
SQL Server
2019 Revealed

Including Big Data Clusters and
Machine Learning
—
Bob Ward
Foreword by Rohan Kumar

www.allitebooks.com

http://www.allitebooks.org

SQL Server 2019 Revealed
Including Big Data Clusters and

Machine Learning

Bob Ward
Foreword by Rohan Kumar

www.allitebooks.com

http://www.allitebooks.org

SQL Server 2019 Revealed: Including Big Data Clusters and Machine Learning

ISBN-13 (pbk): 978-1-4842-5418-9 ISBN-13 (electronic): 978-1-4842-5419-6
https://doi.org/10.1007/978-1-4842-5419-6

Copyright © 2019 by Bob Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484254189. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bob Ward
North Richland Hills, Texas, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5419-6
http://www.allitebooks.org

This book is dedicated to the SQL Server Community, also known
as the #sqlfamily. Without the community, this amazing

product would not be what it is today.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Foreword ���xvii

Acknowledgments ��xix

Introduction ��xxi

Table of Contents

Chapter 1: Why SQL Server 2019? �� 1

Project Seattle ��� 2

Project Aris �� 3

Seattle Becomes SQL Server 2019 ��� 6

Modernizing Your Database with SQL Server 2019 ��� 7

Data Virtualization ��� 10

Performance �� 11

Security ��� 11

Mission-Critical Availability ��� 12

Modern Development Platform �� 12

Investing in the Platform of Your Choice �� 13

Azure Data Studio �� 14

Voice of the Customer ��� 14

Getting Started with SQL Server 2019 �� 15

Download SQL Server 2019 ��� 15

Deploy SQL Server 2019 �� 15

Migrate to SQL Server 2019 �� 15

What’s New in SQL Server 2019 �� 15

Download Book Code and Sample Databases ��� 16

www.allitebooks.com

http://www.allitebooks.org

vi

SQL Server Workshops �� 16

It Is Your Grandpa’s SQL Server? ��� 16

Chapter 2: Intelligent Performance �� 19

Why Intelligent Performance? ��� 19

Intelligent Query Processing ��� 20

Prerequisites for Using the Examples for Intelligent Query Processing �������������������������������� 22

Memory Grant Feedback Row Mode ��� 24

Table Variable Deferred Compilation ��� 42

Batch Mode on Rowstore �� 49

Scalar UDF Inlining �� 52

Approximate Count Distinct ��� 57

Lightweight Query Profiling �� 61

Prerequisites for Using the Examples for Lightweight Query Profiling ���������������������������������� 62

Should I Kill an Active Query? �� 63

I Can’t Catch It ��� 68

In-Memory Database �� 74

Memory-Optimized TempDB Metadata �� 75

Hybrid Buffer Pool ��� 81

Persistent Memory Support ��� 82

Last-Page Insert Contention�� 83

Summary��� 85

Chapter 3: New Security Capabilities ��� 87

Enhancing What We Have Built ��� 87

Always Encrypted with Secure Enclaves �� 88

Why Enclaves?��� 90

Using Always Encrypted with Enclaves ��� 91

Data Classification �� 92

Prerequisites for Using the Examples �� 95

Using Data Classification ��� 96

Auditing and Data Classification �� 105

Table of ConTenTs

vii

Other New Security Features �� 111

TDE Pause and Resume ��� 111

Certificate Management �� 112

Summary��� 114

Chapter 4: Mission-Critical Availability �� 115

Online Index Maintenance ��� 116

Resumable Index Operations ��� 117

Prerequisites to Using the Example ��� 118

Try Out Resumable Index Creation �� 118

Online Index Maintenance for Columnstore �� 123

Enhancing Always On Availability Groups ��� 123

Support for More Synchronous Replicas ��� 124

Secondary to Primary Replica Read/Write Connection Redirection ������������������������������������ 124

Accelerated Database Recovery ��� 125

The Challenge of Long Active Transactions ��� 126

How Accelerated Database Recovery Works ��� 126

Using Accelerated Database Recovery �� 135

Accelerate Database Recovery Nuts and Bolts ��� 139

Summary��� 145

Chapter 5: Modern Development Platform ��� 147

Languages, Drivers, and Platforms ��� 148

Languages and Drivers �� 148

Platforms and Editions �� 151

Graph Database��� 151

What Is a Graph Database in SQL Server?��� 152

Using a Graph Database in SQL Server ��� 153

Graph Enhancements for SQL Server 2019 ��� 155

UTF-8 Support ��� 156

Unicode and SQL Server �� 157

Why Would You Use UTF-8? ��� 157

Table of ConTenTs

viii

SQL Server Machine Learning Services �� 158

How It Works ��� 159

Security, Isolation, and Governance ��� 163

What’s New in SQL Server 2019? �� 165

Extending the T-SQL Language ��� 166

The Extensibility Framework ��� 167

Extending T-SQL with Java �� 168

Implementing and Using Other Languages ��� 174

Summary��� 174

Chapter 6: SQL Server 2019 on Linux ��� 175

The Amazing Story of SQL Server on Linux ��� 175

What Is New for SQL Server 2019 on Linux �� 177

Platform and Deployment Enhancements ��� 178

Platform Enhancements �� 178

SQL Server 2019 on Linux Deployment ��� 180

Supporting New Linux Releases �� 181

Persistent Memory Support �� 182

SQL Server Replication on Linux ��� 183

Change Data Capture (CDC) on Linux �� 184

DTC on Linux ��� 184

Active Directory with OpenLDAP ��� 186

SQL Server Machine Learning Services and Extensibility on Linux �� 187

Deployment of SQL Server ML Services on Linux ��� 187

How It Works ��� 189

The Extensibility Framework and Language Extensions ��� 192

Polybase on Linux ��� 193

Summary��� 193

Chapter 7: Inside SQL Server Containers �� 195

Why SQL Server Containers? �� 195

How SQL Server Containers Work ��� 199

Table of ConTenTs

ix

Container Hosting �� 199

Is Docker Magic? ��� 200

Container Lifecycle �� 201

The SQL Server Container ��� 203

What Is New for SQL Server 2019 ��� 206

Prerequisites for the Examples ��� 210

Deploying a SQL Server Container �� 212

A New Way to Update SQL Server ��� 225

Deploying Container As an Application ��� 229

The docker-compose�yml File �� 230

Building Each Container �� 231

Running the Containers for Replication ��� 233

Deploying SQL Containers in Production ��� 236

Performance �� 236

Security ��� 238

High Availability ��� 239

Resource Control ��� 239

Server or Database Configuration ��� 241

Using Other Packages ��� 242

Editions and Licensing��� 242

SQL Server Windows Containers ��� 243

Summary��� 246

Chapter 8: SQL Server on Kubernetes �� 249

What Is k8s? ��� 249

References on k8s ��� 250

k8s Objects �� 250

Comment on Internals of k8s �� 252

k8s Deployment Options ��� 253

Prerequisites for the Examples ��� 255

Deploying SQL Server on k8s �� 257

Tips with k8s ��� 273

Table of ConTenTs

x

SQL Server High Availability on k8s �� 281

Updating SQL Server on k8s ��� 287

Using Helm Charts �� 292

SQL Server Availability Groups on k8s �� 292

Summary��� 295

Chapter 9: SQL Server Data Virtualization �� 297

What Is Polybase? ��� 297

The History of Polybase ��� 298

What Is Data Virtualization? ��� 300

How Polybase Works ��� 302

The Polybase Workflow ��� 303

SQL Server 2019 Polybase Architecture �� 305

How External Tables Work ��� 305

The Polybase Standalone Instance �� 307

A Polybase Scale-Out Group �� 309

Query Processing and Polybase �� 310

How Does It Work on Linux? �� 310

How Is This Different Than Azure? ��� 310

Prerequisites for the Examples ��� 311

Setting Up and Enabling Polybase ��� 311

Using the Examples ��� 313

Using External Tables �� 315

Tools and External Tables �� 315

Using an External Table with Azure SQL Database �� 317

Using Built-in Connectors for External Tables ��� 325

Using an External Table with HDFS �� 326

Using External Tables with ODBC Connectors ��� 326

Considerations for External Tables �� 327

A New Semantic Layer �� 327

Table of ConTenTs

xi

External Tables vs� Linked Servers �� 328

Restrictions and Limitations �� 328

Summary��� 328

Chapter 10: SQL Server Big Data Clusters �� 331

Why Big Data Clusters? ��� 334

What Comes with Big Data Clusters? ��� 335

SQL Server 2019 �� 335

Polybase �� 336

Hadoop Distributed File System (HDFS) �� 336

Spark ��� 336

Data Cache �� 336

Tools and Services ��� 337

Endpoints ��� 337

Application Deployment ��� 337

Machine Learning �� 337

Prerequisites for the Examples ��� 338

Deploying Big Data Clusters �� 339

Plan the Deployment ��� 339

The BDC Deployment Experience �� 344

Verify the Deployment ��� 346

Configuring Deployment for Production �� 350

Big Data Cluster Architecture �� 351

SQL Server Master Instance �� 353

Controller ��� 357

Storage Pool �� 359

Compute Pool �� 361

Data Pool ��� 361

Application Pool ��� 362

Using Big Data Clusters �� 363

Using Data Virtualization ��� 366

Using the Data Pool ��� 369

Table of ConTenTs

xii

Using Spark ��� 369

Deploying and Using Applications ��� 371

Security ��� 372

High Availability ��� 372

Jupyter Books for SQL Server Big Data Clusters ��� 373

Machine Learning and Big Data Clusters �� 374

Machine Learning Packages ��� 375

Using Examples ��� 375

Managing and Monitoring Big Data Clusters �� 376

Managing Kubernetes (k8s)��� 376

Managing and Monitoring Big Data Clusters ��� 377

Summary��� 381

Chapter 11: The Voice of the Customer and Migration ��� 383

The Voice of the Customer �� 383

Performance Enhancements ��� 384

User Experience��� 386

Diagnostics �� 389

What About Business Intelligence? ��� 393

Migration to SQL Server 2019 ��� 394

The Pam and Pedro Show ��� 394

Database Migration Assistant �� 395

Database Experimentation Assistant ��� 397

Upgrading to SQL Server 2019 �� 399

Database Compatibility �� 403

Query Tuning Assistant and Post Migration ��� 407

Running in Azure Virtual Machine �� 408

SQL Server Migration Assistant ��� 410

Summary��� 412

Index ��� 413

Table of ConTenTs

xiii

About the Author

Bob Ward is a Principal Architect for the Microsoft Azure

Data SQL Server team, which owns the development for

all SQL Server releases. Bob has worked for Microsoft for

26+ years on every version of SQL Server shipped from

OS/2 1.1 to SQL Server 2019 including Azure. He is a well-

known speaker on SQL Server, often presenting talks on

new releases, internals, and performance at events such as

PASS Summit, SQLBits, SQLIntersection, Red Hat Summit,

Microsoft Inspire, and Microsoft Ignite. You can follow him

at @bobwardms or www.linkedin.com/in/bobwardms.

Bob is the author of the book Pro SQL Server on Linux

available from Apress Media.

http://www.linkedin.com/in/bobwardms

xv

About the Technical Reviewer

Aaron Bertrand is a passionate technologist with over two

decades of SQL Server experience. He has worked directly

with several Microsoft product teams and is well known for

helping improve the technical skills of the broader developer

community through writing, speaking at, and moderating

technical forums.

xvii

Foreword

We are truly at a unique tipping point in the history of technology, and there has never

been a better time to be in the field of data, analytics, and AI. The pace of growth in data

is more rapid than ever before, and digital disruption through AI and ML has created

unlimited potential for companies to embrace data as a competitive advantage for their

business. With the dramatic acceleration of digitization, the primary question we now

face is how to take advantage of this massive volume of data to help our companies and

communities transform.

We see a massive opportunity powered by the intelligent cloud and the intelligent

edge. SQL Server is unparalleled in the industry in the level of consistency it provides

the developers, data engineers, and administrators across the edge, on-premises, private

cloud, and the public cloud. Our SQL Server community has played a very important

role in this evolution, and I cannot thank them enough for their support and feedback

over the last 25+ years.

SQL Server 2019 is a phenomenal release, and I am proud of what the team has

delivered. SQL Server 2019 builds on the innovation that was delivered in SQL Server

2016 and SQL Server 2017. While there are several new capabilities that will serve our

customers well, as is expected from every major release of SQL Server, I am most excited

about the remarkable innovation that extends the skills our customers have built over

multiple decades to manage and get insight from their Big Data systems. This innovation

will play a critical role in driving the digital transformation for our customers.

Bob Ward has been with the SQL Server team since the very early days and has had

a notable impact on the product. There are very few who have the breadth and depth of

understanding that he does, and it shows in how he manages to explain complex concepts

in a simple, easy-to-understand manner in this book. I hope you enjoy reading it.

Rohan Kumar

Corporate Vice President, Azure Data at Microsoft

xix

Acknowledgments

I have so many things in my life to be thankful for, and having the ability to write this

book is one of them. I believe all of my blessings come from God, and it is through His

grace I have come to know the powerful message of Jesus Christ. I must first give thanks

to my beautiful and talented wife Ginger. She is my partner and my soulmate. She

tirelessly heard all my complaints, watched me spend very late nights on the book, and

sometimes had to be the driver so I could work on the book in the passenger seat. I don’t

know anyone who has stronger faith than my wife Ginger, and I am so fortunate to share

a wonderful life together with her. We celebrated 30 years of marriage this year, and I still

love being with her as much as possible each and every day. I also want to thank my sons

Troy and Ryan. Troy these days lives in Charleston, South Carolina, where I wrote the

last part of the book as Hurricane Dorian approached. Troy is someone who I admire not

just for his character but his quest to make this place a better world. Ryan is in his second

year at Baylor Law School (Go Bears!). He continues to amaze me with this intelligence,

integrity, and ability to keep it all together with confidence yet still find time to improve

his golf game. I also want to thank my mother Annette Gibaud who continues to show

me the example of finding a way to be kind to someone each and every day.

There are so many people who helped contribute to this book. I want first to thank

Apress Media for giving me another chance to write a book. Jonathan Gennick and Jill

Balzano were there again every step of the way helping me push this book to conclusion.

And this book could not have been possible and on time without my Technical Reviewer

Aaron Bertrand. When I thought about writing this book, Aaron was one of the first

people that came to mind for a reviewer given his incredible knowledge of SQL Server

and reputation as an expert in the community. Aaron was simply superhuman in how

fast he cranked out reviews of each chapter.

From Microsoft, first and foremost thank you to Rohan Kumar, Gayle Sheppard, and

Asad Khan for giving me the opportunity to spread the message about SQL Server 2019

which was instrumental in my detailed learning of the product to write this book. I also

want to personally thank two of my closest colleagues, Buck Woody and Anna Hoffman

(Thomas). I travelled the world with Buck and Anna in 2018 and 2019 telling the story

of SQL Server, Big Data Clusters, and Azure. They both made me a better storyteller and

xx

teacher and are fun on the road. The Microsoft SQL Server Engineering team is nothing

short of amazing. I am in awe to be working with such intelligent and professional

people, many of whom helped me with details you find in this book. It all has to start

with Slava Oks and Travis Wright who helped tell me the story of Seattle and Aris and

were both instrumental in pushing through much of this release including Big Data

Clusters. Conor Cunningham continues to amaze me with his deep knowledge of this

product while being instrumental in delivering a quality release.

The true heroes of this book are the engineering team members who built this

release and helped me with various parts of the book. In no particular order, I want

to say thank you to Pedro Lopes, Pam Lahoud, Amit Banerjee, Brian Carrig, Tejas

Shah, Vin Yu, Sourabh Agarwal, Mihaela Blendea, Nellie Gustafsson, Abiola Oke,

James Rowland-Jones, Scott Konersmann, Stuart Padley, David Kryze, Robert Dorr,

Mitchell Sternke, Ross Monster, Madeline MacDonald, Dylan Gray, Joe Sack, Shreya

Verma, Jakub Szymaszek, Joachim Hammer, Raghav Kaushik, Parag Paul, Panagiotis

Antonopoulos, Michael Nelson, Pranjal Gupta, Jarupat Jisarojito, Weiyun Huang, George

Reynya, Umachandar Jayachandran (UC), Sahaj Saini, Mike Habben, Vaqar Pirzada,

Rony Chatterjee, Vicky Harp, Alan Yu, Jack Li, Alexey Eksarevskiy, Jay Choe, Argenis

Fernandez, Kevin Farlee, Arieh Bibliowicz, Alex Umansky, Matteo Taveggia, Kapil

Thacker, Li Zhang, and Dong Cao.

I also want to thank members of Microsoft Marketing and CSS teams for their

help including Anshul Rampal, Matthew Burrows, Marko Hotti, Debbi Lyons, Suresh

Kandoth, and Pradeep M M.

This book and my work would not have been possible without partners such as

HPE, DELL, and Red Hat who allowed me to tell the story of SQL Server 2019 to their

customers. Thanks to Wendy Harms, Bill Dunmire, Urs Renggli, Robert Sonders, Louis

Imershein, and Stephane Bureau (my video guy). Special thanks also to David DeWitt

for your insights into the history of Polybase, Brendan Burns for your insights and my

foundation for Kubernetes knowledge, and Anthony Nocentino for your great knowledge

of Linux and Containers.

Finally, thank you to the SQL Server Community across the world. We now pour

releases of SQL Server at you faster than ever before, yet you still exhibit immense

enthusiasm and appreciation every time I present on SQL Server.

aCknowledgmenTs

xxi

Introduction

Like my first book Pro SQL Server on Linux, the pages you are about to read have

seen some mileage. I’ve travelled more in the year 2019 than any in my lifetime. That

meant I needed to be prepared to write wherever and whenever I could. This includes

flights, hotels, trains, and car rides across cities like Seattle, London, Manchester (UK),

Nashville, Las Vegas (multiple times), San Antonio, Austin, Houston, Orlando, St. Lucia

(that was on vacation), Genesee (Colorado), Charleston, Boston, Dubai, Johannesburg

(South Africa), Greenville (SC), and Indianapolis and late nights in my office at my home

in North Richland Hills, Texas.

I thought after finishing my first book I would not be ready to write another one, but

I couldn’t resist the chance to tell the story of SQL Server 2019. This book really does

represent that famous saying “A labor of love.” I’ve put my heart and soul into learning,

teaching, complaining about, breaking, documenting, testing, and using SQL Server

2019. This book represents all of that and more.

I wrote this book for data professionals and developers who have a fundamental

knowledge of SQL Server but want a comprehensive look at SQL Server 2019 in one

book. This book has plenty of examples, figures, and references to guide you along the

way. I wrote this book so it would not only be a complete understanding of SQL Server

2019 but also as a reference you can come back to at any time.

While each chapter is independent, I highly recommend you start with Chapter 1 as

it gives you the history and background of the release. I also set the stage for all the key

capabilities of SQL Server 2019 and why I think it is a compelling product. From there,

you can go through the book in chapter sequence or skip around some. One thing is

for sure, in order to get the most out of Chapter 10 on Big Data Clusters, you must read

Chapters 6, 7, 8, and 9 first.

The book is essentially broken down into these major sections:

• Chapter 1 to introduce the history and the overall SQL Server 2019

release.

• Chapters 2, 3, and 4 to cover performance, security, and availability.

There is a lot in these chapters alone to get you excited about SQL

Server 2019.

xxii

• Chapter 5 stands on its own for developers.

• Chapters 6, 7, and 8 are all about Linux, Containers, and Kubernetes.

• Chapter 9 introduces you to Data Virtualization with Polybase.

• Chapter 10 is a big chapter for a big topic: Big Data Clusters.

• Chapter 11 concludes the book by talking about other new features

and migration.

I love “learning by example” so I’ve included many examples for almost every

chapter in the book (and in some cases, I explain how to use an example already

created). You can find all the examples for this book on GitHub using the link for the

book’s reference at www.apress.com/9781484254189 or on my GitHub repo at https://

aka.ms/bobsqldemos (https://github.com/microsoft/bobsql).

I also recommend you take a look at free training resources our team has built at

https://aka.ms/sqlworkshops. This includes free hands-only lab training with SQL

Server 2019!

For this book, I spent a lot of time thinking for each chapter “what would a reader

want” on a particular topic or example. I hope you can see and feel that as you read the

book. If you have any questions or issues with the book, I really want to hear about them.

Please e-mail me directly at bobward@microsoft.com.

Bob Ward

North Richland Hills, Texas

September 2019

InTroduCTIon

http://www.apress.com/9781484254189
https://aka.ms/bobsqldemos
https://aka.ms/bobsqldemos
https://github.com/microsoft/bobsql
https://aka.ms/sqlworkshops

1
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_1

CHAPTER 1

Why SQL Server 2019?
In July of 2017, I made one of my regular visits to Redmond, Washington, as a member

of the SQL Server engineering team. I live in North Richland Hills, Texas, and modern

technology allows me to do much of my job remote from most of the SQL Engineering

team. But I’m still a bit of an “old-school” person, and, in some cases, nothing beats

working with people face to face. By July of 2017, I had been in the SQL Engineering

team for over a year, focused mostly on SQL Server 2016 (see an example of my work on

SQL Server 2016 on the Web at https://channel9.msdn.com/Events/Ignite/2016/

BRK3043-TS).

Up until this time, I was a member of the famous Tiger Team, but, as part of my

visit in 2017, I was asked to take on new tasks to focus specifically on the upcoming

SQL Server 2017 release. This included SQL Server on Linux, which ultimately

led to me authoring my first book, Pro SQL Server on Linux (www.apress.com/us/

book/9781484241271). So on my visit, I started meeting and talking to various members

of the team about SQL Server 2017 – performance enhancements, the overall set of

new features, and the details behind SQL Server on Linux and Containers. One of the

people I spoke with that week was Slava Oks. Slava is the lead development manager

for SQL Server and one of the inventors of SQL Server on Linux. He wrote the foreword

of Pro SQL Server on Linux, and Chapter 1 of that book talks about the history of his

involvement in the project. At that time, Slava liked to come in early to the office; when

I’m in Redmond I, too, try to work “Texas time” – which means I also come in very early.

So we would often meet for coffee before most others were in the office, in Building 16,

though now our team works in Building 43. One morning, as Slava and I talked about

SQL Server 2017, he said to me, “Hey have I told you about our plans for the next version

of SQL Server, the one after SQL Server 2017?” I of course pretended to know – “Sure,

Slava, I’ve heard of it, but don’t know the details.” He then invited me to come to a

meeting the next day where he would explain to many of our engineering team the plan

for the project. I had just spent a year focusing on SQL Server 2016, was now assigned

to dive into SQL Server 2017 and Linux, and here Slava wanted me to learn about the

https://channel9.msdn.com/Events/Ignite/2016/BRK3043-TS
https://channel9.msdn.com/Events/Ignite/2016/BRK3043-TS
https://www.apress.com/us/book/9781484241271
https://www.apress.com/us/book/9781484241271

2

release after the release that had not been shipped yet? Of course, I was not going to turn

him down, because, well, it’s Slava Oks. This may make it sound like Slava is some type

of intimidating person, but he is one of the nicest people I’ve ever known at Microsoft.

So while I was starting to pack my brain on the details of SQL Server 2017, I started down

the path to learn about what we were doing for the future version of SQL Server, code

named Project SQL Server Seattle.

 Project Seattle
In the meeting the next day with Slava, I quickly learned in the span of a few hours we

were embarking on one of the most ambitious enhancements to SQL Server I had ever

seen in my career. I’m saying this with the knowledge already that we were bringing to

market SQL Server on Linux, which nobody had previously thought was possible.

Slava and the team chose the code name “Seattle” because the team had used

Helsinki for the code name for SQL Server 2017 and were looking for a new “city” name.

Ironically, no one at Microsoft had used the name Seattle before, so it quickly stuck. I

asked Slava when he first started planning Project Seattle. I was amazed to hear all the

way back in January of 2017. The fact that folks like Slava, Conor Cunningham, and

Travis Wright were planning Project Seattle while working on building the final pieces of

SQL Server 2017 and Linux was a testament to both their dedication to the team and also

their desire to keep SQL Server leading innovation in the database industry.

It was hard to believe we could so quickly plan something bigger after having

delivered so many compelling and innovative features in SQL Server 2016 and SQL

Server 2017.

In SQL Server 2016, we brought new performance diagnostic capabilities with

Query Store. We included new features for developers such as temporal tables and

JSON integration. We upped our game on security with Always Encrypted, dynamic

data masking, and row-level security. And we introduced two new innovations outside

the “normal” type of features for a relational database system. One of these was

integration of the R language for Machine Learning models. The second was integration

with Hadoop systems with a feature called Polybase (which will lead to something

bigger in 2019, but I’m getting ahead of myself). Building features to enable new

scenarios like Machine Learning and Big Data led myself and others at Microsoft to start

pitching the idea that SQL Server was no longer just a relational database engine but a

data platform.

Chapter 1 Why SQL Server 2019?

3

However, to be modern and a complete data platform, we needed to be able to

empower applications on systems other than just Windows Server. This led to our release

of SQL Server 2017 with support for Linux and Docker Containers. Running on Linux

and Containers was a very big move for Microsoft, but SQL Server 2017 also included

other capabilities such as Adaptive Query Processing, automatic tuning, graph database,

clusterless Availability Groups, and Python integration to complement R language

support for Machine Learning Services.

With all of this innovation in mind, how could we in a short period of time plan and

build something new, different, and exciting than SQL Server 2016 and 2017? I asked

myself this question as I intently listened in my first Project Seattle meeting. In the first

few minutes, I would be introduced to an idea that, when later announced to the public,

would be considered quite radical. And that innovation started as the “big rock” of the

Seattle project, which has a project name of its own: Aris.

 Project Aris
In January of 2017, Slava and the leadership of the SQL Server engineering team were

given direction by Rohan Kumar, Corporate Vice President of Azure Data, to look

into how to integrate SQL Server with Big Data. Big Data is a term loosely used in the

industry related to a data system that can handle large amounts of data, usually through

a distributed, scalable computing platform. I personally like my colleague Buck Woody’s

definition of Big Data as, “Any data that you can’t process in the time you want with the

technology you have.” And for many years, the preferred choice for a Big Data system has

been Hadoop. So, for several months in the spring and summer of 2017, the team looked

to Travis Wright for ideas on how to make the vision of Big Data integration a reality.

During the summer of 2017, our Azure Data team had several projects underway with

code names like Polaris, Socrates, and Plato. I asked Slava how did you decide on the

name Aris? The answer: Socrates was the tutor of the famous Greek philosopher Plato,

and Plato’s pupil was Aristotle. Given that the word Aris is also part of the name Polaris,

the name resonated with everyone on the team and our leadership.

Since integration for Big Data implied something to do with Hadoop, Travis spent

several meetings with the team that brought Polybase to SQL Server 2016 and Azure Data

Warehouse. The vision of Polybase was to allow SQL Server users to query (and ingest)

data from a Hadoop system all through the T-SQL language so familiar to our existing

customers. Furthermore, instead of just building a simple data extract system, Polybase

Chapter 1 Why SQL Server 2019?

4

could use the power of distributed computing that exists with Azure Data Warehouse

and Analytics Platform System (formerly known as Parallel Data Warehouse) to push

down computations and partition query processing to achieve scalable performance

against large datasets in the target Hadoop system. I never really saw Polybase take

off in SQL Server 2016 and 2017, since integrating Big Data Hadoop systems with

relational systems like SQL Server was not easy. Polybase requires a significant amount

of installation and configuration, and security models differ from Hadoop systems

and SQL Server. In addition, the pushdown computation implementation relied on

a concept called MapReduce, requiring Java to be installed on the same computer as

SQL Server and Polybase services. Still, the architecture and the concepts for integrated

SQL Server and Big Data systems were available to build something bigger (including

a T-SQL extension called EXTERNAL TABLE). If we could simplify the deployment and

configuration story for Polybase, and add in more data source support, it might become

more adopted in the industry. Furthermore, Travis came to learn very quickly that, if

you wanted to be taken seriously in the Big Data world of data processing, you needed to

consider another technology called Spark.

Armed with this knowledge, Slava, Travis, and a core set of members of the team that

built SQL Server on Linux had a goal to build a prototype of SQL Server integration with

Big Data including Spark. They embarked on a multi-day huddle in a big conference

room and dubbed it the “Aris Hackathon.” Those team members were Slava Oks, Travis

Wright, Scott Konersmann, Stuart Padley, Michael Nelson, Pranjal Gupta, Jarupat

Jisarojito, Weiyun Huang, George Reynya, David Kryze, Umachandar Jayachandran

(UC), and Sahaj Saini. By the time they were done, they had a working cluster that

combined the existing Polybase functionality of SQL Server with Spark. Figure 1-1 shows

a rough diagram of the cluster the team built.

Chapter 1 Why SQL Server 2019?

5

In the prototype, they built a Hadoop cluster including components for Apache

Spark and HDFS, but also combined with SQL Server Polybase. They used Spark to

stream data into the Data nodes and then used Polybase to join data in the Head node in

SQL Server with the data ingested with Spark into HDFS. The idea behind the prototype

was to prove they could integrate Spark, Hadoop, and SQL Server together.

Around this same time, Travis had been talking to engineers who had joined

the team from a company Microsoft had acquired, called Metanautix. As part of this

acquisition, our team had technology to connect to a range of data sources, through

ODBC, including ORACLE, SQL Server, Teradata, and MongoDB. The team thought

that if we could integrate this technology with the Aris project, we could build a pretty

compelling story for Data Virtualization. SQL Server could now be a hub for accessing

data in different data platforms and systems without having to move the data to SQL

Server (with techniques like Extract, Transform, and Load (ETL)).

Before we could deliver software that customers could use and try, we needed to

decide on a platform to run all of these components. We needed a platform that would

allow for easy deployment of all the software, including Polybase, Hadoop, and Spark;

provide manageability and security; and enable elastic scale and high availability.

Containers seemed like a logical choice given the nature of how easy they are to deploy,

and, with SQL Server 2017, we had delivered on supporting SQL Server with containers.

The next natural choice for the team was to select Kubernetes as a platform to build out

a cluster running these containers. Kubernetes was quickly gaining momentum as a

Figure 1-1. The first Aris cluster

Chapter 1 Why SQL Server 2019?

6

platform for distributed computing and scalable performance. Our learnings had taught

us that Linux was the preferred OS to run Kubernetes and Hadoop systems, and, since

SQL Server was already supported on Linux, it was a good fit to build on.

And so, in late 2017, our team embarked on the journey of building out an Aris

cluster that would enable the vision of Data Virtualization, but integrate with Big Data

technologies such as Spark and HDFS. From the very beginning, our team decided that all

of this needed to “ship in the box.” That is, if you bought SQL Server, we would install all of

these components as part of the license (not knowing whether this would be a new edition,

but all of this would be included with SQL Server). The final product as you see now with

SQL Server 2019 and what we call Big Data Clusters has much more than the early Aris

prototypes, but the vision and concepts are the same: provide an easy-to- deploy Data

Virtualization platform with built-in scalable performance, security, and manageability.

 Seattle Becomes SQL Server 2019
While the concept of Aris and Big Data clusters was huge, innovative, and, quite frankly,

a bit scary, every major release of SQL Server includes enhancements across several

areas of the platform. This includes performance, security, and availability, the three

areas Conor Cunningham often refers to as “the meat and potatoes of SQL Server.” Our

team had also launched SQL Server on Linux with SQL Server 2017. As amazing as that

product has been, there were a few features that ship with SQL Server on Windows that

needed to also be added to Linux. We also knew that containers are big, and I mean big

in the sense that they are a future direction to deploy and run applications, including

SQL Server. So there was some work there we know we needed to do, including exploring

new scenarios with Kubernetes clusters (not just the Big Data Cluster solution).

So many teams contribute to the amazing product that is SQL Server. Our Enterprise

team (aka the Tiger Team) had a pile of new features they wanted in the new release with

true customer value (because that is what they do!). Our friends who build new features

for performance, availability, and security for Azure SQL Database wanted to see their

work in Project Seattle, since the engines that run the Azure service and SQL Server are

the same. As I saw this play out in 2017, I could see the momentum for a historic release.

As the calendar year of 2017 ended, we were all set up for the next release of SQL

Server, SQL Server 2018. This all made sense to me. We shipped two major versions of

SQL Server in back to back years, SQL Server 2016 and SQL Server 2017, so why not SQL

Server 2018?

Chapter 1 Why SQL Server 2019?

7

Conor Cunningham, our product and release architect, has told me that, with our

agile engineering capabilities, we could ship SQL Server every month if we wanted to.

And we can do it with quality. Of course, we don’t do this, because we want to ship SQL

Server releases that have both quality and major value for our customers. As we started

moving forward into the early months of calendar year 2018, we had to decide if we

wanted to ship a major new version in that year. When we looked at the landscape of

capabilities that we could put into this release, including Big Data Clusters, we made the

decision in the spring of 2018 that we would ship our first preview of SQL Server vNext

in calendar year 2018. (When we don’t know an official name to call the next release,

even if we have a project name like Seattle, we call it “vNext.”) And you may have noticed

we often try to make announcements for major new releases at big events. Looking

at the calendar, one of the biggest global customer events for Microsoft has become

Microsoft Ignite (it is now in Orlando, with ~30,000 people). So in the summer of 2018,

our leadership decided to launch the preview of SQL Server vNext at Microsoft Ignite

and call it SQL Server 2019, meaning that we would make this release GA (which means

General Availability) sometime in calendar year 2019.

This made sense to everyone on the team. It gave us more runway to land Big Data

Clusters, plus more capabilities with the “core” of SQL Server all based on customer

feedback and experience. My task? Take the work I had done to evangelize and showcase

SQL Server 2016 and 2017 and show our customers, the industry, and community that

we have truly built a Modern Data Platform with SQL Server 2019.

 Modernizing Your Database with SQL Server 2019
Figure 1-2 is my main “pitch” diagram when I talk about SQL Server 2019. Built by one

of my colleagues in Microsoft marketing, Debbi Lyons (you may have seen myself and

Debbi sometimes appearing together talking SQL Server), it represents a full picture of

the new Modern Data Platform of SQL Server 2019.

Chapter 1 Why SQL Server 2019?

8

If you have ever seen me talk about SQL Server 2016 or 2017, you will notice the slide

looks a bit similar, but with key differences:

• An integrated Data Virtualization solution integrating Spark, HDFS,

and SQL Server in a new and innovative way (basically SQL Server

“meets Big Data”)

• New capabilities to continue the platform of choice value to our

customers across Windows, Linux, Containers, and Kubernetes

SQL Server continues to lead the database industry in performance and is the least

vulnerable data platform over the last decade. With a SQL Server license, customers have

access to Business Intelligence services, such as Power BI Report Server. In addition,

with the new Azure SQL Database Managed Instance service, functionality is virtually

the same from SQL Server in your private cloud and Azure in the public cloud. The

consistency message doesn’t stop there. Your skills in T-SQL apply across SQL Server

and Azure, and our tools continue to work seamlessly across SQL Server and Azure Data

services.

Figure 1-2. Modernize with SQL Server 2019

Chapter 1 Why SQL Server 2019?

9

Another set of capabilities that seems to get lost in the conversation of new features

is that SQL Server (and Azure) provides in-memory features that allow you to maximize

your computing resources, including In-Memory OLTP and Columnstore Indexes. All of

this comes with the SQL Server 2019. Figure 1-3 is a more detailed picture of major new

key functionality unique to SQL Server 2019.

I’m going to use this diagram (going left to right, starting in the upper left-hand

corner) to sketch out for you the major new features of SQL Server 2019, which will be

like a blueprint for your reading for the remainder of the book. As you read through

these new capabilities, keep in mind that SQL Server powers Azure SQL Database,

which means many of the capabilities you see in this book work the same in Azure

SQL Database. Furthermore, everything you see in this book can be done in Azure

whether it is SQL Server in Azure Virtual Machine or containers and Kubernetes in

the cloud.

Figure 1-3. SQL Server 2019 key functionality

Chapter 1 Why SQL Server 2019?

10

 Data Virtualization
Previously in this chapter, I’ve discussed the origins of Data Virtualization with Project

Aris. SQL Server 2019 is the realization of that vision with two specific capabilities:

• Polybase in SQL Server 2019

 I call this Polybase++ because we have extended the functionality

of Polybase that shipped with SQL Server 2016 (for more info

on Polybase, see https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-guide?view=sql-

server- 2017) to provide different data source connectors including

Oracle, SQL Server, MongoDB (CosmosDB), and Teradata. And

you can connect to these data sources without installing any client

software; SQL Server has what you need built-in. In addition, you

can connect to other sources such as SAP HANA by installing your

own ODBC driver. I’ll cover the new Polybase in SQL Server 2019 in

Chapter 9.

• Big Data Clusters

 As I described our vision for Project Aris earlier in the chapter, we

decided to build a complete solution that deploys SQL Server with

the new Polybase functionality, HDFS, Spark, and other components

for management, security, and availability. There is so much more

to this than I can describe here, so read more on Big Data Clusters in

Chapter 10.

Note I originally wanted to come right out in the second and third chapters of
this book on these topics. however, I later decided that if you need some more
information about containers and Kubernetes, it would help to put those chapters
ahead of this topic. So, instead, I’ll “go out with a bang” with this new innovation in
the book. If you can’t help yourself, dive right into Chapter 9.

Chapter 1 Why SQL Server 2019?

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-2017

11

 Performance
We always work on performance in any SQL Server release. Always. However, just

making your queries run fast is not enough. We need to keep making the SQL Server

engine smarter and more intelligent, adapting to your workload, hardware investments,

and complex query patterns. Chapter 2 has a complete look at performance capabilities

of SQL Server 2019 including but not limited to

• Intelligent Query Processing, which is an extension to Adaptive Query

Processing introduced in SQL Server 2017.

• Query plan insights anywhere and anytime you need it with

Lightweight Query Profiling, Last Execution Plan, and Query Store

enhancements.

• A family of capabilities to provide a true in-memory database

including enlightened I/O and Hybrid Buffer Pool for persistent

memory and memory-optimized tempdb schema. Combining these

technologies with our built-in Columnstore Indexes and In-Memory

OLTP provides a compelling in-memory database solution.

 Security
SQL Server is not only the least vulnerable database product in the industry over the

last decade, but includes a wide range of features and tools to meet the modern security

needs of any business. This includes the following enhancements for SQL Server 2019:

• Always Encrypted with Secure Enclaves

 SQL Server 2016 introduced a new end-to-end security system

for data applications called Always Encrypted. While this system

provides for encryption at rest, in-memory, and across the network,

there were a few limitations, most importantly rich computing. In

Chapter 3, I’ll talk about how Always Encrypted, using a concept

called Secure Enclaves, enables rich computing and other interesting

security scenarios.

Chapter 1 Why SQL Server 2019?

12

• Data Classification and Auditing built-in

 The General Data Protection Regulation (GDPR) took effect from the

European Union (EU) in May of 2018. I’ve talked to many customers

since that time based in the EU and companies that do business with

EU customers. Our new Data Classification and Auditing built-in

features, combined with our tools, can be very helpful for compliance

scenarios such as GDPR and others your business may need to

handle.

I’ll cover these new features and more for security in Chapter 3.

 Mission-Critical Availability
It is one thing to be fast and secure, but customers that rely on SQL Server to run their

business need their data platform to be available all the time. SQL Server 2019 includes

new capabilities to meet your highly available data needs, including

• Resumable Online Create Index and Clustered Columnstore Online

Create Index to help complete the online index availability story.

• Enhances to our flagship HADR feature, Always On Availability

Groups, including increase in number of replicas and primary

connection redirection.

• Imagine a world where transaction rollback happens immediately,

and recovery and log truncation are not dependent on large or long-

running transactions. Welcome to the new world of Accelerated

Database Recovery!

I’ll talk more about these and other mission-critical availability solutions in

Chapter 4.

 Modern Development Platform
So far, I’m sure all the new things I’ve talked about that are coming in SQL Server 2019

seem targeted only at DBAs or IT Professionals. We definitely believe that developers are

important to the success of SQL Server, so we have also invested in these new features:

Chapter 1 Why SQL Server 2019?

13

• In SQL Server 2016, we introduced a new platform for in-database

Machine Learning with a language called R. In SQL Server 2017, we

enhanced this model by allowing for Python programs. Using this

same infrastructure, we now allow developers to extend the T-SQL

language using Java classes. In fact, we have built an extensibility SDK

to allow other languages to be part of the SQL Server story.

• We have extended the capabilities on graph database, which was

first introduced in SQL Server 2017, with new features like edge

constraints and MERGE support.

• We want developers to use Unicode data types, so we have added

new UTF-8 collations that can help developers manage UTF-8 data

without the overhead of Unicode data types.

I’ll talk more about developer-focused features in SQL Server 2019 in Chapter 5.

 Investing in the Platform of Your Choice
We cranked out SQL Server on Linux in SQL Server 2017, but we had a few features

on the “edge” of the engine that did not make that release. We want our users to have

complete choice of what operating system to run SQL Server without worrying about

features or compatibility. We have improved that now in SQL Server 2019 by adding

Replication, Change Data Capture (CDC), Distributed Transactions (DTC), Machine

Learning, and Polybase to SQL Server on Linux.

We also have made investments with containers including a new container registry,

support for Red Hat Enterprise Linux (RHEL), and continued support for Kubernetes

including OpenShift. And though not covered in this book, we have expanded the

platforms for SQL Server when we announced preview support in May of 2019 for Arm

processors with Azure SQL Database Edge. You can read more about Azure SQL Database

Edge at https://azure.microsoft.com/en-us/services/sql-database- edge/.

You should stop and consider all of these platform icons, because SQL Server is not

just a platform of choice. It is a platform of choice with compatibility. You can back up a

database on any of these platforms and restore it to any of these platforms unchanged.

I’ll spend time diving into SQL Server on Linux enhancements, SQL Server

containers, and SQL Server on Kubernetes in Chapters 6, 7, and 8 in the book.

Chapter 1 Why SQL Server 2019?

https://azure.microsoft.com/en-us/services/sql-database-edge/

14

In addition to these major areas of investment for SQL Server 2019, there are other

innovations worth calling out.

 Azure Data Studio
SQL Server Management Studio (SSMS) has been the stalwart graphical user interface

for SQL Server for many years. Last year we embarked on building a new tool for data

exploration, extensibility, and new experiences called SQL Operations Studio. In

September of 2018, we officially launched this tool and called it Azure Data Studio (ADS).

Azure Data Studio has some innovative new technology including Notebooks, Big

Data Cluster deployment, External Data Wizards, and exploration of SQL Server, HDFS,

and other Azure Data Services.

There is no specific chapter dedicated to Azure Data Studio. Instead you will see me

use this tool (along with SSMS and others) throughout the chapters of this book.

 Voice of the Customer
Having a background in customer support, I’m always interested to see our engineering

team include features into new releases that can be tied to direct customer feedback or

trends of support issues with our CSS team.

This release is no different and includes a series of enhancements to the database

engine, including but not limited to

• A better string truncation error message with actionable context. It

has been the #1 voted customer request with 1000s of votes.

• New dynamic management objects to gain insights into the internals

of database page headers (yes, you too can be Paul Randal). These

statements can help troubleshoot page latch contention issues.

• Scalability improvements in the engine including concurrent PFS

updates, parallel bulk insert, and indirect checkpoint.

I’ll show you more details about this collection of enhancements in Chapter 11.

As you look at the rest of the book, the chapters are fairly independent of each other.

However, I highly recommend you first read Chapters 7 and 8 as foundational information

before diving into Chapters 9 and 10 on Data Virtualization and Big Data Clusters.

Chapter 1 Why SQL Server 2019?

15

 Getting Started with SQL Server 2019
Here are some resources to help you deploy and configure SQL Server 2019 as you

prepare to learn new features and try examples in the remaining chapters of this book.

 Download SQL Server 2019
To download and try out SQL Server 2019, go to www.microsoft.com/en-us/sql-

server/sql-server-2019#Install.

 Deploy SQL Server 2019
For instructions on how to deploy SQL Server 2019 on Windows, go to https://docs.

microsoft.com/en-us/sql/database-engine/install-windows/installation-for-

sql-server?view=sql-server-ver15.

For SQL Server 2019 on Linux, go to https://docs.microsoft.com/en-us/sql/

linux/sql-server-linux-overview?view=sql-server-ver15.

To learn how to deploy SQL Server in a Container, go to https://docs.microsoft.

com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-

linux-ver15&pivots=cs1-bash.

 Migrate to SQL Server 2019
Chapter 11 will include a discussion about migration and tools to support migration to

Server 2019 from previous releases of SQL Server and other vendor database products.

 What’s New in SQL Server 2019
Learn all the new feature specifics about SQL Server 2019 at https://docs.

microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-

ver15?view=sqlallproducts-allversions.

Chapter 1 Why SQL Server 2019?

http://www.microsoft.com/en-us/sql-server/sql-server-2019#Install
http://www.microsoft.com/en-us/sql-server/sql-server-2019#Install
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/installation-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/installation-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/installation-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-linux-ver15&pivots=cs1-bash.\
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-linux-ver15&pivots=cs1-bash.\
https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-linux-ver15&pivots=cs1-bash.\
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?view=sqlallproducts-allversions

16

 Download Book Code and Sample Databases
To be able to work with all of the examples in this book, you will want to clone the

GitHub repo for the book as discussed in the book introduction.

Tip Windows users, be sure to use the following git syntax to clone the repo to
avoid any issues with CrLF for Linux scripts:

git clone --config core.autocrlf=false https://github.com/
microsoft/sqlworkshops.git

In addition, you will want to download the sample databases WideWorldImporters

from https://github.com/Microsoft/sql-server-samples/releases/tag/wide-

world- importers-v1.0 and WideWorldImportersDW from https://github.com/

Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/

WideWorldImportersDW-Full.bak. The code for the book has examples on how to

restore the backup on Windows, Linux, Containers, and Kubernetes.

 SQL Server Workshops
Even though I include many hands-on exercises in this book, go to http://aka.ms/

sqlworkshops to find more free related training about SQL Server (my friend and

colleague Buck Woody, who is one of the finest trainers I know, is the brainchild behind

this site).

 It Is Your Grandpa’s SQL Server?
I enjoyed authoring this book not just because I like the technology (OK I’m biased

about SQL Server) but also because our engineering team is innovating at speeds not

seen by any other competitive data product or platform in the industry. And let’s admit,

it’s fun to learn new things.

Perhaps this quote from ITProToday magazine says it best: “I never expected a

day I’d be discussing release features of Microsoft SQL Server in the same sentence

as Linux, Oracle and Apache Spark, but it’s a brave new world. Microsoft’s SQL Server

Chapter 1 Why SQL Server 2019?

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
http://aka.ms/sqlworkshops
http://aka.ms/sqlworkshops

17

development is moving at a pace none of its competitors is matching” (www.itprotoday.

com/sql-server/polybase-expansion-big-clusters-are-key-features-new-sql-

server-2019).

I remember my colleague Travis Wright saying about SQL Server 2019, “This is not

your Grandpa’s SQL Server.” This is because the product has evolved from a powerful

relational database engine to now include technologies like Spark, HDFS, Notebooks,

Polybase, R, Python, Java, Linux, containers, and Kubernetes all as part of the product,

truly a Modern Data Platform.

I remember putting this quote on Twitter. My colleague Pedro Lopes saw this and

commented that SQL Server 2019 really is your grandpa’s SQL Server. So who is right?

They both are. SQL Server 2019 is still the incredible database engine you know and love,

with scalable performance, mission-critical security, and high availability. And you will

see in this book enhancements to all these core areas. But SQL Server 2019 is so much

more. One of the most popular database platforms on the planet and the newest kid on

the block. You can be both. Welcome to SQL Server 2019.

Chapter 1 Why SQL Server 2019?

https://www.itprotoday.com/sql-server/polybase-expansion-big-clusters-are-key-features-new-sql-server-2019
https://www.itprotoday.com/sql-server/polybase-expansion-big-clusters-are-key-features-new-sql-server-2019
https://www.itprotoday.com/sql-server/polybase-expansion-big-clusters-are-key-features-new-sql-server-2019

19
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_2

CHAPTER 2

Intelligent Performance
SQL Server Performance is critical to the operations of any data platform. This chapter

is packed with information about how SQL Server 2019 can help you gain query

performance with no application changes. This is one of the longest chapters in the book

with plenty of examples so strap in and grab your favorite coffee.

 Why Intelligent Performance?
To me, the most important takeaway from this book is why new capabilities in SQL

Server 2019 can benefit you or solve a particular problem or challenge. For performance,

the theme is to help you increase the performance of your workloads, often without

making any application or query changes.

In September of 2018, I was preparing for a presentation at the Microsoft Ignite

conference in Orlando, Florida. Up to this point in the year, everyone had only known

our plans for SQL vNext at a high level. My colleague, Amit Banerjee, and I had the task

of presenting the launch of SQL Server 2019 Preview at Ignite. As we were building out

this deck, we knew we needed to showcase our new enhancements for performance.

Amit had an idea for a new term, Intelligent Database. The idea was that SQL Server

is building capabilities that include intelligence into the engine to detect, adapt, and

provide insight like never before.

I’ve taken that same term and focused it more on performance to call it Intelligent

Performance. This includes the following new enhancements in SQL Server 2019:

• Intelligent Query Processing

• Lightweight Query Profiling

• In-Memory Database

• Last-Page Insert Contention

20

Each of these areas contains built-in intelligence in the SQL Server engine to help

you get better performance out of your systems, in many cases without any changes

at all. In some cases, SQL Server provides you insights into query performance at a

level never seen before. In other situations, SQL Server has built-in capabilities to

automatically take advantage of new innovations in hardware.

When you create a book, you make all types of decisions. One of them is how to

organize your chapters. This chapter is very long, mostly due to examples that include

many visuals. I’m a visual person, so I thought that would be a good way to show you

these new features. Each section of this chapter is itself its own chapter, and you can

treat it that way. I decided to include all of them in one single chapter because I wanted

you to see all of the details and the sheer vastness of Intelligent Performance in SQL

Server 2019.

Each section of the chapter lists the prerequisites to run any of the examples. At a

high level, you are going to need

• An installation of SQL Server 2019 on Windows or Linux

• SQL Server Management Studio (SSMS) 18.0 or later

• Azure Data Studio (any OS, but the minimum version you

need is 1.7.0)

Many of the examples use SSMS to view query plans, but, as you go through these

examples, you can use Azure Data Studio as well (you will just need to look at the plan

XML) using the new SentryOne Plan Explorer extension. Read more about this extension

at https://cloudblogs.microsoft.com/sqlserver/2019/07/11/the-july-release-

of-azure-data-studio-is-now-available.

 Intelligent Query Processing
In SQL Server 2014, our engineering team made a bold decision to introduce a

new set of code for the query processor within the engine that makes decisions for

cardinality estimation (CE). The new “CE model” would take effect if a database

used a compatibility level of 120 or later (120 is the default for SQL Server 2014). You

can read all the gory details of how this works and why we made this change in our

documentation at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/cardinality-estimation-sql-server.

Chapter 2 IntellIgent performanCe

https://cloudblogs.microsoft.com/sqlserver/2019/07/11/the-july-release-of-azure-data-studio-is-now-available
https://cloudblogs.microsoft.com/sqlserver/2019/07/11/the-july-release-of-azure-data-studio-is-now-available
https://docs.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server

21

Many have debated whether this was the right decision. One issue with the approach

is that it was a broad, inflexible change. As the team was finishing SQL Server 2016

and planning SQL Server 2017, they all agreed we needed a new way to build query

processing functionality. As Joe Sack, one of the lead program managers for the Query

Processor (QP), tells it, “The team realized that doing one-size-fits-all changes isn’t what

we should do moving forward. Rather – we need to invest in features that can adapt to

the vast array of customer workloads in the SQL Server ecosystem (big, small, OLTP,

Hybrid, DW).”

Thus was born a new feature family of enhancements in SQL Server 2017 called

Adaptive Query Processing (AQP). The concept was to build into the query processor

the ability to adapt as a query executed (or before it executed again) to provide faster

execution, without any user intervention or application changes.

Note You can see examples of SQl Server 2017 and aQp at https://github.
com/Microsoft/bobsql/tree/master/demos/sqlserver/aqp.

As the team shipped SQL Server 2017 and AQP, they were already backlogged with

new things they had wanted to put in AQP but ran out of time. They started putting new

features to enhance AQP in Azure SQL Server Database, with plans to roll them into SQL

Server 2019. Furthermore, the word adaptive didn’t really reflect the vision of the work

the team was producing. The SQL Server query processor has, for years, been pretty

smart – using a sophisticated set of cost-based algorithms to make plan decisions. But

the team wanted more; they wanted the QP to exhibit more intelligence. Thus, the name

Intelligent Query Processing stuck.

Figure 2-1 shows this family tree of QP capabilities that includes both SQL Server

2017 and 2019.

Chapter 2 IntellIgent performanCe

https://github.com/Microsoft/bobsql/tree/master/demos/sqlserver/aqp
https://github.com/Microsoft/bobsql/tree/master/demos/sqlserver/aqp

22

Let’s take a look at each new capability you see in gray in Figure 2-1, with examples of

how each works. It is so important to keep in mind as you read through this section that

we built these capabilities so you don’t have to know about them. In time, if we have

done our job well, Intelligent Query Processing is “just” the query processor, and you

as an application developer, DBA, or data professional are just used to an engine that

is flexible, intelligent, and adaptive to your workload. You can see all the capabilities of

Adaptive Query Processing as part of the new documentation on IQP at https://docs.

microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-

processing.

Note In all scenarios except for approximate Count Distinct, you can enable the
capabilities of Intelligent Query processing by changing the database compatibility
level of the database to 150. approximate Count Distinct is a t-SQl function that is
new to SQl Server 2019 and does not require a database compatibility level of 150.

 Prerequisites for Using the Examples for Intelligent Query
Processing
While many workloads will see benefits from Intelligent Query Processing (IQP), it is

easy to demonstrate the performance benefits of IQP with larger datasets and databases

designed for analytic queries. Therefore, for examples in this chapter, you will use the

WideWorldImportersDW example database (you can read more about this database

Figure 2-1. Intelligent Query Processing family tree

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing

23

and its schema at https://docs.microsoft.com/en-us/sql/samples/wide-world-

importers-dw-database-catalog).

These examples will work on SQL Server 2019 on Windows, Linux, and Containers.

Given the large dataset, SQL Server is going to need at least 12Gb RAM to properly see

performance differences. In addition, some of the query examples use parallelism, so

installing SQL Server on a multiprocessor system is preferred.

All the scripts used for this chapter can be found on the GitHub repo under the

ch2_intelligent_performance\iqp directory.

Complete credit to my colleague at Microsoft, Joe Sack, for all of these examples

including how to extend out the WideWorldImportersDW database. These examples

were modified based on Joe’s GitHub repo at https://github.com/joesackmsft/

Conferences/tree/master/IQPDemos.

In order to use the examples in this chapter, you need to go through the following

steps:

 1. Download the WideWorldImportersDW database backup

from https://github.com/Microsoft/sql-server-

samples/releases/download/wide-world- importers-v1.0/

WideWorldImportersDW-Full.bak.

 2. Restore this database to your SQL Server 2019 instance. You can

use the provided restorewwidw.sql script. You may need to

change the directory paths for the location of your backup and

where you will restore the database files.

 3. In order to run some of the examples, you will need larger tables

than what is installed by default in WideWorldImportersDW

and that are not using columnstore. Therefore, run the script

extendwwidw.sql to create two large tables. Extending this

database will increase its size, including the transaction log, to

about 8Gb overall. One of these tables is called Fact.OrderHistory.

Based on the Orders table, we will make this table much larger

and not use a columnstore index. We will create another table

called Fact.OrderHistoryExtended. This will be based on Fact.

OrderHistory but will have even more rows.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-dw-database-catalog
https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-dw-database-catalog
https://github.com/joesackmsft/Conferences/tree/master/IQPDemos
https://github.com/joesackmsft/Conferences/tree/master/IQPDemos
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.bak

24

Almost all the examples come with two methods:

• A set of T-SQL scripts you can use with any tool like SQL Server

Management Studio, Azure Data Studio, or sqlcmd.

• A T-SQL notebook that requires Azure Data Studio. Take a close look

on how to run notebooks with Azure Data Studio at https://docs.

microsoft.com/en-us/sql/azure-data-studio/sql-notebooks.

One example requires a Windows client, as it uses the famous ostress.exe tool.

Details of how to install and use ostress.exe are provided in the section “Memory Grant

Feedback Row Mode.” I’ve built all the scripts assuming you will run them as a sysadmin

(I used the sa login). In normal practice, you would create other logins to use SQL Server,

but I wanted to simplify examples – so just use a login with sysadmin permissions.

 Memory Grant Feedback Row Mode
Before joining the SQL Server engineering team, I had a long career at Microsoft in

technical support. One of the toughest problems I’ve seen customers face when it comes

to performance is problems with memory grants. What is a memory grant?

SQL Server allocates memory for all kinds of reasons. When SQL Server executes a

query, memory may be used to cache buffers associated with pages belonging to indexes

or tables in the query. In most SQL Server instances that have been up and running, the

buffer pool may be already in allocated memory so bringing in pages doesn’t require

additional memory.

Some query operations are intensive and require some type of temporary area to

store data. Two such operations are hash joins (or even just hash operators) and sorts.

To perform a hash join, SQL Server effectively has to build a mini-table in memory in

order to perform the operation. Any type of data sort can require some type of array or

structure to sort data. SQL Server has to have some place to perform these operations so

it allocates memory outside the buffer pool. The process for allocating this memory by

the query execution engine is called a memory grant.

Sounds simple enough. Here is the problem: Memory grants are based on what the

optimizer knows about the query plan as it is first being executed. And the “what” for

these decisions usually comes down to cardinality estimation or unique number of rows

for an operation. If SQL Server thinks a sort operation as part of a query plan will be on

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks
https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks

25

data columns that are 100 bytes in total but with an estimated 1 billion rows, it must

acquire a memory grant enough to allocate memory to sort that many rows of data of

that size. The same type of concept applies for a hash operator.

Tip there is a very old blog by the SQl Server engineering team explaining
memory grants. I recommend you stop and read through this to understand more
of the concepts and details. You can read the blog at https://blogs.msdn.
microsoft.com/sqlqueryprocessing/2010/02/16/understanding-
sql- server-memory-grant/.

In many scenarios, this system works just fine, and no noticeable issues can occur.

However, what if the memory grants are based on cardinality estimates that are not

accurate?

Two types of problems can occur:

• The memory grant can be too small for what is really needed, resulting

in the infamous and painful “tempdb spill.” SQL Server will not allow

a hash join operator or sort to get all the memory it wants. If the

memory request is too large (we don’t document what is too large,

because we might change it, and wouldn’t want you to rely on it), the

current allocated memory must be saved. Saved where? You guessed

it… tempdb. Think of this like a paging system much like the how

operating system pages memory when physical RAM is exhausted.

• The memory grant is too large for what is really needed. This could

squeeze memory pressure for other parts of the SQL Server engine,

but what is more likely is multiple users run queries that have

excessive memory grants, and SQL Server will throttle queries. The

result is some users experience bottlenecks on a wait_type called

RESOURCE_SEMAPHORE.

Both of these problems can lead to performance problems. In SQL Server 2017,

we introduced a concept called memory grant feedback for batch mode. This feature

is a perfect example of adapting. When a query has completed execution, SQL Server

knows how much memory was used for a grant vs. what was originally requested. If the

Chapter 2 IntellIgent performanCe

https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant/
https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant/
https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-server-memory-grant/

26

memory used was far less than what was granted, why keep asking for too much memory

the next time the same cached plan is executed? Same goes for if the memory used was

far greater than the requested original grant. Why keep spilling to tempdb for a cached

query plan over and over?

Memory grant feedback solves this problem by storing information in the cached

query plan for what the correct memory grant should be for future executions. To the

user, it feels like SQL Server healed itself. This feature was great for SQL Server 2017,

but only for batch mode operations, which meant it only worked for columnstore index

operations. As you will learn in a later section of this chapter titled “Batch Mode on

Rowstore,” SQL Server supports batch mode operations on more than just columnstore.

However, why not support memory grant feedback even when batch mode is not used?

The result is an adaptive SQL Server engine for memory grant scenarios no matter

what type of table or index is being used.

Enabling memory grant feedback row mode is as simple as changing the database

compatibility level (dbcompat) to 150.

You can disable or enable memory grant feedback row mode even with dbcompat

at 150 using the ROW_MODE_MEMORY_GRANT_FEEDBACK option for ALTER

DATABASE SCOPED CONFIGURATION. You can also disable this feature at the query

level using the DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK query option.

You can read examples of how to set these options at https://docs.microsoft.com/

en- us/sql/relational-databases/performance/intelligent-query-processing?

#row- mode- memory-grant-feedback.

 Underestimated Memory Grant

Let’s look at some examples. Let’s first look at a scenario where a memory grant is too

small for the actual memory used, resulting in a spill to tempdb. All the scripts used in

these examples can be found in the ch2_intelligent_performance\iqp\rowmodemgf

directory. There are two ways to run the examples for this scenario:

• Use the T-SQL script iqp_rowmodemfg.sql.

• Use the T-SQL notebook in Azure Data Studio called iqp_
rowmodemfg.ipynb.

Let’s use the T-SQL script iqp_rowmodemfg.sql in a step-by-step fashion. I’ll use

SQL Server Management Studio to explain query plan differences, but you can use any

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback

27

tool that can show the query plan. There are comments in the T-SQL script for each step

of the example.

 1. Step 1 says to change the database compatibility level to 150, clear

the procedure cache, and warm the buffer pool with pages from

a table called Fact.OrderHistory in the WideWorldImportersDW

database. Dbcompat of 150 is needed to enable memory grant

feedback for rowstore. Clearing the procedure cache is just a

step to ensure we are “starting clean.” (Note the use of the ALTER

DATABASE option to clear the procedure cache just for this

database. This option is very nice!) Pulling in the pages from

disk for the Fact.OrderHistory table is done just to ensure the

comparison of query performance with and without memory

grant feedback is a “fair fight.”

-- Step 1: Make sure this database is in compatibility

level 150 and clear procedure cache for this database. Also

bring the table into cache to compare warm cache queries

USE [WideWorldImportersDW]

GO

ALTER DATABASE [WideWorldImportersDW] SET COMPATIBILITY_

LEVEL = 150

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE

GO

SELECT COUNT(*) FROM [Fact].[OrderHistory]

GO

 2. Step 2 is all about setting up conditions for an underestimation

of a memory grant. I’ll show you a trick on how to simulate this.

The T-SQL UPDATE STATISTICS command has a special option

to force a specific row or page count that is stored in the statistics

information. You would never want to use this option normally. In

fact, in the documentation of the UPDATE STATISTICS command

at https://docs.microsoft.com/en-us/sql/t-sql/statements/

update-statistics-transact-sql, it says about this option,

“Identified for informational purposes only. Not supported.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql

28

Future compatibility is not guaranteed.” So this option is only for

the purposes of this demonstration. In this case, let’s force the

cardinality of the statistics of this table to 1000 rows:

-- Step 2: Simulate statistics out of date

UPDATE STATISTICS Fact.OrderHistory

WITH ROWCOUNT = 1000

GO

This table actually has 3702592 rows; forcing the statistics to

believe it has 1000 rows simulates a scenario where the statistics

are not in sync with the actual data in the table.

 3. On to Step 3. Now it is time to run a query using the Fact.

OrderHistory table.

-- Step 3: Run a query to get order and stock item data

-- DO NOT select the comments here to run the query!

SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]

FROM Fact.OrderHistory AS fo

INNER HASH JOIN Dimension.[Stock Item] AS si

ON fo.[Stock Item Key] = si.[Stock Item Key]

WHERE fo.[Lineage Key] = 9

AND si.[Lead Time Days] > 19

GO

The query attempts to get Order and Stock Item data. Notice the

use of HASH JOIN in the T-SQL syntax to force the optimizer to

use a hash join. This is a simple way for demonstration purposes

to induce a hash join into the query with an underestimated

number of rows. I included the comments here, but it is critical

you do not execute this T-SQL fragment with the comments.

This burned me when I first started building these demos.

Comments “count” when it comes to uniquely identifying a query

to match a cached plan. If the next execution of the query doesn’t

have the same comments, the queries will not be reused. In SSMS,

select the option for Include Actual Execution Plan (you can use

Ctrl+M to enable) before executing the query. This documentation

Chapter 2 IntellIgent performanCe

29

page describes how to enable this, https://docs.microsoft.

com/en-us/sql/relational-databases/performance/display-

an-actual-execution-plan.

-- Step 3: Run a query to get order and stock item data

-- DO NOT select the comments here to run the query!

SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]

FROM Fact.OrderHistory AS fo

INNER HASH JOIN Dimension.[Stock Item] AS si

ON fo.[Stock Item Key] = si.[Stock Item Key]

WHERE fo.[Lineage Key] = 9

AND si.[Lead Time Days] > 19

GO

This query should take at least 30 seconds to run and returns about

66K rows (your mileage may vary). Using the SSMS option to view

the execution plan, it should look something like Figure 2-2.

Using this plan, there are several details to observe. In SSMS, if

you move your cursor over the Table Scan operator, it should look

something like Figure 2-3. Notice the Estimated Number of Rows

is way off the actual rows read for the scan.

Figure 2-2. Query plan for underestimated memory grant

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-execution-plan

30

In this case, the Fact.OrderHistory table is the build input into a

hash join. SQL Server will request a memory grant for the hash

join based on this build input. This is a problem since the memory

grant is based on the estimate which is only 1000 rows. Use the

cursor to move over the Hash Join, which has a small warning icon

with it, and notice the warning about a spill as seen in Figure 2-4.

Figure 2-3. Estimates vs. actuals for the Fact.OrderHistory table scan

Chapter 2 IntellIgent performanCe

31

Figure 2-4. Hash join tempdb spill

Notice the numbers from the warning. 52008 pages (8K per

page) is ~426Mb of data I/O to tempdb files. Spills are really ugly

because this is not data placed into a buffer pool page associated

to tempdb. Tempdb data files become the paging file for memory

Chapter 2 IntellIgent performanCe

32

grants for hash joins (these are not tempdb pages for temporary

tables. This is yet another reason why I often call tempdb the

garbage dump of SQL Server).

Tip Want to know how a hash join works? read this older yet classic blog post
from one of our top Query processor team engineers, the one and only Craig
freedman: https://blogs.msdn.microsoft.com/craigfr/2006/08/10/
hash-join/.

Moving to the left in the query plan, move the cursor over the

SELECT operator. In this operator are the details of the amount

of memory grant for the query plan. Figure 2-5 shows ~1.4Mb of

memory was requested for the grant for this query.

Figure 2-5. The SELECT operator showing memory grant requested

Chapter 2 IntellIgent performanCe

https://blogs.msdn.microsoft.com/craigfr/2006/08/10/hash-join/
https://blogs.msdn.microsoft.com/craigfr/2006/08/10/hash-join/

33

1.4Mb memory grant requested is not near enough to hold what is

needed which, based on the spill, is ~400Mb.

Another piece of interesting information provided in the XML

execution plan is in the Properties of the plan. To see this, right-

click the SELECT operator and select Properties. Expand the

option called MemoryGrantInfo, which will look like Figure 2-6.

The most important property with respect to memory grant

feedback is the field called IsMemoryGrantFeedbackAdjusted.

The value of NoFirstExecution means that this is just the first

execution of the query, so no feedback has been collected.

Figure 2-6. Memory grant details in the query plan properties

Chapter 2 IntellIgent performanCe

34

You can view the list of possible values in our documentation

at https://docs.microsoft.com/en-us/sql/relational-

databases/performance/intelligent-query- processing?

#row-mode-memory-grant-feedback.

Since memory grant feedback is enabled, if the same query that is

cached is executed, SQL Server will adapt and change the memory

grant to accommodate the underestimation.

 4. Go to Step 4 in the script and run the same query again.

IMPORTANT: Do not use the comments when running the query.

Comments count when matching the exact query in plan cache.

Be sure to keep the option in SSMS to Include Actual Execution

Plan.

-- Step 4: Let's try this again

-- DO NOT select the comments here to run the query!

SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]

FROM Fact.OrderHistory AS fo

INNER HASH JOIN Dimension.[Stock Item] AS si

ON fo.[Stock Item Key] = si.[Stock Item Key]

WHERE fo.[Lineage Key] = 9

AND si.[Lead Time Days] > 19

GO

Instead of 30 seconds or more, this time the query should run in

3 seconds or less. Remember, the concept is that the plan doesn’t

change, so when you look at the Actual Execution Plan, it should

look the same except there is no warning icon with the Hash

Match Join and no spill warning. Using the cursor to move over

the SELECT operator, you will see a significant difference in the

memory grant as seen in Figure 2-7.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-feedback

35

You can see that it actually takes ~625Mb to get the correct

memory grant to accommodate the Hash Join.

Right-click the SELECT operator and select Properties. The

Memory Grant Feedback section now looks like Figure 2-8.

Figure 2-7. SELECT operator showing improved memory grant.

Chapter 2 IntellIgent performanCe

36

 5. We need to make sure to restore the statistics back to their original

state by running the T-SQL for Step 5 in the T-SQL script:

-- Step 5: Restore table and clustered index back to its original

state

UPDATE STATISTICS Fact.OrderHistory

WITH ROWCOUNT = 3702592;

GO

ALTER TABLE [Fact].[OrderHistory] DROP CONSTRAINT [PK_Fact_

OrderHistory]

GO

Figure 2-8. Memory grant feedback properties after the grant is corrected

Chapter 2 IntellIgent performanCe

37

ALTER TABLE [Fact].[OrderHistory] ADD CONSTRAINT [PK_Fact_

OrderHistory] PRIMARY KEY NONCLUSTERED

(

 [Order Key] ASC,

 [Order Date Key] ASC

)

GO

 Excessive Memory Grant

Let’s look at an example where the memory grant was too large for what memory is really

needed. As I mentioned earlier, if the memory grant is very large and not what is really

needed, it could be harmless – but it could also lead to unexpected memory pressure or

performance problems.

This example is a little more complicated to run and requires simulation of

concurrent users. Therefore, for this example, you will need the free tool called

ostress, which can be downloaded at www.microsoft.com/en-us/download/details.

aspx?id=4511. This tool currently requires a Windows client computer.

To see how this problem can lead to unexpected performance problems and

RESOURCE_SEMAPHORE waits, use the following steps. All scripts are found in the

ch2_intelligent_performance\iqp\rowmodemgf directory. I built all the command

shell scripts to use the sa login.

 1. First, we need to adjust the resource governor setting for the

maximum amount of granted memory for the server by running

the script adjustrg.cmd (which runs the T-SQL script adjustrg.
sql). This script assumes a server name of bwsql2019 so you will

need to edit this for your server. I make this adjustment in order to

allow SQL Server to acquire a very large excessive grant as part of

the example.

ALTER WORKLOAD GROUP [default]

WITH (REQUEST_MAX_MEMORY_GRANT_PERCENT = 50)

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

Chapter 2 IntellIgent performanCe

https://www.microsoft.com/en-us/download/details.aspx?id=4511
https://www.microsoft.com/en-us/download/details.aspx?id=4511

38

 2. Now execute the script turn_off_mgf.cmd (which executes the

T-SQL script turn_off_mgf.sql).

-- Turn off memory grant feedback

USE [WideWorldImportersDW]

GO

-- Step 2: Simulate statistics out of date

UPDATE STATISTICS Fact.OrderHistory

WITH ROWCOUNT = 5000000000

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

GO

ALTER DATABASE SCOPED CONFIGURATION SET ROW_MODE_MEMORY_GRANT_

FEEDBACK = OFF

GO

ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_MEMORY_GRANT_

FEEDBACK = OFF

GO

In this example script, I’ll use a technique similar to the previous example for an

underestimated grant, this time changing the statistics to a number far greater than the

number of rows in the table.

Note over the years, I’ve seen several examples where the cardinality estimation
appears to be greater than it should be. one example is linked server queries
where there is no access to statistics for the remote data source. In these cases,
the cardinality estimates may be inaccurate and unusually large.

 3. Now run the script rowmode_mgf.cmd which will run the T-SQL

script rowmode_mgf.sql.

SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]

FROM Fact.OrderHistory AS fo

INNER JOIN Dimension.[Stock Item] AS si

ON fo.[Stock Item Key] = si.[Stock Item Key]

WHERE fo.[Lineage Key] = 9

Chapter 2 IntellIgent performanCe

39

AND si.[Lead Time Days] > 19

ORDER BY fo.[Order Key], fo.Description, si.[Lead Time Days]

OPTION (MAXDOP 1)

GO

This query is similar to the example from the underestimated

memory grant but with an ORDER BY to add in a sort operator.

The command shell script will use ostress to run this T-SQL query

with ten concurrent users, repeated ten times for each user. While

this script is running, use another SQL session to run the script

dm_exec_requests.sql to observe what type of waits queries

may encounter. You will notice a significant number of waits on

RESOURCE_SEMAPHORE. You can run this script repeatedly

while the overall ostress script is running. These waits explain the

long duration of the ostress script.

The total time of this ostress script execution should be over

40 seconds. When the script completes, your output should look

like this:

<datetime> [0x000046CC] OSTRESS exiting normally, elapsed

time: 00:00:43.833

<datetime> [0x000046CC] RsFx I/O completion thread ended.

 4. Execute a single query by using rowmode_mgf.sql and look at

the memory grant properties of the query plan in SQL Server

Management Studio. Use the same techniques as you did in the

previous part of this chapter to see the Properties of the SELECT

operator for the plan. Expand the MemoryGrantInfo section. The

results should look similar to Figure 2-9.

Chapter 2 IntellIgent performanCe

40

Here is a description of the key properties:

DesiredMemory – This is the ideal memory grant based on

cardinality estimates. This number is around ~56Gb. That is a

crazy amount of memory!

GrantedMemory – We can’t let this query have 56Gb of memory,

so we only grant it around 5Gb. That is still a significant amount of

memory for a grant.

MaxUsedMemory – This is the memory actually used for a grant

during the query which you can see is only 3Mb. This is definitely

an example of an excessive memory grant compared to what is

needed.

Figure 2-9. Properties for an excessive memory grant

Chapter 2 IntellIgent performanCe

41

 5. Now let’s turn on memory grant feedback by executing the

command script turn_on_mgf.cmd (which runs the T-SQL script

turn_on_mgf.sql).

 6. Let’s run the workload again by executing rowmode_mgf.
cmd. The execution should complete in half the time (typically

around 20 seconds). If you run dm_exec_requests.sql while the

ostress script is running, you will see a brief blip of RESOURCE_

SEMAPHORE waits, and then it will go away because memory

grant feedback has kicked in and reduced the size of the memory

grant more in line with the grant actually needed for the query.

Tip try running rowmode_mgf.cmd a second time. Is it faster? It actually might
run a bit faster now. this is because when you ran rowmode_mgf.cmd the first
time, the first executions of the query were happening very quickly, and the cached
plan had not been updated with the new grant. But as further executions ran, they
were using the new grant. When you ran rowmode_mgf.cmd the second time, all
queries were using the new memory grant.

 7. If you look at the SELECT operator properties for the memory

grant from rowmode_mgf.sql, you will see the memory grant

numbers line up closer to what should be used for the query.

 8. Restore the state of the database, table statistics, and resource

governor by running the scripts adjustrgback.cmd and restore_
orderhistory_state.cmd.

Note even with the feedback system, in some cases, the actual needed memory
grant can be very large. large enough that concurrent users will encounter
reSoUrCe_Semaphore waits to cause memory pressure within SQl Server.
In these cases, you can use resource governor to limit the amount of memory
for grants. See the documentation at https://docs.microsoft.com/en-
us/sql/t-sql/statements/create-workload-group-transact-sql

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql

42

on how to change this. In SQl Server 2019, this value can now be a float value
so values < 1% are valid. this could be important with systems with a large
amount of memory. In addition, you can set these values at the query level. See
the documentation at https://docs.microsoft.com/en-us/sql/t-sql/
queries/hints-transact-sql-query#arguments.

This system is well designed and could really help save you time on expensive tuning

for workloads requiring memory grants.

There are a few scenarios where memory grant feedback will not be enabled or will

not take effect:

• There is no spill detected, or 50% of the granted memory is used.

