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PREFACE

B ack g ro u n d

This book resulted from  using, docum enting and teaching various analysis 
techniques during a 30-year m echanical engineering career in the disk drive 
industry. D isk drives use high perform ance servo systems to control actuator 
position. Both experim ental and analytical techniques are used to understand 
the dynam ic characteristics of the systems being controlled. Constant in ­
depth com m unications between m echanical and control engineers are required 
to bring high perform ance electro-m echanical systems to m arket. Having 
m echanical engineers who can discuss dynam ic characteristics o f mechanical 
systems w ith servo engineers is very valuable in bringing these high- 
perform ance systems into production. This book should be useful to both the 
m echanical and control com m unities in enhancing their com m unication.

P u rp o se  o f th e  B ook

The book has three m ain purposes. The first purpose is to collect in one 
docum ent various m ethods o f constructing and representing dynam ic 
m echanical models. For someone learning dynam ics for the first tim e or for 
an experienced engineer who uses the tools infrequently, the options available 
for m odeling can be daunting: transfer function form, zpk form, state space 
form, modal form, state space modal form, etc. Seeing all the m ethods in one 
book, with background theory, an exam ple problem  and accom panying 
M ATLAB ® (M athW orks, Inc., Natick, M A) code listing for each method, 
will help put them  in perspective and m ake them  readily available for quick 
reference. (Also, having equation listings w ith their accom panying M ATLAB 
code is a good way to develop or reinforce M ATLAB program m ing skills.)

The second purpose is to help the reader develop a strong understanding of 
modal analysis, where the total response o f a system can be constructed by 
com binations o f the individual m odes o f vibration.

The third purpose is to show how  to take the results o f large dynam ic finite 
elem ent m odels and build small M ATLAB state space dynam ic mechanical 
m odels for use in m echanical or servo/m echanical system models.

A udience / P re req u is ites

This book is m eant to be used as a reference book in senior and early 
graduate-level vibration and servo courses as well as for practicing servo and 
m echanical engineers. It should be especially useful for engineers who have 
lim ited experience with state space. It assumes the reader has a background in 
basic vibration theory and elem entary Laplace transforms.
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For those w ith a strong linear systems background, the first 12 chapters will 
provide little new  information. Chapters 13 and 14, the finite element 
chapters, may prove interesting for those with little fam iliarity with finite 
elements. Chapters 15 to 19 cover m ethods for creating state space M ATLAB 
m odels from  A N SY S finite elem ent results, then reducing the models.

P ro g ram s U sed

It is assum ed that the reader has access to M ATLAB and the Control System 
Toolbox and is fam iliar w ith their basic use. The M ATLAB block diagram  
graphical m odeling tool S im ulink is used for several exam ples through the 
book but is not required. Several excellent texts covering the basics o f 
M ATLAB usage can be found on the M athW orks W eb page, 
w w w .m athw orks.com . A ll the program s were developed using M ATLAB 
Version 5.3.1.

Lum ped m ass and cantilever exam ples using the AN SY S®  (ANSYS, Inc., 
Canonsburg, PA) finite elem ent program  are used throughout the text. W here 
A N SY S results are required for input into M ATLAB models, they are 
available by download w ithout having to run the AN SY S code. For those 
with access to ANSYS, input code is available by download. The last three 
chapters contain com plete ANSYS/M ATLAB dynam ic analyses of SISO  
(Single Input Single O utput) and M IM O (M ultiple Input M ultiple Output) 
disk drive actuator/suspension systems. Revisions 5.5 and 5.6 o f ANSYS 
were used for the examples.

O rg a n iz a tio n

The unifying them e throughout m ost o f the book is a th re e  degree of 
freed o m  (tdof) system, sim ple enough to be solved for all o f its dynam ic 
characteristics in closed form, but com plex enough to be able to visualize 
m ode shapes and to have interesting dynamics.

Chapters 1 to 16 contain background theoretical material, closed form  
solutions to the example problem  and M ATLAB and/or ANSYS code for 
solving the problems. All closed form  solutions are shown in their entirety.

Chapters 17 to 19 analyze com plete disk drive actuator/suspension systems 
using ANSYS and M ATLAB. A ll chapters list and discuss the related 
M ATLAB code, and all but the last three chapters list the related ANSYS 
code. All the M ATLAB and ANSYS input codes, as well as selected output 
results, are available for downloading from  both the M athW orks F TP  site and 
the author’s FTP site, both listed at the end o f the preface. Reviewers have 
provided different inputs on the am ount and location o f M ATLAB and 
ANSYS code in the book. Engineers for w hom  the m aterial is new  have
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requested that the code be broken up, interspersed with the text and explained, 
section by section. Others for whom M ATLAB code is second nature have 
suggested either rem oving the code listings altogether or providing them  at the 
end o f the chapters or in an appendix. My apologies to the latter, but I have 
chosen to intersperse code in the associated text for the new  user.

A  problem  set accom panies the early chapters. A  two degree o f freedom  
system, very am enable to hand calculations, is used in the problem  sets to 
allow one to follow  through the derivations and codes with less w ork than the 
three degree o f freedom  (tdof) system used in the text. Some o f the problem s 
involve m odifying the supplied tdo f M ATLAB code to simulate the two 
degree o f freedom  problem , allowing one to becom e fam iliar with M ATLAB 
coding techniques and usage.

Follow ing an introductory chapter, Chapter 2 starts w ith transfer function 
analysis. A  systematic m ethod for creating mass and stiffness m atrices is 
introduced. Laplace transform s and the transfer function m atrix are then 
discussed. The characteristic equation, poles and zeros are defined.

Chapter 3 develops an intuitive m ethod o f sketching frequency responses by 
hand, and the significance o f  the m agnitudes and phases o f various frequency 
ranges are discussed. Follow ing a developm ent o f the imaginary plane and 
plotting o f poles and zeros for the various transfer functions, the relationship 
between the transfer function and poles and zeros is discussed. Finally, mode 
shapes are defined, calculated and plotted.

Chapter 4 discusses the origin and interpretation o f zeros in Single Input and 
Single Output (SISO) m echanical systems. Various transfer functions are 
taken for a lum ped param eter system to show the origin o f the zeros and how 
they vary depending on where the force is applied and where the output is 
taken. A n ANSYS finite elem ent model o f a tip-loaded cantilever is analyzed 
and the results are converted into a M ATLAB modal state space model to 
show an overlay o f the poles o f the “constrained” system and their 
relationship with the zeros o f the original model.

Chapter 5, the state space chapter, takes the basic tdof model and uses it to 
develop the concept of state space representation o f equations o f motion. A 
detailed discussion o f com plex m odes o f vibration is then presented, including 
the use o f A rgand diagram s and individual m ode transient responses.

Chapter 6 uses the state space form ulation o f Chapter 5 to solve for frequency 
responses and tim e dom ain responses. The matrix exponential is introduced 
both as an inverse Laplace transform  and as a pow er series solution for a 
single degree o f freedom  (sdof) m ass system. The tdof transient problem  is
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solved using both the M ATLAB function ode45 and a M ATLAB Simulink 
model.

Chapter 7, the modal analysis chapter, begins with a definition o f  principal 
m odes o f vibration, then develops the eigenvalue problem. The relationship 
between the determ inant o f the coefficient m atrix and the characteristic 
equation is shown. Eigenvectors are calculated and interpreted, and the modal 
m atrix is defined. Next, the relationship between physical and principal 
coordinate systems is developed and the concept o f  diagonalizing or 
uncoupling the equations o f m otion is shown. Several m ethods of 
norm alization are developed and compared. The transform ation o f initial 
conditions and forces from  physical to principal coordinates is developed. 
Once the solution in principal coordinates is available, the back 
transform ation to physical coordinates is shown. The chapter then goes on to 
develop various types o f  dam ping typically used in sim ulation and discusses 
dam ping requirem ents for the existence o f principal modes. A  two degree of 
freedom  model is used to illustrate the form  o f the dam ping m atrix when 
proportional dam ping is assumed, showing that the answer is not intuitive.

In Chapters 8 and 9 the tdo f model is solved for both frequency responses and 
transient responses in closed form  and using M ATLAB. A  description o f how 
individual m odes com bine to create the overall frequency response is 
provided, one o f several discussions throughout the book which will help to 
develop a strong mental image o f the basics o f  the m odal analysis method.

Chapter 10, the state space modal analysis chapter, shows how  to solve the 
norm al mode eigenvalue problem  in state space form, discussing the 
interpretation o f the resulting eigenvectors. Equations o f m otion are 
developed in the principal coordinates system and again, individual mode 
contributions to the overall frequency response are discussed. Real m odes are 
discussed in the same context as for com plex modes, using Argand diagrams 
and individual mode transient responses to illustrate.

Chapter 11 continues the modal state space form  by solving for the frequency 
response. Chapter 12 covers tim e dom ain response in modal state space form  
using the M ATLAB “ode45” com m and and “function” files.

Chapters 13 and 14 discuss the basics o f static and dynam ic analysis using 
finite elements, the generation o f global stiffness and m ass matrices from  
elem ent matrices, m ass m atrix forms, static condensation and Guyan 
Reduction. The purpose o f the finite elem ent chapters is to familiarize the 
reader with basic analysis m ethods used in finite elements. This fam iliarity 
should allow a better understanding o f how  to interpret the results o f the 
m odels w ithout necessarily becom ing a finite elem ent practitioner. A 
cantilever beam  is used as an example in both chapters. In Chapter 14 a
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com plete eigenvalue analysis w ith Guyan Reduction is carried out by hand for 
a tw o-elem ent beam. Then, M ATLAB and ANSYS are used to solve the 
eigenvalue problem  with arbitrary cantilever models.

Chapters 15 and 16 use eigenvalue results from  ANSYS beam  m odels to 
develop state space M ATLAB m odels for frequency and tim e domain 
analyses. Both chapters discuss sim ple m ethods for reducing the size of 
ANSYS finite elem ent results to generate small, efficient M ATLAB state 
space models which can be used to describe the dynam ic m echanical portion 
o f a servo-m echanical model.

Chapter 17 uses an ANSYS m odel o f  a single stage SISO disk drive 
actuator/suspension system to illustrate using dc or peak gains o f individual 
m odes to rank m odes for elim ination when creating a low order state space 
M ATLAB model.

Chapter 18 introduces balanced reduction, another m ethod o f ranking m odes 
for elimination, and uses it to produce a reduced model o f the SISO disk drive 
actuator/suspension m odel from  Chapter 17.

In Chapter 19 a com plete ANSYS/M ATLAB analysis o f a two stage M IM O 
actuator/suspension system is carried out, with balanced reduction used to 
create a low  order model.

A ppendix 1 lists the nam es o f  all the M ATLAB and ANSYS codes used in the 
book, separated by chapter. It also contains instruction for downloading the 
M ATLAB and ANSYS files from  the M athW orks FTP site as well as the 
author’s W eb site, w w w .hatchcon.com .

Appendix 2 contains a short introduction to Laplace transforms.

For M ATLAB product inform ation, contact:

The M athW orks, Inc.
3 Apple Hill Drive
Natick, M A, 01760-2098 U.S.A.

Tel: 508-647-7000

Fax: 508-647-7101

E-mail: info@ m athworks.com

Web: w ww.m athworks.com
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For ANSYS product inform ation, contact:

ANSYS, Inc.
Southpointe
275 Technology Drive
Canonsburg, PA 15317

Tel: 724-746-3304

Fax: 724-514-9494

Web: www.ansys.com
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CHAPTER 1

INTRODUCTION

This book has three main purposes. The first purpose is to collect in one 
document the various methods of constructing and representing dynamic 
mechanical models. The second purpose is to help the reader develop a strong 
understanding of the modal analysis technique, where the total response of a 
system can be constructed by combinations of individual modes of vibration. 
The third purpose is to show how to take the results of large finite element 
models and reduce the size of the model (model reduction), extracting lower 
order state space models for use in MATLAB.

1.1 Representing Dynamic Mechanical Systems

We will see that the nature of damping in the system will determine which 
representation will be required. In lightly damped structures, where the 
damping comes from losses at the joints and the material losses, we will be 
able to use “modal analysis,” enabling us to restructure the problem in terms 
of individual modes of vibration with a particular type of damping called 
“proportional damping.” For systems which have significant damping, as in 
systems with a specific “damper” element, we will have to use the original, 
coupled differential equations for solution.

The left-hand block in Figure 1.1 represents a damped dynamic model with 
coupled equations of motion, a set of initial conditions and a definition of the 
forcing function to be applied. If damping in the system is significant, then 
the equations of motion need to be solved in their original form. The option 
of using the normal modes approach is not feasible. The three methods of 
solving for time and frequency domain responses for highly damped, coupled 
equations are shown.

1.2 Modal Analysis

Most practical problems require using the finite element method to define a 
model. The finite element method can be formulated with specific damping 
elements in addition to structural elements for highly damped systems, but its 
most common use is to model lightly damped structures.
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Figure 1.1: Coupled equations of motion flowchart.

The diagram in Figure 1.2 shows the methodology for analyzing a lightly 
damped structure using normal modes. As with the coupled equation solution 
above, the solution starts with deriving the undamped equations of motion in 
physical coordinates. The next step is solving the eigenvalue problem, 
yielding eigenvalues (natural frequencies) and eigenvectors (mode shapes). 
This is the most intuitive part of the problem and gives one considerable 
insight into the dynamics of the structure by understanding the mode shapes 
and natural frequencies.
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Transform  № Solution in 
Physical Coordinates 

Time Domain 
Frequency Domain 

(Chapter 10-12)

Figure 1.2: Modal analysis method flowchart.

To solve for frequency and time domain responses, it is necessary to 
transform the model from the original physical coordinate system to a new 
coordinate system, the modal or principal coordinate system, by operating on 
the original equations with the eigenvector matrix. In the modal coordinate 
system the original undamped coupled equations of motion are transformed to 
the same number of undamped uncoupled equations. Each uncoupled 
equation represents the motion of a particular mode of vibration of the system. 
It is at this step that proportional damping is applied. It is trivial to solve 
these uncoupled equations for the responses of the modes of vibration to the 
forcing function and/or initial conditions because each equation is the 
equation of motion of a simple single degree of freedom system. The desired 
responses are then back-transformed into the physical coordinate system, 
again using the eigenvector matrix for conversion, yielding the solution in 
physical coordinates.

The modal analysis sequence of taking a complicated system, (1) transforming 
to a simpler coordinate system, (2) solving equations in that coordinate system 
and then (3) back-transforming into the original coordinate system is

(Chapter 10)

Solution in Modal 
Coordinates 

(Chapter 11,12)
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analogous to using Laplace transforms to solve differential equations. The 
original differential equation is (1) transformed to the “s” domain by using a 
Laplace transform, (2) the algebraic solution is then obtained and is (3) back- 
transformed using an inverse Laplace transform.

It will be shown that once the eigenvalue problem has been solved, setting up 
the zero initial condition state space form of the uncoupled equations of 
motion in principal coordinates can be performed by inspection. The solution 
and back-transformation to physical coordinates can be performed in one step 
in the MATLAB solution.

The advantage of the modal solution is the insight developed from 
understanding the modes of vibration and how each mode contributes to the 
total solution.

1.3 Model Size Reduction

It is useful to be able to provide a model of the mechanical system to control 
engineers using the fewest states possible, while still providing a 
representative model. The mechanical model can then be inserted into the 
complete mechanical/control system model and be used to define the system 
dynamics.

Figure 1.3 shows how to convert a large finite element model (and most real 
finite element models are “large,” with thousands to hundreds of thousands of 
degrees of freedom) to a smaller model which still provides correct responses 
for the forcing function input and desired output points.

The problem starts out with the finite element model which is solved for its 
eigenvalues and eigenvectors (resonant frequencies and mode shapes). There 
are as many eigenvalues and eigenvectors as degrees of freedom for the 
model, typically too large to be used in a MATLAB model.

Once again, the eigenvalues and eigenvectors provide considerable insight 
into the system dynamics, but the objective is to provide an efficient, “small” 
model for inclusion into the mechanical/servo system model. This requires 
reducing the size of the model while still maintaining the desired input/output 
relationships.
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set to a new set which includes only those degrees of freedom where forces 
are applied and/or where responses are desired.

The second step for Single Input Single Output (SISO) systems is to reduce 
the number of modes of vibration used for the solution by ranking the relative 
importance of each mode to the overall response. For Multi Input Multi 
Output (MIMO) systems, a more sophisticated method of reduction which 
simultaneously takes into account the controllability and observability of the 
system is required.

Figure 1.4 shows the overall frequency response for a SISO cantilever beam 
model discussed in Chapter 15. Superimposed over the overall frequency 
response is the contribution of each of the individual 10 modes of vibration 
which make up the overall response.

cantilever tip displacement for mid-length force, all 10 modes included

Figure 1.4: Individual mode contribution to overall frequency response.

We will show that modes with little or no displacement at the reduced set of 
degrees of freedom are candidates for elimination. For example, the three 
modes which have low frequency magnitudes of less than -120db in Figure
1.4 have no effect on the overall frequency response -  their peaks do not show 
up on the overall frequency response. The less important modes either can be 
eliminated directly or a more sophisticated method can be used which takes 
into account the low frequency effects of the removed modes. Both types are 
discussed in detail, accompanied by examples.

A reduced solution can provide very good results with a significant reduction 
in number of states -  a model which is very amenable to being combined with 
a servo model for a complete servo mechanical system model.
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CHAPTER 2

TRANSFER FUNCTION ANALYSIS

2.1 In tro d u c tio n

The purpose o f this chapter is to illustrate how  to derive equations o f m otion 
for M ulti Degree o f Freedom  (mdof) systems and how to solve for their 
transfer functions.

The chapter starts by developing equations o f m otion for a specific th re e  
degree  of freed o m  dam ped system (indicated throughout the book by the 
acronym “td o f ’). A  systematic m ethod o f creating “global” mass, damping 
and stiffness matrices is borrow ed from  the stiffness m ethod o f m atrix 
structural analysis. The tdo f model will be used for the various analysis 
techniques through most o f the book, providing a com mon thread that links the 
pieces into a whole.

Two additional examples are used to illustrate the m ethod for building m atrix 
equations o f motion. The first is a lumped mass six degree o f freedom  (6 dof) 
system for which the stiffness m atrix is developed. The second is a simplified 
rotary actuator system from  a disk drive, for which the com plete undam ped 
equations o f m otion are developed.

Following the equations o f m otion sections, the chapter continues with a 
review  o f the transfer function and frequency response analyses o f a single 
degree o f freed o m  (sdof) dam ped example. A fter developing the closed form  
solution o f the equations, M ATLAB code is used to calculate and plot 
m agnitude and phase versus frequency for a range o f dam ping values.

The tdof model is then reintroduced and Laplace transforms are used to 
develop its transfer functions. In order to facilitate hand calculations o f poles 
and zeros, dam ping is set to zero. The characteristic equation, poles and zeros 
are then defined and calculated in closed form. M ATLAB code is used to plot 
the pole/zero locations for the nine transfer functions using M A TLA B ’s 
“pzm ap” command.

M ATLAB is used to calculate and plot poles and zeros for values o f dam ping 
greater than zero and we will see that additional real values zeros start 
appearing as dam ping is increased from  zero. The significance o f the real axis 
zeros is discussed.
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2.2.1 T h ree  D egree o f F reed o m  (tdof) System , Iden tify ing  C om ponents 
an d  D egrees o f F reedom

2.2 Deriving Matrix Equations of Motion

The first step in analyzing a mechanical system is to sketch the system, 
showing the degrees o f freedom, the masses, stiffnesses and dam ping present, 
and showing applied forces. The tdof system to be followed throughout the 
book, shown in Figure 2.1, consists o f three masses, num bered 1 to 3, two 
springs between the m asses and two dam pers also between the masses. The 
model is purposely not connected to ground to allow a “rigid body” degree of 
freedom, m eaning that at “low” frequencies the set o f three m asses can all 
move in one direction or the other as a single rigid body, w ith no relative 
m otion between them.

The num ber o f degrees o f freed o m  (dof) for a model is the num ber of 
geometrically independent coordinates required to specify the configuration 
for the model. For consistency, the notation “z” will be used for degrees of 
freedom, saving “x” and “y ” for state space representations later in the book. 
For the system shown in Figure 2.1 where each mass can move only along the 
z axis, a single degree of freedom  for each mass is sufficient, hence the 
degrees o f freedom  z1, z 2 and z3 .

2.2.2 D efin ing th e  S tiffness, D am ping  an d  M ass M atrices

The equations o f m otion will be derived in m atrix form  using a m ethod 
derived from  the stiffness m ethod o f structural analysis, as follows:

Stiffness M a trix : A pply  a  u n it d isp lacem ent to each dof, one at a 
time. Constrain the dof’s not displaced and define the  stiffness 
d ep en d en t co n s tra in t fo rce  required for all dof’s to hold the system 
in the constrained position.

F 3

Figure 2.1: tdof system schematic.
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The row elements o f each column o f the stiffness matrix are then 
defined by the constraints associated with each dof that are required 
to hold the system in the constrained position.

D am ping  M a trix : A pply  a  u n it velocity  to each dof, one at a time. 
Constrain the do f’s not m oving and define th e  velocity -dependen t 
c o n s tra in t fo rce  required to keep the system in that state.

The row  elements o f each column o f the dam ping m atrix are then 
defined by the constraints associated with each dof that are required 
to keep the system in that state -  with one dof m oving with constant 
velocity and all the other dof’s not moving.

M ass M a tr ix : A pp ly  a  u n it acce le ra tion  to each dof, one at a time. 
Constrain the dof’s not being accelerated and define the  
acce le ra tio n -d ep en d en t c o n s tra in t forces required.

The row  elements o f each column of the mass m atrix are then defined 
by the constraints associated with keeping one dof accelerating at a 
constant rate and the other dof’s stationary. Since in this model the 
only forces transm itted between the m asses are proportional to 
displacem ent (the springs) and velocity (viscous damping), no forces 
are transm itted between m asses due to one o f the m asses accelerating.
This leads to a diagonal m ass m atrix in cases where the origin o f the 
coordinate systems are taken through the center o f m ass o f the bodies 
and the coordinate axes are aligned with the principal moments of 
inertia o f the body.

Table 2.1 shows how  the three matrices are filled out. To fill out column 1 of 
the mass, dam ping and stiffness matrices, mass 1 is given a unit acceleration, 
velocity and displacement, respectively. Then the constraining forces required 
to keep the system in that state are defined for each dof, where row  1 is for dof 
1, row  2 is for dof 2 and row  3 is for dof 3.
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Column 1 Column 2 Column 3

accel accel accel

UNIT vel dof1 Unit< vel d o f2 Unit< vel

disp disp disp

dof3

m 1 0 0 dof1

0 m 2 0 dof 2

0 0 m 3 dof3

c 1 - c 1 0 dof1

- c 1 c1 + c2 - c 2 dof 2

0 - c 2 c 2 dof3

k 1 - k 1 0 dof1

- k 1 k 1 + k 2 k 2 dof 2

0 k 2 k 2 dof3

Table 2.1: m, c, k columns and associated dof displacements. The cross-hatched masses in 
the figures above each column are constrained and non-cross-hatched mass is moved a unit

displacement.

The general m atrix form  for a tdof system is shown below, where the “ij” 
subscripts in mjj, Cjj, k  are defined as follows: “i” is the row  num ber and

“j ” is the column number. 

j=1 j=2 j=3

i = 1 ' m n m 12 m 13 ' z1 c11 c12 c13 z 1

1I

Z1 ' F  '
i = 2 21 22m 23m z 2 + c21 c22 c23 Z 2 + 2k 2k 2k Z2 = F2 (2.1)
i = 3 _ m 31m 32 m 33 _ _Z3 _ _ c31 c32 c33 _ _ Z 3 _ 3k 3k 33k _ Z3 _ . F3 .

M ass Damping Stiffness

© 2001 by Chapman & Hall/CRC



Expanding the matrix equations o f m otion by multiplying across and down:

m 11z1 + m 12z 2 + m 13z 3 + c11z 1 + c12z 2 + c13Z3 + k 11Z1 + k 12Z2 + k 13Z3 F1 (2 '2)

m 21Z1 + m 22Z 2 + m 23Z 3 + c21Z 1 + c22Z 2 + c23Z 3 + k 2lz1 + k 22z2 + k 23z3 = F2 (2.3)

m 31Z1 + m 32Z 2 + m 33Z 3 + c31Z 1 + c32Z 2 + c33Z3 + k 31Z1 + k 32Z2 + k 33Z3 = F3 (2 .4)

The matrix equations o f m otion for our tdof problem , from  Table 2 .1 , is:

m 1 0 0 " Z1"

1

- 1 0
1

"Z1
0 m 2 0 Z 2 + - c  (c1 + c2) -c2 Z 2
0 0 m 3 _Z3 _ 0 - c 2 c2 _ Z 3

" k 1 - k 1 0 " Z1 ■ F1 ■

- k 1 (k1+ k2) k 2 Z2 = F2

0 k 2 k 2 _ _ Z3 _ . F3 _

Expanding:

m ^  + c1Z 1 -  c1Z 2 + k 1Z1 -  k 1Z2 = F1 

m 2Z2 - c1Z1 + (c1 + c2)Z2 - c2Z3 - k 1Z1 + (k 1 + k 2)Z2 - k 2Z3 = F2 (2.6a,b,c)

m 3Z3 -  c2Z2 + c2Z3 -  k 2Z2 + k 2Z3 = F3

2.2.3 C hecks on E quations o f M otion  fo r  L in e a r  M echan ica l System s

Two quick checks w hich should always be carried out for linear mechanical 
systems are the following:

1) All diagonal term s must be positive.

2) The mass, dam ping and stiffness matrices must be symmetrical. 
For example Ц  = k ji for the stiffness matrix.

2.2.4 Six D egree o f F reed o m  (6dof) M odel -  Stiffness M a trix

The stiffness m atrix developm ent for a more com plicated model than the tdof 
model used so far is shown below. The figure below  shows a 6dof system 
with a rigid body m ode and no damping.
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M oving each dof a unit displacem ent and then writing down the reaction 
forces to constrain that configuration for each o f the column elements, the 
stiffness matrix for this example can be written by inspection as shown in 
Table 2 .2 . N ote that the symmetry and positive diagonal checks are satisfied.

(ki + k2) - k l 0 0 0 - k

- k i (k1 + k 3 + k 7) - k 3 0 - k 7 0

0 - k 3 (k3 + k 4 + k 6) k 4 - k 6 0

0 0 k 4 (k4 + k j) k 5 0

0 k 7 k 6 k 5 (k 5 + k 6 + k 7) 0

- k 2 0 0 0 0 k 2

Table 2.2: Stiffness matrix terms for 6dof system.

2.2.5 R o ta ry  A c tu a to r  M odel -  S tiffness an d  M ass M atrices

The technique is also applicable to systems with rotations com bined with 
translations, as long as rotations are kept small. The system shown below 
represents a sim plified rotary actuator from  a disk drive that pivots about its 
m ass center, has force applied at the left-hand end (representing the rotary 
voice coil motor) and has a “recording head” m 2 at the right-hand end. The 

“head” is connected to the end o f the actuator with a spring and the pivot 
bearing is connected to ground through the radial stiffness o f its bearing.
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Figure 2.3: Rotary actuator schematic.

Starting off by defining the degrees o f freedom, stiffnesses, m ass and inertia 
terms:

dof:
z 1 translation o f actuator
z2 rotation o f actuator
z3 translation o f head

Stiffnesses:
k 1 actuator bearing radial stiffness
k2 “suspension” stiffness

Inertias:
m 1,J1 actuator mass, inertia
m 2 “head” mass
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First Column: z1 = 1

Second Column: z2 = 1

Third Column: z3 = 1

Rotary Actuator Stiffness Example

Figure 2.4: Unit displacements to define mass and stiffeness matrices.

See Figure 2.4 to define the entries o f each column o f (2.7), the 
forces/m om ents required to constrain the respective dof in the configuration 
shown.
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m, 0 0 z i
0 J, 0 z 2 +

0 0 m 2 _z 3 _

(k, + k 2) l2k 2 - k 2 

l2k 2 l2k2 l2k2

—k 2 - l 2k 2 k 2

1N"
1 I 1 I

— c
1

z 2 = T2 = Fclj

1I I 0 1 1 0 1

(2.7)

F, = — Fc (2.8)

T2 = Fcl, (2.9)

2.3 Single D egree o f F reed o m  (sdof) System  T ra n s fe r  F u n ctio n  
an d  F req u en cy  R esponse

2.3.1 sdof System  D efin ition , E q u atio n s of M otion

The sdof system to be analyzed is shown below. The system consists o f a 
mass, m, connected to ground by a spring o f stiffness k and a dam per with 
viscous dam ping coefficient c. Since the m ass can only move in the z 
direction, a single degree of freedom  is sufficient to define the system 
configuration. Force F  is applied to the mass.

k
-» z r  F

— 3D—
c

m

О О\  \ \  \

Figure 2.5: Single degree of freedom system.

The equation o f m otion for this system is given by:

mz + cZ + kz = F (2.10)

2.3.2 T ra n s fe r  F unction

Taking the Laplace transform  o f a general second order differential equation 
(DE) with initial conditions is:
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Second Order DE: L {z(t)}  = s2z(s) — sz(0) — z (0 ) ,  (2.11)

where z(0) and z (0) are position and velocity initial conditions, respectively, 

and z(s) is the Laplace transform  o f z(t). See Appendix 2 for more on Laplace 
transforms.

Because we are taking a transfer function, representing the steady state 
response o f the system to a sinusoidal input, initial conditions are set to zero, 
leaving

L  {z (t)} = s2z(s) (2.12)

The Laplace transform  o f the sdof equation o f m otion (2.10), where F(s) 
represents the Laplace transform  o f F, is:

m s2z(s) + csz(s) + kz(s) = F(s) (2.13)

Solving for the transfer function:

z(s) 1 1 /m

F(s) m s2 + cs + k  s 2 + _ c s + _k_
(2.14)

m  m

W e can simplify the equation above by applying the following definitions: 

2 k
1) ran = —  , where ran is the undam ped natural frequency,

m
rad/sec

2) ccr = 2>/km , where is the “critical” dam ping value

3) Z is the amount o f proportional damping, typically 

stated as a percentage o f critical dam ping

4) 2Zffln is the m ultiplier o f the velocity term, z , 

developed below:
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-  = 2 Z 4  
m

= 2
c k

ccr ' m

2c Vk 

2>/km Vm 
c 
m

(2.15)

Rewriting, using the above substitutions:

1 /mz(s) = ______________
F(s) s2 + 2^rnns + юП

(2.16)

2.3.3 F req u en cy  R esponse

Substituting “ jra ” for “s” to calculate the frequency response, where “j ” is the 

imaginary operator:

z(jra) = 1 /m

F(jfij) (jca)2 + 2£юпаю ) + ю2 

= 1 /m

_ю 2 + 2 ^ r n J  + mj;

= 1/(шю2)

- 1 + 2^ j + ю 2
ю ю2 

1/(шю2)

Ю! _  1 1+ 2Z^ j
ю ) Ю

21/(шю )

[ f  ̂  12 _ 1] + j2Z f  )
Ll ю )  j l  ю )

(2 .17a,b,c,d,e)

The frequency response equation above shows how the ratio (z/F) varies as a 
function o f frequency, ю . The ratio is a com plex num ber that has some 

interesting properties at different values o f the ratio (<an /  ю ) .
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A t low  frequencies relative to the resonant frequency, ю;  >> ююп >> ю2 , and

the transfer function is given by:

z(jo>) = 1 /m

F(jю ) _ю 2 + 2 £ ю о у  + ю  ̂

1 /m  1 1

ю; шю; m  | — 
m

1

k

(2.18)

Since the frequency response value at any frequency is a com plex number, we 
can take the magnitude and phase.

z(jю )

F(jю )

Z  j  = 0 
F j )

(2.19a,b)

Thus, the gain at low frequencies is a constant, (1/k) or the inverse o f the 
stiffness. Phase is 0° because the sign is positive.

A t high frequencies, ю 2 >> юю;  >> ю;  , the transfer function is given by:

z(jo>) = 1 /m

F j )  _ю 2 + 2£юю; !  + ю;; 

1 /m  _1
(2.20)

_ю шю

Once again, taking the magnitude and phase:

z(jff>) _1 1

F j ) шю2 шю2

(2 .2 1 a,b)

Z  = _  180-
F(jю)

A t high frequencies, the gain is given by 1/(шю2) and the phase is _180° 

because the sign is negative.
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A t resonance, ю = ю;  , the transfer function is given by:

z(jo>) = 1 /m

F(jff>) _ю 2 + 2 ^ юю; !  + ю;; 

1 /m  1 /m  1

(2.22)

1 1 1 /k  _  _ j / k

2Сюю;!  2СюП! 2Сю^ш! 2Zk—j 2Zkj 2Z
m

Taking m agnitude and phase at resonance:

2Z

z(jff>) _  j / k 1 /k

F j ) 2Z = 2Z
(2.23a,b)

Z
z j )

F j )
= _  90°

The m agnitude at resonance is seen to be the gain at low  frequency, 1/k, 
divided by 2 Z . Since Z is typically a small number, for example 1% of

critical dam ping or 0.01, the magnitude at resonance is seen to be amplified. 
A t resonance the phase angle is _ 9 0 ° .

frequency, rad/sec

Figure 2.6: sdof magnitude versus frequency for different damping ratios.
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The M ATLAB code sdofxfer.m , listed in the next section, is used to p lot the 
frequency responses from  (2.17) for a range o f dam ping values for 
m  = k = 1.0, shown in Figures 2.6 and 2 .7 . These m  and k values give a ю; 

value o f 1.0 rad/sec.

Since ю; is 1.0 rad/sec, the resonant peak in Figure 2.6 should occur at that 

frequency. The low  frequency magnitude was shown above to be equal to 
1/k = 1.0. The curves for all the dam ping values approach 1.0 (10° = 1.0) at

low frequencies. A t high frequencies the magnitude is given by 1/ (ш ю 2) ,

and since m  = 1, we should have m agnitude o f 1/ ю2 . Checking the plot 
above, at a frequency o f 10 rad/sec, the m agnitude should be 1/100 or 0.01.

Note that the slope o f the low frequency asymptote is zero, m eaning it is not 
changing with frequency. However, the slope o f the high frequency asymptote 
is “ _ 2 ,” m eaning that for every decade increase in frequency the magnitude at 
high frequency decreases by two orders o f m agnitude by virtue o f the ю2 term 
in the denominator. The “ _2  ” slope on a log magnitude versus log frequency 
plot com es from  the following:

log |h igh  frequency! ^  l o g = lo g (ю_2) = _ 2 lo g (ю) (2.24)

SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1

frequency, rad/sec

Figure 2.7: sdof phase versus frequency for different damping ratios.
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From  Figure 2.7, note that at resonance ( ю;  = 1.0 r a d /s e c ) the phase for all 

values o f dam ping is _ 9 0 ° . A t low  frequencies phase is approaching 0° and 
at high frequencies it is approaching _ 1 8 0 ° .

2.3.4 M A T L A B  C ode sdofxfer.m  D escrip tion

The code uses the transfer function form  shown in (2.14) to calculate the 
com plex quantity “xfer,” where s = j  ю , using a vector o f defined ю values. 

M agnitude and phase o f the com plex value o f the transfer function are then 
plotted versus frequency.

2.3.5 M A T L A B  C ode sdofxfer.m  L isting

% sdofxfer.m plotting frequency responses of sdof model for different damping values

clf;

clear all;

% assign values for mass, percentage of critical damping, and stiffnesses
% zeta is a vector of damping values from 10% to 100% in steps of 10%

m = 1;
zeta = 0.1:0.1:1; % 0.1 = 10% of critical
k = 1;

wn = sqrt(k/m);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 400 defines 400 frequency points.

w = logspace(-1,1,400);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

s = j*w;

% define a for loop to cycle through all the damping values for calculating
% magnitude and phase

for cnt = 1:length(zeta)

% define the frequency response to be evaluated

xfer(cnt,:) = (1/m) ./ (s.A2 + 2*zeta(cnt)*wn*s + wnA2);
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% calculate the magnitude and phase of each frequency response

mag(cnt,:) = abs(xfer(cnt,:)); 

phs(cnt,:) = angle(xfer(cnt,:))*rad2deg;

end

% define a for loop to cycle through all the damping values for plotting magnitude

for cnt = 1:length(zeta) 

loglog(w,mag(cnt, :),'k-')
title('SDOF frequency response magnitudes for zeta = 0.1 to 1.0 in steps of 0.1')
xlabel('frequency, rad/sec')
ylabel('magnitude')
grid

hold on

end

hold off 

grid on

disp('execution paused to display figure, "enter" to continue'); pause 

% define a for loop to cycle through all the damping values for plotting phase

for cnt = 1:length(zeta) 

semilogx(w,phs(cnt,:),'k-')
title('SDOF frequency response phases for zeta = 0.1 to 1.0 in steps of 0.1')
xlabel('frequency, rad/sec')
ylabel('magnitude')
grid

hold on

end

hold off 

grid on

disp('execution paused to display figure, "enter" to continue'); pause
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2.4 td o f  L ap lace  T ra n sfo rm , T ra n s fe r  F unctions, 
C h a ra c te ris tic  E q u a tio n , Poles, Z eros

W e now return to the original tdof model as shown in Figure 2 .1 . In order to
define transfer functions and understand poles and zeros o f the system, we
need to transform  from  the tim e dom ain to the frequency domain. W e do this 
by taking Laplace transform s o f the equations o f motion.

2.4.1 L ap lace  T ran sfo rm s w ith  Z ero  In itia l C onditions

Repeating (2.5) for the tdof system:

m 1 0  0 " z 1" c1 - c1 0 "z 1
0  m 2 0 z 2 + - c  (c1 + c 2) - c 2 z 2
0  0  m 3 _z3 _ 0  - c 2 c 2 _ z 3

■ k 1 - k 1 0  " z 1 'F 1 ■

- k 1 ( k  + k 2) - k 2 z 2 = F2

0 - k 2 k 2 _ _z3 _ F3 _

(2.25)

Taking Laplace transforms assuming initial conditions o f zero, where 
z 1; z 2 z 3 now  represent the Laplace transforms o f the original z 1; z 2 z 3 :

m 1 0 0 

0 m 2 0 

0 0 m 3

s2z1

s2 z

s2 z

■ c 1 - c1 0 sz1

- c 1 ( c  + c 2) - c 2 sz2

0 - c 2 c 2 _ sz3

1■ 0  " z 1 " F '
+ - k  (k 1 + k 2) -  k 2 z 2 = F2

0  - k 2 k 2 _ _ z3 _ i F3 _

(2.26)

Rearranging:

(m 1s2 + c1s + k 1) ( - c 1s -  k 1) 0

(—c1s -  k 1) (m 2s2 + c1s + c2s + k 1 + k 2) (- c 2s -  k 2)

0  ( - c2s -  k 2) (m 3s2 + c2s + k 2)

(2.27)
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2.4.2 Solving fo r  T ra n s fe r  F unctions

In this section we solve for the nine possible transfer functions for all 
com binations o f degrees o f freedom  where force is applied and where 
displacem ents are taken. Solving for the transfer functions for greater than a 
2dof system is a task not to be taken lightly -  symbolic algebra program s such 
as M athem atica, M aple or the M ATLAB Symbolic Toolbox should be used.

Table 2.3: Nine possible transfer functions for tdof system.

The results below  were obtained by use o f a symbolic algebra program.

z | s 4 (m 2m 3) + s3 (m 3c1 + m 3c2 + m 2c2) I
^  = J v 2 37 v 3 1 3 2 2 2 7 l /D e n  (2.28)
F1 I+ s2 (c1c2 + m 2k 2 + m 3k 1 + m 3k 2) + s (c1k 2 + c2k 1) + k 1k 2 1

—  = {s3 (m 3c1) + s2 (c1c2 + m 3k 1) + s ( c 1k 2 + k 1c2) + k 1k 2) /D e n  (2.29)
F2

—  = {s2 (c1c2) + s (c1k 2 + c2k 1) + k 1k 2 ) /D e n  (2.30)
F3

—  = {s3 (m 3c1) + s2 (c1c2 + m 3k 1) + s ( c 1k 2 + c2k 1) + k 1k 2} /D e n  (2.31)

F2

s4 (m 1m 3) + s3 (m 1c2 + m 3c ^  

+ s2 (m 1k 2 + c1c2 + m 3k 1)

+s (c1k 2 + c2k 1) + k 1k 2

/D e n  (2.32)

—  = {s3 (m 1c2) + s3 (m 1k 2 + c1c2) + s ( c 1k 2 + c2k 1) + k 1k 2) /D e n  (2.33)
F3

z 2
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—  = {s2 (c1c2) + s (c 1k 2 + c2k 1) + k 1k 2) /D e n  
F1

(2.34)

■ = {s3 (m 1c2) + s2 (m 1k 2 + c1c2) + s (c1k 2 + c2k 1) + k 1k 2 } /D e n  (2.35)

s4 (m 1m 2) + s3 (m 1c2 + m 1c1 + m 2c^  

+ s2 (m 2k 1 + m 1k 1 + m 1k 2 + c1c2)

+s (c 2k 1 + c1k 2) + (k 1k 2)

/D e n (2.36)

W here D en is:

D en = s

s4 (m 1m 2m 3) + s3 (m 2m 3c1 + m 1m 3c1 + m 1m 2c2 + m 1m 3c2)

+ s2 (m 1m 3k 1 + m 1m 3k 2 + m 1m 2k 2 + m 2c1c2 + m 3c1c2 + m 1c1c2 

+ k 1m 2m 3)

+ s (m 3c1k 2 + m 2c2k 1 + m 1c2k 1 + m 1c1k 2 + m 3c2k 1 + m 2c1k 2)

+ (m 1k 1k 2 + m 2k 1k 2 + m 3k 1k 2)

(2.37)

Note that all the transfer functions have the same denom inator, Den, called the 
ch a rac te ris tic  equation .

To simplify the system for hand calculations, take:

(2.38)

k 1 = k 2 = k

z11 = —  = ( 2s4 + 3mcs3 + ( 2 + 3mk ) 2 + 2cks + k 2 j /D e n i  (2.39) 
F1

z12 = —  = (m cs3 + f c 2 + m k ) 2 + 2cks + k 2 )/D en1 (2.40)

z13 = —  = ( c s  + 2cks + k  i / D e ^ (2.41)

z3
F2

z3
F

2

3
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z oo —  —

z 23 tj23 F3

z„  — —  —

z32 tj32 F2

z „  — —  —

m cs3 + ( 2 + m k ) 2 + (2 c k )s  + k 2 ) /D e n i  (2.42)

m  s + 2mcs + (2 m k  + c )s + 2cks + k  ) /D e n i (2.43)

mcs + (c  + m k Is + 2cks + k  I /D e n i (2.44)

c2s2 + 2cks + k 2 ) /D e n i (2.45)

mcs + (c  + m k )s + 2cks + k  I /D e n i (2.46)

m 2s4 + 3mcs3 + ( c 2 + 3 m k )s2 + 2cks + k 2 ) /D e n i (2.47)

Where:

D en i — {m3s4 + 4m 2cs3 + (4 m 2k  + 3m c2 ) 2 + 6mcks + 3m k2) s2 (2.48)

To enable hand calculations o f roots, simplify another level by making 
dam ping equal to zero:

1 — (m 2s4 + 3mks2 + k 2 )/D en 2
Fi

(2.49)

— (m ks2 + k 2 ) /D e n 2
F2

(2.50)

— k 2 /D en 2 (2.51)

— (m ks2 + k 2 ) /D e n 2  
Fi 1 1

(2.52)
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—  — ( m s  + 2m ks + k  ) /D e n 2  
F2

(2.53)

- — (m ks + k  )/D en2 (2.54)

F1
(2.55)

■ — (m ks + k  )/D en2 (2.56)

—  — ( m s  + 3mks + k  )/D en 2
F3 1 1

D en2 — s2 (m 3s4 + 4m 2k s2 + 3m k2)

2.4.3 T ra n s fe r  F u n c tio n  M a trix  fo r  U ndam ped  M odel

(2.57)

(2.58)

A  more convenient m ethod o f arranging and keeping track o f the various 
transfer functions is to use a matrix form  for the transfer function, called the 
tra n s fe r  fu n ctio n  m atrix :

11 12 13
(2.59)

Where:

z 1 z 11 z i2 z i3 '  F i'

z 2 = z 21 z 22 z23 F2 (2.60)

_ z3 _ _ z3i z32 z33 _ _ F3 _

z 2
F3

z3
F2

The transfer function m atrix can then be written for the undam ped case as 
follows, where each term  o f the num erator m atrix is divided by the com mon 
denominator:
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(m 2s4 + 3mks2 + k 2) (m ks2 + k 2) 

(m ks2 + k 2) (m 2s4 + 2m ks2 + k 2) 

k 2 (m ks2 + k 2)

k 2

„2 , 1,2ч(mks + k  ) 

(m 2s4 + 3m ks2 + k 2)

s (m  s + 4m  ks + 3mk

2.4.4 F o u r  D istinct T ra n s fe r  F unctions

Fi

(2.61)

W e will be dealing with only Single Input Single Output (SISO) systems until 
Chapter 19, when a M ulti Input M ulti Output (M IM O) system is examined. 
This means that we will be applying only a single force to the system at any 
time, F1; F2 or F3 ,and will only be taking the displacem ent o f a single degree 

o f freedom, z1, z 2 or z3 .

Because there are three inputs and three outputs, there are nine possible SISO 
transfer functions to investigate. However, because o f the symmetry of the 
system (zjj = zJi) there are only four distinct transfer functions. Expanding the 
denom inator into factors and simplifying:

zi _  m 2s4 + 3m ks2 + k 2

F1 s2 (m 3s4 + 4m 2k s2 + 3m k2) ( . )

z 2 (m ks2 + k 2)

F1 s2 (m 3s4 + 4m 2k s2 + 3m k2)

_  k (m s2 + k) 

s2(m s2 + k )(m 2s2 + 3km)

k

s2(m 2s2 + 3km) 

k 2

F1 s2 (m 3s4 + 4m 2ks2 + 3m k2

(note cancelling of pole/zero) (2.63)

(2.64)
z3
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z 2 m 2s4 + 2m ks2 + k 2 

F2 s2 (m 3s4 + 4m 2k s2 + 3m k2)
(2.65)

2.4.5 Poles

The poles, eigenvalues, or reso n an t frequencies, are the roots o f the 
characteristic equation. Poles show the frequencies where the system will 
amplify inputs, and are a basic characteristic o f the system. The poles are not 
a function o f w hich transfer function is used since all the transfer functions for 
a given system have the same characteristic equation, as shown by the 
com mon denom inator o f (2.61).

T he poles fo r  a  system  depend  only on th e  d is trib u tio n  o f m ass, stiffness, 
an d  dam ping  th ro u g h o u t th e  system , n o t on  w h ere  th e  forces a re  app lied  
o r  w h ere  d isp lacem ents a re  m easured .

Setting the characteristic equation equal to zero and solving for the roots 
(poles):

(2.66)

s2 _  0 is a double root at the origin s12 _  0 (2.67)

Now  taking the term  in parentheses and setting equal to zero:

(2.68)

Solving as a quadratic in s2:

- 4 m 2k ± (1 6 m 4k 2 -  12m4k 2 )2
s2

2m 3

- 4 m 2k  ± ( 4 m 4k 2 ) 2

2m

- 4 m 2k  ± 2m 2k  - 2 m 2k

2m ; m
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- 2 k  -6 k  

2m  ’ 2m

- k  -3 k
(2.69)

m  m

(2.70)

s5,6 = ± j ± j  1.732 (2.71)

Because there is no damping, the poles all fall on the s-plane imaginary axis.

2.4.6 Z eros

The zeros of each SISO transfer function are defined by the roots o f its 
numerator. Zeros show the frequencies where the system will attenuate inputs. 
Unlike the poles, which are a characteristic o f the system and are the same for 
every transfer function, zeros can be different for every transfer function and 
some transfer functions may have no zeros. Chapter 4 will discuss one 
physical interpretation o f zeros, showing how to calculate the num ber o f zeros 
for various transfer functions for a series-connected lumped mass system.

Calculate the z1/F 1 zeros:

Taking the square root o f the two values above gives two pair o f com plex 
conjugate roots:

m 2s4 + 3m ks2 + k 2 = 0 (2.72)

-3 m k  ± (9m 2k 2 -  4m 2k 2) 2
s2

2m 2

3mk ±V 5m k - 3 k  ± \ /5 k  

2m 2 2m2m

(̂ — J (-0 .3 8 2 0 ), |̂ — j (-2 .6 1 8 ) (2.73)
m  Jl 2v j
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s12 = ± j0 .6 1 8 J —  = ± j  0.618 
m

m
sM = ±  j 1 . 6 1 8 j -  = ±  j  1 .618

Calculate the z2 /Fj zeros:

m ks2 + k 2 = 0

2 = z k l = z k
m k m

s1,2= ± jJ — = ± jm

Calculate the z3/Fj zeros:

k 2 = 0 there are no zeros.

Calculate the z 2 /F 2 zeros:

m 2s4 + 2m ks2 + k 2 = 0

-2 m k  ± ( 4 m 2k 2 -  4m 2k 2^
s2 = --------------------2--------------2m 2

= z k  ± 0
2 m 2 m

ms1,2 = ± j —  = ± j

s3,4 = ± j

As with the poles, since there is no dam ping in the system, 
also on the imaginary axis.

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83) 

all the zeros are
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2.4.7 S um m ariz ing  Poles an d  Z eros, M a trix  F o rm a t

(±0.62, ±1.62) ± j  none

± j  (± j, ± j) ± j 
none ± j (±0.62, ±1.62)

none

(2.84)
(±0j)(±1, ±1.732)j

The 3x3 m atrix o f zero values for the 3x3 transfer function matrix is in the 
num erator of (2.82) and the pole values are in the denominator.

2.5 M A T L A B  C ode tdofpz3x3.m  -  P lo t Poles an d  Z eros

2.5.1 C ode D escrip tion

The program  listing below  uses the “num /den” form  o f the transfer function 
and calculates and plots all nine pole/zero com binations for the nine different 
transfer functions. It prom pts for values o f the two dam pers, c1 and c2, where 
the default values (hitting the “enter” key) are set to zero to m atch the hand- 
calculated values in (2.82). The “transfer function” form s o f the transfer 
functions are then converted to “zpk - zero/pole/gain” form  to enable graphical 
construction o f frequency response in the next chapter.

The values o f the poles and zeros as well as the “zpk” form s of the transfer 
functions are listed in the M ATLAB command window.

N ote that in most M ATLAB code, the critical definitions and calculations take 
only a few com mands while plotting and annotating the plots take the bulk of 
the space.

2.5.2 C ode L isting

% tdofpz3x3.m plotting poles/zeros of tdof model, all 9 plots

clf;

clear all;

%
%
%

using MATLAB's pzmap function with the "tf" form using num/den 
to define the numerator and denominator terms of the different 
transfer functionx

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
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m3 = 1; 
k1 = 1; 
k2 = 1;

% prompt for c1 and c2 values, set to zero to match closed form solution

c1 = input('enter value for damper c1, default is zero, ... ');

if isempty(c1)
c 1 = 0;

end

c2 = input('enter value for damper c2, default is zero, ... ');

if isempty(c2)
c2 = 0;

end

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ... 
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ... 
m1*c1*c2 + k1*m2*m3) ...

(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + ... 
m3*c2*k1 + m2*c1*k2) ...
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 +... 
m3*k1 + m3*k2) (c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

sysz 11 = tf(z 11num,den)

sysz21 = tf(z21num,den)

sysz31 = tf(z31num,den)

sysz22 = tf(z22num,den)

% use the "zpk" function to convert from transfer function to zero/pole/gain form

zpkz11 = zpk(sysz11)

zpkz21 = zpk(sysz21)

zpkz31 = zpk(sysz31)

© 2001 by Chapman & Hall/CRC



zpkz22 = zpk(sysz22)

% use the "pzmap" function to map the poles and zeros of each transfer function

[p11,z11] = pzmap(sysz11);

[p21,z21] = pzmap(sysz21);

[p31,z31] = pzmap(sysz31);

[p22,z22] = pzmap(sysz22);

p n

z11

z21

z31

z22

% plot z11 for later use

subplot( 1,1,1)
plot(real(p11),imag(p11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

% plot all 9 plots on a 3x3 grid

subplot(3,3,1)
plot(real(p 11 ),imag(p 11),'k*')
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,2)
plot(real(p21 ),imag(p21 ),'k*')
hold on
plot(real(z21), imag(z21), 'ko')
title('Poles and Zeros of z12')
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ylabel('Imag') 
axis([-2 2 -2 2]) 
axis('square') 
grid
hold off 

subplot(3,3,3)
plot(real(p31),imag(p31),'k*') 
hold on
plot(real(z31),imag(z31),'ko')
title('Poles and Zeros of z13')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,4)
plot(real(p21),imag(p21),'k*') 
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z21')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off 

subplot(3,3,5)
plot(real(p22),imag(p22),'k*') 
hold on
plot(real(z22),imag(z22),'ko')
title('Poles and Zeros of z22')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,6)
plot(real(p21),imag(p21),'k*') 
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z23')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

subplot(3,3,7)
plot(real(p31),imag(p31),'k*') 
hold on
plot(real(z31),imag(z31),'ko') 
title('Poles and Zeros of z31')
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xlabel('Real') 
ylabel('Imag') 
axis([-2 2 -2 2]) 
axis('square') 
grid
hold off 

subplot(3,3,8)
plot(real(p21),imag(p21),'k*') 
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z32')
xlabel('Real')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off 

subplot(3,3,9)
plot(real(p11),imag(p11),'k*') 
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z33')
xlabel('Real')
ylabel('Imag')
axis([-2 2 -2 2])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

% check for real axis values to set plot scale

z11_realmax = max(abs(real(z11))); 
z21_realmax = max(abs(real(z21))); 
z31_realmax = max(abs(real(z31))); 
z22_realmax = max(abs(real(z22)));

maxplot = max([z11_realmax z21_realmax z31_realmax z22_realmax]); 

if maxplot > 2

maxplot = ceil(maxplot);

else

maxplot = 2.0;

end

z11_realmax = max(abs(real(z11))); 
subplot( 1,1,1)
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plot(real(p11),imag(p11),'k*') 
hold on
plot(real(z11),imag(z11),'ko') 
title('Poles and Zeros of z11, z33') 
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p21),imag(p21),'k*') 
hold on
plot(real(z21),imag(z21),'ko')
title('Poles and Zeros of z21, z12, z23, z32')
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p31),imag(p31),'k*') 
hold on
plot(real(z31),imag(z31),'ko') 
title('Poles and Zeros of z31, z13') 
xlabel('Real') 
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off

disp('execution paused to display figure, "enter" to continue'); pause

plot(real(p22),imag(p22),'k*') 
hold on
plot(real(z22),imag(z22),'ko') 
title('Poles and Zeros of z22') 
ylabel('Imag')
axis([-maxplot maxplot -maxplot maxplot])
axis('square')
grid
hold off
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2.5.3 C ode O u tp u t -  P o le/Z ero  P lo ts in  C om plex P lane

2.5.3.1 U n d am p ed  M odel -  P o le/Z ero  P lots

The pole/zero plot and pole/zero calculated values for c1 = c2 = 0 are shown 
below. Poles are plotted as asterisks and zeros as circles.
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Figure 2.8: Pole/zero plots for nine transfer functions. Poles are indicated by asterisks and
zeros by circles.

The first thing to notice about the pole/zero plots is that they all have the same 
poles. The rigid body m ode (resonant frequency = 0 hz) is evident by the pair 
o f zeros at the origin, ±  0j . The zeros o f each particular transfer function are 

seen to be dependent upon which transfer function is taken. Note that with 
zero damping, all the poles and zeros are on the im aginary axis, indicating that 
the real portions o f their com plex values are zero and that there is no damping.
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In the next chapter we will discuss frequency responses o f transfer functions 
and will link the pole/zero locations in the com plex plane to 
am plification/attenuation regions o f the frequency response plots.

The poles and zeros from  the M ATLAB output are listed below:

poles =

0
0
0 + 1.7321i 
0 - 1.7321i 
0 + 1.0000i 
0 - 1.0000i

zeros_z11 =

0 + 1.6180i
0 - 1.6180i
0 + 0.6180i
0 - 0.6180i

zeros_z21 =

0 + 1.0000i 
0 - 1.0000i

zeros_z31 =

Empty matrix: 0-by-1

zeros_z22 =

-0.0000 + 1.0000i 
-0.0000 - 1.0000i 
0.0000 + 1.0000i 
0.0000 - 1.0000i

Table 2.3: Poles and zeros of tdof transfer functions, undamped.

Repeating the matrix listing o f pole/zero locations from  previous analysis:

(±0.62, ±1.62) ±  j  none

± j (± j, ±  j) ± j 
none ± j (±0.62, ±1.62)

(±0j)(±1, ±1.732)j
(2.85)
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Note that MATLAB calculates an “Empty matrix 0 by 1” for the zeros of z31, 
which matches our calculations which show “none.” Also note that several of 
the plots, z12, z21, z22, z23 and z32, have zeros and poles overlaying each 
other, where the pole cancels the effect of the zero. We will discuss this 
cancellation further in the next chapter.

2.5.3.2 D am ped M odel -  Pole/Zero Plots

If damping is not set to zero for c1 and/or c2, the poles (with the exception of 
the two poles at the origin) and zeros will move from the imaginary axis to the 
left hand side of the complex plane, with the real parts of the poles and zeros 
having negative values. The pole/zero plot and MATLAB output listing 
below are for values of c1 = c2 = 0.1, arbitrarily chosen to illustrate the 
“damped” case.
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Figure 2.9: Pole/zero plots for nine transfer functions for c l  = c2 = 0.1. Poles are indicated  
by asterisks and zeros by circles. Negative real axis zeros not shown because o f  plot

scaling.
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The limited scale for the nine plots above do not show the real axis zeros, see 
the figures below for the entire plot. The only poles/zeros that are on the 
imaginary axis are the two poles at zero, the rigid body mode -  which will be 
described in detail in Chapter 3.
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Figure 2.10: Expanded scale pole/zero plots for z l l ,  z33 transfer functions — no real axis
zeros.

1 0 r

8 -

Poles and Zeros of z21, z12, z23, z32

Figure 2.11: Expanded scale pole/zero plots for z21, z12, z23 and z32 transfer functions —
one real axis zero at -10.
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Figure 2.12: Expanded scale pole/zero plots for z31 and z13 transfer functions — two real
axis zeros at -10.
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Figure 2.13: Expanded scale pole/zero plots for z31 and z13 transfer functions — no real
axis zeros.

The MATLAB calculated values for the poles and zeros for the damped case 
are below:
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p11 =

0
0

-0.1500 + 1.7255i 
-0.1500 - 1.7255i 
-0.0500 + 0.9987i 
-0.0500 - 0.9987i

z11 =

-0.1309 + 1.6127i 
-0.1309 - 1.6127i 
-0.0191 + 0.6177i 
-0.0191 - 0.6177i

z21 =

-10.0000
-0.0500 + 0.9987i 
-0.0500 - 0.9987i

z31 =

-10.0000 + 0.0000i 
-10.0000 - 0.0000i

z22 =

-0.0500 + 0.9987i 
-0.0500 - 0.9987i 
-0.0500 + 0.9987i 

-0.0500 - 0.9987i

Table 2.4: Poles and zeros o f tdof transfer functions, damped.

Several observations can be made about the poles and zeros above. First, all 
of the poles with the exception of the two rigid body poles p11 = 0 are to the 
left of the imaginary axis, indicating that the system now has damping. Note 
that there are several new zeros. The z21 transfer function now has a real zero 
at -10.0 in addition to the two complex zeros. The z31 transfer function has 
two zeros now at -10 , whereas for the no damping case it had no zeros. These 
extra zeros do not show up on Figure 2.9 because of plot axis scaling but with 
the real axis expanded in Figures 2.10 to 2.13 they appear. The reason for 
these “additional” zeros can be seen if we look at the z21 and z31 transfer 
functions, repeated from (2.31) and (2.34):
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■F = {s2 (c1c2) + s(c1k 2 + c2k 1) + k 1k 2}/D en  (2.87)

With values for c1 and c2 not equal to zero, the z21 transfer function is third 
degree, meaning that it should have three roots. With damping equal to zero, 
only two complex zeros are calculated by MATLAB and by hand. The third 
root is located at - ^  . As damping values for c1 and c2 are increased the root 
at -ro  moves to the right, towards the origin.

The z31 transfer function has no zeros with zero damping, but is second 
degree and with infinitely small damping values has two roots at - ^  . As the 
values of c1 and c2 increase, the two zeros at - ^  start moving toward the 
origin.

2.5.3.3 Root Locus, tdofpz3x3_rlocus.m

In the last two sections we have discussed pole/zero plots for undamped and 
damped models. For the damped model we chose values of 0.1 for c1 and c2. 
It would be nice to have a systematic method to display poles and zeros for a 
range of damping values. There is a MATLAB Control Toolbox function 
“rlocus” which plots the root locus for an open-loop SISO system. We could 
use this function if the damping values could be broken out of the system and 
be treated as a feedback gain. Unfortunately for our tdof system this is not 
possible, but we can still plot a locus by using a for-loop.

The code listed below, tdofpz3x3_rlocus.m , is taken from the initial section 
of tdofpz3x3.m. A for-loop cycles through a vector of damping values, 
calculating and plotting the poles and zeroes for each damping value.

%
%

echo off
tdofpz3x3_rlocus.m plotting locus of poles/zeros of z11 for tdof 
model for range of damping values.

clf;

clear all;

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1; 
m3 = 1;
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k1 = 1; 
k2 = 1;

% define vector of damping values for c1 and c2

cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16]; 

for cnt = 1:length(cvec) 

c1 = cvec(cnt); 

c2 = cvec(cnt);

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ... 
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ... 
m1*c1*c2 + k1*m2*m3) ...

(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + ... 
m3*c2*k1 + m2*c1*k2) ...

(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) ...
(c1*c2 + m2*k2 + m3*k1 + m3*k2) .(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% use the "tf" function to convert to define "transfer function" systems

sysz 11 = tf(z 11num,den);

sysz21 = tf(z21num,den);

sysz31 = tf(z31num,den);

sysz22 = tf(z22num,den);

% use the "pzmap" function to map the poles and zeros of each transfer function

[p11,z11] = pzmap(sysz11);

[p21,z21] = pzmap(sysz21);

[p31,z31] = pzmap(sysz31);

[p22,z22] = pzmap(sysz22);

% plot poles and zeros of z11

subplot( 1,1,1)
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plot(real(p 11 ),imag(p 11 ),'k*') 
hold on
plot(real(z11),imag(z11),'ko')
title('Poles and Zeros of z11 for range of damping values c1 and c2')
xlabel('Real')
ylabel('Imag')
axis([-3 1 -2 2])
axis('square')
grid on

end

hold off

The root locus plot below is for the following values of damping: 

cvec = [0 .2 .4 .6 .8 1.0 1.1 1.05 1.1 1.15 1.16];

Poles and Zeros of z11 for range of damping values c l and c2
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Figure 2.14: Pole zero plot for z11 transfer function.

The plot starts out with damping values of zero for c1 and c2. The poles and 
zeros for zero damping are located on the imaginary axis. The poles are 
located at 0, 0, ±1j , ±1.732j . The zeros are located at ±0.62j and ±1.62j . 
As damping is increased from zero, the poles and zeros (except the two poles 
at the origin) start moving to the left, away from the imaginary axis. The poles 
and zeros move at different rates as damping is increased. The poles at ±1j

0
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and zeros at ±0.62j move to the left less than the poles at ±1.732j and the 

zeros at ±1.62j. In fact, the two poles at ±1.732j move so much that at 
damping values of 1.16 the poles intercept the real axis and split. One moves 
to the left and the other to the right along the real axis.

Plotting pole and zero locations as a function of system parameters was 
introduced in 1949 (Evans 1949), as the Evans root locus technique. The 
hand plotting originally used has been largely replaced with computer plotting 
techniques as shown above or by using the “rlocus” function. However, 
because the ability to hand sketch root loci is such a powerful tool, it is still 
taught in beginning control theory courses (Franklin 1994).

2.5.3.4 U ndam ped and Dam ped M odel -  t f  and zpk  Form s

This section is included to start familiarizing the reader with the various forms 
of transfer functions available with MATLAB and to prepare for issues in the 
next chapter.

Table 2.6 shows the transfer function form of the four distinct transfer 
functions for the tdof model for the undamped (c1 = c2 = 0) and damped 
(c1 = c2 = 0.1) cases run earlier. The numerator and denominator are both 
arranged in polynomial form. Table 2.7 shows the zpk form, where the 
numerator and denominator are both arranged as products of the zeros and 
poles with a gain term multiplying the numerator.

Note that the denominators of all the undamped transfer functions are the 
same, as are the denominators of all the damped transfer functions. However, 
the numerators are all different because of the different number of poles and 
zeros for each transfer function. For instance the z31 undamped transfer 
function has no zeros, only a gain term of 1.0, while the z11 undamped 
transfer function has two sets of complex zeros.

In going from the undamped to damped case, we showed that extra zeros 
appeared in the z21 and z31 transfer functions. It is easier to see where the 
extra zeros originate using the zpk form than using the tf  form. Comparing the 
undamped and damped numerators of the z31 zpk transfer function form 
shows the extra (s + 10)2 term, from which the two real axis zeros arise. We 
will use the zpk form of the transfer functions in the next chapter to calculate 
frequency response at a specific frequency.
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z11 Undamped Transfer function: z11 Damped Transfer function:

sA4 + 3 sA2 + 1 sA4 + 0.3 sA3 + 3.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z21 Undamped Transfer function: z21 Damped Transfer function:

sA2 + 1 0.1 sA3 + 1.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z31 Undamped Transfer function: z31 Damped Transfer function:

1 0.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

z22 Undamped Transfer function: z22 Damped Transfer function:

sA4 + 2 sA2 + 1 sA4 + 0.2 sA3 + 2.01 sA2 + 0.2 s + 1

sA6 + 4 sA4 + 3 sA2 sA6 + 0.4 sA5 + 4.03 sA4 + 0.6 sA3 + 3 sA2

Table 2.5: Transfer function (tf) form  o f undamped and damped tdof transfer functions.

z11 Undamped Zero/pole/gain: z11 Damped Zero/pole/gain:

(sA2 + 0.382) (sA2 + 2.618) (sA2 + 0.0382s + 0.382) (sA2 + 0.2618s + 2.618)

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z21 Undamped Zero/pole/gain: z21 Damped Zero/pole/gain:

(sA2 + 1) 0.1 (s+10) (sA2 + 0.1s + 1)

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z31 Undamped Zero/pole/gain: z31 Damped Zero/pole/gain:

1 0.01 (s+10)A2

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

z22 Undamped Zero/pole/gain: z22 Damped Zero/pole/gain:

(sA2 + 1)A2 (sA2 + 0.1s + 1)A2

sA2 (sA2 + 1) (sA2 + 3) sA2 (sA2 + 0.1s + 1) (sA2 + 0.3s + 3)

Table 2.6: Zero/Pole/Gain (zpk) for undamped and damped tdof transfer functions.
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Problem s

Figure P2.1: four dof system.

P2.1 Derive the global stiffness and mass matrices for the four dof system in 
Figure P2.1.

Figure P2.2: two d of problem.

P2.2 Derive the equations of motion in matrix form for the two dof model in 
Figure P2.2. Check for signs of diagonal terms and symmetry of off-diagonal 
terms.

P2.3 Solve for the four transfer functions for the two dof problem and define 
the 2x2 transfer function matrix. Are the denominators of all four transfer 
functions the same? How many unique transfer functions are there for this 
problem?

P2.4 Set m 1 = m 2 = m = 1, k 1 = k 2 = k = 1 and c1 = c2 = 0 and solve for the 
eigenvalues for the system. Solve for the zeros of the system and use the form
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shown in (2.84) to summarize the poles and zeros. Hand sketch the poles and 
zeros in the s-plane.

P2.5 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1. Modify the 
tdofpz3x3.m file to plot the poles and zeros of the undamped two dof system. 
Identify the poles and zeros in the MATLAB output listing and compare with 
the hand-calculated values.

P2.6 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, add damping values 

of c1 = c2 = 0.1 and plot the poles and zeros in the s-plane. List the poles and 
zeros from MATLAB and correlate the listed values with the plots. Are there 
any real axis zeros? How do the real axis zero(s) change with different values 
of c1 and c2 , where c1 = c2 .
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CHAPTER 3

FREQUENCY RESPONSE ANALYSIS

In Chapter 2 we calculated the transfer functions and identified the poles and 
zeros for the undamped system, which are repeated as (3.1) and (3.2) below, 
respectively. The next step in understanding the system is to plot the 
frequency domain behavior of each transfer function. Frequency domain 
behavior means identifying the magnitude and phase characteristics of each 
transfer function, showing how they change as the frequency of the forcing 
function is varied over a frequency range. Each transfer function is evaluated 
in the frequency domain by evaluating it at s = j ю , where ю is the frequency 
of the forcing function, radians/sec.

3.1 Introduction

(m2s4 + 3mks2 + k 2) (mks2 + k 2) 

(mks2 + k 2) (m2s4 + 2mks2 + k 2) 
k 2 (mks2 + k 2)

k 2

„2 , 1,2ч(mks + k ) 

(m2s4 + 3mks2 + k 2)

s (m s + 4m ks + 3mk

(3.1)

(±0.62, ±1.62) ± j

± j (± j, ± j) 
none ±j

none 

± j
(±0.62, ±1.62)

(±0j)(±1, ±1.732)j
(3.2)

Instead of going directly into MATLAB to calculate and plot the frequency 
responses, we will first sketch them by hand, using information about the low 
and high frequency asymptotes and the locations of the poles and zeros. We 
will discuss how to find the gain and phase of a transfer function at a given 
frequency graphically using the locations of the poles and zeros in the 
complex plane and then use MATLAB to plot. Finally, mode shapes are 
defined, then calculated using transfer function information and plotted.
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3.2 Low and High Frequency Asymptotic Behavior

It is always good to check either a system’s rigid body or spring-like low 
frequency nature by hand. For this tdof system at very low frequencies there 
are no spring connections to ground so the system moves as a rigid body, no 
matter where the force is applied, to F1, F2, or F3.

Figure 3.1: Rigid body mode o f vibration.

The rigid body equation of motion (where z is the motion of all three masses 
together) is:

(3m )Z = F

z = _ ± _  (3.3a,b)

F 3ms2

Now we can solve for the frequency domain behavior of the system by 
substituting j ю for s.

At a radian frequency of 0.1 rad/sec, a frequency taken to be an order of 
magnitude less than the lowest resonant frequency of 1 rad/sec, the transfer 
function is:

z
F 3m 0 ю)2 3m [ j (0.1)]2

-1 -100  -33.3
3m (.01) 3m

= -33.3
m

(3.4)
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Converting from vector (real/imaginary) form to magnitude/phase (polar) form 
and using the definition of db as follows:

db = 20*log10(z /F ) (3.5)

= 33.3, or 30.45db
(3.6a,b)

Z — = -180° 
F

These results show that at a frequency of 0.1 rad/sec, the magnitude of the 
motion of the masses is 33.3*F and the motion is -180° out of phase with the 
force input.

We will now look at each individual transfer function, checking asymptotic 
behavior at both low and high frequencies. To do this, the four transfer 
functions are divided by the mass terms to give coefficients that are 
proportional to ю2 = k /m  :

Starting with the z1 /Fj transfer function:

z1 = m 2s4 + 3mks2 + k 2
F^= s2(m3s4 + 4m2ks2 + 3mk2) ( . )

Dividing numerator and denominator by m 3 allows redefining the equation in 
terms of ran :

Substituting s = jffl and looking at low and high frequency behaviors:
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(ю4+ з ю; (- ю2 ) + ю ) 

m (-ю 2)(ю 4 - 4ю2ю2 + 3ю4)
Юп

- т ю 2 Юю4'

-1
З тю 2 (3.9)

ю<< ю„

z

At low frequencies, the rigid body motion of z1 is falling off at a ( -1 / ю2) 

rate, and with a gain of (1 /3m ). A rate of ( -1 /  ю2) means that every decade 
of frequency shift, the amplitude drops by a factor of 100. Since a factor of 
100 is -4 0 d b , we should see the low frequency amplitude change 
40db/decade.

-ю -1

mo>2 (ю4) mo>2 (3.10)

ю>> ю„

At high frequencies, the rigid body motion of z1 is again falling at a ( -1 / ю2) 

rate, but the gain is only (1/m ) instead of (1 /3m ). This is because at high 

frequencies z1 moves more as a result of F1; the other two masses do not want 

to move, as will be seen from the high frequency asymptotes of the z2 /F1 and 

z3/F1 transfer functions.

z

Checking

F1

mks2

m m ( s 2 + ю4

s21 s4 + 4ks2 + 3k2 ^ s2m (s4 + 4o>4s2 + 3ю4) (3.11)
m m

z 2

2 2 4
z^ -ю „ю + юп

F1 -mffl2 (ю4 -  4ю2ю2 + 3ю4) 

ю<< юп
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юп

W  (3ю4'

-1
Зmю2

(3.12)

F1

2 2 -ю 2 ю2 2 2  -ю 2 ( ю2

-m ro2 (ю4 -  4ю2 ю2 + 3ю4)

ю„
mю4 o>4m 2 (3.13)

ю>> ю„

At low frequencies, z2 looks exactly like z1. But at high frequencies, z2 is 
dropping off at a (1/ ю4) rate, or 80db/decade, with a gain of (k /m 2) .

Checking -̂ T now:

F1
m ю„

2\ 4 4ks2 3k21 ms2 (s4 + 4o>2s2 + 3ю4) (3.14)
s2 1 s4 + ------ + — v n n'

m m

z

2k
z3

F1

ю„ ю„ -1

-m o >2 (ю4 - 4ю2ю2 + 3ю4) -m ro2 ( ю 4 ) Зmю2 (3.15)

ю<< ю„

F1

ю„ ю„

-m ro2 (ю4 -m o >6 { m3 I ю6 (3.16)

ю>> ю„

At low frequencies, z3 looks exactly like z 1 and z2, but at high frequencies z3 is 
dropping at a (1 /ю6) rate, or 120db/decade, with a gain of ( - k 2 /m 3) .

Checking —  
F2

z

z
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m 2s4 2mks2 k 2
~mr + “ m ^ + m 3

s +-
4m ks 3mk

m m

(s4 + 2^ s 2 + ^ ) 

s 2 (s4 + 4 ю У  + 3ш:) (3.17)

z 2
F

( 4 + ( (- ю2 ) + юП) юП

(со4 - 4юПю2 + 3ю4) -m m 2 (3юП-m m '

-1
Зтсо2 (3.18)

ю<< ю„

z

ю -1

-m m 2 (ю4) mm2 (3.19)

m>> mn

z 2
F2

At low frequencies, z2 /F2 looks exactly like z1 /F1, z2 /F1, and z3 /F1. But at 

high frequencies z2/F2 is dropping at a ( -1 /  m2) rate and has a higher gain of 

(1/m ) instead of (1/3m ). Thus, the low and high frequency asymptotes look 

exactly like z1 / F1.

Summarizing the low and high frequency asymptotes, and solving for the gains 
and phases at m = 0.1 rad/sec and m = 10 rad/sec.

-1 -1 -1 -100

F

m = 0.1

3 mm

rad
sec

3m (0.1)2 3(01) 3
= -33  = 30.46db, 180°

(3.20)

z

-1

F

m = 10

mm

rad
sec

-1

( 0 )

-1
100

= -.01 = -4 0  db, 180o
(3.21)

z
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F1

-1
3mm2

m = 0.1

= 30.46db, 180o
(3.22)

F1

m = 10

m2 m4 (10)
= 0.0001 = -80db , 0o

(3.23)

F1

-1
3mm2

= 30.46db, 180o

m = 0.1

F1

- k 2 1 -1
m3 m6 1e6

= -1 e-6 = -120db, 180o

m = 10

-1
3mm2

= 30.46db, 180o

m = 0.1

-1
mm

-1
= -.01  = -40db,180o

(3.24)

(3.25)

(3.26)

(3.27)

m = 10

3.3 H and Sketching Frequency Responses

Knowing the pole and zero locations and the asymptotes, the complete 
frequency response can be sketched by hand, as shown in Figure 3.2. We will 
not worry about the exact magnitudes at the poles and zeros, but will use the 
hand sketch to get an idea of the overall shape and characteristics of the 
frequency response. Start by drawing the low and high frequency asymptotes, 
straight lines with appropriate magnitudes and slopes starting at the 0.1 and 10 
rad/sec frequencies. Next, locate the poles and zeros at some distance above 
and below the asymptote line at the appropriate frequency and start 
“connecting the dots.” Start at the low frequency asymptote and follow it to 
the first zero or pole encountered. Keep plotting, moving to the next higher 
frequency pole or zero until all the poles/zeros are passed and move onto the 
high frequency asymptote. Note that for z21 the pole and zero at 1 rad/sec 
cancel as do one of the zeros and the pole for z22. Note that z31 has no zeros,

z 2

z 2

z3

z3

z 2

z 2

© 2001 by Chapman & Hall/CRC



only poles. Compare these plots to the MATLAB generated plots in Figure 
3.5. Chapter 4 will give a physical interpretation of the zeros.

xfer function form, Bode z11, z33 db magnitude xfer function form, Bode z21, z12, z23, z32 db magnitude

xfer function form, Bode z31, z13 db mapitude xfer faction form, Bode z22 db magnitude

Figure 3.2: Hand sketch o f frequency responses using asymptotes and pole/zero locations.

3.4 In terp re ting  Frequency Response G raphically in Complex Plane

There are many ways to plot frequency responses using MATLAB, as shown 
in the MATLAB code tdofxfer.m  in the next section. One method of 
visualizing graphically what happens in calculating a frequency response is 
shown below.

In Chapter 2 we defined the four unique transfer functions in both “transfer 
function” and “zpk” forms. We will use the zpk form to graphically compute 
the frequency response.

Start by defining a specific frequency for which to calculate the magnitude and 
phase. Then locate that frequency on the positive imaginary axis.
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The gain and phase of the numerator term of a transfer function is the vector 
product of distances from all the zeros to the frequency of interest times the dc 
gain. Consider an undamped model, where all the poles and zeros lie on the 
imaginary axis. If the frequency happens to lie on a zero, that distance is zero, 
which multiplies all the other zero distances, resulting in a frequency response 
magnitude of zero. For a damped model the distance will not be zero, as the 
zeros are to the left of the imaginary axis, but the distance will be small, giving 
a small multiplier at that frequency and attenuating the response.

The gain and phase of the denominator term is the product of distances from 
all the poles to the frequency of interest. For an undamped model, if the 
frequency happens to lie on a pole, that distance is zero, which multiplies all 
the other pole distances. When the numerator is divided by the zero 
denominator value, the response goes to ^  . For a damped model the distance 
will not be zero as the poles are to the left of the imaginary axis; the distance 
will be small, however, giving a small multiplier at that frequency and 
amplifying the response.

Once the numerator and denominator are known, a vector division will give 
the transfer function.

The pole/zero plot, pole/zero values and zpk form for the z11 transfer function 
are shown below. We will calculate the frequency response for 0.25 rad/sec, 
where the frequency is indicated in Figure 3.3.

Poles and Zeros o f z11

Figure 3.3: Interpreting the frequency response graphically for a frequency o f 0.25 rad/sec
(tdofpz3x3.m).
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0
0
0 + 1.7321i 
0 - 1.7321i 
0 + 1.0000i 
0 - 1.0000i

zeros_z11 =

0 + 1.6180i
0 - 1.6180i
0 + 0.6180i
0 - 0.6180i

poles =

Table 3.1: Poles and zeros o f  z11 transfer function, M ATLAB listing from  tdofpz3x3.m.

z11 Undamped Zero/pole/gain: 

(sA2 + 0.382) (sA2 + 2.618) 

sA2 (sA2 + 1) (sA2 + 3)

Table 3.2: zpk form  o f z11 transfer function, M ATLAB listing from tdofpz3x3.m.

Taking the expression for z11 from the zpk MATLAB listing in Table 3.2, 
expand the terms to show explicitly the pole and zero values from Table 3.1, 
substituting s = 0.25j to calculate the frequency response value at 0.25 rad/sec.

„  (s2 + 0.382)(s2 + 2.618)
z11 = ------ 2 2 2 -----------

s2(s2 + 1)(s2 + 3)

= (s + 0.618j)(s -  0.618j)(s + 1.618j)(s -  1.618j)
= s2(s + 1j)(s-  1j)(s +1.732j)(s -1 .732 j) (3 28)
= (0.25j + 0.618j)(0.25j -  0.618j)(0.25j + 1.618j)(0.25j- 1.618j)
= (0.25j)2 (0.25j + 1j)(0.25j -  1j)(0.25j + 1 .732j)(0.25j - 1 .732j)

0.172
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T aking the magnitude and phase of z11

z11 = 4.74
1 1 (3.29)
Zz11 = -180°

The frequency response plot from MATLAB code tdofxfer.m  in Figure 3.4 
shows a magnitude of 4.79 (our 4.74 above differs because of rounding 
errors). The phase plot, not shown here but available by running tdofxfer.m , 
shows -180°.

frequency, rad/sec

Figure 3.4: z11 frequency response highlighting magnitude at 0.25 rad/sec.

3.5 MATLAB Code tdofxfer.m  -  Plot Frequency Responses

3.5.1 Code Description

Five different methods of calculating the frequency responses are used in the 
tdofxfer.m  code, starting with the simplest and most straightforward method, 
but not necessarily the most efficient, then going to more sophisticated and 
efficient methods. The methods are:

1) Polynomial descriptions of the transfer functions: Using a 
for-loop to cycle through the frequency vector. MATLAB’s 
complex algebra capabilities are used to evaluate the 
frequency response at each frequency.

2) Polynomial descriptions of the transfer functions: Using 
MATLAB’s vector capabilities instead of a for-loop to
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calculate the frequency response at the frequencies in the 
frequency vector.

3) MATLAB’s “transfer function” representations of the transfer 
functions: MATLAB’s automatic bode plotting capability is 
used, where MATLAB chooses the frequency range to use 
and automatically plots results.

4) Transfer function representations of the transfer functions: 
MATLAB’s bode plotting capability is used, but this time 
defining outputs and frequency range with the “bode” 
command, controlling the output for later plotting.

5) MATLAB’s “zero/pole/gain, zpk” form of the input is used.

Because the plotting commands are so lengthy, they will be not be listed. See 
the downloaded code for the complete code listing.

3.5.2 Polynom ial Form , For-Loop C alculation, Code Listing

The “polynomial form” shown below uses (2.28) through (2.36) to define the 
four distinct frequency responses of the system, allowing the user to specify 
any values of masses, dampers and springs. MATLAB’s complex number 
calculation capabilities are used by defining a vector of radian frequencies “w” 
and substituting “j*w” for “s.” A “for-loop” is then used to cycle through each 
frequency in the “w” vector and calculate the complex value for the frequency 
response at that frequency. Because MATLAB does not know how large all 
of the vectors defined within the “for-loop” are going to be, it resizes each 
vector during each calculation, a very time-consuming (relatively speaking) 
operation. We could speed up the operation by defining null vectors of the 
proper size for each of the “for-loop” variables before the for-loop was 
entered. This would still require going through the for-loop for every entry in 
the “w” vector, but would eliminate having to resize the vectors at each 
calculation. Following the for-loop, magnitudes and phases are calculated 
using MATLAB’s “abs” and “angle” commands and are available for plotting.

% "Polynomial Form, for-loop" frequency response plotting

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

© 2001 by Chapman & Hall/CRC



%
%
%

Define a vector of frequencies to use, radians/sec. The logspace command uses 
the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is 
10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

%
%

Use a for-loop to cycle through all the frequencies, using MATLAB's 
complex algebra capabilities to evaluate.

for cnt = 1:length(w)

% define s as the imaginary operator times each frequency

s = j*w(cnt);

% define the frequency responses to be evaluated

den(cnt) = sA2*(sA4*(m1*m2*m3) + sA3*(m2*m3*c1 + m1*m3*c1 + m1*m2*c2 
+ m1*m3*c2) + sA2*(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 ...
+ m2*c1*c2 + m3*c1*c2 + m1*c1*c2 + k1*m2*m3) ...
+ s*(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 ...
+ m3*c2*k1 + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));

z11bf(cnt) = ((m2*m3)*sA4 + (m3*c1 + m3*c2 + m2*c2)*sA3 ...
+ (c1*c2 + m2*k2 + m3*k1 + m3*k2)*sA2 ...
+ (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z21bf(cnt) = ((m3*c1)*sA3 + (c1*c2 + m3*k1)*sA2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))/den(cnt);

z31bf(cnt) = ((c1*c2)*sA2 + (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

z22bf(cnt) = ((m1*m3)*sA4 + (m1*c2 + m3*c1)*sA3 + (m1*k2 + c1*c2 + ...
m3*k1)*sA2 

+ (c1*k2 + c2*k1)*s + (k1*k2))/den(cnt);

% calculate the magnitude and phase of each frequency response

z11bfmag(cnt) = abs(z11bf(cnt)); 

z21bfmag(cnt) = abs(z21bf(cnt)); 

z31bfmag(cnt) = abs(z31bf(cnt)); 

z22bfmag(cnt) = abs(z22bf(cnt)); 

z11bfphs(cnt) = angle(z11bf(cnt))*rad2deg; 

z21bfphs(cnt) = angle(z21bf(cnt))*rad2deg;
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z31bfphs(cnt) = angle(z31bf(cnt))*rad2deg; 

z22bfphs(cnt) = angle(z22bf(cnt))*rad2deg; 

end % end of for-loop

3.5.3 Polynom ial Form , V ector C alculation, Code Listing

This section of code defines the transfer functions as in the previous section 
but instead of using the for-loop for obtaining complex values of the desired 
quantities at each frequency, this code uses MATLAB’s vector calculation 
capability. MATLAB can perform operations on vectors directly, very 
quickly and without having to resize anything as discussed in the previous 
section. In order to define a vector operation between two vectors, precede 
the operation symbol (*, /, л, etc) with a period (“.”). This period tells 
MATLAB to perform an element-by-element operation on or between 
corresponding elements of the vector(s). For example, to square every 
element of a vector, “vec”, use the command “vec.A2,” and to multiply two 
elements, “vec1” and “vec2” element by element, use the command 
“vec1.*vec2.” This vector calculation capability will be used wherever 
appropriate in the balance of the code in the text.

% "Polynomial Form, Vector" method - using MATLAB's vector capabilities instead
% of the "for" loop.

% assign values for masses, damping, and stiffnesses

m1 = 1; 
m2 = 1; 
m3 = 1; 
c1 = 0; 
c2 = 0; 
k1 = 1; 
k2 = 1;

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% pre-calculate the radians to degree conversion

rad2deg = 180/pi;

% define s as the imaginary operator times the radian frequency vector

s = j*w;
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% define the frequency responses to be evaluated, using the "." prefix
% in front of each operator to indicate that each

% define the frequency responses to be evaluated

den = s.A2.*(s.A4*(m1*m2*m3) + s.A3*(m2*m3*c1 + m1*m3*c1 + m1*m2*c2 
+ m1*m3*c2) + s.A2*(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 ...
+ m2*c1*c2 + m3*c1*c2 + m1*c1*c2 + k1*m2*m3) ...
+ s*(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 ...
+ m3*c2*k1 + m2*c1*k2) + (m1*k1*k2 + m2*k1*k2 + m3*k1*k2));

z11bfv = ((m2*m3)*s.A4 + (m3*c1 + m3*c2 + m2*c2)*s.A3 ...
+ (c1*c2 + m2*k2 + m3*k1 + m3*k2)*s.A2 ...
+ (c1*k2 + c2*k1)*s + (k1*k2))./den;

z21bfv = ((m3*c1)*s.A3 + (c1*c2 + m3*k1)*s.A2 + (c1*k2 + c2*k1)*s ...
+ (k1*k2))./den;

z31bfv = ((c1*c2)*s.A2 + (c1*k2 + c2*k1)*s + (k1*k2))./den;

z22bfv = ((m1*m3)*s.A4 + (m1*c2 + m3*c1)*s.A3 + (m1*k2 + c1*c2 + m3*k1)*s.A2 
+ (c1*k2 + c2*k1)*s + (k1*k2))./den;

% calculate the magnitude and phase of each frequency response

z11bfvmag = abs(z11bfv);

z21bfvmag = abs(z21bfv);

z31bfvmag = abs(z31bfv);

z22bfvmag = abs(z22bfv);

z11bfvphs = angle(z11bfv)*rad2deg;

z21bfvphs = angle(z21bfv)*rad2deg;

z31bfvphs = angle(z31bfv)*rad2deg;

z22bfvphs = angle(z22bfv)*rad2deg;

3.5.4 T ransfer Function Form  -  Bode C alculation, Code Listing

This section uses MATLAB’s automatic “bode” calculation and plotting 
capability, as well as the “transfer function” form of input, where the 
numerator “num” and denominator “den” of each transfer function are input as 
row vectors in coefficients of descending powers of “s.” Using the “bode” 
command with no left-hand arguments results in MATLAB choosing the 
frequency range to use and automatically generating plots of magnitude and 
phase.
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% using MATLAB's automatic "bode" plotting capability, defining the transfer
% functions in "transfer function" form by row vectors of coefficients of "s"

% assign values for masses, damping, and stiffnesses

m1 = 1; 
m2 = 1; 
m3 = 1; 
c1 = 0; 
c2 = 0; 
k1 = 1; 
k2 = 1;

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ... 
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ... 
m1*c1*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + m3*c2*k1 + m2*c1*k2) ... 
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*k1 + m3*k2) 
(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% the bode command with no left hand side arguments automatically chooses
% frequency limits and plots results

grid on
bode(z 11num,den);

disp('execution paused to display figure, "enter" to continue'); pause 

bode(z21num,den);

disp('execution paused to display figure, "enter" to continue'); pause 

bode(z31num,den);

disp('execution paused to display figure, "enter" to continue'); pause 

bode(z22num,den);

disp('execution paused to display figure, "enter" to continue'); pause

© 2001 by Chapman & Hall/CRC



3.5.5 T ransfer Function Form , Bode C alculation w ith Frequency, 
Code Listing

This section also uses MATLAB’s “bode” plotting capability with the transfer 
function form of the input but defines magnitude and phase vectors for output 
and specifies the frequency vector to use. This code also calculates and plots 
the low and high frequency asymptotes for the four unique transfer functions.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "transfer function" form by row vectors of coefficients of
% "s"and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies

% assign values for masses, damping, and stiffnesses

m1 = 1; 
m2 = 1; 
m3 = 1; 
c1 = 0; 
c2 = 0; 
k1 = 1; 
k2 = 1;

% define row vectors of numerator and denominator coefficients

den = [(m1*m2*m3) (m2*m3*c1 + m1*m3*c1 + m1*m2*c2 + m1*m3*c2) ... 
(m1*m3*k1 + m1*m3*k2 + m1*m2*k2 + m2*c1*c2 + m3*c1*c2 + ... 
m1*c1*c2 + k1*m2*m3) ...
(m3*c1*k2 + m2*c2*k1 + m1*c2*k1 + m1*c1*k2 + m3*c2*k1 + m2*c1*k2) ... 
(m1*k1*k2 + m2*k1*k2 + m3*k1*k2) 0 0];

z11num = [(m2*m3) (m3*c1 + m3*c2 + m2*c2) (c1*c2 + m2*k2 + m3*k1 + m3*k2) 
(c1*k2 + c2*k1) (k1*k2)];

z21num = [(m3*c1) (c1*c2 + m3*k1) (c1*k2 + c2*k1) (k1*k2)];

z31num = [(c1*c2) (c1*k2 + c2*k1) (k1*k2)];

z22num = [(m1*m3) (m1*c2 + m3*c1) (m1*k2 + c1*c2 + m3*k1) ...
(c1*k2 + c2*k1) (k1*k2)];

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10A1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% calculate the rigid-body motions for low and high frequency portions
% of all the frequency responses, the denominator entries are vectors with
% entries being coefficients of the "s" terms in the low and high frequency
% asymptotes, starting with the highest power of "s" and ending with the
% "0"th power of "s" or the constant term
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z11num lo = [1];

z11den_lo = [3 0 0]; % -1/(3*wA2)

z11num hi = [1];

z11den_hi = [1 0 0]; % -1/(wA2)

z21num lo = [1];

z21den_lo = [3 0 0]; % -1/(3*wA2)

z21num hi = [1];

z21den_hi = [1 0 0 0 0]; % -1/(3*wA4)

z31num lo = [1];

z31den_lo = [3 0 0]; % -1/(3*wA2)

z31num hi = [1];

z31den_hi = [1 0 0 0 0 0 0]; % -1/(wA2)

z22num lo = [1];

z22den_lo = [3 0 0]; % -1/(3*wA2)

z22num hi = [1];

z22den_hi = [1 0 0]; % -1/(wA2)

% define the "tf" models from "num 

z11tf = tf(z11num,den); 

z21tf = tf(z21num,den); 

z31tf = tf(z31num,den); 

z22tf = tf(z22num,den);

, den" combinations

z11tf lo = tf(z11num lo,z11den lo);

z11tf hi = tf(z11num hi,z11den hi);

z21tf lo = tf(z21num lo,z21den lo);

z21tf hi = tf(z21num hi,z21den hi);

z31tf lo = tf(z31num lo,z31den lo);

z31tf hi = tf(z31num hi,z31den hi);
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z22tf_lo = tf(z22num_lo,z22den_lo); 

z22tf_hi = tf(z22num_hi,z22den_hi);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

[z11mag,z11phs] = bode(z11tf,w);

[z21mag,z21phs] = bode(z21tf,w);

[z31mag,z31phs] = bode(z31tf,w);

[z22mag,z22phs] = bode(z22tf,w);

[z11maglo,z11phslo] = bode(z11tf_lo,w);

[z21maglo,z21phslo] = bode(z21tf_lo,w);

[z31maglo,z31phslo] = bode(z31tf_lo,w);

[z22maglo,z22phslo] = bode(z22tf_lo,w);

[z11maghi,z11phshi] = bode(z11tf_hi,w);

[z21maghi,z21phshi] = bode(z21tf_hi,w);

[z31maghi,z31phshi] = bode(z31tf_hi,w);

[z22maghi,z22phshi] = bode(z22tf_hi,w);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag); 

z21magdb = 20*log10(z21mag); 

z31magdb = 20*log10(z31mag); 

z22magdb = 20*log10(z22mag); 

z11maglodb = 20*log10(z11maglo); 

z21maglodb = 20*log10(z21maglo); 

z31maglodb = 20*log10(z31maglo); 

z22maglodb = 20*log10(z22maglo); 

z11maghidb = 20*log10(z11maghi); 

z21maghidb = 20*log10(z21maghi); 

z31maghidb = 20*log10(z31maghi);
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z22maghidb = 20*log10(z22maghi);

3.5.6 Zero/Pole/Gain Function Form , Bode C alculation w ith Frequency, 
Code Listing

This section also uses MATLAB’s “bode” plotting capability. This time, with 
the zero/pole/gain form of the input. It defines magnitude and phase vectors 
for output and specifies the frequency vector to use.

