses are displayed in Table 12.1,
the same as Figure 9.1 and T able 9 .1 .

^ z i - F i Z2 -*2 <0z - F3
k i m 2 k2 m 3

c) с :> с :> с ; () С)\ \ \ \ \ \ \ \

Figure 12.1: Step forces applied to tdof system.

M ass 1 M ass 2 M ass 3

z 01 = 0 z = —102 z03 = 1

z 01 = -1 z = 202 z 03 = —2

Table 12.1: Initial conditions applied to tdof system.

Repeating results from Chapter 9, where we developed the modal form of the
equations of motion:

© 2001 by Chapman & Hall/CRC

The force vector in principal coordinates from (9.8) is:

Fp = zT F = p2
1

v m

" 1 1 1 " Г -43 1

V3 V3 43 " 1"
л

3

1 л -1 = 1 342
42

0
42

0
v m 2

1 - 2 1
—2 -46

_V6 V 6 V 6 _ 6

(12.1)

W ith in itial conditions from (9.6), (9.7):

= v m

- Г -43 1
0 3

-42
, z po= v m

42
2 2

V6 -746
_ 2 _ 6

(12.2)

Using the results of the eigenvalue solution, we can write the homogeneous
equations of motion by inspection. The forcing function can be added to the
right-hand side, knowing Fp :

X = A x + Bu (12.3)

x 1 "0 1 0

x 2 0 0 0

x 3 0 0 0

x 4 0 0 -Ю

x 5 0 0 0

x 6 _ 0 0 0

0

0

1

—2 ^2®2
0

0

0

0

0

0

0

-fi>2

0

0

0

0

1

- 2 ^ 3

x 1 " 0 "

x 2 Fp1
x 3

x 4

0
+

Fp2

x 5 0

_ x 6 _ _ Fp3 _

u (12.4)

with in itial conditions of:

© 2001 by Chapman & Hall/CRC

X po =

" 0

S
- 3

p̂o1
- / 2

■Jpo1
2

po2 = Vm Apo2
2

'p03
A'p03

2

-7 V 6
_ 6

(12.5)

12.3 Solv ing E quations of M otion U sing L ap lace T ransform s

Now that we know the complete state space equations of motion in principal
coordinates and the in itial conditions on the six states in principal coordinates,
the equations can be solved in the time domain. The first order equations of
motion above are sim ilar in nature to the second order equations of motion in
Table 7 .2 . The three sets of first order equations in modal state space form are
uncoupled as were the three second order equations of motion in modal form
(7.89).

Expanding the three sets of equations:

x 2 = Fpiu

x 4 ®2X3 2Z 2 ®2X4 + Fp2u
(12.6a-f)

x 6 = ®3x 5 2C 3®3x 6 + Fp3u

Taking the Laplace transform of the first two equations above:

sx i(s) - x i(0) = x 2(s)

sx2(s) - x 2(0) = Fpiu(s) = —
(12.7a,b)

Solving for x 1 (s) :

© 2001 by Chapman & Hall/CRC

sx1(s) - X1 (0) = X2(s)

s [sx1 (s) - X1 (0)] - X2 (0) = Fp1u (s) = —
s

F
s2x 1 (s) = — + sx1 (0) + x 2 (0)

s
(12.8a-f)

-л/3 0 V 3m

The three terms on the right-hand side of (12.8f) represent the displacement of
the first mode of vibration due to the force, in itial displacement and in itial
velocity, respectively. This equation for x 1(s) is the same as for Np1(s) in

(9.17). Using the same back-transformation y ie ld s the identical result for the
principal displacement as for Np1(t) in (9.20).

The two sets of equations for modes 2 and 3 can be solved for x 3 (t) and x 5 (t)
in a sim ilar fashion, again giving results which are the same as for
Np2 (t) and Np3 (t) in (9 .27) and (9.34). The three velocity states in principal

coordinates can be defined by differentiating the displacement states.

Summarizing the solution in principal state space coordinates:

(12.9)

© 2001 by Chapman & Hall/CRC

x(t) =

S 3

- _L ̂
л/3 3

3л/2 3>f2 t л/2 t л/2 .
----------------- c o s t -------- cost+------- s in t

2 2 2 2

3л/2 . л/2 . л/2
-------s in t +------- s in t +------- co s t

2 2 2

___ t 2____> / 3 t

- 2^ . + ̂ 6 cosл/3t + ̂ 6 cosл/з t — ^ sin л/31
л/б л/б

18 18

л/бл/3 .

л/б

2 л/3^

18
sin л/31-

л/бл/3 . г , 7 л/3
sin V 3 t -

л/3
cos V 3 t

(12.10a-f)

Let us assume that w e are interested in three displacements and three
velocities; the output m atrix is shown below in (1 2 .1 1) , repeated from (10 .38):

C =

ln11 0 Xn12 0 Xn13 0

0 x n11 0 Xn12 0 Xn13

‘n21 0 Xn22 0 Xn23 0

0 Xn21 0 Xn22 0 Xn23

-n31 0 Xn32 0 Xn33 0

0 Xn31 0 Xn32 0 Xn33

(12.11)

© 2001 by Chapman & Hall/CRC

z1

z1

Z2 = C x =
z 2

z 3

_z 3 _

x n11 0 x n12 0 x n13 0 " x

0 x n11 0 x n12 0 x n13 x

x n21 0 x n22 0 x n23 0 x

0 x n21 0 x n22 0 x n23 x

x n31 0 x n32 0 x n33 0 x

0 x n31 0 x n32 0 x n33 _ _x

V 3

0

V 3

0

7 3

0

0
1

0
1

0
s

1
0

1
0

1

л/3 s x

0 0 0
- 2

0
x

x

1
0 0 0

- 2 x

7 3 7 6 x

0
- 1

7 2
0

1

7 6
0 _ x

1
0

- 1
0

1

7 3 7 2 7 6 _ (12.12)

W ith (12 .12) w e have the com plete time domain results in physical
coordinates.

12.4 M A T LA B Code tdofss_m odal_tim e_ode45.m -
T im e Domain M o dal C ontributions

12.4.1 M o dal S tate Space M odel Setup , Code L isting

This first section executes tdofss_eig.m to calculate the eigenvalues and
eigenvectors. It then sets up the 6x 6 system m atrix and defines three
individual mode 2x2 submatrices.

The fo rce vecto r in physical coordinates is defined, applying step forces as
defined in Figure 1 2 . 1 . It is transform ed to a forcing function in principal
coordinates and expanded to 6x1 size by padding w ith zeros. To specify the
input m atrices fo r each o f the three modes, three 2x 1 submatrices are defined.

The output m atrix is setup as a 3x6 m atrix, to calculate displacements. Once
again, three submatrices o f 3x 2 size are defined fo r the individual modes.

© 2001 by Chapman & Hall/CRC

% tdofss_modal_time_ode45.m state space modal form transfer function analysis
% of tdof model, proportional damping, modal contribution plotting

clf;

% run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

% note, this is the point where we would start if we had eigenvalue results from ANSYS,
% using the eigenvalues and eigenvectors to define state space equations in
% principal coordinates

% define damping ratio to be used for proportional damping in the state space equation
% in principal coordinates

zeta = input('input zeta, 0.02 = 2% of critical damping (default) ... ');

i f (isempty(zeta))
zeta = 0.02;
else
end

% setup 6x6 state-space system matrix for all three modes in principal
% coordinates, a_ss

a_ss = [0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% setup three 2x2 state-space matrices, one for each individual mode

a1_ss = a_ss(1:2,1:2);

a2_ss = a_ss(3:4,3:4);

a3_ss = a_ss(5:6,5:6);

% transform the 3x1 force vector in physical coordinates to principal coordinates and
% then insert the principal forces in the appropriate rows in the state-space
% 6x1 input matrix, padding with zeros as appropriate

F = [1 0 -2]';

Fp = xn'*F;

% expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros

b = [0 Fp(1) 0 Fp(2) 0 Fp(3)]'; % principal forces applied to all masses

© 2001 by Chapman & Hall/CRC

b1 = b(1:2);

b2 = b(3:4);

b3 = b(5:6);

% the output matrix c is setup in one step, to allow the "bode" command to
% output the desired physical coordinates directly without having to go
% through any intermediate steps.

% setup the output matrix for displacement transfer functions, each row
% represents the position outputs of mass 1, mass 2 and mass 3
% velocities not included, so c is only 3x6 instead of 6x6

c = [xn(1,1) 0 xn(1,2) 0 xn(1,3) 0
xn(2,1) 0 xn(2,2) 0 xn(2,3) 0
xn(3,1) 0 xn(3,2) 0 xn(3,3) 0];

c1 = c(:,1:2);

c2 = c(:,3:4);

c3 = c(:,5:6);

% define direct transmission matrix d

d = 0;

12.4.2 Prob lem Setup , In itia l C onditions, Code L isting

N ow that the m odel is in place, w e can solve fo r transient response. The input
scalar, “u” is set to “ 1,” fo r a unity step function. The total time is set and a
vecto r o f time span from 0 to 10 seconds (default) is setup fo r input to the ode
routine.

The tw o 3x1 initial condition displacement and ve locity vectors w ith initial
displacem ents and velocities from Figure 12 .1 are set up, then transform ed to
principal coordinates. Next the 6x 1 initial condition vecto r is constructed
from appropriate elem ents o f the tw o 3x1 vectors. W e are now ready to solve
the problem.

% transient response using the ode45 command

u = 1;

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

i f (isempty(ttotal))
ttotal = 10;
else

© 2001 by Chapman & Hall/CRC

end

tspan = [0 ttotal];

% calculate the in itial conditions in principal coordinates using the inverse of the
% normalized modal matrix

x0phys = [0 -1 1]'; % in itial condition position, physical coord

x0dphys = [-1 2 -2]'; % in itial condition velocity, physical coord

x0 = inv(xn)*x0phys;

x0d = inv(xn)*x0dphys;

% create the in itial condition state vector

x0ss = [x0(1) x0d(1) x0(2) x0d(2) x0(3) x0d(3)];

x0ss1 = x0ss(1:2);

x0ss2 = x0ss(3:4);

x0ss3 = x0ss(5:6);

12.4.3 So lv ing E quations U sing ode45, Code L isting

The ode45 “options” param eter, which can be used to control m any options
fo r use in the solution, is set to a null vector.

Next, the total response in principal coordinates and the three individual mode
responses in principal coordinates are calculated using M A T L A B ’s ode45
differential equation solver. Four functions, listed separately in the fo llow ing
sections, are used by ode45 to define the equations to solve.

The responses in principal coordinates are then transform ed to physical
coordinates.

% use the ode45 non-stiff differential equation solver

options = []; % no options specified

% total response, principal coord, states are modes of vibration

[t,x] = ode45('tdofssmodalfun',tspan,x0ss,options);

% mode 1 response, principal coord

[t1,x1] = ode45('tdofssmodal1fun',tspan,x0ss1,options);

% mode 2 response, principal coord

© 2001 by Chapman & Hall/CRC

[t2,x2] = ode45('tdofssmodal2fun',tspan,x0ss2,options);

% mode 3 response, principal coord

[t3,x3] = ode45('tdofssmodal3fun',tspan,x0ss3,options);

% total response, physical coord

z_ode = c*x';

% mode 1 response, physical coord

z_ode1 = c1*x1';

% mode 2 response, physical coord

z_ode2 = c2*x2';

% mode 3 response, physical coord

z_ode3 = c3*x3';

12.4.4 P lo tting , Code L isting

% plot displacements in principal coordinates

subplot(1,1,1);

plot(t1,x1(:,1),'k+-',t2,x2(:,1),'kx-',t3,x3(:,1),'k-')
title('Displacements in Principal Coordinate System, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('zp1','zp2','zp3',2)
grid

disp('execution paused to display figure, "enter" to continue'); pause

axis([0 1 -2 2]);

disp('execution paused to display figure, "enter" to continue'); pause

% plot displacements in physical coordinates

plot(t,z_ode(1,:),'k+-',t,z_ode(2,:),'kx-',t,z_ode(3,:),'k-')
title('Displacements in Physical Coordinate System, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('z1','z2','z3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

% load previous closed-form solutions for tplot, z1, z2, z3 i f zeta = 0

© 2001 by Chapman & Hall/CRC

i f zeta == 0

load tdof_modal_time_z1z2z3;

plot(t,z_ode(1,:),'k-',t,z_ode(2,:),'k-',t,z_ode(3,:),'k-',tplot,z1,'k.-',tplot,z2, ...
'k.-',tplot,z3,'k.-')

title('Displacements in Physical Coordinate System from ode45 (ode) ...
and Closed Form (cf)')

xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('ode dof 1','ode dof 2','ode dof 3','cf dof 1','cf dof 2','cf dof 3')
grid

disp('execution paused to display figure, "enter" to continue'); pause

else
end

% plot the modal contributions to the motion of masses 1, 2 and 3

plot(t1,z_ode1(1,:),'k+-',t2,z_ode2(1,:),'kx-',t3,z_ode3(1,:),'k-')
title('Displacement of dof 1 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3')
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t1,z_ode1(2,:),'k+-',t2,z_ode2(2,:),'kx-',t3,z_ode3(2,:),'k-')
title('Displacement of dof 2 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3')
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t1,z_ode1(3,:),'k+-',t2,z_ode2(3,:),'kx-',t3,z_ode3(3,:),'k-')
title('Displacement of dof 3 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3')

_______ grid__

12.4.5 Functions C a lled : tdofssm odalfun.m , tdo fssm odallfun .m ,
tdofssm odal2fun .m , tdofssm odal3fun.m

The od e45 differential equation so lver calls function files depending on which
solution is being perform ed. The four functions fo r calculating the system
response as w ell as individual responses o f modes 1, 2 and 3 are listed below.
Each simply defines the state equation w here the derivative o f the state vector

© 2001 by Chapman & Hall/CRC

is equal to the system m atrix times the states plus the input m atrix times the
input: x = A x + B u . The “global” assignments make all the variables

defined available both to the calling program and to the function.

System response:

function xprime = tdofssmodalfun(t,x)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

xprime = a_ss*x + b*u;

M ode 1 response:

function xprime = tdofssmodal1fun(t1,x1)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

xprime = a1_ss*x1 + b1*u;

M ode 2 response:

function xprime = tdofssmodal2fun(t2,x2)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

xprime = a2_ss*x2 + b2*u;

M ode 3 response:

function xprime = tdofssmodal3fun(t3,x3)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

xprime = a3_ss*x3 + b1*u;

© 2001 by Chapman & Hall/CRC

12.5 Plotted Results

The fo llow ing figures should be com pared with Figures 9 .2 through 9 .7 , which
w ere plotted using the closed form m odal solutions.

Displacements in Principal Coordinate System, ode45

Time, sec

Figure 12.2: Displacements in principal coordinate system using ode45.

The m otions o f the rigid body and two oscillatory modes are clearly seen.

Displacements in Principal Coordinate System, ode45

Time, sec

Figure 12.3: Displacements in principal coordinate system, expanded scales to see initial
conditions.

© 2001 by Chapman & Hall/CRC

Disp lacem ents in Physica l Coordinate System , ode45

Time, sec

Figure 12.4: Displacements in physical coordinate system.

Displacements in Physical Coordinate System from ode45 (ode) and Closed Form (cf)

Time, sec

Figure 12.5: Displacements in physical coordinate system — comparing closed form
solution from Chapter 7.

The three plots below show how one can study the m otions o f degrees o f
freedom due to individual modes. U se zeta = 0 when running
tdofss_m odal_tim e_ode45.m in order to p lot the closed form solution.

© 2001 by Chapman & Hall/CRC

D isp lacem ent of dof 1 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.6: Displacement of mass 1 for modes 1, 2 and 3.

Displacem ent of dof 2 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.7: Displacement of mass 2 for modes 1, 2 and 3.

© 2001 by Chapman & Hall/CRC

D isp lacem ent of dof 3 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.8: Displacement of mass 3 for modes 1, 2 and 3.

Problem

P12 . 1 U sing the initial conditions and forcing functions from P 7.4 , solve fo r
the time domain response o f the states in principal coordinates in closed form
using Laplace transforms. D efine the output m atrix i f the outputs required are
the displacem ents o f both masses.

© 2001 by Chapman & Hall/CRC

CHAPTER 13

FINITE ELEMENTS: STIFFNESS MATRICES

13.1 Introduction

The purpose of this chapter is to use two simple examples to explain the basics
of how finite element stiffness matrices are formulated and how static finite
element analysis is performed.

Chapter 2 discussed building global stiffness matrices column by column,
giving a unit displacement to the dof associated with each column and entering
constraint forces for each dof along the column. This chapter w ill show
another method of building global stiffness m atrices, based on using elem ent
stiffness matrices, combining them in an orderly w ay to generate the global
stiffness matrix. The first example uses the lumped parameter 6dof example
seen in Section 2.2.4. The second example uses a two-element cantilever.
Static condensation is used to prepare for a development of Guyan reduction
in the next chapter.

The next chapter w ill use element mass matrices to assemble global mass
matrices and w ill introduce dynamics using finite elements.

13.2 S ix dof M odel - E lem ent and G lobal Stiffness M atr ices

-T^Z1

m„

k1

m„

r> z2

kH
k.

k2
■ \ Л

r> z3 k6

r^ z -

mc

m, z4

m5

z5

4

k7

Figure 13.1: Six dof stiffness matrix model.

© 2001 by Chapman & Hall/CRC

13.2.1 Overview

The global stiffness matrix for the model in Figure 13.1 was defined
previously by inspection (Table 2 .2). Each column of the matrix was defined
by giving a unit displacement to the dof associated with that column and then
defining the constraints required to hold the system in that configuration. This
method works very w ell for hand calculations, but creating stiffness and mass
matrices with computers requires a different, more systematic approach, where
individual element stiffness matrices are developed and combined to give the
global stiffness matrix.

W e can define an element stiffness matrix for each of the springs in the figure,
where the size of the element stiffness matrix is (nxn), and n is the total
number of degrees of freedom associated with the element. For a uni-axial
spring, there are two degrees of freedom, the displacements in the “z”
direction at both ends, hence a 2x2 stiffness matrix.

Each element stiffness matrix can be set up using the “inspection” method, by
displacing first the left-hand dof for the first column, and then the right-hand
dof for the second column as shown in Figure 13.2.

13.2.2 E lem ent Stiffness M a tr ix

Figure 13.2: Spring element stiffness matrix development.

© 2001 by Chapman & Hall/CRC

The resulting element stiffness matrix, k el , for a general uni-axial spring
element is then:

k el,i =
kj -ki
-k к

(13.1)

For spring element 3, for example, the element stiffness matrix would be:

k el,3 =
k 3 - k 3

- k 3 k 3
(13.2)

13.2.3 B u ild in g G lobal Stiffness M a tr ix U sing E lem ent Stiffness M atr ices

The total number of degrees of freedom for the problem is 6, so the complete
system stiffness matrix, the g lobal stiffness matrix, is a 6x6 matrix. Each row
and column of every element stiffness matrix can be associated with a g lo b al
d egree of freedom .

For element 1, which is connected to degrees of freedom 1 and 2:

1st and 2nd columns of global stiffness matrix

k el,1 =
k 1 - k 1

- k 1 k 1

z1 1st row of globalstiffnessm atrix

z 2 2nd row of globalstiffnessm atrix

(13.3)

For element 2, which is connected to degrees of freedom 1 and 6:

1st and 6 th columns of global stiffness matrix

k el,2 =
k 2 - k 2

- k 2 k 2
z1 1st row of g lobalstiffnessm atrix

z6 6th row of g lobalstiffnessm atrix

(13.4)

For element 3, which is connected to degrees of freedom 2 and 3:

2nd and 3rd columns of global stiffness matrix

k el,3 =
k 3 - k 3

- k 3 k 3
2n row of global stiffness matrix

3rd row of g lobalstiffnessm atrix

(13.5)

© 2001 by Chapman & Hall/CRC

For element 4, which is connected to degrees of freedom 3 and 4:

3rd and 4 th columns of global stiffness matrix

k el,4 _
k 4 - k 4

- k 4 k 4

z3 3rd row of global stiffness matrix

z4 4 th row of global stiffness matrix

(13.6)

For element 5, which is connected to degrees of freedom 4 and 5:

4th and 5th columns of global stiffness matrix

k el,5 =
k 5 - k 5

k 5 k 5

z4 4 row of global stiffness matrix

z5 5th row of global stiffness matrix

(13.7)

For element 6, which is connected to degrees of freedom 3 and 5:

k el,6 _

3r and 5 columns of global stiffness matrix

z3 3rd row of global stiffness matrix

z5 5th row of global stiffness matrix

For element 7, which is connected to degrees of freedom 2 and 5:

2nd and 5th columns of global stiffness matrix

z3 z5

k 6 —k e

- k 6 k 6

k el,7
k 7 - k 7

- k 7 k 7
z2 2nd row of global stiffness matrix

z5 5th row of global stiffness matrix

(13.8)

(13.9)

The global stiffness matrix starts out as a 6x6 null matrix, then each element is
cycled through and its elements added to the previous matrix. The in itial null
matrix is:

© 2001 by Chapman & Hall/CRC

k g =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

After adding the element stiffness matrix for element 1:

k g =

kg =

" k 1 - k 0 0 0 0"

- k 1 k 1 0 0 0 0

kg =
0 0 0 0 0 0

g 0 0 0 0 0 0

0 0 0 0 0 0

_ 0 0 0 0 0 0_

stiffness matrices for elements 1 to

k 1 + k 2 - k 1 0 0 0 - k 2 "

- k 1 k 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k 2 0 0 0 0 k 2 _

stiffness matrices for elements 1 to

k 1 + k 2 - k 1 0 0 0 - k

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k 3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k 2 0 0 0 0 k 2

After adding the element stiffness matrices for elements 1 to 4:

(13.10)

(13.11)

(13.12)

(13.13)

© 2001 by Chapman & Hall/CRC

k g =

k 1 + k 2 - k 1 0 0 0 - k

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k3 + k4 k 4 0 0

0 0 k 4 k 4 0 0

0 0 0 0 0 0

- k 2 0 0 0 0 k

(13.14)

After adding the element stiffness matrices for elements 1 to 5:

k g =

k 1 + k 2 - k 1 0 0 0 - k .

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k3 + k4 k 4 0 0

0 0 k 4 k 4 + k 5 k 5 0

0 0 0 k 5 k 5 0

- k 2 0 0 0 0 k

(13.15)

After adding the element stiffness matrices for elements 1 to 6:

kg =

k 1 + k 2 k 1 0 0 0 - k .

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k 3 + k 4 + k 6 k 4 - k 6 0

0 0 - k 4 k 4 + k 5 k 5 0

0 0 - k 6 k 5 k 5 + k 6 0

k 2 0 0 0 0 k 2

(13.16)

After adding the element stiffness m atrices for elements 1 to 7 we have the
final global stiffness matrix.

kg =

k 1 + k 2 k 1 0 0 0 - k

- k 1 k1 + k3 + k7 - k 3 0 - k 7 0

0 - k 3 k 3 + k 4 + k 6 k 4 - k 6 0

0 0 k 4 k 4 + k 5 k 5 0

0 k 7 k 6 k 5 k 5 + k 6 + k 7 0

k 2 0 0 0 0 k 2

(13.17)

© 2001 by Chapman & Hall/CRC

This checks against the original global stiffness matrix defined by inspection
in Table 2.2 and fu lfills the symmetry requirement.

1 2 3 4 5 6

1 (k + k2) - k l 0 0 0 - k

2 - k 1 (k 1 + k 3 + k 7) - k 3 0 - k 7 0

3 0 - k 3 (k 3 + k 4 + k 6) k 4 - k 6 0

4 0 0 - k 4 (k4 + k j) k 5 0

5 0 k 7 - k 6 k 5 (k 5 + k 6 + k 7) 0

6 _ k 2 0 0 0 0 k 2

(13.18)

13.3 Two-E lem ent C an tilev er Beam

W e w ill now do a static finite element displacement analysis of a two-element
cantilever beam. W e start by showing the original model and defining the
degrees of freedom for the idealized beam, Figure 13.3.

Note that even though the left-hand side node is grounded in the actual beam,
there are degrees of freedom associated with the node to allow generating
global stiffness and mass matrices for a ll nodes. The constrained degrees of
freedom w ill be accounted for once the complete global stiffness matrix is
available. For this model, each of the three nodes has two degrees of freedom,
a translation and a rotation.

© 2001 by Chapman & Hall/CRC

Original Beam

dof. dof, dofs

d o f

zz 2 3

Idealized Beam
Node, dof Definition

Figure 13.3: Two-element cantilever beam model and node definition.

13.3.1 E lem ent Stiffness M a tr ix

The element stiffness matrix can be developed by using basic strength of
m aterials techniques to analyze the forces required to displace each degree of
freedom a unit value in the positive direction:

© 2001 by Chapman & Hall/CRC

Figure 13.4: Beam element stiffness matrix terms.

13.3.2 D egree of Freedom D efinition - B eam Stiffness M atr ix

Using the degrees of freedom in Figure 13.5 results in the follow ing element
stiffness matrix:

key = Eili

12 6 -1 2 6
l3 l 2 l3 l 2

6 4 - 6 2
I f 1~ I T i”

-1 2 - 6 12 - 6
l3 l 2 l3 l 2

6 2 - 6 4
l2 li l 2 li

(13.19)

© 2001 by Chapman & Hall/CRC

dof1 dof3
zi
A

z2

AЛ A
\ 8г

dof2 ^ d o f 4

Beam Element
Node, dof Definition

Figure 13.5: Beam element node and degree of freedom definition.

13.3.3 B u ild ing G lobal Stiffness M a tr ix Using E lem ent Stiffness M atr ices

To build the global stiffness matrix, we start with a 6x6 null matrix, with the
six degrees of freedom being the translation and rotation of each of the three
nodes, again including the constrained node 1 degrees of freedom:

k g =

0 0 0 0 0 0 displacem ent o f node 1

0 0 0 0 0 0 rotation o f node 1

0 0 0 0 0 0 displacem ent o f node 2

0 0 0 0 0 0 rotation o f node 2

0 0 0 0 0 0 displacem ent o f node 3

0 0 0 0 0 0 rotation o f node 3

(13.20)

The two 4x4 element stiffness matrices are:

k el,1 = Е Л

12

l3

6

I f
- 1 2

l3

6

. l2

6_
l2
4

Г
- 6

I?
2

l1

- 1 2

l3
- 6

IT
12

l3
- 6

6

l2
2

if
- 6

l2
4

l1 _

(13.21)

© 2001 by Chapman & Hall/CRC

k = F Tel,2 2 2

12 6 -1 2 6

l2 l2 l2 l2
6 4 - 6 2

k T k
-1 2 - 6 12 - 6

l2 l2 l2 l2
6 2 - 6 4

. l2 l2 l2 l2 .

(13.22)

B uild ing up the global stiffness matrix, element by element, inserting element
1 first:

k g =

12 F 1T1 6F 1T1 - 1 2 F 1T1 6F 1T1

l3
6F 1T1

l 2
- 1 2 F 1T1

_ Г -

l2
4F 1T1

l1
- 6F 1T1

l2

l3
- 6F 1T1

l2
12 F 1T1

l2
2F 1T1

l1
- 6F 1T1

l2

0 0

0 0

0 0

6F 1T1 2F 1T1 - 6F 1T1 4F 1T1
0 0

l 2 l1 l2 l1
0 0 0 0 0 0

0 0 0 0 0 0

(13.23)

Tnserting the element 2 terms leaves k g

© 2001 by Chapman & Hall/CRC

12E 1I1 6 E 1 I 1

l 2

6E 1I1 4E 1I1

l1

- 1 2 E 1I1

- 6E 1I1

tf

6E 1I1

2E 1I1

-1 2 E 1I1 - 6E 1I1 f 12E 1I1 + 12E 2I2 ^ l - 6E 1I1 ' 6E 2I2 ^ - 12E 2I2 6E 2I2

l3 l2 l3 + l3 V A1 2 у l2 l2V A1 2 j l2 i2

6E 1I1 2E 1I1 f - 6E 1I1 + 6E 2I2 ^ f 4E 1I1 ' 4E 2I2 ^ - 6E 2I2 2E 2I2

i2 l1 l2 ' l 2 V A1 2 J l l1 l2 j l22 l2

0 0
- 12E 2I2 - 6E 2I2 12E 2I2 - 6E 2I

l2 l2 l2 l2

0 0
6E 2I2 2E 2I2 - 6E 2I2 4E 2I2

l 2 l2 l2 l2

(13.24)

Note how the contributions for the stiffness elements for node 2 from the left-
hand and right-hand beams add together.

13.3.4 E lim inating C onstra in t D egrees of Freedom from Stiffness M a tr ix

W e now have the entire global stiffness matrix, including the degrees of
freedom which are constrained, the translation and rotation of node 1 (the first
two rows and columns of k g). To elim inate the constrained degrees of

freedom, we elim inate the rows and columns which correspond to the
constrained global degrees of freedom, reducing the global stiffness matrix to
a 4x4 matrix:

12E 1I1 + 12E 2I2

l3 l2

- 6E 1I1 6E 2I2

- 6E 1I1 + 6E 2I2
l2 +
4 l 2

4E 1I1 4E 2I2

- 1 2 E 2I2

- 6E 2I2

6E 2I2

2E 2I2

li2 l2 J V l. l2 J l2 l 2
- 1 2 E 2I2 - 6E 2I2 12E 2I2 - 6E 2I2

l2 l2 l2 l 2
6E 2I2 2E 2I2 - 6E 2I2 4E 2I2

l2 l2 l2 l2

(13.25)

© 2001 by Chapman & Hall/CRC

To facilitate hand calculations, we w ill make the two-beam elements identical,
with the same E, I and lengths, l. The global stiffness matrix can then be
rewritten as:

к g = EI

24
0

-1 2 6
l3 l3 l 2

0
8 - 6 2
l l 2 l

-1 2 - 6 12 - 6
l3 l2 l3 l 2
6 2 - 6 4
l2 l 1Г l

(13.26)

13.3.5 S ta tic So lution : Force A pp lied a t Tip

W e have all the information required to solve a static problem. For example,
we could solve for the displacements of the system for a z direction force
applied at the tip of the beam. The equation for static equilibrium of the
system is:

(13.27)

Expanding:

g21

g31

g12

g22

g32

g13

g23

g33

g24

g34

F1
(13.28)

g42 g43

Where:

z1 is translation of node 2

z 2 is rotation of node 2

z3 is translation of node 3

z 4 is rotation of node 3

F1 is z force applied to node 2

© 2001 by Chapman & Hall/CRC

F 2 is y moment applied to node 2

F3 is z force applied to node 3

F4 is y moment applied to node 3

13.4 S tatic C ondensation

13.4.1 D erivation

Solving the static equation is triv ial using a computer, but doing a 4x4 inverse
by hand is difficult, so we w ill reduce the problem to a 2x2 problem using
static condensation. Static condensation is not typ ically used for static
problems, but is the precursor for Guyan reduction (dynamic condensation),
which w ill be introduced in the eigenvalue analysis in the next chapter.

Static condensation involves separating the degrees of freedom into “master”
and “slave” degrees of freedom. If master dof’s are chosen such that they
include all degrees of freedom where forces/moments are applied and also
degrees of freedom where displacements are desired, the resulting solution is
exact. If the slave dof set includes dof’s where force s/moments are applied
and/or where displacements are desired, the technique w ill create errors.

For an exact static solution, master dof’s are chosen as dof’ s where
forces/moments are applied and where displacements/rotations are desired.

For dynamic problems master degrees of freedom are typ ica lly chosen as
displacements of the higher mass nodes and rotations of the higher mass
moment of inertia nodes, with slave degrees of freedom being the
displacements and rotations of the relatively lower inertia nodes.

For the two-element cantilever, we w ill solve for the two translations of node 2
and node 3 as master degrees of freedom, and w ill condense (reduce out) the
two rotations. W e w ill develop the theory first, then w ill substitute our
cantilever example.

The first step is to rearrange the degrees of freedom, rows and columns of the
stiffness matrix, into dependent (slave) displacements to be reduced, z a , and

independent (master) displacements, z b . This involves moving the second
and fourth rows and columns of the cantilever stiffness matrix up to become
the first and second rows and columns, which moves the first and third rows
and columns down to the second and fourth positions.

© 2001 by Chapman & Hall/CRC

kz = F

aak

1
abk

1
a

1 1
a

1

1 ba 1bbk 1 b 1 1 b 1

M ultip lying out the first matrix equation:

Solving for z a

k aa Za + k ab Z b = Fa

Z a = k aa (Fa - k abZ bj

(13.29)

(13.30)

(13.31)

(13.32)

If no forces (moments) are applied at the dependent (slave) degrees of
freedom, Fa = [0] , and the equation above becomes:

Za = k aa1 (- k abZb) = - k -1kabZb (13.33)

W e can now rewrite the displacement vector in terms of z b only:

_za " - k -a1k ab ' - k Eiak ab z b

_z b _ I z b =
_ z b _

(13.34)

Defining a transformation matrix for brevity:

z = z a "-k-a1kab ' z —
T "ab

_z b _ I b I z b = Tz b (13.35)

Where:

Tab = - k a b (13.36)

Substituting back into the original static equilibrium equation:

kz = k (Tz b) = F (13.37)

M ultip lying both sides by TTto reduce the number of degrees of freedom
from (a + b) to b:

© 2001 by Chapman & Hall/CRC

(T Tk T) z b = T TF (13.38)

Expanding the term in parentheses above, and redefining it to be k b

k bb = TTkT = [Tab I]
,k ba k bb .

ab
I

= [(Tabk aa + k l>) (T^k „ + k bb)]
ab
I

= (Tab k + k „ Д , + (T , k _ + k bb) I

Tabk aa Tab + k ba Tab + Tab k ab + k bb
(13.39)

= (- k ba k --1)k aa(-k ̂ k _) + k „ (- k -Ъ _) + (- k k -j) k „ + k ,ь

' k bak aa.k ab k bak aak ab k bak ajik ab + k bb

k bb k ba k aak ab

where: T b = - k 1k b and T'b = - k b k 1.ab aa ab ab ba aa

So, the original (a + b) degree of freedom problem now can be transformed to
a “b” degree of freedom problem by partitioning into dependent and
independent degrees of freedom, and solving for the reduced stiffness matrix
kbb and reduced force vector Fb* :

Fb = T 1 F

= [T I 1] = Tba Fa + Fb (13.40)

Fb - k ba k

© 2001 by Chapman & Hall/CRC

Then the reduced problem becomes:

k bbZ b = F b (13 .41)

After the z b degrees of freedom are known, the z a degrees of freedom can be

expanded from the z b masters using, if Fa = [0] :

Z a = - k -1k ab Z b (13.42)

13.4.2 So lv ing Two-E lem ent C an tilev er B eam S tatic Prob lem

W e w ill now solve the example cantilever for a force applied at the tip.
Earlier we showed that the stiffness matrix is:

k g = EI

24
0

-1 2 6
l3 l3 l2

0
8 - 6 2
l l 2 l

-1 2 - 6 12 - 6
l3 l2 l3 l2
6 2 - 6 4

. I2 l 1Г l

(13.43)

Rearranging rows, 1 to 3, 2 to 1, 3 to 4 and 4 to 2:

k g = EI

0
8 - 6 2
l l 2 l

6 2 - 6 4
l2 l l 2 l
24

0
-1 2 6

l3 l3 l2
-1 2 - 6 12 - 6IT У 7 T.

(13.44)

Rearranging columns, 1 to 3, 2 to 1, 3 to 4 and 4 to 2:

© 2001 by Chapman & Hall/CRC

kg = El

8 2
0

-6
1 1 1Г
2 4 6 - 6
1 1 l2 T
0

6 24 -1 2
l2 l3 l3

-6 - 6 -1 2 12
l r T IT 7

(13.45)

Breaking out and identifying the four submatrices of dependent (a) and
independent (b) degrees of freedom:

EI 8 2" EI "0 -6"
k =— k ab = ITaa l 2 4_ 6 -6_

EI 0 6 EI " 24 -12"
k ba = ~r "6

6
6

­6
0

­1

k bb = -1 2 12 _

(13.46a-d)

Finding the inverse of k aa :

k -1 = ■
14EI

2 -1

-1 4
(13.47)

kaakab 141
- 6 - 6

24 -1 8
(13.48)

-i = EI
k ba k aa k ab 14^

144 -1 0 8

-1 0 8 144
(13.49)

1

© 2001 by Chapman & Hall/CRC

k bb k bb k bak aak ab

— 1
" 336 -168" " 144 -108"

14l3 [-1 6 8 168 -1 0 8 144
(13.50)

EI
14l3

k b-1 = ■

192 -6 0

-6 0 24

14l3 "24 60" l3 "24 60 "

1008EI 60 192 72EI 60 192
(13.51)

Solving for the two displacements, z b for a tip force of magnitude P:

= k b-1 С

l3 "24 60 " " 0"

72EI 60 192_ P_

" 60 " " 5"
P l3 " 60" P l3 72 P l3 6

72EI 192 = EI 192 = EI 8
_ 72 _ _ 3 _

The tip displacement is:

8Pl3
3EI

(13.52)

(13.53)

The well-known solution for the displacement of the tip of a cantilever is:

PL3
3EI

(13.54)

Knowing that the total length of the cantilever, L, is 2l:

Z3 =

ztip =

© 2001 by Chapman & Hall/CRC

PL3 P (2 l)3 8P l3 (135 5)
z tip = ----- = ---------- = ------- (13.55)tip 3EI 3EI 3EI

The reduced problem has provided the correct solution. Once again, normally
we would not solve a reduced static problem except during a hand calculation,
but the derivation of static condensation w ill be useful in the next chapter
when dynamic condensation, Guyan reduction, is introduced.

Problem s

P13.1 Assemble the global mass and stiffness matrices for Figure P2.1
element by element. Compare results with P2.1 results.

P13.2 In Section 13.4.2 we solved for the displacements of a two-element
cantilever beam with a tip load by reducing out the rotations of the beam.
Solve the problem by reducing out the rotations of the m iddle and tip nodes
and the displacement of the m iddle node. Use a symbolic algebra program to
invert the 3x3 k m a t r i x .

© 2001 by Chapman & Hall/CRC

CHAPTER 14

FINITE ELEMENTS: DYNAMICS

14.1 Introduction

The chapter starts out with discussions of various mass matrix formulations.
The 6dof lumped mass example from Chapter 2 is used for the lumped mass
matrix example. A two-element cantilever is used to develop the consistent
mass example. U sing the same technique as in the previous chapter, the global
mass matrix is built up as an assemblage of element mass matrices. A method
analogous to static condensation, Guyan reduction, is developed and used to
reduce the size of the two-element cantilever problem. The cantilever is then
solved for its eigenvalues by hand using Guyan reduction. The same
cantilever is solved for eigenvalues and eigenvectors using M ATLAB and
results are compared to the hand calculations.

Following the two-element cantilever example, a second M ATLAB code
allows solving for eigenvalues and eigenvectors for a uniform cantilever beam
with user-defined number of elements. The results of the M ATLAB code are
compared with the results from an AN SYS model for the same 10-element
cantilever.

This 10-element cantilever w ill be the last eigenvalue analysis in the book
using M ATLAB. Further chapters w ill start with eigenvalue results from
AN SYS m odels, which w ill be used to build state space M ATLAB models.
These M ATLAB models are then used for frequency and time domain
analyses. This chapter serves as a bridge between carrying out analyses
completely in M ATLAB and using AN SYS results as the starting point for
state space M ATLAB models. Hence, we w ill reintroduce ANSYS
eigenvalue/eigenvector results and start becoming fam iliar with their form and
interpretation.

14.2 S ix dof G lobal M ass M a tr ix

The lumped mass matrix is simple to construct because there is only a single
degree of freedom associated with each mass element. This leads to the 6x6
diagonal mass matrix below, which can be constructed in the same manner as
the 6dof stiffness matrix in the previous chapter.

© 2001 by Chapman & Hall/CRC

mg

m 1 0 0 0 0 0

0 m 2 0 0 0 0

0 0 m 3 0 0 0

0 0 0 m4 0 0

0 0 0 0 m 5 0

0 0 0 0 0 m

(14.1)

14.3 C an tilev er D ynam ics

14.3.1 O verview - M ass M a tr ix Form s

In order to solve for the dynamics of the cantilever beam, we need to develop
a mass matrix to complete the equations of motion. For a beam finite element,
there are a number of different mass matrix formulations, each of which w ill
be covered below :

1) Lumped mass, displacements only

2) Lumped mass, displacements and rotations both included

3) Consistent mass - distributed mass effect

14.3.2 Lum ped M ass

Beam-element lumped parameter mass and inertia terms in the mass matrix
relate point inertial loads to point accelerations and give only diagonal terms.
Equation (14.2) below shows the lumped mass matrix including both
displacements and rotations:

m,

m l
2

0
(m l3 m lly

24 + 2A
0

m l
2

0
m l3 m lly

24 2A

(14.2)

For the lumped mass for displacement terms only, the (2,2) and (4,4) terms in
(14.2) would be set to zero. Notation is as follows: m is mass per unit length,

© 2001 by Chapman & Hall/CRC

l is the element length, I y is the cross-sectional moment of inertia about the y

axis and A is the cross section area. This lumped mass formulation assumes a
prismatic beam (sam e area and moment of inertia along the length) and
effectively lumps half of the mass and inertia at each end (Archer 1963).

14.3.3 C onsistent M ass

Lumped mass formulations were state of the art in structural dynamics until
A rcher’ s classic paper introduced the consistent mass matrix in 1963.

W e w ill see in the development below that the consistent mass matrix for a
beam element is a filled matrix. The filled matrix can be combined with other
consistent mass matrices of other elements of the structure, in the same manner
as the element stiffness matrices are combined, to y ie ld the final global mass
matrix.

The element consistent mass matrix for a prismatic beam is, with mass per unit
length m and length l (W eaver 1990):

m e
ml
420

156 22l 54 -1 3 l

22l 4 l2 13l - 3 l2

54 13l 156 -2 2 l

-1 3 l - 3 l2 -2 2 l 4 l2

(14.3)

Figure 14.1 shows the unit accelerations of each of the four degrees of
freedom which correspond to the four columns of the consistent mass matrix,
analogous to the beam element stiffness description in Chapter 13.

© 2001 by Chapman & Hall/CRC

Figure 14.1: Beam element consistent mass matrix terms.

14.4 D ynam ics of Two-E lem ent C an tilev er - C onsistent M ass M atr ix

W e already have the global stiffness matrix for the two-element cantilever
beam from (13.26):

к g = EI

24
0

-1 2 6
l3 l3 l2

0
8 - 6 2
l l2 l

-1 2 - 6 12 - 6
l3 l 2 l3 l2
6 2 - 6 4

. I2 l У l

(14.4)

The global mass matrix (using consistent m ass) can also be built by combining
the terms from each of the beam elements as follows:

© 2001 by Chapman & Hall/CRC

m g
1

420

156m1l1 22m 1l12 54m 1l1

22m 1l2 4m 1l3 13m1l12

54m 1l1 13m1l12 (156m1l1 + 156m2l2)

-1 3 m 1l12 -3 m 1l3 (-2 2 m 1l12 + 22m 2l2)

0 0 54m 2l2

0 0 —13m2l2

-1 3 m 1l12 0 0

-3 m 1l3 0 0

(-2 2 m 1l2 + 22m 2l2) 54m 2l2 -1 3 m 2l2

(4m 1l3 + 4m 2l2) 13m2l2 -3 m 2l2

13m2l2 156m2l2 -2 2 m 2l2

-3 m 2l2 -2 2 m 2l2 4m 2l2

(14.5)

Once again, assuming the two elements have the same properties and lengths,
the global mass matrix becomes:

156ml 22m l2 54ml -1 3 m l2 0 0

22m l2 4m l3 13ml2 -3 m l3 0 0

1 54ml 13ml2 312ml 0 54ml -1 3m l
m = -----

g 420 -1 3 m l2 -3 m l3 0 8m l3 13ml2 -3 m l3

0 0 54ml 13ml2 156ml -2 2 m l

0 0 -1 3 m l2 -3 m l3 -2 2 m l2 4m l3

(14.6)

T aking into account the two constrained degrees of freedom at the built in end,
we can elim inate the first two rows and columns:

m g
1

420

312m l 0 54ml -1 3 m l2

0 8m l3 13ml2 -3 m l3

54m l 13ml2 156ml -2 2 m l2

-1 3 m l2 -3 m l3 -2 2 m l2 4m l3

(14.7)

Having the mass and stiffness matrices allows us to solve the eigenvalue
problem for the homogeneous equations of motion:

m gz + k gz = [°] (14.8)

© 2001 by Chapman & Hall/CRC

In order to solve the problem by hand, we w ill need to find several inverses, so
we w ill again see if we can cut the 4x4 problem down to 2x2 size. W e w ill
now use Guyan reduction to reduce the size of the problem.