• There is a fluctuation where the memory grant is being reduced and

increased constantly.

 Table Variable Deferred Compilation
When you have been at Microsoft for 26 years, you meet a lot of people. There are so

many folks I’ve met who are smarter than me and, quite frankly, nicer than me. One of

those people is Jack Li. Jack worked in CSS Technical Support with me for many years in

our office in Irving, Texas. A few years back, Jack had an opportunity to work in the SQL

Engineering team after I had joined. One day he humbly (as he always does) asked me

whether I thought he should take the job. I didn’t hesitate. I told him he had all the skills

to be a top-notch developer and has a unique skill in SQL Server performance. Even

though CSS lost one of their best, our engineering team gained from it.

And the first project Jack worked on in his new job was to tackle the famous problem of

cardinality estimation for table variables. As long as table variables have been around, they

have the inherent problem that the cardinality estimation by the SQL Server optimizer

is always one row, no matter how many rows are populated into the table variable. The

honest truth is that the optimizer doesn’t know how many rows are actually in a table

variable, since they are defined and typically populated as part of a batch or stored

procedure. In fact, when Jack was in support, he blogged about this problem and trace flag

solution to help at https://blogs.msdn.microsoft.com/psssql/2014/08/11/having-

performance-issues-with-table-variables-sql-server-2012-sp2-can-help/.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query#arguments
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query#arguments
https://blogs.msdn.microsoft.com/psssql/2014/08/11/having-performance-issues-with-table-variables-sql-server-2012-sp2-can-help/
https://blogs.msdn.microsoft.com/psssql/2014/08/11/having-performance-issues-with-table-variables-sql-server-2012-sp2-can-help/

43

This means that, when Jack joined the team, he well understood this problem.

The leadership of the Query Processor team had an idea they wanted to implement in

SQL Server 2019 as part of Intelligent Query Processing called table variable deferred

compilation. They turned to Jack to build it.

As aptly described by the SQL Server documentation at https://docs.microsoft.

com/en-us/sql/relational-databases/performance/intelligent-query-

processing?#table-variable-deferred-compilation, “Table variable deferred

compilation defers compilation of a statement that references a table variable until the

first actual run of the statement. This deferred compilation behavior is the same as that

of temporary tables. This change results in the use of actual cardinality instead of the

original one-row guess.”

You can read examples of how to enable and disable table variable deferred

compilation, including database options and query hints, at https://docs.microsoft.

com/en-us/sql/t-sql/data-types/table-transact-sql?#table-variable-deferred-

compilation.

All the example scripts for this section can be found at ch2_intelligent_
performance\iqp\tablevariable.

Let’s walk through an example of this concept using a T-SQL notebook (Note: You can

also walk through a T-SQL script of this capability from the file iqp_tablevariable.sql).

 1. Open the T-SQL notebook with Azure Data Studio called

iqp_tablevariable.ipynb.

 2. Go through each step in the notebook to compare performance of

using table variables with and without deferred compilation.

 3. To compare query plans for these two scenarios, we can use a

feature called Query Store, which was introduced in SQL Server

2016. You may not have realized, but when you restored the

WideWorldImportersDW backup, the database already had Query

Store enabled.

 4. Here is how to use Query Store to compare the two queries: one

using table variable deferred compilation and one not.

 5. Open up SSMS, connect to the SQL Server where you ran the

notebook examples, and find the Top Resource Consuming

Queries report, as seen in Figure 2-10.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#table-variable-deferred-compilation
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#table-variable-deferred-compilation
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#table-variable-deferred-compilation
https://docs.microsoft.com/en-us/sql/t-sql/data-types/table-transact-sql?#table-variable-deferred-compilation
https://docs.microsoft.com/en-us/sql/t-sql/data-types/table-transact-sql?#table-variable-deferred-compilation
https://docs.microsoft.com/en-us/sql/t-sql/data-types/table-transact-sql?#table-variable-deferred-compilation

44

 6. The report in Figure 2-10 shows Query Store data after running

the previous example of row mode memory grant feedback and

the table variable examples in this section. Your view may look

slightly different depending on what you have run. Each bar in the

graph represents a unique query, so you need to find the query

associated with the table variable example. If you click each bar,

the query text is listed below. If you looked at the query in the

stored procedure for this example in the notebook, it has a query

like this:

SELECT top 10 oh.[Order Key], oh.[Order Date Key],oh.[Unit Price],

o.Quantity

FROM Fact.OrderHistoryExtended AS oh

INNER JOIN @Order AS o

ON o.[Order Key] = oh.[Order Key]

WHERE oh.[Unit Price] > 0.10

ORDER BY oh.[Unit Price] DESC

Figure 2-10. Query Store Top Resource Consuming Query report

Chapter 2 IntellIgent performanCe

45

 7. Click each bar in the graph until you see this query. Notice the

two dots on the right, which represent the two query plans for

this query. When you do, the output of the report should look like

Figure 2-11.

The “higher” the dot in the chart, the longer the average duration was

for that query plan. If you click each dot, you can see the query plan

visual change in the bottom window.

 8. Move your cursor over the top dot to see execution statistics of the

query plan. See statistics like the average duration like in Figure 2-12.

Figure 2-11. Query plans for table variable use

Chapter 2 IntellIgent performanCe

46

If you click the dot and look at the query plan in the bottom pane,

hover over the Table Scan operator. Notice the estimate of 1 as seen in

Figure 2-13.

Figure 2-12. Avg duration of the slower query plan

Chapter 2 IntellIgent performanCe

47

Notice the join of the table variable and the OrderHistoryExtended

table. It uses a Nested Loops Join. This makes sense for the optimizer

to make this choice since it thinks the table variable has only one

row. The problem is the table variable has ~3M rows! Using a Nested

Loops Join for that many rows would be very expensive and not make

sense.

 9. Now click the “lower” dot in the window showing query plans.

Move your mouse pointer over the dot to see the average duration.

It should look something like Figure 2-14.

Figure 2-13. Estimate of one row for a table variable

Chapter 2 IntellIgent performanCe

48

An average of 2.5 seconds is far better than 25 seconds.

Now look at the query plan. Move your mouse pointer to the Table

Scan operator. Notice the estimates are now accurate, and, since

a table scan is needed, using batch mode makes sense. This is an

example of multiple Intelligent Query Processing features being

used at the same time. The details of this operator should look like

Figure 2-15.

Figure 2-14. Average duration of faster query plan

Chapter 2 IntellIgent performanCe

49

Now look at the join of the table variable and the OrderHistory

Extended table. A hash join is now used, and a table scan of the

OrderHistoryExtended table is also used.

 Batch Mode on Rowstore
SQL Server 2012 added a nifty (what an understatement!), now famous capability

called Columnstore Indexes, through Project Apollo. See the original blog at https://

cloudblogs.microsoft.com/sqlserver/2011/08/04/columnstore-indexes-a-new-

feature- in-sql-server-known-as-project-apollo/. As a part of delivering this

feature, the query processor was enhanced to use batch mode processing of rows with

columnstore indexes. Up to this time, plan operators, like scans, execute and process

data based on a single row (and the entire row). Batch mode provides a new paradigm

to allow operators to process data based on batches of rows that are organized by

column and include vectors to identify qualify rows. This concept aligns very well with

columnstore indexes, which are organized by columns, not rows.

Figure 2-15. Better estimates for using a table variable

Chapter 2 IntellIgent performanCe

https://cloudblogs.microsoft.com/sqlserver/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo/
https://cloudblogs.microsoft.com/sqlserver/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo/
https://cloudblogs.microsoft.com/sqlserver/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo/

50

While columnstore indexes are very helpful for analytic query workloads where

scanning and processing large number of rows is common, columnstore indexes

may not fit your needs or may have restrictions preventing you from using them.

Furthermore, you may have queries that fit the “analytic workload” scenario. In

other words, you are not trying to query a single row or just a few rows (which many

consider the normal “OLTP scenario”). Any table or index that is not organized with a

columnstore index is aptly named a rowstore.

In SQL Server 2019, the query processor can automatically detect whether your

query qualifies for batch mode processing on a rowstore. Batch mode, again, may not

make sense for all queries, so a few basics must apply. For example, your query needs

to process a large number of rows and involve operations that require aggregates (think

count(∗) or sum(), joins, or sorts). In other words, batches make sense when there is

a flow of data between several operators of a large number of rows to execute a query.

What is large? We don’t document the number (because it may make sense to change

this in the future), but the threshold is generally 128K rows.

You can read all the details of batch mode on rowstore, including enabling and

disabling this capability, at https://docs.microsoft.com/en-us/sql/relational-

databases/performance/intelligent-query-processing?#batch-mode-on-rowstore.

This documentation article has many details on the background of this capability,

including which workloads will benefit, as well as limits and restrictions.

Tip Do you want to really go deep on this topic? then you will love the blog post
by SQl Community expert, Dima pilugin, who debugged the magical 128K number.
You can read this blog at www.queryprocessor.com/batch-mode-on-row-
store/.

Using the WideWorldImportersDW database that you restored and extended in the

beginning of this chapter, let’s look at an example where batch mode for rowstore can

accelerate query performance. Use the directory ch2_intelligent_performance\iqp\
batchmoderow for all script examples.

You can run the following queries from the provided example script iqp_
batchmoderow.sql or from the T-SQL notebook iqp_batchmoderow.ipynb.

Based on either method, let’s go step by step. For this section, I encourage you to try

the T-SQL notebook example. You can use iqp_batchmoderow.sql with any SQL tool,

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#batch-mode-on-rowstore
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?#batch-mode-on-rowstore
http://www.queryprocessor.com/batch-mode-on-row-store/
http://www.queryprocessor.com/batch-mode-on-row-store/

51

but you will need to analyze the query plans in a graphical tool like SSMS or Azure Data

Studio (or read the plan XML in detail).

Open Azure Data Studio connected to your SQL Server 2019 instance and open the

iqp_batchmoderow.ipynb notebook.

One of the beautiful aspects of notebooks is that the documentation for each step

and cells are in the notebook itself. And, the notebooks that were saved under the

GitHub repo for the book have all the answers already, so you know what to expect!

I’ve even put in image examples of query plan differences using Azure Data Studio

and what you should expect to see.

Read and follow each step of the notebook. You will see that Batch Mode on

Rowstore can have a significant performance difference, especially when dealing with

tables of large datasets. Additionally, Batch Mode now works for both columnstore

(implemented in SQL Server 2017) and rowstore, so you shouldn’t need to worry about

it. The query processor knows when to use it and how it can help boost performance of

your query.

For a sanity check, Figure 2-16 shows what the notebook for this example looks like

at the top when loaded.

Figure 2-16. A T-SQL notebook to demonstrate Batch Mode on Rowstore

Chapter 2 IntellIgent performanCe

52

 Scalar UDF Inlining
SQL Server has long had a concept called a user-defined function (UDF). The concept is

that you build some T-SQL code inside a FUNCTION that takes one or more parameters,

and this function returns a value. You could then use the function in any T-SQL SELECT

statement. It is a popular way for code reuse like a stored procedure, but a function has

the nice property of being part of the SELECT statement.

Note there are other uses for user-defined functions, which you can read more
about at https://docs.microsoft.com/en-us/sql/t-sql/statements/
create-function-transact-sql.

There are two types of user-defined functions:

• Scalar, which returns a single value

• Table-valued, which returns a result set in the form of a TABLE type

Despite the popularity and programming advantages of UDFs, their use can lead

to performance problems because of the limitations in how they are compiled and

integrated into the overall query plan. For example, any time a scalar UDF is used

to return a value as part of a list of columns, each row that is part of the table being

accessed is applied to the code in the UDF one row at a time. There are other limitations

in how the query processor treats UDFs that in some situations just makes them very

inefficient from a performance point of view.

Now comes along scalar UDF inlining. The query processor can take the code (a UDF

could have multiple T-SQL statements) and is able to integrate those statements with the

overall query, hence the term inlining.

You can read how to enable scalar UDF inlining by using dbcompat in the

documentation at https://docs.microsoft.com/en-us/sql/relational-databases/

user-defined-functions/scalar-udf-inlining?#enabling-scalar-udf-inlining.

You can read more about how to disable and enable scalar UDF inlining without

changing dbcompat at https://docs.microsoft.com/en-us/sql/relational-

databases/user-defined-functions/scalar-udf-inlining?#disabling-scalar-udf-

inlining-without-changing-the-compatibility-level.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?#enabling-scalar-udf-inlining
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?#enabling-scalar-udf-inlining
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?#disabling-scalar-udf-inlining-without-changing-the-compatibility-level
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?#disabling-scalar-udf-inlining-without-changing-the-compatibility-level
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?#disabling-scalar-udf-inlining-without-changing-the-compatibility-level

53

As with all of these Intelligent Query Processing scenarios, it is best to see an

example. Use the directory ch2_intelligent_performance\iqp\scalarinlineudf for all

script examples.

As with the other examples in this chapter, you have two ways to go through scalar

UDF inlining. You can use the iqp_scalarudfinlining.pynb T-SQL notebook or use a set

of T-SQL scripts.

Note this example is loosely based off of examples in the following
blog post by microsoft, https://blogs.msdn.microsoft.com/
sqlserverstorageengine/2018/11/07/introducing-scalar-udf-
inlining/, which also has some really nice details on the previous limits of
scalar UDf functions and how Intelligent Query processing has enabled significant
performance improvements.

For this section, let’s use the T-SQL scripts along with examining the Actual

Execution Plan in SSMS.

 1. Open up the T-SQL script get_customer_spend.sql.

The code for this script looks like the following:

USE WideWorldImportersDW

GO

SELECT c.[Customer Key], SUM(oh.[Total Including Tax]) as

total_spend

FROM [Fact].[OrderHistory] oh

JOIN [Dimension].[Customer] c

ON oh.[Customer Key] = c.[Customer Key]

GROUP BY c.[Customer Key]

ORDER BY total_spend DESC

GO

This script will find the total spend per customer from the

OrderHistory table. If you examine the output, you can see the

range of spend for customers ranging from 2M to over 7M. Based

on application requirements, we need to create a user-defined

function that would take as input a customer “key” and categorize

Chapter 2 IntellIgent performanCe

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/11/07/introducing-scalar-udf-inlining/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/11/07/introducing-scalar-udf-inlining/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/11/07/introducing-scalar-udf-inlining/

54

the customer into a classification based on their total spend.

Anything <= 3M will be ‘REGULAR’. Any customer spending

between 3M and 4.5M will be ‘GOLD’. Anyone spending over this

amount will be considered ‘PLATINUM’. Using a function has

the advantage that we can change the rules for what qualifies for

REGULAR, GOLD, or PLATINUM and not affect all other code

using this function.

 2. Open the T-SQL script iqp_scalarudfinlining.sql and follow each

step per the comments in the script.

 3. Execute the section in the script Step 1 which will create the scalar

UDF.

-- Step 1: Create a new function to get a customer category

based on their order spend

USE WideWorldImportersDW

GO

CREATE OR ALTER FUNCTION [Dimension].[customer_category]

(@CustomerKey INT)

RETURNS CHAR(10) AS

BEGIN

DECLARE @total_amount DECIMAL(18,2)

DECLARE @category CHAR(10)

SELECT @total_amount = SUM([Total Including Tax])

FROM [Fact].[OrderHistory]

WHERE [Customer Key] = @CustomerKey

IF @total_amount <= 3000000

 SET @category = 'REGULAR'

ELSE IF @total_amount < 4500000

 SET @category = 'GOLD'

ELSE

 SET @category = 'PLATINUM'

RETURN @category

END

GO

Chapter 2 IntellIgent performanCe

55

 4. Set up the dbcompat, clear the procedure, and warm the buffer

pool cache by executing Step 2.

-- Step 2: Set the database to db compat 150, clear the

procedure cache from previous executions, and make the

comparison fair by warming the cache

ALTER DATABASE WideWorldImportersDW

SET COMPATIBILITY_LEVEL = 150

GO

ALTER DATABASE SCOPED CONFIGURATION

CLEAR PROCEDURE_CACHE;

GO

SELECT COUNT(*) FROM [Fact].[OrderHistory]

GO

 5. Let’s run a query using the UDF but use a query hint to temporary

disable scalar UDF inlining. Enable Actual Execution Plan in

SSMS and run Step 3 in the sequence of the script.

-- Step 3: Run the query but disable the use of scalar

inlining using a query hint

SELECT [Customer Key], [Customer], [Dimension].[customer_

category]([Customer Key]) AS [Discount Price]

FROM [Dimension].[Customer]

ORDER BY [Customer Key]

OPTION (USE HINT('DISABLE_TSQL_SCALAR_UDF_INLINING'))

GO

The query takes at least 30+ seconds. The Actual Execution Plan

should look something like Figure 2-17.

Chapter 2 IntellIgent performanCe

56

If you move your mouse pointer over each operator, you will see it

affects 403 rows. That doesn’t seem like a lot of rows, so why does

it take so long? It is because what you can’t see is that the scalar

function accesses the OrderHistory table, which has 3M+ rows;

for each row in the Dimension.Customer table, it accesses all 3M

rows in the OrderHistory table. Not efficient.

 6. Run Step 4 in the script which will run the same query without the

hint, thus enabling scalar UDF inlining.

-- Step 4: Run it again but don't use the hint

SELECT [Customer Key], [Customer], [Dimension].[customer_category]

([Customer Key]) AS [Discount Price]

FROM [Dimension].[Customer]

ORDER BY [Customer Key]

GO

The query should have executed significantly faster. If you look at

the Actual Execution Plan, you will see how the operators required

to run the function are exposed in the plan, and new operators to

make accessing the OrderHistory table more efficient to support

the query in the function. The plan will look something like

Figure 2-18.

Figure 2-17. Execution plan for scalar UDF not inlined

Chapter 2 IntellIgent performanCe

57

You can see the power of scalar UDF inlining; now you should feel

more empowered to use scalar UDFs in your applications.

You can read more about scalar UDF inlining, including all the

requirements and restrictions, at https://docs.microsoft.com/

en-us/sql/relational-databases/user-defined-functions/

scalar-udf-inlining.

 Approximate Count Distinct
There are scenarios where you need to count the number of rows in any table. That’s

easy. Just use SELECT COUNT(∗) FROM <table> and you have your answer. But there

are also situations where you need to know the number of distinct values of a column

across all rows of a table. In this case, that is not that much harder. Just use SELECT

COUNT(DISTINCT <col>) FROM <table>. That seems easy enough. The only problem is

how the query processor must do work to figure out what are all the distinct values.

For SQL Server, this often requires the use of a Hash Match operator. This operator is

similar to a Hash Join, in that a “hash table” is used to build a list of all the distinct values

to count. If you remember, earlier in this chapter, a Hash Join requires a memory grant,

so all the issues with memory grants can come into play. Furthermore, it can take a great

deal of compute resources to use a hash table to count all the distinct values.

Is there a better way? Well, there is a different way that could be faster, at the cost of

a slightly less precise answer. The solution is a new T-SQL function called APPROX_
COUNT_DISTINCT(). This is a built-in function that will count distinct values of a

column based on a sample approximation. This is not an enhancement for the COUNT()

function. This is an entirely new function, which is why it does not require dbcompat = 150.

This function uses a concept called HyperLogLog (you can read more about this concept

Figure 2-18. Execution plan for scalar UDF with inlining

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining

58

at https://en.wikipedia.org/wiki/HyperLogLog). Using an approximation of the

count of distinct values comes with a 2% error rate on a 97% probability. This means if

you can get back an answer that you are pretty confident will be close to the real truth,

you can use this function.

Let’s see an example of using this function in comparison to using COUNT and

DISTINCT.

Use the directory ch2_intelligent_performance\iqp\approxcount for all

script examples. You can walk through the examples using a T-SQL notebook

iqp_approxcountdistinct.ipynb. I’ve also provided a T-SQL script called iqp_
approxcountdistinct.sql. Let’s use the T-SQL script and walk through step by step

examining the queries and execution plan differences.

 1. Open up the iqp_approxcountdistinct.sql script in SSMS.

 2. Run the Step 1 set of statements to clear the procedure cache,

change the dbcompat level to 130, and warm the buffer pool

(make it a fair fight).

-- Step 1: Clear the cache, set dbcompat to 130 just to prove it

works, and warm the cache

USE WideWorldImportersDW

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE

GO

ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 130

GO

SELECT COUNT(*) FROM Fact.OrderHistoryExtended

GO

You may wonder why I forced the dbcompat to 130 – to prove

to you that you don’t have to use the latest dbcompat of 150 to

take advantage of this capability. This is because the new T-SQL

function APPROX_COUNT_DISTINCT() just comes with the SQL

Server 2019 engine but doesn’t require a new dbcompat like other

Intelligent Query Processing features.

Chapter 2 IntellIgent performanCe

https://en.wikipedia.org/wiki/HyperLogLog

59

 3. Enable Actual Execution Plan in SSMS and run Step 2 as follows:

-- Step 2: Use COUNT and DISTINCT first

SELECT COUNT(DISTINCT [WWI Order ID])

FROM [Fact].[OrderHistoryExtended]

GO

This won’t take that long to run, depending on how fast your

computer is – maybe 4 to 5 seconds. Your results should be

29620736. Five seconds to count the distinct values is not too bad.

However, what if this table had 100 million rows or more? That is

not that out of the ordinary in large databases.

If you look at the execution plan, you will see something like

Figure 2-19.

Notice the Hash Match operator. If you move your mouse over

that operator, you will see it uses Row Mode and has to process the

entire 29M rows in the hash operator.

 4. Now run Step 3 from the script as follows:

-- Step 3: Use the new APPROX_COUNT_DISTINCT function to compare

values and performance

-- We should be no more than 2% off the actual distinct value

(97% probability)

SELECT APPROX_COUNT_DISTINCT([WWI Order ID])

FROM [Fact].[OrderHistoryExtended]

GO

Figure 2-19. Query plan for COUNT and DISTINCT

Chapter 2 IntellIgent performanCe

60

This time, the query should only take a second or two – about 50% faster

than before. Again, this could be significant on very large datasets.

If you look at the execution plan, it looks similar but with less

operators, as seen in Figure 2-20.

Notice the Hash Match operator doesn’t have a “thick line” as

output because the approximation operation is applied with this

operator yielding only one row to the rest of the plan.

As you can see, the use of approximation for counting distinct

values can provide better performance provided you need only a

“close enough” value.

 5. Restore dbcompat to 150 by executing Step 4 in the script.

-- Step 4: Restore database compatibility level

ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 150

GO

You can read more about the APPROX_COUNT_DISTINCT

function at https://docs.microsoft.com/en-us/sql/t-sql/

functions/approx-count-distinct-transact-sql.

Intelligent Query Processing is all about a smarter query processor

meeting the needs of your query workloads without making major

application changes. Most of the functionality is available by

simply changing your database compatibility level to 150.

I look forward to more enhancements in the future as the query

processor takes on new scenarios powered by your feedback.

Figure 2-20. Query plan for APPROX_COUNT_DISTINCT

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql

61

 Lightweight Query Profiling
When I joined the SQL Server engineering team in 2016, I had spent a lifetime in

technical support working on some of the most challenging problems ever seen by SQL

Server customers. And no set of problems challenged me and others in CSS more than

performance problems. Performance problems in SQL Server are tough – they are vague

and time critical, and rarely do you have the information you need, when you need it.

SQL Server has amazing diagnostics for performance problems, including Dynamic

Management Views (DMVs) and Extended Events. We had built DMVs to be a great

mechanism to see what is running at any point in time. This is a great way to find out

about active sessions and what queries they are running. But often, to solve a complex

performance problem, you need details of the query plan.

So, the gap was going deeper. You can see what is running, but you can’t dive deep

into a query plan for an active query. Furthermore, if you need to find out the details

of a query plan for a query that has completed, you need to use what can be heavy

diagnostics in the form of Extended Events. Or you need to find the exact query and run

it offline (that is away from the application) in a separate tool and turn on query plan

diagnostics to get all the details.

As I joined the engineering team, I discovered there was work in progress to solve

these types of problems by the famous Tiger Team. Pedro Lopes, Alexey Eksarevskiy, and

Jay Choe were already working on something called the query profiling infrastructure.

If you ask any developer about how to trace their code, they will use the term profiling.

So how do you profile a query with SQL Server? It usually comes down to getting details

about the query execution plan. It is all about gaining these insights while a query is

running and obtaining the actual query execution plan when a query has completed.

This team had built the concept already of live query stats. (You can read more

about this topic at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/live-query-statistics.) It was logical they could do more. As Alexey

tells it, “I wanted this feature in the product as early as in 2009… spending so much time

staring at the plans then, I wished they would come alive to easier see what’s going on.

So, the idea of live query stats. Those two perfectly complement each other, though of

course, lightweight profiling allows to do much more.”

In fact, what the team had built was a query execution statistics profile infrastructure,

or standard profiling. This capability gives you actual execution plan statistics at the

operator level for rows, CPU, and I/O. This is key information to profile a query, but there

is a catch. You must enable this before running the query or enable Extended Events

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/live-query-statistics
https://docs.microsoft.com/en-us/sql/relational-databases/performance/live-query-statistics

62

for all queries which can be impactful to production workloads. You can read more

about standard profiling at https://docs.microsoft.com/en-us/sql/relational-

databases/performance/query-profiling-infrastructure?#the-standard-query-

execution-statistics-profiling-infrastructure.

I love working with colleagues like Pedro, Alexey, and Jay. They are always asking,

“Can we make this better?” And of course, they are all super smart. They know from

experience how painful it can be to use standard profiling. They created the lightweight

query execution statistics profiling infrastructure, or lightweight profiling. The concept

is to get profiling for queries without the overhead required from standard profiling.

However, to make it “light,” we had to take out collecting CPU statistics so you still

get “per operator” rowcount and I/O statistics. You can read more about lightweight

profiling at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/query-profiling-infrastructure?#lwp.

This is great, but… you still need to turn this on to make it work. How do you know

when to enable lightweight profiling? Well, often you don’t. No one does. The true

answer is to just have lightweight profiling running by default. And that is what SQL

Server 2019 provides. Pedro calls this, “Performance insights anytime and anywhere.” Is

there a catch? Yes. You only get rowcount information from actively running queries, but

often that is enough to help look at performance problems. But there is a bonus. We’ve

added the ability to get the last actual execution plan for most cached queries.

Let’s look at two scenarios so you can understand the benefit of having lightweight

query profiling on by default in SQL Server 2019.

 Prerequisites for Using the Examples for Lightweight
Query Profiling
First, you need to perform some setup to use examples for the two scenarios. For

examples in this chapter, you will use the WideWorldImporters example database (you

can read more about this database and its schema at https://docs.microsoft.com/

en- us/sql/samples/wide-world-importers-oltp-database-catalog).

These examples will work on SQL Server 2019 on Windows, Linux, and Containers.

Given the large dataset, SQL Server is going to need at least 12Gb RAM to properly see

performance differences. In addition, some of the query examples use parallelism, so

installing SQL Server on a multiprocessor system is preferred.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#the-standard-query-execution-statistics-profiling-infrastructure
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#the-standard-query-execution-statistics-profiling-infrastructure
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#the-standard-query-execution-statistics-profiling-infrastructure
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#lwp
https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-oltp-database-catalog
https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-oltp-database-catalog

63

All the scripts used for this chapter can be found on the GitHub repo under the

ch2_intelligent_performance\lwp directory.

In order to use the examples in this chapter, you need to go through the following

steps:

 1. Download the WideWorldImporters database backup from

https://github.com/Microsoft/sql-server-samples/

releases/download/wide-world- importers-v1.0/

WideWorldImporters-Full.bak.

 2. Restore this database to your SQL Server 2019 instance. You can

use the provided restorewwi.sql script. You may need to change

the directory paths for the location of your backup and where you

will restore the database files.

 3. In order to run some of the examples, you will need larger

tables than what is installed by default in WideWorldImporters.

Therefore, run the script extendwwi.sql to create a larger table.

Extending this database will increase its size including the

transaction log to about 5Gb overall. One of these tables is called

Sales.InvoiceLinesExtended. Based on the InvoiceLines table,

we will make this table much larger and not use a columnstore

index.

 Should I Kill an Active Query?
Consider this scenario. You are told SQL Server is being consumed by a query that

is taking up a large amount of CPU on the server. You use a DMV like sys.dm_exec_
requests to identify the query and the user. The user is your Vice President running a

report, and the query is based on a cached plan. You use the common DMVs called

sys.dm_exec_requests and sys.dm_exec_query_stats to see which query is running.

How do you find out whether this query will finish anytime soon or should be killed and

corrected?

Let’s use the following example to see this behavior and how built-in, on by default,

Lightweight Query Profiling can help give you the answer.

Chapter 2 IntellIgent performanCe

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak

64

You can run these T-SQL scripts in any tool that can connect to SQL Server, but the

best experience is seeing all the details in SQL Server Management Studio (SSMS).

 1. Open the T-SQL script mysmartquery.sql (maybe a sign it is not

so smart) and execute the batch.

 2. In a new connection, open up the T-SQL script show_active_
queries.sql.

 3. Run the batch from Step 1 in the script as follows:

-- Step 1: Only show requests with active queries except for

this one

SELECT er.session_id, er.command, er.status, er.wait_type,

er.cpu_time, er.logical_reads, eqsx.query_plan, t.text

FROM sys.dm_exec_requests er

CROSS APPLY sys.dm_exec_query_statistics_xml(er.session_id) eqsx

CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) t

WHERE er.session_id <> @@SPID

GO

This code finds any active queries (other than the current

connection). If you run this query over and over, you will see cpu

and logical_reads values increasing and a wait_type = ASYNC_

NETWORK_IO. This pattern indicates two things:

• The query is chewing up a bunch of CPU and likely scanning a

big table (logical_reads high and increasing).

• There are a great deal of results being sent back to the client

(e.g., ASYNC_NETWORK_IO wait).

In my experience, this is not a “good” query and is one where an

opportunity to “tune” exists. But the question is, should you kill it

now, or is it “almost done”?

Chapter 2 IntellIgent performanCe

65

 4. What would be nice to know as the query is active is to see the

progress of query plan operators (like Live Query Statistics). Run

Step 2 from the script as follows:

-- Step 2: What does the plan profile look like for the active

query

SELECT session_id, physical_operator_name, node_id, thread_id,

row_count, estimate_row_count

FROM sys.dm_exec_query_profiles

WHERE session_id <> @@SPID

ORDER BY session_id, node_id DESC

GO

The results should look something like Figure 2-21.

Notice the huge estimate_row_count for the Nested Loops and

Table Spool operators. And notice the row_count (this is the

number of rows currently processed) is far short of the estimate. It

could be the estimate is inaccurate, but, if it is right, this query is

far from completing. Run this query again to see the progression

of the row_count for these operators.

Note When lightweight query profiling is on by default in SQl Server 2019,
row_count is the only statistics captured. It can be expensive to capture statistics
like CpU and I/o by default. You can capture these with standard profiling.

Figure 2-21. Query plan profile for an active query

Chapter 2 IntellIgent performanCe

66

 5. Let’s look at the query plan itself. This is the estimated plan, but

it might give a clue on these really large estimate row counts. Run

Step 3 in the script as follows:

-- Step 3: Go back and look at the plan and query text for a clue

SELECT er.session_id, er.command, er.status, er.wait_type,

er.cpu_time, er.logical_reads, eqsx.query_plan, t.text

FROM sys.dm_exec_requests er

CROSS APPLY sys.dm_exec_query_statistics_xml(er.session_id) eqsx

CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) t

WHERE er.session_id <> @@SPID

GO

In SSMS, click the query_plan value, which should open up a new

window with a visual query plan.

The plan should look similar to Figure 2-22.

Notice the icon symbol with an X on the Nested Loops Join. If you

move your mouse pointer over the Nested Loops Join operator, it

will look like Figure 2-23.

Figure 2-22. Query plan of active query

Chapter 2 IntellIgent performanCe

67

What does “No Join Predicate” mean? It means there is a major

problem with the JOIN operator in the query. It means there really

is no “equi” join.

In the Step 3 results, look at the value of the text column of the

diagnostics. It looks like this:

SELECT si.CustomerID, sil.InvoiceID, sil.LineProfit

FROM Sales.Invoices si

INNER JOIN Sales.InvoiceLines sil

ON si.InvoiceID = si.InvoiceID

OPTION (MAXDOP 1)

Figure 2-23. Nested Loops Join warning

Chapter 2 IntellIgent performanCe

68

Since the JOIN operator has a problem, let’s focus on the INNER

JOIN clause:

INNER JOIN Sales.InvoiceLines sil

ON si.InvoiceID = si.InvoiceID

You will see that this query simply joins a table to itself. A simple

typo of si vs. sil is the problem. This query will almost never finish.

It can be killed or fixed, and your Vice President will be much

happier.

 6. Cancel the query from mysmartquery.sql if it is still running.

Lightweight query profiling also includes extended events and query hint support to

enable it. You can read more about how to enable these, plus how to disable the feature

per database, at https://docs.microsoft.com/en-us/sql/relational-databases/

performance/query-profiling-infrastructure?#lwp.

 I Can’t Catch It
Consider another scenario. You have observed an increase in CPU utilization of SQL

Server and don’t believe it should be occurring (because it is a change from the normal

behavior). You can see from a DMV like sys.dm_exec_query_stats where queries are

taking the most CPU, but you only get the estimated plan through that DMV. You could

try to run the query yourself offline and observe the actual plan, but you want to see the

actual plan from the real query from the application to make sure you know you have

the right details. This query runs all the time by many users but only takes a few seconds

(hence the steady higher CPU all the time) so it is hard to use the new tools to capture

a query in progress. You could turn on standard query profiling, but you have found

that may be too heavy and cause application issues during the crucial time the query is

executed.

With SQL Server 2019 comes a new capability with Lightweight Query Profiling. A

new Dynamic Management Function (DMF) called sys.dm_exec_query_plan_stats

now comes with SQL Server 2019. The idea is to capture the last actual execution plan

of a cached query. You can read all the details about using this DMF at https://docs.

microsoft.com/en-us/sql/relational-databases/system-dynamic-management-

views/sys-dm-exec-query-plan-stats-transact-sql.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#lwp
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql

69

Let’s see the usage of this DMF to solve a problem of finding the actual execution

plan of a query that is run all the time without turning on any special diagnostics,

knobs, and flags or running the query manually. The only catch here is that this part of

Lightweight Query Profiling does require you to enable it for each database where you

want this capability. You can do this with the following T-SQL statement which will be

used in the example later:

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS = ON

All the scripts for this example can be found also in the ch2_intelligent_
performance\lwp directory. To make it easier to see the visual execution plans, I

recommend you run this example using SSMS.

 1. Open up the T-SQL script mysmartquery_top.sql.

 2. Set up the example by running Step 1 in the script as follows:

-- Step 1: Clear the procedure cache and set dbcompat to 130 to

prove you don't need 150 for last plan stats

USE WideWorldImporters

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE

GO

ALTER DATABASE [WideWorldImporters] SET COMPATIBILITY_LEVEL = 130

GO

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS = ON

GO

SELECT COUNT(*) FROM Sales.InvoiceLinesExtended

GO

The dbcompat is set to 130 just to prove you don’t need dbcompat

of 150 for this feature.

 3. Now let’s simulate statistics are incorrect by running Step 2 in the

script as follows:

-- Step 2: Simulate a statistic out of date to a really low value

UPDATE STATISTICS Sales.InvoiceLinesExtended

WITH ROWCOUNT = 1

GO

Chapter 2 IntellIgent performanCe

70

 4. Now run the query. It should only take a few seconds, but it is all

CPU. Run Step 3 to execute the query as follows:

Note You don’t need to select actual execution plan as we are simulating how
you will look at plans separately from the application.

-- Step 3: Run a query. This should only take a few seconds

but it is all CPU

SELECT si.InvoiceID, sil.StockItemID

FROM Sales.InvoiceLinesExtended sil

JOIN Sales.Invoices si

ON si.InvoiceID = sil.InvoiceID

AND sil.StockItemID >= 225

GO

 5. Now let’s look at the estimated query plan for this query using

standard DMVs. Run Step 4 to see the estimated plan. Remember

this allows you to see the plan for the query from a different

connection.

-- Step 4: What does the estimated plan say? Looks like the

right plan based on estimates

SELECT st.text, cp.plan_handle, qp.query_plan

FROM sys.dm_exec_cached_plans AS cp

CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp

WHERE qp.dbid = db_id('WideWorldImporters')

GO

From the output you want to find the row where the text column

values start with “-- Step 3.” Click the query_plan value for that

row. You should see a plan that looks like Figure 2-24.

Chapter 2 IntellIgent performanCe

71

Notice how thin the line is coming out of the Clustered

Index Scan. That is because the optimizer estimates the

InvoiceLinesExtended table has one row. But this is only the

estimated plan, so you don’t know if this is wrong (you just

simulated the estimated rows being wrong but pretend you didn’t

know this).

 6. Now let’s use the new DMV to get the last actual plan for this

query and see if the estimated rows are incorrect. Run Step 5 as

follows:

-- Step 5: What does the last actual plan say? Ooops. Actual vs

Estimates way off

SELECT st.text, cp.plan_handle, qps.query_plan, qps.*

FROM sys.dm_exec_cached_plans AS cp

CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st

CROSS APPLY sys.dm_exec_query_plan_stats(cp.plan_handle) AS qps

WHERE qps.dbid = db_id('WideWorldImporters')

GO

In this example, we are using dm_exec_query_plan_stats instead

of dm_exec_query_plan. Find the query again in the list and click

the query_plan value. The plan should look like

Figure 2- 25.

Figure 2-24. Estimated query plan for problem query

Chapter 2 IntellIgent performanCe

72

Notice the “thicker” lines. That is because the actual number

of rows to process is much larger than the estimates. This is a

problem and explains why the optimizer chose to use a Nested

Loops Join and make the InvoiceLinesExtended the “outer” table

(because it thought there was only one row).

 7. Update the statistics to correct them, so you can see what the

query really should be doing. Run Step 6 in the script as follows:

-- Step 6: Update stats to the correct value and clear proc cache

UPDATE STATISTICS Sales.InvoiceLinesExtended

WITH ROWCOUNT = 3652240

GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE

GO

 8. Run the query again using Step 7 in the script and let’s see the

new actual plan. You will notice it runs a bit faster:

-- Step 7: Run the query again. Faster

SELECT si.InvoiceID, sil.StockItemID

FROM Sales.InvoiceLinesExtended sil

Figure 2-25. Actual query plan for problem query

Chapter 2 IntellIgent performanCe

73

JOIN Sales.Invoices si

ON si.InvoiceID = sil.InvoiceID

AND sil.StockItemID >= 225

GO

 9. Run Step 8 to see if the new actual plan is better.

-- Step 8: What does the actual plan look like now? Different

because stats are up to date

SELECT st.text, cp.plan_handle, qps.query_plan

FROM sys.dm_exec_cached_plans AS cp

CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st

CROSS APPLY sys.dm_exec_query_plan_stats(cp.plan_handle) AS qps

WHERE qps.dbid = db_id('WideWorldImporters')

GO

If you click the query_plan for the row that matches the text for

“-- Step 7: Run the query again…”, you should now see a plan

that looks like Figure 2-26.

The plan is radically different. You can see that, in this case,

the optimizer builds a plan to perform an index seek on the

InvoiceLinesExtended table and then join to “itself” with a Key

Lookup. For the query, based on available indexes, that is a far

more efficient way to get the results to join to the other tables and

filter the final results.

Figure 2-26. Actual plan for better query

Chapter 2 IntellIgent performanCe

74

Now with the ability to see the actual execution plan at any time

vs. having to turn on special flags that may be expensive or run

the query offline, this becomes a powerful part of your toolkit for

query performance tuning and troubleshooting.

Lightweight query profiling is just plain cool! If you have spent

anytime supporting production SQL Servers for performance

issues, having built-in diagnostics available anytime, anywhere is

a breath of fresh air.

 In-Memory Database
In SQL Server 2014, we introduced a feature called In-Memory OLTP, which centered

on the concept of memory-optimized tables. For this feature, the entire table is stored in

memory, but it is the optimized (read: latch-free) access that makes it special. We made

significant enhancements to In-Memory OLTP in SQL Server 2016. You can read more

details about that feature at https://docs.microsoft.com/en-us/sql/relational-

databases/in-memory-oltp.

As we were working through the new features for SQL Server 2019, Slava Oks, Pam

Lahoud, Brian Carrig, Argenis Fernandez, and others from the engineering team met

together and collectively decided to call a new suite of features In-Memory Database to

add to the capabilities of In-Memory OLTP.

Together, the following features have become the In-Memory Database feature suite:

• In-Memory OLTP

• Memory-Optimized TempDB Metadata

• Hybrid Buffer Pool

• Persistent Memory Support

You can see the full collection of this feature suite at https://docs.microsoft.

com/en-us/sql/relational-databases/in-memory-database?view=sqlallproducts-

allversions.

In this section, we will cover all of these new capabilities except for In- Memory OLTP

(which is not new to SQL Server 2019).

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-database?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-database?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-database?view=sqlallproducts-allversions

75

 Memory-Optimized TempDB Metadata
Even since I’ve been involved with SQL Server, the concurrency performance of

workloads using temporary tables has been an issue. This has led for almost every SQL

Server administrator to configure tempdb to use multiple files. You can read more about

the history of this adventure with these resources:

• Inside TempDB talk by Bob Ward from the 2017 PASS Summit

(https://www.youtube.com/watch?v=SvseGMobe2w)

• Paul Randal’s blog on adding tempdb files (https://www.sqlskills.

com/blogs/paul/correctly-adding-data-files-tempdb/)

One aspect to using tempdb files that most SQL professionals don’t realize (because

it is just common culture now) is that you are creating a partitioning scheme for the

SQL Server engine to access allocation pages such as PFS, GAM, and SGAM pages. This

type of scheme is useful because a workload using temporary tables results in a heavy

create table, allocate pages, drop table cycle. This creates contention on these system

allocation pages in the form of latches. By creating multiple files, you are spreading out

the contention for latches on these pages, which increases performance for concurrent

tempdb workloads.

After creating multiple files (starting with SQL Server 2016, the setup program can do

this for you automatically, or you can configure it manually), you may see with a heavier

concurrent tempdb-based workload more page latch waits, but these waits are on pages

belonging to objects you may not recognize – objects like sysschobjs. These page latch

waits are for system table pages in tempdb. When you create and drop tables at a rapid

pace, SQL Server must perform internal read/write operations on pages for system tables

to keep the metadata of tables consistent. These operations result in page latch pressure

across users. In the past when customers would run into high page latch contention

on system tables and contact me in support, I would answer, “Unfortunately you must

reduce the load of tempdb usage to avoid this problem.”

Pam Lahoud describes this problem very well in her blog at https://blogs.msdn.

microsoft.com/sql_server_team/tempdb-files-and-trace-flags-and-updates-oh- my/.

Along comes a solution for SQL Server 2019, memory-optimized tempdb metadata.

Memory-optimized tables (remember the famous project Hekaton) are latch-free by

their nature, and the data for these tables all exist in memory. If the memory-optimized

tables are “schema only,” they don’t even have durability constraints. This is a perfect

Chapter 2 IntellIgent performanCe

https://www.youtube.com/watch?v=SvseGMobe2w
https://www.sqlskills.com/blogs/paul/correctly-adding-data-files-tempdb/
https://www.sqlskills.com/blogs/paul/correctly-adding-data-files-tempdb/
https://blogs.msdn.microsoft.com/sql_server_team/tempdb-files-and-trace-flags-and-updates-oh-my/
https://blogs.msdn.microsoft.com/sql_server_team/tempdb-files-and-trace-flags-and-updates-oh-my/

76

platform for tempdb system tables. Since tempdb is recreated with each server restart,

the system tables don’t need to be durable. And since the only data being stored in

memory-optimized tables is metadata (not your data in your temporary tables), the

memory consumption for these should be small. Ravinder Vuppula, the lead developer

for this project, called it making tempdb system tables Hekatonized.

Tempdb metadata does not use memory-optimized tables by default when you

install SQL Server. You must run the following T-SQL command to enable this capability:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_METADATA = ON

You can see me demo this feature at the 2019 SQLBits keynote at https://sqlbits.

com/Sessions/Event18/Keynote. Brent Ozar on his blog said about this feature, after

seeing it demonstrated at the 2018 PASS Summit keynote, “…that TempDB improvement

is just sweet. That’s the kind of real-world improvement that will make a difference.

People have been struggling with TempDB contention issues and latch contention issues

they can’t solve.”

But you should try this yourself to see it in action. Let’s look at an example of how

memory-optimized tempdb metadata can improve the concurrency of applications

using temporary tables. All the scripts for this example can be found in the

ch2_intelligent_performance\inmem\tempdb directory. This example is a little

more complicated to run and requires coordination or simulation of concurrent users.

Therefore, you will need the free stress tool called ostress, which can be downloaded

at www.microsoft.com/en-us/download/details.aspx?id=4511. This tool currently

requires a Windows client computer. This example will still work with a SQL Server

on Linux installation; you will just need a Windows client to drive a concurrent user

workload with ostress.

In addition, I set up my SQL Server on a virtual machine with eight logical CPUs.

When I ran setup for SQL Server, it automatically created eight tempdb data files.

I recommend on your system you make sure you have at least eight tempdb data files

if you have eight or more logical CPUs. Learn more about how to do this with this

technical support article: https://support.microsoft.com/en-us/help/2154845/

recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d.

 1. Run the script disableopttempdb.cmd to disable memory-

optimized tempdb metadata. It is off by default, but run this script

in case you had this enabled at one point. You need to run this

script on the server where SQL Server is installed (or use another

Chapter 2 IntellIgent performanCe

https://sqlbits.com/Sessions/Event18/Keynote
https://sqlbits.com/Sessions/Event18/Keynote
https://www.microsoft.com/en-us/download/details.aspx?id=4511
https://support.microsoft.com/en-us/help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d
https://support.microsoft.com/en-us/help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d

77

technique to restart SQL Server remotely). This script assumes

a sysadmin login and a server name. You can modify this to use

integrated authentication by changing -Usa to -E and don’t forget

to replace the name of your server for the -S parameter:

sqlcmd -Usa -idisableopttempdb.sql -Sbwsql2019

net stop mssqlserver

net start mssqlserver

As you can see, this script instructs Windows Server to restart the

SQL Service. You can modify your own script on Linux to use a

command like sudo systemctl restart mssql-server to restart

SQL Server.

disableopttempdb.sql contains the following T-SQL statement:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_

METADATA = OFF

GO

 2. Run the T-SQL script tempstress_ddl.sql to create a database and

stored procedure that does a simple create of a temporary table:

DROP DATABASE IF EXISTS DallasMavericks

GO

CREATE DATABASE DallasMavericks

GO

USE DallasMavericks

GO

CREATE OR ALTER PROCEDURE letsgomavs

AS

CREATE TABLE #gomavs (col1 INT)

GO

You can see that the stored procedure doesn’t really do anything

with the temporary table. This is to show the minimal amount

of workload that can pressure concurrency of temporary table

metadata (since any exit of the stored procedure automatically

drops the temporary table).

Chapter 2 IntellIgent performanCe

78

 3. You are now ready to run a concurrent tempdb workload using

ostress. Use the script tempstress.cmd to execute this ostress

workload:

ostress -Usa -Q"exec letsgomavs" -n50 -r10000

-dDallasMavericks -Sbwsql2019

You may need to adjust a few of these parameters in the script

including using -E instead of -Usa for integrated authentication

on Windows. You may also want to change the name of the server

with -S. The -n50 parameter is the number of users to run the

workload, and -r10000 is the number of iterations for each user.

Notice the use of -Q to run the stored procedure directly, a tip I

learned while working on early versions of this demo. Using the -Q

option for ostress to directly run a query is faster than specifying a

script with -i.

You will get prompted for the password if you use -Usa, and then

it is off to the races. Depending on how fast your computer is, this

workload will take a few minutes.

 4. While this is running, in a new connection, open up the T-SQL

script pageinfo.sql:

USE tempdb

GO

SELECT object_name(page_info.object_id), page_info.*

FROM sys.dm_exec_requests AS d

 CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r

 CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id,

r.page_id,'DETAILED')

 AS page_info

GO

This script uses new functionality in SQL Server 2019 to crack page

information from a resource as found in sys.dm_exec_requests

and to dump out in columnar format the fields of a page header.

Chapter 2 IntellIgent performanCe

79

Why would you want to run this? This is because when you

experience latch waits for tempdb, you are provided a resource

in the form of a <dbid>:<fileid>:<pageid>. Prior to this function

being exposed, you would need to manually use DBCC PAGE

to find out what object the page belongs to for the latch wait, a

command that is not officially supported. This technique now

gives you that official support to figure out the page in a page latch

wait scenario.

Your results while the query is running in the previous step should

look similar to Figure 2-27.

As described earlier, sysschobjs is a system table and a common contention

point as temporary tables are being created and dropped.

 5. Now let’s enable memory-optimized tempdb metadata. Run the

script optimizetempdb.cmd on the server where SQL Server is

installed. This script runs the following so you can use alternative

methods to enable the feature and restart SQL Server:

sqlcmd -Usa -ioptimizetempdb.sql -Sbwsql2019

net stop mssqlserver

net start mssqlserver

Figure 2-27. Page latch waits for system tables in tempdb

Chapter 2 IntellIgent performanCe

80

optimizetempdb.sql contains the following T-SQL statement:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_

METADATA = ON

GO

 6. Confirm that memory-optimized tempdb metadata is enabled

by examining the SQL Server ERRORLOG file. You should see a

statement in the ERRORLOG like this:

Tempdb started with memory-optimized metadata.

 7. Now run the workload again using tempstress.cmd. This time it

will only take around 30+ seconds to run the same workload, with

no changes to the application.

 8. Run the script pageinfo.sql again to see if any page latch waits are

occurring. Your results should be 0 rows!

 9. While this is running, in another session, run the T-SQL script

find_memoptimized_tables.sql. Your results should look

something like Figure 2-28.

You can see all the system tables that are memory optimized (your result could even

include more as this feature is being enhanced). Notice the heavy changes to sysschobjs,

but that is not the only system table involved.

Figure 2-28. Tempdb system tables as memory optimized

Chapter 2 IntellIgent performanCe

81

You may wonder how much extra memory is consumed by using this feature. While

you still have this environment running, run a query against the DMV sys.dm_os_
memory_clerks. You will see a row where type = MEMORYCLERK_XTP and name =

DB_ID_2. The pages_kb column is roughly the amount of memory memory-optimized

tempdb metadata consumes which, based on this example, is around 200Mb.

At this point, you are free to leave this option enabled for your server, but if you want

to turn it off, use the script disableopttempdb.cmd.
You can see the huge benefits of this feature built into the engine. You only turn on a

server configuration option, restart SQL Server, and you are ready to go.

If you access to catalog views in tempdb, you will see there are a few restrictions

when using memory-optimized tempdb metadata. You can read about these restrictions

and all the details of this capability at https://docs.microsoft.com/en-us/sql/

relational-databases/databases/tempdb-database?view=sqlallproducts-

allversions#memory-optimized-tempdb-metadata.

 Hybrid Buffer Pool
Persistent memory devices have been around for a few years but are now starting to

become more popular. The concept is memory-based hardware that have persistence

through a power source. Think the speed of RAM but any data stored is guaranteed to

survive a power restart. One of the more popular persistent memory offerings is by Intel,

called Optane (www.intel.com/content/www/us/en/architecture-and-technology/

optane-technology/optane-for-data-centers.html).

Our SQL Server engineering team is always looking to find ways to optimize access

to data, and, with persistent memory, there are several opportunities. In fact, SQL Server

2016 included a feature called “tail of the log caching” based on persistent memory

(see Kevin Farlee’s blog post on the topic https://blogs.msdn.microsoft.com/

sqlserverstorageengine/2016/12/02/transaction-commit-latency-acceleration-

using- storage-class-memory-in-windows-server-2016sql-server-2016-sp1/).

Since persistent memory is in fact memory, SQL Server can access any data stored

on a persistent memory device like it is really memory. This means SQL Server can find

creative ways to bypass kernel code for I/O processing when accessing data on persistent

memory devices.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sqlallproducts-allversions#memory-optimized-tempdb-metadata
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sqlallproducts-allversions#memory-optimized-tempdb-metadata
https://docs.microsoft.com/en-us/sql/relational-databases/databases/tempdb-database?view=sqlallproducts-allversions#memory-optimized-tempdb-metadata
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/12/02/transaction-commit-latency-acceleration-using-storage-class-memory-in-windows-server-2016sql-server-2016-sp1/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/12/02/transaction-commit-latency-acceleration-using-storage-class-memory-in-windows-server-2016sql-server-2016-sp1/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/12/02/transaction-commit-latency-acceleration-using-storage-class-memory-in-windows-server-2016sql-server-2016-sp1/

82

One such new capability is Hybrid Buffer Pool. The concept is that if you place your

database data files on a persistent memory device, SQL Server can simply access pages

on the data file from this device without having to copy data from the data file into a

buffer pool page. Hybrid buffer pool uses memory-mapped kernel calls to make this a

reality. If a database page is modified, it must then be copied into the buffer pool and

then eventually written back to the persistent memory device.

Performance results vary on the benefits of using hybrid buffer pool, but you can

typically expect some boost from this technology, especially on read-heavy workloads.

For SQL Server, provided you have placed one or more database files on a persistent

memory device, you can enable Hybrid Buffer Pool for all databases for SQL Server with

the T-SQL statement:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED HYBRID_BUFFER_POOL = ON

Note When you enable hybrid buffer pool for all databases, you must restart SQl
Server.

You can enable hybrid buffer pool for a specific database with a T-SQL statement like

this (which does not require a server restart):

ALTER DATABASE <databaseName> SET MEMORY_OPTIMIZED = ON

To read more about how to enable your devices for persistent memory for databases,

how to disable hybrid buffer pool, and best practices for using hybrid buffer pool,

consult the documentation at https://docs.microsoft.com/en-us/sql/database-

engine/configure-windows/hybrid-buffer-pool.

 Persistent Memory Support
If you don’t want to enable hybrid buffer pool but would like SQL Server to take

advantage of reading and writing both data and transaction log data to persistent

memory devices, you can configure your device as a persistent memory device on Linux.

SQL Server will automatically detect it and use memory-based operations to move data

into SQL Server cache and the device, bypassing the Linux kernel I/O stack. This process

is called enlightenment.

Chapter 2 IntellIgent performanCe

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/hybrid-buffer-pool
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/hybrid-buffer-pool

83

Dell EMC was able to see significant performance improvements with enlightenment

as documented at www.emc.com/about/news/press/2019/20190402-01.htm. According

to Dell, “With new Intel® Optane™ DC persistent memory, customers can accelerate

in-memory databases, virtualization and data analytics workloads with up to 2.5 times

more memory capacity for select PowerEdge Servers. The PowerEdge R740xd enables

up to 2.7 times the transactions per second with an Intel® Optane™ DC persistent

memory compared to NVMe drives in a virtualized Microsoft SQL Server 2019 preview

environment with VMware ESXi.1.”

You can read all the details about how to enable your persistent memory device on

Linux for SQL Server at https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-configure-pmem?view=sqlallproducts-allversions.

 Last-Page Insert Contention
Here is a common problem for SQL Server users for a very long time. You want to build

a table with a primary key that will be used in a clustered index. And this primary key

is a sequential value. In other words, each insert of a row leads to a new value in an

incrementing order. The most common form of this type of key is a column using a

SEQUENCE object or an IDENTITY property.

While the design works fine in most cases, it presents a challenging problem for

application performance. Each time a query needs to modify a page, SQL Server must

physically protect other queries from changing or reading the page structure at the same

time (even with row-level locking) using a page latch.

If many users were all trying to modify the same page, your application might

suffer in performance due to page latch contention. If you build a clustered index on a

sequential key, the data is sorted on that key. Each insert will be trying to insert a new

row in the last page of the clustered index leaf level. And if many users are concurrently

executing inserts, they could all end up trying to modify the last page of the index, hence

the term last-page insert contention.

While this contention is not ideal, it normally is not too much of a problem, until

a phenomenon called a latch convoy occurs. Pam Lahoud, Senior Program Manager

on the team (also known as @SQLGoddess), showed me this resource on the convoy

problem: https://blog.acolyer.org/2019/07/01/the-convoy-phenomenon/. For

SQL Server and the last-page insert contention problem, a page split is an example of

a scenario where a convoy can build up. A page split can easily occur when there are

Chapter 2 IntellIgent performanCe

http://www.emc.com/about/news/press/2019/20190402-01.htm
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sqlallproducts-allversions
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem?view=sqlallproducts-allversions
https://blog.acolyer.org/2019/07/01/the-convoy-phenomenon/

84

not enough rows on the page for a new INSERT, and a new page must be created in the

clustered index. Pam also had a really great analogy to the convoy issues. According to

Pam, “Traffic jams are a common analogy used to describe the problem. If you have a

road that is at maximum capacity, as long as all the traffic continues to move at the same

speed, throughput will be consistent, albeit slightly slower. As soon as something occurs

which causes drivers to hit the brakes, such as a slow driver, hazard on the road, or a

contentious interchange, traffic piles up. If cars continue to enter the road at the same

rate as before, the traffic just gets worse and worse. Drivers are still making progress, but

at a very slow rate. At this point, the rate of throughput won't recover until the rate of

cars entering the road slows down dramatically, much lower than what the road would

normally be able to handle.”

Many users in the SQL community, technical support, and engineering have tackled

this problem in many different ways over the years. This support article mentions many

of them (https://support.microsoft.com/kb/4460004). What about a solution within

the engine itself that doesn’t require application changes? When I saw our solution

show up in SQL Server 2019 CTP 3.1, I knew this problem had been discussed before

by our engineering team with lots of possible solutions. I asked Wonseok Kim, the

lead developer for the feature, about its history. He showed me an e-mail thread that I

actually had laying around in my mail folder but forgot about. Turns out a familiar name

had been working on an approach, Slava Oks, along with many other giants of the SQL

Server engineering team.

The solution now exists in the form of a new option for indexes called OPTIMIZE_
FOR_SEQUENTIAL_KEY. By adding this option to your index or primary key constraint,

you are telling SQL Server to enable new code to try and avoid the convoy problem. This

option doesn’t eliminate latches or prevent a latch contention problem. What it does is

try to avoid the dreaded convoy problem so that your workload throughput is consistent.

You can read more about this option and how to use it in our documentation at https://

docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-

sql?view=sqlallproducts-allversions#sequential-keys.

Note If you use this option, you may notice a new wait_type called Btree_
InSert_floW_Control. this is normal and part of the mechanism to avoid or
reduce the convoy problem.

Chapter 2 IntellIgent performanCe

https://support.microsoft.com/kb/4460004
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sqlallproducts-allversions#sequential-keys
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sqlallproducts-allversions#sequential-keys
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sqlallproducts-allversions#sequential-keys

85

This option is not for everyone. If you don’t use a sequential key for a clustered index

or don’t see heavy contention, then I wouldn’t recommend using this option. In fact, you

might experience worse performance by blindly applying this to any clustered index.

If you want to try this out yourself, make sure you have a “wide” enough table. In

my testing, simply creating a table with a single IDENTITY column did not yield any

performance gains. What you need to do is cause conditions where enough page splits

occur to see a convoy problem.

Note It is possible the techniques as described in article https://support.
microsoft.com/kb/4460004 may provide you better performance, but this new
method for an index may give you the consistent performance you need and is far
less intrusive to your application.

 Summary
This chapter was very long, and it reflects the incredible capabilities of intelligent

performance baked into SQL Server 2019 designed to help you improve performance

without application changes. I provided many detailed examples so you can see for

yourself these rich features and how they can help accelerate performance and save

you time with performance tuning as you deploy SQL Server 2019 everywhere in your

organization or develop with your application.

Chapter 2 IntellIgent performanCe

https://support.microsoft.com/kb/4460004
https://support.microsoft.com/kb/4460004

87
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_3

CHAPTER 3

New Security Capabilities
Security is essential to managing data. SQL Server has a proven track record of not just

building a secure product but providing the necessary capabilities to help you secure

your data and access to the SQL Server instance. This chapter is about what we have

added in SQL Server 2019 to the story of security.

 Enhancing What We Have Built
After reading and using examples for a very long chapter on performance, you may

look at this chapter, see the number of pages, and ask yourself, “Hey, isn’t security

important?” The answer is absolutely yes! For SQL Server, security is a very important

part of the overall data platform.

In SQL Server 2019, the new security capabilities and the challenges they are

designed to meet include

• Always Encrypted with Secure Enclaves

Provide an end-to-end encryption solution, but not limit

application query capabilities.

• Data Classification and Auditing

Provide a built-in classification system for SQL Server objects,

along with auditing for viewing of data that is marked for

classification.

• Transparent Data Encryption (TDE) suspend and resume

Provide a mechanism to schedule expensive encryption “at rest”

operations against a database.

88

• Certificate management

Make certificate management easier with SQL Server, including

Failover Cluster Instance and Always On Availability Group

scenarios.

This may not seem like a big set of improvements, but each new feature attempts

to solve important security problems faced by our customers and originates from their

feedback. For example, data classification was specifically built into SQL Server to

address compliance with the General Data Protection Regulation (GDPR), but can be

used for many classification and auditing needs.

It is also very important to remember that SQL Server 2019 comes with a rich set of

security features introduced in SQL Server 2016. This includes

• Always Encrypted

• Dynamic data masking

• Row-level security

• Transparent Data Encryption performance with hardware

acceleration

You can read about all these security capabilities at https://docs.microsoft.com/

en-us/sql/database-engine/whats-new-in-sql-server-2016?view=sql-server-

2017#security-enhancements.

It is important to keep in mind that, for nearly a decade, SQL Server has been the

least vulnerable database and data platform – by a large percentage – as tracked by the

National Vulnerability Database (NVD) run by the National Institute of Standards and

Technology (NIST). You can see all of these details at https://nvd.nist.gov/.

Let’s look at each of the new capabilities for security for SQL Server 2019 in more

detail, starting with Always Encrypted with Secure Enclaves.

 Always Encrypted with Secure Enclaves
Prior to SQL Server 2016, you had several methods to encrypt data, including

• Encrypting connections – All data (the TDS protocol data)

exchanged between a client application and SQL Server is encrypted.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/database-engine/whats-new-in-sql-server-2016?view=sql-server-2017#security-enhancements
https://docs.microsoft.com/en-us/sql/database-engine/whats-new-in-sql-server-2016?view=sql-server-2017#security-enhancements
https://docs.microsoft.com/en-us/sql/database-engine/whats-new-in-sql-server-2016?view=sql-server-2017#security-enhancements
https://nvd.nist.gov/

89

• Encrypting data in SQL Server tables using T-SQL (sometimes called

column-level or cell-level encryption).

• Transparent Data Encryption (TDE) – Encrypting data at rest or

data encrypted at the file level for SQL Server database files.

None of these solutions provide an “end-to-end” encryption mechanism. And

more importantly, SQL Server admins have control of the keys used to encrypt data.

Therefore, there is no concept of separation of duties. In the world of today’s demanding

security needs, application owners (i.e., business owners) want complete control of the

security of their data. They want roles like database admins to manage the data platform

infrastructure but not have access to business data or the keys used to control access to

that data.

In SQL Server 2016, we introduced a feature called Always Encrypted to solve these

problems. Always Encrypted has its roots from projects at Microsoft Research. As Raghav

Kaushik, Principal Software Engineer at Microsoft, tells it, “…there are two projects worth

citing. One is the Cipherbase project at MSR-Redmond which was attempting to build

query processing on encrypted data, and the Trusted Cloud project at MSR-Cambridge

that focused more on the building blocks around secure hardware.”

Figure 3-1 shows an example of the architecture and flow of Always Encrypted.

The concept is the client application and their owners control the encryption

lifecycle. All data is passed from the client application to SQL Server encrypted, stored

in SQL Server encrypted (at the column level), and sent back to the client application

Figure 3-1. Always Encrypted in SQL Server 2016

Chapter 3 New SeCurity CapabilitieS

90

encrypted. Only the client application can unencrypt the data at the application tier. In

addition, the keys used to encrypt and unencrypt data are not actually stored in SQL

Server. The location of the keys, owned by application owners, is stored in SQL Server.

But access to those keys is controlled by the application.

It sounds like a great solution, but there is one drawback. Because all the decryption

happens in the client application, some query patterns are not allowed against the data

(e.g., only equality WHERE clauses are permitted). Furthermore, indexes on encrypted

data with Always Encrypted are not supported. Given that the client application is the

only place where decryption takes place, there is no way to truly build an index with

Always Encrypted. SQL Server would have to send all the data for the columns encrypted

as part of the index to the client application to build the index and then send it back to

the server. So as good as the promise of Always Encrypted is, these limitations make it…

well, limited in several scenarios.

Is there a solution? Yes, and it comes in the form of a concept called Secure Enclaves.

 Why Enclaves?
Webster’s dictionary defines an enclave (www.merriam-webster.com/dictionary/

enclave) as “a distinct territorial, cultural, or social unit enclosed within or as if

within foreign territory.” In computer terms, it is a protective area that is secure and

independent of hostile invaders. Those invaders could be hackers, but, unfortunately,

they could also be administrators or DBAs.

Intel has released the concept of an enclave in their chipset known as Software

Guard Extensions (SGX), which you can read about at https://software.intel.com/

en-us/blogs/2016/06/06/overview-of-intel-software-guard-extension-enclave.

SGX provide instructions in the CPU to allow for protected regions of memory that is

secure for encryption and provides a safe haven from intrusion. That is interesting,

but what if you don’t happen to have an SGX chip? Microsoft has come along with

a virtualized enclave solution called virtualization-based security (VBS) memory

enclaves. You can read all the details about VBS at www.microsoft.com/security/

blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-

protection-through-isolation/.

What does that mean for Always Encrypted, and why does it matter?

Chapter 3 New SeCurity CapabilitieS

http://www.merriam-webster.com/dictionary/enclave
http://www.merriam-webster.com/dictionary/enclave
https://software.intel.com/en-us/blogs/2016/06/06/overview-of-intel-software-guard-extension-enclave
https://software.intel.com/en-us/blogs/2016/06/06/overview-of-intel-software-guard-extension-enclave
https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation/
https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation/
https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation/

91

 Using Always Encrypted with Enclaves
Enclaves provide a unique solution for Always Encrypted for the “index problem.”

The data moving from the client application to SQL Server and back is still completely

encrypted. And so is the data within SQL Server memory and on disk. However,

when the data needs to be decrypted, for example, to build an index or support rich

computations, the decryption can happen in the enclave on the server. The enclave

is a secure region of memory in the SQL Server process space. This memory region is

small and tightly integrated into the engine express services with enclave APIs. Rich

computations are queries that require range queries or pattern matching (i.e., LIKE).

Enclaves provide that capability now for Always Encrypted solutions.

Consider Figure 3-2 from the SQL Server documentation page (https://docs.

microsoft.com/en-us/sql/relational-databases/security/encryption/always-

encrypted-enclaves), which shows how enclaves support decryption in a secure

manner but also provide more flexibility for applications.

Configuring Always Encrypted has never been for the mild SQL Server user. It is a

complex solution for a complex problem. But it is powerful, especially now with enclaves.

Always Encrypted with Secure Enclaves requires another important component

called an attestation Service. An attestation service is used by a client application to verify

that an enclave used for encryption can be trusted. For VBS enclaves, Windows provides

the Windows Defender System Guard runtime attestation (which uses something called

the Host Guardian Service (HGS)). You can read more about Windows Defender System

Guard at www.microsoft.com/security/blog/2018/04/19/introducing-windows-

defender-system-guard-runtime-attestation/. You can also read more details about

Figure 3-2. Always Encrypted with Secure Enclaves

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves
https://www.microsoft.com/security/blog/2018/04/19/introducing-windows-defender-system-guard-runtime-attestation/
https://www.microsoft.com/security/blog/2018/04/19/introducing-windows-defender-system-guard-runtime-attestation/

92

how applications communicate with Secure Enclaves at https://docs.microsoft.com/

en-us/windows/desktop/api/enclaveapi/nf-enclaveapi-callenclave.

In addition to setting up a VBS and configuring the Host Guardian Service, your

application has to use a provider that supports communicating with an enclave. You

can read the details of provider support for enclaves at https://docs.microsoft.

com/en-us/sql/relational-databases/security/encryption/always-encrypted-

enclaves?view=sqlallproducts-allversions#secure-enclave-providers.

At time of authoring this book, SQL Server has not yet officially supported

hardware enclaves as provided by chip manufacturers such as Intel SGX. I expect

that support to come soon, and you can stay in touch with the Always Encrypted

documentation on enclaves for updates at https://docs.microsoft.com/en-

us/sql/relational-databases/security/encryption/always-encrypted-

enclaves?view=sqlallproducts-allversions#why-use-always-encrypted-with-

secure-enclaves. Today Linux does not support a virtual enclave like VBS. However,

once hardware enclave support is supported by SQL Server, I expect Linux support to

come not long after.

I did not build an example for you to go through to set up and use Always Encrypted

with enclaves. As I said earlier in the chapter, this is not a feature for the mild SQL Server

user. It is an enterprise feature and takes some time to set up. But once set up, it is very

powerful. Jakub Szymaszek, Senior Program Manager and lead for Always Encrypted,

has provided several valuable resources on the topic.

Use the following GitHub repo to go through an example yourself with Always

Encrypted using a VBS enclave, https://github.com/microsoft/sql-server-samples/

tree/master/samples/features/security/always-encrypted-with-secure-

enclaves. Jakub also did an excellent presentation at Microsoft Ignite for you to get

more details on Always Encrypted with enclaves at https://myignite.techcommunity.

microsoft.com/sessions/65357#ignite-html-anchor.

 Data Classification
With the launch of SQL Server 2017, our security group within the SQL Server

engineering team built a tool in SQL Server Management Studio (SSMS) to help

customers classify data within a SQL Server database. This tool encompassed a wizard, a

set of T-SQL logic, and a report. Figure 3-3 shows the Data Classification wizard in SSMS.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/windows/desktop/api/enclaveapi/nf-enclaveapi-callenclave
https://docs.microsoft.com/en-us/windows/desktop/api/enclaveapi/nf-enclaveapi-callenclave
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#secure-enclave-providers
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#secure-enclave-providers
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#secure-enclave-providers
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#why-use-always-encrypted-with-secure-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#why-use-always-encrypted-with-secure-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#why-use-always-encrypted-with-secure-enclaves
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sqlallproducts-allversions#why-use-always-encrypted-with-secure-enclaves
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/security/always-encrypted-with-secure-enclaves
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/security/always-encrypted-with-secure-enclaves
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/security/always-encrypted-with-secure-enclaves
https://myignite.techcommunity.microsoft.com/sessions/65357#ignite-html-anchor
https://myignite.techcommunity.microsoft.com/sessions/65357#ignite-html-anchor

93

One of the drivers behind building a tool like this was the growing trend in

companies and regulatory agencies for privacy. And especially important was the

pending General Data Protection Regulation (GDPR) being established by the European

Union (https://eugdpr.org/).

Tip GDpr regulations took effect in May of 2018. if you would like a complete
guide on how to use SQl Server to meet the needs of GDpr in your organization, go
to www.microsoft.com/en-us/trustcenter/cloudservices/sql/gdpr.

The idea of the tool was to analyze column names in your database and make

recommendations on how to classify columns via a label and an information_type.

The information_type could be used to tell you what kind of data exists in the column (e.g.,

Contact Info, Name, Financial), while the label could be used to classify the sensitivity of

the data stored in that column (Confidential, Confidential-GDPR, HIPAA, etc.).

The tool would analyze column names and look for known patterns that matched

known types of information and sensitivity. An example of a simple match would be

any column with a name that contained the word Email in it. The tool would provide

recommendations for labels and information_type and let you persist these within your

database. Then you could use a report to view this classification information.

Figure 3-3. The Data Classification wizard in SSMS

Chapter 3 New SeCurity CapabilitieS

https://eugdpr.org/
https://www.microsoft.com/en-us/trustcenter/cloudservices/sql/gdpr

94

The tool was nice, but there were two limitations:

• The tool used a concept in SQL Server called extended properties.

While that approach is supported and works, it is not the most

efficient way to store metadata about column classification because

it is a general property mechanism (you can read more about

extended properties at https://docs.microsoft.com/en-us/sql/

relational-databases/system-stored-procedures/

sp-addextendedproperty-transact-sql).

• There is no built-in auditing for access to the columns that are

marked for classification. Auditing is an important part of any

classification system and is required to meet the needs of GDPR.

So, our team worked on a new solution for SQL Server 2019 (which also works in

the Azure SQL Database suite of services) for built-in sensitivity classifications. Built-in

means a new set of T-SQL statements, catalog views, and auditing.

The T-SQL statements now supported in SQL Server 2019 for classification are

ADD SENSITIVITY CLASSIFICATION (https://docs.microsoft.com/en-us/sql/
t-sql/statements/add-sensitivity-classification-transact-sql)

DROP SENSITIVITY CLASSIFICATION (https://docs.microsoft.com/en-us/
sql/t-sql/statements/drop-sensitivity-classification-transact-sql)

These T-SQL statements result in metadata stored directly into system tables

(exposed by catalog views) that are specific to labels and information_types associated

with columns in a table.

A new catalog view is supported to view this metadata called sys.sensitivity_
classifications (https://docs.microsoft.com/en-us/sql/relational-databases/

system-catalog-views/sys-sensitivity-classifications-transact-sql).

Furthermore, SQL Server Auditing now supports a new property called data_
sensitivity_information which can be used to audit who, what, and when users are

trying to view classified data.

With these capabilities, the SSMS wizard was modified to use the new T-SQL

statements if working with a database in SQL Server 2019. This now provides you the

capability of built-in classifications and auditing with a tool in SSMS and native T-SQL

support.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addextendedproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addextendedproperty-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addextendedproperty-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/add-sensitivity-classification-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/add-sensitivity-classification-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-sensitivity-classification-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-sensitivity-classification-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-sensitivity-classifications-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-sensitivity-classifications-transact-sql

95

Note if you have used the wizard with SSMS 17.0 or even 18.0 against a
version of SQl Server prior to SQl Server 2019 and restore that database to
SQl Server 2019, the classified extended properties will be migrated to the new
sensitivity classification metadata.

Let’s walk through an example of using the SSMS tool, the new T-SQL syntax, catalog

views, and auditing.

 Prerequisites for Using the Examples
First, you need to do some setup to use examples in this section of the chapter. For

examples in this chapter, you will use the WideWorldImporters example database (you

can read more about this database and its schema at https://docs.microsoft.com/en-

us/sql/samples/wide-world-importers-oltp-database-catalog). If you have already

restored the database from Chapter 2 examples, you can just keep using that database.

These examples will work on SQL Server 2019 on Windows, Linux, and Containers.

You will also need SQL Server Management Studio (SSMS) version 18.2 or higher

to complete all the steps in the example. You can complete some of the steps using the

T-SQL scripts provided, but some of the examples rely on the tools built into SSMS. You

can download the latest version of SSMS from https://docs.microsoft.com/en-us/

sql/ssms/download-sql-server-management-studio-ssms.

All the scripts used for this chapter can be found on the GitHub repo for this book

under the ch3_new_security_capabilities\dataclassification directory.

In order to use the examples in this chapter, you need to go through the following

steps (skip these steps if you have already restored the database from Chapter 2):

 1. Download the WideWorldImporters database backup from

https://github.com/Microsoft/sql-server-samples/

releases/download/wide-world-importers-v1.0/

WideWorldImporters-Full.bak.

 2. Restore this database to your SQL Server 2019 instance. You can

use the provided restorewwi.sql script. You may need to change

the directory paths for the location of your backup and where you

will restore the database files.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-oltp-database-catalog
https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-oltp-database-catalog
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak

96

 Using Data Classification
Walk through the following steps to see data classification in action. In the next section,

you will learn how to set up auditing to track users who try to view columns set up with

classification.

 1. First you may run these examples more than once so run the

following script setup_classification.sql:

-- Step 1: In case you have run these demos before drop existing

classifications

USE WideWorldImporters

GO

IF EXISTS (SELECT * FROM sys.sensitivity_classifications sc

WHERE object_id('[Application].[PaymentMethods]') = sc.major_id)

BEGIN

 DROP SENSITIVITY CLASSIFICATION FROM [Application].