% using MATLAB's "bode" plotting capability, defining the transfer
% functions in "zero/pole/gain" form by column vectors of poles and zeros
% and defining output vectors for magnitude and phase as well as a
% defined range of radian frequencies

% assign values for masses, damping, and stiffnesses

m1 = 1;
m2 = 1;
m3 = 1;
c1 = 0;
c2 = 0;
k1 = 1;
k2 = 1;

m = m1;
k = k1;

% define column vectors of poles and zeros from previous derivation
%
% there are three ways to make a column vector:
%
% 1) define a row vector and then transpose it:
%
% p = [0 0 1*j -1*j sqrt(3*k/m)*j -sqrt(3*k/m)*j]';
%
% 2) define a column vector by using semi-colons between elements:
%
% p = [0; 0; 1*j; -1*j; sqrt(3*k/m)*j; -sqrt(3*k/m)*j];
%
% 3) define a column vector directly:
%
% p = [ 0
% 0
% 1*j
% -1*j
% sqrt(3*k/m)*j
% -sqrt(3*k/m)*j ];

% zeros for z1/f1; quartic so four zeros

z11 1 = -sqrt((-3*k-sqrt(5)*k)/(2*m));
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z 11_2 = sqrt((-3*k-sqrt(5)*k)/(2*m));

z11_3 = -sqrt((-3*k+sqrt(5)*k)/(2*m)); 
z11_4 = sqrt((-3*k+sqrt(5)*k)/(2*m));

% zeros for z2/f1; quadratic so two zeros

z21_1 = -sqrt(-k/m); 
z21_2 = sqrt(-k/m);

% zeros for z3/f1; no zeros, so use empty brackets

z31_1 = [];

% zeros for z2/f2: quadratic so two zeros

z22_1 = -sqrt(-k/m); 
z22_2 = sqrt(-k/m);

%

z11 = [z11_1 z11_2 z11_3 z11_4]';

z21 = [z21_1 z21_2]';

z31 = z31_1;

z22 = [z22_1 z22_2]';

p = [0 0 1*j -1*j sqrt(3*k/m)*j -sqrt(3*k/m)*j]'; 

gain = 1;

% use the zpk command to define the four pole/zero/gain systems

sys11pz = zpk(z11,p,gain);

sys21pz = zpk(z21,p,gain);

sys31pz = zpk(z31,p,gain);

sys22pz = zpk(z22,p,gain);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10л-1 = 0.1 rad/sec, and 1 is
% 10Л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

%
%

use the bode command with left hand magnitude and phase vector arguments 
to provide values for further analysis/plotting

[z 11mag,z 11phs] = bode(sys 11pz,w);

[z21mag,z21phs] = bode(sys21pz,w);
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[z31mag,z31phs] = bode(sys31pz,w);

[z22mag,z22phs] = bode(sys22pz,w);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

3.5.7 Code O utput -  Frequency Response M agnitude and Phase Plots

x fe r func tion  form , Bode z11, z 3 3  db  m agnitude  x fe r func tion  form, Bode z21, z12, z23, z 3 2  db m agnitude

frequency, rad /sec  frequency, rad /sec

x fe r func tion  form , Bode z31, z 1 3  db  m agnitude  x fe r func tion  form , Bode z2 2  db m agnitude

frequency, rad /sec  frequency, rad /sec

Figure 3.5: Magnitude versus frequency for four distinct frequency responses, including  
low and high frequency asymptotes.
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Figure 3.6: Phase versus frequency for four distinct frequency responses, including low  
and high frequency asymptotes.

3.6 O ther Form s of Frequency Response Plots

Other forms of frequency response plots are shown for a damping value of 2% 
of critical damping for each mode. The code used for the plots is from 
Chapter 11, tdofss_modal_xfer_modes.m.

© 2001 by Chapman & Hall/CRC



3.6.1 Log M agnitude versus Log Frequency

z11, z33 phase versus log freq

frequency, rad/sec

Figure 3.7: Log magnitude versus log frequency.

Comments on the log-log plot:

1) The asymptotic behavior at the low and high frequency ends 
are clear by checking the slopes.

2) The log frequency scale spreads out the resonances, which 
otherwise would tend to clump at the lower end of the scale.

3) The log amplitude scale allows reading the gain directly 
without converting from db.

4) Adding the gain from the mechanics to the gain of the 
frequency response of the control system allows for 
definition of the overall series (multiplicative) frequency 
response.
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3.6.2 db Magnitude versus Log Frequency

z11, z33 db mag versus log freq

z11, z33 phase versus log freq

frequency, rad/sec

Figure 3.8: db magnitude versus log frequency.

Comments on the db-log plot:

1) The asymptotic behaviors at the low and high frequency 
ends are clear by checking the slopes, i.e.

(1/Ю) = -2 0  db/decade, (1 /ffl2 ) = -4 0  db/decade.

2) The log frequency scale spreads out the resonances, which 
otherwise would tend to clump at the lower end of the scale.

3) The db amplitude scale makes it necessary to convert to gain 
if needed.

4) The product of two individual frequency response gains can 
be found by adding their gains directly on the log scale.
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3.6.3 db M agnitude versus L inear Frequency

z11, z33 phase versus linear freq

frequency, rad/sec

Figure 3.9: db magnitude versus linear frequency.

Comments on the db-linear plot:

1) The asymptotic behaviors at the low and high frequency 
ends are not clear.

2) The linear frequency scale tends to clump the resonances at 
the lower end of the scale, although the scale could be 
shortened since nothing significant is happening at the high 
end.

3) The db amplitude scale makes it necessary to convert to 
linear gain if specific gain values are needed.
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3.6.4 Linear Magnitude versus Linear Frequency

z11, z33 linear mag versus linear freq

0 1 2 3 4 5 6 7 8 9  10

z11, z33 phase versus linear freq

frequency, rad/sec

Figure 3.10: Linear magnitude versus linear frequency.

Comments on the linear-linear plot:

1) The asymptotic behaviors at the low and high frequency 
ends are not clear.

2) The linear frequency scale tends to clump the resonances at 
the lower end of the scale, although the scale could be 
shortened since nothing significant is happening at the high 
end.

3) The linear amplitude scale enables reading gain values 
directly, but reading values for small gain values is difficult.

4) It is useful for directly adding the individual mode 
contributions of a frequency response to provide the overall 
response, shown in Chapter 8, Sections 8.7 and 8.8.
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3.6.5 Real and Imaginary Magnitudes versus Log and Linear Frequency

z11, z33 linear real mag versus log freq

z11, z33 linear imaginary versus log freq

-1 0 L-
10-1 10 10

frequency, rad/sec

Figure 3.11: Real and im aginary magnitudes versus log frequency.

z11, z33 linear real mag versus linear freq

z11, z33 linear imaginary versus linear freq

E -5 -

3 4 5 6  
frequency, rad/sec

0

0

0 1 2 7 8 9 10

Figure 3.12: Real and im aginary magnitude versus linear frequency.

Comments on real versus linear frequency, imaginary versus linear frequency:

1) These plots are useful in understanding the amplitudes of 
transfer functions at resonance, as the peaks of the imaginary 
curve represent the amplitude at resonance.
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2) While the imaginary plot peaks at each resonance, the real 
plot goes through zero at each resonance.

3.6.6 Real versus Im aginary  (Nyquist)

z11, z33 real versus imaginary, "Nyquist"
15 

10 

5

-5 

-10 

-15
-15 -10 -5 0 5 10 15

Figure 3.13: Real versus im aginary (Nyquist).

Comments on real versus imaginary:

1) Frequency is not plotted directly on the real/imaginary plot; each 
point on the plot represents a different frequency.

2) Plotting real versus imaginary is a very useful technique when 
identifying resonant characteristics. The two resonances can be 
readily seen, helping in identifying closely spaced resonances.

3) One method of identifying damping in a mode is to use the rate of 
change of amplitude versus frequency (Maia 1997).

A
+ u -ь
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3.7 Solving fo r Eigenvectors (Mode Shapes) Using the T ransfer Function 
M atrix

We have reviewed transfer functions, poles, zeros and frequency responses. 
The next area we will cover in order to completely define the system is 
eigenvectors, or mode shapes. At each natural frequency, the eigenvector 
defines the relative motion between degrees of freedom. Understanding the 
distribution of motion in each mode of vibration is essential in order to 
intelligently modify the system’s resonant characteristic to solve resonance 
problems.

Since eigenvectors define the relative motion between degrees of freedom, we 
need to choose a degree of freedom against which to measure the other 
motions. We can find the relative motion using any column of the transfer 
function matrix. Choosing z1 as the reference and solving for z2 / z1 and 

z3 / z1 using the first column of the transfer function matrix (we will compare 
results using the second column later to show that they give the same results):

mks + k 
m 2s4 + 3mks2 + k 2

(3.29)

F1

z2

z

F_

F1

k 2

m s + 3mks + k
(3.30)

z

Now that the ratios are known, we substitute the resonant frequencies (pole 
values) one at a time to define the mode shape at that frequency, dropping the 
second index, z21 ^  z2 .

For mode 1: evaluated at s = j Ю1 = 0

mks2 + k ‘ = =  4  = 1 (3.31)
z1 m s  + 3mks + k k

z2 = z1 (3.32)

z2
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—  = —л — k— 2— г = = 1 (3.33)z1 m s  + 3mks + k k

z3 = z1 (3.34)

The interpretation of this mode shape is that at ю1 the ratios of motion of mass
2 and mass 3 to mass 1 are equal and are equal to 1. This is the rigid body 
mode at 0 hz.

m

mk I —  I + k 2

For mode 2: evaluated at s = j Ю2 = j

Zr = mks + k = _________1  m J__________= _0_ (3 3 5 )
z1 = m2s4 + 3mks2 + k 2 = 2 f  k 2 ^ . ( —k ,  , 2 = k 2 ( . )

1 m2 J+ 3mk f -m  J + k2

z2 = 0 (3.36)

k 2
-  = —1 (3.37)

z1 m s + 3mks + k 2 f k 2 | , f  —k , , 2

1 m2 1 m H + 3mk 1 -m  '+ k

z3 = — z1 (3.38)

The interpretation of this mode shape is that at ю2 mass 2 has zero motion 
relative to mass 1 (it is stationary). Mass 3 is moving out of phase with mass 1 
with equal amplitude.

For mode 3: evaluated at s = j Ю3 = j
m

z2 _  mks + k _  1 m
mk I ——  I + k 2

z1 m s  + 3mks + k 2 f 9k2 | „ , f  —3k,  , 2 
1 1 m 2") + 3™k 1“ ^ "  I + (3.39)

—3k2 + k 2 —2k 2
- ^  = —2

9k2 — 9k2 + k 2

z3
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z 2 = -  2z1 (3.40)

z1 m 2s4 + 3mks2 + k 2 2 f  9k2 ^ „ , f - 3 k  ̂  l 2
1 m 2 1 — г  I + 3mk I ----- I + k 2

t  m 2 J ^ m J (3.41)

= £ = J

Z3 = Zj (3.42)

The interpretation of this mode shape is that at ю3 mass 2 is moving with 
twice the motion of mass 1 and out of phase with it and mass 3 is moving in 
phase with mass 1 and with the same amplitude.

Showing that the second column of the transfer function matrix could have 
been used and would have given the same eigenvectors:

z
F2 z2 m s  + 2mks + k „  „„

2 -  2 -  • (3.43)
z1 mks + k

F2

z3

For mode 1, ю1 = 0

z1 mks + k
F2

£ 2  = kL = 1
z1 k 2 

^  = 1

For mode 2, evaluated at s = j Ю2 = j
m

(3.45a,b)

z3

z1
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z2 m s  + 2mks + k 
z, mks2 + k 2

m 21 k  ̂+ 2m kf —  I + k 2
m m

k 2 -  2k2 + k 2 
- k 2 + k 2

mk I —  I + k 2 
m

(3.46)

=1 (3.47)

For mode 3, s = j Ю3 = j J —  
V m

z2 = m s  + 2mks + k 
z. mks2 + k 2

9k2 -  6k2 + k 2 4k2

m
m

2| 9k ' + 2mk I —  I + k 2
-3 k
m

mk I I + k 2 
m

-3 k 2 + k 2 -2 k 2
• = -2

(3.48)

z .  = 1 (3.49)

Summarizing the mode shapes in the m odal m atrix, z m , where the first 
through third columns represent mode shapes for the first three modes, 
respectively, and the first through third rows show the relative motion for the 
first through third dof’s, respectively:

1 1 1

1 0 -2

1 -1  1

(3.50)

z3
z

z

Z m =

Figure 3.14 shows the mode shapes pictorially. There are many different 
eigenvector scaling, or normalizing techniques, to be discussed later. It is not 
important which normalization technique is used in visualizing mode shapes. 
However, in using the modal matrix to calculate responses, the normalization 
technique used is critical, as we will see in future chapters.
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Because there is no damping, these modes are known as “normal” (as opposed 
to “complex”) modes. With a normal mode, if the masses are started with 
some multiple of the displacements of one of the modes, the system will 
respond at only that frequency. During that motion, the masses will all reach 
their maximum and minimum points at the same time. Mode shapes are 
plotted in Figure 3.14, assuming an arbitrary value of 1 for Z j:
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Figure 3.14: Mode shape plots.
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Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P 3 .1 Set mj = m 2 = m = 1, k  = k 2 = k = 1 and hand sketch the frequency 
responses for the undamped system.

P3.2 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, modify the
tdofxfer.m  code and plot the frequency responses of the two dof undamped 
system using the transfer function and zero/pole/gain forms of Sections 3.5.5 
and 3.5.6.

P3.3 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, add damping to the 
model from P3.2 and plot the transfer functions in Nyquist form, being careful 
to use small enough frequency spacing to identify the resonances as shown in 
Figure 3.13.

P3.4 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1, choose one of the 
transfer functions for the undamped system and plot the poles and zeros in the 
s-plane. Choose a frequency on the positive imaginary axis and hand calculate 
the gain at that frequency. Correlate with the MATLAB calculated gain.

P3.5 Solve for the two eigenvectors for the system in P3.3 using the transfer 
function matrix. Hand plot the mode shapes as in Figure 3.14.
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CHAPTER 4

ZEROS IN SISO MECHANICAL SYSTEMS

Chapters 2 and 3 discussed poles and zeros of SISO systems and their 
relationship to transfer functions. The origin and influence of poles are clear. 
They represent the resonant frequencies of the system, and for each resonant 
frequency a mode shape can be defined to describe the motion at that 
frequency. We have seen from our frequency response analyses in Chapter 3 
that at the frequencies of the zeros, motions approach or go to zero, depending 
on the amount of damping present. In Chapters 8 and 11 we will illustrate 
how all the individual modes of vibration can combine at specific frequencies 
to create zeros of the overall transfer function.

This chapter will expand on analyses shown in Miu [1993] to develop an 
intuitive understanding for when to expect zeros in Single Input Single Output 
(SISO) simple mechanical systems and how to predict the frequencies at 
which they will occur. We will not cover the theory, but will state the 
conclusions from Miu and show how the conclusions relate to two example 
systems.

We will start by defining a series arrangement lumped spring/mass system. 
We will develop guidelines for defining the number of zeros that should be 
seen and show how to predict their frequencies. A MATLAB model is used to 
illustrate the guidelines for various combinations of input and output degrees 
of freedom. Only the MATLAB code results are discussed; the code itself is 
not listed or discussed as it uses techniques found later in the book. However, 
the reader is encouraged to run the code and experiment with various values of 
the input and number of masses in the model to become familiar with the 
concept.

Next, an ANSYS finite element model of a tip-excited cantilever is analyzed. 
The resulting transfer function magnitude is plotted using MATLAB to show 
an overlay of the poles of the “constrained” system and their relationship with 
the zeros of the original model.

4.1 Introduction
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4.2 “n” dof Example

Figure 4.1 shows a series arrangement of masses and springs, with a total of 
“n” masses and “n+1” springs. The degrees of freedom are numbered from 
left to right, z1 through zn .

No Degrees of Freedom to 
Left of Constrained DOF: 

No Zeros

z(n)

[J
No Degrees of Freedom to 
Right of Constrained DOF:

No Zeros

z(n-2)

Four Degrees of Freedom to 
Left of Constrained DOF: 

Four Zeros

Two Degrees of Freedom to 
Right of Constrained DOF:

Two Zeros

r 1
m 1 ^ -^ m 2 ] - V - ^ 3 ^ -^ m 4 |л - ^ m5

Two Degrees of Freedom to 
Left of Constrained DOF:

Two Zeros

(n-3) Degrees of Freedom 
to Right of Constrained 

DOF:
Number of Zeros for Driving (n-3) Zeros

Point Transfer Function 
(n-1)

F1

F5

Figure 4.1a,b,c,d: “n ” d of system showing various SISO input/output configurations.

Miu [1993] shows that the zeros of any particular transfer function are the 
poles of the constrained system(s) to the left and/or right of the system 
defined by constraining the one or two dof’s defining the transfer function. 
The resonances of the “overhanging appendages” of the constrained 
system create the zeros.

Two limiting cases are immediately available in (1) and (3) below:

1) For the transfer function from one end of the structure to the 
other, Figure 4.1b, there are no overhanging appendage
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structures to the left or right of the constrained structure, so there 
are no zeros.

2) For an arbitrary transfer function, Figure 4.1c, there will be a 
structure to the left and/or to the right of the constrained dof’s.
The total degrees of freedom of the overhanging appendage(s) 
will give the total number of zeros in the transfer function.

3) For the driving point transfer function, Figure 4.1d, the force and 
displacement are measured at the same dof, so there are a total of 
(n -1 )  degrees of freedom left, hence (n -1 )  zeros of the 
transfer function. All but one of the masses are overhanging 
appendages.

In the analysis that follows, we will calculate frequency responses and 
pole/zero plots for various transfer functions using the MATLAB code 
ndof_numzeros.m.

4.2.1 MATLAB Code ndof_num zeros.m , Usage Instructions

The MATLAB code is based on the ndof series system in Figure 4.1. The 
code allows one to choose the total number of masses in the problem and sets 
the values of the masses and stiffnesses randomly between the values of 1 and 
2. The program then allows one to choose which transfer function to 
calculate, and shows the pole/zero plots for the original system as well as the 
poles for the two structures to the left and/or right. For now, the reader should 
not worry about the details of the code, which will be covered in later 
chapters, but should use the code to study the pole/zero patterns in systems 
with different numbers of degrees of freedom and for different input/output 
dof’s. Sometimes the random values chosen for stiffnesses and damping will 
cause the poles and zeros to be so close together that they will cancel each 
other. If this is the case and the number of poles and zeros do not match the 
expected number, rerun the code until more widely spaced poles/zeros are 
randomly chosen and the required poles and zeros are apparent.

4.2.2 Seven dof M odel -  z7/F1 Frequency Response

T aking a seven-mass model as an example, the resulting frequency responses 
and pole-zero plots are displayed on the following pages. In all cases, the 
random distribution of masses and spring stiffnesses is used, resulting in a 
different set of variables for each run.

Figure 4.2 shows the frequency response for applying a force at the first mass 
and looking at the output at the last (seventh) mass. Note that in accordance
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with the prior analysis, there should be no zeros as there are no “overhanging” 
appendages. Since there are seven masses, there should be seven poles. Since 
each mass provides an attenuation of -40db/decade, after the last of seven 
poles the slope of the curve is 7*( -4 0  db/decade) = -280  db/decade.

transfer function, 7 dof, input at 1, output at 7 
5 0 .

0

-50

■° -100 
e,■o

§ -1 5 0
£

-200

-250

-300
-1 0 1 

10 10 10
frequency, rad/sec

Figure 4.2: z17 transfer function frequency response, seven poles, no zeros.

2 

1.5

1

0.5 

0

-0.5 

-1 

-1.5 

-2
- 2 - 1 0 1 2  

Figure 4.3: z17 pole/zero plot showing only seven poles.

poles/zeros of system

- —  4 -  —
-Ф-

4­
4

*i
.j'--i
+ j  _ 
+

“i ■ 
*i
Жi
+

transfer function, 7 dof, input at 1, output at 7
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4.2.3 Seven dof M odel -  z3/F4 Frequency Response

The same seven dof system provides the following frequency response when 
the force is applied at mass 3 and the output is taken at mass 4. There are two 
“overhanging” appendages to the left of mass 3, masses 1 and 2, and there are 
three “overhanging” appendages to the right of mass 4, masses 5, 6 and 7. 
These masses should combine to give a total of five zeros and once again, 
seven poles as shown below.

transfer function, 7 dof, input at 3, output at 4

frequency, rad/sec

Figure 4.4: z34 transfer function frequency response, seven poles and five zeros.

poles/zeros of system
1 ----Ф---- 1 1

2 1 + i i
1.5

1-I - 1- - - 4 - -
i i -L 1 .

1
1

-  +---1 + 1 1 --_l----------|_ .
1 1

0.5 T Г + T 1 '
0

11 11 1 1 1 1
-0.5 1 -ф- 1 1

-1
1_L1 L 11

-
11 1 1 -L 1 .1 1

-1.5 _ 4. --------
1

--------- -- -̂---------l_ .
1 1

-2 t -1 r ----Ш---- Г 1 • 1 1
- 2 - 1 0 1 2

Figure 4.5: z34 pole/zero plot showing seven poles and five zeros.

© 2001 by Chapman & Hall/CRC



poles/zeros of system
_  _  4>________

poles of Ihs

+
-f-

poles of rhs
___+___

I

- i
+
00 2 0 2 2

Figure 4.6: z34 poles and zeros; poles o f  left-hand and right-hand constrained systems are 
the same as the zeros o f the unconstrained system.

The left-hand plot in Figure 4.6 displays the z34 poles and zeros. The middle 
plot shows the poles of the system to the left of mass 3. The right plot shows 
the poles of the system to the right of mass 4. It is clear that the poles of the 
two right plots are the zeros of the z34 system.

4.2.4 Seven dof M odel -  z3/F3, Driving Point Frequency Response

For the same seven dof system with force and output taken at the same node 
(driving point transfer function), there should be six “overhanging” masses 
providing zeros. Therefore the frequency response plot in Figure 4.7 shows 
six zeros, with alternating pole/zero pairs.
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transfer function, 7 dof, input at 3, output at 3

frequency, rad/sec

Figure 4.7: z33 transfer function frequency response, seven poles and the expected six
zeros.
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Figure 4.8: z33 pole/zero plot showing seven poles and six zeros.
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poles/zeros of system

1 1 1 J
i ii ^

Г 1 : i
5 1 i
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2

1 к

0
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-2

poles of Ihs
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1 h

0

-1 И 

-2

poles of rhs
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■Ф

ф- -̂ r 
02 2 2

Figure 4.9: z33 poles and zeros. Poles o f  left-hand and right-hand constrained systems are 
the same as the zeros o f the unconstrained system.

4.3 C antilever M odel -  ANSYS

4.3.1 In troduction

Now that we have seen how the “constrained” system artifice works for a 
simple lumped parameter system, it is interesting to consider how the artifice 
would work for a continuous system, such as a cantilever beam.

The finite element program ANSYS is used to analyze a cantilever beam with 
a driving point transfer function at the tip. The transfer function we are 
interested in is the displacement at the tip, z, due to a vertical force at the tip, 
F, as shown in Figure 4.10. The “constrained” structure whose poles should 
define the zero locations for the unconstrained system is the original cantilever 
with the addition of a simple support at the tip.
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z , F

i  t
d
П Original Cantilever,

Driving Point
Transfer Function

i
A "Constrained" ~ b -

System, with
DOF's of transfer

function
constrained

Figure 4.10: Unconstrained and constrained cantilevers used for driving point 
transfer function example.

4.3.2 ANSYS Code cantfem .inp Description and Listing

The input listings for the ANSYS models of the cantilever and simply 
supported tip cantilever are below. The cantilever input program is 
cantfem .inp and the supported tip input program is cantzero.inp. Both 
programs can be run if one has access to ANSYS by typing 
“/input,cantfem,inp” or “/input,cantzero,inp” at the ANSYS program 
command prompt. The programs will run with no further input and will output 
graphs of the mode shapes and frequency response. Both programs build the 
model, and calculate and output the eigenvalues (natural frequencies) and 
eigenvectors (mode shapes). Cantfem .inp then calculates and outputs the 
frequency response. The mode shapes are shown in cantfem.grp and 
cantzero.grp and the frequency response is shown in cantfem.grp2. They can 
all be viewed by using the ANSYS Display program and loading the 
appropriate file.

/title, cantfem.inp, 0.05 x 1 x 20mm aluminum cantilever beam, 20 elements

/prep7

et,1,4 ! element type for beam

! aluminum

ex,1,71e6 ! mN/mmA2
dens,1,2.77e-6 ! kg/mmA3
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nuxy,1,.345

! real value to define beam characteristics

r,1,1,.00001041,.004166,.05,1 ! area, moments of inertia, thickness 

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1 ! color by material
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 ! left-hand node
n,21,20,0,0 ! right-hand node

fill,1,21 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,20,1,-1

! constrain left-hand end 

nall
d,1,all,0 ! constrain node 1, all dofs

! constrain all but uz and roty for all other nodes to allow only those dof’s 
! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof 
! can calculate a maximum of 40 eigenvalues if don’t use Guyan reduction to reduce size of 
! eigenvalue problem

nall
nsel,s,node,,2,21
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
nplo
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fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

antype,modal,new 
modopt,reduc,20 
expass,off 
mxpand,20,,,no 
total,20,0

allsel

solve

fini

! plot first mode 

/post1 

set,1,1 

pldi,1

/output,cantfem,frq ! write out frequency list to ascii file .frq 

set,list

/output,term ! returns output to terminal

! define nodes for output: forces applied or output displacements 

nsel,s,node,,21 ! cantilever tip

/output,cantfem,eig ! write out eigenvectors to ascii file .eig 

*do,i,1,20
set,,i 
prdisp

*enddo 

/output,term

eplo

! method - reduced Householder, number of modes to extract 
! key = off, no expansion pass, key = on, do expansion 
! nummodes to expand
! total masters, 20 to be used, 1 to exclude rotational dofs

! starts the solution of one load step of a solution sequence, modal here
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! pldi plots

/show,cantfem,grp,0
allsel

/view,1,,-1,,
/angle,1,0
/auto

! side view for plotting

*do,i,1,20
set, 1,i

pldi
*enddo

/show,term

! *************** calculate and plot transfer functions ****************

fini

/assign,rst,junk,rst ! reassigns a file name to an ANSYS identifier

/solu

dmprat,0.01 ! sets a constant damping ratio for all modes, zeta = 0.01

allsel
eplo ! show forces applied

f,21,fz,1 ! 1 mn force applied to node 21, tip node

/title, cantilever with tip load

antype,harmic ! harmonic (frequency response) analysis

hropt,msup,20 ! mode superposition method, nummodes modes used

harfrq,100,1000000 ! frequency range, hz, for solution, -1 to 10 rad/sec

hrout,off,off ! amplitude/phase, cluster off

kbc,1

nsubst,10000 ! 10000 frequency points for very fine resolution

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all 
! frequencies, component name for selected set of nodes

solve

fini

/post26

file,,rfrq ! frequency response results
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xvar,0 !display versus frequency

lines,10000 !specifies the length of a printed page for frequency response listing

nsol,2,21,u,z !
!
!

specifies nodal data to be stored in results file
u - displacement, z direction
note that nsol,1 is frequency vector

! plot magnitude

plcplx,0
/grid,1
/axlab,x,frequency, hz 
/axlab,y,amplitude, mm
/gropt,logx, 1 ! log plot for frequency 
/gropt,logy,1 ! log plot for amplitude

/show,cantfem,grp1
plvar,2
/show,term

! file name for storing

! plot phase

plcplx,1
/grid,1
/axlab,x,freq
/axlab,y,phase, deg
/gropt,logx,1
/gropt,logy,0

! label for y axis 
! log plot for frequency 
! linear plot for phase

/show,cantfem,grp1
plvar,2
/show,term

! save ascii data to file

prcplx,1 ! stores phase angle in asci file .dat

/output,cantfem,dat
prvar,2
/output,term

fini

4.3.3 ANSYS Code cantzero.inp Description and Listing

/title, cantzero.inp, 0.05 x 1 x 20mm aluminum tip constrained cantilever beam, 20 elements

/prep7

et,1,4 ! element type for beam

! aluminum
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ex,1,71e6
dens,1,2.77e-6
nuxy,1,.345

! mN/mmA2 
! kg/mmA3

! real value to define beam characteristics

r,1,1,.00001041,.004166,.05,1 ! area, moments of inertia, thickness

! define plotting characteristics

/view,1,1,-1,1
/angle,1,-60
/pnum,mat,1
/num,1
/type,1,0 ! 
/pbc,all,1 !

! iso view 
! iso view 

! color by material 
numbers off 
hidden plot
show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 
n,21,20,0,0

! left-hand node
! right-hand node

fill, 1,21 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,20,1,-1

! constrain left-hand end

nall
d,1,all,0
d,21,uz,0

! constrain node 1, all dofs 
! constrain tip

! constrain all but uz and roty for all other nodes to allow only those dof’s 
! this will give 20 nodes, node 2 through node 21, each with 2 dof, giving a total of 40 dof 
! can calculate a maximum of 40 eigenvalues if don’t use Guyan reduction to reduce size of 
! eigenvalue problem

nall
nsel,s,node,,2,2]
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz
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nall
eall
nplo
eplo

! ****************** eigenvalue run ********************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

antype,modal,new
modopt,reduc,20
expass,off
mxpand,20,,,no
total,20

! method - reduced Householder, number of modes to extract 
! key = off, no expansion pass, key = on, do expansion 
! nummodes to expand
! total masters, 20 to be used, exclude rotational dofs

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

set,1,1

pldi,1

! ******************** output frequencies ***********************

/output,cantzero,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ****************** output eigenvectors *********************

! define nodes for output: forces applied or output displacements

nsel,s,node,,10 ! cantilever midpoint

/output,cantzero,eig ! write out eigenvectors to ascii file .eig

*do,i,1,20
set,,i
prdisp

*enddo
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! pldi plots

/show,cantzero,grp,0
allsel

/view,1,,-1,, ! side view for plotting
/angle,1,0
/auto

*do,i,1,20
set,1,i

pldi
*enddo

/show,term

/output,term

4.3.4 ANSYS Results, cantzero.m

The driving point frequency response for cantfem.inp is shown in Figure 4.11. 
The ANSYS frequency and magnitude output results are read into MATLAB 
and plotted in order to be able to overlay the resonances from the cantzero.inp 
ANSYS run. The MATLAB code to plot the overlay is cantzero.m , which 
reads in two input programs, cantfem _m agphs.m  and cantzero_freq.m .

The resonant frequencies (poles) of the cantilever and constrained tip 
cantilever models are listed in T able 4.1.

According to the guidelines for zeros discussed earlier in the chapter, the poles 
of the frequency response plot should be the same frequencies as shown in the 
“cantfem freq” column above. The zeros of the frequency response should be 
the same frequencies as shown in the “cantzero freq” column above.
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mode cantfem freq, hz cantzero freq, hz

1 457.14 2004.6
2 2864.4 6495.0
3 8018.8 13548.
4 15709. 23162.
5 25961. 35336.
6 38771. 50071.
7 54147. 67380.
8 72102. 87291.
9 92672. 0.10985E+06
10 0.11592E+06 0.13520E+06
11 0.14196E+06 0.16337E+06
12 0.17098E+06 0.19495E+06
13 0.20323E+06 0.22951E+06
14 0.23907E+06 0.26909E+06
15 0.27885E+06 0.31129E+06
16 0.32274E+06 0.35968E+06
17 0.37012E+06 0.40928E+06
18 0.41860E+06 0.45602E+06
19 0.46289E+06 0.49344E+06
20 0.49490E+06 0.89212E+06

Table 4.1: Unconstrained (cantfem) and constrained tip (cantzero) cantilever resonances.

The constrained system poles in Figure 4.11 are shown below the curve with 
“o” symbols. Note that the “o ’s” align with the zeros of the unconstrained 
system.

Cantilever Driving Point Transfer Function and Constrained Pole Frequencies

frequency, hz

Figure 4.11: Cantilever driving point transfer function frequency response plot w ith  
overlaid frequencies o f  contrained-tip cantilever poles — which should match the 

unconstrained system zeros.
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Problem

Note: The problem refers to the two dof system shown in Figure P2.2.

P4.1 Use the MATLAB code ndof_num zeros.m  to identify the number of 
poles and zeros for a five dof system for the following: z11, z23, z33. 
Correlate the poles of the constrained system with the zeros of the original 
system.

© 2001 by Chapman & Hall/CRC



CHAPTER 5

STATE SPACE ANALYSIS

In Chapter 2 we derived the equations of motion for the tdof system shown in 
Figure 5.1, and showed how to solve the coupled differential equations for 
various transfer functions. In order to solve time domain problems using a 
computer, it is desirable to change the form of the equations for an n dof 
system with n second order differential equations to 2n first order differential 
equations. The first order form of equations of motion is known as state 
space form.

This chapter will develop the state space formulation for the tdof example. 
Once the state space formulation is completed, the subject of complex 
eigenvalues and eigenvectors, resulting in complex modes of vibration, will 
be covered in some detail. Once complex modes are understood, 
comprehending real modes which arise from the undamped case in the modal 
analysis section (Chapter 7) is simple.

Having an understanding of complex modes is especially helpful in working 
with experimental modal analysis. There are some very powerful 
experimental techniques available for testing and then visualizing the modes 
of vibration of structures. Frequency response data is taken at a number of 
selected positions on the structure and software is available to fit the data and 
define modes of vibration. The software identifies the resonant frequencies of 
the system and defines a damping value for each mode. It is then possible to 
create a model of the geometry of the test point locations and build a virtual 
model which can be animated to display the shape of motion of each mode.

The software has options which allow one to view the mode as either “real” or 
“complex.” When the mode is viewed as “real,” all the points on the structure 
move such that they all reach their maximum or minimum positions at the 
same point in time, which is consistent with our definition of “principal” or 
“real” modes defined in Chapter 7.

When the mode is viewed as “complex,” the structure does not move such that 
all points reach either their minimum or maximum positions at the same point 
in time. Instead there appears to be a wave that moves along the structure as 
the different points reach their minimum or maximum positions at different 
times. For lightly damped mechanical structures, the assumption is often 
made that the modes are “real,” allowing use of modal analysis methods and 
efficient finite element models. For structures that are not “lightly damped,”

5.1 Introduction
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the modal analysis method cannot be used and the state space formulation is 
the only practical method of solving the problem.

It is difficult to visualize complex modes without an animated structure 
model, but we will use a graphical method called an A rgand  diagram  to 
explain how modes described by complex eigenvectors and complex 
eigenvalues combine to create physical motion of the system. We will find 
that if the unforced system is started from a set of initial conditions that match 
the complex eigenvector then only a single mode is excited. We will show 
how to calculate the transient response of the system for that specific initial 
condition case and illustrate how only a single mode is excited.

Chapter 6 will cover how to use the state space formulation to obtain both 
frequency and time domain results with MATLAB.

5.2 State Space Form ulation

- z 1 r F i
k 1

^ Z 2 F 2

k 2

^ Z 3

m 1 m 2

c

m 3

\  v —

F 3

Figure 5.1: Original damped tdof system model.

Repeating the matrix equations of motion from (2.25):

4 0 0 " " z1" " c1 - c 1 0 " " z 1 "
0 m 2 0 z 2 + - c 1 (c1+ c2) - c 2 z 2
0 0 m3 _ _ z3 _ 0 - c 2 c2 _ _ z3 _

" k 1 - k 1 0 " z 1 'F1 ■

- k 1 (k1 + k 2) k 2 z 2 = F2
0 k 2 k 2 _ _z3 _ „F3 _

Expanding the equations:

m1 z1 + c1z 1 -  c1z 2 + k 1z1 -  k 1z 2 = F1

m 2z2 - c1z1 + (c1 + c2)z2 - c2z3 - k 1z1 + (k1 + k 2)z2 - k 2z3 = F2 (5.2a,b,c)

m3z3 -  c2z2 + c2z3 -  k 2z2 + k 2z3 = F3
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The three equations above are second order differential equations which 
require knowledge of the initial states of position and velocity for all three 
degrees of freedom in order to solve for the transient response.

In the state space formulation, the three second order differential equations are 
converted to six first order differential equations. Following typical state 
space notation, we will refer to the states as “x” and the output as “y.”

Start by solving (5.2) for the three equations for the highest derivatives, in this 
case the three second derivatives, z1, z2, z3:

z1 = (F1 -  c1z1 + c1z2 -  k 1z1 + k 1z2) /m 1 

z2 = (F2 + c1z1 - (c1 + c2)z2 + c2z3 + k 1z1 - (k1 + k 2)z2 + k z3) /m 2

z3 = (F3 + c2z2 -  c2z3 + k 2z2 -  k 2z3 ) / m3
(5.3a,b,c)

We now change notation, using “x” to define the six states; three positions 
and three velocities:

x1 = z1 Position of Mass 1 (5.4)

x2 = z1 Velocity of Mass 1 (5.5)
x3 = z2 Position of Mass 2 (5.6)

x4 = z2 Velocity of Mass 2 (5.7)
x5 = z3 Position of Mass 3 (5.8)

x6 = z3 Velocity of Mass 3 (5.9)

By using this notation, we observe the relationship between the state and its 
first derivatives:

z1 = x2 = x1 (5.10)

z2 = x 4 = x3 (5.11)

(5.12)

Also between the first and second derivatives:

(5.13)
(5.14)

(5.15)
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Rewriting the three equations for z1, z2, z3 in terms of the six states x1 

through x6 and adding the three equations defining the position and velocity 
relationships:

x1 = x 2
x2 = (F1 -  c1x 2 + c1x4 -  k 1x1 + k 1x3) /m 1 

x3 = x 4
3 4 (5.16a-f)

x4 = (F2 + c1x2 - ( c  + c2)x4 + c2x6 + k1x1 - (k1 + k 2 ^  + k2x5)/m 2

x5 = x6

x6 = (F3 + c2x 4 -  c2x 6 + k 2x3 -  k 2x5) /m 3

Rewriting the equations above in matrix form as:

0 1 0 0 0 0 0

V - k 1 - c 1 h . _c_ 0 0 Y
F1

x 1
m 1 m1 m 1 m1

x 1
m1

x 2
0 0 0 1 0 0

x 2
0

x 3 x3
= _k_ J L - ( k 1+ k 2) - ( c 1 + c2) _ka_ S i . + F2

x 4 x 4m 2 m 2 m 2 m 2 m 2 m 2 m 2
x5 x 50 0 0 0 0 1 0
x 6 x 66 _

0 0
к 2_ _̂ 2_ k 2 - c 2

6
F3

m3 m 3 m 3 m3 _ _ m 3

x = A x + B u
(5.17a,b)

5.3 Definition of State Space Equations of M otion

Schematically, a SISO state space system is represented as shown in Figure 
5.2. We will define the blocks in the following sections. The scalar input u(t) 
is fed into both the input matrix B and the direct transmission matrix D. The 
output of the input matrix is an nx1 vector, where “n” is the number of states. 
For a SISO system, the direct transmission matrix is a scalar, and its output is 
fed into a summing junction to be added to the output of the C matrix.

The output of the B matrix is added to the feedback term coming from the 
system matrix and is fed into an integrator block, where “I” is an nxn identify 
matrix. The output matrix has as many rows as outputs, a single row for a
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SISO system, and has as many columns as states, n. The output y(t) is the 
sum of the output of the C and D matrices.

Direct
Transmission

Matrix

u(t)

Input

Figure 5.2: State space system block diagram.

Notation for equations of motion in state space form is:

x = Ax + Bu (5.18)

where the A and B matrices are shown in (5.17a). Matrix A is known as 
the system matrix, matrix B is the input matrix, and scalar u is the input. The 
column vector x is the state of the system.

5.4 Inpu t M atrix  Form s

Because “u” is a scalar, the nature of the input matrix B changes depending 
on what input is used. If the system is a Single Input (SI) system with a force 
either at mass 1, 2 or 3, the B matrix changes as follows:
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"1 : B =

“ 0 " " 0 " " 0 '

F1 0 0

m 1 0 0

0 =B

Рч4 F2 =B

l-C 0

0 m 2 0

0 0 F3
0 0 _ m3 _

(5.19a,b,c)

If the same forcing function u (for example, a step function or sine function) is 
applied to several degrees of freedom simultaneously (for example, a force of 
magnitude F1 to mass 1 and a force of magnitude F3 to mass 3) the input 
matrix would become:

B

mi
0

0

0

_Fl
m3

(5.20)

For a Multi Input (MI) system, where forces are applied independent of one 
another to the separate masses, a multiple column input matrix is appropriate. 
For example, for different inputs at mass 1 and mass 2, none at mass 3, the 
input matrix would become:

B

0 0

H _ 0

m1 0
0 _F2_
0 m 2

0 0

0 0

(5.21)

0
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5.5 Output Matrix Forms

To account for the case a 
some linear combination 
the outputs to the states. 
matrix, is multiplied by t 
the inputs but that bypass

The output matrix C ha 
columns as states. The d: 
columns as the input matr

In our example, we are i 
velocities, so the matrix 
matrix and D is assumed

У1

У2

У3 = 

У4 

У5 

_ Уб _

Expanding, the matrix eqi

ere the desired output i 
the states, an output ma 
lso, a matrix D , known 
input “u” to account for 
e states.

y = Cx + Du

as many rows as outpu 
ct transmission matrix D 
B and as many rows as t

erested in all six of the 
tput equation becomes, 

to be zero:

1 0 0 0 0 0 x
0 1 0 0 0 0 x

0 0 1 0 0 0 x

0 0 0 1 0 0 x
0 0 0 0 1 0 x

0 0 0 0 0 1 x

become:

У1 = x1 (= Z1)

У2 = x 2 (= Z1)

У3 = x3 (= z2)

У4 = x 4 (= Z2)

У5 = x5 (= Z3)

Уб = x6 (= Z3)

; not just the states but is 
rix C is defined to relate 
as the direct transmission 
outputs that are related to

(5.22)

ts required and as many 
has the same number of 

he output matrix C.

states, displacements and 
where C is the identity

0

0

0

0_

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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If we were only interested in the three displacements and not the three 
velocities, the output equation would be, assuming D is Zero:

У1 1 0 0 0 0 0 ]

У2 = 0 0 1 0 0 0

_ У3 _ 0 0 0 0 1 0_
+ (0)(1) (5.30)

Expanding:

У1 = x1

У2 = x3 

У3 = x5

(= Z1)

(= Z2)

(= Z3)

(5.31)

(5.32)

(5.33)

On the other hand, if the outputs are linear combinations of the states, as in a 
control system problem, the output equation could look like (where a, b and c 
are scalars), assuming D is Zero:

У1 "0

У2 c

У3 1

У4 _ 0

0 0 a 0 b 0 

0 1 0  0 0
+ (0)(1) (5.34)

Expanding:

y 1 = ax3 + bx5 

У2 = c x 1 + x3 

У3 = x 1 

У4 = x 4

(= aZ2 + bZ3) 

(= cZ1 + Z2) 

(= Z1)

(= Z2 )

(5.35)

(5.36)

(5.37)

(5.38)
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If a single force is applied and a single output is desired (SISO), for example, 
a force applied at mass 1 and the output displacement at mass 3, assuming D
is zero:

x
x'2

y =[0 0 0 0 1 0]
x

+ (0)(1) (5.39)
x 4
x

x6

With all the possible variations of the output equation, the state equation never 
changes; it is always:

5.6 Complex Eigenvalues and Eigenvectors -  State Space Form

The most basic analysis one can perform on a dynamic system is to solve for 
its eigenvalues (natural frequencies) and eigenvectors (mode shapes). In this 
section we will develop the most general case where there are no limitations 
on the presence or magnitude of the two damping terms, which could result in 
complex eigenvalues and eigenvectors.

Start by postulating that there is a set of initial conditions such that if the 
system is released with that set, the system will respond in one of its natural 
modes of vibration. To that end, we set the forcing function to zero and write 
the homogeneous state space equations of motion:

is the ith eigenvalue, the natural frequency of the ith mode of vibration

xi is the vector of states at the ift frequency 

xmi is the ith eigenvector, the mode shape for the ith mode

x = Ax + Bu (5.40)

x = Ax (5.41)

We define motion in a principal mode as:

(5.42)

Where:
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For our tdof ( z1 to z3), six state ( x1 to x6) system, for the ith eigenvalue and 
eigenvector, the equation would appear as:

z1i x1i xm1i

z1i x 2i xm2i

Z2i = x3i = x eX,‘ = mi
xm3i

Z 2i x 4i xm4i

Z3j x5i xm5i

_z3i _ _ x6i _ _ xm6i _

e * (5.43)

Differentiating the modal displacement equation above to get the modal 
velocity equation:

xmi = d -  [x rn ^  ] = K ,dt
(5.44)

Substituting into the state equation and canceling the exponential terms leads 
to:

x = Ax

= AxmieX‘ 

= Axmi
( ^  -  A )xDj = 0

(5.45a-d)

Equation (5.45c) is the classic “eigenvalue problem.” If xmi is not equal to 
zero in (5.45d), a solution exists only if the determinant below is zero (Strang 
1998):

|( ( I  -  A )  = 0 (5.46)

Taking the system matrix A from (5.17a) and inserting in (5.45):
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0 1 0 0 0 0

- k 1 - c 1 -k_ _c_ 0 0
m1 m1 m1 m 1
0 0 0 1 0 0

_k_ J L - ( k  + k2) - ( c  + c2) _ka_ -£2_
m2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 0 1

0 0
_k^ _̂ 2_ k 2 - c 2
m3 m3 m 3 m 3 .

(5.47)

In Chapter 10 we will use the undamped version of (5.46) with c l = c2 = 0 to 
discuss “normal” modes, where we will find that taking the determinant in 
closed form is practical. For the tdof damped system matrix, taking the closed 
form determinant is far too complicated so we will use MATLAB’s “eig” 
function to solve the eigenvalue problem numerically, using specific values of 
m, c and k. We will use the MATLAB code tdof_non_prop_dam ped.m  as 
we continue our exploration of complex modes.

5.7 MATLAB Code tdof_non_prop_dam ped.m : M ethodology, Model 
Setup, Eigenvalue C alculation Listing

The sequence of development of complex modes is as follows:

1) solve original damped system equation for 
complex eigenvalues and eigenvectors

2) normalize the eigenvector entries to unity

3) calculate magnitude and phase angle of each of the 
eigenvector entries

4) use the Argand diagram to visualize the motion of 
a complex mode

5) calculate the percentage of critical damping 
(damping ratio) for each mode

6) calculate the motions of the three masses for all 
three modes
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7) plot the real and imaginary displacements of each 
of the degrees of freedom separately

We have explored how to calculate the eigenvectors or mode shapes for an 
undamped problem using the transfer function matrix (Chapter 3). The modes 
for the undamped problem were real modes, meaning that the position 
elements of the eigenvectors were real, not complex, and we were able to plot 
diagrams showing the shape of the modes. For complex modes, it is not 
possible to draw a picture of the deformed mode shape because there are 
phase differences between the various degrees of freedom which prevent them 
from reaching their maximum/minimum points at the same point in time. 
This leads to the apparent “traveling wave” in an animated mode.

The first section of tdof_non_prop_dam ped.m  sets up the state space 
equations of motion and solves the eigenvalue problem for damping values of 
c1 = 0.1, c2 = 0.2 :

% tdof_non_prop_damped.m non-proportionally damped tdof model

clf;

legend off; 

subplot( 1,1,1); 

clear all;

% define the values of masses, springs, dampers

m1 = 1; 
m2 = 1; 
m3 = 1;

k1 = 1; 
k2 = 1;

% define arbitrary damping values

c1 = input('input value for c1, default 0.1, ... ');

if (isempty(c1))
c 1 = 0.1;

else
end

c2 = input('input value for c1, default 0.2, ... ');

if (isempty(c2))
c2 = 0.2;

else
end
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% define the system matrix, aphys, in physical coordinates

0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

% solve for the eigenvalues of the system matrix

[xm,lambda] = eig(aphys);

% take the diagonal elements of the generalized eigenvalue matrix lambda

lambdad = diag(lambda);

The six eigenvalues, lambda values, are listed below. Since we have three 
degrees of freedom, there should be three sets of complex conjugate 
eigenvalues.

xm =

Columns 1 through 4

-0.0567 - 0.1940i -0.0567 + 0.1940i 
0.3452 - 0.0535i 0.3452 + 0.0535i 
0.0624 + 0.4029i 0.0624 - 0.4029i 
-0.7046 + 0.0162i -0.7046 - 0.0162i 
-0.0057 - 0.2089i -0.0057 + 0.2089i 
0.3593 + 0.0373i 0.3593 - 0.0373i

0.2886 - 0.4085i 0.2886 + 0.4085i 
0.3865 + 0.3190i 0.3865 - 0.3190i 
-0.0218 - 0.0123i -0.0218 + 0.0123i 
0.0139 - 0.0209i 0.0139 + 0.0209i 
-0.2668 + 0.4208i -0.2668 - 0.4208i 
-0.4004 - 0.2981i -0.4004 + 0.2981i

Columns 5 through 6

0.0000 - 0.5774i 
0.0000 + 0.0000i 
0.0000 - 0.5774i 
0.0000 + 0.0000i 
0.0000 - 0.5774i 
0.0000 + 0.0000i

0.0000 + 0.5774i 
0.0000 - 0.0000i 
0.0000 + 0.5774i 
0.0000 - 0.0000i 
0.0000 + 0.5774i 
0.0000 - 0.0000i

lambda =

Columns 1 through 4

0 
0 
0
0.9991i

-0.2250 + 1.7141i 0 0
0 -0.2250 - 1.7141i 0 
0 0 -0.0750 + 0.9991i
0 0 0 -0.0750 -
0 0 0 0
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0 0 0 0

Columns 5 through 6

0 0 
0 0 
0 0 
0 0 

-0.0000 + 0.0000i 0 
0 -0.0000 - 0.0000i

lambdad =

-0.2250 + 1.7141i 
-0.2250 - 1.7141i 
-0.0750 + 0.9991i 
-0.0750 - 0.9991i 
-0.0000 + 0.0000i 
-0.0000 - 0.0000i

Note that the two eigenvalues which correspond to each of the three modes 
are complex conjugates of each other, and that the real parts of the second and 
third mode eigenvalues are all negative.

We did not specify the form of the eigenvalues, which in the most general 
case can be complex, as in the second and third modes above. We will now 
discuss the components of complex eigenvalues. We use the term Xn1 to 
describe the first complex eigenvalue of any of the three sets of eigenvalues 
above. The term Xn2 is used to describe the second complex eigenvalue of

the set, and the complex conjugacy of the two is stated as: Xn2 = , where 
the “*” indicates a complex conjugate. The real and imaginary parts will be 
defined using o nx and ranx, respectively:

X n1 = о  n1 + jffln1
. (5.48)

Xn2 = K 1 = °n! -  j®n1

See Figure 5.3 for graphical descriptions of the components of a complex 
eigenvalue. The figure shows two complex conjugate eigenvalues (poles) in 
the left half plane as “x” symbols. The real parts of the two eigenvalues are 
the same and are given the symbol о  , with the imaginary parts both having a 
distance from the origin of ю , referred to as the damped natural frequency. 
The radial distance from the origin to the poles is given by юп and is referred 
to as the undamped natural frequency. The angle between the imaginary axis 
and the line from the origin to the pole is used to define the amount of
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damping of the mode, referred to as Z , the damping ratio or percentage of 
critical damping. If о  = 0 , 0 = 0 and there is no damping, therefore

ю = юп.

Im(s)

Re(s)

о

Figure 5.3: Complex eigenvalue (pole) nomenclature in  complex plane.

Referring to Figure 5.3 for the definition of 0 , the equation for calculating Z 
for a mode from the real and imaginary components of the eigenvalue is:

Z = sin 0

5.8 Eigenvectors -  Norm alized to Unity

The section of code below reorders the eigenvectors from low to high 
frequency and normalizes them. The normalization procedure is to divide 
each eigenvector by its position state for mass 1, the first term in each 
eigenvector.

% now reorder the eigenvalues and eigenvectors from low to high frequency,
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% keeping track of how the eigenvalues are ordered in reorder the
% eigenvectors to match, using indexhz

[lambdaorder,indexhz] = sort(abs(imag(lambdad)));

for cnt = 1:length(lambdad)

lambdao(cnt,1) = lambdad(indexhz(cnt)); % reorder eigenvalues

xmo(:,cnt) = xm(:,indexhz(cnt)); % reorder eigenvector columns

end

% now normalize the eigenvectors with respect to the position of mass 1, which
% will be set to 1.0

for cnt = 1:length(lambdad)

xmon1(:,cnt) = xmo(:,cnt)/xmo(1,cnt);

end

The eigenvectors, normalized such that the displacements of mass 1 are set to
1.0 are shown below as xm onl.

lambdao =

-0.0000 + 0.0000i
-0.0000 - 0.0000i
-0.0750 + 0.9991i
-0.0750 - 0.9991i
-0.2250 + 1.7141i
-0.2250 - 1.7141i

xmo =

Columns 1 through 4

0.0000 - 0.5774i 0.0000 + 0.5774i 0.2886 - 0.4085i 0.2886 + 0.4085i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.3865 + 0.3190i 0.3865 - 0.3190i
0.0000 - 0.5774i 0.0000 + 0.5774i -0.0218 - 0.0123i -0.0218 + 0.0123i
0.0000 + 0.0000i 0.0000 - 0.0000i 0.0139 - 0.0209i 0.0139 + 0.0209i
0.0000 - 0.5774i 0.0000 + 0.5774i -0.2668 + 0.4208i -0.2668 - 0.4208i
0.0000 + 0.0000i 0.0000 - 0.0000i -0.4004 - 0.2981i -0.4004 + 0.2981i

Columns 5 through 6

-0.0567 - 0.1940i -0.0567 + 0.1940i
0.3452 - 0.0535i 0.3452 + 0.0535i
0.0624 + 0.4029i 0.0624 - 0.4029i
-0.7046 + 0.0162i -0.7046 - 0.0162i
-0.0057 - 0.2089i -0.0057 + 0.2089i
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0.3593 + 0.0373i 0.3593 - 0.0373i

xmon1 =

Columns 1 through 4

1.0000 - 0.0000i 1.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 + 0.0000i

-0.0000 + 0.0000i -0.0000 - 0.0000i
1.0000 - 0.0000i 1.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 0.0000i

1.0000 1.0000 
-0.0750 + 0.9991i -0.0750 - 0.9991i 
-0.0050 - 0.0498i -0.0050 + 0.0498i 
0.0502 - 0.0013i 0.0502 + 0.0013i 

-0.9950 + 0.0498i -0.9950 - 0.0498i 
0.0248 - 0.9978i 0.0248 + 0.9978i

Columns 5 through 6

1.0000 - 0.0000i 1.0000 + 0.0000i 
-0.2250 + 1.7141i -0.2250 - 1.7141i 
-2.0001 - 0.2630i -2.0001 + 0.2630i 
0.9009 - 3.3691i 0.9009 + 3.3691i 
1.0001 + 0.2630i 1.0001 - 0.2630i 

-0.6759 + 1.6550i -0.6759 - 1.6550i

The six rows of each eigenvector are related to the six states, x1 to x 6, where 

x1; x3, x5 are the displacement states and x2, x 4, x 6 are the velocity states. 
Each velocity row is equal to the displacement row associated with it times its 
eigenvector, as can be seen by repeating (5.41) and differentiating it.

(5.50) 
X i =X . ( x ^ )

The tdof model has three degrees of freedom, so we should have three modes 
of vibration. The first two columns of the eigenvector matrix define mode 1, 
the third and fourth define mode 2 and the fifth and sixth columns define 
mode 3. Like the two complex conjugate eigenvalues for each mode, the two 
eigenvector columns for each of the modes are complex conjugates of each 
other.

5.9 Eigenvectors -  M agnitude and Phase Angle R epresentation

Another way of looking at the eigenvectors is to calculate the magnitude and 
phase angle for each entry. The code for doing this follows.

% now calculate the magnitude and phase angle of each of the eigenvector
% entries

for row = 1:length(lambdad)
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for col= 1 :length(lambdad) 

xmon1mag(row,col) = abs(xmon1(row,col)); 

xmon1ang(row,col) = (180/pi)*angle(xmon1(row,col));

end

end

lambdao

xmo

xmon1

xmon1mag

xmon1ang

The magnitude and phase angles are:

xmon1mag =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 1.0019 1.0019 1.7288 1.7288
1.0000 1.0000 0.0501 0.0501 2.0173 2.0173
0.0000 0.0000 0.0502 0.0502 3.4875 3.4875
1.0000 1.0000 0.9962 0.9962 1.0341 1.0341
0.0000 0.0000 0.9981 0.9981 1.7877 1.7877

xmon1ang
0 0 0 0 0 0

90.0000 -90.0000 94.2930 -94.2930 97.4782 -97.4782
0.0000 0.0000 -95.7723 95.7723 -172.5081 172.5081

90.0000 -90.0000 -1.4793 1.4793 -75.0299 75.0299
0.0000 0.0000 177.1334 -177.1334 14.7356 -14.7356

90.0000 -90.0000 -88.5736 88.5736 112.2138 -112.2138

We will see in Chapter 7 that undamped eigenvector oscillatory modes have 
phases that are multiples of 90°. For the damped complex eigenvectors the 
phases are slightly offset from being 90° multiples of each other.

5.10 Complex Eigenvectors Com bining to Give Real M otions

Now that we have solved for the complex eigenvalues and eigenvectors, we 
will discuss how we can have the system respond in only a single mode of 
vibration by releasing the system with a particular set of initial conditions. 
We will answer the following question:
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How does a mode that is described by complex eigenvalues and 
eigenvectors give “real,” physically observable motions 
(Newland 1989)?

For the nth mode, the motion in that mode is defined as the sum of the motions 
due to the two conjugate eigenvalues/eigenvectors for that mode, as shown in
(5.51). Substituting the complex conjugate value and collecting exponential 
terms:

x (t) = ^ x -1  + ^ x - 2  

= e ^  x - 1  + e °  x - 1

= e(°n1 + j“n1)t x :1  + e(°n1 -j“n1)t x - 1 (5.51)

= e°n1t (e j“n1tx - 1  + e-j“n1tx - 1 )

= 2e°n1t R e(x^)

The ej“n1tx :1 term represents a vector of magnitude |x :1 | which is rotating

counter-clockwise at the rate of ю:1 radians/sec. The e-j“n1tx-1 term represents

a vector of magnitude |x-J which is rotating clockwise at the rate of ю:1

radians/sec. This counter-rotation is the key to understanding how the sum of 
two complex numbers becomes real. Since the two counter-rotating 
eigenvector terms are complex conjugates, their imaginary portions are of 
opposite sign and as they rotate, the sum of the two results in only a real 
component as the two imaginary portions cancel each other. See the Argand 
diagram in the next section for a graphical representation.

The e0n1t term is an exponentially decreasing scalar which multiplies the sum 
of the two counter-rotating vectors. The o :1 term is the real value of the 
eigenvalue, and for a stable mode, with the poles in the left half of the s-plane, 
the value is always negative. Thus, e0n1t is exponentially decreasing with a 
time constant of 1/ o :1 .

For real modes, the poles are on the imaginary axis, so o :1 = 0 and e(0)t = 1. 
The two counter-rotating vectors are not attenuated in amplitude with time, so 
the motion is undamped.

If the initial conditions for the system are set at one of the eigenvectors, the 
system will respond in only that mode. For systems w ith complex modes, 
initial conditions of both displacem ents and velocities of all the masses 
m ust be set sim ultaneously in o rd er for the system to respond only in tha t 
mode. If the initial conditions for the system are set at any other value, the
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resulting motion will be composed of a superposition of the motions of 
several modes.

For undamped systems with normal modes, either the displacement or 
velocity initial conditions can be set and the system will respond only in that 
mode (see Chapter 7 for more details).

Equation (5.51) will be used in the MATLAB code for plotting the motion of 
the system for the two oscillatory modes.

5.11 A rgand D iagram  Introduction

Since we are dealing with complex modes where different parts of the 
structure reach their maximum and minimum positions at different times, we 
cannot plot deformed mode shape plots as we did for the undamped model in 
Chapter 3. The best way to visualize complex modes is by animating the 
mode shape, allowing one to see the different parts of the structure moving in 
time.

The use of an Argand or Phasor diagram is another way to visualize the 
motion. It plots rotating eigenvectors of position and velocity in the complex 
plane for each degree of freedom in the eigenvector and shows how the 
complex conjugate eigenvector components add to create the “real” motion.

The normalized eigenvector matrix, xmon1, is repeated below. The first two 
states, position and velocity of mass 1, dof z1, are highlighted in bold type for 
the second mode of vibration.

Figure 5.4 shows Argand diagrams for the highlighted mode and states in the 
eigenvector matrix below. All three plots are in the complex plane. The 
upper left-hand plot shows the position and velocity eigenvector components 
for the third column of the eigenvector matrix, where the position component 
is 1+0j and the velocity component is -0.075+0.999j. The position 
component plots from 0 to 1 on the real axis. Notice that the tip of the 
velocity vector is slightly to the left of the imaginary axis. The ej“zt term 
indicates that the position and velocity vectors are both rotating in the 
counter-clockwise direction at a speed of ю radians/sec, starting from the 
initial locations defined by the eigenvector components.
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xmonl =
1.0000 
0.0000 + 0.0000i
1.0000 + 0.0000i 
0.0000 + 0.0000i
1.0000 + 0.0000i 
0.0000 + 0.0000i

1.0000
0.0000 - 0.0000i
1.0000 - 0.0000i
0.0000 - 0.0000i
1.0000 - 0.0000i
0.0000 - 0.0000i

1.0000
-0.0750 + 0.9991i
-0.0050 - 0.0498i 
0.0502 - 0.0013i 
-0.9950 + 0.0498i 
0.0248 - 0.9978i

1.0000
-0.0750 - 0.9991i
-0.0050 + 0.0498i 
0.0502 + 0.0013i 
-0.9950 - 0.0498i 
0.0248 + 0.9978i

1.0000
-0.2250 + 1.7141i 
-2.0001 - 0.2630i 
0.9009 - 3.3691i 
1.0001 + 0.2630i 

-0.6759 + 1.6550i

1.0000
-0.2250 - 1.7141i 
-2.0001 + 0.2630i 
0.9009 + 3.3691i 
1.0001 - 0.2630i 

-0.6759 - 1.6550i

Im

Figure 5.4: Argand diagram explanation.

The upper right-hand plot is similar to the left-hand plot except that the fourth 
column entries of the eigenvector matrix for the first two states are plotted and 
the two vectors are rotating in the clockwise direction. Note that the real 
components of the position and velocity components are the same as the third 
column, but that the imaginary components are complex conjugates of each 
other.
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The lower plot illustrates the complex plane with both third and fourth 
eigenvectors shown on the same plot after rotating through the angle ra2t . At 
any time “t,” the two counter-rotating position vectors can be added to give 
the current position. At any time, the two imaginary components cancel out, 
leaving only the sum of the two real axis components as the “real” position. 
The same vector addition of the two counter-rotating velocity vectors will 
give the “real” velocity.

For an undamped model, the lengths of the two original eigenvector 
components stay the same. For the damped model, the lengths of all the 
vectors decrease continuously with a time constant of 1/ o 2 .

Looking at the Argand diagram above, which shows the “real” motion as 
twice the real axis component of the vector, it is clear that the motion as a 
function of time can also be written as:

x(t) = 2 e°"1‘ |xn1|cos(mt + фш)
~ t (5-52) 

= 2e°n1‘ Re(xn1)

where the phase angle Фп is given by:

t a n ^ J  = Im(zm)/R e (zm) (5.53)

5.12 C alculating Z , P lotting Eigenvalues in Complex Plane, 
Frequency Response

This section of code calculates the percentage of critical damping for each of 
the three modes, Z  using (5.49).

% calculate the percentage of critical damping for each mode

zeta1 = 0

theta2 = atan(real(lambdao(3))/imag(lambdao(3)));
zeta2 = abs(sin(theta2))

theta3 = atan(real(lambdao(5))/imag(lambdao(5)));
zeta3 = abs(sin(theta3))

plot(lambda,'k*')
grid on
axis([-3 1 -2 2])
axis('square')
title('Damped Eigenvalues')
xlabel('real')
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ylabel('imaginary')
text(real(lambdao(3))-1,imag(lambdao(3))+0.1,['zeta = ',num2str(zeta2)]) 
text(real(lambdao(5))-1,imag(lambdao(5))+0.1,['zeta = ',num2str(zeta3)]) 
disp('execution paused to display figure, "enter" to continue'); pause

Damped Eigenvalues

1

0.5

1 z e t a  =  0 .1 3 0 1 5  , i

-L

1
_L
1
1
1
1

z e t a  =  0 . 0 7 4 8 5 7 ^

i i 
i i 
i i 
i i

1
1
1
1

T
1

- i f  '
i i 
i i

i i
1---------- h - -
1

i i 
------------------ 1----------------------- ф.,---------------------------

i i
1---------- k - -
1
1

i i 

*

-1
real

Figure 5.5: Plot of eigenvalues in  complex plane for tdof model w ith c1 =  0.1, c2 =  0.2.

state space, z11, z33 db magnitude state space, z21, z12, z23, z32 db magnitude

state space, z31, z13 db magnitude state space, z22 db magnitude

frequency, rad/sec frequency, rad/sec

Figure 5.6: Frequency response magnitude plots.
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0
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state space, z11, z33 phase state space, z21, z12, z23, z32 phase

state space, z31, z13 phase state  space, z22 phase

frequency, rad/sec frequency, rad/sec

Figure 5.7: Frequency response phase plots.

The magnitude and phase frequency response plots for the system with 
c1 = 0.1 and c2 = 0.2 are shown above, using tdofss.m  to plot. Note the 
significant attenuation of the resonances with zetas of 7.5% and 13% for 
modes 1 and 2, respectively. (Note: This amount of damping is very difficult 
to obtain in most practical structures without the use of additive damping.)

5.13 In itial Condition Responses of Individual Modes

The code below calculates the initial condition response for the oscillatory 
(not rigid body) second and third modes of the system when started with 
initial conditions defined by the appropriate eigenvector. Equation (5.51) is 
repeated below to show the form of the equation for x(t) that is used in the 
code.

x (t) = e°"1t(e j“”1t x„1 + e-j“”2t x ^ )

= e ^ e ^  x„1) + e0n1t(e -j“"2t xn2)

The real and imaginary components of the eigenvalues are calculated to give
O and ffl in the equation above. The real and imaginary displacements of 
each of the three masses are then calculated for both oscillatory modes for a 
time period of 15 seconds.

% calculate the motions of the three masses for all three modes - damped case

t = 0:.12:15;
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sigmall = real(lambdao(1)); 
omegall = imag(lambdao(1));

sigmal2 = real(lambdao(2)); 
omega12 = imag(lambdao(2));

sigma2l = real(lambdao(3)); 
omega21 = imag(lambdao(3));

sigma22 = real(lambdao(4)); 
omega22 = imag(lambdao(4));

sigma31 = real(lambdao(5)); 
omega31 = imag(lambdao(5));

sigma32 = real(lambdao(6)); 
omega32 = imag(lambdao(6));

% sigma for first eigenvalue for mode 1
% omega for first eigenvalue for mode 1

% sigma for second eigenvalue for mode 1
% omega for second eigenvalue for mode 1

% sigma for first eigenvalue for mode 2
% omega for first eigenvalue for mode 2

% sigma for second eigenvalue for mode 2
% omega for second eigenvalue for mode 2

% sigma for first eigenvalue for mode 3
% omega for first eigenvalue for mode 3

% sigma for second eigenvalue for mode 3
% omega for second eigenvalue for mode 3

% motion of three masses for mode 1

z111r = exp(sigma11*t).*(exp(i*omega11*t 
z112r = exp(sigma12*t).*(exp(i*omega12*t

z121r = exp(sigma11*t).*(exp(i*omega11*t 
z122r = exp(sigma12*t).*(exp(i*omega12*t

z131r = exp(sigma11*t).*(exp(i*omega11*t 
z132r = exp(sigma12*t).*(exp(i*omega12*t

% motion of three masses for mode 2

z211r = exp(sigma21*t).*(exp(i*omega21*t 
z212r = exp(sigma22*t).*(exp(i*omega22*t

z221r = exp(sigma21*t).*(exp(i*omega21*t 
z222r = exp(sigma22*t).*(exp(i*omega22*t

z231r = exp(sigma21*t).*(exp(i*omega21*t 
z232r = exp(sigma22*t).*(exp(i*omega22*t

% motion of three masses for mode 3

n1omx 1,1)); %% mass 1

n1omx4̂

1,2)); % mass 1

n1omx4̂

3,1)); % mass 2

* m 0 1 3,2)); % mass 2

* X m 0 1 5,1)); % mass 3

n1omx 5,2)); % mass 3

n1omx4̂ (1,3)); % mass 1

n1omx4̂ (1,4)); % mass 1

* X m 0 1 (3,3)); % mass 2

* X m 0 1 (3,4)); % mass 2

n1omx)* (5,3)); % mass 3

n1omx)* (5,4)); % mass 3

z311r= exp(sigma31*t).*(exp(i*omega31*t * X m 0 1 1,5)); % mass 1
z312r= exp(sigma32*t).*(exp(i*omega32*t *xmon1 1,6)); % mass 1

z321r = exp(sigma31*t).*(exp(i*omega31*t *xmon1 3,5)); % mass 2
z322r = exp(sigma32*t).*(exp(i*omega32*t *xmon1 3,6)); % mass 2

z331r = *31agemoi*p(xp(e.**31amig(sip(xpe *xmon1 5,5)); % mass 3
z332r = exp(sigma32*t).*(exp(i*omega32*t *xmon1 5,6)); % mass 3
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The code listing below is to plot various combinations of real and imaginary 
components of the displacements of the three masses when released in states 
which match the eigenvectors.

5.14 Plotting Initial Condition Response, Listing

% plot real and imaginary motions of each mass for the two complex conjugate
% eigenvectors of mode 2

plot(t,real(z211 ),'k-',t,real(z212),'k+-',t,imag(z211 ),'k.-',t,imag(z212),'ko-')
title('non-prop damped real and imag for z1, mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z221),'k-',t,real(z222),'k+-',t,imag(z221),'k.-',t,imag(z222),'ko-')
title('non-prop damped real and imag for z2 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z231),'k-',t,real(z232),'k+-',t,imag(z231),'k.-',t,imag(z232),'ko-')
title('non-prop damped real and imag for z3 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z211+z212),'k-',t,real(z221+z222),'k+-',t,real(z231+z232),'k.-')
title('non-prop damped, z1, z2, z3 mode 2')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')
axis([0 max(t) -2 2])
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

% plot subplots for notes

subplot(2,2,1)
plot(t,real(z211 ),'k-',t,real(z212),'k+',t,imag(z211 ),'k. -',t,imag(z212),'ko-')
title('non-prop damped real and imag for z1, mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on
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subplot(2,2,2)
plot(t,real(z221),'k-',t,real(z222),'k+',t,imag(z221),'k.-',t,imag(z222),'ko-')
title('non-prop damped real and imag for z2 mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

subplot(2,2,3)
plot(t,real(z231),'k-',t,real(z232),'k+',t,imag(z231),'k.-',t,imag(z232),'ko-')
title('non-prop damped real and imag for z3 mode 2')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

subplot(2,2,4)
plot(t,real(z211+z212),'k-',t,real(z221+z222),'k+-',t,real(z231+z232),'k.-') 
title('non-prop damped, z1, z2, z3 mode 2') 
legend('mass 1','mass 2','mass 3') 
grid on
xlabel('time, sec') 
axis([0 max(t) -2 2])

disp('execution paused to display figure, "enter" to continue'); pause

subplot( 1,1,1)

% plot mode 3

plot(t,real(z311 ),'k-',t,real(z312),'k+-',t,imag(z311 ),'k.-',t,imag(z312),'ko-')
title('non-prop damped real and imag for z1, mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z321),'k-',t,real(z322),'k+-',t,imag(z321),'k.-',t,imag(z322),'ko-')
title('non-prop damped real and imag for z2 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -2 2])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z331),'k-',t,real(z332),'k+-',t,imag(z331),'k.-',t,imag(z332),'ko-')
title('non-prop damped real and imag for z3 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

________plot(t,real(z311+z312),'k-',t,real(z321+z322),'k+-',t,real(z331+z332),'k.-')
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title('non-prop damped, z1, z2, z3 mode 3') 
legend('mass 1','mass 2','mass 3') 
xlabel('time, sec') 
axis([0 max(t) -4 4]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

% plot subplots for notes

subplot(2,2,1)
plot(t,real(z311 ),'k-',t,real(z312),'k+-',t,imag(z311 ),'k.-',t,imag(z312),'ko-')
title('non-prop damped real and imag for z1, mode 3')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

subplot(2,2,2)
plot(t,real(z321),'k-',t,real(z322),'k+-',t,imag(z321),'k.-',t,imag(z322),'ko-')
title('non-prop damped real and imag for z2 mode 3')
legend('real','real','imag','imag')
axis([0 max(t) -2 2])
grid on

subplot(2,2,3)
plot(t,real(z331),'k-',t,real(z332),'k+-',t,imag(z331),'k.-',t,imag(z332),'ko-')
title('non-prop damped real and imag for z3 mode 3')
legend('real','real','imag','imag')
xlabel('time, sec')
axis([0 max(t) -1 1])
grid on

subplot(2,2,4)
plot(t,real(z311+z312),'k-',t,real(z321+z322),'k+-',t,real(z331+z332),'k.-')
title('non-prop damped, z1, z2, z3 mode 3')
legend('mass 1','mass 2','mass 3')
xlabel('time, sec')
axis([0 max(t) -4 4])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

5.15 P lotted  Results: A rgand and In itial Condition Responses

The next four sections plot Argand and initial condition transient responses 
for the two oscillatory modes, illustrating the canceling of the imaginary 
components and the doubling of the real components.
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5.15.1 Argand Diagram, Mode 2
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Pos = 1 + 0j 
Vel = -.075 + .99
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Figure 5.8 Argand diagram for three degrees o f  freedom for mode 2, complex damping.
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The plots below show the motions of the masses decreasing due to the 
damping. Once again, the imaginary components are out o f phase and cancel 
each other, leaving only twice the real component as the final motion. Unlike 
the undamped case, the three masses do not reach their maximum or minimum 
positions at the same time. Since the damping is quite small, it is hard to see 
on the plots the small differences in times at which the maxima and minima 
are reached. Note that the unequal damping values for the two dampers make 
the center mass have a small motion in mode 2. We showed in Chapter 3 that 
for the undamped case mass 2 has no motion for mode 2.

5.15.2 Time Domain Responses, Mode 2

non-prop damped real and imag for z1, mode 2 non-prop damped real and imag for z2 mode 2

non-prop damped real and imag for z3 mode 2 non-prop damped, z1, z2, z3 mode 2

time, sec time, sec

Figure 5.9: Initial condition transient response for mode 2.
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5.15.3 Argand Diagram, Mode 3

Figure 5.10: Argand diagram for three degrees o f  freedom for mode 3, complex damping.
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Compared to the responses for the mode 2 in Figure 5.9, the response for 
mode 3 damps out faster for two reasons. First, it has higher damping, 13% 
versus 7.5%, as shown in Figure 5.5. Secondly, even if zeta were the same for 
the two modes, the higher frequency of mode 3 will create higher velocities, 
hence higher damping from the velocity-dependent damping term.

non-prop damped real and imag for z1, mode 3 non-prop damped real and imag for z2 mode 3

5.15.4 Time Domain Responses, Mode 3

non-prop damped real and imag for z3 mode 3 non-prop damped, z1, z2, z3 mode 3

time, sec time, sec

Figure 5.11: Initial condition transient response for mode 3.

© 2001 by Chapman & Hall/CRC



Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P5.1 Write the damped equations for the two dof system in state space form, 
both expanded and matrix. Show the input matrix B for a step force of 
magnitude 1 to mass 1 and magnitude -2  for mass 2. Show the output matrix 
C  for the following outputs:

a) Position of masses 1 and 2

b) Position and velocity of mass 1

c) 2 times velocity of mass 1 plus 3 times the position of mass 2

P5.2 Set up the eigenvalue problem for the damped two dof problem as in 
(5.46).

P5.3 (MATLAB) With m 1 = m 2 = m = 1, k 1 = k 2 = k = 1, modify the code 
in tdof_non_prop_dam ped.m  for the two dof damped model with 
c1 = c2 = 0.1 and:

a) list the complex eigenvalues, real and imaginary form

b) list the complex eigenvalues, magnitude and phase angle form

c) normalize the eigenvectors for unity values of the position of mass 1 
and hand plot the Argand diagrams for the system

d) list the percentage of critical damping for each mode

e) plot the complex eigenvalues in the s-plane and correlate the three 
different descriptions in (a), (b) and (d)

P5.4 (MATLAB) Set m1 = m 2 = m = 1, k 1 = k 2 = k = 1 and plot the initial 
condition responses for the system in initial conditions which match the two 
damped eigenvectors.

P5.5 Set m 1 = m 2 = m = 1, k 1 = k 2 = k = 1 and hand plot the Argand 
diagrams for modes 1 and 2.
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CHAPTER 6

STATE SPACE: 

FREQUENCY RESPONSE, TIME DOMAIN

6.1 In troduction  -  Frequency Response

This chapter will begin with the state space form of the equations of motion. 
We will use Laplace transforms to define the transfer function matrix. Next 
we will solve for the closed form transfer function matrix of the undamped 
tdof model using a symbolic algebra program and compare the answer with 
the solution presented in Chapter 2. MATLAB code will be used to set up 
frequency response calculations, using the full system matrix which allows the 
user to define damping values.

6.2 Solving fo r T ransfer Functions in State Space Form  Using Laplace 
T ransform s

Starting with the complete set of state space equations:

Ignoring initial conditions to solve for steady state frequency response, take 
the matrix Laplace transform of the state equation and solve for x(s) 
(Appendix 2):

x = Ax + Bu 

y = Cx + Du
(6.1)

sIx(s) = Ax(s) + Bu(s) (6.2)

(sI -  A)x(s) = Bu(s) (6.3)

x(s) = (sI -  A) 1 Bu(s) (6.4)

Substituting into the Laplace transform of the output equation:

y(s) = C (sI -  A)-1 Bu(s) + Du(s) (6.5)

y(s)
Solving for the transfer fu nc tion------ :

u(s)
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—  = C (s I  -  A)-1 B + D 
u(s)

(6.6)

nx1 = (nxn)x(nxn)x(nx1) + (nx1)

Checking consistency of sizes

Letting m1 = m 2 = m 3 = m, k 1 = k 2 = k 3 = k, c1 = c2 = 0 and rewriting the 
matrix equations of motion to match the original undamped problem used in 
Section 2.4.3 allows calculation of results by hand. The MATLAB code 
which follows, however, will allow any  values to be used for the individual 
masses, dampers and stiffnesses.

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

- k 1 - c 1 h . _c_ 0 0
m1 m 1 m1 m 1
0 0 0 1 0 0

_k_ J L -(k1 + k2) -(c1 + c2) k ^ _£2_
m 2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 0 1

0 0
k ^ i L k 2 - c 2
m 3 m3 m 3 m3 .
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s -1 0 0 0 0

_k_ c1
s + —  

m1
- k 1 - c 1 0 0

m1 m 1 m1
0 0 s -1 0 0

- k 1 - c 1 (k1 + k2) s + (c1 + c2) k 2 - c 2
m 2 m 2 m 2 m 2 m 2 m 2

0 0 0 0 s -1

0 0 k 2 - c 2 к 2_ c2
s + —

m3 m 3 m3 m3

s -1 0 0 0 0

k
s

- k
0 0 0

m m
0 0 s -1 0 0

- k
0

2k s - k
0

m m m
0 0 0 0 s -1

0 0
- k
m

0
k
m

s

(6.8)

Here, in order to develop the entire 3x3 transfer function matrix, we will use a 
MIMO representation of B and C.

Taking B equal to the 6x3 matrix gives transfer functions for all three forces:

B

0 0 0

1/m 1 0 0

0 0 0

0 1 /m 2 0

0 0 0

0 0 1/m.

(6.9)

Taking C  equal to the 3x6 matrix below gives the three displacement transfer 
functions as outputs:
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C =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

(6.10)

6.3 T ransfer Function M atrix

Now that we have the terms required, we can substitute into the equation for 
the transfer function matrix:

y (s )  = C (s I  -  A)-1 B + D 
u(s)

(6.11)

We have an expression for (sI -  A) above, but need to have its inverse. 
Using a symbolic algebra program to calculate the inverse even for this 
relatively small 3x3 problem yields a result which is too lengthy to be listed 
here in its entirety. To show that the calculation by hand really works, 
however, we will expand the equation above symbolically and then substitute 
the appropriate terms from the inverse to give the results for several of the 
transfer functions. We will refer to the (s I  -  A )-1 matrix by the notation 
“sia” and expand it as follows:

y (s )  = C (s I  -  A)-1 B 
u(s)

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

siai,

siai2

siai3

siai.

siai5

siab

siair

siai2

siai3

siai4

siai5

siai6

siai1

siai2

siai3

siai4

siai5

siai6

siai14 siai15 siai

siai24 siai25 siai

siai34 siai35 siai

siai44 siai45 siai

siai54 siai55 siai

siai64 siai65 siai

0 0 0

1/m 0 0

0 0 0

0 1/m 0

0 0 0

0 0 1/m

16

26

36

46

56

66
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siai11 siai12 siai13 siai14 siai15 siai

siai31 siai32 siai33 siai34 siai35 siai

siai51 siai52 siai53 siai54 siai55 siai

0 0 0

1/m 0 0

0 0 0

0 1/m 0

0 0 0

0 0 1/m

i14/m  siai16/msiai12 / m siai14 / m siai16 

siai32 / m siai34 / m siai36 / m 

siai54 / m siai56 / msiai52 / m

(6.12)

Listing the values for the siaixx terms used above from the symbolic algebra 
solution:

siai12 = siai56 = (m3s4 + 3m2ks2 + m k2)/D en  

siai32 = siai14 = siai54 = siai36 = (m2ks2 + mk2)/D en  

siai34 = (m3s4 + 2m 2ks2 + mk2)/D en  

siai52 = siai16 = m k2 / Den

where Den = s (m s + 4m ks + 3mk )

(6.13a-e)

Dividing each of the above terms by “m” and presenting in the transfer 
function matrix form of (2.61):

(m2s4 + 3mks2 + k 2) (mks2 + k 2) k 2

(mks2 + k 2) (m2s4 + 2mks2 + k 2) (mks2 + k 2) 

k 2 (mks2 + k 2) (m2s4 + 3mks2 + k 2)

s2 (m 3s4 + 4m2ks2 + 3mk2

F

(6.14)

The two derivations are identical.
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6.4 MATLAB Code tdofss.m -  Frequency Response Using State Space

6.4.1 Code Description, Plot

The four distinct transfer functions for the default values of m, k and c are 
plotted using MATLAB in tdofss.m, listed below. The four plots are 
displayed in Figure 6.1. The A, B, C and D matrices shown in (5.17a) are 
used as inputs to the program. A MIMO state space model is constructed and 
the MATLAB function bode.m is used to calculate the magnitude and phase 
of the resulting frequency responses. As described in the code, the resulting 
frequency response has dimensions of 6x3x200, where the “6” represents the 
6 outputs in the output matrix C, the “3” represents the three columns of the 
input matrix B and the “200” represents the 200 frequency points in the 
frequency vector. The desired magnitude and phase can be extracted from the 
6x3x200 matrix by defining the appropriate indices. The default values of c1 
and c2 are zero.

state space, z11, z33 db magnitude state space, z21, z12, z23, z32 db magnitude

state space, z31, z13 db magnitude state space, z22 db magnitude

frequency, rad/sec frequency, rad/sec

Figure 6.1: Four distinct frequency response amplitudes.

6.4.2 Code Listing

% tdofss.m state-space transfer function solution of tdof undamped model using
% state-space matrices directly and the bode command

clf;

legend off;

subplot( 1,1,1);
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clear all;

% define the values of masses, springs, dampers and Forces

m1 = 1; 
m2 = 1; 
m3 = 1;

c1 = input('input value for c1, default 0, ... ');

if  (isempty(c1)) 
c1 = 0;

else
end

c2 = input('input value for c2, default 0, ... ');

if  (isempty(c2)) 
c2 = 0;

else
end

%

%

%

%

k1 = 1; 
k2 = 1;

F1 = 1;
F2 = 1;
F3 = 1;

define the system matrix, a 

a = [ 0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

define the input matrix, b, a 6x3 matrix

b = [ 0 0 0 
F1/m1 0 0 

0 0 0 
0 F2/m2 0 
0 0 0

0 0 F3/m3];

define the output matrix, c, the 6x6 identify matrix

c = eye(6,6);

define the direct transmission matrix

d = 0;

% solve for the eigenvalues of the system matrix
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[xm,omega] = eig(a);

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,200);

% use the "ss" function to define state space system for three inputs, forces at
% masses 1, 2 and 3 and for all 6 states, three displacements and three velocities

sssys = ss(a,b,c,d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

% the mag and phs matrices below will be 6x3x200 in size
% the appropriate magnitude and phase to plot for each transfer function
% are called by appropriate indexing

% first index 1-6: z1 z1dot z2 z2dot z3 z3dot
% second index 1-3: F1 F2 F3
% third index 1-200: all frequency points, use ":"

[mag,phs] = bode(sssys,w);

z11mag = mag(1,1,:); 
z11phs = phs(1,1,:);

z21mag = mag(3,1,:); 
z21phs = phs(3,1,:);

z31mag = mag(5,1,:); 
z31phs = phs(5,1,:);

z22mag = mag(3,2,:); 
z22phs = phs(3,2,:);

% calculate the magnitude in decibels, db

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

% plot the four transfer functions separately, in a 2x2 subplot form

subplot(2,2,1)
semilogx(w,z11magdb(1,:),'k-') 
title('state space, z11, z33 db magnitude') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid
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subplot(2,2,2)
semilogx(w,z21magdb(1,:),'k-')
title('state space, z21, z12, z23, z32 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,3)
semilogx(w,z31magdb(1,:),'k-') 
title('state space, z31, z13 db magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid

subplot(2,2,4)
semilogx(w,z22magdb(1,:),'k-') 
title('state space, z22 db magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid

disp('execution paused to display figure, "enter" to continue'); pause 

subplot(2,2,1)
semilogx(w,z11phs(1,:),'k-') 
title('state space, z11, z33 phase') 
ylabel('phase, deg')
%axis([.1 10 -400 -150]) 
grid

subplot(2,2,2)
semilogx(w,z21phs(1,:),'k-')
title('state space, z21, z12, z23, z32 phase')
ylabel('phase, deg')
%axis([.1 10 -400 -150]) 
grid

subplot(2,2,3)
semilogx(w,z31phs(1,:),'k-') 
title('state space, z31, z13 phase') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg')
%axis([.1 10 -400 -150]) 
grid

subplot(2,2,4)
semilogx(w,z22phs(1,:),'k-') 
title('state space, z22 phase') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg')
%axis([.1 10 -400 -150]) 
grid

disp('execution paused to display figure, "enter" to continue'); pause
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6.5 Introduction -  Time Domain

Starting with the equations of motion in state space, we will use Laplace 
transforms to discuss the theoretical solution to the time domain problem. We 
will define and discuss two methods of calculating the matrix exponential. 
Then we will use a sdof forced system with position and velocity initial 
conditions to illustrate the technique. The closed form solution for our tdof 
example problem with step forces applied to all three masses and with 
different initial conditions for each mass is too complicated to be shown so we 
will use only MATLAB for its solution.

6.6 M atrix  Laplace T ransform  -  w ith In itial Conditions

We start with the state equations in general form, (6.1). Taking the matrix 
Laplace transform of a first order differential equation (DE) with initial 
conditions (Appendix 2):

L{x(t)} = sx(s) -  x(0)
(6.15)

L  {x(t)} = x(s)

Taking the matrix Laplace transform of (6.1) and solving for x(s): 

sx(s) -  x(0) = Ax(s) + B u(s)

(si -  A)x(s) = x(0) + B u(s) (6.16a,b,c)

x(s) = (si -  A)-1 x(0) + (si -  A )-1 B u(s)

Solving for the output vector y(s):

У (s) = CX<s) 1 1 (6.17)
= C (si -  A )-1 x(0) + C (si -  A)-1 B u(s)

The input matrix B and output matrix C are familiar from earlier state space 
presentations. There is a new term in the equation for the Laplace transform 
of y(s), the term (si -  A )-1.

There are many methods of calculating the inverse (si -  A) 1 (Chen 1999). 
If the problem is small, for example 2x2, the inverse can be handled in closed 
form. Then y(s) can be back-transformed term by term to get the solution in 
the time domain, as we shall see in the example in the next section.
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For another solution method it is useful to recall the geometric series 
expansion below, for Irl < 1:

1
1 -  r

= 1 + r + r2 + r3 + ... (6.18)

Expanding (sI -  A) 1 with the series expansion analogy above, the inverse 
results in the infinite series in (6.19).