14.5 G uyan R eduction

Guyan reduction is a method of decreasing the number of degrees of freedom
in a dynamics problem, sim ilar to the process of static condensation in a statics
problem. Unlike static condensation, however, Guyan reduction introduces
errors due to the approximations made. The magnitude of the errors
introduced depends upon the choice of degrees of freedom to be reduced, the
dependent or slave degrees of freedom. The most popular choice of degrees
of freedom to be reduced are translations of nodes with relatively lower
masses and rotations of nodes with relatively lower mass moment of inertia.
This leaves translations of relatively larger mass nodes and rotations of
relatively larger mass moment of inertia nodes as the independent degrees of
freedom. In a typ ical finite element problem, the analyst w ill define masters as
degrees of freedom where forces/moment are applied, where displacements or
rotations are required for output, or where known large masses/mass moments
of inertia occur. The finite element program w ill then be allowed to choose an
additional set of degrees of freedom and add them to the master set. Typically
the program sorts along the diagonal of the mass matrix, adding degrees of
freedom associated with the larger terms.

14.5.1 G uyan R eduction D erivation

Starting with the undamped equations of motion:

Rearranging and partitioning into displacements to be reduced, z a , and

independent displacements, z b :

M ultip lying out the first matrix equation:

m z + kz = [0] (14.9)

m aa z a + m abz b + k aa z a + k ab z b = Fa (14.11)

Solving the above for z a :

© 2001 by Chapman & Hall/CRC

Za = k aa' (Fa - k abZb - ™aaz a - ™abz b)

= - k aa‘k abz b + k aa‘ (Fa - m aaz a - m abz bj
(14.12)

Instead of letting z a depend upon the entire right-hand side of (14.13), the
approximation of static equilibrium is introduced:

z a = - k -1k ab z b (14.13)

Typically the choice of degrees of freedom to be reduced does not include any
degrees of freedom to which forces are applied, thus Fa = 0 . The static
equilibrium approximation basically sets the term in brackets in (14.12) to
zero. Setting Fa = 0 and using the second derivative of (14.13), we can see

the form of m . :

0 = F - m z - m bz ba aa a ab b

ab b

= - m aa(- k -ak abz b) - m abz b

= m aak -ak ab - m ab
(14.14a,b)

m ab = m aa k ^ ab

W e assume that the m z terms are zero and that m and m b are related asaa a aa ab
in (14.14b). The force transmission between the z a and z b degrees of
freedom is related only to the stiffnesses as denoted in (1 4.1 4), hence the
“static equilibrium ” approximation.

Assuming (14.13) holds, the displacement vector z can be written in terms of
z b only:

' z a " " -k --1k ab ' z —
T "ab

_z b _ I b I z b = Tzb (14.15)

where:

Tab = k aak ab (14.16)

© 2001 by Chapman & Hall/CRC

T = Ta (14.17)

Substitution of (14.14), with derivatives, into (14.9) yields:

m Tz b + k T k b = F (14.18)

Equation (14.18) still contains (a + b) degrees of freedom, so premultiplication
by T T is required to reduce to (b) degrees of freedom and to return symmetry
to the reduced mass and stiffness matrices:

ITTm T) b + (T Tk T) z b = T T F (14.19)

Rewriting in a more compact form:

m bbz b + k bb z b = Fb (14.20)

Equation (14.20) is the final reduced equation of motion which can be solved
for the displacements of type b. Displacements of type a (assuming static
equilibrium) can then be solved for using (14.13).

kbb can be shown to be the same as that derived in the static condensation
Section 13.4.1, (13.39):

k bb = [Tab I]
k aa k ab

k ba k bb

ab
I

[Tabk aa + k ba) (Tab k ab + k bb
ab
I

= Tabk aa Tab + k ba Tab + Tabk ab + k bb

= k bak aa1kaak ab “ k bak ^ a b “ k bak aa1kab + k bb

= k bb k ba k aak ab (14.21)

© 2001 by Chapman & Hall/CRC

14.5.2 Two-E lem ent C an tilev er E igenvalues C losed Form Solution Using
G uyan R eduction

Repeating the rearranged global stiffness matrix from the static run, (13.45):

k g =EI

8 2
0

- 6
7 l 1Г
2 4 6 - 6

7 l l 2" 1Г
0

6 24 -1 2
l2 l3 l3

- 6 - 6 -1 2 12
l2 l2 l3 l3

(14.22)

B reaking out and identifying the four submatrices of dependent (a) and
independent (b) degrees of freedom:

k „„ =
EI “8 2" EI “0 -6"

2 4 k ab = -jT 6 - 6

. = EI
k ba j2

0 6 EI “ 24 -12"

- 6 - 6 k bb = 1T -1 2 12

(14.23a-d)

Finding the inverse of k a

k -1 =
14EI

2 -1

-1 4
(14.24)

-k -X b =
-1
14l

- 6 - 6

24 -1 8
(14.25)

, , -1, = _EI_
k bak aa k ab

144 -1 0 8

-1 0 8 144
(14.26)

l

© 2001 by Chapman & Hall/CRC

k bb _ k bb k bak aak ab

— \" 336 a 168" " 144 a 108"

1413 [^ 1 6 8 168 _ -1 0 8 144 _

EI
1413"

192 a 60

a 60 24

The transformation matrix T is given by:

(14.27)

T =
T "ab "ak aa1k ab '

I I

6 6
141 141
a24 18
141 141
1 0

0 1

(14.28)

The mass matrix now needs to be rearranged into “a” and “b” submatrices and
then transformed to mb

*
*bb :

m g

m„

312m1 0 54m1 a13m1

1 0 8m13 13m12 -3m13

420 54m1 13m12 156m1 -22m1

- 1 3 п 12 —3m13 a22m12 4m13

1 to 3, 2 to 1, 3 to 4 and 4 to 2:

" 0 8m13 13m12 -3m13

1 - 1 3 п 12 a3m13 a22m12 4m13

420 312m1 0 54m1 a13m1

54m1 13m12 156m1 -22m1

ns 1 to 3, 2 to 1, 3 to 4 and 4 to 2

(14.29)

(14.30)

© 2001 by Chapman & Hall/CRC

mg m
420

8l3 - 3 l3 0 13l2

- 3 l3 4 l3 -1 3 l2 2l2-

0 - 1 3 l2 312l 54l

13l2 -2 2 l2 54l 156l

(14.31)

Separating into submatrices:

m„
m l3
420

cn100

= m l2 " 0 13 "

-3 4 m "b = 420 -1 3 -2 2

= m l2 " 0 -13" = ml "312 54 "

mba = 420 13 -2 2 mbb = 420 54 156

(14.32a-d)

Calculating mb

m bb = T mT (14.33)

Carrying out the multiplications:

m bb = mi

1528 241
1715 1372
241 471

(14.34)

1372 1715_

14.6 E igenvalues of R educed E quations fo r Two-E lem ent C an tilev er,
S tate Space Form

The second order reduced equation of motion is shown in (14.35), (14.36),
using the 2x2 stiffness matrix from static condensation, (13.50). W e w ill now
generate the state space form of the second order reduced equations. It is
useful to see how to convert a second order set of differential equations with a
filled (not diagonal) mass matrix to state space form. Once we have the
equations of motion in state space form, we w ill use a symbolic algebra
program to solve for the eigenvalues.

m bbz b + k Ьь z b = [°] (M .35)

© 2001 by Chapman & Hall/CRC

ml

1528 241

1372 1715.

1715 1372 Zb1 EI 192 -60" Zb1 "0"

241 471 _Zb2 _ 14l3 -6 0 24 _ Zb2 _ 0
(14.36)

zb1 and zb2 are the first two reduced degrees of freedom, the displacements of
nodes 2 and 3.

Normally, we would solve each of the equations of motion for the highest
derivative and then convert to state space form, but we cannot do that here
because the mass matrix is filled , meaning that there is more than one second
derivative in each equation. To get around this problem, we w ill first convert
the equation to state space form. W e w ill then take the inverse of the mass
matrix and premultiply, leaving only the identity matrix to multiply with the
derivative vector.

Converting to state space form, where Xj and x 2 are displacement and

velocity of node 2 and x 3 and x 4 are the displacement and velocity of node 3,
respectively:

m ss x + k ss x = [°] (14.37)

"1 0 0 0 " " 0 -1 0 0 "

0
1528ml

1715
0

241ml
1372 0

x 1

x 2
192EI
14l3

0
-60E I

14l3
0

0 0 1 0 x 3 0 0 0 -1

0
241ml
1372

0
471ml
1715 _

_x 4 _ -60E I
_ 14l3

0
24EI
14l3

0

Г x "0"

x 2 0

x 3 0

L x _ _0_

(14.38)

Note that the “ 1” terms are on the diagonal in the mass matrix and the “ -1 ’
terms are off diagonal in the stiffness matrix. Taking the inverse of m ss :

© 2001 by Chapman & Hall/CRC

m.

0 263760 0 -168700
205367m l 205367m l

0 0 1 0

0 -168700 0 855680
205367m l 205367m l.

Prem ultiplying the equation of motion by m-.1:

(14.39)

1 0 0 0" x
0 1 0 0 x

0 0 1 0 x

0 0 0 1_ x

0

4340280EI
205367m l4

0

-5980800E I
205367m l4

-1

0

0

0

0

-1419600E I
205367m l4

0

2189880EI
205367m l4

0

0

-1

0

Г x "0"

x 2 0

x 3 0

L x 4 _ _0_

(14.40)

Rewriting without the identity matrix:

0

4340280EI
205367m l4

0

-5980800E I
205367m l4

-1

0

0

0

0

-1419600E I
205367m l4

0

2189880EI
205367m l4

0

0

-1

0

L x ‘
"0"

x 2 0

x 3 0

L x 4 _ _0_

(14.41)

Converting to standard state space form, X = A x + Bu

0 1 0 0

x 1

x 2
-4340280E I
205367m l4

0
1419600EI
205367m l4

0
x 1

x 2

x 3 0 0 0 1 x 3

_ x 4 _ 5980800EI
0

-2189880E I
0 _ x 4_

205367m l4 205367m l4

(14.42)

Using a symbolic algebra program to solve for the eigenvalues:

© 2001 by Chapman & Hall/CRC

f = , 1 Y 2 4 3 1 2 7 0 7 0 ^ Im (3887 ± 2 ^ 3 4 1 7 8) (1443)
f ‘’2 = , 2n A 205367 J m l2 (M .43)

14.7 M A T LA B Code can t_2el_guyan .m -
Two-elem ent C an tilev er E igenvalues/Eigenvectors

14.7.1 Code D escription

The M ATLAB code can t_2el_guyan .m solves for the eigenvalues and
eigenvectors of a two-element steel cantilever with dimensions of 0.2 x 2 x
20mm. The code does the following, where each time M ATLAB calculates a
result it is compared to the hand-calculated result:

1) builds mass and stiffness m atrices element by element

2) deletes degrees of freedom associated with constrained left-
hand end

3) reorders the m atrices and performs Guyan reduction

4) converts to state space form

5) calculates eigenvalues/eigenvectors

The code for can t_2el_guyan .m is not listed as sim ilar code is used in
can tbeam _guyan .m , which is listed below.

14.7.2 Code R esults

Substituting for E, I, m and l in (14.43) as shown in the code results in
eigenvalues of 398.55 and 2521.1 Hz. The first two eigenvalues for a
10-element model using AN SYS (following section) are calculated to be
397.86 and 2493.2 Hz, giving differences between the two-element and 10-
element beams of 0.17% and +1.11%, respectively. The differences between
the two-element and theoretical values are +0.1697% and +0.0095%,
respectively. A rcher’s consistent mass paper stated that in order to calculate
accurate eigenvalues using consistent mass we only needed one more element
than the number of accurate modes desired. In this case we found the
frequency of the first mode very accurately using only two elements, and the
second mode was only off by 1.11%, even with the errors inherent in the
Guyan reduction method.

© 2001 by Chapman & Hall/CRC

14.8 M A T LA B Code can tbeam _guyan .m -
U ser-D efined C an tilev er E igenvalues/E igenvectors

This M ATLAB code solves for the eigenvalues and eigenvectors of a
cantilever with user-defined dimensions, material properties, number of
elements and number of mode shapes to plot. The code is sim ilar to that in
can t_2el_guyan .m except that Guyan reduction is an option for this code. If
Guyan reduction is chosen, a ll rotations are reduced, leaving only translations
as master degrees of freedom. The code is listed below, but is not broken
down and commented because the comments integrated with the code should
be sufficient.

In order to compare results with the AN SYS run below, a 10-element beam
with the follow ing properties is used: width = 2mm, thickness = 0.2, length =
20mm, modulus = 190e6 mN/mm2 , density = 7.83e-6 K g/m m 3.

14.9 AN SYS Code can tbeam .inp , Code D escription

The AN SYS code solves for the eigenvalues and eigenvectors of the same
beam as cantbeam_guyan.m.

14.10 M A T LA B can tbeam _guyan .m / AN SYS cantbeam .inp Results
Sum m ary

14.10.1 10-Elem ent B eam F requ ency C om parison

The Table 14.1 shows the eigenvalues from the 10-element AN SYS and
M ATLAB runs, both with Guyan reduction, along with theoretical values
calculated using the M ATLAB code cantbeam_ss_freq_craig.m (Chang 1969).
The errors for the first five modes are quite small, with the maximum error
(for the ninth mode) being only 6.5%.

© 2001 by Chapman & Hall/CRC

Mode
No.

MATLAB
Cantbeam
guyan.m

ANSYS
Cantbeam.in

p

Theoretical Percent Error,
Cantbeam guyan.m

and Theoretical

1 397.88 397.86 397.874572279 -0.0001
2 2493.6 2493.2 2493.437382146 -0.0051
3 6984.5 6982.2 6981.696870181 -0.0408
4 13703 13696 13681.339375292 -0.1646
5 22727 22705 22616.234284744 -0.4887
6 34194 34145 33784.737867762 -1.2113
7 48420 48234 47186.94828572 -2.6126
8 65831 65657 62822.86012645 -4.7893
9 85987 85697 80692.473674351 -6.5619
10 104570 101392 100795.788914948 -3.7445

Table 14.1: 10-element beam frequency comparisons.

14.10.2 20-E lem ent B eam M ode Shape P lo ts, M odes 1 to 5

Instead of plotting the mode shapes for the 10-element model, we w ill use a
20-element model to give better resolution and smoother plots. The first five
mode shape plots are shown in Figures 14.2 through 14.6 below. Note that for
the third and fifth modes the displacements of the m iddle node are quite small
relative to the maximum 1.0. In other words, there is a “node” of the mode
near the midpoint of the beam. This meaning for “node” of a mode is not that
of a finite element “node,” but is a location along the beam where
displacement goes to zero for that mode of vibration.

Cantilever Beam, Mode 1: 398 hz

E -0.5

1
1

1

1

6 8 10 12 14 16 18 20
D istance From Built-In End

Figure 14.2: Cantilever beam first mode.

0 2 4

© 2001 by Chapman & Hall/CRC

Cantilever Beam, Mode 2: 2493 hz

Distance From Built-In End

Figure 14.3: Cantilever beam second mode.

Cantilever Beam, Mode 3: 6982 hz

Distance From Built-In End

Figure 14.4: Cantilever beam third mode. Note “node” near the beam middle.

W e are focusing on “nodes” located near the m iddle of the beam because in
the next chapter we w ill solve for the frequency responses of a cantilever with
a force at the center and output displacement at the tip. W e w ill see that
modes with small eigenvector entries for input or output (or both) degrees of
freedom are able to be removed from the model, as they contribute little to the
input or output of the system.

© 2001 by Chapman & Hall/CRC

Cantilever Beam, Mode 4: 13682 hz

Distance From Built-In End

Figure 14.5: Cantilever beam fourth mode.

Cantilever Beam, Mode 5: 22621 hz

D istance From Built-In End

Figure 14.6: Cantilever beam fifth mode. Note the “node” near the midpoint of the beam,
and two additional “nodes” to the left and right of the midpoint.

The 10 eigenvectors from the 10-element can tbeam _guyan .m , normalized to
unity, are shown in Table 14.2. The displacement entry for the built-in left-
hand end of the beam is not shown, the 10 rows represent the nodes from left
to right, starting with the second node from the end.

© 2001 by Chapman & Hall/CRC

Mode: 1 2 3 4 5 6 7 8 9 10

-0.0168 -0.0926 -0.2280 0.3841 -0.5331 -0.6485 0.7129 0.7310 0.7418 -0.6239
-0.0639 -0.3010 -0.6042 0.7519 -0.6535 -0.3274 -0.1055 -0.4942 -0.7714 0.7719
-0.1365 -0.5261 -0.7558 0.4324 0.2109 0.6574 -0.5480 0.0107 0.6458 -0.9023
-0.2299 -0.6834 -0.5256 -0.3153 0.6906 0.1048 0.6100 0.4831 -0.3565 0.9797
-0.3395 -0.7136 -0.0195 -0.7053 -0.0028 -0.6931 -0.0029 -0.6863 -0.0222 -1.0000
-0.4611 -0.5894 0.4737 -0.3249 -0.6948 0.1125 -0.6070 0.4771 0.3953 0.9618
-0.5909 -0.3170 0.6571 0.3971 -0.2215 0.6607 0.5534 0.0186 -0.6692 -0.8674
-0.7255 0.0701 0.3945 0.6411 0.5965 -0.3025 0.1160 -0.5089 0.7788 0.7247
-0.8624 0.5238 -0.2288 0.0504 0.2884 -0.4706 -0.5885 0.6466 -0.6636 -0.5252
-1.0000 1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 0.7913

Table 14.2: 10-element beam eigenvectors normalized to unity. Note small values for
third, fifth, seventh and ninth mode displacements for midpoint node, in bold type.

The presence of a “node” of a mode can be seen num erically for the 10-
element M ATLAB model by looking at the fifth row (midpoint of beam) of
the eigenvector listing in Table 14.2 and noting the small values for the third,
fifth, seventh and ninth modes, highlighted in bold type. Getting a good
mental picture of the relationship between the plotted mode shape and the
eigenvector listing is quite useful. W e w ill see in the next chapter that the
small value of node displacements for certain modes of vibration w ill mean
that for certain transfer functions the modes are less important to include in the
reduced (sm aller number of states used) state space model, and therefore, can
be eliminated.

For eigenvector comparison with the A N SY S results, which are normalized
with respect to mass instead of unity, the first two eigenvectors for the 10-
element M ATLAB beam model, are shown below. Compare with the “UZ”
columns in the AN SYS listing below.

4.2387 -23.4098
14.1402 -76.0842
34.4892 -132.9666
58.0918 -172.7285
85.7975 -180.3585
116.5287 -148.9709
149.3145 -80.1210
183.3282 17.7069
217.9284 132.3727
252.7000 252.7326

Table 14.3: MATLAB 10-element beam model, first and second eigenvectors normalized
with respect to mass.

© 2001 by Chapman & Hall/CRC

A listing for the first two modes from the AN SYS code can tbeam .eig is
shown below. The listing displays the title, resonant frequency (eigenvalue)
and a listing of eigenvector entries for each degree of freedom. Even though
we used Guyan reduction on the AN SYS model, AN SYS back-calculates the
eigenvector values of the reduced dof’ s so there are eigenvector values for
both the UZ and ROTY degrees of freedom below. Since we constrained all
the degrees of freedom except the displacement in the z-direction and rotation
about the y axis, a ll other degree of freedom entries for the eigenvectors are
zero.

*DO LOOP ON PARAMETER= I FROM 1.0000 TO 10.000 BY 1.0000

USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 397.86
TITLE= cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 397.86 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 4.2385 0.0000 -4.1366 0.0000
3 0.0000 0.0000 16.140 0.0000 -7.6631 0.0000
4 0.0000 0.0000 34.488 0.0000 -10.586 0.0000
5 0.0000 0.0000 58.090 0.0000 -12.920 0.0000
6 0.0000 0.0000 85.796 0.0000 -14.695 0.0000
7 0.0000 0.0000 116.53 0.0000 -15.954 0.0000
8 0.0000 0.0000 149.31 0.0000 -16.761 0.0000
9 0.0000 0.0000 183.32 0.0000 -17.198 0.0000
10 0.0000 0.0000 217.92 0.0000 -17.366 0.0000
11 0.0000 0.0000 252.70 0.0000 -17.396 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 (
VALUE 0.0000 0.0000 252.70 0.0000 -17.396 0.00

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2

0

© 2001 by Chapman & Hall/CRC

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

FREQ= 2493.2 LOAD CASE= 0

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 -23.405 0.0000 21.188 0.0000
3 0.0000 0.0000 -76.071 0.0000 29.354 0.0000
4 0.0000 0.0000 -132.95 0.0000 25.705 0.0000
5 0.0000 0.0000 -172.71 0.0000 12.776 0.0000
6 0.0000 0.0000 -180.34 0.0000 -5.7217 0.0000
7 0.0000 0.0000 -148.96 0.0000 -25.506 0.0000
8 0.0000 0.0000 -80.124 0.0000 -42.575 0.0000
9 0.0000 0.0000 17.689 0.0000 -54.169 0.0000
10 0.0000 0.0000 132.34 0.0000 -59.449 0.0000
11 0.0000 0.0000 252.69 0.0000 -60.537 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 252.69 0.0000 -60.537 0.00

14.11 M A T LA B Code can tbeam _guyan .m L isting

echo off
% cantbeam_guyan.m cantilever beam finite element program,
% selectable number of elements. Solves for eigenvalues and
% eigenvectors of a cantilever with user-defined dimensions,
% material properties, number of elements and number of mode shapes
% to plot. Guyan reduction is an option. A 10 element beam is used
% as an example. Default beam is 2mm wide by 20mm long by 0.2mm thick.

clf;

clear all;

inp = input('Input "1" to enter beam dimensions, "Enter" to use default ... ');

if (isempty(inp))
inp = 0;

else
end

if inp == 0

wbeam = 2.0
tbeam = 0.2
lbeam = 20.0
E = 190e6
density = 7.83e-6

else

% input size of beam and material

© 2001 by Chapman & Hall/CRC

wbeam = input('Input width of beam, default 2mm, ... ');

if (isempty(wbeam))
wbeam = 2.0;

else
end

tbeam = input('Input thickness of beam, default 0.2mm, ... ');

if (isempty(tbeam))
tbeam = 0.2;

else
end

lbeam = input('Input length of beam, default 20mm, ... ');

if (isempty(lbeam))
lbeam = 20.0;

else
end

E = input('Input modulus of material, mN/mmA2, default stainless steel 190e6 ... ');

if (isempty(E))
E = 190e6;

else
end

density = input('Input density of material, Kg/mmA3, default stainless steel 7.83e-6 ...
');

if (isempty(density))
density = 7.83e-6;

else
end

end

% input number of elements

num_elements = input('Input number of elements for beam, minimum 2, default 10 ...
');

if (isempty(num_elements))
num_elements = 10;

else
end

% define whether or not to do Guyan Reduction

guyan = input('enter " 1" to do Guyan elimination of rotations, ...
"enter" to not do Guyan ... ');

if (isempty(guyan))

© 2001 by Chapman & Hall/CRC

else
end

if guyan == 0

num_plot_max = 2*num_elements;

num_plot_default = num_elements;

else

num_plot_max = num_elements;

num_plot_default = num_elements;

end

num_plot = input(['enter the number of modes to plot, max’, ...
num2str(num_plot_max),', default ',num2str(num_plot_default),' ... ']);

if (isempty(num_plot))
num_plot = 9;

else
end

% define length of each element, uniform lengths

l = lbeam/num_elements;

% define length vector for plotting, right-to-left numbering

lvec = 0:l:lbeam;

% define the node numbers

n = 1:num_elements+1;

% number the nodes for the elements

node1 = 1:num_elements;

node2 = 2:num_elements+1;

% size the stiffness and mass matrices to have 2 times the number of nodes
% to allow for translation and rotation dofs for each node, including built-
% in end

max_node1 = max(node1);

max_node2 = max(node2);

max_node_used = max([max_node1 max_node2]);

mnu = max_node_used;

guyan = 0;

© 2001 by Chapman & Hall/CRC

k = zeros(2*mnu);

m = zeros(2*mnu);

% now build up the global stiffness and consistent mass matrices, element by element

% calculate I, area and mass per unit length of beam

I = wbeam*tbeamA3/12;

area = wbeam*tbeam;

mpl = density*area;

for i = 1 :num_elements

dof1 = 2*node1(i)-1 ;
dof2 = 2*node1(i);
dof3 = 2*node2(i)-1;
dof4 = 2*node2(i);

k(dof1,dof1) = k(dof1,dof1)+
k(dof2,dof1) = k(dof2,dof1)+
k(dof3,dof1) = k(dof3,dof1)+
k(dof4,dof1) = k(dof4,dof1)+

k(dof1,dof2) = k(dof1,dof2)+
k(dof2,dof2) = k(dof2,dof2)+
k(dof3,dof2) = k(dof3,dof2)+
k(dof4,dof2) = k(dof4,dof2)+

k(dof1,dof3) = k(dof1,dof3)+
k(dof2,dof3) = k(dof2,dof3)+
k(dof3,dof3) = k(dof3,dof3)+
k(dof4,dof3) = k(dof4,dof3)+

k(dof1,dof4) = k(dof1,dof4)+
k(dof2,dof4) = k(dof2,dof4)+
k(dof3,dof4) = k(dof3,dof4)+
k(dof4,dof4) = k(dof4,dof4)+

m(dof1,dof1) = m(dof1,dof1)+(mpl/420)*(156*l);
m(dof2,dof1) = m(dof2,dof1)+(mpl/420)*(22*lA2);
m(dof3,dof1) = m(dof3,dof1)+(mpl/420)*(54*l);
m(dof4,dof1) = m(dof4,dof1)+(mpl/420)*(-13*lA2);

m(dof1,dof2) = m(dof1,dof2)+(mpl/420)*(22*lA2);
m(dof2,dof2) = m(dof2,dof2)+(mpl/420)*(4*lA3);
m(dof3,dof2) = m(dof3,dof2)+(mpl/420)*(13*lA2);
m(dof4,dof2) = m(dof4,dof2)+(mpl/420)*(-3*lA3);

m(dof1,dof3) = m(dof1,dof3)+(mpl/420)*(54*l);
________________m(dof2,dof3) = m(dof2,dof3)+(mpl/420)*(13*lA2);

12*е*Ил3);
6*E*I/lA2);
-12* E*I/lA3);
6*E*I/lA2);

6*E*I/lA2);
4*E* I/l);
-6*E*I/lA2);
2*E*I/l);

-12*E*I/lA3);
-6*E*I/lA2);
12*E*I/lA3);
-6*E*I/lA2);

6*E*I/lA2);
2*E*I/l);
-6*E*I/lA2);
4* E* I/l);

© 2001 by Chapman & Hall/CRC

m(dof3,dof3) = m(dof3,dof3)+(mpl/420)*(156*l);
m(dof4,dof3) = m(dof4,dof3)+(mpl/420)*(-22*lA2);

m(dof1,dof4) = m(dof1,dof4)+(mpl/420)*(-13*lA2);
m(dof2,dof4) = m(dof2,dof4)+(mpl/420)*(-3*lA3);
m(dof3,dof4) = m(dof3,dof4)+(mpl/420)*(-22*lA2);
m(dof4,dof4) = m(dof4,dof4)+(mpl/420)*(4*lA3);

end

% now that stiffness and mass matrices are defined for all dof s, including
% constrained dof s, need to delete rows and columns of the matrices that
% correspond to constrained dofs, in the left-to-right case, the first two
% rows and columns

k(1:2,:) = []; % translation/rotation of node 1
k(:,1:2) = [];

m(1:2,:) = [];
m(:,1:2) = [];

if guyan == 1

% Guyan Reduction - reduce out the rotation dofs, leaving displacement dofs
% re-order the matrices

% re-order the columns of k

kr = zeros(2*(mnu-1));

krr = zeros(2*(mnu-1));

% rearrange columns, rotation and then displacement dofs

mkrcolcnt = 0;

for mkcolcnt = 2:2:2*(mnu-1)

mkrcolcnt = mkrcolcnt + 1;

kr(:,mkrcolcnt) = k(:,mkcolcnt);

mr(:,mkrcolcnt) = m(:,mkcolcnt);

end

mkrcolcnt = num_elements;

for mkcolcnt = 1:2:2*(mnu-1)

mkrcolcnt = mkrcolcnt + 1;

kr(:,mkrcolcnt) = k(:,mkcolcnt);

mr(:,mkrcolcnt) = m(:,mkcolcnt);

© 2001 by Chapman & Hall/CRC

end

% rearrange rows, rotation and then displacement dofs

mkrrowcnt = 0;

for mkrowcnt = 2:2:2*(mnu-1)

mkrrowcnt = mkrrowcnt + 1;

krr(mkrrowcnt,:) = kr(mkrowcnt,:);

mrr(mkrrowcnt,:) = mr(mkrowcnt,:);

end

mkrrowcnt = num_elements;

for mkrowcnt = 1:2:2*(mnu-1)

mkrrowcnt = mkrrowcnt + 1;

krr(mkrrowcnt,:) = kr(mkrowcnt,:);

mrr(mkrrowcnt,:) = mr(mkrowcnt,:);

end

% define sub-matrices and transformation matrix T

kaa = krr(1:num_elements, 1 :num_elements);

kab = krr(1:num_elements,num_elements+1:2*num_elements);

T = [-inv(kaa)*kab
eye(num_elements,num_elements)]

% calculate reduced mass and stiffness matrices

kbb = T'*krr*T

mbb = T'*mrr*T

else

kbb = k;

mbb = m;

end

% define the number of dof for state-space version, 2 times dof left after
% removing constrained dofs

© 2001 by Chapman & Hall/CRC

[dof,dof] = size(kbb);

ssdof = 2*dof;

aud = zeros(ssdof); % creates a ssdof x ssdof null matrix

% divide the negative of the stiffness matrix by the mass matrix

ksm = inv(mbb)*(-kbb);

% now expand to state space size
% fill out unit values in mass and stiffness matrices

for row = 1:2:ssdof

aud(row,row+1) = 1;

end

% fill out mass and stiffness terms from m and k

for row = 2:2:ssdof

for col = 2:2:ssdof

aud(row,col-1) = ksm(row/2,col/2);

end

end

% calculate the eigenvalues/eigenvectors of the undamped matrix for plotting
% and for calculating the damping matrix c

[evec1,evalu] = eig(aud);

evalud = diag(evalu);

evaludhz = evalud/(2*pi);

num_modes = length(evalud)/2;

% now reorder the eigenvalues and eigenvectors from low to high freq

[evalorder,indexhz] = sort(abs((evalud)));

for cnt = 1:length(evalud)

eval(cnt,1) = evalud(indexhz(cnt));

evalhzr(cnt,1) = round(evaludhz(indexhz(cnt)));

evec(:,cnt) = evec1(:,indexhz(cnt));

% define the sizes of mass and stiffness matrices for state-space

© 2001 by Chapman & Hall/CRC

end

% now check for any imaginary eigenvectors and convert to real

for cnt = 1:length(evalud)

if (imag(evec(1,cnt)) & imag(evec(3,cnt)) & imag(evec(5,cnt))) ~= 0

evec(:,cnt) = imag(evec(:,cnt));

else

end

end

if guyan == 0

% now separate the displacement and rotations in the eigenvectors
% for plotting mode shapes

evec_disp = zeros(ceil(dof/2),ssdof);

rownew = 0;

for row = 1:4:ssdof

rownew = rownew+1;

evec_disp(rownew,:) = evec(row,:);

end

evec_rotation = zeros(ceil(dof/2),ssdof);

rownew = 0;

for row = 3:4:ssdof

rownew = rownew+1;

evec_rotation(rownew,:) = evec(row,:);

end

else

evec_disp = zeros(ceil(dof/4),ssdof);

rownew = 0;

for row = 1:2:ssdof

rownew = rownew+1;

© 2001 by Chapman & Hall/CRC

end

end

% normalize the displacement eigenvectors wrt one for plotting

for col = 1:ssdof

evec_disp(:,col) = evec_disp(:,col)/max(abs(real(evec_disp(:,col))));

if evec_disp(floor(dof/2),col) >= 0

evec_disp(:,col) = -evec_disp(:,col);

else
end

end

% list eigenvalues, hz

format long e

evaludhz_list = sort(evaludhz(1:2:2*num_modes))

format short

% list displacement (not velocity) eigenvectors

evec_disp(:, 1:2:2*num_plot)

if guyan == 0

% plot mode shapes

for mode_cnt = 1:num_plot

evec_cnt = 2*mode_cnt -1;

plot(lvec,[0; evec_disp(:,evec_cnt)],'ko-')
title(['Cantilever Beam, Mode ', ...

num2str(mode_cnt),': ',num2str(abs(evalhzr(evec_cnt))),' hz']);
xlabel('Distance From Built-In End')
ylabel('Normalized Y-Displacement')
axis([0 lbeam -1.5 1.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

end

else

evec_disp(rownew,:) = evec(row,:);

© 2001 by Chapman & Hall/CRC

% plot mode shapes, Guyan Reduced

for mode_cnt = 1:num_plot

evec_cnt = 2*mode_cnt -1;

plot(lvec,[0; evec_disp(:,evec_cnt)],'ko-')
title(['Cantilever Beam, Mode ', ...

num2str(mode_cnt),': ',num2str(abs(evalhzr(evec_cnt))),' hz']);
xlabel('Distance From Built-In End')
ylabel('Normalized Y-Displacement')
axis([0 lbeam -1.5 1.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

end

end

% normalization with respect to mass on a filled (not diagonal) mass matrix

% calculate the displacement (displacement and rotation) eigenvectors
% to be used for the modal model eigenvectors

xm = zeros(dof);

col = 0;

for mode = 1:2:ssdof

col = col + 1;

row = 0;

for ndof = 1:2:ssdof

row = row + 1;

xm(row,col) = evec(ndof,mode);

end

end

% normalize with respect to mass

for mode = 1:dof

xn(:,mode) = xm(:,mode)/sqrt(xm(:,mode)'*mbb*xm(:,mode));

end

% calculate the normalized mass and stiffness matrices for checking

© 2001 by Chapman & Hall/CRC

mm = xn'*mbb*xn;

km = xn'*kbb*xn;

% check that the sqrt of diagonal elements of km are eigenvalues

p = (diag(km)).A0.5;

row = 0;

for cnt = 1:2:ssdof

row = row + 1;

evalrad(row) = abs((eval(cnt)));

end

[p evalrad']/(2*pi)

evalhz = evalrad/(2*pi);

semilogy(evalhz)
title('Resonant Frequencies, Hz')
xlabel('Mode Number')
ylabel('Frequency, hz')
grid
disp('execution paused to display figure, "enter" to continue'); pause

14.12 AN SYS Code can tbeam .inp L isting

/title, cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10 elements

/prep7

et,1,4 ! element type for beam

! steel

ex,1,190e6 ! mN/mmA2
dens,1,7.83e-6 ! kg/mmA3
nuxy,1,.293

! real value to define beam characteristics

r,1,0.4,0.1333,0.0013333,0.2,2 ! area, Izz, Iyy, TKz, TKy

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1 ! color by material

© 2001 by Chapman & Hall/CRC

/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all, 1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0
n, 11,20,0,0

! left-hand node
! right-hand node

fill,1,11 ! interior nodes

nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,10,1,-1

! constrain left-hand end

d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's
! this will give 10 nodes, node 2 through node 11, each with 2 dof, giving a total of 20 dof
! can calculate a maximum of 20 eigenvalues if don't use Guyan reduction to reduce size of
! eigenvalue problem, maximum of 10 eigenvalues if use Guyan reduction

nall
nsel,s,node,,2,11
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

allsel
nplo
eplo

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,11
m,all,uz

antype,modal,new

© 2001 by Chapman & Hall/CRC

modopt,reduc,10
expass,off
mxpand,10,,,no
total,10,1

! method - reduced Householder, number of modes to extract
! key = off, no expansion pass, key = on, do expansion
! nummodes to expand
! total masters, 10 to be used, exclude rotational dofs

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

set,1,1

pldi,1

! ***************** ** output frequencies **********************

/output,cantbeam,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ***************** output eigenvectors *****************

! define nodes for output: forces applied or output displacements

nall
!nsel,s,node,,11 ! cantilever tip

/output,cantbeam,eig ! write out eigenvectors to ascii file .eig

*do,i,1,10
set,,i
prdisp

*enddo

/output,term
plot modes ******************

! pldi plots

/show,cantbeam,grp,0
allsel

/view,1,,-1,,
/angle,1,0
/auto

! side view for plotting

*do,i,1,10

© 2001 by Chapman & Hall/CRC

pldi
*enddo

/show,term

set,1,i

Problem

P14.1 M odify the can tbeam _guyan .m code to allow variab le m aterial and
geometry properties along the beam by converting the follow ing scalar
quantities into user defined vector quantities: wbeam, tbeam, E, density.

Run the modified code for a 20mm long beam with the twice the default values
for the left half of the beam and the default parameters for the right-hand side.
Plot eigenvalues in hz versus mode number. Plot the first five mode shapes.

© 2001 by Chapman & Hall/CRC

CHAPTER 15

SISO STATE SPACE MATLAB MODEL FROM ANSYS
MODEL

15.1 Introduction

This chapter w ill develop a SISO state space MATLAB model from an
AN SYS cantilever beam model. The cantilever is admittedly a trivial
exam ple, but like the tdof model used in the first part of the book, w ill serve as
a good model to develop a fundamental understanding of the process. As we
are going through the simple cantilever example we should be thinking about
applying the process to a model of an actual device, for example a complete
model of a disk drive, with hundreds of thousands of nodes and up to hundreds
of modes in the frequency range of interest. Our objective for the model w ill
be to provide the smallest M ATLAB state space model that accurately
represents the pertinent dynamics.

The model cantilever is shown in Figure 15.1. It is a 2mm wide by 0.075mm
thick by 20mm long steel beam. The coordinate system is indicated on the
figure. A z direction force is applied at the midpoint of the beam and z
displacement at the tip is the output. Only x-z plane motion is allowed; all
other degrees of freedom are constrained.

Figure 15.1: Cantilever beam with forcing function at midpoint.

W e w ill begin by analyzing the major issues a ll finite element analysts face
when setting up a m odel: defining the number of elements to use and
calculating the effects of Guyan reduction, if used. W e w ill analyze the
cantilever with different numbers of elements. W e w ill also analyze with and

© 2001 by Chapman & Hall/CRC

without Guyan reduction and compare the resulting resonant frequencies with
theoretical results. Knowing the frequency range of interest for the model,
typ ica lly defined by servo bandwidth considerations, we w ill define a model
(number of elements) that accurately predicts eigenvalues in the range of
interest. In this theoretical example we have the luxury of knowing the exact
values for the eigenvalues. However, in real life problems, we know that a
finite element model is accurate only if we build another model with finer
resolution and compare results, and/or have good experimental mode shape
data with which to compare.

W hile Guyan reduction prior to conducting an eigenvalue analysis has been in
the m ain replaced by the B lock Lanczos eigenvalue extraction method, Guyan
reduction w ill be presented because it is still used in creating “superelements”
for large models (which are then solved using B lock Lanczos) and is also used
in correlating finite element and experimental model models.

For some problems, the time to perform frequency response calculations using
B lock Lanczos is of the same order of time as the eigenvalue extraction, which
makes using M ATLAB for state space frequency response models an efficient
adjunct to AN SYS. W e w ill review how to have M ATLAB build a state space
model given only the eigenvalues and required eigenvector information
(eigenvector entries for all modes for only input and output degrees of
freedom). This technique w ill be used for all follow ing models, in conjunction
with various mode elimination/truncation techniques.

The problem to be solved in this chapter is : Determine the smallest state space
model which accurately constructs the frequency response characteristics
through a given frequency range. W e w ill assume for our problem that the
servo system requires a ll significant modes through 20khz be included. The
servo system w ill apply inputs in the z direction at the node located at the mid­
length of the cantilever, with z direction displacement of the tip being the
output.

The first step in defining the smallest model is to define the eigenvector
elements for all modes for only the input and output degrees of freedom. The
second step is to analyze the modal contributions of all the modes and sort
them to define which ones have the greatest contribution.

One method for reducing the size of a modal model is to simply truncate the
higher frequency modes. If this truncation is performed without understanding
the contributions of each of the modes to the response, several problems could
arise. One problem is that a high frequency mode that could alias to a lower
frequency in a sampled servo system may be missed. Another hazard with
arbitrarily truncating higher frequency modes is that a mode with a significant

© 2001 by Chapman & Hall/CRC

dc gain contribution may be elim inated, adversely affecting the model.
Typically the contributions of modes decrease as their frequencies increase;
however, this is not alw ays the case. In Chapter 16 we w ill see a cantilever
model with an additional tip mass and a tip spring all mounted on a “shaker”
base. It is used as an example of how excluding a specific higher frequency
mode can result in a model with less than desired accuracy.

15.2 AN SYS E igenvalue E xtraction M ethods

A N SY S has a number of different eigenvalue extraction techniques, but for
most problems only two methods are commonly used. The first method,
B lock Lanczos, is the fastest and calculates a ll the eigenvalues or eigenvalues
in a specific frequency range. Most practical models require knowledge of the
modes from dc through a specified higher frequency.

The second method, Reduced, performs a Guyan reduction on the model to
reduce its size, then calculates all the eigenvalues for the reduced model. A ll
of the “master” degree of freedom eigenvector components are available
imm ediately for use. Obtaining eigenvector components for the reduced
degrees of freedom requires an additional calculation step in ANSYS.

For very large models, B lock Lanczos has shown to be significantly faster than
the Reduced method. If M ATLAB state space models are used to calculate
frequency responses using B lock Lanczos results the total time to get model
results can be quite satisfactory. T ypically, the Reduced method is used only
for sm all- to medium-size problems.

15.3 C an tilev er M odel, AN SYS Code can tbeam _ss.inp , M A T LA B Code
cantbeam _ss_freq.m

The AN SYS code can tbeam _ss.inp , listed in Section 15.7, is designed to
allow the user to easily change the number of elements “num_elem” as w ell as
the eigenvalue extraction technique “eigext.”

The model was run for 2, 4, 6, 8, 10, 12, 16, 32 and 64 elements for both
eigenvalue extraction methods. The Lanczos method resulted in tw ice the
number of eigenvalues as the Reduced method because both translations and
rotations are degrees of freedom for Lanczos, while the Reduced method has
the rotations reduced out.

For those interested, the M ATLAB code cantbeam _ss_freq .m plots the
results of the AN SYS runs along with the theoretical frequencies for up to the
first 16 modes (Chang 1969).

© 2001 by Chapman & Hall/CRC

Figures 15.2 and 15.3 show the percentage frequency differences between the
first 10 modes of the AN SYS B lock Lanczos and Reduced runs and the
theoretical prediction.