[PaymentMethods].[PaymentMethodName]

END

GO

IF EXISTS (SELECT * FROM sys.sensitivity_classifications sc

WHERE object_id('[Application].[People]') = sc.major_id)

BEGIN

 DROP SENSITIVITY CLASSIFICATION FROM [Application].

[People].[FullName]

 DROP SENSITIVITY CLASSIFICATION FROM [Application].

[People].[EmailAddress]

END

GO

 2. Now use the SSMS Data Classification tool to add classifications

for two columns in the WideWorldImporters database. Launch

SSMS and find the WideWorldImporters database in Object

Explorer. Right-click and choose Tasks ➤ Data Discovery and

Classification ➤ Classify Data as seen in Figure 3-4.

Chapter 3 New SeCurity CapabilitieS

97

 3. The tool analyzes column names in objects in the

WideWorldImporters database and creates recommendations for

which columns to classify and what labels and information_type

to use. When you launch the tool with WideWorldImporters,

you should get 66 columns with recommendations. Click the

recommendations to see the result as in Figure 3-5.

Figure 3-4. Launching the Data Classification tool

Chapter 3 New SeCurity CapabilitieS

98

 4. What you will see now is a list of columns with suggested

information_type and (sensitivity) label choices. The values for

these recommendations are baked into the tool and cannot be

configured. However, I’ll show you with T-SQL how to “use your

own system.” Save some of these recommendations by checking

the PaymentMethodName and FullName columns, then click

Accept selected recommendations. Before you click Accept, your

screen should look like Figure 3-6.

Figure 3-5. Classification recommendation from SSMS

Chapter 3 New SeCurity CapabilitieS

99

Notice that PaymentMethodName has a recommendation of

Financial and Confidential (if you query this table, you will see the

values are Cash, Check, Credit-Card, and EFT). For FullName, the

recommendation is Name and Confidential-GDPR.

Note the tool does not guarantee GDpr compliance or even look specifically at
the details of GDpr. these are simply recommendations based on our knowledge
of GDpr. if you need to use this system for GDpr purposes, be sure to follow your
company policies and procedures.

 5. After you click Accept, the tool will show you which columns were

selected and allow you to save the choices. The “garbage can”

icons allow you to delete your choices and choose again. Notice

the number of columns to recommend has been reduced by 2. For

now, select Save, as seen in Figure 3-7.

Figure 3-6. Accept classification recommendations

Chapter 3 New SeCurity CapabilitieS

100

 6. After you have saved, you can select the option called View Report

to see a visual of classifications saved with your database. A new

tab in SSMS is created for the report. Be sure to click the + next

to the Application schema to see all the classified columns. The

report should look like Figure 3-8.

Figure 3-7. Saving accepted recommendations

Figure 3-8. The Data Classification Report

Chapter 3 New SeCurity CapabilitieS

101

The report will query the sys.sensitivity_classifications catalog

view along with other metadata in the database. The report shows

how many columns and tables are marked for labels out of all

possible columns and tables. The report also shows a distribution

of label and information_type values in the database. Notice at

the bottom of the report, in the list of columns, that the People_

Archive and PaymentMethods_Archive tables appear. Why? This

is because these tables have system-versioned temporal tables

built with them. Temporal tables, introduced in SQL Server 2016,

provide point-in-time information about changes to a table in a

database (you can read more about temporal tables at https://

docs.microsoft.com/en-us/sql/relational-databases/

tables/temporal-tables).

Since you accepted recommendations for columns in a table that

has a temporal table, we want to be sure to also classify columns

in the “hidden” archive table. You don’t access those columns

directly, but SQL Server persists the archive table. So, any access

to temporal data can also be audited.

Note you are not allowed to add sensitivity classifications directly to archive
tables from temporal data. when you drop a sensitivity classification for a column,
the classification for the archive table is also dropped.

 7. If you go back to the tab with the saved recommendations, you

will see an option for Add Classification. This is a way for you to

manually add sensitivity classifications through the tool to either

override the recommendations or choose a column that was not

recommended. You still get the choices provided by the tool for

labels and information_type. If you clicked Add Classification, it

would look like Figure 3-9.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

102

 8. The tool is great, but you may also want to use T-SQL directly

to add your own classifications and system. First, use the script

findclassifications.sql to see how you can use T-SQL to view all

existing classifications.

USE WideWorldImporters

GO

SELECT o.name as table_name, c.name as column_name,

sc.information_type, sc.label

FROM sys.sensitivity_classifications sc

JOIN sys.objects o

ON o.object_id = sc.major_id

JOIN sys.columns c

ON c.column_id = sc.minor_id

AND c.object_id = sc.major_id

ORDER BY sc.information_type, sc.label

GO

Your results should look the same as from the report.

Figure 3-9. Manually adding a classification through the tool

Chapter 3 New SeCurity CapabilitieS

103

 9. To add your own classification from T-SQL, use the script

addclassification.sql. Run each step to add the classification

and see the new results. You can put in whatever label and

information_type values you want for your purposes. For this

example, I chose different labels and types from the tool. Since

this is an e-mail address, I called the type Email and the label

PII (which stands for Personally Identifiable Information). In

essence, these are just string values we are storing associated with

columns. But like any system that is being built and designed, a

good classification system will have some structure on what label

and information_type labels should be used for a company and

a database, and this metadata will show up that way in audits, as

we’ll see shortly.

-- Step 1: Add the classification

ADD SENSITIVITY CLASSIFICATION TO

[Application].[People].[EmailAddress]

WITH (LABEL='PII', INFORMATION_TYPE='Email')

GO

-- Step 2: View all classifications

USE WideWorldImporters

GO

SELECT o.name as table_name, c.name as column_name,

sc.information_type, sc.information_type_id, sc.label, sc.label_id

FROM sys.sensitivity_classifications sc

JOIN sys.objects o

ON o.object_id = sc.major_id

JOIN sys.columns c

ON c.column_id = sc.minor_id

AND c.object_id = sc.major_id

ORDER BY sc.information_type, sc.label

GO

Your result should look like Figure 3-10.

Chapter 3 New SeCurity CapabilitieS

104

In these results, notice that the columns added by the tool have

values for information_type_id and label_id. The T-SQL statement

ADD SENSITIVITY CLASSIFICATION supports a GUID value to tag

the strings for labels and types. This could be particularly valuable if

your company builds a classification system to store all the accepted

labels and types. You can now refer to any label or type through a

GUID value, though it is up to you to generate GUID values.

Tip the t-SQl function NewiD() can be used to generate unique GuiD values
within SQl Server. you can find more details at https://docs.microsoft.
com/en-us/sql/t-sql/functions/newid-transact-sql.

So far so good. It seems like a fairly simple and straightforward

system, which it is. But it is only as good as the labels and

information_type values you choose to use. The beauty of T-SQL

support is that any application that supports T-SQL can now build

a classification system and query it since catalog view support also

exists through T-SQL.

What about auditing? Proceed to the next section to see how it

works. Leave everything as is to use these previous steps to show

how auditing works.

Figure 3-10. Classifications from the tool and T-SQL

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/t-sql/functions/newid-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/newid-transact-sql

105

 Auditing and Data Classification
Having sensitivity classification metadata about columns is valuable, but an even

more valuable feature would be for auditing to automatically pick up when users view

columns marked with those classifications.

Modern versions of SQL Server include a built-in feature called SQL Server Audit.

Based on Extended Events technology, Audit has many options and provides a rich

auditing system. You can read more about the complete functionality of SQL Server

Audit at https://docs.microsoft.com/en-us/sql/relational-databases/security/

auditing/sql-server-audit-database-engine.

Audits are produced in a record format with all types of properties for each audit

event. SQL Server 2019 adds a new audit event property called data_sensitivity_

information. So, for example, if you are auditing SELECT statements on certain tables

where you have added sensitivity classification to columns, if the columns are part of

the SELECT “list” to view data, the data_sensitivity_information column will show this

access.

Let’s continue with the example from earlier to look at how auditing works with

sensitivity classifications.

 1. Because you may run these examples more than once and

don’t want to have to restore the database, first run the script

dropsqlaudit.sql.

-- Step 1: Disable the audits and drop them

USE WideWorldImporters

GO

IF EXISTS (SELECT * FROM sys.database_audit_specifications WHERE

name = 'People_Audit')

BEGIN

 ALTER DATABASE AUDIT SPECIFICATION People_Audit

 WITH (STATE = OFF)

 DROP DATABASE AUDIT SPECIFICATION People_Audit

END

GO

USE master

GO

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine

106

IF EXISTS (SELECT * FROM sys.server_audits WHERE name = 'GDPR_

Audit')

BEGIN

 ALTER SERVER AUDIT GDPR_Audit

 WITH (STATE = OFF);

 DROP SERVER AUDIT GDPR_Audit

END

GO

-- Step 2: Remove the .audit files from default or your path

-- del C:\program files\microsoft sql server\mssql15.mssqlserver\

mssql\data\GDPR*.audit

Notice that Step 2 is a comment in the script to delete files. When

you run an audit, it creates files in a path you specify. When you

disable and drop the audit, the files remain in that directory. To

keep the example clean, manually delete any leftover files from

previous executions.

 2. Open up the script setupsqlaudit.sql to create and start the audit.

I won’t go into the details of how auditing and specifications

work. You can see through the syntax I’ve provided that an audit

is set up to track SELECT statements against the [Application].

[People] table in the WideWorldImporters database. Check out

the documentation on auditing to learn more at https://docs.

microsoft.com/en-us/sql/relational-databases/security/

auditing/sql-server-audit-database-engine.

USE master

GO

-- Create the server audit.

CREATE SERVER AUDIT GDPR_Audit

 TO FILE (FILEPATH = 'C:\program files\microsoft sql server\

mssql15.mssqlserver\mssql\data')

GO

-- Enable the server audit.

ALTER SERVER AUDIT GDPR_Audit

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine

107

WITH (STATE = ON)

GO

USE WideWorldImporters

GO

-- Create the database audit specification.

CREATE DATABASE AUDIT SPECIFICATION People_Audit

FOR SERVER AUDIT GDPR_Audit

ADD (SELECT ON Application.People BY public)

WITH (STATE = ON)

GO

 3. Now let’s run some queries and look at what is audited. Open

up the script findpeople.sql and run Steps 1 and 2 as guided by

comments in the script:

-- Step 1: Scan the table and see if the sensitivity columns were

audited

USE WideWorldImporters

GO

SELECT * FROM [Application].[People]

GO

-- Step 2: Check the audit

-- The audit may not show up EXACTLY right after the query but

within a few seconds.

SELECT event_time, session_id, server_principal_name,

database_name, object_name,

cast(data_sensitivity_information as XML) as data_sensitivity_

information,

client_ip, application_name

FROM sys.fn_get_audit_file ('C:\program files\microsoft sql

server\mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)

GO

Your results should look like Figure 3-11.

Chapter 3 New SeCurity CapabilitieS

108

In this example, you have run a query selecting all columns from

the People table. The fn_get_audit_file T-SQL function is used

to retrieve audit results in a row/column format. I’ve pulled only

certain columns from the result set of this function. You can see

the entire list of arguments and output columns for this function

at https://docs.microsoft.com/en-us/sql/relational-

databases/system-functions/sys-fn-get-audit-file-

transact-sql.

The first row is a record that an audit has been started. The

second row is an audit of the SELECT statement. Notice the

data_sensitivity_information column value is an XML data type.

Click that value and SSMS will bring up a new window with the

complete XML data. Your results should look like Figure 3-12.

The details of the XML include an attribute for any unique

label and information_type accessed by the SELECT statement.

You can now take this information and look up what columns

are associated with these details with the sys.sensitivity_
classifications catalog view.

Figure 3-11. Audit of a single table scan of a table with classifications

Figure 3-12. Data sensitivity details

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql

109

 4. Now execute statements in findpeople.sql for Steps 3 and 4:

-- Step 3: What if I access just one of the columns directly?

SELECT FullName FROM [Application].[People]

GO

-- Step 4: Check the audit

-- The audit may not show up EXACTLY right after the query but

within a few seconds.

SELECT event_time, session_id, server_principal_name,

database_name, object_name,

cast(data_sensitivity_information as XML) as data_sensitivity_

information,

client_ip, application_name

FROM sys.fn_get_audit_file ('C:\program files\microsoft sql

server\mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)

GO

The results from Step 4 should look like Figure 3-13.

A third row in the audit exists (you will get one row for each

SELECT). If you click the data_sensitivity_information column,

you will see only one label because only the FullName column

was selected.

 5. The audit will only track access to classifications if a column from

the classification is part of the SELECT list or output of a query.

Let’s prove it. Run Steps 5 and 6 from findpeople.sql:

-- Step 5: What if I reference a classified column in the WHERE

clause only?

SELECT PreferredName FROM [Application].[People]

Figure 3-13. Audit including a SELECT for one column marked for classification

Chapter 3 New SeCurity CapabilitieS

110

WHERE EmailAddress LIKE '%microsoft%'

GO

-- Step 6: Check the audit

-- The audit may not show up EXACTLY right after the query but

within a few seconds.

SELECT event_time, session_id, server_principal_name,

database_name, object_name,

cast(data_sensitivity_information as XML) as data_sensitivity_

information,

client_ip, application_name

FROM sys.fn_get_audit_file ('C:\program files\microsoft sql

server\mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)

GO

The results of Step 6 should look like Figure 3-14.

In this example, the query produces results for the PreferredName

column using the EmailAddress column as criteria. PreferredName

is not included in a classification but EmailAddress is. But because

EmailAddress is not part of the SELECT list, the data_sensitivity_

information column is not populated.

Data classification is a simple but very powerful new capability in SQL Server 2019

you can add to your toolkit for keeping data secure and your organization compliant

to any regulatory policies. The feature works both in SQL Server 2019 and Azure SQL

Database. Take a look at the complete guide from our team on Information Protection

at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-data-

discovery-and-classification.

Figure 3-14. Audit results for classified column in WHERE clause

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-data-discovery-and-classification
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-data-discovery-and-classification

111

 Other New Security Features
There are a few other minor but important new security features in SQL Server

2019, including pause and resume for TDE, and simpler certificate management for

encryption for SQL Server.

 TDE Pause and Resume
Transparent Data Encryption (TDE) is all about data encryption at rest. This allows you

to encrypt the SQL Server database and log files independent of the SQL Server engine.

This way, if someone attempts to obtain access to your database and/or transaction log

files, the data in the files will be encrypted. TDE has been a feature for several releases;

you can read more about how to use it at https://docs.microsoft.com/en-us/sql/

relational-databases/security/encryption/transparent-data-encryption.

When you enable TDE for an existing database, SQL Server must read every database

page from disk into the buffer pool and write it back out to the database file encrypted.

The encryption happens in a background worker thread so it doesn’t directly impact

user workloads, but reading and writing all database pages can be intensive and

consume CPU and I/O resources. For a very large database, this can impact a mission-

critical application.

SQL Server 2019 introduces the concept of pause and resume for TDE encryptions.

Now you can enable TDE for a database but then suspend the encryption at any point

and resume the encryption from the last point it was suspended. This allows you to

effectively schedule the full encryption of the database using TDE per your application

needs.

Suspending TDE is as simple as running the following T-SQL statement:

ALTER DATABASE <db_name> SET ENCRYPTION SUSPEND

Resuming the encryption process where it was suspended can be done with the

following T-SQL statement:

ALTER DATABASE <db_name> SET ENCRYPTION RESUME

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption

112

To help with diagnostics for this new capability, the DMV sys.dm_database_
encryption_keys has three new columns to see the state of the TDE scan:

• encryption_scan_state – A number indicating if the TDE scan is in

progress, suspended, or completed

• encryption_scan_state_desc – A string description of the scan state

such as RUNNING, SUSPENDED, COMPLETE

• encryption_scan_modify_date – A date/time for the last time the

scan state changed

This is a minor but important enhancement to using TDE with very large SQL

Server databases. You can read more about TDE pause and resume at https://

docs.microsoft.com/en-us/sql/relational-databases/security/encryption/

transparent-data-encryption.

 Certificate Management
Let’s say you want to encrypt connections to SQL Server, a common practice to ensure

the Tabular Data Stream (TDS) protocol between client applications and SQL Server

is encrypted. When you set encryption with a protocol like TLS, you need certificates.

SQL Server on Windows provides a mechanism to use certificates through the popular

program SQL Server Configuration Manager. However, you must first do all the work

to install the certificate on the server or even on multiple servers for a Failover Cluster

Instance (FCI) or an Always On Availability Group.

Figure 3-15 shows a SQL Server Configuration Manager dialog box to choose an

installed certificate to use with SQL Server 2017.

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption

113

SQL Server 2019 now includes the ability through SQL Server Configuration Manager

to import a certificate and even import certificates across nodes of a Failover Cluster

Instance or Availability Group – and you can perform it all from the primary instance.

Figure 3-16 shows a dialog box for SQL Server Configuration Manager on SQL Server 2019.

Figure 3-15. SQL Server 2017 and certificate management

Chapter 3 New SeCurity CapabilitieS

114

Notice the new Import button on this dialog box. You can read all the instructions

for how to use this on a single server or cluster at https://docs.microsoft.com/en-us/

sql/database-engine/configure-windows/manage-certificates.

 Summary
Built on the rich capabilities of SQL Server 2016 such as Always Encrypted, row-level

security, and dynamic data masking, SQL Server 2019 introduces new security features

such as Secure Enclaves, data sensitivity classification, TDE suspend/resume, and easier

certificate management. All of this, combined with all the security features built into

SQL Server from previous releases, provides the right platform to keep your data secure,

trusted, compliant, and manageable.

Figure 3-16. SQL Server 2019 and configuration management

Chapter 3 New SeCurity CapabilitieS

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/manage-certificates
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/manage-certificates

115
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_4

CHAPTER 4

Mission-Critical
Availability
In the previous two chapters, you learned about new capabilities in SQL Server 2019

to solve modern challenges involving performance and security. For many enterprise

customers, there is a third piece to the puzzle to ensure a database platform meets the

challenges of today’s applications and business: availability.

SQL Server provides availability by default because almost everything you do with

SQL can be done online. SQL Server 2019 enhances the online availability for your data

with the following new features designed to solve new challenges:

• Online index enhancements
Users “want their cake and eat it too.” They want administrators to

keep indexes healthy and up to date but want complete access to

their data all the time. SQL Server 2019 enhances previous online

index features with resumable online index creation and online
clustered columnstore index maintenance.

• Availability Group enhancements

The flagship HADR feature of SQL Server, Always On Availability

Groups, continues to be enhanced with each release of SQL

Server including more replicas and better application connection

redirection.

• Accelerated Database Recovery

Anyone reading this book may have encountered this situation.

Someone tries to kill a long-running transaction and gets frustrated

eventually restarting SQL Server. But then they come to you and are

even more frustrated that recovery of a database is taking forever.

116

Why didn’t SQL Server just bring the database back up immediately?

You explain because recovery has to roll back the transaction you

killed, or the database won’t be consistent. Imagine none of that has

to happen anymore. Welcome to Accelerated Database Recovery

(ADR), one of the most innovative technologies I’ve seen come

to the core SQL Server engine in some time. ADR is designed to

make rollback instant, allow the transaction log to be aggressively

truncated, and provide for “constant time recovery” for a user

database. I wanted to start off with this topic, but I’ll hold your

curiosity until the end of the chapter.

 Online Index Maintenance
Indexes can be such an important aspect to database performance. Therefore,

maintaining indexes is a common task to keep your database healthy. One issue with

creating indexes is the availability to access your data given the locks that are required

on the table. The creation or rebuild of a clustered index effectively locks the table for

the duration of the index operation. A nonclustered index create or rebuild can still be

intrusive because it requires a shared (SH) table lock.

SQL Server 2005 (yes it has been around that long) introduced the concept of an

online index create or rebuild. An online index build provides better availability to the

application because a table lock is not required during the index build process.

Note There is some locking against the table, but these are shorter in length
and performed in phases during the online index build. To read more about
how an online index is built, read the documentation at https://docs.
microsoft.com/en-us/sql/relational-databases/indexes/how-
online- index-operations-work. A useful resource for understanding the
original online index implementation is at https://docs.microsoft.com/
en-us/previous-versions/sql/sql-server-2005/administrator/
cc966402(v=technet.10).

While an online index build can help with availability, building an index can be

resource intensive, which could still affect overall application availability depending

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/how-online-index-operations-work
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/how-online-index-operations-work
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/how-online-index-operations-work
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/cc966402(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/cc966402(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/cc966402(v=technet.10)

117

on the nature of the queries of the application. Furthermore, there could be situations

where building an index on a large table in one operation could be problematic, such

as if the index failed before completing. A failure during an index build (e.g., you run

out of space in the database) requires you to fix the problem and restart the index build

from the beginning. Wouldn’t it be nice to be able to take any index build operation and

“start where it left off” should it fail? It would also be nice to schedule an index build into

multiple segments, say, to spread across maintenance windows.

 Resumable Index Operations
In SQL Server 2017, we introduced the concept of a resumable index rebuild operation.

The idea is that you start rebuilding an index with the T-SQL statement ALTER INDEX
REBUILD, and then you can use ALTER INDEX with the PAUSE option to suspend

the index rebuild. All the progress to rebuild the new online index is saved so you can

resume the index rebuild with ALTER INDEX using the RESUME option. You also have

the option to abort an online index rebuild in progress with an ALTER INDEX command

using the ABORT option. You can read the full syntax of how to use ALTER INDEX for a

resumable index in the documentation at https://docs.microsoft.com/en-us/sql/t-

sql/statements/alter-index-transact-sql. You can also read more specific details of

how resumable rebuild index works and any restrictions at https://docs.microsoft.

com/en-us/sql/t-sql/statements/alter-index-transact-sql#online-index-

operations.

SQL Server 2019 introduces the concept of resumable indexes when creating the

index with CREATE INDEX. You can read the syntax for how to create a resumable index

in the documentation at https://docs.microsoft.com/en-us/sql/t-sql/statements/

create-index-transact-sql. You can also read more details about resumable index

creation at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-

index- transact-sql#online-option.

In addition, SQL Server 2019 introduces the concept of a default database
scoped setting for online and resumable index operations. These new options are

called ELEVATE_ONLINE and ELEVATE_RESUMABLE. You can read the details

of using these options in the documentation at https://docs.microsoft.com/

en-us/sql/relational-databases/indexes/guidelines-for-online-index-

operations?#online-default-options.

Instead of just reading about resumable index creation, let’s try an example using the

new database scoped options.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql#online-index-operations
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql#online-index-operations
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql#online-index-operations
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql#online-option
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql#online-option
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations?#online-default-options
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations?#online-default-options
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations?#online-default-options

118

 Prerequisites to Using the Example
To execute the example presented in this chapter, you must install SQL Server 2019.

In SQL Server 2017, resumable index rebuild requires Enterprise Edition. Therefore,

you will need to install either Enterprise, Evaluation, or Developer Edition for these

examples.

All of the scripts and files for this example can be found in the GitHub repo for the

book under the ch4_mission_critical_availability\resumableindex directory.

There are three options to use the example:

• A T-SQL notebook called resumableindex.ipynb which requires

Azure Data Studio (you need the June 2019 or later version). The

T-SQL notebook has all the instructions for the complete example.

• Load the T-SQL script resumableindex.sql in SQL Server

Management Studio (SSMS) or Azure Data Studio and go through

each step as commented in the script.

• Run each set of T-SQL statements separately as seen in the T-SQL

script resumableindex.sql and as I’ll walk you through in the next

section.

 Try Out Resumable Index Creation
Let’s walk through step by step on how to use a resumable online index.

 1. Run Step 1 in the resumableindex.sql script to create the

database for this example:

-- Step 1: Create the database

USE master

GO

DROP DATABASE IF EXISTS gotexasrangers

GO

CREATE DATABASE gotexasrangers

GO

 2. Run Step 2 to create a table and populate it with some data.

I chose this number of rows so that the index build will take

over a minute. This is because when I show you how to use the

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

119

MAX_DURATION option, the minimum value for that option is 1

minute. Be patient with this step as it could take as long as 10–15

minutes to run. Go get a cup of coffee and come back to see this

finish and proceed to Step 3.

-- Step 2: Create a table as a heap with no clustered index

-- Make the table fairly big so an index build takes at least

-- a few minutes. The resumable index option for MAX_DURATION has

-- a minimum value of 1 minute.

USE gotexasrangers

GO

DROP TABLE IF EXISTS letsgorangers

GO

CREATE TABLE letsgorangers (col1 int, col2 char(7000) not null)

GO

SET NOCOUNT ON

GO

BEGIN TRANSACTION

GO

INSERT INTO letsgorangers values (1, 'I would love to win the

World Series')

GO 750000

COMMIT TRANSACTION

GO

SET NOCOUNT OFF

GO

 3. Run Step 3 to create an online, resumable clustered index. Notice

the use of the option called MAX_DURATION. This means that the

index build will be paused if it has not completed after 1 minute.

-- Step 3: Try to create the index as online, resumable, and a

max_duration of one minute

CREATE CLUSTERED INDEX rangeridx ON letsgorangers (col1) WITH

(ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 1)

GO

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

120

When the duration has expired, the CREATE INDEX will experience

a failure. Normally, this would require you to “start over” since the

entire index build would be rolled back. But since you created the

index as resumable, the index build is merely paused.

When the failure occurs, your output should look something like

the following:

Msg 3643, Level 16, State 1, Line 31

The operation elapsed time exceeded the maximum time

specified for this operation. The execution has been

stopped.

The statement has been terminated.

Msg 596, Level 21, State 1, Line 29

Cannot continue the execution because the session is in the

kill state.

Msg 0, Level 20, State 0, Line 29

A severe error occurred on the current command. The

results, if any, should be discarded.

This message means the statement has failed and terminated the

connection. This seems like a problem but, again, the progress of

the create index is simply paused.

Note Another way to pause a resumable index build is to use the AlTer inDeX
command with the pAUse option on another connection while the create index is
running.

 4. Run Step 4 to check on the progress of the index build using the

Dynamic Management View (DMV) sys.index_resumable_
operations.

-- Step 4: Check the progress of the index build

USE gotexasrangers

GO

SELECT * FROM sys.index_resumable_operations

GO

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

121

In your result set, the state_desc should be PAUSED, and the

percent_complete should be around 30%. This means that when you

resume the index build, it should only have about 70% left to finish.

 5. To resume the index build operation and complete it, you can use

the ALTER INDEX statement like in Step 5.

-- Step 6: Resume the index build

ALTER INDEX rangeridx on letsgorangers RESUME

GO

While this is running, you could use ALTER INDEX with the PAUSE

option to pause the index build again (and then resume it again).

 6. Let’s try creating a resumable index a different way. First, use Step

6 to drop the existing index and set two database scoped options

to make creating indexes online and resumable the default, where

supported.

Note not all indexes can be built online and resumable. For example, XMl
indexes are not supported. you can see a list of indexes that are not supported
for online operations at https://docs.microsoft.com/en-us/sql/
relational-databases/indexes/guidelines-for-online-index-
operations.

-- Step 6: Drop the first index. Use the default scoped

option for resumable and online

USE gotexasrangers

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_RESUMABLE =

WHEN_SUPPORTED

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_ONLINE =

WHEN_SUPPORTED

GO

DROP INDEX IF EXISTS letsgorangers.rangeridx

GO

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/guidelines-for-online-index-operations

122

 7. Now create the index using Step 7 with no special options. Let
the CREATE INDEX run for about 30 seconds and then cancel
it. Use whatever technique to cancel a query from your tool (for

SSMS hit the red stop button):

-- Step 7: Create the index again. Notice there are no options

used.

-- CANCEL this after about 30 seconds

CREATE CLUSTERED INDEX rangeridx ON letsgorangers (col1)

GO

Your output will be something like this:

The statement has been terminated.

Query was canceled by user.

Normally, cancelling a CREATE INDEX would cause it to roll back.

But since the default options for indexes that are supported are

ONLINE and RESUMABLE, the index build is only paused, even

though you didn’t have to explicitly specify those options.

 8. Check the status of the paused index build using Step 8.

-- Step 8: Check the index progress

USE gotexasrangers

GO

SELECT * FROM sys.index_resumable_operations

GO

As seen earlier in this example, the state_desc should be PAUSED,

and the percent_complete should be around 20–30%.

 9. Use Step 9 to resume and complete the index build.

-- Step 9: Resume the index build

ALTER INDEX rangeridx on letsgorangers RESUME

GO

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

123

Keep this possible scenario in mind when you think of resumable indexes. Let’s

say creating or rebuilding an index takes 4 hours, and, during that time, building the

index takes a certain amount of memory, CPU, and I/O resources that can be somewhat

impactful to your application. You could now use a technique of CREATE and then

PAUSE/RESUME in multiple segments. Choose the segments to create or resume the

index build when application usage is at its lowest; you are now scheduling an index

build into multiple phases. You could even use a SQL Server Agent job to schedule these

phases for whatever time best meets your application requirements.

 Online Index Maintenance for Columnstore
Clustered columnstore indexes are critical for high-performance analytic queries,

especially in data warehouse scenarios. Building (or rebuilding) a clustered columnstore

index may be a lengthy operation given the size of tables where a clustered columnstore

index is typically built. Since the build or rebuild of a clustered columnstore index

is offline, the entire table must be locked from other transactions, which is not the

availability you likely need.

SQL Server 2017 introduced the ability to build and rebuild nonclustered

columnstore indexes online. In SQL Server 2019, clustered columnstore indexes can now

be built and rebuilt online. You can read the details of the syntax for online clustered

columnstore build at https://docs.microsoft.com/en-us/sql/t-sql/statements/

create-columnstore-index-transact-sql. The syntax to rebuild a clustered

columnstore index online will be the same as with a standard index using the ALTER

INDEX syntax at https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-

index- transact-sql. Resumable indexes are not yet supported for online clustered or

nonclustered columnstore indexes.

 Enhancing Always On Availability Groups
Always On Availability Groups (I will refer to this as Availability Groups for the rest of

the chapter) are the flagship High Availability Disaster Recovery (HADR) feature in SQL

Server. First shipped in SQL Server 2012, each release has come with new enhancements

to expand the capabilities of Availability Groups.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-columnstore-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-columnstore-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql

124

For example, in SQL Server 2016, we introduced the concept of database health for

failover with Availability Groups (you can read more about this concept at https://

docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/

sql-server-always-on-database-health-detection-failover-option). We also

boosted the internal performance of Availability Groups, which you can read about at

 https://blogs.msdn.microsoft.com/bobsql/2016/09/26/sql-server-2016-it-just-

runs-faster-always-on-availability-groups-turbocharged/.

In SQL Server 2017, one key new capability for Availability Groups is the concept of

clusterless Availability Groups. This allows you to set up an Availability Group with no

clustering software. Any failover is manual, but this capability could allow you to set up

a read scale–out replica platform or even set up Availability Groups across Windows and

Linux. You can read more about this capability at https://docs.microsoft.com/en-us/

sql/database-engine/availability-groups/windows/read-scale-availability-

groups.

For SQL Server 2019, we have introduced two new capabilities for Availability

Groups, based on customer feedback and technology trends:

• Support for more replicas

• A new method to ensure your application is connected to the primary

replica

 Support for More Synchronous Replicas
We now support up to five synchronous replicas in an Availability Group, and a total of

nine overall replicas. See the documentation at https://docs.microsoft.com/en-us/

sql/database-engine/availability-groups/windows/always-on-availability-

groups-sql-server for more information.

 Secondary to Primary Replica Read/Write Connection
Redirection
Secondary to primary replica read/write connection redirection is a new capability

to solve the challenge for your application to always be directed to the primary replica no

matter what SQL instance is hosting the primary replica for the Availability Group.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://blogs.msdn.microsoft.com/bobsql/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/
https://blogs.msdn.microsoft.com/bobsql/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/read-scale-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/read-scale-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/read-scale-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server

125

In previous versions of SQL Server, the only way as a developer to ensure you were

connected to the primary replica of an Availability Group was to use the concept of a

listener. However, a listener may not always be available when you configure SQL Server

Availability Groups such as a clusterless Availability Group as I described earlier in this

section.

SQL Server 2019 now provides T-SQL settings for Availability Groups and connection

string options for client applications to ensure the application will always be connected

to the primary replica no matter what server in the Availability Group the application is

connected to. SQL Server provides the built-in logic for this concept and uses a concept

of redirection if an application connected to a server that was a secondary replica.

You can read all the details of how to set up primary connection redirection for SQL

Server and your application in the documentation at https://docs.microsoft.com/

en-us/sql/database-engine/availability-groups/windows/secondary-replica-

connection-redirection-always-on-availability-groups.

 Accelerated Database Recovery
One of the aspects of my job at Microsoft I still find very exciting is to learn about new

innovations that start as projects and then see them make it into a new feature of a

released product, sometimes years later.

As an example, I remember seeing in 2016 when I joined engineering about a

project called constant time recovery (CTR). I remember taking some time to see what

this project was about, because I saw the name of my long-time colleague Peter Byrne

involved in the project. CTR has become Accelerated Database Recovery (ADR) with

SQL Server 2019 and Azure SQL Database.

CTR actually started as a project in 2015 initiated by Hanuma Kodavalla,

Distinguished Engineer at Microsoft. Hanuma recruited others to join a project including

Peter Byrne, Panagiotis Antonopoulos, and Srikumar Rangarajan, among others. The

project was trying to attack one very large problem with SQL Server: long-running

transactions. When these engineers finished the work, they decided to write a paper on

the concept. As you read through the rest of this chapter and use the examples, consider

also reading all the details of the paper for the CTR project at www.microsoft.com/en-

us/research/publication/constant-time-recovery-in-azure-sql-database/. I call

this the CTR Paper and will refer to it that way for the rest of this chapter. I recommend

you do what I did when I wrote this chapter. Bring up this paper and refer to it back and

forth as you read the chapter and use the examples.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups
https://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
https://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/

126

 The Challenge of Long Active Transactions
Long-running transactions can cause recovery to “run out of control” (effectively take a

very long time that you can’t predict) and affect application availability to data. This isn’t

some type of bug or problem with the SQL Server engine; it is doing exactly as it is told

by the application. SQL Server can’t prevent an application from running a large number

of modifications within a transaction or a transaction that makes few modifications but

does not commit or roll back for long periods of time. That is the classic definition of a

long-running transaction.

In addition, rolling back a long transaction requires something called compensation

operations. Rollback requires logical undo. A DELETE of 1 million rows requires 1

million DELETE log records. A rollback of this delete transaction would require SQL

Server to undo all the deletes and also log 1 million INSERT log records. This slows
down the time it takes to roll back a transaction. I’ve often seen customers try to KILL

a session with a long-running active transaction and wonder why the KILL doesn’t have

immediate effect. It is usually because the transaction must be rolled back before the

session can be safely terminated (or you would have data inconsistency).

Another consequence of a long-running transaction is its impact on transaction log
truncation. The transaction log can only be truncated up to the oldest active transaction.

You can’t remove transaction log records for a transaction that is still not committed

or rolled back. But since the transaction log is serial, a single “old” active transaction

(and it may not have any activity associated with it) can hold up the truncation of the

transaction log for every other transaction after it. This means to you the appearance of a

transaction log that seems to “grow out of control” (and often you can’t figure out why).

Accelerated Database Recovery was designed to solve all of these problems.

 How Accelerated Database Recovery Works
Accelerated Database Recovery (ADR) is designed to tackle the problems with long-

running transactions through the following capabilities, as listed in the documentation

at https://docs.microsoft.com/en-us/azure/sql-database/sql-database-

accelerated-database-recovery:

• Fast and consistent database recovery

With ADR, long-running transactions do not impact the overall recovery

time, enabling fast and consistent database recovery irrespective of the

number of active transactions in the system or their sizes.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-accelerated-database-recovery
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-accelerated-database-recovery

127

• Instantaneous transaction rollback

With ADR, transaction rollback is instantaneous, irrespective of

the time that the transaction has been active or the number of

updates that it has performed.

• Aggressive log truncation

With ADR, the transaction log is aggressively truncated, even in

the presence of active long-running transactions, which prevents

it from growing out of control.

 SQL Server Normal Recovery

In order to understand how Accelerated Database Recovery can solve these problems, it

is first important) to understand how traditional recovery works for SQL Server.

Consider this diagram in Figure 4-1 as provided in the CTR paper (www.microsoft.com/

en-us/research/publication/constant-time-recovery-in-azure-sql-database/).

Figure 4-1. The normal SQL Server recovery process

The recovery process for SQL Server consists of three phases:

 1. Analysis

Start from the log record when a CHECKPOINT was recorded and

scan log records until the end of the log.

This analysis allows SQL Server to know:

• Which transactions were not committed (active) at the time

the database was last taken offline (could just be a SQL Server

shutdown). These are likely the transactions that need to be

rolled back to ensure consistency.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

http://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
http://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/

128

• The log record containing the oldest modified or “dirty” page.

SQL Server needs this so it can redo, if necessary, any committed

transactions where pages associated with the committed

transactions do not reflect the transaction state.

In other words, analysis is all about setting up recovery to perform

the next two phases: redo and undo.

 2. Redo

In order for your data to be consistent, SQL Server must ensure

that any committed transactions are accurately reflected during

recovery. The method to achieve this involves finding the log record

from the oldest modified or “dirty” page in the transaction log and

comparing the Log Sequence Number (LSN) for each log record in

the committed transaction with the LSN on the affected page. If the

page LSN is smaller than the log record LSN, the log record operation

(INSERT, UPDATE, DELETE, etc.) must be redone. Each log record for

committed transactions is examined this way until the end of the log.

However, the redo phase, phase 2, actually starts at the log record

with the oldest active transaction. The redo phase starts here because

it needs to acquire locks for active transactions so that the database

can be made available to users (who would be blocked on these locks

so they cannot touch active transaction data) after the redo phase.

However, this means the redo phase is affected by the size of log

records from the oldest active transaction. Can you see now why the

length of recovery time can be affected by a long active transaction?

Once redo is finished, the third and final phase, undo, takes place.

 3. Undo

Just like ensuring committed transactions are accurately reflected

on database pages, SQL Server must make sure that any transactions

that are not committed are not reflected in database pages. You may

be wondering how could SQL Server have database pages hardened

to disk for transactions that were not committed? This is because

SQL Server can at any time write a modified or dirty page to disk

if it needs a page for another user and no free pages are available.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

129

Or a checkpoint (including indirect checkpoint) operation could

take place, which will write modified pages to disk, whether the

transaction is committed or not. Therefore, if SQL Server was shut

down with active transactions that were not committed, the engine

must ensure during recovery that no database pages have any

modifications associated with the uncommitted transaction. Any

active transactions in this state need to be rolled back, just like if a

ROLLBACK TRANSACTION was executed at runtime.

SQL Server does this by scanning the log backward, from the end

of the log to the log record with the oldest active transaction, to

perform the necessary rollback operations. Now the time for undo

is proportional to the length of the oldest active transaction. This is

also why customers are surprised when they kill SQL Server in hopes

of getting the database up quickly when a long-running transaction

can’t be killed (because it is in rollback) and recovery takes a long

time. It is because SQL Server must keep your data consistent and

has to finish the rollback it was previously running.

This recovery system, based on a design called ARIES (see this paper for more details

https://dl.acm.org/citation.cfm?id=128770), has served SQL Server well for 25

years and works perfectly fine (and is still needed and used) except for the one scenario

I have called out: a long-running active transaction which lengthens the time for both

redo and undo processing.

Now let’s look at how Accelerated Database Recovery (ADR) changes the game.

 SQL Server Using Accelerated Database Recovery (ADR)

I won’t attempt to give you every detail of what the CTR paper describes, but I’ll describe

the basic components that make ADR work and how it is different from the standard

ARIES recovery approach and then use an example to give you more insight.

ADR introduces the concept of a Persistent Version Store (PVS). SQL Server has a

concept called a version store which is used for snapshot isolation, but that version store

is kept in tempdb. PVS is a similar concept in that versions of modifications are kept for

rows, but this version store is persistent, because it is stored in the user database (the

version store for snapshot isolation) is not persistent because it is kept in tempdb, and

tempdb is recreated after a server restart). Once you enable ADR, SQL Server will start

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://dl.acm.org/citation.cfm?id=128770

130

tracking modifications using versions. Versions can be stored either in the row (in-row)

of a database page or in off-row storage within the database. Versions have the previous

state of the data before the modification and a transaction ID that caused the version, to

easily identify whether a version of the data should be visible to other transactions.

Now with PVS, transaction operations like rollback get interesting and easy. If a

transaction is rolled back, SQL Server simply marks the transaction as ABORTED. Now

any query looking at the row for data can determine if a version of the row is visible and

should be used. If the latest version of a row is associated with an ABORTED transaction,

the query can ignore this version and look for a previous version. If the version of the row

is associated with a committed or active transaction, isolation level rules apply to see if

the row is visible.

SQL Server maintains the state of transactions to make all this work through the

concept of an Aborted Transaction Map. This is discussed in more detail in the CTR

paper.

Note one aspect of versions with ADr that can be confusing is isolation levels.
The current feature of versions (in tempdb) is specifically built to support snapshot
isolation levels. versions for ADr are not built to support snapshot isolation but can
be used to support them along with the other benefits of ADr.

PVS also provides benefit to fast recovery (hence the term constant time recovery).

The redo phase just needs to make sure the version store is consistent within rows of

pages of tables. Undo just needs to mark any active transaction as aborted, and the

process of versioning as described earlier does the rest. This makes recovery very quick.

Some transactions, mostly system transactions (e.g., page allocation, updating

statistics), cannot use the new PVS scheme. Therefore, when ADR is enabled, SQL

Server maintains a secondary log (Slog, which is stored in the transaction log) for any

transactions that cannot use versioning. Transactions associated with the Slog must use

the normal ARIES recovery mode. Fortunately, system transactions are almost always

short-lived so won’t cause issues as seen with long-running user transactions.

Figure 4-2, extracted from the CTR paper, shows the new recovery process when ADR

is enabled.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

131

As you can see in the diagram, SQL Server still has three phases of recovery: analysis,

redo, and undo. But now the process is much faster, hence the term accelerated.

Analysis still must do the work as it has done in the past, starting from the last log

record for a CHECKPOINT, but redo and undo are significantly different.

Redo will ensure log records for Slog operations are redone from the oldest active

transaction to the log record from the oldest dirty page operation. From this point, redo

will perform the same operations of ensuring data is correctly committed as with ARIES

recovery. But this sequence should usually be short, assuming standard checkpoint

configurations are used for the database.

Undo just needs to mark any uncommitted transaction as aborted but will need

to undo Slog transaction operations similar to ARIES user transactions. But system

transactions are short in nature and represent a very small subset of all transactions, so

this process should always be fast.

The result is a new, incredibly fast recovery system all based on a version store kept

in the user database.

Let’s use an example to look more into how transaction logging is different when

using ADR. This example is all self-contained. You just need SQL Server 2019 and SQL

Server Management Studio (SSMS) or Azure Data Studio (ADS) to run this example. You

will use the script alookatadr.sql as found in the ch4_mission_critical_availability\adr

directory.

Figure 4-2. SQL Server using Accelerated Database Recovery

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

132

 1. Open up the script alookatadr.sql and execute Step 1 in the script

to create the database.

-- Step 1: Create the database and make it simple recovery.

Default for ADR is OFF

USE master

GO

DROP DATABASE IF EXISTS gocowboys

GO

CREATE DATABASE gocowboys

GO

ALTER DATABASE gocowboys SET RECOVERY SIMPLE

GO

Tip This example uses a siMple recovery model for the database to make it
easier to examine log records.

 2. Run Step 2 in the script to create a table and insert rows. Note

that the script inserts 1000 rows. Because of an optimization with

ADR, you can’t just use one row (you will learn more about this

optimization later in the chapter):

-- Step 2: Create a very basic table and insert 1000 rows

USE gocowboys

GO

DROP TABLE IF EXISTS howboutthemcowboys

GO

CREATE TABLE howboutthemcowboys (col1 int, col2 char(100) not

null)

GO

INSERT INTO howboutthemcowboys VALUES (1, 'Whitten has returned')

GO 1000

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

133

 3. Use Step 3 to truncate the log via a CHECKPOINT (to make it

easier to see existing log records) and delete the 1000 rows in a

transaction. Roll back the transaction and examine the log using

the system function sys.fn_dblog:

-- Step 3: Truncate the log, delete all rows, roll it back, and

look at the tlog records

CHECKPOINT

GO

BEGIN TRANSACTION;

DELETE FROM howboutthemcowboys

ROLLBACK TRANSACTION

GO

SELECT * FROM sys.fn_dblog(NULL, NULL)

GO

The results of querying the log should yield some 2000+ rows. If

you scroll to the bottom of the results, you should see log records

such as in Figure 4-3.

Notice all the log records called LOP_INSERT_ROWS before

the LOP_ABORT_XACT to make the transaction aborted. These

LOP_INSERT_ROWS records are compensation log records for the

DELETE. The logical rollback of a DELETE is an INSERT. All the

LOP_INSERT_ROW log records and the final LOP_ABORT_XACT

were generated as part of the ROLLBACK TRANSACTION statement.

Figure 4-3. Log records from an aborted DELETE

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

134

 4. In Step 4, enable ADR with ALTER DATABASE, recreate the table,

and insert rows again:

-- Step 4: Change to use ADR for the db. Recreate the table again

ALTER DATABASE gocowboys SET ACCELERATED_DATABASE_RECOVERY = ON

GO

USE gocowboys

GO

DROP TABLE IF EXISTS howboutthemcowboys

GO

CREATE TABLE howboutthemcowboys (col1 int, col2 char(100) not

null)

GO

INSERT INTO howboutthemcowboys VALUES (1, 'Whitten has returned')

GO 1000

 5. With Step 5, repeat the same exercise to truncate the log, roll back

a DELETE, and look at log records in the transaction log:

-- Step 5: Delete and rollback and look at the tlog again

CHECKPOINT

GO

BEGIN TRANSACTION

DELETE FROM howboutthemcowboys

ROLLBACK TRANSACTION

GO

SELECT * FROM sys.fn_dblog(NULL, NULL)

GO

You should now see only 1000+ log records. Scroll down again to

the bottom of the results and look at the last log records. It should

look like Figure 4-4.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

135

Notice there are no INSERT compensation records, and the

LOP_ABORT_XACT has Context of LCX_CTR_ABORTED. All

the LOP_DELETE_ROWS log records were generated with the

DELETE statement. The ROLLBACK TRAN T-SQL statement only

generated the LOP_ABORT_XACT record.

 6. SQL Server 2019 includes diagnostics to examine the PVS. Use

Step 6 to see statements for the PVS in this database.

-- Step 6: Look at the PVS stats

SELECT * FROM sys.dm_tran_persistent_version_store_stats

WHERE database_id = db_id('gocowboys')

GO

Now that you have seen how ADR works, let’s look at two examples to see how ADR

improves rollback performance, log truncation, and faster recovery.

 Using Accelerated Database Recovery
As you saw from the example you just completed, using Accelerated Database Recovery

(ADR) requires no application changes. You simply use the following T-SQL statement to

enable ADR and you are off and running:

ALTER DATABASE <dbname> SET ACCELERATED_DATABASE_RECOVERY = ON

Figure 4-4. Log records from an aborted DELETE with ADR

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

136

Let’s walk through two examples to see:

• How fast rollback now executes and how the transaction log is

aggressively truncated

• How fast recovery completes, allowing you fast access to the database

Everything you need to run these examples can be found in the notebooks and

scripts for each example.

 Fast Rollback and Aggressive Log Truncation

Use the following example to see how fast rollback can be executed using ADR, and how

aggressive the transaction log is now truncated, avoiding excessive log growth scenarios.

In this example, we will compare the speed of rollback and the growth of the transaction

log with and without ADR.

You can run through this example using the T-SQL script adr.sql in the

ch4_mission_critical_availability\adr directory.

I recommend in this situation to use the T-SQL notebook adr.ipynb in the

ch4_mission_critical_availability\adr directory. The notebook has all the instructions

to create a database, create a table, and insert data. Then with ADR disabled, you will

delete all the rows in the table in a transaction. Then you will examine the amount of log

space that has been used but can’t be truncated even after a checkpoint. Then you will

observe the speed of a rollback of the entire delete (or lack of speed, to be more precise).

Then, in the notebook, you will repeat those steps, but this time with ADR on. The

T-SQL script has all the same steps. After going through this example, let’s do something

a bit more advanced. Let’s see the speed of recovery using the same T-SQL example but

with more rows to see the impact of recovery.

 Speeding Up Recovery

In order to show how fast recovery works, you have to create an example where the

undo phase of recovery needs to attempt to roll back a large number of modifications or

transactions.

So how do you create a scenario where SQL Server has to run the undo phase on

a certain transaction? In order to do this, you need to craft a scenario for an active

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

137

transaction that does NOT get rolled back or committed before SQL Server is shut down.

There are three methods to make this happen:

• Execute the T-SQL statement SHUTDOWN WITH NOWAIT.

• Shut down the SQL Server service (e.g., net stop mssqlserver).

• Terminate the SQLSERVR.EXE process (for Windows, use “End Task”

from Task Manager).

Any of these techniques will stop SQL Server without affecting the active transaction.

There is one additional consideration. For SQL Server to roll back the active transactions,

there “has to be something to roll back.” If the database pages affected by the active

transaction were never flushed to disk, when SQL Server runs recovery, it can’t “undo”

something that was never there. Therefore, you should execute a CHECKPOINT against

the database when using one of these methods (shutting the SQL Server service down

gracefully does run a checkpoint against all databases). Note, it is possible that the

Recovery Writer or Lazy Writer have flushed these pages, but this is not something you

can rely on for a demo.

Tip What if you wanted to force redo? it is a bit of the opposite approach. you
have to have a committed transaction, but the pages affected by the transaction
cannot be flushed to disk. run a transaction similar to the examples found in this
chapter but commit the transaction. Then “crash” the server, but you must do this
without a checkpoint, so use the “end Task” method.

Armed with this knowledge, you can go through the T-SQL script adr_recovery.
sql or the T-SQL notebook adr_recovery.ipynb as found in the ch4_mission_critical_
availability\adr directory. I recommend using the notebook, as it has documentation

explaining each step with guidance on when to “crash” SQL server.

You will want to examine the ERRORLOG when going through the steps of the

notebook or script. I have examples here for what you should see when recovery runs

without and with ADR enabled.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

138

Here is an example ERRORLOG when ADR is not enabled.

spid25s Recovery of database 'gocowboys' (6) is 2% complete

(approximately 697 seconds remain). Phase 2 of 3. This is an

informational message only. No user action is required.

spid25s Recovery of database 'gocowboys' (6) is 5% complete

(approximately 682 seconds remain). Phase 2 of 3. This is an

informational message only. No user action is required.

spid25s Recovery of database 'gocowboys' (6) is 7% complete

(approximately 667 seconds remain). Phase 2 of 3. This is an

informational message only. No user action is required.

spid25s Recovery of database 'gocowboys' (6) is 7% complete

(approximately 667 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 40% complete

(approximately 113 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 50% complete

(approximately 94 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 59% complete

(approximately 79 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 68% complete

(approximately 65 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 76% complete

(approximately 48 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 84% complete

(approximately 32 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

spid8s Recovery of database 'gocowboys' (6) is 93% complete

(approximately 15 seconds remain). Phase 3 of 3. This is an

informational message only. No user action is required.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

139

spid8s 1 transactions rolled back in database 'gocowboys' (6:0). This

is an informational message only. No user action is required.

spid8s Recovery is writing a checkpoint in database 'gocowboys' (6).

This is an informational message only. No user action is

required.

spid8s Recovery completed for database gocowboys (database ID 6) in

211 second(s) (analysis 15 ms, redo 56340 ms, undo 154549

ms.) This is an informational message only. No user action is

required.

Note The redo is needed here for some system transactions involved with index
statistics for this example.

Here is the ERRORLOG when ADR is enabled. Recovery when ADR is enabled

happens so fast; SQL Server doesn’t even bother writing how long recovery took!

spid25s 1 transactions rolled back in database 'gocowboys' (6:0). This

is an informational message only. No user action is required.

spid25s Recovery is writing a checkpoint in database 'gocowboys' (6).

This is an informational message only. No user required.

 Accelerate Database Recovery Nuts and Bolts
This all sounds too good to be true, and I’m sure you are wondering if there are any side

effects to this. If ADR is so great, why don’t we just make it the default?

 Performance and Size

There are two questions that come up when I’ve talked to customers about ADR:

Does the database get larger?
The short answer to this question is yes. The more important question is by how

much. Since we are keeping versions of rows in the database for a period of time,

naturally the size required for PVS is bigger than without it.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

140

The problem, as with any feature like this, is the dreaded answer, “it depends.”

Depends on what? The factors are

• Is the application write-intensive with a lot of modifications? The

bigger the number of modifications, the more size will be required to

hold versions.

• How long are transactions that need to read version data? Once

versions are not needed by any query, they can be removed.

Accelerated Database Recovery has built-in optimizations to keep the version store

as small as possible, including the following:

• “on-demand”

When updating a row, SQL Server can “reuse” a version of a row

that was aborted and write in a new version in its place. This

happens during the process of a data modification.

• Background cleanup

What about if versions are still around that are no longer needed

(e.g., aborted transactions) and an update has not occurred

yet? SQL Server uses the existing background worker thread

architecture to schedule cleanup (every “few” minutes) on

any versions that can be discarded both for in-row and off-row

versions. SQL Server uses a concept called logical revert to clean

up these versions. Logical revert is the process of ensuring the

committed version of the row is the “main” row for the page,

thereby making the “list” of versions shorter to traverse. Section

3.3 of the CTR paper (www.microsoft.com/en-us/research/

publication/constant-time-recovery-in-azure-sql-

database/) has an excellent detailed description of how logical

revert works. In addition, Section 3.7 of this same paper describes

the entire cleanup process.

Section 4 of the paper has results from experimental testing on growth, using an

example of 50 million insert, update, and delete operations. The team found after 50M

updates, the PVS grew the database by about 1Gb. You should look through these results

as it also shows the significant size reduction of the transaction log due to the use of ADR

(and you observed this during the activity in this chapter using the alookatadr.sql script).

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

https://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
https://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/
https://www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/

141

Does using ADR cause any performance impact?
This is probably the most common question asked about ADR. And like the growth

factor, the answer is, “Maybe, and it depends.” Since ADR is tracking every modification

with versions, write-intensive workloads will see the biggest impact. And read operations

for write-intensive workloads may also be affected some to find a version of a row.

As part of the CTR paper, the engineering team performed some testing using

benchmarks derived from the industry standard TPC-C and TPC-E benchmarks

(see www.tpc.org for more information about these benchmarks). TPC-C is an older

benchmark but very write-intensive. TPC-E is a more balanced but still “OLTP” write

workload benchmark. You can see the results in the paper in Section 4.2, but, effectively,

the run of TPC-C encountered about a 14% (in-row version) impact, and TPC-E

encountered a 2.5% (in-row version) impact.

I did my own “quick and dirty” testing using the open source tool HammerDB (see

www.hammerdb.com for more details). This tool comes with a variation of the TPC-C

benchmark. Using a 10 warehouse/10 virtual user execution over a 5-minute period,

I saw about 15% impact from using ADR.

Note none of these test results means that you will see these exact numbers
or any performance impact if you enable ADr for your database. This is because
these tests use benchmarks of a certain type of workload that may or may not
match your application. Find a standard way to test the performance of your
application with and without ADr to know the true impact of performance.

Look over the results in all of Section 4 of the paper, because it also shows some of

the amazing recovery time results the team has seen in Azure (you have already seen the

possible impact with a simple database).

Another major benefit of Accelerated Database Recovery is that failover time for

Always On Availability Groups can be faster and a better version story exists for read-

only queries on replicas.

 Unexpected Scenarios

In some cases, the Persistent Version Store (PVS) cannot be stored in-row, because it

does not fit on a page. In this case, the versions are stored in an internal system table.

These are called “off-row” scenarios. As you can imagine, when PVS is stored off-row, it is

not the ideal situation. Therefore, these scenarios should be avoided if possible.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

http://www.tpc.org
http://www.hammerdb.com

142

Off-row versions can occur mostly when the modification is a substantial change

to the current version of the row. If an update is so significant, it is not possible or does

not make sense to store a version in-row; the version will be stored in an internal system

table as an off-row version. I did some poking around in a database with ADR on, and

the PVS is kept in a table called persistent_version_store in each database. This table is

marked as a type INTERNAL_TABLE which is similar to other tables like ones for Query

Store. This system table has the version data and metadata to link it back to the actual

row in the page of a table.

If you are concerned whether your application is generating a lot of off-row versions,

there are performance counters and extended events you can use which I describe in the

next section called Tracking ADR.

Note At the time i wrote this chapter, the off-row pvs is stored in the priMAry
filegroup of your database, and there is no choice on this. The engineering team
was discussing whether they could add an option to move the off-row pvs to
another filegroup chosen by the user through AlTer DATAbAse. Consult the
documentation for AlTer DATAbAse to see if this enhancement made its way into
the final sQl server 2019 release.

Another unexpected situation is called short-transaction optimization. This situation

is a good thing. It doesn’t make sense to use PVS when transactions are very short in

nature. Therefore, when testing ADR, don’t expect a transaction that deletes a few rows

to use ADR. If you are examining the log with fn_dblog(), you can see transactions where

ADR will not apply with the following Operation and Context, LOP_FORGET_XACT and

LCX_XACT_DOES_NOT_SUPPORT_CTR.

 Tracking ADR

Like many new features of SQL Server, the ADR team has wait types, Extended Events,

and performance monitor counters to track the execution of ADR, the use of the

Persisted Version Store (PVS), and cleanup processing.

Figure 4-5 shows some of the performance counters available to track the use of the

Persisted Version Store (PVS), including tracking how many off-row versions are being

generated.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

143

There are several Extended Events that can also be used to track specific generation

of versions and for cleanup tasks. You can find all of these events by executing the

following queries against the XE Dynamic Management Views:

select * from sys.dm_xe_objects where name like '%pvs%'

select * from sys.dm_xe_objects where name like '%ctr%'

One of these that might be interesting is the pvs_add_record event. You could use

this event along with an action sql_text to find out what queries are generating off-row

versions.

Note i have not done any testing using these extended events, so i cannot speak
to the performance impact they may have on your application.

Figure 4-5. PVS performance counters

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

144

Finally, for those who really want to go deep, there are several wait types listed in

the sys.dm_os_wait_stats DMV which apply to ADR. You could monitor these to track

execution of activities like cleanup. Use the following T-SQL statement to find these wait

types:

select * from sys.dm_os_wait_stats

where wait_type like '%pvs%' or wait_type like '%ctr%'

 Should I Use ADR?

If you don’t have long-running transactions, ADR will likely not help you and may

negatively impact your application. If your application generates a lot of off-row versions,

the impact may be too high to see the benefit of ADR. Keep in mind, though, that this

could still be of big benefit for failover scenarios, such as with Always On Availability

Groups.

My recommendation is to find a way to test this with your application. We didn’t

make this the default (yet) for SQL Server 2019, because there are too many types of

workloads out there, and not all – as I’ve discussed in this chapter – will see a benefit. But

keep these final thoughts in mind:

• This is one of those features you may not know you need now but

when you need it… you need it. You may not be able to predict

when a long-running recovery is going to bring your business down.

Wouldn’t it be nice to have this enabled so that just doesn’t happen?

• Most workloads are not like TPC-C which are really, really write-

intensive. Our testing results with a more balanced read/write

workload like TPC-E did not show a huge impact.

• Consider this quote from the engineering team in the CTR paper

as they used a “cloud-first” approach to roll out this capability

first in Azure, “…CTR has already been enabled in five regions and

approximately one million databases with very promising results.”

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

145

 Summary
Ensuring your data and application are available is an important aspect of any

respectable data platform product. SQL Server 2019 continues to enhance core

availability functionality like resumable online indexing and Availability Groups.

Furthermore, SQL Server 2019 brings to the industry a very innovative approach to

solving downtime due to long-running active transactions with Accelerated Database

Recovery.

ChApTer 4 Mission-CriTiCAl AvAilAbiliTy

147
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_5

CHAPTER 5

Modern Development
Platform
Just about any developer needs data, and a product like SQL Server has the capabilities,

languages, drivers, and platforms you need. A modern data developer needs a database

platform to meet the challenges of today’s applications. SQL Server 2019 meets these

challenges with the following capabilities:

• Support for a wide variety of languages and drivers across multiple
operating system platforms such as Windows, macOS, and Linux

with compatibility. Editions of SQL Server provide a common surface

area to minimize application logic.

• Graph databases integrated with SQL Server allow developers to

implement data models, such as social networks, without an additional

product – and query against it using a familiar language like T-SQL.

• Developers need the ability to build applications to handle Unicode

data using encoding systems widely used across the industry. SQL

Server 2019 supports UTF-8 encoding through new collations.

• Developers need a database platform to support new types of

applications integrating Machine Learning that are scalable, secure,

and integrated with the database. SQL Server Machine Learning
Services includes new enhancements in SQL Server 2019.

• The T-SQL language provides many capabilities, but developers

may need more. They want the ability to extend the T-SQL language

integrated with the database. SQL Server Language Extensions in

SQL Server 2019 allow developers to install and use new languages

such as Java integrated with SQL Server data.

148

 Languages, Drivers, and Platforms
When I started with Microsoft in 1993, developers writing applications for SQL Server

primarily used languages like Visual C or Visual Basic with a driver called DB-Library.

The clients were all running DOS (yes, DOS) or Windows, while SQL Server was a

Windows NT mainstream database server. C++ and ODBC soon followed, but the choice

of languages, drivers, and platforms was pretty restricted. Today, the choice of language,

drivers, and platforms for both client applications and SQL Server is way beyond

anything I ever thought I would see.

 Languages and Drivers
SQL Server 2019 is a modern database platform, and along with it comes a wide set

of choices of programming languages, including modern languages popular with

developers who traditionally have not used SQL Server.

Along with these language choices are drivers to access SQL Server that match the

requirements and needs of each language. Furthermore, these drivers work on a variety

of client platforms including macOS, Linux, and Windows.

Additionally, choices of drivers such as ODBC, OLE-DB, and .Net have become more

focused, instead of the wide variety and sometimes confusing choices from the past.

So how do you choose a language and/or driver? First, the language choice in some

cases dictates the driver you will use. For example, if you want to write code in PHP and

access SQL Server, you must use the PHP Driver for SQL Server.

Fortunately, Microsoft has created a very nice web site to help you make decisions on

language, choose the right driver, choose one or more client platforms, and see examples

of writing code to access SQL Server in that language.

To see this in action, go to the web site http://aka.ms/sqldev. The main web page

looks like Figure 5-1.

Chapter 5 Modern developMent platforM

http://aka.ms/sqldev

149

If you hover over one of the language choices, you can pick a client platform

language to get details of using that language with the appropriate driver and a code

sample tutorial (Figure 5-2 shows an example using Go).

Figure 5-1. The SQL Server development hub

Figure 5-2. Using the Go language with SQL Server

Chapter 5 Modern developMent platforM

150

Choosing the option for Windows, you will be presented with a complete tutorial

to build your first Go application for Windows (your SQL Server could be running on

Windows, Linux, or even containers) with SQL Server Developer Edition. Each language

and platform choice has a similar template like Figure 5-3 for Go.

Many developers who use languages such as C++ or C# have seen, to be honest, a

confusing list of driver choices for SQL Server.

After SQL Server 2012, we consolidated the list of drivers and versions you should be

using for ODBC, OLE-DB, or ADO.Net. I have found this documentation page https://

docs.microsoft.com/en-us/sql/connect/connect-history to show a very good

history of past drivers and which ones to use now if you are using SQL Server 2014 or

newer.

In addition, to get a complete list of language and appropriate driver choices to build

a SQL Server application, I find this documentation page to be an excellent resource:

https://docs.microsoft.com/en-us/sql/connect/sql-connection-libraries. (This

includes driver for object-relational mapping (ORM) framework applications.)

I am a bit of an “old-school” developer, so ODBC is my primary choice for a driver.

And we have built an ODBC driver for SQL Server that keeps up with new features of

SQL Server and is available for Linux, macOS, and Windows. You can read the complete

documentation for the latest SQL Server ODBC Driver at https://docs.microsoft.com/

en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server.

Figure 5-3. Creating a Go application for SQL Server

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/connect/connect-history
https://docs.microsoft.com/en-us/sql/connect/connect-history
https://docs.microsoft.com/en-us/sql/connect/sql-connection-libraries
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server

151

 Platforms and Editions
Starting with SQL Server 2017, SQL Server is now supported on Windows, Linux, and

with Docker Containers. This opens up the platform to developers who have never

considered SQL Server before. Regardless of what operating system hosts the production

SQL Server, developers can now test their applications with SQL Server Developer

Edition on Windows, Linux, or with Containers. And because the SQL Server engine

codebase is the same on all of these platforms, developers can write applications local

to their SQL Server deployment and be assured it is compatible with the production SQL

Server. This includes former feature gaps for SQL Server on Linux, such as replication

and Distributed Transactions (DTC), which now are available in SQL Server 2019.

Although not new to SQL Server 2019 (this was introduced in SQL Server 2016 SP1),

SQL Server editions other than Enterprise Edition contain similar “surface area” features

to make it easier to build a single application than can work across editions. For example,

In-Memory OLTP is now available as a feature for SQL Server Enterprise and Standard

Edition, and even SQL Server Express Edition (although the scale of this feature is not

the same across editions). You can now build your application using In-Memory OLTP

on Developer Edition and be assured it can work across various editions without putting

logic to detect editions in your application.

 Graph Database
The concept of a relational database handles all types of design models, data patterns,

and applications. However, there are certain types of data models designed after a real-

world problem that don’t necessarily fit well with a standard relational system and the

SQL language. The models typically involve hierarchical, “network,” or complex many-

to- many relationships of data. Wikipedia has a good description of this problem and

solutions at https://en.m.wikipedia.org/wiki/Graph_database.

Some developers have tried to still use a relational database to “fit” in a graph model

and use complex T-SQL statements to “navigate” the graph. In some cases, dedicated

projects to graph data have been built, such as the popular open source graph database

Neo4j (https://github.com/neo4j/neo4j). Other database platforms have included an

“add-on” to their relational database to provide graph capabilities.

Chapter 5 Modern developMent platforM

https://en.m.wikipedia.org/wiki/Graph_database
https://github.com/neo4j/neo4j

152

In 2016, members of the SQL Engineering team, including Hanuma Kodavalla,

Craig Freedman, Devin Rider, and Shreya Verma, formed a project to look into building

graph database capabilities into SQL Server and Azure SQL Database. Their goal was

to include graph capabilities built into the SQL Server engine and find a way to use the

T-SQL language to create graph tables and manipulate and search them with T-SQL. This

is another great example of leveraging the power of T-SQL by extending it.

The result of this effort was the release of graph database capabilities in SQL Server

2017 and Azure SQL Database. One of the huge benefits of a graph database in SQL

Server is that it comes along with the power of SQL Server. This includes HADR, security,

performance, and all the features of the engine. Rather than incorporate them into

the engine, other platforms treat features like this as add-ons or completely separate

products altogether.

 What Is a Graph Database in SQL Server?
A graph database in SQL Server is using tables to represent nodes and edges in a graph

model using T-SQL extensions. The term “database” is logical as it is not a different

database in the SQL Server sense. In a graph database, a node is an entity or object, and

an edge is a relationship between nodes.

A graph database, therefore, is a collection of node and edge tables and the data and

metadata that bind them together. SQL Server supports extensions to the T-SQL language

to define a node or edge table through the AS NODE or AS EDGE syntax for CREATE
TABLE. The complete syntax to create a node or edge table can be found at https://

docs.microsoft.com/en-us/sql/t-sql/statements/create-table-sql- graph.

Additionally, SQL Server supports a new T-SQL keyword called MATCH to navigate

the node and edge tables as part of a SELECT statement. The syntax for how to use a

MATCH keyword can be found in the documentation at https://docs.microsoft.com/

en-us/sql/t-sql/queries/match-sql-graph.

You can read the complete set of documentation for graph database in SQL Server

and Azure SQL Database at https://docs.microsoft.com/en-us/sql/relational-

databases/graphs/sql-graph-overview. You can also see a nice presentation from

Kevin Farlee from Microsoft on YouTube at www.youtube.com/watch?v=xirfl_t4Gqs.

The best way to see how a node or edge table works with SQL Server is to run

through an example.

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-sql-graph
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-sql-graph
https://docs.microsoft.com/en-us/sql/t-sql/queries/match-sql-graph
https://docs.microsoft.com/en-us/sql/t-sql/queries/match-sql-graph
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://www.youtube.com/watch?v=xirfl_t4Gqs

153

 Using a Graph Database in SQL Server
Many of you as readers will likely be new to using a graph database in SQL Server, so

I’ll use a simple example to demonstrate the power of this capability. In fact, I’ll use the

example provided in the documentation as found at https://docs.microsoft.com/en-

us/sql/relational-databases/graphs/sql-graph-sample, but put in a few variations

and add commentary to explain the example.

Consider the concept of a social network. Many of you experience this every day on

platforms like Facebook or LinkedIn. A network by its nature is a connection of things

typically modeled in a graph. Consider a network of friends as seen in Figure 5-4.

In this model of a graph, the nodes are Person, City, and Restaurant. The arrows

represent the relationships between the nodes; these are the edges. Notice the particular

relationship called Friends where Persons are related to each other. Building out this

model in a pure set of relational tables is not all that difficult, but traversing the graph

using traditional T-SQL queries gets complex.

Let’s build an example of a graph database using the preceding model, so you can get

the feel of the basics, and then look at what is new in SQL Server 2019.

Figure 5-4. A network of friends

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample

154

Note there is no special prerequisite to use the examples for Graph database
except to install SQl Server 2019 (Windows, linux, or a Container) and use a tool
like SQl Server Management Studio (SSMS) or azure data Studio (adS) (June
2019 version or later). the graph example in this specific section is designed for
SQl Server 2019.

For this example, consider John in this social network. He already knows he is

friends with Mary and Julie, but he doesn’t know whom they are friends with (and who

their friends are friends with, and so on). He wants to expand his social network and also

discover which restaurants his friends like.

Consider the “social network of friends” in Figure 5-5.

John doesn’t know the entire network, so he needs to use a graph database to

navigate.

All scripts for graph database examples can be found in the ch5_modern_
development_platform\sqlgraph directory. Using the model in Figure 5-4 as a guide,

follow Steps 1-7 in the T-SQL notebook socialnetwork.ipynb using Azure Data Studio.

These steps will show you how to build graph tables as nodes and edges, populate data,

and then traverse the graph using the T-SQL MATCH syntax.

There is also a T-SQL script socialnetwork.sql you can use to follow Steps 1-7 using

SSMS or ADS.

Figure 5-5. The social network of friends

Chapter 5 Modern developMent platforM

155

 Graph Enhancements for SQL Server 2019
SQL Server 2019 comes with a few enhancements to help make graph database a more

powerful and compelling platform for graph data compared to other products. This

includes

• Traversing a graph path using the new SHORTEST_PATH() syntax

• Support for derived tables and views in a graph database

• Edge constraints to enforce proper graph relationships

• Using the T-SQL MERGE statement to support scenarios like upsert

Let’s review some of these new enhancements.

 SHORTEST_PATH

One of the more common challenges to solve with a graph database is to traverse the

graph data recursively without having to manually navigate to each level. SQL Server

2017 did not support this concept, but SQL Server 2019 provides support for this through

the new SHORTEST_PATH() T-SQL syntax.

Using Steps 8 and 9 examples in socialnetwork.ipynb and socialnetwork.sql, see

how SHORTEST_PATH allows John and Jacob to traverse the social network of friends.

You can see the details of using SHORTEST_PATH() in the documentation at

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-

graph- shortest-path or in this blog post by Shreya Verma at https://techcommunity.

microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-

Server- 2019/ba-p/721240.

 Edge Constraints

While the NODE and EDGE T-SQL syntax provides a very nice new way of building graph

data using SQL Server tables, in SQL Server 2017 there was no way to enforce integrity of

node and edge data. Just like the concept of foreign key constraints in SQL Server tables,

SQL Server 2019 provides the ability to enforce data integrity with nodes and edges.

Consider the social network you just built using the examples in this chapter. It

would be nice to ensure that any data for the friendOf edge table has to be from a valid

row in the Person table. Edge constraints provide this capability.

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-shortest-path
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-shortest-path
https://techcommunity.microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240
https://techcommunity.microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240
https://techcommunity.microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240

156

In addition, edge constraints enforce proper network relationships. In our social

network model, a Person can like a Restaurant, but a Restaurant cannot like a Person. An

edge constraint can enforce this, too. Furthermore, edge constraints ensure that edges

are not left dangling. With edge constraints, you cannot delete a node that is part of an

edge relationship if data exists in the edge table. Again, this behavior is similar to foreign

keys in traditional relational tables.

You can read more about edge constraints in the documentation at https://

docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-

constraints or in another blog post by Shreya at https://blogs.msdn.microsoft.com/

sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-

on-sql-server-2019/.

 Using MERGE with Graph Tables

SQL Server provides a T-SQL statement called MERGE which performs insert, update,

or delete operations on a target table based on the results of a join with a source table. In

SQL Server 2017, you can use the MERGE statement to consolidate DML operations on

node tables, but not on edge tables. SQL Server 2019 now provides the capability to use

MERGE with edge tables as well.

Take a look at some great examples by Shreya in her blog post on this topic at

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-

support- in-merge-dml-for-graph-tables/.

 UTF-8 Support
Applications and databases have been using Unicode as a standard to encode character

data as far back as the early 1990s. SQL Server on Windows has included data types and

collations to support Unicode encoding of character data almost as long as the product

has existed. SQL Server 2019 introduces a new method for Unicode encoding called

UTF-8, which is widely used by applications and databases normally on Linux systems.

If you would like to read more about the basics of Unicode before reading this

section, you can use these resources:

https://docs.microsoft.com/en-us/windows/win32/intl/unicode

https://en.wikipedia.org/wiki/Unicode

https://unicode.org/standard/WhatIsUnicode.html

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints
https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints
https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-support-in-merge-dml-for-graph-tables/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/07/16/match-support-in-merge-dml-for-graph-tables/
https://docs.microsoft.com/en-us/windows/win32/intl/unicode
https://en.wikipedia.org/wiki/Unicode
https://unicode.org/standard/WhatIsUnicode.html

157

 Unicode and SQL Server
The normal way SQL Server supports Unicode encoding is through the nchar and

nvarchar data types. SQL Server supports Unicode encoding of these data types using

the UTF-16 encoding scheme. UTF-16 requires a minimum 2 bytes per “character” to

store data. The ASCII character using UTF-16 “a” requires 2 bytes of storage. When you

define a column like the following:

col1 nchar(10) not null

SQL Server requires 20 bytes of storage for this column, even if you are using just

standard ASCII characters.

This is opposed to the following column definition:

col1 char(10) not null

which requires 10 bytes but can only store characters from the ASCII character set.

Note It is a very common mistake for developers and data professionals to use
nchar, char, and so on and assume the length is the number of characters not byte
storage.

UTF-16 allows for the entire spectrum of Unicode characters because many

characters for language support outside of just ASCII characters require 2 bytes to

represent the character.

 Why Would You Use UTF-8?
While the majority of applications and databases like SQL Server use UTF-16 for

Unicode character encoding, many in the Linux community use an encoding called

UTF-8. UTF-8 is similar to UTF-16, in that it supports the entire Unicode character set,

but uses a different encoding and byte storage scheme depending on which character is

being stored. For example, ASCII characters only require 1 byte of storage in UTF-8 but

require 2 bytes in UTF-16.

Consider an application that was only developed for the ASCII character set but

needs to be updated to support all Unicode characters. It is possible this application uses

char and varchar data types in SQL Server. Before SQL Server supported UTF-8, the

Chapter 5 Modern developMent platforM

158

data professional would need to change the data types of all SQL Server columns from

char to nchar and varchar to nvarchar. Using ALTER TABLE to change data types in

this fashion for ASCII characters practically doubles the storage requirements for these

columns even if you initially are only using ASCII characters.