(si -  A )-1 =
s i -  A

_ _  1 
A s
s

T A A 2 A 3
1 + — + —  + —  + s s s

I  A A 2 A 3
_ -  + — + —  + —  + ... 

s s s s

6.7 Inverse M atrix  Laplace T ransform , M atrix  Exponential

(6.19)

Now that we have the inverse in series form, it is easy to back-transform to 
the time domain, term by term. We introduce two new terms, Ф ^ ) , the

inverse Laplace transfo rm  of (si -  A )-1 which equals eAt, the m atrix  
exponential.

Ф (0  _  L -1 {(si -  A )-1}

L -1 11 + — + —  + —  + ... 
s s s s

(A t)2 (A t)3 
_  I  + At + -—-  + -— -  + ...

(6.20)

2! 3!
= e

6.8 B ack-Transform ing to Time Domain

Now that the form of the matrix exponential is known, we can back-transform 
the entire equation of motion, from (6.16c):

L  -1(x(s)) _ L -1 [(sI -  A )-1 x(0) + (sI -  A )-1 B u(s)] (6.21)

The result is:

© 2001 by Chapman & Hall/CRC



x(t) _  eAt x(0) + 10 eA(t-T) B u(x)dx (6.22)

The first term in (6.22) is the response due to the initial condition of the state 
and the second term is the response due to the forcing function. The second 
term is the convolution integral, or Duham el integral, and results from 
back-transforming the product of two Laplace transforms.

6.9 Single Degree of Freedom  System -  C alculating M atrix  Exponential 
in Closed Form

Calculating the matrix exponential in closed form for greater than a 2x2 
matrix is difficult without the aid of a symbolic algebra program. Even with 
the program the result can be quite complicated.

A simple, rigid body example will be used to demonstrate how a matrix 
exponential and transient response are calculated.

We will use the system in Figure 6.2, a mass with position and velocity initial 
conditions and a step force applied.

-> z Г  F

m

( ) ( )\  \ \  \  \  \ \  \

Figure 6.2: sdof system with initial conditions and step force applied

6.9.1 Equations of M otion, Laplace T ransform

Start with the equation of motion:

mz _  F

Defining the states:

x j _  z 

x2 _  Z

(6.23)

(6.24)
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Defining derivatives and inserting the value for acceleration:

_F
m

(6.25)

The above can be written in matrix form, recognizing that F/m is the 
acceleration and applying a unity magnitude step:

0 1 

0 0 (1) (6.26)

Defining the system matrix:

A =
0 1

0 0 (6.27)

X 2 =

Taking the inverse of the (sI -  A) 1 term:

(sI -  A )-1 =
f s 0 "0 1" >-1

s -1

V 0 s 0 0_ V 0 s

1 J_
s s2

0 I
(6.28)

6.9.2 Defining the M atrix  Exponential -  Taking Inverse Laplace 
T ransform

Using the table of inverse Laplace transforms from Appendix 2 yields the 
matrix exponential.

eAt = L  -1

1 1
1 t  

0  1
(6.29)
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6.9.3 Defining the Matrix Exponential -  Using Series Expansion

A Power Series Expansion can also be used to find the matrix exponential for 
this simple example because higher powers of At go to zero quickly:

eAt = I  + A t +
(A t)2 , (A t)3

2! 3!
+ ...

1 0
+

0 t
+

0 0

0 1 0 0 0 0
+ (all other terms zero) (6.30)

1 t 

0 1

This is the same solution as (6.29).

6.9.4 Solving fo r Time Domain Response

Thus, the general solution for x(t) as a function of time becomes:

x(t) = eAt x(0) + 10 eA(t-T) B u(t)dT

"1 t" " x ,(0 )" rt "1 t - T
" 0 "

+ 10 f  F ^0 1 _ x2(0)_ 0 1 [ “ I_V m

(1) dT

xj(0) + 1 x2 (0) 

x 2(0)

xj(0) + 1 x2 (0) 

x 2(0)

(t - t)
V m

_F 
m

dT

m
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x^0) + tx2(0) 

x2(0)

xj(0) + tx2(0) 

x2(0)
t

m

(6.31)

This result is the same as the familiar equations for the position and velocity 
of a mass undergoing a constant acceleration:

x1(t)

_ x2(t)_

initialposition+ time x (initial velocity) +
(acceleration) x (time2)

initial velocity + (acceleration) x (time)
(6.32)

6.10 MATLAB Code tdof_ss_time_ode45_slnk.m -  Time Domain 
Response of tdo f Model

6.10.1 Equations of M otion Review

There are several ways to numerically solve for transient responses using 
MATLAB. One method uses numerical integration, calling the integration 
routine from a command line and defining the state equation in a separate 
MATLAB function. Another method uses Simulink, a linear/nonlinear 
graphical block diagram model building tool linked to MATLAB.

We will solve for the transient response of our tdof model using both methods 
and compare the results with the closed form solution calculated using the 
modal transient response method in Chapter 9.
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Figure 6.3: tdof model with damping for use in M ATLAB/Simulink models.

z ,(0 ) = x ,(0) = 0 z2(0 ) = x3(0) = - 1  Z3 (0) = x5(0 ) = 1 

Z,(0) = x 2(0 ) = - 1  z 2(0 ) = x 4(0) = 2 z 3 (0) = x6(0) = - 2

Table 6.1: Initial conditions for tdof model in  Figure 6.3.

Step function forces of amplitudes indicated in Figure 6.3 are applied to 
masses 1 and 3; mass 2 has no force applied. Initial conditions of position and 
velocity for each mass are shown in T able 6 .1.

The equations of motion in state space are then:

" 0 1 0 0 0 0 " 0 "

-k j -c i k 1 c1
0 0

1
x1

m 1 m1 m 1 m1
1

x 2 m1
0 0 0 1 0 0

x3
0

_k_ J L -(k 1 + k2) -(c1 + c2) _ka_ S i. + 0
x 4m 2 m 2 m 2 m 2 m 2 m 2 m 2
x5
x 6

0 0 0 0 0 1 0

0 0 _c_ k 2 - c 2 -2

m3 m 3 m 3 m3 _ _ m 3 _

(1)

(6.33)

The initial condition vector, x(0) is:

- ^ = - 2
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x(0) =

'  x ,(0 ) ' ' z ,(0 )' " 0 '

x2(0) z,(0) -1

x3(0) z2(0) -1

x4(0) z 2(0 ) 2

x5(0) z3(0) 1

_ x6(0)_ _z3(0)_ _-2_

(6.34)

The output equation for the displacement outputs (no velocities included) with 
no feedthrough term is:

y1 1 0 0 0 0 0]

У 2 = 0 0 1 0 0 0

_У3 _ 0 0 0 0 1 0 J

+ (0)(1) (6.35)

These are the system matrices that are used in the MATLAB code below.

6.10.2 Code Description

Two methods will be used to solve for the time domain response. The 
MATLAB code tdof_ss_time_ode45_slnk.m is used for both methods, 
prompting the user to define which solution technique is desired.

The first method uses the MATLAB Runge Kutta method ODE45 and calls 
the function file tdofssfun.m , which contains the state equations. The results 
are then plotted. To use the ODE45 solver, type “tdof_ss_time_ode45_slnk” 
from the MATLAB prompt and use the default selection.

The second solution uses the Simulink model tdof_ss_sim ulink.m dl and the 
plotting file tdof_ss_time_slnk_plot.m.

To use the Simulink solver:

1) Type “tdof_ss_time_ode45_slnk” and choose the Simulink 
solver.

2) The program will prompt the reader to type 
“tdof_ss_simulink” at the MATLAB command prompt. 
This will bring up the Simulink model on the screen.
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3) Click on the “simulation” choice in the model screen and 
then choose “start.” The Simulink model will then run.

4) To see the plotted results, type “tdof_ss_time_slnk_plot.”

6.10.3 Code Results -  Time Domain Responses

State-Space Displacements of dof 1, 2 and 3

Time, sec

Figure 6.4: ODE45 simulation motion o f  tdof model.

State Space S im ulink Calculation of Displacements of dof 1, 2 and 3

Time, sec

Figure 6.5: Simulink simulation motion o f tdof model.
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Displacements of dof 1, 2 and 3 from S imulink (s lnk) and Closed Form (cf)

Time, sec

Figure 6.6: Overlay of closed form solution from Chapter 9, Figure 9.4, w ith Simulink
solution.

6.10.4 Code Listing

% tdof_ss_time_ode45_slnk.m state-space solution of tdof model with
% initial conditions, step function forcing function and displacement outputs
% using the ode45 solver or Simulink, user is prompted for damping values

clear all;

global a b u % this is required to have the parameters available
% for the function

which_run = input('enter "1" for Simulink or "enter" for ode45 run ... ');

if  isempty(which_run)
which_run = 0

end

% define the values of masses, springs, dampers and Forces

m1 = 1; 
m2 = 1;
m3 = 1;

c1 = input('input value for c1, default 0.0, ... ');

if  (isempty(c1))
c 1 = 0.0;

else
end

c2 = input('input value for c2, default 0.0, ... ');
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if  (isempty(c2))
c2 = 0.0;

else
end

k1 = 1; 
k2 = 1;

F1 = 1;
F2 = 0;
F3 = -2;

% define the system matrix, a

a = [ 0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 -(c1+c2)/m2 k2/m2 c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 -k2/m3 -c2/m3];

% define the input matrix, b

b = [ 0 
F1/m1 

0
F2/m2

0
F3/m3];

% define the output matrix for transient response, c, displacements only

c = [1 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0];

% define the direct transmission matrix for transient response, d, the same number of
rows as c and the same number of columns as b

d = zeros(3, 1);

if  which_run == 0 % transient response using the ode45 command

u = 1;

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

if  (isempty(ttotal)) 
ttotal = 10; 
else 
end

tspan = [0 ttotal];

x0 = [0 -1 -1 2 1 -2]'; % initial condition vector, note transpose
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options = []; % no options specified for ode45 command

[t,x] = ode45('tdofssfun',tspan,x0,options);

y = c*x'; % note transpose, x is calculated as a column vector in time

plot(t,y(1,:),'k+-',t,y(2,:),'kx-',t,y(3,:),'k-')
title('State-Space Displacements of dof 1, 2 and 3')
xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('dof 1','dof 2','dof 3')
grid

else % setup Simulink run

% define the direct transmission matrix for transient response, d, the same number of
rows as c and the same number of columns as b

% define time for simulink model

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

if  (isempty(ttotal)) 
ttotal = 10; 
else 
end

disp(' '); 
disp(' '); 
disp(' '); 
disp(' '); 
disp(' '); 
disp(' ');
disp('Run the Simulink model "tdof_ss_simulink.mdl" and then'); 
disp('run the plotting file "tdof_ss_time_slnk_plot.m"');

end

6.10.5 MATLAB Function tdofssfun.m  -
Called by tdof_ ss_time_ode45_slnk.m

function xprime = tdofssfun(t,x)

% function for calculating the transient response of tdof_ss_time_ode45.m

global a b u 

xprime = a*x + b*u;
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6.10.6 Sim ulink M odel tdofss simulink.mdl

Figure 6.7: Block diagram o f Simulink model tdofss_simulink.mdl.

The block diagram was constructed by dragging and dropping blocks from the 
appropriate Simulink block library and connecting the blocks. The input is 
the step block. The clock block is used to output time to the tout block for 
plotting in MATLAB. The model is defined in the state space block, reading 
in values for the a, b, c and d matrices from the MATLAB workspace, created 
during execution of tdof_ss_time_ode45_slnk.m. The demux block 
separates the vector output of the state space block and sends the 
displacements of the three masses to three blocks for storing for plotting in 
MATLAB. The scope block brings up a scope screen and shows the position 
of dof3 versus time as the program executes. This example is so small that 
the screen displays instantly for the default 10 sec time period, but for a longer 
time period the scope traces the progress of the simulation.
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Problem s

Note: All the problems refer to the two dof system shown in Figure P2.2.

P 6 .1 Set mj = m 2 = m = 1, kj = k 2 = k = 1, c  = c2 = 0 and define the state 
space matrices for a step force applied to mass 1 and for output o f position of 
mass 2. Write out by hand the equation for the transfer functions matrix as 
shown in (6.11). Extra credit: use a symbolic algebra program to take the 
inverse of the (sI -  A) term and then multiply out the equations to see that 
they match the results of P2.2.

P6.2 (MATLAB) Modify the code tdofss.m  for the two dof system and plot 
the distinct frequency responses.

P6.3 (MATLAB) Modify the code tdof_ss_time_ode45_slnk.m for the two 
dof system with mj = m 2 = m = 1, kj = k 2 = k = 1 and c  = c2 = 0 for the 
following step forces and initial conditions:

a) Fj = 0, F2 = -3

b) Zj = 0, Zj = -2 , z2 = -1, Z2 = 2

Plot the time domain responses using both MATLAB and Simulink.
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CHAPTER 7

MODAL ANALYSIS

7.1 Introduction

In Chapter 2 we systematically defined the equations of motion for a multi dof 
(mdof) system and transformed to the “s” domain using the Laplace transform. 
Chapter 3 discussed frequency responses and undamped mode shapes.

Chapter 5 discussed the state space form of equations of motion with arbitrary 
damping. It also covered the subject of complex modes. Heavily damped 
structures or structures with explicit damping elements, such as dashpots, 
result in complex modes and require state space solution techniques using the 
original coupled equations of motion.

Lightly damped structures are typically analyzed with the “normal mode” 
method, which is the subject of this chapter. The ability to think about 
vibrating systems in terms of modal properties is a very powerful technique 
that serves one well in both performing analysis and in understanding test data. 
The key to normal mode analysis is to develop tools which allow one to 
reconstruct the overall response of the system as a superposition of the 
responses of the different modes of the system. In analysis, the modal method 
allows one to replace the n-coupled differential equations with n-uncoupled 
equations, where each uncoupled equation represents the motion of the system 
for that mode of vibration. If natural frequencies and mode shapes are 
available for the system, then it is easy to visualize the motion of the system in 
each mode, which is the first step in being able to understand how to modify 
the system to change its characteristics.

Summarizing the modal analysis method of analyzing linear mechanical 
systems and the benefits derived:

1) Solve the undamped eigenvalue problem, which identifies the 
resonant frequencies and mode shapes (eigenvalues and 
eigenvectors), useful in themselves for understanding basic 
motions of the system.

2) Use the eigenvectors to uncouple or diagonalize the original 
set of coupled equations, allowing the solution of n-uncoupled 
sdof problems instead of solving a set of n-coupled equations.

© 2001 by Chapman & Hall/CRC



3) Calculate the contribution of each mode to the overall 
response. This also allows one to reduce the size of the 
problem by eliminating modes that cannot be excited and/or 
modes that have no outputs at the desired dof’s. Also, high 
frequency modes that have little contribution to the system at 
lower frequencies can be eliminated or approximately 
accounted for, further reducing the size of the system to be 
analyzed.

4) Write the system matrix, A, by inspection. Assemble the input 
and output matrices, B  and C, using appropriate eigenvector 
terms. Frequency domain and forced transient response 
problems can be solved at this point. If complete eigenvectors 
are available, initial condition transient problems can also be 
solved. For lightly damped systems, proportional damping can 
be added, while still allowing the equations to be uncoupled.

7.2 Eigenvalue Problem

7.2.1 Equations of Motion

We will start by writing the undamped homogeneous (unforced) equations of 
motion for the model in Figure 7.1. Then we w ill define and solve the 
eigenvalue problem.

^ z 1 - F i ^ Z2 ^ 2 ^ Z3 - F 3

m 1
k i

m 2
k 2

m 3

C )  ( ) О  о ( )  ( )
\  \ \  \ 4  \ \  \

Figure 7.1: Undamped tdof model.

mz + kz = 0 (7.1)

From (2.5) with k 1 = k 2 = k and c l = c2 = 0:
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m 0 0" z1 ' k - k 0 " z1 "0“
0 m 0 Z 2 + - k 2k - k Z2 = 0
0 0 m _z3 _ 0 - k k _z3 _ 0

7.2.2 Principal (Normal) Mode Definition

Since the system is conservative (it has no damping), normal modes of 
vibration w ill exist. Having normal modes means that at certain frequencies 
all points in the system will vibrate at the same frequency and in phase, i.e., all 
points in the system w ill reach their minimum and maximum 
displacements at the same point in time. Having normal modes can be 
expressed as (Weaver 1990):

z! = zmt sin (  + ф1) = zmiIrn(emt+ф-) (7.3)

Where:

zi = vector of displacements for all dof’s at the i ft frequency

zmi = the i th eigenvector, the mode shape for the i th resonant 
frequency

ffli = the ith eigenvalue, ith resonant frequency 

Ф1 = an arbitrary initial phase angle 

For our tdof system, for the i ft frequency, the equation would appear as:

sin (rait + Ф1 ) ,  (7.4)

where the indices in the zmki term represent the kth dof and the ith mode of the 
modal matrix zm .

7.2.3 Eigenvalues / C haracteristic Equation

Since the equation of motion

mz + kz = 0 (7.5)

z1 Zm1i
z2 = Zm2i
z3 Zm3i
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and the form of the motion

Zi = Zmi sin (ю^ + фi) (7.6)

are known, zi can be differentiated twice and substituted into the equation of 
motion:

Zi = -ю 2zmi sin (  + ф;) (7.7)

m [-ю 2 z mi sin (rnit + фi ) ]  + k  [z  mi sin (rnit + фi ) ]  = 0 (7.8) 

Canceling the sine terms:

- ^ mz mi + kzmi = 0 (7.9)

kz mi = ^ mz mi (7.10)

Equation (7.10) is the eigenvalue problem in nonstandard form, where the 
standard form is (Strang 1998):

Az = Xz (7.11)

The solution of the simultaneous equations which make up the standard form 
eigenvalue problem is a vector z such that when z is multiplied by A , the 
product is a scalar multiple of z itself.

The nonstandard problem is “nonstandard” because the mass matrix m falls 
on the right-hand side. The form of the matrix presents no problem for hand 
calculations, but for computer calculations it is best transformed to standard 
form.

Rewriting the nonstandard form eigenvalue problem as a homogeneous 
equation:

(k  -ff>2m )z  ml = 0 (7.12)

A trivial solution, z mi = 0 , exists but is of no consequence. The only 
possibility for a nontrivial solution is if the determinant of the coefficient 
matrix is zero (Strang 1998). Expanding the matrix entries:
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" k - k 0 “ m 0 0 “
- k 2k - k -ю 2 0 m 0
0 - k k 0 0 m

= 0

Performing the matrix subtraction: 

k -o>2m - k 0
- k  2k -ra fm  - k
0 - k  k -ra,2m

Setting the determinant of the coefficient matrix equal to zero:

k - r a 2m - k  0
- k  2k - r a 2m - k
0 - k  k - r a 2m

= 0

(7.13)

(7.14)

(7.15)

The determinant results in a polynomial in ю2 , the characteristic equation, 
where the roots of the polynomial are the eigenvalues, poles, or resonant 
frequencies of the system.

-2 m 3

-4k m 2 ± 2km2 
-2 m 3

(7.16a,b)
-ш 3ю6 + 4km2rn4 -  3k2mrn2 = 0

ю2 (-m 3rn4 + 4km2ю2 -  3k2m) = 0 

Two of the roots are at the origin:

ю1 = 0 (7.17)

Solving for ю2 as a quadratic in (7.16b) above:

-4k m 2 ±(16k2m4 -  12k2m4 ) 2 
ю2 = ---------
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-6 k -2 k
- 2 ш ’ - 2 ш

3k k
m m

± /3k
“ s = 4  m

®з= ^  IE

(7.18)

(7.19)

For each of the three eigenvalue pairs, there exists an eigenvector z ; , which 
gives the mode shape of the vibration at that frequency.

7.2.4 Eigenvectors

To obtain the eigenvectors of the system, any one of the degrees of freedom, 
say z1, is selected as a reference. Then, all but one of the equations of motion 
is written with that value on the right-hand side:

(к  -Ю- m I z . = 0 (7.20)

( -ю 2ш) - k  0

- k  (2k -ю 2ш) - k

0 - k  к  -ю 2ш)

= 0 (7.21)

Expanding the first and second equations, dropping the subscripts “ i ” and 
“m”:

(к  -  ю2ш ) z1 -  kz2 = 0 

-k z 1 + (k -o > 2m )z2 - kz3 = 0
(7.22a,b)

Rewriting with the z1 term on the right-hand side and solving for the (z 2 /z1  ̂

ratio from (7.22a):

- k z 2 = -(k - ff l?m  )z 1 (7.23)
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z2 k -Ю; m

z

z3 = m ю1 -  Skmoij + k
z1 k 2

(7.24)

Solving for the (z3/z1) ratio from (7.22b):

(2k-o>2m ) 2 - k z 3 = kz1 (7.25)

( 2k - Ю » )  |- =  k (7.26)

i 2 M k-o>2m ) kz3 ,12k - Ю ^ ) ) ------- -—  I------- = k (7.27)

z (2k -Ю: m f Z - m m )
- 3 = -̂------------ ^ - 1  (7.28)

(7.29)

We now have the general equations for the eigenvector values. If a value is 
chosen for z1, say 1.0, then the two ratios above can be solved for 
corresponding values of z2 and z3 for each of the three eigenvalues.

z1

Since at each eigenvalue there are (n+1) unknowns (ю; , zmi) for a system with
n equations of motion, the eigenvectors are only known as ratio s of 
displacements, not as absolute magnitudes. For the first mode of our tdof 
system the unknowns are ю; , zm11, zm21 and zm31 and we have only three 
equations of motion.

Substituting values for the three eigenvalues into the general eigenvector ratio 
equations above, assuming m1 = m2 = m = 1, k 1 = k 2 = k = 1:

For mode 1, ff)j2 = 0
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(2 k ) (k )
1 = 2 - 1  = 1

z1 k

(7.31)

(7.32)

(7.33)

Arbitrarily assigning z1=1:

(7.34)

z3

z1 =

-
1

-
1

-
1

-

— w — w

( X J C X J  ( Ю Ш  u O  ( Ю\  \  \  \  \ \  \ \  
Rigid-Body Mode, 0 rad/sec

Figure 7.2: Mode shape plot for rigid body mode, where all masses move together with no 
stress in the connecting springs.

2 kFor mode 2, ю2 = — 
m

k -  ( m  1 ш^  Vш ) = 0 (7.35)
z1 k

z2 = 0 (7.36)

2k - 1 — | ш || k - 1 — I m
- 1  = -1  (7.37)

k2 v s
z3
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z3 = -  z1 (7.38)

1
0

-1
(7.39)z 2

1

1

-1

--W — - t o -

()()()() О О ( X ) (  ) (  )
X v  X \  \ \

Second Mode, Middle Mass Stationary, 1 rad/sec

Figure 7.3: Mode shape plot for second mode, middle mass stationary and the two end 
masses move out of phase with each other with equal amplitude.

For node 3, Ю3 =
2 3k

m

. (  3k .k - 1 —  I m 
z2 I m ) -2 k

k k

z2 = -  2z1

= -2 (7.40)

(7.41)

2 k - l f  1 m ) [ k - ( ' m л  ( - k ) ( - 2k ) - 1 = 2 ^  = 1 (7.42)

(7.43)

1
-2
1

(7.44)

z3
z

z3 =
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г
-2

i W

ООО
Third Mode, 1.732 rad/sec

О СО\ \

1 1

Figure 7.4: Mode shape plot for third mode, with two end masses moving in phase with 
each other and out of phase with the middle mass, which is moving with twice the 

amplitude of the end masses.

7.2.5 Interpreting Eigenvectors

For the first mode, if all the masses start with either zero or the same initial

velocity and with initial displacements of some scalar multiple of [1 1 1]T ,

where “T” is the transpose, the system will either remain at rest or will 
continue moving at that velocity with no relative motion between the masses.

For the second and third modes, if  the system is released with zero initial 
velocities but with initial displacements of some scalar multiple of that 
eigenvector, then the system will vibrate in only that mode with all the masses 
reaching their minimum and maximum points at the same point in time.

Any other combination of initial displacements w ill result in a motion which is 
a combination of the three eigenvectors.

7.2.6 M odal M atrix

Now that the three eigenvectors have been defined, the modal matrix w ill be 
introduced. The modal matrix is an (nxn) matrix with columns corresponding 
to the n system eigenvectors, starting with the first mode in the first column 
and so on:
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mode: 1 2 3

'm11 Zm12 7m13
'm21 Zm22 7m23
■m31 7m32 7m33

т т т

z1 z 2 z3

^  DOF 1 
^  DOF 2 
^  DOF3

(7.45)

For our tdof problem:

z m =

1 1 
1 0 
1 -1

1
-2
1

(7.46)

7.3 Uncoupling the Equations of Motion

At this point the system is well defined in terms of natural frequencies and 
modes of vibration. If any further information such as transient or frequency 
response is desired, solving for it would be laborious because the system 
equations are still coupled. For transient response, the equations would have to 
be solved simultaneously using a numerical integration scheme unless the 
problem were simple enough to allow a closed form solution. To calculate the 
damped frequency response, a complex equation solving routine would have 
to be used to invert the complex coefficient matrix at each frequency.

z m =

In order to facilitate solving for the transient or frequency responses, it is 
useful to transform the n-coupled second order differential equations to n- 
uncoupled second order differential equations by transforming from the 
physical coordinate system to a principal coordinate system. In linear algebra 
terms, the transformation from physical to principal coordinates is known as a 
change of basis. There are many options for change of basis, but we w ill show 
that when eigenvectors are used for the transformation the principal coordinate 
system has a physical meaning; each of the uncoupled sdof systems represents 
the motion of a specific mode of vibration. The n-uncoupled equations in the 
principal coordinate system can then be solved for the responses in the 
principal coordinate system using well-known solutions for single degree of 
freedom systems. The n-responses in the principal coordinate system can then 
be transformed back to the physical coordinate system to provide the actual
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response in physical coordinates. This procedure is shown schematically in 
Figure 7.5.

Figure 7.5: Roadmap for Modal Solution

The procedure above is analogous to using Laplace transforms for solving 
differential equations, where the differential equation is transformed to an 
algebraic equation, solved algebraically, and back transformed to get the 
solution of the original problem.

We now need a means of diagonalizing the mass and stiffness matrices, which 
w ill yield a set of uncoupled equations.

The condition to guarantee diagonalization is the existence of n-linearly 
independent eigenvectors, which is always the case if the mass and stiffness 
matrices are both symmetric or if there are n-different (nonrepeated) 
eigenvalues (Strang 1998).

Going back to the original homogeneous equation of motion:

mz + kz = 0 (7.47)
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Differentiating twice to get acceleration:

zi = -ra?zmi sin (rnit + Ф1) (7.49)

Substituting back into the equation of motion:

m{-mi2zmi sin(rnit + Ф1)} + k{zmi sin(rnit + Ф1)} = 0 (7.50)

Canceling sine terms:

- ® > z mi + kzmi = 0 (7.5 1)

Rearranging and writing the above equation for both the “ith” and “j th” modes:

kz mi = ® > z mi (7.52)

kz mj = ®2 mzmj (7.53)

zmi and z mj are the “ith” and “j th” eigenvectors, the “ith” and “j th” columns of 

the modal matrix.

Premultiplying (7.52) by the transpose of zmj, z^  :

z ^ m i  =®f z ĵm zmi (7.54)

Taking the transpose of (7.53), where the transpose of a product is the product 

of the individual transposes taken in reverse order, i.e., [AB]T = BTAT :

z I jkT = m2 z > T, (7.55)

since m and k are symmetrical, m T = m, and k T = k  :

z j  = m2 zT.m (7.56)

Having normal modes means that at frequency “i”:

zi = z ml sin (ffljt + ф1) (7.48)
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Postmultiplying (7.56) by z mi

z mjkz mi = j  mjmz mi (7.57)

Now, subtracting (7.57) from (7.54):

z ̂ jkz mi = Ю" z ̂ jmz mi
-  (zIjkzmi = Ю"z'I'„jmzmi )

0 = (raf-  ш2 )z ̂ mz mi
(7.58)

When i = j ,  the term (ю2 — Ю2 ) cannot be equal to zero, meaning that the 

term z m.mz mi must be equal to zero.

z > z  „i = 0 (7.59)

Looking at the sizes of the matrices multiplied:

z „j = 1xn
m = nxn (7.60)

z mi = nxl

(1xn ) x  (nxn ) x  (n x i)  = (1x1) = scalar (7.61)

Equation (7.59) can be rewritten:

z „jmz mi = „ ij=  0 ,  (7^ 2)

where mij is an off-diagonal term in the mass matrix of the principal coordinate 
system.

The two eigenvectors zmj and zmi are said to be orthogonal with respect to m ,

where orthogonality is defined as the property that causes all the off-diagonal 
terms in the principal mass matrix to be zero.

Returning to (7.62), for i = j, (  — Ю2 ) = 0 . Thus the product z„im zmi can 

be set equal to any arbitrary constant mii ,, a diagonal term in the principal 
mass matrix.
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(7.63)

This is where various normali7ation techniques for eigenvectors come into 
play, discussed in the next section.

The stiffness matrix, k, is normali7ed in the same manner.

In practice, instead of diagonali7ing the mass and stiffness matrices term by 
term by pre- and postmultiplying by individual eigenvectors, the entire modal 
matrix is used to diagonali7e in one operation using two matrix 
multiplications:

m n = z Tmmz m (7.64)

k  n = z m kz m (7.65)

7.4 Normalizing Eigenvectors

Because eigenvectors are only known as ratios of displacements, not as 
absolute magnitudes, we can choose how to normalize them. Up to now, when 
calculating eigenvectors we have arbitrarily set the amplitude of the first dof to
1. We will now discuss two of the most commonly used eigenvector 
normalization techniques. Different normalizing techniques result in different 
forms of the resulting uncoupled differential equations.

7.4.1 Normalizing w ith Respect to Unity

One method is to normalize with respect to unity, making the largest element 
in each eigenvector equal to unity by dividing each column by its largest 
value. We now add the notation zn , where the “n” refers to a “norm alized” 
modal matrix.

“1 1 1" “1 1 -0 .5 “
1 0 -2 ^  zn = 1 0 1
1 -1 1 1 -1 -0 .5

Using the unity normalized modal matrix to transform the mass matrix in two 
matrix multiplications:
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" 1 1 1 ] m 0 0 ] m m m
T

z n m = 1 0 -1 0 m 0 = m 0 -m
-0 .5 1 -0 .5 0 0 m -.5m m -.5m

(7.67)

m m m "1 1 - . 5 ] 3m 0 0

mn = z T mz n = m 0 -m 1 0 1 = 0 2m 0
-.5m m -.5m 1 -1 -.5 0 0 1.5m

(7.68)

Similarly transforming the stiffness matrix:

" 1 1 1 ] " k - k 0 ] " 0 0 0 ]

z T k  = 1 0 -1 - k 2k - k = k 0 - k

1 J 5 .1 5 1 0 - k k -1 .5k 3k -1 .5k
(7.69)

" 0 0 0 ] "1 1 - . 5 ] "0 0 0 ]

k  n = z T kz n = - k 0 - k 1 0 1 = 0 2k 0
-1 .5k 3k -1 .5k 1 -1 -.5 0 0 4.5k

(7.70)

Note that the original filled stiffness matrix is now diagonal. Also note that if 
the diagonal elements of the stiffness matrix (7.70) are divided by the 
corresponding diagonal elements of the mass matrix (7.69), the three terms are 
the squares of the respective eigenvalues.

7.4.2 Normalizing w ith Respect to Mass

Another method is to normalize with respect to mass using the equation:

z Timz * = 1.0, (7.71)

making each diagonal mass term  equal 1.0. This is the method used by 
default in ANSYS.

Once again, note that modal matrix subscript “ni” in z ni signifies the 
normalized ith eigenvector. Each normalized eigenvector is defined as follows:

[  z m mz mi ]
qi

(7.72)
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Where qi is defined as:

Qi = Z  Tnji I S  “ jkT. (7.73)

For a diagonal mass matrix, q can be simplified since all the mjk terms are 

zero:

Qi = Z  ’
.k=1 _

g on m by z n ,the mass m
. Starting with z m and the

“1 1  1

z m = 1 0 -2
1 -1  1

q1 = [m  (1)2 + m (1)2 + m (1

(7.74)

1
q2 = “m (1)2 + m (0 )2 + m ( -1 )2 J2 = \l 2m

_1
q3 = “m (1)2 + m ( -2  )2 + m (1)2 J 2 = V 6m 

The modal matrix normalized with respect to mass becomes:

“ 1 1 1 “ “ 1 1 1 “
V 3m V2m Vsm V3 46

1
0

-2 1 1
0

-2
V 3m V6m Vm л/б

1 -1 1 1 -1 1
V 3m >/2m V6m _ l_V3 V2 Ve _

(7.75)

(7.76a,b,c)

(7.77)

Using z n to transform the mass matrix:

z n =
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1 1 1 “m 0 0 “ m m m
V 3m V3m V3m 4  3m •\/3m 43m

T
z n m =

1

4  2m
0

-1
V2m

0 m 0 = m 

4  2m
0

-m
V2m

1 -2 1
0 0

m -  2m m

_%/ 6m V6m V6m _
m

_>/6m V6m V6m _

m m m “ 1 1 1 “

4  3m ^3m V3m 4  3m -s/2m V6m

m n = z T mz n =
m 

V 2m
0

-m
V2m

1

4  3m
0

-2
V6m

m -2m m 1 -1 1

_4 6m %/6m V6m _ _4 3m >/2m V6m _

mn

m + m + m 
3m 3m 3m

m
r + 0 - -

m

m 4243 4243
m 2m m

m
m4342

m

+ 0 -
m

+ 0 +
2m 2m

mV3V2

m

mV3V6 mV3V6 mV3V6 J  v m4246
m

r+ 0 —
m

m4642

1 0 0
0 1 0
0 0 1

m 2m m

m 4346 4346 4346
m л mГ+ 0 -

m4246 4246
m + 4m + m 

6m 6m 6m

The original mass matrix has been transformed to the identity matrix. 

Similarly transforming the stiffness matrix:

(7.78)

(7.79)

(7.80)
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" 1 1 1 ] " 1  - 1  0 ]
V3 V3 л/3

1 1
0

-1 \r - 1  2  - 1
-v/m V2 V2

k

1 -2 1
0 - 1  1

_л/6 V6 V6 _

j ____П  (^ 1  _2_- X I  10 - J _____L
V T V s J  L/3 + V T V 3 j  I V3 + V3

j m  ( j ? +0 +° )  ( v ? +0 + ;й :)  ( 0 +0 " J ? )  <7-81) 

V6 + V 6 + 0)  b s - 7 Г ^ )  ( 0 +V6 + V6

" 1 1 1  ]
0 0 0 V3 V2 V6
1

0
- 1 1

0
- 2

V2 V2 V3 V6
3 - 6 3 1 - 1 1

[V 6 V6 V6 _ V2 V6 _

k  n =
m

0

1 1
V2 V3 V2 V3

3 6 3
7 3 7 6  V3 V6  ТэТб J  CV2 V6 V6 V2

0

1 + 0 + 1 
2  2

- 0 —

(7.83)

r + 0 - -
V2 V6  V2 V6

3 1 2  3
— I----------1-----
6 6 6

0

© 2001 by Chapman & Hall/CRC



0 0 0 
k  n = 0 1 0

0 0 3
m
k

(7.84)

Note that the normalized stiffness matrix is now diagonal and that the diagonal 
terms are the squares of the corresponding three eigenvalues. The normalized 
stiffness matrix is also known as the spectral m atrix  (Weaver 1990).

Because normalizing with respect to mass results in an identity principal mass 
matrix and squares of the eigenvalues on the diagonal in the principal stiffness 
matrix, we w ill use only this normalization in the future. Since we know the 
form of the principal matrices when normalizing with respect to mass, no 
multiplying of modal matrices is actually required: the homogeneous 
principal equations of motion can be w ritten  by inspection knowing only 
the eigenvalues.

7.5 Reviewing Equations of Motion in P rincipal Coordinates -  
M ass Normalization

7.5.1 Equations of Motion in Physical Coordinate System

m 0 0 z, k - k  0- k  0 z1
2k - k  z2 = [0] (7.85)
- k  k z3

0 m 0 z2 + - k
0 0 m z3 00 - k  k

Eigenvalues:

tt), = 0 (7.86)

(7.87a,b)

Eigenvectors, normalized with respect to mass:
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1 1 1

1 1
0

-2
Vm 7 3

1 -1 1
V2 46

(7.88)z n =

7.5.2 Equations of Motion in P rincipal Coordinate System

1 0 0 
0 1 0 
0 0 1

p2

0 0 0
k

0 0
m

3k
0 0

m

Jp2
p̂3

= [0] (7.89)

7.5.3 Expanding M atrix  Equations of Motion in Both Coordinate
Systems

Physical Coordinates

mZj + kzj -  kz2 = 0 
mz2 -  kzj + 2kz2 -  kz3 = 0 
mz3 -  kz2 + kz3 = 0

Principal Coordinates

z p1 = 0 
k

z p2 + m zp2 = 0 

•• 3k A
zp3 ^ —  zp3 = 0m m F

These equations are coupled and 
have to be solved 
simultaneously.

These homogeneous equations 
are uncoupled and can be solved 
independently.

Table 7.1: Summary of equations of motion in physical and principal coordinates.
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Now that we know how to construct the homogeneous uncoupled equations of 
motion for the system, we need to know how to transform initial conditions 
and forces to the principal coordinate system. We can then solve for transient 
and forced responses in the principal coordinate system using the uncoupled 
equations.

Starting with the original non-homogeneous equations of motion in physical 
coordinates:

mz + kz = F (7.90)

Premultiplying by zT , the transpose of the modal matrix:

z T mz + z T kz = z T F (7.91)

Inserting the identify matrix, I = z n z-1 :

zT m {  z-1 Z + zT k Z  z -1 {  = zT F (7.92)
" " T

Rewriting and regrouping terms:

z> zn z 1z+Z kz n z 1z= Z  F , (7.93)

7.6 Transforming Initial Conditions and Forces

where zTmzn and zTkzn were shown to diagonalize the mass and stiffness 
matrices in the previous section.

Defining terms:

mp = (nxn) diagonal principal mass matrix

k  p = (nxn) diagonal principal stiffness matrix

z -1z = z p = acceleration vector in principal coordinates

z -1z = z p = displacement vector in principal coordinates
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zT F = Fp = force vector in principal coordinates

In the previous section, the definitions for accelerations and displacements in 
physical and principal coordinates were shown to be:

z = z 'z
p ", (7.94)

zp = zn z

The same relationships hold for initial conditions of displacement and 
velocity:

z = z *z
op n o (7.95)

z op = z-1z o

In (7.95), zop and zop are vectors of initial displacements and velocities, 

respectively, in the principal coordinate system, and z o and z o are vectors of 
initial displacements and velocities, respectively, in the physical coordinate 
system.

Taking the inverse of the modal matrix to convert initial conditions requires 
that the modal matrix be square, with as many eigenvectors as number of 
degrees of freedom. We will see in future chapters that there are instances 
where not all eigenvectors are available. In one case, we may choose to only 
calculate eigenvalues and eigenvectors up to a certain frequency in order to 
save calculation time or because the problem only requires knowledge of 
response in a certain frequency range. In another case, we may build a 
“reduced” model where only the most significant modes are retained. 
Fortunately, a large majority of real life problems involve zero initial 
conditions.

7.7 Sum m arizing Equations of Motion in Both Coordinate Systems

The two sets of equations, in physical and principal coordinates, are shown in 
Table 7 .2 :
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Physical Coordinates Principal Coordinates

mZ1 + kZ1 -  kZ2 = F1 
mZ2 -  kZ1 + 2kZ2 -  kZ3 = F2 
mZ3 -  kZ2 + kZ3 = F3 

IC ' s : ZX,Z2,Ẑ ,ZX,Z2Z

Z = Fp1 p1

•• + k = FZp2 + Zp2 = Fp2 m F F

•• + 3k F
Zp3 + —  Zp3 = Fp3m
IC s - Zp1, Zp2 , Zp3 , Zp1, Zp2 , Zp3

Table 7.2: Summary of equations of motion in physical and principal coordinates.

The variab les in physical coordinates are the positions and velocities of 
the masses. The variab les in principal coordinates are the displacements 
and velocities of each mode of vibration.

The equations in principal coordinates can be easily solved, since the 
equations are uncoupled, yielding the displacements. We now need to back 
transform the results in the principal coordinate system to the physical 
coordinate system to get the final answer.

7.8 Back-Transform ing from Principal to Physical Coordinates

We showed previously that the relationship between physical and principal 
coordinates is:

z -1z = zp (7.96)

Premultiplying by zn :

V C 3  z) = znzp (7.97)
I

z = z n z p (7.98)

Thus, the displacement vector in physical coordinates is obtained by 
premultiplying the vector of displacements in principal coordinates by the 
normaliZed modal matrix zn .
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Similarly for velocity:

7.9 Reducing the Model Size W hen Only Selected Degrees of Freedom 
are Required

So far we have hinted at the fact that only portions of the eigenvector matrix 
are needed if  selected dof’s have forces applied and other (or the same) dof’s 
are needed for output. This section w ill show how the reduction in dof’s 
occurs. This reduction is one of the key steps to be used later in the book 
when we cover how to reduce the size of models derived from large finite 
element simulations.

Reviewing the steps in the modal solution, starting with the equations of 
motion and initial conditions in physical coordinates:

mZj + kzj -  kz2 = Fj 
mZ2 -  kz1 + 2kz2 -  kz3 = F2 

mz3 - kz2 + kz3 = F3 (7.100)

z = z n z p (7.99)

Initial Conditions: zJ,z 2,z 3,ZJ,Z2,Z3 = 0

Solve for eigenvalues: ю1, Ю2, Ю3

Solve for eigenvectors, normalize with respect to mass and form the modal 
matrix from columns of eigenvectors:

Zn11 Zn12 Zn13
z n = Zn21 Zn22 Zn23 (7.101)

_Zn31 Zn32 Zn33 _

Transform forces from physical to principal coordinates:

Fp = z T F (7.102)

Write the equations of motion in principal coordinates:
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Zp1 = Fp1

Zp2 + ®2Zp2 = Fp2

Zp3 + Ю3Ч 3 = Fp3
IC 's : zp1 ,

О
=p3

•N
p2

•N
p1

•N
p3

N
p2

N

(7.103a,b,c,d)

Solve the equations in principal coordinates in either time or frequency 
domain and then back transform to physical coordinates:

(7.104)

z = z nz p

Note that the two critical transformations (assuming zero initial conditions) 
involve premultiplying by the transpose of the modal matrix ( F ^  Fp ) in

(7.102) or the modal matrix ( zp ^  z ) in (7.104).

Let us first examine the force transformation by expanding the equations:

Fp = z T F (7.105)

Zn11 Zn12 Zn13
T

' F1 '
zTF = Zn21 Zn22 Zn23 F2 =

_ Zn31 Zn32 Zn33 _ . F3 _

z F + z F + z F^п11а1 ~ n21 2 n31 3
7 F + 7 F + 7 Fn12 1 n22 2 n32 3
z F + z F + z Fn13 1 n23 2 n33 3

n12 n22 n32
Zn13 Zn 23 Zn33

F1

(7.106)

Note that the multipliers of F1 in the first column are the elements of the first 
row of the modal matrix, the multipliers of F2 in the second column are the 
elements of the second row of the modal matrix and the multipliers of F3 in 
the third column are the elements of the third row of the modal matrix.

Suppose that force is to be applied at only mass 1, F1 , then only the first row 
of the modal matrix is required to transform the force in physical coordinates 
to the force in principal coordinates.
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Now let us examine the displacement transformation by expanding the 
equations:

z = z n z p (7.107)

Z1 Zn11 Zn12 Zn13 Zp1 Zn11Zp1 + Zn12Zp2 + Zn13Zp3
z = Z2 = z z =np Z Z Zn21 n22 n23 Zp2 = Zn21Zp1 + Zn22Zp2 + Zn23 Zp3

_ Z3 _ _ Zn31 Zn32 Zn33 _ _ Zp3 _ Zn31Zp1 + Zn32Zp2 + Zn33Zp3

(7.108)

Note that the coefficients of the principal displacements in the first row above 
are the elements of the first row of the modal matrix. Similarly, coefficients of 
the second and third rows are the elements of the second and third rows of the 
modal matrix.

Suppose that the only physical displacement we are interested in is that of 
mass 2, Z2 , then only the second row of the modal matrix is required to 
transform the three displacements Zp1, Zp2, Zp3 in principal coordinates to Z2 . 

This leads to the following conclusion about reducing the siZe of the model:

Only the rows of the modal m atrix  that correspond to 
degrees of freedom to which forces are applied and/or for 
which displacements are desired are required to complete the 
model.

For this tdof model, reducing the siZe of the problem is not required; however, 
we w ill see later that a realistic finite element model, with hundreds of 
thousands of degrees of freedom, presents an entirely different problem. 
Having the ability to reduce the problem siZe is critical in order to use the 
detailed results of a complicated finite element model to provide accurate 
results in a lower order MATLAB model.

7.10 Damping in Systems w ith P rincipal Modes

7.10.1 Overview

Damping in complex built-up mechanical systems is impossible to predict with 
the present state of the art. We will discuss in this section the conditions 
which determine if a damping matrix can be diagonaliZed, and the criterion to 
enable the damped equations to be diagonaliZed. In general, an arbitrary 
damping matrix cannot be diagonaliZed by the undamped eigenvectors, as the
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mass and stiffness matrices can. This leads to using what is called 
“proportional damping” in most finite element simulations.

If a mechanical system is designed with a specific viscous damping element, 
for example a dashpot, that dominates the small amount of inherent structural 
damping present, then that element can be added to the system as a viscous 
damper. The resulting system is linear, but probably does not exhibit normal 
modes as discussed in Section 7.2.2. In general this leads to the inability to 
diagonalize and uncouple the equations of motion, requiring a state space 
solution of the original, coupled equations of motion.

Viscoelastic damping treatments (damping elastomers) have been used for 
years in disk drives, most typically as constrained layer dampers on the thin 
sheet metal suspensions which support the read/write head. The effect of this 
viscoelastic damping can be approximated at a specific temperature and 
frequency as proportional damping by using the “modal strain energy” 
technique in association with a finite element structural model (Johnson 1982).

Ignoring specific viscous, coulomb, and viscoelastic damping elements, 
damping in typical structures arises from hysteresis losses in the materials as 
they are strained, in some cases from viscous losses due to structure/fluid 
interaction but more importantly from relative motion at the interfaces and 
boundaries where different parts are attached or grounded. Unless a specific 
damping element is used in a structural design, most structures have damping 
which varies from mode to mode and w ill be in the range of 0.05% to 2% of 
critical damping.

The modes in this chapter are all “real” or “normal” modes as defined earlier. 
Once again, having normal modes means that at certain frequencies all points 
in the system will vibrate at the same frequency and in phase, i.e., all points in 
the system w ill reach their minimum and maximum displacements at the same 
point in time. Chapter 5 discussed “complex” modes, modes in which all 
points in the system do not reach their minimum and maximum displacements 
at the same point in time.

7.10.2 Conditions Necessary for Existence of P rincipal Modes in Damped 
System

With a conservative (no damping) system, normal modes of vibration will 
exist. In order to have normal modes in a damped system, the mode shapes 
must be the same as for the undamped case, and the various parts of the system 
must pass through their minimum and maximum positions at the same instant 
in time, expressed as:
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Zj = zmi cos ( c^t + ф;) for the 1th mode (7.109)

A sufficient condition for the existence of damped normal modes is that the 
damping matrix be a linear combination of the mass and stiffness matrices. 
We know that m and k  are diagonalized by operating on them with the 
modal matrix. When c is a linear combination of m and k , then the 
damping matrix c is also uncoupled (diagonalized) by the same pre- and 
postmultiplication operations by the modal matrix as with the m and k  
matrices (Weaver 1990, Craig 1981).

The damped equations of motion then become:

mz + cz + kz = F , (7.110)

where the damping matrix is a linear combination of m and k  :

c = am + bk (7.111)

Cp = zT cz n , (7.112)

and where z n is the normalized (with respect to mass) modal matrix.

Writing out the complete equation:

mz + cz + kz = F (7.113)

z > z „ { z  + + z T kz „ z -,1 z = z TF a 114)

V  fT
Looking at the c to cp conversion where c = am + bk :

c = am + bk (7.115)

zTczn = azTmz„ + bzTkz„

= a l + bkp, (7.116)

where k p is a diagonal matrix whose elements are the squares of the 

eigenvalues.
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The equation for the ith mode is:

zpi + (a + bra, = Fp, (7.117)

Rewriting, defining cp, the (a  + bra2) term, using notation:

cpi = a + Ъю2 = 2Zi rai (7.118)

Where Z, is the percentage of critical damping for the ith mode, defined as:

Z i =
i 2^/kpimpi 2шрЛ /ю.

(7.119)

Then:

z i =
a + bra, 

2ю,
(7.120)

Rewriting the equation in principal coordinates:

Zp + 2Zi ra,Zpi +ra2Zpi = Fp, (7.121)

This type of damping is known as proportional damping, where the damping 
for each mode (they can all be different) is proportional to the critical damping 
for that mode. Since the damping is also proportional to velocity, it is of a 
viscous nature. If the same damping value is used for all modes, it w ill be 
referred to as “uniform” damping. Damping in which the damping value for 
each mode can be set individually w ill be referred to as “non-uniform” 
damping.

7.10.3 Different Types of Damping

7.10.3.1 Simple Proportional Damping

Viscous damping in each mode is taken to be an arbitrary percentage, Z, of 
critical damping:
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zpi + 2ZraiZpi + ra2Zpi = Fpip1 1 p1 p1
1

z p+ 2Z [ k  p ] 2 z p+k  p zp = Fp
(7.122)

This is analogous to the familiar notation used for a single degree of freedom 
system:

mz + cZ + kz = F

c . k F
z +---- z +-----z = —

m m m

(7.123)

Define critical damping ccr = 2Vkm and define the term multiplying velocity 
to be:

m■ = 2 Z 4

= 2
c Гк 

co ^ m 
2c Vk 

2>/km Vm

(7.124)

Rewriting:

m

Z + 2ZranZ + ra2z = — 
m

(7.125)

7.10.3.2 Proportional to Stiffness M atrix  -  “R elative” Damping

Recognizing that the higher modes of vibration damp out quickly, “relative” 
damping yields damping in proportion to frequencies in normal modes, 
basically letting the “a” term for Z, go to zero:

Z1 =
a + bra,2

2ra,
bra,

2 7.126)

a = 0

If a value of Z1, for the first mode, is assumed, a value can be defined for “b”

c

c
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b = 2^1
ra,

(7.127)

and the value for any other mode i is:

Z - = Z1-  
ra1

(7.128)

7.10.3.3 Proportional to M ass M atrix  -  “Absolute” Damping

Absolute damping is based on making “b” equal to zero, in which case the 
percentage of critical damping is inversely proportional to the natural 
frequency of each mode. This w ill give decreasing damping for modes as their 
frequencies increase.

Z1 =
a + bra,

2ra,
a

2ra, (7.129)

Ъ = 0

If a value of Z1, for the first mode, is assumed, a value can be defined for “a” :

(7.130)

and the value for any other mode i is:

Z i =
ra1Z1
ra,

(7.131)
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7.10.4 Defining Damping M atrix  W hen Proportional Damping is 
Assumed

Figure 7.6: Two degree of freedom for damping example.

An interesting question to ask is what the elements of the damping matrix 
should be in the two degree of freedom (2dof) problem shown in Figure 7.6 in 
order to be able to diagonalize the equations of motion. We will use the 
eigenvectors from the undamped case to normalize the damping matrix. Then 
we w ill solve for the specific values of the individual dampers which will 
allow the diagonalization. We will see how non-intuitive the values of 
c1, c2 and c3 are in order to be able to diagonalize. (See Craig [1981] for a 
general expression to calculate the physical damping matrix when given 
proportional damping values, the original mass matrix, the diagonalized mass 
matrix and the eigenvalues and eigenvectors.)

7.10.4.1 Solving for Damping Values

Starting with the undamped eigenvalues and eigenvectors:

m =
m 0"

k  =
' 2k - k '

c =
c1 + c2 - c 2

0 m - k 2k _ - c 2 c2 + c3 _

"1 1 " 1 "1 1 '
z m = 1 -1 zn = fZ---

V2m 1 -1

" k
0

k  = m
p

0
3k
—
m

(7.132)

Solve for the diagonalized damping matrix, assuming proportional damping, 
and knowing that the diagonalized stiffness matrix elements are squares of the 
eigenvalues:
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cp = zT cz n = 2Z
ra1 0
0 ra2

= 2Zk (7.133)

Premultiplying by (zT) and postmultiplying by (zn

(zT ) zT c zn (z = 2Z(zT ) 1 k p2 (zn )-1 (7.134)

c = 2Z(zT) 1 k p2 (z n ) (7.135)

Solving for the inverses above, noting that for this 2dof system, zn = zT , and 
then performing the operations on k  p :

The inverse of a 2 x 2 matrix can be found by:

1. Interchanging the two diagonal elements.

2. Changing the signs of the two off-diagonal elements.

3. Dividing by the determinant of the original matrix.

" d -b
a b ]  1 - c  a
c d a b 

c d

Table 7.2: Inverse of 2x2 matrix.

-1  -1  
-1  1

\/2m
\/2m

n \ n (-1  -1 )
1 1 
1 -1

(7.136)

II

© 2001 by Chapman & Hall/CRC



_1, 1 V2m 
z „ k  p2 = ——

“1  1" “1 0 '

1 „1 Vm 0 7 3

V2k 1 S '  
1 „ 7 3

z _1k  P z -1 =■
72 k "1 7 3  ■ “1 1 ■

2 _1 „73_ 1 „1
V2m

W km 1 + V3 1 „ 7 3  

1 —s/3 1+ 7 3

Vkm
c = 2Z

= Z7km

1+ 7 3  1 „ 7 3  

1 „ 7 3  1 + 73

1+ 73 1 „ 7 3  

1 „ 7 3  1 + 73

Now we can solve for the specific values for the three dampers:

_c2 = ZVkm (1 „  7 3 ) 

c2 = Z7km (7 3  „  1 ) 

= Z7km (.732)

2

4

2

(7.137)

(7.138)

(7.139)

(7.140)
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c1 + c2 = c2 + c3 = ^л/km (1 + V 3)

1 + V3 „1

Summarizing:

c1 = c3 = ^л/km ( i  + V3)„  c 

= ^Vkm 

= ^Vkm (2)

= 2^Vkm

c1 = c3 = 2^Vkm 

c2 = ^Vkm (.732)

(7.141)

(7.142)

(7.143)

Note that the values for the three dampers are not at all intuitive and would 
have been very difficult if impossible to guess to be able to construct a 
diagonalizable damping matrix. If defining the diagonalizable damping matrix 
for this 2x2 problem is difficult, imagine trying to define it for a real life finite 
element problem with thousands of degrees of freedom. Also, it is highly 
improbable that the back-calculated damping values in physical coordinates 
would match the actual damping in the structure.

7.10.4.2 Checking R ayleigh Form of Damping M atrix

We have now defined the values of the c1, c2 and c3, dampers which allow 
diagonalizing the equations of motion. Another interesting question is whether 
the Rayleigh form has been satisfied: Is c a linear combination of k  and m ?

= ^Vkm
1+ V3 1 „V 3 

1 „V 3  1+V3
? f “1 0" “ 2 „1"
= a i m + b k

I 0 1_ _ „1 2 _
(7.144)

We have two unknowns, a and b, and essentially two equations, since the two 
diagonal elements are the same and the two off diagonal elements are the 
same. First, let us look at the two off diagonal terms, equating terms on the 
two sides above:
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^л/km (1 -  V 3) = am (0) + bk (-1)

b = ^N/km = z -1

Now, equating the diagonal terms:

ZV km ( i  + V3) = am + 2bk

= am + 2

= am + 2ZVmk ( 3  -1

am = ^л/km + V3) -  2ZVmk ( (  -1 )  

= Z%/km [1 + V3 -  2n/3 + 2 ]

= ^Vkm "3 - > / 3  J

a = Z ^  [3 ^  J

Checking the two values for a and b by substituting back into (7.146).

(7.145)

(7.146)

(7.147)

(7.148)
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= ZVkm

(7.149)

So c is a linear combination of k  and m and the Rayleigh criterion holds. 

Problems

Note: A ll the problems refer to the two dof system shown in Figure P2.2.

P7.1 Set m1 = m2 = m = 1, k 1 = k 2 = k = 1 and solve for the eigenvalues and 
eigenvectors of the undamped system. Normalize the eigenvectors to unity, 
write out the modal matrix and hand plot the mode shapes

P7.2 Normalize the eigenvectors in P7.1 with respect to mass and diagonalize 
the mass and stiffness matrices. Identify the terms in the normalized mass and 
stiffness matrices. Write the homogeneous equations of motion in physical 
and principal coordinates.

P7.3 Convert the following step forcing function and initial conditions in 
physical coordinates to principal coordinates:

a) F1 = 1, F2 = -3

b) z1 = 0, z1 = -2 , z2 = -1 , z2 = 2

P7.4 Using the results of P7.2 and P7.3, write the complete equations of 
motion in physical and principal coordinates assuming proportional damping.
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CHAPTER 8

FREQUENCY RESPONSE: MODAL FORM

Now that the theory behind the modal analysis method has been covered, we 
w ill solve our tdof problem for its frequency response.

8.1 Introduction

^ z 1
r F i

^ z 2 F 2 ^ z 3 F 3

m 1
k 1

m 2
k 2

m 3

О  ( ) C) C) о  ( )\ V 4 \ ч 4 \ \

Figure 8.1: tdof undamped model for modal analysis.

We will use eigenvalue/eigenvector results from Chapter 7 to define the 
equations of motion in principal coordinates and to transform forces to 
principal coordinates. We will then use Laplace transforms to solve for the 
transfer functions in principal coordinates and back-transform to physical 
coordinates, where the individual mode contributions w ill be evident. We will 
discuss the relationship between the partial fraction expansion transfer 
function form and the modal form derived here. We discussed in Section 5.13 
how to excite only a single mode of vibration by judicious choice of initial 
conditions. Here we w ill describe the forcing function combination required 
to excite only a single mode.

We will spend considerable time in this chapter on developing a greater 
understanding of how individual modes of vibration combine to give the 
overall frequency response. MATLAB code is supplied for the tdof problem 
to illustrate the point. ANSYS is also used to solve the tdof problem and the 
ANSYS results are described and compared with the MATLAB results.
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8.2 Review from  Previous Results

Since the problem we are solving is frequency response, or finding the steady 
state motion of each mass as a function of frequency and of applied forces, 
initial conditions are not required.

From previous analyses, (7.85) to (7.88), we know the eigenvalues and 
eigenvectors normalized with respect to mass, Wj, zn :

W = 0 ю, =±.

\/m

k
m W3 =±

1 1 1
S V2 V6
1 r\ - 2

0

1 - 1 1

V3 7 2 V6

(8.1)

(8.2)

Knowing that in principal coordinates the mass matrix is the identity matrix 
and the stiffness matrix is a diagonal matrix with the squares of the respective 
eigenvalues as terms, we can write the matrices by inspection:

"1 0 0 " f 1, л "0 0 0"
m = 0 1 0 k  = f —1 0 1 0p p I m J0 0 1 0 0 3

(8.3)

The force vector in principal coordinates is:

Fp = z ; F =
F1

(8.4)
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Expanding:

Fp1 _ Zn11F1 + Zn21F2 + Zn31F3 

Fp2 _ Zn12F1 + Zn22F2 + Zn32F3 

Fp1 _ Zn13F1 + Zn23F2 + Zn33F3

Performing the actual problem multiplication:

(8.5a,b,c)

Fp = z n F =

" 1 1 1  " F + F2 + F3 '
7 3 7 3 7 3 Г F, 1 7 3  + 7 3  + 7 3

1 1
0

-1
1

T? _ 1 F + 0 - F3
7m 7 2 7 2

F2
F3

7m 7 2  + 7 2
1 -2 1 3

F 2F2 F3
_76 7 6 7 6  _ _76 - 7 6  + 7 6  _

p2

(8.6)

Writing the resulting equations of motion in principal coordinates in matrix 
form:

1 0 0 
0 1 0 
0 0 1

p2

0 0 0 
0 1 0 
0 0 3

p2
1

7m

A  + + J l
7 3  + 7 3  + 7 3

^  + 0 -  A
7 2  + 0 7 2

_F_
7 6

2El  + F_ 
7 6  7 6 .

(8.7)

Writing out the equations in expanded form:

Z p1 = (F1 + F2 + F3
)3 m  Fp1

(8.8)
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Zp2 + -Z p 2 = (  - F3 ) ) = L  = Fp, -  = w2 (8.9)
m V2 m m 

3k 1 3k
Zp3 + —  Zp3 = ( 1  -  2F, + F3 ) _  = Fp3 —  = ю2 (8.10)

m V6 m m

8.3 T ransfer Functions -  Laplace Transforms in P rincipal Coordinates

We now solve for the transfer functions. Taking the Laplace transform of 
each equation, ignoring initial conditions and collecting the displacement 
terms, where zp1 (s) is the Laplace transform of zp1 (Appendix 2):

2  ̂ _  1s2Zp1 (s) = (F1 (s) + Fj(s) + F ,(s))
V im

Zp2 (s) (s2 +ю2) = (F1 (s) -  F3 (s)) - ) =  (8.11a,b,c)
V2 m

Zp3 (s) (s2 +ю32 ) = (F1 (s) -  2 F2 (s) + F3 ( s ) ) )
V6 m

Solving for the three principal displacements and eliminating the “(s)” for 
simplicity:

Zp1 = (F1 + F2 + F3 ) 2 3---
" V3ms

Zp2 =(F 1 -  F3 ) — ----- (8 . 1 2 a,b,c)

Zp3 = (  -  2 F2 + F3 )

s2+ю2 ) ) —

1
(s2+ю2 )V6—

Taking the forces one at a time, the elements of a transfer function matrix can 
be defined.

1
F1 s2V 3 -
z 1 1
-p1  = -TW = (8.13a,b,c)
F2 s v3m

zp, 1
F3 s2V 3 -

zp1
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p2 ______
F I 2 +ю2 ) 2 m

p2 _ 0 (8.14a,b,c)

p2 -1

Is + ю: )V2m

p3 ______
F I 2 + ffl? ) 6 m

Zp3 _ -2
Ё Г  _ f s 2 + Ю?IV6m

(8.15a,b,c)

p3
Is + ю: ) 6 m

Writing out the principal coordinate transfer functions for each external force, 
F1 , F2, and F3:

Zp1
F1

Zp _ Zp2
F1 F1

Zp3
. F1 _

Г zp1 "
F2

Z Z 2p _ p2 _
F2 F2

Zp3
L F2 J

1
s2V3m

1
(s2 + ffl2 )V2m 

1

(s2 + )V6m

p̂n
p21

p31

(8.16)

sV 3m Zp12
0 _ Zp22 (8.17)

-2 Zp32
+ o>2 )V6m

F2

F

1
F3
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" Zp1 " 1
F3 sV 3m
Zp2 - 1
F3 (s2 + ю2 ) 2 m

Zp3 1
L F3 J (s2 +o>2 ) 6 m

p13
p23
p33

(8.18)

8.4 Back-Transform ing Mode Contributions to T ransfer Functions in 
Physical Coordinates

Now the transfer functions in principal coordinates can be back-transformed to 
physical coordinates. This allows one to see the contributions of each mode, 
where Zj- is the physical displacement at dof “ i ” due to a force at dof “j . ”

Zn11 Zn12 Zn13 Zp11 Zp12 Zp13 Z11 Z12 Z13
z = z n z p = Zn21 Zn22 Zn23 Zp21 Zp22 Zp23 N Z21 Z22 Z23

_Zn31 Zn32 Zn33 . _Zp31 Zp32 Zp33 _ _Z31 Z32 z33 _

(8.19)

The equations below show how the results from each of the principal 
equations (modes) combine to give the overall response. The overall transfer 
function is seen to be a combination of the three modes of vibration and is 
referred to as the “modal form.”

Z;UZpU + Zn12Zp21 + Z;13Zp31 contributions to total — transfer function. 
F1

Z;21Zp11 + Z;22Zp21 + Zn23Zp31 contributions to total —  transfer function. 
F1

Z;31Zp11 + Z;32Zp21 + Z;33Ẑ 31 contributions to total — transfer function. 
F1

z

2nd mode

z 2

2nd mode

z3

2nd mode 3rd mode

F  =  z ;1 1 z p12 +  z ;1 2 z p22 +  z ;1 3 z p32 contributions to total F l  transfer function.
2 1st mode 2nd mode 3rd mode 2
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Zn21Zp12 + Zn22Zp22 + Zn23Zp32 contributions to total —  transfer function. 
F,

Zn31Zp12 + Zn32Zp22 + Zn33Zp32 contributions to total — transfer function. 
F2

Z2
F2 2nd mode 3rd mode

Z3
F2 2nd mode

Z1
F _ Zn11Zp13 + Zn12Zp23 + Zn13Ẑ 33 
3 1st mode 2nd mode 3rd mode

contributions to total — transfer function.
F3

Z2
F _ Zn21Zp13 + Zn22Ẑ 23 + Zn23Zp33 
3 1st mode 2nd mode 3rd mode

contributions to total —  transfer function.
F3

Z3
F _ Zn31Zp13 + Zn32Ẑ 23 + Zn33Ẑ 33 
3 1st mode 2nd mode 3rd mode

contributions to total — transfer function.
F3

We saw earlier that because of symmetry there are only four distinctly 
different transfer functions of the total of nine:

к ъ ъ ,  and ^
F1 F1 F1 F2

Expanding the four transfer functions:

ZL _ J_
F1 Vm

p11 p21
V3 V2

^31
V6

1

Vm 2V 3 W 3  ( 2+ю2)V 2m V2 ( 2 + o>2 )V6m V6

s2 (3m ) ( 2 + ю2 ) m  (s2 +o>2 )6m
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2 2 s2 + ю:
(8.20)

F1 л/— 2V 3 -V 3
+ 0 -

( s2 + ю?

z2

+ 0 - 2 2 s2 + W2
(8.21)

F1 v — 2V3—л/э ( 2+ю2 ) ) — /2 ( 2+o>2 ) ) —V6

(8.22)

z

f2 V— 2V 3 -/ 3
+ 0

( s2 +ю2
z2

2 2 s2 + W2
(8.23)

k 3k
Taking m = k = 1 yields: Wj2 = 0, o>2 = — = 1, Wp = —  = 3, and

m m
substituting above:

1

+ (8.24)Zl = A  + 2 + _ 6
F1 s2 s2 +1 s2 + 3

F, s2 s2 + 3
(8.25)

z 2
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(8.26)
1  I  I  

_ 3  ^  + 6
F1 s2 s2 +1 s2 + 3

I  2

^  = 4  + 1 —  (8.27)
F2 s2 s2 + 3

8.5 P artia l Fraction Expansion and the M odal Form

Another way of finding the modal form (not as insightful, but does not require 
solving the eigenvalue problem) is to take the original transfer functions 
derived in the Chapter 2 and perform a partial fraction expansion. Partial 
fraction expansion gives the same results as the modal form in Section 8.4. 
The four unique transfer functions from (2.62) to (2.65) are repeated below:

z1 _ m2s4 + 3mks2 + k 2 
F^_ s2 (m 3s4 + 4m2ks2 + 3mk2

z2 k 
F1 s2(m2s2 + 3km)

z3 _ k 2

F1 s2 (m 3s4 + 4m2ks2 + 3mk2

z2 _ m s + 2mks + k 
F  _ s2 (m 3s4 + 4m2ks2 + 3mk2

(8.28)

(8.29)

(8.30)

(8.31)

In order to perform a partial fraction expansion, we need the roots of the 
characteristic equation, found earlier to be:

k 3k
Ю2 _ 0 ю2 _ — ю3 _ —  (8.32)

m m

Taking the z1/F1 transfer function and expanding in partial fraction form, 
setting m = k = 1;
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m s + 3mks + k s4 + 3s2 +1 s4 + 3s2 +1
F, s2 (m 3s4 + 4m2ks2 + 3mk2) s2(s4 +4s2 +3) s2(s2 +rn^)(s2 + ю32)
z

s4 + 3s2 +1 A B C
_2/_2 i r->.2 \ /-.2 , r-.2\ _2 i r-.2 _2 . ....2 _2 . r..2 s (s + Ю2 )(s + Ю3 ) s +w, s + Ю2 s +W3

(8.33a,b)

The terms A, B  and C, known as “residues,” are evaluated using the “cover- 
up” method, where each coefficient is evaluated by “covering up” its term in 
the transfer function and evaluating the remaining expression at s2 = -  W2.

Evaluating A:

. s +  3s +1 ] . 2 2A = —--------— -------— evaluated at s = -ю, = 0
(s2 +rn2)(s2 +ю32) 1

= 1 = 1 = 1  
= ю2ю32 = (1)(3) = 3

Evaluating B:

-n s4 + 3s2 +1 t j  2 2B = ——------ — evaluated at s = -ю 2 = -1
s2(s2 + ю3) 2

ю4 -  3ю2 +1 1 -  3 +1 -1  1

(8.34)

(8.35)

- w2 (-w2 +ю32) -1 (-1  + 3) - 2  2
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Evaluating C:

C = ——2S + 35 + 1— — evaluated at s2 = -ю^ = -  3 
s2(s2 + ю2 )(s2 + ю32) 3

= ю34 -  3ю2 +1 = 32 -  3(-3) +1 = 1  
-ю2(-ю2+ю2) —3(—3+1) 6

(8.36)

Combining terms:

1 1 1
z1 s4 + 3s2 +1 _ 3 _ + _ 2 _ + _ 6 _
F1 s2(s2 + ю^)(52 + ю2) S2 +ю2 s2 + ю2 s2 + ю3

This expression is the same as the term for z1 /F1 in (8.20). Converting the 
other three transfer functions to partial fraction form also reveals their modal 
form.

8.6 Forcing Function Combinations to Excite Single Mode

It is instructive at this point to see what types of forcing function combinations 
w ill excite each of the three modes separately. From the definition of normal 
modes, we know that if  the system is started from initial displacement 
conditions that match one of the normal modes, the system will respond at 
only that mode. An analogous situation exists for combinations of forcing 
functions. Repeating the transformed equations of motion in principal 
coordinates from (8.12a,b,c) with m = 1.

Zp1 (F1 + F2 + F3 ) s2 ^  Fp1

Zp2 = (F1 -  F3
____ 1_

( 2 +ю2
p2 (8.38a,b,c)

Zp3 = (F1 -  2F2 + F3
s + ю

= Fpp3

To excite only the first mode, we can start with initial displacements being any 
multiple of the first eigenvector, which has equal displacements for all masses.
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Now let us see if applying equal forces to all three masses with zero initial 
conditions excites only the first mode. Set F, = F2 = F3 Ф 0 , which should 
excite only the first, rigid body mode:

Zp1 (  + F2 + F3 ) s2V3 3 F , s2V3

p2 = (  -  F3
____ 1_

(s2 + ю2
= 0 (8.39a,b,c)

Zp3 = (F1 -  2F2 + F3
Is +Ю3 )V6

= 0

We can see above that the motion for the second and third modes is zero. It is 
the information contained in the eigenvector, which, when multiplied by the 
force vector in physical coordinates, determines the force vector in principal 
coordinates.

To excite the second mode only, applying zero force at mass 1 and equal and 
opposite sign forces at masses 1 and 2 should work: F, = —F3, F2 =0:

Zp1 = (F1 + F2 + F3 

Zp2 = (F1 -  F3

1

s2V3
1

= 0

Is +W
= 2F,

( 2 +ю2 ) )
(8.40a,b,c)

Zp3 = (  -  2F2 + F33 / / 2 2 s2 + w; )V6
= 0

In this case the combination of the eigenvectors and forcing function signs 
cancel out the first and third modes, leaving only the second mode.

To excite the third mode only, applying the same force to masses 1 and 3 and 
twice the force with opposite sign to mass 2 should work: F, = F3, F2 = -2 F ,:
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zp1 = (F1 + F2 + F3

zp2 = (F1 -  F3

1
s2V3

1

= 0

( 2 + «2 ) )
= 0 (8.41a,b,c)

zp3 = (F1 2F2 + F3
(s2 + «2 ) )

= 6F1
( 2 + «3 ) )

In this case the combination of the eigenvectors and forcing function signs 
cancel out the first and second modes, leaving only the third mode.

8.7 How Modes Combine to C reate T ransfer Functions

We have shown that both the normal mode method and partial fraction 
expansion of transfer functions yield additive combinations of sdof systems for 
the overall response. The purpose of this section is to develop a general 
equation for any transfer function, again showing that the system frequency 
response is an additive combination of sdof systems. Each sdof system has a 
gain  determined by the appropriate eigenvector entries and a  resonant 
frequency given by the appropriate eigenvalue.

The three equations of motion in principal coordinates are:

«if = 0

;p1 + « Ч 1 = Fp1

;p2 + «2 zp2 = Fp2

'p3 + « Ч 3 = Fp3

2 k 2 3k
ю2 = «3 == —

m m

(8.42a,b,c)

(8.43a,b,c)

Where the forces in principal coordinates are given by:

Fp = zT F =
F1

z F + z F + z Fи̂11А1 “  n21 2 n31 3
z F + z F + z Fn12 1 n22 2 n32 3
z F + z F + z Fn13 1 n23 2 n33 3

(8.44)
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Taking the Laplace transform of the differential equations (8.42a,b,c) and 
dividing by the coefficients of each principal displacement:

p2
^3

Г Fpi 1 z F + z F + z F;̂11а1 ~ ^21 2 ;̂31а32 2 s2 + Wj2 2 2 s2 + W2

Fp2 7 F + 7 F + z F^2 1 ;̂22а2 ~ 3̂2A3
2 2 s2 + w2 2 2 s2 + w2

Fp3 z F + z F + z FпП 1 n23 2 ;̂33а3
2 2 s2 + w2 2 2 s2 + w2

(8.45)

The equation above shows how the individual eigenvector matrix elements 
contribute to the displacements in principal coordinates.

Since we are only interested in SISO transfer functions that arise from a force 
applied to a single dof, we w ill look at the F,, F2, F3 cases individually.

For force F1 :

Fp1 z; 11F1
_  _

2 2 s2 + Wj2 s2 + w2

z p =
zpi

Fp2 z F ^ ;12а1
Zp2 

_ zp3 _

2 2 s2 + w2

Fp3

2 2 s2 + w2
z F ̂;13 1

2 2 s2 + 2 2 s2 + w2

(8.46)

For force F2

p2
p3

Г Fpi 1 z F^21 22 2 s2 + Wj2 s2 + w2

Fp2 z Fn22 2
2 2 s2 + w2 2 2 s2 + w2

Fp3 z Fn23 2
2 2 s2 + w2 2 2 s2 + w2

(8.47)

z p =

z p =
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For force F3

p2
p3

Г Fp1 1 zn31F3
2 2 s2 + «2 s2+«2

Fp2 3z 3F

2 2 s2 + «2 s2 + «2

Fp3 zn33F3
2 2 s2 + «2 s2 + «3

The equations for displacements in physical coordinates are 
premultiplying the above three equations by z n (7.107).

For F1:

z z F z z F z zn11 n11 1 ‘-‘■пЛП ПА 1z F z z Fn12̂ n12A1 + ^п13̂ п13х1

zn21zn11F1 zn22znnF1 zn23z.
2 2 s2 + «2

z F z z F'n22 n12 1 + n23 n13 1 
2 2 s2 + «2 2 2 s2 + « ;

z z F z z F z z Fn31 n11 1 + n32 n12 1 + n33 n13 1
2 2 s2 + «2 2 2 s2 + «2 2 2 s2 + «2

z p =

z =

Dividing by F1:

z1
F1
z2

F1

zn11zn11 + zn12zn12 + zn13zn13
2 2 s2 + ю,2 2 2 s2 + «2 2 2 s2 + « :

zn21zn11 + zn22zn12 + zn23zn13
2 2 s2 +«2 2 2 s2 + «2

2 2 s2 + «2

2 2 s2 + o>:
z

(8.48)

found by

(8.49)

(8.50)
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Similarly for F, andF2

zi z znll n-l
F-

- - s2 + ю-
z Z2 z zn-l n-l

F  = F-
2 2 s2 +W,

Z3 z z^31 n-l
_ F- _

2 2 s2 + ю-

zi z znll ^ 1
F3 s2 +W-

z Z2 Z;21Z;31
F  = F3 2 2 s2 + w;

Z3 z z^31 ^ 1
_ F3 _ 2 2 s2 +W-

z z z z+ ^2 n22 + n13 n23

+ z ; 22z ;2 2  + z ; 23z ;2 3
2 2 s2 + W- 2 2 s2 + w;

z z z z_ + n32 n22 + n33 n23
2 2 s2 + w;; 2 2 s2 + w;

z z z z+ nl- n32 + n13 n33

z z z z+ n32 n32 + n33 n33
2 2 s2 + ю2 2 2 s2 + w;

(8.51)

(8.52)

The nine transfer functions above may be generalized by the following 
equation. For the transfer function with the force applied at dof “k,” the 
displacement taken at dof “j ” and for mode “i” :

zj = Znj1Ziik1 + Z;j2Z;k2 + Z;j3Z;k3
Fk 2 2 s2 + w,2 2 2 s2 + ю2 2 2 s2 + w;

(8.53)

Rewriting in summation form, and generalizing from our tdof system to a 
general system where “m” is the total number of modes for the system for an 
undamped (8.54a) and damped (8.54b) system:

._. 2 2i“1 s2 + w2
(8.54a,b)

/ . 111 
F-  = 2“ 1 s2 + 2Zi Wis + w2

Equations (8.54a,b) shows that in general every transfer function is made 
up of additive combinations of single degree of freedom systems, w ith 
each system having its dc gain (transfer function evaluated w ith s = j0 ) 
determined by the appropriate eigenvector entry product divided by the
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square of the eigenvalue, znjiznki / « 2 , and w ith resonant frequency 

defined by the appropriate eigenvalue, .

For our tdof system, substituting for the « ;  values:

nj2 Л2 nj3 11KJ

2 ' + 2 . , ,— + 2 ,— (8.55)
zj = znj1znk1 + znj2znk2 + znj3znk3
Fk s2 s2 + k/m  s2 + 3k/m

This equation makes the graphical combining of modal contributions to the 
final transfer function more clear. The contribution of each mode is a simple 
harmonic oscillator at frequency « ;  with dc gain znjiznki / « 2, where “ i ” is the 

mode number.

8.8 Plotting Individual Mode Contributions

Taking z 1 /F1 for example, the separate contributions of each mode to the total 
response can be plotted as follows. First we calculate the DC response of the 
non-rigid body mode:

R igid body response: at «  = 0.1 rad/sec z 111 = 0 ^  = 33.33 = 30.457 db, 

slope = - 2

Now we calculate the dc gain of the non-rigid body modes:

Second mode response: at DC , z 112 = 2  = 0.5 = - 6db, slope = 0

resonance at « 2  = 1 , slope at ^  = - 2

Third mode response: at DC , z 113 = 1 8 = 0.0555 = -25.1db, slope = 0

resonance at « 2  = 3 , slope at ^  = - 2 , where the 
“ijk” notation in zijk indicates: dof “i,” due to force 
“j , ” for mode k.

Thus, the total response is defined by the additive combination of three single 
degree of freedom responses, each with its own spring-dominated low

© 2001 by Chapman & Hall/CRC



frequency section, damping dominated resonant section and mass dominated 
high frequency section.

The MATLAB code tdof_modal_xfer.m is used to calculate and plot the 
individual mode contributions to the overall frequency response of all four 
unique transfer functions for the tdof model. The program plots the frequency 
responses using several different magnitude scalings. We will discuss below 
the results for the z 1 /Fj frequency response, using plots from the MATLAB 
code to illustrate. The notation “z 113” below signifies the transfer function 
z1/F1 for mode 3, and so forth.

Transfer Function - z111, z112, z113 and z11 Magnitude

Frequency, rad/sec

Figure 8.2: z11 transfer function frequency response plot with individual mode 
contributions overlaid.

Figure 8.2 shows the overall z 1 /F1 (z11) transfer function and the individual 
modal contributions which add to create it. Because the magnitude scale in 
Figure 8.2 is in log or “db” units, the individual mode contributions cannot be 
added graphically. To add graphically requires a linear magnitude axis. We 
cannot use the log magnitude or db scale for adding directly because adding 
with log or db coordinates is equivalent to the multiplication of responses, not 
addition.

There is zero damping in this model, so the amplitudes at the two poles in 
Figure 8.2 should go to infinity. The peak amplitudes do not go to infinity 
because they are limited by the resolution of the frequency scale chosen for the 
plot. The two zeros should go to zero, but once again they do not because of 
the frequency resolution chosen.
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Figures 8.3 and 8.4 show the same frequency responses plotted on a linear 
magnitude scale.

Transfer Function - z111, z112, z113 and z11 Linear Magnitude

Figure 8.3: z11 frequency response and modal contributions plotted with linear magnitude
scale.

Figure 8.4 uses an expanded magnitude axis to more clearly show how the 
three individual mode sdof responses combine graphically to create the overall 
frequency response. It also contains notation that shows how the signs change 
through the resonance. In Chapter 3 we learned how to sketch frequency 
response plots by hand, knowing the high and low frequency asymptotes and 
the locations of the poles and zeros. Similarly, we can combine modes by 
hand if  we know the signs (phases) of the individual modes that are being 
combined. In our tdof example, it just so happens that the signs of the low 
frequency portions of the second and third modes (1.0 and 1.7 rps) were both 
positive. In general, it is not the case that all low frequency signs w ill be 
positive (see the z31 example below). The discussion below w ill show how to 
define the sign (phase) of the low frequency portion of each mode by knowing 
the signs of the eigenvector entries for the input and output degrees of 
freedom.
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Figure 8.4: z11 frequency response with expanded magnitude scale to see contributors to
the zeros.

Since the phase at frequencies much lower than the resonant frequency is zero 
for a spring mass sdof system (2.19b), and since each mode in principal 
coordinates is a sdof system, the phase for each mode contribution to the 
overall response at low frequency is given by the sign of the eigenvector 
for the dof whose displacement is desired times the sign of the dof where 
the force is applied. For the three modes and the transfer function z11, where 
we are interested in measuring the displacement of mass 1 and in the force 
being applied to mass 1, the signs for the three modes at low frequencies are 
found as follows. The normalized modal matrix is repeated to see the signs of 
the entries:
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Mode 1 Mode 2 Mode 3

dof 1 -0.5774 -0.7071 0.4082

dof2 -0.5774 0.0000 -0.8165

dof3 -0.5774 0.7071 0.4082

Table 8.1: Normalized modal matrix.

Sign of mode 1 low frequency asymptote for z11 frequency response: 

dof 1, mode 1: -0 .5774 ( - )  

dof 1, mode 1: -0 .5774 4 ( - )

Low frequency sign (phase) = ( - )  times ( - )  = (+), but since 
resonance is rigid body at zero rad/sec, all frequencies of interest to 
us are “after resonance” and thus the sign is ( - )  because the phase is

-180°.

Sign of mode 2 low frequency asymptote for z11 frequency response: 

dof 1, mode 2: -0.7071 ( - )  

dof 1, mode 2: -0.7071 ( - )

Low frequency sign (phase) = ( - )  times ( - )  = (+ ), 0°

Sign of mode 3 low frequency asymptote for z11 frequency response: 

dof 1, mode 3: +0.4082 ( - )  

dof 1, mode 3: +0.4082 ( - )

Low frequency sign (phase) = (+) times (+) = (+), 0°

As mentioned earlier, the signs of the low frequency portions of the second 
and third modes were both (+). The signs of the eigenvector entries above 
show why this was the case.
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The “sign” of the rigid body mode is always “ -  ” because the phase is always 
-180°. The signs of the 1 rad/sec (rps) and 1.732 rps modes are both “+” at 
low frequencies because their phases are 0°. After the resonance, their signs 
change to “ -  ” as phase goes to -180°. Exactly at resonance the phase of 
each is -90 ° , however, away from resonance the phases are either 0° or 
-18 0° because the problem has no damping.

Thus, if the low frequency asymptote sign (phase) is known for each mode, the 
SISO frequency response zeros can be identified as frequencies where the 
appropriate modes add to zero algebraically , as can be seen graphically on 
Figure 8.4.

The z11 zeros at 0.62 and 1.62 rps arise when the contributions of the three 
modes combine algebraically to zero.

For other transfer functions, for example z31, the low frequency signs would 
be different, as can be seen below:

Sign of mode 1 low frequency asymptote for z31 frequency response: 

dof 3, mode 1: -0 .5774 ( - )  

dof 1, mode 1: -0 .5774 ( - )

Low frequency sign (phase) = ( - )  times ( - )  = (+), but is after 
resonance so sign is ( - )

Sign of mode 2 low frequency asymptote for z31 frequency response: 

dof 3, mode 2: +0.7071 ( - )  

dof 1, mode 2: -0.7071 ( - )

Low frequency sign (phase) = (+) times ( - )  = (- ) , -18 0°

Sign of mode 3 low frequency asymptote for z31 frequency response: 

dof 3, mode 3: +0.4082 ( - )  

dof 1, mode 3: +0.4082 ( - )
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Low frequency sign (phase) = (+) times (+) = (+), 0°

Now that the low frequency phases o f  the individual modes are defined, we 
can follow  the combining o f  modes to get the overall response, indicated by 
the “ +” signs.

Because we are dealing with a linear magnitude axis above, we can 
graphically add or subtract the contribution o f each to get the overall response.

To get the overall response we combine the amplitudes o f  each mode 
depending on its sign. For example, at 0.4 rad/sec frequency, we combine the 
amplitude o f  the rigid body mode with a negative sign with the two oscillatory 
modes, each o f  which has a positive sign:

Rigid body response: at ю = 0.4 rad/sec, ю1 = 0 :

1 1 -1  -1
3s2 3(jo>r 3ю2 3(0.4)

Second mode response: at ю = 0.4 rad/sec, ю2 = 1

= -  2.083 (8.56)

1
= 0.595

112 2(s2 +ю 2) 2 [(jra)2 + ю2 ]  2 [ - ю 2 +ю2 ]  2 [ - (0 .4 )2 +1]

(8.57)

Third mode response: at ю = 0.4 rad/sec, ю3 = 1.732 :

1 1 1 1
= 0.0586

113 6(s2 + ю32) 6 [(jra)2 + ю32 ]  6 [ - ю 2 + ю 32 ]  6 [ - (0 .4 )2 + 3]

(8.58)

Adding (with proper signs) the three contributions at 0.4 rad/sec gives the 
amplitude and phase o f  the overall response at 0.4 rad/sec:

-2 .083 + 0.595 + 0.0586 = -1 .4294  (8.59)

The amplitude is 1.4294 and the phase is -1 8 0 ° , as indicated by the negative 
sign. Because the model has no damping, each mode has 0° phase before
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resonance and immediately after resonance switches phase to -1 8 0 °. Exactly 
at resonance the amplitudes are theoretically infinite.

Let us now track what happens at the frequency o f  the first zero, which we 
showed in (2.85) to be 0.618 rad/sec. W e will carry out the same calculations 
as above for a frequency o f  0.618 rad/sec:

Rigid body response: at ю = 0.618 rad/sec, ю1 = 0 :

z111 = “ T  = —^  = — г  = --------= -  0-8727 (8.60) 
111 3s2 3(jo>)2 3ю2 3(0.618)2

Second mode response: at ю = 0.618 rad/sec, ю2 = 1:

z112 =
2(s2 +ю 2) 2 [(jra)2 +ю2 ]  2 [ -(0 .6 1 8 )2 + i ]

= 0.8089

(8.61)

Third mode response: at ю = 0.618 rad/sec, ю3 = 1.732 :

6(s2 +ю3) 6 [(jtt>) 2+®2 ] 6 [- (0 .6 1 8 )2 + 3]
= 0.0636

(8.62)

Adding (with proper signs) the three contributions gives the amplitude and 
phase o f  the overall response at 0.618 rad/sec:

-0 .8727 + 0.8089 + 0.0636 = -0 .0002 = 0 (8.63)

The amplitude is -0.0002. With greater accuracy in the values used for the 
eigenvalues and the frequency o f  the zero, the solution would have been 
exactly zero.

In Chapter 2, we showed that the zeros for SISO transfer functions arose from 
the roots o f  the numerator. The modal analysis method shows another 
explanation o f  how zeros o f  transfer functions arise: when modes combine 
with appropriate signs (phases) it is possible at some frequencies to have 
no motion.

W e will calculate the response at one more frequency to show how the phase 
changes for a mode when the frequency is higher than the resonant frequency.
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W e will choose a frequency o f  1.3 rad/sec, which is higher than the second 
mode but lower than the third mode. We should see that the sign o f  the 
contribution for the second mode changes sign from positive to negative. 
Signs for the first and third mode should remain unchanged.

Rigid body response: at ю = 1.3 rad/sec, ю1 = 0 :

1 1 -1  -1
3s2 3(jff>)2 3ю2 3(1.3)

Second mode response: at ю = 1.3 rad/sec, ю2 = 1:

= -  0.1972 (8.64)

Z112 —
2(s2 + ю2) 2 [ j ) 2 + ю2 ]  2 [ -(1 .3 )2 +1]

— -  0.7246

(8.65)

Third mode response: at ю = 1.3 rad/sec, ю3 — 1.732 :

6(s2 +ю3) 6 [(jtt>)2+ю2 ] 6 [ -(1 .3 )2 + 3]
— 0.1272

(8.66)

Adding (with proper signs) the three contributions at 1.3 rad/sec gives the 
amplitude and phase o f  the overall response at 1.3 rad/sec:

-0 .1972 -  0.7246 + 0.1272 — -0 .7946 (8.67)

The amplitude is 0.7946 and the phase is -1 8 0 °. Note that the sign o f  the 
second mode contribution changed from positive to negative when the 
resonant frequency was passed.

The same calculations can be repeated for any desired frequency. Also, 
knowing the high and low frequency asymptotes, their signs and resonant 
frequencies, one can plot the overall frequency response roughly by hand, 
similar to what was done in Section 3.3. Here, unlike the previous hand 
plotting, we have not calculated any zeros; they occur by additive 
combinations o f  individual modes.
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8.9 M A TL A B  Code tdof_m odal_xfer.m  -  Plotting Frequency Responses, 
M odal Contributions 

8.9.1 Code Overview

Figures 8.2 to 8.4 were plotted using this code. The code uses (8.24 to 8.27) 
to evaluate the four transfer functions z11, z21, z31 and z22. Each o f  the 
transfer functions also has its modal contributions calculated and plotted as 
overlays. The frequency response plots are all plotted with log and db 
magnitude scales as well as a linear scale which is expanded in the fourth plot 
o f  the series. Because o f  the amount o f  code used for the plotting, only the 
code for the z11 transfer function will be listed. All the other transfer 
functions are calculated in a similar fashion.