The maximum frequency difference for the B lock Lanczos method is 2% and
for the Reduced method it is 5%. For the frequency range of interest in our
problem, 20 khz, the maximum frequency errors are 1% and 3%, which is
deemed satisfactory. W e w ill use the 10-element model with the Reduced
method for the rest of the chapter. Real life models w ill have greater
deviations because they have imperfect geometry, joints and connections to
ground which are difficult to model accurately, and variations in m aterial and
mass properties.

mode number

Figure 15.2: Percent resonant frequency differences between 10-element Block Lanczos
ANSYS model and theoretical versus mode number.

© 2001 by Chapman & Hall/CRC

percent frequency differences between Lanczos 10 element and theoretical models
10 E----------- ,-------,....................... t------------- ,-------,....................... (------------- ,-------,....................... л

resonant frequency, theoretical model

Figure 15.3: Percent resonant frequency differences between 10-element Block Lanczos
ANSYS model and theoretical versus frequency.

15.4 AN SYS 10-elem ent M odel E igenvalue/E igenvector Sum m ary

***** INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 149.20 1 1 1
2 935.05 1 2 2
3 2619.0 1 3 3
4 5138.4 1 4 4
5 8521.2 1 5 5
6 12820. 1 6 6
7 18152. 1 7 7
8 24677. 1 8 8
9 32229. 1 9 9
10 39191. 1 10 10

Table 15.1: Frequency listing from cantbeam10red.frq file — frequencies for all 10 modes,
hz.

In Table 15.2 we can see the eigenvector listing for the first two modes from
the edited cantbeam10red.eig file , which contains information for a ll nodes for
all 10 modes. As discussed in Section 7.4.2, AN SYS normalizes eigenvectors
with respect to mass by default. S ince our problem has input applied at the
m iddle node (node 7), and output at the tip node (node 11), only those two
nodes are required for the M ATLAB model. W e can choose to use AN SYS to
output only the eigenvectors for nodes 7 and 11 or we can input the complete

© 2001 by Chapman & Hall/CRC

modal matrix below in M ATLAB and choose the appropriate rows of data
within M ATLAB.

SET COMMAND GOT LOAD STEP=
1

1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 149.20
TITLE= cantbeam, 10, red

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *** **

LOAD STEP= 1 SUBSTEP= 1
FREQ= 149.20 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 6.9217 0.0000 -6.7553 0.0000
3 0.0000 0.0000 26.357 0.0000 -12.514 0.0000
4 0.0000 0.0000 56.320 0.0000 -17.287 0.0000
5 0.0000 0.0000 94.863 0.0000 -21.099 0.0000
6 0.0000 0.0000 140.11 0.0000 -23.997 0.0000
7 0.0000 0.0000 190.29 0.0000 -26.054 0.0000
8 0.0000 0.0000 243.83 0.0000 -27.371 0.0000
9 0.0000 0.0000 299.37 0.0000 -28.085 0.0000
10 0.0000 0.0000 355.87 0.0000 -28.358 0.0000
11 0.0000 0.0000 412.66 0.0000 -28.407 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 412.66 0.0000 -28.407 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *** **

LOAD STEP= 1 SUBSTEP= 2
FREQ= 935.05 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 -38.227 0.0000 34.605 0.0000
3 0.0000 0.0000 -124.24 0.0000 47.942 0.0000
4 0.0000 0.0000 -217.13 0.0000 41.980 0.0000
5 0.0000 0.0000 -282.06 0.0000 20.864 0.0000
6 0.0000 0.0000 -294.52 0.0000 -9.3483 0.0000
7 0.0000 0.0000 -243.27 0.0000 -41.660 0.0000
8 0.0000 0.0000 -130.84 0.0000 -69.535 0.0000
9 0.0000 0.0000 28.911 0.0000 -88.467 0.0000
10 0.0000 0.0000 216.16 0.0000 -97.088 0.0000

© 2001 by Chapman & Hall/CRC

11 0.0000 0.0000 412.70 0.0000 -98.864 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 412.70 0.0000 -98.864 0.0000

Table 15.2: Eigenvector listing for first two modes from the edited cantbeam10red.eig file.

15.5 M o dal M a tr ix

The AN SYS output file cantbeam10red.eig can be sorted for only the UZ
component for a ll 10 modes and put into a modal matrix form using
ext56uz.m (see Appendix 1 for usage), as shown in Table 15.3. Each of the
10 columns in Table 5.3 represents the eigenvector for that mode, normalized
with respect to mass. Compare the first two columns below with the bold
“UZ” entries in the eigenvector listings in Table 15.2.

Columns 1through 7

0 0 0 0 0 0 0
6.9217 -38.2270 94.1860 -159.3800 223.8100 -279.2100 320.1800

26.3570 -124.2400 249.6400 -311.9600 274.3700 -141.0000 -47.3120
56.3200 -217.1300 312.2800 -179.4100 -88.5050 283.0200 -246.1700
94.8630 -282.0600 217.1400 130.8000 -289.9000 45.1810 273.9500

140.1100 -294.5200 8.0768 292.6500 1.1237 -298.4100 -1.2392
190.2900 -243.2700 -195.6800 134.8400 291.6800 48.3890 -272.6900
243.8300 -130.8400 -271.4700 -164.7400 93.0350 284.4600 248.4900
299.3700 28.9110 -162.9800 -266.0000 -250.3900 -130.1600 52.2360
355.8700 216.1600 94.5080 -20.9260 -121.0900 -202.6200 -264.3300
412.6600 412.7000 413.1400 414.9000 419.7700 430.4900 449.0700

Columns 8 through 10

0 0 0
-341.5400 326.0200 223.4200
230.8300 -338.9500 -276.3500

-4.9143 283.7200 323.0000
-225.7900 -156.5300 -350.7100
320.6200 -9.8888 357.9400
-222.7800 173.8500 -344.2300

-8.8232 -294.1600 310.4200
237.8700 342.2200 -259.2800
-302.0500 -291.4900 187.8300
467.0400 439.1200 -282.9400

Table 15.3: Eigenvectors for UZ component of cantbeam10red.eig file.

The 11 rows represent the normalized displacements for the 11 nodes, starting
with node 1 at the built-in end and node 11 at the tip. Editing the modal

© 2001 by Chapman & Hall/CRC

matrix to use only the required degrees of freedom (nodes 7 and 11) w ill take
place in M ATLAB.

15.6 M A T LA B S tate Space M odel from AN SYS E igenvalue R un -
cantbeam _ss_m odred.m

In this section we w ill create a MATLAB state space model using the
eigenvalue and eigenvector results from the previous AN SYS run. W e
discussed in Section 7 .9 how to decrease the size of the model by including
only degrees of freedom actually used in the particular frequency response or
time domain calculations. The new m aterial deals with how to ra n k the
re la tiv e im portance of the contributions of each of the in d iv id u a l modes.
In this chapter, we w ill use a ran k in g of dc ga in s of individual modes to
select the modes to be used.

Once the modes are ranked, the most important can be selected for use, with
modes with lower dc gains (typ ica lly , but not alw ays, the higher frequency
modes) elim inated from the model. When these modes are elim inated from
the model their dc gain contributions are not included in the overall dc gain, so
there is error in the low frequency gain. In order to elim inate this error, the
M ATLAB function “modred” is introduced and the theory behind the code is
discussed. U sing “modred” is analogous to using Guyan reduction to reduce
some less important degrees of freedom, in that assumptions are made about
some modes being more important than others. This allows reducing the size
of the problem to that of the “important” modes, while adjusting the overall dc
gain to account for the dc gains of the elim inated modes.

W e w ill find that the simple cantilever beam used for an example in this
chapter is not very sensitive to the elim ination of higher frequency modes.
Including a few modes is sufficient for creating a state space model with good
accuracy for both frequency response and step response. Whether “modred” is
used is not critical for this example. However, we w ill see that the example in
the next chapter is extremely sensitive to dc gain , and w ill serve as a good
model of the benefits of selecting modes to be elim inated judiciously or by
using “modred.”

Once the model is created, we w ill solve for frequency response and step
response using various combinations of truncating and sorting modes.

The M ATLAB code cantbeam _ss_m odred.m w ill be discussed and listed in
detail in the following sections.

© 2001 by Chapman & Hall/CRC

15.6.1 Input

The code in this section asks the user to define how many elements w ill be
used for the analysis. AN SYS runs have been made for 2, 4, 6, 8, 10, 12, 16,
32 and 64 elements. The AN SYS eigenvector results for each have been
stripped out of the AN SYS format and put into frequency vector, “freqvec,”
and modal matrix, “evr,” form and stored as M ATLAB .mat files.

% cantbeam_ss_modred.m

clear all;

hold off;

clf;

% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu('choose which finite element model to use ... ', ...
'2 beam elements', ...
'4 beam elements', ...
'6 beam elements', ...
'8 beam elements', ...
'10 beam elements', ...
'12 beam elements', ...
'16 beam elements', ...
'32 beam elements', ...
'64 beam elements');

if model == 1
load cantbeam2red;

elseif model == 2
load cantbeam4red;

elseif model == 3
load cantbeam6red;

elseif model == 4
load cantbeam8red;

elseif model == 5
load cantbeam 10red;

elseif model == 6
load cantbeam 12red;

elseif model == 7
load cantbeam 16red;

elseif model == 8
load cantbeam32red;

elseif model == 9
load cantbeam64red;

end

© 2001 by Chapman & Hall/CRC

The code below checks the size of the modal matrix, where the number of
rows indicates how many degrees of freedom are used and the number of
columns indicates the number of modes. Since all of the models have an even
number of elements, there is alw ays a node at the midpoint of the beam and it
is possible to define which row of the modal matrix corresponds to that m iddle
node. The modal matrix row which corresponds to the tip is the last degree of
freedom in the m atrix. The code also defines a new variable, “xn,” the
normalized modal m atrix.

15.6.2 Defining Degrees of Freedom and Number of Modes

% define the number of degrees of freedom and number of modes from size
% of modal matrix

[numdof,num modes total] = size(evr);

% define rows for middle and tip nodes

mid node row = 0.5*(numdof-1)+1;

tip node row = numdof;

xn = evr;

15.6.3 So rting M odes by dc G ain and P eak G ain , Selecting M odes Used

The next step in creating the model is to sort modes of vibration so that only
the most important modes are kept. W e w ill discuss in this section two
methods of sorting, one which is applicable for models with the same value of
damping for all modes, Zi = Z = constant (“uniform” damping), and another
which is applicable for models with different damping values for each mode
(“non-uniform” damping).

Repeating from (8.54a,b) the general equation for the overall transfer function
of undamped and damped system s:

z m z znji nki
F = - s2 + ю2

(15.1a,b)
z m z z^j _ ^ nji nki
Fk — s2 + 2Zirnis + ю2

This equation shows that in general every transfer function is made up of
additive combinations of single degree of freedom systems, with each system

© 2001 by Chapman & Hall/CRC

having its residue determined by the appropriate input/output eigenvector
entries, z njiznki, and with resonant frequency defined by the eigenvalue, ю; .

Substituting s = jra = j0 = 0 to obtain the ith mode frequency response at dc,

the dc gain , which is the same for the undamped and damped cases is:

z- z -z , ■ji nji nki
ffl:

(15.2)
Fki

where znjiznki is the product of the jth (output) row and kth (force applied)

row terms of the ith eigenvector divided by the square of the eigenvalue for the
ith mode.

At resonance, the p eak gain amplitude of each mode is given by substituting
s = j Ю;, s2 = -ff>2 into (15.1b):

Fki s2 + 2Z fflis + ю2

—ю2 + 2Z; ю2 j + ю2

z -z ,■nji nki

2Zi Ю j

- j znjiznki

2Zi ю2

—j f znjiznki

— j
2 -т (d c garn)

(15.3)

Comparing (15.2) and (15.3) it is evident that the relationship between the dc
gain and peak gain for a mode is that the dc gain term is divided by 2Z and

multiplied by “ —j ,” which gives a —90° phase shift at resonance. Since Z
values for m echanical structures are typ ica lly small, a few percent of critical
damping, 2Z is a small number, which serves to amplify the response by
virtue of the division, thus the resonant “peak” in the response.

If the same value of Z is used for all modes, then all the dc gain terms are
divided by the same 2Z terms and the relative amplitudes of the dc gains and

© 2001 by Chapman & Hall/CRC

peak gains are the same, so there is no difference between sorting a uniform
damping model using dc gain or peak gain.

However, if the modes have different damping the relationship between the dc
gain and peak gain for a ll the modes is not a constant 1/2Z value and peak
gain must be used to rank modes for importance. In this case, the M ATLAB
damping parameter “zeta” would not be a scalar but would be a vector with
entries corresponding to damping in each mode.

W e w ill use dc gain to rank the relative importance o f the modes until Chapter
18, where a technique named “balanced reduction” w ill be introduced. The
code shown below, and throughout the book, is eas ily modified to sort for
peak gain instead of dc gain using (15 .3) instead o f (15 .2) and entering a
vector of damping values instead of a scalar.

The code below carries out the calculation of the dc gain and sorts from
smallest to largest, keeping track of the new column locations in “index_sort.”
It then uses the “fliplr” command to list them from largest to smallest, so that
the first mode has the highest dc gain. Various plots are then shown to
indicate the relative importance o f each mode. After plotting the dc gains, the
user is asked to define the number o f modes to be used in the frequency
response, from 1 to all the available modes.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

dc_gain = abs(xn(mid_node_row,:).*xn(tip_node_row,:))./omega2;

[dc_gain_sort,index_sort] = sort(dc_gain);

dc_gain_sort = fliplr(dc_gain_sort);

index_sort = fliplr(index_sort)

dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;

semilogy(index_orig,freqvec,'k-');
title('frequency versus mode number')
xlabel('mode number')
ylabel('frequency, hz')
grid
pause

semilogy(index_orig,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus mode number')

© 2001 by Chapman & Hall/CRC

xlabel('mode number')
ylabel('dc value')
grid off
pause

loglog(freqvec,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')
ylabel('dc value')
grid off
pause

semilogy(index_orig,dc_gain_sort,'k-')
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')
ylabel('sorted dc value')
grid off
pause

num_modes_used = input(['enter how many modes to include ...
, ',num2str(num_modes_total),' default, max ... ']);

if (isempty(num_modes_used))
num_modes_used = num_modes_total;

end

The first step in any finite element analysis is to understand the resonant
frequencies of the model and how they relate to the frequency range of interest
for the problem at hand.

mode number

Figure 15.4: Resonant frequency versus mode number.

© 2001 by Chapman & Hall/CRC

Figure 15.4 shows that modes 8, 9 and 10 have frequencies higher than the
required 20 khz required by the problem, so our model should be adequate.

dc value o f each mode contribution versus mode number

mode number

Figure 15.5: dc value of each mode contribution versus mode number.

Figure 15.5 shows the dc gain values for a ll the modes plotted versus mode
number. It is interesting that the low values for modes 3, 5, 7 and 9
correspond to small values of the midpoint node elements of the respective
eigenvectors (see the bold highlighted entries in columns 3, 5, 7 and 9 in Table
15.3) . This means that the midpoint is nearly a “node” for those modes.
A gain, a “node” for a mode refers not to the number of the end point of the
element but a location along the beam where the displacement is zero for a
particular mode of vibration.

© 2001 by Chapman & Hall/CRC

frequency, hz

Figure 15.6: dc Value of each mode contribution versus resonant frequency.

Figure 15.6 shows dc gain versus frequency of the mode. Note that there is a
general trend for lower gains as frequency increases. This is not alw ays the
case, as we shall see in Chapter 16.

sorted dc value of each mode versus number of modes included

modes included

Figure 15.7: Sorted dc value of each mode versus number of modes included.

Figure 15.7 shows the sorted values for the dc gains, from largest to smallest.
The list of mode numbers after sorting is given by “index_sort” below. The
ordering can be seen in the dc value versus mode number plot in Figure 15.5.

© 2001 by Chapman & Hall/CRC

index sort = 1 2 4 6 3 8 10 5 9 7

15.6.4 D am ping, D efining R educed F requencies and M o d a l M atrices

The section below asks for the damping value and whether to use the original
ordering of modes or the modes sorted by dc gain. At this point, three
different sets of modal matrices and eigenvalue vectors w ill be defined. The
first set uses a ll the modes and frequencies and keeps them in their original,
unsorted order. This set w ill be used to calculate frequency and step responses
of the non-reduced model for comparison. The second set uses only the
“num_modes_used” number of modes and keeps them in their original,
unsorted order. This set w ill be used to see the effects of a simple truncation
of higher frequency modes without sorting or ranking. The third set again uses
the “num_modes_used” number of modes but includes only the modes with
the highest dc gains. W e w ill calculate frequency response and transient
response results for both of the reduced cases and compare results with the “all
modes included” case. The two reduced models are denoted with the
“_nosort” and “_sort” suffixes throughout the code. W e w ill see that because
the dc gain values for this model generally decrease with frequency, the sorted
and unsorted models w ill give almost the same results. The example in the
next chapter, however, w ill not have this property.

zeta = input('enter value for damping, .02 is 2% of critical (default) ... ');

if (isempty(zeta))
zeta = .02;

end

% all modes included model, use original order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total));

% reduced, no sorting, just use the first num_modes_used modes in xnnew_nosort

xnnew_nosort = xn(:,1:num_modes_used);

freqnew_nosort = freqvec(1:num_modes_used);

% reduced, sorting, use the first num_modes_used sorted modes in xnnew_sort

xnnew_sort = xn(:,index_sort(1:num_modes_used));

freqnew_sort = freqvec(index_sort(1:num_modes_used));

© 2001 by Chapman & Hall/CRC

15.6.5 Setting up System Matrix “a”

The section below sets up three state space system “a” matrices. Since we
know the form of the modal form state space equation from Chapter 10, it can
be built automatically. The general form is given by (15.4). The system
matrix is made up of eigenvalue and damping terms for each mode, and each
mode is a 2x2 submatrix along the diagonal.

x = A x + Bu (15.4)

1 1

x 2

x 3

x 4

0

- ®2
0

0

1

-2Zi®i
0

0

0 0

0 0

0 1

—m2 —2Z 2®2

0

f p 1

0

Fp2
u (15.5)

The first system matrix, “a,” is for the fu ll, non-reduced system and includes
all the modes in their original order. The second is “a_nosort” and has the
reduced size with the original ordering of modes. The third is “a_sort” and
has the reduced number of modes with dc gain ordering.

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.A2;

zw = 2*zeta*w;

% define variables for reduced, nosorted system matrix, a_nosort

w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec

w2_nosort = w_nosort.A2;

zw_nosort = 2*zeta*w_nosort;

% define variables for reduced, sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec

w2_sort = w_sort.A2;

zw_sort = 2*zeta*w_sort;

% define size of system matrix

© 2001 by Chapman & Hall/CRC

asize = 2*num_modes_total;

asize_red = 2*num_modes_used;

disp(' ');
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);
disp(['size of reduced system matrix a is ',num2str(asize_red)]);

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% setup reduced, nosorted "a_nosort" matrix, system matrix

a_nosort = zeros(asize_red);

for col = 2:2:asize_red

row = col-1;

a_nosort(row,col) = 1;

end

for col = 1:2:asize_red

row = col+1;

a_nosort(row,col) = -w2_nosort((col+1)/2);

© 2001 by Chapman & Hall/CRC

end

for col = 2:2:asize_red

row = col;

a_nosort(row,col) = -zw_nosort(col/2);

end

% setup reduced, sorted "a_sort" matrix, system matrix

a_sort = zeros(asize_red);

for col = 2:2:asize_red

row = col-1;

a_sort(row,col) = 1;

end

for col = 1:2:asize_red

row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2);

end

for col = 2:2:asize_red

row = col;

a_sort(row,col) = -zw_sort(col/2);

end

15.6.6 Setting up Input M atrix “ b ”

As with the system matrix above, here we w ill set up three different input
matrices, “b,” “b_nosort” and “b_sort.” W e begin with the force vector in
physical coordinates, with “numdof” rows. The rows are all zeros except for
the “mid_node_row,” which has a value o f 1.0 mN. The force vector in
principal coordinates is obtained by premultiplying by the transpose o f the
modal matrix. The state space form o f the force vector in principal
coordinates is the “numdof x 1” force vector in principal coordinates padded
with zeros to create the same number o f rows as states.

© 2001 by Chapman & Hall/CRC

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(mid_node_row) = 1.0; % input force at node 6, midpoint node

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

% setup input m atrix b, state space forcing function in principal coordinates

b = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_nosort is the vector of forces in principal coordinates

f_principal_nosort = xnnew_nosort'*f_physical;

% b_nosort is the vector of forces in principal coordinates, state space form

b_nosort = zeros(2*num_modes_used,1);

for cnt = 1:num_modes_used

b_nosort(2*cnt) = f_principal_nosort(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form

b_sort = zeros(2*num_modes_used,1);

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

© 2001 by Chapman & Hall/CRC

15.6.7 Setting up Output M atrix “ c” and D irect Transmission
M atrix “ d”

The output matrices below, “ c,” “ c_nosort” and “ c_sort,” are separated into
displacement and velocity matrices, “ cdisp” and “ cvel,” so that they can be
premultiplied by the appropriate modal matrix to obtain vectors o f
displacements and velocities in physical coordinates. With the defined output
displacement and velocity matrices, all displacement and velocity degrees o f
freedom in physical coordinates are available for plotting or further analysis.
Since there is no direct feedthrough on this model, the “ d” matrix is zero.

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% reduced, nosorted cdisp and cvel

for col = 1:2:2*length(freqnew nosort)

for row = 1:numdof

cdisp nosort(row,col) = xnnew nosort(row,ceil(col/2));

cvel nosort(row,col) = 0;

© 2001 by Chapman & Hall/CRC

end

end

for col = 2:2:2*length(freqnew_nosort)

for row = 1:numdof

cdisp_nosort(row,col) = 0;

cvel_nosort(row,col) = xnnew_nosort(row,col/2);

end

end

% reduced, sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort)

for row = 1 :numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort)

for row = 1:numdof

cdisp_sort(row,col) = 0;

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %

© 2001 by Chapman & Hall/CRC

15.6.8 Frequency Range, “ ss” Setup, Bode Calculations

The first part o f this section defines the frequency range to be used for the
frequency responses, logarithmically spaced frequency vectors in units o f hz
and rad/sec. Three “ ss” state space systems are defined for the displacement
o f the tip o f the beam, the non-reduced system, the “nosort” and the “ sort.”
Since “ cdisp” contains information about all the degrees o f freedom, they are
all available for output by defining the appropriate row. The “bode” command
is used to calculate the magnitude and phase vectors over the defined
frequency range, and the magnitudes are converted to db.

% define frequency vector for frequency responses

freqlo = 10;

freqhi = 100000;

flo=log10(freqlo) ;
fhi=log10(freqhi) ;

f=logspace(flo,fhi,200) ;
frad=f*2*pi ;

% take transfer functions, outputting the midpoint and tip node rows of the displacement
% vector cdisp

% define displacement state space system with the "ss" command

sysdisptip = ss(a,b,cdisp(tip_node_row,:),d);

% defined reduced systems using num_modes_used nosort modes

sysdisptip_nosort = ss(a_nosort,b_nosort,cdisp_nosort(tip_node_row,:),d);

% define reduced systems using num_modes_used sorted modes

sysdisptip_sort = ss(a_sort,b_sort,cdisp_sort(tip_node_row,:),d);

% use "bode" command to generate magnitude/phase vectors

[magdisptip,phsdisptip]=bode(sysdisptip,frad) ;

[magdisptip_nosort,phsdisptip_nosort]=bode(sysdisptip_nosort,frad) ;

[magdisptip_sort,phsdisptip_sort]=bode(sysdisptip_sort,frad) ;

% convert magnitude to db

magdisptipdb = 20*log10(magdisptip);

magdisptipdb_nosort = 20*log10(magdisptip_nosort);

© 2001 by Chapman & Hall/CRC

magdisptipdb_sort = 20*log10(magdisptip_sort);

15.6.9 Full M odel - P lotting Frequency Response, Step Response

This section plots the frequency response for tip displacement due to a unit
force at the beam midpoint. It then overlays the contribution o f each
individual mode to the overall response. Since the “ a” matrix consists o f 2x2
submatrices along the diagonal, all we have to do to get the contribution o f
each individual mode is to pull out successive 2x2 individual mode system
matrices. Similarly, we take the appropriate rows and columns o f “b” and
“ cdisp” for each mode. Because o f the systematic form o f the matrices,
M A T L A B can generate the individual mode matrices automatically. To
facilitate comparison with the dc gain values calculated for all the modes (and
used in their sorting), an “ o” is plotted along the left-hand axis for each
individual mode. Because the magnitude axis is in db units, the individual
contributions cannot be combined graphically like with a linear magnitude axis
as shown in Chapter 6. Nevertheless, using the overlaid plots to get a mental
image o f the combining modes is valuable.

For the unit force step response, a time vector, “ t” and input vector “u” are
defined for use with the M A T L A B function “ lsim.”

% start plotting

if num_modes_used == num_modes_total

% plot all modes included response

semilogx(f,magdisptipdb(1, :),'k. -')
title(['cantilever tip displacement for mid-length force, all ', ...

num2str(num_modes_used),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, db mm')
grid off
pause

hold on

max_modes_plot = num_modes_total;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a(index-1:index,index-1:index);

bmode = b(index-1:index);

© 2001 by Chapman & Hall/CRC

cmode = cdisp(numdof,index-1:index);

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),'k-')

end

dc_gain_freq = freqlo*ones(size(freqnew));

semilogx(dc_gain_freq(1:num_modes_used),20*log10(dc_gain
(1:num_modes_used)),'ko:')

pause

hold off

% now use lsim to calculate step response to a unit force

ttotal = 0.1;

t = linspace(0,ttotal,200);

u = ones(size(t));

[disptip,ts] = lsim(sysdisptip,u,t);

plot(ts,disptip,'k-')
title(['tip disp for mid-length step force, all ',num2str(num_modes_used), ...

' modes included'])
xlabel('time, sec')
ylabel('displacement, mm')
grid off
pause

© 2001 by Chapman & Hall/CRC

cantilever tip d isplacem ent for mid-length force, all 10 modes included

Frequency, hz

Figure 15.8: Cantilever tip displacement for mid-length force, all 10 modes included.

Figure 15.8 shows the overall frequency response with the overlaid sdof
responses o f all the individual modes for the 10-element model using all 10
available modes. The “ o ’ s” at the 10 hz frequency indicate the values o f dc
gain for each mode. Note that the fifth, seventh and ninth modes have such
low gains that their resonant peaks are barely visible on the overall response.
The third mode has a higher gain, as indicated by the small pole/zero
combination between the second and fourth modes.

tip disp for mid-length step force, all 10 modes included

time, sec

Figure 15.9: Cantilever tip displacement for mid-length force, all 10 modes included.

© 2001 by Chapman & Hall/CRC

Figure 15.9 depicts the response o f the beam tip due to a 1mN step force at the
midpoint. W e w ill be comparing the different modal truncation methods with
this overall response.

15.6.10 Reduced M odels - P lotting Frequency Response, Step Response

The follow ing section o f code does the same thing for the reduced unsorted
and sorted models as the last section did for the full model. In all the plots, the
full model results are overlaid with the reduced model results to show the
differences. In the examples that follow , we w ill use four modes in the
reduced models. The reader is encouraged to run the code using different
numbers o f reduced modes to see the effects on both frequency and time
domain responses.

else

% plot unsorted modal truncation

semilogx(f,magdisptipdb(1, :),'k-',f,magdisptipdb_nosort(1, :),'k. -')
title(['unsorted modal truncation: cantilever tip displacement for mid- .

length force, first ',num2str(num_modes_used),' modes included'])
legend('all modes','unsorted partial modes',3)

dcgain_error_percent_nosort = 100*(magdisptip_nosort(1) ...
magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')
ylabel('Magnitude, db mm')
grid off

pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index);

bmode = b_nosort(index-1:index);

cmode = cdisp_nosort(numdof,index-1:index);

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

© 2001 by Chapman & Hall/CRC

magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),'k-')

end

dc_gain_freq_nosort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq_nosort(1:num_modes_used),20*log10 .
(dc_gain_nosort(1:num_modes_used)),'ko:')

pause

hold off

% plot sorted modal truncation

semilogx(f,magdisptipdb(1,:),'k-',f,magdisptipdb_sort(1,:),'k.-')
title(['sorted modal truncation: cantilever tip displacement for mid-length force, .

first ',num2str(num_modes_used),' modes included'])
legend('all modes','sorted partial modes',3)

dcgain_error_percent_sort = 100*(magdisptip_sort(1) - magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')
ylabel('Magnitude, db mm')
grid off

pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index);

bmode = b_sort(index-1:index);

cmode = cdisp_sort(numdof,index-1:index);

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),'k-')

© 2001 by Chapman & Hall/CRC

end

dc_gain_freq_sort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq_sort(1 :num_modes_used),20*log10 .
(dc_gain_sort(1:num_modes_used)),'ko:')

pause

hold off

% now use lsim to calculate step response to a unit force

ttotal = 0.1;

t = linspace(0,ttotal,200);

u = ones(size(t));

[disptip,ts] = lsim(sysdisptip,u,t);

[disptip_nosort,ts_nosort] = lsim(sysdisptip_nosort,u,t);

[disptip_sort,ts_sort] = lsim(sysdisptip_sort,u,t);

plot(ts,disptip,'k-',ts_nosort,disptip_nosort,'k+-',ts_sort,disptip_sort,'k.-')
title(['tip disp for mid-length step force, first ',num2str(num_modes_used) .

,' modes included'])
legend('all modes','unsorted partial modes','sorted partial modes')
xlabel('time, sec')
ylabel('displacement, mm')
grid off
pause

© 2001 by Chapman & Hall/CRC

15.6.11 Reduced Models - Plotted Results - Four Modes Used

unsorted modal truncation: cantilever tip displacement for mid-length force, first 4 modes included

Frequency, hz

Figure 15.10: Cantilever tip displacement for mid-length force, first four modes included —
unsorted modal truncation.

sorted modal truncation: cantilever tip displacem ent for mid-length force, first 4 modes included

Frequency, hz

Figure 15.11: Cantilever tip displacement for mid-length force, first four modes included -
sorted m odal truncation.

Figure 15.10 depicts overall plus individual mode contributions for the four
unsorted modes model. Note that the first four unsorted modes are used. The
dc gain error relative to the full 10-mode model is +0.024% because the dc

© 2001 by Chapman & Hall/CRC

gain terms for the eliminated modes are not included. Note that the last three
peaks in the “ all modes” response are missed because the modes are not
included.

Figure 15.11 shows overall plus individual mode contributions for the four
sorted modes model. Note that this time the third mode is skipped and the
fifth mode is used instead because it has a higher dc gain. The dc gain error
relative to the full 10-mode model is -0.027%.

tip disp for mid-length step force, first 4 modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

tim e, sec

Figure 15.12: Comparison o f step responses for all m odes included and four modes
included, unsorted and sorted.

Figure 15.12 shows step response for full, reduced unsorted and reduced
sorted models. Because the dc gain for the two models is in error only by a
fraction o f a percent and because the eliminated modes are some 80db (four
orders o f magnitude) lower than the most significant first mode, there is no
discernable difference in the responses o f the full and two reduced models.

15.6.12 M odred Description

The M A T L A B Control System Toolbox has a function, “modred” (M O D el
order REDuction), which can be used for reducing models while retaining the
overall system dc gain. The “mdc” or “Matched D C ” gain option for the
function “modred” reduces defined states by setting the derivatives o f the
states to be eliminated to zero, then solving for the remaining states. The
method essentially sets up the eliminated states to be “ infinitely fast” and is
analogous to Guyan reduction in that the low frequency effects o f the
eliminated states are included in the remaining states. The other option for

© 2001 by Chapman & Hall/CRC

“modred” is the “ del” option, which simply eliminates the defined states,
typically associated with the higher frequency modes.

The derivation o f the “mdc” option follows. W e start with the state space
description o f the system:

x = A x + Bu

y = Cx + Du
(15.6a,b)

Assume that we have a method o f ordering the importance o f the modes
making up the A , B and C matrices, in our case using dc or peak gains. I f we
then rearrange and partition the matrices such that the states corresponding to
the most important modes are separated from the less important modes,
designating the important modes as x r (reduced) and the unimportant modes

to be eliminated as x e , we get

x r

1
rr reA

1

x r _l_ Br '

_x e _ _ A er A ee _ _ xe _ Be _

У = [r Ce + Du

(15.7a,b)

Expanding the matrices:

xr = A rr x r + A re Xe + B ru

x e = A er xr + A ee xe + B eu
(15.8a,b)

Setting the x e states equal to zero in (15.10) is analogous to setting (14.14)

equal to zero in the Guyan reduction process. W e are then, in effect, including
the low frequency dc gain or static equilibrium characteristics o f the
eliminated modes in the reduced modes.

0 = Aerxr + Aeexe + Beu (15.9)

Solving for xe :

xe = - A-1 Aer xr - A-1Beu (15.10)

Substituting back into the xr equation and grouping terms:

© 2001 by Chapman & Hall/CRC

x r = A r r x r + A r e (- A - e A e r x r - A - ^ B e u) + B r u

= (A r r - A r e A - e A e r) r + (B r - A r e A - ' B .) u

(15.11)
r e e e e r / r \ r r e e e e j

Substituting back into the expanded output equations:

y = C r x r + C e x e + D u

= C r x r + C e (- A - 1 A e r x r - A - ' B ; u) + D u (15.12)

= (C r - C a ; ' A e r) r + f D - C e A - ‘ B .) ue e e e r r e e e e

The new matrices for the reduced model become:

A r;d = A r r - A r ; A - ' A ; r

B red = B r - A r ; A - ^ B ;

C r ; d = C r - C ; A - 1 A ; r

D r ; d = D - C ; A - 1 B ;

(15.13a,b,c,d)

The new state equations are:

x red = A r ;d x r ;d + B r ; d u

y red = C r ;d x r ;d + D r ; d u

(15.14a,b)

W e w ill see (Figure 15.14) that the high frequency portion o f the response
when reducing using “modred” does not roll o f f quickly with frequency as we
are used to seeing. Rather, it w ill be “ flat” with frequency. The reason for the

shape o f the “modred” high frequency asymptote is in the D red term in

(15.13d). In many cases, the direct transmission term D is zero. When using

“modred,” however, even i f D is zero, there is still the - C ; A - ^ B ; portion o f

D r;d to contend with. Repeating Figure 5.2 below, we can see the direct

transmission term.

© 2001 by Chapman & Hall/CRC

D irect
T ransm iss ion

M atrix

D

Inpu t M atrix

u(t) -
Inpu t

B J i
In te g ra to r B lock

x(t)

S ystem M atrix

•4-A

O u tp u t M atrix

C f-Ю -► y(t)
O utp u t

-► sca la r

ve c to r

Figure 15.13: State space system block diagram.

A t high frequencies, where the system matrix dynamics start to attenuate, the

-C e A-e Be term o f D red starts to dominate the response - hence the “ flat” high

frequency response in Figure 15.15.

15.6.13 Defining Sorted or Unsorted M odes to be Used

The section o f code below prompts the user to define whether the modes are to
be sorted by dc gain or left in the original order for the “modred” operation.
One argument o f the “modred” command is to define the states to be
eliminated. The states to be eliminated can be defined as a vector o f arbitrary
states or as a continuous partition o f states. W e w ill define them in the code
below as a continuous block o f states, from one index greater than the number
o f states to be kept to the total number o f states. Therefore, i f we sort by dc
gain before using “modred,” we would keep only the most important states. I f
we choose to use the unsorted states, we w ill be eliminating the higher
frequency modes and keeping the lower frequency modes.

% use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred sort = input('modred: enter " 1" to use sorted modes for reduced runs, ...
"enter" to use unsorted ... ');

if isempty(modred sort)
modred sort = 0

end

© 2001 by Chapman & Hall/CRC

if modred_sort == 1 % use sorted mode order

xnnew = xn(:,index_sort(1:num_modes_total));

freqnew = freqvec(index_sort(1:num_modes_total));

else % use original mode order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total));

end

15.6.14 Defining System fo r Reduction

In this section we define a new set o f “ a,” “b,” “ c” and “ d” matrices which w ill
be used with “modred.”

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.>2;

zw = 2*zeta*w;

% define size of system matrix

asize = 2*num modes total;

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

© 2001 by Chapman & Hall/CRC

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(mid_node_row) = 1.0; % input force at node
6,midpoint node

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

© 2001 by Chapman & Hall/CRC

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

15.6.15 M odred Calculations - “ mdc” and “ del”

This section defines a M A T L A B state space, “ ss,” system using either the
unsorted or sorted eigenvectors and eigenvalues from above, and then both the
“mdc” and “ del” options with “modred” to calculate two reduced systems. In
order to be able to plot not only the overall frequency response from the
reduced systems but also the individual mode contributions, we w ill use the
“ ssdata” function in M A T L A B to define the reduced system matrices. In the
next section we w ill use 2x2 submatrices o f the reduced system matrix to
define individual modal contributions. The “bode” command is then used to
generate the magnitude/phase solution vectors, which are converted to db.

% define state space system for reduction, ordered defined by modred_sort

sysdisptip_red = ss(a,b,cdisp(tip_node_row,:),d);

% define reduced matrices using matched dc gain method "mdc"

states_elim = (2*num_modes_used+1):2*num_modes_total;

sysdisptip_mdc = modred(sysdisptip_red,states_elim,'mdc');

[adisptip_mdc,bdisptip_mdc,cdisptip_mdc,ddisptip_mdc] = ssdata(sysdisptip_mdc);

% define reduced matrices by eliminating high frequency states, ‘del

sysdisptip_elim = modred(sysdisptip_red,states_elim,’del’);

[adisptip_elim,bdisptip_elim,cdisptip_elim,ddisptip_elim] = ssdata(sysdisptip_elim);

% use "bode" command to generate magnitude/phase vectors for reduced systems

[magdisptip_mdc,phsdisptip_mdc]=bode(sysdisptip_mdc,frad) ;

[magdisptip_elim,phsdisptip_elim]=bode(sysdisptip_elim,frad) ;

% convert magnitude to db

magdisptip_mdcdb = 20*log10(magdisptip_mdc);

© 2001 by Chapman & Hall/CRC

magdisptip_elimdb = 20*log10(magdisptip_elim);

15.6.16 Reduced M odred M odels - P lotting Commands

This section plots the frequency responses with the individual mode
contribution overlays for both the “mdc” and “ del” options for “modred.” The
only difference between the code here and that o f section 15.6.10 is that the
cmode term goes from 1: instead o f numdof: because we are using the results
o f the “modred” operation to define the reduced system matrix, which has only
one row in cdisptip instead o f numdof rows in cdisp. Once again, “ lsim” is
used to calculate the step response o f the system.

% plot modred using 'elim'

semilogx(f,magdisptipdb(1, :),'k-',f,magdisptip_elimdb(1, :),'k. -')

if modred_sort == 1
title(['reduced elimination: tip disp for mid-length step force, ...

first ',num2str(num_modes_used),' sorted modes included'])
else

title(['reduced elimination: tip disp for mid-length step force, ...
first ',num2str(num_modes_used),' unsorted modes included'])

end

legend('all modes','reduced elim',3)

dcgain_error_percent_sort = 100*(magdisptip_elimdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')
ylabel('Magnitude, db mm')
grid off

pause

hold on

% now plot the overlay of the tip displacement magnitude with each mode contribution

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = adisptip_elim(index-1:index,index-1:index);

bmode = bdisptip_elim(index-1:index);

cmode = cdisptip_elim(1,index-1:index);

© 2001 by Chapman & Hall/CRC

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),'k-')

end

dc_gain_freq_sort = freqlo*ones(size(freqnew_nosort));

pause

hold off

% modred using 'mdc'

semilogx(f,magdisptipdb(1, :),'k-',f,magdisptip_mdcdb(1, :),'k. -')

if modred_sort == 1
title(['reduced matched dc gain: tip disp for mid-length step force, ...

first ',num2str(num_modes_used),' sorted modes included'])
else

title(['reduced matched dc gain: tip disp for mid-length step force, .
first ',num2str(num_modes_used),' unsorted modes included'])

end

legend('all modes','reduced mdc',3)

dcgain_error_percent_nosort = 100*(magdisptip_mdcdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz')
ylabel('Magnitude, db mm')
grid off

pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = adisptip_mdc(index-1:index,index-1:index);

bmode = bdisptip_mdc(index-1:index);

cmode = cdisptip_mdc(1,index-1:index);

© 2001 by Chapman & Hall/CRC

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode);

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;

magdisptip_modedb = 20*log10(magdisptip_mode);

semilogx(f,magdisptip_modedb(1,:),'k-')

end

dc_gain_freq_nosort = freqlo*ones(size(freqnew_nosort));

pause

hold off

% now use lsim to calculate step response to a unit force

[disptip,ts] = lsim(sysdisptip,u,t);

[disptip_elim,ts_elim] = lsim(sysdisptip_elim,u,t);

[disptip_mdc,ts_mdc] = lsim(sysdisptip_mdc,u,t);

plot(ts,disptip,'k-',ts_mdc,disptip_mdc,'k.-',ts_elim,disptip_elim,'k+-')

if modred_sort == 1
title(['modred cantilever tip disp for mid-length step force, .
first ',num2str(num_modes_used),' sorted modes included'])

else
title(['modred cantilever tip disp for mid-length step force .

, first ',num2str(num_modes_used),' unsorted modes included'])
end

legend('all modes','reduced - mdc','reduced - elim')
xlabel('time, sec')
ylabel('displacement, mm')
grid off
pause

end

© 2001 by Chapman & Hall/CRC

15.6.17 Plotting Unsorted Modred Reduced Results - Eliminating High
Frequency Modes

reduced elimination: tip disp for mid-length step force, first 4 unsorted modes included

Frequency, hz

Figure 15.14: Cantilever tip displacement for mid-length force, first four modes included —
unsorted m odal truncation, modred “del” option.

reduced matched dc gain: tip disp for mid-length step force, first 4 unsorted modes included

Frequency, hz

Figure 15.15: Cantilever tip displacement for mid-length force, first four modes included -
unsorted m odal truncation, modred “m dc” option.

Figure 15.14 shows overall frequency response with four overlaid individual
mode contributions for the unsorted “ del” “modred” option, with the six

© 2001 by Chapman & Hall/CRC

highest frequency modes eliminated. Note that at high frequencies the reduced
curve attenuates with frequency similar to the “ all modes” curve.

Figure 15.15 shows overall frequency response with four overlaid individual
mode contributions for the unsorted “mdc” “modred” option, with the six
highest frequency modes reduced. Note the rise in the high frequency portion
o f the magnitude curve as a result o f the matrix reduction operations discussed
at the end o f Section 15.6.12. Depending on the purpose o f the model, the
high frequency discrepancy may or may not be important.

modred cantilever tip disp for mid-length step force, first 4 unsorted modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

tim e, sec

Figure 15.16: Comparison o f step responses for all modes included and four modes
included, “mdc” and “elim” “modred” options.

Figure 15.16 shows the overlay o f step response for all mode model and “ del”
and “mdc” “modred” options. Note that there is no visible difference in the
transient responses.

© 2001 by Chapman & Hall/CRC

15.6.18 Plotting Sorted Modred Reduced Results -
Eliminating Lower dc Gain Modes

reduced elimination: tip disp for mid-length step force, first 4 sorted modes included

Frequency, hz

Figure 15.17: Cantilever tip displacement for mid-length force, first four sorted modes,
m odal truncation, “m odred” “del” option.

reduced matched dc gain: tip disp for mid-length step force, first 4 sorted modes included

Frequency, hz

Figure 15.18: Cantilever tip displacement for mid-length force, first four sorted modes,
“modred” “mdc” option.