Now with SQL Server 2019, an alternative is to leave your data types as char and

varchar but change the collation of the columns to use the new UTF-8 collations, such

as LATIN1_GENERAL_100_CI_AS_SC_UTF8. ALTER TABLE allows you to change the

collation at the column level. UTF-8 encoding for characters only requires 1 byte of

storage for ASCII characters.

Make these decisions carefully, as there are some restrictions for UTF-8, and, for

certain characters, the storage requirements are larger for UTF-8 (not ASCII) than UTF- 16.

UTF-8 is supported for SQL Server for Windows, Linux, and containers (remember

“Windows” collations are supported for SQL Server on Linux because of the SQLPAL

architecture. The documentation says UTF-8 is only supported for Windows collations

not SQL collations).

Use these resources to study whether UTF-8 is for you:

 https://cloudblogs.microsoft.com/sqlserver/2018/12/18/introducing-utf-8-

support-in-sql-server-2019-preview/

 https://docs.microsoft.com/en-us/sql/relational-databases/collations/

collation-and-unicode-support

 https://docs.microsoft.com/en-us/sql/relational-databases/collations/

collation-and-unicode-support#utf8

 SQL Server Machine Learning Services
When I joined the SQL Engineering team in 2016, after working in Microsoft support

for 20+ years, Joseph Sirosh was the VP in charge of SQL Server. SQL Server 2016 had

just shipped, and I knew Joseph was particularly proud of the work the SQL Server team

had done to integrate Machine Learning through the R programming language with the

product.

Joseph is a data scientist and has an incredible passion for Machine Learning and

Data. As an open source language, R is one of the most popular programming languages

for data science and Machine Learning, so integrating this with SQL Server seemed like

a natural fit. In addition, in 2015, Microsoft had acquired a company called Revolution

Chapter 5 Modern developMent platforM

https://cloudblogs.microsoft.com/sqlserver/2018/12/18/introducing-utf-8-support-in-sql-server-2019-preview/
https://cloudblogs.microsoft.com/sqlserver/2018/12/18/introducing-utf-8-support-in-sql-server-2019-preview/
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support#utf8
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support#utf8

159

Analytics, which had built a commercial version of R, including changes to make it

more scalable, called RevoScaleR. (See this resource for the history of R, https://

en.wikipedia.org/wiki/R_(programming_language).) Joining these forces to build a

Machine Learning platform for data with SQL Server was now possible. This original

feature was called SQL Server 2016 R Services. SQL Server 2017 introduced integration

with the Python programming language, using the same concepts and architecture. With

this change, the new capability of R and Python together became SQL Server Machine
Learning Services.

While the changes for SQL Server Machine Learning Services (ML Services) for SQL

Server 2019 are not significant, this capability may be something new you are looking

at, so I’ll spend some brief time talking about how it works. This is important for several

reasons:

• Understanding how ML Services works and the benefits of using it

will allow you to make decisions on whether this capability is right for

you and your application.

• You can gain more confidence in allowing ML Services to be used

with SQL Server if you know more about the integration, security,

and governance of this capability.

• The architecture, called the Extensibility Framework, used for ML

Services is the same one used for what is called SQL Server Language

Extensions, new for SQL Server 2019.

Before you read the rest of this chapter, consider reviewing the documentation

of SQL Server ML Services at https://docs.microsoft.com/en-us/sql/advanced-

analytics/sql-server-machine-learning-services.

 How It Works
Prior to SQL Server ML Services, data scientists developed and executed their models

(a term often used for a Machine Learning program) on separate computers

(workstations or servers) where all data, such as SQL Server, was accessed remotely. In

many cases, R or Python programs used for these models would simply “pull back” an

entire table and filter the results in the program, thus not taking advantage of the power

of languages like SQL.

Chapter 5 Modern developMent platforM

https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-server-machine-learning-services
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-server-machine-learning-services

160

SQL Server ML Services offers a new capability to execute scalable Machine Learning

programs under the following concepts:

• Machine Learning programs are executed on the same computer as

SQL Server, but in independent processes from SQLSERVR.EXE.

• SQL Server provides a T-SQL interface through a system stored

procedure, sp_execute_external_script, to execute Machine

Learning code.

• SQL Server provides an architecture for intelligent data exchange and

scalability with Machine Learning code.

Consider Figure 5-6 for the SQL Server ML Services architecture, called the

Extensibility architecture in SQL Server Machine Learning Services, as found in the

SQL Server documentation at https://docs.microsoft.com/en-us/sql/advanced-

analytics/concepts/extensibility-framework#architecture-diagram.

Unfortunately, the documentation does not provide the details of the numbers in the

diagram, so I’ll do so here, which will help you understand more how it works.

Figure 5-6. The SQL Server ML Services architecture

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/advanced-analytics/concepts/extensibility-framework#architecture-diagram
https://docs.microsoft.com/en-us/sql/advanced-analytics/concepts/extensibility-framework#architecture-diagram

161

Note I’ve spoken on this topic in the past and have a very detailed architecture
diagram and explanation. You can see this in figure 5-7 or the details at www.
youtube.com/watch?v=y52oBaI32Jo and www.slideshare.net/
BobWard28/sql-server-r-services-what-every-sql-professional-
should-know. these resources show the architecture for SQl 2016 r Services,
but it is the same architecture to include python. an updated slide that includes
python can be found at https://aka.ms/bobwardms. Search in the SQl2017
folder for a deck called Inside SQL Server Machine Learning Services.

Here is my version of the architecture at a deeper dive (Figure 5-7).

 1. User executes sp_execute_external_script with a language

chosen (R or Python), a script, and other parameters like what

T-SQL query to execute. SQL Server communicates to a separate

program called the Launchpad (a service in Windows or daemon

in Linux) via named pipes, passing in all the relevant details (such

as the R or Python script).

Figure 5-7. A deeper dive into SQL Server ML Services

Chapter 5 Modern developMent platforM

https://www.youtube.com/watch?v=y52oBaI32Jo
https://www.youtube.com/watch?v=y52oBaI32Jo
https://www.slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know
https://www.slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know
https://www.slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know
https://aka.ms/bobwardms

162

 2. Launchpad has the code to execute a DLL corresponding to the

R or Python language. Launchpad uses a worker thread model

similar to the SQL Server engine. In fact, it loads the SQLOS

system that SQL Server uses for OS services.

 3. The Launchpad DLL will fork or create a new process for the

corresponding language (rterm.exe for R or python.exe for Python).

 4. Another process is forked called bxlserver.exe (often referred to

as a satellite process). This program will interact with rterm.exe or

python.exe to exchange data.

 5. bxlserver.exe communicates with the SQL Server engine on a

private TCP channel (not the same as connecting as a client into

SQL Server) to receive data from the T-SQL query executed to feed

the R or Python program. This execution happens in an interleaved

fashion. This means the engine can get rows for the T-SQL query to

feed the Machine Learning program and at the same time get results

back. The DLL that supports this exchange is called sqlsatellite.dll.

 6. sqlsatellite.dll works with a module in bxlserver.exe to exchange

data with rterm.exe or python.exe.

 7. All results (including stdout messages) from the rterm.exe or

python.exe program are streamed back to SQL Server through the

TCP channel.

The result of this is that a user executes sp_execute_external_script and receives back

results in the form of a table (like a SELECT result set) along with stdout messages. There

are also options for output parameters and more.

The key concept for a better solution is that the R or Python code is running on the

same computer as SQL Server (close to the data), and SQL Server can exchange data

with the code in an efficient manner (there is no network traffic to exchange data).

The best way to understand how the T-SQL query (aka “the input query”) and

the R or Python program interact is to try an example. Instead of going through an

example here, I highly recommend you use the example at https://aka.ms/sqldev

or directly for Python at https://microsoft.github.io/sql-ml-tutorials/python/

rentalprediction/. One reason I recommend you use this example is that it also

includes an example of how to use native scoring through T-SQL (https://docs.

microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring).

Chapter 5 Modern developMent platforM

https://aka.ms/sqldev
https://microsoft.github.io/sql-ml-tutorials/python/rentalprediction/
https://microsoft.github.io/sql-ml-tutorials/python/rentalprediction/
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring

163

My colleague Buck Woody also has an excellent workshop to try all of this and

see it in action at https://github.com/Microsoft/sqlworkshops/tree/master/

SQLServerMLServices. What is nice about this workshop is that you will learn a bit about

data science along the way (for those of us who, unlike Buck, are mere mortals at data

science).

 Security, Isolation, and Governance
One of the first assignments Joseph Sirosh had for me was to boost confidence with the

SQL community at large on SQL Server R Services. He had discussed this capability with

several big companies using SQL Server, and the data professionals at these companies

were leery of running R scripts with SQL Server.

One of the first things I did was explain the architecture as I’ve described in the

previous section and described in the deck at www.slideshare.net/BobWard28/sql-

server- r-services-what-every-sql-professional-should-know. This architecture

helped explain the isolation model of SQL Server ML Services. All R and Python scripts

run in separate processes from SQLSERVR.EXE, so any issues with these scripts would

not cause any issues with the database engine. This is in contrast with other “extension”

models of SQL Server, such as extended procedures and SQLCLR, which all run “in-

process” of SQLSERVR.EXE. Furthermore, the satellite processes run isolated from each

other so can’t interfere with R or Python processing for each user. In addition to these

running as separate processes, any process created from Launchpad runs in an isolation

model using the concept of an AppContainer in Windows (https://docs.microsoft.

com/en-us/windows/win32/secauthz/appcontainer-isolation) and a namespace in

Linux (https://en.wikipedia.org/wiki/Linux_namespaces).

The second concept I needed to explain was security. Consider the security model of

executing R or Python for SQL Server ML Services:

• This feature is only enabled if it is first installed and then configured

with sp_configure. You can read about how to install SQL Server ML

Services on Windows at https://docs.microsoft.com/en-us/sql/

advanced-analytics/install/sql-machine-learning-services-

windows- install and for Linux at https://docs.microsoft.com/

en-us/sql/linux/sql-server-linux-setup-machine-learning.

You can read about the sp_configure option at https://docs.

microsoft.com/en-us/sql/database-engine/configure-windows/

external-scripts-enabled-server-configuration-option.

Chapter 5 Modern developMent platforM

https://github.com/Microsoft/sqlworkshops/tree/master/SQLServerMLServices
https://github.com/Microsoft/sqlworkshops/tree/master/SQLServerMLServices
https://www.slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know
https://www.slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know
https://docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation
https://en.wikipedia.org/wiki/Linux_namespaces
https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install
https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install
https://docs.microsoft.com/en-us/sql/advanced-analytics/install/sql-machine-learning-services-windows-install
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/external-scripts-enabled-server-configuration-option
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/external-scripts-enabled-server-configuration-option
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/external-scripts-enabled-server-configuration-option

164

• The T-SQL system procedure, sp_execute_external_script, requires

the EXECUTE ANY EXTERNAL SCRIPT database permission. This

permission is only given by default to those users or roles with

CONTROL permissions or logins or roles with CONTROL SERVER

permissions. Any other user or login trying to execute an R or Python

script must be granted explicit permissions.

• Users will also need permission to access objects referenced in the

“input query” of the sp_execute_external_script.

• The processes forked for execution of R and Python (rterm.exe and

python.exe) all run in a specific low privilege account. For Windows,

you can read more about this at https://docs.microsoft.com/

en-us/sql/advanced-analytics/security/create-a-login-for-

sqlrusergroup. For Linux, these programs run under the mssql_
satellite account.

• By default, satellite processes do not have access to connect to a

network outside of the computer running SQL Server.

The third concept to give more confidence to control the execution of R and Python

is governance. SQL Server has had the concept of governance since SQL Server 2008,

with a capability called Resource Governor. Resource governor provides a mechanism

to control resources for SQL Server execution for CPU, memory, and I/O resources.

Therefore, resource governor is a natural interface to control resource usage for ML

Services programs.

The concept of an external resource pool has been added to SQL Server to explicitly

control resource usage for processes that are created through sp_execute_external_

script, including rterm.exe, python.exe, bxlserver.exe, and others. In Windows, external

resource groups are implemented by a concept called Windows Jobs or Job Objects.

You can read more about Windows Job Objects at https://docs.microsoft.com/

en-us/windows/win32/procthread/job-objects. For Linux, the concept of control

groups (cgroups) is used to control resource usage. You can read more about cgroups at

https://en.wikipedia.org/wiki/Cgroups.

Not only can external resource groups help you control CPU and memory for

external processes, but you can also specify CPU affinity. This way you can affinitize

satellite processes to a specific node or set of CPUs and keep SQL Server processing

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/advanced-analytics/security/create-a-login-for-sqlrusergroup
https://docs.microsoft.com/en-us/sql/advanced-analytics/security/create-a-login-for-sqlrusergroup
https://docs.microsoft.com/en-us/sql/advanced-analytics/security/create-a-login-for-sqlrusergroup
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://docs.microsoft.com/en-us/windows/win32/procthread/job-objects
https://en.wikipedia.org/wiki/Cgroups

165

affinitized to other CPUs or nodes. This is the exact architecture used to achieve the

now famous 1 million predictions per second proof point, which you can read about at

https://cloudblogs.microsoft.com/sqlserver/2016/10/11/1000000-predictions-

per-second/.

 What’s New in SQL Server 2019?
SQL Server Machine Learning Services is radical, and helps take SQL Server from a

database engine to a true data platform. SQL Server 2019 enhances SQL Server ML

Services with these new features:

• External libraries can now be installed for new R or Python packages

using the T-SQL statement CREATE EXTERNAL LIBRARY. You can

read more about this at https://docs.microsoft.com/en-us/sql/

t-sql/statements/create-external-library-transact-sql (SQL

Server 2017 allowed this for R).

• The Launchpad service (or daemon on Linux) is critical to the SQL

Server ML Services architecture. Now in SQL Server 2019, SQL Server

ML Services can be part of an Always On Failover Cluster Instance

including the Launchpad service.

• SQL Server Machine Learning Services is now supported on Linux.

I’ll discuss this further in Chapter 6.

• SQL Server ML Services now supports creating and training models

over partitioned data using new parameters for sp_execute_external_

script. Read more to learn an example of this new feature at https://

docs.microsoft.com/en-us/sql/advanced-analytics/tutorials/

r-tutorial-create-models-per-partition.

I think SQL Server Machine Learning Services is a “gamechanger.” I asked my

colleague Buck Woody, Applied Data Scientist at Microsoft, his thoughts on the

significance of SQL Server integration with Machine Learning. According to Buck,

“Running predictive and categorical Machine Learning workloads on SQL Server allows

not only performance gains by placing the compute directly over the data, but also has

advantages for security. SQL Server maintains one of the highest levels of security in

the industry, and with the addition of traditional Machine Learning languages such as

Chapter 5 Modern developMent platforM

https://cloudblogs.microsoft.com/sqlserver/2016/10/11/1000000-predictions-per-second/
https://cloudblogs.microsoft.com/sqlserver/2016/10/11/1000000-predictions-per-second/
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql
https://docs.microsoft.com/en-us/sql/advanced-analytics/tutorials/r-tutorial-create-models-per-partition
https://docs.microsoft.com/en-us/sql/advanced-analytics/tutorials/r-tutorial-create-models-per-partition
https://docs.microsoft.com/en-us/sql/advanced-analytics/tutorials/r-tutorial-create-models-per-partition

166

R and Python along with various libraries, leverages that security transparently. There’s

another advantage for using SQL Server as a Machine Learning platform – it provides

the Data Scientist a place to experiment and operationalize workloads, and the Database

Developer the control of implementing the R and Python Machine Learning code in

Transact-SQL, allowing an effective separation of duties.”

 Extending the T-SQL Language
In the late summer of 2018, I was at Redmond, Washington, at Microsoft corporate

HQ preparing to build a presentation to help launch the official preview of SQL Server

2019 at the Microsoft Ignite conference. As part of this effort, I was interviewing various

program managers to ensure I had the content accurate, and talking to them about

building demos.

One of these program managers (PM) is Nellie Gustafsson. Nellie is one of the lead

PMs for SQL Server Machine Learning Services, among other things. I had been talking

to Nellie about what other languages the team was thinking about including for SQL

Server ML Services for SQL Server 2019. In our meeting, she caught me by surprise by

telling me that Java would be the next language. She went further: She said that ideally

the team would like to open up the architecture for ML Services with an SDK (Software

Development Kit). This way anyone with enough technical knowledge could bring their

own language to extend T-SQL using the same architecture used to run R and Python for

SQL Server ML Services.

However, at the time we launched CTP 2.0 for SQL Server 2019, we decided to hold

back the SDK and just release Java as the third language for SQL Server ML Services. Java

is not necessarily a common language for Machine Learning, so we launched this feature

with examples that simply demonstrated how to extend T-SQL for functionality not built

into the language (in fairness, we were also using Java to demonstrate Machine Learning

with Big Data Clusters).

The concepts would be the same as SQL Server ML Services. You would use the

same sp_execute_external_script system stored procedure but specify “Java” as the

language and supply a compiled Java class. Even though this was not the complete

extensibility open architecture, integrating Java with SQL Server 2019 opened up some

eyes to more radical work from Microsoft.

Chapter 5 Modern developMent platforM

167

 The Extensibility Framework
By the time we released SQL Server 2019, we had decided to open up the ML Services

architecture. We called this the extensibility framework. The way to access the

extensibility framework is through something called a language extension. Java would

simply be an example of using this new framework, and we would ship the language

extension to use it in the product.

To make the extensibility framework viable, we had to make additions to the existing

SQL Server ML Services architecture, including

• We need to keep R and Python “as is” so these languages are

considered “built into” SQL Server. R and Python are not considered

language extensions but are just part of SQL Server as SQL Server ML

Services.

• The “launcher” for R and Python in the Launchpad service

specifically launches rterm.exe and python.exe. bxlserver.exe was

also designed to specifically work with R and Python. We built a

“common” launcher within the Launchpad server to launch any

language (you will see this is tied into the CREATE EXTERNAL

LANGUAGE concept).

• We need a new “host” program to run other languages. Therefore,

we supply a host program called Extension Host. On Windows, this

program is called exthost.exe.

• The Extension Host has to include sqlsatellite.dll (or sqlsatellite.so on

Linux) and provide a way for the language extension to interact with

it to exchange data with SQL Server.

Figure 5-8 shows a rough picture of this architecture for Windows (the Linux

architecture diagram is there as well) from the documentation at https://docs.

microsoft.com/en-us/sql/language-extensions/concepts/extensibility-

framework.

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework
https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework
https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-framework

168

Now with these enhancements in SQL Server 2019, you can

• Use sp_execute_external_script to run R or Python scripts for

Machine Learning programs.

• Extend T-SQL with sp_execute_external_script with other languages

such as Java, provided you have installed a language extension. In

SQL Server 2019, we provide all the software to extend T-SQL with

Java.

To be clear, the language extension (which is a DLL on Windows or a shared object

library, .so, on Linux, typically written in C++) is a key piece of software to support a

language extension. Microsoft provides the language extension for Java when you install

SQL Server. Since the language extension is built for Java, it will load a Java Virtual

Machine (JVM) to run your Java classes. How do you get a JVM to run these? You’ll learn

about this in the next section.

In addition, you will need an SDK library native to your language. As you will read

in the next section, Microsoft provides an SDK library for Java. The SDK will implement

a set of known classes and methods so that your class can be executed, and you can

exchange data with SQL Server.

 Extending T-SQL with Java
One question you may be asking is what is an example of extending the T-SQL language?

Using R and Python for Machine Learning makes sense. T-SQL has no built-in Machine

Learning functions or capabilities. So why might you need Java? Have you heard of

the term regular expression or regex (https://en.wikipedia.org/wiki/Regular_

Figure 5-8. The Extensibility architecture for external languages on Windows

Chapter 5 Modern developMent platforM

https://en.wikipedia.org/wiki/Regular_expression

169

expression)? Regex is all about searching patterns in string or character data based on an

expression. A regex expression can be very powerful – a lot more powerful than the LIKE

clause and other T-SQL string functions.

Since there are no built-in full regex capabilities in T-SQL, you could build a Java

class that supports regex and integrate it into T-SQL using the extensibility framework

and the Java extension shipped with SQL Server 2019. Since the framework allows a

language extension to exchange data with SQL Server in a unique way, you can use a

Java class with sp_execute_external_script to apply a regex expression on data based on a

T-SQL query.

This is in fact what the supplied tutorial does in the documentation as found at

https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-

for- string-using-regular-expressions-in-java.

Instead of supplying you with a step-by-step example, I encourage you to go through

the tutorial yourself. I went through this tutorial on Windows, and it works just as well for

Linux. I have some tips plus some scripts I used to go through it.

This tutorial will show you the following:

• Create a database and sample data.

• Create a Java class to implement a regex expression engine.

• Build your code so it can be installed with SQL Server using the SQL

Server Java SDK.

• Create an external language and libraries to enable Java and install

your code. The external language will map to the language extension

DLL or .so file. The external libraries will be the SQL Server Java SDK

and your code.

• Call your Java class with sp_execute_external_script.

Technically, you can build your code on a separate computer than SQL Server. But

if you do this, you will need the SQL Server Java SDK which is called mssql-java-lang-
extension.jar (Windows and Linux). One way to get the SDK is to install SQL Server with

the Java extensibility feature. Therefore, I recommend you run this tutorial on the same

computer where you install SQL Server. You can also build it on, say, your laptop, with

SQL Server Developer Edition, and then install the final result of your code (which will

be a .jar file) to a production SQL Server.

Chapter 5 Modern developMent platforM

https://en.wikipedia.org/wiki/Regular_expression
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java

170

Note at the time of the writing of this book, we had published a Github repo at
https://github.com/microsoft/sql-server-language-extensions for
language extensions, including the SQl Server Java SdK. But the mssql-java- lang-
extension.jar file was not available. the plan is to make the SdK available on Github
so you can build your own Java class independent of a SQl Server installation.

 Prerequisites for the Tutorial

The prerequisites to use the tutorial are called out in the documentation at https://

docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-

string-using-regular-expressions-in-java#prerequisites.

One of the steps for the prerequisites is to install a Java Runtime Engine (JRE). Here

is more radical stuff for you. In SQL Server 2019, we ship a JRE from the Zulu Open

JRE. That’s right. SQL Server 2019 ships Java for free!

Here is what the install screen looks like on Windows to choose your JRE (Figure 5- 9).

Figure 5-9. Choosing a JRE for SQL Server

Chapter 5 Modern developMent platforM

https://github.com/microsoft/sql-server-language-extensions
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java#prerequisites
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java#prerequisites
https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-using-regular-expressions-in-java#prerequisites

171

Note even though Zulu open Jre is free and shipped with SQl Server, it is fully
supported by Microsoft. You also have the option to install your own Jre. If you
install your own Jre, there are some additional steps for configuration, which the
installation documentation calls out.

Don’t forget to properly set the JRE_HOME environment variable on Windows and

restart the Launchpad service after you install SQL Server. You can read more about this

at https://docs.microsoft.com/en-us/sql/language-extensions/install/install-

sql- server-language-extensions-on-windows#add-the-jre_home-variable. (For

Linux, it is JAVA_HOME, but the install process should have added this for you.) Note the

tutorial mentions an example of C:\Program Files\Zulu\zulu-8\jre\ when in fact SQL

Server installs the Azul Open JRE at C:\Program Files\Microsoft SQL Server\MSSQL15.

MSSQLSERVER\AZUL-OpenJDK-JRE.

As part of the installation process, Microsoft will also install the Java language

extension file. For Windows, it is called javaextension.dll and packaged in a file called

java-lang-extension.zip. On Linux, it is called javaextension.so and packaged in a file

called java-lang-extension.tar.gz. The tutorial shows you the location for these files, as

you will need this path to create an external language.

Now you can go through the tutorial to create a database and data, build your Java

class, install an external language, install your code, and then call your Java class.

 Tips for the Tutorial

Here are some tips for using the tutorial. I have provided a set of sample scripts I used in

the ch5_modern_development_platform\java directory.

• Picking a JDK to compile your code

The tutorial shows you example code for a regex class and the

instructions for including the SQL Server Java SDK. Unfortunately,

the tutorial doesn’t give a lot of details about how to build

something in Java. I installed the Zulu Open JDK to get my Java

compiler, javac, to use with this tutorial from www.azul.com/

downloads/zulu-community. Since I was on Windows, I chose

these options as seen in Figure 5-10.

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/language-extensions/install/install-sql-server-language-extensions-on-windows#add-the-jre_home-variable
https://docs.microsoft.com/en-us/sql/language-extensions/install/install-sql-server-language-extensions-on-windows#add-the-jre_home-variable
https://www.azul.com/downloads/zulu-community
https://www.azul.com/downloads/zulu-community

172

You may already have a Java SDK for your computer. You could be

using Visual Studio Code, IntelliJ, or Eclipse, which are some of

the more popular ones. I just wanted a simple way to compile my

Java code from the command line, so I picked the Zulu JDK.

The Zulu JDK comes as a zip file, and I pulled this into my

Downloads folder. I then extracted the zip file into the current

directory. I wanted javac and the jar program in my path, so I

extracted the zip file in place and added this directory to my

system path, C:\Users\Administrator\Downloads\zulu11.33.15-

ca-jdk11.0.4-win_x64\zulu11.33.15-ca- jdk11.0.4-win_x64\bin.

• Building your code

I recommend following the instructions in the tutorial to build a .jar

file for your code but use the package concept. Using this method will

assume a subdirectory of pkg for your class. I’ve provided a buildclass.
cmd script I used that does it all. It will compile the RegexSample.

java code along with the SQL Server Java SDK file mssql-java-lang-

extension.jar. Then it uses the jar program to build a package from the

code in the pkg subdirectory. (The tutorial example uses a package

Figure 5-10. Installing the Zulu JDK for Windows

Chapter 5 Modern developMent platforM

173

which will assume a pkg subdirectory when you build the .jar file.) The

result of the entire build process is a sqlregex.jar file. This is your class

code and will be installed as an external library.

• Installing your code

The T-SQL script setuplanguage.sql is used on Windows to create

an external language for Java and to create two external libraries:

(1) for the SQL Server Java SDK and (2) your code.

It is important to note that external language and libraries are

installed in a user database.

• Executing your code

The T-SQL script sqlregex.sql shows an example like in the

tutorial to execute your Java class.

I will be transparent to you that if you miss a step here, including

all the prerequisites, you will hit an error executing sp_execute_

external_script. It can be frustrating to debug problems with this

feature.

Here are a few things to remember:

• You have to enable external script execution with the configuration

option external scripts enabled.

• If you pick the Zulu Open JRE during install, make sure to set

JRE_HOME if using Windows and restart the Launchpad service.

• If you use your own JRE, you have extra steps to perform for

permissions to the JRE binaries. The documentation shows how to do

this on Windows and Linux.

• When you build your .jar file for your code, you must put the

compiled code (the .class file) in the subdirectory where you are

building the code called pkg. That is the convention for using a

package name (the package name could be anything in your code,

and then your subdir needs to match that name). The docs talk about

how much easier it is with a Java IDE to do all of this; I did try out

IntelliJ and Visual Studio Code; I just preferred a scriptable method

from the command line with javac and jar.

Chapter 5 Modern developMent platforM

174

 Implementing and Using Other Languages
Since we built the extensibility framework and concept of external languages, now

programming languages other than Java are possible with T-SQL. Java is just an example

we shipped to let you use an extension “out of the box” but also show others how to

integrate other programming languages. Imagine if external languages were available for

.Net or Go.

The key is the language extension. The language extension is a DLL on Windows or

shared library object on Linux that understands how to communicate with the Extension

Host. Once a language extension is available, then an SDK set of classes can be built in

the native language of the extension. Your code will use the classes implemented by the

SDK along with the class to be executed by the call to sp_execute_external_script.

The required set of classes for an SDK to enable a language extension is shown

through the Java example at https://docs.microsoft.com/en-us/sql/language-

extensions/how-to/extensibility-sdk-java-sql-server.

In addition, as I described in the previous section, the source code and

documentation for how to write a language extension will be available on GitHub at

https://github.com/microsoft/sql-server-language-extensions.

It will be interesting to see how language extensions take off within the SQL Server

community. For you, imagine scenarios where you cannot implement something

in T-SQL today, but would like to extend the language and take advantage of all the

capabilities of SQL Server including security, availability, and resource governance

without having to write code outside of T-SQL.

All of the process isolation, security, and governance capabilities that exist for SQL

Server ML Services apply language extensions and the extensibility framework.

 Summary
In this chapter, you have learned how SQL Server 2019 provides features and tools for the

modern data developer, including support for just about any programming language you

need, updated data providers, graph database, UTF-8 support, Machine Learning, and

T-SQL extensions. This is combined with the already powerful performance capabilities

of Intelligent Query Processing and tempdb metadata optimizations to provide a

complete package needed by any modern data developer.

Chapter 5 Modern developMent platforM

https://docs.microsoft.com/en-us/sql/language-extensions/how-to/extensibility-sdk-java-sql-server
https://docs.microsoft.com/en-us/sql/language-extensions/how-to/extensibility-sdk-java-sql-server
https://github.com/microsoft/sql-server-language-extensions

175
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_6

CHAPTER 6

SQL Server 2019 on Linux
In this chapter, I’ll describe what is new for SQL Server 2019 on Linux. However, if you

are new to SQL Server on Linux, I’ll start the chapter by reviewing the amazing story of

how and why we built SQL Server to run on Linux.

 The Amazing Story of SQL Server on Linux
In October of 2017, our SQL Server engineering team rocked the industry by shipping

SQL Server for Linux on platforms such as Red Hat, Ubuntu, and SUSE. Our engineering

team was able to bring SQL Server to market using a very innovative strategy and

architecture with software known as the SQL Platform Abstraction Layer (SQLPAL).

Figure 6-1 shows the fundamental architecture of SQL Server on Linux with SQLPAL.

Figure 6-1. The SQL Server Linux architecture

176

I go into a very deep detail of this architecture in my book Pro SQL Server on Linux by

Apress Media, so I won’t repeat that in this book (I know; shameless plug for a different

book). However, I include this figure and a brief discussion because it tells the story

of choice with compatibility. The SQL Server core engine and its code are the same

codebase for SQL Server on Windows and Linux. The SQLPAL provides the software so

that the SQL Server engine doesn’t care on what OS platform it is running. This means

you can take a database backup on SQL Server on Windows and restore it on Linux with

complete compatibility.

For the most part, the feature set of SQL Server 2017 on Linux was completely the

same as on Windows. Slava Oks once told me, “Bob, the Query Processor is… the Query

Processor, whether it is on Windows or Linux.” What he means is that the exact same

binary code for the Query Processor runs on both Windows and Linux. Even features like

SQL Server Agent and SSIS are available for SQL Server on Linux.

We “timebox” almost every release of SQL Server, trying to maximize the value of

what we put into a major release with the balance of getting it shipped in the timeframe

we need it to go to market.

While we would have loved that every feature of SQL Server on Windows was

included in SQL Server 2017 on Linux, there were some features on the edge of the

engine that we didn’t have time to put into the release – features like Replication and

Distributed Transaction Coordinator (DTC). Furthermore, there were a few platform

enhancements that we made to ensure SQL Server on Linux was as robust and ready for

enterprise customers as our software on Windows.

Before I go deeper into this subject, I should come clean and tell you that there are

no examples in this chapter. You might be reading this and be stunned, given I wrote an

entire book on SQL Server on Linux. Most of the contents of this chapter either require

some complex configuration or are part of using SQL Server independent of Linux.

Having said that, consider these options for SQL Server examples and demos:

• Pro SQL Server on Linux GitHub repo – https://github.com/

Apress/pro-sql-server-on-linux

• Demos and examples on the bobsql GitHub repo – https://

github.com/microsoft/bobsql

• Microsoft hands-on lab for SQL Server on Linux – https://docs.

microsoft.com/en-us/learn/paths/sql-server-2017-on-linux/

Chapter 6 SQL Server 2019 on Linux

https://github.com/Apress/pro-sql-server-on-linux
https://github.com/Apress/pro-sql-server-on-linux
https://github.com/microsoft/bobsql
https://github.com/microsoft/bobsql
https://docs.microsoft.com/en-us/learn/paths/sql-server-2017-on-linux/
https://docs.microsoft.com/en-us/learn/paths/sql-server-2017-on-linux/

177

• The SQL Server Workshop site – https://aka.ms/sqlworkshops.

While I don’t have a specific workshop there yet for SQL Server on

Linux, don’t be surprised if one shows up at some point. There are

labs to use SQL Server on Linux Replication with containers in these

workshops.

• Finally, I will let you try out SQL Server Replication on Linux in action

in Chapter 7, using containers.

 What Is New for SQL Server 2019 on Linux
Taking the momentum of delivering SQL Server on Linux, in SQL Server 2019 we added

several enhancements to solve challenges for the data professional and bring feature
parity with SQL Server on Windows, including

• Platform and deployment enhancements to ensure SQL Server

on Linux responds correctly to current resource availability and to

include deployment options for parity with SQL Server on Windows.

In addition, we have worked to ensure we support the most up-to-

date version of Linux distributions, which includes enhancements for

Linux I/O influenced by the SQL Server engineering team.

• I/O Accelerated Performance with Persistent Memory Support to

keep up with advancements in hardware technology.

• SQL Server Replication is now supported on Linux to provide data

synchronization capabilities – this has been a popular SQL Server

feature for years.

• Change Data Capture (CDC) provides a method for developers

and data professionals to track changes to structure and data from

SQL Server tables. This has been a popular feature on SQL Server on

Windows for many releases and is now available on Linux.

• Ensure Distributed Transactions are supported so developers have

options to write distributed data applications as they have for years

on SQL Server on Windows.

• Simplified Active Directory deployment using OpenLDAP

providers.

Chapter 6 SQL Server 2019 on Linux

https://aka.ms/sqlworkshops

178

• Support SQL Server Machine Learning Services and Extensibility

on Linux to enable new application scenarios, bring Machine

Learning models close to the data in a secure and scalable fashion,

and extend the T-SQL language.

• Bring Data Virtualization to SQL Server on Linux by supporting

Polybase queries to external data sources, with no data movement,

such as Hadoop, SQL Server, Oracle, Teradata, and MongoDB.

I’ll devote a major section in the rest of this chapter to each of these enhancements.

 Platform and Deployment Enhancements
For SQL Server 2019, we made enhancements to the core engine and SQLPAL to make

sure SQL Server was “enterprise ready” as it has been on Windows. In addition, we

invested in deployment improvements to support new packages for new capabilities

and provide users with similar functionality as setup on Windows. We also want to

make sure SQL Server on Linux is supported on the latest Linux releases, such as Red

Hat Enterprise Linux 8.0, Ubuntu 18.04, and SUSE Linux Enterprise Server 15. These

new Linux releases include enhancements to the Linux kernel for I/O performance with

durability which was influenced by the importance of I/O in SQL Server.

 Platform Enhancements
While it is completely true that the core SQL Server engine on Linux is the same

codebase as SQL Server on Windows, the SQLPAL (and a component called the Host

Extension) is designed to allow SQL Server to interact with the Linux kernel when

necessary. We discovered after we shipped SQL Server on Linux that a few areas

needed to be enhanced to ensure our database platform behaved in the same fashion

as SQL Server on Windows. Because these were core database engine capabilities

integrated with the operating system, we backported these changes to SQL Server

2017 – if you install the latest Cumulative Update for SQL Server 2017, you will have

these changes.

Chapter 6 SQL Server 2019 on Linux

179

 Memory Notifications

The SQL Server memory management system has always been built to be resilient and

responsive to both memory needs within SQL Server and demands outside the engine in

the overall operating system environment.

While the core engine of SQL Server is the same as on Windows, concepts such as

responding to memory pressure are specific to the operating system. We discovered

some issues with the concept of “memory notifications” in SQL Server 2017 on Linux

and have enhanced our Linux integration to ensure this works as it does on Windows in

SQL Server 2019.

Note We also made changes in the latest Cumulative update to ensure these
enhancements are also in SQL Server 2017 on Linux.

Our enhancement will ensure our “target,” which is the ceiling of memory allocations

for SQL Server, and will be adjusted if there is memory pressure from the operating

system. In other words, if the overall operating system is low on physical memory,

SQL Server will adjust the “target” down to attempt to avoid OS memory swaps or the

dreaded “OOMKiller” scenario (you can read more about oomkiller at https://unix.

stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-

process- to-kill-first).

The way to see the SQL Server target memory get adjusted with memory pressure

(i.e., low physical memory) is to monitor the committed_target_kb column in the

dm_os_sys_info Dynamic Management View (DMV).

 Ring Buffer Dynamic Management Views

SQL Server has a DMV called dm_os_ring_buffers that can be used to track CPU

utilization for the server and SQLSERVR.EXE process. This DMV is not supported

officially, but it is used for one key monitoring tool, the Performance Dashboard in

SQL Server Management Studio (SSMS). You can read more about how to use the

Performance Dashboard at https://docs.microsoft.com/en-us/sql/relational-

databases/performance/performance-dashboard.

One of the nice features of the dashboard is to show the overall CPU utilization of

the computer and SQLSERVR.EXE (even over the last hour of time) to help narrow down

CPU issues specific to SQL Server. This report relies on data from dm_os_ring_buffers.

Chapter 6 SQL Server 2019 on Linux

https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first
https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first
https://unix.stackexchange.com/questions/153585/how-does-the-oom-killer-decide-which-process-to-kill-first
https://docs.microsoft.com/en-us/sql/relational-databases/performance/performance-dashboard
https://docs.microsoft.com/en-us/sql/relational-databases/performance/performance-dashboard

180

The problem is that, on Linux, we always reported CPU usage as 100% fixed, so the

report would not show correct data. With SQL Server 2019 (and the latest CU on SQL

Server 2017), this DMV reports the correct usage, and now the Performance Dashboard

can be used against a SQL Server on Linux.

 SQL Server 2019 on Linux Deployment
If you are familiar with installing SQL Server on Windows, you will be completely

amazed at the simplicity of deploying SQL Server on Linux. You can start at this

documentation page https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-overview to see the “quickstarts” for deploying SQL Server on Linux.

There were a few changes for SQL Server on Linux deployment worth calling out:

• New packages were created to support new features. One of the

reasons why SQL Server on Linux deployment is lighter and faster

is the product is deployed in a series of packages. While the mssql-
server package includes the core database engine, SQL Agent,

Replication, CDC, and Distributed Transactions, the following

packages are required to enable new functionality:

mssql-mlservices-mlm-py∗ and mssql-mlservices-mlm-r∗ –

Software for Machine Learning services. There are other packages

for ML Services which I will describe later in this chapter.

mssql-server-extensibility – Software to enable external

languages for the extensibility framework.

mssql-server-extensibility-java – Software to enable Java support

for external languages. This package will install the mssql-server-

extensibility package.

mssql-server-polybase – Software to enable the Data

Virtualization feature of Polybase for SQL Server on Linux.

• Just as with SQL Server on Windows, SQL Server on Linux will now

automatically create more than one data file for tempdb (up to 8)

based on the number of cores discovered during installation. This

option can help avoid page latch contention on system allocation

pages.

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview

181

• mssql-conf options have been added to support new features for

SQL Server 2019. For example, mssql-conf options for DTC support

have been added, which you can read more about at https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-configure-

msdtc.

 Supporting New Linux Releases
It is important for SQL Server to be supported on the latest release of major Linux

distributions. Therefore, with SQL Server 2019, we want to ensure we support these

major Linux versions:

• Red Hat Linux Enterprise 8.0

• Ubuntu 18.04

• SUSE Linux Enterprise Server 15

Note at the time of the writing of this book, it was our intention to officially
support these Linux releases with SQL Server 2019. SQL Server does work on all of
them, but we had to make some changes to the deployment packaging and ensure
they were well tested. it is possible issues could come up to prevent us from being
100% ready at the time SQL Server 2019 ships, but, if it isn’t announced then, i
expect it to be formally announced shortly thereafter.

Along with the support of the latest Linux releases comes a benefit to I/O

performance. My long-time colleague Bob Dorr noticed after the release of SQL Server

2017 that I/O performance of SQL Server on Linux with complete durability could

be a problem. This led to the addition of some SQL Server configuration options for

a concept called “forced flush,” as documented in the Microsoft article at https://

support.microsoft.com/en-us/help/4131496/enable-forced-flush-mechanism-in-

sql-server-2017-on-linux. We decided to ensure SQL Server, by default, prioritized

durability over performance. But customers want both, of course. Any customer could

change from the default and achieve durability with performance, if they knew their disk

system could support proper flushed writes.

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc
https://support.microsoft.com/en-us/help/4131496/enable-forced-flush-mechanism-in-sql-server-2017-on-linux
https://support.microsoft.com/en-us/help/4131496/enable-forced-flush-mechanism-in-sql-server-2017-on-linux
https://support.microsoft.com/en-us/help/4131496/enable-forced-flush-mechanism-in-sql-server-2017-on-linux

182

During the calendar year of 2018, Bob Dorr and others on the SQL Server

engineering team worked with Linux open source engineering, especially those at Red

Hat. The result of this work was changes to the Linux kernel for the XFS file system

upstream. Red Hat Enterprise Linux (RHEL) 8.0 includes these kernel changes. Other

Linux releases are to follow incorporating these changes. Now a user can “turn off” our

enforced flush changes for SQL Server on Linux, but still achieve maximum performance

with durability.

As with other experiences in our career, Bob Dorr wanted to tell the “story behind

the story.” And he did so in this detailed blog post at https://bobsql.com/sql-server-

on-linux-forced-unit-access-fua-internals/. I demonstrated these changes at

the Red Hat Summit in May of 2019 and showed the incredible 100%+ performance

improvements using RHEL 7.6 vs. RHEL 8.0 configuring SQL Server to use the FUA

enhancements. It seems like a small story, but stop and think about this: Microsoft
assisted in contributing to the open source Linux kernel to improve I/O for all
applications!

 Persistent Memory Support
One of the things I love about the SQL Server engineering team is that they are always

looking to the future. Always looking at the latest advances in technology to ensure SQL

Server stays ahead of the curve.

It doesn’t surprise me to see that SQL Server on Linux can take advantage of

persistent memory devices. Persistent memory (pmem) is a byte-addressable storage

device. This means persistent memory can be accessed like standard RAM but have the

properties of a storage device – so data stored on it can survive computer power outages

and restarts.

Persistent memory devices can always be treated in both Windows and Linux

as block devices. In other words, they can be presented by the operating system as a

standard disk drive, and SQL Server can access them like any drive. In block mode,

persistent memory devices can be faster to access than even some of the fastest SSDs on

the market. However, because pmem devices are byte addressable, an application like

SQL Server could transfer data between the device and standard RAM as though it was

memory, using API calls like memcpy(), resulting in even faster I/O performance.

Chapter 6 SQL Server 2019 on Linux

https://bobsql.com/sql-server-on-linux-forced-unit-access-fua-internals/
https://bobsql.com/sql-server-on-linux-forced-unit-access-fua-internals/

183

SQL Server 2019 has been enhanced to recognize database and transaction log

files stored on pmem devices and to bypass the Linux kernel I/O stack to transfer data

from these devices. You can read more about how applications can take advantage of

pmem devices, using a concept called DAX (www.kernel.org/doc/Documentation/

filesystems/dax.txt) at https://docs.pmem.io/getting-started-guide/

installing-ndctl.

You can read how to configure a pmem device with SQL Server in our

documentation at https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-configure-pmem. As I described in Chapter 2, DELL EMC was able to achieve

faster performance of SQL Server using pmem support, which you can read about at

www.emc.com/about/news/press/2019/20190402-01.htm. In addition, HPE engineers

have demonstrated I/O performance improvements with SQL Server 2019 in this

YouTube video at www.youtube.com/watch?v=8WUix125tQQ.

 SQL Server Replication on Linux
One of the most popular technologies for copying and distributing data to other SQL

Server instances is SQL Server Replication. Because SQL Server Agent was included

in SQL Server 2017, and the core database engine provides much of the functionality

of SQL Server Replication, we wanted this capability to be part of SQL Server 2017 on

Linux. But time ran out before we could hook everything together and ensure it was well

tested, so SQL Server Replication for Linux is now available in SQL Server 2019.

To continue the great story of compatibility, almost all of the functionality of SQL

Server Replication for Windows exists on Linux. This includes snapshot, transaction,

merge, and peer-to-peer replication. Furthermore, you can configure replication to use

publishers and subscribers across Windows and Linux.

To know about the complete set of SQL Server Replication features on Linux, read

through the documentation at https://docs.microsoft.com/en-us/sql/linux/sql-

server- linux-replication.

In Chapter 7 on containers, I’ll show you an example of how to use SQL Server

Replication on Linux using containers. The documentation also includes a tutorial at

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux- replication-

tutorial-tsql.

Chapter 6 SQL Server 2019 on Linux

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://docs.pmem.io/getting-started-guide/installing-ndctl
https://docs.pmem.io/getting-started-guide/installing-ndctl
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-pmem
https://www.emc.com/about/news/press/2019/20190402-01.htm
https://www.youtube.com/watch?v=8WUix125tQQ
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-replication
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-replication
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-replication-tutorial-tsql
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-replication-tutorial-tsql

184

 Change Data Capture (CDC) on Linux
Similar to the story for SQL Server Replication, all the components for Change Data

Capture (CDC) are in SQL Server on Linux. However, we could not release this feature in

SQL Server 2017 on Linux just because of time constraints. In SQL Server 2019, CDC is

fully supported.

If you are not familiar with CDC, it is an excellent technology to capture changes

of data from tables and is especially useful for Extract, Transform, and Load (ETL)

applications.

All of the functionality to track and query changes is provided within SQL Server.

CDC uses some of the same internal technology as SQL Server Replication to capture

changed data. You can read all about CDC at https://docs.microsoft.com/en-us/sql/

relational-databases/track-changes/about-change-data-capture-sql-server.

 DTC on Linux
After we released SQL Server 2017 on Linux, I asked my friend Bob Dorr what his new

focus would be. He said “everything” of course, but one task Slava Oks gave him was

to work on getting feature parity for SQL Server on Linux. One of those features was

Distributed Transaction support, including support for the Microsoft Distributed

Transaction Coordinator (MSDTC).

Along with Kapil Thacker and others in the engineering team, we were able to

leverage the SQLPAL architecture to get the core MSDTC service and software working

on Linux without having to write a “new” DTC for Linux. (That SQLPAL is a thing of

beauty. We should one day find a way to open up the SQLPAL architecture so others can

just get their Windows apps to work on Linux.)

One of the most common methods to use DTC for SQL Server is with a distributed

transaction across linked servers, from one SQL Server to the other, using the T-SQL

BEGIN DISTRIBUTED TRANSACTION statement. Linked server queries across SQL

Server instances worked on Linux in SQL Server 2017, but not for distributed transactions.

As Bob Dorr calls out in this blog post, https://bobsql.com/sql- server- linux-

distributed-transactions-requiring-the-microsoft-distributed- transaction-

coordinator-service-are-not-supported-on-sql-server-running- on- linux-sql-

server-to-sql-server-distributed-tr/, you will get an error if you attempt this (wait

for it… it will work on SQL Server 2017 now, with the latest Cumulative Update).

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://bobsql.com/sql-server-linux-distributed-transactions-requiring-the-microsoft-distributed-transaction-coordinator-service-are-not-supported-on-sql-server-running-on-linux-sql-server-to-sql-server-distributed-tr/
https://bobsql.com/sql-server-linux-distributed-transactions-requiring-the-microsoft-distributed-transaction-coordinator-service-are-not-supported-on-sql-server-running-on-linux-sql-server-to-sql-server-distributed-tr/
https://bobsql.com/sql-server-linux-distributed-transactions-requiring-the-microsoft-distributed-transaction-coordinator-service-are-not-supported-on-sql-server-running-on-linux-sql-server-to-sql-server-distributed-tr/
https://bobsql.com/sql-server-linux-distributed-transactions-requiring-the-microsoft-distributed-transaction-coordinator-service-are-not-supported-on-sql-server-running-on-linux-sql-server-to-sql-server-distributed-tr/

185

If you ever want to know the internals of how DTC works and interacts with SQL

Server (or any XA transaction), read this incredibly detailed blog post by Bob Dorr at

https://bobsql.com/how-it-works-sql-server-dtc-msdtc-and-xa-transactions/.

While distributed linked server transactions were the number one goal for this

team to bring DTC transactions to SQL Server on Linux, there are other scenarios for

developers the team wanted to enable including

• OLE-TX Distributed Transactions against SQL Server on Linux for

ODBC providers. You can read more about building applications with

OLE-TX at https://docs.microsoft.com/en-us/sql/relational-

databases/native-client-odbc-how-to/use-microsoft-

distributed-transaction-coordinator-odbc.

• XA Distributed Transactions against SQL Server on Linux using JDBC

and ODBC providers. You can read more about XA transactions

at https://docs.microsoft.com/en-us/sql/connect/jdbc/

understanding-xa-transactions.

To enable this functionality, Kapil, Bob, and the team had to build the MSDTC

service in such a manner with SQLPAL to support the existing port communication

structure as it runs on Windows today. The resulting architecture looks like Figure 6-2

(Tejas Shah and I tag teamed to build this diagram, with help from Kapil and Bob).

Figure 6-2. MSDTC on Linux

Chapter 6 SQL Server 2019 on Linux

https://bobsql.com/how-it-works-sql-server-dtc-msdtc-and-xa-transactions/
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-how-to/use-microsoft-distributed-transaction-coordinator-odbc
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-how-to/use-microsoft-distributed-transaction-coordinator-odbc
https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-how-to/use-microsoft-distributed-transaction-coordinator-odbc
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-xa-transactions
https://docs.microsoft.com/en-us/sql/connect/jdbc/understanding-xa-transactions

186

This diagram definitely needs some explaining. Imagine the MSDTC client is a SQL

Server distributed transaction through a linked server (so another SQL Server running

Linux or Windows). In the box on the right, there are two components running in the

SQLSERVR Linux process using SQLPAL: the endpoint mapper and MSDTC. The overall

host is the operating system on Linux hosting the SQLSERVR process.

MSDTC relies specifically on port 135, and we could not change that unless we

modified the MSDTC code for Linux. The MSDTC client tries to communicate first on

port 135. We built an “endpoint mapper” which will map port 135 to a port we can listen

on. That is configured by the mssql-conf option network.rpcport. This endpoint mapper

will then communicate back to the MSDTC client which port to use to communicate

with the MSDTC Linux service, which then integrates with SQL Server. The port for

the MSDTC service can be randomly generated, but you need firewall access to this

port, so you should configure this with the mssql-conf option distributedtransaction.
servertcpport.

The complete configuration experience is available to you at https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc. Once you

complete these configurations, you can now just fire up a BEGIN DISTRIBUTED
TRANSACTION across a SQL Server linked server. In fact, I have an example for you to

try just that using containers at https://github.com/microsoft/sql-server-samples/

tree/master/samples/containers/dtc.

 Active Directory with OpenLDAP
In order to have enterprise credibility for SQL Server on Linux, we had to make sure we

supported Active Directory (AD) authentication. Like other aspects of SQL Server on

Linux, the configuration experience is different than on Windows, but the experience and

compatibility are the same.

We document an overview of the process to set this up on Linux at https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-auth-

overview, and I talk about the architecture of this in Chapter 7 of my book Pro SQL

Server on Linux.

One of the steps to configure AD support for SQL Server on Linux is to have the Linux

server hosting SQL Server join an Active Directory domain. And when we released SQL

Server 2017 on Linux, we document how to do this using a Linux package called SSSD

and a program called realmd. We heard feedback from customers that they wanted

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc
https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/dtc
https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/dtc
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-auth-overview
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-auth-overview
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-auth-overview

187

alternate methods to join the domain – specifically, a simpler experience, with third-

party packages like PBIS, VAS, or Centrify. Turns out SQL Server doesn’t do anything

to prevent using these packages; we just needed to make a few minor configuration

changes to make them work. We outline and document these at https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-join-

domain. Tejas Shah and the team spent some time cleaning up all the documentation

for these options. It is important to know this is not a new enhancement for SQL Server

2019, as this will also work for SQL Server 2017. However, the concept is new enough I

wanted to call it out in this book.

 SQL Server Machine Learning Services
and Extensibility on Linux
As I described in detail in Chapter 5, SQL Server Machine Learning Services is radical – it

allows you to combine the power of R and Python, integrated with SQL Server, to build

scalable and powerful Machine Learning models and applications.

While this has been a great story for SQL Server on Windows, we needed to

complete the compatibility story by bringing this technology to Linux. In addition, as we

introduced the new extensibility framework and language extensions, including Java, we

needed to ensure this also works with Linux.

 Deployment of SQL Server ML Services on Linux
Like SQL Server on Windows, for SQL Server Machine Learning on Linux, we help you

install the necessary packages to deploy R and Python scripts with SQL Server.

We give you choices on how to deploy SQL Server ML Services – minimal, full, or

combo. These function as follows:

full – All the packages for R or Python and includes pretrained

models to use for Machine Learning. This package is called mssql-
mlservices-mlm-r or mssql- mlservices- mlm-py. All dependent

packages are also installed (such as R Open) when you use this

option.

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-join-domain
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-join-domain
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-join-domain

188

minimal – All the packages for R or Python, but no pretrained

models. This package is called mssql-mlservices-packages-r or

mssql-mlservices-packages-py. All dependent packages are also

installed (such as R Open).

combo – Install SQL Server 2019 (the database engine) with SQL

Server ML Services in one step. You can read about how to do this

at https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-setup-machine-learning#install-all.

When I installed the full version for SQL Server ML Services for R, these packages

were installed as seen in Figure 6-3.

Tip if you are looking for a great way to use ssh against your SQL Server on
Linux, you can use the terminal option in azure Data Studio, as you will see in
examples in this chapter.

Note that one of the packages installed is mssql-server-extensibility, which I’ll describe

later in this chapter, and is required for the extensibility framework for language extensions

(the same framework is used for both SQL Server ML Services and language extensions).

Figure 6-3. Installation of full SQL Server ML Services for R

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#install-all
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#install-all

189

Once you have deployed, you have some post-install steps to perform, such as

accepting the EULAs for R or Python. Follow these steps in the documentation at

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-

learning#post-install-config-required.

I also recommend, just like on Windows, you use the “hello world” example to verify

the installation was successful. The example for R looks like this T-SQL statement:

EXEC sp_execute_external_script

@language =N'R',

@script=N'

OutputDataSet <- InputDataSet',

@input_data_1 =N'SELECT 1 AS hello'

WITH RESULT SETS (([hello] int not null));

GO

It is also possible you, data scientists, or data engineers need additional R or Python

libraries to use for your applications. Use the following guidance in the documentation

on how to add this code at https://docs.microsoft.com/en-us/sql/linux/sql-

server- linux-setup-machine-learning#add-more-rpython-packages.

Note if you have used this feature with SQL Server 2019 Ctp builds, be sure
to remove all of those packages before trying to use the SQL Server 2019 rtM
feature.

 How It Works
I described in Chapter 5 the architecture of SQL Server ML Services including the

Launchpad service and satellite processes.

SQL Server ML Services on Linux has the same concept. On Linux, the Launchpad

process is a systemd unit service called mssql-launchpadd. You can view or control

this service using systemctl. Figure 6-4 shows an example of the status of this service on

Linux.

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#post-install-config-required
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#post-install-config-required
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#add-more-rpython-packages
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#add-more-rpython-packages

190

The Launchpad service is represented by a daemon process on Linux called

launchpadd. The same concept of forking processes on Windows for satellite processes

works on Linux, including the R program and bxlserver. Figure 6-5 shows the processes

forked off the launchpadd service to run an R script.

You may be asking how I was able to capture these processes in-flight? Use these steps:

From another ssh session, run the following T-SQL script:

EXEC sp_execute_external_script

@language =N'R',

@script=N'

OutputDataSet <- InputDataSet

Sys.sleep(10)',

Figure 6-4. The Launchpad on Linux

Figure 6-5. Satellite processes for an R script on SQL Server on Linux

Chapter 6 SQL Server 2019 on Linux

191

@input_data_1 =N'SELECT 1 AS hello'

WITH RESULT SETS (([hello] int not null));

GO

Note the Sys.sleep() call to make the R script pause during execution.

From your other ssh session, run the following commands from the Linux shell:

ps -axf

SQL Server ML Services (and the extensibility framework) uses namespaces for

process isolation for satellite processes. You can use the same example earlier to cause

the R script to pause and run the command on Linux:

sudo lsns

You will see a separate namespace created for the launchpad process (which forks

the satellite processes). Figure 6-6 shows an example of this separate namespace.

Figure 6-6 shows something else important about SQL Server ML Services (and the

extensibility framework). The user account that satellite processes runs under is called

the mssql_satellite login. This is important for any permissions required by R or Python

scripts (and extensibility languages).

Note Don’t forget that the native scoring feature of SQL Server is built into
the SQL Server engine, so can be used on SQL Server on Linux (even on SQL
Server 2017). read more at https://docs.microsoft.com/en-us/sql/
advanced-analytics/sql-native-scoring.

Figure 6-6. Namespace for satellite processes on Linux

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring
https://docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring

192

 The Extensibility Framework and Language Extensions
Based on the same framework as SQL Server ML Services, we introduced the concept of

language extensions, which I described in detail in Chapter 5. As part of this capability,

we shipped Java as an example of a language extension in the box.

To deploy SQL Server language extensions on Linux, you can install one of these

packages:

mssql-server-extensibility – This is the core software to use

the extensibility framework for any language. It is a dependent

package, as you saw earlier in this chapter, installed when you

install SQL Server ML Services.

mssql-server-extensibility-java – This will install the extensibility

framework and the java language extension and SDK so you can

run your Java code.

Just like SQL Server ML Services, you also have the option to perform a combo install

of SQL Server with language extensions, which you can read about at https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions.

In addition, SQL Server will install the Java Runtime Engine (JRE) Version 8 if it is not

already installed on Linux (as with Windows, we will install the Zulu JRE).

The process to deploy your Java class is almost identical to SQL Server on Windows

and how I described how to use the regex tutorial in Chapter 5. In fact, Java is very

compatible, so you can take the same java class you built in Chapter 5 and compile/build

a jar file on Linux. You use the same steps to create an external language, external library

for the SDK, and external library for your Java class (in the form of a jar file).

When you run your code, the same Launchpad architecture is used to fork a process

for satellite processing. Like SQL Server on Windows, this process is called Extension

Host and looks like Figure 6-7 from a process output on Linux.

Figure 6-7. The exthost satellite process to run Java for SQL Server on Linux

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions

193

 Polybase on Linux
It is difficult to arrange everything in a book in the exact right order. Chapter 9 is

dedicated to the concept of Data Virtualization and Polybase in SQL Server 2019.

I wanted to briefly mention it here because it is new to SQL Server on Linux.

Polybase was introduced in SQL Server 2016 for Hadoop connectors and enhanced

in SQL Server 2019 with connectors for SQL Server, Oracle, Teradata, and MongoDB.

As you will read in Chapter 9, Polybase uses some of the components of our Analytics

Platform System (APS, formerly known as Parallel Data Warehouse) to perform scale-out

query processing. These exist as services in Windows and use the SQLPAL for SQL Server

2019 on Linux.

We have introduced the mssql-server-polybase package to enable Polybase for

SQL Server on Linux. You can read the complete deployment steps at https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup.

The same T-SQL statements and concepts apply for Polybase for SQL Server on

Linux as with Windows, with these exceptions for SQL Server 2019:

• Polybase for SQL Server on Linux does not support scale-out groups.

• The generic ODBC connector is not supported.

Our plans for the future are to get complete feature parity for Polybase for SQL

Server on Linux past SQL Server 2019. You will learn more about how to use Polybase in

Chapter 9.

 Summary
SQL Server on Linux is all about choice with compatibility. In SQL Server 2017, the

core database engine for Linux was compatible with SQL Server on Windows. With

SQL Server 2019, we have included enhancements for capabilities on the edge of the

engine including Replication, Change Data Capture, Distributed Transactions, Machine

Learning Service and Language Extensions, and Polybase.

In addition, we have made enhancements to platform integration with Linux,

supported the latest Linux releases, included enhanced I/O performance with durability,

added persisted memory support, and clarified how OpenLDAP providers can be used

to configure Active Directory authentication.

Chapter 6 SQL Server 2019 on Linux

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup

194

The story for SQL Server on Linux is a strong one. I was invited by Red Hat in May

of 2019 to not just attend the Red Hat Summit, but to present the story of SQL Server on

Linux with several of my colleagues (and in one case copresent with Red Hat).

I had also attended the Red Hat Summit in 2018, and, as the event ended in 2019, I no

longer felt like Microsoft SQL Server “was the new kid on the block.” I felt we were now a

mainstream part of the Linux ecosystem and community.

Chapter 6 SQL Server 2019 on Linux

195
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_7

CHAPTER 7

Inside SQL Server
Containers
 Why SQL Server Containers?
When I thought about how I would approach this chapter, I thought about only talking

about what is new for containers for SQL Server 2019. While that alone would be worth

a chapter, I decided to go bigger and be more inclusive to talk about the concept of

containers, why it is important as a new way of deploying SQL server, and of course what

are new capabilities for containers with SQL Server 2019. I could write an entire book

on containers so you will not walk away from this chapter with an exhaustive knowledge

on the subject. There are many great resources on containers (one I still find value is

still www.docker.com!) to supplement this chapter. My goal for this chapter is to give you

enough information about containers to see how SQL Server containers work and why

you should consider using them. I do promise you will leave this chapter understanding

how to deploy, manage, and use SQL Server containers.

If you feel like you know the concept of containers fairly well, you are more than

welcome to skip down to the section called “What Is New for SQL Server 2019.” After

that section is a series of examples you will find valuable to dive more into containers.

I should say even if you know the basics of containers, you might consider starting at

the section “How SQL Server Containers Work,” specifically at the subsection “The SQL

Server Container” as I’ll disclose some internals of the unique aspects of SQL Server

using containers.

Containers solve a challenge that virtual machines cannot provide today. Virtual

machines have been such an amazing technology to abstract applications from

underlying hardware, but they require an entire operating system to be loaded and run

for your application. Virtual machines do allow applications to run isolated from each

other on the host and for SQL Server that has been a great solution for consolidation

http://www.docker.com

196

scenarios (even though SQL Server does allow for multiple instances to be hosted on the

same computer). Containers provide the same concept of isolation, but they are far more

lightweight than using a virtual machine. Containers are often considered an abstraction

from the operating system.

Here is an important concept to remember as I describe containers. Containers

don’t replace virtual machines. Containers complement them. In fact, one of the most

common environments to run containers is inside a virtual machine. Let me provide the

definition of a container by first defining a container image. A container image is a binary

file that describes a set of files organized in a file system and a program to run from

those files. A container is an instance of running the container image program along with

the file system from the image in an isolated manner.

Consider the following diagram in Figure 7-1 I often use to talk about what are

containers and why they can solve certain challenges for modern applications.

Let me unpack this figure starting on the left side of the diagram:

Portable
Containers are portable because a container image can be run anywhere docker can

be run which is almost everywhere including Windows, Linux, and macOS computers or

Figure 7-1. The promise of SQL Server containers

Chapter 7 InsIde sQL server ContaIners

197

in cloud systems supporting these operating systems or Kubernetes (you will learn more

about Kubernetes in Chapter 8). You can take a SQL Server container image as a binary

file and “pull it” into any of the systems, and it will operate the same.

Note Calling all macos users. please take a look at the following blog post
I wrote showing how you can now run sQL server and tools with no Windows
software required! https://bobsql.com/take-the-sql-server-mac-
challenge/

Lightweight
A container is a running instance of a container image, and it in the end is just

a process based on a program running in an isolated manner. That makes it far

more lightweight than an entire virtual machine to host a program. The footprints of

containers are also optimized because if you run more than one container from an

image, a portion of the image files (called the readable layer which I’ll explain later in

the chapter) is shared across the containers. This will reduce the footprint and resources

required to run multiple SQL Server instances on a host or virtual machine.

Note sQL server on Linux does not support multiple instances, but you can
achieve the same solution using containers.

Consistent
This is one of the aspects about containers I absolutely love, and it helps solve a big

challenge for SQL Server. For years, companies have set up development servers with

SQL Server to host a test and development playground for developers. This causes major

pain as so many developers using the same SQL Server (and they usually need a higher

level of access for SQL Server) can result in inconsistencies and major pains for folks like

database administrators.

Containers provide a consistent way for developers to use SQL Server without

having to share a SQL Server instance. For example, if you want all developers to use a

specific image of a SQL Server version along with a specific database, you can build a

container image to achieve this. And because containers are portable and SQL Server

now supports Linux, you can give the same SQL Server container image for developers

that are using different platforms. Your macOS developers can use the same SQL Server

Chapter 7 InsIde sQL server ContaIners

https://bobsql.com/take-the-sql-server-mac-challenge/
https://bobsql.com/take-the-sql-server-mac-challenge/

198

image as your Windows developers. Now that is a consistent story! The symbol in the

bottom left- hand corner of the figure for DevOps simply describes how important the

container story is to support a DevOps model.

Efficient
Containers provide a new and quite frankly mind-opening experience for updating

software like SQL Server. If you have ever had to apply a cumulative update or patch for

SQL Server, you will find the container experience amazing. You will experience less

downtime and a faster experience to roll back updates should that be needed.

In Figure 7-1 on the right side, the diagram shows a picture of how this works. The

container in the middle which is “grayed” out represents a SQL Server container that

is stopped. The container on the left is a new version of SQL Server that is started but

pointed to the same system and user databases which are stored in persisted storage (in

a concept called a volume which I’ll explain later in this chapter). This is a technique

I’ll show you later in this chapter I call “switching” containers to apply or roll back a

cumulative update of SQL Server.

While you are looking at the diagram, I want to call out the following observations:

• The black boxes that say Bin/libs represent the minimum binaries

required to run SQL Server. This represents the “lightweight” aspect

of a container vs. an entire virtual machine. And what is not really

represented in the diagram is that if the containers are from the same

image, these files are shared across containers.

• The box that says Docker represents the docker software that is used

to run and manage containers. In reality this should say Container

Runtime as Docker is just an example of a container runtime.

• Notice the arrows that point down through Docker to the Host OS.

Docker is not a layer in between a container and the host operating

system. In other words, SQL Server doesn’t have to communicate

through some layer to execute kernel OS operations. This is why

containers are also considered more lightweight because they have

a program that talks directly to the host OS. The unique aspect of

container execution is that they run in isolation from each other,

hence the term container.

With these fundamentals of container in mind, let’s spend time learning how containers

work. Understanding how things work often allows you to use things more efficiently.

Chapter 7 InsIde sQL server ContaIners

199

 How SQL Server Containers Work
Before you begin your journey of trying out SQL Server containers, let me spend time

explaining how they work. To first explain how they work, I need to spend some time

talking about container hosting, the magic behind docker, and the container lifecycle.

 Container Hosting
I just finished the last section talking about how containers are really programs that work

directly with the host operating system. The host operating system could be in a virtual

machine or directly with a host bare metal computer.

Given the program interacts directly with the host operating system like any program

on the system (except of course they run in a special isolated manner), they must be

compiled and executed to run on the host operating system.

When we shipped SQL Server 2017 on Linux, we also introduced SQL Server

container images based on Linux, namely, Ubuntu Linux. Almost every container image

in the world is based on a host operating system, and most of them are based on Linux.

For Linux host systems, running a SQL Server container based on Linux is no problem.

Whether the Linux system is a bare metal computer or a virtual machine, SQL Server

Linux containers are a natural fit.

What about Windows and macOS? Docker as a container runtime is the key. Docker

supports containers running on Windows through a program called Docker Desktop for

Windows. Any container based on a Linux image will be run in the context of a Virtual

Machine that runs Linux called DockerDesktopVM. Docker Desktop for macOS uses

a concept called HyperKit (https://github.com/moby/hyperkit). You can read more

about Docker Desktop at www.docker.com/products/docker-desktop.

Recently, there have been some advances in containers with Docker for Windows

to support a concept called Linux Containers for Windows (LCOW). The Windows team

describes this concept as a lighter method to run Linux containers in Windows than a full

virtual machine. You can read more about LCOW at https://docs.microsoft.com/en-

us/virtualization/windowscontainers/deploy-containers/linux-containers. In

addition, Docker Desktop for Windows can use a more optimized method using the new

Windows Subsystem for Linux (WSL). You can read more about how Docker Desktop can

use WSL2 at https://engineering.docker.com/2019/06/docker-hearts-wsl-2/.

Chapter 7 InsIde sQL server ContaIners

https://github.com/moby/hyperkit
https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://engineering.docker.com/2019/06/docker-hearts-wsl-2/

200

What about containers based on images for Windows or macOS? If a container

image is based on an operating system like Linux, are there container images based on

Windows or macOS? The answer is yes for Windows. Windows does have a concept of

a container image based on Windows. You can read more about Windows containers at

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/.

SQL Server has not produced a supported version of a Windows container. But in the

summer of 2019, we announced a private preview program for SQL Server Windows

Container. I’ll talk more about SQL Server Windows Containers at the end of this chapter.

As of the time I wrote this book, I’ve yet to see a container image based on macOS. Since

SQL Server is not built for macOS natively, this is not an issue, but as I’ve stated SQL

Server supports Linux which will run using Docker Desktop for macOS (using HyperKit).

 Is Docker Magic?
What I’ve described so far seems kind of magical to anyone familiar with computer

systems. Anytime someone mentions the word container, the name Docker comes up

in the same sentence. As it turns out, the concept of operating system virtualization,

which defines the concept of what containers are all about, has been around for some

time (read https://en.wikipedia.org/wiki/OS-level_virtualisation for more info).

Anyone that has worked with me when I research how something works knows I always

want to know “What is the API?” In other words, what is the programming interface used

to achieve a goal. For containers, using APIs provided by the kernel OS provides the

answer behind the magic.

Docker (as well as other container runtimes in the market) has taken the concept of

containers and built a platform and ecosystem and that is universally used. But Docker itself

uses the capabilities of the operating system to enable the concept of containers, namely,

these main constructs (on Linux but similar concepts apply to Windows containers):

Namespace – Namespaces provide a mechanism for processes to run isolated from

each other. You can read more about namespaces at https://en.wikipedia.org/wiki/

Cgroups#NAMESPACE-ISOLATION.

Control groups (cgroups) – cgroups provide a mechanism to control resource usage

for processes or a set of processes. Containers by default have access to all computing

resources such as memory and CPU, but cgroups provide a method to limit resource

usage for a container.

Union file system – A union file system allows multiple directories to be presented

as one. This concept is key to keeping the footprint of containers small and supporting a

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://en.wikipedia.org/wiki/OS-level_virtualisation
https://en.wikipedia.org/wiki/Cgroups#NAMESPACE-ISOLATION
https://en.wikipedia.org/wiki/Cgroups#NAMESPACE-ISOLATION

201

readable and writeable layer. In Linux system, the OverlayFS file system supports a union

file system. You can read more about how this works for containers at https://docs.docker.

com/storage/storagedriver/overlayfs-driver/#how-the-overlay- driver-works.

Let me stop and explain a key concept I just introduced for containers:

readable layer – A container image is read-only and consists of a set of files presented

in a file system. For SQL Server, this includes the minimum files supported from the base

operating system image and the files for SQL Server including binaries and system databases.

writeable layer – The writeable layer is any changes made to the file system of a

container after it is started. This could include any changes to files from the readable

layer or new files added. The writeable layer is persisted for the lifetime of the container.

Once the container is removed, the writeable layer is also removed. As you can imagine

for SQL Server user databases, this presents a problem.

volume – A volume is a location of persisted storage on the host that is mapped to

a directory location in the writeable layer of the container. You will see for SQL Server

a common practice is to use a volume to map to a directory in the container to store

databases. Volumes persist outside the lifetime of the container, so if a container is

removed, the volume still exists.

One thing I love docker has done is to introduce their own API abstracting the

OS concepts that support containers called libcontainer. You can read more about

libcontainer at https://github.com/opencontainers/runc/tree/master/libcontainer.

Another interesting read about the open source nature of containers is the Open Container

Initiative (OCI), which Microsoft is a founding member (www.opencontainers.org/).

It is important to note that Docker is an example of a container runtime and one of the

most popular in the industry. There is an open-source access container runtime called

containerd which you can read about at https://containerd.io/.

 Container Lifecycle
When you install Docker whether it is on Linux, Windows, or macOS, the following

components are installed which enable containers:

Docker engine – This consists of the docker daemon which is a “service” that controls

all the operations for building and running containers. The docker engine supports an

API for programs to interact with the engine for building and running containers. You can

read more about the docker engine at https://docs.docker.com/engine/. You can read

more about the engine API at https://docs.docker.com/develop/sdk/.

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay-driver-works
https://docs.docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay-driver-works
https://github.com/opencontainers/runc/tree/master/libcontainer
https://www.opencontainers.org/
https://containerd.io/
https://docs.docker.com/engine/
https://docs.docker.com/develop/sdk/

202

docker client – This is a program called docker which uses the engine API to build

and run containers. The docker client is a consistent program in that it supports options

and behaves the same across Windows, macOS, and Linux. You will use the docker client

throughout this chapter in the examples.

docker compose – This is a program called docker-compose which allows you to

build and run multi-container applications. You will use docker-compose in an example

later in this chapter with SQL Server Replication.

Using these components, consider the following workflow I call the container

lifecycle as seen in Figure 7-2.

Let’s look at each of these in more detail:

build – The docker build command is used to build a new container image. Even

though an SDK is supported, the standard approach is to define the image to build

using a file called Dockerfile. You can read more about docker build at https://docs.

docker.com/engine/reference/commandline/build/. The reference for the syntax of

a Dockerfile can be found at https://docs.docker.com/engine/reference/builder/.

Microsoft builds the images containing SQL Server so you in many cases will never build

your own image. However, there are circumstances where you will build a customized

image based on SQL Server. I’ll show you examples later in this chapter.

push – Once you build an image, you probably want others to use it so you can

push or publish your container image to a registry using the docker push command.

That registry can be on a local server or in the public domain. One of the most common

public domain registries is the Docker Hub or hub.docker.com. Microsoft, including

SQL Server, publishes their container images at mcr.microsoft.com (called the Microsoft

Container Registry). I’ll talk later in this chapter on how to find the various SQL Server

images on the Microsoft Container Registry. You can read more about docker push at

https://docs.docker.com/engine/reference/commandline/push/.

pull – Anyone wanting to consume a container image must pull it even if it is stored

on a local server. A container image is pulled using the docker pull command. The

docker engine will store a copy of the image locally on the host computer. You can

Figure 7-2. The container lifecycle

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/push/

203

read more about the docker pull command at https://docs.docker.com/engine/

reference/commandline/pull/.

run – To run a container based on an image, you use the docker run command. If

you run a container based on an image that is not already pulled, docker will first pull

the image and then run the container. You will learn all the parameters and details

required in this chapter to run a SQL Server container.

After you run a container, you will want to manage it. The docker client will allow

you to stop, start, restart, and remove a container. In addition, the docker client will let

you manage images including removing them.

The docker client can also be used to monitor and manage the container ecosystem

by listing out running containers and stopped containers and dumping out stats and logs

from running and stopped containers.

Finally, the docker client allows you to interact with running containers by copying

files into the writeable layer from the host system and running a program that exists

in the containers’ file system (which will be run in the same namespace as the main

container program. These commands will be very useful for SQL Server containers as

you will see in the examples in this chapter.

 The SQL Server Container
The SQL Server container images contain the necessary files for the SQL Server engine,

SQL Server Agent, all the features included with the engine like Replication, and the SQL

Server command-line tools (sqlcmd and bcp). When you run a SQL Server container,

SQL Server is pre-installed! In other words, when you pull and run a SQL Server

container, you are ready to use it. This is one of the major benefits of using a SQL Server

container. There is no install of SQL Server required once you start a container.

I mentioned in the previous section that an image is built with docker build using

a file called a Dockerfile. To understand how the SQL Server container is pre-installed,

here is a rough outline of the commands in the Dockerfile for SQL Server:

FROM <ubuntu or rhel base image>

LABEL < Microsoft label information >

EXPOSE 1433

COPY < SQL Server binaries and libraries >

RUN ./install.sh

CMD ["/opt/mssql/bin/sqlservr”]

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/pull/

204

The FROM command specifies the base OS image the SQL Server container image

is built on. One of the great things about containers is the ability to build new images

based on others, creating a layering effect of images. In fact, later in the chapter, I’ll show

you how to build your own image based on the SQL Server image (which is based on the

base OS image).