8.9.2 Code Listing, Partial

% tdof_modal_xfer.m plotting modal transfer functions of three dof model

clf;

legend off; 

subplot( 1,1,1); 

clear all;

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.

w = logspace(-1,1,150);

% calculate the rigid-body motions for low and high frequency portions
% of all the transfer functions

% z11, output 1 due to force 1 transfer functions

z111num = 1/3; 

z111den = [1 0 0]; 

z112num = 1/2; 

z112den = [1 0 1]; 

z113num = 1/6; 

z113den = [1 0 3];

[z111mag,z111phs] = bode(z111num,z111den,w);
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[z112mag,z 112phs] = bode(z 112num,z 112den,w);

[z113mag,z113phs] = bode(z113num,z113den,w); 

if abs(z111phs(1)) >= 10 

z111text = '(-)';

else

z111text = '(+)';

end

if abs(z112phs(1)) >= 10 

z112text = '(-)';

else

z112text = '(+)';

end

if abs(z113phs(1)) >= 10 

z113text = '(-)';

else

z113text = '(+)';

end

z111magdb = 20*log10(z111mag); 

z112magdb = 20*log10(z112mag); 

z113magdb = 20*log10(z113mag);

% calculate the complete transfer function

z11 = ((1/3)./((j*w).A2) + ((1/2)./((j*w).A2 + 1)) + ((1/6)./((j*w).A2 + 3)));

z11mag = abs(z11);

z11magdb = 20*log10(z11mag);

z11phs = 180*angle(z11)/pi ;

% truncate peaks for microsoft word plotting of expanded linear scale

z 11plotmag = z11mag; 

z111plotmag = z111mag;
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z112plotmag = z112mag; 

z113plotmag = z113mag;

for cnt = 1:length(z11mag)

if z11plotmag(cnt) >= 3.0

z11plotmag(cnt) = 3.0;

end

if z111plotmag(cnt) >= 3.0

z111plotmag(cnt) = 3.0;

end

if z112plotmag(cnt) >= 3.0

z112plotmag(cnt) = 3.0;

end

if z113plotmag(cnt) >= 3.0

z113plotmag(cnt) = 3.0;

end

end

% plot the three modal contribution transfer functions and the total using
% log magnitude versus frequency

loglog(w,z111mag,'k+-',w,z112mag,'kx-',w,z113mag,'k.-',w,z11mag,'k-')
title('Transfer Functions - z111, z112, z113 and z11 magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
text(. 11, 1.2*z111mag( 1 ),z 111text)
text(. 11, 1.2*z112mag( 1 ),z 112text)
text(. 11, 1.2*z113mag( 1 ),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude')
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot the four transfer functions using db

semilogx(w,z111magdb,'k+-',w,z112magdb,'kx-',w,z113magdb,'k.-',w,z11magdb,'k-') 
title('Transfer Function - z111, z112, z113 and z11 Magnitude') 
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
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text(. 11,2+z111magdb(1),z111text) 
text(. 11,2+z 112magdb( 1 ),z 112text) 
text(. 11,2+z 113magdb( 1 ),z 113text) 
xlabel('Frequency, rad/sec') 
ylabel('Magnitude, db') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot the four transfer functions using a linear magnitude scale so that
% the amplitudes can be added directly

semilogx(w,z111mag,'k+-',w,z112mag,'kx-',w,z113mag,'k.-',w,z11mag,'k-')
title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude')
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total')
text(. 11,1. 0*z 111mag( 1 ),z 111text)
text(. 11,1.1 *z 112mag( 1 ),z 112text)
text(. 11,1.1 *z 113mag( 1 ),z 113text)
xlabel('Frequency, rad/sec')
ylabel('Magnitude')
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z111plotmag,'k+-',w,z112plotmag,'kx-',w,z113plotmag,' ...
k.-',w,z11plotmag,'k-') 

title('Transfer Function - z111, z112, z113 and z11 Linear Magnitude') 
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total') 
text(. 11,1. 0*z 111mag( 1 ),z 111text) 
text(. 11,1. 1*z112mag( 1 ),z 112text) 
text(. 11,1. 1*z113mag( 1 ),z 113text) 
xlabel('Frequency, rad/sec') 
ylabel('Magnitude') 
axis([.1 10 0 3]); 
grid

disp('execution paused to display figure, "enter" to continue'); pause

% plot phase

semilogx(w,z111phs,'k+-',w,z112phs,'kx-',w,z113phs,'k.-',w,z11phs,'k-') 
title('Transfer Function - z111, z112, z113 and z11 Phase') 
legend('z111-1st Mode','z112-2nd Mode','z113-3rd Mode','z11-Total') 
xlabel('Frequency, rad/sec') 
ylabel('Phase, Deg') 
grid

disp('execution paused to display figure, "enter" to continue'); pause
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8.10 tdo f Eigenvalue Problem  Using ANSYS

An ANSYS solution to the tdof problem is now shown in order to start 
becoming familiar with how ANSYS presents its eigenvalue/eigenvector 
results.

8.10.1 ANSYS Code threedof.inp Description

The ANSYS code threedof.inp below is used to build the model, calculate 
eigenvalues and eigenvectors, output the frequency listing and eigenvectors, 
plot the mode shapes, calculate and plot all three transfer functions for a 
forcing function applied to mass 1: z j /F 1; z 2/Fj,and z3/F j . The hand 
calculated values for masses and stiffnesses are used, m1 = m2 = m3 = 1.0, 
k1 = k2 = 1.0.

To run the code, from the “begin” level in ANSYS, type “ /input,threedof,inp,” 
and the program will run unattended. The various outputs are available as 
follows:

threedof.frq frequency list, ascii file

threedof.eig eigenvector list, ascii file

threedof.grp2 mode shape plots

threedof.grpl frequency response plots

Use the ANSYS Display program to load and display the two plot files.

8.10.2 ANSYS Code Listing

/title, threedof.inp, three dof vibration class model, Ansys Version 5.5

/prep7 ! enter model preparation section

! element type definitions

et,1,21
et,2,14

! element type for mass 
! element type for spring

! real value definitions

r,1,1,1,1
r,2,1

! mass of 1kg
! spring stiffness of 1mn/mm, or 1n/m

! define plotting characteristics

/view,1,-1,0,0 
/angle,1,0

! z-y plane 
! not iso
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/pnum,real, 1 ! color by real
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all,1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,-1 ! left hand mass at x = -1.0 mm
n,2,0,0,0 ! middle mass at x = 0 mm
n,3,0,0,1 ! right hand mass at x = +1.0 mm

! define masses

type,1
real,1
e,1
e,2
e,3

! define springs

type,2
real,2
e,1,2
e,2,3

! define constraints, ux and uy zero, leaving only uz motion

nsel,s,node,,1,3
d,all,ux,0
d,all,uy,0

allsel
eplo

! *************** eigenvalue run ******************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

! define masters for frequency response (transfer function) run

m,1,uz
m,2,uz
m,3,uz

antype,modal,new
modopt,reduc,3 ! method -  Block Lanczost
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,3,,,no ! number of modes to expand
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total,3,1 ! total masters, all translational dof

allsel

solve starts the solution of one load step of a solution sequence, modal

fini

! ***************** output ft'equencies *******************

/post1

/output,threedof,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ***************** output eigenvectors *********************

! define nodes for output

allsel

/output,threedof,eig ! write out eigenvectors to ascii file .eig

*do,i,1,3
set,,i
prdisp

*enddo

/output,term

/show,threedof,grp2,0 ! raster plot, 1 is vector plot, write out to graph file .grp2

allsel

*do,i,1,3
set, 1,i

pldi,1
*enddo

/show,term

calculate and plot transfer functions ******************

fini

/assign,rst,junk,rst ! reassigns a file name to an ANSYS identifier

/solu

dmprat,0 ! sets a constant damping ratio for all modes, zeta = 0
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allsel
eplo ! show forces applied

f,1,fz,1 ! 1 mn force applied to node 1, left-hand mass

/title, threedof.inp, tdof, force at mass 1

antype,harmic ! harmonic (frequency response) analysis

hropt,msup,3 ! mode superposition method, nummodes modes used

harfrq,0.0159,1.59 ! frequency range, hz, for solution, -1 to 10 rad/sec

hrout,off,off ! amplitude/phase, cluster off

kbc,1

nsubst,200 ! 200 frequency points

outres,nsol,all, ! controls solution set written to database, nodal dof solution, all 
! frequencies, component name for selected set of nodes

solve

fini

/post26

file,,rfrq ! frequency response results

xvar,0 ! display versus frequency

lines,10000 ! specifies the length of a printed page for frequency response listing

nsol,2,1,u,z,z1 !
!
!

specifies nodal data to be stored in results file
u - displacement, z direction
note that nsol,1 is frequency vector

nsol,3,2,u,z,z2

nsol,4,3,u,z,z3

! plot magnitude

plcplx,0
/grid,1
/axlab,x,frequency, hz 
/axlab,y,amplitude, mm
/gropt,logx, 1 ! log plot for frequency 
/gropt,logy,1 ! log plot for amplitude

/show,threedof,grp1
plvar,2,3,4
/show,term

! file name for storing
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! plot phase

plcplx,1
/grid,1
/axlab,x,freq
/axlab,y,phase, deg
/gropt,logx,1
/gropt,logy,0

! label for y axis 
! log plot for frequency 
! linear plot for phase

/show,threedof,grp1
plvar,2,3,4
/show,term

! save ascii data to file

prcplx,1 ! stores phase angle in asci file .dat

/output,threedof,dat
prvar,2,3,4
/output,term

fini

8.10.3 ANSYS Results
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Figure 8.5: ANSYS frequency responses for force at mass 1.
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The resulting ANSYS transfer function plot is shown in Figure 8.5, with the 
frequency axis in Hz, not rad/sec.

The ANSYS frequency listing from threedof.frq is shown below, in hz units:

***** INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE

1 0.47280E-06 1 1 1

2 0.15915 1 2 2

3 0.27566 1 3 3

Note that the rigid body mode is calculated to be 0.4726e-6, close to 0 hz. 
The second and third modes are calculated to be 0.15915 and 0.27566 hz, or 
0.999969 and 1.732 rad/sec, respectively. This is the same as our hand- 
calculated results.

The ANSYS eigenvector listing from threedof.eig is below:

*DO LOOP ON PARAMETER= I FROM 1.0000 TO 3.0000 BY 1.0000 

USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 0.47280E-06 
TITLE= threedof.inp, three dof vibration class model, Ansys Version 5.5

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 
FREQ= 0.47280E-06 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES 

NODE UX UY UZ ROTX ROTY ROTZ
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1 0.0000 0.0000 0.57735
2 0.0000 0.0000 0.57735
3 0.0000 0.0000 0.57735

MAXIMUM ABSOLUTE VALUES
NODE 0 0 1 0 0 0
VALUE 0.0000 0.0000 0.57735 0.0000 0.0000 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2 
FREQ= 0.15915 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 -0.70711
2 0.0000 0.0000 0.75552E-14
3 0.0000 0.0000 0.70711

MAXIMUM ABSOLUTE VALUES
NODE 0 0 3 0 0 0
VALUE 0.0000 0.0000 0.70711 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 3 
FREQ= 0.27566 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

EDO UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 -0.40825
2 0.0000 0.0000 0.81650
3 0.0000 0.0000 -0.40825

MAXIMUM ABSOLUTE VALUES
NODE 0 0 2 0 0 0
VALUE 0.0000 0.0000 0.81650 0.0000 0.0000 0.0000

The ANSYS calculated eigenvectors, the three “U Z” listings highlighted in 
bold type above, arranged in the modal matrix:

ANSYS zn =

0.57735 -0 .707  -0.40825

0.57735
0.57735

0
0.707

0.81649
-0.40825

(8.68)
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The hand-calculated modal matrix is below, only differing from the ANSYS 
calculated values in the arbitrary “ - 1 ” multiplier for the second and third 
modes:

1 1 1

л/3 s V6
1 1

0
-2

\/m 7 3 7 6
1 -1 1

_73 7 2 7 6

0.57735

0.57735

0.707

0
0.57735 -0 .707

0.40825

-0.81649
0.40825

zn =

(8.69)

Problems

Note: All the problems refer to the two dof system shown in Figure P2.2.

P8.1 Using the eigenvalues and eigenvectors normalized with respect to mass 
from P7.2 and forces F1 and F2 applied to mass 1 and mass 2, respectively, 
write the equations in motion and physical and principal coordinates in matrix 
form. Identify the components o f  the forcing function vector in principal 
coordinates -  which eigenvector components and which force, F1 orF2, are 
involved.

P8.2 Solve for the four transfer functions for the system o f  P8.1 and write 
them in transfer function matrix form. Separate each transfer function in 
principal coordinates to show z p /  Fj and z p /F 2 as in (8.16).

P8.3 Back transform the transfer functions in principal coordinates to physical 
coordinates. Identify the contributions to the transfer function from mode 1 
and from mode 2 for all transfer functions.

P8.4 Take the transfer function results o f  P2.2 with m1 = m2 = m = 1, 

k1 = k 2 = k = 1 and zero damping and perform a partial fraction expansion on 
each transfer function. Show that the results are identical to P8.3, the modal 
form.

P8.5 What is the relationship between F1 andF2 in order to excite mode 1 
only? To excite only mode 2?
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P8.6 Plot by hand the individual mode contributions to the z 2 /Fj frequency 
response for zero damping. Note the sign o f  the dc gain portion o f  each 
contribution and add the two contributions appropriately to obtain the overall 
frequency response. Extra Credit: Plot all three unique frequency responses, 
showing the individual mode contributions.

P8.7 (M ATLAB) Modify tdof_m odal_xfer.m  for the undamped two dof 
system with mj = m2 = m = 1, kj = k 2 = k = 1 and plot the overlaid frequency 
responses.

P8.8 (ANSYS) Modify the threedof.inp code for the two dof system. Run 
the code and plot the frequency responses for both masses for Fj = 1, F2 = 0 . 
Print out the eigenvalue and eigenvector results. Pick out the appropriate 
entries o f  the eigenvector output and write out the modal matrix that ANSYS 
calculates. Compare it with the modal matrix from P7.1 and identify any 
differences.
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CHAPTER 9

TRANSIENT RESPONSE: MODAL FORM

9.1 Introduction

The transient response example shown in Figure 9.1 will be solved by hand, 
using the modal analysis method derivation from Chapter 7. As in the 
frequency response analysis in the previous chapter, we will again start with 
the eigenvalues and eigenvectors from Chapter 7. W e will use them to 
transform initial conditions and forces to principal coordinates and write the 
equations o f  motion in principal coordinates. Laplace transforms will be used 
to solve for the motions in principal coordinates and we will then back 
transform to physical coordinates. Once again, the individual mode 
contributions to the overall transient response o f  each o f  the masses will be 
evident. The closed form solution is then coded in M ATLAB and the results 
plotted, highlighting the individual mode contributions.

9.2 Review o f  Previous Results

The applied step forces are as shown in Figure 9.1 and the initial conditions o f 
position and velocity for each o f  the three masses are shown in T able 9.1.

From previous results, (7.86) to (7.88), we know the eigenvalues and 
eigenvectors normalized with respect to mass, z  n :

(9.1)

1 1 1
43 42 46

(9.2)

_L - 1 1 
43 42 46
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Figure 9.1: Step forces applied to tdof system.

Mass 1 Mass 2 Mass 3

z o1 = 0 zo2 = —1 z o3 = 1

z o1 = - l z o2 = 2 z o3 = - 2

Table 9.1: Initial conditions applied to tdof system.

By inspection, the mass and stiffness matrices in principal coordinates can be 
written as:

"1 0 0" "0 0 0"
m = 0 1 0 , k  = f — 1 0 1 0p p I  m J0 0 1 0 0 3

(9.3)

9.3 Transform ing Initial Conditions and Forces

9.3.1 Transform ing Initial Conditions

The initial condition vectors are transformed to principal coordinates by:

(9.4)

The inverse o f  z  n , found using a symbolic algebra program:
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A "
3 3 3

z —1 = 4m

1

0

-46
3

-42
2

V6
6

A A "
3 3 3

" 0 " 
-1  

1

0

N
1 z о = m A

2
0

-V 2
2

= v m
-42

2

S -V 6 46 46
6 3 6 2 _

' Г -43
3 3 3

" - 1" 

2

3

4
=о'sf

42
0

-42
л

= v m
42

2

H -46
2

V6
-2

2
-7 ^ 6

6 3 6 6

9.3.2 Transform ing Forces

The force vector in principal coordinates is:

Fp = z T F = -

" 1 1 1 " Г -43 "

43 7 3 7 3 ~ 1" 

0 
-2

3
1 1

0

-2

-1 1 3^2

Vm 7 2
1

7 2
1

v m 2
-V 6

46 V6 46 _ 6

(9.5)

(9.6)

(9.7)

(9.8)

9.4 Complete Equations o f  M otion in Principal Coordinates

N ow the equations in principal coordinates can be written in matrix form:
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1 0 0

0 1 0

0 0 1
p2

+  k_ 

m

О 0 0
1

'лN

о 0 N

0 0 3 _ ZP3

- / 3 '

3

W 2
2

-V 6

1
v m
- i=  (9.9)

With initial conditions:

= v m

- Г -43 ]
0 3

-V 2
, z po = Vm

V 2
2 2

46 -i4 6
_ 2 _ 6

(9.10)

Summarizing the equations in tabular form:

Equations o f  Motion, 
Principal Coordinates

Displacement Initial 
Conditions: Principal 

Coordinates

Velocity Initial 
Conditions: Principal 

Coordinates

z -43
Zp1 3 4 m

z . = 0p1o . -V 3m
Zp'o = 3

.. f  k  ̂ 342
Zp2 + 1 m J Zp2 24m

- V  2m
Zp2° = 2

. V2m
Zp2° = 2

.. f  3k ̂  -46
Zp3 + 1 m J Zp3 e v m

V6m
zp3o = 2

. -7V 6m
Zp3o = 6

Table 9.2: Equations o f motion and initial conditions in principal coordinates.
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W e will now take the Laplace transform o f  each equation and solve for the 
transient response resulting from a combination o f  the forcing function and the 
initial conditions.

9.5 Solving Equations of Motion Using Laplace Transform

Note that taking the Laplace transform o f  first and second order differential 
equations (DE) with initial conditions is (Appendix 2):

First Order DE: L {x (t ) }  = sX(s) -  x(0) (9.11)

Second Order DE: L {x (t ) }  = s2X (s) -  sx(0) -  x (0) (9.12)

Solving for zp1 using Laplace transforms:

zp1 = - г  (9 1 3 )3vm

s’ z ^ s )  -  sz^(0) -  z p,(0) = ̂ jL  (9.14)
s3vm

-V s
s W s )  -  s(0) -

S3vm

-V 3  V im  
5-v/m 3

S  V3m
p1 "33\/m 3s2 

-1  V3m
s^V3m 3s2

-1  V3m
s3V3m 3s2

(9.15)

s2Zp,(s) = ^ = - ^ —  (9.16)
s3vm  3

zp1(s) =

(9.17)

Back-transforming to time domain, noting that:
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n! 2 2!
sn+l s(2+1)

Zp1 (t) = — j=  Forced Re sponse 
2V3m

+ 0 Initial Displacement

V3m
t (Initial V elocity)x (Time)

Substituting m = 1, k = 1:

- t 2 V 3 t
2V3 3

Solving for Zp2 using Laplace transforms:

p2Z p2 + —  Zp2 =
m p2

3V 2

2yfm

s Zp2 (s) -  sZp2 (0) -  Zp2 (0) + | m  I Zp2 (s) =
3V 2

f  -%/ 2m 'I V2m  f  k
s' Zp2(s) -  s + 1 —  I Zp2 (s) =

Zp2 (s) s2 +
m

3л/2
2 V m J pz' ' 2>/ms 

3\/2 sV2m V2m  3л/2 л/2ш
s2yfm 2 2 s2\/m 2 ( - s  +1)

Zp2(s) =

3У2

2\/ш
s

2V J
V2m

m
m

m m

Back-transforming to the time domain:

3

Z_, =p1

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)
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zp2(t) =
3л/2

2л/ш ю:
-(1 -  cos —2t)

V5m
2 V ю,

ю2
2  Isin(—2t + 90o)

cos(—2t)

V2m  1 . , ,— -------- sin W )
2 ю2

Substituting m = k = 1, ю2 =1:

_  3л/2 3лЯ 4 i V 2  .

zp2(t) = — -----------2 cos(t) -  —  cos(t) + —  sin(t)

Solving for z p3 using Laplace transforms:

-V 6
z p3 + Ю3ZP3 ' I—

W m

s' zp3(s) -  szp3(0) -  zp3 (0) + Ю32zp3 (s) =
-л /6

6^л/ш

s' zp3(s) + —3zp3(s) - s
r v 6 m  | I -7 V 6 m  |

2V J V 4б j 6sл/m

zp3(s) (s2 + — ) =
—л/6 + sVfim 7л/6m

zp3(s) =■
-V 6 1 V 6m s

6л/ш s (s2 + —2) 2 (s2 + —2 )

в^л/m  2 V6 

7V6m

V 6( s2 + —

Back-transforming to the time domain:

z p3(t) =
—V6

л̂/m
- 2  (1— cos ) 
Юз

л/em  I ю3 I . / ^ o \
3 I sin ( t  + 90 ) —

cos (—3t)

7л /6^  1 .
---- j=------- sin —3t

V6 —3

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)
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m
3k

Substituting m = k = 1, = —

Zp3 (t) = cos(V3t) + —  cos(V3t) — sin(V3t)
18 18 V 6 V 3 k

Тб
6

_1 1  7
----- +—cos(V3t) + 3 cos(V3t) — -j= sin(V3t)
3 3 S '

(9.34)

Note: - - S S 42S 42  = ̂  and V 6 = 4 Щ  = ^
\ 6  v3 V 2  v3  V3

Now that the displacements in principal coordinates are available, they can be 
plotted to see the motions o f  each individual mode o f  vibration.

Displacements in principal coordinates can be back-transformed to physical 
coordinates:

(9.35)

z p = p2

p3

- t 2 V3t 
2-J3 3

3V 2 3V 2 t 7 2  t V 2  .
----------------- c o s t -------- cost +------- sint

2 2 2 2

- cosV3t + cosV3t  — ^  si^V3t 
18 18 2 7 3

(9.36)

z = z n z p =

1 1 1

V3 V 2 V6

7 3  0 7 6

_ L  - 1  1
л/3 V 2 7 6 .

- t 2 V3t
^л/3 3

3V 2 3V 2 V 2  V 2 .
----------------- c o s t -------- cost +------- sint

2 2 2 2

+ ̂ c o s V 3 t  + ̂ 6 cos-\/3t — ^ s in V 3 t
18 18 2 V3

(9.37)

© 2001 by Chapman & Hall/CRC



Rewriting the equations to highlight the contributions to the total motion in 
physical coordinates o f  each mode:

z1 zn11 zn12 zn13
z = z 2 = zn21 zn22 zn23

_ z3 _ _ zn31 zn32 zn33

zp1
zp2

1p3zI
(9.38)

z = z z + z z + z z1̂ 111 pi 112 p2 “  113З
istmode 2ndmode

Mode contributions to total z1 motion

z 2 zn21zp1 + zn22zp2 + zn23zp3
2ndmode 3rdmode

Mode contributions to total z 2 motion

3rd mod e

1st mod e

z3 = zn31zp1 + zn32zp2 + zn33zp3 Mode contributions to total z3 motion

(9.39a,b,c)

1st mod e 2ndmode 3rd mod e

Because the first mode motion for each degree o f  freedom is rigid body, and 
its displacement eventually goes to infinity, it masks the vibration motion o f 
the second and third modes for long time period simulations. If the first mode 
(rigid body) motion is subtracted from the total motion o f  z1, z2, and z3, the 
motion due to the vibration can be seen, as shown in Figure 9.8.

9.6 M A T L A B  code tdof_m odal_tim e.m  -  Time Domain Displacements in 
Physical/Principal Coordinates

9.6.1 Code Description

The M ATLAB code tdof_m odal_tim e.m  is used to plot the displacements 
versus time in principal coordinates using (9.19), (9.27) and (9.34) with 
m = k = 1. Displacements in physical coordinates are obtained by 
premultiplying principal displacements by the modal matrix.

© 2001 by Chapman & Hall/CRC



9.6.2 Code Results

Displacements in Principal Coordinate System

Time, sec

Figure 9.2: Displacements in principal coordinates, motion o f the three modes o f vibration.

The initial conditions in principal coordinates were 0, -0 .707 and 1.225 for 
z p1, z p2 andzp3, respectively, which match the results shown in Figure 9.3.

Displacements in Principal Coordinate System

Time, sec

Figure 9.3: Displacements in principal coordinates, expanded vertical scale to check initial
conditions.
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Plotting the displacements in physical coordinates, where the initial 
displacement conditions in physical coordinates were 0, -1  and 1 for 
z1, z 2 andz3, respectively.

Displacements in Physical Coordinate System

Time, sec

Figure 9.4: Displacement in physical coordinates.

Displacement of dof 1 for Modes 1, 2 and 3

Time, sec

Figure 9.5: Displacements o f mass 1 for all three modes o f vibration.
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Displacement of dof 2 for Modes 1, 2 and 3

Time, sec

Figure 9.6: Displacements o f mass 2 for all three modes o f vibration.

Displacement of dof 3 for Modes 1, 2 and 3

Time, sec

Figure 9.7: Displacements o f mass 3 for all three modes o f vibration.
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Displacements of dof 1, 2 and 3 w ith Rigid Body Removed

Time, sec

Figure 9.8: Displacements in physical coordinates, with the rigid body motion removed to 
show more clearly the oscillatory motion o f the three masses.

9.6.3 Code Listing

% tdof_modal_time.m hand solution o f modal equations

clf;

clear all;

% define time vector for plotting responses

t  = linspace(0,10,50);

% solve for and plot the modal displacements

zp1 = (-t.A2/(2*sqrt(3))) - sqrt(3)*t/3;

zp2 = 3*sqrt(2)/2 - (3*sqrt(2)/2)*cos(t) - (sqrt(2)/2)*cos(t) + (sqrt(2)/2)*sin(t);

zp3 = (sqrt(6)/6)*((-1/3) + (1/3)*cos(sqrt(3)*t) + 3*cos(sqrt(3)*t) - ... 
(7/sqrt(3))*sin(sqrt(3)*t));

plot(t,zp1,'k+-',t,zp2,'kx-',t,zp3,'k-')
title('Displacements in Principal Coordinate System')
xlabel('Time, sec')
ylabel('Displacements')
legend('zp1','zp2','zp3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause
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disp('execution paused to display figure, "enter" to continue'); pause

% define the normaliZed modal matrix, m = 1

Zn = [1/sqrt(3) 1/sqrt(2) 1/sqrt(6)
1/sqrt(3) 0 -2/sqrt(6)
1/sqrt(3) -1/sqrt(2) 1/sqrt(6)];

% define the principal displacement matrix, column vectors of principal displacements
% at each time step

Zp = [Zp1; Zp2; Zp3];

% multiply Zn times Zp to get Z

Z = Zn*Zp;

z 1 = Z(1,:); 
z2 = Z(2,:); 
z3 = Z(3,:);

plot(t,Z1,'k+-',t,Z2,'kx-',t,Z3,'k-')
title('Displacements in Physical Coordinate System')
xlabel('Time, sec')
ylabel('Displacements')
legend('Z1','Z2','Z3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

% define the motion o f  each each dof for each mode, Zij below refers to the
% motion of dof "i" due to mode "j"

z 11 = Zn(1,1)*Zp1;

z 12 = Zn(1,2)*Zp2;

z 13 = Zn(1,3)*Zp3;

z21 = Zn(2,1)*Zp1;

z22 = Zn(2,2)*Zp2;

z23 = Zn(2,3)*Zp3;

z31 = Zn(3,1)*Zp1;

z32 = Zn(3,2)*Zp2;

z33 = Zn(3,3)*Zp3;

plot(t,Z11,'k+-',t,Z12,'kx-',t,Z13,'k-') 
title('Displacement of dof 1 for Modes 1, 2 and 3')

axis([0 1 -2 2])
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xlabel('Time, sec') 
ylabel('Displacements') 
legend('Mode 1','Mode 2','Mode 3',3) 
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,z21,'k+-',t,z22,'kx-',t,z23,'k-')
title('Displacement o f dof 2 for Modes 1, 2 and 3')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,z31,'k+-',t,z32,'kx-',t,z33,'k-')
title('Displacement o f dof 3 for Modes 1, 2 and 3')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause

% define the motion o f  each each dof with the rigid body motion for that
% mode subtracted

z1vib = z1 - z11;

z2vib = z2 - z21;

z3vib = z3 - z31;

plot(t,z1vib,'k+-',t,z2vib,'kx-',t,z3vib,'k-')
title('Displacements o f dof 1, 2 and 3 with Rigid Body Removed')
xlabel('Time, sec')
ylabel('Vibration Displacements')
legend('dof 1','dof 2 ','dof 3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause 

tplot = t;

plot(tplot,z1,'k+-',t,z2,'kx-',t,z3,'k-') 
title('Displacements o f dof 1, 2 and 3') 
xlabel('Time, sec') 
ylabel('Vibration Displacements') 
legend('dof 1','dof 2 ','dof 3',3) 
grid

disp('execution paused to display figure, "enter" to continue'); pause 

save tdof_modal_time_z1z2z3 tplot z1 z2 z3
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Problems

Note: All the problems refer to the two dof system shown in Figure P2.2.

P9.1 Using the equations, initial conditions and forcing functions from P7.4, 
solve for the closed form time domain response in principal coordinates using 
Laplace transforms. Back transform to physical coordinates and identify the 
components o f  the response associated with each mode.

P9.2 (M ATLAB) M odify the tdof_m odal_tim e.m  code for the two dof 
system and solve for the time domain responses in both principal and physical 
coordinates using the equations, initial conditions and forcing functions from 
P7.4.
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CHAPTER 10

MODAL ANALYSIS: STATE SPACE FORM

10.1 Introduction

In Chapters 5, 6 and 7 we developed the state space (first order differential 
equation) form o f  the equations o f  motion and used them to solve for the 
eigenvalues and eigenvectors (with real or complex modes) and frequency and 
transient responses. The state space methodology presented so far was 
independent o f  the amount o f  damping in the system, hence the possibility o f 
complex modes.

In Chapters 8 and 9 we developed the modal analysis method using the second 
order differential equation form. If the amount o f  damping in the system is 
low, we can make the approximation that normal modes exist and solve for the 
undamped (real) modes o f the system. Proportional damping can then be 
added to the equations o f  motion in principal coordinates while keeping the 
equations uncoupled.

In the next three chapters we will combine the state space techniques in 
Chapters 5, 6 and 7 with the modal analysis techniques in Chapters 8 and 9. 
In real world situations, finite element models are used to describe dynamic 
systems. The finite element program is used to solve for eigenvalues and 
eigenvectors, which are then used to create a state space model in MATLAB. 
However, one may have the need to solve for eigenvalues and eigenvectors in 
state space form for a model that is not created using finite elements. For this 
reason, the chapter will start out with a closed form solution to the tdof 
eigenvalue problem in state space form. The eigenvalues and eigenvectors 
which result from the state space eigenvalue problem will contain the same 
information as in the second order eigenvalue problem, but will be in a 
different form. The differences will be highlighted and discussed.

W e then will use the eigenvalues to form the uncoupled homogeneous 
equations o f motion in the state space principal coordinate system by 
inspection. Forcing function and initial conditions will then be converted to 
principal coordinates using the normalized modal matrix, creating the final 
state equations o f  motion in the principal coordinate system. As in the second 
order form, proportional damping can be added to the modal formulation and 
the solution in principal coordinates back-transformed to physical coordinates 
for the final result. W e will use a method o f  formulating the input matrix B 
such that the transformation o f  forces to principal coordinates and conversion 
to state space form can happen in one step instead o f  two. A  similar
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formulation will be developed for the output matrix C , where we will define 
the output vector and convert back to physical coordinates in one step. The 
method described here can be used for both transient and frequency response 
solutions.

One might ask why we are going to all the trouble o f  doing a state space 
version o f modal analysis. Chapter 5 showed that given the state space 
equations o f  motion o f  a system, we can use M ATLAB to solve for both 
frequency and time domain responses without knowing anything about 
eigenvalues and eigenvectors. The reason we are going to this trouble is that 
most mechanical simulations are performed using finite element techniques, 
where the equations o f  motion are too numerous to be able to be used directly 
in M ATLAB or in a servo system simulation. Since modal analysis results, 
the eigenvalues and eigenvectors, are available from an AN SYS eigenvalue 
solution, it would be nice if  we knew how to use these results by developing 
them into a M ATLAB state space model. We could then use the power o f 
M ATLAB to perform any further analysis.

The techniques described above can be further extended by taking the results 
set from a large finite element problem and defining a small state space model 
that accurately describes the pertinent dynamics o f  the system (Chapters 15 to 
19). The small M ATLAB state space model can then be used in lieu o f  the 
frequency and transient analysis capabilities in the finite element program. 
The M ATLAB state space model can also be combined with a servo system 
model, allowing complete servo-mechanical system simulations.

10.2 Eigenvalue Problem

W e start with the undamped homogeneous equations o f  motion in state space 
form:

x = A x (10.1)

In Chapter 7 we defined a normal mode as:

x; = x mi sin(  + ф;) = x mi Im(eJ“‘‘H ) (10.2)

For our three degree o f  freedom ( z1 to z3), six state ( x 1 to x 6) system, for the 

ith eigenvalue and eigenvector, the equation would appear as:
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z11 x 11 Xm1i

z11 X2i Xm2i
Z2i = X3i

= Xmis1n (  + ф1 ) =
Xm3i

Z 21 X4i Xm4i
Z3i X51 Xm5i

_Z 31 _ _ X6i _ _Xm6i _

sin (ffljt + ф1) (10.3)

Differentiating the modal displacement equation above to get the modal 
velocity equation:

d t [ xmi sin (  + ф1 ) ]  = xmi^jtIm ]

= xmiIm [  j ^ e ^ +ф,) ]

= xmi Im[jrai (cos(rnit + Ф1) + jsin(rait + Ф1))] (10.4) 

= xmi Im [jraic os(rnit + Ф1 ) - ю 1 sin(rait + Ф1 )]

= xmi ra1cos(rn1t + ф1)

Substituting the derivatives into the state equation we arrive at the eigenvalue 
problem:

x = A x

jffli xmi sin (  + Ф1) = A x Ш1 sin ( i t  + Ф1) 

M  xmi = A xmi
( j®iI -  A )x mi = 0

(10.5)

10.3 Eigenvalue Problem  -  Laplace Transform

W e can also use Laplace transforms to define the eigenvalue problem. Taking 
the matrix Laplace transform o f  the homogeneous state equation and solving 
for x(s) :

sIx(s) = Ax(s) 
(si -  A )x(s) = 0

(10.6a,b)

This is another form o f  the eigenvalue problem, again where the determinant 
o f  the term (si -  A ) has to equal zero to have anything other than a trivial 
solution.
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|(sI -  a )  = 0 (10.7)

Letting m1 = m2 = m3 = m, k1 = k 2 = k, c1 = c 2 = 0 and rewriting the matrix 
equations o f  motion to match the original undamped problem used in (6.8).

s -1 0 0 0 0

k
s

- k
0 0 0

m m
0 0 s -1 0 0

- k
0

2k s - k
0

m m m
0 0 0 0 s -1

0 0
- k
m

0
k
m

s

In Section 6.3 we used this form o f  the equation to find the state space transfer 
function matrix, where we needed the inverse o f (sI -  A ) . Here we need the 
determinant o f  (sI -  A ) . Using a symbolic algebra program results in the 
following characteristic equation:

s2 (m 3s4 + 4m 2ks2 + 3mk2) = 0
(10.9a,b)

m3s6 + 4m 2ks4 + 3mk2s2 = 0

This is the same equation we found in (2.58) for the characteristic equation, 
whose roots were found to be the poles (eigenvalues). Repeating from 
Chapter 2, (2.67), (2.70) and (2.71):

s1,2 0

s3,4 =±J\/—  = ± j1m

s5 6 = ± j j —  = ±  j 1.732 (10.10a,b,c)
m

In Chapter 5, the state space chapter, we showed that for arbitrary damping the 
eigenvalues would be complex numbers with both real and imaginary 
components, where the real part was indicative o f  there being damping in the 
system as the poles were offset to the left o f  the imaginary axis (Figure 5.3).
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W e defined the damped eigenvalues as ( Xn1 n2 = О n1 ±  jffln1) (5.48). Note for 

the undamped eigenvalues above, the О values are zero, with all poles lying 
on the imaginary aXis.

10.4 Eigenvalue Problem  -  Eigenvectors

Let us now solve for the eigenvectors in state space form, going back to the 
original equations o f  motion for the 1th mode, similar to (10.5):

j®1 -1 0 0 0 0

k
j®i

- k
0 0 0

m m
0 0 j®i -1 0 0

- k
0

2k - k
0---- ---- j®i ----

m m m
0 0 0 0 j®i -1

0 0
- k

0
k

j®im m

= 0 (10.11)

EXpanding the equations:

j ®iXm1i -  Xm2i = 0
k k
—  Xm1i + j ®iXm2i------Xm3i = 0m m

j ®iXm3i -  Xm4i = 0
k 2k k

------Xm1i + ~  Xm3i + j ®iXm4i------ Xm5i = 0m m  m

j ®iXm5i -  Xm61 = 0
k k

------Xm3i + ~  Xm51 + j ®iXm6i = 0m m

(10.12a-f)

Dropping the “m” and “ i” terms from the eigenvectors:
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k k
—  X1 + j©iX2 ------X3 = 0
m m

j® iX3 -  X4 = 0
k 2k k

------X1 +------ X3 + jffl1X4 ------ X5 = 0
m m  m

j ®iX5 -  X6 = 0
k k

------X3 +—  X5 + jraiX6 = 0
m m

jra1X1 -  x2 = 0

(10.13a-f)

Selecting the first state, X1, as a reference and solving for X2 through X6 in 

terms o f  X1 .

Solving for X2 from (10.13a):

jra1X1 -  x 2 = 0 

X2 = j ®iX1
X2
—  = j®1
X1

(10.14)

Solving for x 3 from (10.13b):

k k
—  X1 + j©iX2 ------X3 = 0
m m

k k 
j® i(j® iX 1>------X3 = ------ X1

m m
k k 2

------x 3 = ------ x 1 +ra1x 1
m m

 ̂k -r a 2m ̂

V /

x 3 k - r n m

(10.15)

Solving for x 4 from (10.13c):
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j® ix 3 -  X4 = 0 

j®,
V "  

(
x 4 = j ®i x1 = j ^ A

x1 -  x4 = 0

—  = j®
x,

x 3
= j®i —

x.

(10.16)

Solving for x 5 from (10.13d):

k 2k k
------x 1 +------ x 3 + jfflix 4 ------ x 5 = 0

m m  m
k 2k

------x 1 + —
m m

k -Ю: m

+ j®i

V "
(

j®i x 1------x 5 = 0
m

( m2o>4 -  3mko>2 + k

v k2 У
m2ra4 -  3mko>2 + k 2

k

Solving for x 6 from (10.13e):

(10.17)

j ®ix 5 -  x 6 = 0

x 6 = j®i
(  m2Ю4 -  3mkra2 + k

x 1 = j® ix 5

= j®i
(  m2ra4 -  3mkra2 + k 2

= j® i-

(10.18)

Note that the results for the displacement eigenvector components in (10.15) 
and (10.17) match the two displacement eigenvectors calculated in (7.24) and 
(7.29), respectively. Also note that all three velocity eigenvector components 
are equal to j®  times their respective displacement eigenvector components.

x
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Unlike the complex eigenvectors found in Chapter 5 for the damped model, 
these undamped eigenvector displacement states are all real; they have no 
compleX terms.

10.5 M odal M atrix

W e will see that when we transform to principal coordinates, create the state 
equations in principal coordinates and back transform results to physical 
coordinates we only require a 3x3 displacement modal matrix. This is because 
we can transform positions and velocities separately. The modal matrix (7.46) 
and normalized modal matrix (7.77) are repeated below, again for m = k = 1:

"1 1 1

Z m = 1 0 -2

1 -1 1

1 1 1

S
1 1

0
- 2

•v/m 7 3 7 6
1 -1 1

_7 3 7 2 7 6

0.5774 -0 .707 

0.5774 0 
0.5774 0.707

0.4082

-0.8165
0.4082

(10.20)

10.6 M A TL A B  Code tdofss_eig.m : Solving fo r  Eigenvalues and 
Eigenvectors

10.6.1 Code Description

The M ATLAB code tdofss_eig.m solves for the eigenvalues and eigenvectors 
in the state space form o f  the system. The code will be listed in sections with 
commented results and eXplanations following each section.

10.6.2 Eigenvalue Calculation

zn =

% tdofss_eig.m eigenvalue problem solution for tdof undamped model 

clear all;

% define the values of masses, springs, dampers and forces

m1 = 1; 
m2 = 1;
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m3 = 1;

c1 = 0;

0;=<Nc

k1 = 1;
k2 = 1;

% define the system matrix, a

a = [ 0 1 0 0 0 0
-k1/m1 -c1/m1 k1/m1 c1/m1 0 0

0 0 0 1 0 0
k1/m2 c1/m2 -(k1+k2)/m2 2£2)c1+(c1 2£k c2/m2

0 0 0 0 0 1
0 0 k2/m3 c2/m3 k2/m3 -c2/m3];

% solve for the eigenvalues of the system matrix

[xm,omega] = eig(a)

The resulting eigenvalues, in units o f  rad/sec, are below. Note that M ATLAB 
uses “ i” for imaginary numbers instead o f  “j ” which is used in the text.

omega =
Columns 1 through 4

0 + 1.7321i 0 0 0
0 0 - 1.7321i 0 0
0 0 0 0
0 0 0 0 + 1.0000i
0 0 0 0
0 0 0 0

Columns 5 through 6
0 0
0 0
0 0
0 0
0 - 1.0000i 0

00

The eigenvalues, what M ATLAB calls “ generalized eigenvalues,” are the 
diagonal elements o f  the omega matrix. The six values that M ATLAB 
calculates are: 1.7321i, —1.732i, 0, 1.0000i, -1 .0 0 0 0 i, 0, in that order. 
These are the same values we found using our closed form calculations. Also, 
the values are all imaginary, as we would expect with a system with no 
damping and as we found above from our |(sI — A )  = 0 derivation.
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The resulting eigenvectors, directly from M ATLAB output are:

10.6.3 Eigenvector Calculation

Xm =
Columns 1 through 4
0.2041 0.2041 0.5774 0 + 0.5000i
0 + 0.3536i 0 - 0.3536i 0 -0.5000
-0.4082 -0.4082 0.5774 0 + 0.0000i
0 - 0.7071i 0 + 0.7071i 0 0.0000
0.2041 0.2041 0.5774 0 - 0.5000i
0 + 0.3536i 0 - 0.3536i 0 0.5000
Columns 5 through 6
0 - 0.5000i -0.5774
-0.5000 0.0000
0 - 0.0000i -0.5774
0.0000 0.0000
0 + 0.5000I -0.5774
0.5000 0.0000

Note that unlike the eigenvectors calculated in the Modal Analysis section, 
which had three rows, these eigenvectors each have siX rows, each row 
corresponding to its respective state. Repeating the state definitions from
(5.4) to (5.9):

x 1 = z1 Position o f  Mass 1 

x 2 = Z1 Velocity o f  Mass 1 
x 3 = z2 Position o f  Mass 2 

x 4 = Z2 Velocity o f  Mass 2 
x 5 = z3 Position o f  Mass 3 

x 6 = z 3 Velocity o f  Mass 3

Thus, the first, third and fifth rows represent the positions o f  the three masses 
for each mode, and the second, fourth and siXth rows represent the velocities 
o f  the three masses for each mode. Separating into position and velocity 
components:

xm(position) =
0.2041 0.2041 0.5774 0 + 0.5000i 0 - 0.5000i -0.5774
-0.4082 -0.4082 0.5774 0 + 0.0000i 0 - 0.0000i -0.5774
0.2041 0.2041 0.5774 0 - 0.5000i 0 + 0.5000i -0.5774

xm(velocity) =
0 + 0.3536i 0 - 0.3536i 0 -0.5000 0.5000 0.0000
0 - 0.7071i 0 + 0.7071i 0 0.0000 0.0000 0.0000
0 + 0.3536i 0 - 0.35361 0 0.5000 0.5000 0.0000
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What is the relationship between the position and velocity terms in each o f  the 
eigenvectors? Once again, knowing that at each undamped frequency a 
normal mode eXists and that the position and velocity can be defined as:

zi = z mej“ ‘‘
(10.21a,b)

z i = jmi z mej“‘‘

Taking the amplitudes o f  the position and velocity:

|zn | = ю| z n| (10.22)

The amplitude o f  the velocity eigenvector terms should be equal to the 
eigenvalue times its respective position eigenvector term. The fact that the 
velocity entries are complex numbers by virtue o f  multiplying the “real” 
position eigenvector entries by the eigenvalue does not make the eigenvectors 
“ complex,” but refers to the fact that in the undamped case velocity is 90° out 
o f  phase with position.

Checking the first eigenvector by multiplying the position term (state 1) by the 
eigenvalue to get the velocity term (state 2): (highlighted in bold type above)

0.2041 * 1.7321j = . 3535j (10.23)

Note that for the third and siXth eigenvectors, which have zero eigenvalues, 
the velocity entries are zero because the position entry is multiplied by zero.

10.6.4 M A TL A B  Eigenvectors -  Real and Imaginary Values

It is interesting to see how M ATLAB handles real and imaginary values in its 
eigenvectors.

Xm =
0.2041 0.2041 0.5774 0 + 0.5000i 0 - 0.5000i -0.5774
0 + 0.3536i 0 - 0.3536i 0 -0.5000 -0.5000 0.0000

-0.4082 -0.4082 0.5774 0 + 0.0000i 0 - 0.0000i -0.5774
0 - 0.7071i 0 + 0.7071i 0 0.0000 0.0000 0.0000
0.2041 0.2041 0.5774 0 - 0.5000i 0 + 0.5000i -0.5774
0 + 0.3536i 0 - 0.3536i 0 0.5000 0.5000 0.0000

W e know that the position and velocity entries are related by “j ” times the 
eigenvalue, but why are some position eigenvector entries real and some 
imaginary? For example, the position eigenvector entries for all except the
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mode at 1 rad/sec (the fourth and fifth columns), are real, while the fourth and 
fifth column position entries are imaginary. From the original normal modes 
analysis, we know that only the ratios o f eigenvector entries are important, 
and that the eigenvectors can be normalized in several fashions. Therefore, 
each eigenvector can be multiplied by an arbitrary constant. The fourth and 
fifth eigenvectors can be multiplied by “ i ” to make their position entries real 
for consistency with the hand-calculated results.

10.6.5 Sorting Eigenvalues / Eigenvectors

Typically some housekeeping is done on the eigenvalues and eigenvectors 
before continuing, sorting the eigenvalues from small to large (done by default 
in ANSYS), rearranging the eigenvectors accordingly and checking for 
eigenvectors with imaginary position entries and converting them to real by 
multiplying by “ i .” Also, the signs o f  the real portion o f  state 1 are set 
positive to ensure that sets o f  eigenvectors are complex conjugates o f  each 
other for consistency.

Continuing the listing o f  tdofss_eig.m, showing the sorting code:

% take the diagonal elements of the generalized eigenvalue matrix omega

omegad = diag(omega);

% in real problems, we would next convert to hz from radians/sec

omegahz = omegad/(2*pi);

% now reorder the eigenvalues and eigenvectors from low to high frequency, 
% keeping track of how the eigenvalues are ordered to reorder the 
% eigenvectors to match, using indexhz

[omegaorder,indexhz] = sort(abs(imag(omegad)))

for cnt = 1:length(omegad)

omegao(cnt,1) = omegad(indexhz(cnt)); % reorder eigenvalues

xmo(:,cnt) = xm(:,indexhz(cnt)); % reorder eigenvector columns

end

omegao

xmo

% check for any eigenvectors with imaginary position elements by checking 
% the first three position entries for each eigenvector (first, third and 
% and fifth rows) and convert to real
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for cnt = 1:length(omegad)

if (real(xmo(1,cnt)) & real(xmo(3,cnt)) & real(xmo(5,cnt))) == 0

xmo(:,cnt) = i*(xmo(:,cnt)); % convert whole column if imaginary

else

end

end

xmo

% check for any eigenvectors with negative position elements for the first 
% displacement, if so change to positive to that eigenvectors for the same mode 
% are complex conjugates

for cnt = 1:length(omegad)

if real(xmo(1,cnt)) < 0

xmo(:,cnt) = -1*(xmo(:,cnt)); % convert whole column if negative

else

end

end

xmo

Printing the results o f  the M ATLAB reordering:
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omegaorder =
0
0

1.0000 These are the re-ordered eigenvalues, from low to high.
1.0000
1.7321
1.7321

indeXhz =
3 
6
4 This is the ordering of the original eigenvalues.
5 
1
2

omegao =
0
0
0 + 1.00001 
0 - 1.00001 
0 + 1.73211 
0 - 1.73211

Here are the reordered eigenvectors.

Xmo =
Columns 1 through 4

0.5774 -0.5774 0 + 0.5000i 0 - 0.5000i
0 0.0000 -0.5000 -0.5000
0.5774 -0.5774 0 + 0.0000i 0 - 0.0000i
0 0.0000 0.0000 0.0000
0.5774 -0.5774 0 - 0.5000i 0 + 0.5000i
0 0.0000 0.5000 0.5000

Columns 5 through 6
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

Here the converting o f  imaginary position values to real is performed, note 
that the third and fourth eigenvectors are converted.
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xmo =
Columns 1 through 4

0.5774 -0.5774 -0.5000 0.5000
0 0.0000 0 - 0.5000i 0 - 0.5000i
0.5774 -0.5774 0.0000 0.0000
0 0.0000 0 - 0.0000i 0 - 0.0000i
0.5774 -0.5774 0.5000 -0.5000
0 0.0000 0 + 0.5000i 0 + 0.5000i

Columns 5 through 6
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

In this step the first row elements are checked to see that they are positive; if 
not, the column is multiplied by -1 .

xmo =

Columns 1 through 4

0.5774 0.5774 0.5000 0.5000
0 -0.0000 0 + 0.5000i 0 - 0.5000i
0.5774 0.5774 0.0000 0.0000
0 -0.0000 0 + 0.0000i 0 - 0.0000i
0.5774 0.5774 -0.5000 -0.5000
0 -0.0000 0 - 0.5000i 0 + 0.5000i

Columns 5 through 6

0.2041 0.2041
0 + 0.3536i 0 - 0.3536i
-0.4082 -0.4082
0 - 0.7071i 0 + 0.7071i
0.2041 0.2041
0 + 0.3536i 0 - 0.3536i

10.6.6 Normalizing Eigenvectors

Now that the eigenvalues and eigenvectors are available, we can normalize the 
eigenvectors with respect to mass. Then we will check the resulting 
diagonalization by multiplying the original mass and stiffness matrices by the 
normalized eigenvectors to see if  the mass matrix becomes the identity matrix 
and the stiffness matrix becomes a diagonal matrix with squares o f  the 
eigenvalues on the diagonal (spectral matrix).
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Since we need to deal only with the displacement entries o f  the 6x6 modal 
matrix in order to transform the 3x3 mass and stiffness matrices, the xm 
matrix below is a 3x3 matrix with only displacement entries.

Reviewing, the mass matrix is diagonalized by pre- and postmultiplying by the 
normalized eigenvector matrix:

x > x n = I , (10.24)

yielding the identity matrix. The stiffness matrix is also diagonalized by pre- 
and postmultiplying by the normalized eigenvector matrix:

x > n = kp, (10.25)

yielding the stiffness matrix in principal coordinates, the spectral matrix, a 
diagonal matrix with squares o f  the eigenvalues on the diagonal.

Repeating from Section 7.4.2, the normalized modal matrix xn is made up o f 
eigenvectors as defined below:

[  xmimxmi ]

Imi
qi

(10.26)x =

Where qi is defined as:

qi = (10.27)

For a diagonal mass matrix, simplifying q because all the mjk terms are zero:

qi = (10.28)

Continuing with code from tdofss_eig.m:

% define the mass and stiffness matrices for normalization of eigenvectors 
% and for checking values in principal coordinates

m = [m1 0 0__________________________________________
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k = [ k1 -k1 0 
-k1 k1+k2 -k2 
0 -k2 k2];

% define the position eigenvectors by taking the first, third and fifth 
% rows of the original six rows in xmo

xmop1 = [xmo(1,:); xmo(3,:); xmo(5,:)]

% define the three eigenvectors for the three degrees of freedom by taking 
% the second, fourth and sixth columns

xmop = [xmop1(:,2) xmop1(:,4) xmop1(:,6)]

% normalize with respect to mass

for mode = 1:3

xn(:,mode) = xmop(:,mode)/sqrt(xmop(:,mode)'*m*xmop(:,mode));

end

xn

% calculate the normalized mass and stiffness matrices for checking 

mm = xn'*m*xn 

km = xn'*k*xn

% check that the sqrt of diagonal elements of km are eigenvalues 

p = (diag(km)).A0.5;

[p abs(imag(omegao(1:2:5,:)))]

% rename the three eigenvalues for convenience in later calculations 

w1 = abs(imag(omegao(1))); 

w2 = abs(imag(omegao(3))); 

w3 = abs(imag(omegao(5)));

Back to M ATLAB output, with comments added in bold type:

Repeating xmo, the full, rearranged eigenvector matrix:

xmo =

Columns 1 through 4

0 m2 0
0 0 m3];

© 2001 by Chapman & Hall/CRC



0.5774 0.5774 0.5000 0.5000
0 -0.0000 0 + 0.5000i 0 - 0.5000i
0.5774 0.5774 0.0000 0.0000
0 -0.0000 0 + 0.0000i 0 - 0.0000i
0.5774 0.5774 -0.5000 -0.5000
0 -0.0000 0 - 0.5000i 0 + 0.5000i

Columns 5 through 6

0.2041 
0 + 0.35361 
-0.4082 
0 - 0.7071i 
0.2041 
0 + 0.3536i

0.2041 
0 - 0.3536i 
-0.4082 
0 + 0.7071i 
0.2041 
0 - 0.3536i

Taking only the position rows:
xmop1 =

0.5774 0.5774 
0.5774 0.5774 
0.5774 0.5774

0.5000
0.0000
-0.5000

0.5000 0.2041 
0.0000 -0.4082 
-0.5000 0.2041

0.2041
-0.4082
0.2041

Taking every other column to form the 3x3 position eigenvector matrix:
xmop =

0.5774 0.5000 0.2041 
0.5774 0.0000 -0.4082 
0.5774 -0.5000 0.2041

Normalizing with respect to mass:
xn =

0.5774 0.7071 0.4082 
0.5774 0.0000 -0.8165 
0.5774 -0.7071 0.4082

Checking the mass matrix in principal coordinates, should be the identity matrix:
mm =

1.0000 -0.0000 0.0000 
-0.0000 1.0000 -0.0000 
0.0000 -0.0000 1.0000

Checking the stiffness matrix in principal coordinates, should be squares o f eigenvalues:
km =

0.0000 -0.0000 0.0000 
-0.0000 1.0000 -0.0000 
0.0000 -0.0000 3.0000

Comparing the square root o f the diagonal elements o f the stiffness matrix in principal 
coordinates with the eigenvalues:
ans
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0.0000 0
1.0000 1.0000
1.7321 1.7321

10.6.7 W riting Hom ogeneous Equations o f M otion

Now that we know the eigenvalues, we can write the homogeneous equations 
o f  motion in the principal coordinate system by inspection. We can also use 
the normalized eigenvectors to transform the forcing function and initial 
conditions to principal coordinates, yielding the complete solution for either 
transient or frequency domain problems in principal coordinates. W e can then 
back-transform to the physical coordinate system to get the desired results in 
physical coordinates. Through the modal formulation we can define the 
contributions o f  various modes to the total response.

For a problem o f this size, there is no need to use the modal formulation. 
When solving real problems, however, whether they be large M ATLAB based 
problems or ANSYS finite element models, using the modal formulation has 
advantages. As mentioned earlier, ANSYS gives the eigenvalues and 
eigenvectors normalized with respect to mass as normal output o f an 
eigenvalue run. Therefore, all one has to do to solve in M ATLAB is to take 
that ANSYS output information and build the equations o f  motion in state 
space form and solve, taking advantage o f  the flexibility, plotting capability 
and speed o f  M ATLAB to perform other studies. The modal approach is what 
gives us the capability to create complete state space models o f  the system 
mechanical dynamics in a form that can be used by the servo engineers in their 
state space servo/mechanical models.

10.6.7.1 Equations o f  M otion -  Physical Coordinates

W e will start with the equations o f  motion in physical coordinates with forces 
as shown in (10.29) and assume zero initial conditions. The reason we are 
assuming zero initial conditions is that converting initial conditions requires 
the inverse o f  the complete modal matrix, which is not convenient when using 
ANSYS modal results to build a reduced (smaller size) model. Fortunately, a 
large majority o f  real life problems can be solved with zero initial conditions.

mzj + kz1 -  kz2 = Fj

mz2 -  kz, + 2kz2 -  kz3 = F2
2 1  2 3 2  (10.29)

mz3 -  kz2 + kz3 = F3

IC 's : z1,z 2,z 3,z 1,z 2,z 3 = 0
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Knowing the eigenvalues and eigenvectors normalized with respect to mass, 
we can write the damped homogeneous equations o f  motion in principal 
coordinates by inspection. The forces in principal coordinates, 
Fp1, Fp2 and Fp3 are obtained by premultiplying the force vector in physical
coordinates by the transpose o f  the normalized eigenvector:

Fp = xT F (10.30)

xn was defined in (10.20) as a 3x3 matrix o f  normalized displacement 
eigenvectors. The multiplication then results in a 3x1 vector o f  forces in 
principal coordinates. The resulting elements are entered in the appropriate 
positions in the equations in principal coordinates below.

10.6.7.2 Equations o f  M otion -  Principal Coordinates

The three equations o f  motion in principal coordinates become:

xp1 = Fp1

xp2 + 2Z2®2x p2 + ®2 x p2 = Fp2 ( 10.3 l a,b ,c) 

xp3 + 2^3®3x p3 + ®3 xp3 = Fp3

where ю1, Ю2, and Ю3 are the three eigenvalues, with units o f  radians/sec. 

The “zeta” terms, Z1, Z2 and Z3, represent the percentages o f  critical damping 
for each o f the three modes, all o f  which can be different and are typically 
obtained from experimental results. For example, 2% o f  critical damping 
would give a Z value o f  0.02.

Now we can convert the second order differential equations above to state 
space form by solving for the highest derivative:

xp1 = F p 1

xp2 = Fp2 —®2x p2 — 2Z 2®2x p2 (10.32a,b ,c)

xp3 = F p 3 — ®3x p3 — 2Z 3®3x p3
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Defining states:

x 3 = x p2

displacement o f  mode 1 (not o f  mass 1) 

derivative o f  displacement o f  mode 1 

displacement o f mode 2 

x 4 = x p2 derivative o f  displacement o f  mode 2 

x 5 = x p3 displacement o f mode 3 

x 6 = x p3 derivative o f  displacement o f  mode 3

Rewriting the equations o f  motion using the states:

x 2 = Fp1

x 4 Fp2 ®2x 3 2Z 2®2x 4
(10.33a-f)

x 6 Fp3 ®3x 3 2C 3®3x 3

Rewriting in matrix form:

X = A x + Bu (10.34)

x 1 "0 1 0

x 2 0 0 0

x 3 0 0 0

x 4 0 0 —fi

x 5 0 0 0

x 6 _ 0 0 0

0
0

1

—2^2®2 
0 
0

0 
0 

0 
0 

0 

— fi)2

0
0

0
0

1

—2^3®3

x 1 " 0

x 2 Fp1
x 3 +

0

x 4 Fp2
x 5 0

x 6 _ _ Fp3

u (10.35)

Now that the complete state space equations o f  motion are known, the six 
states in principal coordinates can be solved for their frequency and/or time 
domain responses.

Let us assume that we are interested in the three displacements and the three 
velocities. The output matrix equation then becomes, where y p is the 

displacements in principal coordinates:
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1 0 0 0 0 0" X1 X1
0 1 0 0 0 0 X2 X2
0 0 1 0 0 0 X3 X3
0 0 0 1 0 0 X4 X4
0 0 0 0 1 0 X5 X5
0 0 0 0 0 1 _ _ x 6 _ _X6 _

With the six desired outputs in principal coordinates, we can back-transform 
them into physical coordinates by the following transform:

Z1 Xn11 0 Xn12 0 Xn13 0 " " yp1
Z1 0 Xn11 0 Xn12 0 Xn13 yp2
Z2 Xn21 0 Xn22 0 Xn23 0 yp3
Z2

IIp
иN

0 Xn21 0 Xn22 0 Xn23 y p4

z3 Xn31 0 Xn32 0 Xn33 0 yp5

_ z3 _ 0 Xn31 0 Xn32 0 Xn33 _ _ yp6

Xn1lYp1 + Xn12yp3 + Хп1зУ p5

Xn1iyp2 + Xn12yp4 + Хп1зУ p6
= Xn21yp1 + Xn22yp3 + Хп2зУ p5

Xn21yp2 + Xn22yp4 + Хп2зУ p6
Xn31yp1 + Xn32yp3 + ХпЗзУ p5 

_ Xn31yp2 + Xn32yp4 + Xn33y p6 J
(10.37)

Instead o f  doing the two multiplications shown in (10.36) and (10.37), C 
times x to get y p and then premultiplying y p by xn to get the displacements

and velocities in physical coordinates, we could have done a single 
multiplication if C were defined as shown in (10.38), using eigenvector 
entries directly in the definition:
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C =

n11 0 x n12 0 x n13 0
0 xn11 0 x n12 0 x n13
n21 0 x n22 0 x n23 0
0 x n21 0 x n22 0 xn23
n31 0 x n32 0 x n33 0
0 x n31 0 x n32 0 x n33

(10.38)

Rewriting the output equation using C defined in (10.38) and expanding to 
see individual terms:

Z1
Z1

Z2 = Cx =
Z 2

Z3

_ Z 3 _

'n11
0

Sn21
0

n31
0

n21
0

n12
0

n̂22
0

n̂32
0

n22
0

n13
0

n̂23
0

n33
0

n23
0

" x n11x 1+ x n12x 3+ x n13x 5 " x n11yp1 + x n12yp3 + xn13yp5

xn11x 2+ x n12x 4 + x n13x 6 x 1 py + xn12yp4 + x n13yp6

x n21x 1+ x n22x 3+ x n23x 5 p1 + x n22yp3 + x n23yp5

xn21x 2+ xn22x 4+ x n23x 6 x n21yp2 + x n22yp4 + xn23yp6

x n31x 1+ x n32x 3+ x n33x 5 x n31yp1 + x n32yp3 + xn33yp5

_ x n31x 2+ x n32x 4 + x n33x 6 _ _ x n31yp2 + x n32yp4 + x n33yp6 _

(10.39)

10.6.8 Individual M ode Contributions, M odal State Space Form

In Section 8.7 we discussed in detail how individual modes contribute to the 
overall frequency response. Here we will show how to calculate individual 
modal contributions in modal state space form.

W e start with repeating (10.35), the modal state space equations o f  motion.

x 1 0 1 0 0 0

x 2 0 0 0 0 0

x 3 0 0 0 1 0

x 4 0 0 —m2 —2^2®2 0

x 5 0 0 0 0 0

x 6 _ 0 0 0 0 —m-

0
0

0
0

1

- 2 ^ 3 .

x 1 " 0 "

x 2 Fp1
x 3

x 4

0
+

Fp2
x 5 0

_ x 6 _ _Fp3 _

u (10.40)

2
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Notice how the three sets o f  uncoupled first order equations in (10.40) appear 
as blocks o f  2x2 coefficients along the diagonal. Note also that if  the 
eigenvalues, ю; , and damping ratios, Z i, are known, the entire system matrix 
A  can be filled out by inspection, as we will do in future chapters where 
ANSYS results are used to automatically build a model.

The first 2x2 block along the diagonal

0 1 
0 0

(10.41)

represents the response o f  the first mode, the second 2x2 block

0 1

-m2 -2 Z 2m2
(10.42)

represents the response o f  the second mode and the third 2x2 block

0 1

-m 2 -2Z3®3
(10.43)

represents the response o f  the third mode.

Note that the three modes are not coupled and the equations o f  motion in state 
space modal form may be rewritten separately as:

x 1 "0 1" x 1 +
" 0 '

_ x 2 _ 0 0 _ x 2 _ Fp1 _
u mode 1 (10.44)

1•K1■

1
0

1

x 3

_x 4 _ -m2 -2 Z  2 m2 _ x 4 _

x 5 " " 0 1 " " x 5 "

_x 6 _ _-m2 -2Z3m3 _ _ x 6 _

p2

p3.

u mode 2

u mode 3

(10.45)

(10.46)

For the output equation, defining a version o f  (10.42) which will output only 
displacements, not velocities:

z = y = Cx (10.47)
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Expanding:

z1 xn11 0 x n12 0 x n13 0

Z2 = x n21 0 xn22 0 x n23 0

Z3 _ _ xn31 0 x n32 0 x n33 0
(10.48)

Similarly, the output equations can be written separately as (10.49) to (10.51), 
where the z 31 m3 subscript notation stands for the displacement o f  mass 3 due

to force at mass 1 contributed by mode 3. Here we are dealing with only the 
z11 transfer function. The modal contributions to any o f  the four unique 
transfer functions can be solved in a similar fashion.

Z11,m1 x n11 0"

Z21,m1 = x n21 0

Z31,m1 _ _ x n31 0

Z11,m2 x n12 0"

Z21,m2 = x n22 0

Z31,m2 _ _ x n32 0

Z11,m3 x n13 0"

Z21,m3 = xn23 0

Z31,m3 _ x n33 0

mode 1

mode 2

mode 3

(10.49)

(10.50)

(10.51)

x

3

5
x 6

W e are familiar with using (10.35) and (10.39) to solve for frequency 
responses for systems. With the use o f  (10.44) to (10.51) we can plot and see 
how each individual mode contributes to the overall response. W e will 
examine this further in the code seen in the next chapter.

10.7 Real M odes -  Argand Diagrams, Initial Condition Responses o f 
Individual M odes

In Chapter 5, we introduced the concept o f  using Argand diagrams to visualize 
complex modes and to show how the complex eigenvector components 
combine to create “real”  displacements and velocities. We will use the
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M ATLAB code tdof_prop_dam ped.m  to define the eigenvectors for Argand 
plotting and solve for the transient responses.

The methodology followed is:

1) Solve the original undamped system equation for 
eigenvalues and eigenvectors.

2) Plot the eigenvectors normaliZed to unity using a 
deformed mode shape plot.

3) Normalize the displacement eigenvector entries with 
respect to mass to convert to principal coordinates for 
the proportionally damped case.

4) Form  the system matrix in principal coordinates using 
proportional damping.

5) Solve for the eigenvalues and eigenvectors o f  the 
system matrix in principal coordinates.

6) Plot the real and imaginary displacements o f each o f  the 
normal modes separately, since the three modes are 
uncoupled with proportional damping.

7) Back transform  to physical coordinates using the 
normaliZed displacement eigenvectors.

8) Plot the real and imaginary displacements o f each o f  the 
degrees o f  freedom separately.

For the undamped case we will use c1 = c2 = 0 and the result will be “normal” 
modes with “real” eigenvectors.

For proportional damping, we will start with the undamped eigenvectors and 
add a percentage o f  critical damping to each mode. This will result in “real” 
eigenvectors since proportional damping satisfies the Rayleigh damping 
criterion c = am + bk as discussed in Chapter 7.

10.7.1 Undamped M odel, Eigenvectors, Real M odes

The code starts with executing tdofss_eig.m, which calculates the eigenvalues 
and eigenvectors for the undamped problem, c1 = c2 = 0. The eigenvectors 
are then normaliZed with respect to unity for plotting in Argand form.

% tdof_prop_damped.m proportionally damped tdof model 

% solve for the eigenvalues of the undamped system model
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tdofss_eig; 

subplot( 1,1,1);

% now normaliZe the undamped eigenvectors with respect to the position of 
% mass 1, which will be set to 1.0 - for plotting of undamped Argand diagram

for cnt = 1:length(omegad)

xmon1(:,cnt) = xmo(:,cnt)/xmo(1,cnt);

end

xmon1

The eigenvalues and eigenvectors are:

omegaro =
0 (Note the two poles
0 at the origin)
0 + 1.0000i
0 - 1.0000i
0 + 1.7321i
0 - 1.7321i

xmron1 =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 0 0 + 1.0000i 0 - 1.0000i 0 + 1.7321i 0 - 1.7321i
1.0000 1.0000 0.0000 0.0000 -2.0000 -2.0000
0 0 0 + 0.0000i 0 - 0.0000i 0 - 3.4641i 0 + 3.4641i
1.0000 1.0000 -1.0000 -1.0000 1.0000 1.0000
0 0 0 - 1.0000i 0 + 1.0000i 0 + 1.7321i 0 - 1.7321i

Note that the pairs o f  eigenvalues for each mode are com plex conjugates 
o f  each other and that the pairs o f  eigenvectors fo r  each mode are also 
com plex conjugates o f each other.

Once again, some eigenvector elements have complex parts. W hy do we call 
them “ real”  when they contain imaginary parts?

“Real” eigenvectors refers to the fact that all o f  the position entries in the 
eigenvector are not complex numbers [i.e., not o f  the form (a+jb)], but are real
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numbers. The fact that the velocity entries are complex numbers by virtue o f 
multiplying the “real” position eigenvector entries by the eigenvalue does not 
make the eigenvectors “ complex” but refers to the fact that in the undamped 
case velocity is 90° out o f  phase with position.

—» * - * -

m 1 —w m2 —w m 3

( X j  О ( ' ( )  ( ) С С)  С )0
\ \

Rigid-Body Mode, 0 rad/sec

—*

m1 - J f t - m2 - W r - m3

OCX) 0 С) о OC) CX)
Second Mode, Middle Mass Stationary, 1 rad/sec 

1 -2 1

m„

ГГТТ5

1
m2 !

0 ( ) ( ) ()

Г
-'W - m,

a m\ \
Third Mode, 1.732 rad/sec

\ \

1 1 1

1

Figure 10.1: Mode shape plots, “ real”  modes.

For “real” eigenvectors, there are two ways o f  visualizing the mode shapes and 
resulting motions. One method we have used several times before, the mode 
shape plot, shows the deformed shapes o f  the system for each eigenvector.

Since for real eigenvectors all the degrees o f  freedom reach their maxima and 
minima at the same times, any snapshot in time will show the relative 
displacements, which is why we can plot a deformed mode plot as shown in 
Figure 10.1.
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The section of code below prompts for the amount of proportional damping, 
Zeta, and then sets up the equations of motion in principal coordinates. After 
solving the eigenvalue problem, the eigenvalues and eigenvectors are sorted 
and the magnitude and phase angle of the each eigenvector is defined.

10.7.2 Principal Coordinate Eigenvalue Problem

% input proportional damping for equations in principal coordinate system

zeta = input('input value for zeta, default = 0.02, 2% of critical ... ');

if (isempty(Zeta)) 
zeta = 0.02;

else
end

% setup proportionally damped state-space system matrix in principal coordinates

a_ss = [ 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% solve for the eigenvalues of the system matrix with proportional damping

[xmp,omegap] = eig(a_ss);

% take the diagonal elements of the generalized eigenvalue matrix omegap

omegapd = diag(omegap);

% now reorder the eigenvalues and eigenvectors from low to high frequency,
% keeping track of how the eigenvalues are ordered in reorder the 
% eigenvectors to match, using indexhz

[omegaporder,indexhz] = sort(abs(imag(omegapd)));

for cnt = 1:length(omegapd)

omegapo(cnt,1) = omegapd(indexhz(cnt)); % reorder eigenvalues 

xmpo(:,cnt) = xmp(:,indexhz(cnt)); % reorder eigenvector columns 

end

% now calculate the magnitude and phase angle of each of the eigenvector 
% entries

for row = 1:length(omegapd)
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for col = 1:length(omegapd)

xmpomag(row,col) = abs(xmpo(row,col)); 

xmpoang(row,col) = (180/pi)* angle (xmpo (row, col));

end

end

omegapo

xmpo

xmpomag

xmpoang

10.7.3 D am ping C a lcu la tio n , E igenvalue Com plex P lane P lot

The section below calculates the percentage of critical damping due to the 
defined amount of input damping, zeta. For example, if  2% of critical 
damping is defined as input, then we should see that the eigenvalues of the 
equations of motion in principal coordinates plot as shown in Figure 5 .2 .

% calculate the percentage of critical damping for each mode 

zeta1 = 0

theta2 = atan(real(omegapo(3))/imag(omegapo(3))); 
zeta2 = abs(sin(theta2))

theta3 = atan(real(omegapo(5))/imag(omegapo(5))); 
zeta3 = abs(sin(theta3))

plot(omegap,'kx') 
grid on
axis([-3 1 -2 2]) 
axis ('square')
title('Proportionally Damped Eigenvalues')
xlabel('real')
ylabel('imaginary')
text(real(omegapo(3))-1,imag(omegapo(3))+0.1,['zeta = ',num2str(zeta2)]) 
text(real(omegapo(5))-1,imag(omegapo(5))+0.1,['zeta = ',num2str(zeta3)])

disp('execution paused to display figure, "enter" to continue'); pause
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Figure 10.2: Undamped model eigenvalue plot in complex plane.

For the undamped model, we should see that the eigenvalues, poles, should lie  
on the im aginary axis -  and they do.
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Figure 10.3: Proportionally damped eigenvalue plot, zeta = 2% was input.

The eigenvalues for zeta = 0.02 plot slightly to the left of the im aginary axis.
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10.7.4 Principal Displacement Calculations

W e showed in (5 .54), repeated below, how to calculate the displacements 
when the system is started with a set of in itial conditions which match the 
eigenvector: 

x ( t )  = e°n1‘ (e J“n1‘xnl + e-J“n2‘x ^ )

= e°n1‘ ( e J“n1tx„1) + e°n1‘ ( e -J“n2‘x ^ )

Since our eigenvalues lie  along the im aginary axis, their о  values are zero 
and e0t = 1, the equations can be simplified to: 

x (t) = eJ“n1‘ x„1 + e-J“n2‘ x „2 (10.53) 

A  time vector from 0 to 15 seconds is defined, and real and im aginary parts 
are picked from the eigenvalues. Equation (10.52) is used to calculate the 
motions.

% calculate the motions of the three masses for all three modes - damped case 

t = 0:.12:15;

sigma11 = real(omegapo(1)); % sigma for first eigenvalue for mode 1 
omegap11 = imag(omegapo(1)); % omegap for first eigenvalue for mode 1

sigma12 = real(omegapo(2)); % sigma for second eigenvalue for mode 1 
omegap12 = imag(omegapo(2)); % omegap for second eigenvalue for mode 1

sigma21 = real(omegapo(3)); % sigma for first eigenvalue for mode 2 
omegap21 = imag(omegapo(3)); % omegap for first eigenvalue for mode 2

sigma22 = real(omegapo(4)); % sigma for second eigenvalue for mode 2 
omegap22 = imag(omegapo(4)); % omegap for second eigenvalue for mode 2 
sigma31 = real(omegapo(5)); % sigma for first eigenvalue for mode 3 
omegap31 = imag(omegapo(5)); % omegap for first eigenvalue for mode 3

sigma32 = real(omegapo(6)); % sigma for second eigenvalue for mode 3 
omegap32 = imag(omegapo(6)); % omegap for second eigenvalue for mode 3 

% displacements of mode 1 in principal coordinates

zp111 = exp(sigma11*t).*(exp(i*omegap11*t)*xmpo(1,1)); % mass 1
zp112 = exp(sigma12*t).*(exp(i*omegap12*t)*xmpo(1,2)); % mass 1

% displacements of mode 2 in principal coordinates

zp221 = exp(sigma21*t).*(exp(i*omegap21*t)*xmpo(3,3)); % mass 2

(10.52)
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zp222 = exp(sigma22*t).*(exp(i*omegap22*t)*xmpo(3,4)); % mass 2

% displacements of mode 3 in principal coordinates

zp331 = exp(sigma31*t).*(exp(i*omegap31*t)*xmpo(5,5)); % mass 3
zp332 = exp(sigma32*t).*(exp(i*omegap32*t)*xmpo(5,6)); % mass 3

10.7.5 T ransfo rm ation  to P h ys ica l C oordinates

The section of code below sets up the appropriate size matrices to enable 
back-transforming from principal to physical coordinates.

% calculate the motions of each mass for mode 2 
% define matrix of displacements vs time for each eigenvector

z221 = [zeros(1,length(t)) 
zp221
zeros( 1 ,length(t))];

z222 = [zeros(1,length(t)) 
zp222
zeros( 1 ,length(t))];

% back-transform from principal to physical coordinates

zmode21 = xn*z221;

zmode22 = xn*z222;

z1mode21 = zmode21(1,:);

z2mode21 = zmode21(2,:);

z3mode21 = zmode21(3,:);

z1mode22 = zmode22(1,:);

z2mode22 = zmode22(2,:);

z3mode22 = zmode22(3,:);

% calculate the motions of each mass for mode 3 
% define matrix of displacements vs time for each eigenvector

z331 = [zeros(1,length(t)) 
zeros(1,length(t)) 
zp331];

z332 = [zeros(1,length(t)) 
zeros(1,length(t)) 
zp332];

© 2001 by Chapman & Hall/CRC



zmode31 =xn*z331;

zmode32 =xn*z332;

z1mode31 = zmode31(1,:);

z2mode31 = zmode31(2,:);

z3mode31 = zmode31(3,:);

z1mode32 = zmode32(1,:);

z2mode32 = zmode32(2,:);

z3mode32 = zmode32(3,:);

10.7.6 P lo tting  R esults

The plotting commands for mode 2 are listed below ; those for mode 3 have 
been elim inated for brevity.

% plot principal displacements of mode 2

plot(t,real(zp221),'k-',t,real(zp222),'k+-',t,imag(zp221),'k.-',t,imag(zp222),'ko-')
title('principal real and imag disp for mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot physical disp of masses for mode 2

plot(t,real(z1mode21),'k-',t,real(z1mode22),'k+-',t,imag(z1mode21), ...
'k.-',t,imag(z1mode22),'ko-') 

title('physical real and imag disp for mass 1, mode 2') 
legend('real','real','imag','imag') 
axis([0 max(t) -0.5 0.5]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z2mode21),'k-',t,real(z2mode22),'k+-',t,imag(z2mode21),.
'k.-',t,imag(z2mode22),'ko-') 

title('physical real and imag disp for mass 2, mode 2') 
legend('real','real','imag','imag')
axis([0 max(t) -0.5 0.5])
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

plot(t,real(z3mode21),'k-',t,real(z3mode22),'k+-',t,imag(z3mode21), ...
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'k.-',t,imag(z3mode22),'ko-') 
title('physical real and imag disp for mass 3, mode 2') 
legend('real','real','imag','imag') 
axis([0 max(t) -0.5 0.5]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause

plot(t,real(z 1mode21 +z 1mode22),'k-',t,real(z2mode21 +z2mode22), ...
'k+-',t,real(z3mode21+z3mode22),'k.-') 

title('physical disp z1, z2, z3 mode 2') 
legend('mass 1','mass 2','mass 3') 
axis([0 max(t) -1 1]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

% plot subplots for notes 

% plot principal disp of mode 2 

subplot(3,2,1)
plot(t,real(zp221),'k-',t,real(zp222),'k+-',t,imag(zp221),'k.-',t,imag(zp222),'ko-')
title('principal disp for mode 2')
legend('real','real','imag','imag')
axis([0 max(t) -1 1])
grid on

% plot physical disp of masses for mode 2 

subplot(3,2,3)
plot(t,real(z1mode21),'k-',t,real(z1mode22),'k+-',t,imag(z1mode21), .

'k.-',t,imag(z1mode22),'ko-') 
title('physical real and imag disp for mass 1, mode 2') 
legend('real','real','imag','imag') 
axis([0 max(t) -0.5 0.5]) 
grid on

subplot(3,2,4)
plot(t,real(z2mode21),'k-',t,real(z2mode22),'k+-',t,imag(z2mode21), .

'k.-',t,imag(z2mode22),'ko-') 
title('physical real and imag disp for mass 2, mode 2') 
legend('real','real','imag','imag') 
axis([0 max(t) -0.5 0.5]) 
grid on

subplot(3,2,5)
plot(t,real(z3mode21),'k-',t,real(z3mode22),'k+-',t,imag(z3mode21), .

'k.-',t,imag(z3mode22),'ko-') 
title('physical real and imag disp for mass 3, mode 2') 
legend('real','real','imag','imag') 
axis([0 max(t) -0.5 0.5]) 
grid on

subplot(3,2,6)
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plot(t,real(z1mode21+z1mode22),'k+-',t,real(z2mode21+z2mode22), .
'k.-',t,real(z3mode21+z3mode22),'ko-') 

title('physical disp for z1, z2, z3 mode 2') 
legend('mass 1','mass 2','mass 3')
axis([0 max(t) -1 1])
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

subplot( 1,1,1)

10.7.7 U ndam ped / P ro p o rtion a lly  D am ped A rgan d  D iagram , M ode 2

As in the Argand diagram s explained in Chapter 5, the two complex conjugate 
eigenvectors for each mode are plotted side by side. The direction of the 
rotation of the eigenvector is indicated by the arrow associated with the 
e jmt or e-jmt terms. The addition of the two counter-rotating complex 
eigenvectors for an arbitrary time “t” is shown in the m iddle and below the 
two individual eigenvector plots for each dof. The addition plot shows how 
the two im aginary components cancel each other out, leaving only the real 
portion of the motion.
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Figure 10.4: Argand diagram for undamped or proportionally damped system, mode 2. 
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10.7.8 Undamped / Proportionally Damped Argand Diagram, Mode 3

Figure 10.5: Argand diagram for undamped or proportionally damped system, mode 3.
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Figures 10.6 to 10.10 show the in itial condition responses for mode 2 for 
proportional damping of 2%. Mode 2 is the mode where mass 2 is stationary 
and masses 1 and 3 are moving out of phase with each other with equal 
amplitude.

Figure 10.6 shows the real and im aginary components of the two complex 
eigenvector responses that make up mode 2. Note that the two im aginary 
components are out of phase and cancel each other while the two real 
components are overlaid and w ill add. Figures 10.7 to 10.9 show the real and 
im aginary components for each of the three masses. The motions of mass 2 
are zero, while the motions of masses 1 and 3 are out of phase with each other, 
consistent with the shape of mode 2 in Figure 10.1. Figure 10.10 shows the 
physical displacements of the three masses versus time. The Argand diagram 
vectors for mode 2, Figure 10.4, can be matched with each figure for each 
degree of freedom.

10.7.9 Proportionally Damped Initial Condition Response, Mode 2

principal real and imag disp for mode 2

Figure 10.6: Principal real and imaginary displacements, mode 2.
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Figure 10.7: Physical real and imaginary displacements for mass 1, mode 2.

physical real and imag disp for mass 2, mode 2
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Figure 10.8: Physical real and imaginary displacements for mass 2, mode 2.

physica l real and imag disp for m ass 1, mode 2
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physica l real and imag disp for m ass 3, mode 2

Figure 10.9: Physical real and imaginary displacements for mass 3, mode 2.

physical disp z1 , z2 , z3 mode 2

Figure 10.10: Physical displacements for masses 1, 2 and 3, mode 2.

10.7.10 P ro p o rtion a lly  D am ped In itia l Condition Response, M ode 3

Figures 10.11 to 10.15 show the in itial condition responses for mode 3 for 2% 
proportional damping, where mass 2 moves tw ice as far and out of phase with 
masses 1 and 3.

Figure 10.11 shows the real and im aginary components of the two complex 
eigenvector responses that make up mode 2. As in the previous section, note
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that the two im aginary components are out of phase and cancel each other 
while the two real components are overlaid and w ill add. Figures 10.12 to 
10.14 display the real and im aginary components for each of the three masses. 
Figure 10.15 shows the physical displacements of the three masses versus 
time. The Argand diagram  vectors for mode 2, Figure 10.5, can be matched 
with each figure for each degree of freedom.

principal disp for mode 3

Figure 10.11: Principal real and imaginary displacements, mode 3.

physical real and imag disp for mass 1, mode 3

Figure 10.12: Physical real and imaginary displacements for mass 1, mode 3.
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physica l real and imag disp for mass 2, mode 3

Figure 10.13: Physical real and imaginary displacements for mass 2, mode 3.

physical real and imag disp for mass 3, mode 3

Figure 10.14: Physical real and imaginary displacements for mass 3, mode 3.
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physica l d isp for z 1, z2, z3  mode 3

Figure 10.15: Physical real and imaginary displacements for masses 1,2 and 3, mode 3. 

Problem s

Note: A ll the problems refer to the two dof system shown in Figure P 2 .2 .

P 10 .1 W rite the homogeneous equations of motion in state space form for the 
undamped two dof system with m 1 = m 2 = m = 1, k 1 = k 2 = k  = 1. Set up the 
eigenvalue problem and expand the determinant to reveal the characteristic 
equation. Compare with the denominator terms from P2.2.

P10.2 Solve for the eigenvalues and eigenvectors in state space form. 
Compare with the results from P7.1. W hat is the relationship between the 
displacement and velocity eigenvector terms?

P10.3 (M ATLAB) M odify the tdofss_eig.m  code for the undamped two dof 
system with m1 = m 2 = m = 1, k 1 = k 2 = k  = 1. Print out the eigenvalue and 
eigenvector results and compare with the results from P10.2. What changes 
are required to the M ATLAB eigenvectors to make them match the P10.2 
results? After normalizing with respect to mass, confirm that the equations of 
motion consist of an identity mass matrix and a stiffness matrix with squares 
of the eigenvalues along the diagonal.

P10.4 W rite the equations of motion in principal coordinates in state space 
form, knowing only the eigenvalues and eigenvectors, sim ilar to (10.35). Use 
the displacements of mass 1 and mass 2 as outputs. Show how the output 
matrix C can be formulated to only require a single multiplication to give
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outputs (Section 10.6.7.2). Identify the 2x2 submatrices which define the state 
equations of each mode. Are the individual modes uncoupled?

P10.5 (M ATLAB) M odify the tdof_prop_dam ped.m  code for the two dof 
system with m1 = m 2 = m = 1 , k 1 = k 2 = k  = 1. Plot the eigenvalue locations 
in the s-plane for zero damping and for proportional damping of 2% (0.02). 
L ist the eigenvalues and eigenvectors for the undamped and proportional 
damping cases and note the differences. Plot the in itial condition responses 
when started in in itial conditions which match each of the two eigenvectors.

P10.6 Plot Argand diagrams for the undamped system.
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CHAPTER 11

FREQUENCY RESPONSE: MODAL STATE SPACE
FORM

11.1 Introduction

In Chapter 10 we constructed the modal form of the state equations for the 
overall frequency response as w ell as for the individual mode contributions. 
This short chapter of M ATLAB code w ill carry out both overall and 
individual mode frequency response calculations. The code w ill also allow us 
to plot the different forms of frequency responses covered in Chapter 3.

11.2 M o dal S ta te  Space Setup , tdofss_m odal_xfer_m odes.m  L isting

After executing the “tdofss_eig.m ” code to provide eigenvalues and 
eigenvectors, we enter a section of code that y ie lds sim ilar results to those 
resulting from an A N SY S simulation. In the A N SY S case, we would have 
access to the eigenvalues and mass normalized eigenvectors, sim ilar to the 
“xn” and “w1, w2 and w 3” from tdofss_eig.m .

Since we can add proportional damping to our modal model, the code prompts 
for a value for zeta.

Knowing zeta and the eigenvalues, the system matrix can be setup as shown in 
(10.35), as 2x2 blocks along the diagonal. The three 2x2 submatrices of the 
system matrix are defined for individual mode contribution calculations.

The next step is to define a 6x3 input matrix, 6 states and three possible inputs 
representing forces applied to only mass 1, only mass 2 or only mass 3. We 
start out by defining three separate 3x1 force vectors, one for each mass, F1, 
F2 and F3. Each of these vectors is transformed from physical to principal 
coordinates by prem ultiplying by xn transpose. The three 3x1 vectors are 
padded with zeros resulting in three 6x1 vectors, which are then inserted as 
columns in the 6x3 input matrix “b.”

The output matrix, “c,” is defined in one step as shown in (10.38) by 
incorporating the appropriate elements of “xn.” However, only displacement 
states are output, giving a 3x6 matrix.

The direct transmission matrix is set to zero.
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%  tdofss_modal_xfer_modes.m state-space modal form transfer function analysis
%  of tdof model, proportional damping, modal contribution plotting

clf;

clear a ll;

% run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

% note, this is the point where we would start if  we had eigenvalue results from ANSYS,
% using the eigenvalues and eigenvectors to define state space equations in
% principal coordinates

% define damping ratio to be used for proportional damping in the state space equation
% in principal coordinates

zeta = input('input zeta, 0.02 = 2% of critical damping (default) ... ');

i f  (isempty(zeta)) 
zeta = 0.02; 
else 
end

% setup 6x6 state-space system matrix for all three modes in principal
% coordinates, a_ss

[0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% setup three 2x2 state-space matrices, one for each individual mode

a1_ss = a_ss(1:2,1:2); 

a2_ss = a_ss(3:4,3:4); 

a3_ss = a_ss(5:6,5:6);

% transform the 3x1 force vectors in physical coordinates to principal coordinates and
% then insert the principal forces in the appropriate rows in the state-space
% 6x1 input matrix, padding with zeros as appropriate

% define three force vectors in physical coordinates, where each is for
% a force applied to a single mass

F1 = [1 0 0]';

F2 = [0 1 0]'; 

F3 = [0 0 1]';
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%  calculate the three force vectors in principal coordinates by pre-multiplying
%  by the transpose of the normalized modal matrix

Fp1 = xn’*F1;

Fp2 = xn’*F2;

Fp3 = xn’*F3;

% expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros

b1 = [0 Fp1(1) 0 Fp1(2) 0 Fp1(3)]’; % principal force applied at mass 1

b2 = [0 Fp2(1) 0 Fp2(2) 0 Fp2(3)]’; % principal force applied at mass 2

b3 = [0 Fp3(1) 0 Fp3(2) 0 Fp3(3)]’; % principal force applied at mass 3

b = [b1 b2 b3];

% the output matrix c is setup in one step, to allow the "bode" command to
% output the desired physical coordinates directly without having to go
% through any intermediate steps.

% setup the output matrix for displacement transfer functions, each row
% represents the position outputs of mass 1, mass 2 and mass 3
% velocities not included, so c is only 3x6 instead of 6x6

c = [xn(1,1) 0 xn(1,2) 0 xn(1,3) 0
xn(2,1) 0 xn(2,2) 0 xn(2,3) 0
xn(3,1) 0 xn(3,2) 0 xn(3,3) 0];

% define direct transmission matrix d

d = zeros(3,3);

11.3 F requ ency Response C alcu lation

W e w ill begin this section by defining the vector of frequencies to be used for 
the frequency response plot. Then we w ill define a state space model, using 
the matrices defined in the section above.

Because we are using a 6x3 input matrix and a 3x6 output matrix, we have 
access to nine frequency response plots, the displacement for all three degrees 
of freedom for three different force application points. To plot the four 
distinct frequency responses, the appropriate indices are used to define 
magnitude and phase.