Figure 15.17 shows overall frequency response with four overlaid individual
mode contributions for the sorted “ del” “modred” option, with the six lowest

© 2001 by Chapman & Hall/CRC

dc gain modes eliminated. Figure 15.18 shows overall frequency response
with four overlaid individual mode contributions for the unsorted “mdc”
“modred” option, with the six lowest dc gain modes reduced. Again, note the
lack o f high frequency attenuation with frequency for the “modred” reduction.

modred cantilever tip disp for mid-length step force, first 4 sorted modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

tim e, sec

Figure 15.19: Comparison o f step responses for all modes included and four sorted modes
included, “mdc” and “elim” “modred” options.

Figure 15.19 depicts the overlay o f step response for the all mode model and
“ del” and “mdc” “modred” options. Note that there is no visible difference in
the transient responses.

15.6.19 M odred Summary

For this problem, where the dc gain o f the response is dominated by the first
several modes, there is not much difference between the sorted and unsorted
responses. The “mdc” method minimizes low frequency errors by accounting
for the dc gain o f the unused modes but has high frequency behavior which
deviates from the expected, and may not be desirable. The “ del” method does
not account for the dc gains o f the unused modes, which can result in error in
the low frequency portion o f the frequency response. However, the “ del”
method has the advantage that it does not exhibit the unusual high frequency
direct transmission matrix related behavior o f the “mdc” method. I f sorting o f
dc gain values is performed prior to the “ del” operation, the system dc gain
error may be acceptable while maintaining better high frequency performance.

© 2001 by Chapman & Hall/CRC

15.7 A N S Y S Code cantbeam_ ss.inp Listing

The A N S Y S code cantbeam_ss.inp solves for the eigenvalues and
eigenvectors for a tip-loaded cantilever beam, with a sample output shown in
Section 15.4. The user can define the number o f elements to use for the
cantilever and also choose whether to use the “Reduced” or “Block Lanczos”
eigenvalue extraction method. The program then writes a frequency list out to
a “ .frq” file, outputs eigenvector listings to a “ .eig” file and plots
deformed/undeformed mode shapes to “ .grp.”

! cantbeam_ss.inp, 0.075 thick x 2 wide x 20mm long steel cant
! title automatically built based on number of elements and eigenvalue extraction method

/prep7

filename = 'cantbeam_ss'

! define number of elements to use

num_elem = 64

! define eigenvalue extraction method, 1 = reduced, 2 = block lanczos

eigext = 1

*if,eigext,eq,1, then
nummodes = num_elem ! only 1 displacement dof available for each element

*else
nummodes = 2*num_elem ! both disp and rotation dofs available for

! each element
*endif

! create the file name for storing data

! first section of filename

aname = filename

! second section of filename, number of elements

bname = num_elem

! third section of filename, depends on eigenvalue extraction method

*if,eigext,ne,2, then
cname = 'red' ! reduced

*else
cname = 'bl' ! block Lanczos

*endif

! input the title, use %xxx% to substitute parameter name or parametric expression

© 2001 by Chapman & Hall/CRC

aname_ti = 'cantbeam_ss - 0.075 thick x 2 wide x 20mm long steel cant'

/title,%aname_ti%, %bname%, %cname%

et,1,4 ! element type for beam

! steel

ex,1,190e6 ! mN/mmA2
dens,1,7.83e-6 ! kg/mmA3
nuxy,1,.293

! real value to define beam characteristics

r,1,0.15,0.05,0.00007031,0.075,0.2 ! area, Izz, Iyy, TKz, TKy

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1 ! color by material
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all, 1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 ! left-hand node
n,num_elem+1,20,0,0 ! right-hand node

fill,1,num_elem+1 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,num_elem, 1,-1

! constrain left-hand end

nall
d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's

nall
nsel,s,node,,2,num_elem+1

© 2001 by Chapman & Hall/CRC

d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
nplo
eplo

! ******************* eigenvalue run ******************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num elem+1
m,all,uz

* if,eigext,eq,1,then ! use reduced method

antype,modal,new
modopt,reduc,nummodes
expass,off

mxpand,nummodes,,,no

total,num elem,1

! method - reduced Householdert
! key = off, no expansion pass, key = on,
! do expansion
! nummodes to expandfreq beginningfreq
! ending,elcalc = yes - calculate stresses
! total masters, 1 is exclude rotations

*elseif,eigext,eq,2 ! use block lanczos

antype,modal,new
modopt,lanb,nummodes

expass,off
mxpand,nummodes,,,no

! no total required for block lanczos
! because calculates all eigenvalues

*endif

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

/format,,,,,10000

set,1,1

© 2001 by Chapman & Hall/CRC

pldi,1

save,%aname%%bname%%cname%,sav

! define nodes for output: forces applied or output displacements

*do,i,1,nummodes

/angle,1,0
/auto

*do,i,1,nummodes
set,1,i

pldi,1
*enddo

/show,term

/output,%aname%%bname%%cname%,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

nall

/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

set,,i
/page,,,1000
prdisp

*enddo

/output,term

! pldi plots

/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp

allsel

/view,1,,-1,, ! side view for plotting

© 2001 by Chapman & Hall/CRC

CHAPTER 16

GROUND ACCELERATION MATLAB
MODEL FROM ANSYS MODEL

16.1 Introduction

This chapter w ill continue to explore building M A T L A B state space models
from A N S Y S finite element results. W e w ill use a different cantilever model,
where the cantilever has an additional tip mass and a tip spring all mounted on
a “ shaker” base. This model w ill be a crude approximation o f understanding
the effects o f disk drive suspension resonances on undesired unloading o f the
recording head during external vibration events. The problem shows how to
model ground acceleration forcing functions using A N S Y S and M A T LA B .
W e w ill also see how to do sorting o f modes in the presence o f a rigid body
mode. In addition, there is a high frequency mode o f the system with a large
dc gain, meaning that i f unsorted modal truncation were used to decrease the
model size, the resulting model would have significant error.

16.2 M odel Description

Figure 16.1: Ground displacement model for cantilever w ith tip mass and tip spring.

The figure above shows a schematic o f the system to be analyzed. Once again,
the cantilever is a 2mm wide by 0.075mm thick by 20mm long steel beam. A t
the tip, a lumped mass o f 0.00002349 K g is attached. The tip mass was
arbitrarily chosen to have the same mass as the beam. The spring attaching the

© 2001 by Chapman & Hall/CRC

beam tip to the shaker has a stiffness o f 1e6 mN/mm. The 0.05 K g shaker
mass was chosen to be approximately 1000 times the mass o f the beam and tip
mass combination, making the motions o f the shaker insensitive to resonances
o f the beam. Thus, we can apply forces to the shaker and excite it to a known
acceleration amplitude. This amplitude w ill then be transmitted to the base o f
the cantilever and the shaker attachment for the beam tip spring - effectively
imparting a “ ground acceleration” o f any desired amplitude and shape to the
flexible system. O f course, since the shaker body is not constrained, it w ill
have large rigid body movements, but we are interested in the difference
between the shaker motion and the motion o f the tip, so we can ignore the
rigid body motion.

In a disk drive, the cantilever would represent the “ suspension,” the small
sheet metal device which supports the recording head, represented by the
beam tip mass. The recording head is typically preloaded onto the disk with
several grams o f loading force by pre-bending and then displacing the
suspension. This loading force is required to counteract the force generated by
the air bearing when the disk is spinning, keeping the recording head a
controlled distance from the disk and allowing efficient magnetic recording.
During transportation o f the disk drive it is subject to vibration and shock
events in the z direction as indicated by the Shaker Motion arrow. O f course,
vibration and shock occur in all directions, but the z direction is the most
sensitive. In the z direction, the vibration or shock event may be large enough
and have frequency content which w ill excite the suspension resonances,
generating unloading forces at the head that could cause it to become
momentarily unloaded. When unloaded, the slider w ill re-approach the disk
and possibly damage the disk. Thus, understanding resonant characteristics o f
the suspension and the resulting tendency to unload the head is very important.
Because the frequency content o f typical vibration and shock events are less
than several khz, having a good model o f the resonant system up to roughly 10
khz is adequate.

16.3 In itia l A N S Y S M odel Comparison -
Constrained-Tip and Spring-Tip Frequencies/Mode Shapes

The spring between the beam tip and the shaker is an artifice, created to allow
measuring the forces between the beam tip and the shaker. I f the spring had
infinite stiffness, the tip would become simply supported. The stiffness o f the
spring used in the model was chosen to have the frequency o f the mode
involving the beam tip and the spring be very high relative to the first bending
mode o f the constrained-tip beam. This makes the tip simply supported at
frequencies lower than the beam tip/spring mode and w ill allow a valid force
measurement in the frequency range o f the major beam bending modes.

© 2001 by Chapman & Hall/CRC

There is always a compromise when using a spring artifice to replace a rigid
boundary condition to enable calculating constraint forces. The compromise
is that one would like a very stiff spring to make the model more accurate,
however a very stiff spring would require more modes to be extracted because
the frequency o f the tip spring/tip mass mode would be higher. Thus, the
eternal compromise with finite element models: between more accuracy (more
elements) and a shorter time to solve the problem (fewer elements). The
optimal model is always the smallest model which w ill give acceptable
answers, no more, no less. This balance makes finite elements interesting!

In order to understand the effects o f the tip spring on the resonances, we w ill
use two A N S Y S models. The first model w ill have the tip constrained in the z
direction. The second model w ill be as described above, but with a tip spring
connected to the shaker. The two models w ill be compared to ensure that the
tip spring artifice does not significantly effect the major beam bending modes.
The tip constrained model is cantbeam_ss_tip_con.inp, the spring-tip model
is cantbeam_ss_spring_shkr.inp, which is listed at the end o f the chapter. A
comparison o f resonant frequencies for the two models, each with 16-beam
elements and using the Reduced method for eigenvalue extraction, is shown
below:

Mode Tip Constrained Tip Spring
Freq, hz Freq, hz

1 0.0030932 0.0000
2 654.37 654.36
3 2120.2 2120.1
4 4424.1 4423.3
5 7567.0 7564.6
6 11553. 11547.
7 16392. 16378.
8 22104. 22069.
9 28730. 28590.
10 36346. 32552. Note 32552 is tip/spring mode
11 45079. 36547.
12 55111. 45164.
13 66628. 55171.
14 79548. 66675.
15 92830. 79583.
16 0.10359E+06 92850.

Table 16.1: Resonant frequencies for tip-constrained and spring-tip models.

The table above tells us that there is very good matching o f resonant
frequencies for the first 15 modes o f the tip-constrained model and the tip
spring model. The 92830 hz (15th) mode differs only 20 hz from the tip spring
model 92850 hz mode. The difference between the two models is that the tip
spring model has an additional mode at 32552 which is the tip spring/tip mass
mode. Having good agreement between the two models up through 32552 hz

© 2001 by Chapman & Hall/CRC

means that we w ill get good results in the 0 to 10 khz range o f interest. The
A N S Y S Display program can be used to plot the mode shapes o f the two
16-element models by loading cantbeam16red.grp or tipcon16red.grp for
the spring-tip or constrained-tip models, respectively. A M A T L A B code,
cantbeam_shkr_modeshape.m, can also be used to plot mode shapes for any
o f the spring-tip models, with selected modes plotted below for the 16-element
model.

5

4

3

2

1

0

-1

-2

-3

-4

-5
0 5 10 15 20

distance along beam, mm

Figure 16.2: Rigid body mode, 0 hz.

mode shape for 16 element model, mode 2 at 654.36 hz
5

4

3

2

1

0

-1

-2

-3

-4

-5

Figure 16.3: First bending mode, 654 hz.

5 10 15
distance along beam, mm

0 20

mode shape for 16 element model, mode 1 at 0 hz

© 2001 by Chapman & Hall/CRC

4

3

2

1

0

-1

-2

-3

-4

-5
0 5 10 15 20

distance along beam, mm

Figure 16.4: Second bending mode, 2120 hz.

mode shape for 16 element model, mode 10 at 32552 hz
5

4

3

2

1

0

-1

-2

-3

-4

-5

Figure 16.5: Beam tip / Spring mode at 32552 hz.

Note the deflection at the tip involving the spring for mode 10 for the
16-element model. Since we are interested in using the spring deflections to
measure force exerted at the beam tip constraint, we w ill find that including
the 10th mode is important because o f its large dc gain value.

mode shape for 16 element model, mode 3 at 2120.1 hz
5

5 10 15
distance along beam, mm

0 20

© 2001 by Chapman & Hall/CRC

16.4 M A T L A B State Space M odel from A N S Y S Eigenvalue Run -
cantbeam_ss_shkr_modred.m

The M A T L A B code used in this chapter is very similar to the code in Chapter
15. As such, some o f the follow ing descriptions w ill refer to the previous
chapter.

The results shown and discussed in this chapter w ill be for the 16-element
beam model; however, A N S Y S data is available for 2-, 4-, 8-, 10-, 12-, 16-,
32- and 64-beam elements.

16.4.1 Input

This Section is similar to that in Section 15.6.1, with the same options
available for choosing the number o f elements to be analyzed.
Eigenvalue/eigenvector results for all the models are available in the
respective M A T L A B .mat files and are called based on which menu item is
picked.

% cantbeam_ss_shkr_modred.m

clear all;

hold off;

clf;

% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu('choose which finite element model to use ... ',
'2 beam elements', ...
'4 beam elements', ...
'6 beam elements', ...
'8 beam elements', ...
'10 beam elements', ...
'12 beam elements', ...
'16 beam elements', ...
'32 beam elements', ...
'64 beam elements');

if model == 1
load cantbeam2red_shkr;

elseif model == 2
load cantbeam4red_shkr;

elseif model == 3
load cantbeam6red_shkr;

elseif model == 4

© 2001 by Chapman & Hall/CRC

load cantbeam8red_shkr;
elseif model == 5

load cantbeam10red_shkr;
elseif model == 6

load cantbeam12red_shkr;
elseif model == 7

load cantbeam16red_shkr;
elseif model == 8

load cantbeam32red_shkr;
elseif model == 9

load cantbeam64red_shkr;
end

16.4.2 Shaker, Spring, Gram Force Definitions

The value o f the beam tip spring stiffness is the same values as in the A N S Y S
code and is used to calculate the force between the beam tip and the shaker.
The shaker mass value is the same value as in the A N S Y S code and is used to
define the force required in the M A T L A B model to impart a desired
acceleration level to the shaker. The force conversion from m N to gram force
is defined as 1/9.807.

kspring = 1000000; % mN/mm from ANSYS run

shaker_mass = 0.050; % kg from ANSYS run

mn2gm_conversion = 0.101968; % conversion factor from mn to gram-f, 1/9.807

16.4.3 Defin ing Degrees o f Freedom and Num ber o f M odes

This section o f code is identical to that o f Section 15.6.2.

% define the number of degrees of freedom and number of modes from size of
% modal matrix

[numdof,num modes total] = size(evr);

% define rows for shaker and tip nodes

shaker node row = 1;

tip node row = numdof;

xn = evr;

© 2001 by Chapman & Hall/CRC

16.4.4 Frequency Range, Sorting M odes by dc Gain and Plotting,
Selecting M odes Used

As in Section 15.6.3, the next step in creating the model is to sort modes o f
vibration so that only the most important modes are kept. Repeating from
Chapter 15 to obtain the frequency response at dc:

ffl:
(16.1)

where the dc gain o f for the ith mode is given by the expression:

ith mode dc gain: (^

v Fk у ffl.
(16.2)

The difference between the code below and the code in Section 15.6.3 is that
we have a rigid body, 0 hz, mode in this model and the previous cantilever did

not. The problem is in dividing (16.1) by ffl2 = fflf = 0 , which would give a

dc gain o f infinity for the rigid body mode. In order to get around this, we do
not use zero for the rigid body frequency but instead use the frequency
response lower bound frequency for calculating a “ low frequency” gain. In
this model the lower bound frequency is 100 hz. Another method o f ranking
would be to rank only the non rigid body modes, recognizing that the rigid
body mode is always included.

Once again, dc gain w ill be used to rank the relative importance o f modes.
The dc gain calculation for each mode, “ dc_value,” is broken into two parts.
The first part calculates the gain o f the rigid body mode at the “ freqlo”
frequency while the second part calculates the dc gain o f all the non rigid body
modes.

The bulk o f this section is similar to Section 15.6.3.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

% define frequency range for frequency response

freqlo = 100;

_________ freqhi = 100000;__

© 2001 by Chapman & Hall/CRC

flo=log10(freqlo) ;
fhi=log10(freqhi) ;

f=logspace(flo,fhi,200) ;
frad=f*2*pi ;

dc_gain = abs([xn(shaker_node_row,1)*xn(tip_node_row,1)/frad(1) ...
(xn(shaker_node_row,2:num_modes_total) ...

.* xn(tip_node_row,2:num_modes_total))./omega2(2:num_modes_total)]);

[dc_gain_sort,index_sort] = sort(dc_gain);

dc_gain_sort = fliplr(dc_gain_sort);

index_sort = fliplr(index_sort)

dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;

semilogy(index_orig,freqvec,'k-');
title('frequency versus mode number')
xlabel('mode number')
ylabel('frequency, hz')
grid
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus mode number')
xlabel('mode number')
ylabel('dc value')
grid
disp('execution paused to display figure, "enter" to continue'); pause

loglog([freqlo; freqvec(2:num_modes_total)],dc_gain_nosort,'k-')
title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')
ylabel('dc value')
grid
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,dc_gain_sort,'k-')
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')
ylabel('sorted dc value')
grid
disp('execution paused to display figure, "enter" to continue'); pause

num_modes_used = input(['enter how many modes to include, ...
',num2str(num_modes_total),' default, max ... ']);

if (isempty(num_modes_used))
num_modes_used = num_modes_total;

end

© 2001 by Chapman & Hall/CRC

mode number

Figure 16.6: Resonant frequency versus mode number for 16-element model.

Figure 16.6 shows the resonant frequency versus mode number for the
16-element model, Reduced method o f eigenvalue extraction, showing that
modes six and higher have frequencies greater than the 10 khz frequency range
o f interest for this model. This would lead one to think that only the first six
or eight modes would be required to define the force in the 0 to 10 khz
frequency range, which is not the case as we shall see.

dc value o f each mode contribution versus mode number

mode number

Figure 16.7: Low frequency and dc gains versus mode number.

© 2001 by Chapman & Hall/CRC

Figure 16.7 shows the low frequency gain for the rigid body mode, mode 1,
and the dc gains for all other modes, versus mode number. Note that the
second most important mode (the second highest dc gain) is mode 10, and that
it is even more important than the first bending mode o f the cantilever.

frequency, hz

Figure 16.8: Low frequency and dc gain versus frequency.

Figure 16.8 shows the same data plotted against frequency instead o f mode
number. The tip mass / tip spring mode at 32552 hz is the mode with the high
gain.

sorted dc value of each mode versus number of modes included

modes included

Figure 16.9: Sorted low frequency and dc gains versus number o f modes.

© 2001 by Chapman & Hall/CRC

In Figure 16.9 we can see the sorted values for the low frequency and dc gains,
from largest to smallest. The list o f sorted mode numbers is given in the table
below. Once again, the 10th mode is the second most significant after the rigid
body mode.

index_sort = 1 10 2 4 9 8 6 11 3 12 5 13 14 7 15 16 17

Table 16.2: Sorted low frequency and dc gain indices.

16.4.5 Damping, Defining Reduced Frequencies and M oda l Matrices

This section is exactly like that in Section 15.6.4.

zeta = input('enter value for damping, .02 is 2% of critical (default) ... ');

if (isempty(zeta))
zeta = .02;

end

% all modes included model, use original order

xnnew = xn(:,(1:num modes total));

freqnew = freqvec((1:num modes total));

% reduced, no sorting, just use the first num modes used modes in xnnew nosort

xnnew nosort = xn(:,1:num modes used);

freqnew nosort = freqvec(1:num modes used);

% reduced, sorting, use the first num modes used sorted modes in xnnew sort

xnnew sort = xn(:,index sort(1:num modes used));

freqnew sort = freqvec(index sort(1:num modes used));

16.4.6 Setting Up System M atr ix “ a”

This section is exactly like that in Section 15.6.5.

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.>2;

zw = 2*zeta*w;

© 2001 by Chapman & Hall/CRC

w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec

w2_nosort = w_nosort.A2;

zw_nosort = 2*zeta*w_nosort;

% define variables for reduced, sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec

w2_sort = w_sort.A2;

zw_sort = 2*zeta*w_sort;

% define size of system matrix

asize = 2*num_modes_total;

asize_red = 2*num_modes_used;

disp(' ');
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);
disp(['size of reduced system matrix a is ',num2str(asize_red)]);

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% define variables for reduced, nosorted system matrix, a_nosort

© 2001 by Chapman & Hall/CRC

% setup reduced, nosorted "a_nosort" matrix, system matrix

a_nosort = zeros(asize_red);

for col = 2:2:asize_red

row = col-1;

a_nosort(row,col) = 1;

end

for col = 1:2:asize_red

row = col+1;

a_nosort(row,col) = -w2_nosort((col+1)/2);

end

for col = 2:2:asize_red

row = col;

a_nosort(row,col) = -zw_nosort(col/2);

end

% setup reduced, sorted "a_sort" matrix, system matrix

a_sort = zeros(asize_red);

for col = 2:2:asize_red

row = col-1;

a_sort(row,col) = 1;

end

for col = 1:2:asize_red

row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2);

end

for col = 2:2:asize_red

row = col;

a_sort(row,col) = -zw_sort(col/2);

© 2001 by Chapman & Hall/CRC

end

16.4.7 Setting Up M atrices “ b,” “ c” and “ d”

The only difference between this section and Sections 15.6.6 and 15.6.7 is in
defining the force to be applied to the shaker to give 1g acceleration.

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(shaker_node_row) = 9807*shaker_mass*1.0; % input force at shaker, 1g

% now setup the principal force vector for the three cases, all modes, nosort, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_nosort is the vector of forces in principal coordinates

f_principal_nosort = xnnew_nosort'*f_physical;

% b_nosort is the vector of forces in principal coordinates, state space form

b_nosort = zeros(2*num_modes_used,1);

for cnt = 1:num_modes_used

b_nosort(2*cnt) = f_principal_nosort(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form

© 2001 by Chapman & Hall/CRC

b_sort = zeros(2*num_modes_used,1);

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% reduced, nosorted cdisp and cvel

for col = 1:2:2*length(freqnew_nosort)

for row = 1:numdof

cdisp_nosort(row,col) = xnnew_nosort(row,ceil(col/2));

cvel_nosort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_nosort)

© 2001 by Chapman & Hall/CRC

for row = 1 :numdof

cdisp_nosort(row,col) = 0;

cvel_nosort(row,col) = xnnew_nosort(row,col/2);

end

end

% reduced, sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort)

for row = 1:numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort)

for row = 1:numdof

cdisp_sort(row,col) = 0;

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %

16.4.8 “ ss” Setup, Bode Calculations

This section differs from that o f Section 15.6.8 in that the frequency range
definition that exists in 15.6.8 was moved earlier in this code to allow the use
o f “ freqlo” to calculate the low frequency gain o f the rigid body mode. Also,
the “ ss” model below for “ sysforce” directly calculates the force in the spring
by subtracting the displacement o f the shaker from that beam tip and
multiplying the difference by the spring stiffness and the m N to gram force
conversion. The output then indicates the variation o f force between the beam
tip and the shaker, or for the disk drive the variation in force which is

© 2001 by Chapman & Hall/CRC

preloading the recording head to the disk. I f the variation in force exceeds the
preload force, the head w ill tend to unload.

% define tip force state space system with the "ss" command

sysforce = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ...
cdisp(shaker_node_row,:)),d);

% define reduced system using nosort modes

sysforce_nosort = ss(a_nosort,b_nosort,mn2gm_conversion*kspring* ...
(cdisp_nosort(tip_node_row,:)-cdisp_nosort(shaker_node_row,:)),d);

% define reduced system using sorted modes

sysforce_sort = ss(a_sort,b_sort,mn2gm_conversion*kspring* ...
(cdisp_sort(tip_node_row,:)-cdisp_sort(shaker_node_row,:)),d);

% use "bode" command to generate magnitude/phase vectors

[magforce,phsforce] = bode(sysforce,frad);

[magforce_nosort,phsforce_nosort] = bode(sysforce_nosort,frad);

[magforce_sort,phsforce_sort] = bode(sysforce_sort,frad);

16.4.9 Full M odel - P lotting Frequency Response, Shock Response

The code in this section is similar to that in Section 15.6.9, where the overall
frequency response and its individual mode contributions are plotted. The
“ lsim” command is used to calculate the response to a half-sine shock pulse.

% start plotting

if num_modes_used == num_modes_total

% plot all modes included response

loglog(f,magforce(1, :),'k. -')
title(['cantilever tip force for mid-length force, all ',num2str(num_modes_used), ...

' modes included'])
xlabel('Frequency, hz')
ylabel('Force, gm')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

© 2001 by Chapman & Hall/CRC

index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index);

bmode = b_nosort(index-1:index);

cmode_shaker = cdisp_nosort(1,index-1:index);

cmode_tip = cdisp_nosort(numdof,index-1:index);

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

ttotal = 0.03;

shock_amplitude = 100;

pulse_width = input('enter half-sine shock pulse width, sec, default is 0.002 ... ');

if isempty(pulse_width)
pulse_width = 0.002;

end

t = linspace(0,ttotal,1000);

dt = t(2) - t(1);

for cnt = 1:length(t)

if t(cnt) < pulse width

u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt));

else

u(cnt) = 0;

end

end

© 2001 by Chapman & Hall/CRC

plot(t,u,'k-')
title('acceleration of shaker mass')
xlabel('time, sec')
ylabel('acceleration, g')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

[force,ts] = lsim(sysforce,u,t);

plot(ts,force,'k-')
title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...

,' sec input, all ',num2str(num_modes_used),' modes included'])
xlabel('time, sec')
ylabel('Force, gm')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

peak_force = max(abs(force))

Plots for the 16-beam element model are shown below.

Frequency, hz

Figure 16.10: Overall frequency response w ith overlaid individual m ode contributions.

Figure 16.10 shows the overall frequency response with overlaid individual
mode contributions for all 16 modes. Note the significant dc gain o f the 32
khz beam tip/spring mode, which is higher than even the first bending mode dc
gain. One can imagine how the overall response would be changed i f the 32
khz mode were not included. Without the dc gain o f the mode, the overall dc
gain would be significantly in error.

© 2001 by Chapman & Hall/CRC

acceleration of shaker m ass
100

90

80

70

1 60

50

40

30

20

10

0
0.01 0.015 0.02

tim e, sec
0.025 0.03

Figure 16.11: Acceleration versus time for the 100g, 2msec shock pulse applied to the
system.

Figure 16.11 shows the acceleration versus time profile that is applied to the
shaker body.

cantilever tip force for 100g, 0.002 sec input, all 17 modes included

Figure 16.12: Force in the spring versus time, reflecting the change in preload force
applied to the head.

For the shock pulse in Figure 16.11, the force in the spring versus time is
shown in Figure 16.12. I f the preload force were 3 gm, the head would be in

0 0.005

© 2001 by Chapman & Hall/CRC

danger o f unloading from the disk since the peak variation in preload force is
3.6 gm.

16.4.10 Reduced M odels - P lotting Frequency Response, Shock Response

This section is similar to Section 15.6.10, setting up frequency response and
half-sine shock response for sorted and unsorted modes.

else

% unsorted modal truncation

loglog(f,magforce(1,:),'k-',f,magforce_nosort(1,:),'k.-')
title(['unsorted modal truncation: cantilever tip force for mid-length force, ...

first ',num2str(num_modes_used),' modes included'])
legend('all modes','unsorted partial modes',3)

dcgain_error_percent_nosort = 100*(magforce_nosort(1) - magforce(1))/magforce(1)

xlabel('Frequency, hz')
ylabel('Force, gm')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index);

bmode = b_nosort(index-1:index);

cmode_shaker = cdisp_nosort(1,index-1:index);

cmode_tip = cdisp_nosort(numdof,index-1:index);

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

hold off

% sorted modal truncation

loglog(f,magforce(1,:),'k-',f,magforce_sort(1,:),'k.-')
title(['sorted modal truncation: cantilever tip force for mid-length force, .

first ',num2str(num_modes_used),' modes included'])
legend('all modes','sorted partial modes',3)

dcgain_error_percent_sort = 100*(magforce_sort(1) - magforce(1))/magforce(1)

xlabel('Frequency, hz')
ylabel('Force, gm')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

hold on

% now plot the overlay of the tip force magnitude with each mode contribution

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_nosort(index-1:index, index- 1:index);

bmode = b_nosort(index-1:index);

cmode_shaker = cdisp_nosort(1,index-1:index);

cmode_tip = cdisp_nosort(numdof,index-1:index);

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ...
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

ttotal = 0.03;

© 2001 by Chapman & Hall/CRC

shock_amplitude = 100;
pulse_width = input('enter half-sine shock pulse width, sec, default is 0.002 ... ');

if isempty(pulse_width)
pulse_width = 0.002;

end

t = linspace(0,ttotal,1000);

dt = t(2) - t(1);

for cnt = 1:length(t)

if t(cnt) < pulse width

u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt));

else

u(cnt) = 0;

end

end

plot(t,u,'k-')
title('acceleration of shaker mass')
xlabel('time, sec')
ylabel('acceleration, g')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

[force,ts] = lsim(sysforce,u,t);

[force_nosort,ts_nosort] = lsim(sysforce_nosort,u,t);

[force_sort,ts_sort] = lsim(sysforce_sort,u,t);

plot(ts,force,'k-',ts_nosort,force_nosort,'k+:',ts_sort,force_sort,'k.-')
title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...

,' sec input, ',num2str(num_modes_used),' modes included'])
legend('all modes','unsorted partial modes','sorted partial modes',4)
xlabel('time, sec')
ylabel('Force, gm')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

max_force = max(abs(force));

max_force_nosort = max(abs(force_nosort));
max_force_sort = max(abs(force_sort));

error_nosort_percent = 100*(max_force_nosort - max_force)/max_force
error_sort_percent = 100*(max_force_sort - max_force)/max_force

© 2001 by Chapman & Hall/CRC

16.4.11 Reduced Models - Plotted Results, Four Modes Used

Note that in all the frequency response plots that follow , the title w ill indicate
that “ four” modes are included, the four being the rigid body mode at 0 hz and
the first three either sorted or unsorted resonances. Because we are
subtracting the displacement o f the tip from the displacement o f the shaker to
find the force in the spring, the rigid body mode is effectively subtracted out,
allowing us to see the detailed motion o f the beam/mass relative to the shaker.
This is why the rigid body mode does not show up as one o f the four
individual modes used.

Frequency, hz

Figure 16.13: Overall plus individual mode contributions for the four unsorted mode
model.

In Figure 16.13 the first four unsorted modes are used, so the 32 khz beam tip
mode is not included and the overall response is poor. Both the dc gain and
high frequency behavior are badly in error. The dc gain error is 75%.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 16.14: Overall plus individual mode contributions for the four sorted mode model.

In Figure 16.14 the 32 khz beam tip mode is one o f the included modes. Both
the overall dc gain and high frequency behavior are quite good matches with
the “ all modes included” model with only four modes included. The dc gain
error is -6.2%.

0.

-0.

Фу
О -
U_

-2.

-3.

0 0.005 0.01 0.015 0.02 0.025 0.03
time, sec

Figure 16.15: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.

cantilever tip force for 100g, 0.002 sec input, 4 modes included

all modes
unsorted partial modes
sorted partial modes

5

5

© 2001 by Chapman & Hall/CRC

Figure 16.15 shows the how the dc gain error in the frequency domain for the
unsorted model shows up as a significant error in peak response in the time
domain, 67%. The error in the sorted peak response is only 5.6%.

16.4.12 M odred - Setting up, “ mdc” and “ del” Reduction,
Bode Calculations

In this section the user is prompted for whether to use the sorted or original
mode order, then the corresponding system matrices are defined. The
“modred” command is used with both the “mdc” and “ del” options to define
two reduced systems. The “bode” command is used to calculate frequency
responses.

% use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred_sort = input('modred: enter " 1" to use sorted modes for reduced runs, ...
"enter" to use unsorted ... ');

if isempty(modred_sort)
modred_sort = 0

end

if modred_sort == 1 % use sorted mode order

xnnew = xn(:,index_sort(1:num_modes_total));

freqnew = freqvec(index_sort(1:num_modes_total));

else % use original mode order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total));

end

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.A2;

zw = 2*zeta*w;

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

© 2001 by Chapman & Hall/CRC

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(shaker_node_row) = 9807*shaker_mass*1.0; % input force at shaker, 1g

% now setup the principal force vector for the three cases, all modes, nosort, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

© 2001 by Chapman & Hall/CRC

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

% define state space system for reduction, ordered defined by modred_sort

sysforce_red = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ...
cdisp(shaker_node_row,:)),d);

% define reduced matrices using matched dc gain method "mdc"

states_elim = (2*num_modes_used+1):2*num_modes_total;

sysforce_mdc = modred(sysforce_red,states_elim,'mdc');

[aforce_mdc,bforce_mdc,cforce_mdc,dforce_mdc] = ssdata(sysforce_mdc);

% define reduced matrices by eliminating high frequency states, 'del'

sysforce_elim = modred(sysforce_red,states_elim,'del');

[aforce_elim,bforce_elim,cforce_elim,dforce_elim] = ssdata(sysforce_elim);

% use "bode" command to generate magnitude/phase vectors for reduced systems

[magforce_mdc,phsforce_mdc]=bode(sysforce_mdc,frad) ;

[magforce_elim,phsforce_elim]=bode(sysforce_elim,frad) ;

% convert magnitude to db

magforce_mdcdb = 20*log10(magforce_mdc);

magforce_elimdb = 20*log10(magforce_elim);

© 2001 by Chapman & Hall/CRC

16.4.13 Reduced M odred M odels - P lotting Commands

Both the “ del” and “mdc” reduced systems are plotted and compared with the
original, non-reduced system. The individual mode contributions to the two
reduced responses are also plotted.

% start plotting

% modred using 'elim'

loglog(f,magforce(1, :),'k-',f,magforce_elim(1, :),'k. -')

if modred_sort == 1
title(['reduced elimination: cantilever tip force for mid-length force, ...

first ',num2str(num_modes_used),' sorted modes included'])
dcgain_error_percent_elim_sort = 100*(magforce_elim(1) ...

- magforce(1))/magforce(1)
else

title(['reduced elimination: cantilever tip force for mid-length force, .
first ',num2str(num_modes_used),' unsorted modes included'])

dcgain_error_percent_elim_nosort = 100*(magforce_elim(1) ...
- magforce(1))/magforce(1)

end

legend('all modes','reduced elimination',3)

xlabel('Frequency, hz')
ylabel('Force, gm')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = aforce_elim(index-1:index,index-1:index);

bmode = bforce_elim(index-1:index);

cmode = cforce_elim(1,index-1:index);

dmode = [0];

sysforce_mode = ss(amode,bmode,cmode,dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

© 2001 by Chapman & Hall/CRC

end

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% modred using 'mdc'

loglog(f,magforce(1, :),'k-',f,magforce_mdc(1,:),'k. -')

if modred_sort == 1
title(['reduced matched dc gain: cantilever tip force for mid-length ...

force, first ',num2str(num_modes_used),' sorted modes included'])
dcgain_error_percent_mdc_sort = 100*(magforce_mdc(1) ...
- magforce(1))/magforce(1)

else
title(['reduced matched dc gain: cantilever tip force for mid-length .

f orce, first ',num2str(num_modes_used),' unsorted modes included'])
dcgain_error_percent_mdc_nosort = 100*(magforce_mdc(1) ...
- magforce(1))/magforce(1)

end

legend('all modes','reduced mdc',3)

xlabel('Frequency, hz')
ylabel('Force, gm')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

hold on

max_modes_plot = num_modes_used;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = aforce_mdc(index-1:index,index-1:index);

bmode = bforce_mdc(index-1:index);

cmode = cforce_mdc(1,index-1:index);

dmode = [0];

sysforce_mode = ss(amode,bmode,cmode,dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

© 2001 by Chapman & Hall/CRC

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

[force_mdc,ts_mdc] = lsim(sysforce_mdc,u,t);

[force_elim,ts_elim] = lsim(sysforce_elim,u,t);

plot(ts,force,'k-',ts_mdc,force_mdc,'k.-',ts_elim,force_elim,'k+-')

if modred_sort == 1
title(['modred cantilever tip force for ',num2str(shock_amplitude),'g, .

',num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), .
' sorted modes included'])

else
title(['modred cantilever tip force for ',num2str(shock_amplitude),'g, .

',num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), .
' unsorted modes included'])

end

legend('all modes','reduced - mdc','reduced - elim',4)
xlabel('time, sec')
ylabel('Force, gm')
grid on
disp('execution paused to display figure, "enter" to continue'); pause

max_force_mdc = max(abs(force_mdc));
max_force_elim = max(abs(force_elim));

peak_error_mdc_percent = 100*(max_force_mdc - max_force)/max_force
peak_error_elim_percent = 100*(max_force_elim - max_force)/max_force

end

16.4.14 P lo tting U nsorted M odred R educed R esu lts -
E lim inating H igh F requ ency M odes

This section looks at how w ell “modred” performs when unsorted modes are
used. W e w ill see that the “del” option using the first four unsorted modes
does a poor job of matching the original response while the “mdc” option
using the same four unsorted modes does a good job of matching the lower
frequency range of the response while m issing the tenth mode resonance. The
overall transient response of the system is matched w ell by the “mdc” option
while the “del” option has significant error.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 16.16: Overall frequency response with overload individual mode contributions for
unsorted “del” modred option, with the 12 highest frequency modes eliminated.

Figure 16.16 disp lays the same response as the “unsorted” plot in Figure 16.13
because the “del” option in modred and our simple modal truncation method
are equivalent. The dc gain is in error by 75%.

Frequency, hz

Figure 16.17: Overall frequency response with overlaid individual mode contributions for
unsorted “mdc” modred option, with the 12 highest frequency modes reduced.

© 2001 by Chapman & Hall/CRC

In Figure 16.17, the dc error is very small, 0.0008%. Even though the 32 khz
mode is not included, the gain in the portion from 1 to 20 khz is close to the
fu ll model gain.

modred cantilever tip force for 100g, 0.002 sec input, 4 unsorted modes included

time, sec

Figure 16.18: Half-sine shock pulse response for full, reduced unsorted “mdc” and reduced
unsorted “del” models.

Figure 16.18 shows that the effect of the dc gain error in the frequency domain
for the unsorted model shows up as a significant error in peak response in the
time domain, 67%. The error in the unsorted peak response is only 0.09% for
the “mdc” reduction.

16.4.15 P lo tting Sorted M odred R educed R esu lts -
E lim inating L ow er dc G ain M odes

This Section repeats the analysis of the previous Section but the sorted modes
are used, retaining the higher dc gain modes. Since the important tenth mode
is included in the retained sorted modes, we would expect that the reduced
responses would match the original, a ll modes included response.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 16.19: Overall frequency response with overload individual mode contributions for
sorted “del” modred option, with the 12 lowest dc gain modes eliminated.

Figure 16.19 shows the same response as the “sorted” plot in Figure 16.14
because the “del” option in modred and our simple sorted modal truncation
methods are equivalent. The dc gain is in error by 6.2%.

Frequency, hz

Figure 16.20: Overall frequency response with overload individual mode contributions for
sorted “mdc” modred option, with the 12 lowest dc gain modes eliminated.

Note the high frequency discrepancy in Figure 16.20, related to using the
“mdc” modred option. For this problem, which is dominated by the low

© 2001 by Chapman & Hall/CRC

frequency (<10khz) response and the dc gain of the 32 khz mode, the high
frequency response is not important. The dc gain is in error by only 0.0025%.

modred cantilever t ip force for 100g, 0.002 sec input, 4 sorted modes included

time, sec

Figure 16.21: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.

The errors in peak response are 5.6% for the “del” method and 0.0773% for
the “mdc” method.

© 2001 by Chapman & Hall/CRC

16.4.16 Model Reduction Summary

Reduction
Method
Used

Dc gain
error,

percent

Peak
error,

percent
Comments

Nosort 75.45 67
This case should show the worst error because the 32
khz beam tip/spring mode is not included in the lowest
four frequency modes.

Nosort,
elim

75.45 67
The modred “del” option is the same as the “nosort”
case because it just eliminates (truncates) the twelve
highest frequency modes.

Sort 6.19 5.61
Sorting for dc gain with four modes includes the 32
khz mode, so the dc gain error is reduced. However, it
still contains errors because the dc gain terms from the
12 unused modes are not included.

Sort, elim 6.19 5.61
The modred “del” option is the same as the “sort” case
because it just eliminates (truncates) the twelve lowest
dc gain modes.

Nosort,
mdc

0.0007 0.0913
The modred “mdc” option, even though it does not use
the 32 khz mode, takes its dc gain into effect, resulting
in the small dc gain error. Because the frequency
content of the shock pulse is low (~250 hz), the low
frequency portion of the overall transfer function
dominates the accuracy of the shock response.

Sort, mdc 0.0025 0.0773
Sorting the modes before reducing does not have a
significant effect on the dc gain because the “mdc”
operations take into account the dc gain effects of the
unused modes.

Table 16.3: Summary of model reduction methods used, ranked from highest to lowest
errors, with comments about each method.

Table 16.3 shows that using the modred “m dc,” (“matched dc gain”) method is
the preferred method for this problem to obtain accurate results. For results
that have accuracy in the 5 to 6% range, sorting by dc gain and then removing
the lower dc gain modes is another available approach. It is clear that
arbitrarily truncating high frequency modes can lead to significant errors

© 2001 by Chapman & Hall/CRC

because a single, important mode is neglected. Another source of error would
occur if the AN SYS model had not included enough elements (modes) to take
into account the beam tip mode or if a selected range of eigenvalues had not
included the mode.

In summary, every model reduction problem provides new challenges and
needs to be analyzed before m aking a decision about which reduction method
is most appropriate.

16.5 AN SYS Code cantbeam _ ss_spring_shkr.inp L isting

The AN SYS code in this section is sim ilar to the code cantbeam _ss.inp in
Section 15.7 with the exception that a tip spring and “shaker” mass are added.