The EXPOSE command allows the SQL Server container to have programs connect

to port 1433 inside the container. This is important since by default containers are

isolated. You will see that often this port will be mapped to another port in the host,

allowing multiple SQL Server containers to run on the same host (which normally would

fail since two programs can’t be listed on the same port).

The COPY and RUN commands are just part of the build process to copy in all of

the SQL Server binary files into the container image file system and install any software

dependencies.

All of these commands in the SQL Server Dockerfile so far are part of building the

container image. When a docker build command is executed, each of these statements is

used to build the image. The CMD statement indicates to docker the name of the program

to run when the container starts up, which is sqlservr. This means that a SQL Server

container doesn’t run like a “service” (e.g., systemd unit service in Linux). When I’ve

described this to some people, they have asked “How does SQL Server then stay running?”

Turns out the SQL Server program (this is the same on Windows) is built to be a daemon

program, which means it runs in the background until it gets a signal to be stopped.

With this in mind, let’s see how you run a SQL Server container and then talk about

internally how we “pre-install” SQL Server.

The basic syntax to run a SQL Server container looks like this with the docker run

command (note: on Linux you typically need to preface the command with sudo):

docker run

-e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast’

-p 1401:1433

-v sqlvolume:/var/opt/mssql

--hostname sql2019latest

--name sql2019latest

-d

mcr.microsoft.com/mssql/rhel/server:2019-latest

Chapter 7 InsIde sQL server ContaIners

205

Let me explain each of these arguments:

-e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast’

The -e parameters specify environment variables that the container needs to execute.

In the case of SQL Server, you need at minimum to accept the EULA agreement and the

sa password. Other environment variables can be used as well to specify the SQL Server

edition or enable SQL Server Agent. Any environment variable supported by SQL Server

can be used to preconfigure the installation of SQL Server when starting the container.

You can get a complete set of environment variables at https://docs.microsoft.com/

en-us/sql/linux/sql-server-linux-configure-environment-variables.

-p 1401:1433

This is not required if you are only going to run one SQL Server container on the host

(and assumes you don’t have SQL Server installed on the host). If you do have more than

one SQL Server, you need to map port 1433 to a different port. Any application wanting

to connect to this SQL Server container will use port 1401 now instead of just the default

port.

-v sqlvolume:/var/opt/mssql

This specifies what volume to use to map to the SQL Server directory where

databases are stored. This is not required, but if you want your databases to persist

independent of the lifetime of the container, you will want to use a volume. For any

production SQL Server container, you will want to use a volume.

--hostname sql2019latest

This parameter is also not required but very convenient. This is because the

hostname you specify will become @@SERVERNAME within SQL Server.

--name sql2019latest

This parameter is also not required but is convenient for you to manage the

container. By using a name, you can now easily identify a container by name and

manage it. For example, after starting this container, you can stop it by running docker

stop sql2019latest.

-d

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables

206

This parameter says to run the container in the background. You normally want to

use this parameter for a SQL Server container. However, a nice debugging technique is to

remove this parameter if you cannot start a SQL Server container. This is because when

the sqlservr program is run from the command line, the default behavior is to dump

the contents of the ERRORLOG to stdout which would then show up when you run the

container. You can also use the docker logs command to dump out the ERRORLOG of a

SQL Server container.

mcr.microsoft.com/mssql/rhel/server:2019-latest

This is the tag of the container image you want to run. I’ll show in the next section

how to figure out which tags to use for a particular SQL Server container. If the tagged

image doesn’t exist locally, docker will pull that image first and then run the container.

One interesting aspect of how a SQL Server container works is the startup sequence.

When the sqlservr program runs in the container, the /var/opt/mssql directory does

not exist. However, the sqlservr program has the intelligence to create this directory and

extract the system databases from the installed files of the container image at startup. In

addition, sqlservr understands how to take the environment variables and use them as

startup parameters to bind in the EULA agreement, sa password, and other environment

variables. In other words, the sqlservr program understands how to install itself!

Let’s look at what is new in SQL Server 2019 with containers before diving into some

examples.

 What Is New for SQL Server 2019
Now that you have a perspective on how containers work and how they work with SQL

Server, let’s review the new capabilities with containers for SQL Server 2019:

• We now provide SQL container images with a base OS image of Red
Hat Enterprise Linux (RHEL) for SQL Server 2019. See the next

point here on how to find out what these images look like. I’ll use

mostly RHEL images in this chapter for the examples.

• SQL Server 2019 containers by default run as non-root allowing SQL

Server to be officially supported on Red Hat OpenShift.

• All SQL Server container images are now stored in the Microsoft

Container Registry at mcr.microsoft.com.

Chapter 7 InsIde sQL server ContaIners

207

When we released SQL Server 2017 and container images, we

published our images in the Docker Hub repository at https://

hub.docker.com/_/microsoft-mssql-server. Since that time

within Microsoft, we established a standard that official Microsoft

container images would now be published in the Microsoft

Container Registry at mcr.microsoft.com. We continue to

“syndicate” or list our images on the Docker Hub, but the images

themselves are found only on mcr.microsoft.com.

Let me stop here and explain about the naming convention for

container images:

The SQL container images will follow this naming convention:

mcr.microsoft.com/mssql/server:<tag> – Ubuntu images

mcr.microsoft.com/mssql/rhel/server:<tag> – Red Hat

Enterprise Linux images

Note While we don’t currently package container images for sUse, you can build
one yourself using this example provided by vin Yu from Microsoft at https://
github.com/microsoft/mssql-docker/tree/master/linux/preview/
SLES.

The <tag> syntax is based on the specific build you are looking for

or the “latest” build.

For example, to get the latest build container image for SQL Server

2017 for Ubuntu, you would use this container image name:

mcr.microsoft.com/mssql/server:2017-latest-ubuntu

or for SQL 2017 CU10 for Ubuntu, you would use

mcr.microsoft.com/mssql/server:2017-CU10-ubuntu

Note You can also use a tag of 2017-latest for the latest Ubuntu image, but that
is not recommended. that was the original tags we used when we first shipped
sQL 2017. It is best to explicitly state the base image by name.

Chapter 7 InsIde sQL server ContaIners

https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/SLES
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/SLES
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/SLES

208

We did not ship any RHEL container images for SQL Server 2017.

They are all listed for SQL Server 2019. For example, to get the

latest SQL Server 2019 RHEL container image, you would use:

mcr.microsoft.com/mssql/rhel/server:2019-latest

If you pull a SQL container image and are not sure what version

of SQL Server the image was built for, use the docker inspect

command. Run the following command first:

docker images

This will list out the images that are stored locally on your server.

The TAG column may give you a clue on the version of SQL Server.

But if the TAG has a value of something like 2017-latest-ubuntu,

you wouldn’t know what CU build of SQL Server 2017 this is

without running a container based on this image. But if you run a

command like

docker inspect <IMAGE ID>

where IMAGE ID is the GUID from the docker images command.

the result is a JSON file that describes the image. This can be very

useful for any container image. If you search the JSON text for a section

called Labels, you will get a result that looks like the following:

"Labels": {

 "com.microsoft.product": "Microsoft SQL Server",

 "com.microsoft.version": "14.0.3223.3",

 "vendor": "Microsoft"

The version number is the build of SQL Server. You can do a

simple search on the Internet and find the version number

matched to a SQL Server build. In this example, 14.0.3223.3

matches SQL Server 2017 CU16.

This is nice of course, but how can you know the entire possible

list of container images from mcr.microsoft.com? This tip which

I’ve seen provided by my colleague Umachandar Jayachandran

(he goes by UC) will save you a great deal of time.

Chapter 7 InsIde sQL server ContaIners

209

Use this URL to find a list of all Ubuntu images:

https://mcr.microsoft.com/v2/mssql/server/tags/list

For RHEL images, you can use

https://mcr.microsoft.com/v2/mssql/rhel/server/tags/list

Tip If you install the docker extension with azure data studio or visual studio
Code, you can use the extension to browse mcr.microsoft.com including the mssql/
server images. this blog post talks about the extension at https://jeeweetje.
net/2019/07/10/exploring-containers-in-the-microsoft-
container-registry-with-visual-studio-code/.

• We now support non-root containers with SQL Server 2019. Up to this

time, all containers for SQL Server are run in the context of the root user

in Linux. While Containers run in isolation, some in the industry don’t

think running as root is a secure model and prevents SQL Server from

being officially supported in environment such as RedHat OpenShift.

• Up to this point, SQL Server containers only support SQL Server

authentication. It is our intention to support Active Directory
authentication with containers in SQL Server 2019. At the time I

wrote this chapter, it was somewhat up in the air on whether this

would be officially supported for the SQL Server 2019 release. I’ll

talk more about this concept later in the chapter in the section

“Deploying SQL Containers in Production.”

• As we marched close to releasing SQL Server 2019, we announced

preview support for SQL Server containers based on a base image of
Windows. I call this SQL Server container Windows images. I have

a separate section at the end of this chapter discussing this topic.

As with many topics related to computer technology, you can only read so much

about how something works. Only by using something can you truly put together all the

pieces of the puzzle. Let’s go through a series of topics about SQL Server containers by

using examples.

Chapter 7 InsIde sQL server ContaIners

https://mcr.microsoft.com/v2/mssql/server/tags/list
https://mcr.microsoft.com/v2/mssql/rhel/server/tags/list
https://jeeweetje.net/2019/07/10/exploring-containers-in-the-microsoft-container-registry-with-visual-studio-code/
https://jeeweetje.net/2019/07/10/exploring-containers-in-the-microsoft-container-registry-with-visual-studio-code/
https://jeeweetje.net/2019/07/10/exploring-containers-in-the-microsoft-container-registry-with-visual-studio-code/

210

 Prerequisites for the Examples
After perhaps disappointing you in the previous chapter with no examples, in this

chapter I have more than enough. This was one of the chapters I enjoyed writing the

most because I love the topic of containers.

I am going to show you several different ways to run containers in this chapter on

Windows and Linux. I have provided you scripts where you can run all the examples on

either platform (or macOS), but in the examples I may talk more in detail about how to

use an example on a specific platform.

My goal when I wrote this chapter is that all examples would be based on Bash

shell scripts and use the new Windows Subsystem for Linux (WSL2) for Windows

users. However, at the time of this writing, this would have required an insider build of

Windows 10, and I didn’t want to put that risk on you as the reader. For Windows users,

I have examples to use in PowerShell (but remember as I just discussed in the previous

section, this will still use the Docker Desktop VM). WSL2 will change this game, but the

next major production build of Windows 10 will be required to use WSL2 (unless you are

game for the insider builds).

For all examples on all platforms, you will need

• An Internet connection as these examples will pull docker images

from the Microsoft Container Registry.

• The WideWorldImporters sample database backup which can

be found at https://github.com/Microsoft/sql-server-

samples/releases/download/wide-world-importers-v1.0/

WideWorldImporters-Full.bak.

• The SQL Server command-line tools need to be installed on your

computer if not already. Windows users can find the download from

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility.

Linux users can use the following documentation: https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools.

macOS users refer to the following documentation: https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-setup-

tools#macos.

Chapter 7 InsIde sQL server ContaIners

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools#macos
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools#macos
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-tools#macos

211

• Azure Data Studio or ADS (minimum June 2019 edition) from

 https://docs.microsoft.com/en-us/sql/azure-data-studio/

download. ADS is perfect for these examples since it is a cross-

platform tool. For ADS users, I recommend you install this extension:

https://marketplace.visualstudio.com/items?itemName=

ms- azuretools.vscode-docker. For ADS you need to choose the

Download Extension option on the install page. Download the

VSIX file to your local computer and then follow the docs for ADS to

install it. Here is how you add an extension for ADS: https://docs.

microsoft.com/en-us/sql/azure-data-studio/extensions.

Here is a list for each platform of what you will need to install:

Windows users
Install Docker Desktop for Windows at https://hub.docker.com/editions/

community/docker-ce-desktop-windows. Windows Server users can also install Docker

by reading https://docs.docker.com/install/windows/docker-ee/.

Here is another important point for Windows users. You will likely use git to clone

the repo for the book for all the samples. To do this, you will have likely installed Git

for Windows. Be sure when you install Git for Windows to turn off the autocrlf option.

Otherwise, Linux shell scripts that are needed for this chapter will fail. If you don’t know

what option, you should use a syntax like the following when cloning the repo:

git clone --config core.autocrlf=false <github URL>

Linux users
Docker comes in the free or Community Edition (CE) or paid Enterprise Edition

(EE). For the CE, there are various install options depending on your Linux distribution.

For example, Ubuntu users can install docker from https://docs.docker.com/install/

linux/docker-ce/ubuntu/ or https://hub.docker.com/search/?type=edition&offer

ing=community.

If you have Docker EE, there are specific install instructions for Ubuntu, RHEL, and

SUSE at www.docker.com/products/docker-enterprise.

macOS users
Install Docker Desktop for Mac from https://hub.docker.com/editions/

community/docker-ce-desktop-mac. The scripts I’ve built for Linux and macOS users

preface all docker commands with sudo. Although not required on macOS, using sudo

works just fine and allows for a single set of scripts for either platform.

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://docs.microsoft.com/en-us/sql/azure-data-studio/extensions
https://docs.microsoft.com/en-us/sql/azure-data-studio/extensions
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/install/windows/docker-ee/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://hub.docker.com/search/?type=edition&offering=community
https://hub.docker.com/search/?type=edition&offering=community
http://www.docker.com/products/docker-enterprise
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://hub.docker.com/editions/community/docker-ce-desktop-mac

212

 Deploying a SQL Server Container
You really need to see containers in action to appreciate the power of what they bring

and how they work. If you remember the container lifecycle I discussed earlier in the

chapter, Microsoft has already completed the build and push steps for SQL Server

containers. I will discuss later in the chapter how you will build your own images based

on SQL Server, but for now I’ll show you the pull ➤ run sequence and stop ➤ start ➤

remove manage sequence. And I will show you other docker commands you can use to

explore containers.

IMPORTANT: You must copy the WideWorldImporters backup file into a local

directory where you run these scripts to go through this activity. You can download

this backup from https://github.com/Microsoft/sql-server-samples/releases/

download/wide-world-importers-v1.0/WideWorldImporters-Full.bak.

All the examples in this section can be found at ch7_inside_sql_containers\deploy.
Use the dockerpowershell directory for Windows. For Linux and macOS users, use

the dockerbash directory (be sure to make your scripts executable with chmod u+x

<script>). I’ll walk you through in this chapter the PowerShell examples.

 1. Run the following command from PowerShell to start a SQL

Server container. (I choose to use the Terminal option in Azure Data

Studio (ADS) to run the scripts or script step1_dockerrunsql.ps1.)

Since the image for SQL Server 2019 is not locally on my computer,

docker will do a pull first and then start the container:

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"

-p 1433:1433 --name sql2019latest --hostname sql2019latest

-d mcr.microsoft.com/mssql/rhel/server:2019-latest

Figure 7-3 shows an example in ADS for this script to pull the SQL

Server 2019 RHEL image.

Chapter 7 InsIde sQL server ContaIners

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak

213

You may want to see more about the SQL Server 2019 image. You

can do that with a command like the following:

docker inspect mcr.microsoft.com/mssql/rhel/server:2019-latest

The output will be a very long JSON file. Take note of this

interesting section of the output:

"Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) ",

 "CMD [\"/opt/mssql/bin/sqlservr\"]"

],

This shows you the CMD from the Dockerfile which is to just run

sqlservr. Unfortunately, there is not a proven way to confirm what

the base image of a container image is. I’ve seen lots of programs

out there, and the docker history command for our containers

doesn’t give the name of the base image.

Figure 7-3. Deploying a SQL Server RHEL container

Chapter 7 InsIde sQL server ContaIners

214

When the container is run, unfortunately you will not know if

SQL Server started correctly or not. The command will dump out

a long “guid” value and come back to the command prompt. We

can use the docker tool to see if the container started plus try to

connect to SQL Server.

 2. Run the following command to see the status of the container that

was run for SQL Server:

docker ps

Your output will look something like the following if SQL Server

was started successfully.

CONTAINER ID IMAGE

 COMMAND CREATED STATUS

 PORTS NAMES

95345f25b901 mcr.microsoft.com/mssql/rhel/server:

2019- latest "/opt/mssql/bin/sqls..." About a minute ago

Up About a minute 0.0.0.0:1401->1433/tcp sql2019latest

The only true way to see if SQL Server started is to try and connect

to it. You can connect with a program outside the container or

inside the container. Let’s use a way outside the container first

by executing the following command or use the script step2_
dockerconnecttosql.ps1:

sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT

@@VERSION"'

Your output should look something like the following (the version

may be different since I did this with SQL Server 2019 CTP 3.2):

Microsoft SQL Server 2019 (CTP3.2) - 15.0.1800.32 (X64)

 Jul 17 2019 21:29:33

 Copyright (C) 2019 Microsoft Corporation

 Developer Edition (64-bit) on Linux (Red Hat Enterprise

Linux Server 7.6 (Maipo)) <X64>

Chapter 7 InsIde sQL server ContaIners

215

Notice SQL Server thinks it is running on RHEL 7.6. I’ve also

mentioned that the container is a program running in an isolated

manner. You can prove that if you are running on Linux systems

by running the following command on the host.

ps -axf

Your output should look something like this (the PID values will

likely be different):

/usr/bin/containerd

 22846 ? Sl 0:02 _ containerd-shim -namespace

moby -workdir /var/lib/containerd/

io.containerd.runtime.v1.linux/

moby/4f5c

 22864 ? Ssl 0:00 _ /opt/mssql/bin/sqlservr

 22909 ? Sl 31:37 _ /opt/mssql/bin/sqlservr

Windows and macOS users: I have a trick for you to see this same

type of information. Since the SQL Server Linux container is

running in a Linux VM, how can you access the VM itself?

Try this out. Run the following commands either from PowerShell

or your macOS terminal (complete credit to this blog post

https://nickjanetakis.com/blog/docker- tip- 70-gain-

access-to-the-mobylinux-vm-on-windows-or-macos):

docker container run --rm -it -v /:/host alpine

You should get a root prompt. Now run this command:

chroot /host

You are now in a Bash shell in the context of the Linux VM

on Windows. You are limited in what you can do, and the ps

command earlier does not work. But you can run this command:

ps -o ppid,pid,comm

Chapter 7 InsIde sQL server ContaIners

https://nickjanetakis.com/blog/docker-tip-70-gain-access-to-the-mobylinux-vm-on-windows-or-macos
https://nickjanetakis.com/blog/docker-tip-70-gain-access-to-the-mobylinux-vm-on-windows-or-macos

216

This will dump out a bunch of processes, and since sqlservr was

just started, it should be near the end of the list. There will be two

sqlservr processes like this (your values will likely be different):

2922 2946 sqlservr

2946 2991 sqlservr

For the first sqlservr process, the value on the left side is the ppid

or parent pid. Now run this command (substitute in your ppid

value):

ps | grep 2922

You should see a result like this:

2922 root 0:00 containerd-shim -namespace moby -workdir

/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/

moby/a0c005ccefe8c8a716e066b0a857e919bded6f50ac791cb82f6de2b0dbe

f220e -address /var/run/docker/containerd/containerd.sock

-containerd-binary /usr/local/bin/containerd -runtime-root /var/

run/docker/runtime-runc -debug

This is a docker process that is used to fork the container program

which in this case is sqlservr.

 3. To restore the WideWorldImporters backup, you must copy

this into the writeable layer of the container. Run the following

command or script step3_dockercopybackup.ps1:

docker cp c:\sql_sample_databases\WideWorldImporters-Full.bak

sql2019latest:/var/opt/mssql

By copying the backup file into /var/opt/mssql, the backup file is

immediately accessible by SQL Server in the container.

 4. With the backup in the writeable layer, SQL Server in the container

context can access this backup so you can restore it. To restore the

database, you can use the sqlcmd tool that exists in the container.

For this you can use the docker exec command like the following

or in the script step4_dockerrestorebackup.ps1:

Chapter 7 InsIde sQL server ContaIners

217

docker exec -it sql2019latest /opt/mssql-tools/bin/sqlcmd

-S localhost -U SA -P "Sql2019isfast" -Q "RESTORE DATABASE

WideWorldImporters FROM DISK = '/var/opt/mssql/WideWorldImporters-

Full.bak' WITH MOVE 'WWI_Primary' TO '/var/opt/mssql/data/

WideWorldImporters.mdf', MOVE 'WWI_UserData' TO '/var/opt/mssql/

data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO '/var/

opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_Data_1'

TO '/var/opt/mssql/data/WideWorldImporters_InMemory_Data_1'"

The WideWorldImporters backup was built with SQL Server 2016

so you would see an output that the database is being restored

and upgraded to 2019.

 5. You probably want to see the ERRORLOG of the SQL Server

running in the container. One way to do this is to use docker exec

and navigate the directory structure of the container using the

following command or the script step5_dockerexec.ps1:

docker exec -it sql2019latest bash

When this command is successful, your cursor will be at a Bash

shell prompt in the context of the container like the following:

root@sql2019latest:/#

You can now change to the /var/opt/mssql/log directory and

display the ERRORLOG with the command cat ERRORLOG.

Remember that one of the benefits of a container is a smaller

footprint that is running in a VM with the entire OS loaded. In

addition, I’ve told you a container is really just a program running

in an isolated manner sharing the host operating system resources.

You can see this behavior by running the following command:

ps -axf

Chapter 7 InsIde sQL server ContaIners

218

Your output should look something like

[root@sql2019latest /]# ps -axf

 PID TTY STAT TIME COMMAND

 268 pts/0 Ss 0:00 bash

 561 pts/0 R+ 0:00 _ ps -axf

 1 ? Ssl 0:00 /opt/mssql/bin/sqlservr

 7 ? Sl 1:25 /opt/mssql/bin/sqlservr

You can see that only bash and sqlservr are running. You can

compare this to running the following command on a RHEL 7.6

server or VM in the host (not the container):

ps -axf | wc -l

which counts the number of processes. On a “fresh” RHEL

7.6 server I installed in Azure, I got a number of 122! The bash

program is run in the same namespace as the SQL Server

container, so it is isolated to only access files in the readable and

writeable layer of this specific container.

Exit the shell by typing in the command exit.

Note You may be asking how it is possible to be able to run these Linux
commands if the container is just the sqlservr program. that is because the docker
exec is able to run a program in the namespace of the container program (similar
to how sqlcmd works with a sQL server container). a docker exec would fail if the
program itself did not exist in the directory structure of files for the container. Bash
works because it is in the base image. sqlcmd works because we install sqlcmd in
the sQL server image.

Let me stop and call out how nice the Docker extension is to use

with Azure Data Studio (or Visual Studio Code). I mentioned

in the Prerequisites that you may want to install this extension.

Figure 7-4 is an example of managing a running SQL Server

container to “attach” a Bash shell.

Chapter 7 InsIde sQL server ContaIners

219

As you can see from the “explorer” options from this extension,

you can look at running containers (or stopped ones) and images

that have been pulled or even browse registries like mcr.microsoft.

com or your own Azure Container Registry or Docker Hub.

 6. If you need to shut down SQL Server in the container, technically

you could issue a T-SQL SHUTDOWN command. This would

stop the SQLSERVR process and would shut down the container

since it is the main program from the container. Or you could

run the following command to stop the container or the script

step6_dockerstop.ps1:

docker stop sql2019latest

When the command is successful, it will print the name of the

container to std output.

When you stop a container, the program that started the container

is killed. For SQL Server, this will lead to a detection of the kill and

a SQL Server clean shutdown.

Figure 7-4. Using the Docker extension in Azure Data Studio

Chapter 7 InsIde sQL server ContaIners

220

You can prove SQL Server was shut down by running the following

command after the container is stopped:

docker logs sql2019latest

The output of the ERRORLOG from the SQL Server container will

be displayed to the console with output showing a statement like

the following:

<datetime> spid<n>s SQL Server is terminating in response

to a 'stop' request from Service Control

At this point, the writeable layer of the container is preserved (in

this case, the WideWorldImporters database is part of this since

it was restored) for the container, and the container is considered

idle but available to start again. You can see any containers that

are stopped but not removed by running the following command:

docker ps -a

Your output should look like the following:

CONTAINER ID IMAGE

 COMMAND CREATED

 STATUS PORTS NAMES

95345f25b901 mcr.microsoft.com/mssql/rhel/server:

2019-latest "/opt/mssql/bin/sqls..." 10 hours ago

 Exited (0) 11 seconds ago sql2019latest

 7. You can start the container again with the following command or

script step7_dockerstart.ps1:

docker start sql2019latest

Once again, the name of the container will be displayed in the

console, and you will be returned to the prompt.

 8. You can query the WideWorldImporters database using the

following command or script step8_dockerquerywwi.ps1:

sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT

COUNT(*) FROM [WideWorldImporters].[Application].[People]"'

Chapter 7 InsIde sQL server ContaIners

221

You should get back a number of 1111 for number of rows in the

People table.

 9. If you stop the container and now remove it, the writeable layer

will be gone and so is your database (not good). You can stop and

remove a container with the following commands or the script

step9_dockerstopandremove.ps1:

docker stop sql2019latest

docker rm sql2019latest

Think of stopping and removing SQL Server as uninstalling SQL

Server. But the good news is that any other SQL Server containers

(even based on the same image) are unaffected by this.

 10. As I described on how SQL Server container works, use a volume

to store your databases on persisted host storage that can survive

when the container is removed.

Run the container with a volume using the following command or

script step10_dockerrunvolume.ps1:

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"

-p 1401:1433 --name sql2019latest --hostname sql2019latest -v

sqlvolume:/opt/mssql/data -d mcr.microsoft.com/mssql/rhel/

server:2019-latest

Note Because the image for sQL 2019 is still on your local computer, docker will
not try to pull it again.

In this example, the name sqlvolume will be automatically

mapped to a directory in the host server or VM that is not part of

the writeable layer. Any writes to the /var/opt/mssql directory in

the writeable layer are redirected to the host folder for sqlvolume.

You can find out the directory for sqlvolume by running the

following command:

docker inspect sqlvolume

Chapter 7 InsIde sQL server ContaIners

222

Your output should look like the following:

[

 {

 "CreatedAt": "2019-08-07T02:24:50Z",

 "Driver": "local",

 "Labels": null,

 "Mountpoint": "/var/lib/docker/volumes/sqlvolume/_data",

 "Name": "sqlvolume",

 "Options": null,

 "Scope": "local"

 }

]

On Windows, /var/lib/docker/volumes/sqlvolume/_data is a

directory inside the Linux VM but still persisted.

Note as part of writing this book, we had discovered a problem with our sQL
server containers and Windows volumes. I wanted the examples for Windows
users to see a volume map of something like

-v c:\data:/var/opt/mssql

But we have discovered a problem that started in sQL server 2017 CU14
that breaks that model. others have reported this same problem on Github at
https://github.com/microsoft/mssql-docker/issues/441. I believe
we will have this problem solved by the time this book is published. You track our
fix for this issue on the Github page.

 11. Copy the WideWorldImporters backup and restore the database

again as you did in earlier steps by executing the script step11_
dockercopyandrestore.ps1 or these commands:

Chapter 7 InsIde sQL server ContaIners

https://github.com/microsoft/mssql-docker/issues/441

223

docker cp c:\sql_sample_databases\WideWorldImporters-Full.bak

sql2019latest:/var/opt/mssql

docker exec -it sql2019latest /opt/mssql-tools/bin/sqlcmd

-S localhost -U SA -P "Sql2019isfast" -Q "RESTORE DATABASE

WideWorldImporters FROM DISK = '/var/opt/mssql/WideWorld

Importers-Full.bak' WITH MOVE 'WWI_Primary' TO '/var/opt/mssql/

data/WideWorldImporters.mdf', MOVE 'WWI_UserData' TO '/var/opt/

mssql/data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO

'/var/opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_

Data_1' TO '/var/opt/mssql/data/WideWorldImporters_InMemory_

Data_1'"

 12. Now stop and remove the container. Then start it again with the

same volume name using the following commands or script

step12_dockerrestart.ps1:

docker stop sql2019latest

docker rm sql2019latest

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"

-p 1401:1433 --name sql2019latest --hostname sql2019latest

-v sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/rhel/

server:2019-latest

In this situation, when the new SQL 2019 container starts, all

system and user databases already exist. SQL Server recognizes

this and just “uses” these databases and starts up.

 13. Make sure your data is still there by running a query against

WideWorldImporters as in a previous step using the following

command or script step13_dockerquerywwi.ps1:

sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT

COUNT(*) FROM [WideWorldImporters].[Application].[People]"'

You should get back a number of 1111 for number of rows in the

People table.

Let’s use the Azure Data Studio (ADS) tool to connect to

the container. Launch Azure Data Studio (if you have not

already). Start a new connection and in the Server field put

Chapter 7 InsIde sQL server ContaIners

224

in localhost,1401 (or the <servername>,1401). Put in your sa

password you used to start the container. ADS should connect and

interact with the container just like any other SQL Server.

Figure 7-5 shows a connection and query against the

WideWorldImporters database with ADS.

 14. Let’s clean up all the resources by stopping the container,

removing it, removing the volume, and removing the image using

the following commands or script cleanup.sh:

sudo docker stop sql2019latest

sudo docker rm sql2019latest

sudo docker volume rm sqlvolume

sudo docker rmi mcr.microsoft.com/mssql/rhel/server:2019-latest

Now that you know the fundamentals of deploying and managing a container with

SQL Server including persisting a user database in a volume, let’s use these skills to learn

a new and unique way to update SQL Server with containers.

Figure 7-5. Connecting to a container with Azure Data Studio

Chapter 7 InsIde sQL server ContaIners

225

 A New Way to Update SQL Server
I mentioned very early in this chapter how containers provide a new and amazing way

to update SQL Server. Let’s see it in action. Because SQL Server 2019 was in preview as I

wrote this book, there were no cumulative updates available to show you an update with

containers for 2019. Therefore, in this example, I’ll show you how to update containers

using SQL Server 2017. Once SQL Server 2019 ships and we start shipping cumulative

updates, you will be able to use the same approach.

Imagine this scenario to understand the example. You are currently running SQL

Server 2017 Cumulative Update (CU) 10 with a container in production. You need to

apply the latest CU for SQL Server 2017. With Windows or Linux, the process is to patch

or update the current SQL Server instance which requires a restart of SQL Server.

Containers offer a new approach which also require a restart but are faster to update

and provide a huge benefit for rollback. Remember SQL Server containers are pre-

installed. Therefore, when you run a SQL Server container based on any cumulative

update, you are not patching existing software.

All the examples to see updates in action can be found at ch7_inside_sql_
containers\update. Windows users can use the dockerpowershell directory, and

Linux and macOS users can use the dockerbash directory (be sure to make your scripts

executable with chmod u+x <script>).

I’ll walk you through the PowerShell experience in this section.

 1. Run the following command or script step1_dockerrun.ps1 to

deploy a SQL Server 2017 CU10 container:

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2017isfast"

-p 1401:1433 --name sql2017CU10 --hostname sql2017CU10 -v

sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/server:

2017-CU10-ubuntu

It is unlikely you have already pulled the SQL 2017 CU10 image

so it will be pulled first. Notice the use of a volume here which is a

key to this method of updating SQL Server.

 2. Connect to SQL Server to find the version you have installed with

the following command or script step2_dockerconnecttosql.ps1:

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT

@@VERSION"'

Chapter 7 InsIde sQL server ContaIners

226

Your output should look like the following:

Microsoft SQL Server 2017 (RTM-CU10) (KB4342123) - 14.0.3037.1 (X64)

 Jul 27 2018 09:40:27

 Copyright (C) 2017 Microsoft Corporation

 Developer Edition (64-bit) on Linux (Ubuntu 16.04.5 LTS)

 3. Run the following commands to update the container or use the

script step3_dockerupdate.ps1:

docker stop sql2017CU10

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2017isfast"

-p 1401:1433 --name sql2017latest --hostname sql2017latest -v

sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/server:

2017-latest-ubuntu

Let me describe what is happening here. The first container

is stopped and no longer has access to the system databases

on the volume. The second container starts up using the same

volume and port but a different image for the latest CU build. The

new container starts SQL Server which recognizes the system

databases already exist. The engine is smart enough to recognize

when the system databases exist to just use them. Furthermore,

SQL Server is smart enough to perform any necessary “update”

steps on system and user databases to ensure they are compatible

with the specific CU build.

 4. Run the following commands to connect to the container

(remember the same port) to verify the version of SQL Server has

been updated or use the script step4_dockerconnecttosql.ps1:

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT

@@VERSION"'

Depending on how soon you run this step after the update, you

may receive this error:

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : Login

failed for user 'sa'. Reason: Server is in script upgrade mode.

Only administrator can connect at this time..

Chapter 7 InsIde sQL server ContaIners

227

This is because SQL Server is performing any necessary steps to

update system and user databases to ensure they are compatible

with the new CU. No user data is affected.

Technically not every CU update requires any changes to

metadata for system and user databases. However, we have

discovered we “attempt” to run these update steps for any CU

change. This can slow down the update process, but it is far faster

than having to actually patch the SQL Server. There is a trick to

avoid this, but it is only for debugging purposes. Trace flag 902 can

bypass any of these CU update steps.

This means you could run your container by adding this statement

to the end of the docker run commands you have used to this point.

/opt/mssql/bin/sqlservr -T902

This is an interesting trick docker provides. I have shown you that

the CMD statement is what docker uses to run the program for the

container. Turns out you can override this for a container image by

specifying a program to run instead. By running SQL Server with

this trace flag, you can start a container with sqlservr using the

trace flag to override the default. I use this when I demo this new

way to update containers, but it is only for demo purposes. I’ve

discussed in our engineering team with one of our development

leads Li Zhang that perhaps in the future we can get clever to only

run the update steps when needed.

Eventually, the query to connect will work, and your output

should look like this:

Microsoft SQL Server 2017 (RTM-CU16) (KB4508218) - 14.0.3223.3 (X64)

 Jul 12 2019 17:43:08

 Copyright (C) 2017 Microsoft Corporation

 Developer Edition (64-bit) on Linux (Ubuntu 16.04.6 LTS)

You may get a different version because when you try these steps,

there are probably other later CU builds for SQL Server 2017. The

key is that the version should be later than CU10, and you didn’t

have to patch SQL Server.

Chapter 7 InsIde sQL server ContaIners

228

 5. While the update in itself is nice, the true compelling story is

rollback. In fact, it is not really a rollback story but a switch story.

This is because SQL Server CU builds are compatible with each
other. By using the same volume and port, you can now switch

back to CU10 by simply running these statements or the script

step5_dockerrollback.ps1:

docker stop sql2017latest

docker start sql2017CU10

Since the parameters for the containers are saved, you are really

just switching to installed versions of SQL Server against the same

set of system and/or user databases.

 6. Run the following command or script step6_dockerconnecttosql.
ps1 to prove you are now back and running SQL 2017 CU10:

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT

@@VERSION"'

Again, you might get the script upgrade error, but fairly quick your

results should show SQL 2017 CU10 as the version.

You could now just switch back and forth per your needs. Imagine

even a world where you pre-pull images for a series of CU builds

you want to use for production on your local server. Then you can

start containers with any CU build you need per your application

or company requirements.

What is really compelling is to use containers to test a specific

CU on a test server and then bring it to your production server to

update at the right time.

 7. Clean up all your resources with the cleanup.ps1 script. If you

want to remove all resources but keep the images to test this

sequence faster, use the reset.ps1 script.

Chapter 7 InsIde sQL server ContaIners

229

 Deploying Container As an Application
There are situations where you may want to customize the SQL Server container image.

Customized containers involve using the SQL Server container image as the base and

adding files to the container image. In many cases, these files are database backups and/

or script files.

One scenario to customize the SQL container image is to deploy multiple containers

as an application. An example of this, which my colleague Vin Yu often demonstrates,

deploys a SQL Server container with a database and an ASP.Net application. You can

view an example of building a containerized application with SQL Server like this at

https://docs.docker.com/compose/aspnet-mssql-compose/.

One tool that is very helpful to build multiple container images and run containers

based on those images is docker-compose. Docker-compose allows you to declare the

definition of container images to build along with parameters to run containers based on

those images.

A great example of an application involving SQL Server that needs multiple

containers is SQL Server Replication. Since SQL Server Replication is now supported in

SQL Server 2019, containers provide an interesting deployment method. In 2018, Vin

Yu and I had to present at various conference new features coming for SQL Server on

Linux. I asked Vin to present the replication story. As we were preparing our demos, he

asked me to look over what he had built. He said he used containers to deploy snapshot

replication with a publisher, distributor, and subscriber with a single command. My

first reaction to Vin was “you can’t do that.” I loved that he proved me wrong. Let’s use

the example he built for that demo (which you can also find on our samples on GitHub

at https://github.com/microsoft/sql-server-samples/tree/master/samples/

containers/replication).

All files for this example can be found at ch7_inside_sql_containers\sqlrepl.
Because we will use docker-compose for this example, we don’t need a PowerShell vs.

bash version of the scripts. We will provide a set of Bash shell and T-SQL scripts, but they

run in the context of each container.

Since this example will only take a single command to deploy and run the containers

to deploy SQL Server replication, let’s take a look at all the files provided for this example

before you run it.

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/compose/aspnet-mssql-compose/
https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/replication
https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/replication

230

 The docker-compose.yml File
docker-compose relies on a declarative text file called docker-compose.yml (which is a

YAML file. YAML stands for Yet Another Markup Language). You can use a different file

name, but by default docker-compose looks for a file called docker-compose.yml.

Let’s look at the docker-compose.yml file for this example. The version tag at the

top of the file declares what version of docker-compose should be used (3 is the latest

but you can read about compose versioning at https://docs.docker.com/compose/

compose-file/compose-versioning/).

services:

 db1:

 build: ./db1

 environment:

 SA_PASSWORD: "MssqlPass123"

 ACCEPT_EULA: "Y"

 MSSQL_AGENT_ENABLED: "true"

 ports:

 - "2500:1433"

 container_name: db1

 hostname: db1

 db2:

 build: ./db2

 environment:

 SA_PASSWORD: "MssqlPass123"

 ACCEPT_EULA: "Y"

 MSSQL_AGENT_ENABLED: "true"

 ports:

 - "2600:1433"

 container_name: db2

 hostname: db2

There are two “services” or containers that will be built and executed by docker-

compose. One called db1 and one called db2.

The method in which docker-compose works is to first build a container image (if the

build clause is provided) and then run a container based on that image using the other

parameters in the docker-compose.yml file.

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/compose/compose-file/compose-versioning/
https://docs.docker.com/compose/compose-file/compose-versioning/

231

The clause

build: ./db1

indicates docker-compose should change to the db1 directory from the current

directory and execute a docker build in that directory. The same concept applies for db2.

The rest of the definition in the yml file defines how to run the built container in each

directory.

environment:

 SA_PASSWORD: "MssqlPass123"

 ACCEPT_EULA: "Y"

 MSSQL_AGENT_ENABLED: "true"

ports:

 - "2500:1433"

 container_name: db1

 hostname: db1

Each of these values is passed to the docker run command used to run the container

after it is built. Note the use of MSQL_AGENT_ENABLED in this example because SQL

Server Replication relies on SQL Server Agent.

 Building Each Container
Let’s look at what is in each directory provided in the example to build and run the

containers for replication. I call the scenario of using these files the “Vin Yu method”

to build a SQL Server custom container image as a tribute to my colleague Vin Yu who

taught me how to do this.

Each directory contains the following files:

Dockerfile – Contains the definition of how to build the custom image based on the

SQL Server container image.

entrypoint.sh – This becomes the main program to run for the container. It launches

a script called db-init.sh and the sqlservr program.

db-init.sh – This script is called by entrypoint.sh and will pause for a period of time

and then execute the db-init.sql script.

Chapter 7 InsIde sQL server ContaIners

232

db-init.sql – This contains T-SQL code to create the publisher, distributor,

subscriber, and the snapshot publication on db1. It will create the subscriber database

for db2. Effectively what Vin did was script out what SQL Server Management Studio

builds to set up replication and save it to execute with T-SQL in a clever way.

If you look at the Dockerfile for db1 and db2, it looks like this:

FROM mcr.microsoft.com/mssql/rhel/server:2019-latest

COPY . /

RUN chmod +x /db-init.sh

CMD /bin/bash ./entrypoint.sh

When docker-compose executes the “build” phase for each container, the definition

of the Dockerfile says to

• Use the latest SQL Server RHEL container image as the base (which

uses the RHEL OS image as its base)

• Copy the entrypoint.sh, db-init.sh, and db-init.sql scripts into the file

system of the container image

• Modify the db-init.sh script so it is an executable script (you don’t

need to do this for the entrypoint.sh script)

• Make the default program to run the Bash shell executing the

entrypoint.sh script

Now let’s look at the entrypoint.sh script:

#start SQL Server, start the script to create/setup the DB

#You need a non-terminating process to keep the container alive.

#In a series of commands separated by single ampersands the commands to the

left of the right-most ampersand are run in the background.

#So - if you are executing a series of commands simultaneously using

single ampersands, the command at the right-most position needs to be non-

terminating

 /db-init.sh & /opt/mssql/bin/sqlservr

This script will execute the db-init.sh script first and while it executes start the

sqlservr program (that is what the & symbol means, start one program and then run the

next one).

Chapter 7 InsIde sQL server ContaIners

233

db-init.sh for db1 looks like this:

#wait for the SQL Server to come up

sleep 45s

mkdir /var/opt/mssql/ReplData/

chown mssql /var/opt/mssql/ReplData/

chgrp mssql /var/opt/mssql/ReplData/

echo "running set up script"

#run the setup script to create the DB and the schema in the DB

/opt/mssql-tools/bin/sqlcmd -S localhost -U sa -P MssqlPass123 -d master -i

db-init.sql

Since db-init.sh starts first, it must wait for SQL Server to start before executing any

T-SQL scripts.

Then it creates some directories required to store snapshots for replication in the

containers’ writeable layer.

Finally, this script executes the db-init.sql T-SQL script using sqlcmd which exists in

every SQL Server container.

db-init.sql for db1 is quite long but effectively contains the T-SQL code to set up a

publisher, distributor, subscriber, and snapshot publication.

db-init.sh for db2 will also pause for its SQL Server to start and then execute the db-

init.sql script in its directory. db-init.sql for db2 only needs to create the database to hold

the data for the subscriber.

It is quite an interesting method to customize a SQL Server container. This same

method can be used to customize a SQL Server container to create a database and run

your own T-SQL scripts. In the long term, we want a better method to achieve this type of

goal so that you don’t have to manually “sleep” in a shell script to execute custom code.

For now, this method works quite well.

 Running the Containers for Replication
Try it for yourself with one of two methods:

• Run the following command (preface with sudo on Linux). You must

be in the ch7_inside_sql_containers\sqlrepl directory to run this.

docker-compose up

Chapter 7 InsIde sQL server ContaIners

234

If you use this option, the containers are not started in the

background so you will see a dump of information to the console

including SQL Server ERRORLOG files. DO NOT hit <ctrl>+<c> at

this point or you will shut down the containers.

• If you have the Docker extension installed, you can right-click the

docker-compose.yml file and select Compose Up. This method run

the containers in the background.

Note on some Windows 10 systems, I have seen the following pop-up in
Figure 7-6 for the Windows defender Firewall for a service that is required for
networking for docker. If you see this, click allow access.

Figure 7-6. Windows Firewall warning for Docker

Chapter 7 InsIde sQL server ContaIners

235

When Vin first showed me this, I had to stop and think about this method. I’ve

worked on a complex system like Replication since it was first invented in SQL Server 6.0.

I never thought I would see a way to deploy it so easily. Of course, SQL Server Replication

can be more complex so using containers for your scenario could involve more. But look

at the promise of what containers can provide for a distributed system like SQL Server

Replication.

To ensure your containers deployed correctly and SQL Server Replication is running,

first check to see if the subscriber has the data replicated. Use Azure Data Studio or SQL

Server Management Studio (SSMS) to connect to localhost,2600 and see if the [Sales].

[dbo].[customer] table has data. It should have three rows.

Also, you can verify the snapshot agent job was applied successfully by using

SSMS connecting to the subscriber. Use Object Explorer like in Figure 7-7 to check the

snapshot job status.

Figure 7-7. Snapshot job for a SQL Server Replication container

Chapter 7 InsIde sQL server ContaIners

236

• If you ran docker-compose up from the command line, hit Ctrl+C

which will stop the containers.

• You will want to clean up resources, so when you are done, run the

following command (preface with sudo on Linux). You must be in the

ch7_inside_sql_containers\sqlrepl directory to run this.

 docker-compose down

 This will stop and remove the running containers.

 This will not remove the docker custom images, so to clean up all

resources, use the cleanup.ps1 or cleanup.sh script to remove the

customized images.

 Deploying SQL Containers in Production
I’ve been presenting and talking about containers ever since we started supporting

them with SQL Server 2017. As I’ve presented this topic even with the story about how

containers are really just the sqlservr program running in a unique way, I’ve faced some

skepticism that SQL Server containers can be used for a production workload. I hope

I’ll convince some of the skeptics with information in this section about performance,

security, availability, resource control, and server configuration related to SQL Server

containers.

 Performance
As I’ve talked about containers, one of the myths I’ve heard is that SQL Server containers

may not perform as well as a SQL Server instance not running in a container. You have

seen that I’ve presented the story that a SQL Server container is just a program running

in an isolated manner and has direct access to operating system resources. Therefore,

the performance you can expect for SQL Server Linux containers is exactly the same

performance for SQL Server on Linux not running in a container.

If you are like me though, you want some proof. Therefore, I took the open source

benchmark tool called HammerDB (www.hammerdb.com) and ran a test using the analytic

performance test derived from TPC-H. I compared the performance with HammerDB

for SQL Server on Linux running in a container and SQL Server outside of a container on

Chapter 7 InsIde sQL server ContaIners

http://www.hammerdb.com

237

the same host Linux virtual machine. I found the performance 100% identical using

these deployments.

I encourage you to try this yourself. Here are the details of how I used HammerDB for

this test:

• I installed the HammerDB tool in a Windows 10 Virtual Machine in

Azure.

• I created an Azure VM with RHEL 7.4. using a size of DS13 v2

(8 vcpus, 56GB RAM).

• I created a Premium SSD of 2TB to host the databases for

HammerDB. I mounted this drive in a directory on Linux and called it

/data. This is the guide I use to add a data disk to Linux in Azure VM

(https://docs.microsoft.com/en-us/azure/virtual-machines/

linux/attach-disk-portal).

• Installed SQL Server 2019 CTP 3.2 in the host Linux Virtual Machine.

• I precreated the tpch database of a size of 35Gb and 5Gb log. I used a

scale factor of 10 with 16 virtual users (the Windows VM client is an

8-core VM).

Tip Change the driver to “odBC driver 17 for sQL server” when using the latest
version of hammerdB and use a clustered columnstore index.

• I then ran the TPC-H test using 16 virtual users. I was able to achieve

~160,000 qph when running HammerDB against both the SQL Server

container and SQL Server outside the container installed on the same

VM (I only run one of these at a time).

I encourage you to run a test like this for yourself or any other performance test with

SQL Server containers. Just make sure you are running a fair comparison between a

container and SQL Server outside of a container.

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/attach-disk-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/attach-disk-portal

238

 Security
Since SQL Server containers are just SQL Server on Linux as an isolated program, all

the security capabilities and features of SQL Server on Linux work for containers. This

includes all SQL Server engine security capabilities for logins, securables, and principles.

Features like dynamic data masking, row-level security, Transparent Data Encryption

(TDE), and others all work with containers.

 Active Directory Authentication

The only exception to a complete secure feature set is Active Directory (AD)

Authentication. During the lifecycle of building SQL Server 2019, it was our intention to

document and support Active Directory authentication for containers. And it still may

make our final release. But at the time I was writing this chapter, Dylan Gray, one of our

lead developers for Linux and containers, and I were discussing this support. If at the

time we ship SQL Server 2019 AD support was not documented and available, I expect it

to be shortly close after SQL Server 2019 ships.

Dylan and I discussed what the documented process will look like, and it is very

similar to setting up AD authentication for SQL Server on Linux without containers

which you can read at https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-active-directory-authentication. The key differences will be to pass into

the container information about the Kerberos SPN via a keytab file in a volume that

the SQL Server container can use. I’ve had several customers tell me that having

AD authentication is a key element to using SQL Server containers in a production

environment, and we intend to deliver on that request and requirement.

 Non-root Containers

Ever since we shipped SQL Server containers, the container program runs under the

context of the root user in the container namespace. Even though a root container

program does not have complete root privileges to the host computer, it is a best practice

to run a container program not as root.

SQL Server 2019 will support non-root containers, and in fact when I spoke to

Madeline McDonald, one of our lead developers for containers, about support for non-

root containers, she told me the intention as we shipped SQL Server 2019 was to ship any

SQL Server 2019 container as non-root by default but leave SQL Server 2017 containers

“as is.”

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-authentication

239

I asked Madeline what the procedure was to run a SQL Server 2017 or SQL Server

2019 CTP container as non-root, and she gave me an example to try it.

Try out the scripts and files I’ve provided in the ch7_inside_sql_containers\
nonroot folder. You will use the Dockerfile to build a customer container. The Dockerfile

looks like the following:

FROM mcr.microsoft.com/mssql/rhel/server:2019-latest

RUN useradd -u 10001 -g root mssql

RUN mkdir -p -m 770 /var/opt/mssql && chgrp -R 0 /var/opt/mssql

USER mssql

CMD ["/opt/mssql/bin/sqlservr"]

Notice the RUN commands which will add a user and group for mssql and precreate

the SQL Server directories for permissions for the mssql group. The Dockerfile USER

command indicates which user context to run the container program under. Everything

else is the same as running a SQL Server container today. Build the docker image using

docker build and then use the scripts I’ve provided to run the container.

 High Availability
SQL Server Containers support the basics of backup and restore, and even log shipping

can work. I’ve shown you an example of using SQL Server Replication which can be a

high available solution for some customers.

Even though it is possible to set up an Always On Availability Group between

containers, the preferred method for high availability for containers is to use Kubernetes.

I’ll discuss how to make SQL Server highly available using Kubernetes in Chapter 8.

 Resource Control
By default, SQL Server containers (as do all containers) have access to all CPU and

memory resources on the host server. Docker provides a way to control and govern

access to those resources for any container. For example, the docker run command

provides these options:

-m – Controls the amount of memory the container can access.

Chapter 7 InsIde sQL server ContaIners

240

-cpuset-cpus – Controls which CPU the threads within the container can run on.

Be careful with this option. SQL Server will not restrict the number of schedulers based

on this option. However, docker (using cgroups) will enforce which CPUs all SQL Server

threads run on. If you do this option, I recommend you combine with this SQL Server

affinity using ALTER SERVER CONFIGURATION.

You can read more about resource usage for docker containers at https://docs.

docker.com/config/containers/resource_constraints/.

While these options do work, for SQL Server I recommend you use the built-in

capabilities of SQL Server configuration to control memory and CPU resources.

For example, consider these options at your disposal:

memorylimitmb – This controls the amount of physical memory exposed

to SQL Server on Linux to use. You can read more about this option at https://

docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-

conf#memorylimit.

“max server memory” – This sp_configure option is very familiar to SQL Server

users and controls the amount of memory used by the SQL Server engine within the

memorylimitmb space.

ALTER SERVER CONFIGURATION – This T-SQL command allows you to affinitize

which NUMA nodes and/or CPUs SQL Server will run on. You can read more about this

option at https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-server-

configuration-transact-sql.

Resource Governor – Resource governor can help control CPU, memory, and

I/O resources especially at the application or workload level. You can read more

about resource governor at https://docs.microsoft.com/en-us/sql/relational-

databases/resource-governor/resource-governor.

In fairness, not everything that runs in sqlservr on Linux (using the SQLPAL) is

controlled by these T-SQL options. Processing by SQL Agent, DTC, Polybase, or other

code outside the SQL Engine runs in the SQLPAL may need some resource control when

running as a container, and the docker options listed in this section could be useful

should you need them. However, the majority of CPU and memory consumption comes

from the database engine, and SQL provides the options for you to have the desired

control.

Chapter 7 InsIde sQL server ContaIners

https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-conf#memorylimit
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-conf#memorylimit
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-conf#memorylimit
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-server-configuration-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

241

 Server or Database Configuration
I’ve listed in this section several SQL Server configuration options that you may want to

consider. There are many others provided by the mssql-conf script, T-SQL sp_configure,

and ALTER SERVER CONFIGURATION. In addition, databases have many other

configuration options when you create the database or through ALTER DATABASE.

While a running SQL Server container can be modified using T-SQL statements,

you should think carefully when using containers whether that is the right strategy. For

example, if you applied an sp_configure change to a container that requires a restart, you

will have to restart the container for the change to take effect. Furthermore, you will need to

make sure you use a persisted volume for system databases, so your changes are not lost.

Another option is to build a customized image (much like I showed you with the

container example in this chapter for replication) running any configuration scripts you

need after SQL Server starts.

For example, let’s say you want to ensure your SQL Server enforces a specific max
degree of parallelism value for any SQL Server container in your environment. One way

to do this is to build a custom container image with a script that sets the desired maxdop

value. You can even tag and name this, so you know what the options you used for a

certain SQL container. Now these scripts to build the container along with the T-SQL

scripts can become part of your change control and CI/CD lifecycle.

The only downside to this approach is for any configuration change that does not

require a restart of SQL Server for the instance of your database. For these scenarios, you

may still build a specific container image with the new desired configuration changes

but also directly apply your configuration changes to a running SQL Server.

Another interesting problem is applying configuration changes that do require a

restart (there are less of these than you may think). However, if you do have this scenario,

you will have to restart the container immediately after starting it up with your applied

configuration changes.

For any mssql-conf changes, you should use environment variables that match the

setting you want as seen with docker run examples in this chapter. A great example

of using this option for DTC can be found at https://github.com/microsoft/sql-

server- samples/tree/master/samples/containers/dtc. If, for some reason, there is

an mssql- conf setting where an equivalent environment variable setting does not exist,

you could create a customized image with a precreated mssql.conf file. You would use a

Dockerfile like the following:

Chapter 7 InsIde sQL server ContaIners

https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/dtc
https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/dtc

242

FROM microsoft/mssql-server-linux:latest

COPY ./mssql.conf /

RUN mkdir /var/opt/mssql

RUN mv ./mssql.conf /var/opt/mssql

CMD ["/opt/mssql/bin/sqlservr"]

where your mssql.conf had all the needed config values. You can learn about the

protocol format of this file at https://docs.microsoft.com/en-us/sql/linux/sql-

server- linux-configure-mssql-conf#mssql-conf-format.

 Using Other Packages
I’ve told you the SQL Server container image comes with the database engine,

SQL Server Agent, and includes capabilities such as Replication and DTC. SQL Server on

Linux was built on the concept of packages. Features like Polybase don’t come with the

standard SQL Server package and are not in the SQL Server container image.

We have built a series of examples for you to learn how to build your own customized

image based on the SQL Server image adding in the packages you would like in your

container. You can find these examples at https://github.com/microsoft/mssql-

docker/tree/master/linux/preview/examples.

 Editions and Licensing
By default, when you pull and run a SQL Server container image as I’ve shown you in

this chapter, we automatically assume the Developer Edition of SQL Server. As you may

know, the Developer Edition is not supported for production use.

Therefore, when running a SQL Server container, you can use the MSSQL_PID

environment variable to indicate the edition of SQL Server. You can read more about

using this option at https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux- configure-docker#production.

One of the most common questions I have received about containers is how

containers are licensed.

With the release of SQL Server 2017, we modified our licensing guide to include a

discussion on containers. You can download the guide from www.microsoft.com/en-

us/sql-server/sql-server-2017-pricing. Look specifically in the section “Licensing
SQL Server 2017 in Containers” (there will be a new guide for SQL Server 2019 when it

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-conf#mssql-conf-format
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-mssql-conf#mssql-conf-format
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/examples
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/examples
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-docker#production
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-docker#production
https://www.microsoft.com/en-us/sql-server/sql-server-2017-pricing
https://www.microsoft.com/en-us/sql-server/sql-server-2017-pricing

243

is released). Licensing for containers works similar to virtual machines. For many users,

the full core licensing model applies. One interesting exception you should read is that

customers with Software Assurance (SA) along with Enterprise Edition get a benefit.

According to the guide, “…With the addition of Software Assurance (SA) coverage on all

Enterprise Edition core licenses (for a fully licensed server), customers’ use rights are

expanded to allow any number of containers to run on the licensed server. This valuable

SA benefit enables customers to deploy an unlimited number of containers to handle

dynamic workloads and fully utilize hardware computing capacity.”

 SQL Server Windows Containers
All the discussion around containers in the chapter to this point is a discussion of SQL

Server containers based on Linux images. You have seen that these containers can run

on any platform including Linux, Windows, and macOS.

However, the Windows team has built the capability of running containers natively

in Windows based on Windows images. We announced in the summer of 2019 a private

preview program to support SQL Server containers based on Windows images.

Many of the same concepts will apply to just about everything I’ve discussed in

this chapter. A lot of that is due in part to the great compatibility story of SQL Server on

Windows and Linux. The key differences will be in certain aspects that are different from

Windows and Linux, such as configuration for Active Directory. Furthermore, when

you want to interact directly with the container, you typically will use PowerShell or the

command shell.

Windows supports the same concepts as in Linux to make containers a compelling

story including isolation through namespaces. You can read more about Windows

 containers’ work at https://docs.microsoft.com/en-us/virtualization/

windowscontainers/about/.

Windows offers an option with containers that is slightly different than Linux.

Containers can run in two isolation modes:

Process isolation – Containers run as isolated processes using namespaces.

Hyper-V isolation – Containers run in a “special” virtual machine (that is the term

the docs use, not mine).

You can read more about these isolation models at https://docs.microsoft.com/

en-us/virtualization/windowscontainers/manage-containers/hyperv-container.

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

244

Hyper-V and process isolation are supported for Windows containers on latest builds

of Windows 10 and Windows Server 2019. You can read more about Windows containers

on Windows Server 2019 at https://docs.microsoft.com/en-us/virtualization/

windowscontainers/quick-start/quick-start-windows-server. I also encourage

you to read the FAQ on Windows containers at https://docs.microsoft.com/en-us/

virtualization/windowscontainers/about/faq.

In addition, Windows Server 2019 supports Linux Containers on Windows (LCOW)

which supports Linux containers using Hyper-V isolation. You can read more about

LCOW at https://docs.microsoft.com/en-us/virtualization/windowscontainers/

deploy-containers/linux-containers. This makes Windows Server just about the

only platform to run both Windows and Linux containers simultaneously (you could run

Windows containers by installing a Windows VM on macOS, but Windows Server is the

only one to “natively” support these scenarios).

On Docker for Desktop for Windows, you can only run either Windows containers

or Linux containers. (Note: this should change when Docker for WSL2 is available to use.

You can read more about this at https://engineering.docker.com/2019/06/docker-

hearts- wsl-2/.)

By default, Docker for Desktop supports Linux containers. To switch to use Windows

Containers, select the option from the docker icon in the Windows tray as seen in

Figure 7-8.

Figure 7-8. Switching to Windows containers with Docker Desktop

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-server
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-server
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/faq
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/faq
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://engineering.docker.com/2019/06/docker-hearts-wsl-2/
https://engineering.docker.com/2019/06/docker-hearts-wsl-2/

245

I tried Windows containers in its early form for private preview on a Windows Server

2019 system.

Here is an example syntax for a docker run command for both Hyper-V and process

isolation for a SQL Server Windows container:

docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=SafePassw0rd' -p

1401:1433 --isolation=process -d -e 'MSSQL_PID=Developer' --name sql1

private-repo.microsoft.com/mssql-private-preview/mssql-server:windows-

ctp3.1

docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=SafePassw0rd' -p

1402:1433 --isolation=hyperv -d -e 'MSSQL_PID=Developer' --name sql2

private-repo.microsoft.com/mssql-private-preview/mssql-server:windows-

ctp3.1

You can see the syntax is almost exactly the same as with Linux containers. Notice

the syntax for the --isolation parameter.

I used the famous sysinternals tool Process Explorer (https://docs.microsoft.

com/en-us/sysinternals/downloads/process-explorer) to see what the sqlservr

program looks like for process isolation. You can see in Figure 7-9, similar to the docker

daemon, a program called CExecSvc is responsible for forking the sqlservr container

program.

Chapter 7 InsIde sQL server ContaIners

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

246

There is not much documented about Hyper-V isolation except that the container

programs are hosted in a Windows program called vmwp.exe.
My hope is that by the time you read this book, we will have progressed our work

with SQL Server Windows containers as many customers I believe want the promise of

containers but for several different reasons do not or cannot use containers based on

Linux. I personally believe if LCOW containers can perform well, then many customers

may end up with a mixed environment of both Windows and Linux containers on their

Windows Server.

 Summary
It has been a very long chapter to read and go through. I have covered what a container

is and why it can solve modern challenges to host products like SQL Server and develop

applications. Containers are portable, lightweight, consistent, and efficient.

I described and showed you that containers are really just programs running in an

isolated and unique way. You learned the new enhancements for SQL Server containers

in SQL Server 2019 including RHEL images and the new Microsoft Container Registry.

Figure 7-9. A SQL Server Window container in process isolation

Chapter 7 InsIde sQL server ContaIners

247

If you went through the rest of the chapter, you were able to try out yourself several

examples including deploying containers, seeing the new amazing way to update (and

rollback) SQL Server, and deploying a multi-container application like SQL Server

replication.

You learned how containers are ready for production despite what you might have

been told including SQL Server container performance, security, and availability.

And you finished up the chapter getting a sneak peak on what SQL Server Windows

containers will look like.

I hope you have a strong grasp of SQL Server containers and are ready to learn about

a platform built to deploy and scale containers called Kubernetes.

Chapter 7 InsIde sQL server ContaIners

249
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_8

CHAPTER 8

SQL Server
on Kubernetes
If containers are the new virtual machines, then Kubernetes are the new servers. You

will see in this chapter that Kubernetes is an important technology to the future of

containerized applications, especially running enterprise workloads like SQL Server.

 What Is k8s?
If you have not read Chapter 7, you might go back and at least browse it before you

read this chapter. Why? Because Kubernetes or k8s is all about hosting containers. k8s

is actually much more than just hosting. I’ll use k8s for Kubernetes for the rest of the

chapter because that is the popular acronym for it (and it is sure faster to type). k8s

stands for k<8 letters>s in the word Kubernetes (I had to research it myself when I first

saw the term).

Unlike Chapter 7, I will not go into exhaustive detail on the internals of k8s because

that would really take an entire book. What I will do is introduce you to some of the

terms, add in some comments about how the internals work, and point you to some

excellent references.

After going through the basics of k8s in this chapter, I’ll talk about how k8s solves

important challenges for the deployment of containers in a scalable platform that

provides built-in high availability (HA). I’ll also show how to update all the SQL Server

containers in a k8s environment, similar to the process of updating a single container,

which I described in Chapter 7. I’ll introduce you to an intriguing concept to deploy SQL

Server in k8s, called Helm Charts. Finally, I’ll talk about the future of availability with

SQL Server 2019 and k8s and how we are looking to integrate Always On Availability

Groups with k8s.

250

 References on k8s
Let’s start with the references, because you may want to go read or browse those first:

The Brendan Burns Videos on k8s – This is my term and not an official name.

Brendan Burns, one of the founders of k8s and now a Distinguished Engineer at

Microsoft, built a series of learning videos on k8s. I personally think you can watch these

and learn what you need for k8s for most scenarios. You can watch these at

www.youtube.com/playlist?list=PLLasX02E8BPCrIhFrc_ZiINhbRkYMKdPT. I had the

privilege of presenting with Brendan at the Microsoft MVP Summit in the spring of 2019,

and I was truly amazed at how he can simplify the story of k8s through drawings (he can

do it on his Surface Go device with a pen).

Another resource that uses these videos is on our Azure site at https://azure.

microsoft.com/en-us/topic/what-is-kubernetes.

Managing Kubernetes – This is a book by Craig Tracey and Brendan Burns. I found

this an excellent resource on the internals of k8s. You can find this book at https://

learning.oreilly.com/library/view/managing-kubernetes/9781492033905/.

AKS documentation – This is the documentation for Azure Kubernetes Service

(AKS), and there are great videos and documentation about not just AKS but the core of

k8s. You can find these resources at https://azure.microsoft.com/en-us/services/

kubernetes-service/.

https://kubernetes.io/ – This is the main web site for k8s open source, and it is

full of examples, details, and visualizations of k8s. There is also an excellent link for k8s

online training courses at https://kubernetes.io/docs/tutorials/online-training/

overview/.

Here are two other online training courses I would recommend:

www.pluralsight.com/courses/getting-started-kubernetes

www.pluralsight.com/courses/kubernetes-installation-configuration-

fundamentals – This course is from my friend and technical editor of Pro SQL Server on

Linux, Anthony Nocentino.

 k8s Objects
Whether you read over these resources or not, let me describe in this chapter some of the

terminology of k8s from my point of view, and a few comments about internals I found

interesting as I’ve learned the topic. The fundamental terms and objects you need to

know about k8s as you read this chapter are

Chapter 8 SQL Server on KuberneteS

https://www.youtube.com/playlist?list=PLLasX02E8BPCrIhFrc_ZiINhbRkYMKdPT
https://azure.microsoft.com/en-us/topic/what-is-kubernetes
https://azure.microsoft.com/en-us/topic/what-is-kubernetes
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://kubernetes.io/
https://kubernetes.io/docs/tutorials/online-training/overview/
https://kubernetes.io/docs/tutorials/online-training/overview/
https://www.pluralsight.com/courses/getting-started-kubernetes
https://www.pluralsight.com/courses/kubernetes-installation-configuration-fundamentals
https://www.pluralsight.com/courses/kubernetes-installation-configuration-fundamentals

251

Cluster – Think of the k8s cluster as a server or computer. This is the main host for all

software running on k8s. It is common to refer to the host of all objects as a k8s cluster.

Node – Think of a node as a virtual machine running on the cluster. A node will be

a host for running pods (which have containers) within the cluster. It is very common to

have more than one node on a k8s cluster. You can read more about a node at https://

kubernetes.io/docs/concepts/architecture/nodes/.

Pod – A pod is a logical collection of containers running on a node in the cluster. A

pod will be a unit of deploying, managing, and failing over containers running in the

cluster. You can read more about a pod at https://kubernetes.io/docs/concepts/

workloads/pods/pod-overview/.

Service – The Kubernetes documentation describes a service as “abstraction which

defines a logical set of Pods and a policy by which to access them.” For the purposes

of SQL Server, a service will serve as a load balancer and an abstraction of the private

IP address of the pod hosting SQL Server. It is very much like a listener for clustering

for SQL Server. k8s provides the concept of a service built into the k8s software, and

applications like SQL Server can bind to them so that no matter where the SQL Server

pod is hosted in the cluster, applications can always connect to the service using

the same IP address and port. You can read more about a k8s service at https://

kubernetes.io/docs/concepts/services-networking/service/.

secret – A secret is a k8s object that allows you to store sensitive information, like a

password. This is very convenient for SQL Server to store the sa password. You can read

more about k8s secrets at https://kubernetes.io/docs/concepts/configuration/

secret/.

storage class – A storage class is a k8s object to expose storage like a disk system. You

can read more about k8s storage classes at https://kubernetes.io/docs/concepts/

storage/storage-classes/.

Persistent Volume Claim – A Persistent Volume Claim (PVC) is a request for storage

backed up by a Persistent Volume which is mapped to a storage class. For me, this is like

asking for a volume on a disk drive for storage. In the case of SQL Server, this will work

quite well for database files.

There are other terms I will introduce and talk about as you go about using examples

in the rest of the chapter.

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

252

 Comment on Internals of k8s
You can use the references I provided earlier in the chapter to truly dive into the

internals, but I will say that one aspect of k8s you should understand is API. I love it

when I can look at how something works by reviewing the Application Programing

Interface (API). Everything at the core of k8s is based on an API server. You can read

about all the components that power a k8s cluster, but the API server is a piece of

software that accepts requests and “does stuff.” Think of the API server like SQL Server.

The API of SQL Server is T-SQL, and applications can submit T-SQL commands to SQL

Server, and it “does stuff.” k8s works in a similar way. You can read more about the k8s

API at https://kubernetes.io/docs/concepts/overview/kubernetes-api/. The

API server is part of the k8s control plane, which you can read more about at https://

en.wikipedia.org/wiki/Kubernetes#Kubernetes_control_plane_(primary). Keep in

mind the concept of a control plane and API server as you use k8s and then start to learn

about SQL Server Big Data Clusters in Chapter 10.

This means that, if you like to write code, you can deploy and manage containers

in k8s using the API; or, you can use a very convenient command-line interface (CLI)

called kubectl (Buck Woody always pronounces this “kubecuttle”) which interacts

with the k8s API for you. The way you will program to the k8s API with kubectl is with a

declarative protocol using YAML files. You can read more about the kubectl program at

https://kubernetes.io/docs/reference/kubectl/overview/. Use this “cheatsheet”

for a quick reference at https://kubernetes.io/docs/reference/kubectl/

cheatsheet/.

Take a look at the components that make up a k8s cluster at https://kubernetes.

io/docs/concepts/overview/components/. And if you are wondering how containers

are deployed and managed in the k8s cluster, Docker is a component that is installed by

k8s and runs within each node of the cluster. I consider k8s a simple yet complex system

to deploy, schedule, manage, scale, and power container applications, like SQL Server.

Since k8s is open source, it is possible to deploy a cluster in many different ways,

platforms, and systems. Let’s look at the various k8s deployment options that meet your

needs or requirements.

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://en.wikipedia.org/wiki/Kubernetes#Kubernetes_control_plane_
https://en.wikipedia.org/wiki/Kubernetes#Kubernetes_control_plane_
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

253

 k8s Deployment Options
k8s was founded by Google back around 2014, when Brendan worked there, to build

a system to scale containerized applications for internal applications. In 2015, k8s 1.0

became open source, and is still an open source project today. (The k8s Wikipedia has

an interesting origin story at https://en.wikipedia.org/wiki/Kubernetes#History.)

Kubernetes is from a Greek word for “pilot” or “helmsman” and is a fitting name for

something to steer the ship of a world of containers.

Since k8s became open source, several companies have taken the k8s project and

built a commercial k8s system for customers to use. You can read the k8s documentation

site for a list of partners at https://kubernetes.io/partners/#kcsp.

At the time I wrote this book, my experiences with the k8s landscape break down to

these deployment choices:

Open source k8s – I’ve talked to some customers thinking about SQL Server with

k8s, and they have said that they are going to deploy their own k8s in their data center, or

in virtual machines in the cloud, using the latest open source build of k8s. If you go down

this path, you typically use a deployment tool called kubeadm (https://kubernetes.

io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/).

Another popular option is a tool called kubespray (https://kubernetes.io/docs/

setup/production-environment/tools/kubespray/). If you are thinking of deploying

your own k8s in your data center, it does give you maximum control, but you own it. In

other words, you will have to own both maintaining and managing the k8s cluster, along

with SQL Server running in it.

Minikube – Want to get a quick and easy single node k8s running on your laptop

or in a virtual machine? Minikube is your friend; it is meant for small testing and

development purposes, and you can get up and running in no time. You can read

about how to set up Minikube at https://kubernetes.io/docs/setup/learning-

environment/minikube/.

Tip Docker Desktop can automatically deploy Minikube for you. Look
at the example at https://docs.docker.com/docker-for-
windows/#kubernetes.

Chapter 8 SQL Server on KuberneteS

https://en.wikipedia.org/wiki/Kubernetes#History
https://kubernetes.io/partners/#kcsp
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://docs.docker.com/docker-for-windows/#kubernetes
https://docs.docker.com/docker-for-windows/#kubernetes

254

Azure Kubernetes Service (AKS) – If you want the feel of a managed k8s cluster,

then consider a cloud service like Azure Kubernetes Services (AKS). Brendan owns the

team that builds and runs this service, so I feel pretty confident when using AKS that I

am getting the latest innovations of k8s along with the power of the cloud. The examples

in this chapter will use AKS, but they are compatible with any k8s distribution. Since AKS

is a cloud service, they can innovate at the speed of the cloud (sorry, I couldn’t resist).

For example, AKS can support both Linux and Windows Containers (see https://

azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-

containers-support-in-azure-kubernetes-service/). And AKS supports the concept

of virtual nodes (https://docs.microsoft.com/en-us/azure/aks/virtual-nodes-

cli). Dive into AKS at https://azure.microsoft.com/en-us/services/kubernetes-

service.

Azure Stack – Azure Stack is an appliance system providing customers with Azure

services in their own data centers. k8s is a deployment option with Azure Stack, which

you can read about at https://docs.microsoft.com/en-us/azure-stack/user/azure-

stack- solution-template-kubernetes-deploy. You should think of k8s on Azure Stack

as equivalent to AKS running in your data center. As AKS evolves, so will k8s on Azure

Stack.

Red Hat OpenShift – OpenShift has become a very popular platform in the industry.

OpenShift is a k8s platform that can be run in your data center or in public clouds, which

you can read more about at www.openshift.com/. While OpenShift is very compatible

to open source k8s, there are differences in using the system and platform. You probably

won’t believe this, but I led a team of Microsoft Engineers at the May 2019 Red Hat

Summit to proctor a lab on SQL Server 2019 on OpenShift. Check it out for yourself at

https://github.com/Microsoft/sqlworkshops/tree/master/SQLonOpenShift. Several

of the examples in this chapter have an OpenShift version on that GitHub site for you

to use in your OpenShift environment. Microsoft offers a managed OpenShift platform

(think AKS) called Azure Red Hat OpenShift. You can read more about this service at

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-

get- started#azure-red-hat-openshift.

Windows Server – How did that platform get into this chapter? Everything I’ve

described about k8s so far is all based on Linux. k8s got its start on Linux, so that all

makes sense. To give you more flexibility, though, we wanted Windows Server to be a

part of the k8s world, so it is possible now to use Windows Server to host a k8s cluster.

Not everything in the cluster will be “pure” Windows, but Windows container–based

Chapter 8 SQL Server on KuberneteS

https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service/
https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service/
https://azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-server-containers-support-in-azure-kubernetes-service/
https://docs.microsoft.com/en-us/azure/aks/virtual-nodes-cli
https://docs.microsoft.com/en-us/azure/aks/virtual-nodes-cli
https://azure.microsoft.com/en-us/services/kubernetes-service
https://azure.microsoft.com/en-us/services/kubernetes-service
https://docs.microsoft.com/en-us/azure-stack/user/azure-stack-solution-template-kubernetes-deploy
https://docs.microsoft.com/en-us/azure-stack/user/azure-stack-solution-template-kubernetes-deploy
https://www.openshift.com/
https://github.com/Microsoft/sqlworkshops/tree/master/SQLonOpenShift
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started#azure-red-hat-openshift
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started#azure-red-hat-openshift

255

nodes are supported. You can read more about Kubernetes with Windows at https://

docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/

getting-started- kubernetes-windows.

Other k8s cloud providers – Azure is not the only cloud k8s provider in town.

Amazon has Elastic Kubernetes Service (EKS), Google has the Google Kubernetes Engine

(GKE), and there are others as well.

Other k8s providers – There are other k8s providers in the market. SUSE has several

k8s solutions, which you can read about at www.suse.com/solutions/kubernetes/.

One of the more popular ones I’ve seen my customers talk about is Rancher (https://

rancher.com/). I’m sure you may have heard of others that customers want to use.

Another k8s provider I’m going to pay particular attention to in the future is VMWare

PKS (https://cloud.vmware.com/vmware-enterprise-pks).

Ultimately, your choice for k8s is based on whether you want to deploy k8s in

your data center or in a public cloud. Your other decisions should be based on what

kind of support you will receive, is the k8s cluster managed or do you need to manage

everything, and whether the k8s distribution will last and be relevant in the future.

SQL Server will work on just about all of the k8s platforms and providers. Working for

Microsoft, I will be interested to see the popularity of k8s on AKS and Windows Server.

In my experience with Linux, OpenShift is a major force and a k8s platform that many

customers are using or evaluating.