% Define a vector of frequencies to use, radians/sec. The logspace command uses
% the log10 value as limits, i.e. -1 is 10A-1 = 0.1 rad/sec, and 1 is
% 10л1 = 10 rad/sec. The 200 defines 200 frequency points.
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w = logspace(-1,1,200);

% define four state-space systems using the "ss" command
% sys is for all modes for a ll 3 forcing functions
% sys1 is for mode 1 for a ll 3 forcing functions
% sys2 is for mode 2 for a ll 3 forcing functions
% sys3 is for mode 3 for a ll 3 forcing functions

sys = ss(a_ss,b,c,d);

sys1 = ss(a1_ss,b(1:2,:),c(:,1:2),d);

sys2 = ss(a2_ss,b(3:4,:),c(:,3:4),d);

sys3 = ss(a3_ss,b(5:6,:),c(:,5:6),d);

% use the bode command with left hand magnitude and phase vector arguments
% to provide values for further analysis/plotting

[mag,phs] = bode(sys,w);

[mag1,phs1] = bode(sys1,w);

[mag2,phs2] = bode(sys2,w);

[mag3,phs3] = bode(sys3,w);

% pick out the specific magnitudes and phases for four distinct responses

z11mag = m ag(1,1,:);

z21mag = m ag(2,1,:);

z31mag = m ag(3,1,:);

z22mag = m ag(2,2,:);

z11magdb = 20*log10(z11mag);

z21magdb = 20*log10(z21mag);

z31magdb = 20*log10(z31mag);

z22magdb = 20*log10(z22mag);

z11phs = phs(1,1,:);

z21phs = phs(2,1,:);

z31phs = phs(3,1,:);

z22phs = phs(2,2,:);

% p ick out the three individual mode contributions to z11
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z111mag = m ag1(1,1,:); 

z112mag = m ag2(1,1,:); 

z113mag = m ag3(1,1,:); 

z111magdb = 20*log10(z111mag); 

z112magdb = 20*log10(z112mag); 

z113magdb = 20*log10(z113mag); 

z111phs = phs1(1,1,:); 

z112phs = phs2(1,1,:); 

z113phs = phs3(1,1,:);

11.4 F requ ency Response P lo tting

% truncate peaks for plotting of expanded linear scale

z11plotmag = z11mag;

z111plotmag = z111mag;

z112plotmag = z112mag;

z113plotmag = z113mag;

for cnt = 1:length(z11mag)

if  z11plotmag(cnt) >= 3.0

z11plotmag(cnt) = 3.0;

end

if  z111plotmag(cnt) >= 3.0

z111plotmag(cnt) = 3.0;

end

if  z112plotmag(cnt) >= 3.0

z112plotmag(cnt) = 3.0;

end

if  z113plotmag(cnt) >= 3.0
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end

end

% plot the four transfer functions separately, in a 2x2 subplot form

subplot(2,2,1)
semilogx(w,z11magdb(1,:),'k-') 
title('state space, z11, z33 db magnitude') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid

subplot(2,2,2)
semilogx(w,z21magdb(1,:),'k-')
title('state space, z21, z12, z23, z32 db magnitude')
ylabel('magnitude, db')
axis([.1 10 -150 50])
grid

subplot(2,2,3)
semilogx(w,z31magdb(1,:),'k-') 
title('state space, z31, z13 db magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid

subplot(2,2,4)
semilogx(w,z22magdb(1,:),'k-') 
title('state space, z22 db magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude, db') 
axis([.1 10 -150 50]) 
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,2,1) 
semilogx(w,z11phs(1,:),'k-') 
title('state space, z11, z33 phase') 
ylabel('phase, deg') 
grid

subplot(2,2,2)
semilogx(w,z21phs(1,:),'k-')
title('state space, z21, z12, z23, z32 phase')
ylabel('phase, deg')
grid

subplot(2,2,3) 
semilogx(w,z31phs(1,:),'k-') 
title('state space, z31, z13 phase')

z113plotmag(cnt) = 3.0;
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xlabel(’frequency, rad/sec’) 
ylabel(’phase, deg’) 
grid

subplot(2,2,4) 
semilogx(w,z22phs( 1 ,:),'k-') 
title(’state space, z22 phase’) 
xlabel(’frequency, rad/sec’) 
ylabel(’phase, deg’) 
grid

disp(’execution paused to display figure, "enter" to continue’); pause 

% plot the overall plus individual mode contributions separately

subplot(2,2,1)
semilogx(w,z11magdb(1,:),’k-’) 
title(’State-Space Modal, z11 db magnitude’) 
ylabel(’magnitude, db’) 
axis([.1 10 -60 40]) 
grid

subplot(2,2,2)
semilogx(w,z111magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 1’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

subplot(2,2,3)
semilogx(w,z112magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 2’)
xlabel(’frequency, rad/sec’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

subplot(2,2,4)
semilogx(w,z113magdb(1,:),’k-’)
title(’State-Space Modal, z11 db magnitude of mode 3’)
xlabel(’frequency, rad/sec’)
ylabel(’magnitude, db’)
axis([.1 10 -60 40])
grid

disp(’execution paused to display figure, "enter" to continue’); pause

subplot(2,2,1) 
semilogx(w,z11phs(1,:),’k-’) 
title(’State-Space Modal, z11 phase’) 
ylabel(’phase, deg’) 
grid

subplot(2,2,2)
sem ilogx(w,z111phs(1,:),’k-’)
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title('State-Space Modal, z11 phase of mode 1')
ylabel('phase, deg')
grid

subplot(2,2,3)
semilogx(w,z112phs(1,:),'k-') 
title('State-Space Modal, z11 phase of mode 2') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg') 
grid

subplot(2,2,4)
semilogx(w,z 113phs( 1,: ),'k-') 
title('State-Space Modal, z11 phase of mode 3') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg') 
grid

disp('execution paused to display figure, "enter" to continue'); pause 

subplot( 1,1,1);

% plot the overlaid transfer function and individual mode contributions

loglog(w,z11mag(1,:),'k+:',w,z111mag(1,:),'k-',w,z112mag(1,:),'k-',w, ...
z113mag(1,:),'k-') 

title('State-Space Modal Mode Contributions, z11 db magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude, db') 
axis([.1 10 .001 100]) 
grid

disp('execution paused to display figure, "enter" to continue'); pause

sem ilogx(w,z11mag(1,:),'k+:',w,z111mag(1,:),'k-',w,z112mag(1,:), ...
'k-',w,z113mag(1,:),'k-') 

title('State-Space Modal Mode Contributions, z11 linear magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z11plotmag(1,:),'k+:',w,z111plotmag(1,:),'k-', ...
w,z 112plotmag( 1,:),'k-',w,z 113plotmag( 1,:),'k-') 

title('State-Space Modal Mode Contributions, z11 linear magnitude') 
xlabel('frequency, rad/sec') 
ylabel('magnitude') 
axis([.1 10 0 3]); 
grid

disp('execution paused to display figure, "enter" to continue'); pause

semilogx(w,z11phs(1,:),'k+:',w,z111phs(1,:),'k-',w,z112phs(1,:),'k-', .  
w,z113phs(1,:),'k-')
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title(’State-Space Modal Mode Contributions, z11 phase’) 
xlabel(’frequency, rad/sec’) 
ylabel(’phase, deg’) 
grid

11.5 Code R esu lts -  F requency Response P lo ts, 2%  of C r it ic a l D am ping

Figure 11.1: Magnitude output for four distinct frequency responses, proportional 
damping zeta = 2%.

© 2001 by Chapman & Hall/CRC



state space, z11, z33 phase state space, z21, z12, z23, z32 phase

state space, z31, z13 phase state space, z22 phase

Figure 11.2: Phase output for four distinct frequency responses, proportional damping
zeta = 2%.

State-Space Modal, z11 db magnitude State-Space Modal, z11 db magnitude of mode 1

State-Space Modal, z11 db magnitude of mode 2 State-Space Modal, z11 db magnitude of mode 3

Figure 11.3: Magnitude output for z11 frequency response and individual mode
contributions.
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State-Space Modal, z11 phase State-Space Modal, z11 phase of mode 1

" T~

10 10 10 

State-Space Modal, z11 phase of mode 3

-179.5

-180

-180.5

-181

Figure 11.4: Phase output for z11 frequency response and individual mode contributions.

frequency, rad/sec

Figure 11.5: Overlaid magnitude output for z11 frequency response and individual mode
contributions.

11.6 Form s of F requ ency Response P lo tting

This section of code is used to plot various forms of frequency responses for 
the z11 transfer function, as shown in Chapter 3, Section 3.6. A ll the plots
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except the Nyquist plot use user-defined damping and 200 frequency points. 
The Nyquist section recalculates the system m atrix to use a damping zeta of 
0 .02 and 800 frequency points in order to plot in the designated format.

% plot only z11 transfer function in different formats

orient tall

% log mag, log freq

subplot(2,1,1)
loglog(w,z11mag(1,:),'k-')
title('z 11, z33 log mag versus log freq')
ylabel('magnitude')
grid

subplot(2,1,2) 
semilogx(w,z11phs(1,:),'k-') 
title('z 11, z33 phase versus log freq') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,1,1)
semilogx(w,z11magdb(1,:),'k-') 
title('z 11, z33 db mag versus log freq') 
ylabel('magnitude, db') 
grid

subplot(2,1,2) 
semilogx(w,z11phs(1,:),'k-') 
title('z 11, z33 phase versus log freq') 
xlabel('frequency, rad/sec') 
ylabel('phase, deg') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

subplot(2,1,1)
plot(w,z11magdb(1,:),'k-')
title('z 11, z33 db mag versus linear freq')
ylabel('magnitude, db')
grid

subplot(2,1,2)
plot(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus linear freq')
xlabel('frequency, rad/sec')

% db mag, log freq

% db mag, lin freq
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ylabel('phase, deg') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

% lin mag, lin freq

subplot(2,1,1)
plot(w,z11mag(1,:),'k-')
title('z 11, z33 linear mag versus linear freq')
ylabel('magnitude')
grid

subplot(2,1,2)
plot(w,z11phs(1,:),'k-')
title('z 11, z33 phase versus linear freq')
xlabel('frequency, rad/sec')
ylabel('phase, deg')
grid

disp('execution paused to display figure, "enter" to continue'); pause 

% linear real versus log freq, linear imag versus log freq

z11real = z11mag.*cos(z11phs*pi/180); % convert from mag/angle to real 

z11realdb = 20*log10(z11real);

z11imag = z11mag.*sin(z11phs*pi/180); % convert from mag/angle to imag

z11imagdb = 20*log10(z11imag);

subplot(2,1,1)
sem ilogx(w,z11real(1,:),'k-')
title('z 11, z33 linear real mag versus log freq')
ylabel('real magnitude')
grid

subplot(2,1,2)
semilogx(w,z11imag(1,:),'k-')
title('z 11, z33 linear im aginary versus log freq')
xlabel('frequency, rad/sec')
ylabel('imaginary magnitude');
grid

disp('execution paused to display figure, "enter" to continue'); pause

% linear real versus linear freq, linear imag versus linear freq

subplot(2,1,1)
plot(w,z11real(1,:),'k-')
title('z 11, z33 linear real mag versus linear freq')
ylabel('real magnitude')
grid
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subplot(2,1,2)
plot(w,z11imag(1,:),'k-')
title('z 11, z33 linear im aginary versus linear freq') 
xlabel('frequency, rad/sec') 
ylabel('imaginary magnitude'); 
grid

disp('execution paused to display figure, "enter" to continue'); pause

real versus imaginary (Nyquist), redo frequency response with 800 points for 
finer frequency resolution for Nyquist plot and use zeta = 0.02 to fit on plot

zeta = 0.02;

a_ss = [0 
0 
0 
0 
0 

0

0 0
0 0
0 1

-w2A2 -2*zeta*w2
0 0
0 0

0
0
0
0
0

-w3A2

0
0
0
0
1

-2*zeta*w3];

w = logspace(-1,1,800); 

sys = ss(a_ss,b,c,d);

[mag,phs] = bode(sys,w); 

z11mag = m ag(1,1,:); 

z11magdb = 20*log10(z11mag); 

z11phs = phs(1,1,:);

z11real = z11mag.*cos(z11phs*pi/180); % convert from mag/angle to real 

z11imag = z11mag.*sin(z11phs*pi/180); % convert from mag/angle to imag 

subplot( 1,1,1)

plot(z 11 real( 1,: ),z 11 imag( 1,:), 'k+:')
title('z 11, z33 real versus imaginary, "Nyquist"')
ylabel('imag')
axis('square')
axis([-15 15 -15 15])
grid
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Problem

Note: This problem refers to the two dof system shown in Figure P 2 .2 .

P11.1 (M ATLAB) M odify the tdofss_m odal_xfer_m odes.m  code for the 
two dof system with m1 = m 2 = m = 1 , k 1 = k 2 = k  = 1 and plot the frequency 
responses with and without the individual mode contributions overlaid.
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CHAPTER 12

TIME DOMAIN: MODAL STATE SPACE FORM

12.1 Introduction

In Chapter 7 we derived the equations of motion in modal form for the system 
in Figure 12.1. In this chapter we w ill convert the modal form to state space 
modal form and obtain the closed form transient solution for the forcing 
function and in itial conditions described in Figure 12.1. M ATLAB w ill then 
be used to solve the same equations using the ode45 function.

12.2 E quations of M otion -  M o dal Form

The applied step forces are as shown in Figure 12.1. The in itial conditions of 
position and velocity for each of the three masses are displayed in Table 12.1, 
the same as Figure 9.1 and T able 9 .1 .

^ z i - F i Z2 -*2 <0z - F3
k i m 2 k2 m 3

c )  с :> с :> с ; ( )  С )\  \ \  \ \  \ \  \

Figure 12.1: Step forces applied to tdof system.

M ass 1 M ass 2 M ass 3

z 01 = 0 z = —102 z03 = 1

z 01 = -1 z = 202 z 03 = —2

Table 12.1: Initial conditions applied to tdof system.

Repeating results from Chapter 9, where we developed the modal form of the 
equations of motion:
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The force vector in principal coordinates from (9.8) is:

Fp = zT F = p2
1

v m

" 1 1 1 " Г -43 1

V3 V3 43 " 1" 
л

3

1 л -1 = 1 342
42

0
42

0
v m 2

1 - 2 1
—2 -46

_V6 V 6 V 6 _ 6

(12.1)

W ith in itial conditions from (9.6), (9.7):

= v m

- Г -43 1
0 3

-42
, z po= v m

42
2 2

V6 -746
_ 2 _ 6

(12.2)

Using the results of the eigenvalue solution, we can write the homogeneous 
equations of motion by inspection. The forcing function can be added to the 
right-hand side, knowing Fp :

X = A x + Bu (12.3)

x  1 "0 1 0

x 2 0 0 0

x 3 0 0 0

x 4 0 0 -Ю

x 5 0 0 0

x 6 _ 0 0 0

0

0

1

—2 ^2®2 
0 

0

0

0

0

0

0

-fi>2

0

0

0

0

1

- 2 ^ 3

x 1 " 0 "

x 2 Fp1
x 3

x 4

0
+

Fp2

x 5 0

_ x 6 _ _ Fp3 _

u (12.4)

with in itial conditions of:

© 2001 by Chapman & Hall/CRC



X po =

" 0 

S
- 3

p̂o1
- / 2

■Jpo1
2

po2 = Vm Apo2
2

'p03
A'p03

2

-7 V 6  
_ 6

(12.5)

12.3 Solv ing E quations of M otion U sing L ap lace  T ransform s

Now that we know the complete state space equations of motion in principal 
coordinates and the in itial conditions on the six states in principal coordinates, 
the equations can be solved in the time domain. The first order equations of 
motion above are sim ilar in nature to the second order equations of motion in 
Table 7 .2 . The three sets of first order equations in modal state space form are 
uncoupled as were the three second order equations of motion in modal form 
(7.89).

Expanding the three sets of equations:

x  2 = Fpiu

x 4 ®2X3 2Z 2 ®2X4 + Fp2u
(12.6a-f)

x 6 = ®3x 5 2C 3®3x 6 + Fp3u

Taking the Laplace transform of the first two equations above:

sx i(s ) -  x i(0 ) = x 2(s) 

sx2(s) -  x 2(0) = Fpiu(s) = —
(12.7a,b)

Solving for x 1 (s) :
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sx1(s) -  X1 (0) = X2(s)

s [sx1 (s) -  X1 (0)] -  X2 (0) = Fp1u (s) = —
s

F
s2x 1 (s) = —  + sx1 (0) + x 2 (0) 

s
(12.8a-f)

-л/3 0 V 3m

The three terms on the right-hand side of (12.8f) represent the displacement of 
the first mode of vibration due to the force, in itial displacement and in itial 
velocity, respectively. This equation for x 1(s) is the same as for Np1(s) in

(9.17). Using the same back-transformation y ie ld s the identical result for the 
principal displacement as for Np1(t) in (9.20).

The two sets of equations for modes 2 and 3 can be solved for x 3 (t) and x 5 (t) 
in a sim ilar fashion, again giving results which are the same as for 
Np2 (t) and Np3 (t) in (9 .27) and (9.34). The three velocity states in principal

coordinates can be defined by differentiating the displacement states. 

Summarizing the solution in principal state space coordinates:

(12.9)
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x(t) =

S  3

-  _L ̂
л/3 3

3л/2 3>f2 t л/2 t л/2 .
----------------- c o s t -------- cost+------- s in t

2 2 2 2

3л/2 . л/2  . л/2
-------s in t +------- s in t +------- co s t

2 2 2

___ t 2____> / 3 t

- 2^ .  + ̂ 6 cosл/3t + ̂ 6 cosл/з t — ^  sin л/31
л/б л/б 

18  18  

л/бл/3 .

л/б

2 л/3^

18
sin л/31-

л/бл/3 . г ,  7 л/3
sin V 3 t  -

л/3
cos V 3 t

( 12.10a-f)

Let us assume that w e are interested in three displacements and three 
velocities; the output m atrix is shown below  in ( 1 2 .1 1 ) ,  repeated from  (10 .38 ):

C  =

ln11 0 Xn12 0 Xn13 0

0 x n11 0 Xn12 0 Xn13

‘n21 0 Xn22 0 Xn23 0

0 Xn21 0 Xn22 0 Xn23

-n31 0 Xn32 0 Xn33 0

0 Xn31 0 Xn32 0 Xn33

( 12.11)
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z1

z1

Z2 = C x =
z 2

z 3

_z 3 _

x n11 0 x n12 0 x n13 0 " x

0 x n11 0 x n12 0 x n13 x

x n21 0 x n22 0 x n23 0 x

0 x n21 0 x n22 0 x n23 x

x n31 0 x n32 0 x n33 0 x

0 x n31 0 x n32 0 x n33 _ _x

V 3

0

V 3

0

7 3

0

0
1

0
1

0
s

1
0

1
0

1

л/3 s x

0 0 0
- 2

0
x

x

1
0 0 0

- 2 x

7 3 7 6 x

0
- 1

7 2
0

1

7 6
0 _ x

1
0

- 1
0

1

7 3 7 2 7 6  _ ( 12.12)

W ith  ( 12 .12 )  w e have the com plete time domain results in physical 
coordinates.

12.4 M A T LA B  Code tdofss_m odal_tim e_ode45.m  -  
T im e Domain M o dal C ontributions

12.4.1 M o dal S tate  Space M odel Setup , Code L isting

This first section executes tdofss_eig.m  to calculate the eigenvalues and 
eigenvectors. It then sets up the 6x 6 system m atrix and defines three 
individual mode 2x2 submatrices.

The fo rce vecto r in physical coordinates is defined, applying step forces as 
defined in Figure 1 2 . 1 . It is transform ed to a forcing function in principal 
coordinates and expanded to 6x1 size by padding w ith zeros. To specify the 
input m atrices fo r each o f  the three modes, three 2x 1 submatrices are defined.

The output m atrix is setup as a 3x6  m atrix, to calculate displacements. Once 
again, three submatrices o f  3x 2 size are defined fo r the individual modes.
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% tdofss_modal_time_ode45.m state space modal form transfer function analysis
% of tdof model, proportional damping, modal contribution plotting

clf;

% run tdofss_eig.m to provide eigenvalues and eigenvectors

tdofss_eig;

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u

% note, this is the point where we would start if  we had eigenvalue results from ANSYS,
% using the eigenvalues and eigenvectors to define state space equations in
% principal coordinates

% define damping ratio to be used for proportional damping in the state space equation
% in principal coordinates

zeta = input('input zeta, 0.02 = 2% of critical damping (default) ... ');

i f  (isempty(zeta)) 
zeta = 0.02; 
else 
end

% setup 6x6 state-space system matrix for all three modes in principal
% coordinates, a_ss

a_ss = [ 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 -w2A2 -2*zeta*w2 0 0
0 0 0 0 0 1
0 0 0 0 -w3A2 -2*zeta*w3];

% setup three 2x2 state-space matrices, one for each individual mode

a1_ss = a_ss(1:2,1:2); 

a2_ss = a_ss(3:4,3:4); 

a3_ss = a_ss(5:6,5:6);

% transform the 3x1 force vector in physical coordinates to principal coordinates and
% then insert the principal forces in the appropriate rows in the state-space
% 6x1 input matrix, padding with zeros as appropriate

F = [1 0 -2]';

Fp = xn'*F;

% expand the force vectors in principal coordinates from 3x1 to 6x1, padding with zeros

b = [0 Fp(1) 0 Fp(2) 0 Fp(3)]'; % principal forces applied to all masses
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b1 = b(1:2);

b2 = b(3:4);

b3 = b(5:6);

% the output matrix c is setup in one step, to allow the "bode" command to
% output the desired physical coordinates directly without having to go
% through any intermediate steps.

% setup the output matrix for displacement transfer functions, each row
% represents the position outputs of mass 1, mass 2 and mass 3
% velocities not included, so c is only 3x6 instead of 6x6

c = [xn(1,1) 0 xn(1,2) 0 xn(1,3) 0
xn(2,1) 0 xn(2,2) 0 xn(2,3) 0
xn(3,1) 0 xn(3,2) 0 xn(3,3) 0];

c1 = c(:,1:2);

c2 = c(:,3:4);

c3 = c(:,5:6);

% define direct transmission matrix d

d = 0;

12.4.2 Prob lem  Setup , In itia l C onditions, Code L isting

N ow that the m odel is in place, w e can solve fo r transient response. The input 
scalar, “u” is set to “ 1,” fo r  a unity step function. The total time is set and a 
vecto r o f  time span from  0  to 10 seconds (default) is setup fo r input to the ode 
routine.

The tw o 3x1 initial condition displacement and ve locity  vectors w ith initial 
displacem ents and velocities from  Figure 12 .1  are set up, then transform ed to 
principal coordinates. Next the 6x 1 initial condition vecto r is constructed  
from  appropriate elem ents o f  the tw o 3x1 vectors. W e  are now  ready to solve  
the problem.

% transient response using the ode45 command

u = 1;

ttotal = input('Input total time for Simulation, default = 10 sec, ... ');

i f  (isempty(ttotal))
ttotal = 10;
else
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end

tspan = [0 ttotal];

% calculate the in itial conditions in principal coordinates using the inverse of the
% normalized modal matrix

x0phys = [0 -1 1]'; % in itial condition position, physical coord

x0dphys = [-1 2 -2]'; % in itial condition velocity, physical coord

x0 = inv(xn)*x0phys;

x0d = inv(xn)*x0dphys;

% create the in itial condition state vector

x0ss = [x0(1) x0d(1) x0(2) x0d(2) x0(3) x0d(3)];

x0ss1 = x0ss(1:2);

x0ss2 = x0ss(3:4);

x0ss3 = x0ss(5:6);

12.4.3 So lv ing E quations U sing ode45, Code L isting

The ode45 “options” param eter, which can be used to control m any options 
fo r  use in the solution, is set to a null vector.

Next, the total response in principal coordinates and the three individual mode 
responses in principal coordinates are calculated using M A T L A B ’s ode45  
differential equation solver. Four functions, listed separately in the fo llow ing  
sections, are used by ode45 to define the equations to solve.

The responses in principal coordinates are then transform ed to physical 
coordinates.

% use the ode45 non-stiff differential equation solver

options = [ ]; % no options specified

% total response, principal coord, states are modes of vibration

[t,x] = ode45('tdofssmodalfun',tspan,x0ss,options);

% mode 1 response, principal coord

[t1,x1] = ode45('tdofssmodal1fun',tspan,x0ss1,options);

% mode 2 response, principal coord
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[t2,x2] = ode45('tdofssmodal2fun',tspan,x0ss2,options);

% mode 3 response, principal coord

[t3,x3] = ode45('tdofssmodal3fun',tspan,x0ss3,options);

% total response, physical coord 

z_ode = c*x';

% mode 1 response, physical coord 

z_ode1 = c1*x1';

% mode 2 response, physical coord 

z_ode2 = c2*x2';

% mode 3 response, physical coord 

z_ode3 = c3*x3';

12.4.4 P lo tting , Code L isting

% plot displacements in principal coordinates

subplot( 1,1,1);

plot(t1,x1(:,1),'k+-',t2,x2(:,1),'kx-',t3,x3(:,1),'k-')
title('Displacements in Principal Coordinate System, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('zp1','zp2','zp3',2)
grid

disp('execution paused to display figure, "enter" to continue'); pause 

axis([0 1 -2 2]);

disp('execution paused to display figure, "enter" to continue'); pause

% plot displacements in physical coordinates

plot(t,z_ode(1,:),'k+-',t,z_ode(2,:),'kx-',t,z_ode(3,:),'k-') 
title('Displacements in Physical Coordinate System, ode45') 
xlabel('Time, sec') 
ylabel('Displacements')
legend('z1','z2','z3',3)
grid

disp('execution paused to display figure, "enter" to continue'); pause 

% load previous closed-form solutions for tplot, z1, z2, z3 i f  zeta = 0
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i f  zeta == 0

load tdof_modal_time_z1z2z3;

plot(t,z_ode(1,:),'k-',t,z_ode(2,:),'k-',t,z_ode(3,:),'k-',tplot,z1,'k.-',tplot,z2, ... 
'k.-',tplot,z3,'k.-')

title('Displacements in Physical Coordinate System from ode45 (ode) ...
and Closed Form (cf)') 

xlabel('Time, sec') 
ylabel('Vibration Displacements')
legend('ode dof 1','ode dof 2','ode dof 3','cf dof 1','cf dof 2','cf dof 3') 
grid

disp('execution paused to display figure, "enter" to continue'); pause

else
end

% plot the modal contributions to the motion of masses 1, 2 and 3

plot(t1,z_ode1(1,:),'k+-',t2,z_ode2(1,:),'kx-',t3,z_ode3(1,:),'k-')
title('Displacement of dof 1 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3')
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t1,z_ode1(2,:),'k+-',t2,z_ode2(2,:),'kx-',t3,z_ode3(2,:),'k-')
title('Displacement of dof 2 for Modes 1, 2 and 3, ode45')
xlabel('Time, sec')
ylabel('Displacements')
legend('Mode 1','Mode 2','Mode 3')
grid

disp('execution paused to display figure, "enter" to continue'); pause

plot(t1,z_ode1(3,:),'k+-',t2,z_ode2(3,:),'kx-',t3,z_ode3(3,:),'k-') 
title('Displacement of dof 3 for Modes 1, 2 and 3, ode45') 
xlabel('Time, sec') 
ylabel('Displacements') 
legend('Mode 1','Mode 2','Mode 3')

_______ grid______________________________________________

12.4.5 Functions C a lled : tdofssm odalfun.m , tdo fssm odallfun .m , 
tdofssm odal2fun .m , tdofssm odal3fun.m

The od e45  differential equation so lver calls function files depending on which  
solution is being perform ed. The four functions fo r calculating the system  
response as w ell as individual responses o f  modes 1, 2 and 3 are listed below. 
Each simply defines the state equation w here the derivative o f the state vector
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is equal to the system m atrix times the states plus the input m atrix times the 
input: x = A x + B u . The “global” assignments make all the variables  

defined available both to the calling program  and to the function. 

System  response:

function xprime = tdofssmodalfun(t,x)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u 

xprime = a_ss*x + b*u;

M ode 1 response:

function xprime = tdofssmodal1fun(t1,x1)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u 

xprime = a1_ss*x1 + b1*u;

M ode 2 response:

function xprime = tdofssmodal2fun(t2,x2)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u 

xprime = a2_ss*x2 + b2*u;

M ode 3 response:

function xprime = tdofssmodal3fun(t3,x3)

% function for calculating the transient response of tdof_ss_modal_time_ode45.m

global a_ss a1_ss a2_ss a3_ss b b1 b2 b3 u 

xprime = a3_ss*x3 + b1*u;
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12.5 Plotted Results

The fo llow ing  figures should be com pared with Figures 9 .2  through 9 .7 , which  
w ere plotted using the closed form  m odal solutions.

Displacements in Principal Coordinate System, ode45

Time, sec

Figure 12.2: Displacements in principal coordinate system using ode45.

The m otions o f  the rigid body and two oscillatory modes are clearly  seen.

Displacements in Principal Coordinate System, ode45

Time, sec

Figure 12.3: Displacements in principal coordinate system, expanded scales to see initial
conditions.
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Disp lacem ents in Physica l Coordinate System , ode45

Time, sec

Figure 12.4: Displacements in physical coordinate system.

Displacements in Physical Coordinate System  from ode45 (ode) and Closed Form (cf)

Time, sec

Figure 12.5: Displacements in physical coordinate system — comparing closed form 
solution from Chapter 7.

The three plots below  show how  one can study the m otions o f  degrees o f  
freedom  due to individual modes. U se zeta = 0  when running  
tdofss_m odal_tim e_ode45.m  in order to p lot the closed form  solution.
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D isp lacem ent of dof 1 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.6: Displacement of mass 1 for modes 1, 2 and 3.

Displacem ent of dof 2 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.7: Displacement of mass 2 for modes 1, 2 and 3.
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D isp lacem ent of dof 3 for Modes 1, 2 and 3, ode45

Time, sec

Figure 12.8: Displacement of mass 3 for modes 1, 2 and 3.

Problem

P12 . 1  U sing the initial conditions and forcing functions from  P 7.4 , solve fo r  
the time domain response o f  the states in principal coordinates in closed form  
using Laplace transforms. D efine the output m atrix i f  the outputs required are 
the displacem ents o f  both masses.
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CHAPTER 13

FINITE ELEMENTS: STIFFNESS MATRICES

13.1 Introduction

The purpose of this chapter is to use two simple examples to explain the basics 
of how finite element stiffness matrices are formulated and how static finite 
element analysis is performed.

Chapter 2 discussed building global stiffness matrices column by column, 
giving a unit displacement to the dof associated with each column and entering 
constraint forces for each dof along the column. This chapter w ill show 
another method of building global stiffness m atrices, based on using elem ent 
stiffness matrices, combining them in an orderly w ay to generate the global 
stiffness matrix. The first example uses the lumped parameter 6dof example 
seen in Section 2.2.4. The second example uses a two-element cantilever. 
Static condensation is used to prepare for a development of Guyan reduction 
in the next chapter.

The next chapter w ill use element mass matrices to assemble global mass 
matrices and w ill introduce dynamics using finite elements.

13.2 S ix  dof M odel -  E lem ent and  G lobal Stiffness M atr ices

-T^Z1

m„

k1

m„

r> z2

kH 
k.

k2
■ \ Л

r> z3 k6

r^ z -

mc

m, z4

m5

z5

4

k7

Figure 13.1: Six dof stiffness matrix model.
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13.2.1 Overview

The global stiffness matrix for the model in Figure 13.1 was defined 
previously by inspection (Table 2 .2 ). Each column of the matrix was defined 
by giving a unit displacement to the dof associated with that column and then 
defining the constraints required to hold the system in that configuration. This 
method works very w ell for hand calculations, but creating stiffness and mass 
matrices with computers requires a different, more systematic approach, where 
individual element stiffness matrices are developed and combined to give the 
global stiffness matrix.

W e can define an element stiffness matrix for each of the springs in the figure, 
where the size of the element stiffness matrix is (nxn), and n is the total 
number of degrees of freedom associated with the element. For a uni-axial 
spring, there are two degrees of freedom, the displacements in the “z” 
direction at both ends, hence a 2x2 stiffness matrix.

Each element stiffness matrix can be set up using the “inspection” method, by 
displacing first the left-hand dof for the first column, and then the right-hand 
dof for the second column as shown in Figure 13.2.

13.2.2 E lem ent Stiffness M a tr ix

Figure 13.2: Spring element stiffness matrix development.

© 2001 by Chapman & Hall/CRC



The resulting element stiffness matrix, k el , for a general uni-axial spring 
element is then:

k  el,i =
kj -ki 
-k к

(13.1)

For spring element 3, for example, the element stiffness matrix would be:

k  el,3 =
k 3 - k 3 

- k 3 k 3
(13.2)

13.2.3 B u ild in g  G lobal Stiffness M a tr ix  U sing E lem ent Stiffness M atr ices

The total number of degrees of freedom for the problem is 6, so the complete 
system stiffness matrix, the g lobal stiffness matrix, is a 6x6 matrix. Each row 
and column of every element stiffness matrix can be associated with a g lo b al 
d egree  of freedom .

For element 1, which is connected to degrees of freedom 1 and 2: 

1st and 2nd columns of global stiffness matrix

k  el,1 =
k 1 - k 1 

- k 1 k 1

z1 1st row of globalstiffnessm atrix 

z 2 2nd row of globalstiffnessm atrix

(13.3)

For element 2, which is connected to degrees of freedom 1 and 6:

1st and 6 th columns of global stiffness matrix

k  el,2 =
k 2 - k 2 

- k 2 k 2
z1 1st row of g lobalstiffnessm atrix 

z6 6th row of g lobalstiffnessm atrix

(13.4)

For element 3, which is connected to degrees of freedom 2 and 3:

2nd and 3rd columns of global stiffness matrix

k  el,3 =
k 3 - k 3 

- k 3 k 3
2n row of global stiffness matrix 

3rd row of g lobalstiffnessm atrix

(13.5)
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For element 4, which is connected to degrees of freedom 3 and 4:

3rd and 4 th columns of global stiffness matrix

k el,4 _
k 4 - k 4 

- k 4 k 4

z3 3rd row of global stiffness matrix 

z4 4 th row of global stiffness matrix

(13.6)

For element 5, which is connected to degrees of freedom 4 and 5:

4th and 5th columns of global stiffness matrix

k  el,5 =
k 5 - k 5 

k 5 k 5

z4 4 row of global stiffness matrix 

z5 5th row of global stiffness matrix

(13.7)

For element 6, which is connected to degrees of freedom 3 and 5:

k el,6 _

3r and 5 columns of global stiffness matrix

z3 3rd row of global stiffness matrix 

z5 5th row of global stiffness matrix

For element 7, which is connected to degrees of freedom 2 and 5:

2nd and 5th columns of global stiffness matrix

z3 z5

k 6 —k e

- k 6 k 6

k  el,7
k 7 - k 7 

- k 7 k 7
z2 2nd row of global stiffness matrix 

z5 5th row of global stiffness matrix

(13.8)

(13.9)

The global stiffness matrix starts out as a 6x6 null matrix, then each element is 
cycled through and its elements added to the previous matrix. The in itial null 
matrix is:
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k  g =

0 0 0  0  0  0 

0 0 0  0  0  0 

0 0 0  0  0  0 

0 0 0  0  0  0 

0 0 0  0  0  0

0 0  0  0  0  0

After adding the element stiffness matrix for element 1:

k  g =

kg =

" k 1 - k 0 0 0 0"

- k 1 k 1 0 0 0 0

kg =
0 0 0 0 0 0

g 0 0 0 0 0 0

0 0 0 0 0 0

_ 0 0 0 0 0 0_

stiffness matrices for elements 1 to

k 1 + k 2 - k 1 0 0 0 - k 2 "

- k 1 k 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k 2 0 0 0 0 k 2 _

stiffness matrices for elements 1 to

k 1 + k 2 - k 1 0 0 0 - k

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k 3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

k 2 0 0 0 0 k 2

After adding the element stiffness matrices for elements 1 to 4:

(13.10)

(13.11)

(13.12)

(13.13)
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k  g =

k 1 + k 2 - k 1 0 0 0 - k

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k3 + k4 k 4 0 0

0 0 k 4 k 4 0 0

0 0 0 0 0 0

- k 2 0 0 0 0 k

(13.14)

After adding the element stiffness matrices for elements 1 to 5:

k  g =

k 1 + k 2 - k 1 0 0 0 - k .

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k3 + k4 k 4 0 0

0 0 k 4 k 4 + k 5 k 5 0

0 0 0 k 5 k 5 0

- k 2 0 0 0 0 k

(13.15)

After adding the element stiffness matrices for elements 1 to 6:

kg =

k 1 + k 2 k 1 0 0 0 - k .

- k 1 k 1 + k 3 - k 3 0 0 0

0 - k 3 k 3 + k 4 + k 6 k 4 - k 6 0

0 0 - k 4 k 4 + k 5 k 5 0

0 0 - k 6 k 5 k 5 + k 6 0

k 2 0 0 0 0 k 2

(13.16)

After adding the element stiffness m atrices for elements 1 to 7 we have the 
final global stiffness matrix.

kg =

k 1 + k 2 k 1 0 0 0 - k

- k 1 k1 + k3 + k7 - k 3 0 - k 7 0

0 - k 3 k 3 + k 4 + k 6 k 4 - k 6 0

0 0 k 4 k 4 + k 5 k 5 0

0 k 7 k 6 k 5 k 5 + k 6 + k 7 0

k 2 0 0 0 0 k 2

(13.17)
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This checks against the original global stiffness matrix defined by inspection 
in Table 2.2 and fu lfills the symmetry requirement.

1 2 3 4 5 6

1 ( k  + k2) - k l 0 0 0 - k

2 - k 1 (k 1 + k 3 + k 7) - k 3 0 - k 7 0

3 0 - k 3 (k 3 + k 4 + k 6) k 4 - k 6 0

4 0 0 - k 4 (k4 + k j) k 5 0

5 0 k 7 - k 6 k 5 (k 5 + k 6 + k 7) 0

6 _ k 2 0 0 0 0 k 2

(13.18)

13.3 Two-E lem ent C an tilev er Beam

W e w ill now do a static finite element displacement analysis of a two-element 
cantilever beam. W e start by showing the original model and defining the 
degrees of freedom for the idealized beam, Figure 13.3.

Note that even though the left-hand side node is grounded in the actual beam, 
there are degrees of freedom associated with the node to allow  generating 
global stiffness and mass matrices for a ll nodes. The constrained degrees of 
freedom w ill be accounted for once the complete global stiffness matrix is 
available. For this model, each of the three nodes has two degrees of freedom, 
a translation and a rotation.
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Original Beam

dof. dof, dofs

d o f

zz 2 3

Idealized Beam  
Node, dof Definition

Figure 13.3: Two-element cantilever beam model and node definition.

13.3.1 E lem ent Stiffness M a tr ix

The element stiffness matrix can be developed by using basic strength of 
m aterials techniques to analyze the forces required to displace each degree of 
freedom a unit value in the positive direction:
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Figure 13.4: Beam element stiffness matrix terms.

13.3.2 D egree of Freedom  D efinition -  B eam  Stiffness M atr ix

Using the degrees of freedom in Figure 13.5 results in the follow ing element 
stiffness matrix:

key = Eili

12 6 -1 2 6
l3 l 2 l3 l 2

6 4 - 6 2
I f 1~ I T i”

-1 2 - 6 12 - 6
l3 l 2 l3 l 2

6 2 - 6 4
l2 li l 2 li

(13.19)
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dof1 dof3
zi
A

z2

AЛ A
\ 8г

dof2 ^ d o f 4

Beam Element
Node, dof Definition

Figure 13.5: Beam element node and degree of freedom definition.

13.3.3 B u ild ing  G lobal Stiffness M a tr ix  Using E lem ent Stiffness M atr ices

To build the global stiffness matrix, we start with a 6x6 null matrix, with the 
six degrees of freedom being the translation and rotation of each of the three 
nodes, again including the constrained node 1 degrees of freedom:

k  g =

0 0 0 0 0 0 displacem ent o f  node 1

0 0 0 0 0 0 rotation o f  node 1

0 0 0 0 0 0 displacem ent o f  node 2

0 0 0 0 0 0 rotation o f  node 2

0 0 0 0 0 0 displacem ent o f  node 3

0 0 0 0 0 0 rotation o f  node 3

(13.20)

The two 4x4 element stiffness matrices are:

k  el,1 = Е Л

12

l3

6

I f
- 1 2

l3

6

. l2

6_
l2
4

Г
- 6

I?
2

l1

- 1 2

l3
- 6

IT
12

l3
- 6

6

l2
2

if
- 6

l2
4

l1 _

(13.21)
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k  = F Tel,2 2 2

12 6 -1 2 6

l2 l2 l2 l2
6 4 - 6 2

k T k
-1 2 - 6 12 - 6

l2 l2 l2 l2
6 2 - 6 4

. l2 l2 l2 l2 .

(13.22)

B uild ing up the global stiffness matrix, element by element, inserting element
1 first:

k  g =

12 F 1T1 6F 1T1 - 1 2 F 1T1 6F 1T1

l3
6F 1T1

l 2
- 1 2 F 1T1

_ Г -

l2
4F 1T1

l1
- 6F 1T1

l2

l3
- 6F 1T1

l2
12 F 1T1

l2
2F 1T1

l1
- 6F 1T1

l2

0 0 

0 0 

0 0

6F 1T1 2F 1T1 - 6F 1T1 4F 1T1
0 0

l 2 l1 l2 l1
0 0 0 0 0 0

0 0 0 0 0 0

(13.23)

Tnserting the element 2 terms leaves k  g
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12E 1I1 6 E 1 I 1

l 2

6E 1I1 4E 1I1

l1

- 1 2 E 1I1

- 6E 1I1

tf

6E 1I1

2E 1I1

-1 2 E 1I1 - 6E 1I1 f  12E 1I1 + 12E 2I2 ^ l - 6E 1I1 ' 6E 2I2 ^ - 12E 2I2 6E 2I2

l3 l2 l3 + l3 V A1 2 у l2 l2V A1 2 j l2 i2

6E 1I1 2E 1I1 f  - 6E 1I1 + 6E 2I2 ^ f  4E 1I1 ' 4E 2I2 ^ - 6E 2I2 2E 2I2

i2 l1 l2 ' l 2 V A1 2 J l  l1 l2 j l22 l2

0 0
- 12E 2I2 - 6E 2I2 12E 2I2 - 6E 2I

l2 l2 l2 l2

0 0
6E 2I2 2E 2I2 - 6E 2I2 4E 2I2

l 2 l2 l2 l2

(13.24)

Note how the contributions for the stiffness elements for node 2 from the left- 
hand and right-hand beams add together.

13.3.4 E lim inating  C onstra in t D egrees of Freedom  from  Stiffness M a tr ix

W e now have the entire global stiffness matrix, including the degrees of 
freedom which are constrained, the translation and rotation of node 1 (the first 
two rows and columns of k g ). To elim inate the constrained degrees of

freedom, we elim inate the rows and columns which correspond to the 
constrained global degrees of freedom, reducing the global stiffness matrix to 
a 4x4 matrix:

12E 1I1 + 12E 2I2

l3 l2

- 6E 1I1 6E 2I2

- 6E 1I1 + 6E 2I2
l2 +
4  l 2

4E 1I1 4E 2I2

- 1 2 E 2I2

- 6E 2I2

6E 2I2

2E 2I2

li2 l2 J V l. l2 J l2 l 2
- 1 2 E 2I2 - 6E 2I2 12E 2I2 - 6E 2I2

l2 l2 l2 l 2
6E 2I2 2E 2I2 - 6E 2I2 4E 2I2

l2 l2 l2 l2

(13.25)
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To facilitate hand calculations, we w ill make the two-beam elements identical, 
with the same E, I and lengths, l. The global stiffness matrix can then be 
rewritten as:

к  g = EI

24
0

-1 2 6
l3 l3 l 2

0
8 - 6 2
l l 2 l

-1 2 - 6 12 - 6
l3 l2 l3 l 2
6 2 - 6 4
l2 l 1Г l

(13.26)

13.3.5 S ta tic  So lution : Force A pp lied  a t Tip

W e have all the information required to solve a static problem. For example, 
we could solve for the displacements of the system for a z direction force 
applied at the tip of the beam. The equation for static equilibrium  of the 
system is:

(13.27)

Expanding:

g21

g31

g12

g22

g32

g13

g23

g33

g24

g34

F1
(13.28)

g42 g43

Where:

z1 is translation of node 2 

z 2 is rotation of node 2 

z3 is translation of node 3 

z 4 is rotation of node 3 

F1 is z force applied to node 2
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F 2 is y moment applied to node 2

F3 is z force applied to node 3 

F4 is y  moment applied to node 3

13.4 S tatic  C ondensation

13.4.1 D erivation

Solving the static equation is triv ial using a computer, but doing a 4x4 inverse 
by hand is difficult, so we w ill reduce the problem to a 2x2 problem using 
static condensation. Static condensation is not typ ically used for static 
problems, but is the precursor for Guyan reduction (dynamic condensation), 
which w ill be introduced in the eigenvalue analysis in the next chapter.

Static condensation involves separating the degrees of freedom into “master” 
and “slave” degrees of freedom. If master dof’s are chosen such that they 
include all degrees of freedom where forces/moments are applied and also 
degrees of freedom where displacements are desired, the resulting solution is 
exact. If the slave dof set includes dof’s where force s/moments are applied 
and/or where displacements are desired, the technique w ill create errors.

For an exact static  solution, master dof’s are chosen as dof’ s where 
forces/moments are applied and where displacements/rotations are desired.

For dynamic problems master degrees of freedom are typ ica lly  chosen as 
displacements of the higher mass nodes and rotations of the higher mass 
moment of inertia nodes, with slave degrees of freedom being the 
displacements and rotations of the relatively lower inertia nodes.

For the two-element cantilever, we w ill solve for the two translations of node 2 
and node 3 as master degrees of freedom, and w ill condense (reduce out) the 
two rotations. W e w ill develop the theory first, then w ill substitute our 
cantilever example.

The first step is to rearrange the degrees of freedom, rows and columns of the 
stiffness matrix, into dependent (slave) displacements to be reduced, z a , and 

independent (master) displacements, z b . This involves moving the second 
and fourth rows and columns of the cantilever stiffness matrix up to become 
the first and second rows and columns, which moves the first and third rows 
and columns down to the second and fourth positions.

© 2001 by Chapman & Hall/CRC



kz = F

aak

1
abk

1
a

1 1
a

1

1 ba 1bbk 1 b 1 1 b 1

M ultip lying out the first matrix equation:

Solving for z a

k  aa Za + k  ab Z b = Fa

Z a = k  aa ( Fa -  k  abZ bj

(13.29)

(13.30)

(13.31)

(13.32)

If no forces (moments) are applied at the dependent (slave) degrees of 
freedom, Fa = [0 ] , and the equation above becomes:

Za = k aa1 ( - k abZb ) = -  k -1kabZb (13.33)

W e can now rewrite the displacement vector in terms of z b only:

_za " - k  -a1k  ab ' - k  Eiak  ab z b

_z b _ I z b =
_ z b _

(13.34)

Defining a transformation matrix for brevity:

z = z a "-k-a1kab ' z —
T "ab

_z b _ I b I z b = Tz b (13.35)

Where:

Tab = -  k a b  (13.36)

Substituting back into the original static equilibrium  equation:

kz = k  (Tz b) = F (13.37)

M ultip lying both sides by TTto reduce the number of degrees of freedom 
from (a + b) to b:
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( T Tk T )  z  b =  T TF (13.38)

Expanding the term in parentheses above, and redefining it to be k  b

k  bb = TTkT  = [Tab I ]
,k ba k bb .

ab
I

= [(Tabk aa + k  l>) (T^k „  + k  bb)]
ab
I

= (Tab k  + k  „ Д ,  + (T , k  _  + k  bb) I

Tabk  aa Tab + k  ba Tab + Tab k  ab + k  bb
(13.39)

= ( - k  ba k  --1)k  aa(-k  ̂ k  _ )  + k  „ ( - k  -Ъ  _ )  + ( - k  k  -j ) k  „  + k  ,ь

' k bak aa.k ab k bak aak ab k bak ajik ab + k bb

k  bb k  ba k  aak  ab

where: T b = - k  1k  b and T'b = - k b k  1.ab aa ab ab ba aa

So, the original (a + b) degree of freedom problem now can be transformed to 
a “b” degree of freedom problem by partitioning into dependent and 
independent degrees of freedom, and solving for the reduced stiffness matrix 
kbb and reduced force vector Fb* :

Fb = T 1 F

= [T I  1 ] = Tba Fa + Fb (13.40)

Fb -  k  ba k
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Then the reduced problem becomes:

k bbZ  b =  F b (13 .41)

After the z b degrees of freedom are known, the z a degrees of freedom can be 

expanded from the z b masters using, if  Fa = [ 0 ] :

Z a = -  k  -1k ab Z b (13.42)

13.4.2 So lv ing Two-E lem ent C an tilev er B eam  S tatic  Prob lem

W e w ill now solve the example cantilever for a force applied at the tip. 
Earlier we showed that the stiffness matrix is:

k  g = EI

24
0

-1 2 6
l3 l3 l2

0
8 - 6 2
l l 2 l

-1 2 - 6 12 - 6
l3 l2 l3 l2
6 2 - 6 4

. I2 l 1Г l

(13.43)

Rearranging rows, 1 to 3, 2 to 1, 3 to 4 and 4 to 2:

k  g = EI

0
8 - 6 2
l l 2 l

6 2 - 6 4
l2 l l 2 l
24

0
-1 2 6

l3 l3 l2
-1 2 - 6 12 - 6IT У 7 T.

(13.44)

Rearranging columns, 1 to 3, 2 to 1, 3 to 4 and 4 to 2:
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kg = El

8 2
0

-6
1 1 1Г
2 4 6 - 6
1 1 l2 T
0

6 24 -1 2
l2 l3 l3

-6 - 6 -1 2 12
l r T IT 7

(13.45)

Breaking out and identifying the four submatrices of dependent (a) and 
independent (b) degrees of freedom:

EI 8 2" EI "0 -6"
k  =— k  ab = ITaa l 2 4_ 6 -6_

EI 0 6 EI " 24 -12"
k  ba = ~r "6

6
6

­6
0

­1

k  bb = -1 2 12 _

(13.46a-d)

Finding the inverse of k aa :

k  -1 = ■
14EI

2 -1  

-1  4
(13.47)

kaakab 141
- 6  - 6  

24 -1 8
(13.48)

-i = EI
k ba k aa k ab 14^

144 -1 0 8  

-1 0 8  144
(13.49)

1
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k bb k bb k  bak  aak  ab

— 1
" 336 -168" " 144 -108"

14l3 [ -1 6 8 168 -1 0 8 144
(13.50)

EI
14l3

k  b-1 = ■

192 -6 0  

-6 0  24

14l3 "24 60" l3 "24 60 "

1008EI 60 192 72EI 60 192
(13.51)

Solving for the two displacements, z b for a tip force of magnitude P:

= k  b-1 С

l3 "24 60 " " 0"

72EI 60 192_ P_

" 60 " " 5"
P l3 " 60" P l3 72 P l3 6

72EI 192 = EI 192 = EI 8
_ 72 _ _ 3 _

The tip displacement is:

8Pl3
3EI

(13.52)

(13.53)

The well-known solution for the displacement of the tip of a cantilever is:

PL3
3EI

(13.54)

Knowing that the total length of the cantilever, L, is 2l:

Z3 =

ztip =
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PL3 P (2 l)3 8P l3 (135 5 )
z tip = ----- = ---------- = -------  (13.55)tip 3EI 3EI 3EI

The reduced problem has provided the correct solution. Once again, normally 
we would not solve a reduced static problem except during a hand calculation, 
but the derivation of static condensation w ill be useful in the next chapter 
when dynamic condensation, Guyan reduction, is introduced.

Problem s

P13.1 Assemble the global mass and stiffness matrices for Figure P2.1 
element by element. Compare results with P2.1 results.

P13.2 In Section 13.4.2 we solved for the displacements of a two-element 
cantilever beam with a tip load by reducing out the rotations of the beam. 
Solve the problem by reducing out the rotations of the m iddle and tip nodes 
and the displacement of the m iddle node. Use a symbolic algebra program to 
invert the 3x3 k m a t r i x .
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CHAPTER 14

FINITE ELEMENTS: DYNAMICS

14.1 Introduction

The chapter starts out with discussions of various mass matrix formulations. 
The 6dof lumped mass example from Chapter 2 is used for the lumped mass 
matrix example. A  two-element cantilever is used to develop the consistent 
mass example. U sing the same technique as in the previous chapter, the global 
mass matrix is built up as an assemblage of element mass matrices. A  method 
analogous to static condensation, Guyan reduction, is developed and used to 
reduce the size of the two-element cantilever problem. The cantilever is then 
solved for its eigenvalues by hand using Guyan reduction. The same 
cantilever is solved for eigenvalues and eigenvectors using M ATLAB and 
results are compared to the hand calculations.

Following the two-element cantilever example, a second M ATLAB code 
allows solving for eigenvalues and eigenvectors for a uniform cantilever beam 
with user-defined number of elements. The results of the M ATLAB code are 
compared with the results from an AN SYS model for the same 10-element 
cantilever.

This 10-element cantilever w ill be the last eigenvalue analysis in the book 
using M ATLAB. Further chapters w ill start with eigenvalue results from 
AN SYS m odels, which w ill be used to build state space M ATLAB models. 
These M ATLAB models are then used for frequency and time domain 
analyses. This chapter serves as a bridge between carrying out analyses 
completely in M ATLAB and using AN SYS results as the starting point for 
state space M ATLAB models. Hence, we w ill reintroduce ANSYS 
eigenvalue/eigenvector results and start becoming fam iliar with their form and 
interpretation.

14.2 S ix  dof G lobal M ass M a tr ix

The lumped mass matrix is simple to construct because there is only a single 
degree of freedom associated with each mass element. This leads to the 6x6 
diagonal mass matrix below, which can be constructed in the same manner as 
the 6dof stiffness matrix in the previous chapter.
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mg

m 1 0 0 0 0 0

0 m 2 0 0 0 0

0 0 m 3 0 0 0

0 0 0 m4 0 0

0 0 0 0 m 5 0

0 0 0 0 0 m

(14.1)

14.3 C an tilev er D ynam ics

14.3.1 O verview  -  M ass M a tr ix  Form s

In order to solve for the dynamics of the cantilever beam, we need to develop 
a mass matrix to complete the equations of motion. For a beam finite element, 
there are a number of different mass matrix formulations, each of which w ill 
be covered below :

1) Lumped mass, displacements only

2) Lumped mass, displacements and rotations both included

3) Consistent mass -  distributed mass effect

14.3.2 Lum ped M ass

Beam-element lumped parameter mass and inertia terms in the mass matrix 
relate point inertial loads to point accelerations and give only diagonal terms. 
Equation (14.2) below shows the lumped mass matrix including both 
displacements and rotations:

m,

m l
2

0
( m l3 m lly

24 + 2A
0

m l
2

0
m l3 m lly

24 2A

(14.2)

For the lumped mass for displacement terms only, the (2,2) and (4,4) terms in 
(14.2) would be set to zero. Notation is as follows: m is mass per unit length,
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l is the element length, I y is the cross-sectional moment of inertia about the y

axis and A  is the cross section area. This lumped mass formulation assumes a 
prismatic beam (sam e area and moment of inertia along the length) and 
effectively lumps half of the mass and inertia at each end (Archer 1963).

14.3.3 C onsistent M ass

Lumped mass formulations were state of the art in structural dynamics until 
A rcher’ s classic paper introduced the consistent mass matrix in 1963.

W e w ill see in the development below that the consistent mass matrix for a 
beam element is a filled  matrix. The filled  matrix can be combined with other 
consistent mass matrices of other elements of the structure, in the same manner 
as the element stiffness matrices are combined, to y ie ld  the final global mass 
matrix.

The element consistent mass matrix for a prismatic beam is, with mass per unit 
length m and length l (W eaver 1990):

m e
ml
420

156 22l 54 -1 3 l

22l 4 l2 13l - 3 l2

54 13l 156 -2 2 l

-1 3 l - 3 l2 -2 2 l 4 l2

(14.3)

Figure 14.1 shows the unit accelerations of each of the four degrees of 
freedom which correspond to the four columns of the consistent mass matrix, 
analogous to the beam element stiffness description in Chapter 13.
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Figure 14.1: Beam element consistent mass matrix terms.

14.4 D ynam ics of Two-E lem ent C an tilev er -  C onsistent M ass M atr ix

W e already have the global stiffness matrix for the two-element cantilever 
beam from (13.26):

к  g = EI

24
0

-1 2 6
l3 l3 l2

0
8 - 6 2
l l2 l

-1 2 - 6 12 - 6
l3 l 2 l3 l2
6 2 - 6 4

. I2 l У l

(14.4)

The global mass matrix (using consistent m ass) can also be built by combining 
the terms from each of the beam elements as follows:
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m g
1

420

156m1l1 22m 1l12 54m 1l1

22m 1l2 4m 1l3 13m1l12

54m 1l1 13m1l12 (156m1l1 + 156m2l2)

-1 3 m 1l12 -3 m 1l3 (-2 2 m 1l12 + 22m 2l2)

0 0 54m 2l2

0 0 —13m2l2

-1 3 m 1l12 0 0

-3 m 1l3 0 0

(-2 2 m 1l2 + 22m 2l2) 54m 2l2 -1 3 m 2l2

(4m 1l3 + 4m 2l2) 13m2l2 -3 m 2l2

13m2l2 156m2l2 -2 2 m 2l2

-3 m 2l2 -2 2 m 2l2 4m 2l2

(14.5)

Once again, assuming the two elements have the same properties and lengths,
the global mass matrix becomes:

156ml 22m l2 54ml -1 3 m l2 0 0

22m l2 4m l3 13ml2 -3 m l3 0 0

1 54ml 13ml2 312ml 0 54ml -1 3m l
m = -----

g 420 -1 3 m l2 -3 m l3 0 8m l3 13ml2 -3 m l3

0 0 54ml 13ml2 156ml -2 2 m l

0 0 -1 3 m l2 -3 m l3 -2 2 m l2 4m l3

(14.6)

T aking into account the two constrained degrees of freedom at the built in end, 
we can elim inate the first two rows and columns:

m g
1

420

312m l 0 54ml -1 3 m l2

0 8m l3 13ml2 -3 m l3

54m l 13ml2 156ml -2 2 m l2

-1 3 m l2 -3 m l3 -2 2 m l2 4m l3

(14.7)

Having the mass and stiffness matrices allows us to solve the eigenvalue 
problem for the homogeneous equations of motion:

m gz + k  gz = [°] (14.8)
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In order to solve the problem by hand, we w ill need to find several inverses, so 
we w ill again see if  we can cut the 4x4 problem down to 2x2 size. W e w ill 
now use Guyan reduction to reduce the size of the problem.

14.5 G uyan R eduction

Guyan reduction is a method of decreasing the number of degrees of freedom 
in a dynamics problem, sim ilar to the process of static condensation in a statics 
problem. Unlike static condensation, however, Guyan reduction introduces 
errors due to the approximations made. The magnitude of the errors 
introduced depends upon the choice of degrees of freedom to be reduced, the 
dependent or slave degrees of freedom. The most popular choice of degrees 
of freedom to be reduced are translations of nodes with relatively lower 
masses and rotations of nodes with relatively lower mass moment of inertia. 
This leaves translations of relatively larger mass nodes and rotations of 
relatively larger mass moment of inertia nodes as the independent degrees of 
freedom. In a typ ical finite element problem, the analyst w ill define masters as 
degrees of freedom where forces/moment are applied, where displacements or 
rotations are required for output, or where known large masses/mass moments 
of inertia occur. The finite element program w ill then be allowed to choose an 
additional set of degrees of freedom and add them to the master set. Typically 
the program sorts along the diagonal of the mass matrix, adding degrees of 
freedom associated with the larger terms.

14.5.1 G uyan  R eduction  D erivation

Starting with the undamped equations of motion:

Rearranging and partitioning into displacements to be reduced, z a , and 

independent displacements, z b :

M ultip lying out the first matrix equation:

m z + kz = [0] (14.9)

m aa z a + m abz b + k  aa z a + k  ab z b = Fa (14.11)

Solving the above for z a :

© 2001 by Chapman & Hall/CRC



Za = k aa' ( Fa -  k abZb -  ™aaz a -  ™abz b )

= -  k aa‘k abz b + k aa‘ (Fa -  m aaz a -  m abz bj
(14.12)

Instead of letting z a depend upon the entire right-hand side of (14.13), the 
approximation of static equilibrium is introduced:

z a = - k  -1k ab z b (14.13)

Typically the choice of degrees of freedom to be reduced does not include any 
degrees of freedom to which forces are applied, thus Fa = 0 . The static 
equilibrium  approximation basically sets the term in brackets in (14.12) to 
zero. Setting Fa = 0 and using the second derivative of (14.13), we can see 

the form of m . :

0 = F -  m z -  m bz ba aa a ab b

ab b

= -  m aa( - k -ak abz b) -  m abz b 

= m aak -ak ab -  m ab
(14.14a,b)

m ab = m aa k ^  ab

W e assume that the m z terms are zero and that m and m b are related asaa a aa ab
in (14.14b). The force transmission between the z a and z b degrees of 
freedom is related only to the stiffnesses as denoted in (1 4.1 4), hence the 
“static equilibrium ” approximation.

Assuming (14.13) holds, the displacement vector z can be written in terms of 
z b only:

'  z a " " -k  --1k  ab ' z —
T "ab

_z b _ I b I z b = Tzb (14.15)

where:

Tab = k  aak  ab (14.16)
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T = Ta (14.17)

Substitution of (14.14), with derivatives, into (14.9) yields:

m Tz b + k T k  b = F (14.18)

Equation (14.18) still contains (a + b) degrees of freedom, so premultiplication 
by T T is required to reduce to (b) degrees of freedom and to return symmetry 
to the reduced mass and stiffness matrices:

ITTm T )  b + ( T Tk T ) z b = T T F (14.19)

Rewriting in a more compact form:

m bbz b + k  bb z b = Fb (14.20)

Equation (14.20) is the final reduced equation of motion which can be solved 
for the displacements of type b. Displacements of type a (assuming static 
equilibrium) can then be solved for using (14.13).

kbb can be shown to be the same as that derived in the static condensation 
Section 13.4.1, (13.39):

k  bb = [Tab I ]
k aa k  ab 

k  ba k  bb

ab
I

[ Tabk  aa + k  ba ) ( Tab k  ab + k  bb
ab
I

= Tabk  aa Tab + k  ba Tab + Tabk  ab + k  bb

= k bak aa1kaak ab “  k bak ^ a b  “  k bak aa1kab + k bb

= k  bb k  ba k  aak  ab (14.21)
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14.5.2 Two-E lem ent C an tilev er E igenvalues C losed Form  Solution Using 
G uyan R eduction

Repeating the rearranged global stiffness matrix from the static run, (13.45):

k g =EI

8 2
0

- 6
7 l 1Г
2 4 6 - 6

7 l l 2" 1Г
0

6 24 -1 2
l2 l3 l3

- 6 - 6 -1 2 12
l2 l2 l3 l3

(14.22)

B reaking out and identifying the four submatrices of dependent (a) and 
independent (b) degrees of freedom:

k  „„ =
EI “8 2" EI “0 -6"

2 4 k  ab = -jT 6 - 6

. = EI
k  ba j2

0 6 EI “ 24 -12"

- 6  - 6 k  bb = 1T -1 2 12

(14.23a-d)

Finding the inverse of k a

k -1 =
14EI

2 -1  

-1  4
(14.24)

-k -X b  =
-1
14l

- 6  - 6  

24 -1 8
(14.25)

, , -1, = _EI_
k bak  aa k  ab

144 -1 0 8  

-1 0 8  144
(14.26)

l
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k bb _  k bb k bak aak ab

— \" 336 a 168" " 144 a  108"

1413 [ ^ 1 6 8 168 _ -1 0 8 144 _

EI
1413"

192 a 60 

a 60 24

The transformation matrix T is given by:

(14.27)

T =
T "ab "ak aa1k ab '

I I

6 6
141 141
a24 18
141 141
1 0

0 1

(14.28)

The mass matrix now needs to be rearranged into “a” and “b” submatrices and 
then transformed to mb

*
*bb :

m g

m„

312m1 0 54m1 a13m1

1 0 8m13 13m12 -3m13

420 54m1 13m12 156m1 -22m1

- 1 3 п 12 —3m13 a22m12 4m13

1 to 3, 2 to 1, 3 to 4 and 4 to 2:

" 0 8m13 13m12 -3m13

1 - 1 3 п 12 a3m13 a22m12 4m13

420 312m1 0 54m1 a13m1

54m1 13m12 156m1 -22m1

ns 1 to 3, 2 to 1, 3 to 4 and 4 to 2

(14.29)

(14.30)
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mg m
420

8l3 - 3 l3 0 13l2

- 3 l3 4 l3 -1 3 l2 2l2-

0 - 1 3 l2 312l 54l

13l2 -2 2 l2 54l 156l

(14.31)

Separating into submatrices:

m„
m l3
420

cn100

= m l2 " 0 13 "

-3  4 m "b = 420 -1 3 -2 2

= m l2 " 0 -13" = ml "312 54 "

mba = 420 13 -2 2 mbb = 420 54 156

(14.32a-d)

Calculating mb

m bb = T mT (14.33)

Carrying out the multiplications:

m bb = mi

1528 241
1715 1372 
241 471

(14.34)

1372 1715_

14.6 E igenvalues of R educed E quations fo r Two-E lem ent C an tilev er, 
S tate  Space Form

The second order reduced equation of motion is shown in (14.35), (14.36), 
using the 2x2 stiffness matrix from static condensation, (13.50). W e w ill now 
generate the state space form of the second order reduced equations. It is 
useful to see how to convert a second order set of differential equations with a 
filled  (not diagonal) mass matrix to state space form. Once we have the 
equations of motion in state space form, we w ill use a symbolic algebra 
program to solve for the eigenvalues.

m bbz b + k  Ьь z b = [° ] ( M .35)
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ml

1528 241

1372 1715.

1715 1372 Zb1 EI 192 -60" Zb1 "0"

241 471 _Zb2 _ 14l3 -6 0 24 _ Zb2 _ 0
(14.36)

zb1 and zb2 are the first two reduced degrees of freedom, the displacements of 
nodes 2 and 3.

Normally, we would solve each of the equations of motion for the highest 
derivative and then convert to state space form, but we cannot do that here 
because the mass matrix is filled , meaning that there is more than one second 
derivative in each equation. To get around this problem, we w ill first convert 
the equation to state space form. W e w ill then take the inverse of the mass 
matrix and premultiply, leaving only the identity matrix to multiply with the 
derivative vector.

Converting to state space form, where Xj and x 2 are displacement and 

velocity of node 2 and x 3 and x 4 are the displacement and velocity of node 3, 
respectively:

m ss x + k  ss x = [°] (14.37)

"1 0 0 0 " " 0 -1 0 0 "

0
1528ml

1715
0

241ml 
1372 0

x 1

x 2
192EI
14l3

0
-60E I

14l3
0

0 0 1 0 x 3 0 0 0 -1

0
241ml
1372

0
471ml 
1715 _

_x 4 _ -60E I 
_ 14l3

0
24EI
14l3

0

Г x "0"

x 2 0

x 3 0

L x _ _0_

(14.38)

Note that the “ 1” terms are on the diagonal in the mass matrix and the “ -1  ’ 
terms are off diagonal in the stiffness matrix. Taking the inverse of m ss :
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m.

0 263760 0 -168700
205367m l 205367m l 

0 0 1 0  

0 -168700  0 855680
205367m l 205367m l. 

Prem ultiplying the equation of motion by m-.1:

(14.39)

1 0 0 0" x
0 1 0 0 x

0 0 1 0 x

0 0 0 1_ x

0

4340280EI
205367m l4

0

-5980800E I
205367m l4

-1

0

0

0

0

-1419600E I
205367m l4

0

2189880EI
205367m l4

0

0

-1

0

Г x "0"

x 2 0

x 3 0

L x 4 _ _0_

(14.40)

Rewriting without the identity matrix:

0

4340280EI
205367m l4

0

-5980800E I
205367m l4

-1

0

0

0

0

-1419600E I
205367m l4

0

2189880EI
205367m l4

0

0

-1

0

L x ‘
"0"

x 2 0

x 3 0

L x 4 _ _0_

(14.41)

Converting to standard state space form, X = A x + Bu

0 1 0 0

x 1

x 2
-4340280E I
205367m l4

0
1419600EI
205367m l4

0
x 1

x 2

x 3 0 0 0 1 x 3

_ x 4 _ 5980800EI
0

-2189880E I
0 _ x 4_

205367m l4 205367m l4

(14.42)

Using a symbolic algebra program to solve for the eigenvalues:
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f  = , 1 Y  2 4 3 1 2 7 0 7 0 ^  Im (3887  ± 2 ^ 3 4 1 7 8 )  ( 1443)  
f ‘’2 = , 2n A  205367 J  m l2 ( M .43)

14.7 M A T LA B  Code can t_2el_guyan .m  -  
Two-elem ent C an tilev er E igenvalues/Eigenvectors 

14.7.1 Code D escription

The M ATLAB code can t_2el_guyan .m  solves for the eigenvalues and 
eigenvectors of a two-element steel cantilever with dimensions of 0.2 x  2 x 
20mm. The code does the following, where each time M ATLAB calculates a 
result it is compared to the hand-calculated result:

1) builds mass and stiffness m atrices element by element

2) deletes degrees of freedom associated with constrained left- 
hand end

3) reorders the m atrices and performs Guyan reduction

4) converts to state space form

5) calculates eigenvalues/eigenvectors

The code for can t_2el_guyan .m  is not listed as sim ilar code is used in 
can tbeam _guyan .m , which is listed below.

14.7.2 Code R esults

Substituting for E, I, m and l in (14.43) as shown in the code results in 
eigenvalues of 398.55 and 2521.1 Hz. The first two eigenvalues for a 
10-element model using AN SYS (following section) are calculated to be 
397.86 and 2493.2 Hz, giving differences between the two-element and 10- 
element beams of 0.17% and +1.11%, respectively. The differences between 
the two-element and theoretical values are +0.1697% and +0.0095%, 
respectively. A rcher’s consistent mass paper stated that in order to calculate 
accurate eigenvalues using consistent mass we only needed one more element 
than the number of accurate modes desired. In this case we found the 
frequency of the first mode very accurately using only two elements, and the 
second mode was only off by 1.11%, even with the errors inherent in the 
Guyan reduction method.
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14.8 M A T LA B  Code can tbeam _guyan .m  -  
U ser-D efined C an tilev er E igenvalues/E igenvectors

This M ATLAB code solves for the eigenvalues and eigenvectors of a 
cantilever with user-defined dimensions, material properties, number of 
elements and number of mode shapes to plot. The code is sim ilar to that in 
can t_2el_guyan .m  except that Guyan reduction is an option for this code. If 
Guyan reduction is chosen, a ll rotations are reduced, leaving only translations 
as master degrees of freedom. The code is listed below, but is not broken 
down and commented because the comments integrated with the code should 
be sufficient.

In order to compare results with the AN SYS run below, a 10-element beam 
with the follow ing properties is used: width = 2mm, thickness = 0.2, length = 
20mm, modulus = 190e6 mN/mm2 , density = 7.83e-6 K g/m m 3.

14.9 AN SYS Code can tbeam .inp , Code D escription

The AN SYS code solves for the eigenvalues and eigenvectors of the same 
beam as cantbeam_guyan.m.

14.10 M A T LA B  can tbeam _guyan .m  / AN SYS cantbeam .inp  Results 
Sum m ary

14.10.1 10-Elem ent B eam  F requ ency C om parison

The Table 14.1 shows the eigenvalues from the 10-element AN SYS and 
M ATLAB runs, both with Guyan reduction, along with theoretical values 
calculated using the M ATLAB code cantbeam_ss_freq_craig.m (Chang 1969). 
The errors for the first five modes are quite small, with the maximum error 
(for the ninth mode) being only 6.5%.
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Mode
No.

MATLAB
Cantbeam
guyan.m

ANSYS
Cantbeam.in

p

Theoretical Percent Error, 
Cantbeam guyan.m 

and Theoretical

1 397.88 397.86 397.874572279 -0.0001
2 2493.6 2493.2 2493.437382146 -0.0051
3 6984.5 6982.2 6981.696870181 -0.0408
4 13703 13696 13681.339375292 -0.1646
5 22727 22705 22616.234284744 -0.4887
6 34194 34145 33784.737867762 -1.2113
7 48420 48234 47186.94828572 -2.6126
8 65831 65657 62822.86012645 -4.7893
9 85987 85697 80692.473674351 -6.5619
10 104570 101392 100795.788914948 -3.7445

Table 14.1: 10-element beam frequency comparisons.

14.10.2 20-E lem ent B eam  M ode Shape P lo ts, M odes 1 to 5

Instead of plotting the mode shapes for the 10-element model, we w ill use a 
20-element model to give better resolution and smoother plots. The first five 
mode shape plots are shown in Figures 14.2 through 14.6 below. Note that for 
the third and fifth modes the displacements of the m iddle node are quite small 
relative to the maximum 1.0. In other words, there is a “node” of the mode 
near the midpoint of the beam. This meaning for “node” of a mode is not that 
of a finite element “node,” but is a location along the beam where 
displacement goes to zero for that mode of vibration.

Cantilever Beam, Mode 1: 398 hz

E -0.5

1
1

1

1

6 8 10 12 14 16 18 20 
D istance From Built-In End

Figure 14.2: Cantilever beam first mode.

0 2 4
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Cantilever Beam, Mode 2: 2493 hz

Distance From Built-In End 

Figure 14.3: Cantilever beam second mode.

Cantilever Beam, Mode 3: 6982 hz

Distance From Built-In End 

Figure 14.4: Cantilever beam third mode. Note “node” near the beam middle.

W e are focusing on “nodes” located near the m iddle of the beam because in 
the next chapter we w ill solve for the frequency responses of a cantilever with 
a force at the center and output displacement at the tip. W e w ill see that 
modes with small eigenvector entries for input or output (or both) degrees of 
freedom are able to be removed from the model, as they contribute little to the 
input or output of the system.

© 2001 by Chapman & Hall/CRC



Cantilever Beam, Mode 4: 13682 hz

Distance From Built-In End 

Figure 14.5: Cantilever beam fourth mode.

Cantilever Beam, Mode 5: 22621 hz

D istance From Built-In End

Figure 14.6: Cantilever beam fifth mode. Note the “node” near the midpoint of the beam, 
and two additional “nodes” to the left and right of the midpoint.

The 10 eigenvectors from the 10-element can tbeam _guyan .m , normalized to 
unity, are shown in Table 14.2. The displacement entry for the built-in left- 
hand end of the beam is not shown, the 10 rows represent the nodes from left 
to right, starting with the second node from the end.
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Mode: 1 2 3 4 5 6 7 8 9 10

-0.0168 -0.0926 -0.2280 0.3841 -0.5331 -0.6485 0.7129 0.7310 0.7418 -0.6239
-0.0639 -0.3010 -0.6042 0.7519 -0.6535 -0.3274 -0.1055 -0.4942 -0.7714 0.7719
-0.1365 -0.5261 -0.7558 0.4324 0.2109 0.6574 -0.5480 0.0107 0.6458 -0.9023
-0.2299 -0.6834 -0.5256 -0.3153 0.6906 0.1048 0.6100 0.4831 -0.3565 0.9797
-0.3395 -0.7136 -0.0195 -0.7053 -0.0028 -0.6931 -0.0029 -0.6863 -0.0222 -1.0000
-0.4611 -0.5894 0.4737 -0.3249 -0.6948 0.1125 -0.6070 0.4771 0.3953 0.9618
-0.5909 -0.3170 0.6571 0.3971 -0.2215 0.6607 0.5534 0.0186 -0.6692 -0.8674
-0.7255 0.0701 0.3945 0.6411 0.5965 -0.3025 0.1160 -0.5089 0.7788 0.7247
-0.8624 0.5238 -0.2288 0.0504 0.2884 -0.4706 -0.5885 0.6466 -0.6636 -0.5252
-1.0000 1.0000 -1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 1.0000 0.7913

Table 14.2: 10-element beam eigenvectors normalized to unity. Note small values for 
third, fifth, seventh and ninth mode displacements for midpoint node, in bold type.

The presence of a “node” of a mode can be seen num erically for the 10- 
element M ATLAB model by looking at the fifth row (midpoint of beam) of 
the eigenvector listing in Table 14.2 and noting the small values for the third, 
fifth, seventh and ninth modes, highlighted in bold type. Getting a good 
mental picture of the relationship between the plotted mode shape and the 
eigenvector listing is quite useful. W e w ill see in the next chapter that the 
small value of node displacements for certain modes of vibration w ill mean 
that for certain transfer functions the modes are less important to include in the 
reduced (sm aller number of states used) state space model, and therefore, can 
be eliminated.

For eigenvector comparison with the A N SY S results, which are normalized 
with respect to mass instead of unity, the first two eigenvectors for the 10- 
element M ATLAB beam model, are shown below. Compare with the “UZ” 
columns in the AN SYS listing below.

4.2387 -23.4098
14.1402 -76.0842
34.4892 -132.9666
58.0918 -172.7285
85.7975 -180.3585
116.5287 -148.9709
149.3145 -80.1210
183.3282 17.7069
217.9284 132.3727
252.7000 252.7326

Table 14.3: MATLAB 10-element beam model, first and second eigenvectors normalized
with respect to mass.
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A listing for the first two modes from the AN SYS code can tbeam .eig  is 
shown below. The listing displays the title, resonant frequency (eigenvalue) 
and a listing of eigenvector entries for each degree of freedom. Even though 
we used Guyan reduction on the AN SYS model, AN SYS back-calculates the 
eigenvector values of the reduced dof’ s so there are eigenvector values for 
both the UZ and ROTY degrees of freedom below. Since we constrained all 
the degrees of freedom except the displacement in the z-direction and rotation 
about the y  axis, a ll other degree of freedom entries for the eigenvectors are 
zero.

*DO LOOP ON PARAMETER= I FROM 1.0000 TO 10.000 BY 1.0000

USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 397.86 
TITLE= cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 
FREQ= 397.86 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 4.2385 0.0000 -4.1366 0.0000
3 0.0000 0.0000 16.140 0.0000 -7.6631 0.0000
4 0.0000 0.0000 34.488 0.0000 -10.586 0.0000
5 0.0000 0.0000 58.090 0.0000 -12.920 0.0000
6 0.0000 0.0000 85.796 0.0000 -14.695 0.0000
7 0.0000 0.0000 116.53 0.0000 -15.954 0.0000
8 0.0000 0.0000 149.31 0.0000 -16.761 0.0000
9 0.0000 0.0000 183.32 0.0000 -17.198 0.0000
10 0.0000 0.0000 217.92 0.0000 -17.366 0.0000
11 0.0000 0.0000 252.70 0.0000 -17.396 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 (
VALUE 0.0000 0.0000 252.70 0.0000 -17.396 0.00

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING ***** 

LOAD STEP= 1 SUBSTEP= 2

0
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THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

FREQ= 2493.2  LOAD CASE= 0

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 -23.405 0.0000 21.188 0.0000
3 0.0000 0.0000 -76.071 0.0000 29.354 0.0000
4 0.0000 0.0000 -132.95 0.0000 25.705 0.0000
5 0.0000 0.0000 -172.71 0.0000 12.776 0.0000
6 0.0000 0.0000 -180.34 0.0000 -5.7217 0.0000
7 0.0000 0.0000 -148.96 0.0000 -25.506 0.0000
8 0.0000 0.0000 -80.124 0.0000 -42.575 0.0000
9 0.0000 0.0000 17.689 0.0000 -54.169 0.0000
10 0.0000 0.0000 132.34 0.0000 -59.449 0.0000
11 0.0000 0.0000 252.69 0.0000 -60.537 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 252.69 0.0000 -60.537 0.00

14.11 M A T LA B  Code can tbeam _guyan .m  L isting

echo off
% cantbeam_guyan.m cantilever beam finite element program,
% selectable number of elements. Solves for eigenvalues and
% eigenvectors of a cantilever with user-defined dimensions,
% material properties, number of elements and number of mode shapes
% to plot. Guyan reduction is an option. A 10 element beam is used
% as an example. Default beam is 2mm wide by 20mm long by 0.2mm thick.

clf;

clear all;

inp = input('Input "1" to enter beam dimensions, "Enter" to use default ... ');

if (isempty(inp))
inp = 0;

else
end

if inp == 0

wbeam = 2.0 
tbeam = 0.2 
lbeam = 20.0 
E = 190e6 
density = 7.83e-6

else

% input size of beam and material
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wbeam = input('Input width of beam, default 2mm, ... ');

if (isempty(wbeam))
wbeam = 2.0;

else
end

tbeam = input('Input thickness of beam, default 0.2mm, ... ');

if (isempty(tbeam))
tbeam = 0.2;

else
end

lbeam = input('Input length of beam, default 20mm, ... ');

if (isempty(lbeam))
lbeam = 20.0;

else
end

E = input('Input modulus of material, mN/mmA2, default stainless steel 190e6 ... ');

if (isempty(E))
E = 190e6;

else
end

density = input('Input density of material, Kg/mmA3, default stainless steel 7.83e-6 ...
');

if (isempty(density))
density = 7.83e-6;

else
end

end

% input number of elements

num_elements = input('Input number of elements for beam, minimum 2, default 10 ...
');

if (isempty(num_elements))
num_elements = 10;

else
end

% define whether or not to do Guyan Reduction

guyan = input('enter " 1" to do Guyan elimination of rotations, ...
"enter" to not do Guyan ... ');

if (isempty(guyan))
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else
end

if guyan == 0

num_plot_max = 2*num_elements; 

num_plot_default = num_elements;

else

num_plot_max = num_elements; 

num_plot_default = num_elements;

end

num_plot = input(['enter the number of modes to plot, max’, ...
num2str(num_plot_max),', default ',num2str(num_plot_default),' ... ']);

if (isempty(num_plot))
num_plot = 9;

else
end

% define length of each element, uniform lengths

l = lbeam/num_elements;

% define length vector for plotting, right-to-left numbering

lvec = 0:l:lbeam;

% define the node numbers

n = 1:num_elements+1;

% number the nodes for the elements

node1 = 1:num_elements;

node2 = 2:num_elements+1;

% size the stiffness and mass matrices to have 2 times the number of nodes
% to allow for translation and rotation dofs for each node, including built-
% in end

max_node1 = max(node1);

max_node2 = max(node2);

max_node_used = max([max_node1 max_node2]); 

mnu = max_node_used;

guyan = 0;
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k = zeros(2*mnu); 

m = zeros(2*mnu);

% now build up the global stiffness and consistent mass matrices, element by element

% calculate I, area and mass per unit length of beam

I = wbeam*tbeamA3/12;

area = wbeam*tbeam;

mpl = density*area;

for i = 1 :num_elements

dof1 = 2*node1(i)-1 ; 
dof2 = 2*node1(i); 
dof3 = 2*node2(i)-1; 
dof4 = 2*node2(i);

k(dof1,dof1) = k(dof1,dof1)+ 
k(dof2,dof1) = k(dof2,dof1)+ 
k(dof3,dof1) = k(dof3,dof1)+ 
k(dof4,dof1) = k(dof4,dof1)+

k(dof1,dof2) = k(dof1,dof2)+ 
k(dof2,dof2) = k(dof2,dof2)+ 
k(dof3,dof2) = k(dof3,dof2)+ 
k(dof4,dof2) = k(dof4,dof2)+

k(dof1,dof3) = k(dof1,dof3)+ 
k(dof2,dof3) = k(dof2,dof3)+ 
k(dof3,dof3) = k(dof3,dof3)+ 
k(dof4,dof3) = k(dof4,dof3)+

k(dof1,dof4) = k(dof1,dof4)+ 
k(dof2,dof4) = k(dof2,dof4)+ 
k(dof3,dof4) = k(dof3,dof4)+ 
k(dof4,dof4) = k(dof4,dof4)+

m(dof1,dof1) = m(dof1,dof1)+(mpl/420)*(156*l); 
m(dof2,dof1) = m(dof2,dof1)+(mpl/420)*(22*lA2); 
m(dof3,dof1) = m(dof3,dof1)+(mpl/420)*(54*l); 
m(dof4,dof1) = m(dof4,dof1)+(mpl/420)*(-13*lA2);

m(dof1,dof2) = m(dof1,dof2)+(mpl/420)*(22*lA2); 
m(dof2,dof2) = m(dof2,dof2)+(mpl/420)*(4*lA3); 
m(dof3,dof2) = m(dof3,dof2)+(mpl/420)*(13*lA2); 
m(dof4,dof2) = m(dof4,dof2)+(mpl/420)*(-3*lA3);

m(dof1,dof3) = m(dof1,dof3)+(mpl/420)*(54*l); 
________________m(dof2,dof3) = m(dof2,dof3)+(mpl/420)*(13*lA2);

12*е*Ил3);
6*E*I/lA2);
-12* E*I/lA3); 
6*E*I/lA2);

6*E*I/lA2); 
4*E* I/l); 
-6*E*I/lA2); 
2*E*I/l);

-12*E*I/lA3);
-6*E*I/lA2);
12*E*I/lA3);
-6*E*I/lA2);

6*E*I/lA2); 
2*E*I/l); 
-6*E*I/lA2); 
4* E* I/l);
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m(dof3,dof3) = m(dof3,dof3)+(mpl/420)*(156*l); 
m(dof4,dof3) = m(dof4,dof3)+(mpl/420)*(-22*lA2);

m(dof1,dof4) = m(dof1,dof4)+(mpl/420)*(-13*lA2); 
m(dof2,dof4) = m(dof2,dof4)+(mpl/420)*(-3*lA3); 
m(dof3,dof4) = m(dof3,dof4)+(mpl/420)*(-22*lA2); 
m(dof4,dof4) = m(dof4,dof4)+(mpl/420)*(4*lA3);

end

% now that stiffness and mass matrices are defined for all dof s, including
% constrained dof s, need to delete rows and columns of the matrices that
% correspond to constrained dofs, in the left-to-right case, the first two
% rows and columns

k(1:2,:) = []; % translation/rotation of node 1
k(:,1:2) = [];

m(1:2,:) = []; 
m(:,1:2) = [];

if guyan == 1

% Guyan Reduction - reduce out the rotation dofs, leaving displacement dofs
% re-order the matrices

% re-order the columns of k

kr = zeros(2*(mnu-1));

krr = zeros(2*(mnu-1));

% rearrange columns, rotation and then displacement dofs

mkrcolcnt = 0;

for mkcolcnt = 2:2:2*(mnu-1)

mkrcolcnt = mkrcolcnt + 1; 

kr(:,mkrcolcnt) = k(:,mkcolcnt); 

mr(:,mkrcolcnt) = m(:,mkcolcnt);

end

mkrcolcnt = num_elements; 

for mkcolcnt = 1:2:2*(mnu-1)

mkrcolcnt = mkrcolcnt + 1; 

kr(:,mkrcolcnt) = k(:,mkcolcnt); 

mr(:,mkrcolcnt) = m(:,mkcolcnt);
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end

% rearrange rows, rotation and then displacement dofs 

mkrrowcnt = 0;

for mkrowcnt = 2:2:2*(mnu-1)

mkrrowcnt = mkrrowcnt + 1; 

krr(mkrrowcnt,:) = kr(mkrowcnt,:); 

mrr(mkrrowcnt,:) = mr(mkrowcnt,:);

end

mkrrowcnt = num_elements; 

for mkrowcnt = 1:2:2*(mnu-1)

mkrrowcnt = mkrrowcnt + 1; 

krr(mkrrowcnt,:) = kr(mkrowcnt,:); 

mrr(mkrrowcnt,:) = mr(mkrowcnt,:);

end

% define sub-matrices and transformation matrix T

kaa = krr(1:num_elements, 1 :num_elements); 

kab = krr(1:num_elements,num_elements+1:2*num_elements);

T = [-inv(kaa)*kab
eye(num_elements,num_elements)]

% calculate reduced mass and stiffness matrices

kbb = T'*krr*T 

mbb = T'*mrr*T 

else 

kbb = k; 

mbb = m; 

end

% define the number of dof for state-space version, 2 times dof left after
% removing constrained dofs
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[dof,dof] = size(kbb);

ssdof = 2*dof;

aud = zeros(ssdof); % creates a ssdof x ssdof null matrix

% divide the negative of the stiffness matrix by the mass matrix

ksm = inv(mbb)*(-kbb);

% now expand to state space size
% fill out unit values in mass and stiffness matrices

for row = 1:2:ssdof

aud(row,row+1) = 1;

end

% fill out mass and stiffness terms from m and k

for row = 2:2:ssdof

for col = 2:2:ssdof

aud(row,col-1) = ksm(row/2,col/2);

end

end

% calculate the eigenvalues/eigenvectors of the undamped matrix for plotting
% and for calculating the damping matrix c

[evec1,evalu] = eig(aud);

evalud = diag(evalu);

evaludhz = evalud/(2*pi);

num_modes = length(evalud)/2;

% now reorder the eigenvalues and eigenvectors from low to high freq

[evalorder,indexhz] = sort(abs((evalud)));

for cnt = 1:length(evalud)

eval(cnt,1) = evalud(indexhz(cnt));

evalhzr(cnt,1) = round(evaludhz(indexhz(cnt)));

evec(:,cnt) = evec1(:,indexhz(cnt));

% define the sizes of mass and stiffness matrices for state-space
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end

% now check for any imaginary eigenvectors and convert to real

for cnt = 1:length(evalud)

if (imag(evec(1,cnt)) & imag(evec(3,cnt)) & imag(evec(5,cnt))) ~= 0 

evec(:,cnt) = imag(evec(:,cnt));

else

end

end

if guyan == 0

% now separate the displacement and rotations in the eigenvectors
% for plotting mode shapes

evec_disp = zeros(ceil(dof/2),ssdof);

rownew = 0;

for row = 1:4:ssdof

rownew = rownew+1;

evec_disp(rownew,:) = evec(row,:);

end

evec_rotation = zeros(ceil(dof/2),ssdof);

rownew = 0;

for row = 3:4:ssdof

rownew = rownew+1; 

evec_rotation(rownew,:) = evec(row,:);

end

else

evec_disp = zeros(ceil(dof/4),ssdof);

rownew = 0;

for row = 1:2:ssdof

rownew = rownew+1;
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end

end

% normalize the displacement eigenvectors wrt one for plotting

for col = 1:ssdof

evec_disp(:,col) = evec_disp(:,col)/max(abs(real(evec_disp(:,col)))); 

if evec_disp(floor(dof/2),col) >= 0

evec_disp(:,col) = -evec_disp(:,col);

else
end

end

% list eigenvalues, hz

format long e

evaludhz_list = sort(evaludhz(1:2:2*num_modes)) 

format short

% list displacement (not velocity) eigenvectors

evec_disp(:, 1:2:2*num_plot)

if guyan == 0

% plot mode shapes

for mode_cnt = 1:num_plot

evec_cnt = 2*mode_cnt -1;

plot(lvec,[0; evec_disp(:,evec_cnt)],'ko-') 
title(['Cantilever Beam, Mode ', ...

num2str(mode_cnt),': ',num2str(abs(evalhzr(evec_cnt))),' hz']); 
xlabel('Distance From Built-In End') 
ylabel('Normalized Y-Displacement') 
axis([0 lbeam -1.5 1.5]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause

end

else

evec_disp(rownew,:) = evec(row,:);
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% plot mode shapes, Guyan Reduced

for mode_cnt = 1:num_plot

evec_cnt = 2*mode_cnt -1;

plot(lvec,[0; evec_disp(:,evec_cnt)],'ko-') 
title(['Cantilever Beam, Mode ', ...

num2str(mode_cnt),': ',num2str(abs(evalhzr(evec_cnt))),' hz']); 
xlabel('Distance From Built-In End') 
ylabel('Normalized Y-Displacement') 
axis([0 lbeam -1.5 1.5]) 
grid on

disp('execution paused to display figure, "enter" to continue'); pause

end

end

% normalization with respect to mass on a filled (not diagonal) mass matrix

% calculate the displacement (displacement and rotation) eigenvectors
% to be used for the modal model eigenvectors

xm = zeros(dof);

col = 0;

for mode = 1:2:ssdof

col = col + 1; 

row = 0;

for ndof = 1:2:ssdof

row = row + 1;

xm(row,col) = evec(ndof,mode);

end

end

% normalize with respect to mass

for mode = 1:dof

xn(:,mode) = xm(:,mode)/sqrt(xm(:,mode)'*mbb*xm(:,mode));

end

% calculate the normalized mass and stiffness matrices for checking
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mm = xn'*mbb*xn; 

km = xn'*kbb*xn;

% check that the sqrt of diagonal elements of km are eigenvalues

p = (diag(km)).A0.5; 

row = 0;

for cnt = 1:2:ssdof

row = row + 1;

evalrad(row) = abs((eval(cnt)));

end

[p evalrad']/(2*pi)

evalhz = evalrad/(2*pi);

semilogy(evalhz) 
title('Resonant Frequencies, Hz') 
xlabel('Mode Number') 
ylabel('Frequency, hz') 
grid
disp('execution paused to display figure, "enter" to continue'); pause

14.12 AN SYS Code can tbeam .inp  L isting

/title, cantbeam.inp, 0.2 thick x 2 wide x 20mm long steel cantilever beam, 10 elements 

/prep7

et,1,4 ! element type for beam

! steel

ex,1,190e6 ! mN/mmA2
dens,1,7.83e-6 ! kg/mmA3
nuxy,1,.293

! real value to define beam characteristics

r,1,0.4,0.1333,0.0013333,0.2,2 ! area, Izz, Iyy, TKz, TKy

! define plotting characteristics

/view,1,1,-1,1 ! iso view 
/angle,1,-60 ! iso view 
/pnum,mat,1 ! color by material
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/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all, 1 ! show all boundary conditions

csys,0 ! define global coordinate system

! nodes

n,1,0,0,0 
n, 11,20,0,0

! left-hand node
! right-hand node

fill,1,11 ! interior nodes

nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,10,1,-1 

! constrain left-hand end

d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's 
! this will give 10 nodes, node 2 through node 11, each with 2 dof, giving a total of 20 dof 
! can calculate a maximum of 20 eigenvalues if don't use Guyan reduction to reduce size of 
! eigenvalue problem, maximum of 10 eigenvalues if use Guyan reduction

nall
nsel,s,node,,2,11
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

allsel
nplo
eplo

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,11
m,all,uz

antype,modal,new
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modopt,reduc,10
expass,off
mxpand,10,,,no
total,10,1

! method - reduced Householder, number of modes to extract 
! key = off, no expansion pass, key = on, do expansion 
! nummodes to expand
! total masters, 10 to be used, exclude rotational dofs

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

set,1,1

pldi,1

! ***************** ** output frequencies **********************

/output,cantbeam,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

! ***************** output eigenvectors *****************

! define nodes for output: forces applied or output displacements

nall
!nsel,s,node,,11 ! cantilever tip

/output,cantbeam,eig ! write out eigenvectors to ascii file .eig

*do,i,1,10
set,,i
prdisp

*enddo

/output,term
plot modes ******************

! pldi plots

/show,cantbeam,grp,0
allsel

/view,1,,-1,,
/angle,1,0
/auto

! side view for plotting

*do,i,1,10
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pldi
*enddo

/show,term

set,1,i

Problem

P14.1 M odify the can tbeam _guyan .m  code to allow variab le m aterial and 
geometry properties along the beam by converting the follow ing scalar 
quantities into user defined vector quantities: wbeam, tbeam, E, density.