! cantbeam_ss_spring_shkr.inp, 0.075 thick x 2 wide x 20mm long steel cant with tip
! mass and spring on shaker, shaker mass at cantilever base and coupled to spring ground
! title automatically built based on number of elements and eigenvalue extraction method

/prep7

filename = 'cantbeam_ss_spring_shkr'

! define number of elements to use

num_elem = 10

! define eigenvalue extraction method, 1 = reduced, 2 = block lanczos

eigext = 2

*if,eigext,eq,1, then
nummodes = num_elem+1 ! only 1 displacement dof available for

each element
*else

nummodes = 2*(num_elem+1) ! both disp and rotation dofs available for each
! element

*endif

! create the file name for storing data

! first section of filename

aname = 'cantbeam'

! second section of filename, number of elements

bname = num_elem

! third section of filename, depends on eigenvalue extraction method

© 2001 by Chapman & Hall/CRC

*if,eigext,ne,2, then
cname = 'red'

*else
cname = 'bl'

*endif

! reduced

! block Lanczos

! input the title, use %xxx% to substitute parameter name or parametric expression

aname_ti = 'cantbeam'

/title,%aname_ti%, %bname%, %cname%, spring tip

et,1,4
et,2,14
et,3,21

! steel

ex,1,190e6
dens,1,7.83e-6
nuxy,1,0.293

! element type for beam
! element type for spring
! element type for mass

! mN/mmA2
! kg/mmA3

! real value to define beam characteristics

r,1,0.15,0.05,0.00007031,0.075,0.2
r,2,1000000
r,3,0.00002349,0.00002349,0.00002349 ! mass at tip, Kg

! beam properties: area, Izz, Iyy, TKz, TKy
! spring stiffness, mN/mm

! color by material
! numbers off
! hidden plot
! show all boundary conditions

r,4,0.050,0.050,0.050

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1
/num,1
/type,1,0
/pbc,all,1

csys,0

! nodes

n,1,0,0,0
n,num_elem+1,20,0,0

fill, 1 ,num_elem+1

n,num_elem+2,20,0,-3

nall
nplo

! elements

! beam

! shaker mass, Kg, approximately 1000 times mass

! define global coordinate system

! left-hand node
! right-hand node

! interior nodes

! spring connection node

© 2001 by Chapman & Hall/CRC

type,1
mat,1
real,1
e,1,2
egen,num elem,1,-1

! spring at tip

type,2
real,2
e,num elem+1,num elem+2

! mass at tip

type,3
real,3
e,num elem+1

! shaker mass

type,3
real,4
e,1

! couple mass and spring end

nall
d,1,ux,0
d,1,uy,0
d,1,rotx,0
d,1,roty,0
d,1,rotz,0

! constrain all except uz for node 1

d,num elem+2,ux,0
d,num elem+2,uy,0
d,num elem+2,rotx,0
d,num elem+2,roty,0
d,num elem+2,rotz,0

! constrain all except uz for spring end node

! d,1,uz,0

cp,1,uz,1,num elem+2 ! uz couple shaker mass and spring end node

! constrain all but uz and roty for all other nodes to allow only those dofs

nall
nsel,s,node,,2,num elem+1
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall

© 2001 by Chapman & Hall/CRC

nplo
eplo

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num_elem+1
m,all,uz

*if,eigext,eq,1,then ! use reduced method

antype,modal,new
modopt,reduc,nummodes ! method - reduced Householder, nummodes -

! no to extract
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,nummodes,,,no ! nummodes to expand,freq beginning,freq

! ending,elcalc = yes - calculate stresses
total,nummodes, 1 ! total masters, 1 is exclude rotations

*elseif,eigext,eq,2 ! use block lanczos

antype,modal,new
modopt,lanb,nummodes ! no total required for block lanczos because

! calculates all eigenvalues
expass,off
mxpand,nummodes,,,no

*endif

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

/format,,,,,10000

set,1,1

pldi,1

save,%aname%%bname%%cname%,sav

/output,%aname%%bname%%cname%,frq ! write out frequency list to ascii file .frq

© 2001 by Chapman & Hall/CRC

set,list

/output,term ! returns output to terminal

! define nodes for output: forces applied or output displacements

nsel,s,node,,1,num_elem+1

*do,i,1,nummodes

/angle,1,0
/auto

*do,i,1,nummodes
set,1,i

pldi,1
*enddo

/show,term

/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

set,,i
/page,,,1000
prdisp

*enddo

/output,term

! pldi plots

/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp

allsel

/view,1,,-1,, ! side view for plotting

© 2001 by Chapman & Hall/CRC

CHAPTER 17

SISO DISK DRIVE ACTUATOR MODEL

This chapter w ill use an AN SYS model of a complete disk drive
actuator/suspension system to expand on the methods and examples of the last
two chapters.

W hile simple in appearance, a disk drive actuator/suspension system must
fu lfill a number of exacting requirements. The suspension system is required
to provide a stiff connection between the actuator and the head in the
seeking/track-following direction, while providing a compliant system in a
direction perpendicular to the plane of the disk. This allows the air bearing
supported head to comply to the shape and vibration of the disk. The actuator
is designed with low mass to allow fast seeking. It must have resonant
characteristics which provide small residual vibration follow ing a seek from
one track to another. Since the entire disk drive is subject to various shock
and vibration events, the actuator dynamics must aid in preventing the head
from unloading from the disk during the event.

The actuator/suspension system used as the example for this and the next
chapter is a single disk actuator, with two arms and two suspensions. It is
purposely designed with poor resonance characteristics (different thickness
arms, coil positioned off the mass center of the system, etc.) in order to
provide a richer resonance picture for analysis.

W e w ill assume that the servo system used with the actuator is a sampled
system with a 20khz sample rate, meaning that the Nyquist frequency is 10khz.
W e need to understand all the modes of vibration of the system up to at least
20khz because the sampled system w ill alias frequencies that are higher than
10khz back into the 0 to 10khz range.

W e w ill find that the dynamics of this ANSYS model with approximately

21000 degrees of freedom can be described well using between 8 and 20

modes of vibration (16 to 40 states), depending on what measure of
“goodness” is used. If we are interested in impulse response, we w ill see in
the next chapter that using only eight modes results in a system with
approximately a 5% error. For a good fit in the frequency domain through 10
khz only 8 modes are required, while a good fit through 20 khz requires 20
modes. In a well-designed actuator (this example is poorly designed as

17.1 Introduction

© 2001 by Chapman & Hall/CRC

mentioned earlier) fewer than 20 modes are required since symmetry w ill
couple in fewer modes.

This actuator/suspension model is a good example of what the book is a ll
about: generating low order models of complicated systems, in this case a
model which is approximately 1000 times smaller than the original model.

Once the AN SY S model results are availab le, a M ATLAB model w ill be
created. Then we w ill analyze several methods of reducing the size of the
model. In the previous chapters, we used dc gains of the individual modes of
vibration to rank the most important modes to keep. If we use uniform
damping (the same zeta value for all modes) we w ill reach the same ranking
conclusion using either dc gain or peak gain. However, if we use non-uniform
damping, peak gain ranking is required. The M ATLAB code w ill prompt for
whether uniform or non-uniform damping is being used and w ill choose the
appropriate ranking, dc gain or peak gain. The next chapter w ill introduce
another, more elegant method of ranking modes to be elim inated, balanced
reduction.

17.2 Actuator Description

Figure 17.1 shows top and cross-sectioned side view s of the actuator used for
the analysis. The global XYZ coordinate system for the model is indicated.

Figure 17.1: Drawing of actuator/suspension system.

© 2001 by Chapman & Hall/CRC

The shaft is constrained in all directions, providing a fixed reference about
which the actuator rotates on two ax ially preloaded ball bearings. This
actuator is purposely designed to have poor dynamic characteristics, as seen in
the side view. The coil, to which the Voice C oil Motor (VCM) forces are
applied, is not centered between the two bearings and the two arms are of
unequal thickness. Both the coil force mispositioning and the unequal arm
thickness inertial effects w ill tend to excite rotations about the x axis.

The coil is bonded to the aluminum actuator body. During operation, current
passes through the coil windings. The current interacts with the magnetic field
from pairs of magnets above and below the straight legs of the coil (not
shown), creating forces on the straight legs. The direction of the force is
dependent on the direction of the current in the coil, clockwise or
counterclockwise. The motion of the actuator due to the coil force is indicated
by “Actuator Motion.”

The suspensions are designed to provide a preload of several grams force onto
the disk surface. During operation the preload is counterbalanced by the air
bearing lifting force, controlling the fly ing height spacing between the head
and disk to less than several microinches. During shipment, the preload tends
to hold the head down on the disk surface in the event of shock and vibration
events, preventing potential damage caused by the head lifting off and striking
the disk.

17.3 ANSYS Suspension Model Description

Before analyzing the complete actuator/suspension system, we w ill analyze
only the suspension system. Understanding the dynamics of sensitive
components of larger assem blies as components can add considerable insight
to interpretation of the dynamics of the overall system.

The suspension portion of the actuator/suspension model is shown in Figures
17.2 and 17.3. The complete suspension is depicted in Figure 17.2, and the
“flexure” portion of the suspension is shown in Figure 17.3.

© 2001 by Chapman & Hall/CRC

Figure 17.2: Suspension model.

The recording head (slider) is bonded to the center section o f the flexure. The
“dimple” at the center o f the slider tongue provides a point contact about
which the slider can rotate in the pitch and ro ll directions. The tip o f the
dimple and the contact point on the underside o f the loadbeam are constrained
to move together in translation. The flexure body is laser welded to the
loadbeam (the triangular section), which is itse lf laser welded to the swage
plate at the left-hand end.

The boundary conditions for the suspension model are: the swage plate is
constrained in the x and z directions and the four slider corners are constrained
in the z direction. A large m ass is attached at the swage plate to allow for y
direction ground acceleration forcing function. Because there is no constraint
in the y direction there w ill be a zero-frequency, rig id body mode in that
direction.

© 2001 by Chapman & Hall/CRC

Figure 17.3: Flexure and recording head (slider) portion of suspension. Note the “dimple”
at the center of the slider, a point about which the slider rotates to comply with the disk

topology.

The model is built w ith the ab ility to easily change the critical flatness and
forming parameters because the dynamics o f the suspension are so dependent
on the geometry. Sm all (0.025 mm, 0.001 inch) defects in critical forming and
flatness parameters can drastically change the resonance characteristics,

The suspension model is made completely o f eight-node brick elements.
Laser welds and bonded jo ints are simulated by “m erging” the nodes being
welded or bonded, essentially creating a r ig id jo in t at that connection.

The AN SYS suspension-only model, srun .in p , is included in the availab le
downloads but w ill not be discussed. Running the model with different values
for the three input parameters “zht,” “bump” and “offset” w ill show the
extreme sensitivity of the first torsion mode (described below) to these
parameters.

17.4 ANSYS Suspension Model Results

The suspension has six modes o f vibration in the 0 to 10 khz frequency range.
The AN SYS frequency response plot for the suspension is shown in Figure
17.4. The six modes in the 0 to 10 khz w ill be plotted and described below.

© 2001 by Chapman & Hall/CRC

17.4.1 Frequency Response

Figure 17.4: Suspension frequency response for a y direction forcing function.

17.4.2 Mode Shape Plots

Figure 17.5: Mode 2, 2053 hz, first bending mode.

© 2001 by Chapman & Hall/CRC

Figure 17.6: Mode 3, 3020 hz, first torsion mode.

Figure 17.7: Mode 4, 6406 hz, second bending mode.

© 2001 by Chapman & Hall/CRC

Figure 17.8: Mode 5, 6937 hz, sway or lateral mode.

Figure 17.9: Mode 6, 8859 hz, second torsion mode.

The suspension frequency response plot and mode shape plots complement
each other and help to develop a v isua l, intuitive understanding of modal
coupling. The only modes that have y direction motion of the slider relative to
the swage plate are the first torsion and sw ay modes as can be seen in the
frequency response plot of Figure 17 .4 . A ll the other modes have motions
which are orthogonal to the motion o f interest. The first bending mode is the

© 2001 by Chapman & Hall/CRC

most obvious example. Since its motion in only in the z direction, it cannot be
excited by a y direction forcing function, and thus, does not couple into the
frequency response.

17.5 ANSYS Actuator/Suspension Model Description

The complete actuator/suspension model is shown in Figure 17.10. It also is
made of eight-node brick elements except for the inclusion of spring elements
which are used to simulate the ball bearings’ individual ball stiffnesses.

The shaft and inner rad ii of the two ball bearing inner rings are fully
constrained. The four corners of each of the sliders are constrained for zero
motion in the z direction, essentially creating an infinitely stiff air bearing.

Actuator/Suspension Model

Figure 17.10: Complete actuator/suspension model.

© 2001 by Chapman & Hall/CRC

" р ш

Figure 17.11: Actuator / suspension model, four views.

The primary motion of the actuator is rotation about the pivot bearing,
therefore the final model has the coordinate system transformed from a
Cartesian x ,y ,z coordinate system to a Cylindrical, r, 0 and z system, with the
two origins coincident.

Figure 17.12: Nodes used for reduced MATLAB model. Shown with partial finite element
mesh at coil.

© 2001 by Chapman & Hall/CRC

For reduced models we only require eigenvector information for degrees of
freedom where forces are applied and where displacements are required.
Figure 17.12 shows the nodes used for the reduced M ATLAB model. The
four nodes 24061, 24066, 24082 and 24087 are located in the center of the
coil in the z direction and are used for simulating the VCM force. The forces
created by the interactions between the current in the straight legs of the coil
and the magnetic field are perpendicular to the straight leg sections. Since the
coordinate system is cylindrical, the forces are decomposed into rad ial and
circumferential components as shown in Figure 17.12. Nodes 22 and 10022
are the nodes for the top and bottom heads (heads 1 and 0), respectively. The
arrows at the nodes indicate the direction of forces, and the angles show the
directions of the force, measured from the circumferential direction. The
components in the rad ial and circumferential directions are taken using the
angles.

The model uses only the circumferential motion of the heads, which, if divided
by the radius from the pivot to the head, w ill give output in radians.

The actuator/suspension AN SYS code, arun.inp, is too large to be listed here
but is available for downloading.

17.6 ANSYS Actuator/Suspension Model Results

A recommended sequence for analyzing dynamic finite element models is:

1) Plot resonant frequencies versus mode numbers to get a feel
for the frequency range. See if there are any significant jumps
in frequency between modes which can indicate the system
transitioning from one type of characteristic motion to another.
For example, a sequence of bending modes transitioning into a
sequence of torsional modes.

2) Plot frequency responses to define which modes couple into
the response.

3) Plot and animate the mode shapes that contribute to the
response, identifying modes that couple into motions in
directions of interest and those that do not. V isually get a
sense of how the geometry of the structure affects the modes.

4) Run parameter studies to understand the sensitivity of critical
modes to design variables: dimensions, tolerances, material
properties, etc.

© 2001 by Chapman & Hall/CRC

The actuator/suspension model was run using the B lock Lanczos method to
extract the first 50 eigenvalues and eigenvectors. The plot of frequency versus
number of modes is shown in Figure 17.13. The first mode, the rig id body
mode, w as calculated to be 0.0101 hz, with the first oscillatory mode
frequency at 785 hz.

17.6.1 Eigenvalues, Frequency Responses

mode number

Figure 17.13: Frequencies versus mode number.

Mode 50 is at 22350 hz, which is slightly higher than our objective of
including all the modes through 20 khz.

Frequency responses for the displacements of heads 0 and 1 (bottom and top
heads) for coil input force can be seen in Figures 17.14 and 17.15. Mode
shape plots, with undeformed and deformed shapes, are then shown for the
modes which are evident in the frequency response plots. In addition, some
typ ical modes that do not couple into the frequency response are shown.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.14: Frequency response for head 0 for coil input.

Frequency, hz

Figure 17.15: Frequency response for head 1 for coil input.

17.6.2 Mode Shape Plots

In this section we w ill plot overlaid undeformed and deformed modes shapes
for selected modes, which w ill then be described and discussed in the next
section.

© 2001 by Chapman & Hall/CRC

Figure 17.16: Mode 1 undeformed/deformed mode shape plot, 0.012 hz rigid body
rotation.

Figure 17.17: Mode 2 mode shape plot, 785 hz. Bending of bottom arm.

© 2001 by Chapman & Hall/CRC

Figure 17.18: Mode 3 mode shape plot, 885 hz, coil and bottom arm bending.

ANSYS 5.5.3
MAR 3 2000
12:42:43
PLOT WO. 6
DISPLACEMENT
STEP=1
SUB =6
FREQ=2114
RSYS=1
DMX =40.224

DSCA=.110606
XV =1
YV =-1
ZV =1
DIST=45.12
XF =10.293
YF =.051729
ZF =5.727
A-ZS=-60
CEWTROID HIDDEN

Figure 17.19: Mode 6 mode shape plot, 2114 hz, coil torsion.

© 2001 by Chapman & Hall/CRC

Figure 17.20: Mode 7 mode shape plot, 2159 hz, suspension bending modes.

Figure 17.21: Mode 9 mode shape plot, 2939 hz, suspension torsion mode.

© 2001 by Chapman & Hall/CRC

Figure 17.22: Mode 11 mode shape plot, 4305 hz, system mode.

Figure 17.23: Mode 12 mode shape plot, 4320 hz, radial mode.

© 2001 by Chapman & Hall/CRC

Figure 17.24: Mode 13 mode shape plot, 5146 hz.

Figure 17.25: Mode 18 mode shape plot, 6561 hz.

© 2001 by Chapman & Hall/CRC

ANSYS 5.5.3
MAR 3 2000
12:45:18
PLOT WO. 24
DISPLACEMENT
STEP=1
SUB =24
FREQ=9152
RSYS=1
DMX =26.382

DSCA=.168637
XV =1
YV =-1
ZV =1
DIST=45.669
XF =10.266
YF =.398419
ZF =4.335
A-ZS=-60
CEWTROID HIDDEN

Figure 17.26: Mode 24 mode shape plot, 9152 hz.

17.6.3 Mode Shape Discussion

W e w ill now correlate the two frequency response plots, Figures 17.14 and
17.15, with the mode shape plots above to start getting an intuitive feel for
which modes couple into the response plots and which modes do not.

Mode 1, the rig id body mode, shows up as the 40db/decade low frequency
slopes on both frequency responses, head 0 and head 1.

M odes 2 and 3, at 785 and 884 hz, are representative o f modes that do not
couple because of the direction o f the motion. Both modes involve only
bending motions of arms and/or co il in the x-z plane. S ince the motions are
perpendicular (orthogonal) to the direction of force and to the direction o f the
head in the circumferential direction, the modes should not couple into the
frequency response plots. Therefore we see no resonance peaks at these two
frequencies.

Mode 6 at 2114 hz is a coil/actuator torsion mode that shows up as the small
pole/zero pair in the head 1 frequency response.

Mode 7 at 2159 hz is a suspension bending mode that does not couple into the
response.

Mode 9 at 2939 hz is a suspension torsion mode that interacts with the rig id
body mode to create the significant pole/zero pair at 2939 hz.

© 2001 by Chapman & Hall/CRC

M odes 11 and 12 at 4305 hz and 4320 hz are the major system modes with
significant y direction motion of the coil, bearings, arms and suspensions.
These are the two modes associated with the highest resonant peak in the
frequency response. W hat appears to be a single peak is actually two peaks.

Mode 13 at 5146 hz is a mode which involves torsion of the coil and actuator
body about the x axis with the suspensions moving torsionally and laterally.

Mode 18 at 6561 hz is a suspension sway mode, where the suspension-only
mode at 6937 hz (Figure 17.8) is reduced to 6561 hz because it is attached to
the flexib le actuator.

Mode 24 at 9152 hz is a h ighly deformed actuator mode, in which the actuator
hub moves significantly about the ball bearing, the coil deforms and
suspensions and arms deflect.

17.6.4 ANSYS Output Example Listing

A partial listing of the eigenvector output (actrl.eig) for modes 1, 2, 11 and 12
is shown below. These four modes were chosen for listing and discussion
because they illustrate some key points about interpreting AN SYS eigenvector
output. The important information in each of the eigenvector sections is
highlighted in bold type. The “SUBSTEP” is the mode number, and “FREQ”
is the eigenvalue in hz. Since the output is in cylindrical coordinates, UX, UY
and UZ refer to radial, circumferential and z axis coordinates, respectively.
Since all the elements attached to the six nodes listed are eight-node brick
elements, with only translational degrees of freedom, all the rotation
eigenvector values are zero. The six nodes listed correspond to the two heads,
22 and 10022 and the four coil forcing function nodes, 24061, 24066, 24082
and 24087. See Figure 17.12 for node locations. W e need both rad ial (UX)
and circumferential (UY) directions because the forces applied by the VCM to
the coil are perpendicular to the straight legs of the coil, and have both radial
and circumferential components.

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 0.11877E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY
22 0.30718E-06 32.772 0.85804E-12 0.0000 0.0000

ROTZ
0.0000

© 2001 by Chapman & Hall/CRC

10022 0.30759E-06 32.772 -0.49994E-10 0.0000 0.0000 0.0000
24061 0.11969E-06 16.968 -0.17668E-08 0.0000 0.0000 0.0000
24066 0.77415E-07 10.274 -0.15751E-08 0.0000 0.0000 0.0000
24082 0.68508E-07 10.274 -0.15395E-08 0.0000 0.0000 0.0000
24087 0.10089E-06 16.968 -0.16990E-08 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 22 24061 0 0 0
VALUE 0.30759E-06 32.772 -0.17668E-08 0.0000 0.0000 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 785.39 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 -0.25631 -0.19637E-01 0.15936E-04 0.0000 0.0000 0.0000

10022 0.92764 -0.10736 0 .29519E-02 0.0000 0.0000 0.0000
24061 0.18573 -0.67085E-01 -5.7724 0.0000 0.0000 0.0000
24066 0.17688 -0.88331E-01 -2.1255 0.0000 0.0000 0.0000
24082 0.17616 0.95885E-01 -2.1213 0.0000 0.0000 0.0000
24087 0.18506 0.79278E-01 -5.7661 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 10022 24061 0 0 0
VALUE 0.92764 -0.10736 -5.7724 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 11
FREQ= 4305.3 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 -4.4488 27.588 -0.66528E-04 0.0000 0.0000 0.0000

10022 3.9832 41.657 0.44809E-01 0.0000 0.0000 0.0000
24061 ■0.43605 -10.023 -8.7664 0.0000 0.0000 0.0000
24066 0.35112 -3.5631 -11.532 0.0000 0.0000 0.0000
24082 3.9625 -1.1137 -14.210 0.0000 0.0000 0.0000
24087 5.0136 -7.8562 -6.0297 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24087 10022 24082 0 0 0
VALUE 5.0136 41.657 -14.210 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

© 2001 by Chapman & Hall/CRC

LOAD STEP= 1 SUBSTEP= 12
FREQ= 4320.1 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 4.3947 36.811 -0.25761E-02 0.0000 0.0000 0.0000

10022 -0.88223 62.097 0.34209E-01 0.0000 0.0000 0.0000
24061 -5.3622 -11.584 3.9397 0.0000 0.0000 0.0000
24066 -3.9590 -2.2258 10.513 0.0000 0.0000 0.0000
24082 0.81662 -4.0070 7.7931 0.0000 0.0000 0.0000
24087 2.0281 -13.160 6.6813 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24061 10022 24066 0 0 0
VALUE -5.3622 62.097 10.513 0.0000 0.0000 0.0000

W e w ill now discuss the eigenvector listings above in light of the frequency
response and mode shape plots reviewed earlier. Once again, we w ill make
the connection between modes that contribute to frequency responses and
those that do not.

Mode 1 shows that a ll the UX and UZ entries are essentially zero, which is
appropriate for a rig id body mode where the actuator is rotating about the
shaft, with only circumferential, U Y, displacements. The relative amplitudes
of each U Y entry are related by their rad ial distances from the shaft. The
frequency calculated is not exactly zero because of rounding and slight
geometric errors which create small stiffnesses in rotation about the shaft.

Mode 2 is the first oscillatory mode, the arm bending mode. A mode which
involves only UZ motion w ill have no cross-coupling in the y direction since
the actuator system is symmetrical about the x axis. In a typ ical disk drive, the
actuator is not perfectly symmetrical, and modes whose motions are prim arily
in the vertical direction w ill couple in the y direction. A ll of the U Y entries
for this mode are very small relative to the UZ entries, indicating that the
contribution of this mode to the y direction motion of the head should be
small.

M odes 12 and 13 are the major system modes, those modes with the highest
amplitude motion on the frequency response plot. The entries in the UY
column are significant relative to the entries for mode 2 and are of the same
order of magnitude as those in mode 1. This indicates that this mode is
relatively important for our desired frequency response.

© 2001 by Chapman & Hall/CRC

The eigenvalues and UX and UY eigenvector entries are stripped out of the
actrl.eig file and stored in the M ATLAB .mat file actrl_eig.m at (Appendix 1).
Now we are ready to read the AN SYS results into M ATLAB and start
developing the reduced model.

17.7 MATLAB Model, MATLAB Code act8.m Listing and Results

17.7.1 Code Description

The code starts by reading in the AN SYS model eigenvalue and eigenvector
results for all 50 modes from actrl_eig.m at. The VCM force components in
the radial and circumferential directions are then defined using the angles
shown in Figure 17.12.

The user is prompted to specify whether the same zeta value is to be used for
all modes (uniform damping), or whether each mode can have different values,
non-uniform damping. If uniform damping is specified, the user is prompted
to enter a value for zeta, a vector of uniform damping values is created and dc
gains are calculated. If non-uniform damping is chosen, a damping vector is
read in from zetain.m and peak gains are calculated. The appropriate gains
are then sorted and plotted, indicating the most important modes to retain.
Typically uniform damping is taken in the range of 0.005 (0.5% of critical
damping) to 0.02 (2% of critical damping). If experimental data is available,
the damping values for each mode in zetain.m can be matched to its
experimentally determined value.

Once the user defines the number of modes to be retained, two state space
systems are automatically built. The first includes all 50 modes and the
second includes the sorted, reduced number of modes. The 50-mode response
is plotted for either head 0 or head 1 with individual mode contributions
overlaid.

Since the servo system postulated for the actuator has a 20 khz sample
frequency, the Nyquist frequency is half that, or 10 khz. This means that
resonances higher in frequency than the Nyquist frequency w ill be aliased
back to the 0 to 10 khz range. The user is prompted for the sample frequency
to be used (default 20 khz). The M ATLAB “c2d” command is used to create
a discrete model of the original continuous system. A discrete frequency
response, with upper lim it of the Nyquist frequency, is created and plotted,
overlaying the original continuous frequency response. If the sample rate is
high enough, this overlay allows one to see that it w ill not alias critical modes
of vibration. Experimentally, the only information available from a discrete
servo system frequency response is up to the Nyquist frequency.
Measurements which are independent of the servo system (such as from an

© 2001 by Chapman & Hall/CRC

external laser measurement system) are required to identify modes higher than
the Nyquist frequency. An example of using a very low sampling frequency
with this actuator system w ill be shown.

Frequency responses are calculated using the reduced, sorted modes,
truncating the less important modes and using the “modred” “mdc” option.
Truncating is the same as using the “del” option on the M ATLAB “modred”
command.

17.7.2 Input, dof Definition

The first section of code reads in the eigenvalue/eigenvector data from
actrl_eig.mat and defines explicitly the degrees of freedom used. The
original AN SYS model has approximately 21000 degrees of freedom. By
defining only the degrees of freedom required for the desired frequency
response, we can reduce the number of degrees required for the M ATLAB
model to 12: the rad ial and circumferential components of the two head nodes
and the four coil forcing function nodes.

% act8.m

clear all;

hold off;

clf;

% load the Block Lanczos .mat file actrl_eig.mat, containing evr - the modal matrix,
% freqvec - the frequency vector and node_numbers - the vector of node numbers
% for the modal matrix

% the output for the ANSYS run is the following dofs

% dof node dir where
% 1 22 ux - radial, top head gap
% 2 10022 ux - radial, bottom head gap
% 3 24061 ux - radial, coil
% 4 24066 ux - radial, coil
% 5 24082 ux - radial, coil
% 6 24087 ux - radial, coil
% 7 22 uy - circumferential, top head gap
% 8 10022 uy - circumferential, bottom head gap
% 9 24061 uy - circumferential, coil
% 10 24066 uy - circumferential, coil
% 11 24082 uy - circumferential, coil
% 12 24087 uy - circumferential, coil

load actrl_eig;

© 2001 by Chapman & Hall/CRC

[numdof,num_modes_total] = size(evr);

freqvec(1) = 0; % set frequency of rigid body mode to zero

xn = evr;

17.7.3 Forcing Function Definition, dc Gain Calculation

A vector of the squares of the eigenvalues, in rad/sec units, for use in the gain
calculations is generated. L ike the dc gain calculation with a rig id body mode
discussed in the last chapter, we w ill again calculate the low frequency gain of
the rig id body mode using the lowest frequency defined in the frequency
response calculation.

The forcing function components for the four coil nodes are defined, again
using Figure 17.12 as the reference. A unity force is applied at the coil, and
evenly distributed among the four nodes. The force at each coil node is
decomposed into its components in the radial and circumferential (x and y)
directions. The coil forces in physical coordinates are then defined for each
coil node and where the ux and uy force entries for the head nodes, dof 1, 2, 7
and 8 are a ll zero.

A discussion of what is meant by “Single Input Single Output” (SISO) is
appropriate here. This model is a “SI” or Single Input model because the
same force is applied to all four coil nodes, requiring only a single column
vector for the input matrix “b.” The fact that forces are applied to multiple
nodes has no significance relative to the “SI” definition.

In Chapter 15, (15.2) and (15.3), we found that the dc gain and peak gain of
for the ith mode are given by the expressions:

H = j * , (1 7 1)

Fki Ю

= -£- (d cg a in) (17.2)
Fki 2Zi

where z njiz nki, the residue, is the product of the jth (output) row and kth

(force applied) row terms of the ith eigenvector divided by the square of the
eigenvalue for the ith mode and Z is the damping for the ith mode. For all the
models so far in the book, forces have been applied at a single node and
displacements have been taken at a single node, m aking the above definitions

© 2001 by Chapman & Hall/CRC

clear. Here we are applying the same force to four coil nodes, so we w ill
define a composite forcing function which w ill consist of the force applied to
each node times the eigenvector value for that node, f_physical’*xn. The
dimensions of this operation are (1 x ndof) x (ndof x nmodes) = (1 x nmodes),
so we have a composite force vector for each mode.

This composite force vector is then multiplied element by element by the rows
of the eigenvector matrix corresponding to the uy direction displacements of
the two heads.

W e w ill calculate and plot the gains for both head 0 and head 1 but w ill only
calculate frequency response results for one or the other (user defined). Thus
there is no ambiguity about whether to rank modes based on the gains of head
0 or head 1, only the one chosen for frequency response calculations is used
for ranking.

% calculate the dc amplitude of the displacement of each mode by
% multiplying the composite forcing function by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

% define frequency range for frequency response

freqlo = 501;

freqhi = 25000;

flo=log10(freqlo) ;
fhi=log10(freqhi) ;

f=logspace(flo,fhi,300) ;
frad=f*2*pi ;

% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity

n24061fx = 0.25*sin(9.1148*pi/180);
n24061fy = 0.25*cos(9.1148*pi/180);

n24066fx = 0.25*sin(15.1657*pi/180);
n24066fy = 0.25*cos(15.1657*pi/180);

n24082fx = -0.25*sin(15.1657*pi/180);
n24082fy = 0.25*cos(15.1657*pi/180);

n24087fx = -0.25*sin(9.1148*pi/180);
n24087fy = 0.25*cos(9.1148*pi/180);

% f_physical is the vector of physical force
% zeros at each output dof and input force at the input dof

© 2001 by Chapman & Hall/CRC

f_physical = [0
0

n24061fx
n24066fx
n24082fx
n24087fx

0
0

n24061fy
n24066fy
n24082fy
n24087fy] ;

% define composite forcing function, force applied to each node times
eigenvector value

% for that node

force = f_physical'*xn;

% choose which head to use for frequency responses

head = input('enter "0" default for head 0 or "1" for head 1 ... ');

i f isempty(head)
head = 0;

end

% prompt for uniform or variable zeta

zeta_type = input('enter " 1" to read in damping vector (zetain.m) ...
or "enter" for uniform damping ... ');

i f (isempty(zeta_type))

zeta_type = 0;

zeta_uniform = input('enter value for uniform damping, ...
.005 is 0.5% of critical (default) ... ');

i f (isempty(zeta_uniform))
zeta_uniform = 0.005;

end

zeta_unsort = zeta_uniform*ones(num_modes_total,1);

gainstr = ‘dc gain ’ ;

else

zetain; % read in zeta_unsort damping vector from zetain.m file

gainstr = ‘peak gain ’ ;

end

© 2001 by Chapman & Hall/CRC

%

if length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',num2str(length(zeta_unsort)), ...
' entries instead of ',num2str(num_modes_total)]);

end

calculate dc gains if uniform damping, peak gains i f non-uniform

if zeta_type == 0 % dc gain

gain_h0 = abs([force(1)*xn(8,1)/frad(1) ...
force(2 :num_modes_total). *xn(8,2 :num_modes_total) ...
./omega2(2:num_modes_total)]);

gain_h1 = abs([force(1)*xn(7,1)/frad(1) ...
force(2 :num_modes_total). *xn(7,2 :num_modes_total) ...
./omega2(2:num_modes_total)]);

e lseif zeta_type == 1 % peak gain

gain_h0 = abs([force(1)*xn(8,1)/frad(1) ...
force(2 :num_modes_total). *xn(8,2 :num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1 = abs([force(1)*xn(7,1)/frad(1) ...
force(2:num_modes_total).*xn(7,2:num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

end

sort gains, keeping track of original and new indices so can rearrange
eigenvalues and eigenvectors

[gain_h0_sort,index_h0_sort] = sort(gain_h0);

[gain_h1_sort,index_h1_sort] = sort(gain_h1);

gain_h0_sort = fliplr(gain_h0_sort);

gain_h1_sort = fliplr(gain_h1_sort);

index_h0_sort = fliplr(index_h0_sort)

index_h1_sort = fliplr(index_h1_sort)

index_orig = 1:num_modes_total;

i f head == 0

index_sort = index_h0_sort;

headstr = 'head 0';

% m ax to min

% m ax to min

% m ax to min indices

% m ax to min indices

© 2001 by Chapman & Hall/CRC

index_out = 2;

e lseif head == 1

index_sort = index_h1_sort;

headstr = 'head 1';

index_out = 1;

end

% plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'k-');
title('frequency versus mode number')
xlabel('mode number')
ylabel('frequency, hz')
grid off
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_h0,'k-',index_orig,gain_h1,'k.-')
title('dc value of each mode contribution versus mode number')
xlabel('mode number')
ylabel('dc value')
legend('head 0','head 1')
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(freqvec(2 :num_modes_total),gain_h0(2:num_modes_total),'k-', ...
freqvec(2:num_modes_total),gain_h1(2:num_modes_total),'k.-')

title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')
ylabel('dc value')
legend('head 0','head 1')
axis([500 25000 -inf 1e-4])
grid off
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_h0_sort,'k-',index_orig,gain_h1_sort,'k.-')
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')
ylabel('sorted dc value')
legend('head 0','head 1')
grid off

% choose number of modes to use based on ranking of dc gain values

num_modes_used = input(['enter how many modes (including rigid body) ...
to include, 'num2str(num_modes_total),' max, 8 default ... ']);

i f (isempty(num_modes_used))
num_modes_used = 8;

end

© 2001 by Chapman & Hall/CRC

num_states_used = 2*num_modes_used;

17.7.4 Ranking Results

Here, we w ill begin by review ing the frequency versus mode number plot to
get a feel for the frequency range of the model.

mode number

Figure 17.27: Frequency versus mode number.

mode number

Figure 17.28: dc gain versus mode number, uniform damping zeta 0.005 (0.5% of critical
damping) for all modes.

© 2001 by Chapman & Hall/CRC

mode number

Figure 17.29: Peak gain versus mode number, non-uniform damping, zeta = 0.04 (4% of
critical damping) for modes 11, 12 and 13.

The dc and peak gain plots for both head 0 and head 1 are shown above. Note
the relative heights of the dc and peak gains for modes 11, 12 and 13. In the
peak gain plot, those three gains are lower than the two gains im m ediately to
the left. Conversely, in the dc gain plot the three modes are the highest gains
with the exception of the rig id body mode.

The same two plots versus frequency, instead of mode number:

frequency, hz

Figure 17.30: dc gain versus frequency.

© 2001 by Chapman & Hall/CRC

frequency, hz

Figure 17.31: Peak gain versus frequency.

The gain plots versus mode number include the rig id body mode low
frequency gain, while the gain plots versus frequency do not include the rig id
body mode.

Figure 17.32 shows the modes ranked from most to least significant for the
uniform damping (dc gain) case and includes the low frequency (500 hz) dc
gain of the rig id body mode.

modes included

Figure 17.32: Sorted dc gain versus number of modes included.

© 2001 by Chapman & Hall/CRC

R elative to the 500 hz low frequency gain of the rig id body mode, the next
most significant mode is lower by almost six orders of magnitude. Note that
both head 0 and head 1 have sim ilar magnitude curves, although the ordering
of individual ranked modes are different. Furthermore, after the drop in dc
gain from the rig id body mode to the second mode, there are no other
significant drops. Gain is changing gradually, so there is no clear demarcation
indicating the number of modes needed to be included. Picking the number of
modes to use w ill be quite subjective, with each additional mode improving
the model only slightly.

17.7.5 Building State Space Matrices

To prepare for building the system matrices, two sets of eigenvalue vectors
and eigenvector m atrices are defined. The first set is the original, unsorted
eigenvalues and eigenvectors. The second set consists of the rearranged
eigenvalues, eigenvectors and the damping vector, sorted by dc or peak gain.
Using the same techniques defined in earlier chapters, the a, b and c matrices
are formed.

% define eigenvalues and eigenvectors for unsorted and sorted modes

% all modes included model, use original order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total));

zeta = zeta_unsort;

% all modes included, sorted

xnnew_sort = xn(:,index_sort(1:num_modes_total));

freqnew_sort = freqvec(index_sort(1:num_modes_total));

zeta_sort = zeta_unsort(index_sort(1:num_modes_total));

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w .A2;

zw = 2*zeta_unsort.*w;

% define variables for all modes included sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec

© 2001 by Chapman & Hall/CRC

zw_sort = 2*zeta_sort.*w_sort;

% define size of system matrix

asize = 2*num_modes_total;

disp(' ') ;
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);

% setup system matrix for all modes included model

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% setup system matrix for sorted all modes included model

a_sort = zeros(asize);

for col = 2:2:asize

row = col-1;

a_sort(row,col) = 1;

end

for col = 1:2:asize

w2_sort = w_sort.A2;

© 2001 by Chapman & Hall/CRC

row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2);

end

for col = 2:2:asize

row = col;

a_sort(row,col) = -zw_sort(col/2);

end

% setup input matrix b, state space forcing function in principal coordinates

% now setup the principal force vector for the three cases, all modes, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form

b_sort = zeros(2*num_modes_total,1);

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns
% consisting of columns of xnnew and zeros to give total columns equal
% to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

© 2001 by Chapman & Hall/CRC

for row = 1:numdof

c_disp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

c_disp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% all modes included sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort)

for row = 1:numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort)

for row = 1:numdof

cdisp_sort(row,col) = 0;

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %

© 2001 by Chapman & Hall/CRC

Now that the original and sorted state space matrices are availab le, we can use
the “ss” command to define the systems for analysis. The following systems
are set up:

1) unsorted model with all modes included

2) sorted model with all modes included

3) sorted, truncated reduced model using the sorted model from
2) above (same as the “modred” “del” option)

4) sorted, “modred” “mdc” option reduction using the sorted
model from 2) above

The bode command is used to define magnitude and phase vectors for (1), (3)
and (4) above.

In order to see the effects of different servo sample rates on aliasing of high
frequency modes, the user is prompted to enter a sample frequency, which
defaults to 20 khz. Examples of several sample rates are shown below. A
discussion of a liasing is outside the scope of the book but several references
are recommended (Franklin 1994 and Franklin 1998).

17.7.6 Define State Space Systems, Original and Reduced

% define state space systems with the "ss" command, outputs are the
% two gap displacements

% define unsorted all modes included system

sys = ss(a,b,c_disp(7:8,:),d);

% define sorted all modes included system

sys_sort = ss(a_sort,b_sort,cdisp_sort(7:8,:),d);

% define sorted reduced system

a_sort_red = a_sort(1:num_states_used,1:num_states_used);

b_sort_red = b_sort(1:num_states_used);

cdisp_sort_red = cdisp_sort(7:8,1:num_states_used);

sys_sort_red = ss(a_sort_red,b_sort_red,cdisp_sort_red,d);

% define modred "mdc" reduced system, modred "del" option same as sorted reduced
above

© 2001 by Chapman & Hall/CRC

states_del = (2*num_modes_used+1):2*num_modes_total;

sys_mdc = modred(sys_sort,states_del,'mdc');

sys_mdc_nosort = modred(sys,[17:100],'mdc');

% use "bode" command to generate magnitude/phase vectors

[mag,phs] = bode(sys,frad);

[mag_sort_red,phs_sort_red] = bode(sys_sort_red,frad);

[mag_mdc,phs_mdc]=bode(sys_mdc,frad) ;

[mag_mdc_nosort,phs_mdc_nosort]=bode(sys_mdc_nosort,frad) ;

% convert magnitude to db

magdb = 20*log10(mag);

mag_sort_reddb = 20*log10(mag_sort_red);

mag_mdcdb = 20*log10(mag_mdc);

% check on discretized system aliasing

sample_freq = input('enter sample frequency, khz, default 20 khz ... ');

i f isempty(sample_freq)

sample_freq = 20;

end

nyquist_freq = sample_freq/2;

disp(['Nyquist frequency is ',num2str(nyquist_freq),' khz']);

ts = 1/(1000*sample_freq);

freqdlo = 500;

freqdhi = 1000*nyquist_freq; % only take frequency response to nyquist_freq

fdlo=log10(freqdlo) ;
fdhi=log10(freqdhi) ;

fd=logspace(fdlo,fdhi,400) ;
fdrad=fd*2*pi ;

sysd = c2d(sys,ts);

[magd,phsd] = bode(sysd,fdrad);

© 2001 by Chapman & Hall/CRC

magddb = 20*log10(magd);

17.7.7 Plotting of Results

The code section below plots the frequency response for the model including
all 50 modes and overlaying the individual mode contributions. The sampled
frequency response is also plotted, with an overlay of the original 50-mode
model response for comparison.

The two reduced models are then plotted, including the individual mode
contributions.

The workspace in saved in act8_data.mat for use in the balreal.m code in
Chapter 18.

% start plotting

% plot all modes included response

loglog(f,mag(index_out,:),'k.-')
title([headstr ', gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 -inf 1e-4])
grid off
disp('execution paused to display figure, "enter" to continue'); pause

hold on

max_modes_plot = num_modes_total;

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a(index-1:index,index-1:index);

bmode = b(index-1:index);

cmode = c_disp(7:8,index-1:index);

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

mag_modedb = 20*log10(mag_mode);

© 2001 by Chapman & Hall/CRC

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

loglog(f,mag(index_out,:),'k-',fd,magd(index_out,:),'k.-')
title([headstr ', gap displacement, all ',num2str(num_modes_total), ...

' modes included, Nyquist frequency ',num2str(nyquist_freq),' hz'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
legend('continuous','discrete')
axis([500 25000 1e-8 1e-4])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

i f num_modes_used < num_modes_total % calculate and plot reduced models

% sorted modal truncation

loglog(f,mag(index_out,:),'k-',f,mag_sort_red(index_out,:),'k.-')
title([headstr ', sorted modal truncation: gap displacement, first ', ...

num2str(num_modes_used),' modes included'])
legend('all modes','sorted partial modes',3)
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 1e-4])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

hold on

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index);

bmode = b_sort(index-1:index);

cmode = cdisp_sort(7:8,index-1:index);

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

loglog(f,mag_mode(index_out,:),'k-')

© 2001 by Chapman & Hall/CRC

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% modred using 'mdc'

loglog(f,mag(index_out,:),'k-',f,mag_mdc(index_out,:),'k.-')
title([headstr ', reduced matched dc gain: gap displacement, first ', ...

num2str(num_modes_used),' sorted modes included'])
legend('all modes','reduced mdc',3)
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 1e-4])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

hold on

for pcnt = 1:max_modes_plot

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index);

bmode = b_sort(index-1:index);

cmode = cdisp_sort(7:8,index-1:index);

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

loglog(f,mag_mode(index_out,:),'k-')

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% modred using 'mdc' with unsorted modes

loglog(f,mag(index_out,:),'k-',f,mag_mdc_nosort(index_out,:),'k.-')
title([headstr ', reduced unsorted matched dc gain: gap displacement, first ', ...

loglog(f,mag_mode(index_out,:),'k-')

© 2001 by Chapman & Hall/CRC

num2str(num_modes_used),' sorted modes included'])
legend('all modes','reduced mdc',3)
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 1e-4])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

hold on

for pcnt = 1:num_modes_used

index = 2*pcnt;

amode = a(index-1:index,index-1:index);

bmode = b(index-1:index);

cmode = c_disp(7:8,index-1:index);

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode);

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

loglog(f,mag_mode(index_out,:),'k-')

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

end

% save the workspace for use in balred.m

save act8_data

Plots using the code above are discussed in the follow ing sections.