It’s time to learn by example, so let’s go over the prerequisites to use the examples for

deployment, HA, and updates with k8s and SQL Server 2019.

 Prerequisites for the Examples
All the examples for this chapter rely on the cross-platform CLI kubectl program. You

should be able to use the examples in this chapter with any k8s distribution using

kubectl.

I used Azure Kubernetes Service (AKS) to deploy my k8s cluster for all of the

examples. Therefore, there will be two possible differences in your use of my examples

for your k8s distribution:

• Storage class – My examples use a storage class for Azure disks. You

will need to put in the storage class specific to your platform.

Chapter 8 SQL Server on KuberneteS

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/getting-started-kubernetes-windows
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/getting-started-kubernetes-windows
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/getting-started-kubernetes-windows
https://www.suse.com/solutions/kubernetes/
https://rancher.com/
https://rancher.com/
https://cloud.vmware.com/vmware-enterprise-pks

256

• Load Balancer – My examples use a load balancer type for the

service, but that is implemented only in k8s cloud providers. If

you are not using a cloud provider for k8s, you will want to use

a type of service called a NodePort. You can read more about

NodePort at https://kubernetes.io/docs/concepts/services-

networking/#nodeport.

Other than that, these examples in the chapter should run on just about any k8s

platform you have configured.

If you are using AKS, I used the following steps to create my AKS cluster, per the

documentation at https://docs.microsoft.com/en-us/azure/aks/kubernetes-

walkthrough.

createaksrg.sh

az group create --name bwaks --location eastus2

createaks.sh

az aks create \

 --resource-group bwaks \

 --name bwsqlaks \

 --node-count 2 \

 --enable-addons monitoring \

 --generate-ssh-keys

connectoaks.sh

az aks get-credentials --resource-group bwaks --name bwsqlaks

You can see the scripts and commands I used to create the resource group, create

the cluster, and connect to the cluster in the ch8_sql_on_k8s directory. Even though

these are Bash shell scripts, you can run these following commands where the Azure CLI

is supported. I like to use the Azure Cloud Shell which I’ll show you in these examples

because the Azure CLI is built-in. If you want to use a platform, you will need to install

the Azure CLI at https://docs.microsoft.com/en-us/cli/azure/install-azure-

cli?view=azure-cli-latest.

I also recommend you install the Kubernetes Visual Studio Code extension to assist

in using k8s clusters and objects. I wanted to install this on Azure Data Studio. To do this,

you need to download these extensions:

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/concepts/services-networking/#nodeport
https://kubernetes.io/docs/concepts/services-networking/#nodeport
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

257

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.

vscode-kubernetes-tools

To use this extension, you also need to install kubectl from https://kubernetes.io/

docs/tasks/tools/install-kubectl/.

To learn more about how to install extensions with Azure Data Studio, refer to the

documentation at https://docs.microsoft.com/en-us/sql/azure-data-studio/

extensions.

As I said, for me, I like to use these examples with the Azure Cloud Shell. The Azure

Cloud Shell supports both PowerShell and bash and includes many built-in tools like the

Azure CLI, kubectl, and even sqlcmd. You can read more about the Azure Cloud Shell at

https://azure.microsoft.com/en-us/features/cloud-shell.

No matter what client or k8s distribution you use, if you can run kubectl, you can use

these examples.

 Deploying SQL Server on k8s
For examples in this section, let me show you how to deploy a pod with a single SQL

Server container.

You will need a secret for the sa password, storage for databases, and a load balancer

to connect to SQL Server. All of this will be done with a series of kubectl commands and

declarative YAML files.

In addition, I recommend you create your own pods using the concept of

namespaces in k8s. A namespace gives you a scope for the objects (e.g., pods) you create

in the k8s cluster to be separated from other objects. Namespaces provide a very nice

mechanism to organize and manage your k8s objects.

Let’s go step by step through the process of deploying and connecting to a SQL

Server container in a pod. These steps assume you have an existing k8s cluster. I created

a two-node cluster using AKS as I’ve described in the Prerequisites, but even a single

node cluster will work.

When I went through these examples, I used the Azure Cloud Shell, which can be

run from any browser as seen in Figure 8-1.

Chapter 8 SQL Server on KuberneteS

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/sql/azure-data-studio/extensions
https://docs.microsoft.com/en-us/sql/azure-data-studio/extensions
https://azure.microsoft.com/en-us/features/cloud-shell

258

I love the Azure Cloud Shell. One time I was on a plane trip back to Texas, and

battery ran out on my laptop. I needed to do some work with AKS for a demo I was

building. My iPhone still had power, and I had heard about the Azure app (https://

apps.apple.com/us/app/microsoft-azure/id1219013620). I installed the app,

connected with my subscription, and browsed my Azure resources. I then noticed the

app had a cloud shell option. I selected this and now I was back in business. Figure 8-2

shows an example of using the Azure Cloud Shell from my phone.

Figure 8-1. Using Kubernetes with the Azure Cloud Shell

Chapter 8 SQL Server on KuberneteS

https://apps.apple.com/us/app/microsoft-azure/id1219013620
https://apps.apple.com/us/app/microsoft-azure/id1219013620

259

I remember sitting next to a passenger who was playing Candy Crush on their phone.

They saw what I was doing and said, “what game are you playing?” My response was,

“I’m deploying a Kubernetes cluster using the Cloud Shell.” They went back to their

game, no doubt wondering what strange person was playing the “Kubernetes game.”

The example scripts for deployment can be found at ch8_sql_on_k8s\deploy. Make

sure to set execution permissions for the shell scripts with chmod u+x <script>. Also, if

you would like to run these in the Azure Cloud Shell, read the following documentation

on uploading these example scripts (https://docs.microsoft.com/en-us/azure/

cloud-shell/persisting-shell-storage#transfer-local-files-to-cloud-shell).

Remember, the big advantage of the Azure Cloud Shell is that it only requires a browser,

and all the tools like kubectl, az, and sqlcmd are already installed.

Figure 8-2. The mobile k8s user

Chapter 8 SQL Server on KuberneteS

https://docs.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage#transfer-local-files-to-cloud-shell
https://docs.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage#transfer-local-files-to-cloud-shell

260

On to the examples to deploy SQL Server in AKS:

 1. Create a namespace using the following command or script

step1_create_namespace.sh:

kubectl create namespace mssql

You should get back this message indicating that the namespace

was created:

namespace/mssql created

You can also verify the namespace was created by running this

command:

kubectl get namespaces

On my cluster, I got back these results. The other namespaces

come with a k8s cluster.

NAME STATUS AGE

default Active 2d10h

kube-public Active 2d10h

kube-system Active 2d10h

mssql Active 56s

 2. I’d like all of my objects to be created in the new mssql

namespace. I can explicitly use the namespace as I create

objects, or I can set a default context of the new namespace with

the following commands (or use the script step2_setcontext.
sh). Substitute in your cluster and username. You can find this

information using the command kubectl config view.

kubectl config set-context mssql --namespace=mssql

--cluster=bwsqlaks --user=clusterUser_bwaks_bwsqlaks

kubectl config use-context mssql

If this command is successful, you should see output like the

following:

Chapter 8 SQL Server on KuberneteS

261

Context "mssql" created.

Switched to context "mssql".

To verify your context is correct or to view it at any time, run the

following command:

kubectl config current-context

 3. Now, let’s create the load balancer service to be used for the SQL

Server pod. I will caution you about load balancers and cloud

services like Azure. Azure is effectively providing you a public IP

endpoint that won’t change, so you can bind this into the private

IP address of the pod regardless if it changes. I’ve seen scenarios

where the load balancer service takes some time to create.

Therefore, I recommend that, once you create them, don’t remove

them, unless you are doing tests like the demo from this chapter.

Run the following command or script step3_create_service.sh to

create the load balancer:

kubectl apply -f sqlloadbalancer.yaml --record

Here is an example of using a YAML file to access the k8s API

server in a declarative fashion. What you are effectively doing with

kubectl apply is sending API commands to the API server, just like

if you had written code using the API directly (yes, you are now a

k8s programmer).

Let’s look at the sqlloadbalancer.yaml file to understand an

example of the format:

apiVersion: v1

kind: Service

metadata:

 name: mssql-service

spec:

 selector:

 app: mssql

Chapter 8 SQL Server on KuberneteS

262

 ports:

 - protocol: TCP

 port: 31433

 targetPort: 1433

 type: LoadBalancer

The protocol uses a label and value syntax. One of the references

you can use to determine the exact set of labels and values for

various k8s objects is at https://kubernetes.io/docs/concepts/

overview/working-with-objects/kubernetes-objects/.

Personally, I look at examples, copy them, and modify them for

my own scenarios.

Let’s use this YAML file to explain a few of the values.

apiVersion: v1

Every YAML file needs this apiVersion field. This tells the API

server which “version” of the API you are using for various uses of

k8s. You should typically stick with v1, but some new concepts of

k8s may require a “beta” or other versions. Read more about API

versioning at https://kubernetes.io/docs/reference/using-

api/api- overview/#api-versioning.

kind: Service

This tells the API server what kind of object you are interacting

with. In this case, it is a Service object that will help us deploy a

load balancer. You can read more about a k8s Service at https://

kubernetes.io/docs/concepts/services-networking/

service/.

metadata:

 name: mssql-service

This is the name of the service. You will use this to manage the

object and also bind this to another object like a pod.

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/reference/using-api/api-overview/#api-versioning
https://kubernetes.io/docs/reference/using-api/api-overview/#api-versioning
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

263

spec:

 selector:

 app: mssql

 ports:

 - protocol: TCP

 port: 31433

 targetPort: 1433

 type: LoadBalancer

The spec label allows you to define more details about the Service

object. A selector allows you to use a “label” to group and identify

an object. In this case, using the app:mssql label will allow you

to manage and view objects in k8s based on a label. I’ll show you

an example of using this label as part of this exercise. The label

of app: mssql is also critical for a LoadBalancer, since it binds the

LoadBalancer to any pod that uses the same label (which will be

our SQL Server pod).

The port section allows you to map a port that will be viewed

externally with a port inside the pod. This makes sense for SQL

Server since, just like you learned in Chapter 7 on containers, you

can’t have more than one SQL Server listening on port 1433 at the

host level. In this example, when applications want to connect to

SQL Server, they will use the IP address of the Service with a port

of 31433. I’ll show you a clever trick to connect to the Service for

SQL Server later in the example.

The type is the type of Service which, in this case, is a

LoadBalancer service implemented by a cloud provider. The

various service types can be found at https://kubernetes.io/

docs/concepts/services-networking/service/#publishing-

services- service-types.

When you execute a kubectl with the apply option and a YAML

file, the execution is often asynchronous. This means the kubectl

command will return immediately, but the operation declared in

the YAML file is scheduled by the API server in the background.

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

264

In this case, when you execute the kubectl apply command for this

service, your result should look like:

service/mssql-service created

This result actually means the service creation has been scheduled

to be created. How can you know whether the service is ready

to use? There are a few ways. First, you can run the following

command:

kubectl get service

Your result may look like this:

NAME TYPE CLUSTER-IP EXTERNAL- IP

 PORT(S) AGE

mssql-service LoadBalancer 10.0.150.233 <pending>

 31433:32010/TCP 61s

The CLUSTER-IP is the private IP address within the k8s

cluster. The EXTERNAL-IP will be the static public IP you can

use to connect to SQL Server. Notice the PORT has a value of

31433:32010. Even though SQL Server listens on port 1433 in

the container, port 32010 is mapped to port 1433 within the

cluster. Port 31433 is mapped to 32010, allowing you to connect

to <EXTERNAL-IP>,<31433> to connect to SQL Server, no matter

where the pod with SQL Server lives within the k8s cluster.

Notice the value of EXTERNAL-IP is <pending> when you look at

it right after running this kubectl apply command. You will not be

able to use the LoadBalancer until that value is a valid IP address;

this could take several minutes to complete.

 4. Now that the LoadBalancer has been scheduled to create, let’s

create a secret to hold the sa password for SQL Server. Use the

following command or script step4_create_secret.sh:

kubectl create secret generic mssql-secret --from-literal=

SA_PASSWORD="Sql2019isfast"

Chapter 8 SQL Server on KuberneteS

265

When this command completes, you should see the following

results, and the secret should be immediately created:

secret/mssql-secret created

Note In Chapter 7, I mentioned that active Directory authentication for SQL
Server containers is coming for SQL Server 2019. once this support is finalized, we
should be able to also support aD authentication for SQL Server in k8s.

 5. The next step is to create storage for the SQL Server databases

using the concept of a PersistentVolumeClaim (PVC). A PVC is

like a volume defined on top of a core disk system which we can

use to map to directories for databases for the SQL Server pod.

Use the following command to create the PVC to be used for the

SQL Server pod or script step5_create_storage.sh:

kubectl apply -f storage.yaml

You should see this message come back quickly, and the PVC is

scheduled to be created in the background:

persistentvolumeclaim/mssql-data created

While that is being created (which may be fast), let’s look at the

storage.yaml file to see what is happening behind the scenes:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mssql-data

 annotations:

 volume.beta.kubernetes.io/storage-class: azure-disk

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 8Gi

Chapter 8 SQL Server on KuberneteS

266

The metadata is interesting because the annotations label binds

the PVC to a disk called a storage class. How did I know to use

azure-disk? That is because when you create an AKS cluster, you

automatically get an Azure disk based on premium storage with

a storage class called azure-disk. You can create others, but this

is the standard one created by AKS. You can read more about

storage with AKS at https://docs.microsoft.com/en-us/azure/

aks/concepts-storage. If you are not using k8s, you would have

created storage classes already, or you can find out which ones are

available with your k8s administrator, or the following command:

kubectl get StorageClass

You can find more about the details of azure-disk by running this

command:

kubectl describe StorageClass azure-disk

The spec section of this storage.yaml describes what access

is allowed for PVC as well as the size of the volume. The

AccessModes of ReadWriteOnce means that the volume is read/

write and only one pod/node is allowed to access the volume at

any time. It doesn’t mean that a pod can’t be moved to another

node and the volume accessed (this will be a fundamental

concept for HA, as you will learn later in the chapter). It just

means two pods, or two nodes, cannot access the volume at the

same time. This makes sense for a SQL Server database. 8Gi

means a volume with a size of 8Gb.

You can see whether the PVC was successfully created by running

this command:

kubectl describe PersistentVolumeClaims mssql-data

At the bottom of the output, a successful PVC creation looks like

this:

Chapter 8 SQL Server on KuberneteS

https://docs.microsoft.com/en-us/azure/aks/concepts-storage
https://docs.microsoft.com/en-us/azure/aks/concepts-storage

267

Type Reason Age From

 Message

---- ------ ---- ----

Normal ProvisioningSucceeded 9m16s persistentvolume-

controller Successfully provisioned volume pvc-b8c9225e-c038-

11e9-b5fa-c6f80bad26d8 using kubernetes.io/azure-disk

I’ve seen some scenarios where there might be some temporary

timeouts or errors, but eventually the PVC is created.

 6. You now have a load balancer service, a secret for the sa password,

and storage. It’s time to put this all together and create a pod that

has a single container for SQL Server. Run the following command

or script step6_deploy_sql2019.sh (the --record option provides

more details from behind the scenes of the deployment):

kubectl apply -f sql2019deployment.yaml --record

You should see these results, which indicate that a deployment has

been scheduled:

deployment.apps/mssql-deployment created

A deployment is going to allow us to create a pod with a concept

of a ReplicaSet for the SQL Server pod. I’ll define ReplicaSet later

when I show you the built-in HA capabilities of k8s.

To see the status of the deployment and the objects related to the

pod, run the following command:

kubectl get all

This will show all objects in the current context (namespace

mssql) including status of the pod, LoadBalancer, and

deployment.

When you run this immediately, you might see results like this:

Chapter 8 SQL Server on KuberneteS

268

NAME READY STATUS

RESTARTS AGE

pod/mssql-deployment-7bb4c5f5d7-rpw45 0/1 ContainerCreating

0 4s

NAME TYPE CLUSTER-IP

EXTERNAL- IP PORT(S) AGE

service/mssql-service LoadBalancer 10.0.150.233

13.77.103.119 31433:32010/TCP 55m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/mssql-deployment 0/1 1 0 4s

NAME DESIRED CURRENT READY AGE

replicaset.apps/mssql-deployment-7bb4c5f5d7 1 1 0 4s

The first line has the STATUS of the pod creation. A STATUS of

ContainerCreating means the container defined for the pod is

in the process of being created. If this is the first time you have

created a pod with the SQL Server container image, it may take

longer, as the container image must be pulled into the local

docker registry of k8s.

The deployment STATUS indicates when the overall deployment

is successful. The STATUS of the LoadBalancer is independent of

the deployment. This means you need to wait for the pod to have

a status of Running, the LoadBalancer to have a valid EXTERNAL-

IP address, and the deployment to have AVAILABLE = 1 before

you can start connecting to SQL Server. The status of the Replica

should match the status of the pod or deployment.

While the pod is still being created, let’s look at the

sql2019deployment.yaml file in various parts.

kind: Deployment

metadata:

 name: mssql-deployment

This section tells the API server we are creating a deployment of a

pod and the name.

Chapter 8 SQL Server on KuberneteS

269

The rest of the YAML is the specification for the deployment, so

let’s break that down.

replicas: 1

 selector:

 matchLabels:

 app: mssql

 strategy:

 type: Recreate

This defines the number of replicas for the pod (one) and to

recreate the pod should any updates be needed. I’ll explain the

significance of these terms later in this chapter. The matchLabels

is to associate the label of the deployment with the pod label

(which are both mssql).

The next big section is called a template, which defines more

details about the containers for the pod and volumes used for

storage.

You can see in the template section we use another label for app

of mssql so we can manage, view, or control objects with the

deployment using a label.

Next comes the specification for the pod, which contains details

about the container to deploy in the pod.

spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: mssql

 image: mcr.microsoft.com/mssql/rhel/server:2019-latest

 env:

 - name: MSSQL_PID

 value: "Developer"

 - name: ACCEPT_EULA

 value: "Y"

 - name: MSSQL_SA_PASSWORD

 valueFrom:

Chapter 8 SQL Server on KuberneteS

270

 secretKeyRef:

 name: mssql-secret

 key: SA_PASSWORD

 volumeMounts:

 - name: mssqldb

 mountPath: /var/opt/mssql

You can see in the spec a few things that look familiar once you

have used containers. You see the image the container will be

based on and the environment variables used to supply to the SQL

Server container. Notice how the sa password is mapped to the

secret you already created.

The value of terminationGracePeriodSeconds defines how long

k8s will allow the container to shut itself down should it need

to be terminated. It is possible for a SQL Server to need more or

less time, but I chose 10 seconds in our examples. SQL Server is

resilient for consistency whether or not it is shut down gracefully.

The volumeMount entry is a name called mssqldb, which maps to

the directory to store all SQL Server databases. mssqldb is defined

right below this spec as part of the deployment:

volumes:

 - name: mssqldb

 persistentVolumeClaim:

 claimName: mssql-data

Here is the mapping to the PVC that was created. Now, when

the SQL Server container is started in the pod, all system and

user databases by default will live in persisted storage with the

PVC. You will see how this can become important when you learn

about HA and updating in other sections of this chapter.

You can run kubectl get all again to see if everything is ready to

use for SQL Server.

Chapter 8 SQL Server on KuberneteS

271

You also have a few other interesting kubectl commands at your

disposal to examine the state of the pod and SQL Server. To see

a complete list of option, you can run the command kubectl

help or look at the kubectl reference documentation at https://

kubernetes.io/docs/reference/kubectl/overview.

 7. Run the following command to see the logs of the pod (and

container in the pod) which happens to be the ERRORLOG of SQL

Server. You can also use the script step7_getlogs.sh:

kubectl logs -l app=mssql --tail=100000

Normally, the kubectl logs command requires a pod name, but

you can use the mssql label instead of having to look up the name

of the pod.

Your results should literally be a dump of the SQL Server

ERRORLOG.

 8. You can also see a detailed view of events related to operations in

k8s you have completed so far in this namespace, by running the

following command or script step8_getevents.sh:

kubectl get events

Your output should show you a timeline for events that have

occurred in this namespace. If all worked well, it should look

something like the following:

LAST SEEN TYPE REASON KIND

 MESSAGE

29m Normal ProvisioningSucceeded PersistentVolumeClaim

 Successfully provisioned volume pvc-c18b530f-c040-11e9-b5fa-

c6f80bad26d8 using kubernetes.io/azure-disk

25m Normal Scheduled Pod

 Successfully assigned mssql/mssql-deployment-7b6565d684-8r7cc

toaks- nodepool1- 90949249-0

25m Normal SuccessfulAttachVolume Pod

 AttachVolume.Attach succeeded for volume "pvc-c18b530f-c040-11e9-

b5fa-c6f80bad26d8"

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/reference/kubectl/overview
https://kubernetes.io/docs/reference/kubectl/overview

272

24m Normal Pulled Pod

 Container image "mcr.microsoft.com/mssql/rhel/server:

2019-latest" already present on machine

24m Normal Created Pod

 Created container

24m Normal Started Pod

 Started container

25m Normal SuccessfulCreate ReplicaSet

 Created pod: mssql-deployment-7b6565d684-8r7cc

25m Normal ScalingReplicaSet Deployment

 Scaled up replica set mssql-deployment-7b6565d684 to 1

30m Normal EnsuringLoadBalancer Service

 Ensuring load balancer

29m Normal EnsuredLoadBalancer Service

 Ensured load balancer

 9. You can also get more details about the deployment using the

following command or script step9_describe_deployment.sh:

kubectl describe deployment mssql-deployment

You will get all types of details about the deployment, including

the most recent events specifically related to the deployment.

 10. You can also get more details about the pod that was deployed

using the following command or script step10_describe_pod.sh:

kubectl describe pod -l app=mssql

This is where using the label of mssql pays off again. You will get

more details of the pod, containers within the pod, and events

related to the pod, and all you have to remember is the mssql

label.

This command, along with kubectl get events, can be useful for

troubleshooting purposes for pod deployment.

 11. Now (finally) it is time to connect to SQL Server running in a

container in the pod. Here is a trick I learned from Anthony

Chapter 8 SQL Server on KuberneteS

273

Nocentino (known expert on Linux, Containers, and k8s and my

technical reviewer for Pro SQL Server on Linux). Run the following

command or script step11_testsql.sh to connect to SQL Server

through the LoadBalancer:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT

@@version"

Your results should show you the version of SQL Server installed.

If you look carefully at this command, it dynamically extracts the

EXTERNAL-IP of the LoadBalancer and parses out the IP address

to be used as part of the connection string. You could also go

further and add in parsing logic for the port from the output of

kubectl get service.

This was more detailed than just having you run each step, because I wanted to

describe to you what is happening behind the scenes and learn more about how YAML

works as an API for programming interface for k8s.

 Tips with k8s
Before you move on to the next section, since you have a deployed SQL Server pod, let

me show you some tips on using other resources with k8s.

 k8s Extension

I discussed in an earlier section of the chapter called “Prerequisites for the Examples”

the Kubernetes Extension for Visual Studio Code and showed how to install this for

Azure Data Studio (ADS).

Let me show you some examples of using this extension with your deployed SQL

Server pod.

First, one thing about using the k8s extension, along with the dependency for YAML,

are the tips it provides for using YAML files. Find the sql2019deployment.yaml file in the

ch8_sql_on_k8s\deploy directory with the samples. Use the Explorer feature of ADS to

find the file.

Chapter 8 SQL Server on KuberneteS

274

Hover over any of the YAML syntax and get tips about the various statements in

the file. For example, Figure 8-3 shows a tip for the terminationGracePeriodSeconds

declaration.

The ADS extension also includes a “live” explorer to look at k8s resources. I used

this to connect to my AKS cluster (if you use AKS, you will need to provide some login

information when you use the tool). Once connected, I could browse objects and even

perform some interesting operations.

Since my pod was deployed in a namespace, I first needed to change context to that

namespace, as seen in Figure 8-4.

Figure 8-3. Using the k8s extension to explore a YAML file

Chapter 8 SQL Server on KuberneteS

275

One cool thing I can do is to attach to a running pod and run a Bash shell to view the

ERRORLOG. First, I found my deployment in the k8s explorer, and used the right-click

option to select Terminal, as seen in Figure 8-5.

Figure 8-4. Setting the namespace with the k8s extension

Figure 8-5. Running a terminal session in a k8s pod

Chapter 8 SQL Server on KuberneteS

276

The Terminal of ADS was displayed, and now I was in a Bash shell in the SQL

Container of the pod. I was then able to navigate to /var/opt/mssql/log and dump out

the ERRORLOG, as seen in Figure 8-6.

I typed in exit to quit the terminal session. Another thing I discovered was the

ability to reverse engineer a deployment to see what the YAML file looked like for that

deployment. Using the right-click feature on the deployment, I selected Convert to

Template, as seen in Figure 8-7.

Figure 8-6. Dumping out the ERRORLOG for a SQL Server pod in k8s

Chapter 8 SQL Server on KuberneteS

277

I typed in the name of my YAML file, and I was presented with an editor to see the

resulting YAML file.

I’m sure there are other nifty options with the k8s extension I have not explored yet,

but will continue to use this with my journey with k8s.

 Other kubectl Commands Include

kubectl has many other commands that are worth showing, including

kubectl top – This command on a node or pod basis displays metrics for memory

and CPU. This could be helpful, for example, to see how much memory a pod is

consuming or how much memory is left on a node.

kubectl cp – This command can be used to copy a file into the container file system

for a pod. Just like docker cp, you could use this to copy in a backup file of a SQL Server

database into the container writeable layer.

Figure 8-7. Reverse engineering a k8s deployment

Chapter 8 SQL Server on KuberneteS

278

For example, given the example you deployed, assume the pod name is

mssql- deployment- 7b6565d684-92l8s in the mssql namespace and that you have

downloaded the WideWorldImporters database sample (https://github.com/

Microsoft/sql- server-samples/releases/download/wide-world-importers-v1.0/

WideWorldImporters- Full.bak) to your local directory. The following command will

copy the backup file into the SQL Server container so it can be restored:

kubectl cp ./WideWorldImporters-Full.bak mssql/mssql-deployment-7b6565d684-

92l8s:/var/opt/mssql

kubectl exec – This command allows you to execute a program in the namespace

of the container in a pod. You would use this command much like docker exec to run a

Bash shell for the container, or for SQL Server the sqlcmd utility, since that is part of the

SQL Server container.

Based on the example I just showed you to copy in the WideWorldImporters backup,

the following command could be used to restore the backup:

kubectl exec mssql-deployment-7b6565d684-92l8s -- /opt/mssql-tools/bin/sqlcmd

-S localhost -U SA -P "Sql2019isfast" -Q "RESTORE DATABASE WideWorldImporters

FROM DISK = '/var/opt/mssql/WideWorldImporters-Full.bak' WITH MOVE 'WWI_

Primary' TO '/var/opt/mssql/data/WideWorldImporters.mdf', MOVE 'WWI_UserData'

TO '/var/opt/mssql/data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO

'/var/opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_Data_1' TO

'/var/opt/mssql/data/WideWorldImporters_InMemory_Data_1'"

This syntax took me a while to figure out; note here that you don’t specify the

namespace, so you must be in the context of the namespace for your pod. Also note the

use of the -- syntax before specifying /opt/mssql/bin/sqlcmd which is used to separate

arguments for kubectl and arguments for the program, which in this case is sqlcmd.

kubectl version – This command dumps out the version of kubectl. I’ve seen

situations where users had problems with kubectl because it was older and not

compatible with the version of the k8s cluster. This command prints out the versions

of both the client and the server. Read more about version compatibility at https://

kubernetes.io/docs/setup/release/version-skew-policy/.

Chapter 8 SQL Server on KuberneteS

https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/release/version-skew-policy/

279

kubectl explain – This command displays documentation explaining information

about k8s objects. Use a command like the following to find out more about YAML

requirements for a ReplicaSet:

kubectl explain ReplicaSet

kubectl cluster-info dump – Stand back kubeheads (is that a term? If not, I just

made one). This command will dump out a massive set of diagnostics. Use the --output-

directory to create a set of diagnostic files. Be sure to use the --all-namespaces option

to get diagnostics about all namespaces. This command dumps just about any log

file that is part of the k8s cluster, including pods. I couldn’t really find any specific

 documentation on what is in the logs, but, as I use k8s myself more over time, I will

probably learn more (and become a kubehead).

 The k8s Dashboard

The Kubernetes dashboard displays visual information about the k8s cluster. You

can read all about the dashboard at https://kubernetes.io/docs/tasks/access-

application- cluster/web-ui-dashboard/.

For AKS, you can read how to display the k8s dashboard for your cluster at https://

docs.microsoft.com/en-us/azure/aks/kubernetes-dashboard. When I used the steps

in this documentation page to launch the dashboard, my browser popped up with the UI.

I then changed the namespace to mssql, and my screen looked like Figure 8-8.

Chapter 8 SQL Server on KuberneteS

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.microsoft.com/en-us/azure/aks/kubernetes-dashboard
https://docs.microsoft.com/en-us/azure/aks/kubernetes-dashboard

280

 Metrics and Logs with AKS

Using AKS has advantages because it is like a managed k8s platform. It includes built-in

metrics, visualizations, and log view capabilities in the Azure Portal. Figure 8-9 shows

some of the insights I can gain using the Azure Portal with my AKS cluster.

Figure 8-9. Insights from the Azure Portal for AKS

Figure 8-8. The k8s dashboard

Chapter 8 SQL Server on KuberneteS

281

The next step in this chapter is to show you how built-in HA works with k8s and how

it applies to SQL Server. If you are going to use the examples in the next section, don’t

remove any resources you’ve already configured. The script cleanup.sh can be used to

clean up all resources, so you can use that if you don’t plan to go through the examples in

the next section.

 SQL Server High Availability on k8s
One of the most beautiful aspects of k8s is the built-in feature set for high availability.

Imagine having high availability for SQL Server with no clustering software required for

you to install or maintain!

I talked about the term ReplicaSet earlier in the chapter, and now it is time to talk

about its significance.

When you applied the SQL Server deployment in the previous section’s example, the

YAML file included this declaration:

replicas: 1

This declaration indicates to k8s to always try to ensure that one instance of the

container in the pod, which in this case holds the SQL Server container, is always

running. If the container crashes, then k8s will restart the container. If the pod dies, then

k8s will spin up a new pod, and if the node dies, k8s will spin up a new pod on a new

node, should one exist (and there are resources to allow it).

With SQL Server, when you combine a ReplicaSet with a LoadBalancer and persisted

storage, this becomes a natural shared storage HA story. Consider Figure 8-10 as a visual

representation of the deployment you created in the previous section.

Chapter 8 SQL Server on KuberneteS

282

In this example, the user would connect to the Load Balancer which is bound to the

pod holding the SQL Server Container (in reality the Load Balancer doesn’t just live in a

user node). If the SQL Server container crashed, you would only see a slight blip as k8s

would spin up another container in the pod.

Consider what would happen if the pod had a problem, as seen in Figure 8-11.

Figure 8-10. Basic HA with SQL Server and k8s

Figure 8-11. A pod failure in k8s

Chapter 8 SQL Server on KuberneteS

283

In this scenario, k8s would spin up another pod (most likely on the same node)

which starts a new container. But notice the container still points to the PVC, which is

bound to system and user databases. To SQL Server, it just sees existing system and user

databases and starts up. The new pod would have a new private IP address, but the Load

Balancer is automatically redirected to this new address. From the application point of

view, it is a simple retry of the connection and all is well.

What if the node (it could be a VM) crashes, as seen in Figure 8-12.

k8s would detect this scenario and spin up a new pod on a new node. Even though

the new pod has a new private IP address, the Load Balancer is still redirected to the new

pod. This has a similar feel to Always On Failover Cluster Instance, except you didn’t

need to install any special clustering software.

Let’s build on the previous chapter example to see how this works. All the scripts for

this example can be found at ch8_sql_on_k8s\ha.

 1. Run the following command or step12_getpods.sh to see the

name of the pod, IP address, and node the pod is running on:

kubectl get pods -o wide

Figure 8-12. A node failure in k8s

Chapter 8 SQL Server on KuberneteS

284

Your results should look something like this:

NAME READY STATUS RESTARTS

 AGE IP NODE NOMINATED NODE

 READINESS GATES

mssql-deployment-7b6565d684-8r7cc 1/1 Running 0

 91m 10.244.1.11 aks-nodepool1-90949249-0 <none> <none>

 2. Let’s simulate a container failure by shutting down SQL Server.

Run the following command or script step13_crash_sql.sh to shut

down SQL Server, thereby stopping the container:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SHUTDOWN WITH

NOWAIT"

 3. Run the following command or script step14_getpods.sh to see

everything is the same:

kubectl get pods -o wide

Your results should look the same as before as the container was

restarted in the same pod on the same node:

NAME READY STATUS RESTARTS

 AGE IP NODE NOMINATED NODE

 READINESS GATES

mssql-deployment-7b6565d684-8r7cc 1/1 Running 1

 91m 10.244.1.11 aks-nodepool1-90949249-0 <none> <none>

Run the following command to see the sequence of events:

kubectl get events

Chapter 8 SQL Server on KuberneteS

285

Your results should look something like:

LAST SEEN TYPE REASON KIND MESSAGE

16s Normal Pulled Pod Container image

"mcr.microsoft.com/mssql/rhel/server:2019-latest" already

present on machine

16s Normal Created Pod Created container

16s Normal Started Pod Started container

 4. Try to connect to SQL Server and see that all is well using the

following command or script step15_testsql.sh:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT

@@version"

You should see you can connect to SQL Server and display the

version.

 5. Test a pod failure with the following command or script step16_
pod_failure.sh:

kubectl delete pod -l app=mssql

In this example, instead of using the pod by name, we can take

advantage that we associated a label with the pod that is a name

easy to remember.

You should see a message like this:

pod "mssql-deployment-7b6565d684-8r7cc" deleted

 6. Check out the status of the pod including IP address with the

following command or script step17_getpods.sh:

kubectl get pods -o wide

You can see from the output that the pod is now running on the

same node (it could have been scheduled to a new node) with a

new name and new IP address:

Chapter 8 SQL Server on KuberneteS

286

NAME READY STATUS RESTARTS

 AGE IP NODE NOMINATED

NODE READINESS GATES

mssql-deployment-7b6565d684-gq48v 1/1 Running 0

2m55s 10.244.1.12 aks-nodepool1-90949249-0 <none>

<none>

Check out the sequence of events using the following command:

kubectl get events

Your output will show the sequence of terminating the pod and

creating a new one, similar to the following:

LAST SEEN TYPE REASON KIND MESSAGE

6m53s Normal Pulled Pod Container image "mcr.

microsoft.com/mssql/rhel/server:2019-latest" already present on machine

6m53s Normal Created Pod Created container

6m53s Normal Started Pod Started container

39s Normal Killing Pod Killing container with

id docker://mssql:Need to kill Pod

40s Normal Scheduled Pod Successfully assigned

mssql/mssql-deployment-7b6565d684-gq48v to aks-nodepool1-90949249-0

34s Normal Pulled Pod Container image "mcr.

microsoft.com/mssql/rhel/server:2019-latest" already present on machine

34s Normal Created Pod Created container

34s Normal Started Pod Started container

40s Normal SuccessfulCreate ReplicaSet Created pod: mssql-

deployment- 7b6565d684-gq48v

 7. Try to connect to SQL Server using the LoadBalancer service with

the following command or script step18_testsql.sh:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT

@@version"

Chapter 8 SQL Server on KuberneteS

287

Because we are using a LoadBalancer bound to the pod, the

connection remains the same, even though the pod has a new

private IP address.

 8. Clean up all resources by running the following commands or

script cleanup.sh:

kubectl delete namespace mssql

kubectl config delete-context mssql

kubectl config use-context bwsqlaks

You have now seen the fundamental HA capabilities of SQL Server running in k8s.

For the scenario where a node is no longer available, simulating a true crash of a node

would require you to gain direct access to the VMs supporting a node and “crashing”

it. However, you can see the behavior for how k8s would automatically schedule the

SQL Server deployment based on the ReplicaSet definition by running the following

command:

kubectl drain <nodename>

You can bring your node back online for scheduling (but it doesn’t mean pods would

be moved to that node) by running the following command:

kubectl uncordon <nodename>

Now let’s examine how you can update SQL Server in k8s similar to how you updated

a container in Chapter 7.

 Updating SQL Server on k8s
You learned in Chapter 7 how to update a SQL Server container by “switching”

containers backed by a persisted volume. The running container is stopped, and a new

container, with a new CU build of SQL Server, is started – pointing to the same volume,

which is mapped to the directory containing the system and user databases.

You can achieve the same in k8s. Only this time k8s will do all the work for you, given

the right declarations. Let’s go back and look at this section of the sql2019deployment.

yaml file from the first exercise in this chapter:

Chapter 8 SQL Server on KuberneteS

288

spec:

 replicas: 1

 selector:

 matchLabels:

 app: mssql

 strategy:

 type: Recreate

Notice the strategy of type Recreate. Recreate declares to k8s that if the deployment

is updated to stop and recreate the container. Another choice for a strategy type is

RollingUpdate. We can’t use this strategy with SQL Server unless we have some

coordination with multiple SQL Server containers. We will talk about this concept,

though, in the last section of this chapter, on Always On Availability Groups and k8s.

One way to update the deployment is to update the image of the container running

in the pod. For SQL Server, this could mean updating to a new cumulative update, just

like I showed you how to switch to a container with a new image in Chapter 7. And since

we are using a persistent volume, the system and user database will be recognized by

the new container using the updated image. k8s provides a method for you to do this

all in one command. And there is a rollback story, too, since k8s tracks the update to the

deployment as a revision.

Let’s see this in action. All the scripts for this example can be found at ch8_sql_on_
k8s\update. If you have run the previous examples, be sure to clean up all your existing

resources using the cleanup.sh script found in either the ha or the deploy folder.

At the time of writing this book, we have not yet shipped a cumulative update for

SQL Server 2019, so I’ll use SQL Server 2017 in these examples. However, once we start

shipping CU builds, you can use this same technique for SQL Server 2019.

 1. First, we need to deploy a SQL Server pod, as we did in the first

example in this chapter. Instead of going through all of those

steps, I built one script that does it all, called step1_deploysql.sh.

This script uses the following commands:

kubectl create namespace mssql

kubectl config set-context mssql --namespace=mssql

--cluster=bwsqlaks --user=clusterUser_bwaks_bwsqlaks

kubectl config use-context mssql

kubectl apply -f sqlloadbalancer.yaml

Chapter 8 SQL Server on KuberneteS

289

kubectl create secret generic mssql --from-literal=SA_

PASSWORD="Sql2017isfast"

kubectl apply -f storage.yaml

kubectl apply -f sql2017deployment.yaml

The storage.yaml and sqlloadbalancer.yaml files are identical

to the files used in the first example in this chapter. The

sql2017deployment.yaml file is also the same, except for this

section:

image: mcr.microsoft.com/mssql/server:2017-CU10-ubuntu

This means our new pod with a container will use a SQL Server

2017 CU10 image for Ubuntu. If this image is not on the node that

is deployed for the pod, k8s will have to pull the image first.

Note to this date, I’ve not found a single easy method to pre-pull SQL Server
images on all the k8s nodes, except to run pods using those images and then
deleting the pods (the image will stay cached on the local node). there are other
techniques out there, and one of them is to gain admin access to log in to the
actual Linux node vMs and use docker directly to pull images.

Use the same techniques as in the first example to check that the

pod and deployment are up and running. For example, run the

following command:

kubectl get all

The status of the pod must be Running, and the LoadBalancer

must have a valid External-IP address before you can continue.

 2. Now we want to update the deployment by changing the image

using the following command or script step2_updatesql.sh:

kubectl --record deployment set image mssql-deployment

mssql=mcr.microsoft.com/mssql/server:2017-latest-ubuntu

Chapter 8 SQL Server on KuberneteS

290

k8s will do all the work behind the scenes to stop the current

container and start a new one (using the same arguments from

the deployment) with the new image.

 3. Use the following command or script step3_checkstatus.sh to

watch the progress of the update. This command won’t complete

until the update of the container with the new image is complete

and the container is running again:

kubectl rollout status deployment mssql-deployment

kubectl rollout history deployment mssql-deployment

When the new deployment is finished, your results should look

something like this:

Waiting for deployment "mssql-deployment" rollout to finish:

0 out of 1 new replicas have been updated...

Waiting for deployment "mssql-deployment" rollout to finish:

0 out of 1 new replicas have been updated...

Waiting for deployment "mssql-deployment" rollout to finish:

0 out of 1 new replicas have been updated...

Waiting for deployment "mssql-deployment" rollout to finish:

0 of 1 updated replicas are available...

deployment "mssql-deployment" successfully rolled out

deployment.extensions/mssql-deployment

REVISION CHANGE-CAUSE

1 <none>

2 kubectl deployment set image mssql-deployment mssql=mcr.

microsoft.com/mssql/server:2017-latest-ubuntu --record=true

 4. You can make sure your pod is running again with this command

or script step4_getpods.sh:

kubectl get pods -o wide

Your pod status should show as Running.

Chapter 8 SQL Server on KuberneteS

291

 5. SQL Server will recognize the existing system and user databases,

but will need to perform any necessary steps to update to the

new CU build. Therefore, if you try to connect to SQL Server too

quickly, you may get the following error:

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : Login

failed for user 'sa'. Reason: Server is in script upgrade mode.

Only administrator can connect at this time.

Try executing the following command or script step5_testsql.sh

until you see the new version of SQL Server:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2017isfast -S$SERVERIP,$PORT -Q"SELECT

@@version"

 6. Just like the example with containers in Chapter 7, you may want

to roll back to the previous container. k8s provides a method

to do this by changing the revision number. Run the following

command to roll back to the previous CU build or use script

step6_rollbacksql.sh:

kubectl rollout undo deployment mssql-deployment --to-revision=1

 7. Run the following command or script step7_getpods.sh to verify

the pod is back to a Running state:

kubectl get pods -o wide

 8. Once the pod is Running, run the following command (or use the

script step8_testsql.sh) to make sure you have rolled back to SQL

2017 CU10:

SERVERIP=$(kubectl get service | grep mssql-service |

awk {'print $4'})

PORT=31433

sqlcmd -Usa -PSql2017isfast -S$SERVERIP,$PORT -Q"SELECT

@@version"

Chapter 8 SQL Server on KuberneteS

292

You have now successfully updated a SQL Server container and rolled it back using

the built-in capabilities of k8s to update images from a running container.

Use the script cleanup.sh to clean up all resources you deployed in this example in

the chapter.

 Using Helm Charts
The process of deploying a pod with a container in k8s is pretty straightforward, but,

as you saw from the examples, there are a lot of steps involved. Wouldn’t it be nice to

deploy a container like SQL Server in a pod much like an installation occurs from a

package manager (like yum on RHEL)?

Helm makes this possible. You can read about how to use Helm Charts at https://

helm.sh/.

For SQL Server, a Helm Chart for SQL Server 2017 on Linux is available at https://

github.com/helm/charts/tree/master/stable/mssql-linux.

When you install Helm in your k8s cluster, you will be able to deploy a SQL Server

pod using a single command like this:

helm install --name sql-server stable/mssql-linux --set acceptEula.value=Y

--set sapassword=Sql2019isfast --set edition.value=Developer

The examples at https://github.com/helm/charts/tree/master/stable/mssql-

linux include how to configure the installation with persistence and how to connect to

the running pod using the built-in LoadBalancer that is deployed.

I think Helm has some great possibilities to simplify the k8s experience with SQL

Server, so it will be interesting to continue looking into this technology in combination

with k8s for deployment.

 SQL Server Availability Groups on k8s
The built-in high availability solution for k8s fits well with the needs of SQL Server. However,

there are a few issues with just using this approach for high availability for your database:

• If k8s must spin up a new pod and container, it is effectively a restart

of SQL Server. A full recovery must be performed on all system and

user databases. Depending on how the container was shut down

(and if you are not using our new Accelerated Database Recovery

Chapter 8 SQL Server on KuberneteS

https://helm.sh/
https://helm.sh/
https://github.com/helm/charts/tree/master/stable/mssql-linux
https://github.com/helm/charts/tree/master/stable/mssql-linux
https://github.com/helm/charts/tree/master/stable/mssql-linux
https://github.com/helm/charts/tree/master/stable/mssql-linux

293

option), this could lead to longer than expected times for the new

SQL Server container to be usable (even though the pod is Running).

A Running pod just means the sqlservr process is running, it doesn’t

mean SQL Server is actually available.

• The second issue is the time it may take to pull a new SQL Server

image. If the SQL Server images are not pre-pulled on a node where

a new pod is created for SQL Server, this can cause a delay in starting

up the pod and making SQL Server available.

• k8s only understands the health of a container, pod, or node. It

doesn’t understand the health of a program running in the container.

A SQL Server container could be running but not available (or the

database not available) due to a SQL Server health issue.

We built Always On Availability Groups to help reduce downtime

for availability should a failover be required. Part of this technology

is to recognize failover conditions outside of the health of the host

for SQL Server. You can read more about these failover conditions

at https://docs.microsoft.com/en-us/sql/database-engine/

availability-groups/windows/flexible-automatic-failover-

policy-availability-group. In addition, we added in failover

health for databases in Availability Groups, which you can read

more about at https://docs.microsoft.com/en-us/sql/

database-engine/availability-groups/windows/sql-server-

always-on-database-health-detection-failover-option.

• The fourth issue is that, with a single sqlservr pod, there is no concept

of a replica. Only one pod at a time can access the system and user

databases. It would be nice to have more than one SQL Server

involved in the HA solution so that the other instances (replicas)

could have read copies of the data, and all the containers would not

rely on a single Persistent Volume Claim.

Therefore, it makes sense for us to find a way to combine the built-

in HA of k8s with the SQL Server failover technology of Availability

Groups. And we did just that during the preview of SQL Server

2019. You can see the full story of how we did this and how it

works through this blog post by my colleague Sourabh Agarwal at

Chapter 8 SQL Server on KuberneteS

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-health-detection-failover-option

294

https://cloudblogs.microsoft.com/sqlserver/2018/12/10/

availability-groups-on-kubernetes-in-sql-server-2019-

preview/.

The methodology is that we use the k8s concept of a StatefulSet

(read more at https://kubernetes.io/docs/concepts/

workloads/controllers/statefulset/) to deploy Availability

Group replicas. We would also use the concept of an operator to

orchestrate deployment of the Availability Group and to detect

failover scenarios.

Furthermore, we designed this solution to use LoadBalancer

services for both the primary and secondary replicas. This

way an application could connect to the primary replica using

the primary LoadBalancer, regardless of which replica was

the primary. Also, another application, perhaps a reporting

application, could connect to one or more read secondary replicas

and use k8s to truly load balance the connections.

We also built a new container called an AG Agent living in the SQL

Server pod to help detect and coordinate failover detection logic for

SQL Server. Combined with a concept called a k8s ConfigMap (read

more at https://kubernetes.io/docs/tasks/configure- pod-

container/configure-pod-configmap/), the AG Agent and operator

would help integrate failover decisions with the k8s cluster for

scenarios outside the scope of k8s health (container, pod, or node).

All of this is based on components we built during the preview

of SQL Server 2019; we announced that Availability Groups for

k8s will not be part of the SQL Server 2019 release. However,

Availability Groups are part of the HADR story for Big Data Clusters

which you will learn about more in Chapter 10.

I talked to Ross Monster, lead developer of this feature. He told me

the intention is to still invest in this feature in the future. Ross told

me that our thinking is to still end up using the operator concept,

AG Agent concept, and StatefulSet concepts, but the overall design

may change. Once the Availability Group (AG) is deployed, it will

behave just like an AG does outside of k8s, allowing you to read

Chapter 8 SQL Server on KuberneteS

https://cloudblogs.microsoft.com/sqlserver/2018/12/10/availability-groups-on-kubernetes-in-sql-server-2019-preview/
https://cloudblogs.microsoft.com/sqlserver/2018/12/10/availability-groups-on-kubernetes-in-sql-server-2019-preview/
https://cloudblogs.microsoft.com/sqlserver/2018/12/10/availability-groups-on-kubernetes-in-sql-server-2019-preview/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

295

secondary replicas and have a similar failover experience. Again,

the beauty of k8s with AGs is that no failover cluster software is

required on your part to install or maintain.

If you want to see a lab exercise using the preview version of

AG with k8s, take a look at Module 5 of the SQL Server 2019 on

OpenShift lab at https://github.com/microsoft/sqlworkshops/

blob/master/SQLonOpenShift/sqlonopenshift/05_Operator.md.

One concept Ross explained we are thinking about is that we could

actually support a rolling update scenario. So instead of having to rely

on switching containers manually and end up experiencing more

downtime, we could potentially provide an almost no- downtime

scenario to update a series of SQL Server containers in an Availability

Group. This brave new world would act very similar to the code we

built that Red Hat demonstrated at the May 2019 Summit. You can

watch a video of this demonstration at www.pscp.tv/RedHatOfficial

/1vAGRWYPjngJl and see this new world of operators and almost zero

downtime updates of SQL Server in action.

 Summary
I’m very confident containers and Kubernetes are a big part of the future of distributed

and scalable computing. And we have built SQL Server to be a part of this future. In this

chapter, you learned enough fundamentals of Kubernetes (k8s) to understand how to

deploy SQL Server in a k8s cluster. You also were able to see the power of HA built into

k8s and how SQL Server can take advantage of it. Just like you saw in Chapter 7 with

containers, you can use k8s capabilities to update a SQL Server container in a pod with

a new cumulative update and roll back if necessary. I briefly introduced you to Helm

Charts, which represent a new method to deploy pods and containers in k8s using a

package management approach.

Finally, I gave you a glimpse of the future of SQL Server with k8s as we integrate

Availability Groups with k8s to provide a robust, integrated HA solution with SQL Server,

including all the power of Availability Groups you see today. Chapters 7 and 8 are

important building blocks for learning as you go through Chapter 10 for SQL Server Big

Data Clusters.

Chapter 8 SQL Server on KuberneteS

https://github.com/microsoft/sqlworkshops/blob/master/SQLonOpenShift/sqlonopenshift/05_Operator.md
https://github.com/microsoft/sqlworkshops/blob/master/SQLonOpenShift/sqlonopenshift/05_Operator.md
https://www.pscp.tv/RedHatOfficial/1vAGRWYPjngJl
https://www.pscp.tv/RedHatOfficial/1vAGRWYPjngJl

297
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_9

CHAPTER 9

SQL Server Data
Virtualization
Data Virtualization is one of the most exciting capabilities we are delivering with SQL

Server 2019. In this chapter, you will learn more how Data Virtualization is made

possible in SQL Server 2019 through a technology called Polybase. This chapter, along

with Chapters 6, 7, and 8, provides the foundation to learn about SQL Server Big Data
Clusters in Chapter 10.

 What Is Polybase?
Polybase is an innovative technology introduced in SQL Server 2016, and expanded

in SQL Server 2019, to solve the problem of data movement. Data movement typically

involves building expensive and complex Extract, Transform, and Load (ETL) processes

from other data sources into SQL Server from other data sources. Polybase solves this

challenge by implementing a solution for Data Virtualization, a term I will discuss and

define as we move along. I’ll discuss and define Data Virtualization through this chapter.

In this chapter, I’ll walk you through the history of Polybase and how it provides

Data Virtualization. I’ll talk about how Polybase works behind the scenes, and the

typical workflow for Polybase through the concept of external tables. And, like most of

the chapters in this book, we will use examples to show you the details of how to use

Polybase for your Data Virtualization needs.

You can use our documentation as a guide to also understand more about Polybase

at https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-guide.

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-guide

298

 The History of Polybase
Around 2011, Dr. David DeWitt and his team created a new project called Polybase (you

can see the project web site at http://gsl.azurewebsites.net/Projects/Polybase.

aspx). His team included Rimma Nehme (now of Azure CosmosDB fame) and Alan

Halverson from the Jim Gray Systems Lab for Microsoft Research. The goal of this project

was to create a new way to access data in Hadoop systems without coding MapReduce

jobs (you can read more about MapReduce, which is very popular with those who use

Hadoop, at https://en.wikipedia.org/wiki/MapReduce).

I interviewed David, who now works at MIT, about the history of Polybase. I asked

him why he would try and create a new way to use MapReduce. He pointed me to a

blog post he and Michael Stonebraker wrote, which you can find at https://homes.

cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html. The post

describes multiple ways MapReduce represents an inferior approach to accessing data.

David and his team subsequently created the Polybase project to use the Parallel

Data Warehouse (PDW) technology at Microsoft to access “big data” in Hadoop systems.

PDW, now called Analytics Platform System (APS), is the precursor to Azure SQL Data

Warehouse in the cloud. As David tells it, “…we could connect PDW to HDFS and use

PDW’s parallel query to give our customers the ability to use standard SQL instead of

MapReduce. This would give customers the ability to access both their relational data

and their external tables stored in HDFS in a single query.”

The team created a paper for the technology, which you can read at http://gsl.

azurewebsites.net/portals/0/users/projects/polybase/polybasesigmod2013.pdf.

The paper appeared in the proceedings of the 2013 ACM SIGMOD conference. Polybase

first appeared as a feature in PDW in mid-2012 and is still there today.

Figure 9-1 represents a visual diagram of the original Polybase concept.

Chapter 9 SQL Server Data virtuaLization

http://gsl.azurewebsites.net/Projects/Polybase.aspx
http://gsl.azurewebsites.net/Projects/Polybase.aspx
https://en.wikipedia.org/wiki/MapReduce
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
https://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://gsl.azurewebsites.net/portals/0/users/projects/polybase/polybasesigmod2013.pdf
http://gsl.azurewebsites.net/portals/0/users/projects/polybase/polybasesigmod2013.pdf

299

Fast forward to the development of SQL Server 2016. If Polybase can be used via

SQL in PDW, why not SQL Server? In SQL Server 2016, we added the Polybase feature

to access data in Hadoop systems using T-SQL. I often refer to this feature as “Polybase

classic” (my term; not an official Microsoft term). You can use T-SQL to create what is

called an external table to map over HDFS files, then query that external table like any

other table. The “query” would be converted into a MapReduce Java program to run on

the target Hadoop system.

I joined the engineering team right around the launch of SQL Server 2016, and I

never really saw Polybase take off with our customers. I’m not sure exactly why, but

part of the answer could be that customers would have to install Java – typically the Java

Runtime Environment (JRE) from Oracle – on the same computer as SQL Server. It also

could be that, back in 2016, SQL Server customers were just not ready to integrate with

Hadoop, and Hadoop users wanted to segment themselves from relational databases.

In 2016, Microsoft acquired a company called Metanautix, which I mentioned in the

opening chapter of this book. With this acquisition came ODBC technology to access

data sources like SQL Server, Oracle, Teradata, and MongoDB. Folks like Travis Wright

and Slava Oks saw the vision with these technologies, and so they expanded Polybase in

Figure 9-1. The original Polybase concept from Jim Gray Systems Lab

Chapter 9 SQL Server Data virtuaLization

300

SQL Server 2019 to allow a user to use external tables to access not only Hadoop but also

SQL Server, Oracle, Teradata, and MongoDB. And to add “icing to the cake,” we added

support for accessing any data source using an ODBC driver of your choice. I call this

new capability Polybase++ (again, this is my term, not Microsoft official).

 What Is Data Virtualization?
I had not spent much time on Polybase for SQL Server 2016, but I knew the concepts.

When I started pouring my time into speaking and training on SQL Server 2019, the term

Data Virtualization (I think the first time I heard this term was from Travis Wright) was

really the first time I dug more into Polybase.

Data Virtualization is defined in many ways, but you can read the “official” definition

on Wikipedia at https://en.wikipedia.org/wiki/Data_virtualization. I like this

specific sentence, where it says, “Unlike the traditional extract, transform, load ("ETL")

process, the data remains in place, and real-time access is given to the source system

for the data. This reduces the risk of data errors, of the workload moving data around

that may never be used, and it does not attempt to impose a single data model on the

data.”

The key to Data Virtualization is the concept of no data movement. To be clear, “data”

in this case is not to move from a source in their native format. Instead, retrieve data

through a query or request it from the data source.

As part of the overall strategy for SQL Server 2019 to implement a solution for

Data Virtualization, our hope and promise is that SQL Server is an excellent center for

Data Virtualization. In other words, SQL Server 2019 can become the data hub for your

organization.

Figure 9-2 is a slide often present to talk about the overall concept of Polybase, Data

Virtualization, and SQL Server 2019.

Chapter 9 SQL Server Data virtuaLization

https://en.wikipedia.org/wiki/Data_virtualization

301

Look at all of these icons in the figure. With SQL Server 2019, you can run T-SQL

queries against external tables based on data sources ranging from HDFS to Oracle, to

CosmosDB, to SAP HANA. And here is the radical part: You can query these resources

using T-SQL and join them to local SQL Server tables or to any other external table

representing any of these other data sources.

On this slide, I attempt to simplify the definition of what Polybase is:

• A distributed computing engine

Polybase contains software inherent to the original PDW design

that integrated with SQL Server and provides its own distributed

computing engine. I’ll describe more about this component in the

next section called “How Polybase Works.”

• Query data where it lives with T-SQL

This is the promise of Data Virtualization. Execute T-SQL queries

to a local SQL Server and query data in other data sources without

moving the data. Here is another point about Polybase for SQL

Server 2019: The software required to query SQL Server, Oracle,

Figure 9-2. Polybase and Data Virtualization in SQL Server 2019

Chapter 9 SQL Server Data virtuaLization

302

Teradata, and MongoDB is built-in to the installation of SQL

Server. No additional client software is required!

• Distributed, scalable query performance

Polybase provides more than just a method to “connect” to other

data sources; linked servers can provide that. Because Polybase

is an integrated distributed computing engine, it can provide

scalable query performance. And a concept called scale-out

groups provides the ability to distribute queries to data sources

like Hadoop, SQL Server, and Oracle.

• Manual/deploy with SQL Server

This sounds incredibly cool so far, so, is there a catch? Well, setting

up Polybase does require some work, especially if you want to

set up scale-out groups on Windows. Once you get Polybase

deployed, there is not much configuration required. Setting up

data source connections does require some work, as Polybase is

only as good as your ability to gain access and connect to the data

sources you represent with external tables.

• Auto deploy/optimize with Big Data Clusters

As you will discover in Chapter 10, SQL Server Big Data Clusters

will provide Data Virtualization, with Polybase deployed, and a

deployed Hadoop cluster with optimized access to data in HDFS.

 How Polybase Works
I often believe that understanding at some level how SQL Server capability works allows

you to use it most effectively. If you have seen my talks at various conferences like the

PASS Summit, you also know I have a reputation for presenting the internal aspects of

SQL Server functionality. Therefore, when I was asked to present a few sessions at the

SQL Bits 2019 conference in Manchester, UK, I picked Polybase as my topic. I wanted to

study more about how Polybase works internally, especially how we built an architecture

to access data sources like Oracle. I’ve had a long background in SQL Server, so was very

familiar with the details of linked servers. How was Polybase different? I will talk more

Chapter 9 SQL Server Data virtuaLization

303

about a comparison of these technologies later in the chapter. A nice supplement to this

chapter would be my talk at SQL Bits on this subject, which you can find at https://

sqlbits.com/Sessions/Event18/Inside_SQL_Server_2019_Polybase.

 The Polybase Workflow
Before I describe all the software components that are deployed with SQL Server to

provide Polybase capabilities, I think you should know the workflow of using Polybase.

Figure 9-3 is a slide I often use to show the Polybase workflow in SQL Server.

Let me explain each of the pieces of this workflow:

Setup and configure Polybase – I’ll talk more about the details of setup and

configuration for Polybase in the section called “Prerequisites for the Examples.” You

can also read about the setup of Polybase for Windows at https://docs.microsoft.

com/en-us/sql/relational-databases/polybase/polybase-installation and for

Linux at https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-linux-setup.

Figure 9-3. The Polybase workflow in SQL Server

Chapter 9 SQL Server Data virtuaLization

https://sqlbits.com/Sessions/Event18/Inside_SQL_Server_2019_Polybase
https://sqlbits.com/Sessions/Event18/Inside_SQL_Server_2019_Polybase
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup

304

Setup authentication – You must have a way to authenticate a connection to an

external data source. Polybase only supports the concept of basic authentication, which

means you must store some type of IDENTITY (or user) and SECRET (password or

key) in SQL Server in order to access the external data source. This is an object called a

database scoped credential, and it is encrypted with a SQL Server MASTER KEY object.

You can read about database scoped credentials at https://docs.microsoft.com/en-

us/sql/t-sql/statements/create-database-scoped-credential-transact-sql.

EXTERNAL DATA SOURCE – Think of an EXTERNAL DATA SOURCE as a

T-SQL object similar to an ODBC data source. Create this one time for a data source

you intend to use for one or more EXTERNAL TABLE definitions. You will see in the

examples in this chapter that you will need connectivity information for an EXTERNAL

DATA SOURCE. You can read about an EXTERNAL DATA SOURCE at https://docs.

microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-

transact- sql. The CREDENTIAL value will be the name of the database scoped

credential you created.

EXTERNAL FILE FORMAT – Relational and even noSQL data has structure,

typically in the form of columns or fields. Data stored in Hadoop systems is typically

semistructured. In order for SQL Server to access data in files in HDFS, you must

specify a format, which is what EXTERNAL FILE FORMAT defines. This specification

is unnecessary for data sources such as Oracle. You can read about an EXTERNAL FILE

FORMAT at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-

external- file-format-transact-sql.

EXTERNAL TABLE – Think of an EXTERNAL TABLE like a virtual SQL Server table

(more commonly known as a view). This means an EXTERNAL TABLE acts like a SQL

Server table – metadata about the table is stored in catalog views, but the data or storage

of the external table is at the data source itself. You can read about an EXTERNAL TABLE

at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-

table-transact-sql. The DATA_SOURCE property when you create the external table

will be the name of the external data source. For HDFS external tables, you will specify

the external file format you created using the FILE_FORMAT property.

Statistics – To assist the query processor and the Polybase compute engine to

generate an optimal query plan for external tables, you can create statistics stored in SQL

Server based on columns from the external tables. You can read about creating statistics

at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-

transact-sql.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-scoped-credential-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-scoped-credential-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql

305

Query – Once you have all these objects defined, you can run T-SQL queries against

external tables, even joining them to local SQL Server tables or other external tables. The

key concept is that the data lives at the external data source and is not loaded into SQL

Server; only the metadata and statistics are stored in the SQL Server database. Queries

against external tables are read-only except for Hadoop. SQL Server supports ingestion

or INSERT into external tables based on Hadoop. You can read about Polybase queries

at https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-queries.

 SQL Server 2019 Polybase Architecture
Now that you see the objects and workflow to use Polybase for queries against external

tables, let me describe the software components that power this capability before you try

it out for yourself.

Note Full credits to Stuart padley, David Kryze, James rowland-Jones, and uC
for all the details behind the internals of polybase which turned into the section you
see in this chapter.

 How External Tables Work
First, Figure 9-4 is the first visual I show when talking about how Polybase works.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-queries
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-queries

306

It is important to understand when using and studying Polybase that SQL Server

only stores metadata for an EXTERNAL DATA SOURCE and EXTERNAL TABLE and

not the data. Users run T-SQL queries referencing an EXTERNAL TABLE just like a SQL

Server table. The EXTERNAL TABLE is mapped to an EXTERNAL DATA SOURCE for

the true location of the data. SQL Server as a data hub will take the query against the

EXTERNAL TABLE and submit a new query to the external data source using the driver

that corresponds with that source. Results are sent back to SQL Server and eventually the

original user. Another aspect of queries against external tables is the concept of pushdown.

Pushdown is the concept of pushing the responsibility of filtering data to an external

data source. In Figure 9-4, if the external data source was Azure SQL Database and a

query used a WHERE clause for query criteria, Polybase will attempt to push the query

to Azure SQL Database, including the WHERE clause (it may not be an explicit WHERE

clause for all data sources), so that the computation of obtaining the minimum amount

of rows is done on the external data source. The opposite (and less efficient) approach

would be to bring back all rows from an external table into SQL Server and let the SQL

Server engine filter which rows are needed to satisfy a query. You can read more about

pushdown computation with Polybase at https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-pushdown-computation.

Figure 9-4. How external tables work

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-pushdown-computation
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-pushdown-computation

307

 The Polybase Standalone Instance
Let’s dig a little deeper into the architecture of Polybase using Figure 9-5.

Let me describe this figure more in the context of Windows, and then I’ll discuss how

we implement this on Linux.

When you deploy Polybase on Windows, you will have two choices to make:

Standalone PolyBase-enabled instance
Choose this option if you only want one SQL Server instance to be used for Polybase.

All software needed for Polybase will be installed on this instance, and it will be

considered the head node.

Use the SQL Server instance as part of a PolyBase scale-out group
Use this option to set up what is called a scale-out group. I’ll describe more about a

scale-out group later.

Figure 9-5 represents a standalone PolyBase-enabled instance scenario. Let me

describe the components in this diagram:

Polybase Engine – The Polybase Engine is a Windows service with a program called

mpdwsvc.exe. Notice in the diagram that the Polybase Engine is responsible for control
and execution. In other words, the Polybase Engine is the coordinator for execution of

external table queries. The SQL Server engine will coordinate with the Polybase Engine.

Figure 9-5. The Polybase head node architecture

Chapter 9 SQL Server Data virtuaLization

308

The Polybase Engine actually includes code from the Polybase functionality in PDW to

support external tables. The mpdwsvc.exe is executed by the Windows Service using a

parameter of -dweng. The communication between the Polybase Engine and SQL Server

is through a local named pipe.

Polybase Data Movement Service (DMS) – Much like the name implies, the

Polybase DMS is responsible for the data. This means the Polybase DMS will execute the

queries against external data sources and transfer results back to the SQL Server engine.

What is interesting is that the Polybase DMS is also implemented with the executable

called mpdwsvc.exe but with the parameter -dms. On a server for the head node, you

should see two processes called mpdwsvc.exe. This also means the Polybase DMS is the

program that loads all the ODBC drivers or runs the Java code for MapReduce against

Hadoop systems. The Polybase DMS also communicates with the SQL Server engine

and the Polybase Engine over named pipes. The Polybase DMS service will stream data

over the named pipe with the SQL Server engine to send back results from external data

queries.

DW dbs – The Polybase feature requires its own metadata. When you install

Polybase, you will find these databases installed on SQL Server: DWConfiguration,

DWDiagnostics, and DWQueue. You should think of these databases as system

databases for Polybase, so they need to be available for this feature to work. I won’t go

into the specifics of what is in each database, and we don’t document these. I did find

an interesting user who blogged about poking around the internals of these databases

at https://36chambers.wordpress.com/2019/04/03/polybase-revealed-the-dw-

databases/.

Tempdb – Polybase may use tempdb for intermediate query processing when

executing external table queries. In addition, in order to ensure that the streaming of

data is handled properly, Polybase will create tempdb tables as a “storage backing” to

streaming of data (though it may never use that backing). In my use of Polybase, I have

not seen significant use of tempdb; I just wanted you to be aware of tempdb usage – this

way you are not surprised to see temporary table activity with Polybase.

Polybase also comes with a series of catalog views and Dynamic Management Views,

and I’ll use some of these in the examples in this chapter. You can see a list of these

catalog views and Dynamic Management Views at https://docs.microsoft.com/en-

us/sql/relational-databases/polybase/polybase-troubleshooting.

Chapter 9 SQL Server Data virtuaLization

https://36chambers.wordpress.com/2019/04/03/polybase-revealed-the-dw-databases/
https://36chambers.wordpress.com/2019/04/03/polybase-revealed-the-dw-databases/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-troubleshooting
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-troubleshooting

309

 A Polybase Scale-Out Group
If you choose to set up a Polybase Scale-Out Group, multiple SQL Server instances

can be used for query processing with scale out. See Figure 9-6 for a scale-out group

configuration.

With Polybase Scale-Out Groups, you can enable Polybase on other SQL Server

instances to be used for scale-out query processing. The other SQL Server instances

that enable Polybase are called Compute nodes. Notice on compute nodes the

Polybase Engine is not active. On Windows, the Polybase Engine service is installed,

but it is disabled and not needed. The Polybase Engine on the head node does all

the coordination across all nodes, while Polybase DMS services perform all the data

exchange on each node. The reason we install the Polybase Engine on all nodes is so that

a Compute node can become a head node if needed (e.g., if the current head node had a

problem).

Scale-out groups can be most effective when SQL Server decides that using multiple

instances can speed up a query to an external table. This could be very powerful for

Hadoop systems, and scale-out groups were built with distributed Hadoop systems in

mind. For other data sources, like SQL Server or Oracle, Polybase can detect partitions

on these sources and use the scale-out group to query each partition on the target.

Figure 9-6. Polybase Scale-Out Groups

Chapter 9 SQL Server Data virtuaLization

310

We call this capability scale-out reads, which you can read about at https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-

groups?view=sql-server-ver15#scale-out-reads.

 Query Processing and Polybase
One of the great innovations of Polybase is that querying external tables is integrated into

the SQL Server query processor. This means the SQL Server query processor understands

when it is working with an external table and builds the right execution details to submit

to the Polybase Engine so that operations like pushdown can be supported.

Later in the chapter, I’ll show an example of what a remote query operator looks like

for an external table query in the SQL Server engine.

 How Does It Work on Linux?
SQL Server 2019 on Linux only supports a standalone Polybase instance (we will support

a scale-out group concept with SQL Server Big Data Clusters, which you will read about

in Chapter 10). In addition, Polybase for SQL Server 2019 on Linux does not support the

generic ODBC connector for data sources.

Therefore, the architecture of Polybase is for the Polybase Engine and Polybase

Data Movement Service to be implemented in the sqlservr process on Linux using the

SQLPAL (for more details on the SQLPAL, see Chapter 6).

At the time I was writing this chapter, we were winding down the release of SQL

Server, but still had not shipped Hadoop external table capabilities with SQL Server

on Linux (outside of SQL Server Big Data Clusters). I expect this feature to make the

final release of SQL Server 2019, but the concepts are the same as with Windows. It is

possible we will have a separate Linux package for this capability, but it should be in the

documentation at https://docs.microsoft.com/en-us/sql/relational-databases/

polybase/polybase-linux-setup.

 How Is This Different Than Azure?
Polybase exists now as a feature in SQL Server, Azure SQL Data Warehouse, and

Analytics Platform System (APS, formerly Parallel Data Warehouse). However, the

capabilities provided by each are different.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver15#scale-out-reads
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver15#scale-out-reads
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver15#scale-out-reads
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup

311

Note an eXternaL taBLe object does exist in azure SQL Database, but it is not
the polybase feature per se (as of the release of SQL Server 2019). an external
table in azure SQL Database is used to support elastic queries. You can read more
about elastic queries at https://docs.microsoft.com/en-us/azure/sql-
database/sql-database-elastic-query-getting-started.

Polybase for Azure SQL Data Warehouse is all about using external tables for access

to Hadoop or HDFS with sources like Azure Blob Storage or Azure Data Lake. Sources

like SQL Server, Oracle, and so on are not supported for Azure SQL Data Warehouse.

You can read more about Polybase with Azure SQL Data Warehouse at https://docs.

microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-

transact- sql?view=azure-sqldw-latest.

Polybase for APS is similar to Azure SQL Data Warehouse, but is designed more for

providing access to “on-premise” Hadoop systems. You can read about Polybase for APS

at https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-

table-transact-sql?view=aps-pdw-2016-au7.

 Prerequisites for the Examples
Let’s talk about some examples in the rest of the chapter. First, I’ll give you some tips on

deploying and configuring Polybase, and then some guidance on using the examples.

 Setting Up and Enabling Polybase
To install Polybase for Windows, you can follow the steps in the documentation

at https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-installation. The steps are very straightforward when choosing a standalone

Polybase instance. One choice you do have to make is whether you want to use the Java
connector for HDFS. If you do make this choice to support external tables for HDFS, you

will have a choice to use the default Open Java we provide with SQL Server 2019 or install

your own. The Open Java we provide is based on Zulu Java, which you can read about at

https://cloudblogs.microsoft.com/sqlserver/2019/07/24/free-supported-java-

in-sql-server-2019-is-now-available/).

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-query-getting-started
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-query-getting-started
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azure-sqldw-latest
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azure-sqldw-latest
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-data-source-transact-sql?view=azure-sqldw-latest
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql?view=aps-pdw-2016-au7
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-sql?view=aps-pdw-2016-au7
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation
https://cloudblogs.microsoft.com/sqlserver/2019/07/24/free-supported-java-in-sql-server-2019-is-now-available/
https://cloudblogs.microsoft.com/sqlserver/2019/07/24/free-supported-java-in-sql-server-2019-is-now-available/

312

Once you install Polybase on Windows, we will install a series of ODBC drivers

(which we place in the binn\Polybase\ODBC Drivers directory). These drivers provide

support for the built-in connectors to SQL Server, Oracle, Teradata, and MongoDB.

Once you install the Polybase feature, you must enable the feature with sp_configure

as documented at https://docs.microsoft.com/en-us/sql/relational-databases/

polybase/polybase-installation?view=sql-server-ver15#enable.

For SQL Server on Linux, we provide a separate package for Polybase, which you

can read about how to configure and use at https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-linux-setup.

For scale-out groups, the process to set up gets very interesting. Since scale-out

groups are only supported on Windows at this time, that is the only configuration you

need to worry about for SQL Server 2019.

My experience with scale-out group deployment was fairly difficult. You can read

all the steps in our documentation at https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/configure-scale-out-groups-windows?view=sql-

server- ver15. Let me give you some initial thoughts before you go down this path:

• You will need a Windows domain, so if you don’t have a domain

controller, you will need to set one up.

• All the Windows services for the Polybase Scale-Out Group must be

using the same domain service account. You have to configure this

through setup or using the SQL Server Configuration Manager.

• You have to make some choices initially on head node and compute

node. When you first install Polybase on all nodes using setup

and choose the option Use the SQL Server instance as part of a
PolyBase scale-out group, all nodes are candidates to be the head

node. To get Polybase to work properly, you need to choose one of

your computers as the head node. Then for the other nodes, you

need to run a stored procedure to configure them as compute nodes,

listing the name of the head node server and port (pay attention to

the port you picked during setup, because you will need it here). The

process to join as a compute node is documented at https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/

configure-scale-out-groups-windows?view=sql-server-

ver15#add-other-sql-server-instances-as-compute-nodes.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation?view=sql-server-ver15#enable
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-installation?view=sql-server-ver15#enable
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-setup
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15#add-other-sql-server-instances-as-compute-nodes
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15#add-other-sql-server-instances-as-compute-nodes
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15#add-other-sql-server-instances-as-compute-nodes
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-windows?view=sql-server-ver15#add-other-sql-server-instances-as-compute-nodes

313

• You need to enable Polybase with sp_configure on all nodes and

restart SQL Server.

• You also need to restart all Polybase services on all nodes. In fact, if

the stored procedure doesn’t do this automatically, you need to stop

the Polybase Engine on the compute nodes. If all works well, the

Polybase Engine service will be disabled on the compute nodes, but

you should double-check this.

• Query the DMV dm_exec_compute_nodes to make sure all the

nodes are the right status of HEAD or COMPUTE. You can read

more about this DMV at https://docs.microsoft.com/en-us/sql/

relational-databases/system-dynamic-management-views/sys-

dm- exec-compute-nodes-transact-sql.

 Using the Examples
Consider a possible scenario for the WideWorldImporters company in Figure 9-7.

Figure 9-7. The SQL Server data hub

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-compute-nodes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-compute-nodes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-compute-nodes-transact-sql

314

In this example, the WideWorldImporters (WWI) company uses SQL Server 2019,

but wants to access data in these data sources:

SQL Server 2008R2 – The company has an older SQL Server system that stores

an archive of suppliers. They don’t want to touch this system but want to access this

supplier information.

Azure SQL Database – A team in the company is looking to move to the cloud and

build a new StockItems database using Azure. Teams in WWI want to see and join this

StockItem data with existing ones in the SQL Server 2019 database without disrupting

the new team’s work.

Azure CosmosDB – Another team is piloting a mobile application for Orders and is

experimenting with Azure CosmosDB. The WWI team wants to be able to look at these

orders and join with data associated with the orders in the local database.