Run the modified code for a 20mm long beam with the twice the default values 
for the left half of the beam and the default parameters for the right-hand side. 
Plot eigenvalues in hz versus mode number. Plot the first five mode shapes.
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CHAPTER 15

SISO STATE SPACE MATLAB MODEL FROM ANSYS
MODEL

15.1 Introduction

This chapter w ill develop a SISO state space MATLAB model from an 
AN SYS cantilever beam model. The cantilever is admittedly a trivial 
exam ple, but like the tdof model used in the first part of the book, w ill serve as 
a good model to develop a fundamental understanding of the process. As we 
are going through the simple cantilever example we should be thinking about 
applying the process to a model of an actual device, for example a complete 
model of a disk drive, with hundreds of thousands of nodes and up to hundreds 
of modes in the frequency range of interest. Our objective for the model w ill 
be to provide the smallest M ATLAB state space model that accurately 
represents the pertinent dynamics.

The model cantilever is shown in Figure 15.1. It is a 2mm wide by 0.075mm 
thick by 20mm long steel beam. The coordinate system is indicated on the 
figure. A z  direction force is applied at the midpoint of the beam and z 
displacement at the tip is the output. Only x-z plane motion is allowed; all 
other degrees of freedom are constrained.

Figure 15.1: Cantilever beam with forcing function at midpoint.

W e w ill begin by analyzing the major issues a ll finite element analysts face 
when setting up a m odel: defining the number of elements to use and 
calculating the effects of Guyan reduction, if  used. W e w ill analyze the 
cantilever with different numbers of elements. W e w ill also analyze with and
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without Guyan reduction and compare the resulting resonant frequencies with 
theoretical results. Knowing the frequency range of interest for the model, 
typ ica lly defined by servo bandwidth considerations, we w ill define a model 
(number of elements) that accurately predicts eigenvalues in the range of 
interest. In this theoretical example we have the luxury of knowing the exact 
values for the eigenvalues. However, in real life problems, we know that a 
finite element model is accurate only if  we build another model with finer 
resolution and compare results, and/or have good experimental mode shape 
data with which to compare.

W hile Guyan reduction prior to conducting an eigenvalue analysis has been in 
the m ain replaced by the B lock Lanczos eigenvalue extraction method, Guyan 
reduction w ill be presented because it is still used in creating “superelements” 
for large models (which are then solved using B lock Lanczos) and is also used 
in correlating finite element and experimental model models.

For some problems, the time to perform frequency response calculations using 
B lock Lanczos is of the same order of time as the eigenvalue extraction, which 
makes using M ATLAB for state space frequency response models an efficient 
adjunct to AN SYS. W e w ill review  how to have M ATLAB build a state space 
model given only the eigenvalues and required eigenvector information 
(eigenvector entries for all modes for only input and output degrees of 
freedom). This technique w ill be used for all follow ing models, in conjunction 
with various mode elimination/truncation techniques.

The problem to be solved in this chapter is : Determine the smallest state space 
model which accurately constructs the frequency response characteristics 
through a given frequency range. W e w ill assume for our problem that the 
servo system requires a ll significant modes through 20khz be included. The 
servo system w ill apply inputs in the z direction at the node located at the mid­
length of the cantilever, with z direction displacement of the tip being the 
output.

The first step in defining the smallest model is to define the eigenvector 
elements for all modes for only the input and output degrees of freedom. The 
second step is to analyze the modal contributions of all the modes and sort 
them to define which ones have the greatest contribution.

One method for reducing the size of a modal model is to simply truncate the 
higher frequency modes. If this truncation is performed without understanding 
the contributions of each of the modes to the response, several problems could 
arise. One problem is that a high frequency mode that could alias to a lower 
frequency in a sampled servo system may be missed. Another hazard with 
arbitrarily truncating higher frequency modes is that a mode with a significant
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dc gain contribution may be elim inated, adversely affecting the model. 
Typically the contributions of modes decrease as their frequencies increase; 
however, this is not alw ays the case. In Chapter 16 we w ill see a cantilever 
model with an additional tip mass and a tip spring all mounted on a “shaker” 
base. It is used as an example of how excluding a specific higher frequency 
mode can result in a model with less than desired accuracy.

15.2 AN SYS E igenvalue E xtraction  M ethods

A N SY S has a number of different eigenvalue extraction techniques, but for 
most problems only two methods are commonly used. The first method, 
B lock Lanczos, is the fastest and calculates a ll the eigenvalues or eigenvalues 
in a specific frequency range. Most practical models require knowledge of the 
modes from dc through a specified higher frequency.

The second method, Reduced, performs a Guyan reduction on the model to 
reduce its size, then calculates all the eigenvalues for the reduced model. A ll 
of the “master” degree of freedom eigenvector components are available 
imm ediately for use. Obtaining eigenvector components for the reduced 
degrees of freedom requires an additional calculation step in ANSYS.

For very large models, B lock Lanczos has shown to be significantly faster than 
the Reduced method. If M ATLAB state space models are used to calculate 
frequency responses using B lock Lanczos results the total time to get model 
results can be quite satisfactory. T ypically, the Reduced method is used only 
for sm all- to medium-size problems.

15.3 C an tilev er M odel, AN SYS Code can tbeam _ss.inp , M A T LA B  Code 
cantbeam _ss_freq.m

The AN SYS code can tbeam _ss.inp , listed in Section 15.7, is designed to 
allow  the user to easily change the number of elements “num_elem” as w ell as 
the eigenvalue extraction technique “eigext.”

The model was run for 2, 4, 6, 8, 10, 12, 16, 32 and 64 elements for both 
eigenvalue extraction methods. The Lanczos method resulted in tw ice the 
number of eigenvalues as the Reduced method because both translations and 
rotations are degrees of freedom for Lanczos, while the Reduced method has 
the rotations reduced out.

For those interested, the M ATLAB code cantbeam _ss_freq .m  plots the 
results of the AN SYS runs along with the theoretical frequencies for up to the 
first 16 modes (Chang 1969).

© 2001 by Chapman & Hall/CRC



Figures 15.2 and 15.3 show the percentage frequency differences between the 
first 10 modes of the AN SYS B lock Lanczos and Reduced runs and the 
theoretical prediction.

The maximum frequency difference for the B lock Lanczos method is 2%  and 
for the Reduced method it is 5%. For the frequency range of interest in our 
problem, 20 khz, the maximum frequency errors are 1% and 3%, which is 
deemed satisfactory. W e w ill use the 10-element model with the Reduced 
method for the rest of the chapter. Real life models w ill have greater 
deviations because they have imperfect geometry, joints and connections to 
ground which are difficult to model accurately, and variations in m aterial and 
mass properties.

mode number

Figure 15.2: Percent resonant frequency differences between 10-element Block Lanczos 
ANSYS model and theoretical versus mode number.
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resonant frequency, theoretical model

Figure 15.3: Percent resonant frequency differences between 10-element Block Lanczos 
ANSYS model and theoretical versus frequency.

15.4 AN SYS 10-elem ent M odel E igenvalue/E igenvector Sum m ary

***** INDEX OF DATA SETS ON RESULTS FILE *****

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 149.20 1 1 1
2 935.05 1 2 2
3 2619.0 1 3 3
4 5138.4 1 4 4
5 8521.2 1 5 5
6 12820. 1 6 6
7 18152. 1 7 7
8 24677. 1 8 8
9 32229. 1 9 9
10 39191. 1 10 10

Table 15.1: Frequency listing from cantbeam10red.frq file — frequencies for all 10 modes,
hz.

In Table 15.2 we can see the eigenvector listing for the first two modes from 
the edited cantbeam10red.eig file , which contains information for a ll nodes for 
all 10 modes. As discussed in Section 7.4.2, AN SYS normalizes eigenvectors 
with respect to mass by default. S ince our problem has input applied at the 
m iddle node (node 7), and output at the tip node (node 11), only those two 
nodes are required for the M ATLAB model. W e can choose to use AN SYS to 
output only the eigenvectors for nodes 7 and 11 or we can input the complete
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modal matrix below in M ATLAB and choose the appropriate rows of data 
within M ATLAB.

SET COMMAND GOT LOAD STEP= 
1

1 SUBSTEP= 1 CUMULATIVE ITERATION=
1

TIME/FREQUENCY= 149.20
TITLE= cantbeam, 10, red

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *** **

LOAD STEP= 1 SUBSTEP= 1
FREQ= 149.20 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 6.9217 0.0000 -6.7553 0.0000
3 0.0000 0.0000 26.357 0.0000 -12.514 0.0000
4 0.0000 0.0000 56.320 0.0000 -17.287 0.0000
5 0.0000 0.0000 94.863 0.0000 -21.099 0.0000
6 0.0000 0.0000 140.11 0.0000 -23.997 0.0000
7 0.0000 0.0000 190.29 0.0000 -26.054 0.0000
8 0.0000 0.0000 243.83 0.0000 -27.371 0.0000
9 0.0000 0.0000 299.37 0.0000 -28.085 0.0000
10 0.0000 0.0000 355.87 0.0000 -28.358 0.0000
11 0.0000 0.0000 412.66 0.0000 -28.407 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 412.66 0.0000 -28.407 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *** **

LOAD STEP= 1 SUBSTEP= 2
FREQ= 935.05 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX UY UZ ROTX ROTY ROTZ
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 -38.227 0.0000 34.605 0.0000
3 0.0000 0.0000 -124.24 0.0000 47.942 0.0000
4 0.0000 0.0000 -217.13 0.0000 41.980 0.0000
5 0.0000 0.0000 -282.06 0.0000 20.864 0.0000
6 0.0000 0.0000 -294.52 0.0000 -9.3483 0.0000
7 0.0000 0.0000 -243.27 0.0000 -41.660 0.0000
8 0.0000 0.0000 -130.84 0.0000 -69.535 0.0000
9 0.0000 0.0000 28.911 0.0000 -88.467 0.0000
10 0.0000 0.0000 216.16 0.0000 -97.088 0.0000

© 2001 by Chapman & Hall/CRC



11 0.0000 0.0000 412.70 0.0000 -98.864 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 0 0 11 0 11 0
VALUE 0.0000 0.0000 412.70 0.0000 -98.864 0.0000

Table 15.2: Eigenvector listing for first two modes from the edited cantbeam10red.eig file.

15.5 M o dal M a tr ix

The AN SYS output file  cantbeam10red.eig can be sorted for only the UZ 
component for a ll 10 modes and put into a modal matrix form using 
ext56uz.m  (see Appendix 1 for usage), as shown in Table 15.3. Each of the 
10 columns in Table 5.3 represents the eigenvector for that mode, normalized 
with respect to mass. Compare the first two columns below with the bold 
“UZ” entries in the eigenvector listings in Table 15.2.

Columns 1through 7

0 0 0 0 0 0 0
6.9217 -38.2270 94.1860 -159.3800 223.8100 -279.2100 320.1800

26.3570 -124.2400 249.6400 -311.9600 274.3700 -141.0000 -47.3120
56.3200 -217.1300 312.2800 -179.4100 -88.5050 283.0200 -246.1700
94.8630 -282.0600 217.1400 130.8000 -289.9000 45.1810 273.9500

140.1100 -294.5200 8.0768 292.6500 1.1237 -298.4100 -1.2392
190.2900 -243.2700 -195.6800 134.8400 291.6800 48.3890 -272.6900
243.8300 -130.8400 -271.4700 -164.7400 93.0350 284.4600 248.4900
299.3700 28.9110 -162.9800 -266.0000 -250.3900 -130.1600 52.2360
355.8700 216.1600 94.5080 -20.9260 -121.0900 -202.6200 -264.3300
412.6600 412.7000 413.1400 414.9000 419.7700 430.4900 449.0700

Columns 8 through 10

0 0 0
-341.5400 326.0200 223.4200
230.8300 -338.9500 -276.3500

-4.9143 283.7200 323.0000
-225.7900 -156.5300 -350.7100
320.6200 -9.8888 357.9400
-222.7800 173.8500 -344.2300

-8.8232 -294.1600 310.4200
237.8700 342.2200 -259.2800
-302.0500 -291.4900 187.8300
467.0400 439.1200 -282.9400

Table 15.3: Eigenvectors for UZ component of cantbeam10red.eig file.

The 11 rows represent the normalized displacements for the 11 nodes, starting 
with node 1 at the built-in end and node 11 at the tip. Editing the modal
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matrix to use only the required degrees of freedom (nodes 7  and 11) w ill take 
place in M ATLAB.

15.6 M A T LA B  S tate  Space M odel from  AN SYS E igenvalue R un  -  
cantbeam _ss_m odred.m

In this section we w ill create a MATLAB state space model using the 
eigenvalue and eigenvector results from the previous AN SYS run. W e 
discussed in Section 7 .9  how to decrease the size of the model by including 
only degrees of freedom actually used in the particular frequency response or 
time domain calculations. The new m aterial deals with how to ra n k  the 
re la tiv e  im portance of the contributions of each  of the in d iv id u a l modes. 
In this chapter, we w ill use a ran k in g  of dc ga in s  of individual modes to 
select the modes to be used.

Once the modes are ranked, the most important can be selected for use, with 
modes with lower dc gains (typ ica lly , but not alw ays, the higher frequency 
modes) elim inated from the model. When these modes are elim inated from 
the model their dc gain contributions are not included in the overall dc gain, so 
there is error in the low frequency gain. In order to elim inate this error, the 
M ATLAB function “modred” is introduced and the theory behind the code is 
discussed. U sing “modred” is analogous to using Guyan reduction to reduce 
some less important degrees of freedom, in that assumptions are made about 
some modes being more important than others. This allows reducing the size 
of the problem to that of the “important” modes, while adjusting the overall dc 
gain to account for the dc gains of the elim inated modes.

W e w ill find that the simple cantilever beam used for an example in this 
chapter is not very sensitive to the elim ination of higher frequency modes. 
Including a few  modes is sufficient for creating a state space model with good 
accuracy for both frequency response and step response. Whether “modred” is 
used is not critical for this example. However, we w ill see that the example in 
the next chapter is extremely sensitive to dc gain , and w ill serve as a good 
model of the benefits of selecting modes to be elim inated judiciously or by 
using “modred.”

Once the model is created, we w ill solve for frequency response and step 
response using various combinations of truncating and sorting modes.

The M ATLAB code cantbeam _ss_m odred.m  w ill be discussed and listed in 
detail in the following sections.
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15.6.1 Input

The code in this section asks the user to define how many elements w ill be 
used for the analysis. AN SYS runs have been made for 2, 4, 6, 8, 10, 12, 16, 
32 and 64 elements. The AN SYS eigenvector results for each have been 
stripped out of the AN SYS format and put into frequency vector, “freqvec,” 
and modal matrix, “evr,” form and stored as M ATLAB .mat files.

% cantbeam_ss_modred.m

clear all; 

hold off; 

clf;

% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu('choose which finite element model to use ... ', ...
'2 beam elements', ...
'4 beam elements', ...
'6 beam elements', ...
'8 beam elements', ...
'10 beam elements', ...
'12 beam elements', ...
'16 beam elements', ...
'32 beam elements', ...
'64 beam elements');

if model == 1
load cantbeam2red; 

elseif model == 2
load cantbeam4red; 

elseif model == 3
load cantbeam6red; 

elseif model == 4
load cantbeam8red; 

elseif model == 5
load cantbeam 10red; 

elseif model == 6
load cantbeam 12red; 

elseif model == 7
load cantbeam 16red; 

elseif model == 8
load cantbeam32red; 

elseif model == 9
load cantbeam64red;

end
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The code below checks the size of the modal matrix, where the number of 
rows indicates how many degrees of freedom are used and the number of 
columns indicates the number of modes. Since all of the models have an even 
number of elements, there is alw ays a node at the midpoint of the beam and it 
is possible to define which row of the modal matrix corresponds to that m iddle 
node. The modal matrix row which corresponds to the tip is the last degree of 
freedom in the m atrix. The code also defines a new variable, “xn,” the 
normalized modal m atrix.

15.6.2 Defining Degrees of Freedom and Number of Modes

% define the number of degrees of freedom and number of modes from size
% of modal matrix

[numdof,num modes total] = size(evr);

% define rows for middle and tip nodes

mid node row = 0.5*(numdof-1)+1;

tip node row = numdof;

xn = evr;

15.6.3 So rting  M odes by dc G ain and  P eak  G ain , Selecting  M odes Used

The next step in creating the model is to sort modes of vibration so that only 
the most important modes are kept. W e w ill discuss in this section two 
methods of sorting, one which is applicable for models with the same value of 
damping for all modes, Zi = Z = constant (“uniform” damping), and another 
which is applicable for models with different damping values for each mode 
(“non-uniform” damping).

Repeating from (8.54a,b) the general equation for the overall transfer function 
of undamped and damped system s:

z m z znji nki
F  = - s2 + ю2

(15.1a,b)
z m z z^j _  ^  nji nki
Fk —  s2 + 2Zirnis + ю2

This equation shows that in general every transfer function is made up of 
additive combinations of single degree of freedom systems, with each system
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having its residue determined by the appropriate input/output eigenvector 
entries, z njiznki, and with resonant frequency defined by the eigenvalue, ю; .

Substituting s = jra  = j0  = 0 to obtain the ith mode frequency response at dc, 

the dc gain , which is the same for the undamped and damped cases is:

z- z -z  , ■ji nji nki
ffl:

(15.2)
Fki

where znjiznki is the product of the jth  (output) row and kth (force applied)

row terms of the ith eigenvector divided by the square of the eigenvalue for the 
ith mode.

At resonance, the p eak  gain  amplitude of each mode is given by substituting 
s = j Ю;, s2 = -ff>2 into (15.1b):

Fki s2 + 2Z fflis + ю2

—ю2 + 2Z; ю2 j  + ю2

z -z  ,■nji nki

2Zi Ю j

- j  znjiznki

2Zi ю2

—j  f  znjiznki

— j
2 -т (d c garn )

(15.3)

Comparing (15.2) and (15.3) it is evident that the relationship between the dc 
gain and peak gain for a mode is that the dc gain term is divided by 2Z and

multiplied by “ —j  ,” which gives a —90° phase shift at resonance. Since Z 
values for m echanical structures are typ ica lly  small, a few  percent of critical 
damping, 2Z is a small number, which serves to amplify the response by 
virtue of the division, thus the resonant “peak” in the response.

If the same value of Z is used for all modes, then all the dc gain terms are 
divided by the same 2Z terms and the relative amplitudes of the dc gains and
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peak gains are the same, so there is no difference between sorting a uniform 
damping model using dc gain or peak gain.

However, if  the modes have different damping the relationship between the dc 
gain and peak gain for a ll the modes is not a constant 1/2Z value and peak
gain must be used to rank modes for importance. In this case, the M ATLAB 
damping parameter “zeta” would not be a scalar but would be a vector with 
entries corresponding to damping in each mode.

W e w ill use dc gain to rank the relative importance o f the modes until Chapter 
18, where a technique named “balanced reduction” w ill be introduced. The 
code shown below, and throughout the book, is eas ily  modified to sort for 
peak gain instead of dc gain using (15 .3 ) instead o f (15 .2) and entering a 
vector of damping values instead of a scalar.

The code below carries out the calculation of the dc gain and sorts from 
smallest to largest, keeping track of the new column locations in “index_sort.” 
It then uses the “fliplr” command to list them from largest to smallest, so that 
the first mode has the highest dc gain. Various plots are then shown to 
indicate the relative importance o f each mode. After plotting the dc gains, the 
user is asked to define the number o f modes to be used in the frequency 
response, from 1  to all the available modes.

% calculate the dc amplitude of the displacement of each mode by 
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

dc_gain = abs(xn(mid_node_row,:).*xn(tip_node_row,:))./omega2;

[dc_gain_sort,index_sort] = sort(dc_gain);

dc_gain_sort = fliplr(dc_gain_sort);

index_sort = fliplr(index_sort)

dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;

semilogy(index_orig,freqvec,'k-');
title('frequency versus mode number')
xlabel('mode number')
ylabel('frequency, hz')
grid
pause

semilogy(index_orig,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus mode number')

© 2001 by Chapman & Hall/CRC



xlabel('mode number') 
ylabel('dc value') 
grid off 
pause

loglog(freqvec,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus frequency')
xlabel('frequency, hz')
ylabel('dc value')
grid off
pause

semilogy(index_orig,dc_gain_sort,'k-')
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')
ylabel('sorted dc value')
grid off
pause

num_modes_used = input(['enter how many modes to include ...
, ',num2str(num_modes_total),' default, max ... ']);

if (isempty(num_modes_used))
num_modes_used = num_modes_total;

end

The first step in any finite element analysis is to understand the resonant 
frequencies of the model and how they relate to the frequency range of interest 
for the problem at hand.

mode number

Figure 15.4: Resonant frequency versus mode number.

© 2001 by Chapman & Hall/CRC



Figure 15.4 shows that modes 8, 9 and 10 have frequencies higher than the 
required 20 khz required by the problem, so our model should be adequate.

dc value o f each mode contribution versus mode number

mode number

Figure 15.5: dc value of each mode contribution versus mode number.

Figure 15.5 shows the dc gain values for a ll the modes plotted versus mode 
number. It is interesting that the low values for modes 3, 5, 7 and 9 
correspond to small values of the midpoint node elements of the respective 
eigenvectors (see the bold highlighted entries in columns 3, 5, 7 and 9 in Table 
15.3) . This means that the midpoint is nearly a “node” for those modes. 
A gain, a “node” for a mode refers not to the number of the end point of the 
element but a location along the beam where the displacement is zero for a 
particular mode of vibration.
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frequency, hz

Figure 15.6: dc Value of each mode contribution versus resonant frequency.

Figure 15.6 shows dc gain versus frequency of the mode. Note that there is a 
general trend for lower gains as frequency increases. This is not alw ays the 
case, as we shall see in Chapter 16.

sorted dc value of each mode versus number of modes included

modes included

Figure 15.7: Sorted dc value of each mode versus number of modes included.

Figure 15.7 shows the sorted values for the dc gains, from largest to smallest. 
The list of mode numbers after sorting is given by “index_sort” below. The 
ordering can be seen in the dc value versus mode number plot in Figure 15.5.
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index sort = 1 2 4 6 3 8 10 5 9 7

15.6.4 D am ping, D efining R educed F requencies and  M o d a l M atrices

The section below asks for the damping value and whether to use the original 
ordering of modes or the modes sorted by dc gain. At this point, three 
different sets of modal matrices and eigenvalue vectors w ill be defined. The 
first set uses a ll the modes and frequencies and keeps them in their original, 
unsorted order. This set w ill be used to calculate frequency and step responses 
of the non-reduced model for comparison. The second set uses only the 
“num_modes_used” number of modes and keeps them in their original, 
unsorted order. This set w ill be used to see the effects of a simple truncation 
of higher frequency modes without sorting or ranking. The third set again uses 
the “num_modes_used” number of modes but includes only the modes with 
the highest dc gains. W e w ill calculate frequency response and transient 
response results for both of the reduced cases and compare results with the “all 
modes included” case. The two reduced models are denoted with the 
“_nosort” and “_sort” suffixes throughout the code. W e w ill see that because 
the dc gain values for this model generally decrease with frequency, the sorted 
and unsorted models w ill give almost the same results. The example in the 
next chapter, however, w ill not have this property.

zeta = input('enter value for damping, .02 is 2% of critical (default) ... ');

if (isempty(zeta)) 
zeta = .02;

end

% all modes included model, use original order

xnnew = xn(:,(1:num_modes_total)); 

freqnew = freqvec((1:num_modes_total));

% reduced, no sorting, just use the first num_modes_used modes in xnnew_nosort

xnnew_nosort = xn(:,1:num_modes_used); 

freqnew_nosort = freqvec(1:num_modes_used);

% reduced, sorting, use the first num_modes_used sorted modes in xnnew_sort

xnnew_sort = xn(:,index_sort(1:num_modes_used)); 

freqnew_sort = freqvec(index_sort(1:num_modes_used));
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15.6.5 Setting up System Matrix “a”

The section below sets up three state space system “a” matrices. Since we 
know the form of the modal form state space equation from Chapter 10, it can 
be built automatically. The general form is given by (15.4). The system 
matrix is made up of eigenvalue and damping terms for each mode, and each 
mode is a 2x2 submatrix along the diagonal.

x = A x + Bu (15.4)

1 1

x  2

x 3

x  4

0

- ®2
0

0

1

-2Zi®i
0

0

0 0

0 0

0 1

—m2 —2Z 2®2

0

f p 1

0

Fp2
u (15.5)

The first system matrix, “a,” is for the fu ll, non-reduced system and includes 
all the modes in their original order. The second is “a_nosort” and has the 
reduced size with the original ordering of modes. The third is “a_sort” and 
has the reduced number of modes with dc gain ordering.

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.A2; 

zw = 2*zeta*w;

% define variables for reduced, nosorted system matrix, a_nosort

w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec

w2_nosort = w_nosort.A2; 

zw_nosort = 2*zeta*w_nosort;

% define variables for reduced, sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec

w2_sort = w_sort.A2; 

zw_sort = 2*zeta*w_sort;

% define size of system matrix
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asize = 2*num_modes_total;

asize_red = 2*num_modes_used;

disp(' '); 
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]); 
disp(['size of reduced system matrix a is ',num2str(asize_red)]);

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize 

row = col+1;

a(row,col) = -w2((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% setup reduced, nosorted "a_nosort" matrix, system matrix

a_nosort = zeros(asize_red); 

for col = 2:2:asize_red 

row = col-1; 

a_nosort(row,col) = 1; 

end

for col = 1:2:asize_red 

row = col+1;

a_nosort(row,col) = -w2_nosort((col+1)/2);
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end

for col = 2:2:asize_red 

row = col;

a_nosort(row,col) = -zw_nosort(col/2); 

end

% setup reduced, sorted "a_sort" matrix, system matrix

a_sort = zeros(asize_red); 

for col = 2:2:asize_red 

row = col-1; 

a_sort(row,col) = 1; 

end

for col = 1:2:asize_red 

row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2); 

end

for col = 2:2:asize_red 

row = col;

a_sort(row,col) = -zw_sort(col/2); 

end

15.6.6 Setting up Input M atrix  “ b ”

As with the system matrix above, here we w ill set up three different input 
matrices, “b,”  “b_nosort”  and “b_sort.”  W e begin with the force vector in 
physical coordinates, with “numdof”  rows. The rows are all zeros except for 
the “mid_node_row,” which has a value o f 1.0 mN. The force vector in 
principal coordinates is obtained by premultiplying by the transpose o f the 
modal matrix. The state space form o f  the force vector in principal 
coordinates is the “numdof x 1” force vector in principal coordinates padded 
with zeros to create the same number o f  rows as states.
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% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(mid_node_row) = 1.0; % input force at node 6, midpoint node

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

% setup input m atrix b, state space forcing function in principal coordinates

b = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_nosort is the vector of forces in principal coordinates

f_principal_nosort = xnnew_nosort'*f_physical;

% b_nosort is the vector of forces in principal coordinates, state space form

b_nosort = zeros(2*num_modes_used,1); 

for cnt = 1:num_modes_used

b_nosort(2*cnt) = f_principal_nosort(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form

b_sort = zeros(2*num_modes_used,1); 

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end
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15.6.7 Setting up Output M atrix  “ c”  and D irect Transmission 
M atrix  “ d”

The output matrices below, “ c,” “ c_nosort”  and “ c_sort,”  are separated into 
displacement and velocity matrices, “ cdisp” and “ cvel,”  so that they can be 
premultiplied by the appropriate modal matrix to obtain vectors o f 
displacements and velocities in physical coordinates. With the defined output 
displacement and velocity matrices, all displacement and velocity degrees o f
freedom in physical coordinates are available for plotting or further analysis. 
Since there is no direct feedthrough on this model, the “ d” matrix is zero.

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% reduced, nosorted cdisp and cvel

for col = 1:2:2*length(freqnew nosort)

for row = 1:numdof

cdisp nosort(row,col) = xnnew nosort(row,ceil(col/2));

cvel nosort(row,col) = 0;
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end

end

for col = 2:2:2*length(freqnew_nosort) 

for row = 1:numdof 

cdisp_nosort(row,col) = 0;

cvel_nosort(row,col) = xnnew_nosort(row,col/2);

end

end

% reduced, sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort) 

for row = 1 :numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort) 

for row = 1:numdof 

cdisp_sort(row,col) = 0;

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %
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15.6.8 Frequency Range, “ ss”  Setup, Bode Calculations

The first part o f this section defines the frequency range to be used for the 
frequency responses, logarithmically spaced frequency vectors in units o f hz 
and rad/sec. Three “ ss” state space systems are defined for the displacement 
o f the tip o f  the beam, the non-reduced system, the “nosort”  and the “ sort.” 
Since “ cdisp” contains information about all the degrees o f freedom, they are 
all available for output by defining the appropriate row. The “bode” command 
is used to calculate the magnitude and phase vectors over the defined 
frequency range, and the magnitudes are converted to db.

% define frequency vector for frequency responses

freqlo = 10;

freqhi = 100000;

flo=log10(freqlo) ; 
fhi=log10(freqhi) ;

f=logspace(flo,fhi,200) ; 
frad=f*2*pi ;

% take transfer functions, outputting the midpoint and tip node rows of the displacement
% vector cdisp

% define displacement state space system with the "ss" command

sysdisptip = ss(a,b,cdisp(tip_node_row,:),d);

% defined reduced systems using num_modes_used nosort modes

sysdisptip_nosort = ss(a_nosort,b_nosort,cdisp_nosort(tip_node_row,:),d);

% define reduced systems using num_modes_used sorted modes

sysdisptip_sort = ss(a_sort,b_sort,cdisp_sort(tip_node_row,:),d);

% use "bode" command to generate magnitude/phase vectors

[magdisptip,phsdisptip]=bode(sysdisptip,frad) ;

[magdisptip_nosort,phsdisptip_nosort]=bode(sysdisptip_nosort,frad) ;

[magdisptip_sort,phsdisptip_sort]=bode(sysdisptip_sort,frad) ;

% convert magnitude to db

magdisptipdb = 20*log10(magdisptip);

magdisptipdb_nosort = 20*log10(magdisptip_nosort);
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magdisptipdb_sort = 20*log10(magdisptip_sort);

15.6.9 Full M odel - P lotting Frequency Response, Step Response

This section plots the frequency response for tip displacement due to a unit 
force at the beam midpoint. It then overlays the contribution o f each 
individual mode to the overall response. Since the “ a” matrix consists o f  2x2 
submatrices along the diagonal, all we have to do to get the contribution o f 
each individual mode is to pull out successive 2x2 individual mode system 
matrices. Similarly, we take the appropriate rows and columns o f “b” and 
“ cdisp” for each mode. Because o f the systematic form o f the matrices, 
M A T L A B  can generate the individual mode matrices automatically. To 
facilitate comparison with the dc gain values calculated for all the modes (and 
used in their sorting), an “ o” is plotted along the left-hand axis for each 
individual mode. Because the magnitude axis is in db units, the individual 
contributions cannot be combined graphically like with a linear magnitude axis 
as shown in Chapter 6. Nevertheless, using the overlaid plots to get a mental 
image o f the combining modes is valuable.

For the unit force step response, a time vector, “ t”  and input vector “u” are 
defined for use with the M A T L A B  function “ lsim.”

% start plotting

if num_modes_used == num_modes_total 

% plot all modes included response

semilogx(f,magdisptipdb( 1, :),'k. -')
title(['cantilever tip displacement for mid-length force, all ', ...

num2str(num_modes_used),' modes included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, db mm') 
grid off 
pause

hold on

max_modes_plot = num_modes_total; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a(index-1:index,index-1:index); 

bmode = b(index-1:index);
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cmode = cdisp(numdof,index-1:index); 

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode); 

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ; 

magdisptip_modedb = 20*log10(magdisptip_mode); 

semilogx(f,magdisptip_modedb( 1,:),'k-')

end

dc_gain_freq = freqlo*ones(size(freqnew));

semilogx(dc_gain_freq(1:num_modes_used),20*log10(dc_gain
(1:num_modes_used)),'ko:')

pause 

hold off

% now use lsim to calculate step response to a unit force

ttotal = 0.1;

t = linspace(0,ttotal,200); 

u = ones(size(t));

[disptip,ts] = lsim(sysdisptip,u,t); 

plot(ts,disptip,'k-')
title(['tip disp for mid-length step force, all ',num2str(num_modes_used), ...

' modes included'])
xlabel('time, sec') 
ylabel('displacement, mm') 
grid off 
pause
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cantilever tip d isplacem ent for mid-length force, all 10 modes included

Frequency, hz

Figure 15.8: Cantilever tip displacement for mid-length force, all 10 modes included.

Figure 15.8 shows the overall frequency response with the overlaid sdof 
responses o f  all the individual modes for the 10-element model using all 10 
available modes. The “ o ’ s” at the 10 hz frequency indicate the values o f  dc 
gain for each mode. Note that the fifth, seventh and ninth modes have such 
low  gains that their resonant peaks are barely visible on the overall response. 
The third mode has a higher gain, as indicated by the small pole/zero 
combination between the second and fourth modes.

tip  disp for mid-length step force, all 10 modes included

time, sec

Figure 15.9: Cantilever tip displacement for mid-length force, all 10 modes included.
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Figure 15.9 depicts the response o f the beam tip due to a 1mN step force at the 
midpoint. W e w ill be comparing the different modal truncation methods with 
this overall response.

15.6.10 Reduced M odels -  P lotting Frequency Response, Step Response

The follow ing section o f code does the same thing for the reduced unsorted 
and sorted models as the last section did for the full model. In all the plots, the 
full model results are overlaid with the reduced model results to show the 
differences. In the examples that follow , we w ill use four modes in the 
reduced models. The reader is encouraged to run the code using different 
numbers o f  reduced modes to see the effects on both frequency and time 
domain responses.

else

% plot unsorted modal truncation

semilogx(f,magdisptipdb( 1, :),'k-',f,magdisptipdb_nosort( 1, :),'k. -') 
title(['unsorted modal truncation: cantilever tip displacement for mid- .

length force, first ',num2str(num_modes_used),' modes included']) 
legend('all modes','unsorted partial modes',3)

dcgain_error_percent_nosort = 100*(magdisptip_nosort(1) ... 
magdisptip( 1 ))/magdisptip( 1)

xlabel('Frequency, hz') 
ylabel('Magnitude, db mm') 
grid off

pause

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index); 

bmode = b_nosort(index-1:index); 

cmode = cdisp_nosort(numdof,index-1:index); 

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode); 

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ;
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magdisptip_modedb = 20*log10(magdisptip_mode); 

semilogx(f,magdisptip_modedb( 1,:),'k-')

end

dc_gain_freq_nosort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq_nosort(1:num_modes_used),20*log10 .  
(dc_gain_nosort(1:num_modes_used)),'ko:')

pause 

hold off

% plot sorted modal truncation

semilogx(f,magdisptipdb(1,:),'k-',f,magdisptipdb_sort(1,:),'k.-')
title(['sorted modal truncation: cantilever tip displacement for mid-length force, .

first ',num2str(num_modes_used),' modes included']) 
legend('all modes','sorted partial modes',3)

dcgain_error_percent_sort = 100*(magdisptip_sort(1) - magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz') 
ylabel('Magnitude, db mm') 
grid off

pause

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index); 

bmode = b_sort(index-1:index); 

cmode = cdisp_sort(numdof,index-1:index); 

dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode); 

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ; 

magdisptip_modedb = 20*log10(magdisptip_mode); 

semilogx(f,magdisptip_modedb(1,:),'k-')
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end

dc_gain_freq_sort = freqlo*ones(size(freqnew_nosort));

semilogx(dc_gain_freq_sort(1 :num_modes_used),20*log10 .  
(dc_gain_sort(1:num_modes_used)),'ko:')

pause 

hold off

% now use lsim to calculate step response to a unit force

ttotal = 0.1;

t = linspace(0,ttotal,200); 

u = ones(size(t));

[disptip,ts] = lsim(sysdisptip,u,t);

[disptip_nosort,ts_nosort] = lsim(sysdisptip_nosort,u,t); 

[disptip_sort,ts_sort] = lsim(sysdisptip_sort,u,t);

plot(ts,disptip,'k-',ts_nosort,disptip_nosort,'k+-',ts_sort,disptip_sort,'k.-') 
title(['tip disp for mid-length step force, first ',num2str(num_modes_used) .

,' modes included']) 
legend('all modes','unsorted partial modes','sorted partial modes') 
xlabel('time, sec') 
ylabel('displacement, mm') 
grid off 
pause
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15.6.11 Reduced Models -  Plotted Results -  Four Modes Used

unsorted modal truncation: cantilever tip  displacement for mid-length force, first 4 modes included

Frequency, hz

Figure 15.10: Cantilever tip displacement for mid-length force, first four modes included —
unsorted modal truncation.

sorted modal truncation: cantilever tip  displacem ent for mid-length force, first 4 modes included

Frequency, hz

Figure 15.11: Cantilever tip displacement for mid-length force, first four modes included -
sorted m odal truncation.

Figure 15.10 depicts overall plus individual mode contributions for the four 
unsorted modes model. Note that the first four unsorted modes are used. The 
dc gain error relative to the full 10-mode model is +0.024% because the dc
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gain terms for the eliminated modes are not included. Note that the last three 
peaks in the “ all modes” response are missed because the modes are not 
included.

Figure 15.11 shows overall plus individual mode contributions for the four 
sorted modes model. Note that this time the third mode is skipped and the 
fifth mode is used instead because it has a higher dc gain. The dc gain error 
relative to the full 10-mode model is -0.027%.

tip  disp for mid-length step force, first 4  modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

tim e, sec

Figure 15.12: Comparison o f  step responses for all m odes included and four modes 
included, unsorted and sorted.

Figure 15.12 shows step response for full, reduced unsorted and reduced 
sorted models. Because the dc gain for the two models is in error only by a 
fraction o f  a percent and because the eliminated modes are some 80db (four 
orders o f magnitude) lower than the most significant first mode, there is no 
discernable difference in the responses o f  the full and two reduced models.

15.6.12 M odred  Description

The M A T L A B  Control System Toolbox has a function, “modred” (M O D el 
order REDuction), which can be used for reducing models while retaining the 
overall system dc gain. The “mdc” or “Matched D C ” gain option for the 
function “modred” reduces defined states by setting the derivatives o f  the 
states to be eliminated to zero, then solving for the remaining states. The 
method essentially sets up the eliminated states to be “ infinitely fast” and is 
analogous to Guyan reduction in that the low  frequency effects o f  the 
eliminated states are included in the remaining states. The other option for
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“modred” is the “ del”  option, which simply eliminates the defined states, 
typically associated with the higher frequency modes.

The derivation o f the “mdc” option follows. W e start with the state space 
description o f the system:

x =  A x  +  Bu 

y =  Cx +  Du
(15.6a,b)

Assume that we have a method o f ordering the importance o f the modes 
making up the A , B and C matrices, in our case using dc or peak gains. I f  we 
then rearrange and partition the matrices such that the states corresponding to 
the most important modes are separated from the less important modes, 
designating the important modes as x r (reduced) and the unimportant modes

to be eliminated as x e , we get

x r

1
rr reA

1

x r _l_ Br '

_x e _ _ A er A ee _ _ xe _ Be _

У =  [ r  Ce +  Du

(15.7a,b)

Expanding the matrices:

xr =  A rr x r +  A  re Xe +  B ru

x e =  A  er xr +  A  ee xe +  B eu
(15.8a,b)

Setting the x e states equal to zero in (15.10) is analogous to setting (14.14) 

equal to zero in the Guyan reduction process. W e are then, in effect, including 
the low  frequency dc gain or static equilibrium characteristics o f the 
eliminated modes in the reduced modes.

0 =  Aerxr +  Aeexe +  Beu (15.9)

Solving for xe :

xe = -  A-1 Aer xr -  A-1Beu (15.10)

Substituting back into the xr equation and grouping terms:
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x r =  A r r x r  +  A r e  ( - A - e A e r x r  -  A - ^ B e u )  +  B r u

=  ( A r r  -  A r e A - e A e r ) r  +  ( B r -  A r e A - ' B . )  u

(15.11)
r e  e e  e r  / r  \ r  r e  e e  e j

Substituting back into the expanded output equations:

y  =  C r  x r  +  C e x e +  D u

=  C r  x r  +  C e ( - A - 1  A e r  x r  -  A - '  B ; u )  +  D u  (15.12)

=  ( C r  -  C  a ; ' A e r  ) r  +  f  D  -  C e  A - ‘ B . )  ue e e  e r  r  e e e  e

The new matrices for the reduced model become:

A r;d  =  A r r  -  A r ;  A - '  A ; r  

B red =  B r -  A r ;  A - ^ B ;

C r ; d  =  C r  -  C ;  A - 1 A ; r

D r ; d  =  D  -  C ;  A - 1 B ;

(15.13a,b,c,d)

The new state equations are:

x  red =  A r ;d  x r ;d  +  B  r ; d u  

y  red =  C r ;d  x r ;d  +  D r ; d u

(15.14a,b)

W e w ill see (Figure 15.14) that the high frequency portion o f  the response 
when reducing using “modred” does not roll o f f  quickly with frequency as we 
are used to seeing. Rather, it w ill be “ flat”  with frequency. The reason for the 

shape o f  the “modred” high frequency asymptote is in the D red term in 

(15.13d). In many cases, the direct transmission term D  is zero. When using 

“modred,”  however, even i f  D  is zero, there is still the - C ; A - ^ B ;  portion o f 

D r;d  to contend with. Repeating Figure 5.2 below, we can see the direct 

transmission term.
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Figure 15.13: State space system block diagram.

A t high frequencies, where the system matrix dynamics start to attenuate, the 

-C e A-e Be term o f D red starts to dominate the response -  hence the “ flat” high 

frequency response in Figure 15.15.

15.6.13 Defining Sorted or Unsorted M odes to be Used

The section o f code below prompts the user to define whether the modes are to 
be sorted by dc gain or left in the original order for the “modred” operation. 
One argument o f the “modred” command is to define the states to be 
eliminated. The states to be eliminated can be defined as a vector o f  arbitrary 
states or as a continuous partition o f states. W e w ill define them in the code 
below as a continuous block o f  states, from one index greater than the number 
o f states to be kept to the total number o f  states. Therefore, i f  we sort by dc 
gain before using “modred,”  we would keep only the most important states. I f  
we choose to use the unsorted states, we w ill be eliminating the higher 
frequency modes and keeping the lower frequency modes.

% use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred sort = input('modred: enter " 1" to use sorted modes for reduced runs, ...
"enter" to use unsorted ... ');

if isempty(modred sort)
modred sort = 0

end
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if modred_sort == 1 % use sorted mode order

xnnew = xn(:,index_sort(1:num_modes_total)); 

freqnew = freqvec(index_sort(1:num_modes_total)); 

else % use original mode order

xnnew = xn(:,(1:num_modes_total)); 

freqnew = freqvec((1:num_modes_total));

end

15.6.14 Defining System fo r  Reduction

In this section we define a new set o f  “ a,” “b,”  “ c” and “ d” matrices which w ill 
be used with “modred.”

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.>2;

zw = 2*zeta*w;

% define size of system matrix

asize = 2*num modes total;

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize

row = col+1;

a(row,col) = -w2((col+1)/2);

end

© 2001 by Chapman & Hall/CRC



for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(mid_node_row) = 1.0; % input force at node
6,midpoint node

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew) 

for row = 1:numdof
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cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

15.6.15 M odred  Calculations -  “ mdc”  and “ del”

This section defines a M A T L A B  state space, “ ss,” system using either the 
unsorted or sorted eigenvectors and eigenvalues from above, and then both the 
“mdc” and “ del”  options with “modred” to calculate two reduced systems. In 
order to be able to plot not only the overall frequency response from the 
reduced systems but also the individual mode contributions, we w ill use the 
“ ssdata” function in M A T L A B  to define the reduced system matrices. In the 
next section we w ill use 2x2 submatrices o f  the reduced system matrix to 
define individual modal contributions. The “bode” command is then used to 
generate the magnitude/phase solution vectors, which are converted to db.

% define state space system for reduction, ordered defined by modred_sort

sysdisptip_red = ss(a,b,cdisp(tip_node_row,:),d);

% define reduced matrices using matched dc gain method "mdc"

states_elim = (2*num_modes_used+1):2*num_modes_total; 

sysdisptip_mdc = modred(sysdisptip_red,states_elim,'mdc');

[adisptip_mdc,bdisptip_mdc,cdisptip_mdc,ddisptip_mdc] = ssdata(sysdisptip_mdc); 

% define reduced matrices by eliminating high frequency states, ‘del

sysdisptip_elim = modred(sysdisptip_red,states_elim,’del’);

[adisptip_elim,bdisptip_elim,cdisptip_elim,ddisptip_elim] = ssdata(sysdisptip_elim); 

% use "bode" command to generate magnitude/phase vectors for reduced systems

[magdisptip_mdc,phsdisptip_mdc]=bode(sysdisptip_mdc,frad) ; 

[magdisptip_elim,phsdisptip_elim]=bode(sysdisptip_elim,frad) ;

% convert magnitude to db

magdisptip_mdcdb = 20*log10(magdisptip_mdc);
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magdisptip_elimdb = 20*log10(magdisptip_elim);

15.6.16 Reduced M odred  M odels -  P lotting Commands

This section plots the frequency responses with the individual mode 
contribution overlays for both the “mdc” and “ del”  options for “modred.”  The 
only difference between the code here and that o f  section 15.6.10 is that the 
cmode term goes from 1: instead o f numdof: because we are using the results 
o f the “modred” operation to define the reduced system matrix, which has only 
one row in cdisptip instead o f  numdof rows in cdisp. Once again, “ lsim” is 
used to calculate the step response o f  the system.

% plot modred using 'elim'

semilogx(f,magdisptipdb( 1, :),'k-',f,magdisptip_elimdb( 1, :),'k. -')

if modred_sort == 1
title(['reduced elimination: tip disp for mid-length step force, ... 

first ',num2str(num_modes_used),' sorted modes included'])
else

title(['reduced elimination: tip disp for mid-length step force, ...
first ',num2str(num_modes_used),' unsorted modes included'])

end

legend('all modes','reduced elim',3)

dcgain_error_percent_sort = 100*(magdisptip_elimdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz') 
ylabel('Magnitude, db mm') 
grid off

pause

hold on

% now plot the overlay of the tip displacement magnitude with each mode contribution

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = adisptip_elim(index-1:index,index-1:index); 

bmode = bdisptip_elim(index-1:index); 

cmode = cdisptip_elim(1,index-1:index);
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dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode); 

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ; 

magdisptip_modedb = 20*log10(magdisptip_mode); 

semilogx(f,magdisptip_modedb( 1,:),'k-')

end

dc_gain_freq_sort = freqlo*ones(size(freqnew_nosort));

pause

hold off

% modred using 'mdc'

semilogx(f,magdisptipdb( 1, :),'k-',f,magdisptip_mdcdb( 1, :),'k. -')

if modred_sort == 1
title(['reduced matched dc gain: tip disp for mid-length step force, ... 

first ',num2str(num_modes_used),' sorted modes included'])
else

title(['reduced matched dc gain: tip disp for mid-length step force, . 
first ',num2str(num_modes_used),' unsorted modes included'])

end

legend('all modes','reduced mdc',3)

dcgain_error_percent_nosort = 100*(magdisptip_mdcdb(1) ...
- magdisptip(1))/magdisptip(1)

xlabel('Frequency, hz') 
ylabel('Magnitude, db mm') 
grid off

pause

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = adisptip_mdc(index-1:index,index-1:index); 

bmode = bdisptip_mdc(index-1:index); 

cmode = cdisptip_mdc(1,index-1:index);
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dmode = [0];

sysdisptip_mode = ss(amode,bmode,cmode,dmode); 

[magdisptip_mode,phsdisptip_mode]=bode(sysdisptip_mode,frad) ; 

magdisptip_modedb = 20*log10(magdisptip_mode); 

semilogx(f,magdisptip_modedb(1,:),'k-')

end

dc_gain_freq_nosort = freqlo*ones(size(freqnew_nosort));

pause

hold off

% now use lsim to calculate step response to a unit force

[disptip,ts] = lsim(sysdisptip,u,t);

[disptip_elim,ts_elim] = lsim(sysdisptip_elim,u,t);

[disptip_mdc,ts_mdc] = lsim(sysdisptip_mdc,u,t);

plot(ts,disptip,'k-',ts_mdc,disptip_mdc,'k.-',ts_elim,disptip_elim,'k+-')

if modred_sort == 1
title(['modred cantilever tip disp for mid-length step force, . 
first ',num2str(num_modes_used),' sorted modes included'])

else
title(['modred cantilever tip disp for mid-length step force .

, first ',num2str(num_modes_used),' unsorted modes included'])
end

legend('all modes','reduced - mdc','reduced - elim')
xlabel('time, sec')
ylabel('displacement, mm')
grid off
pause

end
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15.6.17 Plotting Unsorted Modred Reduced Results -  Eliminating High
Frequency Modes

reduced elimination: tip  disp for mid-length step force, first 4 unsorted modes included

Frequency, hz

Figure 15.14: Cantilever tip displacement for mid-length force, first four modes included — 
unsorted m odal truncation, modred “del” option.

reduced matched dc gain: tip  disp for mid-length step force, first 4 unsorted modes included

Frequency, hz

Figure 15.15: Cantilever tip displacement for mid-length force, first four modes included -  
unsorted m odal truncation, modred “m dc” option.

Figure 15.14 shows overall frequency response with four overlaid individual 
mode contributions for the unsorted “ del”  “modred” option, with the six
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highest frequency modes eliminated. Note that at high frequencies the reduced 
curve attenuates with frequency similar to the “ all modes” curve.

Figure 15.15 shows overall frequency response with four overlaid individual 
mode contributions for the unsorted “mdc” “modred” option, with the six 
highest frequency modes reduced. Note the rise in the high frequency portion 
o f the magnitude curve as a result o f  the matrix reduction operations discussed 
at the end o f  Section 15.6.12. Depending on the purpose o f the model, the 
high frequency discrepancy may or may not be important.

modred cantilever tip  disp for mid-length step force, first 4 unsorted modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

tim e, sec

Figure 15.16: Comparison o f  step responses for all modes included and four modes 
included, “mdc” and “elim” “modred” options.

Figure 15.16 shows the overlay o f step response for all mode model and “ del” 
and “mdc” “modred” options. Note that there is no visible difference in the 
transient responses.
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15.6.18 Plotting Sorted Modred Reduced Results -
Eliminating Lower dc Gain Modes

reduced elimination: tip  disp for mid-length step force, first 4 sorted modes included

Frequency, hz

Figure 15.17: Cantilever tip displacement for mid-length force, first four sorted modes, 
m odal truncation, “m odred” “del” option.

reduced matched dc gain: tip  disp for mid-length step force, first 4 sorted modes included

Frequency, hz

Figure 15.18: Cantilever tip displacement for mid-length force, first four sorted modes, 
“modred” “mdc” option.

Figure 15.17 shows overall frequency response with four overlaid individual 
mode contributions for the sorted “ del” “modred” option, with the six lowest
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dc gain modes eliminated. Figure 15.18 shows overall frequency response 
with four overlaid individual mode contributions for the unsorted “mdc” 
“modred” option, with the six lowest dc gain modes reduced. Again, note the 
lack o f  high frequency attenuation with frequency for the “modred” reduction.

modred cantilever tip  disp for mid-length step force, first 4  sorted modes included
0.14

.0 .0 2 -----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

tim e, sec

Figure 15.19: Comparison o f  step responses for all modes included and four sorted modes 
included, “mdc” and “elim” “modred” options.

Figure 15.19 depicts the overlay o f  step response for the all mode model and 
“ del”  and “mdc” “modred” options. Note that there is no visible difference in 
the transient responses.

15.6.19 M odred  Summary

For this problem, where the dc gain o f the response is dominated by the first 
several modes, there is not much difference between the sorted and unsorted 
responses. The “mdc” method minimizes low  frequency errors by accounting 
for the dc gain o f  the unused modes but has high frequency behavior which 
deviates from the expected, and may not be desirable. The “ del” method does 
not account for the dc gains o f the unused modes, which can result in error in 
the low  frequency portion o f the frequency response. However, the “ del” 
method has the advantage that it does not exhibit the unusual high frequency 
direct transmission matrix related behavior o f  the “mdc” method. I f  sorting o f 
dc gain values is performed prior to the “ del”  operation, the system dc gain 
error may be acceptable while maintaining better high frequency performance.
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15.7 A N S Y S  Code cantbeam_ ss.inp Listing

The A N S Y S  code cantbeam_ss.inp solves for the eigenvalues and 
eigenvectors for a tip-loaded cantilever beam, with a sample output shown in 
Section 15.4. The user can define the number o f elements to use for the 
cantilever and also choose whether to use the “Reduced” or “Block Lanczos” 
eigenvalue extraction method. The program then writes a frequency list out to 
a “ .frq” file, outputs eigenvector listings to a “ .eig”  file and plots 
deformed/undeformed mode shapes to “ .grp.”

! cantbeam_ss.inp, 0.075 thick x 2 wide x 20mm long steel cant
! title automatically built based on number of elements and eigenvalue extraction method 

/prep7

filename = 'cantbeam_ss'

! define number of elements to use 

num_elem = 64

! define eigenvalue extraction method, 1 = reduced, 2 = block lanczos 

eigext = 1 

*if,eigext,eq,1, then
nummodes = num_elem ! only 1 displacement dof available for each element

*else
nummodes = 2*num_elem ! both disp and rotation dofs available for

! each element
*endif

! create the file name for storing data

! first section of filename

aname = filename

! second section of filename, number of elements

bname = num_elem

! third section of filename, depends on eigenvalue extraction method

*if,eigext,ne,2, then
cname = 'red' ! reduced

*else
cname = 'bl' ! block Lanczos

*endif

! input the title, use %xxx% to substitute parameter name or parametric expression
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aname_ti = 'cantbeam_ss - 0.075 thick x 2 wide x 20mm long steel cant' 

/title,%aname_ti%, %bname%, %cname% 

et,1,4 ! element type for beam

! steel

ex,1,190e6 ! mN/mmA2
dens,1,7.83e-6 ! kg/mmA3
nuxy,1,.293

! real value to define beam characteristics

r,1,0.15,0.05,0.00007031,0.075,0.2 ! area, Izz, Iyy, TKz, TKy

! define plotting characteristics

/view,1,1,-1,1 ! iso view
/angle,1,-60 ! iso view
/pnum,mat,1 ! color by material
/num,1 ! numbers off
/type,1,0 ! hidden plot
/pbc,all, 1 ! show all boundary conditions

csys,0 ! define global coordinate system 

! nodes

n,1,0,0,0 ! left-hand node
n,num_elem+1,20,0,0 ! right-hand node

fill,1,num_elem+1 ! interior nodes

nall
nplo

! elements

type,1
mat,1
real,1
e,1,2
egen,num_elem, 1,-1 

! constrain left-hand end 

nall
d,1,all,0 ! constrain node 1, all dof's

! constrain all but uz and roty for all other nodes to allow only those dof's

nall
nsel,s,node,,2,num_elem+1
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d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
nplo
eplo

! ******************* eigenvalue run ******************

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num elem+1 
m,all,uz

* if,eigext,eq,1,then ! use reduced method

antype,modal,new
modopt,reduc,nummodes
expass,off

mxpand,nummodes,,,no 

total,num elem,1

! method - reduced Householdert 
! key = off, no expansion pass, key = on,
! do expansion
! nummodes to expandfreq beginningfreq 
! ending,elcalc = yes - calculate stresses 
! total masters, 1 is exclude rotations

*elseif,eigext,eq,2 ! use block lanczos

antype,modal,new
modopt,lanb,nummodes

expass,off
mxpand,nummodes,,,no

! no total required for block lanczos 
! because calculates all eigenvalues

*endif

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode

/post1

/format,,,,,10000

set,1,1
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pldi,1

save,%aname%%bname%%cname%,sav

! define nodes for output: forces applied or output displacements

*do,i,1,nummodes

/angle,1,0
/auto

*do,i,1,nummodes
set,1,i

pldi,1
*enddo

/show,term

/output,%aname%%bname%%cname%,frq ! write out frequency list to ascii file .frq

set,list

/output,term ! returns output to terminal

nall

/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

set,,i
/page,,,1000
prdisp

*enddo

/output,term

! pldi plots

/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp

allsel

/view,1,,-1,, ! side view for plotting
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CHAPTER 16

GROUND ACCELERATION MATLAB 
MODEL FROM ANSYS MODEL

16.1 Introduction

This chapter w ill continue to explore building M A T L A B  state space models 
from A N S Y S  finite element results. W e w ill use a different cantilever model, 
where the cantilever has an additional tip mass and a tip spring all mounted on 
a “ shaker”  base. This model w ill be a crude approximation o f understanding 
the effects o f  disk drive suspension resonances on undesired unloading o f  the 
recording head during external vibration events. The problem shows how to 
model ground acceleration forcing functions using A N S Y S  and M A T LA B . 
W e w ill also see how to do sorting o f modes in the presence o f  a rigid body 
mode. In addition, there is a high frequency mode o f the system with a large 
dc gain, meaning that i f  unsorted modal truncation were used to decrease the 
model size, the resulting model would have significant error.

16.2 M odel Description

Figure 16.1: Ground displacement model for cantilever w ith tip mass and tip spring.

The figure above shows a schematic o f  the system to be analyzed. Once again, 
the cantilever is a 2mm wide by 0.075mm thick by 20mm long steel beam. A t 
the tip, a lumped mass o f 0.00002349 K g  is attached. The tip mass was 
arbitrarily chosen to have the same mass as the beam. The spring attaching the
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beam tip to the shaker has a stiffness o f  1e6 mN/mm. The 0.05 K g  shaker 
mass was chosen to be approximately 1000 times the mass o f the beam and tip 
mass combination, making the motions o f  the shaker insensitive to resonances 
o f the beam. Thus, we can apply forces to the shaker and excite it to a known 
acceleration amplitude. This amplitude w ill then be transmitted to the base o f 
the cantilever and the shaker attachment for the beam tip spring -  effectively 
imparting a “ ground acceleration” o f  any desired amplitude and shape to the 
flexible system. O f course, since the shaker body is not constrained, it w ill 
have large rigid body movements, but we are interested in the difference 
between the shaker motion and the motion o f  the tip, so we can ignore the 
rigid body motion.

In a disk drive, the cantilever would represent the “ suspension,”  the small 
sheet metal device which supports the recording head, represented by the 
beam tip mass. The recording head is typically preloaded onto the disk with 
several grams o f loading force by pre-bending and then displacing the 
suspension. This loading force is required to counteract the force generated by 
the air bearing when the disk is spinning, keeping the recording head a 
controlled distance from the disk and allowing efficient magnetic recording. 
During transportation o f the disk drive it is subject to vibration and shock 
events in the z direction as indicated by the Shaker Motion arrow. O f course, 
vibration and shock occur in all directions, but the z direction is the most 
sensitive. In the z direction, the vibration or shock event may be large enough 
and have frequency content which w ill excite the suspension resonances, 
generating unloading forces at the head that could cause it to become 
momentarily unloaded. When unloaded, the slider w ill re-approach the disk 
and possibly damage the disk. Thus, understanding resonant characteristics o f 
the suspension and the resulting tendency to unload the head is very important. 
Because the frequency content o f typical vibration and shock events are less 
than several khz, having a good model o f  the resonant system up to roughly 10 
khz is adequate.

16.3 In itia l A N S Y S  M odel Comparison -  
Constrained-Tip and Spring-Tip Frequencies/Mode Shapes

The spring between the beam tip and the shaker is an artifice, created to allow 
measuring the forces between the beam tip and the shaker. I f  the spring had 
infinite stiffness, the tip would become simply supported. The stiffness o f the 
spring used in the model was chosen to have the frequency o f the mode 
involving the beam tip and the spring be very high relative to the first bending 
mode o f the constrained-tip beam. This makes the tip simply supported at 
frequencies lower than the beam tip/spring mode and w ill allow a valid force 
measurement in the frequency range o f  the major beam bending modes.
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There is always a compromise when using a spring artifice to replace a rigid 
boundary condition to enable calculating constraint forces. The compromise 
is that one would like a very stiff spring to make the model more accurate, 
however a very stiff spring would require more modes to be extracted because 
the frequency o f the tip spring/tip mass mode would be higher. Thus, the 
eternal compromise with finite element models: between more accuracy (more 
elements) and a shorter time to solve the problem (fewer elements). The 
optimal model is always the smallest model which w ill give acceptable 
answers, no more, no less. This balance makes finite elements interesting!

In order to understand the effects o f  the tip spring on the resonances, we w ill 
use two A N S Y S  models. The first model w ill have the tip constrained in the z 
direction. The second model w ill be as described above, but with a tip spring 
connected to the shaker. The two models w ill be compared to ensure that the 
tip spring artifice does not significantly effect the major beam bending modes. 
The tip constrained model is cantbeam_ss_tip_con.inp, the spring-tip model 
is cantbeam_ss_spring_shkr.inp, which is listed at the end o f  the chapter. A  
comparison o f resonant frequencies for the two models, each with 16-beam 
elements and using the Reduced method for eigenvalue extraction, is shown 
below:

Mode Tip Constrained Tip Spring
Freq, hz Freq, hz

1 0.0030932 0.0000
2 654.37 654.36
3 2120.2 2120.1
4 4424.1 4423.3
5 7567.0 7564.6
6 11553. 11547.
7 16392. 16378.
8 22104. 22069.
9 28730. 28590.
10 36346. 32552. Note 32552 is tip/spring mode
11 45079. 36547.
12 55111. 45164.
13 66628. 55171.
14 79548. 66675.
15 92830. 79583.
16 0.10359E+06 92850.

Table 16.1: Resonant frequencies for tip-constrained and spring-tip models.

The table above tells us that there is very good matching o f  resonant 
frequencies for the first 15 modes o f the tip-constrained model and the tip 
spring model. The 92830 hz (15th) mode differs only 20 hz from the tip spring 
model 92850 hz mode. The difference between the two models is that the tip 
spring model has an additional mode at 32552 which is the tip spring/tip mass 
mode. Having good agreement between the two models up through 32552 hz
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means that we w ill get good results in the 0 to 10 khz range o f interest. The 
A N S Y S  Display program can be used to plot the mode shapes o f the two 
16-element models by loading cantbeam16red.grp or tipcon16red.grp for 
the spring-tip or constrained-tip models, respectively. A  M A T L A B  code, 
cantbeam_shkr_modeshape.m, can also be used to plot mode shapes for any 
o f the spring-tip models, with selected modes plotted below for the 16-element 
model.
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Figure 16.2: Rigid body mode, 0 hz.
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Figure 16.3: First bending mode, 654 hz.
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Figure 16.4: Second bending mode, 2120 hz.
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Figure 16.5: Beam tip / Spring mode at 32552 hz.

Note the deflection at the tip involving the spring for mode 10 for the 
16-element model. Since we are interested in using the spring deflections to 
measure force exerted at the beam tip constraint, we w ill find that including 
the 10th mode is important because o f  its large dc gain value.

mode shape for 16 element model, mode 3 at 2120.1 hz
5

5 10 15
distance along beam, mm

0 20

© 2001 by Chapman & Hall/CRC



16.4 M A T L A B  State Space M odel from  A N S Y S  Eigenvalue Run -  
cantbeam_ss_shkr_modred.m

The M A T L A B  code used in this chapter is very similar to the code in Chapter 
15. As such, some o f  the follow ing descriptions w ill refer to the previous 
chapter.

The results shown and discussed in this chapter w ill be for the 16-element 
beam model; however, A N S Y S  data is available for 2-, 4-, 8-, 10-, 12-, 16-, 
32- and 64-beam elements.

16.4.1 Input

This Section is similar to that in Section 15.6.1, with the same options 
available for choosing the number o f elements to be analyzed. 
Eigenvalue/eigenvector results for all the models are available in the 
respective M A T L A B  .mat files and are called based on which menu item is 
picked.

% cantbeam_ss_shkr_modred.m

clear all; 

hold off; 

clf;

% load the .mat file cantbeamXXred, containing evr - the modal matrix, freqvec -
% the frequency vector and node_numbers - the vector of node numbers for the modal
% matrix

model = menu('choose which finite element model to use ... ', ....
'2 beam elements', ...
'4 beam elements', ...
'6 beam elements', ...
'8 beam elements', ...
'10 beam elements', ...
'12 beam elements', ...
'16 beam elements', ...
'32 beam elements', ...
'64 beam elements');

if model == 1
load cantbeam2red_shkr; 

elseif model == 2
load cantbeam4red_shkr; 

elseif model == 3
load cantbeam6red_shkr; 

elseif model == 4
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load cantbeam8red_shkr; 
elseif model == 5

load cantbeam10red_shkr; 
elseif model == 6

load cantbeam12red_shkr; 
elseif model == 7

load cantbeam16red_shkr; 
elseif model == 8

load cantbeam32red_shkr; 
elseif model == 9

load cantbeam64red_shkr;
end

16.4.2 Shaker, Spring, Gram  Force Definitions

The value o f  the beam tip spring stiffness is the same values as in the A N S Y S  
code and is used to calculate the force between the beam tip and the shaker. 
The shaker mass value is the same value as in the A N S Y S  code and is used to 
define the force required in the M A T L A B  model to impart a desired 
acceleration level to the shaker. The force conversion from m N to gram force 
is defined as 1/9.807.

kspring = 1000000; % mN/mm from ANSYS run

shaker_mass = 0.050; % kg from ANSYS run

mn2gm_conversion = 0.101968; % conversion factor from mn to gram-f, 1/9.807

16.4.3 Defin ing Degrees o f Freedom  and Num ber o f M odes

This section o f  code is identical to that o f Section 15.6.2.

% define the number of degrees of freedom and number of modes from size of
% modal matrix

[numdof,num modes total] = size(evr);

% define rows for shaker and tip nodes

shaker node row = 1;

tip node row = numdof;

xn = evr;
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16.4.4 Frequency Range, Sorting M odes by dc Gain and Plotting, 
Selecting M odes Used

As in Section 15.6.3, the next step in creating the model is to sort modes o f 
vibration so that only the most important modes are kept. Repeating from 
Chapter 15 to obtain the frequency response at dc:

ffl:
(16.1)

where the dc gain o f  for the ith mode is given by the expression:

ith mode dc gain: (  ^  

v Fk у ffl.
(16.2)

The difference between the code below and the code in Section 15.6.3 is that 
we have a rigid body, 0 hz, mode in this model and the previous cantilever did 

not. The problem is in dividing (16.1) by ffl2 =  fflf =  0 , which would give a 

dc gain o f infinity for the rigid body mode. In order to get around this, we do 
not use zero for the rigid body frequency but instead use the frequency 
response lower bound frequency for calculating a “ low  frequency” gain. In 
this model the lower bound frequency is 100 hz. Another method o f  ranking 
would be to rank only the non rigid body modes, recognizing that the rigid 
body mode is always included.

Once again, dc gain w ill be used to rank the relative importance o f  modes. 
The dc gain calculation for each mode, “ dc_value,”  is broken into two parts. 
The first part calculates the gain o f the rigid body mode at the “ freqlo” 
frequency while the second part calculates the dc gain o f all the non rigid body 
modes.

The bulk o f this section is similar to Section 15.6.3.

% calculate the dc amplitude of the displacement of each mode by 
% multiplying the forcing function row of the eigenvector by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

% define frequency range for frequency response

freqlo = 100;

_________ freqhi = 100000;__________________________________________
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flo=log10(freqlo) ; 
fhi=log10(freqhi) ;

f=logspace(flo,fhi,200) ; 
frad=f*2*pi ;

dc_gain = abs([xn(shaker_node_row,1)*xn(tip_node_row,1)/frad(1) ... 
(xn(shaker_node_row,2:num_modes_total) ...

.* xn(tip_node_row,2:num_modes_total))./omega2(2:num_modes_total)]);

[dc_gain_sort,index_sort] = sort(dc_gain);

dc_gain_sort = fliplr(dc_gain_sort);

index_sort = fliplr(index_sort)

dc_gain_nosort = dc_gain;

index_orig = 1:num_modes_total;

semilogy(index_orig,freqvec,'k-'); 
title('frequency versus mode number') 
xlabel('mode number') 
ylabel('frequency, hz') 
grid
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,dc_gain_nosort,'k-')
title('dc value of each mode contribution versus mode number')
xlabel('mode number')
ylabel('dc value')
grid
disp('execution paused to display figure, "enter" to continue'); pause

loglog([freqlo; freqvec(2:num_modes_total)],dc_gain_nosort,'k-') 
title('dc value of each mode contribution versus frequency') 
xlabel('frequency, hz') 
ylabel('dc value') 
grid
disp('execution paused to display figure, "enter" to continue'); pause 

semilogy(index_orig,dc_gain_sort,'k-')
title('sorted dc value of each mode versus number of modes included') 
xlabel('modes included') 
ylabel('sorted dc value') 
grid
disp('execution paused to display figure, "enter" to continue'); pause

num_modes_used = input(['enter how many modes to include, ... 
',num2str(num_modes_total),' default, max ... ']);

if (isempty(num_modes_used))
num_modes_used = num_modes_total;

end
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mode number

Figure 16.6: Resonant frequency versus mode number for 16-element model.

Figure 16.6 shows the resonant frequency versus mode number for the 
16-element model, Reduced method o f eigenvalue extraction, showing that 
modes six and higher have frequencies greater than the 10 khz frequency range 
o f interest for this model. This would lead one to think that only the first six 
or eight modes would be required to define the force in the 0 to 10 khz 
frequency range, which is not the case as we shall see.

dc value o f each mode contribution versus mode number

mode number

Figure 16.7: Low frequency and dc gains versus mode number.
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Figure 16.7 shows the low  frequency gain for the rigid body mode, mode 1, 
and the dc gains for all other modes, versus mode number. Note that the 
second most important mode (the second highest dc gain) is mode 10, and that 
it is even more important than the first bending mode o f  the cantilever.

frequency, hz

Figure 16.8: Low frequency and dc gain versus frequency.

Figure 16.8 shows the same data plotted against frequency instead o f mode 
number. The tip mass / tip spring mode at 32552 hz is the mode with the high 
gain.

sorted dc value of each mode versus number of modes included

modes included

Figure 16.9: Sorted low frequency and dc gains versus number o f modes.
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In Figure 16.9 we can see the sorted values for the low  frequency and dc gains, 
from largest to smallest. The list o f  sorted mode numbers is given in the table 
below. Once again, the 10th mode is the second most significant after the rigid 
body mode.

index_sort = 1 10 2 4 9 8 6 11 3 12 5 13 14 7 15 16 17 

Table 16.2: Sorted low frequency and dc gain indices.

16.4.5 Damping, Defining Reduced Frequencies and M oda l Matrices

This section is exactly like that in Section 15.6.4.

zeta = input('enter value for damping, .02 is 2% of critical (default) ... ');

if (isempty(zeta)) 
zeta = .02;

end

% all modes included model, use original order

xnnew = xn(:,(1:num modes total));

freqnew = freqvec((1:num modes total));

% reduced, no sorting, just use the first num modes used modes in xnnew nosort

xnnew nosort = xn(:,1:num modes used);

freqnew nosort = freqvec(1:num modes used);

% reduced, sorting, use the first num modes used sorted modes in xnnew sort

xnnew sort = xn(:,index sort(1:num modes used));

freqnew sort = freqvec(index sort(1:num modes used));

16.4.6 Setting Up System M atr ix  “ a”

This section is exactly like that in Section 15.6.5.

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.>2;

zw = 2*zeta*w;
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w_nosort = freqnew_nosort*2*pi; % frequencies in rad/sec

w2_nosort = w_nosort.A2;

zw_nosort = 2*zeta*w_nosort;

% define variables for reduced, sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec

w2_sort = w_sort.A2;

zw_sort = 2*zeta*w_sort;

% define size of system matrix

asize = 2*num_modes_total;

asize_red = 2*num_modes_used;

disp(' '); 
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]); 
disp(['size of reduced system matrix a is ',num2str(asize_red)]);

% setup all modes included "a" matrix, system matrix

a = zeros(asize);

for col = 2:2:asize

row = col-1;

a(row,col) = 1;

end

for col = 1:2:asize 

row = col+1;

a(row,col) = -w2((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% define variables for reduced, nosorted system matrix, a_nosort
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% setup reduced, nosorted "a_nosort" matrix, system matrix

a_nosort = zeros(asize_red); 

for col = 2:2:asize_red 

row = col-1; 

a_nosort(row,col) = 1; 

end

for col = 1:2:asize_red 

row = col+1;

a_nosort(row,col) = -w2_nosort((col+1)/2); 

end

for col = 2:2:asize_red 

row = col;

a_nosort(row,col) = -zw_nosort(col/2); 

end

% setup reduced, sorted "a_sort" matrix, system matrix

a_sort = zeros(asize_red); 

for col = 2:2:asize_red 

row = col-1; 

a_sort(row,col) = 1; 

end

for col = 1:2:asize_red 

row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2); 

end

for col = 2:2:asize_red 

row = col;

a_sort(row,col) = -zw_sort(col/2);
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end

16.4.7 Setting Up M atrices “ b,”  “ c”  and “ d”

The only difference between this section and Sections 15.6.6 and 15.6.7 is in 
defining the force to be applied to the shaker to give 1g acceleration.

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(shaker_node_row) = 9807*shaker_mass*1.0; % input force at shaker, 1g

% now setup the principal force vector for the three cases, all modes, nosort, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_nosort is the vector of forces in principal coordinates

f_principal_nosort = xnnew_nosort'*f_physical;

% b_nosort is the vector of forces in principal coordinates, state space form

b_nosort = zeros(2*num_modes_used,1); 

for cnt = 1:num_modes_used

b_nosort(2*cnt) = f_principal_nosort(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form
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b_sort = zeros(2*num_modes_used,1); 

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)

for row = 1:numdof

cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew) 

for row = 1:numdof 

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% reduced, nosorted cdisp and cvel

for col = 1:2:2*length(freqnew_nosort) 

for row = 1:numdof

cdisp_nosort(row,col) = xnnew_nosort(row,ceil(col/2));

cvel_nosort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_nosort)
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for row = 1 :numdof 

cdisp_nosort(row,col) = 0;

cvel_nosort(row,col) = xnnew_nosort(row,col/2);

end

end

% reduced, sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort) 

for row = 1:numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2));

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort) 

for row = 1:numdof 

cdisp_sort(row,col) = 0;

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %

16.4.8 “ ss”  Setup, Bode Calculations

This section differs from that o f  Section 15.6.8 in that the frequency range 
definition that exists in 15.6.8 was moved earlier in this code to allow the use 
o f “ freqlo” to calculate the low  frequency gain o f the rigid body mode. Also, 
the “ ss” model below for “ sysforce” directly calculates the force in the spring 
by subtracting the displacement o f the shaker from that beam tip and 
multiplying the difference by the spring stiffness and the m N to gram force 
conversion. The output then indicates the variation o f force between the beam 
tip and the shaker, or for the disk drive the variation in force which is
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preloading the recording head to the disk. I f  the variation in force exceeds the 
preload force, the head w ill tend to unload.

% define tip force state space system with the "ss" command

sysforce = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ... 
cdisp(shaker_node_row,:)),d);

% define reduced system using nosort modes

sysforce_nosort = ss(a_nosort,b_nosort,mn2gm_conversion*kspring* ...
(cdisp_nosort(tip_node_row,:)-cdisp_nosort(shaker_node_row,:)),d);

% define reduced system using sorted modes

sysforce_sort = ss(a_sort,b_sort,mn2gm_conversion*kspring* ...
(cdisp_sort(tip_node_row,:)-cdisp_sort(shaker_node_row,:)),d);

% use "bode" command to generate magnitude/phase vectors

[magforce,phsforce] = bode(sysforce,frad);

[magforce_nosort,phsforce_nosort] = bode(sysforce_nosort,frad); 

[magforce_sort,phsforce_sort] = bode(sysforce_sort,frad);

16.4.9 Full M odel -  P lotting Frequency Response, Shock Response

The code in this section is similar to that in Section 15.6.9, where the overall 
frequency response and its individual mode contributions are plotted. The 
“ lsim” command is used to calculate the response to a half-sine shock pulse.

% start plotting

if num_modes_used == num_modes_total 

% plot all modes included response

loglog(f,magforce( 1, :),'k. -')
title(['cantilever tip force for mid-length force, all ',num2str(num_modes_used), ...

' modes included']) 
xlabel('Frequency, hz') 
ylabel('Force, gm') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause 

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot
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index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index); 

bmode = b_nosort(index-1:index); 

cmode_shaker = cdisp_nosort(1,index-1:index); 

cmode_tip = cdisp_nosort(numdof,index-1:index); 

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ... 
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause 

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

ttotal = 0.03; 

shock_amplitude = 100;

pulse_width = input('enter half-sine shock pulse width, sec, default is 0.002 ... ');

if isempty(pulse_width)
pulse_width = 0.002;

end

t = linspace(0,ttotal,1000); 

dt = t(2) - t(1); 

for cnt = 1:length(t)

if t(cnt) < pulse width

u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt));

else

u(cnt) = 0;

end

end

© 2001 by Chapman & Hall/CRC



plot(t,u,'k-')
title('acceleration of shaker mass') 
xlabel('time, sec') 
ylabel('acceleration, g') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause

[force,ts] = lsim(sysforce,u,t);

plot(ts,force,'k-')
title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...

,' sec input, all ',num2str(num_modes_used),' modes included'])
xlabel('time, sec') 
ylabel('Force, gm') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause 

peak_force = max(abs(force))

Plots for the 16-beam element model are shown below.

Frequency, hz

Figure 16.10: Overall frequency response w ith  overlaid individual m ode contributions.

Figure 16.10 shows the overall frequency response with overlaid individual 
mode contributions for all 16 modes. Note the significant dc gain o f  the 32 
khz beam tip/spring mode, which is higher than even the first bending mode dc 
gain. One can imagine how the overall response would be changed i f  the 32 
khz mode were not included. Without the dc gain o f the mode, the overall dc 
gain would be significantly in error.
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Figure 16.11: Acceleration versus time for the 100g, 2msec shock pulse applied to the
system.

Figure 16.11 shows the acceleration versus time profile that is applied to the 
shaker body.

cantilever tip  force for 100g, 0.002 sec input, all 17 modes included

Figure 16.12: Force in the spring versus time, reflecting the change in  preload force
applied to the head.

For the shock pulse in Figure 16.11, the force in the spring versus time is 
shown in Figure 16.12. I f  the preload force were 3 gm, the head would be in

0 0.005
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danger o f unloading from the disk since the peak variation in preload force is 
3.6 gm.

16.4.10 Reduced M odels -  P lotting Frequency Response, Shock Response

This section is similar to Section 15.6.10, setting up frequency response and 
half-sine shock response for sorted and unsorted modes.

else

% unsorted modal truncation

loglog(f,magforce(1,:),'k-',f,magforce_nosort(1,:),'k.-')
title(['unsorted modal truncation: cantilever tip force for mid-length force, ...

first ',num2str(num_modes_used),' modes included']) 
legend('all modes','unsorted partial modes',3)

dcgain_error_percent_nosort = 100*(magforce_nosort(1) - magforce(1))/magforce(1)

xlabel('Frequency, hz') 
ylabel('Force, gm') 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_nosort(index-1:index,index-1:index); 

bmode = b_nosort(index-1:index); 

cmode_shaker = cdisp_nosort(1,index-1:index); 

cmode_tip = cdisp_nosort(numdof,index-1:index); 

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ... 
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause
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hold off

% sorted modal truncation

loglog(f,magforce(1,:),'k-',f,magforce_sort(1,:),'k.-')
title(['sorted modal truncation: cantilever tip force for mid-length force, .

first ',num2str(num_modes_used),' modes included']) 
legend('all modes','sorted partial modes',3)

dcgain_error_percent_sort = 100*(magforce_sort(1) - magforce(1))/magforce(1)

xlabel('Frequency, hz') 
ylabel('Force, gm') 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

% now plot the overlay of the tip force magnitude with each mode contribution

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_nosort(index-1:index, index- 1:index); 

bmode = b_nosort(index-1:index); 

cmode_shaker = cdisp_nosort(1,index-1:index); 

cmode_tip = cdisp_nosort(numdof,index-1:index); 

dmode = [0];

sysforce_mode = ss(amode,bmode,mn2gm_conversion*kspring* ... 
(cmode_tip - cmode_shaker),dmode);

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ;

loglog(f,magforce_mode(1,:),'k-')

end

disp('execution paused to display figure, "enter" to continue'); pause 

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

ttotal = 0.03;
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shock_amplitude = 100;
pulse_width = input('enter half-sine shock pulse width, sec, default is 0.002 ... ');

if isempty(pulse_width)
pulse_width = 0.002;

end

t = linspace(0,ttotal,1000); 

dt = t(2) - t(1); 

for cnt = 1:length(t) 

if t(cnt) < pulse width

u(cnt) = shock_amplitude*sin(2*pi*(1/(2*pulse_width))*t(cnt));

else

u(cnt) = 0; 

end

end

plot(t,u,'k-')
title('acceleration of shaker mass') 
xlabel('time, sec') 
ylabel('acceleration, g') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause 

[force,ts] = lsim(sysforce,u,t);

[force_nosort,ts_nosort] = lsim(sysforce_nosort,u,t);

[force_sort,ts_sort] = lsim(sysforce_sort,u,t);

plot(ts,force,'k-',ts_nosort,force_nosort,'k+:',ts_sort,force_sort,'k.-') 
title(['cantilever tip force for ',num2str(shock_amplitude),'g, ',num2str(pulse_width) ...

,' sec input, ',num2str(num_modes_used),' modes included']) 
legend('all modes','unsorted partial modes','sorted partial modes',4) 
xlabel('time, sec') 
ylabel('Force, gm') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause

max_force = max(abs(force));

max_force_nosort = max(abs(force_nosort)); 
max_force_sort = max(abs(force_sort));

error_nosort_percent = 100*(max_force_nosort - max_force)/max_force 
error_sort_percent = 100*(max_force_sort - max_force)/max_force
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16.4.11 Reduced Models -  Plotted Results, Four Modes Used

Note that in all the frequency response plots that follow , the title w ill indicate 
that “ four” modes are included, the four being the rigid body mode at 0 hz and 
the first three either sorted or unsorted resonances. Because we are 
subtracting the displacement o f  the tip from the displacement o f the shaker to 
find the force in the spring, the rigid body mode is effectively subtracted out, 
allowing us to see the detailed motion o f the beam/mass relative to the shaker. 
This is why the rigid body mode does not show up as one o f  the four 
individual modes used.

Frequency, hz

Figure 16.13: Overall plus individual mode contributions for the four unsorted mode
model.

In Figure 16.13 the first four unsorted modes are used, so the 32 khz beam tip 
mode is not included and the overall response is poor. Both the dc gain and 
high frequency behavior are badly in error. The dc gain error is 75%.
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Frequency, hz

Figure 16.14: Overall plus individual mode contributions for the four sorted mode model.

In Figure 16.14 the 32 khz beam tip mode is one o f  the included modes. Both 
the overall dc gain and high frequency behavior are quite good matches with 
the “ all modes included” model with only four modes included. The dc gain 
error is -6.2%.
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Figure 16.15: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.

cantilever tip  force for 100g, 0.002 sec input, 4 modes included
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Figure 16.15 shows the how the dc gain error in the frequency domain for the 
unsorted model shows up as a significant error in peak response in the time 
domain, 67%. The error in the sorted peak response is only 5.6%.

16.4.12 M odred  -  Setting up, “ mdc”  and “ del”  Reduction, 
Bode Calculations

In this section the user is prompted for whether to use the sorted or original 
mode order, then the corresponding system matrices are defined. The 
“modred” command is used with both the “mdc” and “ del”  options to define 
two reduced systems. The “bode” command is used to calculate frequency 
responses.

% use modred to reduce, select whether to use sorted or unsorted modes for the reduction

modred_sort = input('modred: enter " 1" to use sorted modes for reduced runs, ... 
"enter" to use unsorted ... ');

if isempty(modred_sort)
modred_sort = 0

end

if modred_sort == 1 % use sorted mode order

xnnew = xn(:,index_sort(1:num_modes_total)); 

freqnew = freqvec(index_sort(1:num_modes_total)); 

else % use original mode order

xnnew = xn(:,(1:num_modes_total)); 

freqnew = freqvec((1:num_modes_total));

end

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w.A2; 

zw = 2*zeta*w;

% setup all modes included "a" matrix, system matrix

a = zeros(asize); 

for col = 2:2:asize 

row = col-1;
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a(row,col) = 1; 

end

for col = 1:2:asize 

row = col+1;

a(row,col) = -w2((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% setup input matrix b, state space forcing function in principal coordinates

% f_physical is the vector of physical force
% zeros at each output DOF and input force at the input DOF

f_physical = zeros(numdof,1); % start out with zeros

f_physical(shaker_node_row) = 9807*shaker_mass*1.0; % input force at shaker, 1g

% now setup the principal force vector for the three cases, all modes, nosort, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns consisting of columns
% of xnnew and zeros to give total columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew) 

for row = 1:numdof
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cdisp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew) 

for row = 1:numdof 

cdisp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

% define state space system for reduction, ordered defined by modred_sort

sysforce_red = ss(a,b,mn2gm_conversion*kspring*(cdisp(tip_node_row,:)- ... 
cdisp(shaker_node_row,:)),d);

% define reduced matrices using matched dc gain method "mdc"

states_elim = (2*num_modes_used+1):2*num_modes_total;

sysforce_mdc = modred(sysforce_red,states_elim,'mdc');

[aforce_mdc,bforce_mdc,cforce_mdc,dforce_mdc] = ssdata(sysforce_mdc);

% define reduced matrices by eliminating high frequency states, 'del'

sysforce_elim = modred(sysforce_red,states_elim,'del');

[aforce_elim,bforce_elim,cforce_elim,dforce_elim] = ssdata(sysforce_elim);

% use "bode" command to generate magnitude/phase vectors for reduced systems

[magforce_mdc,phsforce_mdc]=bode(sysforce_mdc,frad) ;

[magforce_elim,phsforce_elim]=bode(sysforce_elim,frad) ;

% convert magnitude to db

magforce_mdcdb = 20*log10(magforce_mdc);

magforce_elimdb = 20*log10(magforce_elim);
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16.4.13 Reduced M odred  M odels -  P lotting Commands

Both the “ del”  and “mdc” reduced systems are plotted and compared with the 
original, non-reduced system. The individual mode contributions to the two 
reduced responses are also plotted.

% start plotting

% modred using 'elim'

loglog(f,magforce( 1, :),'k-',f,magforce_elim( 1, :),'k. -')

if modred_sort == 1
title(['reduced elimination: cantilever tip force for mid-length force, ... 

first ',num2str(num_modes_used),' sorted modes included']) 
dcgain_error_percent_elim_sort = 100*(magforce_elim(1) ...

- magforce(1))/magforce(1)
else

title(['reduced elimination: cantilever tip force for mid-length force, .
first ',num2str(num_modes_used),' unsorted modes included']) 

dcgain_error_percent_elim_nosort = 100*(magforce_elim(1) ...
- magforce(1))/magforce(1)

end

legend('all modes','reduced elimination',3)

xlabel('Frequency, hz') 
ylabel('Force, gm') 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = aforce_elim(index-1:index,index-1:index); 

bmode = bforce_elim(index-1:index); 

cmode = cforce_elim(1,index-1:index); 

dmode = [0];

sysforce_mode = ss(amode,bmode,cmode,dmode); 

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ; 

loglog(f,magforce_mode(1,:),'k-')
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end

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% modred using 'mdc'

loglog(f,magforce( 1, :),'k-',f,magforce_mdc( 1,: ),'k. -')

if modred_sort == 1
title(['reduced matched dc gain: cantilever tip force for mid-length ... 

force, first ',num2str(num_modes_used),' sorted modes included']) 
dcgain_error_percent_mdc_sort = 100*(magforce_mdc(1) ...
- magforce(1))/magforce(1)

else
title(['reduced matched dc gain: cantilever tip force for mid-length .

f orce, first ',num2str(num_modes_used),' unsorted modes included']) 
dcgain_error_percent_mdc_nosort = 100*(magforce_mdc(1) ...
- magforce(1))/magforce(1)

end

legend('all modes','reduced mdc',3)

xlabel('Frequency, hz') 
ylabel('Force, gm') 
grid on

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

max_modes_plot = num_modes_used; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = aforce_mdc(index-1:index,index-1:index); 

bmode = bforce_mdc(index-1:index); 

cmode = cforce_mdc(1,index-1:index); 

dmode = [0];

sysforce_mode = ss(amode,bmode,cmode,dmode); 

[magforce_mode,phsforce_mode]=bode(sysforce_mode,frad) ; 

loglog(f,magforce_mode(1,:),'k-')

end
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disp('execution paused to display figure, "enter" to continue'); pause 

hold off

% now use lsim to calculate force due to a 0.002 sec half-sine 100g shock pulse

[force_mdc,ts_mdc] = lsim(sysforce_mdc,u,t);

[force_elim,ts_elim] = lsim(sysforce_elim,u,t);

plot(ts,force,'k-',ts_mdc,force_mdc,'k.-',ts_elim,force_elim,'k+-')

if modred_sort == 1
title(['modred cantilever tip force for ',num2str(shock_amplitude),'g, . 

',num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), .
' sorted modes included'])

else
title(['modred cantilever tip force for ',num2str(shock_amplitude),'g, . 

',num2str(pulse_width) ,' sec input, ',num2str(num_modes_used), . 
' unsorted modes included'])

end

legend('all modes','reduced - mdc','reduced - elim',4) 
xlabel('time, sec') 
ylabel('Force, gm') 
grid on
disp('execution paused to display figure, "enter" to continue'); pause

max_force_mdc = max(abs(force_mdc)); 
max_force_elim = max(abs(force_elim));

peak_error_mdc_percent = 100*(max_force_mdc - max_force)/max_force 
peak_error_elim_percent = 100*(max_force_elim - max_force)/max_force

end

16.4.14 P lo tting  U nsorted M odred  R educed  R esu lts -  
E lim inating  H igh F requ ency M odes

This section looks at how w ell “modred” performs when unsorted modes are 
used. W e w ill see that the “del” option using the first four unsorted modes 
does a poor job of matching the original response while the “mdc” option 
using the same four unsorted modes does a good job of matching the lower 
frequency range of the response while m issing the tenth mode resonance. The 
overall transient response of the system is matched w ell by the “mdc” option 
while the “del” option has significant error.