17.8 Uniform and Non-Uniform Damping Comparison

The four figures below show a comparison between the uniform and non­
uniform damping cases. The first two depict uniform damping, while the
second two show non-uniform damping, with higher damping for modes 11,
12 and 13.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.33: Head 0 frequency response, all 50 modes included, uniform damping with
zeta = 0.005.

Frequency, hz

Figure 17.34: Head 0 frequency response, overlay of individual mode contributions, 50
modes included, uniform damping with zeta = 0.005.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.35: Head 0 frequency response, all 50 modes included, non-uniform damping
with zeta = 0.005 for all modes except modes 11, 12 and 13, which have zeta = 0.04.

Frequency, hz

Figure 17.36: Head 0 frequency response, overlay of individual mode contributions, 50
modes included, non-uniform damping with zeta = 0.005 for all modes except modes 11, 12

and 13, which have zeta = 0.04.

Note the lower gain of the three modes in the 4 to 5 .5 khz range for the non­
uniform damping case.

© 2001 by Chapman & Hall/CRC

In the two figures below we can see the effects of aliasing for two different
servo system sample rates.

17.9 Sample Rate and Aliasing Effects

Frequency, hz

Figure 17.37: Discrete system frequency response overlaid on continuous system, sample
rate 20 khz, Nyquist frequency 10 khz.

Frequency, hz

Figure 17.38: Discrete system frequency response overlaid on continuous system, sample
rate 7 khz, Nyquist frequency 3.5 khz, showing aliasing effects.

© 2001 by Chapman & Hall/CRC

The discrete system frequency response in Figure 17.37, which has a sample
frequency of 20 khz, shows only small differences from the original
continuous system response. The discrete system response stops at the
Nyquist frequency, 10 khz.

Unlike Figure 17.37, Figure 17.38, which has a much lower sample rate of 7
khz, shows a significant difference from the original continuous system. If
one uses the sampled system to experimentally measure the frequency
response, it can only measure the response in the 0-Nyquist frequency range.
If the discrete system shown in Figure 17.33 were measured, there would be
no way to know that the peak at 2.68 khz is not an actual mechanical
resonance at 2.68 khz but is the system mode at 4.32 khz which is aliased. As
mentioned earlier, only a measurement using a separate system, such as a laser
measurement system, w ill reveal the actual m echanical system response.

17.10 Reduced Truncation and Matched dc Gain Results

This section compares sorted reduced truncation and sorted match dc gain
(m dc) methods, both using eight modes.

Figure 17.39: Reduced sorted modal truncation frequency response, eight modes included.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.40: Reduced sorted modal truncation frequency response, eight modes included,
showing overlay of eight individual modes.

The reduced sorted truncated system shown in Figures 17.37 and 17.38
matches the original 50-mode system frequency response quite w ell in the
0 to 10 khz range, but m isses four modes between 10 and 20 khz.

Figure 17.41: Reduced “modred” matched dc gain frequency response, eight modes
included.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.42: Reduced “modred” matched dc gain frequency response, eight modes
included, showing overlay of eight individual modes.

The reduced “modred” matched dc (mdc) gain frequency response is virtually
identical to the reduced sorted modal truncation response because the modes
were sorted prior to using the matched method and the modes which were
elim inated have low dc gain relative to the rig id body gain. A lso, since the
elim inated modes have such a small contribution to the overall response, the
“flat” high frequency portion of the curve (highlighted in Figures 15.15 and
16.17) is not seen. To be sure that this was the case, the “modred” matched
dc gain reduction was run on the system with unsorted modes, using the first
eight modes. The results are shown below and show that the “flat” high
frequency portion of the frequency response has returned.

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first
eight unsorted modes included.

Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first
eight unsorted modes included, showing overlay of eight individual modes.

Only eight modes were used for the reduced frequency responses in this
chapter. In Chapter 18 we w ill compare responses for different number of
reduced modes to get a sense for how many modes are required to define the
pertinent dynamics.

© 2001 by Chapman & Hall/CRC

CHAPTER 18

BALANCED REDUCTION

18.1 Introduction
In this chapter another method of reducing models, “balanced reduction,” w ill
be introduced. W e w ill compare it with the dc and peak gain ranking methods
using the disk drive actuator/suspension model from the last chapter.

W e have developed a strong mental picture of ranking individual modes using
dc and peak gains. Furthermore, we have developed the ranking method
intuitively by graphically showing how the individual modes combine to create
the overall frequency response.

The concepts of controllability and observability, commonly referenced in the
control community, can be used to rank modes but there is some ambiguity
involved. In general, the controllability of a given mode is not related to its
observability, and vice versa. The balanced reduction technique
simultaneously takes into account both controllability and observability in its
ranking and overcomes the uncertainty involved in using either controllability
or observability alone.

W e w ill see that for the SISO actuator model introduced in the previous
chapter the balanced method provides sligh tly better impulse response results
than the dc gain method, for models with the same number of retained
modes/states. For frequency response, the balanced method fits one additional
mode over that of the dc gain method, in cases where the same number of
reduced modes are used for both methods.

One issue with balanced reduction is that we lose the ab ility to directly identify
individual modes in the reduced system model. After balanced reduction one
needs to examine the system m atrix to identify which modes are included,
while the dc and peak gain ranking techniques retain the identities of the
individual modes.

Unlike SISO models, which can be eas ily ranked using simple dc and peak
gain techniques, MIMO models w ill require the balanced reduction method
because it eas ily handles the problem of ranking multiple inputs and outputs.
In the next chapter we w ill examine a MIMO example, a disk drive actuator
with a second stage of actuation in addition to the voice coil motor.

© 2001 by Chapman & Hall/CRC

Gawronski [1996, 1998] are two excellent advanced level texts that cover
balanced reduction and balanced control o f structures for those interested in
examining the subject more deeply.

18.2 Reviewing dc Gain Ranking, MATLAB Code balred.m
So far we have used dc or peak gains o f the individual modes to rank the
importance o f including each mode in the reduced system. Repeating (17.1)
and (17.2), the dc gain and peak gain expressions:

F 2 > (1 8 1)
Fki ю2

F - = — (dcgain) , (18.2)
Fki 2Zi

where znjiznki is the product o f the jth (output) row and kth (force applied)

row terms o f the ith eigenvector divided by the square o f the eigenvalue for the
ith mode.

F or any mode, i f the degree o f freedom associated w ith the applied force
has a zero value, then the force applied at that degree o f freedom cannot
excite th at mode, so the dc and peak gains w ill also be zero. I f the mode
cannot be excited, then it has no effect on the frequency response and can
be elim inated. S im ilarly , i f the degree o f freedom associated w ith the
output has a zero value, then no m atter how much force is applied to that
mode, there w ill be no output. The dc and peak gains are zero, and the
mode can be elim inated because it also w ill have no effect on the
frequency response.

Loosely speaking, a mode which cannot be excited by the applied force is
uncontrollable and a mode which has no output in the desired direction is
unobservable. Conversely, modes which have “large” values for the forcing
function degree o f freedom are said to be “controllable” and modes with
“large” values fo r the output degree o f freedom are said to be “observable.”

The code below, the input section from balred.m , reads in the stored output
from act8.m (Chapter 17), stored in act8_data.m at. It then calculates and
plots the input and output contributors to the dc gain, znki / ю1 and znji / ю1

and the resulting dc gain. This is the first time we have separated the input
and output contributors to the dc gain term; in the past we have dealt only with
the dc gain itself. The reason we are highlighting the two contributors is to

© 2001 by Chapman & Hall/CRC

bridge to understanding of the new concepts of controllability and
observability.

% balred.m balanced modred reduction of actuator/suspension model

clear all;

hold off;

clf;

load act8_data;

% plot dc gain and two contibutors, force and xn, versus mode

index_states = 1:num_modes_total-1;

omega1 = 2*pi*freqvec'; % convert to radians

semilogy(index_orig(2:num_modes_total)-1,gain_h0(2:num_modes_total),'k.-', ...
index_orig(2:num_modes_total)-1,abs(force(2:num_modes_total)./ ...
omega1(2:num_modes_total)),'k-', ...
index_orig(2 :num_modes_total)-1, ...
abs(xn(8,2:num_modes_total)./omega1(2:num_modes_total)),'ko-')

title([headstr ' dc gain, force and xn values versus mode number'])
xlabel('mode number')
ylabel('dc value')
legend('dc gain','force','xn',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figure 18 .1 shows the force and output (xn) components which when
m ultiplied create the dc gain for each mode.

© 2001 by Chapman & Hall/CRC

Figure 18.1: Force, output and dc gain for each mode.

It is evident from the curves of force and xn in Figure 18.1 that none of the
modes has values for the input or output that go to zero, but that there is a
three to four order of magnitude span for both the force and xn values. This
three to four order of magnitude span for the force and xn vectors, when
multiplied, results in an approximate seven order of magnitude span for the dc
gain. W e have used this span in dc gain values in previous chapters to rank
the relative importance of modes, identifying modes for elimination.

18 .3 C ontro llab ility, O bservability

The intuitive descriptions of controllability and observability given above can
be stated precisely using standard state space notation. See Chen [1999],
Zhou [1996, 1998], Kailath [1980] and B ay [1999] for derivations and more
detail.

For a state space system described by

x = A x + Bu
C (18.3a,b)

y = Cx

the follow ing definitions of controllability hold:

1) If there is an input “u” that can move the system from some
arbitrary state x 1 to another arbitrary state x2 in a finite time then
the system is controllable.

© 2001 by Chapman & Hall/CRC

2) A controllability matrix C can be formed as:

C = [B A B A 2B .. . A n-1B] (18.4)

If C has full (row) rank n, the system is controllable. The
controllability matrix gives no insight into the relative
controllability o f the different modes, it shows only whether the
entire system is controllable or not. If one mode o f the system is
not controllable, the system is not controllable.

3) Another definition o f controllability involves the controllability
gramian, W c , the solution to the Lyapunov equation:

If the solution W c (t) is non-singular (determinant is non-zero),
then the system is controllable.

Diagonal elements o f the controllability gramian give information
about the relative controllability o f the different modes and can be
used in a manner similar to our use o f dc gains to rank the relative
controllability o f individual modes.

Gramians exists only for systems that have all their poles strictly to
the left o f the “ jra ” axis. The actuator/suspension system we are

analyzing has two rigid body mode poles at the origin, so we will
have to analyze only the oscillatory portion o f the system. W e will
do this by partitioning the modal form state matrices into the rigid
body mode and the non-rigid body oscillatory modes. Then the
definitions o f controllability w ill be applied to only the oscillatory
partition.

A similar set o f definitions can be made for observability:

A W c + W c A T + BBT = 0 (18.5)

defined as:

W c = j eAT B B e A T dT (18.6)

© 2001 by Chapman & Hall/CRC

1) I f the initial state x o o f a system can be inferred from knowledge

o f the input u and the output y over a finite time (0, t) then the

system is said to be observable.

2) A n observability matrix O can be formed as:

O =

C

C A

C A n-1

(18.7)

I f O has full (column) rank n, the system is observable.

3) Another definition o f observability involves the observability
gramian, W o , the solution to the Lyapunov equation:

A T W o + W o A + C TC = 0 (18.8)

defined as:

W o = j e aT t C TC e AT d T (18.9)
0

If the solution W o (t) is non-singular (determinant is non-zero) then

the system is observable.

The diagonal elements o f the observability gramian give information
about the relative observability o f the different modes and can be
used in a manner similar to using dc gains to rank the relative
observability o f modes.

Because we know the form o f the A , B and C matrices for the state space
modal form, we are able to substitute those matrices into the Lyapunov
equations above and derive closed form controllability and observability
gramians (Gawronski 1998). It is interesting to see how the closed form
gramian expressions compare with the force and xn components o f the dc and
peak gains. W e saw earlier that the dc gain can be looked at as a product o f a
“force” and an “output,” xn.

© 2001 by Chapman & Hall/CRC

m: v m i у

1 = (output)(force),
ffl:

(18 .10)

Similarly for the peak gain at resonance:

(dcgain) = 1

2Zi = 2Z“
nki

Ю;

V \

V2Z“ m. V2ZT m
(18 .11)

Gawronski shows that the closed loop expression for the largest diagonal term
in the 2x2 controllability gramian for mode “i” is given by:

b .
w c = • (18 .12)

where the || ||2 notation represents the Euclidean norm, the square root o f the

sum o f the squares o f the elements o f a vector.

The largest diagonal term in the 2x2 observability gramian for mode “i” is
given by:

C :
w ■ = ■

4Zi
(18 .13)

The smaller o f the two diagonal terms for both the controllability and
observability gramians is derived from the larger term by dividing by the
square o f the eigenvalue for that respective mode.

The B and C matrices fo r mode “i” with input at dof “k” and displacement
output at dof “j” are as follows:

B:
0

,FkZnki

C . = [z.j, °]

(18 .14)

(18 .15)

Fki

2
2

2
2

© 2001 by Chapman & Hall/CRC

Substituting into the two equations above for the closed loop gramians:

II B;
w ■ = ■

0

,FkZnki. F272k nki (18 .16)

w - = ■
7 nji 0

4Z; ю; 4Z; ю; 4Z; ю;

Comparing the peak gain terms and the gramian terms:

Force component o f dc gain:

Controllability diagonal:

Output component o f dc gain:

(18 .17)

ю

4Z; Ю

Observability diagonal:
4Z; Ю

W hen we have ranked using peak gains, we have used the expression:

peak gain = 7nji7nki

(18 .18)

(18 .19)

(18.20)

(18 .21)

(18.22)

If we had used the controllability and observability gramian terms for each
mode to rank, we would have ranked based on

2 2
7nki7nji
16Z2 ю2

(18.23)

In the controllability and observability gramian ranking o f modes, we deal
with the product o f the squares o f the eigenvector components while peak gain
uses the product without squaring. Both rankings divide by the square o f the
eigenvalue and there is a difference in the two multipliers “2” and “ 16” as well
as the squaring o f the damping term.

2

7nki

27

7

27

© 2001 by Chapman & Hall/CRC

18.4 Controllability, Observability Gramians
The follow ing code section starts by defining a system which consists of the
oscillatory modes of the system, excluding the first, rig id body mode. As
mentioned above, gramians exist only for strictly stable systems, where all the
poles strictly to the left of the “ jm ” axis. The two rig id body poles at the
origin need to be elim inated from the system to be able to calculate gramians.
In the modal form of the equations, where the modes are uncoupled, we can
partition the system into rig id body and oscillatory modes. W e can then
calculate a reduced oscillatory system based on reducing the oscillatory
modes. The fu ll system is then ready to be re-assembled by augmenting the
rig id body mode with the reduced oscillatory modes.

The controllability and observability gramians are calculated, plotted with
their amplitudes on the z axis and then the diagonal entries are plotted. The
position and velocity state terms are identified in each of the gramians and
plotted separately.

% define oscillatory system from unsorted model from act8.m, which only
% has one output, either head 0 or head 1 so that when use balreal, will only
% be taking into account a siso system, not the outputs of both heads 0 and 1

% in act8.m, used output matrix with two rows so both head 0 and head 1 were available

a_syso = a(3:asize,3:asize); % ao is a for oscillatory system

b_syso = b(3:asize);

c_syso = c_disp(index_out+6,3:asize);

syso = ss(a_syso,b_syso,c_syso,d);

% define controllability and observability gramians for oscillatory system, syso

wc = gram(syso,'c');

wo = gram(syso,'o');

[row_syso,col_syso] = size(a_syso);

statevec = 1 :row_syso;

% calculate closed form gramians

% define frequencies for oscillatory states

omega1 = 2*pi*freqvec'; % convert to radians

© 2001 by Chapman & Hall/CRC

for cnt = 1:num_modes_total

ctr = ctr + 2;

omega12(ctr-1) = omega1(cnt);

omega12(ctr) = omega1(cnt);

7eta_unsort12(ctr-1) = 7eta_unsort(cnt);

7eta_unsort12(ctr) = 7eta_unsort(cnt);

end

% the notation below is “wc” or “wo” for controllability or observability gramians,
% “cf” for closed-form, and “1” or “2” for maximum and minimum values for a mode

wccf1 = (b_syso.*b_syso)./(4*7eta_unsort12(3:2*num_modes_total)' ...
.*omega12(3:2*num_modes_total)'); % maximum terms

wccf12 = wccf1(2:2:row_syso); % pick out velocity terms

wccf2 = (b_syso.*b_syso)./(4*7eta_unsort12(3:2*num_modes_total)' ...
.*omega12(3:2*num_modes_total)'.A3); % minimum terms

wccf22 = wccf2(2:2:row_syso); % pick out displacement terms

wocf1 = (c_syso.*c_syso)./(4*7eta_unsort12(3:2*num_modes_total) ...
.*omega12(3:2*num_modes_total)); % maximum terms

wocf12 = wocf1(1:2:row_syso); % pick out displacement terms

wocf2 = (c_syso.*c_syso)./(4*7eta_unsort12(3:2*num_modes_total) ...
.*omega12(3:2*num_modes_total).A3); % minimum terms

wocf22 = wocf2(1:2:row_syso); % pick out velocity terms

% plot controllability and observability gramians

mesh7(wc);
view(60,30);
title([headstr controllability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

mesh7(wo);
view(60,30);
title([headstr ', observability gramian for oscillatory system'])
xlabel('state')
ylabel('state')

ctr = 0;

© 2001 by Chapman & Hall/CRC

grid on

disp('execution paused to display figure, "enter" to continue'); pause

% pull out diagonal elements

wc_diag = diag(wc);

wo_diag = diag(wo);

modevec = 2*(1:num_modes_total-1);

% plot diagonal terms of controllability and observability gramians, calculated with
% gram function and closed form

semilogy(statevec,wc_diag,'k. -',state vec(2:2:row_syso),wccf12,'ko', ...
statevec(1:2:row_syso),wccf22,'ko')

title([headstr ', controllability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('calculated with gram','closed form',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(statevec,wo_diag,'k.-',statevec(1:2:row_syso),wocf12,'ko', ...
statevec(2:2:row_syso),wocf22,'ko')

title([headstr ', observability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('calculated with gram','closed form',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

% position and velocity states plotted separately

semilogy(statevec(1:2:row_syso),wc_diag(1:2:row_syso),'k.-', ...
statevec(2:2:row_syso),wc_diag(2:2:row_syso),'k-', ...
statevec(2:2:row_syso),wccf12,'ko', ...
statevec(1:2:row_syso),wccf22,'ko')

title([headstr ', controllability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('position states','velocity states','closed form','closed form',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(statevec(1:2:row_syso),wo_diag(1:2:row_syso),'k.-', ...
statevec(2:2:row_syso),wo_diag(2:2:row_syso),'k-', ...
statevec(1:2:row_syso),wocf12,'ko', ...
statevec(2:2:row_syso),wocf22,'ko')

title([headstr ', observability gramian diagonal terms'])
xlabel('states')

© 2001 by Chapman & Hall/CRC

ylabel('diagonal')
legend('position states','velocity states','closed form','closed form',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_states,wc_diag(2:2:row_syso),'k.-', ...
index_states,wo_diag(1:2:row_syso),'ko-')

title([headstr ', head 0 controllability and observability state gramians'])
xlabel('mode number')
ylabel('gramian')
legend('controllability velocity state','observability position state',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

head 0 , controllability gramian for oscillatory system

0.15

Figure 18.2: Controllability gramian values.

© 2001 by Chapman & Hall/CRC

head 0, observability gramian for oscillatory system

Figure 18.3: Observability gramian values.

Figures 18.2 and 18.3 plot the controllability and observability gramian values
on a linear z axis scale versus location in the matrix. As noted in Gawronski
[1998], for systems described in modal coordinates (with small damping, small
Z values) the gramians are diagonally dominant, meaning that the off diagonal
elements are small with respect to the diagonal elements. The largest
controllability terms lie along the diagonal in approximately the state 20 to 22
positions, which are the 10th and 11th oscillatory modes. W ith the rig id body
mode included, these become the 11th and 12th modes of the fu ll system, which
we identified in the previous chapter as the two system modes in the 4 khz
range and identified with the dc gain as the modes with the highest values.
Note that there are not any large entries in the higher state numbers for the
controllability gramian. The observability gramian plot, however, shows some
very high frequency states (~80 to 100) that have circumferential motion at
head 0. Intuitively, the relatively heavy coil is not going to have many modes
with circumferential motion at high frequencies, while the stiff, low mass
suspension w ill have a number of high frequency modes with circumferential
motion.

The diagonal entries of both gramians are plotted versus state in Figures 18.4
and 18.5, where the odd-numbered states are position states and the even-
numbered states are velocity states. Values from the “gram” function and the
closed form solution (18.16) (18.17) are shown.

© 2001 by Chapman & Hall/CRC

states

Figure 18.4: Controllability gramian diagonal terms.

states

Figure 18.5: Observability gramian diagonal terms.

Figures 18.6 and 18.7 show the position and velocity terms of each gramian
diagonal plotted separately. The position state and velocity state curves are
offset by the square of the eigenvalue of each mode.

© 2001 by Chapman & Hall/CRC

states

Figure 18.6: Controllability gramian diagonal position and velocity state terms.

states

Figure 18.7: Observability gramian diagonal position and velocity state terms.

18.5 Ranking Using Controllability/Observability
Figure 18.8 shows the controllability gramian velocity state and the
observability gramian position state (chosen such that the two curves have
sim ilar magnitudes for v isual comparison). W e could use the controllability
curve to rank the states for controllability and elim inate those states with low
controllability. A lternately, we could use the observability curve to rank the
states for observability and then elim inate states with low observability. The

© 2001 by Chapman & Hall/CRC

problem with this approach is that the jo in t controllability/observability is not
taken into account. There is no problem if a state chosen for elim ination has a
small controllability value and simultaneously a small observability value.
However, if as in modes 43 and 44 (states 85 to 88) in Figure 18.8, the
controllability value is small but the observability is relatively high, do we
elim inate the mode or not? This is the source of ambiguity in ranking using
only controllability or only observability gramians.

W ith the dc and peak gain ranking methods referenced earlier we used the
product of the input and output (controllability measure and observability
measure), jo in tly taking into account a measure of the controllability and
observability of each mode.

mode number

Figure 18.8: Controllability gramian velocity state and observability gramian position
state diagonal terms.

18.6 Balanced Reduction
Balanced reduction was introduced in the control community by Moore
[1981]. The algorithm used in the M ATLAB balancing function “balreal” is
taken from Laub [1987].

The algorithm creates a system with identical diagonal controllability and
observability gramians. Since the two gramians are equal, either the diagonal
or controllability gramian can be used to rank states for elim ination and the
ambiguity of using either only controllability or only observability is removed.

© 2001 by Chapman & Hall/CRC

For the system “sys” defined by the following equations:

x = A x + Bu

y = Cx + Du
(18.24a,b)

the syntax for the M ATLAB “balreal” function is:

[sysb,g,T ,T i] = balreal(sys), (18.25)

where “sysb” is the new, balanced system and “g” is the diagonal of the joint
gramian. “T” is the transformation matrix that is used to create “sysb.” “Ti”
is the inverse of “T.”

The diagonal terms of the joint gramian, g, are squares of the Hankel singular
values of the system. The Hankel matrix is the product of the controllability
and observability gramians. Hankel singular values are the squares of the
eigenvalues of the Hankel matrix. See Gawronski [1998] for a M ATLAB
script “bal_op_loop.m” that uses Singular Value Decomposition to calculate
the Hankel singular values.

T is the state transformation matrix that is used along with its inverse, T -1, to
create “sysb” from “sys” using:

Because the controllability and observability gramians are identical, there is
no ambiguity in deciding whether the most controllable or the most observable
states should be chosen. The states to be kept are the states with the largest
d iagonal terms.

The code below uses “balreal” to calculate the balanced system, “sysob,” and
plots the resulting gramians.

% use balreal to rank oscillatory states and modred to reduce for comparison

xb = TAT 1xb + TBu

y = C T x b + Du
(18.26a,b)

The gramians are also transformed by T to identical diagonal form:

Wbo = Wbc = diag(g) (18.27)

[sysob,g,T,Ti] = balreal(syso);

© 2001 by Chapman & Hall/CRC

% define controllability and observability gramians for balanced
% oscillatory system, sysob

wcb = gram(sysob,'c');

wob = gram(sysob,'o');

wcb_diag = diag(wcb);

wob_diag = diag(wob);

modevec = 2*(1:num_modes_total-1);

% plot balanced controllability and observability gramians

meshz(wcb);
view(60,30);
title([headstr ', oscillatory system balanced controllability gramian'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

meshz(wob);
view(60,30);
title([headstr ', oscillatory system balanced observability gramian'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot diagonal terms of balanced controllability and observability gramians

semilogy(statevec,wcb_diag,'k.-',statevec,wob_diag,'ko-')
title([headstr ', balanced system controllability and observability gramian ...

diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('controllability','observability',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figures 18.9 and 18.10 plot terms of the controllability and observability
gramian matrices for the balanced system, with the values plotted along the z
axis. Comparing them to the original, unbalanced, controllability and
observability gramian plots in Figures 18.2 and 18.3, we see that the balanced
plots are identical and strictly diagonal.

head 0, oscillatory system balanced controllability gramian

x 1 0 5

Figure 18.9: Balanced controllability gramian.

head 0 , oscillatory system balanced observability gramian

x 1 0 5 ! ' ■

state state

Figure 18.10: Balanced observability gramian.

Plotting diagonal terms of the controllability and observability gramians
versus states, Figure 18.11, shows that the two curves overlay one another and
that they are ranked from large to small by virtue of the balancing operations.

© 2001 by Chapman & Hall/CRC

states

Figure 18.11: Balanced system controllability and observability gramian diagonal terms.

W e are now in a position to use the balanced system gramian (either
controllability or observability) to decide which states are relatively less
important and can be elim inated. Since the states in the balanced system are
organized from most to least significant, the M ATLAB function “modred” can
be used with either the “del” or “mdc” option to elim inate the states with the
lowest jo in t controllability/observability, the higher numbered states in the
balanced system.

18.7 B alan ced and dc G ain R an k in g F requ ency Response C om parison

The code in this section starts by plotting the Hankel singular values and the
sorted dc gain of the oscillatory modes to see their sim ilarities. The modred
function is then used to reduce the system to the number of modes chosen in
the last act8 .m run, using both the “del” and “mdc” options. The complete
system is then rebuilt by augmenting the reduced oscillatory system with the
rig id body mode. F inally, the code plots frequency responses and compares
the results of dc gain ranking from act8 .m and balanced ranking from
balred .m .

% plot sorted diagonal values and dc gain

[row syso,col syso] = size(a syso);

semilogy(statevec,g,'k.-',2*index orig((2:num modes total)-1), ...
gain h0 sort(2:num modes total),'k-')

title([headstr ', sorted diagonal terms of balanced gramian and dc gain'])
xlabel('state')

© 2001 by Chapman & Hall/CRC

ylabel('diagonal of gramian')
legend('balanced','dc gain',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

num_oscil_states_used = 2*num_modes_used - 2;

% use modred to reduce states from balanced system using both "del" and "mdc"

bsys_delo = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'del');

bsys_mdco = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'mdc');

% rebuild system by appending balanced realization of oscillatory modes to
% rigid body mode

[a_delo_bal,b_delo_bal,c_delo_bal,d_delo_bal] = ssdata(bsys_delo);

a_del_bal = [a(1:2,1:2) zeros(2,num_oscil_states_used)
zeros(num_oscil_states_used,2) a_delo_bal];

b_del_bal = [b(1:2,:)
b_delo_bal];

c_del_bal = [c_disp(index_out+6,1:2) c_delo_bal];

bsys_del = ss(a_del_bal,b_del_bal,c_del_bal,d);

[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco_bal] = ssdata(bsys_mdco);

a_mdc_bal = [a(1:2,1:2) zeros(2,num_oscil_states_used)
zeros(num_oscil_states_used,2) a_mdco_bal];

b_mdc_bal = [b(1:2,:)
b_mdco_bal];

c_mdc_bal = [c_disp(index_out+6,1:2) c_mdco_bal];

bsys_mdc = ss(a_mdc_bal,b_mdc_bal,c_mdc_bal,d);

[magr_del,phsr_del] = bode(bsys_del,frad);

[magr_mdc,phsr_mdc] = bode(bsys_mdc,frad);

% compare frequency responses for all four reduction methods

loglog(f,mag(index_out,:),'k--',f,mag_sort_red(index_out,:),'k-', ...
f,magr_del(1,:),'k.-')

title([headstr ', results comparison, ',num2str(num_modes_used),' modes, ', ...
num2str(num_oscil_states_used),' oscillatory balanced states'])

xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 1e-4])
legend('all modes','sorted truncated','balreal modred del',3)

© 2001 by Chapman & Hall/CRC

grid off

disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,mag(index_out,:),'k--',f,mag_mdc(index_out, :),'k-',f,magr_mdc(1, :),'k. -')
title([headstr ', results comparison, ',num2str(num_modes_used),' modes, ', ...

num2str(num_oscil_states_used),' oscillatory balanced states'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-8 1e-4])
legend('all modes','sorted mdc','balreal modred mdc',3)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figure 18.12 shows the Hankel singular values and sorted dc gains versus
number of states. At this point it is interesting to compare frequency responses
for the two ranking techniques to see how each decides which modes/states to
eliminate.

state

Figure 18.12: Balanced gramian diagonal terms (Hankel singular values) and sorted dc
gain.

Figures 18.13 to 18.18 show frequency response plots for different numbers of
retained modes, from two to seven modes, including the rig id body mode.

© 2001 by Chapman & Hall/CRC

W hile the code above calculates “sorted truncated” and “balreal modred del”
responses, we w ill only show the follow ing in the figures below :

1) “sorted mdc” - uses dc gain ranking and modred “mdc” to
reduce

2) “balreal modred mdc” - uses balreal for ranking and modred
“mdc” to reduce

Frequency, hz

Figure 18.13: Two modes included.

Frequency, hz

Figure 18.14: Three modes included.

© 2001 by Chapman & Hall/CRC

Note that the two ranking methods chose different modes for the three reduced
modes. The dc gain method chose the two system modes in the 4.2 khz range
(alm ost coincident) while the balanced method chose one mode at 4.2 khz and
another at 5.1 khz.

Figure 18.15: Four modes included.

For the four reduced mode case, the dc gain method picked up the 5.1 khz
mode, while the balanced method chose the suspension torsion mode at 2.9
khz.

Figure 18.16: Five modes included.

© 2001 by Chapman & Hall/CRC

For the five reduced mode case the dc gain method included the torsion mode
but m issed the mode at 5 .5 khz which was picked up by the balanced method.

Frequency, hz

Figure 18.17: Six modes included.

W ith six reduced modes the balanced method includes the mode at 9 khz, but
the dc gain method missed it.

Frequency, hz

Figure 18.18: Seven modes included.

W ith seven or higher modes the balanced and dc gain results are very similar.
W e w ill see later when analyzing impulse responses of the oscillatory system

© 2001 by Chapman & Hall/CRC

that the two methods give results which are within a few percent of each other
when seven or more modes are included in the reduced model.

18.8 Balanced and dc Gain Ranking Impulse Response Comparison
This section w ill compare the impulse responses for four different reduced
systems, using from 2 through 15 modes. Only the matched dc gain (mdc)
methods w ill be compared as there are m inimal differences between the mdc
method and the truncation or “del” method of reducing, as can be seen from
the eight reduced mode results below.

Frequency, hz

Figure 18.19: Frequency response for eight-mode reduced models, sorted truncated and
balreal modred “del.”

© 2001 by Chapman & Hall/CRC

Frequency, hz

Figure 18.20: Frequency response for 8-mode reduced models, sorted “mdc” and balreal
modred “mdc.”

In studying the impulse response, we will use only the oscillatory modes. The
final model w ill o f course include the rigid body mode, but to study the effects
o f the various reduced models on transient response it is useful to include only
the oscillatory modes. The reason this is useful is that a typical forcing
function applied to a rigid body mode will move the system from one position
to another, with rigid body displacements quite large relative to the
displacements o f the oscillatory modes, creating roundoff errors that mask the
oscillatory mode responses.

The code below calculates the impulse response using the “lsim” function for
five oscillatory systems, the original “all modes included” system and the four
reduced systems. The impulse responses are then plotted and the normalized
reduction index, 8 (Gawronski 1998), is calculated, where the index is
defined as:

8 =
||disp(all mode model)-disp(reduced model)||

||disp(all mode model)||
(18.28)

A table o f results fo r 8 from earlier runs with different numbers o f retained
modes is included in the code listing below. Information in the table is also
shown graphically in Figures 18.25 and 18 .26 .

% calculate impulse responses of all four oscillatory systems for comparison

ttotal = 0.0025;

© 2001 by Chapman & Hall/CRC

% define oscillatory systems for models

% sorted reduced system

red_size = 2*num_modes_used;

[a_sys_sort_red,b_sys_sort_red,c_sys_sort_red,d_sys_sort_red] = ...
ssdata(sys_sort_red);

a_sys_sort_redo = a_sys_sort_red(3:red_size,3:red_size);

b_sys_sort_redo = b_sys_sort_red(3:red_size);

c_sys_sort_redo = c_sys_sort_red(index_out,3:red_size);

sys_sort_redo = ss(a_sys_sort_redo,b_sys_sort_redo,c_sys_sort_redo,d);

% sorted mdc reduced system

[a_sys_sort_mdc,b_sys_sort_mdc,c_sys_sort_mdc,d_sys_sort_mdc] = .
ssdata(sys_mdc);

a_sys_sort_mdc = a_sys_sort_red(3:red_size,3:red_size);

b_sys_sort_mdc = b_sys_sort_red(3:red_size);

c_sys_sort_mdc = c_sys_sort_red(index_out,3:red_size);

sys_mdco = ss(a_sys_sort_mdc,b_sys_sort_mdc,c_sys_sort_mdc,d);

% use lsim to calculate transient response

[disp_syso,t_syso] = impulse(syso,t);

[disp_sys_sort_redo,t_sys_sort_redo] = impulse(sys_sort_redo,t);

[disp_sys_sort_mdco,t_sys_sort_mdco] = impulse(sys_mdco,t);

[disp_bsys_delo,t_bsys_delo] = impulse(bsys_delo,t);

[disp_bsys_mdco,t_bsys_mdco] = impulse(bsys_mdco,t);

% build matrix of results

dispo = [disp_syso(:,1) disp_sys_sort_redo(:,1) ...
disp_sys_sort_mdco(:,1) disp_bsys_delo(:,1) ...
disp_bsys_mdco(:,1)];

sort_redo_del = dispo(:,1) - dispo(:,2);

sort_mdco_del = dispo(:,1) - dispo(:,3);

t = linspace(0,ttotal,400);

© 2001 by Chapman & Hall/CRC

delo_del = dispo(:,1) - dispo(:,4);

mdco_del = dispo(:,1) - dispo(:,5);

% calculate normalized reduction index

index_sort_redo = .
sqrt(sum(sort_redo_del. *sort_redo_del))/sqrt(sum(dispo(:, 1).*dispo(:, 1)))

index_sort_mdco = .
sqrt(sum(sort_mdco_del.*sort_mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_delo = .
sqrt(sum(delo_del.*delo_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_mdco = .
sqrt(sum(mdco_del.*mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

[num_modes_used index_sort_redo index_sort_mdco index_delo index_mdco]

plot(t_syso,disp_syso(:,1),'k-',t_sys_sort_redo,disp_sys_sort_redo(:,1),'k.-')
title([headstr displacement vs time, ',num2str(num_modes_used-1), ...

' oscillatory modes'])
xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','sorted reduced system',4)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_sys_sort_mdco,disp_sys_sort_mdco(:,1),'k.-')
title([headstr ', displacement vs time, ',num2str(num_modes_used-1), ...

' oscillatory modes'])
xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','sorted modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_bsys_delo,disp_bsys_delo(:,1),'k.-')
title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), .

' oscillatory balanced states'])
xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','balreal modred del',4)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_bsys_mdco,disp_bsys_mdco(:,1),'k.-')
title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), .

' oscillatory balanced states'])
xlabel('time, sec')
ylabel('displacement, mm')

© 2001 by Chapman & Hall/CRC

legend('all modes','balreal modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue'); pause

%
%

plot results of oscillatory impulse response normalized error index versus
number of modes used

error_norm = [2 .4332 .4332 0.3007 0.3008
.3041 .3041 0.1777 0.1823
.1759 .1759 0.1135 0.1137
.1134 .1134 0.0845 0.0841
.0851 .0851 0.0598 0.0603
.0637 .0637 0.0582 0.0583
.0599 .0599 0.0383 0.0401
.0594 .0594 0.0343 0.0356
.0572 .0572 0.0338 0.0347
.0555 .0555 0.0258 0.0264
.0392 .0392 0.0280 0.0268
.0327 .0327 0.0167 0.0168
.0270 .0270 0.0162 0.0158
.0209 .0209 0.0162 0.0156]:

3
4
5
6
7
8
9
10
11
12
13
14
15

nmode = error_norm(:,1);

error_sort_red = error_norm(:,2);

error_sort_mdc = error_norm(:,3);

error_bal_del = error_norm(:,4);

error_bal_mdc = error_norm(:,5);

plot(nmode,error_sort_red,'k.-',nmode,error_bal_del,'ko-')
title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('sorted reduced','balanced del')
axis([0 15 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(nmode,error_sort_mdc,'k.-',nmode,error_bal_mdc,'ko-')
title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('sorted mdc','balanced mdc')
axis([0 15 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

save balred_data;

© 2001 by Chapman & Hall/CRC

The impulse response comparisons for the same four reduced methods are
shown in the four figures below.

head 0, displacement vs time, 7 oscilla tory modes

x 10

Figure 18.21: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and sorted reduced system with seven oscillatory modes.

head 0, displacement vs time, 7 oscilla tory modes

x 10

Figure 18.22: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and sorted modred with “mdc” option with seven oscillatory modes.

© 2001 by Chapman & Hall/CRC

head 0, d isplacem ent vs time, 14 oscillatory balanced states

x 10

Figure 18.23: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and balreal modred “del” reduced system with seven oscillatory modes.

head 0, displacement vs time, 14 oscillatory balanced states

x 10

Figure 18.24: Impulse response comparisons for oscillatory system, full model (all
oscillatory modes) and balreal modred “mdc” reduced system with seven oscillatory modes.

The two figures below compare the normalized reduction index, 8 , as a
function of the number of modes included in the various reduced model
methods.

© 2001 by Chapman & Hall/CRC

head 0, normalized reduction index versus number of modes included

number of modes included

Figure 18.25: Impulse response normalized reduction index versus number of modes
included in reduction for sorted reduced and balanced modred “del” option reductions.

head 0, normalized reduction index versus number of modes included

number of modes included

Figure 18.26: Impulse response normalized reduction index versus number of modes
included in reduction for sorted modred “mdc” and balanced modred “mdc” options
reductions.

As mentioned in the frequency response section, when five or more modes are
included, the impulse responses are almost identical for all reduction
techniques, with small differences in normalized reduction indices. For less
than five modes, it is better to use the balanced technique because it picks up
an additional mode in addition to the system mode, whereas the dc gain

© 2001 by Chapman & Hall/CRC

method assigns the first two modes to the almost coincident two modes near
the system mode.

© 2001 by Chapman & Hall/CRC

CHAPTER 19

MIMO TWO-STAGE ACTUATOR MODEL

In this chapter we w ill use an AN SYS model of a two-stage disk drive
actuator/suspension system to illustrate the creation of a reduced model for a
M ultip le Input, M ultiple Output (M IMO) system using the balanced reduction
method. The results w ill seem somewhat anticlimactic since the previous
chapter covered most aspects of how to use the balanced reduction method.
However, understanding the mechanics of setting up a MIMO system should
prove useful.

As the track density (tracks per inch, tp i) of disk drives continues to increase,
it w ill be necessary to add a second stage of actuation to the system in order to
have the high servo bandwidths required to accurately follow the closely
spaced tracks. M any different types of two-stage actuator architectures are
being explored. The actuator architecture used for this example is not meant
to represent a practical embodiment but w ill serve to illustrate a two-input,
two-output system.

W e w ill begin with descriptions of the actuator system and AN SYS model.
Then, AN SYS output, mode shape plots, frequency responses and a partial
eigenvector listing w ill be discussed. The pertinent eigenvector and
eigenvalue information w ill be extracted into a .mat file for input to
M ATLAB.

The M ATLAB code w ill calculate either dc or peak gains, depending on
whether uniform or non-uniform damping is defined. There are four gains to
be plotted for this two-input, two-output MIMO system. W hile dc and peak
gains are not required for the “balreal” and “modred” model reduction, they
w ill serve to bridge our understanding from SISO models to MIMO models.
W e w ill see the difficulty of choosing which modes to include in a MIMO
model using dc or peak gain sorting by discussing the ranking of modes for the
four input/output combinations.

In order to perform a balanced reduction, the system is partitioned into rig id
body and oscillatory modes, sim ilar to the method used in Chapter 18. The
oscillatory modes are balanced and “modred” is used with both the “del” and
“mdc” options to reduce the model. Frequency responses for head 0 for both
coil and piezo inputs for “del” reduction are shown for various numbers of

19.1 Introduction

© 2001 by Chapman & Hall/CRC

reduced modes, from 6 oscillatory states to 20 oscillatory states included. The
20-state case shows both “del” and “mdc” for comparison.

Impulse responses are calculated for oscillatory systems with various numbers
of reduced modes retained. The error is plotted as a function of number of
modes retained.

19.2 Actuator Description
Figure 19.1 shows top and cross-sectioned side view s of the two-stage actuator
used for the analysis.

Figure 19.1: Drawing of actuator/suspension system.

The model is sim ilar to the actuator used in Chapters 17 and 18 except that the
arms are now the same thickness and are symm etrically located with respect to
the pivot bearing z axis centerline. A lso, there is now a piezo-actuator bonded
into one side of each of the arms. The piezo actuator consists of a ceramic
element that changes size when a voltage is applied. In this case, the voltage
would be applied to the piezo element so that it changes length, creating a
rotation about the “hinge” section in the other side of the arm. This rotation
translates the recording head in the circumferential direction. When this “fine
positioning” motion is used in conjunction with the V CM ’s “coarse
positioning” motion, higher servo bandwidths and consequently higher tpi are
possible.

© 2001 by Chapman & Hall/CRC

The actuator example in the last two chapters had a coil forcing function
applied at four nodes in the coil body. Even though there were multiple points
at which the force w as applied, the fact that the same force w as applied to all
nodes defined a Single Input system.

Instead of applying voltage as the input into the piezo element, we w ill assume
that we have calculated an equivalent set of forces which can be applied at the
ends of the element that w ill replicate the voltage forcing function. In this
model, we w ill be applying forces to multiple nodes at the ends of both piezo
elements. Since the same forces are being applied to both piezo elements,
they represent the second input to the now M ulti Input system, the first input
being the coil force. W e w ill apply equal and opposite forces to the two ends
of each piezo actuator, and reverse the signs of the forces applied to the two
separate elements. If the same forcing function were applied to both elements,
an inertial moment arises which would tend to rotate the entire actuator about
the pivot. B y using opposite signs for the two arms, this moment is largely
elim inated, generating less cross-coupling between the coarse and fine
actuator inputs.

In order to make this example a “M ultip le Output” system, we w ill output the
displacements of both lower and upper heads, head 0 and head 1.

19.3 ANSYS Model Description
The model description is the same as for the model in Chapter 17. The
AN SYS model is shown below, along with a drawing showing the node
locations for the coil, piezo elements and heads.