Oracle – The accounting software for the WWI is in Oracle. While WWI is considered

a migration of this database to SQL Server, it is taking time for the migration project. In

the meantime, the WWI knows that some data in the SQL Server database references

data in Accounts Receivable. If they can get the right reasonable access to Oracle, they

would like to join local SQL Server data with the Accounts Receivable data in Oracle,

until the migration is complete.

Hadoop – A team at WWI is building a rating system on the company web site for

customers to review the order experience. To accelerate the project, the development

team is storing the order reviews in semistructured format using Azure Blob Storage.

Teams at WWI want to run analytics on this data and join with local data in SQL Server.

SAP HANA – WWI recently acquired another company, Vandelay Industries (I

was inspired by the fictional company from Seinfeld. See https://seinfeld.fandom.

com/wiki/Vandelay_Industries). This company has data on their customers in SAP

HANA. While the WWI team devises a migration strategy, they want to run analytics on

these customers without having to move the data.

All of these scenarios are possible with Polybase in SQL Server 2019 and external

tables. In fact, there is an example of each one of these in your examples in the ch9_
data_virtualization\sqldatahub folder.

Chapter 9 SQL Server Data virtuaLization

https://seinfeld.fandom.com/wiki/Vandelay_Industries
https://seinfeld.fandom.com/wiki/Vandelay_Industries

315

 Using External Tables
Before I walk through some of the examples from the sqldatahub folder, let me explain

the basic template you will consistently find in these examples. This template follows

the general workflow of external tables, which I described in the section called “The

Polybase Workflow.” All Polybase objects are in the scope of a user database.

 1. Create a MASTER KEY in the database.

 2. Create a DATABASE SCOPED CREDENTIAL for authentication to

the external data source.

 3. Create an EXTERNAL DATA SOURCE to show the location of the

data source. The CREDENTIAL property will be the name of the

database scoped credential.

 4. Create an EXTERNAL FILE FORMAT for HDFS data.

 5. Create an EXTERNAL TABLE to map to the external data source

target tables. The DATA_SOURCE property will be the name of the

external data source. The FILE_FORMAT property (for HDFS only)

will be the name of the external file format object.

 6. Create local statistics on columns for the external table.

 7. Query the EXTERNAL TABLE sometimes joining the table to local

SQL Server tables or other external tables.

There is an excellent reference for all the T-SQL statement involved in creating

Polybase objects at https://docs.microsoft.com/en-us/sql/relational-databases/

polybase/polybase-t-sql-objects.

 Tools and External Tables
Before I walk through the example scripts for the sqldatahub, you should know about

tools support for external data sources and external tables.

SQL Server Management Studio (SSMS) supports creating external data sources and

external tables through SSMS templates. Figure 9-8 shows an example of using SSMS to

create an external data source.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-t-sql-objects
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-t-sql-objects

316

The same concept applies to external tables.

Once you create external data sources and tables, you can use SSMS Object Explorer

to browse these resources. Figure 9-9 shows an example of external data sources and file

formats created in the WideWorldImporters database.

Figure 9-8. Using an SSMS template to create an external data source

Chapter 9 SQL Server Data virtuaLization

317

Azure Data Studio (ADS) also supports an External Table Wizard for SQL Server

and Oracle data sources to walk you through the process of creating new external

tables. You can read about this capability at https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/data-virtualization.

I’ll walk you through the steps for setting up an external table for Azure SQL

Database. For other sqldatahub examples, I’ll point you to the script examples and

explain a few points about each scenario.

 Using an External Table with Azure SQL Database
One of the built-in connectors for SQL Server provides access to data sources for SQL

Server, Azure SQL Database, and Azure SQL Data Warehouse.

I’ve provided example scripts based on the template steps I’ve described in the ch9_
data_virtualization\sqldatahub\azuredb folder. I’ve provided both a T-SQL Notebook

and T-SQL script to create and query external tables.

Figure 9-9. SSMS Object Explorer browsing external data sources and file formats

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization

318

In order to use these scripts, the first thing you need to do is provision and get access

to an Azure SQL Database. Use the statements in the createazuredbtable.sql script

against your Azure SQL Database.

Once you have this set up, let’s walk through each step and the results you should

expect using the azuredbexternaltable.sql T-SQL script:

 1. Run Step 1 from the T-SQL script to change database context and

create a master key to encrypt the database scoped credential:

-- Step 1: Create a master key to encrypt the database credential

USE [WideWorldImporters]

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'S0me!nfo'

GO

 2. Run Step 2 to create a database scoped credential protected by

the master key. You need to supply the login and password of the

server for the Azure SQL Database you created:

-- Step 2: Create a database credential that stores the login and

password to the Azure SQL Server Database

-- IDENTITY = login

-- SECRET = password

CREATE DATABASE SCOPED CREDENTIAL AzureSQLDatabaseCredentials

WITH IDENTITY = '<login>', SECRET = '<password>'

GO

 3. Run Step 3 to create an external data source using the database

scoped credential for authentication as the CREDENTIAL:

-- Step 3: Create an external data source

-- sqlserver is a keyword meaning the data source is a SQL Server,

Azure SQL Database, or Azure SQL Data Warehouse

-- The name after :// is the Azure SQL Server Database server.

Your SQL Server must be on the same vnet as the Azure SQL Server

Database or must pass through its firewall rules

CREATE EXTERNAL DATA SOURCE AzureSQLDatabase

Chapter 9 SQL Server Data virtuaLization

319

WITH (

LOCATION = 'sqlserver://<azure sql database server URI>',

PUSHDOWN = ON,

CREDENTIAL = AzureSQLDatabaseCredentials

)

GO

There are a few things to notice about this script. The LOCATION

syntax includes a <type>:<connection information>, where the

type has these possible values:

• sqlserver

• oracle

• teradata

• mongodb

• obdc

The type will indicate to SQL Server which ODBC driver to use

for the external data source. For SQL Server, the connection

information for Azure SQL Database should be the URL for the

server (e.g., <server>..database.windows.net).

When you successfully create the external data source, you can see

a list of created sources using the external_data_sources catalog

view in the context of your user database.

Tip unfortunately, the external data source can be created without validating a
connection to the data source. if you get the name of the connection information
wrong, you won’t know until you try to create the external table. the same issue
applies for the database scoped credential. if you don’t supply the correct login and
password, you won’t know this until you try to create an external table.

Chapter 9 SQL Server Data virtuaLization

http://database.windows.net

320

 4. Run Step 4 of the script to create a schema to hold external table

objects. This is not required, but I like to use schemas to help

organize objects, which also makes it very convenient for security

purposes:

-- Step 4: Create a schema in the WideWorldImporters for the

external table

CREATE SCHEMA azuresqldb

GO

 5. Run Step 5 to create the external table using the external data

source as specified in the DATA_SOURCE property:

-- Step 5: Create the EXTERNAL TABLE

-- Each column must match the column in the remote table

-- Notice the character columns use a collation that is compatible

with the target table

-- The WITH clause includes the name of the remote [database].

[schema].[table] and the external database source

CREATE EXTERNAL TABLE azuresqldb.ModernStockItems

(

 [StockItemID] [int] NOT NULL,

 [StockItemName] [nvarchar](100) COLLATE Latin1_General_100_

CI_AS NOT NULL,

 [SupplierID] [int] NOT NULL,

 [ColorID] [int] NULL,

 [UnitPackageID] [int] NOT NULL,

 [OuterPackageID] [int] NOT NULL,

 [Brand] [nvarchar](50) COLLATE Latin1_General_100_CI_AS NULL,

 [Size] [nvarchar](20) COLLATE Latin1_General_100_CI_AS NULL,

 [LeadTimeDays] [int] NOT NULL,

 [QuantityPerOuter] [int] NOT NULL,

 [IsChillerStock] [bit] NOT NULL,

 [Barcode] [nvarchar](50) COLLATE Latin1_General_100_CI_AS NULL,

 [TaxRate] [decimal](18, 3) NOT NULL,

 [UnitPrice] [decimal](18, 2) NOT NULL,

 [RecommendedRetailPrice] [decimal](18, 2) NULL,

Chapter 9 SQL Server Data virtuaLization

321

 [TypicalWeightPerUnit] [decimal](18, 3) NOT NULL,

 [LastEditedBy] [int] NOT NULL

)

 WITH (

 LOCATION='wwiazure.dbo.ModernStockItems',

 DATA_SOURCE=AzureSQLDatabase

)

GO

This is an important piece of the Polybase scenario, so I’ll point

out a few details:

• The number, names, and data types must match exact with the

external data source table, but you can use any name you want

on the SQL side both for the column names and the name of the

table itself.

• Type mapping can be tricky. We have documentation to

help you with defining SQL Server types to match up with

corresponding external data source types at https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/

polybase-type- mapping.

• The LOCATION syntax for the external table is how you map the

external data source object. Each data source has a LOCATION

that can be different to identify the data source object. In the

case of SQL Server or Azure SQL Database, you should reference

the table using the “three-part” convention of <database>.

<schema>.<tablename>.

• Verification is performed when trying to create the external table

for proper column matching, type mapping, and the use of any

restricted types (I’ll mention restrictions in the section later in the

chapter called “Restrictions and Limitations”).

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-type-mapping
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-type-mapping
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-type-mapping

322

Once created, you can see a list of external tables using the catalog

view sys.external_tables. The sys.objects catalog view lists an

external table with a type of USER_TABLE. The sys.tables catalog

view has a column you can use, is_external, to identify which

tables are external tables.

 6. Run Step 6 to create local statistics on key columns from the

external table. This is not required, but recommended to help the

query processor make smart decisions to support operations like

pushdown computation:

-- Step 6: Create local statistics on columns you will use for

filters

CREATE STATISTICS ModernStockItemsStats ON azuresqldb.

ModernStockItems ([StockItemID]) WITH FULLSCAN

GO

 7. Run Step 7 to see a simple example of scanning all rows in an

external table. In this example, there should only be one row

returned if the query was successful:

-- Step 7: Just try to scan the remote table

SELECT * FROM azuresqldb.ModernStockItems

GO

Remote operators are built into the query processor to support

queries against external tables using the Polybase service.

Figure 9-10 shows an Actual Execution Plan for the query in

Step 7, including the details of the remote operator.

Chapter 9 SQL Server Data virtuaLization

323

Polybase also comes with a series of Dynamic Management

Views that can be used to look at the execution of queries against

external tables.

sys.dm_exec_distributed_requests – Much like sys.dm_exec_

requests you can find out queries specific to Polybase. What is

nice about this DMV is that it holds the history of recent queries

and not just the active ones. The value in the execution_id

column is the key to use other DMVs to dig deeper into query

execution.

sysdm_exec_distributed_request_steps – This DMV will take the

execution_id from sys.dm_exec_distributed_requests and let you

look at specific steps in the execution of Polybase to process the

query against the external table. For an execution_id, each step

has a step_index value.

Figure 9-10. The remote operator for external tables

Chapter 9 SQL Server Data virtuaLization

324

sys.dm_exec_distributed_sql_requests – This DMV shows more

details for each step_index in sys.dm_exec_distributed_steps,

including what compute node is executing the query (it could be

the head and/or compute nodes for a scale-out query).

dm_exec_dms_workers – This DMV provides more details about

execution with the Polybase Data Movement Service (DMS) for

a specific execution_id and step_index. This DMV is important

to see details of the connection to an external data source via the

ODBC drivers, including possible error information.

 8. Run Step 8 to use a WHERE clause to filter results (and possibly

use pushdown to the external data source):

-- Step 8: Try to find just a specific StockItemID

SELECT * FROM azuresqldb.ModernStockItems WHERE StockItemID = 100000

GO

 9. Run Step 9 to find all stockitems both on SQL Server 2019 and

Azure SQL Database using a UNION:

-- Step 9: Use a UNION to find all stockitems for a specific

supplier both locally and in the Azure table

SELECT msi.StockItemName, msi.Brand, c.ColorName

FROM azuresqldb.ModernStockItems msi

JOIN [Purchasing].[Suppliers] s

ON msi.SupplierID = s.SupplierID

and s.SupplierName = 'Graphic Design Institute'

JOIN [Warehouse].[Colors] c

ON msi.ColorID = c.ColorID

UNION

SELECT si.StockItemName, si.Brand, c.ColorName

FROM [Warehouse].[StockItems] si

JOIN [Purchasing].[Suppliers] s

ON si.SupplierID = s.SupplierID

and s.SupplierName = 'Graphic Design Institute'

Chapter 9 SQL Server Data virtuaLization

325

JOIN [Warehouse].[Colors] c

ON si.ColorID = c.ColorID

GO

The first part of the UNION involves a join between the external

table and a local SQL Server table.

You have seen an example of using an external table for Data Virtualization with

Azure SQL Database using the built-in connector for SQL Server. Read on for some

information about the other examples in the sqldatahub folder.

 Using Built-in Connectors for External Tables
These are the other examples which use the built-in connectors for external tables. Each

example has a readme.md file with tips on setting up the external data source and scripts

to build the data source object and populate data. They all follow the same template as

the example for Azure SQL Database.

• ch9_data_virtualization\sqldatahub\cosmosdb – Use this for an

example of using the MongoDB connector with Azure CosmosDB.

• ch9_data_virtualization\sqldatahub\oracle – Use this for an

example of using the Oracle connector.

Tip one issue that i ran into is that the value for the LoCation property for the
eXternaL taBLe for oracle is case sensitive.

• ch9_data_virtualization\sqldatahub\sql2008r2 – Use this for an

example of using the SQL Server connector to an older version of SQL

Server.

Note this example requires a workaround for SQL Server 2008r2 which was not
addressed at the time i wrote this chapter. as we were getting close to release, it
was not clear how far back we would support SQL Server versions, since 2008r2
is out of support.

Chapter 9 SQL Server Data virtuaLization

326

 Using an External Table with HDFS
An example of using Polybase with HDFS and Azure Blob Storage can be found in the

ch9_data_virtualization\sqldatahub\hdfs directory. The readme.md file included

provides more information on how to set this up and how to use the example.

One big difference with external data sources with HDFS is the use of the LOCATION

property with the external data source and the use of the TYPE property.

Here is an example of the T-SQL statement to create the external data source from

the example:

CREATE EXTERNAL DATA SOURCE bwdatalake with (

 TYPE = HADOOP,

 LOCATION ='wasbs://<container>@<azure storage account name>',

 CREDENTIAL = AzureStorageCredential

)

GO

Unlike the other examples, a TYPE field is needed for HADOOP. In addition, the

LOCATION property doesn’t have a <type> like sqlserver. This is because the TYPE =

HADOOP tells SQL Server the type of connector to use for HDFS.

 Using External Tables with ODBC Connectors
The final example is for an external table for SAP HANA using the ODBC connector. Note

that this example only works for SQL Server 2019 on Windows. You can find this example

in the ch9_data_virtualization\sqldatahub\saphana directory.

In this example, the data source is different, as it requires the ODBC data source and

connection string details. Here is the external data source creation for this example:

CREATE EXTERNAL DATA SOURCE SAPHANAServer

WITH (

LOCATION = 'odbc://<datasource>',

CONNECTION_OPTIONS = 'Driver={HDBODBC};ServerNode=<server>:<port>',

PUSHDOWN = ON,

CREDENTIAL = SAPHANACredentials

)

GO

Chapter 9 SQL Server Data virtuaLization

327

Tip here is an important tip for using the oDBC data connector with scale-out
groups, because it caused me issues when i was first setting up these scenarios.
You must install the oDBC driver you are using on each node of the scale-out
group. if you don’t, you may get intermittent errors when executing queries. this
is because when you have a scale-out group, it is possible for any of the nodes to
be used to execute the queries against the external data source, even if it is not a
scale-out ready query.

We also have documentation to guide you with ODBC connectors at https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-

odbc-generic. I should tell you that ODBC connectors open up some interesting

possibilities to use SQL Server as a data hub. I had one customer at a big event ask me

about using Polybase with Office 365. I didn’t know the answer, and wondered, “Is there

an ODBC Driver for O365?” Turns out there is at https://marketplace.visualstudio.

com/items?itemName=CDATASOFTWARE.Office365ODBCDriver. Stand back. Maybe you

might see me one day creating a demo of SQL Server running queries against my Office

mail!

 Considerations for External Tables
Now that you have seen how Polybase works and gone through some examples, there are

a few areas to consider when deciding whether you should use Polybase with SQL Server

2019.

 A New Semantic Layer
I borrowed this concept from my colleague Travis Wright. The idea is that Polybase

allows you to define objects by naming conventions under your control vs. having to use

the naming conventions of objects from external data sources.

In other words, you can use the semantics of the policies and procedures you use

with SQL Server. When you build external tables, you use SQL Server conventions,

schemas, and securables under your control. Combine this with the ability to join with

local SQL Server tables, use UNION to combine with local tables, and then create views

on top of these constructs.

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-odbc-generic
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-odbc-generic
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-configure-odbc-generic
https://marketplace.visualstudio.com/items?itemName=CDATASOFTWARE.Office365ODBCDriver
https://marketplace.visualstudio.com/items?itemName=CDATASOFTWARE.Office365ODBCDriver

328

Also remember that Polybase is defined at the user database level, so all objects are

secured and controlled by the owner of the user database.

 External Tables vs. Linked Servers
One of the most frequent questions I get on Polybase and external tables is if they are

different from linked servers, which have been in the product since SQL Server 7.0.

We have built a nice comparison of the technologies in our documentation at

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-faq?view=sql-server-ver15#polybase-vs-linked-servers.

The most noticeable difference is that linked servers are defined at the instance level,

and use OLE-DB to access data from the other data source. Polybase is defined at the

user database level and uses ODBC to access external data.

 Restrictions and Limitations
The number one restriction that you need to know is that Polybase is, for the most part,

a read-only solution (the exception is that you can use INSERT statements with external

tables based on HDFS).

I also ran into a few problems with supported data types in SQL Server for an

external table. The following data types are not supported with an EXTERNAL TABLE in

SQL Server 2019:

• VARCHAR(MAX)

• GEOGRAPHY

• Computed Columns

• JSON

 Summary
With the addition of new built-in connectors and support for ODBC, I believe Polybase

will gain more adoption than when it was first released in SQL Server 2016. The

possibility of now accessing and querying data to many different data sources without

moving the data is compelling. In fact, even since I’ve presented the SQL Server 2019

Chapter 9 SQL Server Data virtuaLization

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-faq?view=sql-server-ver15#polybase-vs-linked-servers
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-faq?view=sql-server-ver15#polybase-vs-linked-servers

329

story since September of 2019, this is one of the most asked about features of the new

release from customers. The fact that you can query Oracle data through SQL Server

and not have to install any special software on the SQL Server has opened up some eyes.

It is possible for Polybase to become part of a migration strategy from Oracle to SQL

Server. Take a look at this recording of a session I did with my colleague Amit Banerjee

at Microsoft Ignite in 2019, where Amit shows how to use Polybase with SQL Server 2019

for an incremental migration strategy from Oracle to SQL Server (https://myignite.

techcommunity.microsoft.com/sessions/65955).

It is important that you have read this chapter before moving to Chapter 10. That is

because in Chapter 10 I will discuss a new solution with SQL Server 2019 that will involve

the concept of Data Virtualization and Polybase called SQL Server Big Data Clusters.

Chapter 9 SQL Server Data virtuaLization

https://myignite.techcommunity.microsoft.com/sessions/65955
https://myignite.techcommunity.microsoft.com/sessions/65955

331
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_10

CHAPTER 10

SQL Server Big Data
Clusters
If you remember back to Chapter 1, I showed the key major new capabilities of SQL

Server 2019. Figure 10-1 shows the first major feature at the top left-hand corner from

Figure 1-3 in that chapter.

Figure 10-1. Intelligence over all your data

A more accurate representation of this infographic is Intelligence over all your data.

This is because the functionality behind Figure 10-1 is more than just Polybase++. You

will learn more about what I mean by Intelligence over all your data as you read through

this chapter.

Figure 10-1 represents in a nutshell what is behind SQL Server Big Data Clusters
(BDC), but it can’t possibly show their full potential. What started as Project Aris, which

I described in Chapter 1, has become a product within a product and one of the most

compelling stories of SQL Server 2019.

332

Since I started in Chapter 1 by talking about Project Aris and this infographic in

Figure 10-1, why is SQL Server Big Data Clusters way back in Chapter 10?

When I was planning this book, I originally had BDC as the first chapter, and the lead

story to start off with a bang! However, as I thought more about how the book would play

out, leaving this as one of the last chapters made sense for the following reasons:

• I wanted you to learn the fundamentals of SQL Server 2019 on Linux,

Containers, Kubernetes, and Polybase to help you understand

BDC. This is why those topics landed in Chapters 6, 7, 8, and 9.

• You will see that part of BDC is a SQL Server Master Instance. When

you see the SQL Server Master Instance, I wanted you to already be

familiar with what other core capabilities in SQL Server 2019 come

with that component of BDC.

• BDC was a major effort and took many team members to design,

build, and code. Therefore, it was the largest component of SQL

Server 2019 to become fully functional during our CTP builds

and preview releases. I wanted to wait as close as possible to the

completion of the book to give you the most up-to-date and accurate

information about BDC, what you can use it for, and how it works.

In this chapter, you are going to learn why BDC solves some interesting challenges

for today’s data professional:

• As I described in Chapter 9 on Polybase, data professionals need to

access data sources in their organization outside of SQL Server. They

would like to be able to access data from a variety of sources with

little or no data movement.

• Many data professionals are looking into investing in Big Data. I’ll

talk more about some crisp details around the term Big Data in the

next section, but when this term comes up, it usually involves a

system powered by Hadoop.

• Some organizations have never invested in Hadoop, so would like

guidance or even automation to deploy a Hadoop system to store

unstructured or semistructured data. This data is usually high-volume

data, while data stored in their SQL Server is considered high-value

data.

Chapter 10 SQL Server Big Data CLuSterS

333

• Furthermore, many organizations need more rigor around securing

and managing a Hadoop system, much like they do with SQL Server

today. They would like a complete ecosystem to build a data lake that

is easily deployable, secure, and scalable and leverages the best of

modern technology for both SQL Server and Big Data.

• Organizations want to invest more with Machine Learning (ML)

and want to build and deploy ML applications that are scalable and

secure and run close to the data sources that power the ML models.

What I’ve heard customers say is that they want an end-to-end

Machine Learning platform.

Figure 10-2 is a visual we have used to talk about the three major solution areas that

Big Data Clusters attempt to solve.

Figure 10-2. Big Data Cluster solutions

In this chapter, I intend to answer the following questions:

• Why did we call it Big Data Clusters?

• What functionality do you get when you deploy a Big Data Cluster?

• How do you deploy a Big Data Cluster?

• What is the architecture of Big Data Clusters, and how does it work?

• How do you use a Big Data Cluster?

• How do you use Machine Learning with a Big Data Cluster?

• How do you manage and monitor a Big Data Cluster?

Chapter 10 SQL Server Big Data CLuSterS

334

This seems like enough for a book on its own, so I can’t deep dive on everything.

However, I’ll explore some details that are not in the documentation but that I think you

should know. I’ll also give examples and tips from my perspective on why BDC is an

important solution for SQL Server 2019.

Note in this chapter, i will sometimes refer to statements or samples
in a workshop produced by my colleague Buck Woody called Workshop:
SQL Server Big Data Clusters – Architecture, which you can find at
https://github.com/Microsoft/sqlworkshops/tree/master/
sqlserver2019bigdataclusters. it is an excellent resource to supplement
this chapter.

 Why Big Data Clusters?
I’m sure our team has many reasons why they would say we called this solution SQL

Server Big Data Clusters. For me, it is a very simple answer. We are deploying and

combining three major technologies with this solution:

• SQL Server – SQL Server will be the hub for accessing data in the

cluster. This is the full SQL Server product, with everything I’ve

described in the book, running in a container based on a Linux OS

image.

• Big Data – We are deploying Big Data technologies for you, like HDFS

and Spark.

• Cluster – We use a Kubernetes cluster to deploy and run different

containers to provide a complete end-to-end system.

As you read more over the next few sections of this chapter, the details will come

together for you on how we are integrating these technologies.

I think it is important to describe my perspective on the term Big Data and why we

felt it was important to include this in the solution for Big Data Clusters. My colleague

Buck Woody at Microsoft wrote an excellent blog post on the topic of Big Data at

https://buckwoody.wordpress.com/2019/08/26/big-data-is-just-data/.

Chapter 10 SQL Server Big Data CLuSterS

https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters
https://buckwoody.wordpress.com/2019/08/26/big-data-is-just-data/

335

I love this description of the term Big Data, “Big Data is any data you can’t process

in the time you want with the systems you have.” What this means for SQL Server is

that you may have data in your organization that is perhaps not the right fit for storing

in a relational database management system (RDBMS) like SQL Server. There could

be all types of reasons for this, including size, structure, data origin, and complexity, to

transform into relational tables.

It was interesting to read the origins of the original Hadoop project. The founders of

Hadoop originally wanted a file system to store massive amounts of data in a distributed

fashion across a cluster of commodity hardware. They called this the Google File System

(it is really a more complex story; you can read more about the history of Hadoop at

https://en.wikipedia.org/wiki/Apache_Hadoop#History). The goal of that original

project was to solve the problem Buck defined for the term Big Data.

With SQL Server Big Data Clusters, what we are really providing in my opinion is a

single system that gives you both worlds of data storage and processing. We deploy SQL

Server for you to store and access data stored in a relational format with tables. And we

deploy a Hadoop distributed file system (HDFS) cluster, allowing you to store data in an

unstructured or semistructured file format. The key ingredient that makes this system

special is that they are integrated. With the help of Polybase, you can join tables from

SQL Server (and other sources like Oracle, Teradata, and MongoDB) with HDFS files, in

a seamless method and with scalable performance.

There is more to this story; in the next section, I’ll describe exactly what value you get

by deploying a SQL Server Big Data Cluster.

 What Comes with Big Data Clusters?
I’ve described a SQL Server Big Data Cluster (BDC) as a product within a product. This is

because when you deploy BDC, you get a wealth of valuable functionality including the

following.

 SQL Server 2019
BDC comes with a complete SQL Server 2019 instance running in a container using a

Linux OS image. This means that all of the capabilities of SQL Server 2019 for Linux also

come with BDC. This will include Active Directory authentication and High Availability

with Always On Availability Groups.

Chapter 10 SQL Server Big Data CLuSterS

https://en.wikipedia.org/wiki/Apache_Hadoop#History

336

 Polybase
The Polybase feature for SQL Server with BDC is automatically installed and enabled.

This means you get built-in connectors for SQL Server, Oracle, Teradata, MongoDB,

and Hadoop. In addition, BDC comes with special connectors to access HDFS files and

data caches within the cluster in an optimized method. Furthermore, even though SQL

Server 2019 on Linux doesn’t support Polybase Scale-Out Groups, BDC comes with an

implementation of Polybase Scale-Out Groups using a concept called a Compute Pool,

which I’ll talk about more in the section “Big Data Cluster Architecture.”

 Hadoop Distributed File System (HDFS)
BDC will deploy a HDFS storage cluster using open source Apache Hadoop. You will have

several different ways you can access files stored in the HDFS cluster in BDC, including

Polybase through SQL Server. We also provide a method for you to mount your own

external HDFS storage into the local HDFS storage in BDC, a concept we call HDFS Tiering.

 Spark
BDC installs Apache Spark to provide another method to analyze and process data. I like

Buck Woody’s definition of Spark as, “Apache Spark is an analytics engine for processing

large-scale data. It can be used with data stored in HDFS and has connectors to work

with data in SQL Server as well.” You will interact with Spark through Spark Jobs for data

within the cluster. I’ll talk more about using Spark with BDC in the section titled “Using

Spark.”

 Data Cache
Our documentation says we provide a data mart, and I suppose that term is technically

true. For me, what we are really providing is a data cache. I call it a data cache because

we provide a special set of SQL Server instances optimized to store results from queries

against Polybase external data sources. Think of the scenario where you want to store a

set of results, refreshed weekly, for reporting purposes. Those results could come from

Polybase queries using many different data sources, and our data cache in BDC is a

perfect solution for that. We implement the data cache in a component called the Data

Pool, which I’ll explain in more detail in the section “Big Data Cluster Architecture.”

Chapter 10 SQL Server Big Data CLuSterS

337

 Tools and Services
In order to help you deploy, use, and manage BDC, we have a set of tools available as

part of the solution. You will find the Azure Data Studio tool, which you have used in this

book, will be a key part of the overall BDC tool solution, including support for Notebooks.

In addition, we deploy a set of containers as services to help coordinate and manage

BDC. The documentation calls these services the Controller, and you will learn more

how the Controller works in several sections of the chapter.

 Endpoints
You will need the ability to connect to BDC for all types of tasks, so we provide a series

of Service endpoints. This will include endpoints to connect to SQL Server, HDFS and

Spark, and several management and monitoring services. You will learn more about

service endpoints throughout the rest of this chapter.

 Application Deployment
SQL Server Big Data Clusters allow you to execute code via T-SQL statements and Spark

Jobs. SQL Server Machine Learning Services and Extensibility also allow you to run R,

Python, and Java code integrated with SQL Server. Since BDC is deployed in a Kubernetes

cluster, we want to provide a method for developers to deploy applications in BDC, provide

an exposed interface to interact with those applications, and allow the application to

access data sources connected in BDC, such as SQL Server tables and external tables.

Therefore, BDC provides the concept of Application Deployment for you to deploy R,

Python, MLeap, and SSIS applications. Application Deployment is a key element in

using BDC as an end-to-end Machine Learning platform. I’ll discuss more details about

Application Deployment in the section “Using Big Data Clusters” later in this chapter.

 Machine Learning
I told you one of the solutions BDC provides is an end-to-end Machine Learning

platform. BDC does this through the following capabilities:

• SQL Server Machine Learning Services

• SparkML

Chapter 10 SQL Server Big Data CLuSterS

338

• MLeap

• Machine Learning packages

• Application Deployment

I’ll discuss these in more detail in the section “Machine Learning and Big Data

Clusters” later in the chapter.

Look back at this list! Can you see now why SQL Server Big Data Clusters is a product

within a product? This story gets better. Keep reading.

Note Buck Woody’s Workshop: SQL Server Big Data Clusters – Architecture
has an excellent page describing BDC components in Module 2.0. use this as
another resource to study what is in BDC.

 Prerequisites for the Examples
Before I begin the discussion about deployment, let me describe how to find the

examples I’ll be using in the chapter. Instead of providing specific examples and scripts,

I’ll be using several examples from the following sources:

• SQL Server Samples GitHub Repo – There are several examples

I will use and talk about at https://github.com/Microsoft/sql-

server-samples/tree/master/samples/features/sql-big-data-

cluster.

• SQL Server 2019 Big Data Cluster Workshop – Buck Woody has

some great examples I’ll use at https://github.com/Microsoft/

sqlworkshops/tree/master/sqlserver2019bigdataclusters.

Using these examples requires the following:

• A deployed SQL Server 2019 Big Data Cluster. At the time I wrote the

chapter of this book, I was using SQL Server 2019 Release Candidate,

which is very close to the final release of SQL Server 2019. I’ll talk

more about the requirements, including client tools, in the next

section entitled “Deploying Big Data Clusters.”

Chapter 10 SQL Server Big Data CLuSterS

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster
https://github.com/Microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters
https://github.com/Microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters

339

• A Windows, macOS, or Linux client to deploy and to run example

scripts or T-SQL queries. Almost all of the tools used in deployment

and in the examples run on Windows, macOS, and Linux. I also

recommend you install and use Azure Data Studio (ADS), which you

can download at https://docs.microsoft.com/en-us/sql/azure-

data-studio/download. ADS and the use of notebooks are key to the

successful use of Big Data Clusters.

 Deploying Big Data Clusters
I’ll show you my experiences deploying SQL Server Big Data Clusters so I can then show

you the components and architecture. It was tough to decide whether to show you the

architecture first or the deployment. I thought it was important to deploy first and then

describe what is deployed, and I recommend you do the same.

Note all of the software in a BDC is deployed as containers in a Kubernetes
cluster. BDC relies on you deploying your own Kubernetes cluster, but tools are also
provided to help deploy k8s as an option.

 Plan the Deployment
Deployment requires some planning. Let me describe my experience to plan how

I deployed BDC, as it could help you in your planning efforts. If you are planning

a production deployment of BDC, I recommend you read through the section

“Configuring Deployment for Production” later in this chapter.

 Decide on k8s

The first decision to make when you will deploy BDC is choosing a Kubernetes (k8s)

distribution and location. BDC supports deployment on k8s in a public cloud provider

with Azure Kubernetes Service (AKS) or in your own Linux server or virtual machine

deployment of k8s (e.g., if you have deployed k8s on your own with kubeadm). I expect

the list of other well-known k8s providers to be supported with BDC to increase as

we release SQL Server 2019 and beyond, including Azure Stack, Red Hat OpenShift,

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/sql/azure-data-studio/download

340

and others. At the time I wrote this book, you can technically deploy BDC on a k8s

deployment on Windows Server, but this scenario will require Linux Virtual Machines

running on Windows Server for k8s.

Our tools to deploy BDC will create a series of pods with containers (in most cases

pods will have multiple containers) in k8s to support the BDC system. We will also

deploy and use other k8s objects, such as Load Balancer, Persistent Volume Claim,

ReplicaSet, and StatefulSet objects.

Once you decide your k8s choice, you can either deploy k8s yourself or use scripts we

have built to deploy k8s and BDC together.

For either option, the basic requirement just to deploy for “dev/test” BDC is a Linux

virtual machine (VM) or computer (in the case of AKS, choose the VM size) with these

resources:

• 64Gb RAM.

• 8 CPUs (can be logical).

• For AKS, an Azure VM size that supports at least 24 disks.

• If you plan to deploy more than one BDC node, each node (VM) will

need to meet these resource requirements.

Note Slava Oks and i have talked about the need to reduce the footprint for a
“Developer edition” of BDC that doesn’t require so much raM. i told Slava that
ideally i could deploy a BDC on my laptop just to test the basic capabilities.

Our scripts and notebooks choose an Azure VM default size of Standard_L8s_v2,

but, as long as you pick an Azure VM for AKS with 64Gb, 8 CPUs, and 24 disks, the

deployment should work. You can read more about Azure VM sizes at https://docs.

microsoft.com/en-us/azure/virtual-machines/linux/sizes-general.

For my deployment experience, I’m going to use AKS and use a script we provide

that will deploy an AKS cluster and BDC all in one step. I recommend as you plan your

deployment you read the following documentation resources:

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-get-started

https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-get-started
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance

341

 Pick the Client and Download Tools

Once you have decided on the k8s strategy, you need tools to deploy BDC. It is very

important to ensure you have all the right tools installed on the client before you try to

deploy BDC. The documentation provides a list of tools you will need at https://docs.

microsoft.com/en-us/sql/big-data-cluster/deploy-big-data-tools. For my client,

I chose my “laptop in the cloud.” This means I installed Windows 10 in an Azure Virtual

Machine and drove all of my BDC use in that VM.

This list of tools includes the following:

python – python is a key component used by several different tools and is available

on all OS platforms. The azdata tool, required to install BDC, is written in python. I

needed python as I used a python script to deploy AKS and BDC all in one step. For

python for Windows, I just pull down the latest python build from www.python.org/

downloads/release/python-374/.

kubectl – As you learned in Chapter 8, kubectl is a tool specifically designed to send

requests to the k8s API server. This is your programming interface for Kubernetes.

I had already installed kubectl on my Windows machine; I checked the version

and it was 1.14. The docs notes say, “You must use kubectl version 1.10 or later. Also,

the version of kubectl should be plus or minus one minor version of your Kubernetes

cluster.” Since I’m using AKS, I checked the command to see what versions would be

used in my AKS deployment and found that the highest version supported is 1.14.6 – so

I should be good to go. You can find out more about checking if supported AKS versions

are available on your cluster at https://docs.microsoft.com/en-us/azure/aks/

supported-kubernetes-versions.

azdata – This tool, formerly called mssqlctl in early preview releases of SQL Server

2019, is critical to deploy and manage BDC. Written in python, you should think of

azdata as the “kubectl” of BDC.

To verify I had azdata properly installed, I just ran azdata from the command line to

see what the interface looked like. The results are shown in Figure 10-3.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-big-data-tools
https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-big-data-tools
https://www.python.org/downloads/release/python-374/
https://www.python.org/downloads/release/python-374/
https://docs.microsoft.com/en-us/azure/aks/supported-kubernetes-versions
https://docs.microsoft.com/en-us/azure/aks/supported-kubernetes-versions

342

You can see the complete azdata reference at https://docs.microsoft.com/en-us/

sql/big-data-cluster/reference-azdata.

Azure Data Studio (ADS) – This cross-platform, open source tool can be used to

query, deploy, manage, and navigate data for BDC. While SQL Server Management

Studio (SSMS) can be used to connect to the SQL Server Master Instance in BDC, ADS

has features and extensions specifically designed for BDC, including Notebook support.

I used the ADS Insiders build from https://github.com/microsoft/

azuredatastudio#try-out-the-latest-insiders-build-from-master, but, I expect

that by the time SQL Server 2019 releases, you will have a public build of ADS with

everything you need for BDC. You can get the latest ADS build at https://docs.

microsoft.com/en-us/sql/azure-data-studio/download.

I also grabbed the latest SQL Server 2019 preview extension at https://docs.

microsoft.com/en-us/sql/azure-data-studio/sql-server-2019-extension and

installed the vsix file. (You can ignore the warning about third-party extensions because

the extension is from Microsoft.) It is hard to know if this is working or finished, but

give it a few minutes and you will see in the lower right-hand corner a message like,

“Completed installing the extension microsoft.sql-vnext.”

az – If you are using AKS, you will need the Azure command-line interface to log in to

Azure and to deploy and manage AKS.

curl – curl stands for “Client URL” and is a popular tool to copy data from a specific URL,

often files stored on web sites. For me, curl comes with Windows 10. Curl is a great tool, not

only to copy remote scripts to use with BDC but also to copy data into the BDC HDFS cluster.

Figure 10-3. The azdata CLI

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata
https://github.com/microsoft/azuredatastudio#try-out-the-latest-insiders-build-from-master
https://github.com/microsoft/azuredatastudio#try-out-the-latest-insiders-build-from-master
https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/sql/azure-data-studio/download
https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-server-2019-extension
https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-server-2019-extension

343

 Deployment Method

Now that you know which type of k8s cluster you will deploy and have your required

tools downloaded; you choose the method for deployment:

• A “single-step” method to deploy AKS and BDC using python, which

you can find at https://docs.microsoft.com/en-us/sql/big-data-

cluster/quickstart-big- data-cluster-deploy.

• A “single-step” Bash shell script to deploy k8s and BDC on your

k8s cluster using kubeadm, which you can find at https://docs.

microsoft.com/en-us/sql/big-data- cluster/deployment-script-

single-node-kubeadm.

• Create your own AKS or k8s cluster first, and then deploy BDC using the

azdata tool, which you can read about at https://docs.microsoft.

com/en-us/sql/big-data- cluster/deployment-guidance.

• Use Azure Data Studio (ADS) to deploy BDC along with a new AKS

cluster, to an existing AKS cluster, or to an existing k8s cluster you

have deployed with kubeadm.

Figure 10-4 shows how to access this deployment experience in ADS.

Figure 10-4. Choosing to deploy BDC in Azure Data Studio

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-node-kubeadm
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-node-kubeadm
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-node-kubeadm
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance

344

Figure 10-5 shows the experience to pick your deployment method.

Figure 10-5. Deployment options for BDC in Azure Data Studio

 Offline Deployment

I want to mention that if you need an offline deployment experience because your k8s

cluster is not connected to the Internet (at least when you need to deploy BDC), we have

documented how to pull our container images and deploy BDC on k8s. You will still

need all the tools I’ve described in this chapter to deploy offline. You can read the details

at https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-offline.

 The BDC Deployment Experience
To give you my perspective on the BDC deployment experience, I’m going to deploy

BDC on AKS and use the python script provided as a “one-step” solution. You can read

the details of how to use this solution at https://docs.microsoft.com/en-us/sql/big-

data-cluster/quickstart-big-data-cluster-deploy.

I chose the defaults except that I needed to deploy my AKS and BDC cluster in the

eastus2 region.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-offline
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy

345

The python script is effectively a wrapper for az and azdata. It uses your choices

(or environment variables or defaults) to create an Azure Resource Group, an AKS

cluster, and a BDC. BDC is created using the aks-dev-test configuration. This is a basic

configuration for BDC that is well suited for a development or test scenario. I’ll talk about

configuration for production deployments in the section “Configuring Deployment for

Production” later in this chapter.

Deployment takes time! There are many pods and containers to deploy for the BDC

solution, and the process will take longer if you also deploy a k8s cluster. For me, the

total deployment time using the python script with AKS was about 20 minutes, but I’ve

seen it take up to an hour.

When you run the python script, you will get messages like

Creating azure resource group: <rgname>

<json details for the resource group>

Creating AKS cluster: <aks cluster name>

<json for the AKS cluster>

Creating SQL Big Data cluster:mssql-cluster

custom\bdc.json created

custom\control.json created

The privacy statement can be viewed at:

https://go.microsoft.com/fwlink/?LinkId=853010

The license terms for SQL Server Big Data Cluster can be viewed at:

https://go.microsoft.com/fwlink/?LinkId=2002534

Cluster deployment documentation can be viewed at:

https://aka.ms/bdc-deploy

NOTE: Cluster creation can take a significant amount of time depending on

configuration, network speed, and the number of nodes in the cluster.

Starting cluster deployment.

Waiting for cluster controller to start.

This last message, Waiting for cluster controller to start, is a key message

and may be repeated several times. The controller is created first within the k8s cluster,

and the controller service will be used to deploy the rest of the BDC.

Chapter 10 SQL Server Big Data CLuSterS

346

You will then see a message like this:

Cluster controller endpoint is available at <ip address>:<port>

Cluster control plane is ready.

And soon you will see these messages:

Data pool is ready.

Master pool is ready.

Compute pool is ready.

Storage pool is ready.

Cluster deployed successfully.

This last message means both AKS and BDC are successfully deployed. I use the

philosophy of “trust but verify,” so, in the next section, I’ll talk about how you can verify

the deployment was successful and you are ready to use BDC.

Note the name provided for Creating SQL Big Data cluster:mssql-
cluster becomes the Kubernetes namespace for all objects created by
BDC. therefore, in my deployment, mssql-cluster is the k8s namespace.

 Verify the Deployment
I used the following methods to perform a “sanity check” of a successful AKS and BDC

deployment:

• Follow these steps to use kubectl to inspect the cluster:

https://docs.microsoft.com/en-us/sql/big-data-cluster/

quickstart-big-data-cluster-deploy?view=sqlallproducts-

allversions#inspect-the-cluster.

• Log in to the cluster using azdata, find the controller endpoint,

and then connect to SQL Server to make sure you can

connect to SQL Server. Follow the steps at https://docs.

microsoft.com/en-us/sql/big-data-cluster/deployment-

guidance?view=sqlallproducts-allversions#endpoints.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sqlallproducts-allversions#inspect-the-cluster
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sqlallproducts-allversions#inspect-the-cluster
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sqlallproducts-allversions#inspect-the-cluster
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#endpoints
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#endpoints
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#endpoints

347

Look for the endpoint called SQL Server Master Instance Front-
End. The endpoint is the IP address and port to connect to SQL

Server.

Follow the guidance at the following documentation page to

connect to SQL Server in BDC with Azure Data Studio (ADS):

https://docs.microsoft.com/en-us/sql/big-data-cluster/

connect-to-big-data-cluster

My basic connection test to my BDC looked like Figure 10-6 in ADS.

Note i used an insider build of aDS at the time i deployed BDC so some of this
interface may change as SQL Server 2019 is released

Figure 10-6. Connect to SQL Server in BDC after deployment

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/connect-to-big-data-cluster
https://docs.microsoft.com/en-us/sql/big-data-cluster/connect-to-big-data-cluster

348

• Verify the overall status of BDC using the following command:

azdata bdc status show

The results for my BDC cluster looked like this:

 Mssql-cluster: ready Health Status:

healthy

 ===

 Services: ready Health Status:

healthy

 Servicename State Healthstatus Details

 sql ready healthy -

 hdfs ready healthy -

 spark ready healthy -

 control ready healthy -

 gateway ready healthy -

 app ready healthy -

 Sql Services: ready Health Status:

healthy

 Resourcename State Healthstatus Details

 master ready healthy StatefulSet master is healthy

 compute-0 ready healthy StatefulSet compute-0 is healthy

 data-0 ready healthy StatefulSet data-0 is healthy

 storage-0 ready healthy StatefulSet storage-0 is healthy

 Hdfs Services: ready Health Status:

healthy

 Resourcename State Healthstatus Details

 nmnode-0 ready healthy StatefulSet nmnode-0 is healthy

 storage-0 ready healthy StatefulSet storage-0 is healthy

 sparkhead ready healthy StatefulSet sparkhead is healthy

Chapter 10 SQL Server Big Data CLuSterS

349

 Spark Services: ready Health Status:

healthy

 Resourcename State Healthstatus Details

 sparkhead ready healthy StatefulSet sparkhead is healthy

 storage-0 ready healthy StatefulSet storage-0 is healthy

 Control Services: ready Health Status:

healthy

 Resourcename State Healthstatus Details

 controldb ready healthy -

 control ready healthy -

 metricsdc ready healthy DaemonSet metricsdc is healthy

 metricsui ready healthy ReplicaSet metricsui is healthy

 metricsdb ready healthy StatefulSet metricsdb is healthy

 logsui ready healthy ReplicaSet logsui is healthy

 logsdb ready healthy StatefulSet logsdb is healthy

 mgmtproxy ready healthy ReplicaSet mgmtproxy is healthy

 Gateway Services: ready Health Status:

healthy

 ---=---------------

 Resourcename State Healthstatus Details

 gateway ready healthy StatefulSet gateway is healthy

 App Services: ready Health Status:

healthy

 Resourcename State Healthstatus Details

 appproxy ready healthy ReplicaSet appproxy is healthy

If everything is not healthy, consider using the following

documentation to troubleshoot the cluster: https://docs.

microsoft.com/en-us/sql/big-data-cluster/cluster-

troubleshooting- commands.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands
https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands
https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands

350

 Configuring Deployment for Production
My deployment experience used a configuration, shipped with the azdata tool, designed

for a development or test cluster. A configuration for azdata is defined through JSON files

and is used to control various types of resource definitions within the cluster. You can see

the list of these configurations by using the command:

azdata bdc config list

The JSON files for configuration look very much like the Kubernetes YAML files

I showed you in Chapter 8. In this case, the JSON files have a format recognized by the

azdata tool (much like the YAML have a format recognized by kubectl).

In order to see what options are possible for you to configure your BDC deployment,

you can run a command like the following to see how the aks-dev-test default

configuration is deployed:

azdata bdc config init --source aks-dev-test --target custom

This command creates a new folder called custom and stores in this directory

files called bdc.json and control.json. You can make changes to these files and run a

command like this to create a new BDC with these desired configuration settings:

azdata bdc create --config-profile custom --accept-eula yes

There is a discussion of this method in the documentation at https://

docs.microsoft.com/en-us/sql/big-data-cluster/deployment-

guidance?view=sqlallproducts- allversions#customconfig.

In order to understand how to make changes to the BDC JSON files, you need

to understand more of the architecture, which I’ll describe in the next section titled

“Big Data Cluster Architecture.” I expect then you will need to come back to this section

and look closer at the JSON files and techniques to modify them accordingly. Once you

have some idea of what to change, you can use these guidelines in our documentation

on how to make changes to the BDC JSON files https://docs.microsoft.com/en-us/

sql/big-data-cluster/deployment- custom- configuration. The complete deployment

configuration reference for BDC JSON files can be found at https://docs.microsoft.

com/en-us/sql/big-data-cluster/reference- deployment- config. You should also

examine our “auto-deploy” scripts for Python and bash to see how k8s and BDC can

be created.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#customconfig
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#customconfig
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#customconfig
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-configuration
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-configuration
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-deployment-config
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-deployment-config

351

python – https://docs.microsoft.com/en-us/sql/big-data-cluster/

quickstart-big-data-cluster-deploy

bash – https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-

script-single-node-kubeadm

These scripts assume one Kubernetes (k8s) node. You will likely want to use multiple

nodes in a production k8s cluster. You can then decide how to place various components

of BDC on specific k8s nodes at https://docs.microsoft.com/en-us/sql/big-data-

cluster/deployment-custom-configuration.

One other important aspect to configure BDC for production is storage. Our

documentation provides guidance on how to configure BDC storage to match your k8s

storage configuration for production at https://docs.microsoft.com/en-us/sql/big-

data-cluster/concept-data-persistence. Every pod that has stateful storage in BDC

uses a separate Persistent Volume Claim (PVC). You can get a list of all PVC objects in

BDC by executing the following command:

get PersistentVolumeClaim --namespace=mssql-cluster

Two other important aspects of deploying BDC in production are Security and High

Availability which I’ll describe more in sections “Security” and “High Availability” later in

this chapter.

 Big Data Cluster Architecture
I’ll use my deployed BDC to describe more details about the architecture. I described what

comes with BDC, but that was more of a “capability list” of components. The architecture

is interesting to study because you can see exactly what pods and containers we have

installed. Your knowledge from Chapters 7 and 8 will become important here.

Note if you want to jump into using BDC, go to the next section called “using Big
Data Clusters.” i consider this section on architecture the “Level 400” section of
the chapter. You can always come back and read this section after going through
aspects of using BDC. You should know that we have built BDC so that you don’t
have to know every detail of the architecture. and any of the details in this section
of the chapter are subject to change. i’ll show you some details that are “behind
the scenes” and those certainly could change over time.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-node-kubeadm
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-node-kubeadm
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-configuration
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-configuration
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence

352

Let’s use Figure 10-7 as the overall architecture of SQL Server Big Data Clusters

(BDC).

Notice that in this visual the term pool is used. A pool is a logical term in BDC that

represents a collection of pods that serve a specific purpose in BDC. I’ve mentioned

some of these pools previously in the chapter like Compute Pool and Data Pool. I’ll

describe more of what pods and containers make up these pools in this section.

Let’s break down each piece of Figure 10-7 to describe the BDC architecture, using

various commands and visuals. One way to break down the architecture is from a k8s

perspective.

When I run this command, I get a list of all the pods deployed by BDC on my single

node k8s cluster:

kubectl get pods --namespace mssql-cluster

Figure 10-7. The SQL Server Big Data Cluster architecture

Chapter 10 SQL Server Big Data CLuSterS

353

The result is this list of pods and their status:

NAME READY STATUS RESTARTS AGE

appproxy-q8zkk 2/2 Running 0 24h

compute-0-0 3/3 Running 0 24h

control-vjwjf 3/3 Running 0 24h

controldb-0 2/2 Running 0 24h

controlwd-l8fmp 1/1 Running 0 24h

data-0-0 3/3 Running 0 24h

data-0-1 3/3 Running 0 24h

gateway-0 2/2 Running 0 24h

logsdb-0 1/1 Running 0 24h

logsui-f42ln 1/1 Running 0 24h

master-0 3/3 Running 0 24h

metricsdb-0 1/1 Running 0 24h

metricsdc-gtrxn 1/1 Running 0 24h

metricsui-kwh4q 1/1 Running 0 24h

mgmtproxy-nc8tl 2/2 Running 0 24h

nmnode-0-0 2/2 Running 0 24h

sparkhead-0 4/4 Running 0 24h

storage-0-0 4/4 Running 0 24h

storage-0-1 4/4 Running 0 24h

Based on this list and the concepts I’ve described to this point, you can probably

guess how some of the pods map to Figure 10-7. The numbers in the READY column

show you how many containers are running in each pod. This means that a simple BDC

cluster for “dev/test” has ~43 containers!

Let’s use this list to map pods in the k8s cluster to Figure 10-7 components, including

the concept of pools.

 SQL Server Master Instance
The SQL Server Master Instance is represented by the pod master-0. The main container

running in this pod is a SQL Server Linux container. You can use the following command

to get details of how BDC deploys a SQL Server container:

kubectl describe pod master-0 --namespace mssql-cluster

Chapter 10 SQL Server Big Data CLuSterS

354

One important aspect of how we have organized BDC is the use of labels with

Kubernetes. I described how to use a label in Chapter 8 with SQL Server and k8s. Look at

this section of the output from the preceding command:

Labels: MSSQL_CLUSTER=mssql-cluster

 app=master

 controller-revision-hash=master-7bbc4d95fb

 mssql.microsoft.com/sql-instance=master

 plane=data

 role=master-pool

 statefulset.kubernetes.io/pod-name=master-0

 type=sqlservr

You can see how we use some of these labels to map to terms in the BDC. For

example, these two labels are interesting:

plane=data

role=master-pool

If you run the following command, you can see all the pods in the “data plane”:

get pods --namespace mssql-cluster -lplane=data

On my BDC, I get the following output:

NAME READY STATUS RESTARTS AGE

appproxy-q8zkk 2/2 Running 0 24h

compute-0-0 3/3 Running 0 24h

data-0-0 3/3 Running 0 24h

data-0-1 3/3 Running 0 24h

master-0 3/3 Running 0 24h

nmnode-0-0 2/2 Running 0 24h

sparkhead-0 4/4 Running 0 24h

storage-0-0 4/4 Running 0 24h

storage-0-1 4/4 Running 0 24h

This list represents most of the major components in Figure 10-7, with the exception

of the Controller, which I’ll describe later in the next section called “Controller.”

Chapter 10 SQL Server Big Data CLuSterS

355

If you look further at the output of the kubectl describe pod command earlier, you

will see the details of the SQL Server container, starting with:

Containers:

 mssql-server:

If you look back at Chapter 8, the important components involved in a pod for SQL

Server in k8s were

• Container image

• Persistent Volume Claim

• Secret

• Load Balancer

• ReplicaSet

The output from the kubectl describe command earlier shows all of these

components.

You can see the container image for the SQL Server container (remember I was

using SQL Server 2019 Big Data Clusters release) in this section:

Image: mcr.microsoft.com/mssql/bdc/mssql-server-data:2019-RC1-ubuntu

Later in the output you will see a list of mounts which describe persisted storage

mounts to PersistentVolumeClaim objects.

Notice this mount:

/var/opt from data (rw)

And this Volume

Volumes:

 data:

 Type: PersistentVolumeClaim (a reference to a

PersistentVolumeClaim in the same namespace)

 ClaimName: data-master-0

 ReadOnly: false

If you remember in Chapter 8, I showed you how to map a SQL Server directory like /

var/opt to a PVC object.

Chapter 10 SQL Server Big Data CLuSterS

356

You can run this command to see the details of the PVC object:

describe PersistentVolumeClaim data-master-0 --namespace=mssql-cluster

From this output, you can see this PVC object is bound to the default StorageClass

for AKS and is 15Gb. That is not very big, of course, to store your SQL Server data, but this

is just a test cluster. If you need to change these sizes for a custom configuration, you can

read how to do this in our documentation at https://docs.microsoft.com/en-us/sql/

big-data-cluster/concept-data-persistence.

The secret for SQL Server in Chapter 8 was used to control the sa password to

connect to SQL Server. The deployment for BDC includes an environment variable

called MSSQL_SA_PASSWORD, which I was prompted for using the python deployment

script. For the SQL Server Master Instance, we create a secret called mssql-sa-password.

If you remember in Chapter 8, I showed you how to create a LoadBalancer service

for SQL Server in a pod to connect to SQL Server. Our BDC deployment tool creates one

for the SQL Server Master Instance. To see the exact objects for this service, you can run

the following command:

kubectl get service --namespace=mssql-cluster -lrole=master-pool

The output will show you the master-svc-external service along with an External IP

and port.

The final component for the SQL Server pod is a ReplicaSet. I showed you in

Chapter 8 how a ReplicaSet provides “basic HA” for k8s for SQL Server. For BDC, we use

a concept called a StatefulSet, which gives similar HA functionality as a ReplicaSet, but

with more capabilities. StatefulSet objects are used for all pods in BDC except for the

Controller. StatefulSet objects allow for pod ordering and scale and are a key component

to allow for robust High Availability with BDC. I’ll talk more about High Availability for

BDC in the section “High Availability” later in this chapter.

If you look at the output of the kubectl describe command, you will see this section:

Controlled By: StatefulSet/master

You can get more information about how we define the StatefulSet by running this

command:

kubectl describe StatefulSet master --namespace=mssql-cluster

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-persistence

357

You will also notice there are two other containers in the master-0 pod:

collectd:

fluentbit:

These containers are part of every pod in BDC and are used to help collect logs and

metrics used in managing and monitoring BDC.

Our documentation has information about the SQL Server Master Instance at

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-master-

instance. I’ll talk more about how to use the SQL Server Master Instance in the section

“Using Big Data Clusters” later in this chapter.

 Controller
The Controller is a logical term that represents a collection of pods and containers. You

can find a list of pods in the Controller with the following command:

kubectl get pods --namespace mssql-cluster -lplane=control

Here is the list of pods on my BDC deployment:

NAME READY STATUS RESTARTS AGE

control-vjwjf 3/3 Running 0 38h

controldb-0 2/2 Running 0 38h

controlwd-l8fmp 1/1 Running 0 38h

gateway-0 2/2 Running 0 38h

logsdb-0 1/1 Running 0 38h

logsui-f42ln 1/1 Running 0 38h

metricsdb-0 1/1 Running 0 38h

metricsdc-gtrxn 1/1 Running 0 38h

metricsui-kwh4q 1/1 Running 0 38h

mgmtproxy-nc8tl 2/2 Running 0 38h

The Controller is also called the control plane, much like the Kubernetes concept of a

control plane (https://kubernetes.io/docs/concepts/#kubernetes-control-plane).

Figure 10-8 shows a closeup of the components of the control plane for BDC.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-master-instance
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-master-instance
https://kubernetes.io/docs/concepts/#kubernetes-control-plane

358

You should think of the Controller as a set of services that are used to manage

BDC. One of the tasks for management is deployment, and the Controller is used to help

deploy BDC. Once azdata deploys the Controller, the Controller “takes over” and deploys

other components of BDC. All pods running in the control plane use the k8s concept of a

ReplicaSet for basic high availability.

One of the most important components of the Controller is the controller service

(also listed as control service in Figure 10-8). The controller service is effectively the API

server for BDC. This service accepts REST APIs to perform all types of operations for

BDC including deploy, manage, Data Virtualization, and more. You will interact with

the controller service using several different methods, including azdata, T-SQL external

tables, and Azure Data Studio (ADS).

At the time of writing, there is no public documentation on the protocol of using

the controller service for specific APIs. All APIs are accessible using azdata, Azure Data

Studio (ADS), and T-SQL statements.

Tip azure Data Studio (aDS) is capable of connecting and interacting with
BDC without azdata. therefore, reSt api examples to interact with the controller
service exist in its open source code at https://github.com/microsoft/
azuredatastudio. While you read these examples in the source, i don’t
recommend you rely on them, as we may change them. Furthermore, there is no
method for you to install a program and gain access with certificates within BDC.

The other pods in the control plane implement services that support connectivity to

various services (proxy), Kibana and Elasticsearch for logging, Grafana and InfluxDB for

metrics and monitoring, and a SQL Server to store BDC “metadata.”

Figure 10-8. BDC control plane

Chapter 10 SQL Server Big Data CLuSterS

https://github.com/microsoft/azuredatastudio
https://github.com/microsoft/azuredatastudio

359

The SQL Server container to store metadata is a normal SQL Server instance, but it

is “private.” In other words, you never connect to this instance. The controller container

uses this SQL Server to read important data for management and health, but also for

HDFS querying capabilities.

I love to find out how things work, so I used the following techniques to run a

Bash shell inside this special SQL Server container. The name of the pod hosting this

container is called controldb- 0.

I used the following command to run a Bash shell and connect to the SQL Server

container:

kubectl exec -it controldb-0 --namespace=mssql-cluster -- /bin/bash

This connects me to the first container in the pod which is SQL Server. As it turns out,

we build this SQL Server image based on our core SQL Server image, which has sqlcmd

installed.

I need the sa password to use sqlcmd, but it is not the sa password used to

connect into the SQL Server Master Instance. It is a private password used only by

the controller. I found out we store the secret for the sa password inside the container

at /var/run/secrets/credentials/mssql-sa-password/password. Using that password

string, I connected with sqlcmd and found these databases installed in the container:

health_system, controller, and hive_metastore. These are databases used internally by

BDC. This is an example of a SQL Server container used for internal BDC functionality

vs. the SQL Server Master Instance which is used for normal SQL Server purposes plus

Data Virtualization with HDFS and other data sources.

 Storage Pool
I described in Chapter 9 how Polybase allows you to access data sources outside of SQL

Server, including HDFS data. Polybase access to HDFS translates T-SQL queries into Java

MapReduce jobs to access the HDFS data.

BDC deploys its own HDFS cluster for you to access HDFS data both through

Polybase and also directly using a Knox Gateway (https://knox.apache.org/) through

the Controller.

Figure 10-9 gives a closer view of how a HDFS cluster is deployed in BDC as a Storage

Pool.

Chapter 10 SQL Server Big Data CLuSterS

https://knox.apache.org/

360

The Storage Pool is made up of one or more k8s pods. By default, using the aks-

dev-test configuration, two Storage Pool pods are deployed. If you look at pods in the

Storage Pool with kubectl describe, you will see they are bound together with the label

role=storage-pool. You can scale more Storage Pool pods using custom configuration

by specifying a Replicas count.

In my list of pods deployed on BDC, these pods represent the Storage Pool:

storage-0-0 4/4 Running 0 24h

storage-0-1 4/4 Running 0 24h

Storage Pool pods are part of their own StatefulSet, so, in the case of two Replicas

from BDC configuration, you get two pods in a single StatefulSet.

Each pod in the Storage Pool holds four containers (collectd and fluentbit are

installed) including a pod for Hadoop components and one for SQL Server. The

pod for Hadoop components (the container name is called Hadoop) runs YARN

and HDFS. YARN is a resource manager for Hadoop components run in the cluster

including Spark Jobs (you can read more about YARN at https://hadoop.apache.org/

docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html). HDFS provides Hadoop

distributed file system functionality. BDC also deploys an HDFS Name Node use to store

metadata and control access to the HDFS cluster.

Figure 10-9. The BDC Storage Pool

Chapter 10 SQL Server Big Data CLuSterS

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

361

Part of the capabilities of YARN and HDFS is distributed computing and storage,

which means when you interact and use the Storage Pool through T-SQL and Spark, your

compute and storage is part of a built-in distributed system.

The SQL Server container serves a special purpose in the BDC system. Note the

connector in Figure 10-9 that says, “Directly Read from HDFS.” This note means that

the SQL Server container in the Storage Pool pods can read data directly from HDFS

storage, including file types like csv and parquet. You don’t connect to these SQL Server

containers directly; they are used internally within BDC to optimize access to HDFS files

in the BDC cluster. The Controller service redirects external table queries to HDFS in

BDC to these SQL Server instances (which may be through the Compute Pool).

If you have your own HDFS system, you can mount this into the Storage Pool using

a concept called HDFS Tiering. You can read about HDFS Tiering at https://docs.

microsoft.com/en- us/sql/big-data-cluster/hdfs-tiering.

 Compute Pool
Figure 10-9 in the previous section for Storage Pool also shows the concept of a Compute

Pool. The Compute Pool is a StatefulSet of pods that implement the Polybase Scale-Out
Group I discussed in Chapter 9.

The Compute Pool can be scaled by customizing the configuration of the BDC

deployment using the Replicas count. By default, the aks-dev-test configuration only

deploys one Compute Pool pod (the documentation also calls this instance).

If the Compute Pool is present, all external table queries through BDC will use the

Compute Pool. The Controller redirects all external table queries for data sources in BDC

through the Compute Pool.

In the case of my BDC deployment, the Compute Pool is implemented by this pod

and uses the label role=compute-pool.

compute-0-0 3/3 Running 0 43h

 Data Pool
The Data Pool implements one or more pods for the data cache functionality I discussed

in the section “What Comes with Big Data Clusters?” By default, the aks-dev-test

configuration for BDC deploys two pods for the Data Pool. In my BDC deployment, these

pods are represented by:

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering
https://docs.microsoft.com/en-us/sql/big-data-cluster/hdfs-tiering

362

data-0-0 3/3 Running 0 43h

data-0-1 3/3 Running 0 43h

The Data Pool consists of one or more pods using the label role=data-pool in a

StatefulSet, each with a SQL Server container. Your access to SQL Server in the Data Pool

is through Polybase external tables from the SQL Server Master Instance.

When you create external tables in the SQL Server Master Instance using the external

data source for the Data Pool, SQL Server will create a database in each pod of the Data

Pool, with the same name as the scope of the external table in the SQL Server Master

Instance. Furthermore, we create a table with the same name as the external table name.

This means your interaction with the Data Pool is all through external tables in the

SQL Server Master Instance. On each SQL Server in pods for the Data Pool, we will create

a database and table to match your external table. In addition, we automatically shard

or partition data (not using SQL Server partitions) as you insert data into the Data Pool

(using round robin by default), and we build a clustered columnstore index on each

table in each pod of the Data Pool to optimize read access. This means our Compute

Pool can be used to access this data in a scalable fashion across the shards. The Data

Pool cannot be modified; you can only ingest (INSERT) or query data. Since it is a cache,

this means you must drop the external table and repopulate it when you are ready to

refresh the cache. The Controller redirects specific external table requests to the SQL

Server instances in the Data Pool (which may be through the Compute Pool).

 Application Pool
The Application Pool is a collection of pods deployed based on the creation of an

application in BDC. Figure 10-10 represents the area of BDC for the Application Pool.

Figure 10-10. The Application Pool in BDC

Chapter 10 SQL Server Big Data CLuSterS

363

When you use BDC interfaces to create an application with a YAML file, the

controller service will dynamically create a ReplicaSet of pods with your application

running in a container. Python, MLeap, and SSIS are the types currently supported.

There is another pod representing the application proxy, including a load balancer,

which allows you to connect to the application running in the pool, both from within the

BDC and from the outside world through a service endpoint:

appproxy-<id>

You can read more about the Application Deployment architecture in BDC at https://

docs.microsoft.com/en-us/sql/big-data-cluster/concept-application-deployment.

 Using Big Data Clusters
In this section, I’ll review various use cases for Big Data Clusters (BDC). One of the first

things you will want to do is log in to BDC using azdata. Technically, you do not have to

log in to access some resources in BDC, but using azdata to log in gives you context to

access all the service endpoints in a simple fashion.

In order to log in to BDC, you need the controller service endpoint, which is the

LoadBalancer IP address and port for the controller service pod. On my AKS deployment, I

was able to get the controller service endpoint by using the following command:

kubectl get svc controller-svc-external -n mssql-cluster

I can now give the azdata tool the proper context to use in various scenarios using

the following command:

azdata login --controller-endpoint https://<ip-address-of-controller-svc-

external>:30080 --controller-username admin

I was prompted for my password (this is the password I provided when prompted

by the python script in the section titled “The BDC Deployment Experience”). When the

login was successful, I saw the following message:

Logged in successfully to `https://<ip-address>:30080`

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-application-deployment
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-application-deployment

364

With this context, I can use azdata for many purposes. The first thing I want to do is

to get a list of other service endpoints to use BDC. I’ll use this command to retrieve those

endpoints:

azdata bdc endpoint list -o table

My list looked like the following:

 Protocol

-- ------------------------

---------------------------- ----------------- -------

Gateway to access HDFS files, Spark https://<knox-ip>:30443

 gateway https

Spark Jobs Management and Monitoring Dashboard https://<knox-ip>:30443/

gateway/default/sparkhistory spark-history https

Spark Diagnostics and Monitoring Dashboard https://<knox-ip>:30443/

gateway/default/yarn yarn-ui https

Application Proxy https://<appproxy-ip>:

30778 app-proxy https

Management Proxy https://<mgmt-ip>:30777

 mgmtproxy https

Log Search Dashboard https://<mgmt-ip:30777/

kibana logsui https

Metrics Dashboard https://<mgmt-ip>:30777/

grafana metricsui https

Cluster Management Service https://<cluster-ip>:

30080 controller https

SQL Server Master Instance Front-End <sql-ip>,31433

 sql-server-master tds

HDFS File System Proxy https://<knox-ip>:30443/

gateway/default/webhdfs/v1 webhdfs https

Proxy for running Spark statements, jobs, applications https://<knox-ip>:30443/

gateway/default/livy/v1 livy https

Chapter 10 SQL Server Big Data CLuSterS

365

I substituted in some names to represent the actual IP address on my cluster:

• <knox-ip> – This is the IP address of the Knox Gateway which, as you

can see in this list, is used for multiple purposes. The Knox Gateway

is used to access HDFS files (webhdfs), run Spark Jobs (livy), view

Spark Job History (spark-history), and monitor Spark Jobs (yarn-ui).

• <appproxy-ip> – This is the IP address used to connect to

applications deployed in BDC.

• <sql-ip> – This is the IP address to connect to the SQL Server Master

Instance.

• <cluster-ip> – This is the IP address for the controller service.

You can also get all the endpoint IP address and ports using kubectl, but only azdata

gives you specific details like how to access webhdfs and livy.

Azure Data Studio (ADS) now offers a BDC management experience including the

ability to see a list of endpoints.

Figure 10-11 shows an example of BDC endpoints using ADS.

Figure 10-11. BDC endpoints in Azure Data Studio

The documentation at https://docs.microsoft.com/en-us/sql/big-data-cluster/

concept-security, which is also shown in Figure 10-12, shows the common BDC endpoints.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-security
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-security

366

 Using Data Virtualization
One important usage of BDC is to access data from external data sources using Polybase,

as I’ve described in Chapter 9.

Polybase with BDC provides the same functionality as Polybase for Linux, including

built-in connectors for SQL Server, Oracle, Teradata, MongoDB, and HDFS.

BDC provides a twist to this functionality through two additional built-in connectors

unique to BDC:

• sqlhdfs – This connector allows you to access HDFS data within the

Storage Pool.

• sqldatapool – This connector allows you to access data specifically

stored in the Data Pool.

Here are example T-SQL scripts to create external data sources within your database

to access these built-in connectors:

IF NOT EXISTS(SELECT ∗ FROM sys.external_data_sources WHERE name =
'SqlDataPool')

 CREATE EXTERNAL DATA SOURCE SqlDataPool

 WITH (LOCATION = 'sqldatapool://controller-svc/default');

Figure 10-12. Common BDC endpoints

Chapter 10 SQL Server Big Data CLuSterS

367

IF NOT EXISTS(SELECT ∗ FROM sys.external_data_sources WHERE name =
'SqlStoragePool')

 CREATE EXTERNAL DATA SOURCE SqlStoragePool

 WITH (LOCATION = 'sqlhdfs://controller-svc/default');

Notice the URI for the LOCATION is a specific location for the controller service.

The controller service directs requests for external tables based on these sources to the

respective pool through the Compute Pool if it is deployed.

Our documentation has an example on how to use an external table with BDC

to access Oracle data at https://docs.microsoft.com/en-us/sql/relational-

databases/polybase/data-virtualization. You will need an Oracle instance to use

this example. You can also use examples I’ve provided in Chapter 9 from the ch9_data_
virtualization\sqldatahub folder.

Note the only two examples you cannot use from this folder are hdfs and
saphana. hDFS data is accessed in BDC through the sqlhdfs connector. ODBC
connectors are not currently supported for BDC which is required for Sap haNa.

What I think you might find more interesting is to use the samples to access data

through the sqlhdfs and sqldatapool connectors.

I recommend you first load sample data for using BDC through the instructions in

the following documentation page at https://docs.microsoft.com/en-us/sql/big-

data-cluster/tutorial-load-sample-data. I went through these instructions and had

no issues loading this data. In this example, you will load csv files directory into HDFS

using curl. This example uses the WebHDFS (https://hadoop.apache.org/docs/

r1.0.4/webhdfs.html) endpoint from the Knox Gateway, which is called HDFS File
System Proxy.

Once you have loaded your data, you can now go through the tutorial to access HDFS

data at https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-query-

hdfs- storage-pool. You might also find it interesting to try the External Table Wizard

that comes with Azure Data Studio as another way to create the external table mapped

to HDFS data in BDC at https://docs.microsoft.com/en-us/sql/relational-

databases/polybase/data-virtualization-csv.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-load-sample-data
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-load-sample-data
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-query-hdfs-storage-pool
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-query-hdfs-storage-pool
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization-csv
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/data-virtualization-csv

368

It is possible you will need to ingest data directly into HDFS in BDC from sources

such as IOT devices. Our documentation has examples on how to interact directly with

HDFS in BDC at https://docs.microsoft.com/en-us/sql/big-data-cluster/data-

ingestion-curl.

In addition, Azure Data Studio includes the capability to browse and work with files

in HDFS directly, as you can see in Figure 10-13.

Figure 10-13. Working with HDFS in BDC with Azure Data Studio

Buck Woody built a workshop called SQL Server Big Data Clusters – Architecture

and has a set of Notebooks you can use with ADS to see how Data Virtualization works

with BDC. You can try out these Notebooks at https://github.com/microsoft/

sqlworkshops/tree/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks,

using tutorial 00, 01, and 02 for fundamental Data Virtualization notebooks.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/data-ingestion-curl
https://docs.microsoft.com/en-us/sql/big-data-cluster/data-ingestion-curl
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks

369

 Using the Data Pool
I’ve described the Data Pool in this book as a data cache. The process to use the Data

Pool is to ingest or insert data based on queries from other data sources, which could

be SQL Server Master Instance tables, external data sources from HDFS, or any other

Polybase connector.

Data is automatically sharded across pods in the Data Pool and optimized for read

access with clustered columnstore indexes.

I recommend you go through the example in our documentation to see the basics

of using Data Pool at https://docs.microsoft.com/en-us/sql/big-data-cluster/

tutorial-data- pool-ingest-sql.

Buck Woody’s workshop in tutorial 03 shows how to use the Data Pool

in BDC at https://github.com/microsoft/sqlworkshops/blob/master/

sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_03.ipynb.

 Using Spark
Spark (https://spark.apache.org/) is a computing engine that is often used in

Hadoop systems. BDC automatically provides capabilities to run Spark Jobs for various

application needs. There are several ways to run Spark Jobs with BDC which I’ll discuss

in this section. You can run through some of these examples to see how Spark works with

BDC. If you are new to Spark, you need to first consider why you would want to use Spark

before embarking submitting Spark Jobs to BDC. There are some very good scenarios

where Spark can be an effective method for processing data in HDFS, which is why

we included Spark as part of the overall BDC solution. You will also find Spark to be a

common solution to use in Machine Learning scenarios, which I’ll talk more about in the

section later in this chapter titled “Machine Learning and Big Data Clusters.”

 Run Spark Jobs from Azure Data Studio

One scenario where Spark can be useful is ingestion of data from HDFS in the Storage

Pool into tables and in the Data Pool in BDC.

One method to run a Spark Job is to use Azure Data Studio connected directly to the

SQL Server Master Instance. Figure 10-14 shows an example of how to run a Spark Job

using Azure Data Studio (ADS).

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-data-pool-ingest-sql
https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-data-pool-ingest-sql
https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_03.ipynb
https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_03.ipynb
https://spark.apache.org/

370

There is more information about submitting Spark Jobs directly with ADS at

https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job.

 Running Spark Jobs from Other Tools

We also support submitting Spark Jobs against BDC with a tool called IntelliJ which

you can read at https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-

submit-job- intellij-tool-plugin. You can also submit Spark Jobs with BDC using

Visual Studio Code which you can read about at https://docs.microsoft.com/en-us/

sql/big-data-cluster/spark-hive-tools-vscode. In both of these scenarios, you will

use the Gateway to access HDFS files, Spark endpoint to connect to BDC to run Spark

Jobs.

BDC also provides a REST endpoint for submitting Spark Jobs called Livy (https://

livy.apache.org/). The Livy endpoint is provided through a proxy as part of the <knox-

ip> called Proxy for running Spark statements, jobs, applications.