© 2001 by Chapman & Hall/CRC



Frequency, hz

Figure 16.16: Overall frequency response with overload individual mode contributions for 
unsorted “del” modred option, with the 12 highest frequency modes eliminated.

Figure 16.16 disp lays the same response as the “unsorted” plot in Figure 16.13 
because the “del” option in modred and our simple modal truncation method 
are equivalent. The dc gain is in error by 75%.

Frequency, hz

Figure 16.17: Overall frequency response with overlaid individual mode contributions for 
unsorted “mdc” modred option, with the 12 highest frequency modes reduced.
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In Figure 16.17, the dc error is very small, 0.0008%. Even though the 32 khz 
mode is not included, the gain in the portion from 1 to 20 khz is close to the 
fu ll model gain.

modred cantilever tip  force for 100g, 0.002 sec input, 4 unsorted modes included

time, sec

Figure 16.18: Half-sine shock pulse response for full, reduced unsorted “mdc” and reduced
unsorted “del” models.

Figure 16.18 shows that the effect of the dc gain error in the frequency domain 
for the unsorted model shows up as a significant error in peak response in the 
time domain, 67%. The error in the unsorted peak response is only 0.09% for 
the “mdc” reduction.

16.4.15 P lo tting  Sorted  M odred  R educed  R esu lts -  
E lim inating  L ow er dc G ain M odes

This Section repeats the analysis of the previous Section but the sorted modes 
are used, retaining the higher dc gain modes. Since the important tenth mode 
is included in the retained sorted modes, we would expect that the reduced 
responses would match the original, a ll modes included response.
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Frequency, hz

Figure 16.19: Overall frequency response with overload individual mode contributions for 
sorted “del” modred option, with the 12 lowest dc gain modes eliminated.

Figure 16.19 shows the same response as the “sorted” plot in Figure 16.14 
because the “del” option in modred and our simple sorted modal truncation 
methods are equivalent. The dc gain is in error by 6.2%.

Frequency, hz

Figure 16.20: Overall frequency response with overload individual mode contributions for 
sorted “mdc” modred option, with the 12 lowest dc gain modes eliminated.

Note the high frequency discrepancy in Figure 16.20, related to using the 
“mdc” modred option. For this problem, which is dominated by the low
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frequency (<10khz) response and the dc gain of the 32 khz mode, the high 
frequency response is not important. The dc gain is in error by only 0.0025%.

modred cantilever t ip  force for 100g, 0.002 sec input, 4 sorted modes included

time, sec

Figure 16.21: Half-sine shock pulse response for full, reduced unsorted and reduced sorted
models.

The errors in peak response are 5.6% for the “del” method and 0.0773%  for 
the “mdc” method.
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16.4.16 Model Reduction Summary

Reduction
Method
Used

Dc gain 
error, 

percent

Peak
error,

percent
Comments

Nosort 75.45 67
This case should show the worst error because the 32 
khz beam tip/spring mode is not included in the lowest 
four frequency modes.

Nosort,
elim

75.45 67
The modred “del” option is the same as the “nosort” 
case because it just eliminates (truncates) the twelve 
highest frequency modes.

Sort 6.19 5.61
Sorting for dc gain with four modes includes the 32 
khz mode, so the dc gain error is reduced. However, it 
still contains errors because the dc gain terms from the 
12 unused modes are not included.

Sort, elim 6.19 5.61
The modred “del” option is the same as the “sort” case 
because it just eliminates (truncates) the twelve lowest 
dc gain modes.

Nosort,
mdc

0.0007 0.0913
The modred “mdc” option, even though it does not use 
the 32 khz mode, takes its dc gain into effect, resulting 
in the small dc gain error. Because the frequency 
content of the shock pulse is low (~250 hz), the low 
frequency portion of the overall transfer function 
dominates the accuracy of the shock response.

Sort, mdc 0.0025 0.0773
Sorting the modes before reducing does not have a 
significant effect on the dc gain because the “mdc” 
operations take into account the dc gain effects of the 
unused modes.

Table 16.3: Summary of model reduction methods used, ranked from highest to lowest 
errors, with comments about each method.

Table 16.3 shows that using the modred “m dc,” (“matched dc gain”) method is 
the preferred method for this problem to obtain accurate results. For results 
that have accuracy in the 5 to 6% range, sorting by dc gain and then removing 
the lower dc gain modes is another available approach. It is clear that 
arbitrarily truncating high frequency modes can lead to significant errors
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because a single, important mode is neglected. Another source of error would 
occur if  the AN SYS model had not included enough elements (modes) to take 
into account the beam tip mode or if  a selected range of eigenvalues had not 
included the mode.

In summary, every model reduction problem provides new challenges and 
needs to be analyzed before m aking a decision about which reduction method 
is most appropriate.

16.5 AN SYS Code cantbeam _ ss_spring_shkr.inp  L isting

The AN SYS code in this section is sim ilar to the code cantbeam _ss.inp  in 
Section 15.7 with the exception that a tip spring and “shaker” mass are added.

! cantbeam_ss_spring_shkr.inp, 0.075 thick x 2 wide x 20mm long steel cant with tip 
! mass and spring on shaker, shaker mass at cantilever base and coupled to spring ground 
! title automatically built based on number of elements and eigenvalue extraction method

/prep7

filename = 'cantbeam_ss_spring_shkr'

! define number of elements to use 

num_elem = 10

! define eigenvalue extraction method, 1 = reduced, 2 = block lanczos 

eigext = 2

*if,eigext,eq,1, then
nummodes = num_elem+1 ! only 1 displacement dof available for

each element
*else

nummodes = 2*(num_elem+1) ! both disp and rotation dofs available for each
! element

*endif

! create the file name for storing data

! first section of filename

aname = 'cantbeam'

! second section of filename, number of elements

bname = num_elem

! third section of filename, depends on eigenvalue extraction method
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*if,eigext,ne,2, then
cname = 'red'

*else
cname = 'bl'

*endif

! reduced 

! block Lanczos

! input the title, use %xxx% to substitute parameter name or parametric expression 

aname_ti = 'cantbeam'

/title,%aname_ti%, %bname%, %cname%, spring tip

et,1,4
et,2,14
et,3,21

! steel

ex,1,190e6
dens,1,7.83e-6
nuxy,1,0.293

! element type for beam
! element type for spring 
! element type for mass

! mN/mmA2 
! kg/mmA3

! real value to define beam characteristics

r,1,0.15,0.05,0.00007031,0.075,0.2 
r,2,1000000
r,3,0.00002349,0.00002349,0.00002349 ! mass at tip, Kg

! beam properties: area, Izz, Iyy, TKz, TKy 
! spring stiffness, mN/mm

! color by material 
! numbers off 
! hidden plot
! show all boundary conditions

r,4,0.050,0.050,0.050

! define plotting characteristics

/view,1,1,-1,1 ! iso view 
/angle,1,-60 ! iso view 
/pnum,mat,1 
/num,1 
/type,1,0 
/pbc,all,1

csys,0

! nodes

n,1,0,0,0
n,num_elem+1,20,0,0

fill, 1 ,num_elem+1

n,num_elem+2,20,0,-3

nall 
nplo

! elements 

! beam

! shaker mass, Kg, approximately 1000 times mass

! define global coordinate system

! left-hand node 
! right-hand node

! interior nodes

! spring connection node
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type,1
mat,1
real,1
e,1,2
egen,num elem,1,-1

! spring at tip

type,2
real,2
e,num elem+1,num elem+2

! mass at tip

type,3
real,3
e,num elem+1

! shaker mass

type,3
real,4
e,1

! couple mass and spring end

nall
d,1,ux,0
d,1,uy,0
d,1,rotx,0
d,1,roty,0
d,1,rotz,0

! constrain all except uz for node 1

d,num elem+2,ux,0 
d,num elem+2,uy,0 
d,num elem+2,rotx,0 
d,num elem+2,roty,0 
d,num elem+2,rotz,0

! constrain all except uz for spring end node

! d,1,uz,0

cp,1,uz,1,num elem+2 ! uz couple shaker mass and spring end node

! constrain all but uz and roty for all other nodes to allow only those dofs

nall
nsel,s,node,,2,num elem+1
d,all,ux
d,all,uy
d,all,rotx
d,all,rotz

nall
eall
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nplo
eplo

fini ! fini just in case not in begin

/solu ! enters the solution processor, needs to be here to do editing below

allsel ! default selects all items of specified entity type, typically nodes, elements

nsel,s,node,,2,num_elem+1
m,all,uz

*if,eigext,eq,1,then ! use reduced method

antype,modal,new
modopt,reduc,nummodes ! method - reduced Householder, nummodes -

! no to extract
expass,off ! key = off, no expansion pass, key = on, do expansion
mxpand,nummodes,,,no ! nummodes to expand,freq beginning,freq

! ending,elcalc = yes - calculate stresses 
total,nummodes, 1 ! total masters, 1 is exclude rotations

*elseif,eigext,eq,2 ! use block lanczos

antype,modal,new
modopt,lanb,nummodes ! no total required for block lanczos because

! calculates all eigenvalues
expass,off
mxpand,nummodes,,,no

*endif

allsel

solve ! starts the solution of one load step of a solution sequence, modal here

fini

! plot first mode 

/post1

/format,,,,,10000

set,1,1

pldi,1

save,%aname%%bname%%cname%,sav

/output,%aname%%bname%%cname%,frq ! write out frequency list to ascii file .frq
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set,list

/output,term ! returns output to terminal

! define nodes for output: forces applied or output displacements 

nsel,s,node,,1,num_elem+1

*do,i,1,nummodes

/angle,1,0
/auto

*do,i,1,nummodes
set,1,i

pldi,1
*enddo

/show,term

/output,%aname%%bname%%cname%,eig ! write out frequency list to ascii file .eig

set,,i
/page,,,1000
prdisp

*enddo

/output,term

! pldi plots

/show,%aname%%bname%%cname%,grp,0 ! save mode shape plots to file .grp

allsel

/view,1,,-1,, ! side view for plotting
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CHAPTER 17

SISO DISK DRIVE ACTUATOR MODEL

This chapter w ill use an AN SYS model of a complete disk drive 
actuator/suspension system to expand on the methods and examples of the last 
two chapters.

W hile simple in appearance, a disk drive actuator/suspension system must 
fu lfill a number of exacting requirements. The suspension system is required 
to provide a stiff connection between the actuator and the head in the 
seeking/track-following direction, while providing a compliant system in a 
direction perpendicular to the plane of the disk. This allows the air bearing 
supported head to comply to the shape and vibration of the disk. The actuator 
is designed with low mass to allow  fast seeking. It must have resonant 
characteristics which provide small residual vibration follow ing a seek from 
one track to another. Since the entire disk drive is subject to various shock 
and vibration events, the actuator dynamics must aid in preventing the head 
from unloading from the disk during the event.

The actuator/suspension system used as the example for this and the next 
chapter is a single disk actuator, with two arms and two suspensions. It is 
purposely designed with poor resonance characteristics (different thickness 
arms, coil positioned off the mass center of the system, etc.) in order to 
provide a richer resonance picture for analysis.

W e w ill assume that the servo system used with the actuator is a sampled 
system with a 20khz sample rate, meaning that the Nyquist frequency is 10khz. 
W e need to understand all the modes of vibration of the system up to at least 
20khz because the sampled system w ill alias frequencies that are higher than 
10khz back into the 0 to 10khz range.

W e w ill find that the dynamics of this ANSYS model with approximately 

21000 degrees of freedom can be described well using between 8 and 20 

modes of vibration (16 to 40 states), depending on what measure of 
“goodness” is used. If we are interested in impulse response, we w ill see in 
the next chapter that using only eight modes results in a system with 
approximately a 5% error. For a good fit in the frequency domain through 10 
khz only 8 modes are required, while a good fit through 20 khz requires 20 
modes. In a well-designed actuator (this example is poorly designed as

17.1 Introduction
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mentioned earlier) fewer than 20 modes are required since symmetry w ill 
couple in fewer modes.

This actuator/suspension model is a good example of what the book is a ll 
about: generating low order models of complicated systems, in this case a 
model which is approximately 1000 times smaller than the original model.

Once the AN SY S model results are availab le, a M ATLAB model w ill be 
created. Then we w ill analyze several methods of reducing the size of the 
model. In the previous chapters, we used dc gains of the individual modes of 
vibration to rank the most important modes to keep. If we use uniform 
damping (the same zeta value for all modes) we w ill reach the same ranking 
conclusion using either dc gain or peak gain. However, if  we use non-uniform 
damping, peak gain ranking is required. The M ATLAB code w ill prompt for 
whether uniform or non-uniform damping is being used and w ill choose the 
appropriate ranking, dc gain or peak gain. The next chapter w ill introduce 
another, more elegant method of ranking modes to be elim inated, balanced 
reduction.

17.2 Actuator Description

Figure 17.1 shows top and cross-sectioned side view s of the actuator used for 
the analysis. The global XYZ coordinate system for the model is indicated.

Figure 17.1: Drawing of actuator/suspension system.
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The shaft is constrained in all directions, providing a fixed reference about 
which the actuator rotates on two ax ially  preloaded ball bearings. This 
actuator is purposely designed to have poor dynamic characteristics, as seen in 
the side view. The coil, to which the Voice C oil Motor (VCM ) forces are 
applied, is not centered between the two bearings and the two arms are of 
unequal thickness. Both the coil force mispositioning and the unequal arm 
thickness inertial effects w ill tend to excite rotations about the x  axis.

The coil is bonded to the aluminum actuator body. During operation, current 
passes through the coil windings. The current interacts with the magnetic field 
from pairs of magnets above and below the straight legs of the coil (not 
shown), creating forces on the straight legs. The direction of the force is 
dependent on the direction of the current in the coil, clockwise or 
counterclockwise. The motion of the actuator due to the coil force is indicated 
by “Actuator Motion.”

The suspensions are designed to provide a preload of several grams force onto 
the disk surface. During operation the preload is counterbalanced by the air 
bearing lifting force, controlling the fly ing height spacing between the head 
and disk to less than several microinches. During shipment, the preload tends 
to hold the head down on the disk surface in the event of shock and vibration 
events, preventing potential damage caused by the head lifting off and striking 
the disk.

17.3 ANSYS Suspension Model Description

Before analyzing the complete actuator/suspension system, we w ill analyze 
only the suspension system. Understanding the dynamics of sensitive 
components of larger assem blies as components can add considerable insight 
to interpretation of the dynamics of the overall system.

The suspension portion of the actuator/suspension model is shown in Figures
17.2 and 17.3. The complete suspension is depicted in Figure 17.2, and the 
“flexure” portion of the suspension is shown in Figure 17.3.
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Figure 17.2: Suspension model.

The recording head (slider) is bonded to the center section o f the flexure. The 
“dimple” at the center o f the slider tongue provides a point contact about 
which the slider can rotate in  the pitch and ro ll directions. The tip o f the 
dimple and the contact point on the underside o f the loadbeam are constrained 
to move together in translation. The flexure body is laser welded to the 
loadbeam (the triangular section), which is itse lf laser welded to the swage 
plate at the left-hand end.

The boundary conditions for the suspension model are: the swage plate is 
constrained in  the x  and z directions and the four slider corners are constrained 
in  the z direction. A  large m ass is attached at the swage plate to allow  for y  
direction ground acceleration forcing function. Because there is no constraint 
in  the y  direction there w ill be a zero-frequency, rig id  body mode in  that 
direction.
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Figure 17.3: Flexure and recording head (slider) portion of suspension. Note the “dimple” 
at the center of the slider, a point about which the slider rotates to comply with the disk

topology.

The model is built w ith the ab ility to easily  change the critical flatness and 
forming parameters because the dynamics o f the suspension are so dependent 
on the geometry. Sm all (0.025 mm, 0.001 inch) defects in  critical forming and 
flatness parameters can drastically change the resonance characteristics,

The suspension model is made completely o f eight-node brick elements. 
Laser welds and bonded jo ints are simulated by “m erging” the nodes being 
welded or bonded, essentially creating a r ig id  jo in t at that connection.

The AN SYS suspension-only model, srun .in p , is included in  the availab le 
downloads but w ill not be discussed. Running the model with different values 
for the three input parameters “zht,” “bump” and “offset” w ill show the 
extreme sensitivity of the first torsion mode (described below) to these 
parameters.

17.4 ANSYS Suspension Model Results

The suspension has six modes o f vibration in  the 0 to 10 khz frequency range. 
The AN SYS frequency response plot for the suspension is shown in  Figure 
17.4. The six  modes in  the 0 to 10 khz w ill be plotted and described below.
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17.4.1 Frequency Response

Figure 17.4: Suspension frequency response for a y direction forcing function.

17.4.2 Mode Shape Plots

Figure 17.5: Mode 2, 2053 hz, first bending mode.
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Figure 17.6: Mode 3, 3020 hz, first torsion mode.

Figure 17.7: Mode 4, 6406 hz, second bending mode.
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Figure 17.8: Mode 5, 6937 hz, sway or lateral mode.

Figure 17.9: Mode 6, 8859 hz, second torsion mode.

The suspension frequency response plot and mode shape plots complement 
each other and help to develop a v isua l, intuitive understanding of modal 
coupling. The only modes that have y  direction motion of the slider relative to 
the swage plate are the first torsion and sw ay modes as can be seen in  the 
frequency response plot of Figure 17 .4 . A ll the other modes have motions 
which are orthogonal to the motion o f interest. The first bending mode is the
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most obvious example. Since its motion in only in the z  direction, it cannot be 
excited by a y  direction forcing function, and thus, does not couple into the 
frequency response.

17.5 ANSYS Actuator/Suspension Model Description

The complete actuator/suspension model is shown in Figure 17.10. It also is 
made of eight-node brick elements except for the inclusion of spring elements 
which are used to simulate the ball bearings’ individual ball stiffnesses.

The shaft and inner rad ii of the two ball bearing inner rings are fully 
constrained. The four corners of each of the sliders are constrained for zero 
motion in the z direction, essentially creating an infinitely stiff air bearing.

Actuator/Suspension Model

Figure 17.10: Complete actuator/suspension model.
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Figure 17.11: Actuator / suspension model, four views.

The primary motion of the actuator is rotation about the pivot bearing, 
therefore the final model has the coordinate system transformed from a 
Cartesian x ,y ,z coordinate system to a Cylindrical, r, 0 and z system, with the 
two origins coincident.

Figure 17.12: Nodes used for reduced MATLAB model. Shown with partial finite element
mesh at coil.

© 2001 by Chapman & Hall/CRC



For reduced models we only require eigenvector information for degrees of 
freedom where forces are applied and where displacements are required. 
Figure 17.12 shows the nodes used for the reduced M ATLAB model. The 
four nodes 24061, 24066, 24082 and 24087 are located in the center of the 
coil in the z direction and are used for simulating the VCM  force. The forces 
created by the interactions between the current in the straight legs of the coil 
and the magnetic field are perpendicular to the straight leg  sections. Since the 
coordinate system is cylindrical, the forces are decomposed into rad ial and 
circumferential components as shown in Figure 17.12. Nodes 22 and 10022 
are the nodes for the top and bottom heads (heads 1 and 0), respectively. The 
arrows at the nodes indicate the direction of forces, and the angles show the 
directions of the force, measured from the circumferential direction. The 
components in the rad ial and circumferential directions are taken using the 
angles.

The model uses only the circumferential motion of the heads, which, if  divided 
by the radius from the pivot to the head, w ill give output in radians.

The actuator/suspension AN SYS code, arun.inp, is too large to be listed here 
but is available for downloading.

17.6 ANSYS Actuator/Suspension Model Results

A recommended sequence for analyzing dynamic finite element models is:

1) Plot resonant frequencies versus mode numbers to get a feel 
for the frequency range. See if  there are any significant jumps 
in frequency between modes which can indicate the system 
transitioning from one type of characteristic motion to another.
For example, a sequence of bending modes transitioning into a 
sequence of torsional modes.

2) Plot frequency responses to define which modes couple into 
the response.

3) Plot and animate the mode shapes that contribute to the 
response, identifying modes that couple into motions in 
directions of interest and those that do not. V isually get a 
sense of how the geometry of the structure affects the modes.

4) Run parameter studies to understand the sensitivity of critical 
modes to design variables: dimensions, tolerances, material 
properties, etc.
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The actuator/suspension model was run using the B lock Lanczos method to 
extract the first 50 eigenvalues and eigenvectors. The plot of frequency versus 
number of modes is shown in Figure 17.13. The first mode, the rig id  body 
mode, w as calculated to be 0.0101 hz, with the first oscillatory mode 
frequency at 785 hz.

17.6.1 Eigenvalues, Frequency Responses

mode number

Figure 17.13: Frequencies versus mode number.

Mode 50 is at 22350 hz, which is slightly higher than our objective of 
including all the modes through 20 khz.

Frequency responses for the displacements of heads 0 and 1 (bottom and top 
heads) for coil input force can be seen in Figures 17.14 and 17.15. Mode 
shape plots, with undeformed and deformed shapes, are then shown for the 
modes which are evident in the frequency response plots. In addition, some 
typ ical modes that do not couple into the frequency response are shown.
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Frequency, hz

Figure 17.14: Frequency response for head 0 for coil input.

Frequency, hz

Figure 17.15: Frequency response for head 1 for coil input.

17.6.2 Mode Shape Plots

In this section we w ill plot overlaid undeformed and deformed modes shapes 
for selected modes, which w ill then be described and discussed in the next 
section.
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Figure 17.16: Mode 1 undeformed/deformed mode shape plot, 0.012 hz rigid body
rotation.

Figure 17.17: Mode 2 mode shape plot, 785 hz. Bending of bottom arm.
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Figure 17.18: Mode 3 mode shape plot, 885 hz, coil and bottom arm bending.

ANSYS 5.5.3
MAR 3 2000
12:42:43
PLOT WO. 6
DISPLACEMENT
STEP=1
SUB =6
FREQ=2114
RSYS=1
DMX =40.224

DSCA=.110606 
XV =1 
YV =-1 
ZV =1 
DIST=45.12 
XF =10.293 
YF =.051729 
ZF =5.727 
A-ZS=-60 
CEWTROID HIDDEN

Figure 17.19: Mode 6 mode shape plot, 2114 hz, coil torsion.
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Figure 17.20: Mode 7 mode shape plot, 2159 hz, suspension bending modes.

Figure 17.21: Mode 9 mode shape plot, 2939 hz, suspension torsion mode.
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Figure 17.22: Mode 11 mode shape plot, 4305 hz, system mode.

Figure 17.23: Mode 12 mode shape plot, 4320 hz, radial mode.
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Figure 17.24: Mode 13 mode shape plot, 5146 hz.

Figure 17.25: Mode 18 mode shape plot, 6561 hz.

© 2001 by Chapman & Hall/CRC



ANSYS 5.5.3
MAR 3 2000
12:45:18
PLOT WO. 24
DISPLACEMENT
STEP=1
SUB =24
FREQ=9152
RSYS=1
DMX =26.382

DSCA=.168637 
XV =1 
YV =-1 
ZV =1 
DIST=45.669 
XF =10.266 
YF =.398419 
ZF =4.335 
A-ZS=-60 
CEWTROID HIDDEN

Figure 17.26: Mode 24 mode shape plot, 9152 hz.

17.6.3 Mode Shape Discussion

W e w ill now correlate the two frequency response plots, Figures 17.14 and 
17.15, with the mode shape plots above to start getting an intuitive feel for 
which modes couple into the response plots and which modes do not.

Mode 1, the rig id  body mode, shows up as the 40db/decade low frequency 
slopes on both frequency responses, head 0  and head 1.

M odes 2  and 3, at 785 and 884 hz, are representative o f modes that do not 
couple because of the direction o f the motion. Both modes involve only 
bending motions of arms and/or co il in  the x-z plane. S ince the motions are 
perpendicular (orthogonal) to the direction of force and to the direction o f the 
head in  the circumferential direction, the modes should not couple into the 
frequency response plots. Therefore we see no resonance peaks at these two 
frequencies.

Mode 6 at 2114 hz is a coil/actuator torsion mode that shows up as the small 
pole/zero pair in  the head 1 frequency response.

Mode 7 at 2159 hz is a suspension bending mode that does not couple into the 
response.

Mode 9 at 2939 hz is a suspension torsion mode that interacts with the rig id  
body mode to create the significant pole/zero pair at 2939 hz.
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M odes 11 and 12 at 4305 hz and 4320 hz are the major system modes with 
significant y  direction motion of the coil, bearings, arms and suspensions. 
These are the two modes associated with the highest resonant peak in the 
frequency response. W hat appears to be a single peak is actually two peaks.

Mode 13 at 5146 hz is a mode which involves torsion of the coil and actuator 
body about the x  axis with the suspensions moving torsionally and laterally.

Mode 18 at 6561 hz is a suspension sway mode, where the suspension-only 
mode at 6937 hz (Figure 17.8) is reduced to 6561 hz because it is attached to 
the flexib le actuator.

Mode 24 at 9152 hz is a h ighly deformed actuator mode, in which the actuator 
hub moves significantly about the ball bearing, the coil deforms and 
suspensions and arms deflect.

17.6.4 ANSYS Output Example Listing

A partial listing of the eigenvector output (actrl.eig) for modes 1, 2, 11 and 12 
is shown below. These four modes were chosen for listing and discussion 
because they illustrate some key points about interpreting AN SYS eigenvector 
output. The important information in each of the eigenvector sections is 
highlighted in bold type. The “SUBSTEP” is the mode number, and “FREQ” 
is the eigenvalue in hz. Since the output is in cylindrical coordinates, UX, UY 
and UZ refer to radial, circumferential and z axis coordinates, respectively. 
Since all the elements attached to the six nodes listed are eight-node brick 
elements, with only translational degrees of freedom, all the rotation 
eigenvector values are zero. The six nodes listed correspond to the two heads, 
22 and 10022 and the four coil forcing function nodes, 24061, 24066, 24082 
and 24087. See Figure 17.12 for node locations. W e need both rad ial (UX) 
and circumferential (UY) directions because the forces applied by the VCM to 
the coil are perpendicular to the straight legs of the coil, and have both radial 
and circumferential components.

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 
FREQ= 0.11877E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY 
22 0.30718E-06 32.772 0.85804E-12 0.0000 0.0000

ROTZ
0.0000
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10022 0.30759E-06 32.772 -0.49994E-10 0.0000 0.0000 0.0000
24061 0.11969E-06 16.968 -0.17668E-08 0.0000 0.0000 0.0000
24066 0.77415E-07 10.274 -0.15751E-08 0.0000 0.0000 0.0000
24082 0.68508E-07 10.274 -0.15395E-08 0.0000 0.0000 0.0000
24087 0.10089E-06 16.968 -0.16990E-08 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 22 24061 0 0 0
VALUE 0.30759E-06 32.772 -0.17668E-08 0.0000 0.0000 0.0000 

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2 
FREQ= 785.39 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 -0.25631 -0.19637E-01 0.15936E-04 0.0000 0.0000 0.0000

10022 0.92764 -0.10736 0 .29519E-02 0.0000 0.0000 0.0000
24061 0.18573 -0.67085E-01 -5.7724 0.0000 0.0000 0.0000
24066 0.17688 -0.88331E-01 -2.1255 0.0000 0.0000 0.0000
24082 0.17616 0.95885E-01 -2.1213 0.0000 0.0000 0.0000
24087 0.18506 0.79278E-01 -5.7661 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 10022 24061 0 0 0
VALUE 0.92764 -0.10736 -5.7724 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 11 
FREQ= 4305.3 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 -4.4488 27.588 -0.66528E-04 0.0000 0.0000 0.0000

10022 3.9832 41.657 0.44809E-01 0.0000 0.0000 0.0000
24061 ■0.43605 -10.023 -8.7664 0.0000 0.0000 0.0000
24066 0.35112 -3.5631 -11.532 0.0000 0.0000 0.0000
24082 3.9625 -1.1137 -14.210 0.0000 0.0000 0.0000
24087 5.0136 -7.8562 -6.0297 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24087 10022 24082 0 0 0
VALUE 5.0136 41.657 -14.210 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****
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LOAD STEP= 1 SUBSTEP= 12 
FREQ= 4320.1 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM
1

NODE UX UY UZ ROTX ROTY ROTZ
22 4.3947 36.811 -0.25761E-02 0.0000 0.0000 0.0000

10022 -0.88223 62.097 0.34209E-01 0.0000 0.0000 0.0000
24061 -5.3622 -11.584 3.9397 0.0000 0.0000 0.0000
24066 -3.9590 -2.2258 10.513 0.0000 0.0000 0.0000
24082 0.81662 -4.0070 7.7931 0.0000 0.0000 0.0000
24087 2.0281 -13.160 6.6813 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 24061 10022 24066 0 0 0
VALUE -5.3622 62.097 10.513 0.0000 0.0000 0.0000

W e w ill now discuss the eigenvector listings above in light of the frequency 
response and mode shape plots reviewed earlier. Once again, we w ill make 
the connection between modes that contribute to frequency responses and 
those that do not.

Mode 1 shows that a ll the UX and UZ entries are essentially zero, which is 
appropriate for a rig id  body mode where the actuator is rotating about the 
shaft, with only circumferential, U Y, displacements. The relative amplitudes 
of each U Y  entry are related by their rad ial distances from the shaft. The 
frequency calculated is not exactly zero because of rounding and slight 
geometric errors which create small stiffnesses in rotation about the shaft.

Mode 2 is the first oscillatory mode, the arm bending mode. A  mode which 
involves only UZ motion w ill have no cross-coupling in the y  direction since 
the actuator system is symmetrical about the x  axis. In a typ ical disk drive, the 
actuator is not perfectly symmetrical, and modes whose motions are prim arily 
in the vertical direction w ill couple in the y  direction. A ll of the U Y  entries 
for this mode are very small relative to the UZ entries, indicating that the 
contribution of this mode to the y  direction motion of the head should be 
small.

M odes 12 and 13 are the major system modes, those modes with the highest 
amplitude motion on the frequency response plot. The entries in the UY 
column are significant relative to the entries for mode 2 and are of the same 
order of magnitude as those in mode 1. This indicates that this mode is 
relatively important for our desired frequency response.
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The eigenvalues and UX and UY eigenvector entries are stripped out of the 
actrl.eig file  and stored in the M ATLAB .mat file actrl_eig.m at (Appendix 1). 
Now we are ready to read the AN SYS results into M ATLAB and start 
developing the reduced model.

17.7 MATLAB Model, MATLAB Code act8.m Listing and Results

17.7.1 Code Description

The code starts by reading in the AN SYS model eigenvalue and eigenvector 
results for all 50 modes from actrl_eig.m at. The VCM  force components in 
the radial and circumferential directions are then defined using the angles 
shown in Figure 17.12.

The user is prompted to specify whether the same zeta value is to be used for 
all modes (uniform damping), or whether each mode can have different values, 
non-uniform damping. If uniform damping is specified, the user is prompted 
to enter a value for zeta, a vector of uniform damping values is created and dc 
gains are calculated. If non-uniform damping is chosen, a damping vector is 
read in from zetain.m and peak gains are calculated. The appropriate gains 
are then sorted and plotted, indicating the most important modes to retain. 
Typically uniform damping is taken in the range of 0.005 (0.5% of critical 
damping) to 0.02 (2% of critical damping). If experimental data is available, 
the damping values for each mode in zetain.m can be matched to its 
experimentally determined value.

Once the user defines the number of modes to be retained, two state space 
systems are automatically built. The first includes all 50 modes and the 
second includes the sorted, reduced number of modes. The 50-mode response 
is plotted for either head 0 or head 1 with individual mode contributions 
overlaid.

Since the servo system postulated for the actuator has a 20 khz sample 
frequency, the Nyquist frequency is half that, or 10 khz. This means that 
resonances higher in frequency than the Nyquist frequency w ill be aliased 
back to the 0 to 10 khz range. The user is prompted for the sample frequency 
to be used (default 20 khz). The M ATLAB “c2d” command is used to create 
a discrete model of the original continuous system. A  discrete frequency 
response, with upper lim it of the Nyquist frequency, is created and plotted, 
overlaying the original continuous frequency response. If the sample rate is 
high enough, this overlay allows one to see that it w ill not alias critical modes 
of vibration. Experimentally, the only information available from a discrete 
servo system frequency response is up to the Nyquist frequency. 
Measurements which are independent of the servo system (such as from an

© 2001 by Chapman & Hall/CRC



external laser measurement system) are required to identify modes higher than 
the Nyquist frequency. An example of using a very low sampling frequency 
with this actuator system w ill be shown.

Frequency responses are calculated using the reduced, sorted modes, 
truncating the less important modes and using the “modred” “mdc” option. 
Truncating is the same as using the “del” option on the M ATLAB “modred” 
command.

17.7.2 Input, dof Definition

The first section of code reads in the eigenvalue/eigenvector data from 
actrl_eig.mat and defines explicitly the degrees of freedom used. The 
original AN SYS model has approximately 21000 degrees of freedom. By 
defining only the degrees of freedom required for the desired frequency 
response, we can reduce the number of degrees required for the M ATLAB 
model to 12: the rad ial and circumferential components of the two head nodes 
and the four coil forcing function nodes.

% act8.m

clear all; 

hold off; 

clf;

% load the Block Lanczos .mat file actrl_eig.mat, containing evr - the modal matrix,
% freqvec - the frequency vector and node_numbers - the vector of node numbers
% for the modal matrix

% the output for the ANSYS run is the following dofs

% dof node dir where
% 1 22 ux - radial, top head gap
% 2 10022 ux - radial, bottom head gap
% 3 24061 ux - radial, coil
% 4 24066 ux - radial, coil
% 5 24082 ux - radial, coil
% 6 24087 ux - radial, coil
% 7 22 uy - circumferential, top head gap
% 8 10022 uy - circumferential, bottom head gap
% 9 24061 uy - circumferential, coil
% 10 24066 uy - circumferential, coil
% 11 24082 uy - circumferential, coil
% 12 24087 uy - circumferential, coil

load actrl_eig;
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[numdof,num_modes_total] = size(evr);

freqvec(1) = 0; % set frequency of rigid body mode to zero

xn = evr;

17.7.3 Forcing Function Definition, dc Gain Calculation

A vector of the squares of the eigenvalues, in rad/sec units, for use in the gain 
calculations is generated. L ike the dc gain calculation with a rig id  body mode 
discussed in the last chapter, we w ill again calculate the low frequency gain of 
the rig id  body mode using the lowest frequency defined in the frequency 
response calculation.

The forcing function components for the four coil nodes are defined, again 
using Figure 17.12 as the reference. A  unity force is applied at the coil, and 
evenly distributed among the four nodes. The force at each coil node is 
decomposed into its components in the radial and circumferential (x and y) 
directions. The coil forces in physical coordinates are then defined for each 
coil node and where the ux and uy force entries for the head nodes, dof 1, 2, 7 
and 8 are a ll zero.

A  discussion of what is meant by “Single Input Single Output” (SISO) is 
appropriate here. This model is a “SI” or Single Input model because the 
same force is applied to all four coil nodes, requiring only a single column 
vector for the input matrix “b.” The fact that forces are applied to multiple 
nodes has no significance relative to the “SI” definition.

In Chapter 15, (15.2) and (15.3), we found that the dc gain and peak gain of 
for the ith mode are given by the expressions:

H = j * ,  ( 1 7 1 )

Fki Ю

= -£- (d cg a in ) (17.2)
Fki 2Zi

where z njiz nki, the residue, is the product of the jth  (output) row and kth

(force applied) row terms of the ith eigenvector divided by the square of the 
eigenvalue for the ith mode and Z is the damping for the ith mode. For all the 
models so far in the book, forces have been applied at a single node and 
displacements have been taken at a single node, m aking the above definitions
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clear. Here we are applying the same force to four coil nodes, so we w ill 
define a composite forcing function which w ill consist of the force applied to 
each node times the eigenvector value for that node, f_physical’*xn. The 
dimensions of this operation are (1 x  ndof) x  (ndof x  nmodes) = (1 x  nmodes), 
so we have a composite force vector for each mode.

This composite force vector is then multiplied element by element by the rows 
of the eigenvector matrix corresponding to the uy direction displacements of 
the two heads.

W e w ill calculate and plot the gains for both head 0 and head 1 but w ill only 
calculate frequency response results for one or the other (user defined). Thus 
there is no ambiguity about whether to rank modes based on the gains of head 
0 or head 1, only the one chosen for frequency response calculations is used 
for ranking.

% calculate the dc amplitude of the displacement of each mode by 
% multiplying the composite forcing function by the output row

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square

% define frequency range for frequency response

freqlo = 501;

freqhi = 25000;

flo=log10(freqlo) ; 
fhi=log10(freqhi) ;

f=logspace(flo,fhi,300) ; 
frad=f*2*pi ;

% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity

n24061fx = 0.25*sin(9.1148*pi/180); 
n24061fy = 0.25*cos(9.1148*pi/180);

n24066fx = 0.25*sin(15.1657*pi/180); 
n24066fy = 0.25*cos(15.1657*pi/180);

n24082fx = -0.25*sin(15.1657*pi/180); 
n24082fy = 0.25*cos(15.1657*pi/180);

n24087fx = -0.25*sin(9.1148*pi/180); 
n24087fy = 0.25*cos(9.1148*pi/180);

% f_physical is the vector of physical force
% zeros at each output dof and input force at the input dof
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f_physical = [ 0 
0

n24061fx
n24066fx
n24082fx
n24087fx

0
0

n24061fy 
n24066fy 
n24082fy 
n24087fy ] ;

%  define composite forcing function, force applied to each node times
eigenvector value 

% for that node

force = f_physical'*xn;

% choose which head to use for frequency responses

head = input('enter "0" default for head 0 or "1" for head 1 ... ');

i f  isempty(head)
head = 0;

end

% prompt for uniform or variable zeta

zeta_type = input('enter " 1" to read in damping vector (zetain.m) ... 
or "enter" for uniform damping ... ');

i f  (isempty(zeta_type))

zeta_type = 0;

zeta_uniform = input('enter value for uniform damping, ...
.005 is 0.5% of critical (default) ... ');

i f  (isempty(zeta_uniform))
zeta_uniform = 0.005;

end

zeta_unsort = zeta_uniform*ones(num_modes_total,1); 

gainstr = ‘dc gain ’ ;

else

zetain; % read in zeta_unsort damping vector from zetain.m file 

gainstr = ‘peak gain ’ ;

end
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%

if  length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',num2str(length(zeta_unsort)), ...
' entries instead of ',num2str(num_modes_total)]);

end

calculate dc gains if  uniform damping, peak gains i f  non-uniform

if  zeta_type == 0 % dc gain

gain_h0 = abs([force(1)*xn(8,1)/frad(1) ...
force(2 :num_modes_total). *xn(8,2 :num_modes_total) ... 
./omega2(2:num_modes_total)]);

gain_h1 = abs([force(1)*xn(7,1)/frad(1) ...
force(2 :num_modes_total). *xn(7,2 :num_modes_total) ... 
./omega2(2:num_modes_total)]);

e lseif zeta_type == 1 % peak gain

gain_h0 = abs([force(1)*xn(8,1)/frad(1) ...
force(2 :num_modes_total). *xn(8,2 :num_modes_total) ...
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1 = abs([force(1)*xn(7,1)/frad(1) ... 
force(2:num_modes_total).*xn(7,2:num_modes_total) ... 
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

end

sort gains, keeping track of original and new indices so can rearrange 
eigenvalues and eigenvectors

[gain_h0_sort,index_h0_sort] = sort(gain_h0); 

[gain_h1_sort,index_h1_sort] = sort(gain_h1); 

gain_h0_sort = fliplr(gain_h0_sort); 

gain_h1_sort = fliplr(gain_h1_sort); 

index_h0_sort = fliplr(index_h0_sort) 

index_h1_sort = fliplr(index_h1_sort) 

index_orig = 1:num_modes_total; 

i f  head == 0

index_sort = index_h0_sort; 

headstr = 'head 0';

% m ax to min 

% m ax to min 

% m ax to min indices 

% m ax to min indices
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index_out = 2; 

e lseif head == 1

index_sort = index_h1_sort; 

headstr = 'head 1'; 

index_out = 1;

end

% plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'k-');
title('frequency versus mode number')
xlabel('mode number')
ylabel('frequency, hz')
grid off
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_h0,'k-',index_orig,gain_h1,'k.-')
title('dc value of each mode contribution versus mode number')
xlabel('mode number')
ylabel('dc value')
legend('head 0','head 1')
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(freqvec(2 :num_modes_total),gain_h0(2:num_modes_total),'k-', ...
freqvec(2:num_modes_total),gain_h1(2:num_modes_total),'k.-') 

title('dc value of each mode contribution versus frequency') 
xlabel('frequency, hz') 
ylabel('dc value') 
legend('head 0','head 1') 
axis([500 25000 -inf 1e-4]) 
grid off
disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_orig,gain_h0_sort,'k-',index_orig,gain_h1_sort,'k.-')
title('sorted dc value of each mode versus number of modes included')
xlabel('modes included')
ylabel('sorted dc value')
legend('head 0','head 1')
grid off

% choose number of modes to use based on ranking of dc gain values

num_modes_used = input(['enter how many modes (including rigid body) ... 
to include, 'num2str(num_modes_total),' max, 8 default ... ']);

i f  (isempty(num_modes_used))
num_modes_used = 8;

end
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num_states_used = 2*num_modes_used;

17.7.4 Ranking Results

Here, we w ill begin by review ing the frequency versus mode number plot to 
get a feel for the frequency range of the model.

mode number

Figure 17.27: Frequency versus mode number.

mode number

Figure 17.28: dc gain versus mode number, uniform damping zeta 0.005 (0.5% of critical
damping) for all modes.
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mode number

Figure 17.29: Peak gain versus mode number, non-uniform damping, zeta = 0.04 (4% of 
critical damping) for modes 11, 12 and 13.

The dc and peak gain plots for both head 0 and head 1 are shown above. Note 
the relative heights of the dc and peak gains for modes 11, 12 and 13. In the 
peak gain plot, those three gains are lower than the two gains im m ediately to 
the left. Conversely, in the dc gain plot the three modes are the highest gains 
with the exception of the rig id  body mode.

The same two plots versus frequency, instead of mode number:

frequency, hz

Figure 17.30: dc gain versus frequency.

© 2001 by Chapman & Hall/CRC



frequency, hz

Figure 17.31: Peak gain versus frequency.

The gain plots versus mode number include the rig id  body mode low 
frequency gain, while the gain plots versus frequency do not include the rig id  
body mode.

Figure 17.32 shows the modes ranked from most to least significant for the 
uniform damping (dc gain) case and includes the low frequency (500 hz) dc 
gain of the rig id  body mode.

modes included

Figure 17.32: Sorted dc gain versus number of modes included.
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R elative to the 500 hz low frequency gain of the rig id  body mode, the next 
most significant mode is lower by almost six orders of magnitude. Note that 
both head 0 and head 1 have sim ilar magnitude curves, although the ordering 
of individual ranked modes are different. Furthermore, after the drop in dc 
gain from the rig id  body mode to the second mode, there are no other 
significant drops. Gain is changing gradually, so there is no clear demarcation 
indicating the number of modes needed to be included. Picking the number of 
modes to use w ill be quite subjective, with each additional mode improving 
the model only slightly.

17.7.5 Building State Space Matrices

To prepare for building the system matrices, two sets of eigenvalue vectors 
and eigenvector m atrices are defined. The first set is the original, unsorted 
eigenvalues and eigenvectors. The second set consists of the rearranged 
eigenvalues, eigenvectors and the damping vector, sorted by dc or peak gain. 
Using the same techniques defined in earlier chapters, the a, b and c matrices 
are formed.

% define eigenvalues and eigenvectors for unsorted and sorted modes

% all modes included model, use original order

xnnew = xn(:,(1:num_modes_total));

freqnew = freqvec((1:num_modes_total));

zeta = zeta_unsort;

% all modes included, sorted

xnnew_sort = xn(:,index_sort(1:num_modes_total));

freqnew_sort = freqvec(index_sort(1:num_modes_total));

zeta_sort = zeta_unsort(index_sort(1:num_modes_total));

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

w2 = w .A2;

zw = 2*zeta_unsort.*w;

% define variables for all modes included sorted system matrix, a_sort

w_sort = freqnew_sort*2*pi; % frequencies in rad/sec
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zw_sort = 2*zeta_sort.*w_sort;

% define size of system matrix

asize = 2*num_modes_total;

disp(' ') ; 
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);

% setup system matrix for all modes included model

a = zeros(asize); 

for col = 2:2:asize 

row = col-1; 

a(row,col) = 1; 

end

for col = 1:2:asize 

row = col+1;

a(row,col) = -w2((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% setup system matrix for sorted all modes included model

a_sort = zeros(asize); 

for col = 2:2:asize 

row = col-1; 

a_sort(row,col) = 1; 

end

for col = 1:2:asize

w2_sort = w_sort.A2;
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row = col+1;

a_sort(row,col) = -w2_sort((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a_sort(row,col) = -zw_sort(col/2); 

end

% setup input matrix b, state space forcing function in principal coordinates

% now setup the principal force vector for the three cases, all modes, sort

% f_principal is the vector of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the vector of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_total

b(2*cnt) = f_principal(cnt);

end

% f_principal_sort is the vector of forces in principal coordinates

f_principal_sort = xnnew_sort'*f_physical;

% b_sort is the vector of forces in principal coordinates, state space form

b_sort = zeros(2*num_modes_total,1); 

for cnt = 1:num_modes_used

b_sort(2*cnt) = f_principal_sort(cnt);

end

% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates
% cdisp and cvel each have numdof rows and alternating columns
% consisting of columns of xnnew and zeros to give total columns equal
% to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew)
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for row = 1:numdof

c_disp(row,col) = xnnew(row,ceil(col/2)); 

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew) 

for row = 1:numdof

c_disp(row,col) = 0; 

cvel(row,col) = xnnew(row,col/2);

end

end

% all modes included sorted cdisp and cvel

for col = 1:2:2*length(freqnew_sort) 

for row = 1:numdof

cdisp_sort(row,col) = xnnew_sort(row,ceil(col/2)); 

cvel_sort(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew_sort) 

for row = 1:numdof

cdisp_sort(row,col) = 0; 

cvel_sort(row,col) = xnnew_sort(row,col/2);

end

end

% define output

d = [0]; %
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Now that the original and sorted state space matrices are availab le, we can use 
the “ss” command to define the systems for analysis. The following systems 
are set up:

1 ) unsorted model with all modes included

2 ) sorted model with all modes included

3) sorted, truncated reduced model using the sorted model from
2 ) above (same as the “modred” “del” option)

4) sorted, “modred” “mdc” option reduction using the sorted 
model from 2) above

The bode command is used to define magnitude and phase vectors for (1), (3) 
and (4 ) above.

In order to see the effects of different servo sample rates on aliasing of high 
frequency modes, the user is prompted to enter a sample frequency, which 
defaults to 20 khz. Examples of several sample rates are shown below. A 
discussion of a liasing is outside the scope of the book but several references 
are recommended (Franklin 1994 and Franklin 1998).

17.7.6 Define State Space Systems, Original and Reduced

% define state space systems with the "ss" command, outputs are the
% two gap displacements

% define unsorted all modes included system

sys = ss(a,b,c_disp(7:8,:),d);

% define sorted all modes included system

sys_sort = ss(a_sort,b_sort,cdisp_sort(7:8,:),d);

% define sorted reduced system

a_sort_red = a_sort(1:num_states_used,1:num_states_used);

b_sort_red = b_sort(1:num_states_used);

cdisp_sort_red = cdisp_sort(7:8,1:num_states_used);

sys_sort_red = ss(a_sort_red,b_sort_red,cdisp_sort_red,d);

% define modred "mdc" reduced system, modred "del" option same as sorted reduced
above
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states_del = (2*num_modes_used+1):2*num_modes_total; 

sys_mdc = modred(sys_sort,states_del,'mdc'); 

sys_mdc_nosort = modred(sys,[17:100],'mdc');

% use "bode" command to generate magnitude/phase vectors

[mag,phs] = bode(sys,frad);

[mag_sort_red,phs_sort_red] = bode(sys_sort_red,frad); 

[mag_mdc,phs_mdc]=bode(sys_mdc,frad) ;

[mag_mdc_nosort,phs_mdc_nosort]=bode(sys_mdc_nosort,frad) ;

% convert magnitude to db

magdb = 20*log10(mag); 

mag_sort_reddb = 20*log10(mag_sort_red); 

mag_mdcdb = 20*log10(mag_mdc);

% check on discretized system aliasing

sample_freq = input('enter sample frequency, khz, default 20 khz ... '); 

i f  isempty(sample_freq)

sample_freq = 20;

end

nyquist_freq = sample_freq/2;

disp(['Nyquist frequency is ',num2str(nyquist_freq),' khz']); 

ts = 1/(1000*sample_freq); 

freqdlo = 500;

freqdhi = 1000*nyquist_freq; % only take frequency response to nyquist_freq

fdlo=log10(freqdlo) ; 
fdhi=log10(freqdhi) ;

fd=logspace(fdlo,fdhi,400) ; 
fdrad=fd*2*pi ;

sysd = c2d(sys,ts);

[magd,phsd] = bode(sysd,fdrad);
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magddb = 20*log10(magd);

17.7.7 Plotting of Results

The code section below plots the frequency response for the model including 
all 50 modes and overlaying the individual mode contributions. The sampled 
frequency response is also plotted, with an overlay of the original 50-mode 
model response for comparison.

The two reduced models are then plotted, including the individual mode 
contributions.

The workspace in saved in act8_data.mat for use in the balreal.m code in 
Chapter 18.

% start plotting

% plot all modes included response

loglog(f,mag(index_out,:),'k.-')
title([headstr ', gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 -inf 1e-4])
grid off
disp('execution paused to display figure, "enter" to continue'); pause 

hold on

max_modes_plot = num_modes_total; 

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a(index-1:index,index-1:index); 

bmode = b(index-1:index); 

cmode = c_disp(7:8,index-1:index); 

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode); 

[mag_mode,phs_mode]=bode(sys_mode,frad) ; 

mag_modedb = 20*log10(mag_mode);
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end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause 

hold off

loglog(f,mag(index_out,:),'k-',fd,magd(index_out,:),'k.-') 
title([headstr ', gap displacement, all ',num2str(num_modes_total), ...

' modes included, Nyquist frequency ',num2str(nyquist_freq),' hz']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
legend('continuous','discrete') 
axis([500 25000 1e-8 1e-4]) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

i f  num_modes_used < num_modes_total % calculate and plot reduced models

% sorted modal truncation

loglog(f,mag(index_out,:),'k-',f,mag_sort_red(index_out,:),'k.-') 
title([headstr ', sorted modal truncation: gap displacement, first ', ...

num2str(num_modes_used),' modes included']) 
legend('all modes','sorted partial modes',3) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-8 1e-4]) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index); 

bmode = b_sort(index-1:index); 

cmode = cdisp_sort(7:8,index-1:index); 

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode); 

[mag_mode,phs_mode]=bode(sys_mode,frad) ;

loglog(f,mag_mode(index_out,:),'k-')
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end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

% modred using 'mdc'

loglog(f,mag(index_out,:),'k-',f,mag_mdc(index_out,:),'k.-') 
title([headstr ', reduced matched dc gain: gap displacement, first ', ...

num2str(num_modes_used),' sorted modes included']) 
legend('all modes','reduced mdc',3) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-8 1e-4]) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

for pcnt = 1:max_modes_plot 

index = 2*pcnt;

amode = a_sort(index-1:index,index-1:index); 

bmode = b_sort(index-1:index); 

cmode = cdisp_sort(7:8,index-1:index); 

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode); 

[mag_mode,phs_mode]=bode(sys_mode,frad) ; 

loglog(f,mag_mode(index_out,:),'k-')

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause 

hold off

% modred using 'mdc' with unsorted modes

loglog(f,mag(index_out,:),'k-',f,mag_mdc_nosort(index_out,:),'k.-') 
title([headstr ', reduced unsorted matched dc gain: gap displacement, first ', ...

loglog(f,mag_mode(index_out,:),'k-')
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num2str(num_modes_used),' sorted modes included']) 
legend('all modes','reduced mdc',3) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-8 1e-4]) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause 

hold on

for pcnt = 1:num_modes_used 

index = 2*pcnt;

amode = a(index-1:index,index-1:index); 

bmode = b(index-1:index); 

cmode = c_disp(7:8,index-1:index); 

dmode = [0];

sys_mode = ss(amode,bmode,cmode,dmode); 

[mag_mode,phs_mode]=bode(sys_mode,frad) ; 

loglog(f,mag_mode(index_out,:),'k-')

end

axis([500 25000 -inf 1e-4])

disp('execution paused to display figure, "enter" to continue'); pause

hold off

end

% save the workspace for use in balred.m

save act8_data

Plots using the code above are discussed in the follow ing sections.

17.8 Uniform and Non-Uniform Damping Comparison

The four figures below show a comparison between the uniform and non­
uniform damping cases. The first two depict uniform damping, while the 
second two show non-uniform damping, with higher damping for modes 11, 
12 and 13.
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Frequency, hz

Figure 17.33: Head 0 frequency response, all 50 modes included, uniform damping with
zeta = 0.005.

Frequency, hz

Figure 17.34: Head 0 frequency response, overlay of individual mode contributions, 50 
modes included, uniform damping with zeta = 0.005.
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Frequency, hz

Figure 17.35: Head 0 frequency response, all 50 modes included, non-uniform damping 
with zeta = 0.005 for all modes except modes 11, 12 and 13, which have zeta = 0.04.

Frequency, hz

Figure 17.36: Head 0 frequency response, overlay of individual mode contributions, 50 
modes included, non-uniform damping with zeta = 0.005 for all modes except modes 11, 12 

and 13, which have zeta = 0.04.

Note the lower gain of the three modes in the 4 to 5 .5  khz range for the non­
uniform damping case.
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In the two figures below we can see the effects of aliasing for two different 
servo system sample rates.

17.9 Sample Rate and Aliasing Effects

Frequency, hz

Figure 17.37: Discrete system frequency response overlaid on continuous system, sample 
rate 20 khz, Nyquist frequency 10 khz.

Frequency, hz

Figure 17.38: Discrete system frequency response overlaid on continuous system, sample 
rate 7 khz, Nyquist frequency 3.5 khz, showing aliasing effects.
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The discrete system frequency response in Figure 17.37, which has a sample 
frequency of 20 khz, shows only small differences from the original 
continuous system response. The discrete system response stops at the 
Nyquist frequency, 10 khz.

Unlike Figure 17.37, Figure 17.38, which has a much lower sample rate of 7 
khz, shows a significant difference from the original continuous system. If 
one uses the sampled system to experimentally measure the frequency 
response, it can only measure the response in the 0-Nyquist frequency range. 
If the discrete system shown in Figure 17.33 were measured, there would be 
no way to know that the peak at 2.68 khz is not an actual mechanical 
resonance at 2.68 khz but is the system mode at 4.32 khz which is aliased. As 
mentioned earlier, only a measurement using a separate system, such as a laser 
measurement system, w ill reveal the actual m echanical system response.

17.10 Reduced Truncation and Matched dc Gain Results

This section compares sorted reduced truncation and sorted match dc gain 
(m dc) methods, both using eight modes.

Figure 17.39: Reduced sorted modal truncation frequency response, eight modes included.
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Frequency, hz

Figure 17.40: Reduced sorted modal truncation frequency response, eight modes included, 
showing overlay of eight individual modes.

The reduced sorted truncated system shown in Figures 17.37 and 17.38 
matches the original 50-mode system frequency response quite w ell in the 
0 to 10 khz range, but m isses four modes between 10 and 20 khz.

Figure 17.41: Reduced “modred” matched dc gain frequency response, eight modes
included.
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Frequency, hz

Figure 17.42: Reduced “modred” matched dc gain frequency response, eight modes 
included, showing overlay of eight individual modes.

The reduced “modred” matched dc (mdc) gain frequency response is virtually 
identical to the reduced sorted modal truncation response because the modes 
were sorted prior to using the matched method and the modes which were 
elim inated have low dc gain relative to the rig id  body gain. A lso, since the 
elim inated modes have such a small contribution to the overall response, the 
“flat” high frequency portion of the curve (highlighted in Figures 15.15 and 
16.17) is not seen. To be sure that this was the case, the “modred” matched 
dc gain reduction was run on the system with unsorted modes, using the first 
eight modes. The results are shown below and show that the “flat” high 
frequency portion of the frequency response has returned.
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Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first 
eight unsorted modes included.

Frequency, hz

Figure 17.43: Unsorted Reduced “modred” matched dc gain frequency response, first 
eight unsorted modes included, showing overlay of eight individual modes.

Only eight modes were used for the reduced frequency responses in this 
chapter. In Chapter 18 we w ill compare responses for different number of 
reduced modes to get a sense for how many modes are required to define the 
pertinent dynamics.
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CHAPTER 18

BALANCED REDUCTION

18.1 Introduction
In this chapter another method of reducing models, “balanced reduction,” w ill 
be introduced. W e w ill compare it with the dc and peak gain ranking methods 
using the disk drive actuator/suspension model from the last chapter.

W e have developed a strong mental picture of ranking individual modes using 
dc and peak gains. Furthermore, we have developed the ranking method 
intuitively by graphically showing how the individual modes combine to create 
the overall frequency response.

The concepts of controllability and observability, commonly referenced in the 
control community, can be used to rank modes but there is some ambiguity 
involved. In general, the controllability of a given mode is not related to its 
observability, and vice versa. The balanced reduction technique 
simultaneously takes into account both controllability and observability in its 
ranking and overcomes the uncertainty involved in using either controllability 
or observability alone.

W e w ill see that for the SISO actuator model introduced in the previous 
chapter the balanced method provides sligh tly better impulse response results 
than the dc gain method, for models with the same number of retained 
modes/states. For frequency response, the balanced method fits one additional 
mode over that of the dc gain method, in cases where the same number of 
reduced modes are used for both methods.

One issue with balanced reduction is that we lose the ab ility to directly identify 
individual modes in the reduced system model. After balanced reduction one 
needs to examine the system m atrix to identify which modes are included, 
while the dc and peak gain ranking techniques retain the identities of the 
individual modes.

Unlike SISO models, which can be eas ily  ranked using simple dc and peak 
gain techniques, MIMO models w ill require the balanced reduction method 
because it eas ily  handles the problem of ranking multiple inputs and outputs. 
In the next chapter we w ill examine a MIMO example, a disk drive actuator 
with a second stage of actuation in addition to the voice coil motor.
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Gawronski [1996, 1998] are two excellent advanced level texts that cover 
balanced reduction and balanced control o f structures for those interested in 
examining the subject more deeply.

18.2 Reviewing dc Gain Ranking, MATLAB Code balred.m
So far we have used dc or peak gains o f the individual modes to rank the 
importance o f including each mode in the reduced system. Repeating (17.1)  
and (17.2), the dc gain and peak gain expressions:

F 2 > ( 1 8 1 )
Fki ю2

F -  = —  (dcgain) ,  (18.2)
Fki 2Zi

where znjiznki is the product o f the jth (output) row and kth (force applied)

row terms o f the ith eigenvector divided by the square o f the eigenvalue for the 
ith mode.

F or any mode, i f  the degree o f freedom  associated w ith  the applied force  
has a zero value, then the force applied at that degree o f freedom  cannot 
excite th at mode, so the dc and peak gains w ill also be zero. I f  the mode 
cannot be excited, then it has no effect on the frequency response and can 
be elim inated. S im ilarly , i f  the degree o f freedom  associated w ith  the 
output has a zero value, then no m atter how much force is applied to that 
mode, there w ill be no output. The dc and peak gains are zero, and the 
mode can be elim inated because it also w ill have no effect on the 
frequency response.

Loosely speaking, a mode which cannot be excited by the applied force is 
uncontrollable and a mode which has no output in the desired direction is 
unobservable. Conversely, modes which have “large” values for the forcing 
function degree o f freedom are said to be “controllable” and modes with 
“large” values fo r the output degree o f freedom are said to be “observable.”

The code below, the input section from balred.m , reads in the stored output 
from act8.m  (Chapter 17), stored in act8_data.m at. It then calculates and 
plots the input and output contributors to the dc gain, znki / ю1 and znji / ю1

and the resulting dc gain. This is the first time we have separated the input 
and output contributors to the dc gain term; in the past we have dealt only with 
the dc gain itself. The reason we are highlighting the two contributors is to
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bridge to understanding of the new concepts of controllability and 
observability.

% balred.m balanced modred reduction of actuator/suspension model

clear all; 

hold off; 

clf;

load act8_data;

% plot dc gain and two contibutors, force and xn, versus mode

index_states = 1:num_modes_total-1; 

omega1 = 2*pi*freqvec'; % convert to radians

semilogy(index_orig(2:num_modes_total)-1,gain_h0(2:num_modes_total),'k.-', ...
index_orig(2:num_modes_total)-1,abs(force(2:num_modes_total)./ ... 
omega1(2:num_modes_total)),'k-', ... 
index_orig(2 :num_modes_total)-1, ...
abs(xn(8,2:num_modes_total)./omega1(2:num_modes_total)),'ko-') 

title([headstr ' dc gain, force and xn values versus mode number']) 
xlabel('mode number') 
ylabel('dc value') 
legend('dc gain','force','xn',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figure 18 .1  shows the force and output (xn) components which when 
m ultiplied create the dc gain for each mode.
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Figure 18.1: Force, output and dc gain for each mode.

It is evident from the curves of force and xn in Figure 18.1 that none of the 
modes has values for the input or output that go to zero, but that there is a 
three to four order of magnitude span for both the force and xn values. This 
three to four order of magnitude span for the force and xn vectors, when 
multiplied, results in an approximate seven order of magnitude span for the dc 
gain. W e have used this span in dc gain values in previous chapters to rank 
the relative importance of modes, identifying modes for elimination.

18 .3  C ontro llab ility, O bservability

The intuitive descriptions of controllability and observability given above can 
be stated precisely using standard state space notation. See Chen [1999], 
Zhou [1996, 1998], Kailath [1980] and B ay [1999] for derivations and more 
detail.

For a state space system described by

x = A x + Bu
C (18.3a,b)

y = Cx

the follow ing definitions of controllability hold:

1) If there is an input “u” that can move the system from some 
arbitrary state x 1 to another arbitrary state x2 in a finite time then 
the system is controllable.
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2) A  controllability matrix C can be formed as:

C = [B A B  A 2B .. .  A n-1B] (18.4)

If C has full (row) rank n, the system is controllable. The 
controllability matrix gives no insight into the relative 
controllability o f the different modes, it shows only whether the 
entire system is controllable or not. If one mode o f the system is 
not controllable, the system is not controllable.

3) Another definition o f controllability involves the controllability 
gramian, W c , the solution to the Lyapunov equation:

If the solution W c (t)  is non-singular (determinant is non-zero), 
then the system is controllable.

Diagonal elements o f the controllability gramian give information 
about the relative controllability o f the different modes and can be 
used in a manner similar to our use o f dc gains to rank the relative 
controllability o f individual modes.

Gramians exists only for systems that have all their poles strictly to 
the left o f the “ jra ” axis. The actuator/suspension system we are 

analyzing has two rigid body mode poles at the origin, so we will 
have to analyze only the oscillatory portion o f the system. W e will 
do this by partitioning the modal form state matrices into the rigid 
body mode and the non-rigid body oscillatory modes. Then the 
definitions o f controllability w ill be applied to only the oscillatory 
partition.

A  similar set o f definitions can be made for observability:

A W c + W c A T + BBT = 0 (18.5)

defined as:

W c = j  eAT B B e A T dT (18.6)
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1) I f the initial state x o o f a system can be inferred from knowledge 

o f the input u and the output y over a finite time (0, t ) then the 

system is said to be observable.

2) A n observability matrix O can be formed as:

O =

C

C A

C A n-1

(18.7)

I f O has full (column) rank n, the system is observable.

3) Another definition o f observability involves the observability 
gramian, W o , the solution to the Lyapunov equation:

A T W o + W o A  + C TC  = 0 (18.8)

defined as:

W o =  j e  aT t  C TC e AT d T  (18.9)
0

If the solution W o ( t )  is non-singular (determinant is non-zero) then 

the system is observable.

The diagonal elements o f the observability gramian give information 
about the relative observability o f the different modes and can be 
used in a manner similar to using dc gains to rank the relative 
observability o f modes.

Because we know the form o f the A , B  and C  matrices for the state space 
modal form, we are able to substitute those matrices into the Lyapunov 
equations above and derive closed form controllability and observability 
gramians (Gawronski 1998). It is interesting to see how the closed form  
gramian expressions compare with the force and xn components o f the dc and 
peak gains. W e saw earlier that the dc gain can be looked at as a product o f a 
“force” and an “output,” xn.
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m: v m i у

1 = (output)(force),
ffl:

(18 .10)

Similarly for the peak gain at resonance:

(dcgain) = 1

2Zi = 2Z“
nki

Ю;

V  \

V2Z“ m. V2ZT m
(18 .11)

Gawronski shows that the closed loop expression for the largest diagonal term 
in the 2x2  controllability gramian for mode “i” is given by:

b .
w c = • (18 .12)

where the || ||2 notation represents the Euclidean norm, the square root o f the 

sum o f the squares o f the elements o f a vector.

The largest diagonal term in the 2x2 observability gramian for mode “i” is 
given by:

C :
w  ■ = ■

4Zi
(18 .13)

The smaller o f the two diagonal terms for both the controllability and 
observability gramians is derived from the larger term by dividing by the 
square o f the eigenvalue for that respective mode.

The B and C matrices fo r mode “i” with input at dof “k” and displacement 
output at dof “j” are as follows:

B:
0

,FkZnki

C . =  [z.j, ° ]

(18 .14)

(18 .15)

Fki

2
2

2
2
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Substituting into the two equations above for the closed loop gramians:

II B;
w  ■ = ■

0

,FkZnki. F272k nki (18 .16)

w  - = ■
7 nji 0

4Z; ю; 4Z; ю; 4Z; ю;

Comparing the peak gain terms and the gramian terms: 

Force component o f dc gain:

Controllability diagonal:

Output component o f dc gain:

(18 .17)

ю

4Z; Ю

Observability diagonal:
4Z; Ю

W hen we have ranked using peak gains, we have used the expression:

peak gain = 7nji7nki

(18 .18)

(18 .19)

(18.20)

(18 .21)

(18.22)

If we had used the controllability and observability gramian terms for each 
mode to rank, we would have ranked based on

2 2 
7nki7nji
16Z2 ю2

(18.23)

In the controllability and observability gramian ranking o f modes, we deal 
with the product o f the squares o f the eigenvector components while peak gain 
uses the product without squaring. Both rankings divide by the square o f the 
eigenvalue and there is a difference in the two multipliers “2” and “ 16” as well 
as the squaring o f the damping term.

2

7nki

27

7

27
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18.4 Controllability, Observability Gramians
The follow ing code section starts by defining a system which consists of the 
oscillatory modes of the system, excluding the first, rig id  body mode. As 
mentioned above, gramians exist only for strictly stable systems, where all the 
poles strictly to the left of the “ jm  ” axis. The two rig id  body poles at the 
origin need to be elim inated from the system to be able to calculate gramians. 
In the modal form of the equations, where the modes are uncoupled, we can 
partition the system into rig id  body and oscillatory modes. W e can then 
calculate a reduced oscillatory system based on reducing the oscillatory 
modes. The fu ll system is then ready to be re-assembled by augmenting the 
rig id  body mode with the reduced oscillatory modes.

The controllability and observability gramians are calculated, plotted with 
their amplitudes on the z axis and then the diagonal entries are plotted. The 
position and velocity state terms are identified in each of the gramians and 
plotted separately.

% define oscillatory system from unsorted model from act8.m, which only
% has one output, either head 0 or head 1 so that when use balreal, will only
% be taking into account a siso system, not the outputs of both heads 0 and 1

% in act8.m, used output matrix with two rows so both head 0 and head 1 were available

a_syso = a(3:asize,3:asize); % ao is a for oscillatory system

b_syso = b(3:asize);

c_syso = c_disp(index_out+6,3:asize);

syso = ss(a_syso,b_syso,c_syso,d);

% define controllability and observability gramians for oscillatory system, syso

wc = gram(syso,'c');

wo = gram(syso,'o');

[row_syso,col_syso] = size(a_syso);

statevec = 1 :row_syso;

% calculate closed form gramians

% define frequencies for oscillatory states

omega1 = 2*pi*freqvec'; % convert to radians
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for cnt = 1:num_modes_total 

ctr = ctr + 2;

omega12(ctr-1) = omega1(cnt); 

omega12(ctr) = omega1(cnt);

7eta_unsort12(ctr-1) = 7eta_unsort(cnt);

7eta_unsort12(ctr) = 7eta_unsort(cnt);

end

% the notation below is “wc” or “wo” for controllability or observability gramians,
% “cf” for closed-form, and “1” or “2” for maximum and minimum values for a mode

wccf1 = (b_syso.*b_syso)./(4*7eta_unsort12(3:2*num_modes_total)' ...
.*omega12(3:2*num_modes_total)'); % maximum terms

wccf12 = wccf1(2:2:row_syso); % pick out velocity terms

wccf2 = (b_syso.*b_syso)./(4*7eta_unsort12(3:2*num_modes_total)' ...
.*omega12(3:2*num_modes_total)'.A3); % minimum terms

wccf22 = wccf2(2:2:row_syso); % pick out displacement terms

wocf1 = (c_syso.*c_syso)./(4*7eta_unsort12(3:2*num_modes_total) ...
.*omega12(3:2*num_modes_total)); % maximum terms

wocf12 = wocf1(1:2:row_syso); % pick out displacement terms

wocf2 = (c_syso.*c_syso)./(4*7eta_unsort12(3:2*num_modes_total) ...
.*omega12(3:2*num_modes_total).A3); % minimum terms

wocf22 = wocf2(1:2:row_syso); % pick out velocity terms

% plot controllability and observability gramians

mesh7(wc);
view(60,30);
title([headstr controllability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

mesh7(wo);
view(60,30);
title([headstr ', observability gramian for oscillatory system'])
xlabel('state')
ylabel('state')

ctr = 0;
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grid on

disp('execution paused to display figure, "enter" to continue'); pause

% pull out diagonal elements

wc_diag = diag(wc);

wo_diag = diag(wo);

modevec = 2*(1:num_modes_total-1);

% plot diagonal terms of controllability and observability gramians, calculated with
% gram function and closed form

semilogy(statevec,wc_diag,'k. -',state vec(2:2:row_syso),wccf12,'ko', ...
statevec( 1:2:row_syso),wccf22,'ko') 

title([headstr ', controllability gramian diagonal terms']) 
xlabel('states') 
ylabel('diagonal')
legend('calculated with gram','closed form',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(statevec,wo_diag,'k.-',statevec(1:2:row_syso),wocf12,'ko', ...
statevec(2:2:row_syso),wocf22,'ko') 

title([headstr ', observability gramian diagonal terms']) 
xlabel('states') 
ylabel('diagonal')
legend('calculated with gram','closed form',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

% position and velocity states plotted separately

semilogy(statevec(1:2:row_syso),wc_diag(1:2:row_syso),'k.-', ...
statevec(2:2:row_syso),wc_diag(2:2:row_syso),'k-', ... 
statevec(2:2:row_syso),wccf12,'ko', ... 
statevec(1:2:row_syso),wccf22,'ko') 

title([headstr ', controllability gramian diagonal terms']) 
xlabel('states') 
ylabel('diagonal')
legend('position states','velocity states','closed form','closed form',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(statevec(1:2:row_syso),wo_diag(1:2:row_syso),'k.-', ...
statevec(2:2:row_syso),wo_diag(2:2:row_syso),'k-', ... 
statevec(1:2:row_syso),wocf12,'ko', ... 
statevec(2:2:row_syso),wocf22,'ko') 

title([headstr ', observability gramian diagonal terms']) 
xlabel('states')
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ylabel('diagonal')
legend('position states','velocity states','closed form','closed form',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

semilogy(index_states,wc_diag(2:2:row_syso),'k.-', ...
index_states,wo_diag(1:2:row_syso),'ko-') 

title([headstr ', head 0 controllability and observability state gramians']) 
xlabel('mode number') 
ylabel('gramian')
legend('controllability velocity state','observability position state',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

head 0 , controllability gramian for oscillatory system

0.15

Figure 18.2: Controllability gramian values.
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head 0, observability gramian for oscillatory system

Figure 18.3: Observability gramian values.

Figures 18.2 and 18.3 plot the controllability and observability gramian values 
on a linear z axis scale versus location in the matrix. As noted in Gawronski 
[1998], for systems described in modal coordinates (with small damping, small 
Z values) the gramians are diagonally dominant, meaning that the off diagonal 
elements are small with respect to the diagonal elements. The largest 
controllability terms lie  along the diagonal in approximately the state 20 to 22 
positions, which are the 10th and 11th oscillatory modes. W ith the rig id  body 
mode included, these become the 11th and 12th modes of the fu ll system, which 
we identified in the previous chapter as the two system modes in the 4 khz 
range and identified with the dc gain as the modes with the highest values. 
Note that there are not any large entries in the higher state numbers for the 
controllability gramian. The observability gramian plot, however, shows some 
very high frequency states (~80 to 100) that have circumferential motion at 
head 0. Intuitively, the relatively heavy coil is not going to have many modes 
with circumferential motion at high frequencies, while the stiff, low mass 
suspension w ill have a number of high frequency modes with circumferential 
motion.

The diagonal entries of both gramians are plotted versus state in Figures 18.4 
and 18.5, where the odd-numbered states are position states and the even- 
numbered states are velocity states. Values from the “gram” function and the 
closed form solution (18.16) (18.17) are shown.
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states

Figure 18.4: Controllability gramian diagonal terms.

states

Figure 18.5: Observability gramian diagonal terms.

Figures 18.6 and 18.7 show the position and velocity terms of each gramian 
diagonal plotted separately. The position state and velocity state curves are 
offset by the square of the eigenvalue of each mode.
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states

Figure 18.6: Controllability gramian diagonal position and velocity state terms.

states

Figure 18.7: Observability gramian diagonal position and velocity state terms.

18.5 Ranking Using Controllability/Observability
Figure 18.8 shows the controllability gramian velocity state and the 
observability gramian position state (chosen such that the two curves have 
sim ilar magnitudes for v isual comparison). W e could use the controllability 
curve to rank the states for controllability and elim inate those states with low 
controllability. A lternately, we could use the observability curve to rank the 
states for observability and then elim inate states with low observability. The
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problem with this approach is that the jo in t controllability/observability is not 
taken into account. There is no problem if  a state chosen for elim ination has a 
small controllability value and simultaneously a small observability value. 
However, if  as in modes 43 and 44 (states 85 to 88) in Figure 18.8, the 
controllability value is small but the observability is relatively high, do we 
elim inate the mode or not? This is the source of ambiguity in ranking using 
only controllability or only observability gramians.

W ith the dc and peak gain ranking methods referenced earlier we used the 
product of the input and output (controllability measure and observability 
measure), jo in tly taking into account a measure of the controllability and 
observability of each mode.

mode number

Figure 18.8: Controllability gramian velocity state and observability gramian position
state diagonal terms.

18.6 Balanced Reduction
Balanced reduction was introduced in the control community by Moore 
[1981]. The algorithm used in the M ATLAB balancing function “balreal” is 
taken from Laub [1987].

The algorithm creates a system with identical diagonal controllability and 
observability gramians. Since the two gramians are equal, either the diagonal 
or controllability gramian can be used to rank states for elim ination and the 
ambiguity of using either only controllability or only observability is removed.
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For the system “sys” defined by the following equations:

x = A x  + Bu 

y = Cx + Du
(18.24a,b)

the syntax for the M ATLAB “balreal” function is:

[sysb,g,T ,T i] = balreal(sys), (18.25)

where “sysb” is the new, balanced system and “g” is the diagonal of the joint 
gramian. “T” is the transformation matrix that is used to create “sysb.” “Ti” 
is the inverse of “T.”

The diagonal terms of the joint gramian, g, are squares of the Hankel singular 
values of the system. The Hankel matrix is the product of the controllability 
and observability gramians. Hankel singular values are the squares of the 
eigenvalues of the Hankel matrix. See Gawronski [1998] for a M ATLAB 
script “bal_op_loop.m” that uses Singular Value Decomposition to calculate 
the Hankel singular values.

T is the state transformation matrix that is used along with its inverse, T  -1, to 
create “sysb” from “sys” using:

Because the controllability and observability gramians are identical, there is 
no ambiguity in deciding whether the most controllable or the most observable 
states should be chosen. The states to be kept are the states with the largest 
d iagonal terms.

The code below uses “balreal” to calculate the balanced system, “sysob,” and 
plots the resulting gramians.

% use balreal to rank oscillatory states and modred to reduce for comparison

xb = TAT 1xb + TBu 

y = C T x  b + Du
(18.26a,b)

The gramians are also transformed by T to identical diagonal form:

Wbo = Wbc = diag(g) (18.27)

[sysob,g,T,Ti] = balreal(syso);
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% define controllability and observability gramians for balanced
% oscillatory system, sysob

wcb = gram(sysob,'c');

wob = gram(sysob,'o');

wcb_diag = diag(wcb);

wob_diag = diag(wob);

modevec = 2*(1:num_modes_total-1);

% plot balanced controllability and observability gramians

meshz(wcb);
view(60,30);
title([headstr ', oscillatory system balanced controllability gramian'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

meshz(wob);
view(60,30);
title([headstr ', oscillatory system balanced observability gramian'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue'); pause

% plot diagonal terms of balanced controllability and observability gramians

semilogy(statevec,wcb_diag,'k.-',statevec,wob_diag,'ko-') 
title([headstr ', balanced system controllability and observability gramian ... 

diagonal terms'])
xlabel('states')
ylabel('diagonal')
legend('controllability','observability',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figures 18.9 and 18.10 plot terms of the controllability and observability 
gramian matrices for the balanced system, with the values plotted along the z 
axis. Comparing them to the original, unbalanced, controllability and 
observability gramian plots in Figures 18.2 and 18.3, we see that the balanced 
plots are identical and strictly diagonal.



head 0, oscillatory system  balanced controllability gramian

x 1 0 5

Figure 18.9: Balanced controllability gramian.

head 0 , oscillatory system  balanced observability gramian

x 1 0 5 ! ' ■

state state

Figure 18.10: Balanced observability gramian.

Plotting diagonal terms of the controllability and observability gramians 
versus states, Figure 18.11, shows that the two curves overlay one another and 
that they are ranked from large to small by virtue of the balancing operations.
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states

Figure 18.11: Balanced system controllability and observability gramian diagonal terms.

W e are now in a position to use the balanced system gramian (either 
controllability or observability) to decide which states are relatively less 
important and can be elim inated. Since the states in the balanced system are 
organized from most to least significant, the M ATLAB function “modred” can 
be used with either the “del” or “mdc” option to elim inate the states with the 
lowest jo in t controllability/observability, the higher numbered states in the 
balanced system.

18.7 B alan ced  and  dc G ain R an k in g  F requ ency Response C om parison

The code in this section starts by plotting the Hankel singular values and the 
sorted dc gain of the oscillatory modes to see their sim ilarities. The modred 
function is then used to reduce the system to the number of modes chosen in 
the last act8 .m  run, using both the “del” and “mdc” options. The complete 
system is then rebuilt by augmenting the reduced oscillatory system with the 
rig id  body mode. F inally, the code plots frequency responses and compares 
the results of dc gain ranking from act8 .m  and balanced ranking from 
balred .m .

% plot sorted diagonal values and dc gain

[row syso,col syso] = size(a syso);

semilogy(statevec,g,'k.-',2*index orig((2:num modes total)-1), ...
gain h0 sort(2:num modes total),'k-')

title([headstr ', sorted diagonal terms of balanced gramian and dc gain'])
xlabel('state')
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ylabel('diagonal of gramian') 
legend('balanced','dc gain',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

num_oscil_states_used = 2*num_modes_used - 2;

% use modred to reduce states from balanced system using both "del" and "mdc"

bsys_delo = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'del');

bsys_mdco = modred(sysob,num_oscil_states_used+1:2*num_modes_total-2,'mdc');

% rebuild system by appending balanced realization of oscillatory modes to
% rigid body mode

[a_delo_bal,b_delo_bal,c_delo_bal,d_delo_bal] = ssdata(bsys_delo);

a_del_bal = [ a(1:2,1:2) zeros(2,num_oscil_states_used)
zeros(num_oscil_states_used,2) a_delo_bal ];

b_del_bal = [b(1:2,:)
b_delo_bal];

c_del_bal = [c_disp(index_out+6,1:2) c_delo_bal]; 

bsys_del = ss(a_del_bal,b_del_bal,c_del_bal,d);

[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco_bal] = ssdata(bsys_mdco);

a_mdc_bal = [ a(1:2,1:2) zeros(2,num_oscil_states_used)
zeros(num_oscil_states_used,2) a_mdco_bal ];

b_mdc_bal = [b(1:2,:)
b_mdco_bal];

c_mdc_bal = [c_disp(index_out+6,1:2) c_mdco_bal];

bsys_mdc = ss(a_mdc_bal,b_mdc_bal,c_mdc_bal,d);

[magr_del,phsr_del] = bode(bsys_del,frad);

[magr_mdc,phsr_mdc] = bode(bsys_mdc,frad);

% compare frequency responses for all four reduction methods

loglog(f,mag(index_out,:),'k--',f,mag_sort_red(index_out,:),'k-', ...
f,magr_del(1,:),'k.-') 

title([headstr ', results comparison, ',num2str(num_modes_used),' modes, ', ... 
num2str(num_oscil_states_used),' oscillatory balanced states'])

xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-8 1e-4])
legend('all modes','sorted truncated','balreal modred del',3)
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grid off

disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,mag(index_out,: ),'k--',f,mag_mdc(index_out, :),'k-',f,magr_mdc( 1, :),'k. -') 
title([headstr ', results comparison, ',num2str(num_modes_used),' modes, ', ...

num2str(num_oscil_states_used),' oscillatory balanced states']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-8 1e-4])
legend('all modes','sorted mdc','balreal modred mdc',3) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

Figure 18.12 shows the Hankel singular values and sorted dc gains versus 
number of states. At this point it is interesting to compare frequency responses 
for the two ranking techniques to see how each decides which modes/states to 
eliminate.

state

Figure 18.12: Balanced gramian diagonal terms (Hankel singular values) and sorted dc
gain.

Figures 18.13 to 18.18 show frequency response plots for different numbers of 
retained modes, from two to seven modes, including the rig id  body mode.
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W hile the code above calculates “sorted truncated” and “balreal modred del” 
responses, we w ill only show the follow ing in the figures below :

1) “sorted mdc” -  uses dc gain ranking and modred “mdc” to 
reduce

2) “balreal modred mdc” -  uses balreal for ranking and modred 
“mdc” to reduce

Frequency, hz

Figure 18.13: Two modes included.

Frequency, hz

Figure 18.14: Three modes included.
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Note that the two ranking methods chose different modes for the three reduced 
modes. The dc gain method chose the two system modes in the 4.2 khz range 
(alm ost coincident) while the balanced method chose one mode at 4.2 khz and 
another at 5.1 khz.

Figure 18.15: Four modes included.

For the four reduced mode case, the dc gain method picked up the 5.1 khz 
mode, while the balanced method chose the suspension torsion mode at 2.9 
khz.

Figure 18.16: Five modes included.
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For the five reduced mode case the dc gain method included the torsion mode 
but m issed the mode at 5 .5  khz which was picked up by the balanced method.

Frequency, hz

Figure 18.17: Six modes included.

W ith six reduced modes the balanced method includes the mode at 9 khz, but 
the dc gain method missed it.

Frequency, hz

Figure 18.18: Seven modes included.

W ith seven or higher modes the balanced and dc gain results are very similar. 
W e w ill see later when analyzing impulse responses of the oscillatory system
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that the two methods give results which are within a few  percent of each other 
when seven or more modes are included in the reduced model.

18.8 Balanced and dc Gain Ranking Impulse Response Comparison
This section w ill compare the impulse responses for four different reduced 
systems, using from 2 through 15 modes. Only the matched dc gain (mdc) 
methods w ill be compared as there are m inimal differences between the mdc 
method and the truncation or “del” method of reducing, as can be seen from 
the eight reduced mode results below.

Frequency, hz

Figure 18.19: Frequency response for eight-mode reduced models, sorted truncated and
balreal modred “del.”
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Frequency, hz

Figure 18.20: Frequency response for 8-mode reduced models, sorted “mdc” and balreal
modred “mdc.”

In studying the impulse response, we will use only the oscillatory modes. The 
final model w ill o f course include the rigid body mode, but to study the effects 
o f the various reduced models on transient response it is useful to include only 
the oscillatory modes. The reason this is useful is that a typical forcing 
function applied to a rigid body mode will move the system from one position 
to another, with rigid body displacements quite large relative to the 
displacements o f the oscillatory modes, creating roundoff errors that mask the 
oscillatory mode responses.

The code below calculates the impulse response using the “lsim” function for 
five oscillatory systems, the original “all modes included” system and the four 
reduced systems. The impulse responses are then plotted and the normalized 
reduction index, 8 (Gawronski 1998), is calculated, where the index is 
defined as:

8 =
||disp(all mode model)-disp(reduced model)|| 

||disp(all mode model)||
(18.28)

A  table o f results fo r 8 from earlier runs with different numbers o f retained 
modes is included in the code listing below. Information in the table is also 
shown graphically in Figures 18.25 and 18 .26 .

% calculate impulse responses of all four oscillatory systems for comparison

ttotal = 0.0025;
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% define oscillatory systems for models

% sorted reduced system

red_size = 2*num_modes_used;

[a_sys_sort_red,b_sys_sort_red,c_sys_sort_red,d_sys_sort_red] = ...
ssdata(sys_sort_red);

a_sys_sort_redo = a_sys_sort_red(3:red_size,3:red_size);

b_sys_sort_redo = b_sys_sort_red(3:red_size);

c_sys_sort_redo = c_sys_sort_red(index_out,3:red_size);

sys_sort_redo = ss(a_sys_sort_redo,b_sys_sort_redo,c_sys_sort_redo,d);

% sorted mdc reduced system

[a_sys_sort_mdc,b_sys_sort_mdc,c_sys_sort_mdc,d_sys_sort_mdc] = . 
ssdata(sys_mdc);

a_sys_sort_mdc = a_sys_sort_red(3:red_size,3:red_size);

b_sys_sort_mdc = b_sys_sort_red(3:red_size);

c_sys_sort_mdc = c_sys_sort_red(index_out,3:red_size);

sys_mdco = ss(a_sys_sort_mdc,b_sys_sort_mdc,c_sys_sort_mdc,d);

% use lsim to calculate transient response

[disp_syso,t_syso] = impulse(syso,t);

[disp_sys_sort_redo,t_sys_sort_redo] = impulse(sys_sort_redo,t);

[disp_sys_sort_mdco,t_sys_sort_mdco] = impulse(sys_mdco,t);

[disp_bsys_delo,t_bsys_delo] = impulse(bsys_delo,t);

[disp_bsys_mdco,t_bsys_mdco] = impulse(bsys_mdco,t);

% build matrix of results

dispo = [disp_syso(:,1) disp_sys_sort_redo(:,1) ...
disp_sys_sort_mdco(:,1) disp_bsys_delo(:,1) ... 
disp_bsys_mdco(:,1)];

sort_redo_del = dispo(:,1) - dispo(:,2);

sort_mdco_del = dispo(:,1) - dispo(:,3);

t  = linspace(0,ttotal,400);
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delo_del = dispo(:,1) - dispo(:,4);

mdco_del = dispo(:,1) - dispo(:,5);

% calculate normalized reduction index

index_sort_redo = .
sqrt(sum(sort_redo_del. *sort_redo_del))/sqrt(sum(dispo(:, 1).*dispo(:, 1)))

index_sort_mdco = .
sqrt(sum(sort_mdco_del.*sort_mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

index_delo = .
sqrt(sum(delo_del.*delo_del))/sqrt(sum(dispo(:,1).*dispo(:,1))) 

index_mdco = .
sqrt(sum(mdco_del.*mdco_del))/sqrt(sum(dispo(:,1).*dispo(:,1)))

[num_modes_used index_sort_redo index_sort_mdco index_delo index_mdco]

plot(t_syso,disp_syso(:,1),'k-',t_sys_sort_redo,disp_sys_sort_redo(:,1),'k.-') 
title([headstr displacement vs time, ',num2str(num_modes_used-1), ...

' oscillatory modes'])
xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','sorted reduced system',4) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_sys_sort_mdco,disp_sys_sort_mdco(:,1),'k.-') 
title([headstr ', displacement vs time, ',num2str(num_modes_used-1), ...

' oscillatory modes'])
xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','sorted modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_bsys_delo,disp_bsys_delo(:,1),'k.-') 
title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), .

' oscillatory balanced states'])
xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','balreal modred del',4) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(t_syso,disp_syso(:,1),'k-',t_bsys_mdco,disp_bsys_mdco(:,1),'k.-') 
title([headstr ', displacement vs time, ',num2str(num_oscil_states_used), .

' oscillatory balanced states'])
xlabel('time, sec') 
ylabel('displacement, mm')

© 2001 by Chapman & Hall/CRC



legend('all modes','balreal modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue'); pause

%
%

plot results of oscillatory impulse response normalized error index versus 
number of modes used

error_norm = [ 2 .4332 .4332 0.3007 0.3008
.3041 .3041 0.1777 0.1823
.1759 .1759 0.1135 0.1137
.1134 .1134 0.0845 0.0841
.0851 .0851 0.0598 0.0603
.0637 .0637 0.0582 0.0583
.0599 .0599 0.0383 0.0401
.0594 .0594 0.0343 0.0356
.0572 .0572 0.0338 0.0347
.0555 .0555 0.0258 0.0264
.0392 .0392 0.0280 0.0268
.0327 .0327 0.0167 0.0168
.0270 .0270 0.0162 0.0158
.0209 .0209 0.0162 0.0156]:

3
4
5
6
7
8
9
10 
11 
12
13
14
15

nmode = error_norm(:,1); 

error_sort_red = error_norm(:,2); 

error_sort_mdc = error_norm(:,3); 

error_bal_del = error_norm(:,4); 

error_bal_mdc = error_norm(:,5);

plot(nmode,error_sort_red,'k.-',nmode,error_bal_del,'ko-')
title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('sorted reduced','balanced del')
axis([0 15 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue'); pause

plot(nmode,error_sort_mdc,'k.-',nmode,error_bal_mdc,'ko-')
title([headstr ', normalized reduction index versus number of modes included'])
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('sorted mdc','balanced mdc')
axis([0 15 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue'); pause 

save balred_data;
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The impulse response comparisons for the same four reduced methods are 
shown in the four figures below.

head 0, displacement vs time, 7 oscilla tory modes

x 10

Figure 18.21: Impulse response comparisons for oscillatory system, full model (all 
oscillatory modes) and sorted reduced system with seven oscillatory modes.

head 0, displacement vs time, 7 oscilla tory modes

x 10

Figure 18.22: Impulse response comparisons for oscillatory system, full model (all 
oscillatory modes) and sorted modred with “mdc” option with seven oscillatory modes.
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head 0, d isplacem ent vs time, 14 oscillatory balanced states

x 10

Figure 18.23: Impulse response comparisons for oscillatory system, full model (all 
oscillatory modes) and balreal modred “del” reduced system with seven oscillatory modes.

head 0, displacement vs time, 14 oscillatory balanced states

x 10

Figure 18.24: Impulse response comparisons for oscillatory system, full model (all 
oscillatory modes) and balreal modred “mdc” reduced system with seven oscillatory modes.