© 2001 by Chapman & Hall/CRC

Figure 19.2: Complete piezo actuator/suspension model.

Figure 19.3: Piezo actuator/suspension model, four views.

© 2001 by Chapman & Hall/CRC

Figure 19.4: Nodes used for reduced MATLAB model, shown with partial mesh at coil and
piezo element.

Since the model uses cylindrical coordinates, the coil and piezo forces are at
an angle to the radial line jo ining the pivot bearing centerline to the node
location. Both coil and piezo element forces are decomposed into radial and
circumferential elements using the angles shown for each in Figure 19.4.

19.4 ANSYS Piezo Actuator/Suspension Model Results
19.4.1 Eigenvalues, Frequency Response
The first 50 modes were extracted using the B lock Lanczos method.
Frequency versus mode number is plotted in Figure 19.5.

© 2001 by Chapman & Hall/CRC

mode number

Figure 19.5: Frequencies versus mode number.

Figure 19.6: Coil input frequency responses for head 0 and head 1 from ANSYS, zeta =
0.005.

Figure 19.6 is the frequency response from A N SYS for coil input for both
heads. The same frequency response from the 50-mode M ATLAB model is
shown in Figure 19.7. Figure 19.8 plots the frequency response for the two
piezo inputs.

© 2001 by Chapman & Hall/CRC

gap displacement, all 50 modes included

Frequency, hz

Figure 19.7: Coil input frequency response from MATLAB, zeta = 0.005.

gap displacement, all 50 modes included

Frequency, hz

Figure 19.8: Piezo input frequency response from MATLAB, zeta = 0.005.

19.4.2 Mode Shape Plots
Selected mode shape plots are shown below, with a brief discussion of each in
the follow ing section.

© 2001 by Chapman & Hall/CRC

Figure 19.9: Mode 1 undeformed/deformed plot, 0.014 hz, rigid body rotation.

Figure 19.10: Mode 2, 798 hz, actuator pitching mode.

© 2001 by Chapman & Hall/CRC

Figure 19.11: Mode 3, 1004 hz, arm/coil bending in phase.

ANSYS 5.5.3
MAR 3 2000
22:24:28
PLOT NO. 4
DISPLACEMENT
STEP=1
SUB =4
FREQ=1055
RSYS=1
DMX =62.959

DSCA=.070664
XV =1
YV =-1
ZV =1
DIST=45.051
XF =10.289
YF =.00331
ZF =4.251
A-ZS=-60
CENTROID HIDDEN

Figure 19.12: Mode 4, 1055 hz, arms bending out of phase.

© 2001 by Chapman & Hall/CRC

Figure 19.13: Mode 5, 2027 hz, actuator/coil torsion about x axis.

Figure 19.14: Mode 6, 2085 hz, suspension bending mode, some arm interaction.

© 2001 by Chapman & Hall/CRC

Figure 19.15: Mode 8, 2823 hz, suspension torsion, in phase, arm tip interaction.

Figure 19.16: Mode 9, 2867 hz, suspension torsion, out of phase.

© 2001 by Chapman & Hall/CRC

<х
Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.17: Mode 12, 3415 hz, suspension torsion, arm tip lateral.

ANSYS 5.5.3
MAR 3 2000
22:25:51
PLOT NO. 13
DISPLACEMENT
STEP=1
SUB =13
FREQ=3479
RSYS=1
DMX =137.162

DSCA=.032436
XV =1
YV =-1
ZV =1
DIST=45.033
XF =10.263
YF =-.410351
ZF =3.846
A-ZS=-60
CENTROID HIDDEN

Figure 19.18: Mode 13, 3479 hz, coil/arm/suspension lateral mode.

ANSYS 5.5.3
MAR 3 2000
22:25:39
PLOT NO. 12
DISPLACEMENT
STEP=1
SUB =12
FREQ=3415
RSYS=1
DMX =157.189

DSCA=.028303
XV =1
YV =-1
ZV =1
DIST=45.116
XF =10.351
YF =.037366
ZF =4.704
A-ZS=-60
CENTROID HIDDEN

© 2001 by Chapman & Hall/CRC

Figure 19.19: Mode 16, 5387 hz, suspension sway, arm tip lateral.

Figure 19.20: Mode 17, 5664 hz, piezo bending, arm tip torsion, coil bending.

© 2001 by Chapman & Hall/CRC

ANSYS 5.5.3
MAR 3 2000
22:26:38
PLOT NO. 21
DISPLACEMENT
STEP=1
SUB =21
FREQ=6822
RSYS=1
DMX =86.67

DSCA=.051332
XV =1
YV =-1
ZV =1
DIST=45.372
XF =10.498
YF =.011307
ZF =4.243
A-ZS=-60
CENTROID HIDDEN

Figure 19.21: Mode 21, 6822 hz, suspension/arm lateral out of phase.

19.4.3 Mode Shape Discussion
As in Chapter 17, we w ill now describe the major modes which couple into the
frequency response as w ell as several that do not couple, associating them w ith
the frequency responses in Figures 19.7 and 19.8.

Mode 1 is the rig id body rotation mode, which A N SYS again does not
calculate at zero hz because o f slight geometric and numerical roundoff issues.
The frequency for the rig id body mode is set to zero in the M ATLAB code.

M odes 2, 3 and 4 are a ll modes which involve motion only in the x-z plane,
bending type motions. S ince the motions are perpendicular, or orthogonal, to
the direction o f input forces and output displacements, they do not couple into
any of the frequency responses.

Mode 5 is an actuator/coil torsion mode, rotating about the x axis. A sim ilar
mode can be seen on the model in Chapter 17 as a small pole/zero pair on
head 1. A torsional mode like this can be excited b y : (1) co il forces, since
the co il is offset from both the mass center and bearing stiffness center, and
(2) inertial forces, because o f the asymmetry o f the structure about the mass
center location in the z direction. Because the arms are more symmetric on
this model than the model in Chapter 17, the pole/zero mode does not appear
on the frequency response plot of either head. W e w ill see in the dc gain
ranking that mode 5 is two orders of magnitude less important than the major

© 2001 by Chapman & Hall/CRC

modes of the system for coil input, and is almost three orders of magnitude
less important for piezo input.

Mode 6 is a suspension bending mode, once again a bending-only mode with
no coupling into the circumferential direction.

Mode 8 is a suspension torsion, arm-tip interaction mode. It is the second
most important mode for piezo input, but is unimportant for coil input.

Mode 9 is a suspension torsion mode. It is the second most important mode
for coil input, but is unimportant for piezo input. The peak on the two
frequency responses, ju st below 3 khz, is in fact two different frequencies and
two different modes for the two different forcing functions. For the coil input
the peak is at 2867 hz, mode 9. For piezo input, the peak is at 2823 hz, mode
8.

M odes 12 and 13 are the most important modes for piezo and coil inputs,
respectively. Mode 12 involves arm tip lateral motion which the piezo can
easily excite. Mode 13 is the “system” lateral mode with all components
moving laterally, in phase.

Mode 16, another mode involving the tips of the arms and this time the
suspension sway mode, is the third most important mode for coil input.

Mode 17 is the fifth most important piezo excitation mode, involving piezo
bending, arm tip torsion and coil bending.

Mode 21 is the third most important mode for piezo excitation, with the
suspensions and arms moving laterally , out of phase.

19.4.4 ANSYS Output Listing
The AN SYS output listing for input and output nodes for modes 1, 2 and 13
are listed below. These three modes were selected for discussion in order to
highlight different aspects of the eigenvectors. Compared with the AN SYS
output listing in Chapter 17, there are significantly more nodes in the output,
with the additional nodes representing the six nodes at each end of the bottom
and top piezo elements.

The rig id body mode, mode 1, should have only UY displacements
(circum ferential motion in the cylindrical coordinate system). Mode 2, an
actuator pitching mode has its most significant motion in the UZ direction,
with some slight coupling into the UX and UY directions. Mode 13 is a
h ighly coupled mode, with significant displacements in all three directions for

© 2001 by Chapman & Hall/CRC

some nodes. The U Y direction displacements are significant with respect to
the U Y displacements of mode 2.

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 0.14502E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 0.30584E-06 32.618 0.11285E-11 0.0000 0.0000 0.0000

10022 0.30627E-06 32.618 -0.46777E-10 0.0000 0.0000 0.0000
21538 0.85322E-07 9.7742 0.21745E-08 0.0000 0.0000 0.0000
21546 0.82634E-07 14.735 0.36557E-08 0.0000 0.0000 0.0000
21576 0.10309E-06 9.9634 0.21924E-08 0.0000 0.0000 0.0000
21584 0.16887E-06 14.883 0.37407E-08 0.0000 0.0000 0.0000
21617 0.10951E-06 10.147 0.22079E-08 0.0000 0.0000 0.0000
21625 0.11092E-06 14.978 0.37980E-08 0.0000 0.0000 0.0000
22538 0.85184E-07 9.7742 0.21706E-08 0.0000 0.0000 0.0000
22546 0.82327E-07 14.735 0.36546E-08 0.0000 0.0000 0.0000
22576 0.10295E-06 9.9634 0.21900E-08 0.0000 0.0000 0.0000
22584 0.16856E-06 14.883 0.37381E-08 0.0000 0.0000 0.0000
22617 0.10937E-06 10.147 0.22067E-08 0.0000 0.0000 0.0000
22625 0.11061E-06 14.978 0.37940E-08 0.0000 0.0000 0.0000
24061 0.11911E-06 16.888 -0.95894E-09 0.0000 0.0000 0.0000
24066 0.77030E-07 10.226 -0.53758E-09 0.0000 0.0000 0.0000
24082 0.68150E-07 10.226 -0.48785E-09 0.0000 0.0000 0.0000
24087 0.10037E-06 16.888 -0.86954E-09 0.0000 0.0000 0.0000
24538 0.84850E-07 9.7742 0.20872E-08 0.0000 0.0000 0.0000
24546 0.81937E-07 14.735 0.18321E-08 0.0000 0.0000 0.0000
24576 0.10262E-06 9.9634 0.20998E-08 0.0000 0.0000 0.0000
24584 0.16817E-06 14.883 0.17648E-08 0.0000 0.0000 0.0000
24617 0.10904E-06 10.147 0.21122E-08 0.0000 0.0000 0.0000
24625 0.11021E-06 14.978 0.17139E-08 0.0000 0.0000 0.0000
25538 0.84745E-07 9.7742 0.20835E-08 0.0000 0.0000 0.0000
25546 0.82082E-07 14.735 0.18310E-08 0.0000 0.0000 0.0000
25576 0.10251E-06 9.9634 0.20975E-08 0.0000 0.0000 0.0000
25584 0.16832E-06 14.883 0.17623E-08 0.0000 0.0000 0.0000
25617 0.10894E-06 10.147 0.21110E-08 0.0000 0.0000 0.0000
25625 0.11036E-06 14.978 0.17100E-08 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 22 21625 0 0 0
VALUE 0.30627E-06 32.618 0.37980E-08 0.0000 0.0000 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 797.85 LOAD CASE= 0

© 2001 by Chapman & Hall/CRC

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 0.49229 -0.14022 -0.10321E-03 0.0000 0.0000 0.0000

10022 -0.89140 0.14245 -0.83465E-03 0.0000 0.0000 0.0000
21538 -1.0283 0.18631 -4.0091 0.0000 0.0000 0.0000
21546 -1.5471 0.23464E-01 -10.200 0.0000 0.0000 0.0000
21576 -1.0204 0.23663 -4.0561 0.0000 0.0000 0.0000
21584 -1.5459 0.72962E-01 -10.473 0.0000 0.0000 0.0000
21617 -1.0084 0.27685 -4.0950 0.0000 0.0000 0.0000
21625 -1.5436 0.11594 -10.631 0.0000 0.0000 0.0000
22538 -0.61275 0.10972 -4.0090 0.0000 0.0000 0.0000
22546 -0.12481 0.83127E-01 -10.200 0.0000 0.0000 0.0000
22576 -0.60478 0.13415 -4.0560 0.0000 0.0000 0.0000
22584 -0.12184 0.86554E-01 -10.473 0.0000 0.0000 0.0000
22617 -0.60100 0.15502 -4.0950 0.0000 0.0000 0.0000
22625 -0.11925 0.89513E-01 -10.631 0.0000 0.0000 0.0000
24061 -0.35220 0.13939 19.652 0.0000 0.0000 0.0000
24066 -0.33572 0.17431 7.3143 0.0000 0.0000 0.0000
24082 -0.33512 -0.17241 7.3089 0.0000 0.0000 0.0000
24087 -0.35171 -0.13563 19.644 0.0000 0.0000 0.0000
24538 0.22023 -0.36868E-01 -4.0205 0.0000 0.0000 0.0000
24546 -0.27795 -0.52244E-01 -10.250 0.0000 0.0000 0.0000
24576 0.21597 -0.43317E-01 -4.0680 0.0000 0.0000 0.0000
24584 -0.27997 -0.42854E-01 -10.524 0.0000 0.0000 0.0000
24617 0.21591 -0.49478E-01 -4.1074 0.0000 0.0000 0.0000
24625 -0.28139 -0.34705E-01 -10.683 0.0000 0.0000 0.0000
25538 0.63806 -0.11349 -4.0206 0.0000 0.0000 0.0000
25546 1.1532 0.79337E-02 -10.250 0.0000 0.0000 0.0000
25576 0.63387 -0.14598 -4.0680 0.0000 0.0000 0.0000
25584 1.1531 -0.29036E-01 -10.524 0.0000 0.0000 0.0000
25617 0.62557 -0.17161 -4.1074 0.0000 0.0000 0.0000
25625 1.1519 -0.61159E-01 -10.683 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 21546 21617 24061 0 0 0
VALUE -1.5471 0.27685 19.652 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING **** *

LOAD STEP= 1 SUBSTEP= 13
FREQ= 3479.3 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 -2.1984 60.376 -0.14239E-02 0.0000 0.0000 0.0000

10022 -1.9960 77.045 0.31840E-01 0.0000 0.0000 0.0000
21538 0.80764E-01 0.40397E-01 0.49848 0.0000 0.0000 0.0000
21546 -6.4836 3.9912 -1.2673 0.0000 0.0000 0.0000
21576 0.72358E-01 0.63009E-01 0.42663 0.0000 0.0000 0.0000
21584 -7.6689 4.6553 -1.8884 0.0000 0.0000 0.0000
21617 0.12273 0.57379E-01 0.37047 0.0000 0.0000 0.0000

© 2001 by Chapman & Hall/CRC

21625 -8.7016 5.1772 -2.4325 0.0000 0.0000 0.0000
22538 0.87706E-01 0.17543 0.56748 0.0000 0.0000 0.0000
22546 -6.2831 5.0182 -1.2225 0.0000 0.0000 0.0000
22576 0.92974E-01 0.18824 0.48659 0.0000 0.0000 0.0000
22584 -7.4322 5.6835 -1.8299 0.0000 0.0000 0.0000
22617 0.14368 0.17617 0.42076 0.0000 0.0000 0.0000
22625 -8.4357 6.2048 -2.3541 0.0000 0.0000 0.0000
24061 -1.9369 -12.670 -0.95604 0.0000 0.0000 0.0000
24066 -1.0801 -4.7937 -1.0649 0.0000 0.0000 0.0000
24082 1.5007 -4.5559 -1.4595 0.0000 0.0000 0.0000
24087 2.3829 12.467 0.10330 0.0000 0.0000 0.0000
24538 -0.93404E-01 0.37757 1.0909 0.0000 0.0000 0.0000
24546 -5.5118 4.1576 2.6594 0.0000 0.0000 0.0000
24576 -0.66009E-01 0.38853 1.0874 0.0000 0.0000 0.0000
24584 -6.3981 4.6967 3.0133 0.0000 0.0000 0.0000
24617 -0.78948E-02 0.37908 1.0812 0.0000 0.0000 0.0000
24625 -7.1715 5.1206 3.3430 0.0000 0.0000 0.0000
25538 -0.30931 0.47682 1.1451 0.0000 0.0000 0.0000
25546 -5.2283 3.4392 2.6949 0.0000 0.0000 0.0000
25576 -0.28463 0.50756 1.1349 0.0000 0.0000 0.0000
25584 -6.1405 3.9607 3.0595 0.0000 0.0000 0.0000
25617 -0.21671 0.51131 1.1213 0.0000 0.0000 0.0000
25625 -6.9354 4.3710 3.4049 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 21625 10022 25625 0 0 0
VALUE -8.7016 77.045 3.4049 0.0000 0.0000 0.0000

The eigenvalues and eigenvectors are stripped out of the AN SYS actrlpz.eig
file and are stored in the M ATLAB .mat file actrlpz_eig.mat.

19.5 MATLAB Model, MATLAB Code actSpz.m Listing and Results
19.5.1 Input, dof Definition
The act8pz.m M ATLAB code starts by defining the degrees of freedom,
nodes, directions and locations for the problem for reference in building the
model. The degrees of freedom are extracted from the AN SYS
eigenvalue/eigenvector listing and are ordered by node number, first the UX
direction and then the U Y direction. Once again, the UX direction
information is required to transform the coil and piezo forces into cylindrical
coordinates. The eigenvalue/eigenvector information is then loaded by
reading the .mat file actrlpz_eig.mat and the rig id body mode is set to zero
frequency.

% act8pz.m

clear all;

© 2001 by Chapman & Hall/CRC

hold off;

clf;

% load the Block Lanczos .mat file actrl_eig.mat, containing evr - the
% modal matrix, freqvec -the frequency vector and node_numbers - the
% vector of node numbers for the modal matrix

% the output for the ANSYS run is the following dofs

%
0/

dof node dir where
%
% 1 22 ux - radial , top head gap
% 2 10022 ux - radial , bottom head gap
% 3 21538 ux - radial , bottom arm piezo, hub end
% 4 21546 ux - radial , bottom arm piezo, head end
% 5 21576 ux - radial , bottom arm piezo, hub end
% 6 21584 ux - radial , bottom arm piezo, head end
% 7 21617 ux - radial , bottom arm piezo, hub end
% 8 21625 ux - radial , bottom arm piezo, head end
% 9 22538 ux - radial , bottom arm piezo, hub end
% 10 22546 ux - radial , bottom arm piezo, head end
% 11 22576 ux - radial , bottom arm piezo, hub end
% 12 22584 ux - radial , bottom arm piezo, head end
% 13 22617 ux - radial , bottom arm piezo, hub end
% 14 22625 ux - radial , bottom arm piezo, head end
% 15 24061 ux - radial , bottom arm piezo, coil
% 16 24066 ux - radial , bottom arm piezo, coil
% 17 24082 ux - radial , bottom arm piezo, coil
% 18 24087 ux - radial , bottom arm piezo, coil
% 19 24538 ux - radial , top arm piezo, hub end
% 20 24546 ux - radial , top arm piezo, head end
% 21 24576 ux - radial , top arm piezo, hub end
% 22 24584 ux - radial , top arm piezo, head end
% 23 24617 ux - radial , top arm piezo, hub end
% 24 24625 ux - radial , top arm piezo, head end
% 25 25538 ux - radial , top arm piezo, hub end
% 26 25546 ux - radial , top arm piezo, head end
% 27 25576 ux - radial , top arm piezo, hub end
% 28 25584 ux - radial , top arm piezo, head end
% 29 25617 ux - radial , top arm piezo, hub end
% 30 25625 ux - radial , top arm piezo, head end
% 31 22 uy - circumferential, top head gap
% 32 10022 uy - circumferential, bottom head gap
% 33 21538 uy - circumferential, bottom arm piezo, hub end
% 34 21546 uy - circumferential, bottom arm piezo, head end
% 35 21576 uy - circumferential, bottom arm piezo, hub end
% 36 21584 uy - circumferential, bottom arm piezo, head end
% 37 21617 uy - circumferential, bottom arm piezo, hub end
% 38 21625 uy - circumferential, bottom arm piezo, head end
% 39 22538 uy - circumferential, bottom arm piezo, hub end
% 40 22546 uy - circumferential, bottom arm piezo, head end
% 41 22576 uy - circumferential, bottom arm piezo, hub end
% 42 22584 uy - circumferential, bottom arm piezo, head end
% 43 22617 uy - circumferential, bottom arm piezo, hub end

© 2001 by Chapman & Hall/CRC

% 44 22625 uy - circumferential, bottom arm piezo, head end
% 45 24061 uy - circumferential, bottom arm piezo, coil
% 46 24066 uy - circumferential, bottom arm piezo, coil
% 47 24082 uy - circumferential, bottom arm piezo, coil
% 48 24087 uy - circumferential, bottom arm piezo, coil
% 49 24538 uy - circumferential, top arm piezo, hub end
% 50 24546 uy - circumferential, top arm piezo, head end
% 51 24576 uy - circumferential, top arm piezo, hub end
% 52 24584 uy - circumferential, top arm piezo, head end
% 53 24617 uy - circumferential, top arm piezo, hub end
% 54 24625 uy - circumferential, top arm piezo, head end
% 55 25538 uy - circumferential, top arm piezo, hub end
% 56 25546 uy - circumferential, top arm piezo, head end
% 57 25576 uy - circumferential, top arm piezo, hub end
% 58 25584 uy - circumferential, top arm piezo, head end
% 59 25617 uy - circumferential, top arm piezo, hub end
% 60 25625 uy - circumferential, top arm piezo, head end

load actrlpz eig;

[numdof,num modes total] = size(evr);

freqvec(1) = 0; % set rigid body mode to zero frequency

xn = evr;

19.5.2 Forcing Function Definition, dc Gain Calculations
The unity coil force is equally divided between the four coil nodes. For this
model, the piezo force, “fpz,” is arbitrarily set at 0.2, to be applied with equal
magnitudes and with opposite signs to the two ends of each piezo element.
For an actual system, the piezo force would be related to the coil force by the
appropriate force constants for the VCM and the appropriate voltage/force
relationships for the piezo, and would not be arbitrarily chosen.

Given the directions of the coil and piezo forces in Figure 19.4, the forces are
transformed to cylindrical coordinates and two forcing function vectors are
formed, one for the coil and one for the piezo.

The user is prompted for whether uniform or non-uniform damping is to be
used and then dc or peak gains are calculated, respectively.

For a SISO system, we can rank the relative importance of modes using two
methods, by using dc or peak gains and by using balancing. For a MIMO
system, balancing is the only practical option. However, we w ill still calculate
the dc gains for this MIMO system to get a feel for the relative importance of

© 2001 by Chapman & Hall/CRC

each of the modes for both forcing functions. This w ill require calculating dc
gains for the four combinations possible for the two-input, two-output system.

The four dc gains are calculated, sorted and plotted in the code below.

% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity

fcoil = 0.25;

n24061fx = fcoil*sin(9.1148*pi/180);
n24061fy = fcoil*cos(9.1148*pi/180);

n24066fx = fcoil*sin(15.1657*pi/180);
n24066fy = fcoil*cos(15.1657*pi/180);

n24082fx = -fcoil*sin(15.1657*pi/180);
n24082fy = fcoil*cos(15.1657*pi/180);

n24087fx = -fcoil*sin(9.1148*pi/180);
n24087fy = fcoil*cos(9.1148*pi/180);

% define radial and circumferential forces applied at ends of piezo element
% "x" is radial, "y" is circumferential, total force is unity

fpz = 0.2/6; % six nodes at each end of the piezo

% bottom arm radial force

n21538fx = fpz*cos(20.4549*pi/180);
n21546fx = -fpz*cos(13.5298*pi/180);
n21576fx = fpz*cos(20.4549*pi/180);
n21584fx = -fpz*cos(13.5298*pi/180);
n21617fx = fpz*cos(20.4549*pi/180);
n21625fx = -fpz*cos(13.5298*pi/180);
n22538fx = fpz*cos(20.4549*pi/180);
n22546fx = -fpz*cos(13.5298*pi/180);
n22576fx = fpz*cos(20.4549*pi/180);
n22584fx = -fpz*cos(13.5298*pi/180);
n22617fx = fpz*cos(20.4549*pi/180);
n22625fx = -fpz*cos(13.5298*pi/180);

% top arm radial force

n24538fx = -fpz*cos(20.4549*pi/180);
n24546fx = fpz*cos(13.5298*pi/180);
n24576fx = -fpz*cos(20.4549*pi/180);
n24584fx = fpz*cos(13.5298*pi/180);
n24617fx = -fpz*cos(20.4549*pi/180);
n24625fx = fpz*cos(13.5298*pi/180);
n25538fx = -fpz*cos(20.4549*pi/180);
n25546fx = fpz*cos(13.5298*pi/180);

________n25576fx = -fpz*cos(20.4549*pi/180);

© 2001 by Chapman & Hall/CRC

n25584fx = fpz*cos(13.5298*pi/180);
n25617fx = -fpz*cos(20.4549*pi/180);
n25625fx = fpz*cos(13.5298*pi/180);

% bottom arm circumferential force

n21538fy = -fpz*sin(20.4549*pi/180);
n21546fy = fpz*sin(13.5298*pi/180);
n21576fy = -fpz*sin(20.4549*pi/180);
n21584fy = fpz*sin(13.5298*pi/180);
n21617fy = -fpz*sin(20.4549*pi/180);
n21625fy = fpz*sin(13.5298*pi/180);
n22538fy = -fpz*sin(20.4549*pi/180);
n22546fy = fpz*sin(13.5298*pi/180);
n22576fy = -fpz*sin(20.4549*pi/180);
n22584fy = fpz*sin(13.5298*pi/180);
n22617fy = -fpz*sin(20.4549*pi/180);
n22625fy = fpz*sin(13.5298*pi/180);

% top arm circumferential force

n24538fy = fpz*sin(20.4549*pi/180);
n24546fy = -fpz*sin(13.5298*pi/180);
n24576fy = fpz*sin(20.4549*pi/180);
n24584fy = -fpz*sin(13.5298*pi/180);
n24617fy = fpz*sin(20.4549*pi/180);
n24625fy = -fpz*sin(13.5298*pi/180);
n25538fy = fpz*sin(20.4549*pi/180);
n25546fy = -fpz*sin(13.5298*pi/180);
n25576fy = fpz*sin(20.4549*pi/180);
n25584fy = -fpz*sin(13.5298*pi/180);
n25617fy = fpz*sin(20.4549*pi/180);
n25625fy = -fpz*sin(13.5298*pi/180);

% two-input system

% first input is coil force
% second input is excitation of both piezo elements with opposite polarity

% f_coil is the vector of forces applied to coil

f_coil = [zeros(14,1)
n24061fx
n24066fx
n24082fx
n24087fx
zeros(26,1)
n24061fy
n24066fy
n24082fy
n24087fy
zeros(12,1)];

% f_piezo is vector of forces applied to piezo ends

© 2001 by Chapman & Hall/CRC

f_piezo = [

%n21538fx
n21546fx
n21576fx
n21584fx
n21617fx
n21625fx
n22538fx
n22546fx
n22576fx
n22584fx
n22617fx
n22625fx
0
0
0
0
n24538fx %
n24546fx
n24576fx
n24584fx
n24617fx
n24625fx
n25538fx
n25546fx
n25576fx
n25584fx
n25617fx
n25625fx
0
0

n21538fy %
n21546fy
n21576fy
n21584fy
n21617fy
n21625fy
n22538fy
n22546fy
n22576fy
n22584fy
n22617fy
n22625fy
0
0
0
0

n24538fy %
n24546fy
n24576fy
n24584fy
n24617fy
n24625fy
n25538fy

bottom arm radial force

top arm radial force

bottom arm circumferential force

top arm circumferential force

© 2001 by Chapman & Hall/CRC

n25546fy
n25576fy
n25584fy
n25617fy
n25625fy];

% define composite forcing function, force applied to each node times
% eigenvector value for that node

force_coil = f_coil'*xn;

force_piezo = f_piezo'*xn;

% prompt for uniform or variable zeta

zeta_type = input('enter " 1" to read in damping vector (zetain.m) ...
or "enter" for uniform damping ... ');

if (isempty(zeta_type))

zeta_type = 0;

zeta_uniform = input('enter value for uniform damping, .
.005 is 0.5% of critical (default) ... ');

if (isempty(zeta_uniform))
zeta_uniform = 0.005;

end

zeta_unsort = zeta_uniform*ones(num_modes_total,1);

else

zetain; % read in zeta_unsort damping vector from zetain.m file

end

if length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',num2str(length(zeta_unsort)), ...
' entries instead of ',num2str(num_modes_total)]);

end

% define dc gains, 31 is head 1, 32 is head 0

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

% define frequency range for frequency response

freqlo = 501;

freqhi = 25000;

flo=log10(freqlo) ;

© 2001 by Chapman & Hall/CRC

fhi=log10(freqhi) ;

f=logspace(flo,fhi,300) ;
frad=f*2*pi ;

% calculate dc gains if uniform damping, peak gains if non-uniform

if zeta_type == 0 % dc gain

gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ...
force_coil(2 :num_modes_total). * xn(32,2 :num_modes_total) ...

./omega2(2 :num_modes_total)]);

gain_h1_coil = abs([force_coil(1)*xn(31,1)/frad(1) ...
force_coil(2:num_modes_total).*xn(31,2:num_modes_total) ...
./omega2(2:num_modes_total)]);

gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piezo(2:num_modes_total).*xn(32,2:num_modes_total) ...
./omega2(2:num_modes_total)]);

gain_h1_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piezo(2:num_modes_total).*xn(31,2:num_modes_total) ...
./omega2(2:num_modes_total)]);

elseif zeta_type == 1 % peak gain

gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ...
force_coil(2:num_modes_total).*xn(32,2:num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1_coil = abs([force_coil(1)*xn(31,1)/frad(1) ...
force_coil(2:num_modes_total).*xn(31,2:num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piezo(2:num_modes_total).*xn(32,2:num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ...
force_piezo(2:num_modes_total).*xn(31,2:num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

% sort gains, keeping track of original and new indices so can rearrange
% eigenvalues and eigenvectors

[gain_h0_coil_sort,index_h0_coil_sort] = sort(gain_h0_coil);

[gain_h1_coil_sort,index_h1_coil_sort] = sort(gain_h1_coil);

[gain_h0_piezo_sort,index_h0_piezo_sort] = sort(gain_h0_piezo);

[gain_h1_piezo_sort,index_h1_piezo_sort] = sort(gain_h1_piezo);

© 2001 by Chapman & Hall/CRC

gain_h1_coil_sort = fliplr(gain_h1_coil_sort); % max to min

gain_h0_piezo_sort = fliplr(gain_h0_piezo_sort); % max to min

gain_h1_piezo_sort = fliplr(gain_h1_piezo_sort); % max to min

index_h0_coil_sort = fliplr(index_h0_coil_sort) % max to min indices

index_h1_coil_sort = fliplr(index_h1_coil_sort) % max to min indices

index_h0_piez_sort = fliplr(index_h0_piezo_sort) % max to min indices

index_h1_piez_sort = fliplr(index_h1_piezo_sort) % max to min indices

index_orig = 1:num_modes_total;

[index_h0_coil_sort' index_h1_coil_sort' index_h0_piez_sort' index_h1_piez_sort']

% plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'k-');
title(['frequency versus mode number'])
xlabel('mode number')
ylabel('frequency, hz')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil,'k.-',index_orig,gain_h1_coil,'k-')
title(['coil input: dc value of each mode contribution versus mode number'])
xlabel('mode number')
ylabel('dc value')
legend('h0 coil input','h1 coil input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_piezo,'k.-',index_orig,gain_h1_piezo,'k-')
title(['piezo input: dc value of each mode contribution versus mode number'])
xlabel('mode number')
ylabel('dc value')
legend('h0 piezo input','h1 piezo input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(freqvec(2:num_modes_total),gain_h0_coil(2:num_modes_total),'k.-', ...
freqvec(2:num_modes_total),gain_h1_coil(2:num_modes_total),'k-')

title(['coil input: dc value of each mode contribution versus frequency'])
xlabel('frequency, hz')
ylabel('dc value')
axis([500 25000 -inf inf])
legend('h0 coil input','h1 coil input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

gain_h0_coil_sort = fliplr(gain_h0_coil_sort); % max to min

© 2001 by Chapman & Hall/CRC

loglog(freqvec(2 :num_modes_total),gain_h0_piezo(2 :num_modes_total),'k.-', ...
freqvec(2:num_modes_total),gain_h1_piezo(2:num_modes_total),'k-')

title(['piezo input: dc value of each mode contribution versus frequency'])
xlabel('frequency, hz')
ylabel('dc value')
axis([500 25000 -inf inf])
legend('h0 piezo input','h1 piezo input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil_sort,'k.-',index_orig,gain_h1_coil_sort,'k-')
title(['coil input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('h0 coil input','h1 coil input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_piezo_sort,'k.-',index_orig,gain_h1_piezo_sort,'k-')
title(['piezo input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('h0 piezo input','h1 piezo input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil_sort,'k.-',index_orig,gain_h1_coil_sort,'k.-', ...
index_orig,gain_h0_piezo_sort, .

'k-',index_orig,gain_h1_piezo_sort,'k-')
title(['coil and piezo input: sorted dc value of each mode versus number .

of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('h0 coil input','h1 coil input','h0 piezo input','h1 piezo input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

Figure 19.22 repeats Figure 19 .5 , plotting resonant frequency versus mode
number. Note that there are several “jumps” in the curve, the most significant
between mode 4 and mode 5. As indicated in Section 17.6, “jumps” in the
frequency plot can indicate the system transitioning from one type o f
characteristic motion to another. In this case modes 2, 3 and 4 involve
bending motions o f the system, while mode 5 involves coil torsion.

© 2001 by Chapman & Hall/CRC

mode number

Figure 19.22: Resonant frequencies versus mode number.

The dc gains for head 0 and head 1 fo r coil input are shown in Figure 19 .23 .
Because the actuator is nearly symmetrical in design the gains o f the two
heads are quite similar.

mode number

Figure 19.23: dc gain versus mode for both heads for coil input.

© 2001 by Chapman & Hall/CRC

mode number

Figure 19.24: dc gain versus mode number for both heads for piezo input.

The gains fo r both heads for piezo inputs are shown in Figure 19 .24 .

coil input: dc value of each mode contribution versus frequency

frequency, hz

Figure 19.25: dc gain versus frequency for both heads for coil input.

© 2001 by Chapman & Hall/CRC

piezo input: dc value of each mode contribution versus frequency

frequency, hz

Figure 19.26: dc gain versus frequency for both heads for piezo input.

modes included

Figure 19.27: Sorted dc gain for both heads for coil input.

The sorted dc gains o f the two heads, Figure 19 .27 , are very similar because
the actuator design is so symmetrical.

© 2001 by Chapman & Hall/CRC

modes included

Figure 19.28: Sorted dc gain for both heads for piezo input.

modes included

Figure 19.29: Sorted dc gain for both heads for both coil and piezo inputs.

The sorted gains o f head 0 and head 1 for both coil and piezo inputs can be
seen in Figure 19 .29 . They are o f similar magnitude because the piezo force
“fpz” in Section 19.5.2 was chosen to be 0.2.

W ith the partial listing o f mode ranking for both heads and both inputs shown
in Table 19 .1 , we can start looking at the difficulties o f using dc and peak
gains for ranking MIMO systems.

© 2001 by Chapman & Hall/CRC

Table 19.1 lists the mode ranking for the first 15 modes for:

Column 1: head 0, coil input

Column 2: head 1, coil input

Column 3 : head 0, piezo input

Column 4 : head 1, piezo input

1 1 12 12
13 13 8 8
9 9 21 21

16 16 30 30
12 12 11 11
28 28 13 13
25 25 49 22
29 36 46 49
36 15 22 46
15 29 28 17
11 17 17 28
26 11 29 20
17 26 10 50
47 5 20 14
10 22 50 29

Table 19.1: Ranking for first 15 modes for head 0 and head 1 for coil and piezo inputs.

The first two columns in Table 19.1 show that for coil input, head 0 and head
1 have the same ranking through the first seven modes, then their rankings
change. The second two columns show that for piezo input, head 0 and head 1
have the same ranking through the first six modes, then their rankings change.

If one were to choose a single ranking for the model which would take into
account both inputs and both outputs, it is difficult to see how to do it given
the rankings in the table. Thus the necessity o f balanced reduction for MIMO
models. (See Problem P 19.1 fo r using dc gain to rank for reduction.)

19 .5 .3 Building State Space M atrices

In this section o f code the system matrices are assembled and the four
frequency responses are plotted. For all previous SISO models in the book we
have built the system matrices using dc gain ordering o f modes. Here, fo r the
MIMO model, we will assemble the system using the original, unsorted
ordering and will let “balreal” do all the work o f sorting in the next section.

% create five state space systems with all modes included, differing in the ordering
% of the modes, the unsorted system will be used for all reductions, letting balreal do all

© 2001 by Chapman & Hall/CRC

%
%

the ordering, the sorted systems will be used to show how the dc gain ordering
compares with the balanced ordering

%
%
%
%
%

1) unsorted
2) sorted, head 0, coil input
3) sorted, head 1, coil input
4) sorted, head 0, piezo input
5) sorted, head 1, piezo input

for num model = 1:5

if num model == 1 % unsorted

xnnew = xn;

freqnew = freqvec;

elseif num model == 2 % sorted, head 0, coil input

xnnew = xn(:,index h0 coil sort);

freqnew = freqvec(index h0 coil sort);

elseif num model == 3 % sorted, head 1, coil input

xnnew = xn(:,index h1 coil sort);

freqnew = freqvec(index h1 coil sort);

elseif num model == 4 % sorted, head 0, piezo input

xnnew = xn(:,index h0_piezo sort);

freqnew = freqvec(index h0_piezo sort);

elseif num_model == 5 % sorted, head 1, piezo input

xnnew = xn(:,index h1_piezo sort);

freqnew = freqvec(index h1_piezo sort);

end

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

2;<w=2w

zw = 2*zeta unsort.*w;

% define size of system matrix

asize = 2*num modes total;

© 2001 by Chapman & Hall/CRC

disp('
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);

% setup system matrix for all modes included model

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

for col = 2:2:asize

row = col;

a(row,col) = -zw(col/2);

end

% setup input matrix b, state space forcing function in principal coordinates

% two-input system

% first input is coil force
% second input is excitation of both piezo elements with opposite polarity

f_physical = [f_coil f_piezo];

% f_principal is the matrix of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the matrix of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,2);

for cnt = 1:num_modes_total

b(2*cnt,:) = f_principal(cnt,:);

end

© 2001 by Chapman & Hall/CRC

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates cdisp and cvel each have numdof rows
% and alternating columns consisting of columns of xnnew and zeros to give total
% columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

c_disp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

c_disp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

if num_model == 1 % unsorted

sys = ss(a,b,c_disp(31:32,:),d);

elseif num_model == 2 % sorted, head 0, coil input

sys_h0_coil = ss(a,b,c_disp(31:32,:),d);

elseif num_model == 3 % sorted, head 1, coil input

sys_h1_coil = ss(a,b,c_disp(31:32,:),d);

elseif num_model == 4 % sorted, head 0, piezo input

sys_h0_piezo = ss(a,b,c_disp(31:32,:),d);

elseif num_model == 5 % sorted, head 1, piezo input

sys_h1_piezo = ss(a,b,c_disp(31:32,:),d);

© 2001 by Chapman & Hall/CRC

end

end % end of for loop for creating system matrices

19 .5 .4 Balancing, Reduction

Balancing the system involves calculating gramians, which are only defined
fo r negative definite systems. This requires separating the rigid body mode
from the oscillatory modes and balancing the oscillatory modes. The system
matrices are partitioned and a model o f only oscillatory modes is created and
balanced. Plotting the diagonal gramian terms (squares o f the Hankel singular
values) reveals the relative importance o f the states.

Modred is used to reduce the states using both the “del” and “mdc” options.
The complete system is rebuilt by augmenting the rigid body mode (states)
with the reduced oscillatory modes (states). Frequency responses are then
plotted, comparing the two reducing methods with the original 50-mode
model.

% partition system matrices into rigid body mode and oscillatory modes, can't use balreal
% with rigid body mode so will reduce the oscillatory modes and then augment the
% resulting system with the rigid body mode

% define oscillatory system, where output 31 is head 1, output 32 is head 0

[a,b,c_disp,d] = ssdata(sys);

a_syso = a(3:asize,3:asize);

b_syso = b(3:asize,:);

c_syso = c_disp(1:2,3:asize);

syso = ss(a_syso,b_syso,c_syso,d);

% define controllability and observability gramians for oscillatory system, syso

wc = gram(syso,'c');

wo = gram(syso,'o');

[row_syso,col_syso] = size(a_syso);

statevec = 1 :row_syso;

% plot controllability and observability gramians

meshz(wc);
view(60,30);

© 2001 by Chapman & Hall/CRC

title(['controllability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue');%pause

meshz(wo);
view(60,30);
title(['observability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue');%pause

% pull out diagonal elements

wc_diag = diag(wc);

wo_diag = diag(wo);

% plot diagonal terms of controllability and observability gramians

semilogy(statevec,wc_diag,'k. -')
title(['controllability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
grid off

disp('execution paused to display figure, "enter" to continue');%pause

semilogy(statevec,wo_diag,'k.-')
title(['observability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
grid off

disp('execution paused to display figure, "enter" to continue');%pause

% position and velocity states plotted separately

semilogy(statevec(1:2:row_syso),wc_diag(1:2:row_syso),'k.-', ...

state vec(2:2 :row_syso), wc_diag(2:2 :row_syso),'k-')
title(['controllability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('position states','velocity states',3)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

semilogy(statevec(1:2:row_syso), wo_diag(1:2 :row_syso),'k. -', ...

© 2001 by Chapman & Hall/CRC

statevec(2:2:row_syso),wo_diag(2:2:row_syso),'k-')
title(['observability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('position states','velocity states',3)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

% use balreal to rank oscillatory states and modred to reduce for comparison

[sysob,g,T,Ti] = balreal(syso);

[ao_bal,bo_bal,cdispo_bal,do_bal] = ssdata(sysob);

semilogy(g,'k.-')
title('diagonal of balanced gramian versus number of states')
xlabel('state number')
ylabel('diagonal of balanced gramian')
grid off

osc_states_used = input(['enter number of oscillatory states to use, default 20 ... ']);

if isempty(osc_states_used)

osc_states_used = 20;

end

num_modes_used = 1 + osc_states_used/2; % number of modes for overlaid plots

% use modred to order oscillatory states from balreal to define reduced order
% oscillatory system using both "del" and "mdc"

rsys_delo = modred(sysob,osc_states_used+1:2*num_modes_total-2,'del');

rsys_mdco = modred(sysob,osc_states_used+1:2*num_modes_total-2,'mdc');

% rebuild system by appending balanced realization of oscillatory modes to rigid
% body mode

[a_delo_bal,b_delo_bal,c_delo_bal,d_delo_bal] = ssdata(rsys_delo);

a_del_bal = [a(1:2,1:2) zeros(2,osc_states_used)
zeros(osc_states_used,2) a_delo_bal];

b_del_bal = [b(1:2,:)
b_delo_bal];

c_del_bal = [c_disp(1:2,1:2) c_delo_bal];

rsys_del = ss(a_del_bal,b_del_bal,c_del_bal,d);

[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco_bal] = ssdata(rsys_mdco);

© 2001 by Chapman & Hall/CRC

a_mdc_bal = [a(1:2,1:2) zeros(2,osc_states_used)
zeros(osc_states_used,2) a_mdco_bal];

b_mdc_bal = [b(1:2,:)
b_mdco_bal];

c_mdc_bal = [c_disp(1:2,1:2) c_mdco_bal];

rsys_mdc = ss(a_mdc_bal,b_mdc_bal,c_mdc_bal,d);

% frequency response for unsorted system

[mag,phs] = bode(sys,frad);

% plot original system response, output of bode command has dimensions
% of "i" x "j" x "k" where "i" is output row, "j" is input column and "k" is the
% vector of frequencies

magh0coil = mag(2,1,:);
magh1coil = mag(1,1,:);
magh0pz = mag(2,2,:);
magh1pz = mag(1,2,:);

loglog(f,magh0coil(1,:),'k.-',f,magh1coil(1,:),'k-')
title(['gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0pz(1,:),'k.-',f,magh1pz(1,:),'k-')
title(['gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0 piezo input','head 1 piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0coil(1,:),'k.-',f,magh1coil(1,:),'k.-',f,magh0pz(1,:),'k-',f,magh1pz(1,:),'k-
')

title(['gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input','head 1 piezo ...

input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

% frequency response for balanced reduced modred "del"

© 2001 by Chapman & Hall/CRC

[magr_del,phsr_del] = bode(rsys_del,frad);

magr_delh0coil = magr_del(2,1,:);
magr_delh1coil = magr_del(1,1,:);
magr_delh0pz = magr_del(2,2,:);
magr_delh1pz = magr_del(1,2,:);

loglog(f,magr_delh0coil(1, :),'k-',f,magr_delh 1 coil(1, :),'k. -',f,magr_delh0pz(1,:), ...
'k.-',f,magr_delh1pz(1,:),'k-')

title(['gap displacement, modred "del", ',num2str(osc_states_used), .
' oscillatory states included'])

xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input' .