The two figures below compare the normalized reduction index, 8 ,  as a 
function of the number of modes included in the various reduced model 
methods.
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head 0, normalized reduction index versus number of modes included

number of modes included

Figure 18.25: Impulse response normalized reduction index versus number of modes 
included in reduction for sorted reduced and balanced modred “del” option reductions.

head 0, normalized reduction index versus number of modes included

number of modes included

Figure 18.26: Impulse response normalized reduction index versus number of modes 
included in reduction for sorted modred “mdc” and balanced modred “mdc” options 
reductions.

As mentioned in the frequency response section, when five or more modes are 
included, the impulse responses are almost identical for all reduction 
techniques, with small differences in normalized reduction indices. For less 
than five modes, it is better to use the balanced technique because it picks up 
an additional mode in addition to the system mode, whereas the dc gain
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method assigns the first two modes to the almost coincident two modes near 
the system mode.
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CHAPTER 19

MIMO TWO-STAGE ACTUATOR MODEL

In this chapter we w ill use an AN SYS model of a two-stage disk drive 
actuator/suspension system to illustrate the creation of a reduced model for a 
M ultip le Input, M ultiple Output (M IMO) system using the balanced reduction 
method. The results w ill seem somewhat anticlimactic since the previous 
chapter covered most aspects of how to use the balanced reduction method. 
However, understanding the mechanics of setting up a MIMO system should 
prove useful.

As the track density (tracks per inch, tp i) of disk drives continues to increase, 
it w ill be necessary to add a second stage of actuation to the system in order to 
have the high servo bandwidths required to accurately follow the closely 
spaced tracks. M any different types of two-stage actuator architectures are 
being explored. The actuator architecture used for this example is not meant 
to represent a practical embodiment but w ill serve to illustrate a two-input, 
two-output system.

W e w ill begin with descriptions of the actuator system and AN SYS model. 
Then, AN SYS output, mode shape plots, frequency responses and a partial 
eigenvector listing w ill be discussed. The pertinent eigenvector and 
eigenvalue information w ill be extracted into a .mat file for input to 
M ATLAB.

The M ATLAB code w ill calculate either dc or peak gains, depending on 
whether uniform or non-uniform damping is defined. There are four gains to 
be plotted for this two-input, two-output MIMO system. W hile dc and peak 
gains are not required for the “balreal” and “modred” model reduction, they 
w ill serve to bridge our understanding from SISO models to MIMO models. 
W e w ill see the difficulty of choosing which modes to include in a MIMO 
model using dc or peak gain sorting by discussing the ranking of modes for the 
four input/output combinations.

In order to perform a balanced reduction, the system is partitioned into rig id  
body and oscillatory modes, sim ilar to the method used in Chapter 18. The 
oscillatory modes are balanced and “modred” is used with both the “del” and 
“mdc” options to reduce the model. Frequency responses for head 0 for both 
coil and piezo inputs for “del” reduction are shown for various numbers of

19.1 Introduction
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reduced modes, from 6 oscillatory states to 20 oscillatory states included. The 
20-state case shows both “del” and “mdc” for comparison.

Impulse responses are calculated for oscillatory systems with various numbers 
of reduced modes retained. The error is plotted as a function of number of 
modes retained.

19.2 Actuator Description
Figure 19.1 shows top and cross-sectioned side view s of the two-stage actuator 
used for the analysis.

Figure 19.1: Drawing of actuator/suspension system.

The model is sim ilar to the actuator used in Chapters 17 and 18 except that the 
arms are now the same thickness and are symm etrically located with respect to 
the pivot bearing z axis centerline. A lso, there is now a piezo-actuator bonded 
into one side of each of the arms. The piezo actuator consists of a ceramic 
element that changes size when a voltage is applied. In this case, the voltage 
would be applied to the piezo element so that it changes length, creating a 
rotation about the “hinge” section in the other side of the arm. This rotation 
translates the recording head in the circumferential direction. When this “fine 
positioning” motion is used in conjunction with the V CM ’s “coarse 
positioning” motion, higher servo bandwidths and consequently higher tpi are 
possible.
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The actuator example in the last two chapters had a coil forcing function 
applied at four nodes in the coil body. Even though there were multiple points 
at which the force w as applied, the fact that the same force w as applied to all 
nodes defined a Single Input system.

Instead of applying voltage as the input into the piezo element, we w ill assume 
that we have calculated an equivalent set of forces which can be applied at the 
ends of the element that w ill replicate the voltage forcing function. In this 
model, we w ill be applying forces to multiple nodes at the ends of both piezo 
elements. Since the same forces are being applied to both piezo elements, 
they represent the second input to the now M ulti Input system, the first input 
being the coil force. W e w ill apply equal and opposite forces to the two ends 
of each piezo actuator, and reverse the signs of the forces applied to the two 
separate elements. If the same forcing function were applied to both elements, 
an inertial moment arises which would tend to rotate the entire actuator about 
the pivot. B y using opposite signs for the two arms, this moment is largely 
elim inated, generating less cross-coupling between the coarse and fine 
actuator inputs.

In order to make this example a “M ultip le Output” system, we w ill output the 
displacements of both lower and upper heads, head 0 and head 1.

19.3 ANSYS Model Description
The model description is the same as for the model in Chapter 17. The 
AN SYS model is shown below, along with a drawing showing the node 
locations for the coil, piezo elements and heads.
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Figure 19.2: Complete piezo actuator/suspension model.

Figure 19.3: Piezo actuator/suspension model, four views.
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Figure 19.4: Nodes used for reduced MATLAB model, shown with partial mesh at coil and
piezo element.

Since the model uses cylindrical coordinates, the coil and piezo forces are at 
an angle to the radial line jo ining the pivot bearing centerline to the node 
location. Both coil and piezo element forces are decomposed into radial and 
circumferential elements using the angles shown for each in Figure 19.4.

19.4 ANSYS Piezo Actuator/Suspension Model Results
19.4.1 Eigenvalues, Frequency Response
The first 50 modes were extracted using the B lock Lanczos method. 
Frequency versus mode number is plotted in Figure 19.5.
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mode number

Figure 19.5: Frequencies versus mode number.

Figure 19.6: Coil input frequency responses for head 0 and head 1 from ANSYS, zeta =
0.005.

Figure 19.6 is the frequency response from A N SYS for coil input for both 
heads. The same frequency response from the 50-mode M ATLAB model is 
shown in  Figure 19.7. Figure 19.8 plots the frequency response for the two 
piezo inputs.
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gap displacement, all 50 modes included

Frequency, hz

Figure 19.7: Coil input frequency response from MATLAB, zeta = 0.005.

gap displacement, all 50 modes included

Frequency, hz

Figure 19.8: Piezo input frequency response from MATLAB, zeta = 0.005.

19.4.2 Mode Shape Plots
Selected mode shape plots are shown below, with a brief discussion of each in 
the follow ing section.
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Figure 19.9: Mode 1 undeformed/deformed plot, 0.014 hz, rigid body rotation.

Figure 19.10: Mode 2, 798 hz, actuator pitching mode.
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Figure 19.11: Mode 3, 1004 hz, arm/coil bending in phase.

ANSYS 5.5.3
MAR 3 2000
22:24:28
PLOT NO. 4
DISPLACEMENT
STEP=1
SUB =4
FREQ=1055
RSYS=1
DMX =62.959

DSCA=.070664 
XV =1 
YV =-1 
ZV =1 
DIST=45.051 
XF =10.289 
YF =.00331 
ZF =4.251 
A-ZS=-60 
CENTROID HIDDEN

Figure 19.12: Mode 4, 1055 hz, arms bending out of phase.
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Figure 19.13: Mode 5, 2027 hz, actuator/coil torsion about x axis.

Figure 19.14: Mode 6, 2085 hz, suspension bending mode, some arm interaction.
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Figure 19.15: Mode 8, 2823 hz, suspension torsion, in phase, arm tip interaction.

Figure 19.16: Mode 9, 2867 hz, suspension torsion, out of phase.
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<х
Piezo Actuator/Suspension Model, Lanczos Eigenvalue Extraction

Figure 19.17: Mode 12, 3415 hz, suspension torsion, arm tip lateral.

ANSYS 5.5.3 
MAR 3 2000 
22:25:51 
PLOT NO. 13 
DISPLACEMENT 
STEP=1 
SUB =13 
FREQ=3479 
RSYS=1
DMX =137.162

DSCA=.032436 
XV =1 
YV =-1 
ZV =1 
DIST=45.033 
XF =10.263 
YF =-.410351 
ZF =3.846 
A-ZS=-60 
CENTROID HIDDEN

Figure 19.18: Mode 13, 3479 hz, coil/arm/suspension lateral mode.

ANSYS 5.5.3 
MAR 3 2000 
22:25:39 
PLOT NO. 12 
DISPLACEMENT 
STEP=1 
SUB =12 
FREQ=3415 
RSYS=1
DMX =157.189

DSCA=.028303 
XV =1 
YV =-1 
ZV =1 
DIST=45.116 
XF =10.351 
YF =.037366 
ZF =4.704 
A-ZS=-60 
CENTROID HIDDEN
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Figure 19.19: Mode 16, 5387 hz, suspension sway, arm tip lateral.

Figure 19.20: Mode 17, 5664 hz, piezo bending, arm tip torsion, coil bending.
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ANSYS 5.5.3 
MAR 3 2000 
22:26:38 
PLOT NO. 21 
DISPLACEMENT 
STEP=1 
SUB =21 
FREQ=6822 
RSYS=1 
DMX =86.67

DSCA=.051332 
XV =1 
YV =-1 
ZV =1 
DIST=45.372 
XF =10.498 
YF =.011307 
ZF =4.243 
A-ZS=-60 
CENTROID HIDDEN

Figure 19.21: Mode 21, 6822 hz, suspension/arm lateral out of phase.

19.4.3 Mode Shape Discussion
As in Chapter 17, we w ill now describe the major modes which couple into the 
frequency response as w ell as several that do not couple, associating them w ith 
the frequency responses in  Figures 19.7 and 19.8.

Mode 1 is the rig id  body rotation mode, which A N SYS again  does not 
calculate at zero hz because o f slight geometric and numerical roundoff issues. 
The frequency for the rig id  body mode is set to zero in  the M ATLAB code.

M odes 2, 3 and 4 are a ll modes which involve motion only in  the x-z plane, 
bending type motions. S ince the motions are perpendicular, or orthogonal, to 
the direction o f input forces and output displacements, they do not couple into 
any of the frequency responses.

Mode 5 is an actuator/coil torsion mode, rotating about the x  axis. A  sim ilar 
mode can be seen on the model in Chapter 17 as a small pole/zero pair on 
head 1. A  torsional mode like this can be excited b y : (1 ) co il forces, since 
the co il is offset from both the mass center and bearing stiffness center, and 
(2 ) inertial forces, because o f the asymmetry o f the structure about the mass 
center location in  the z direction. Because the arms are more symmetric on 
this model than the model in  Chapter 17, the pole/zero mode does not appear 
on the frequency response plot of either head. W e w ill see in the dc gain 
ranking that mode 5 is two orders of magnitude less important than the major
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modes of the system for coil input, and is almost three orders of magnitude 
less important for piezo input.

Mode 6  is a suspension bending mode, once again a bending-only mode with 
no coupling into the circumferential direction.

Mode 8 is a suspension torsion, arm-tip interaction mode. It is the second 
most important mode for piezo input, but is unimportant for coil input.

Mode 9 is a suspension torsion mode. It is the second most important mode 
for coil input, but is unimportant for piezo input. The peak on the two 
frequency responses, ju st below 3 khz, is in fact two different frequencies and 
two different modes for the two different forcing functions. For the coil input 
the peak is at 2867 hz, mode 9. For piezo input, the peak is at 2823 hz, mode 
8.

M odes 12 and 13 are the most important modes for piezo and coil inputs, 
respectively. Mode 12 involves arm tip lateral motion which the piezo can 
easily  excite. Mode 13 is the “system” lateral mode with all components 
moving laterally, in phase.

Mode 16, another mode involving the tips of the arms and this time the 
suspension sway mode, is the third most important mode for coil input.

Mode 17 is the fifth most important piezo excitation mode, involving piezo 
bending, arm tip torsion and coil bending.

Mode 21 is the third most important mode for piezo excitation, with the 
suspensions and arms moving laterally , out of phase.

19.4.4 ANSYS Output Listing
The AN SYS output listing for input and output nodes for modes 1, 2 and 13 
are listed below. These three modes were selected for discussion in order to 
highlight different aspects of the eigenvectors. Compared with the AN SYS 
output listing in Chapter 17, there are significantly more nodes in the output, 
with the additional nodes representing the six nodes at each end of the bottom 
and top piezo elements.

The rig id  body mode, mode 1, should have only UY displacements 
(circum ferential motion in the cylindrical coordinate system). Mode 2, an 
actuator pitching mode has its most significant motion in the UZ direction, 
with some slight coupling into the UX and UY directions. Mode 13 is a 
h ighly coupled mode, with significant displacements in all three directions for
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some nodes. The U Y  direction displacements are significant with respect to 
the U Y  displacements of mode 2.

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 
FREQ= 0.14502E-01 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 0.30584E-06 32.618 0.11285E-11 0.0000 0.0000 0.0000

10022 0.30627E-06 32.618 -0.46777E-10 0.0000 0.0000 0.0000
21538 0.85322E-07 9.7742 0.21745E-08 0.0000 0.0000 0.0000
21546 0.82634E-07 14.735 0.36557E-08 0.0000 0.0000 0.0000
21576 0.10309E-06 9.9634 0.21924E-08 0.0000 0.0000 0.0000
21584 0.16887E-06 14.883 0.37407E-08 0.0000 0.0000 0.0000
21617 0.10951E-06 10.147 0.22079E-08 0.0000 0.0000 0.0000
21625 0.11092E-06 14.978 0.37980E-08 0.0000 0.0000 0.0000
22538 0.85184E-07 9.7742 0.21706E-08 0.0000 0.0000 0.0000
22546 0.82327E-07 14.735 0.36546E-08 0.0000 0.0000 0.0000
22576 0.10295E-06 9.9634 0.21900E-08 0.0000 0.0000 0.0000
22584 0.16856E-06 14.883 0.37381E-08 0.0000 0.0000 0.0000
22617 0.10937E-06 10.147 0.22067E-08 0.0000 0.0000 0.0000
22625 0.11061E-06 14.978 0.37940E-08 0.0000 0.0000 0.0000
24061 0.11911E-06 16.888 -0.95894E-09 0.0000 0.0000 0.0000
24066 0.77030E-07 10.226 -0.53758E-09 0.0000 0.0000 0.0000
24082 0.68150E-07 10.226 -0.48785E-09 0.0000 0.0000 0.0000
24087 0.10037E-06 16.888 -0.86954E-09 0.0000 0.0000 0.0000
24538 0.84850E-07 9.7742 0.20872E-08 0.0000 0.0000 0.0000
24546 0.81937E-07 14.735 0.18321E-08 0.0000 0.0000 0.0000
24576 0.10262E-06 9.9634 0.20998E-08 0.0000 0.0000 0.0000
24584 0.16817E-06 14.883 0.17648E-08 0.0000 0.0000 0.0000
24617 0.10904E-06 10.147 0.21122E-08 0.0000 0.0000 0.0000
24625 0.11021E-06 14.978 0.17139E-08 0.0000 0.0000 0.0000
25538 0.84745E-07 9.7742 0.20835E-08 0.0000 0.0000 0.0000
25546 0.82082E-07 14.735 0.18310E-08 0.0000 0.0000 0.0000
25576 0.10251E-06 9.9634 0.20975E-08 0.0000 0.0000 0.0000
25584 0.16832E-06 14.883 0.17623E-08 0.0000 0.0000 0.0000
25617 0.10894E-06 10.147 0.21110E-08 0.0000 0.0000 0.0000
25625 0.11036E-06 14.978 0.17100E-08 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 10022 22 21625 0 0 0
VALUE 0.30627E-06 32.618 0.37980E-08 0.0000 0.0000 0.0000

*ENDDO INDEX= I

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2 
FREQ= 797.85 LOAD CASE= 0
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THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 0.49229 -0.14022 -0.10321E-03 0.0000 0.0000 0.0000

10022 -0.89140 0.14245 -0.83465E-03 0.0000 0.0000 0.0000
21538 -1.0283 0.18631 -4.0091 0.0000 0.0000 0.0000
21546 -1.5471 0.23464E-01 -10.200 0.0000 0.0000 0.0000
21576 -1.0204 0.23663 -4.0561 0.0000 0.0000 0.0000
21584 -1.5459 0.72962E-01 -10.473 0.0000 0.0000 0.0000
21617 -1.0084 0.27685 -4.0950 0.0000 0.0000 0.0000
21625 -1.5436 0.11594 -10.631 0.0000 0.0000 0.0000
22538 -0.61275 0.10972 -4.0090 0.0000 0.0000 0.0000
22546 -0.12481 0.83127E-01 -10.200 0.0000 0.0000 0.0000
22576 -0.60478 0.13415 -4.0560 0.0000 0.0000 0.0000
22584 -0.12184 0.86554E-01 -10.473 0.0000 0.0000 0.0000
22617 -0.60100 0.15502 -4.0950 0.0000 0.0000 0.0000
22625 -0.11925 0.89513E-01 -10.631 0.0000 0.0000 0.0000
24061 -0.35220 0.13939 19.652 0.0000 0.0000 0.0000
24066 -0.33572 0.17431 7.3143 0.0000 0.0000 0.0000
24082 -0.33512 -0.17241 7.3089 0.0000 0.0000 0.0000
24087 -0.35171 -0.13563 19.644 0.0000 0.0000 0.0000
24538 0.22023 -0.36868E-01 -4.0205 0.0000 0.0000 0.0000
24546 -0.27795 -0.52244E-01 -10.250 0.0000 0.0000 0.0000
24576 0.21597 -0.43317E-01 -4.0680 0.0000 0.0000 0.0000
24584 -0.27997 -0.42854E-01 -10.524 0.0000 0.0000 0.0000
24617 0.21591 -0.49478E-01 -4.1074 0.0000 0.0000 0.0000
24625 -0.28139 -0.34705E-01 -10.683 0.0000 0.0000 0.0000
25538 0.63806 -0.11349 -4.0206 0.0000 0.0000 0.0000
25546 1.1532 0.79337E-02 -10.250 0.0000 0.0000 0.0000
25576 0.63387 -0.14598 -4.0680 0.0000 0.0000 0.0000
25584 1.1531 -0.29036E-01 -10.524 0.0000 0.0000 0.0000
25617 0.62557 -0.17161 -4.1074 0.0000 0.0000 0.0000
25625 1.1519 -0.61159E-01 -10.683 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 21546 21617 24061 0 0 0
VALUE -1.5471 0.27685 19.652 0.0000 0.0000 0.0000

***** POST1 NODAL DEGREE OF FREEDOM LISTING **** *

LOAD STEP= 1 SUBSTEP= 13
FREQ= 3479.3 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE UX UY UZ ROTX ROTY ROTZ
22 -2.1984 60.376 -0.14239E-02 0.0000 0.0000 0.0000

10022 -1.9960 77.045 0.31840E-01 0.0000 0.0000 0.0000
21538 0.80764E-01 0.40397E-01 0.49848 0.0000 0.0000 0.0000
21546 -6.4836 3.9912 -1.2673 0.0000 0.0000 0.0000
21576 0.72358E-01 0.63009E-01 0.42663 0.0000 0.0000 0.0000
21584 -7.6689 4.6553 -1.8884 0.0000 0.0000 0.0000
21617 0.12273 0.57379E-01 0.37047 0.0000 0.0000 0.0000
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21625 -8.7016 5.1772 -2.4325 0.0000 0.0000 0.0000
22538 0.87706E-01 0.17543 0.56748 0.0000 0.0000 0.0000
22546 -6.2831 5.0182 -1.2225 0.0000 0.0000 0.0000
22576 0.92974E-01 0.18824 0.48659 0.0000 0.0000 0.0000
22584 -7.4322 5.6835 -1.8299 0.0000 0.0000 0.0000
22617 0.14368 0.17617 0.42076 0.0000 0.0000 0.0000
22625 -8.4357 6.2048 -2.3541 0.0000 0.0000 0.0000
24061 -1.9369 -12.670 -0.95604 0.0000 0.0000 0.0000
24066 -1.0801 -4.7937 -1.0649 0.0000 0.0000 0.0000
24082 1.5007 -4.5559 -1.4595 0.0000 0.0000 0.0000
24087 2.3829 12.467 0.10330 0.0000 0.0000 0.0000
24538 -0.93404E-01 0.37757 1.0909 0.0000 0.0000 0.0000
24546 -5.5118 4.1576 2.6594 0.0000 0.0000 0.0000
24576 -0.66009E-01 0.38853 1.0874 0.0000 0.0000 0.0000
24584 -6.3981 4.6967 3.0133 0.0000 0.0000 0.0000
24617 -0.78948E-02 0.37908 1.0812 0.0000 0.0000 0.0000
24625 -7.1715 5.1206 3.3430 0.0000 0.0000 0.0000
25538 -0.30931 0.47682 1.1451 0.0000 0.0000 0.0000
25546 -5.2283 3.4392 2.6949 0.0000 0.0000 0.0000
25576 -0.28463 0.50756 1.1349 0.0000 0.0000 0.0000
25584 -6.1405 3.9607 3.0595 0.0000 0.0000 0.0000
25617 -0.21671 0.51131 1.1213 0.0000 0.0000 0.0000
25625 -6.9354 4.3710 3.4049 0.0000 0.0000 0.0000

MAXIMUM ABSOLUTE VALUES
NODE 21625 10022 25625 0 0 0
VALUE -8.7016 77.045 3.4049 0.0000 0.0000 0.0000

The eigenvalues and eigenvectors are stripped out of the AN SYS actrlpz.eig 
file  and are stored in the M ATLAB .mat file  actrlpz_eig.mat.

19.5 MATLAB Model, MATLAB Code actSpz.m Listing and Results
19.5.1 Input, dof Definition
The act8pz.m M ATLAB code starts by defining the degrees of freedom, 
nodes, directions and locations for the problem for reference in building the 
model. The degrees of freedom are extracted from the AN SYS 
eigenvalue/eigenvector listing and are ordered by node number, first the UX 
direction and then the U Y direction. Once again, the UX direction 
information is required to transform the coil and piezo forces into cylindrical 
coordinates. The eigenvalue/eigenvector information is then loaded by 
reading the .mat file  actrlpz_eig.mat and the rig id  body mode is set to zero 
frequency.

% act8pz.m

clear all;
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hold off; 

clf;

% load the Block Lanczos .mat file actrl_eig.mat, containing evr -  the
% modal matrix, freqvec -the frequency vector and node_numbers - the
% vector of node numbers for the modal matrix

% the output for the ANSYS run is the following dofs

%
0/

dof node dir where
%
% 1 22 ux - radial , top head gap
% 2 10022 ux - radial , bottom head gap
% 3 21538 ux - radial , bottom arm piezo, hub end
% 4 21546 ux - radial , bottom arm piezo, head end
% 5 21576 ux - radial , bottom arm piezo, hub end
% 6 21584 ux - radial , bottom arm piezo, head end
% 7 21617 ux - radial , bottom arm piezo, hub end
% 8 21625 ux - radial , bottom arm piezo, head end
% 9 22538 ux - radial , bottom arm piezo, hub end
% 10 22546 ux - radial , bottom arm piezo, head end
% 11 22576 ux - radial , bottom arm piezo, hub end
% 12 22584 ux - radial , bottom arm piezo, head end
% 13 22617 ux - radial , bottom arm piezo, hub end
% 14 22625 ux - radial , bottom arm piezo, head end
% 15 24061 ux - radial , bottom arm piezo, coil
% 16 24066 ux - radial , bottom arm piezo, coil
% 17 24082 ux - radial , bottom arm piezo, coil
% 18 24087 ux - radial , bottom arm piezo, coil
% 19 24538 ux - radial , top arm piezo, hub end
% 20 24546 ux - radial , top arm piezo, head end
% 21 24576 ux - radial , top arm piezo, hub end
% 22 24584 ux - radial , top arm piezo, head end
% 23 24617 ux - radial , top arm piezo, hub end
% 24 24625 ux - radial , top arm piezo, head end
% 25 25538 ux - radial , top arm piezo, hub end
% 26 25546 ux - radial , top arm piezo, head end
% 27 25576 ux - radial , top arm piezo, hub end
% 28 25584 ux - radial , top arm piezo, head end
% 29 25617 ux - radial , top arm piezo, hub end
% 30 25625 ux - radial , top arm piezo, head end
% 31 22 uy - circumferential, top head gap
% 32 10022 uy - circumferential, bottom head gap
% 33 21538 uy - circumferential, bottom arm piezo, hub end
% 34 21546 uy - circumferential, bottom arm piezo, head end
% 35 21576 uy - circumferential, bottom arm piezo, hub end
% 36 21584 uy - circumferential, bottom arm piezo, head end
% 37 21617 uy - circumferential, bottom arm piezo, hub end
% 38 21625 uy - circumferential, bottom arm piezo, head end
% 39 22538 uy - circumferential, bottom arm piezo, hub end
% 40 22546 uy - circumferential, bottom arm piezo, head end
% 41 22576 uy - circumferential, bottom arm piezo, hub end
% 42 22584 uy - circumferential, bottom arm piezo, head end
% 43 22617 uy - circumferential, bottom arm piezo, hub end
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% 44 22625 uy - circumferential, bottom arm piezo, head end
% 45 24061 uy - circumferential, bottom arm piezo, coil
% 46 24066 uy - circumferential, bottom arm piezo, coil
% 47 24082 uy - circumferential, bottom arm piezo, coil
% 48 24087 uy - circumferential, bottom arm piezo, coil
% 49 24538 uy - circumferential, top arm piezo, hub end
% 50 24546 uy - circumferential, top arm piezo, head end
% 51 24576 uy - circumferential, top arm piezo, hub end
% 52 24584 uy - circumferential, top arm piezo, head end
% 53 24617 uy - circumferential, top arm piezo, hub end
% 54 24625 uy - circumferential, top arm piezo, head end
% 55 25538 uy - circumferential, top arm piezo, hub end
% 56 25546 uy - circumferential, top arm piezo, head end
% 57 25576 uy - circumferential, top arm piezo, hub end
% 58 25584 uy - circumferential, top arm piezo, head end
% 59 25617 uy - circumferential, top arm piezo, hub end
% 60 25625 uy - circumferential, top arm piezo, head end

load actrlpz eig;

[numdof,num modes total] = size(evr);

freqvec(1) = 0; % set rigid body mode to zero frequency

xn = evr;

19.5.2 Forcing Function Definition, dc Gain Calculations
The unity coil force is equally divided between the four coil nodes. For this 
model, the piezo force, “fpz,” is arbitrarily set at 0.2, to be applied with equal 
magnitudes and with opposite signs to the two ends of each piezo element. 
For an actual system, the piezo force would be related to the coil force by the 
appropriate force constants for the VCM  and the appropriate voltage/force 
relationships for the piezo, and would not be arbitrarily chosen.

Given the directions of the coil and piezo forces in Figure 19.4, the forces are 
transformed to cylindrical coordinates and two forcing function vectors are 
formed, one for the coil and one for the piezo.

The user is prompted for whether uniform or non-uniform damping is to be 
used and then dc or peak gains are calculated, respectively.

For a SISO system, we can rank the relative importance of modes using two 
methods, by using dc or peak gains and by using balancing. For a MIMO 
system, balancing is the only practical option. However, we w ill still calculate 
the dc gains for this MIMO system to get a feel for the relative importance of
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each of the modes for both forcing functions. This w ill require calculating dc 
gains for the four combinations possible for the two-input, two-output system. 

The four dc gains are calculated, sorted and plotted in the code below.

% define radial and circumferential forces applied at four coil force nodes
% "x" is radial, "y" is circumferential, total force is unity

fcoil = 0.25;

n24061fx = fcoil*sin(9.1148*pi/180); 
n24061fy = fcoil*cos(9.1148*pi/180);

n24066fx = fcoil*sin(15.1657*pi/180); 
n24066fy = fcoil*cos(15.1657*pi/180);

n24082fx = -fcoil*sin(15.1657*pi/180); 
n24082fy = fcoil*cos(15.1657*pi/180);

n24087fx = -fcoil*sin(9.1148*pi/180); 
n24087fy = fcoil*cos(9.1148*pi/180);

% define radial and circumferential forces applied at ends of piezo element
% "x" is radial, "y" is circumferential, total force is unity

fpz = 0.2/6; % six nodes at each end of the piezo

% bottom arm radial force

n21538fx = fpz*cos(20.4549*pi/180); 
n21546fx = -fpz*cos(13.5298*pi/180); 
n21576fx = fpz*cos(20.4549*pi/180); 
n21584fx = -fpz*cos(13.5298*pi/180); 
n21617fx = fpz*cos(20.4549*pi/180); 
n21625fx = -fpz*cos(13.5298*pi/180); 
n22538fx = fpz*cos(20.4549*pi/180); 
n22546fx = -fpz*cos(13.5298*pi/180); 
n22576fx = fpz*cos(20.4549*pi/180); 
n22584fx = -fpz*cos(13.5298*pi/180); 
n22617fx = fpz*cos(20.4549*pi/180); 
n22625fx = -fpz*cos(13.5298*pi/180);

% top arm radial force

n24538fx = -fpz*cos(20.4549*pi/180); 
n24546fx = fpz*cos(13.5298*pi/180); 
n24576fx = -fpz*cos(20.4549*pi/180); 
n24584fx = fpz*cos(13.5298*pi/180); 
n24617fx = -fpz*cos(20.4549*pi/180); 
n24625fx = fpz*cos(13.5298*pi/180); 
n25538fx = -fpz*cos(20.4549*pi/180); 
n25546fx = fpz*cos(13.5298*pi/180);

________n25576fx = -fpz*cos(20.4549*pi/180);
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n25584fx = fpz*cos(13.5298*pi/180); 
n25617fx = -fpz*cos(20.4549*pi/180); 
n25625fx = fpz*cos(13.5298*pi/180);

% bottom arm circumferential force

n21538fy = -fpz*sin(20.4549*pi/180); 
n21546fy = fpz*sin(13.5298*pi/180); 
n21576fy = -fpz*sin(20.4549*pi/180); 
n21584fy = fpz*sin(13.5298*pi/180); 
n21617fy = -fpz*sin(20.4549*pi/180); 
n21625fy = fpz*sin(13.5298*pi/180); 
n22538fy = -fpz*sin(20.4549*pi/180); 
n22546fy = fpz*sin(13.5298*pi/180); 
n22576fy = -fpz*sin(20.4549*pi/180); 
n22584fy = fpz*sin(13.5298*pi/180); 
n22617fy = -fpz*sin(20.4549*pi/180); 
n22625fy = fpz*sin(13.5298*pi/180);

% top arm circumferential force

n24538fy = fpz*sin(20.4549*pi/180); 
n24546fy = -fpz*sin(13.5298*pi/180); 
n24576fy = fpz*sin(20.4549*pi/180); 
n24584fy = -fpz*sin(13.5298*pi/180); 
n24617fy = fpz*sin(20.4549*pi/180); 
n24625fy = -fpz*sin(13.5298*pi/180); 
n25538fy = fpz*sin(20.4549*pi/180); 
n25546fy = -fpz*sin(13.5298*pi/180); 
n25576fy = fpz*sin(20.4549*pi/180); 
n25584fy = -fpz*sin(13.5298*pi/180); 
n25617fy = fpz*sin(20.4549*pi/180); 
n25625fy = -fpz*sin(13.5298*pi/180);

% two-input system 

% first input is coil force
% second input is excitation of both piezo elements with opposite polarity

% f_coil is the vector of forces applied to coil

f_coil = [zeros(14,1) 
n24061fx 
n24066fx 
n24082fx 
n24087fx 
zeros(26,1) 
n24061fy 
n24066fy 
n24082fy 
n24087fy 
zeros(12,1)];

% f_piezo is vector of forces applied to piezo ends
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f_piezo = [

%n21538fx 
n21546fx 
n21576fx 
n21584fx 
n21617fx 
n21625fx 
n22538fx 
n22546fx 
n22576fx 
n22584fx 
n22617fx 
n22625fx 
0 
0 
0 
0
n24538fx % 
n24546fx 
n24576fx 
n24584fx 
n24617fx 
n24625fx 
n25538fx 
n25546fx 
n25576fx 
n25584fx 
n25617fx 
n25625fx 
0 
0

n21538fy % 
n21546fy 
n21576fy 
n21584fy 
n21617fy 
n21625fy 
n22538fy 
n22546fy 
n22576fy 
n22584fy 
n22617fy 
n22625fy 
0 
0 
0 
0

n24538fy %
n24546fy
n24576fy
n24584fy
n24617fy
n24625fy
n25538fy

bottom arm radial force

top arm radial force

bottom arm circumferential force

top arm circumferential force
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n25546fy 
n25576fy 
n25584fy 
n25617fy 
n25625fy ];

% define composite forcing function, force applied to each node times
% eigenvector value for that node

force_coil = f_coil'*xn;

force_piezo = f_piezo'*xn;

% prompt for uniform or variable zeta

zeta_type = input('enter " 1" to read in damping vector (zetain.m) ... 
or "enter" for uniform damping ... ');

if (isempty(zeta_type)) 

zeta_type = 0;

zeta_uniform = input('enter value for uniform damping, .
.005 is 0.5% of critical (default) ... ');

if (isempty(zeta_uniform))
zeta_uniform = 0.005;

end

zeta_unsort = zeta_uniform*ones(num_modes_total,1);

else

zetain; % read in zeta_unsort damping vector from zetain.m file

end

if length(zeta_unsort) ~= num_modes_total

error(['error - zetain vector has ',num2str(length(zeta_unsort)), ...
' entries instead of ',num2str(num_modes_total)]);

end

% define dc gains, 31 is head 1, 32 is head 0

omega2 = (2*pi*freqvec)'.A2; % convert to radians and square 

% define frequency range for frequency response

freqlo = 501; 

freqhi = 25000; 

flo=log10(freqlo) ;
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fhi=log10(freqhi) ;

f=logspace(flo,fhi,300) ; 
frad=f*2*pi ;

% calculate dc gains if uniform damping, peak gains if non-uniform

if zeta_type == 0 % dc gain

gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ... 
force_coil(2 :num_modes_total). * xn(32,2 :num_modes_total) ...

./omega2(2 :num_modes_total)]);

gain_h1_coil = abs([force_coil(1)*xn(31,1)/frad(1) ... 
force_coil(2:num_modes_total).*xn(31,2:num_modes_total) ... 
./omega2(2:num_modes_total)]);

gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ... 
force_piezo(2:num_modes_total).*xn(32,2:num_modes_total) ... 
./omega2(2:num_modes_total)]);

gain_h1_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ... 
force_piezo(2:num_modes_total).*xn(31,2:num_modes_total) ... 
./omega2(2:num_modes_total)]);

elseif zeta_type == 1 % peak gain

gain_h0_coil = abs([force_coil(1)*xn(32,1)/frad(1) ... 
force_coil(2:num_modes_total).*xn(32,2:num_modes_total) ... 
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1_coil = abs([force_coil(1)*xn(31,1)/frad(1) ... 
force_coil(2:num_modes_total).*xn(31,2:num_modes_total) ... 
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h0_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ... 
force_piezo(2:num_modes_total).*xn(32,2:num_modes_total) ... 
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

gain_h1_piezo = abs([force_piezo(1)*xn(31,1)/frad(1) ... 
force_piezo(2:num_modes_total).*xn(31,2:num_modes_total) ... 
./((2*zeta_unsort(2:num_modes_total))'.*omega2(2:num_modes_total))]);

% sort gains, keeping track of original and new indices so can rearrange
% eigenvalues and eigenvectors

[gain_h0_coil_sort,index_h0_coil_sort] = sort(gain_h0_coil);

[gain_h1_coil_sort,index_h1_coil_sort] = sort(gain_h1_coil);

[gain_h0_piezo_sort,index_h0_piezo_sort] = sort(gain_h0_piezo);

[gain_h1_piezo_sort,index_h1_piezo_sort] = sort(gain_h1_piezo);
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gain_h1_coil_sort = fliplr(gain_h1_coil_sort); % max to min

gain_h0_piezo_sort = fliplr(gain_h0_piezo_sort); % max to min

gain_h1_piezo_sort = fliplr(gain_h1_piezo_sort); % max to min

index_h0_coil_sort = fliplr(index_h0_coil_sort) % max to min indices

index_h1_coil_sort = fliplr(index_h1_coil_sort) % max to min indices

index_h0_piez_sort = fliplr(index_h0_piezo_sort) % max to min indices

index_h1_piez_sort = fliplr(index_h1_piezo_sort) % max to min indices 

index_orig = 1:num_modes_total;

[index_h0_coil_sort' index_h1_coil_sort' index_h0_piez_sort' index_h1_piez_sort']

% plot results

semilogy(index_orig(2:num_modes_total),freqvec(2:num_modes_total),'k-');
title(['frequency versus mode number'])
xlabel('mode number')
ylabel('frequency, hz')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil,'k.-',index_orig,gain_h1_coil,'k-') 
title(['coil input: dc value of each mode contribution versus mode number']) 
xlabel('mode number') 
ylabel('dc value')
legend('h0 coil input','h1 coil input') 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_piezo,'k.-',index_orig,gain_h1_piezo,'k-') 
title(['piezo input: dc value of each mode contribution versus mode number']) 
xlabel('mode number') 
ylabel('dc value')
legend('h0 piezo input','h1 piezo input') 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(freqvec(2:num_modes_total),gain_h0_coil(2:num_modes_total),'k.-', ...
freqvec(2:num_modes_total),gain_h1_coil(2:num_modes_total),'k-') 

title(['coil input: dc value of each mode contribution versus frequency']) 
xlabel('frequency, hz') 
ylabel('dc value') 
axis([500 25000 -inf inf]) 
legend('h0 coil input','h1 coil input') 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

gain_h0_coil_sort = fliplr(gain_h0_coil_sort); % max to min
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loglog(freqvec(2 :num_modes_total),gain_h0_piezo(2 :num_modes_total),'k.-', ...
freqvec(2:num_modes_total),gain_h1_piezo(2:num_modes_total),'k-') 

title(['piezo input: dc value of each mode contribution versus frequency']) 
xlabel('frequency, hz') 
ylabel('dc value') 
axis([500 25000 -inf inf]) 
legend('h0 piezo input','h1 piezo input') 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil_sort,'k.-',index_orig,gain_h1_coil_sort,'k-')
title(['coil input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('h0 coil input','h1 coil input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_piezo_sort,'k.-',index_orig,gain_h1_piezo_sort,'k-')
title(['piezo input: sorted dc value of each mode versus number of modes included'])
xlabel('modes included')
ylabel('sorted dc value')
legend('h0 piezo input','h1 piezo input')
grid off
disp('execution paused to display figure, "enter" to continue');%pause

semilogy(index_orig,gain_h0_coil_sort,'k.-',index_orig,gain_h1_coil_sort,'k.-', ... 
index_orig,gain_h0_piezo_sort, . 

'k-',index_orig,gain_h1_piezo_sort,'k-') 
title(['coil and piezo input: sorted dc value of each mode versus number .

of modes included']) 
xlabel('modes included') 
ylabel('sorted dc value')
legend('h0 coil input','h1 coil input','h0 piezo input','h1 piezo input') 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

Figure 19.22 repeats Figure 19 .5 , plotting resonant frequency versus mode 
number. Note that there are several “jumps” in the curve, the most significant 
between mode 4 and mode 5. As indicated in Section 17.6, “jumps” in the 
frequency plot can indicate the system transitioning from one type o f 
characteristic motion to another. In this case modes 2, 3 and 4 involve 
bending motions o f the system, while mode 5 involves coil torsion.
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mode number

Figure 19.22: Resonant frequencies versus mode number.

The dc gains for head 0 and head 1 fo r coil input are shown in Figure 19 .23 . 
Because the actuator is nearly symmetrical in design the gains o f the two 
heads are quite similar.

mode number

Figure 19.23: dc gain versus mode for both heads for coil input.
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mode number

Figure 19.24: dc gain versus mode number for both heads for piezo input.

The gains fo r both heads for piezo inputs are shown in Figure 19 .24 .

coil input: dc value of each mode contribution versus frequency

frequency, hz

Figure 19.25: dc gain versus frequency for both heads for coil input.
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piezo input: dc value of each mode contribution versus frequency

frequency, hz

Figure 19.26: dc gain versus frequency for both heads for piezo input.

modes included

Figure 19.27: Sorted dc gain for both heads for coil input.

The sorted dc gains o f the two heads, Figure 19 .27 , are very similar because 
the actuator design is so symmetrical.
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modes included

Figure 19.28: Sorted dc gain for both heads for piezo input.

modes included

Figure 19.29: Sorted dc gain for both heads for both coil and piezo inputs.

The sorted gains o f head 0 and head 1 for both coil and piezo inputs can be 
seen in Figure 19 .29 . They are o f similar magnitude because the piezo force 
“fpz” in Section 19.5.2 was chosen to be 0.2.

W ith the partial listing o f mode ranking for both heads and both inputs shown 
in Table 19 .1 , we can start looking at the difficulties o f using dc and peak 
gains for ranking MIMO systems.
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Table 19.1 lists the mode ranking for the first 15 modes for: 

Column 1: head 0, coil input 

Column 2: head 1, coil input 

Column 3 : head 0, piezo input 

Column 4 : head 1, piezo input

1 1 12 12
13 13 8 8
9 9 21 21

16 16 30 30
12 12 11 11
28 28 13 13
25 25 49 22
29 36 46 49
36 15 22 46
15 29 28 17
11 17 17 28
26 11 29 20
17 26 10 50
47 5 20 14
10 22 50 29

Table 19.1: Ranking for first 15 modes for head 0 and head 1 for coil and piezo inputs.

The first two columns in Table 19.1 show that for coil input, head 0 and head 
1 have the same ranking through the first seven modes, then their rankings 
change. The second two columns show that for piezo input, head 0 and head 1 
have the same ranking through the first six modes, then their rankings change.

If one were to choose a single ranking for the model which would take into 
account both inputs and both outputs, it is difficult to see how to do it given 
the rankings in the table. Thus the necessity o f balanced reduction for MIMO 
models. (See Problem P 19.1 fo r using dc gain to rank for reduction.)

19 .5 .3  Building State Space M atrices

In this section o f code the system matrices are assembled and the four 
frequency responses are plotted. For all previous SISO models in the book we 
have built the system matrices using dc gain ordering o f modes. Here, fo r the 
MIMO model, we will assemble the system using the original, unsorted 
ordering and will let “balreal” do all the work o f sorting in the next section.

% create five state space systems with all modes included, differing in the ordering
% of the modes, the unsorted system will be used for all reductions, letting balreal do all
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%
%

the ordering, the sorted systems will be used to show how the dc gain ordering 
compares with the balanced ordering

%
%
%
%
%

1) unsorted
2) sorted, head 0, coil input
3) sorted, head 1, coil input
4) sorted, head 0, piezo input
5) sorted, head 1, piezo input

for num model = 1:5

if num model == 1 % unsorted

xnnew = xn;

freqnew = freqvec;

elseif num model == 2 % sorted, head 0, coil input

xnnew = xn(:,index h0 coil sort);

freqnew = freqvec(index h0 coil sort);

elseif num model == 3 % sorted, head 1, coil input

xnnew = xn(:,index h1 coil sort);

freqnew = freqvec(index h1 coil sort);

elseif num model == 4 % sorted, head 0, piezo input

xnnew = xn(:,index h0_piezo sort);

freqnew = freqvec(index h0_piezo sort);

elseif num_model == 5 % sorted, head 1, piezo input

xnnew = xn(:,index h1_piezo sort);

freqnew = freqvec(index h1_piezo sort);

end

% define variables for all modes included system matrix, a

w = freqnew*2*pi; % frequencies in rad/sec

2;<w=2w

zw = 2*zeta unsort.*w;

% define size of system matrix 

asize = 2*num modes total;

© 2001 by Chapman & Hall/CRC



disp(' 
disp(' ');
disp(['size of system matrix a is ',num2str(asize)]);

% setup system matrix for all modes included model

a = zeros(asize); 

for col = 2:2:asize 

row = col-1; 

a(row,col) = 1; 

end

for col = 1:2:asize 

row = col+1;

a(row,col) = -w2((col+1)/2); 

end

for col = 2:2:asize 

row = col;

a(row,col) = -zw(col/2); 

end

% setup input matrix b, state space forcing function in principal coordinates

% two-input system

% first input is coil force
% second input is excitation of both piezo elements with opposite polarity

f_physical = [f_coil f_piezo];

% f_principal is the matrix of forces in principal coordinates

f_principal = xnnew'*f_physical;

% b is the matrix of forces in principal coordinates, state space form

b = zeros(2*num_modes_total,2); 

for cnt = 1:num_modes_total

b(2*cnt,:) = f_principal(cnt,:);

end
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% setup cdisp and cvel, padded xn matrices to give the displacement and velocity
% vectors in physical coordinates cdisp and cvel each have numdof rows
% and alternating columns consisting of columns of xnnew and zeros to give total
% columns equal to the number of states

% all modes included cdisp and cvel

for col = 1:2:2*length(freqnew) 

for row = 1:numdof

c_disp(row,col) = xnnew(row,ceil(col/2));

cvel(row,col) = 0;

end

end

for col = 2:2:2*length(freqnew) 

for row = 1:numdof 

c_disp(row,col) = 0;

cvel(row,col) = xnnew(row,col/2);

end

end

% define output

d = [0]; %

if num_model == 1 % unsorted

sys = ss(a,b,c_disp(31:32,:),d); 

elseif num_model == 2 % sorted, head 0, coil input

sys_h0_coil = ss(a,b,c_disp(31:32,:),d); 

elseif num_model == 3 % sorted, head 1, coil input

sys_h1_coil = ss(a,b,c_disp(31:32,:),d); 

elseif num_model == 4 % sorted, head 0, piezo input

sys_h0_piezo = ss(a,b,c_disp(31:32,:),d); 

elseif num_model == 5 % sorted, head 1, piezo input

sys_h1_piezo = ss(a,b,c_disp(31:32,:),d);
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end

end % end of for loop for creating system matrices

19 .5 .4  Balancing, Reduction

Balancing the system involves calculating gramians, which are only defined 
fo r negative definite systems. This requires separating the rigid body mode 
from the oscillatory modes and balancing the oscillatory modes. The system 
matrices are partitioned and a model o f only oscillatory modes is created and 
balanced. Plotting the diagonal gramian terms (squares o f the Hankel singular 
values) reveals the relative importance o f the states.

Modred is used to reduce the states using both the “del” and “mdc” options. 
The complete system is rebuilt by augmenting the rigid body mode (states) 
with the reduced oscillatory modes (states). Frequency responses are then 
plotted, comparing the two reducing methods with the original 50-mode 
model.

% partition system matrices into rigid body mode and oscillatory modes, can't use balreal
% with rigid body mode so will reduce the oscillatory modes and then augment the
% resulting system with the rigid body mode

% define oscillatory system, where output 31 is head 1, output 32 is head 0

[a,b,c_disp,d] = ssdata(sys);

a_syso = a(3:asize,3:asize);

b_syso = b(3:asize,:);

c_syso = c_disp(1:2,3:asize);

syso = ss(a_syso,b_syso,c_syso,d);

% define controllability and observability gramians for oscillatory system, syso

wc = gram(syso,'c');

wo = gram(syso,'o');

[row_syso,col_syso] = size(a_syso);

statevec = 1 :row_syso;

% plot controllability and observability gramians

meshz(wc);
view(60,30);
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title(['controllability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue');%pause

meshz(wo);
view(60,30);
title(['observability gramian for oscillatory system'])
xlabel('state')
ylabel('state')
grid on

disp('execution paused to display figure, "enter" to continue');%pause

% pull out diagonal elements

wc_diag = diag(wc);

wo_diag = diag(wo);

% plot diagonal terms of controllability and observability gramians

semilogy(statevec,wc_diag,'k. -')
title(['controllability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
grid off

disp('execution paused to display figure, "enter" to continue');%pause

semilogy(statevec,wo_diag,'k.-')
title(['observability gramian diagonal terms'])
xlabel('states')
ylabel('diagonal')
grid off

disp('execution paused to display figure, "enter" to continue');%pause

% position and velocity states plotted separately

semilogy(statevec(1:2:row_syso),wc_diag(1:2:row_syso),'k.-', ...

state vec(2:2 :row_syso), wc_diag(2:2 :row_syso),'k-') 
title(['controllability gramian diagonal terms']) 
xlabel('states') 
ylabel('diagonal')
legend('position states','velocity states',3) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause 

semilogy(statevec( 1:2:row_syso), wo_diag( 1:2 :row_syso),'k. -', ...
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statevec(2:2:row_syso),wo_diag(2:2:row_syso),'k-') 
title(['observability gramian diagonal terms']) 
xlabel('states') 
ylabel('diagonal')
legend('position states','velocity states',3) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause 

% use balreal to rank oscillatory states and modred to reduce for comparison

[sysob,g,T,Ti] = balreal(syso);

[ao_bal,bo_bal,cdispo_bal,do_bal] = ssdata(sysob); 

semilogy(g,'k.-')
title('diagonal of balanced gramian versus number of states') 
xlabel('state number') 
ylabel('diagonal of balanced gramian') 
grid off

osc_states_used = input(['enter number of oscillatory states to use, default 20 ... ']); 

if isempty(osc_states_used)

osc_states_used = 20;

end

num_modes_used = 1 + osc_states_used/2; % number of modes for overlaid plots

% use modred to order oscillatory states from balreal to define reduced order
% oscillatory system using both "del" and "mdc"

rsys_delo = modred(sysob,osc_states_used+1:2*num_modes_total-2,'del');

rsys_mdco = modred(sysob,osc_states_used+1:2*num_modes_total-2,'mdc');

% rebuild system by appending balanced realization of oscillatory modes to rigid
% body mode

[a_delo_bal,b_delo_bal,c_delo_bal,d_delo_bal] = ssdata(rsys_delo);

a_del_bal = [ a(1:2,1:2) zeros(2,osc_states_used)
zeros(osc_states_used,2) a_delo_bal ];

b_del_bal = [b(1:2,:)
b_delo_bal]; 

c_del_bal = [c_disp(1:2,1:2) c_delo_bal]; 

rsys_del = ss(a_del_bal,b_del_bal,c_del_bal,d);

[a_mdco_bal,b_mdco_bal,c_mdco_bal,d_mdco_bal] = ssdata(rsys_mdco);
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a_mdc_bal = [ a(1:2,1:2) zeros(2,osc_states_used)
zeros(osc_states_used,2) a_mdco_bal ];

b_mdc_bal = [b(1:2,:)
b_mdco_bal]; 

c_mdc_bal = [c_disp(1:2,1:2) c_mdco_bal]; 

rsys_mdc = ss(a_mdc_bal,b_mdc_bal,c_mdc_bal,d);

% frequency response for unsorted system

[mag,phs] = bode(sys,frad);

% plot original system response, output of bode command has dimensions
% of "i" x "j" x "k" where "i" is output row, "j" is input column and "k" is the
% vector of frequencies

magh0coil = mag(2,1,:); 
magh1coil = mag(1,1,:); 
magh0pz = mag(2,2,:); 
magh1pz = mag(1,2,:);

loglog(f,magh0coil(1,:),'k.-',f,magh1coil(1,:),'k-')
title(['gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause 

loglog(f,magh0pz(1,:),'k.-',f,magh1pz(1,:),'k-')
title(['gap displacement, all ',num2str(num_modes_total),' modes included'])
xlabel('Frequency, hz')
ylabel('Magnitude, mm')
axis([500 25000 1e-9 2e-4])
legend('head 0 piezo input','head 1 piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause 

loglog(f,magh0coil(1,:),'k.-',f,magh1coil(1,:),'k.-',f,magh0pz(1,:),'k-',f,magh1pz(1,:),'k-
')

title(['gap displacement, all ',num2str(num_modes_total),' modes included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input','head 1 piezo ... 

input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause 

% frequency response for balanced reduced modred "del"
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[magr_del,phsr_del] = bode(rsys_del,frad);

magr_delh0coil = magr_del(2,1,:); 
magr_delh1coil = magr_del(1,1,:); 
magr_delh0pz = magr_del(2,2,:); 
magr_delh1pz = magr_del(1,2,:);

loglog(f,magr_delh0coil( 1, :),'k-',f,magr_delh 1 coil( 1, :),'k. -',f,magr_delh0pz( 1,:), ...
'k.-',f,magr_delh1pz(1,:),'k-') 

title(['gap displacement, modred "del", ',num2str(osc_states_used), .
' oscillatory states included']) 

xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input' .

,'head 1 piezo input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0coil(1,:),'k-',f,magr_delh0coil(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','"del" reduced head 0, coil input',3) 
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1coil(1,:),'k-',f,magr_delh1coil(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 1, coil input','"del" reduced head 1, coil input',3) 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0pz(1,:),'k-',f,magr_delh0pz(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, piezo input','"del" reduced head 0, piezo input',3) 
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1pz(1,:),'k-',f,magr_delh1pz(1,:),'k.-')
title(['gap displacement, modred "del", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])

© 2001 by Chapman & Hall/CRC



legend('head 1, piezo input','"del" reduced head 1, piezo input',3) 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

% frequency response for balanced reduced modred "mdc"

[magr_mdc,phsr_mdc] = bode(rsys_mdc,frad);

magr_mdch0coil = magr_mdc(2,1,:); 
magr_mdch1coil = magr_mdc(1,1,:); 
magr_mdch0pz = magr_mdc(2,2,:); 
magr_mdch1pz = magr_mdc(1,2,:);

loglog(f,magr_mdch0coil(1,:),'k-',f,magr_mdch1coil(1,:),'k.-', .
f,magr_mdch0pz(1,:),'k.-',f,magr_mdch1pz(1,:),'k-') 

title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .
' oscillatory states included']) 

xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','head 1, coil input','head 0 piezo input','head 1 piezo . 

input',3)
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0coil(1,:),'k-',f,magr_mdch0coil(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, coil input','"mdc" reduced head 0, coil input',3) 
grid off
disp('execution paused to display figure, "enter" to continue'); pause

loglog(f,magh1coil(1,:),'k-',f,magr_mdch1coil(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 1, coil input','"mdc" reduced head 1, coil input',3) 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

loglog(f,magh0pz(1,:),'k-',f,magr_mdch0pz(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), .

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 0, piezo input','"mdc" reduced head 0, piezo input',3) 
grid off
disp('execution paused to display figure, "enter" to continue'); pause
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loglog(f,magh1pz(1,:),'k-',f,magr_mdch1pz(1,:),'k.-')
title(['gap displacement, modred "mdc", ',num2str(osc_states_used), ...

' oscillatory states included']) 
xlabel('Frequency, hz') 
ylabel('Magnitude, mm') 
axis([500 25000 1e-9 2e-4])
legend('head 1, piezo input','"mdc" reduced head 1, piezo input',3) 
grid off
disp('execution paused to display figure, "enter" to continue');%pause

gap displacement, all 50 modes included

Frequency, hz

Figure 19.30: Frequency response for coil input for both heads, all modes included.

gap displacement, all 50 modes included

Frequency, hz

Figure 19.31: Frequency response for piezo input for both heads, all modes included.
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gap displacement, all 50 modes included

Frequency, hz

Figure 19.32: Frequency response for both coil and piezo inputs for both heads, all modes
included.

The frequency response plots for both inputs and both outputs are shown 
above for reference.
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Figure 19.33: Controllability gramian values.

observability gramian for oscilla tory system
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Figure 19.34: Observability gramian values.

Graphically, Figures 19.33 and 19.34 show the two gramians for this MIMO 
system. The gramians are nearly diagonal. The controllability gramian 
displays a predominance o f lower frequency states, while the observability 
gramian has some higher frequency states included.

controllability gramian for oscillatory system
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states

Figure 19.35: Controllability gramian diagonal terms versus states.

states

Figure 19.36: Observability gramian diagonal terms versus states.

Plotting the diagonal elements o f the two gramians reveals the same pattern as 
fo r the SISO model. The maximum and minimum values for each mode are 
related by the square o f the eigenvalue for that mode.
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states

Figure 19.37: Controllability gramian diagonal position and velocity state terms.

states

Figure 19.38: Observability gramian diagonal position and velocity state terms.

Plotting the position and velocity terms for each gramian separately displays 
their character on a mode-by-mode basis.
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state number

Figure 19.39: Balanced gramian diagonal terms (Hankel singular values) versus state
number.

The balanced gramian shows several sharp drops in magnitude, one at 10 
states and one at 56 states. W e will see in Section 19.5.7 that 10 oscillatory 
modes (20 oscillatory states) are required for a normalized reduction index o f 
less than 5% for coil input, and that 16 oscillatory modes (32 oscillatory 
states) are required for a normalized reduction index o f less than 5% for piezo 
input.

19 .5 .5  F requency Responses fo r  D ifferent Numbers o f Retained States

This section displays pairs o f frequency responses, one for head 0 for coil 
input and one for head 0 fo r piezo input. Each pair o f plots represents an 
increasing number o f oscillatory modes included in the reduced model. The 
original 50 mode model is overlaid to show the error in the reduced model. 
Note how the balanced method adds modes and which modes it chooses.
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gap displacement, modred "del", 6 oscillatory states included

Frequency, hz

Figure 19.40: Head 0, coil input, six reduced oscillatory states included.

gap displacement, modred "del", 6 oscillatory states included

Frequency, hz

Figure 19.41: Head 0, piezo input, six reduced oscillatory states included.

W ith only six oscillatory states included the coil input captures the first two 
resonances but the piezo input misses the first resonance.
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gap displacement, modred "del", 8 oscillatory states included

Frequency, hz

Figure 19.42: Head 0, coil input, eight reduced oscillatory states included.

gap displacement, modred "del", 8 oscillatory states included

Frequency, hz

Figure 19.43: Head 0, piezo input, eight reduced oscillatory states included.

With 8 oscillatory states included the coil input captures the first two 
resonances but the piezo input again misses the first resonance.
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gap displacement, modred "del", 10 oscillatory states included

Frequency, hz

Figure 19.44: Head 0, coil input, 10 reduced oscillatory states included.

gap displacement, modred "del", 10 oscilla tory states included

Frequency, hz

Figure 19.45: Head 0, piezo input, 10 reduced oscillatory states included.

With 10 oscillatory states included the first three coil input modes are fit well 
and also the first two piezo input modes.
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gap displacement, modred "del", 12 oscillatory states included

Frequency, hz

Figure 19.46: Head 0, coil input, 12 reduced oscillatory states included.

gap displacement, modred "del", 12 oscilla tory states included

Frequency, hz

Figure 19.47: Head 0, piezo input, 12 reduced oscillatory states included.

With 12 oscillatory states included the first three major modes are fitted for 
both coil and piezo inputs.
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gap displacement, modred "del", 14 oscillatory states included

Frequency, hz

Figure 19.48: Head 0, coil input, 14 reduced oscillatory states included.

gap displacement, modred "del", 14 oscilla tory states included

Frequency, hz

Figure 19.49: Head 0, piezo input, 14 reduced oscillatory states included.

For 14 oscillatory states included now the first four major piezo modes are 
fitted while the coil input starts missing some modes in the 10khz range.

10 10
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gap displacement, modred "del", 16 oscillatory states included

Frequency, hz

Figure 19.50: Head 0, coil input, 16 reduced oscillatory states included.

gap displacement, modred "del", 16 oscilla tory states included

Frequency, hz

Figure 19.51: Head 0, piezo input, 16 reduced oscillatory states included.

For 16 oscillatory states included the only visible effect o f the extra two states 
is in the piezo input zero in the 8khz range.

10 10
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gap displacement, modred "del", 18 oscillatory states included

Frequency, hz

Figure 19.52: Head 0, coil input, 18 reduced oscillatory states included.

gap displacement, modred "del", 18 oscilla tory states included

Frequency, hz

Figure 19.53: Head 0, piezo input, 18 reduced oscillatory states included.

For 18 oscillatory states included the coil input response picks up an 
additional mode in the 10khz range.

19 .5 .6  “del” and “m dc” Frequency Response Com parison

This section compares the “del” and “mdc” reduced models for the case o f 20  
included oscillatory states.
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gap displacement, modred "del", 20 oscillatory states included

Frequency, hz

Figure 19.54: Head 0, coil input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "m dc", 20 oscillatory states included

Frequency, hz

Figure 19.55: Head 0, coil input, 20 reduced oscillatory states included, modred “mdc.”

There is virtually no difference between the “del” and “mdc” reductions in the 
two figures above for coil input.
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gap displacement, modred "del", 20 oscillatory states included

Frequency, hz

Figure 19.56: Head 0, piezo input, 20 reduced oscillatory states included, modred “del.”

gap displacement, modred "m dc", 20 oscillatory states included

Frequency, hz

Figure 19.57: Head 0, piezo input, 20 reduced oscillatory states included, modred “mdc.”

Similarly, there is no difference between the “del” and “mdc” reductions for 
piezo input.

19 .5 .7  Impulse Response

Oscillatory system impulse responses due to both coil and piezo forcing 
functions are calculated. Previously calculated results for normalized 
reduction index (18.28) versus number o f modes included are shown.
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% calculate impulse responses

ttotal = 0.0025;

t = linspace(0,ttotal,400)';

[disp_syso,t_syso] = impulse(syso,t);

[disp_rsys_delo,t_rsys_delo] = impulse(rsys_delo,t);

[disp_rsys_mdco,t_rsys_mdco] = impulse(rsys_mdco,t);

disph0coil = disp_syso(:,2,1); 
disphlcoil = disp_syso(:,1,1); 
disph0pz = disp_syso(:,2,2); 
disphlpz = disp_syso(:,1,2);

dispr_delh0coil = disp_rsys_delo(:,2,1); 
dispr_delh1coil = disp_rsys_delo(:,1,1); 
dispr_delh0pz = disp_rsys_delo(:,2,2); 
dispr_delh1pz = disp_rsys_delo(:,1,2);

dispr_mdch0coil = disp_rsys_mdco(:,2,1); 
dispr_mdch1coil = disp_rsys_mdco(:,1,1); 
dispr_mdch0pz = disp_rsys_mdco(:,2,2); 
dispr_mdch1pz = disp_rsys_mdco(:,1,2);

% build matrix of results

dispo = [disph0coil disph1coil disph0pz disph1pz ...
dispr_delh0coil dispr_delh1coil dispr_delh0pz dispr_delh1pz ... 
dispr_mdch0coil dispr_mdch1coil dispr_mdch0pz dispr_mdch1pz];

h0coil_del_del = dispo(:,1) - dispo(:,5);

h1coil_del_del = dispo(:,2) - dispo(:,6);

h0piezo_del_del = dispo(:,3) - dispo(:,7);

h1piezo_del_del = dispo(:,4) - dispo(:,8);

h0coil_mdc_del = dispo(:,1) - dispo(:,9);

h1coil_mdc_del = dispo(:,2) - dispo(:,10);

h0piezo_mdc_del = dispo(:,3) - dispo(:,11);

h1piezo_mdc_del = dispo(:,4) - dispo(:,12);

index_h0coil_del = ...
sqrt(sum(h0coil_del_del.*h0coil_del_del))/sqrt(sum(dispo(:,1).*dispo(:,1)));

index_h1coil_del = ...
sqrt(sum(h1coil_del_del.*h1coil_del_del))/sqrt(sum(dispo(:,2).*dispo(:,2)));
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index_h0piezo_del = ...
sqrt(sum(h0piezo_del_del.*h0piezo_del_del)ysqrt(sum(dispo(:,3).*dispo(:,3)));

index_h1piezo_del = ...
sqrt(sum(h1piezo_del_del.*h1piezo_del_del)ysqrt(sum(dispo(:,4).*dispo(:,4)));

index_h0coil_mdc = ...
sqrt(sum(h0coil_mdc_del.*h0coil_mdc_del))/sqrt(sum(dispo(:, 1).*dispo(:, 1)));

index_h1coil_mdc = ...
sqrt(sum(h1coil_mdc_del.*h1coil_mdc_del)ysqrt(sum(dispo(:,2).*dispo(:,2)));

index_h0piezo_mdc = ...
sqrt(sum(h0piezo_mdc_del.*h0piezo_mdc_del)ysqrt(sum(dispo(:,3).*dispo(:,3)));

index_h1piezo_mdc = ...
sqrt(sum(h1piezo_mdc_del.*h1piezo_mdc_del)ysqrt(sum(dispo(:,4).*dispo(:,4)));

[index_h0coil_del index_h1coil_del index_h0piezo_del index_h1piezo_del ... 
index_h0coil_mdc index_h1coil_mdc index_h0piezo_mdc index_h1piezo_mdc]

plot(t_syso,disph0coil,'k.-',t_rsys_delo,dispr_delh0coil, .
'k-',t_rsys_mdco,dispr_mdch0coil,'k--') 

title(['head 0, displacement vs time, coil impulse input, ', ...
num2str(osc_states_used),' oscillatory states included']) 

xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','modred del','modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disph1coil,'k.-',t_rsys_delo,dispr_delh1coil, ...
'k-',t_rsys_mdco,dispr_mdch1coil,'k--') 

title(['head 1, displacement vs time, coil impulse input, ', .
num2str(osc_states_used),' oscillatory states included']) 

xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','modred del','modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(t_syso,disph0pz,'k.-',t_rsys_delo,dispr_delh0pz, .
'k-',t_rsys_mdco,dispr_mdch0pz,'k--') 

title(['head 0, displacement vs time, piezo impulse input, ', .
num2str(osc_states_used),' oscillatory states included']) 

xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','modred del','modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause
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plot(t_syso,disph1pz,'k.-',t_rsys_delo,dispr_delh1pz, ...
'k-',t_rsys_mdco,dispr_mdch1pz,'k--') 

title(['head 1, displacement vs time, piezo impulse input, ', ...
num2str(osc_states_used),' oscillatory states included']) 

xlabel('time, sec') 
ylabel('displacement, mm') 
legend('all modes','modred del','modred mdc',4) 
grid off

disp('execution paused to display figure, "enter" to continue');%pause 

% states h0cd hlcd h0pd hlpd h0cm hlcm h0pm hlpm

error = [ 10 0.1081 0.1075 0.4162 0.3963 0.1081 0.1075 0.4165 0.3964

12 0.1079 0.1072 0.3154 0.3058 0.1079 0.1073 0.3157 0.3061

16 0.1075 0.1070 0.1393 0.1421 0.1074 0.1070 0.1393 0.1419

20 0.0395 0.0425 0.1391 0.1410 0.0397 0.0425 0.1391 0.1411

24 0.0363 0.0374 0.0839 0.0873 0.0463 0.0473 0.0841 0.0875

28 0.0161 0.0178 0.0469 0.0495 0.0160 0.0191 0.0791 0.0794

32 0.0140 0.0142 0.0145 0.0160 0.0142 0.0143 0.0146 0.0163];

nmode = error(:,1)/2;

error_h0coil_del = error(:,2);

error_h1coil_del = error(:,3);

error_h0piezo_del = error(:,4); 

error_h1piezo_del = error(:,5); 

error_h0coil_mdc = error(:,6);

error_h1coil_mdc = error(:,7);

error_h0piezo_mdc = error(:,8); 

error_h1piezo_mdc = error(:,9);

plot(nmode,error_h0coil_del,'k.-',nmode,error_h0coil_mdc,'k-') 
title('head 0, coil input normalized reduction index') 
xlabel('number of modes included') 
ylabel('normalized reduction index') 
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause
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plot(nmode,error_h1coil_del,'k.-',nmode,error_h1coil_mdc,'k-')
title('head 1, coil input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(nmode,error_h0piezo_del,'k.-',nmode,error_h0piezo_mdc,'k-')
title('head 0, piezo input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

plot(nmode,error_h1piezo_del,'k.-',nmode,error_h1piezo_mdc,'k-')
title('head 1, piezo input normalized reduction index')
xlabel('number of modes included')
ylabel('normalized reduction index')
legend('modred del','modred mdc')
axis([0 20 0 0.5])
grid off

disp('execution paused to display figure, "enter" to continue');%pause

The pages following will show impulse responses for head 0  fo r both coil and 
piezo inputs and for both “del” and “mdc” reduced models. Following the 
impulse responses, the normalized reduction index versus number o f reduced 
modes is plotted. It shows very little difference between the two reduction 
methods.
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head 0, d isp lacem ent vs time, coil impulse input, 20 oscillatory states included

time, sec x 10

Figure 19.58: Impulse response comparison for head 0 for coil input for oscillatory system, 
full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced systems 

with 20 oscillatory modes.

head 0, displacement vs time, piezo impulse input, 20 oscillatory states included

time, sec x 10

Figure 19.59: Impulse response comparison for head 0 for piezo input for oscillatory 
system, full model (all oscillatory modes) and balreal modred “del” and “mdc” reduced 

systems with 20 oscillatory modes.
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head 0, coil input normalized reduction index

number of modes included

Figure 19.60: Head 0 impulse response normalized error index comparison for reduced 
modred models using “del” and “mdc” methods, coil input.

head 0, piezo input normalized reduction index

number of modes included

Figure 19.61: Head 0 impulse response normalized error index comparison for reduced 
modred models using “del” and “mdc” methods, piezo input.
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19.6 MIMO Summary

W e started the chapter with a description o f key mode shapes for the two-stage 
actuator/suspension system. A N SY S eigenvector listings for several modes 
allowed comparing the numeric values in the eigenvector to the visual 
interpretation from the mode shape plot. Small displacements in the deformed 
mode shape plot correlate to small numerical values in the eigenvector. If the 
small numerical values in the eigenvector occur in the input and/or output 
degrees o f freedom, the mode will have a “small” dc gain and is relatively 
unimportant.

In the next section we calculated and plotted the dc gains for all four 
input/output combinations. In Table 19.1 we listed the modes for the 
input/output combinations, sorted by dc gain. W e found that head 0  and head 
1 dc gain sorted modes for coil input are the same for the first seven modes. 
For piezo input, both heads have the same mode ranking for the first six 
modes. This similarity in the most important modes for both heads for the coil 
and piezo inputs is brought about by the physical symmetry o f the 
actuator/suspension system, and in general w ill not be the case.

A s in the previous chapter, we used balancing to define the system for 
reduction and used the “modred” “del” and “mdc” options to reduce. 
Frequency responses for different number o f states were plotted and compared 
fo r both coil and piezo inputs, overlaying the non-reduced transfer function.

Visually comparing the reduced and non-reduced frequency response 
magnitudes, we found that including 20  oscillatory states (plus the states from  
the one rigid body mode) gave a “good” fit through the 10khz range.

The M ATLAB model was then used to calculate the impulse responses for the 
oscillatory reduced and non-reduced systems, where we found that 10  
oscillatory modes (20 oscillatory states) were required to have a normalized 
error index o f less than 5% for coil inputs. For piezo inputs, 16 oscillatory 
modes (32 oscillatory states) were required for less than 5% normalized error 
index. There was little difference in normalized error index between the “del” 
and “mdc” reduction options.
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Problems

P 19.1 M odify the M ATLAB code act8pz.m  to reduce the piezo force “fpz” 
(Section 19.5.2) from the 0.2 value used in the text to 0 .02 and 0.002. In both 
cases, examine the frequency and impulse responses for different number of 
oscillatory states used. Does the balanced reduction method technique 
continue to choose roughly equal number o f modes for both coil and piezo 
inputs even when there are large differences in dc gain values between the two 
inputs?

P 19.2  For the piezo force “fpz” o f 0.2, choose the first five oscillatory modes 
from the coil input and the first five oscillatory modes from the piezo input 
(Table 19 .1 ) . Assemble the state equations from the rigid body mode and the 
10 oscillatory modes and solve for the frequency and impulse responses. 
Compare the responses to the 20 oscillatory state balanced reduction. 
Comment on the similarities/differences.
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APPENDIX 1

MATLAB AND ANSYS PROGRAMS

This appendix lists a ll the M ATLAB and AN SYS codes used in each chapter, 
along with a short description of the purpose of each.

M ATLAB codes have the suffix “.m” and the AN SYS codes have the suffix 
“.inp.” Additional output files from previous runs are stored as “.grp” or other 
suffixes and w ill be used from time to time.

Coding format: A ll the M ATLAB code availab le from downloading and 
shown in the book starts over one tab, allow ing comment lines to stand out. 
The code also includes a lot of blank lines for readab ility (m y apologies to 
tight “c” code programmers).

In most M ATLAB code, critical definitions and calculations are only a few  
lines of code, while plotting and annotating are the bulk of the space. For this 
reason, some code listings in the book do not show all the plotting commands.

AN SYS eigenvalue/eigenvector results are converted to M ATLAB input form 
using the follow ing M ATLAB extraction codes:

ext56ux.m extracts the AN SYS UX degree of freedom

ext56uy.m extracts the AN SYS U Y degree of freedom

ext56uz.m extracts the AN SYS UZ degree of freedom

ext56uxuy.m extracts the AN SYS UX and U Y degrees of 
freedom

ext56uxuz.m extracts the AN SYS UX and UZ degrees of 
freedom

ext56uyuz.m extracts the AN SYS U Y and UZ degrees of 
freedom

ext56uxuyuz.m extracts the AN SYS UX, U Y and UZ degrees of 
freedom

The codes above all call a supporting M ATLAB code ext56chk.m . A ll the 
codes should be installed in the same directory as the AN SYS output code 
which is to be extracted or should be installed in a directory which is in the 
M ATLAB path. To use the extraction code, ju st rename the AN SYS 
eigenvector output file to have a “.eig” extension and open M ATLAB in the
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same directory. M ATLAB w ill then open a window showing all the “.eig” 
files in the directory. D ouble-click on the file to extract and M ATLAB w ill 
output a file  with the “ext56xx.m at” name. If several files are to be extracted 
in the same directory, rename the “ext56xx.m at” name to a unique name with 
the “.mat” extension.

The “.mat” extracted M ATLAB file contains the follow ing information:

evr, the modal m atrix, w ith rows consisting of degrees of freedom 
and each column representing a mode. The numbering of degrees of 
freedom is the same as the A N SY S listing, which is in ascending 
order of the selected node numbers. W here multiple directions are 
extracted, for instance UX and U Y  degrees of freedom, the degrees 
of freedom are listed in that order, first the UX degrees of freedom 
and then the UY degrees of freedom. The extracted modal m atrix is 
of size: (total dof) x  (modes).

freqvec, a vector listing the eigenvalues (resonant frequencies), in hz 
values. The size of the frequency vector is (modes) x  (1).

node_num bers, a vector listing the node numbers for the extracted 
data, of size (dof) x  (1).

The extracted data can then be loaded and used to develop state space 
models of the system.

C h ap ter 2 : T ran sfe r Function  A nalysis

sdofxfer.m : Calculates and plots magnitude and phase for a single degree of 
freedom system  over a range of damping values.

tdofpz3x3.m : Uses the “num/den” form of the transfer function, calculates 
and plots a ll nine pole/zero combinations for the nine different transfer 
functions for tdof model. It prompts for values of the two dampers, c1 and c2, 
where the default (hitting the “enter” key) values are set to zero to match the 
hand calculated values in (2.82). The “transfer function” forms of the transfer 
functions are then converted to “zpk - zero/pole/gain” form to enable 
graphical construction of frequency response in the next chapter.

tdofpz3x3_rlocus.m : Plots pole and zero values for z11 transfer function for 
a range of damping values.

C h ap ter 3 : F requency Response A nalysis

tdofxfer.m : Plots tdof model poles and zeros in complex plane, user choice 
of damping values. Uses several different model descriptions and frequency
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response calculating techniques. The model is described in polynomial, 
transfer function and zpk forms. M agnitude and phase versus frequency are 
calculated using a scalar frequency “for loop,” vector frequency, automatic 
bode plotting and bode with magnitude and frequency outputs.

C h ap ter 4 : Zeros in SISO  M ech an ica l System s

ndof_num zeros.m : Calculates and plots poles/zeros and transfer functions 
for user selected input/output locations on a “n” dof series spring/mass model. 
Shows that poles of “constrained” structures to left and right of input/output 
degrees of freedom are the zeros of the unconstrained structure.

cantfem .inp : AN SYS code for resonant frequencies of cantilever and tip 
driving point transfer function. Used to identify zero locations to compare 
with poles of “constrained” system in cantzero.inp.

can tzero .inp : AN SYS code for resonant frequencies of cantilever with 
simple support at tip. Used to identify poles of “constrained” structure.

cantzero .m : Uses eigenvalues and eigenvectors from cantfem.inp and 
cantzero.inp to plot overlay o f zeros o f cantilever with poles of tip supported 
cantilever, showing the correspondence. C alls cantzero_freq .m , 
cantfem _m agphs.m .

C h ap ter 5 : S tate  Space A nalysis

tdof_non_prop_dam ped.m : This code is used to develop an understanding 
of the results o f M A TLA B’s eigenvalue analysis and complex modes.

C h ap ter 6 : S ta te  Space : F requency Response, T im e Domain

tdofss.m : Calculates and plots the four distinct frequency responses for the 
tdof model.

tdof_ ss_tim e_ode45_slnk.m : Solves for time domain response of tdof 
problem using M A TLA B’s ODE45 solver, a Runga-Kutta method of solving 
differential equations, as w ell as, M A TLA B’s Sim ulink block-diagram  
simulation tool.

tdof_ ss_tim e_slnk_plot.m : Plots results from tdof_ss_time_ode45_slnk.m.

tdofssfun.m : Function code called by tdof_ss_time_ode45_slnk.m, contains 
state equations.
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tdofss_sim ulink.m dl: Sim ulink model called by
tdof_ ss_tim e_ode45_slnk.m , defines state equations.

C h ap ter 8 : F requency Response: M odal Form

tdof_m odal_xfer.m : Calculates and plots the four distinct frequency 
responses and the individual modal contributions.

th reedof.inp : AN SYS code that builds the undamped tdof model, calculates 
eigenvalues and eigenvectors, outputs the frequency listing and eigenvectors, 
plots the mode shapes. Calculates and plots a ll three transfer functions for a 
force applied to mass 1.

C h ap ter 9 : T ran sien t R esponse: M o dal Form

tdof_m odal_tim e.m : Plots displacements versus time in principal and 
physical coordinates.

C h ap ter 10: M odal A n a lys is : S tate  Space Form

tdofss_eig.m : Solves for the eigenvalues and eigenvectors in the state space 
form of the tdof system.

tdof_prop_dam ped.m : Calculates poles and zeros of proportionally damped 
tdof system. Plots in itial condition responses for modes 2 and 3 in physical 
and principal coordinate systems.

C h ap ter 11: F requ ency R esponse: M o dal S tate  Space Form

tdofss_m odal_xfer_m odes.m : Solves for and plots frequency responses for 
individual modal contributions and overall responses. Has code for plotting 
frequency responses in different forms.

C h ap ter 12: T im e D om ain: M odal S tate  Space Form

tdofss_m odal_tim e_ode45.m : Plots tdof transient responses for overall and 
individual modal contributions. C alls the function files below, which define 
the state space system and individual modes.

tdofssm odalfun .m , tdofssm odaH fun.m , tdofssm odal2fun .m ,
tdofssm odal3fun.m : Function files called by tdofss_modal_time_ode45.m.
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C h ap ter 14: F in ite  E lem ents: D ynam ics

cant_2el_guyan .m : Solves for the eigenvalues and eigenvectors of a two- 
element cantilever beam.

can tbeam _guyan .m : Solves for eigenvalues and eigenvectors of a cantilever 
with user-defined dimensions, m aterial properties, number of elements and 
number of mode shapes to plot. Guyan Reduction is an option. A  10-element 
beam is used as an example.

can tbeam .inp : AN SYS code solves for the eigenvalues and eigenvectors of a 
10 element cantilever, the same beam as the cantbeam_guyan.m  example.

C h ap ter 15: SISO  S tate  Space M A T LA B  M odel from  AN SYS M odel

can tbeam _ss.inp : AN SYS code for cantilever beam, allows the user to 
change the number of elements and the eigenvalue extraction technique. The 
two variab les “num_elem” and “eigext” can be easily  changed to see their 
effects.

can tbeam _ss_freq .m : Compares theoretical frequencies for the first 16 
modes for a cantilever beam with M ATLAB finite element and AN SYS finite 
element results.

can tbeam _ss_m odred.m : Creates a M ATLAB state space model using the 
eigenvalue and eigenvector results from previous AN SYS runs. Modes are 
ranked for importance and several reduction techniques are used.

C h ap ter 16: G round A cceleration  M A T LA B  M odel from  AN SY S M odel

can tbeam _ss_spring_shkr.inp : AN SYS model of shaker mounted cantilever 
with tip m ass and tip spring to shaker. Outputs mode shape plot file 
can tbeam 16red .grp .

cantbeam _ss_tip_con.inp: AN SYS model of shaker mounted constrained tip 
cantilever. Outputs mode shape file  tipcon16red .grp .

cantbeam _shkr_m odeshape.m : Plots mode shapes from AN SYS modal 
analysis results for any of the tip spring models, w ith 2, 4, 8, 10, 12, 16, 32 
and 64 beam elements.

cantbeam _ss_shkr_m odred .m : Creates a M ATLAB state space model 
using the results from AN SYS model can tbeam _ss_spring_shkr.inp . Ranks 
modes, then uses several reduction techniques to define sm aller model.
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C h ap ter 17: SISO D isk D rive A ctu ato r M odel

srun .inp : AN SYS model of suspension.

arun .in p : AN SYS model of actuator/suspension system.

act8.m : M ATLAB code for dc and peak gain ranking and reduction of 
actuator/suspension model. Output from program is used for some input to 
b a lred .m  in Chapter 18.

C h ap ter 18: B a lanced  R eduction

balred .m : M ATLAB code for balanced reduction of actuator/suspension 
model from act8.m .

C h ap ter 19: M IM O  T w o-Stage A ctu ato r M odel

arunpz.inp : AN SYS model of two-stage actuator/suspension system.

act8pz.m : M ATLAB model of two-stage actuator/suspension system, 
balanced reduction.

Downloading

A ll the programs listed can be downloaded from the M athW orks FTP site at 
www.mathworks.com or from the author’s site at www.hatchcon.com .
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APPENDIX 2

LAPLACE TRANSFORMS

This appendix presents a short introduction to Laplace transforms, the basic 
tool used in analyzing continuous systems in the frequency domain. The 
Laplace transform converts linear ordinary differential equations (LODE’s) 
into algebraic equations, m aking them easy to solve for their frequency and 
time-domain behavior. There are many excellent presentations of the Laplace 
transform, as in Oppenheim [1997], for those who would like more 
information.

A 2.1  Definitions

The Laplace transform is a generalized Fourier transform, where given any 
function f(t), the Fourier transform F(ra) is defined as:

F(ra) = F  { f()}  (ю) = J  f ( t )  eJ“‘dt (A 2 .1)

where ю = 2n f and f  is frequency, in hz.

In the same spirit, we can define the Laplace transform as:

F(s) = L (f (- )} (s )  = J f ( t )  e-stdt (A2.2)
0-

where s is complex:

s = o  + ]ю , (A2.3)

O and ю are real numbers which define the locations of “s” in the complex 

plane, see Figure A2.1 below. A lso, ю = 2n f as above.
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Im(s)

Figure A2.1: a  and ю definitions in complex plane.

Remarks:

1) if  f( t)  = 0 for t < 0 ,  then

F { f ( ) }  (ю) = L { f ( ) }  (jca) (A2.4)

2) The “ 0- ” lim it in the Laplace transform definition takes care of
f( t) 's  which contain the 8 function.

3) The integral in the definition of the Laplace transform need not be
finite, i.e. L { f } (s) m ay not exist for a ll s e □ . However, if  f(t) 

is bounded by some exponential:

|f(t)| < M e ”0' (A2.5)

then L { f } (s) w ill make sense for s e □ such that Re {s} > ” 0 .
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L  {a1f 1 + a 2f 2} = a1L  { f1} + a 2 L  { f2} (A2.6)

A 2.2  Examples, Laplace T ransform  Table

1) Exponential

f( t)  = e-at 1(t)

4) The Laplace transform is linear:

.s > a |
s + a

F(s) = f e-a'l( ')e -s'd' = f e-(s+a)t dt = —  [:
J J C _|_ Q
0- 0­

2) Impulse

f( t )  = 8(t)

F(s) = f  8(')e-s'd' = e-0 = 1 [for any

3) Step

f( t )  = 1(t)

(A2.7a,b)

(A2.8a,b)

7 t -  Гe-s<”) -  e-s(0) ] 1  (A2.9a,b)
F(s) = f e- dt = - ± ------------------± = -  [s > 0]

J  Q С

0

0

Table A 2 .1 below contains Laplace transforms for a few  selected functions in 
the time domain. The “Region o f Convergence” or “ROC” is defined as the 
range o f values o f “s” for which the integral in the definition o f the Laplace 
transform (A2.2) converges (Oppenheim 1997).
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f(t) Laplace T ransform Region o f Convergence

1) 5(t) 1 all s

2) 5(t -  T) e-sT all s

3) 1(t)
1
s

Re{s} > 0

4) ^ t m1(t)
m!

1
sm+1

Re{s} > 0

5) e-at 1(t)
1

s + a
Re{s} > R e{a}

6) 1 tm-1e- atl (t) 1 Re{s} > R e{a}
( m - 1)! e iVV (s + a)m

7) (1 -  e-at)1(t)
a

s(s + a)
Re{s} > m ax{0,R e{a}}

8) (e-at -  a-bt)1(t) ----- b—------  Re {s}>  max {Re {a} ,R e {b}}
(s + a)(s + b) 1 ;

9) sin(at) 1(t)
a

s2 + a 2
R e{s} > 0

10) cos(at) 1(t)
s

s2 + a 2
R e{s} > 0

11) e-at sin(bt)1(t)
b

(s + a)2 + b 2
Re{s} > a

12) e-at cos(bt)1(t)
s + a 

(s + a)2 + b 2
Re{s} > a

Table A2.1: Laplace transform table.
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A 2.3  D uality

The following duality conditions exist:

f t )  « •  -  - f  F(s) 
ds

— f( t)  ^  sF(s) 
dt

A 2.4  D ifferentiation and Integration

Differentiation and the Laplace transform: Suppose

L {x} (s) = X(s)

then

L {x } (s) = sX(s) -  x (0- ) ,  

so we can interpret “s” as a differentiation operator:

d
—  о  s 
dt

Integration and the Laplace transform: Suppose

L {x} (s) = X (s ) ,

then

and we can interpret “ 1/s” as an integration operator:

1  о  fd t
С J

(A2.10a,b)

(A 2.11)

(A 2.12)

(A 2.13)

(A 2.14)

(A 2.15)

(A 2.16)
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Assume we have a linear ordinary differential equation as shown in (A2.17): 

y (t) + a j  (t) + a2y (t) + a3y(t) = fyri (t) + b2ii (t) + b3u(t) (A2.17)

Assume y(t) = 0, y (t) = 0, y (t) = 0 and take the Laplace transform of both 
sides, using the linearity property (A2.6):

L  { y } (s) + a 1L  {y } (s) + a 2L  j y } (s) + a3L  { y } (s) = (A2 18) 

b1L  {u} (s) + b 2L  {u} (s) + b 3L  {u} (s)

R ecalling that “s” is the differentiation operator, replace “dots” with “s” :

s3Y(s) + a1s2Y(s) + a2sY(s) + a3Y(s) = b1s2U(s) + b 2sU(s) + b3U(s) (A2.19)

W e are now left with a polynomial equation in  “s” that can be factored into 
terms m ultip lying Y(s) and U(s):

[s3 + a1s2 + a2s + a3 ] Y(s) = [b 1s2 + b2s + b3 ] U(s) (A2.20)

Solving for Y(s):

Tb.s2 + b 2s + b3 ] 
Y (s) = Г Г  2 V  U(s) (A2.21) 

[s + —1s + —2s + a3 ]

It can be shown that the terms in the numerator and denominator above are the 
Laplace transform of the impulse response, H(s):

Y (s) = H (s)U (s), (A2.22) 

H(s) = L [ h ( ) ] ( s ) , (A2.23)

and h(-) is the impulse response. For the example LODE (A2.17) the 
Laplace transform of the im pulse response is:

Tb.s2 + b 2s + b 3 ]
H(s) =r ^ -------2------------ ±r- (A2.24)

[s + - 1s + - 2s + -3 ]

A2.5 Applying Laplace Transforms to LODE’s with Zero Initial
Conditions
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A2.6 Transfer Function Definition

It can be shown that the transfer function of a system described by a LODE is 
the Laplace transform of its impulse response, H(s), (A2.23).

Taking the Laplace transform of the LODE has provided the Laplace 
transform of the impulse response. If we could inverse-transform H(s) we 
could get the impulse response h(t) without having to integrate the differential 
equation. T ypically the inverse transform is found by simplifying/expanding 
H(s) into terms which can be found in tables, such as Table A 2.1 , and than 
inverting “by inspection.”

A 2.7  Frequency Response Definition

Having obtained H(s) directly from the LODE by replacing “dots” by “s,” we 
can obtain the frequency response of the system (the Fourier transform of the 
impulse response) by substituting “ jra ” for “s” in H(s).

A 2.8  A pplying Laplace T ransform s to LO DE’s w ith  Initial Conditions

In A2.5 we looked at applying Laplace transforms to LODE’s with zero in itial 
conditions, which led to transfer function and frequency response definitions. 
Since transfer functions and frequency responses deal with steady state 
sinusoidal excitation response of the system, in itial conditions are of no 
significance, as it is assumed that a ll measurements of the system undergoing 
sinusoidal excitation are taken over a long enough period of time that 
transients have died out.

On the other hand, if  we are solving for the transient response of a system 
defined by a LODE that has in itial conditions, obviously the in itial conditions 
w ill not be zero. W e w ill use the basic definition of the differentiation 
operation from (A2.12) to define the Laplace transform of 1st and 2nd order 
differential equations with in itial conditions x (0 ) and x (0) :

(A2.25)

1st Order: L  {x(t)} = sX (s) -  x(0 ) (A2.26)

2nd Order: L {x (t)}  = s2X (s) -  sx(0) -  x (0) (A2.27)
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W e defined the form of state space equations in Chapter 5 as below:

x (t) = A x(t) + Bu(') (A2.28)

y (t) = Cx(t) + Du(t) (A2.29)

where the in itial conditions are set by x(0) = xo . The general block diagram
for a SISO state space system is shown in Figure A 2 .1 .

A2.9 Applying Laplace Transform to State Space

Direct
T ransm iss ion

M atrix

D

Inpu t M atrix

u ( t)  - 

Input

In te g ra to r B lock  O u tp u t M atrix

x ( t )

S ystem  M atrix

4  a  к

-и  с f-Ю - >  y ( t )

O utp u t

-►  sca la r 

v e c to r

Figure A2.1: State space block diagram.

Taking Laplace transform of (A2.28):

L  {x} (s) = L  {A x} (s) + L  {Bu} (s)

sX(s) -  x(0- ) = A L  {x}(s) + B L  {u}(s) (A2.30a,b)

= A X (s) + BU(s)

Solving for X(s):

sX(s) -  A X(s) = x(0- ) + BU(s)

(sI -  A )X (s) = x(0- ) + BU(s) (A2.31a,b,c)

X(s) = (sI -  A )-1 x(0- ) + (sI -  A )-1 BU(s)
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The two terms on the right-hand side of (A2.31c) have special significance:

1) (si -  A )-1 x(0- ) is the Laplace transform of the homogeneous 
solution, the in itial condition response.

2) (si -  A )-1 BU(s) is the Laplace transform of the particular 
solution, the forced response.

Taking the Laplace transform of (A2.29), the output equation:

Y(s) = CX(s) + DU(s) (A2.32)

Knowing X (s) from (A 2.31c) and substituting in (A2.32):

Y (s) = C(sI -  A )-1 x(0- ) + [C (sI -  A )-1 B + d ] U(s) (A2.33)

If the in itial conditions are zero, x (0 - ) = 0 , then

Y (s) = [C (sI -  A )-1 B + D] U (s ) , (A2.34)

with the transfer function for the system  being defined by H(s):

H(s) = [C (sI -  A )-1 B + D] (A2.35)

When the terms in H(s) above are multiplied out, they w ill result in the 
follow ing polynomial form:

H(s) = —  + D (A2.36)
a(s)
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