,'head 1 piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0coil(1,:),'k-',f,magr_delh0coil(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','"del" reduced head 0, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1coil(1,:),'k-',f,magr_delh1coil(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 1, coil input','"del" reduced head 1, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0pz(1,:),'k-',f,magr_delh0pz(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, piezo input','"del" reduced head 0, piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1pz(1,:),'k-',f,magr_delh1pz(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])

© 2001 by Chapman & Hall/CRC

legend('head 1, piezo input','"del" reduced head 1, piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

% frequency response for balanced reduced modred "mdc"

[magr_mdc,phsr_mdc] = bode(rsys_mdc,frad);

magr_mdch0coil = magr_mdc(2,1,:);
magr_mdch1coil = magr_mdc(1,1,:);
magr_mdch0pz = magr_mdc(2,2,:);
magr_mdch1pz = magr_mdc(1,2,:);

loglog(f,magr_mdch0coil(1,:),'k-',f,magr_mdch1coil(1,:),'k.-', .
f,magr_mdch0pz(1,:),'k.-',f,magr_mdch1pz(1,:),'k-')

title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .
' oscillatory states included'])

xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input','head 1 piezo .

input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0coil(1,:),'k-',f,magr_mdch0coil(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','"mdc" reduced head 0, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1coil(1,:),'k-',f,magr_mdch1coil(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 1, coil input','"mdc" reduced head 1, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0pz(1,:),'k-',f,magr_mdch0pz(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, piezo input','"mdc" reduced head 0, piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC

loglog(f,magh1pz(1,:),'k-',f,magr_mdch1pz(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), ...

' oscillatory states included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 1, piezo input','"mdc" reduced head 1, piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

gap displacement, all 50 modes included

Frequency, hz

Figure 19.30: Frequency response for coil input for both heads, all modes included.

gap displacement, all 50 modes included

Frequency, hz

Figure 19.31: Frequency response for piezo input for both heads, all modes included.

© 2001 by Chapman & Hall/CRC

gap displacement, all 50 modes included

Frequency, hz

Figure 19.32: Frequency response for both coil and piezo inputs for both heads, all modes
included.

The frequency response plots for both inputs and both outputs are shown
above for reference.

© 2001 by Chapman & Hall/CRC

0.2

0.15

0.1

0.05

0

-0.05
0

state s^ te

Figure 19.33: Controllability gramian values.

observability gramian for oscilla tory system

40

30

20

10

0

-10
0

state state

Figure 19.34: Observability gramian values.

Graphically, Figures 19.33 and 19.34 show the two gramians for this MIMO
system. The gramians are nearly diagonal. The controllability gramian
displays a predominance o f lower frequency states, while the observability
gramian has some higher frequency states included.

controllability gramian for oscillatory system

© 2001 by Chapman & Hall/CRC

states

Figure 19.35: Controllability gramian diagonal terms versus states.

states

Figure 19.36: Observability gramian diagonal terms versus states.

Plotting the diagonal elements o f the two gramians reveals the same pattern as
fo r the SISO model. The maximum and minimum values for each mode are
related by the square o f the eigenvalue for that mode.

© 2001 by Chapman & Hall/CRC

states

Figure 19.37: Controllability gramian diagonal position and velocity state terms.

states

Figure 19.38: Observability gramian diagonal position and velocity state terms.

Plotting the position and velocity terms for each gramian separately displays
their character on a mode-by-mode basis.

© 2001 by Chapman & Hall/CRC

state number

Figure 19.39: Balanced gramian diagonal terms (Hankel singular values) versus state
number.

The balanced gramian shows several sharp drops in magnitude, one at 10
states and one at 56 states. W e will see in Section 19.5.7 that 10 oscillatory
modes (20 oscillatory states) are required for a normalized reduction index o f
less than 5% for coil input, and that 16 oscillatory modes (32 oscillatory
states) are required for a normalized reduction index o f less than 5% for piezo
input.

19 .5 .5 F requency Responses fo r D ifferent Numbers o f Retained States

This section displays pairs o f frequency responses, one for head 0 for coil
input and one for head 0 fo r piezo input. Each pair o f plots represents an
increasing number o f oscillatory modes included in the reduced model. The
original 50 mode model is overlaid to show the error in the reduced model.
Note how the balanced method adds modes and which modes it chooses.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 6 oscillatory states included

Frequency, hz

Figure 19.40: Head 0, coil input, six reduced oscillatory states included.

gap displacement, modred "del", 6 oscillatory states included

Frequency, hz

Figure 19.41: Head 0, piezo input, six reduced oscillatory states included.

W ith only six oscillatory states included the coil input captures the first two
resonances but the piezo input misses the first resonance.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 8 oscillatory states included

Frequency, hz

Figure 19.42: Head 0, coil input, eight reduced oscillatory states included.

gap displacement, modred "del", 8 oscillatory states included

Frequency, hz

Figure 19.43: Head 0, piezo input, eight reduced oscillatory states included.

With 8 oscillatory states included the coil input captures the first two
resonances but the piezo input again misses the first resonance.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 10 oscillatory states included

Frequency, hz

Figure 19.44: Head 0, coil input, 10 reduced oscillatory states included.

gap displacement, modred "del", 10 oscilla tory states included

Frequency, hz

Figure 19.45: Head 0, piezo input, 10 reduced oscillatory states included.

With 10 oscillatory states included the first three coil input modes are fit well
and also the first two piezo input modes.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 12 oscillatory states included

Frequency, hz

Figure 19.46: Head 0, coil input, 12 reduced oscillatory states included.

gap displacement, modred "del", 12 oscilla tory states included

Frequency, hz

Figure 19.47: Head 0, piezo input, 12 reduced oscillatory states included.

With 12 oscillatory states included the first three major modes are fitted for
both coil and piezo inputs.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 14 oscillatory states included

Frequency, hz

Figure 19.48: Head 0, coil input, 14 reduced oscillatory states included.

gap displacement, modred "del", 14 oscilla tory states included

Frequency, hz

Figure 19.49: Head 0, piezo input, 14 reduced oscillatory states included.

For 14 oscillatory states included now the first four major piezo modes are
fitted while the coil input starts missing some modes in the 10khz range.

10 10

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 16 oscillatory states included

Frequency, hz

Figure 19.50: Head 0, coil input, 16 reduced oscillatory states included.

gap displacement, modred "del", 16 oscilla tory states included

Frequency, hz

Figure 19.51: Head 0, piezo input, 16 reduced oscillatory states included.

For 16 oscillatory states included the only visible effect o f the extra two states
is in the piezo input zero in the 8khz range.

10 10

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 18 oscillatory states included

Frequency, hz

Figure 19.52: Head 0, coil input, 18 reduced oscillatory states included.

gap displacement, modred "del", 18 oscilla tory states included

Frequency, hz

Figure 19.53: Head 0, piezo input, 18 reduced oscillatory states included.

For 18 oscillatory states included the coil input response picks up an
additional mode in the 10khz range.

19 .5 .6 “del” and “m dc” Frequency Response Com parison

This section compares the “del” and “mdc” reduced models for the case o f 20
included oscillatory states.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 20 oscillatory states included

Frequency, hz

Figure 19.54: Head 0, coil input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "m dc", 20 oscillatory states included

Frequency, hz

Figure 19.55: Head 0, coil input, 20 reduced oscillatory states included, modred “mdc.”

There is virtually no difference between the “del” and “mdc” reductions in the
two figures above for coil input.

© 2001 by Chapman & Hall/CRC

gap displacement, modred "del", 20 oscillatory states included

Frequency, hz

Figure 19.56: Head 0, piezo input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "m dc", 20 oscillatory states included

Frequency, hz

Figure 19.57: Head 0, piezo input, 20 reduced oscillatory states included, modred “mdc.”

Similarly, there is no difference between the “del” and “mdc” reductions for
piezo input.

19 .5 .7 Impulse Response

Oscillatory system impulse responses due to both coil and piezo forcing
functions are calculated. Previously calculated results for normalized
reduction index (18.28) versus number o f modes included are shown.

© 2001 by Chapman & Hall/CRC

% calculate impulse responses

ttotal = 0.0025;

t = linspace(0,ttotal,400)';

[disp_syso,t_syso] = impulse(syso,t);

[disp_rsys_delo,t_rsys_delo] = impulse(rsys_delo,t);

[disp_rsys_mdco,t_rsys_mdco] = impulse(rsys_mdco,t);

disph0coil = disp_syso(:,2,1);
disphlcoil = disp_syso(:,1,1);
disph0pz = disp_syso(:,2,2);
disphlpz = disp_syso(:,1,2);

dispr_delh0coil = disp_rsys_delo(:,2,1);
dispr_delh1coil = disp_rsys_delo(:,1,1);
dispr_delh0pz = disp_rsys_delo(:,2,2);
dispr_delh1pz = disp_rsys_delo(:,1,2);

dispr_mdch0coil = disp_rsys_mdco(:,2,1);
dispr_mdch1coil = disp_rsys_mdco(:,1,1);
dispr_mdch0pz = disp_rsys_mdco(:,2,2);
dispr_mdch1pz = disp_rsys_mdco(:,1,2);

% build matrix of results

dispo = [disph0coil disph1coil disph0pz disph1pz ...
dispr_delh0coil dispr_delh1coil dispr_delh0pz dispr_delh1pz ...
dispr_mdch0coil dispr_mdch1coil dispr_mdch0pz dispr_mdch1pz];

h0coil_del_del = dispo(:,1) - dispo(:,5);

h1coil_del_del = dispo(:,2) - dispo(:,6);

h0piezo_del_del = dispo(:,3) - dispo(:,7);

h1piezo_del_del = dispo(:,4) - dispo(:,8);

h0coil_mdc_del = dispo(:,1) - dispo(:,9);

h1coil_mdc_del = dispo(:,2) - dispo(:,10);

h0piezo_mdc_del = dispo(:,3) - dispo(:,11);

h1piezo_mdc_del = dispo(:,4) - dispo(:,12);

index_h0coil_del = ...
sqrt(sum(h0coil_del_del.*h0coil_del_del))/sqrt(sum(dispo(:,1).*dispo(:,1)));

index_h1coil_del = ...
sqrt(sum(h1coil_del_del.*h1coil_del_del))/sqrt(sum(dispo(:,2).*dispo(:,2)));

© 2001 by Chapman & Hall/CRC

index_h0piezo_del = ...
sqrt(sum(h0piezo_del_del.*h0piezo_del_del)ysqrt(sum(dispo(:,3).*dispo(:,3)));

index_h1piezo_del = ...
sqrt(sum(h1piezo_del_del.*h1piezo_del_del)ysqrt(sum(dispo(:,4).*dispo(:,4)));

index_h0coil_mdc = ...
sqrt(sum(h0coil_mdc_del.*h0coil_mdc_del))/sqrt(sum(dispo(:, 1).*dispo(:, 1)));

index_h1coil_mdc = ...
sqrt(sum(h1coil_mdc_del.*h1coil_mdc_del)ysqrt(sum(dispo(:,2).*dispo(:,2)));

index_h0piezo_mdc = ...
sqrt(sum(h0piezo_mdc_del.*h0piezo_mdc_del)ysqrt(sum(dispo(:,3).*dispo(:,3)));

index_h1piezo_mdc = ...
sqrt(sum(h1piezo_mdc_del.*h1piezo_mdc_del)ysqrt(sum(dispo(:,4).*dispo(:,4)));

[index_h0coil_del index_h1coil_del index_h0piezo_del index_h1piezo_del ...
index_h0coil_mdc index_h1coil_mdc index_h0piezo_mdc index_h1piezo_mdc]

plot(t_syso,disph0coil,'k.-',t_rsys_delo,dispr_delh0coil, .
'k-',t_rsys_mdco,dispr_mdch0coil,'k--')

title(['head 0, displacement vs time, coil impulse input, ', ...
num2str(osc_states_used),' oscillatory states included'])

xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','modred del','modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disph1coil,'k.-',t_rsys_delo,dispr_delh1coil, ...
'k-',t_rsys_mdco,dispr_mdch1coil,'k--')

title(['head 1, displacement vs time, coil impulse input, ', .
num2str(osc_states_used),' oscillatory states included'])

xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','modred del','modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disph0pz,'k.-',t_rsys_delo,dispr_delh0pz, .
'k-',t_rsys_mdco,dispr_mdch0pz,'k--')

title(['head 0, displacement vs time, piezo impulse input, ', .
num2str(osc_states_used),' oscillatory states included'])

xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','modred del','modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

© 2001 by Chapman & Hall/CRC

plot(t_syso,disph1pz,'k.-',t_rsys_delo,dispr_delh1pz, ...
'k-',t_rsys_mdco,dispr_mdch1pz,'k--')

title(['head 1, displacement vs time, piezo impulse input, ', ...
num2str(osc_states_used),' oscillatory states included'])

xlabel('time, sec')
ylabel('displacement, mm')
legend('all modes','modred del','modred mdc',4)
grid off

disp('execution paused to display figure, "enter" to continue');%pause

% states h0cd hlcd h0pd hlpd h0cm hlcm h0pm hlpm

error = [10 0.1081 0.1075 0.4162 0.3963 0.1081 0.1075 0.4165 0.3964

12 0.1079 0.1072 0.3154 0.3058 0.1079 0.1073 0.3157 0.3061

16 0.1075 0.1070 0.1393 0.1421 0.1074 0.1070 0.1393 0.1419

20 0.0395 0.0425 0.1391 0.1410 0.0397 0.0425 0.1391 0.1411

24 0.0363 0.0374 0.0839 0.0873 0.0463 0.0473 0.0841 0.0875

28 0.0161 0.0178 0.0469 0.0495 0.0160 0.0191 0.0791 0.0794

32 0.0140 0.0142 0.0145 0.0160 0.0142 0.0143 0.0146 0.0163];

nmode = error(:,1)/2;

error_h0coil_del = error(:,2);

error_h1coil_del = error(:,3);

error_h0piezo_del = error(:,4);

error_h1piezo_del = error(:,5);

error_h0coil_mdc = error(:,6);

error_h1coil_mdc = error(:,7);

error_h0piezo_mdc = error(:,8);

error_h1piezo_mdc = error(:,9);

plot(nmode,error_h0coil_del,'k.-',nmode,error_h0coil_mdc,'k-')
title('head 0, coil input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

© 2001 by Chapman & Hall/CRC

plot(nmode,error_h1coil_del,'k.-',nmode,error_h1coil_mdc,'k-')
title('head 1, coil input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(nmode,error_h0piezo_del,'k.-',nmode,error_h0piezo_mdc,'k-')
title('head 0, piezo input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(nmode,error_h1piezo_del,'k.-',nmode,error_h1piezo_mdc,'k-')
title('head 1, piezo input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

The pages following will show impulse responses for head 0 fo r both coil and
piezo inputs and for both “del” and “mdc” reduced models. Following the
impulse responses, the normalized reduction index versus number o f reduced
modes is plotted. It shows very little difference between the two reduction
methods.

© 2001 by Chapman & Hall/CRC

head 0, d isp lacem ent vs time, coil impulse input, 20 oscillatory states included

time, sec x 10

Figure 19.58: Impulse response comparison for head 0 for coil input for oscillatory system,
full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced systems

with 20 oscillatory modes.

head 0, displacement vs time, piezo impulse input, 20 oscillatory states included

time, sec x 10

Figure 19.59: Impulse response comparison for head 0 for piezo input for oscillatory
system, full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced

systems with 20 oscillatory modes.

© 2001 by Chapman & Hall/CRC

head 0, coil input normalized reduction index

number of modes included

Figure 19.60: Head 0 impulse response normalized error index comparison for reduced
modred models using “del” and “mdc” methods, coil input.

head 0, piezo input normalized reduction index

number of modes included

Figure 19.61: Head 0 impulse response normalized error index comparison for reduced
modred models using “del” and “mdc” methods, piezo input.

© 2001 by Chapman & Hall/CRC

19.6 MIMO Summary

W e started the chapter with a description o f key mode shapes for the two-stage
actuator/suspension system. A N SY S eigenvector listings for several modes
allowed comparing the numeric values in the eigenvector to the visual
interpretation from the mode shape plot. Small displacements in the deformed
mode shape plot correlate to small numerical values in the eigenvector. If the
small numerical values in the eigenvector occur in the input and/or output
degrees o f freedom, the mode will have a “small” dc gain and is relatively
unimportant.

In the next section we calculated and plotted the dc gains for all four
input/output combinations. In Table 19.1 we listed the modes for the
input/output combinations, sorted by dc gain. W e found that head 0 and head
1 dc gain sorted modes for coil input are the same for the first seven modes.
For piezo input, both heads have the same mode ranking for the first six
modes. This similarity in the most important modes for both heads for the coil
and piezo inputs is brought about by the physical symmetry o f the
actuator/suspension system, and in general w ill not be the case.

A s in the previous chapter, we used balancing to define the system for
reduction and used the “modred” “del” and “mdc” options to reduce.
Frequency responses for different number o f states were plotted and compared
fo r both coil and piezo inputs, overlaying the non-reduced transfer function.

Visually comparing the reduced and non-reduced frequency response
magnitudes, we found that including 20 oscillatory states (plus the states from
the one rigid body mode) gave a “good” fit through the 10khz range.

The M ATLAB model was then used to calculate the impulse responses for the
oscillatory reduced and non-reduced systems, where we found that 10
oscillatory modes (20 oscillatory states) were required to have a normalized
error index o f less than 5% for coil inputs. For piezo inputs, 16 oscillatory
modes (32 oscillatory states) were required for less than 5% normalized error
index. There was little difference in normalized error index between the “del”
and “mdc” reduction options.

© 2001 by Chapman & Hall/CRC

Problems

P 19.1 M odify the M ATLAB code act8pz.m to reduce the piezo force “fpz”
(Section 19.5.2) from the 0.2 value used in the text to 0 .02 and 0.002. In both
cases, examine the frequency and impulse responses for different number of
oscillatory states used. Does the balanced reduction method technique
continue to choose roughly equal number o f modes for both coil and piezo
inputs even when there are large differences in dc gain values between the two
inputs?

P 19.2 For the piezo force “fpz” o f 0.2, choose the first five oscillatory modes
from the coil input and the first five oscillatory modes from the piezo input
(Table 19 .1) . Assemble the state equations from the rigid body mode and the
10 oscillatory modes and solve for the frequency and impulse responses.
Compare the responses to the 20 oscillatory state balanced reduction.
Comment on the similarities/differences.

© 2001 by Chapman & Hall/CRC

APPENDIX 1

MATLAB AND ANSYS PROGRAMS

This appendix lists a ll the M ATLAB and AN SYS codes used in each chapter,
along with a short description of the purpose of each.

M ATLAB codes have the suffix “.m” and the AN SYS codes have the suffix
“.inp.” Additional output files from previous runs are stored as “.grp” or other
suffixes and w ill be used from time to time.

Coding format: A ll the M ATLAB code availab le from downloading and
shown in the book starts over one tab, allow ing comment lines to stand out.
The code also includes a lot of blank lines for readab ility (m y apologies to
tight “c” code programmers).

In most M ATLAB code, critical definitions and calculations are only a few
lines of code, while plotting and annotating are the bulk of the space. For this
reason, some code listings in the book do not show all the plotting commands.

AN SYS eigenvalue/eigenvector results are converted to M ATLAB input form
using the follow ing M ATLAB extraction codes:

ext56ux.m extracts the AN SYS UX degree of freedom

ext56uy.m extracts the AN SYS U Y degree of freedom

ext56uz.m extracts the AN SYS UZ degree of freedom

ext56uxuy.m extracts the AN SYS UX and U Y degrees of
freedom

ext56uxuz.m extracts the AN SYS UX and UZ degrees of
freedom

ext56uyuz.m extracts the AN SYS U Y and UZ degrees of
freedom

ext56uxuyuz.m extracts the AN SYS UX, U Y and UZ degrees of
freedom

The codes above all call a supporting M ATLAB code ext56chk.m . A ll the
codes should be installed in the same directory as the AN SYS output code
which is to be extracted or should be installed in a directory which is in the
M ATLAB path. To use the extraction code, ju st rename the AN SYS
eigenvector output file to have a “.eig” extension and open M ATLAB in the

© 2001 by Chapman & Hall/CRC

same directory. M ATLAB w ill then open a window showing all the “.eig”
files in the directory. D ouble-click on the file to extract and M ATLAB w ill
output a file with the “ext56xx.m at” name. If several files are to be extracted
in the same directory, rename the “ext56xx.m at” name to a unique name with
the “.mat” extension.

The “.mat” extracted M ATLAB file contains the follow ing information:

evr, the modal m atrix, w ith rows consisting of degrees of freedom
and each column representing a mode. The numbering of degrees of
freedom is the same as the A N SY S listing, which is in ascending
order of the selected node numbers. W here multiple directions are
extracted, for instance UX and U Y degrees of freedom, the degrees
of freedom are listed in that order, first the UX degrees of freedom
and then the UY degrees of freedom. The extracted modal m atrix is
of size: (total dof) x (modes).

freqvec, a vector listing the eigenvalues (resonant frequencies), in hz
values. The size of the frequency vector is (modes) x (1).

node_num bers, a vector listing the node numbers for the extracted
data, of size (dof) x (1).

The extracted data can then be loaded and used to develop state space
models of the system.

C h ap ter 2 : T ran sfe r Function A nalysis

sdofxfer.m : Calculates and plots magnitude and phase for a single degree of
freedom system over a range of damping values.

tdofpz3x3.m : Uses the “num/den” form of the transfer function, calculates
and plots a ll nine pole/zero combinations for the nine different transfer
functions for tdof model. It prompts for values of the two dampers, c1 and c2,
where the default (hitting the “enter” key) values are set to zero to match the
hand calculated values in (2.82). The “transfer function” forms of the transfer
functions are then converted to “zpk - zero/pole/gain” form to enable
graphical construction of frequency response in the next chapter.

tdofpz3x3_rlocus.m : Plots pole and zero values for z11 transfer function for
a range of damping values.

C h ap ter 3 : F requency Response A nalysis

tdofxfer.m : Plots tdof model poles and zeros in complex plane, user choice
of damping values. Uses several different model descriptions and frequency

© 2001 by Chapman & Hall/CRC

response calculating techniques. The model is described in polynomial,
transfer function and zpk forms. M agnitude and phase versus frequency are
calculated using a scalar frequency “for loop,” vector frequency, automatic
bode plotting and bode with magnitude and frequency outputs.

C h ap ter 4 : Zeros in SISO M ech an ica l System s

ndof_num zeros.m : Calculates and plots poles/zeros and transfer functions
for user selected input/output locations on a “n” dof series spring/mass model.
Shows that poles of “constrained” structures to left and right of input/output
degrees of freedom are the zeros of the unconstrained structure.

cantfem .inp : AN SYS code for resonant frequencies of cantilever and tip
driving point transfer function. Used to identify zero locations to compare
with poles of “constrained” system in cantzero.inp.

can tzero .inp : AN SYS code for resonant frequencies of cantilever with
simple support at tip. Used to identify poles of “constrained” structure.

cantzero .m : Uses eigenvalues and eigenvectors from cantfem.inp and
cantzero.inp to plot overlay o f zeros o f cantilever with poles of tip supported
cantilever, showing the correspondence. C alls cantzero_freq .m ,
cantfem _m agphs.m .

C h ap ter 5 : S tate Space A nalysis

tdof_non_prop_dam ped.m : This code is used to develop an understanding
of the results o f M A TLA B’s eigenvalue analysis and complex modes.

C h ap ter 6 : S ta te Space : F requency Response, T im e Domain

tdofss.m : Calculates and plots the four distinct frequency responses for the
tdof model.

tdof_ ss_tim e_ode45_slnk.m : Solves for time domain response of tdof
problem using M A TLA B’s ODE45 solver, a Runga-Kutta method of solving
differential equations, as w ell as, M A TLA B’s Sim ulink block-diagram
simulation tool.

tdof_ ss_tim e_slnk_plot.m : Plots results from tdof_ss_time_ode45_slnk.m.

tdofssfun.m : Function code called by tdof_ss_time_ode45_slnk.m, contains
state equations.

© 2001 by Chapman & Hall/CRC

tdofss_sim ulink.m dl: Sim ulink model called by
tdof_ ss_tim e_ode45_slnk.m , defines state equations.

C h ap ter 8 : F requency Response: M odal Form

tdof_m odal_xfer.m : Calculates and plots the four distinct frequency
responses and the individual modal contributions.

th reedof.inp : AN SYS code that builds the undamped tdof model, calculates
eigenvalues and eigenvectors, outputs the frequency listing and eigenvectors,
plots the mode shapes. Calculates and plots a ll three transfer functions for a
force applied to mass 1.

C h ap ter 9 : T ran sien t R esponse: M o dal Form

tdof_m odal_tim e.m : Plots displacements versus time in principal and
physical coordinates.

C h ap ter 10: M odal A n a lys is : S tate Space Form

tdofss_eig.m : Solves for the eigenvalues and eigenvectors in the state space
form of the tdof system.

tdof_prop_dam ped.m : Calculates poles and zeros of proportionally damped
tdof system. Plots in itial condition responses for modes 2 and 3 in physical
and principal coordinate systems.

C h ap ter 11: F requ ency R esponse: M o dal S tate Space Form

tdofss_m odal_xfer_m odes.m : Solves for and plots frequency responses for
individual modal contributions and overall responses. Has code for plotting
frequency responses in different forms.

C h ap ter 12: T im e D om ain: M odal S tate Space Form

tdofss_m odal_tim e_ode45.m : Plots tdof transient responses for overall and
individual modal contributions. C alls the function files below, which define
the state space system and individual modes.

tdofssm odalfun .m , tdofssm odaH fun.m , tdofssm odal2fun .m ,
tdofssm odal3fun.m : Function files called by tdofss_modal_time_ode45.m.

© 2001 by Chapman & Hall/CRC

C h ap ter 14: F in ite E lem ents: D ynam ics

cant_2el_guyan .m : Solves for the eigenvalues and eigenvectors of a two-
element cantilever beam.

can tbeam _guyan .m : Solves for eigenvalues and eigenvectors of a cantilever
with user-defined dimensions, m aterial properties, number of elements and
number of mode shapes to plot. Guyan Reduction is an option. A 10-element
beam is used as an example.

can tbeam .inp : AN SYS code solves for the eigenvalues and eigenvectors of a
10 element cantilever, the same beam as the cantbeam_guyan.m example.

C h ap ter 15: SISO S tate Space M A T LA B M odel from AN SYS M odel

can tbeam _ss.inp : AN SYS code for cantilever beam, allows the user to
change the number of elements and the eigenvalue extraction technique. The
two variab les “num_elem” and “eigext” can be easily changed to see their
effects.

can tbeam _ss_freq .m : Compares theoretical frequencies for the first 16
modes for a cantilever beam with M ATLAB finite element and AN SYS finite
element results.

can tbeam _ss_m odred.m : Creates a M ATLAB state space model using the
eigenvalue and eigenvector results from previous AN SYS runs. Modes are
ranked for importance and several reduction techniques are used.

C h ap ter 16: G round A cceleration M A T LA B M odel from AN SY S M odel

can tbeam _ss_spring_shkr.inp : AN SYS model of shaker mounted cantilever
with tip m ass and tip spring to shaker. Outputs mode shape plot file
can tbeam 16red .grp .

cantbeam _ss_tip_con.inp: AN SYS model of shaker mounted constrained tip
cantilever. Outputs mode shape file tipcon16red .grp .

cantbeam _shkr_m odeshape.m : Plots mode shapes from AN SYS modal
analysis results for any of the tip spring models, w ith 2, 4, 8, 10, 12, 16, 32
and 64 beam elements.

cantbeam _ss_shkr_m odred .m : Creates a M ATLAB state space model
using the results from AN SYS model can tbeam _ss_spring_shkr.inp . Ranks
modes, then uses several reduction techniques to define sm aller model.

© 2001 by Chapman & Hall/CRC

C h ap ter 17: SISO D isk D rive A ctu ato r M odel

srun .inp : AN SYS model of suspension.

arun .in p : AN SYS model of actuator/suspension system.

act8.m : M ATLAB code for dc and peak gain ranking and reduction of
actuator/suspension model. Output from program is used for some input to
b a lred .m in Chapter 18.

C h ap ter 18: B a lanced R eduction

balred .m : M ATLAB code for balanced reduction of actuator/suspension
model from act8.m .

C h ap ter 19: M IM O T w o-Stage A ctu ato r M odel

arunpz.inp : AN SYS model of two-stage actuator/suspension system.

act8pz.m : M ATLAB model of two-stage actuator/suspension system,
balanced reduction.

Downloading

A ll the programs listed can be downloaded from the M athW orks FTP site at
www.mathworks.com or from the author’s site at www.hatchcon.com .

© 2001 by Chapman & Hall/CRC

http://www.mathworks.com
http://www.hatchcon.com

APPENDIX 2

LAPLACE TRANSFORMS

This appendix presents a short introduction to Laplace transforms, the basic
tool used in analyzing continuous systems in the frequency domain. The
Laplace transform converts linear ordinary differential equations (LODE’s)
into algebraic equations, m aking them easy to solve for their frequency and
time-domain behavior. There are many excellent presentations of the Laplace
transform, as in Oppenheim [1997], for those who would like more
information.

A 2.1 Definitions

The Laplace transform is a generalized Fourier transform, where given any
function f(t), the Fourier transform F(ra) is defined as:

F(ra) = F { f()} (ю) = J f (t) eJ“‘dt (A 2 .1)

where ю = 2n f and f is frequency, in hz.

In the same spirit, we can define the Laplace transform as:

F(s) = L (f (-)} (s) = J f (t) e-stdt (A2.2)
0-

where s is complex:

s = o +]ю , (A2.3)

O and ю are real numbers which define the locations of “s” in the complex

plane, see Figure A2.1 below. A lso, ю = 2n f as above.

© 2001 by Chapman & Hall/CRC

Im(s)

Figure A2.1: a and ю definitions in complex plane.

Remarks:

1) if f(t) = 0 for t < 0 , then

F { f () } (ю) = L { f () } (jca) (A2.4)

2) The “ 0- ” lim it in the Laplace transform definition takes care of
f(t) 's which contain the 8 function.

3) The integral in the definition of the Laplace transform need not be
finite, i.e. L { f } (s) m ay not exist for a ll s e □ . However, if f(t)

is bounded by some exponential:

|f(t)| < M e ”0' (A2.5)

then L { f } (s) w ill make sense for s e □ such that Re {s} > ” 0 .

© 2001 by Chapman & Hall/CRC

L {a1f 1 + a 2f 2} = a1L { f1} + a 2 L { f2} (A2.6)

A 2.2 Examples, Laplace T ransform Table

1) Exponential

f(t) = e-at 1(t)

4) The Laplace transform is linear:

.s > a |
s + a

F(s) = f e-a'l(')e -s'd' = f e-(s+a)t dt = — [:
J J C _|_ Q
0- 0­

2) Impulse

f(t) = 8(t)

F(s) = f 8(')e-s'd' = e-0 = 1 [for any

3) Step

f(t) = 1(t)

(A2.7a,b)

(A2.8a,b)

7 t - Гe-s<”) - e-s(0)] 1 (A2.9a,b)
F(s) = f e- dt = - ± ------------------± = - [s > 0]

J Q С

0

0

Table A 2 .1 below contains Laplace transforms for a few selected functions in
the time domain. The “Region o f Convergence” or “ROC” is defined as the
range o f values o f “s” for which the integral in the definition o f the Laplace
transform (A2.2) converges (Oppenheim 1997).

© 2001 by Chapman & Hall/CRC

f(t) Laplace T ransform Region o f Convergence

1) 5(t) 1 all s

2) 5(t - T) e-sT all s

3) 1(t)
1
s

Re{s} > 0

4) ^ t m1(t)
m!

1
sm+1

Re{s} > 0

5) e-at 1(t)
1

s + a
Re{s} > R e{a}

6) 1 tm-1e- atl (t) 1 Re{s} > R e{a}
(m - 1)! e iVV (s + a)m

7) (1 - e-at)1(t)
a

s(s + a)
Re{s} > m ax{0,R e{a}}

8) (e-at - a-bt)1(t) ----- b—------ Re {s}> max {Re {a} ,R e {b}}
(s + a)(s + b) 1 ;

9) sin(at) 1(t)
a

s2 + a 2
R e{s} > 0

10) cos(at) 1(t)
s

s2 + a 2
R e{s} > 0

11) e-at sin(bt)1(t)
b

(s + a)2 + b 2
Re{s} > a

12) e-at cos(bt)1(t)
s + a

(s + a)2 + b 2
Re{s} > a

Table A2.1: Laplace transform table.

© 2001 by Chapman & Hall/CRC

A 2.3 D uality

The following duality conditions exist:

f t) « • - - f F(s)
ds

— f(t) ^ sF(s)
dt

A 2.4 D ifferentiation and Integration

Differentiation and the Laplace transform: Suppose

L {x} (s) = X(s)

then

L {x } (s) = sX(s) - x (0-) ,

so we can interpret “s” as a differentiation operator:

d
— о s
dt

Integration and the Laplace transform: Suppose

L {x} (s) = X (s) ,

then

and we can interpret “ 1/s” as an integration operator:

1 о fd t
С J

(A2.10a,b)

(A 2.11)

(A 2.12)

(A 2.13)

(A 2.14)

(A 2.15)

(A 2.16)

© 2001 by Chapman & Hall/CRC

Assume we have a linear ordinary differential equation as shown in (A2.17):

y (t) + a j (t) + a2y (t) + a3y(t) = fyri (t) + b2ii (t) + b3u(t) (A2.17)

Assume y(t) = 0, y (t) = 0, y (t) = 0 and take the Laplace transform of both
sides, using the linearity property (A2.6):

L { y } (s) + a 1L {y } (s) + a 2L j y } (s) + a3L { y } (s) = (A2 18)

b1L {u} (s) + b 2L {u} (s) + b 3L {u} (s)

R ecalling that “s” is the differentiation operator, replace “dots” with “s” :

s3Y(s) + a1s2Y(s) + a2sY(s) + a3Y(s) = b1s2U(s) + b 2sU(s) + b3U(s) (A2.19)

W e are now left with a polynomial equation in “s” that can be factored into
terms m ultip lying Y(s) and U(s):

[s3 + a1s2 + a2s + a3] Y(s) = [b 1s2 + b2s + b3] U(s) (A2.20)

Solving for Y(s):

Tb.s2 + b 2s + b3]
Y (s) = Г Г 2 V U(s) (A2.21)

[s + —1s + —2s + a3]

It can be shown that the terms in the numerator and denominator above are the
Laplace transform of the impulse response, H(s):

Y (s) = H (s)U (s), (A2.22)

H(s) = L [h ()] (s) , (A2.23)

and h(-) is the impulse response. For the example LODE (A2.17) the
Laplace transform of the im pulse response is:

Tb.s2 + b 2s + b 3]
H(s) =r ^ -------2------------ ±r- (A2.24)

[s + - 1s + - 2s + -3]

A2.5 Applying Laplace Transforms to LODE’s with Zero Initial
Conditions

© 2001 by Chapman & Hall/CRC

A2.6 Transfer Function Definition

It can be shown that the transfer function of a system described by a LODE is
the Laplace transform of its impulse response, H(s), (A2.23).

Taking the Laplace transform of the LODE has provided the Laplace
transform of the impulse response. If we could inverse-transform H(s) we
could get the impulse response h(t) without having to integrate the differential
equation. T ypically the inverse transform is found by simplifying/expanding
H(s) into terms which can be found in tables, such as Table A 2.1 , and than
inverting “by inspection.”

A 2.7 Frequency Response Definition

Having obtained H(s) directly from the LODE by replacing “dots” by “s,” we
can obtain the frequency response of the system (the Fourier transform of the
impulse response) by substituting “ jra ” for “s” in H(s).

A 2.8 A pplying Laplace T ransform s to LO DE’s w ith Initial Conditions

In A2.5 we looked at applying Laplace transforms to LODE’s with zero in itial
conditions, which led to transfer function and frequency response definitions.
Since transfer functions and frequency responses deal with steady state
sinusoidal excitation response of the system, in itial conditions are of no
significance, as it is assumed that a ll measurements of the system undergoing
sinusoidal excitation are taken over a long enough period of time that
transients have died out.

On the other hand, if we are solving for the transient response of a system
defined by a LODE that has in itial conditions, obviously the in itial conditions
w ill not be zero. W e w ill use the basic definition of the differentiation
operation from (A2.12) to define the Laplace transform of 1st and 2nd order
differential equations with in itial conditions x (0) and x (0) :

(A2.25)

1st Order: L {x(t)} = sX (s) - x(0) (A2.26)

2nd Order: L {x (t)} = s2X (s) - sx(0) - x (0) (A2.27)

© 2001 by Chapman & Hall/CRC

W e defined the form of state space equations in Chapter 5 as below:

x (t) = A x(t) + Bu(') (A2.28)

y (t) = Cx(t) + Du(t) (A2.29)

where the in itial conditions are set by x(0) = xo . The general block diagram
for a SISO state space system is shown in Figure A 2 .1 .

A2.9 Applying Laplace Transform to State Space

Direct
T ransm iss ion

M atrix

D

Inpu t M atrix

u (t) -

Input

In te g ra to r B lock O u tp u t M atrix

x (t)

S ystem M atrix

4 a к

-и с f-Ю - > y (t)

O utp u t

-► sca la r

v e c to r

Figure A2.1: State space block diagram.

Taking Laplace transform of (A2.28):

L {x} (s) = L {A x} (s) + L {Bu} (s)

sX(s) - x(0-) = A L {x}(s) + B L {u}(s) (A2.30a,b)

= A X (s) + BU(s)

Solving for X(s):

sX(s) - A X(s) = x(0-) + BU(s)

(sI - A)X (s) = x(0-) + BU(s) (A2.31a,b,c)

X(s) = (sI - A)-1 x(0-) + (sI - A)-1 BU(s)

© 2001 by Chapman & Hall/CRC

The two terms on the right-hand side of (A2.31c) have special significance:

1) (si - A)-1 x(0-) is the Laplace transform of the homogeneous
solution, the in itial condition response.

2) (si - A)-1 BU(s) is the Laplace transform of the particular
solution, the forced response.

Taking the Laplace transform of (A2.29), the output equation:

Y(s) = CX(s) + DU(s) (A2.32)

Knowing X (s) from (A 2.31c) and substituting in (A2.32):

Y (s) = C(sI - A)-1 x(0-) + [C (sI - A)-1 B + d] U(s) (A2.33)

If the in itial conditions are zero, x (0 -) = 0 , then

Y (s) = [C (sI - A)-1 B + D] U (s) , (A2.34)

with the transfer function for the system being defined by H(s):

H(s) = [C (sI - A)-1 B + D] (A2.35)

When the terms in H(s) above are multiplied out, they w ill result in the
follow ing polynomial form:

H(s) = — + D (A2.36)
a(s)

© 2001 by Chapman & Hall/CRC

REFERENCES

Archer, John S., Consistent M ass M atrix for Distributed M ass Systems,
Journal o f the Structural Division, Proceedings o f the American Society of
Civil Engineers, ST4, August, 1963, p. 161.

B ay, J .S ., Fundamentals of Linear State Space Systems, M cGraw-Hill,
Boston, M A, 1999.

Chang, Tish-Chun and Craig, Roy R ., Jr., Normal M odes of Uniform Beams,
Journal o f Engineering Mechanics Division, Proceedings of the American
Society o f Civil Engineers, Vol. 95, No. EM4, August, 1969, p. 1027.

Chen, C.T., Linear System Theory and Design, Third Edition, Oxford
University Press, New York, 1999.

Craig, R .R ., Jr., Structural Dynamics, An Introduction to Computer Methods,
John W iley & Sons, New York, 1981.

Evans, W .R., Graphical A nalysis of Control Systems, Trans. AIEE, vol. 68,
1949, pp. 765-777 .

Franklin, G.F., Powell, J.D., and Emami-Naeini, A ., Feedback Control of
Dynamic Systems, Third Edition, Addison-W esley, M enlo Park, CA, 1994.

Franklin, G.F., Powell, J.D ., and Workman, M ., Digital Control o f Dynamic
Systems, Third Edition, Addison-W esley, M enlo Park, CA, 1998.

Gawronski, W .K., Balanced Control o f Flexible Structures, Springer, New
York, 1996.

Gawronski, W .K., Dynamics and Control o f Structures, A Modal Approach,
Springer, New York, 1998.

Johnson, C.D. and Kienholz, D.A., Finite Element Prediction of Damping in
Structures with Constrained V iscoelastic Layers, AIAA Journal, 20(9),
September 1982, p. 1284.

Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

© 2001 by Chapman & Hall/CRC

Laub, A .J., Heath, M .T ., Paige, C.C., and W ard, R .C ., “Computations of
System Balancing Transformations and Other Applications of Simultaneous
D iagonalization A lgorithms,” IEEE Transactions on Automatic Control, AC-
32 (1987), pp. 115-122.

M aia , N .M.M. and Silva, J.M .M ., Theoretical and Experimental Modal
Analysis, Research Studies Press LTD, Taunton, Somerset, U.K., 1997.

M iu, D.K., Poles and Zeros, Mechatronics, Springer-Verlag, New York, 1993.

Moore, B ., “Principal Component A nalysis in L inear System s:
Controllability, Observability and M odel Reduction,” IEEE Transsactions on
Automatic Control, AC-26 (1981), pp. 17-31.

Newland, D.E., Mechanical Vibration Analysis and Computation, John W iley
& Sons, Inc., New York, 1989.

Oppenheim, A .V ., W illsky, A .S ., and Nawab, S.H., Signals and Systems,
Prentice-Hall, Upper Saddle R iver, NJ, 1997.

P ilkey, W alter D., Formulas fo r Stress, Strain, and Structural Matrices, John
W iley & Sons, New York, 1994.

Strang, G., Introduction to Linear Algebra, 2nd Edition, W ellesley-Cam bridge
Press, W ellesley, M A, 1998.

W eaver, W. Jr., Timoshenko, S.P., and Young, D.H., Vibration Problems in
Engineering, 5th Edition, John W iley & Sons, New York, 1990.

Zhou, K., Doyle, J.C ., and Glover, K., Robust and Optimal Control, Prentice-
H all, Upper Saddle R iver, NJ, 1996.

Zhou, K. and Doyle, J.C ., Essentials o f Robust Control, Prentice-Hall, Upper
Saddle R iver, NJ, 1998.

© 2001 by Chapman & Hall/CRC