Figure 10-14. Submitting a Spark Job in Azure Data Studio

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job-intellij-tool-plugin
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-submit-job-intellij-tool-plugin
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-hive-tools-vscode
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-hive-tools-vscode
https://livy.apache.org/
https://livy.apache.org/

371

Perhaps the most common method for you to use Spark within the context of BDC

is through Notebooks with Azure Data Studio (ADS). Up until this chapter of the book,

I’ve shown you many examples using Notebooks with ADS using a kernel for SQL. ADS

supports kernels for other language environments, including

• PySpark3

• PySpark

• Spark | Scala

• Spark | R

• Python

In any of these scenarios, you will connect to the SQL Server Master Instance with

a notebook. ADS will handle submitting the Spark Jobs from the Notebook through the

Knox Gateway to properly run the Spark Job in BDC. Any Python or R code in these

notebooks will run on your local computer.

 MSSQL Spark Connector

We provide another method to run Spark Jobs through the MSSQL Spark Connector. This

connector talks to the SQL Server Master Instance, uses SQL Bulk Copy APIs for writes,

and has a familiar JDBC interface. You can read more about the MSSQL Spark Connector

and how to use it with BDC at https://docs.microsoft.com/en-us/sql/big-data-

cluster/spark-mssql- connector.

 Deploying and Using Applications
I described in the section “Big Data Cluster Architecture” how the Application Pool

works in BDC including documentation on how to deploy an application in BDC.

We supply the “runtime” for applications written in R and Python, as well as

applications that support MLeap (https://mleap-docs.combust.ml/) and SSIS

packages. A developer will supply the code and a YAML file specifying how to run the

application, and BDC will run a ReplicaSet of containers for the application code.

Once applications are deployed, they are always “running” as a container. If you

want to consume or execute the application code, you can use the azdata command

with the app option. You can see the azdata app reference at https://docs.microsoft.

com/en-us/sql/big-data-cluster/reference-azdata-app.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-mssql-connector
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-mssql-connector
https://mleap-docs.combust.ml/
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-app
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-app

372

BDC also provides another method to consume the deployed applications through a

REST web interface. By default, all deployed applications have this capability through a

protocol called Swagger (https://swagger.io/).

The best way to wrap your head around how this all works is to see the examples we

have provided at https://github.com/Microsoft/sql-server-samples/tree/master/

samples/features/sql-big-data-cluster/app-deploy.

 Security
At the time I wrote this chapter, BDC only supported basic authentication, which means

logins and passwords. All the service endpoints that come from the controller, Knox, and

SQL Server Master Instance require a login and password.

All communication between pods within the cluster occurs with private

communication channels using k8s secrets (which in themselves have logins and

passwords) and self-signed certificates.

It is our intention by the time we release Big Data Clusters for SQL Server 2019 to

support Active Directory (AD) authentication within BDC for all the service endpoints.

This includes connecting to the SQL Server Master Instance, Controller Service, and

Knox Gateway.

I expect all the details for how to join BDC to a domain, how to deploy BDC with the

necessary AD information, the process to add AD users, and how to log in to BDC with

an AD account will be in our documentation at https://docs.microsoft.com/en-us/

sql/big-data-cluster/concept-security.

 High Availability
As I’ve mentioned in the chapter, pods in BDC are deployed using a k8 StatefulSet or

ReplicaSet. This provides built-in HA for the k8s platform should a container, pod, or

node fail (node failure would only work with a multi-node k8s deployment).

While this form of basic HA is helpful for SQL Server, it would be better to use our

Always On Availability Group (AG) technology that includes read replicas and SQL

Server health detection.

When you deploy BDC, you have the option of enabling hadr. Enabling hadr will

create an Availability Group by default in BDC and includes the system databases in the

AG. Multiple pods in a StatefulSet are created to support this deployment.

Chapter 10 SQL Server Big Data CLuSterS

https://swagger.io/
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-security
https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-security

373

Using this configuration, we also create endpoints to connect to the primary and

secondary replicas of the AG. Since system databases are included as part of the AG, your

primary connection is a connection to the SQL Server Master Instance primary, like an

AG listener. If a failover occurs, this endpoint will stay connected to whatever replica

becomes the new primary. Secondary read-only replica connections are also supported

through a separate endpoint.

Take a look at our documentation for how to enable hadr and some of the

ramifications of using this type of deployment at https://docs.microsoft.com/en-us/

sql/big-data-cluster/deployment-high-availability.

 Jupyter Books for SQL Server Big Data Clusters
Jupyter Books (https://jupyter.org/jupyter-book/intro.html) provide a

mechanism to build a collection of notebooks. Azure Data Studio (ADS) provides a

Jupyter Book of notebooks to help monitor, manage, and troubleshoot SQL Server Big

Data Clusters. All of these notebooks are based on actual Troubleshooting Guides (TSG)

used by the SQL Server engineering team!

Figure 10-15 shows a look at Jupyter Books for SQL Server Big Data Clusters.

Figure 10-15. Jupyter Books for SQL Server Big Data Clusters

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-high-availability
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-high-availability
https://jupyter.org/jupyter-book/intro.html

374

 Machine Learning and Big Data Clusters
One of the promises of SQL Server Big Data Clusters (BDC) is an end-to-end Machine

Learning platform. Consider the workflow in Figure 10-16.

Figure 10-16. Machine Learning in Big Data Clusters

You can do all of this within BDC! Ingest data from different types of data sources,

both structured and unstructured, with Spark and SSIS. You can store this data in BDC

with Data Pools, HDFS, or even the SQL Server Master Instance. Some of your data for

your Machine Learning models may exist in external data sources outside of BDC such

as Azure, SQL Server, Oracle, Teradata, and MongoDB. BDC gives you access to any of

this data using T-SQL.

You can now prep and train your Machine Learning model using Spark, SparkML,

and/or SQL Server Machine Learning Services (ML). You can then expose your model

as a Machine Learning application using SQL Server ML with T-SQL or as an application

with a REST interface in the Application Pool. The Application Pool provides an

interesting method for developers since it is all based on your code with declarative

YAML and containers. This means it could become a great candidate for a Continuous

Integration/Continuous Delivery (CI/CD) development model.

Chapter 10 SQL Server Big Data CLuSterS

375

 Machine Learning Packages
One huge advantage for data scientists using BDC and SQL Server 2019 is all of the

Machine Learning Packages we ship when you deploy the product. I asked Dr. Rony

Chatterjee, a Senior Program Manager on our team, how I could discover all of these

installed ML packages. He gave me the following T-SQL query I could run on SQL Server

2019 or BDC to see these packages:

EXEC sp_execute_external_script

@language=N'Python',

@script=N'

import pkg_resources

import pandas

OutputDataSet = pandas.DataFrame([(d.project_name, d.version) for d in pkg_

resources.working_set])'

I ran this query on my deployed BDC, and there were well over 160+ Machine

Learning packages!

 Using Examples
I believe you should review and even try out some examples to see what is possible with

Machine Learning and SQL Server Big Data Clusters (BDC):

• SparkML – We have an example of using Spark and Spark ML with

BDC to predict income levels based on past census data in the United

States. You can see this example at https://docs.microsoft.com/

en-us/sql/big-data-cluster/spark-create-machine-learning-

model.

• BDC Applications – There are several ML application examples

using Application Deploy you can use at https://github.com/

microsoft/sql-server-samples/tree/master/samples/features/

sql-big-data-cluster/app-deploy.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-create-machine-learning-model
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-create-machine-learning-model
https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-create-machine-learning-model
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy

376

• The Buck Woody Example – Buck Woody and I were doing some

training for a customer in spring of 2019, and Buck brought up a very

cool real-world example for Machine Learning (ML). The idea is that

the mythical company WideWorldImporters has trucks that ship

temperature-sensitive products. The trucks have cooling systems

powered by batteries. A big problem is that the cooling systems in the

trucks can fail due to battery lifecycles. The batteries are supposed

to last 3 months, but in many cases they fail earlier. The company

wants to build a predictive ML model to determine when a battery

may need to be replaced – based on dynamic factors of the truck and

cargo, instead of the fixed 3-month cycle.

Buck has a specific Notebook you can use to see this example at

https://github.com/microsoft/sqlworkshops/blob/master/

sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_

tutorial_05.ipynb. You need to follow all the Notebooks to use this

tutorial at https://github.com/microsoft/sqlworkshops/tree/

master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks.

When Buck and I were doing this training, one of the customers

remarked something to the effect of, “Finally someone has explained

to me a practical, real-world example for Machine Learning, and I’ve

learned I can use Big Data Clusters to implement it.”

 Managing and Monitoring Big Data Clusters
You can see there are many components and moving parts to SQL Server Big Data

Clusters (BDC). There are many considerations to monitor and manage BDC including

managing your Kubernetes cluster, SQL Server, and other BDC components.

 Managing Kubernetes (k8s)
If you look at what we have built with BDC, it is effectively an application powered by

Kubernetes. While we have specific capabilities to help you manage the BDC application,

you still must be prepared to manage your k8s cluster. For development and testing of BDC,

this is probably not an issue for you, but, to run BDC in production, you must plan for how

Chapter 10 SQL Server Big Data CLuSterS

https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_05.ipynb
https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_05.ipynb
https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks/bdc_tutorial_05.ipynb
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/SQL2019BDC/notebooks

377

your k8s cluster will be managed and monitored independent of BDC. I cannot begin to

emphasize how important it is to understand how to ensure your k8s cluster is properly

managed and functioning at a healthy level. The entire BDC solution depends on it.

I recommend the following resources for managing k8s:

• Look at our documentation for managing Azure Kubernetes Service

(AKS) at https://docs.microsoft.com/en-us/azure/aks/best-

practices.

• I highly recommend this book which also includes some great

information on the internals of k8s: https://learning.oreilly.

com/library/view/managing- kubernetes/9781492033905/.

I also provided tips and techniques to manage and monitor a k8s cluster in Chapter 8

in the section “Tips with k8s.”

 Managing and Monitoring Big Data Clusters
Besides standard management and monitoring of the SQL Server Master Instance

through SQL Server diagnostics such as Dynamic Management Views (DMVs)

and Extended Events, we have provided a series of tools and resources to help you

specifically manage and monitor the SQL Server Big Data Cluster (BDC).

• Azure Data Studio (ADS) Big Data Cluster Dashboard

ADS ships with a BDC dashboard to help you look at the health of

the BDC cluster including all its components. Figure 10-17 shows

an example of the ADS BDC Dashboard.

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/azure/aks/best-practices
https://docs.microsoft.com/en-us/azure/aks/best-practices
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/
https://learning.oreilly.com/library/view/managing-kubernetes/9781492033905/

378

You can click one of the Cluster Details like SQL Server and see

the status of the SQL Server Master Instance, Compute, Data, and

Storage Pool. We have implemented a liveness probe (https://

kubernetes.io/docs/tasks/configure-pod-container/

configure-liveness-readiness-probes/) into each pod in BDC

to feed the overall health status of all the BDC components. You

can read more about the Big Data Cluster dashboard at https://

docs.microsoft.com/en-us/sql/big-data-cluster/manage-

with-controller-dashboard.

• Grafana Metrics

Using this context, you can drill into Metrics showing a Grafana

(https://grafana.com/) dashboard powered by components in

the Controller. Figure 10-18 shows the Grafana dashboard for the

SQL Server Master Instance.

Figure 10-17. The Azure Data Studio Big Data Cluster Dashboard

Chapter 10 SQL Server Big Data CLuSterS

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://docs.microsoft.com/en-us/sql/big-data-cluster/manage-with-controller-dashboard
https://docs.microsoft.com/en-us/sql/big-data-cluster/manage-with-controller-dashboard
https://docs.microsoft.com/en-us/sql/big-data-cluster/manage-with-controller-dashboard
https://grafana.com/

379

• Kibana and Elasticsearch

Every major component of BDC has a Grafana dashboard and a

Kibana (https://en.wikipedia.org/wiki/Kibana) visualization

of Elasticsearch (www.elastic.co/), with logs for deeper

troubleshooting and analysis. Figure 10-19 shows a Kibana

visualization of Elasticsearch logging from the SQL Server Master

Instance through the ADS Big Data Cluster Dashboard.

Figure 10-18. Grafana dashboard for SQL Server Big Data Clusters

Chapter 10 SQL Server Big Data CLuSterS

https://en.wikipedia.org/wiki/Kibana
https://www.elastic.co/

380

• Using azdata with SQL Server

While Kubernetes allows you to interact with containers with

a command like kubectl exec, the azdata program allows you

to interact with SQL Server using the sql option of azdata as

documented at https://docs.microsoft.com/en-us/sql/big-

data-cluster/reference-azdata-sql. This allows you to execute

T-SQL commands against the SQL Server Master Instance as well

as access the sqlcmd “shell.” Remember azdata is like the kubectl

program for BDC; you can see the complete reference at https://

docs.microsoft.com/en-us/sql/big-data- cluster/reference-

azdata.

• Kubernetes (k8s) and BDC Troubleshooting

Read through my discussion of k8s commands in Chapter 8,

but we also have some tips on our documentation at https://

docs.microsoft.com/en-us/sql/big-data- cluster/cluster-

troubleshooting-commands. Don’t forget to also use our SQL Server

Troubleshooting Guides which I described earlier in this chapter in

the section “Jupyter Books for SQL Server Big Data Clusters.”

Figure 10-19. Kibana and Elasticsearch for logs with BDC

Chapter 10 SQL Server Big Data CLuSterS

https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-sql
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-sql
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata
https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata
https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands
https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands
https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-troubleshooting-commands

381

 Summary
While SQL Server 2019 is radical, SQL Server Big Data Clusters is revolutionary. Who

would have thought a product some consider just a relational database engine includes

an entire solution for your own data lake, Data Virtualization, and an end-to-end

Machine Learning platform, all built on top of Kubernetes?

Think about the technologies we have deployed for Big Data Clusters:

• SQL Server

• Polybase

• HDFS

• Spark

• Livy

• Kibana

• Elasticsearch

• Grafana

• InfluxDB

• Notebooks

• Machine Learning with R and Python

• Java Extensibility

• Always On Availability Groups

All of this is powered by a control plane with our “API Server” or controller serviced

to deploy, manage, and power a Big Data Cluster built on Kubernetes.

This is my opinion, but why not just hear from a customer who has already seen the

promise of this solution:

“Building and deploying our vertical AI-solution for clinical radiology combines

very diverse implementation paradigms, data formats, and regulatory requirements.

SQL Server 2019 Big Data Clusters allowed us to accommodate and integrate all

aspects from one shared platform – for our data scientists with their deep learning as

well as for our software engineers who wire up workflows, security, and scalability.

Chapter 10 SQL Server Big Data CLuSterS

382

At runtime, our healthcare customers benefit from simple containerized deployment

and maintenance while being able to move our solution between on-prem and the

cloud easily.” – René Balzano, Founder and CEO of Balzano.

This quote is from our blog we posted when we released Big Data Clusters for

SQL Server 2019 as a Release Candidate at https://cloudblogs.microsoft.com/

sqlserver/2019/08/29/sql-server-2019-release-candidate-refresh-with-big-

data-clusters/. I look forward to many other customers that believe Big Data Clusters

is just the revolutionary solution they need to power their business.

Chapter 10 SQL Server Big Data CLuSterS

https://cloudblogs.microsoft.com/sqlserver/2019/08/29/sql-server-2019-release-candidate-refresh-with-big-data-clusters/
https://cloudblogs.microsoft.com/sqlserver/2019/08/29/sql-server-2019-release-candidate-refresh-with-big-data-clusters/
https://cloudblogs.microsoft.com/sqlserver/2019/08/29/sql-server-2019-release-candidate-refresh-with-big-data-clusters/

383
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6_11

CHAPTER 11

The Voice of the Customer
and Migration
I hope by the time you have reached this chapter, you can appreciate the incredible amount

of innovation that has gone into SQL Server 2019. And if you have read all of the first ten

chapters, you probably have the feeling of “information overload.” I’ve had several folks

who have attended my presentations in the past feel like their “brain is melting.” If you feel

that way up to this point of the book, I accomplished one of my goals. I wanted this book

to be more than just a review of SQL Server 2019, because anyone can get that from the

documentation. I wanted this to be a comprehensive look at the SQL Server 2019 release.

With all these capabilities to solve modern data challenges, is there anything left to

talk about? Well, yes, in fact, there is. I’ll conclude this book by discussing the “pile of

features” (I’m borrowing that term from my colleague Conor Cunningham) we built into

SQL Server 2019 based on customer feedback. I’ll also talk about methods, tools, and

techniques for you to use when migrating to SQL Server 2019.

 The Voice of the Customer
Everything you have read in this book so far is one way or another influenced by our

customers. In this section, I’ll show you a collection of enhancements for SQL Server

2019 which came directly from feedback and requests from customers, through

escalations from Microsoft Support, our own internal testing, or engineering interaction

directly with customers. If you have never seen the feedback channel directly to the

product team, you can check it out at https://aka.ms/sqlfeedback. I’ve provided for

you in this section a list of enhancements organized into three areas:

• Performance – SQL Server database engine performance

enhancements designed to help all or specific workloads run faster.

https://aka.ms/sqlfeedback

384

• User experience – These are enhancements to improve how the SQL

Server product is used or configured.

• Diagnostics – These are enhancements designed to improve

troubleshooting or diagnosing SQL Server problems.

 Performance Enhancements
Our engineering team is always looking to improve performance in the core database

engine and seeks opportunities through customer observation, Microsoft support

escalations, and often through investigations using benchmark testing. These experiences

and observations contributed to the following changes in the core database engine:

• Reduced compilations for temporary tables

One design pattern to use temporary tables is to create the temporary

table in one scope and use it in another. For example, you could

create a temporary table in a batch and then try to use the temporary

table in a stored procedure called by the batch. This would normally

result in a recompilation of the stored procedure that references

the temporary table. In SQL Server 2019, by default, we are able

to avoid a recompilation in this scenario. While this improvement

may not make the workload significantly faster, it can help an

overall application use SQL Server, because lowering the number of

recompilations can reduce the overall CPU usage of SQL Server.

• Indirect checkpoint scalability

Indirect checkpoints are the new default method for database

checkpoints, as you can read at https://docs.microsoft.com/

en-us/sql/relational-databases/logs/database-checkpoints-

sql-server. We discovered through some benchmark testing and

customer feedback that heavy modification workloads could cause

stalls in the SQL Server engine, leading to a condition called a non-

yielding scheduler. We typically only saw these problems on larger

systems with many CPUs, leading us to believe it was a scalability

problem. SQL Server 2019 made improvements in the database

engine to avoid this problem.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/relational-databases/logs/database-checkpoints-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/logs/database-checkpoints-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/logs/database-checkpoints-sql-server

385

• Concurrent PFS updates

PFS pages are special pages within a database file that SQL Server

uses to help locate free space when allocating space for an object.

(You can read an older blog post by Paul Randal when he worked at

Microsoft to explain PFS pages at https://blogs.msdn.microsoft.

com/sqlserverstorageengine/2006/07/08/under-the-covers-

gam-sgam-and-pfs-pages/.)

Page latch contention on PFS pages is something that is commonly

associated with tempdb, but it can also occur on user databases

when there are many concurrent object allocation threads. This

improvement changes the way that concurrency is managed with

PFS updates so that they can be updated under a shared latch, rather

than an exclusive latch. This behavior is on by default in all databases

(including tempdb) starting with SQL Server 2019.

As customers adopt SQL Server 2019, I’m very interested to see the

effectiveness on TempDB concurrency with TempDB memory–

optimized metadata (discussed in Chapter 2) combined with this

enhancement.

• Worker stealing

I call this improvement the “Slava special” named after Slava Oks.

We have seen over the years one weakness of the SQLOS scheduler is

scheduler contention for worker threads. What a cool system SQLOS

could become if we could dynamically change worker threads for a

given task to a different scheduler if we detect a contention problem.

Under the covers, we have begun to implement such a system, on

a limited scale. SQL Server supports the concept of parallel redo

for recovery. Dong Cao is the lead developer of this work and has

blogged about parallel redo and the internals of redo on Always

On Availability Group secondary replicas at https://blogs.

msdn.microsoft.com/sql_server_team/sql-server-20162017-

availability-group-secondary-replica-redo-model-and-

performance/. Dong has implemented the concept of worker stealing

behind the scenes, only for parallel redo on secondary replicas. If

Chapter 11 the VoiCe of the Customer and migration

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2006/07/08/under-the-covers-gam-sgam-and-pfs-pages/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2006/07/08/under-the-covers-gam-sgam-and-pfs-pages/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2006/07/08/under-the-covers-gam-sgam-and-pfs-pages/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-20162017-availability-group-secondary-replica-redo-model-and-performance/

386

our tests continue to be successful, I look for a day when we can

implement this change to the core scheduling in SQLOS across the

engine for all types of workloads.

 User Experience
We have worked on a set of improvements designed to help the user experience across

error messages, setup, and configuration of SQL Server.

• Verbose truncation warnings

Do you know what one of the most voted customer feedback requests

of all time with SQL Server is? It is to improve the following error

message:

String or binary data would be truncated

This error message, which is error message number 8152, happens

when you attempt to insert or update data in a column where the value

to insert or update exceeds the size of the target column. The problem

with this message is there is no context – it does not provide the name

of the table, the column, or the piece of data that would be truncated.

In SQL Server 2019, the default behavior for an application is to

receive error message number 2628, which looks like this:

String or binary data would be truncated

in table '%.*ls', column '%.*ls’.

Truncated value: '%.*ls'

Pam Lahoud of SQL Tiger Team fame blogs about this improvement,

including examples, at https://blogs.msdn.microsoft.com/

sql_server_team/string-or- binary-data-would-be-truncated-

replacing-the-infamous-error-8152/.

In this blog, she calls out that you can use trace flag 460 in SQL Server

2017 to take advantage of this better error message.

Chapter 11 the VoiCe of the Customer and migration

https://blogs.msdn.microsoft.com/sql_server_team/string-or-binary-data-would-be-truncated-replacing-the-infamous-error-8152/
https://blogs.msdn.microsoft.com/sql_server_team/string-or-binary-data-would-be-truncated-replacing-the-infamous-error-8152/
https://blogs.msdn.microsoft.com/sql_server_team/string-or-binary-data-would-be-truncated-replacing-the-infamous-error-8152/

387

SQL Server 2019 also has a database option to change the default

behavior for this error message, which you can read about at

https://docs.microsoft.com/en-us/sql/t-sql/statements/

alter-database-scoped-configuration-transact-sql?#verbose-

truncation.

• Memory and parallel options during setup

Two of the most common instance configuration options to change

after installation of SQL Server are “max server memory” and “max

degree of parallelism.”

Given how often these are changed, we have now put in options

during the setup of SQL Server on Windows to choose these

configuration options.

Figure 11-1 shows the setup option to configure parallelism.

Figure 11-1. Configure MaxDOP during setup

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?#verbose-truncation
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?#verbose-truncation
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-transact-sql?#verbose-truncation

388

Figure 11-2 shows the configuration option for memory during

setup.

Notice in this figure, SQL Server setup has recommended a Max
Server Memory (MB) value. We do not document how we arrive

at a specific value, and you can use whatever makes sense for

your environment. Most customers we have found use a value

less than the maximum physical memory of the computer or

virtual machine. I personally believe the recommendations use

algorithms you can also find in the Tiger Team tools BPCheck,

which you can find at https://github.com/microsoft/

tigertoolbox/tree/master/BPCheck.

Figure 11-2. Memory configuration during setup

Chapter 11 the VoiCe of the Customer and migration

https://github.com/microsoft/tigertoolbox/tree/master/BPCheck
https://github.com/microsoft/tigertoolbox/tree/master/BPCheck

389

• Memory grant percent in Resource Governor

I described in Chapter 2 a performance problem that can occur

due to large memory grants. One solution that can help control

large memory grants is to use Resource Governor with the

REQUEST_MAX_MEMORY_GRANT_PERCENT option. One

issue with this option is that the possible values are in whole

integer numbers from 1 to 100, representing a percentage of the

maximum memory value for SQL Server. Even 1% of 1TB is 10Gb,

which may be too much memory to allow to memory grants. SQL

Server 2019 now allows REQUEST_MAX_MEMORY_GRANT_

PERCENT to be a floating-point value, which means it can accept

values < 1.0.

You can read more about the use of REQUEST_MAX_MEMORY_

GRANT_PERCENT at https://docs.microsoft.com/en-us/sql/

relational-databases/resource- governor/change-workload-

group-settings.

• Columnstore Index compression estimation

SQL Server includes a system procedure to help estimate

savings for page and row compression called sp_estimate_
data_compression_savings. SQL Server 2019 now enhances

this procedure to show estimated compression for the use of

columnstore indexes and options for columnstore archive. You

can read more about the use of this procedure with these options

at https://docs.microsoft.com/en-us/sql/relational-

databases/system-stored-procedures/sp-estimate-data-

compression-savings-transact-sql.

 Diagnostics
Diagnostics and troubleshooting used to be my world at Microsoft for 20+ years while

I worked in Microsoft Support. I still love to see new diagnostic capabilities added to

the product, even if they seem minor. What may seem minor to some can provide huge

benefits to others.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/change-workload-group-settings
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/change-workload-group-settings
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/change-workload-group-settings
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql

390

• You too can be Paul Randal

Paul Randal has been a long-time friend of mine, both when he

worked in Microsoft SQL Server engineering and in his long career

as the CEO of SQLskills along with his wife, Kimberly Tripp. Paul

and I both have reputations for internals knowledge, and examining

the internals of database pages (sometimes called “page cracking”)

is an important skill to have. Both of us have for years used the

undocumented and unsupported DBCC PAGE command to “hack” a

database page. With SQL Server 2019 comes a pair of system objects

to help examine the header of a database page:

dm_db_page_info – This is a system function to return a page header

as a one-row result of columns for each field in the page header. You

can read about this system function at https://docs.microsoft.

com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-page-info-transact-sql.

The required input for this function is information to identify a page,

which is the database id, file id, and page number. There are some

scenarios where the identifier for a page shows up in the result of

column like from a DMV. One example is the wait_resource of dm_

exec_requests. A page identifier from wait_resource is in the form of

a page resource string which is <dbid>:<fileid>:<pageid>. The system

function fn_PageResCracker takes a page resource string as input

and returns a db_id, file_id, and page_id result.

Therefore, you can run a T-SQL statement like this:

SELECT page_info.∗
FROM sys.dm_exec_requests AS d

 CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r

 CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id, r.page_

id,'DETAILED')

 AS page_info;

This will extract page header details from a page resource. For a

concurrency scenario like a page latch wait, this technique can be

useful to find out what object belongs to the page for the latch wait.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-info-transact-sql

391

If you go back to Chapter 2, you will find I provided you an

example to use this technique to see which table was involved in

tempdb page latch waits:

USE tempdb

GO

SELECT object_name(page_info.object_id), page_info.∗
FROM sys.dm_exec_requests AS d

 CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r

 CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id, r.page_

id,'DETAILED')

 AS page_info

GO

Pam Lahoud also wrote a very nice blog post on this small but

important engine enhancement, which you can read at https://

blogs.msdn.microsoft.com/sql_server_team/sql-server-

2019-ctp-2-0-new-features-introducing-the-page-cracker-

aka-sys-dm_db_page_info/.

• Diagnostics on statistics

Statistics are a very important part of query performance. Statistics

can be updated using a synchronous or asynchronous method,

where synchronous means that the query must wait for the stats to be

updated, and asynchronous means the query can continue, but the

statistics will be updated in the background. Synchronous statistics

updates can, in some cases, cause a SELECT statement to take longer

than normal. SQL Server 2019 provides some diagnostics to give you

granular information on waiting for synchronous statistics updates:

WAIT_ON_SYNC_STATISTICS_REFRESH – This is a new wait_type

found in dm_os_wait_stats. It shows the accumulated instance-level

time spent on synchronous statistics refresh operations.

dm_exec_requests – The command column of sys.dm_exec_requests

will show the value of SELECT (STATMAN) if a query is waiting for

a synchronous statistics update operation to complete prior to

continuing query execution.

Chapter 11 the VoiCe of the Customer and migration

https://blogs.msdn.microsoft.com/sql_server_team/sql-server-2019-ctp-2-0-new-features-introducing-the-page-cracker-aka-sys-dm_db_page_info/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-2019-ctp-2-0-new-features-introducing-the-page-cracker-aka-sys-dm_db_page_info/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-2019-ctp-2-0-new-features-introducing-the-page-cracker-aka-sys-dm_db_page_info/
https://blogs.msdn.microsoft.com/sql_server_team/sql-server-2019-ctp-2-0-new-features-introducing-the-page-cracker-aka-sys-dm_db_page_info/

392

• Query Store enhancements

Query Store is an important capability for performance tuning,

benchmarking, and troubleshooting. In Chapter 2, I showed some

examples of using the Query Store to compare differences in query

performance with Intelligent Query Processing.

The capabilities of Query Store have been enhanced to include the

following:

Forcing fast-forward and static cursors – Query Store now supports

forcing plans that include fast-forward and static cursors.

Custom capture policy for the Query Store – Some customers have

had issues using Query Store with certain types of workloads. In SQL

Server 2019, we have added more parameters to help with granular

control over what is captured by the Query Store. You can find these

new options explained using the QUERY_CAPTURE_POLICY in the

documentation at https://docs.microsoft.com/en-us/sql/t-

sql/statements/alter-database-transact-sql-set-options.

What better way to interpret how to use the options than from the

SQL Server community. There may be no one I know who is more

passionate about Query Store than Erin Stellato, and she has an

excellent blog talking about these new options at www.sqlskills.

com/blogs/erin/query-store-in-sql-server-2019-ctp-3-0/.

• Plan cache granular control

There are some cases where you want to manually clear a query

or procedure from plan cache. One scenario might be to force

a query to be recompiled. You can use the ALTER DATABASE

SCOPED CONFIGURATION option CLEAR PROCEDURE_CACHE

to clear plan cache for all queries and objects related to a

database. Starting in SQL Server 2019, you can clear a plan cache

using this statement based on a plan_handle. You can find a plan_

handle using a DMV like dm_exec_query_stats.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://www.sqlskills.com/blogs/erin/query-store-in-sql-server-2019-ctp-3-0/
https://www.sqlskills.com/blogs/erin/query-store-in-sql-server-2019-ctp-3-0/

393

• DBCC CLONEDATABASE enhancements

DBCC CLONEDATABASE can be used for troubleshooting

purposes to collect the schema and statistics from a database,

but without user data, into a new database. This can allow you to

investigate the estimated query plan for a database without having

to copy all of the actual data.

SQL Server 2019 enhances DBCC CLONEDATABASE by collecting

statistics for columnstore indexes, which you can read more about

at https://docs.microsoft.com/en-us/sql/t-sql/database-

console- commands/dbcc-clonedatabase-transact-sql.

Tip since dBCC CLonedataBase captures all data in system tables (i.e., the
metadata), this includes data for the Query store. this means you can examine
Query store performance data offline from the main user database.

 What About Business Intelligence?
The SQL Server product comes with Business Intelligence (BI) capabilities, including

SQL Server Analysis Services (SSAS) and SQL Server Reporting Services (SSRS).

Both SSRS and SSAS are part of the SQL Server license for various editions of SQL

Server (SSAS is only part of Enterprise and Standard).

SSRS has no new enhancements in SQL Server 2019. It is important to keep in

mind that Power BI Report Server, which is updated at a different pace than SQL Server

releases, is part of the Enterprise Edition license for SQL Server. You can read more about

Power BI Report Server at https://docs.microsoft.com/en-us/power-bi/report-

server/get-started#licensing-power-bi-report-server.

SSAS does offer new capabilities in SQL Server 2019; you can read about these

enhancements at https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-

in-sql-server-ver15?#analysis-services.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-clonedatabase-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-clonedatabase-transact-sql
https://docs.microsoft.com/en-us/power-bi/report-server/get-started#licensing-power-bi-report-server
https://docs.microsoft.com/en-us/power-bi/report-server/get-started#licensing-power-bi-report-server
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?#analysis-services
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-ver15?#analysis-services

394

 Migration to SQL Server 2019
As you make the decision to migrate to SQL Server 2019 for one, many, or all of your

instances, it always makes sense to have a plan for migration. In this section, I’ll talk

about tools and resources that can be helpful to you as you make decisions and build a

plan for migration to SQL Server 2019.

 The Pam and Pedro Show
This is not a new TV series, but it does sound like one. It represents the methodology that

my colleagues Pam Lahoud and Pedro Lopes have been speaking and training customers

and the community about how to plan for a successful migration to newer releases of

SQL Server. Pam and Pedro call this process Modernizing the Right Way. Instead of

trying to repeat all of the information Pam and Pedro have used for their training, why

not watch it yourself on video? I highly recommend you sit back and watch at your own

pace this video on YouTube, a 1-hour presentation by Pam and Pedro on this topic:

 www.youtube.com/watch?v=5RPkuQHcxxs.

I have also used a slide in my presentations about the flow of migration and tools you

may want to consider using, as seen in Figure 11-3.

Figure 11-3. The migration flow and tools for SQL Server

Pam and Pedro talk about tools as part of their training. I’ll spend the rest of the

chapter reviewing this flow and the tools in Figure 11-3.

Chapter 11 the VoiCe of the Customer and migration

https://www.youtube.com/watch?v=5RPkuQHcxxs

395

 Database Migration Assistant
The Database Migration Assistant (DMA) is a free tool available for you to download

and run on a Windows computer to assess the configuration and code for an existing

instance of SQL Server and to see any possible issues you might face migrating to newer

versions. Pedro shows you a walkthrough of this tool in the video I’ve referenced earlier,

but let me also give you some more details about the tool and why I think you should

strongly consider using it.

DMA is much more than its predecessor tool, Database Upgrade Advisor. DMA has

these major capabilities:

• Assess possible migration blockers for your SQL Server (DMA also

supports Amazon Relational Database Service (RDS) as a source)

migration. This includes options to see what using various database

compatibility level options will provide for you as part of the

migration. These blockers can include breaking changes, behavior

changes, and deprecated features. I’ll discuss more details about

these terms in the section “Database Compatibility.”

• Discover new features in a new version of SQL Server based on an

assessment of your current deployment; DMA is smart enough to

recognize features that might provide you benefits. Some examples of

new feature recommendations include columnstore indexes, Always

Encrypted, Transparent Data Encryption (TDE), and Dynamic Data

Masking.

• Although not specifically related to SQL Server 2019, DMA will also

assess migration issues with SSIS packages when migrating to Azure

SQL Database.

• DMA will also support performing the migration of your database to

various target types like SQL Server 2019. I only recommend you use

this for very small migrations or to test a migration of your database.

Even though DMA is a tool built to run on Windows, you can use this tool for many

different sources and targets, including SQL Server on Windows and Linux, Azure SQL

Database, Azure SQL Database Managed Instance, and SQL Server in Azure Virtual

Machine.

Chapter 11 the VoiCe of the Customer and migration

396

Figure 11-4 shows the possible targets for an assessment and migration using DMA 4.4.

There are a few other nice aspects of DMA you should be aware of:

• DMA is a graphical tool on Windows, but also offers a command-line

interface (CLI) so you can use it in automation scenarios. You can

read more about the DMA CLI at https://docs.microsoft.com/en-

us/sql/dma/dma-commandline.

• If you want to run an assessment for a large number of SQL Server

instances, our migration team has provided a method to store the

information in a database for the purpose of reporting, which you can

read about at https://docs.microsoft.com/en-us/sql/dma/dma-

consolidatereports.

• With this data warehouse of assessment data, you can now build

Power BI reports on this data. The migration team has also provided

a GitHub repo for Power BI reports at https://docs.microsoft.com/

en-us/sql/dma/dma-powerbiassesreport.

Pedro Lopes has a nice walkthrough demo of using DMA in the YouTube video link I

pointed you to previously in this chapter in the section “The Pam and Pedro Show.”

Figure 11-4. Targets supported for DMA

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/dma/dma-commandline
https://docs.microsoft.com/en-us/sql/dma/dma-commandline
https://docs.microsoft.com/en-us/sql/dma/dma-consolidatereports
https://docs.microsoft.com/en-us/sql/dma/dma-consolidatereports
https://docs.microsoft.com/en-us/sql/dma/dma-powerbiassesreport
https://docs.microsoft.com/en-us/sql/dma/dma-powerbiassesreport

397

We have a great database migration team, and you will find some of their blog posts

on the topic very valuable at https://techcommunity.microsoft.com/t5/Microsoft-

Data- Migration/bg-p/MicrosoftDataMigration.

 Database Experimentation Assistant
Assessing the migration of your database and SQL Server deployment is based on the

configuration of your SQL Server and databases (including your T-SQL code like stored

procedures). However, this assessment is fairly static for possible issues to migrate your

SQL Server.

Therefore, one important piece of the migration is performance. Executing as much

performance testing of your SQL Server application is one of the most critical aspects

to a successful migration. Database Experimentation Assistant (DEA) can be a very

powerful tool to help you achieve that goal. The goal is to use DEA to tell you what

queries from your application will run better, worse, or the same on the new target

version of SQL Server. In addition, DEA can tell you if any queries might fail, for example,

due to a compatibility issue.

The DEA documentation can be found at https://docs.microsoft.com/en-us/

sql/dea/database-experimentation-assistant-overview, including a pointer to

download the tool. The tool is free and runs on Windows, but can be used to assess

migrations to SQL Server on Linux.

To use DEA correctly, it is possible you will need up to four SQL Server instances:

• The source SQL Server to capture your workload

• Two target SQL Servers to replay the captured workload traces

• One SQL Server to store analysis and run reports (you need a

database to store the results, so it could actually exist on one of the

target SQL Server instances)

The basic flow for using DEA is as follows:

 1. Back up the database on the source SQL Server.

 2. Capture a trace of your workload using the DEA tool, which can

use SQL Server Trace or Extended Events. SQL Server Trace is

required if you are capturing a workload on a SQL Server version

earlier than SQL Server 2012, because Extended Events does not

Chapter 11 the VoiCe of the Customer and migration

https://techcommunity.microsoft.com/t5/Microsoft-Data-Migration/bg-p/MicrosoftDataMigration
https://techcommunity.microsoft.com/t5/Microsoft-Data-Migration/bg-p/MicrosoftDataMigration
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-overview
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-overview

398

have the required events in SQL Server 2008. DEA does support

SQL Server 2005, but you must use SQLTrace (you must use

SQLTrace for any SQL Server version prior to 2012).

In order to make the best use of the DEA tool, you need to capture

a trace of your workload that is representative of the application.

The DEA tool allows for captures that range from 5 minutes up

to 3 hours. You may have a test server where you can capture a

trace for your application, or you may need to run it against the

production SQL Server.

 3. Prepare replaying traces by restoring the backup in Step 1 to two

target SQL Server instances:

Target Server #1 – A version of SQL Server that is the same as the

source from the captured trace in Step 2. You generally do not

want to use your production SQL Server.

Target Server #2 – The new version of SQL Server you are

migrating toward, which can be SQL Server on Linux.

You should set up these SQL Server instances with environments

as close to identical as possible in terms of CPU, Memory, disk

speeds, and SQL Server configurations.

 4. Use the DEA tool to replay the captured trace from Step 2 on both

target SQL Servers. The DEA tool will ask for a location to save a

trace of the replay.

 5. Use the DEA tool to analyze the two captured replay traces so you

can compare performance or possible errors from queries in the

trace. The DEA tool will prompt you for a SQL Server database to

store the analysis results and the location of the replayed traces

from Step 4.

Chapter 11 the VoiCe of the Customer and migration

399

Tip earlier versions of dea required you to use a feature in sQL server called
distributed replay. You can still use that method, but, as of dea version 2.6, you
can use the InBuilt replay method. the inBuilt replay method internally uses a tool
called ostress.exe (i introduced you to this tool in Chapter 2). it is still a famous
tool within the sQL server team and community and was developed by my lifetime
friends at microsoft, Keith elmore and robert dorr.

I highly recommend you take a look at DEA before you perform any major migration of

SQL Server. Pedro Lopes has a nice walkthrough demo of DEA reports in the YouTube video

link I pointed you to previously in this chapter in the section “The Pam and Pedro Show.”

Here are a few tips and notes about using the DEA tool:

• DEA comes with reporting tools to view an analysis of the replays. You

can read more about DEA reports at https://docs.microsoft.com/

en-us/sql/dea/database-experimentation-assistant-view-report.

• DEA also allows you to automate execution from a command-line

interface (CLI), which you can read more about at https://docs.

microsoft.com/en-us/sql/dea/database-experimentation-

assistant-run-command-prompt.

 Upgrading to SQL Server 2019
After you perform all of your assessments and you are ready to proceed with an upgrade,

you have the following choices.

 In-Place Upgrade
This is the process of directly upgrading SQL Server by running setup on the same

computer as the SQL Server installation. While this process is completely supported by

Microsoft for enterprise production installations, I don’t recommend it, except in the

case of rolling upgrades, which I’ll discuss later in this chapter. This is not an official

Microsoft position, but my own recommendation based on years of experience working

with customers in Microsoft Support. Even if you choose this option, ALWAYS ensure

you have a complete backup of your SQL Server databases from the previous version of

SQL Server before you perform the upgrade. In fact, I actually recommend you capture a

complete image of the server or virtual machine, so that you could rapidly roll back the

exact snapshot of your production server should that be needed.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-view-report
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-view-report
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-run-command-prompt
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-run-command-prompt
https://docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-run-command-prompt

400

Note sQL server on Linux also supports an in-place upgrade by changing the
repository to the new version of sQL server and running a package manager
update (e.g., yum update mssql-server).

There is a variation of an in-place upgrade called a rolling upgrade. You can use this

method with Always On Failover Cluster Instance or Always On Availability Groups. I’ll

discuss this option in the section “Live Migration.”

Don’t forget about the possible upgrade scenario using containers as I described in

Chapter 7, in the section “A New Way to Update SQL Server.”

 Restore a Database

This is perhaps the most common method to upgrade SQL Server (outside of a rolling

upgrade). The SQL Server engine understands how to upgrade a database when it is

restored (technically SQL Server knows how to upgrade a database when it is brought

online which is how an in-place upgrade works). Therefore, many customers choose to

install SQL Server on a different computer or virtual machine for a migration and restore

their databases from an older version of SQL Server.

It is not possible to restore an upgraded database from a major version back down

to an older major version. For example, you cannot restore a backup from SQL Server

2019 to SQL Server 2017 (but as I showed you in Chapter 7, you can switch between

cumulative updates within a major version).

For SQL Server 2019, you will be able to restore databases from SQL Server 2008 or

later. This includes the ability to restore from SQL Server on Windows to a SQL Server

2019 on Linux, since databases are fully compatible across operating system platforms. If

you have a database backup from a version of SQL Server prior to SQL Server 2008, you

will need to perform a “jump” process by restoring the backup to a supported version of

SQL Server (as early as 2008), then back up from there and perform another restore to

SQL Server 2019.

One of the key pillars to help reduce problems with migration is that when a

database is restored to a new version of SQL Server, the database compatibility level is
retained from the older SQL Server version. I’ll discuss more about this concept in the

section later in the chapter called “Database Compatibility.”

Chapter 11 the VoiCe of the Customer and migration

401

 SQL Server Integration Services (SSIS) or Bulk Import/Export

Another method to migrate your database to SQL Server 2019 is to export and import the

data using SQL Server Integration Services (SSIS) or other tools for bulk export/import.

I’ve seen some customers use this method when they need to perform

transformations or structural changes to the overall database design or schema. In

other words, instead of just moving the database “as is,” some customers migrate the

application with a move to a new version of SQL Server. This includes changes to the

database schema. Another technique I’ve seen for transformation is to restore the

database from a previous version and then run build code on the new version of SQL

Server to redesign certain tables or stored procedures.

 Live Migration

Restoring a database requires downtime for the application and users. What if your

business requirements require a very small amount of downtime? In these scenarios,

you may consider using some techniques, such as

• Rolling upgrade

One popular option if you are using an Always On Failover Cluster

Instance or Always On Availability Group is a rolling upgrade.

Both of these options are possible with SQL Server 2019, and a

rolling upgrade is one of the reasons customers use these High

Availability solutions.

Always On Failover Cluster Instance supports rolling upgrades,

provided the SQL Server version on the current cluster is

supported for an in-place upgrade scenario. You can read more

about rolling upgrades for an Always On Failover Cluster Instance

at https://docs.microsoft.com/en-us/sql/sql-server/

failover-clusters/windows/upgrade-a-sql-server-failover-

cluster-instance.

Always On Availability Groups are only supported back to SQL

Server 2012, since that is the first version where this technology

was available. This rolling upgrade option has many options

and is probably the most preferred method for an enterprise

live migration scenario for SQL Server. You can read about this

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance

402

option at https://docs.microsoft.com/en-us/sql/database-

engine/availability- groups/windows/upgrading-always-on-

availability-group-replica-instances.

SQL Server 2017 also introduced a new feature for Availability

Groups called Clusterless Availability Groups. A Clusterless

Availability Group does not require underlying failover clustering

software. It is also possible to perform a live migration using this

technology, and it could be one of your best options to migrate

from SQL Server 2017 to SQL Server on Linux. You can read

more about this option at https://docs.microsoft.com/en-us/

sql/linux/sql-server- linux-availability-group-cross-

platform.

• Log Shipping

A more basic method for a live migration is to use Log Shipping.

Log Shipping is a simple technology that uses SQL Server

database and transaction log backups and restores to synchronize

data to a secondary SQL Server. You can read about Log Shipping

at https://docs.microsoft.com/en-us/sql/database-engine/

log-shipping/about-log-shipping-sql-server. This is a form

of a manual rolling upgrade that does not require any Always On

technologies.

You can read through the process of upgrading with Log Shipping

at https://docs.microsoft.com/en-ca/sql/database-engine/

log-shipping/upgrading-log-shipping-to-sql-server-2016-

transact- sql.

• Replication

Our documentation provides details on how to upgrade a

complete SQL Server replication topology at https://docs.

microsoft.com/en-us/sql/database-engine/install-windows/

upgrade- replicated- databases. One interesting idea (I was

inspired by Amit Banerjee on this idea when we visited a customer

together) is to use SQL Server Replication for a live migration,

even if you don’t need replication as a strategy.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-cross-platform
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-cross-platform
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-cross-platform
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server
https://docs.microsoft.com/en-ca/sql/database-engine/log-shipping/upgrading-log-shipping-to-sql-server-2016-transact-sql
https://docs.microsoft.com/en-ca/sql/database-engine/log-shipping/upgrading-log-shipping-to-sql-server-2016-transact-sql
https://docs.microsoft.com/en-ca/sql/database-engine/log-shipping/upgrading-log-shipping-to-sql-server-2016-transact-sql
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-replicated-databases
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-replicated-databases
https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-replicated-databases

403

Since a subscriber in a replication topology can be a newer

version of SQL Server than the distributor and publisher, you

could use the subscriber as your new primary. In other words, you

could set a subscriber with SQL Server 2019, with an older version

of SQL Server as the distributor and publisher. As your apps and

users are writing against the older publisher, your SQL Server 2019

subscriber has all the latest data. When you are ready for a cutover,

disable replication and point all users to the new SQL Server

2019 database (which was the subscriber). It sounds simple, but

there will be some downtime, and it may be painful to set up and

disable replication. Disabling replication does not remove data

in the subscriber database, and this is documented at https://

docs.microsoft.com/en-us/sql/relational-databases/

replication/disable-publishing-and- distribution.

 Database Compatibility
Database compatibility is designed to provide backward compatibility as you migrate to

a newer version of SQL Server. You should use the following resource for all terminology

and details about database compatibility: https://aka.ms/dbcompat.

One of the first things you should understand is how database compatibility levels

correspond to the default level for a SQL Server version. You can see this list at https://

docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-

compatibility- level?#syntax. As an example, the default database compatibility level

of SQL Server 2012 is 110.

Note i’ve been asked before why the dbcompat levels don’t line up with the
name or version label of the sQL server release. this is because sQL server has
an internal version number, and the dbcompat levels line up with that version
number. sQL server 2012 is really version 11.x (see @@Version) so the
dbcompat level is 110. Confusing, i realize, but we name releases a bit differently
from how we version them.

If you restore a database backup from SQL Server 2012 to SQL Server 2019, SQL

Server will keep the database compatibility level at 110. The intention of this design is for

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/relational-databases/replication/disable-publishing-and-distribution
https://docs.microsoft.com/en-us/sql/relational-databases/replication/disable-publishing-and-distribution
https://docs.microsoft.com/en-us/sql/relational-databases/replication/disable-publishing-and-distribution
https://aka.ms/dbcompat
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#syntax
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#syntax
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#syntax

404

you to have confidence that your application, queries, and behavior against the database

will behave just like it was running on SQL Server 2012. The difference is you can now

take advantage of new features in the new release of SQL Server (there is an exception to

this in that we sometimes use database compatibility to enable new functionality).

I mentioned in the preceding section on Database Migration Assistant (DMA) that

the DMA tool would look for migration problems using the following terms: breaking

changes, behavior changes, and deprecated features. Let me define these terms in

relation to the use of database compatibility for backward compatibility.

Breaking changes is defined as behavior changes that can result in a different

outcome. In some cases, a breaking change is protected by using a database compatibility

level on a new version of SQL Server. In other cases, a breaking change is not protected

by database compatibility level. Confusing? I understand how you feel. Fortunately,

the most recent versions of SQL Server have very few breaking changes that are not

protected. The good news is that the DMA tool is designed to help detect these issues.

To find out a list of breaking changes with each SQL Server version, start at this

documentation page https://docs.microsoft.com/en-us/sql/t-sql/statements/

alter-database-transact-sql-compatibility-level?#using-compatibility-

level-for-backward-compatibility and scroll down for the section that starts with the

sentence, “Breaking changes introduced in a given SQL Server version…” This section

includes pointers to breaking changes in all SQL Server versions back to SQL Server 2012.

There are some behavior changes used with database compatibility level that are

designed to correct a problem or enable new functionality. One example of this is the

Intelligent Query Processing capability I discussed in Chapter 2, which is enabled with

database compatibility 140 or 150.

Deprecated functionality is protected by database compatibility level. Deprecated

functionality includes features or behavior that we do not intend to enhance in the

future. Microsoft may remove this functionality in any new release. Discontinued

functionality means we have removed a feature or behavior from a release of SQL

Server, so database compatibility will not help. Discontinued functionality starts

as deprecated first. Fortunately, we have made decisions in recent releases to not

discontinue anything. However, I personally would not rely on deprecated functionality,

especially for new projects. The SQL Server documentation to find deprecated

functionality is easier with recent releases. Use the following documentation link to

find deprecated and discontinued functionality in recent releases: https://docs.

microsoft.com/en-us/sql/database-engine/sql-server-database-engine-

backward-compatibility. To go further back, you will have to switch to an older release

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#using-compatibility-level-for-backward-compatibility
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#using-compatibility-level-for-backward-compatibility
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#using-compatibility-level-for-backward-compatibility
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-compatibility
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-compatibility
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-compatibility

405

of the documentation. For example, this is the documentation link for SQL Server 2014:

https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-

engine-backward-compatibility?view=sql-server-2014.

With this in mind, how good is database compatibility level to maintain backward

compatibility when migrating to a new version of SQL Server? It is good enough

that Pedro Lopes is hoping you will bet on it. And he is hoping to convince many

Independent Software Vendors (ISV) to do the same. Pedro’s vision is for application

developers to certify their application on a database compatibility level instead of on a

version of SQL Server. If you listen closely to Pedro on the video link I provided in “The

Pam and Pedro Show” section, he says, “Microsoft will stand by Database Compatibility”

as a certification model by

• Full functional protection if the DMA tool comes back clean with

no errors.

This means no breaking changes for your application if you pick

an appropriate database compatibility level that comes back with

no errors.

• Query plan shape protection on similar hardware

This means the structure of a query plan (i.e. operators and

their flow) should not change on similar hardware where you

ran the query on a previous version using the same database

compatibility level on the new version of SQL Server.

To this date, our experience is that these bold statements are holding true with our

customers.

Here is my summary of what you can expect for backward compatibility as you think

of migrating to SQL Server 2019:

• If you have been using a discontinued feature, your application might

break after migrating.

• If you have been using a deprecated feature, you should be fine. But

I would make plans to move away from relying on this deprecated

functionality.

• Start with the database compatibility (dbcompat) level that matches

the SQL Server version you were migrating from. If you are on SQL

Server 2012, keep your dbcompat at 110 as a starting point.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-compatibility?view=sql-server-2014
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-compatibility?view=sql-server-2014

406

Note the biggest change in database compatibility (dbcompat) level that could
affect query performance was 120. this is because we introduced a fairly large
change to the query optimizer called the Cardinality estimation (Ce) model. if you
migrated to a newer version of sQL server and needed to use a dbcompat of 120
or higher, but experience issues related to the Ce model, you can disable the Ce
mode using the LegaCY_CardinaLitY_estimation option of aLter dataBase
sCoped Configuration.

• Keep this dbcompat level in your production SQL Server 2019

instance, or perform a test migration to SQL Server 2019, and do

further testing with newer dbcompat levels to look for any issues with

your application. In the next section, I’ll discuss a tool called Query
Tuning Assistant that can aid you in these efforts. You can use the

DMA tool to see the configuration assessment of various dbcompat

levels for SQL Server 2019 for your database.

A few other comments about database compatibility (dbcompat) and backward

compatibility:

• You can see a complete list of differences in behavior between

dbcompat levels starting at this documentation link: https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-

transact-sql-compatibility-level?#differences-between-

compatibility-level-140-and-level-150. You start here and scroll

down to see differences, all the way back to 90 (SQL Server 2005).

• Database compatibility does not affect breaking changes at the

SQL Server instance level. So as good as our commitment is to use

dbcompat as a mechanism to certify an application, if the application

uses any SQL Server instance level functionality, you need to ensure

this is well tested. Instance level functionality could be anything from

the use of system catalog views, system Dynamic Management Views,

SQL Agent, Linked Servers, or T-SQL statements that affect the entire

instance of SQL Server and are not scoped to a database.

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#differences-between-compatibility-level-140-and-level-150
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#differences-between-compatibility-level-140-and-level-150
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#differences-between-compatibility-level-140-and-level-150
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?#differences-between-compatibility-level-140-and-level-150

407

 Query Tuning Assistant and Post Migration
At various times in 2018, I kept seeing e-mails to our teams from Pedro Lopes about a

project he was working on called TUNA. At least that is how I kept remembering the

project name. What the name of the project really was, I came to find out, was TunA.
TunA stands for Tuning Assistant.

If you remember back to the previous section, where I talk about recommendations

for database compatibility, I mention the idea of testing your application against a new

database compatibility level as part of our migration.

Let’s review back to the video from “The Pam and Pedro Show” section earlier in

this chapter. About 40:40 into the video, you will see Pedro talk about Post Migration.

What he means here is that there are steps you can take to optimize your workload after

you migrate to a newer version of SQL Server, assuming you kept your source database

compatibility level from the previous version of SQL Server.

Pedro proposes a methodology using Query Store to compare workload performance

before and after a change to database compatibility level. This method comes from the

documentation with Query Store as a usage scenario, called Keep performance stability
during the upgrade to newer SQL Server, which you can read at https://docs.

microsoft.com/en-us/sql/relational-databases/performance/query-store-usage-

scenarios?#CEUpgrade.

Now comes in the TunA project. Pedro and team built functionality into the SQL

Server Management Studio (SSMS) tool in version 18.x called the Query Tuning
Assistant (QTA). QTA allows you to automate the process of using the Query Store

to assess and fix any query performance issues when moving to a new database

compatibility level.

Figure 11-5 shows the QTA workflow.

Figure 11-5. The QTA workflow

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-store-usage-scenarios?#CEUpgrade
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-store-usage-scenarios?#CEUpgrade
https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-store-usage-scenarios?#CEUpgrade

408

Using the QTA tool with SSMS provides you expert advice when query performance

may be worse under a new database compatibility level, after a migration to a newer

version of SQL Server. The resulting recommendations may involve a change to the

query, such as the use of query options. All of the recommendations are based on

documented advice. It’s like having “Pedro Lopes in a box.”

I thought about putting a sample of QTA in this chapter, but, instead, why not

just use the extremely well put together sample Pedro Lopes has on GitHub. You can

download and use this example from https://github.com/microsoft/tigertoolbox/

blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md.

 Running in Azure Virtual Machine
When you make the decision to deploy or migrate to SQL Server 2019, you may want to

consider using SQL Server 2019 in the cloud. One option to run SQL Server 2019 in the

cloud is with Azure Virtual Machine (which is known as an Infrastructure as a Service or

IAAS environment).

Azure Virtual Machine (VM) allows you to focus on the deployment of the operating

system (Windows or Linux) and SQL Server and not worry about the hardware platform

and infrastructure.

Azure VM is known as one of the most frictionless methods to move to the cloud for

SQL Server, because your interaction with SQL Server is just like a virtual machine in

your data center or your environment.

In reality, that is not 100% true, because there are choices you have to make that are

specific to Azure, including machine sizes, storage, networking, and security. We have

guidance in our documentation about all of these choices at https://docs.microsoft.

com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-

server- iaas-overview.

We also provide automation with Azure Virtual Machine that you may not be

aware of. This includes automated backups for SQL Server and automated patching

for both the operating system and SQL Server. You can read about automated backups

at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/

virtual-machines-windows-sql-automated-backup-v2 and automated patching

at https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/

virtual-machines-windows-sql-automated-patching.

Chapter 11 the VoiCe of the Customer and migration

https://github.com/microsoft/tigertoolbox/blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md
https://github.com/microsoft/tigertoolbox/blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-automated-backup-v2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-automated-backup-v2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-automated-patching
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-automated-patching

409

In the summer of 2019, we announced three important updates in Azure that are

helpful for managing SQL Server in Azure Virtual Machine:

• A new Azure portal experience, called Azure SQL, which simplifies

creating and managing assets related to SQL Server in the cloud.

Figure 11-6 shows the new Azure SQL portal experience.

• A method to register your Azure Virtual Machine (VM) with
SQL Server with our resource provider. This registration applies to

scenarios where you install SQL Server in an Azure Virtual Machine

instead of using the gallery images. It unlocks your SQL Server in

Azure VM to take advantage of Azure Hybrid Benefits, compliance,

automated backup, and automated patching. You can read more

about this capability at https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/sql/virtual-machines-windows-sql-

register- with-resource-provider.

Figure 11-6. The Azure SQL portal experience

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-register-with-resource-provider
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-register-with-resource-provider
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-register-with-resource-provider

410

• Azure announced the general availability of Ultra Disk Storage

or Ultra SSD. Ultra SSD provides low-latency, extremely fast

performance in the cloud, which matches very well to I/O-intensive

SQL Server workloads. You can read about the announcement

for Ultra SSD at https://azure.microsoft.com/en-us/blog/

announcing-the-general-availability-of-azure-ultra-disk-

storage/. If you want to see Ultra Disk Storage in action with SQL

Server, check out the recording of this Microsoft Ignite session in

2018: https://azure.microsoft.com/en-us/resources/videos/

ignite-2018-running-high-performance-workloads-in-azure-

with-ultra-ssds-the-next-gen-azure-managed-disk/. If you

look about 46 minutes into this recording, you might recognize this

presenter as he shows SQL Server performance with Ultra Disk

Storage.

 SQL Server Migration Assistant
Some of you reading this book may not be using SQL Server or may have other assets

in your organization for other database products such as Oracle, mySQL, and DB2.

I covered in Chapter 9 how to use Polybase to access these data sources. But what if you

want to migrate your database and application from these products to SQL Server?

We have a free tool to assist you with migrations to SQL Server (and Azure) from

other “third-party” database solutions. This tool is called the SQL Server Migration
Assistant. The right-hand side of Figure 11-3 shows the possibilities with this tool. You

can read more about this tool, how to deploy it, and how to use it successfully for a

migration at https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-

assistant.

Figure 11-7 shows a screenshot of using SSMS to migrate from Oracle.

Chapter 11 the VoiCe of the Customer and migration

https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-ultra-disk-storage/
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-ultra-disk-storage/
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-ultra-disk-storage/
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-running-high-performance-workloads-in-azure-with-ultra-ssds-the-next-gen-azure-managed-disk/
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-running-high-performance-workloads-in-azure-with-ultra-ssds-the-next-gen-azure-managed-disk/
https://azure.microsoft.com/en-us/resources/videos/ignite-2018-running-high-performance-workloads-in-azure-with-ultra-ssds-the-next-gen-azure-managed-disk/
https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-assistant
https://docs.microsoft.com/en-us/sql/ssma/sql-server-migration-assistant

411

SSMA comes as a series of tools, one for each type of third-party product supported

for migration. Like DMA and DEA, SSMS also has a command-line interface (CLI). You

can read more about the syntax of SSMS for Oracle at https://docs.microsoft.com/

en- us/sql/ssma/oracle/command-line-options-in-ssma-console-oracletosql.

Figure 11-7. Using SSMS to migrate from Oracle to SQL Server

Chapter 11 the VoiCe of the Customer and migration

https://docs.microsoft.com/en-us/sql/ssma/oracle/command-line-options-in-ssma-console-oracletosql
https://docs.microsoft.com/en-us/sql/ssma/oracle/command-line-options-in-ssma-console-oracletosql

412

 Summary
In this chapter, I’ve shown numerous enhancements to SQL Server 2019 based on

customer feedback and our experiences working directly with customers. Each of these

may not seem like major enhancements, but, collectively, they represent key innovation

to enhance the performance, user experience, and diagnostics of SQL Server.

I’ve also discussed how to plan and execute a migration to SQL Server 2019 including

tools, strategies, and the use of database compatibility for functional and performance

protection.

This chapter marks the end of our journey together in this book with SQL Server 2019.

I hope you have enjoyed reading and learning about SQL Server 2019 as much as I

enjoyed writing about it. For many of you, this will really be the beginning of your

journey with SQL Server 2019. For me, you will continue to hear me speak and talk about

SQL Server 2019. But I’ll also be looking into the future for our next release, our rapid

pace of work in the cloud, and the next set of innovation that makes SQL Server a truly

unique product in the industry.

Chapter 11 the VoiCe of the Customer and migration

413
© Bob Ward 2019
B. Ward, SQL Server 2019 Revealed, https://doi.org/10.1007/978-1-4842-5419-6

Index

A
Aborted transaction map, 130
Accelerated database recovery (ADR),

116, 125
fast rollback and aggressive log

transaction, 136
long active transactions, 126
performance/size, 139–141
PVS, 129, 141, 142

log records, 133, 135
off-row storage, 130
phases, 131, 133
recovery process, 130
snapshot isolation, 129

speeding up recovery, 137, 139
SQL process, 127–129
tracking, 142

extended events, 143
usage, 144

Active Directory (AD) authentication,
186, 238

Adaptive Query Processing (AQP), 21
Aggressive log truncation, 127
Always encrypted, 11

architecture, 89
attestation service, 91
client application, 89
secure enclaves, 90–92
SQL Server 2016, 89

Apache Spark, 5
Application Programing

Interface (API), 252
APPROX_COUNT_DISTINCT()

function, 57
Architecture, BDC

controller, 357
ADS, 358
application pool, 362, 363
compute pool, 361
control plane, 358
data pool, 361, 362
server container, 359
service, 358
storage pool, 359–361

k8s perspective, 352, 353
pool, 352
SQL server master instance, 353–357

Aris cluster, 5
Attestation Service, 91
Availability Group (AG), 372
Availability groups

enchancements, 123
concepts, 124
read/write connection

redirection, 124, 125
synchronous replicas, 124

Azure Data Studio (ADS), 14, 211, 317,
339, 358

Azure Kubernetes Service (AKS), 250, 254

https://doi.org/10.1007/978-1-4842-5419-6

414

B
Bare metal computer, 199
Bash shell scripts, 210
Batch mode, rowstore, 49–51
Big data clusters (BDC), 3, 6

ADS, 365
application deployment, 337
architecture (see Architecture, BDC)
controller service endpoint, 337, 363
data cache, 336
deployment (see Deployment, BDC)
HDFS, 335, 336
high availability, 372
high-value data, 332
IP address, 365
Jupyter Book, 373
Kubernetes (k8s), 376, 377
ML, 337, 374

examples, 375, 376
packages, 375

managing/monitoring, 377
ADS, 378
azdata, 380
Grafana metrics, 378
kibana and

elastic search, 379
master instance, 332
polybase, 336
security, 372
service endpoints, 337
solutions, 333
sources, 338, 339
spark, 336
SQL Server 2019, 335
Swagger, 372
technologies, 334

Breaking/behavior changes, 404
Business Intelligence (BI), 393

C
Cardinality estimation (CE), 20
Certificate management, 88, 112–114
Change data capture (CDC), 13, 177, 184
Columnstore indexes, 49
Command-line interface (CLI), 252, 396
Complete durability, 181
Compute nodes, 309
Constant time recovery (CTR), 125
Containers, SQL Server

AD Authentication, 238
application, 229
bin/libs, 198
capability, 195
CMD statement, 204
command-line tools, 203
concept, 195
concept of isolation, 196
consistent, 197
COPY command, 204
cumulative update, 225–228
daemon program, 204
db-init.sh, 231, 233
db-init.sql, 232, 233
debugging technique, 206
deployment, 212–224
directory, 205
docker, 198
Docker magic, 200–201
editions/licensing, 242, 243
efficient, 198
entrypoint.sh, 231, 232
-e parameters, 205
EXPOSE command, 204
FROM command, 204
high availability, 239
hosting, 199, 200
host OS, 198

INDEX

415

image, 196
isolated manner, 196
lifecycle, 201–203
lightweight, 197
Linux users, 211
macOS users, 211
non-root containers, 238, 239
operating system, 196
packages, 242
performance, 236, 237
persisted storage, 198
portable, 196
replication, 233–236
resource control, 239, 240
RUN command, 204
security, 238
server/database configuration, 241
startup sequence, 206
virtual machines, 195
windows users, 211
working, 206–209

Continuous integration/continuous
delivery (CI/CD), 374

COUNT() function, 57

D
Data nodes, 5
Database compatibility, 403

backward, 405, 406
certification model, 405

Database Experimentation Assistant (DEA)
flow, 397, 398
instances, 397
tool, 399

Database Migration Assistant (DMA), 404
capabilities, 395
targets, 396

Database scoped credential, 304
Data classification

accept classification
recommendations, 99

auditing, 105–110
data sensitivity details, 108
information_type, 93
launching tool, 97
manually adding, 102
report, 100
saving accepted

recommendations, 100
SSMS, 98
tool, 94
T-SQL, 104
view columns, 96
WHERE clause, 110
wizard in SSMS, 92

Data Movement Service (DMS), 308, 324
Data platform, 2
Data pool, 336, 369
data_sensitivity_information, 94, 105
Data virtualization, 5, 10

built-in connectors, 366
concept, 300
definition, 300–302
external tables, BDC, 367
HDFS in BDC, working, 368
polybase, 301
T-SQL scripts, 366

Deployment, BDC
configuration, 350, 351
experience, 344–346
Kubernetes (k8s) distribution, 339, 340
method, 343, 344
offline, 344
sanity check, 346–349
tools, 341, 342

Index

416

Deployment options, Kubernetes
AKS, 254
Azure Stack, 254
cloud providers, 255
Minikube, 253
open source, 253
Red Hat OpenShift, 254
Windows Server, 254

Deployment, SQL Server
ADS, 219, 224
dockerpowershell directory, 212
RHEL container, 213
WideWorldImporters backup file, 212

Deprecated functionality, 404
Development servers, 197
Diagnostics, 389–393
Discontinued functionality, 404
Distributed Transaction Coordinator

(DTC), 13, 151, 176
Docker-compose.yml file, 230, 231
DockerDesktopVM, 199
Docker inspect command, 208
Docker magic

control groups, 200
Namespace, 200
readable layer, 201
union file system, 200
volume, 201
writeable layer, 201

Dynamic Management Function (DMF), 68
Dynamic Management

Views (DMVs), 61, 179, 377

E
Edge constraints, 155
Elastic Kubernetes Service (EKS), 255
Enclaves, 90, 91

Encrypting connections, 88
Encrypting data, 89
End-to-end encryption mechanism, 89
Extensibility framework, 159
External resource pool, 164
External tables

Azure SQL database, 317–325
built-in connectors, 325
HDFS, 326
vs. linked servers, 328
ODBC connector, 326, 327
restrictions/limitations, 328
scope, 315
semantic layer, 327, 328
tools, 315–317

Extract, Transform,
and Load (ETL), 5, 184, 297

F
Failover Cluster Instance (FCI), 112
Fast and consistent

database recovery, 126

G
General Data Protection

Regulation (GDPR), 12, 88
Go application, 150
Go language, 149
Google Kubernetes

Engine (GKE), 255
Graph database

data and metadata, 152
enhancements

edge constraints, 155
MERGE with graph tables, 156
SHORTEST_PATH, 155

INDEX

417

MATCH keyword, 152
nodes and edges, 152
social network, 153, 154
SQL Server, 153, 154

H
Hadoop distributed file

system (HDFS), 335
Hash joins operation, 24
Hash Match operator, 57
HDFS Tiering, 336
Helm charts, 249
High Availability Disaster

Recovery (HADR), 123
Host Guardian Service (HGS), 91
Hybrid Buffer Pool, 82
HyperLogLog, 57

I
Independent Software Vendors (ISV), 405
In-Memory Database

features, 74
hybrid buffer pool, 82
page latch, 79, 80
persistent memory, 82
technical support article, 76
Tempdb metadata, 75, 76
Tempdb system, 80

In-Memory OLTP, 151
Instantaneous transaction rollback, 127
Intelligent performance, new

enhancements, 19
Intelligent Query Processing (IQP)

family tree, 22
faster query plan, 48
methods, 24

slower query plan, 46
steps, 23
table variable estimation, 47, 49
table variable use, 45
top resource consuming report, 44

J
Java Runtime Engine (JRE), 170, 192
Java Runtime Environment (JRE), 299

K
kubectl, 252
Kubernete (k8s), 5
Kubernetes (k8s)

availability, 292–295
Azure Cloud Shell, 258
dashboard, 279, 280
deployment options, 253–255
extension

ERRORLOG, 276
namespace setting, 275
terminal session, 275
Visual Studio Code, 273
YAML file, 274

Helm Charts, 249, 292
high availability, 281–287
hosting containers, 249
internal comments, 252
kubectl commands, 277–279
kubectl distribution, 255–257
load balancer, 256
metrics/logs, 280, 281
mobile user, 259
objects

cluster, 251
node, 251

Index

418

pod, 251
PVC, 251
secret, 251
service, 251
storage class, 251

references, 250
reverse engineering, 277
SQL Server deployment, 257–273
storage class, 255
updating SQL Server, 287–292

kubespray, 253

L
Languages and drivers, 148–150
Last-page insert contention, 83–85
Latch convoy, 83
launchpadd, 190
Libcontainer, 201
Lifecycle, container

build command, 202
client, 202
compose, 202
engine, 201
pull command, 202
push command, 202
run command, 203

Lightweight profiling, 62
Lightweight query profiling, 61, 62

active query, 65, 66
better query, 73, 74
nested loops, 67, 68
problem query, 71–73
SSMS, 64, 65, 69, 70
usage, 62, 63

Linux
AD, 186, 187

CDC, 184
deployment enchancements, 180, 181
deployment, SQL ML services, 187–189
DTC, 176, 184–186
extensibility framework/language

extensions, 192
feature parity, 177, 178
launchpadd

mssql_satellite login, 191
R script, 190
T-SQL script, 190

platform enchancements, 178
dm_os_ring_buffers, 179
memory notifications, 179

pmem, 182
polybase to SQL Server, 13
releases, 181, 182
replication, 183
SQLPAL, 176
SQL server architecture, 175

Linux Containers for
Windows (LCOW), 199

Live query stats, 61
Log Sequence Number (LSN), 128
Log Shipping, 402

M
Machine Learning, 13
MATCH, 152
Max Server Memory (MB) value, 388
Memory-based hardware, 81
Memory grants

excessive
properties, 40, 41
sa login, 37–39

feedback, 25
healed itself, 26

Kubernetes (k8s) (cont.)

INDEX

419

operations, 24
problems, 25
underestimated

estimates vs. actuals, 30
feedback properties, 36
hash join tempdb spill, 31
query plan, 29
query plan properties, 33
SELECT operator, 32, 35

underestimated
query plan properties, 34
T-SQL script, 27–29

Memory notifications, 179
Memory-optimized tables, 75
Metanautix, 5
Microsoft Container Registry, 210
Microsoft Distributed Transaction

Coordinator (MSDTC), 184
Mission-critical availability, 12
Modern data developer

graph database (see Graph database)
languages and drivers, 148–150
ML Services (see SQL Server Machine

Learning Services)
platforms and editions, 151
UTF-8 Support, 157, 158

Modern Data Platform
ADS, 14
customer support, 14
data virtualization, 10
developers, 12, 13
investment, 13, 14
mission-critical availability, 12
performance, 11
security, 11

Modern development platform, 12, 13
mssql-java-lang-extension.jar, 169

mssql-launchpadd, 189
mssql-mlservices-packages-py, 188
mssql-mlservices-packages-r, 188

N
National Vulnerability Database (NVD), 88
nchar and nvarchar data types, 157
Non-root containers, 209

O
off-row storage, 130
Online index maintenance, 116, 117

clustered columnstore, 123
creation, 118–123
prerequisites, example, 118
resumable index rebuild operation, 117

Open Container Initiative (OCI), 201

P
Paging file, 31
Parallel data warehouse, 4
Parallel Data Warehouse (PDW), 298
Performance, 11
Performance enhancements, 384–386
Persistent memory (pmem), 182, 183
Persistent Version Store (PVS), 141, 142
Persistent Volume

Claim (PVC), 251, 265, 293, 351
Polybase

Azure, 310
data movement, 297
data virtualization, 297
external tables work, 305, 306
history, 298–300

Index

420

Linux, 193, 310
prerequisites (see Prerequisites,

polybase)
scale-out group, 309
standalone instance, 307, 308
workflow, 303–305

Post migration, 407
Prerequisites, polybase

setting up and enabling, 311, 312
WWI, 314

Program managers (PM), 166
Project SQL Server Seattle, 2
Pushdown, 306

Q
Query processing and polybase, 310
Query Processor (QP), 21
Query profiling infrastructure, 61
Query Tuning Assistant (QTA), 406, 407

R
Red Hat Enterprise

Linux (RHEL), 13, 182, 206
Relational database, 151
Relational database management

system (RDBMS), 335
Resource Governor, 164
RevoScaleR, 159
Ring buffer dynamic

management views, 179, 180

S
Seattle project, 2, 3
Secure enclaves, 11, 90

Security, 11, 12
always encrypted (see Always

encrypted)
capabilities, 87, 88
certificate management, 112–114
challenges, 87, 88
data classification (see Data

classification)
features, 88
GDPR, 88
TDE pause and resume, 111, 112

Sensitivity classifications, 105–110
Server/database

configuration, 241
SHORTEST_PATH()

T-SQL syntax, 155
Short-transaction

optimization, 142
Software Guard

Extensions (SGX), 90
Sort operation, 24
Spark, 4, 369

ADS, 369, 370
MSSQL spark connector, 371
running with tools, 370, 371

SQL Platform Abstraction
Layer (SQLPAL), 175

SQL Server 2016 R Services, 159
SQL Server 2019

Azure VM, 408, 409
deploy and configure, 15
key functionality, 9
migrate from Oracle, 411
migration

DEA, 397
DMA, 395
flow and tools, 394

Polybase (cont.)

INDEX

421

upgrading
databases, restore, 400
in-place/rolling, 399, 400
Log Shipping, 402
replication, 402
rolling, 401
SSIS, 401

SQL Server Analysis
Services (SSAS), 393

SQL Server Audit, 105
SQL Server development hub, 149
SQL Server Integration Services (SSIS)/

bulk export/import, 401
SQL Server Machine

Learning Services
architecture, 160
deeper dive, 161, 162
extensibility architecture, 160
extensibility framework, 159
features, 165
models, 159
radical, 165
scalable machine learning

programs, 160
security, isolation,

and governance, 163–165
SQL Server Management Studio (SSMS),

14, 64, 92, 95, 118, 179,
235, 315, 407

SQL Server powers Azure
SQL Database, 9

SQL server replication, Linux, 183
SQL Server Reporting

Services (SSRS), 393
SQL server workshops, 16
Standard profiling, 61
Sys.sleep(), 191

T
Table variable deferred compilation, 43
Tabular Data Stream (TDS) protocol, 112
Transparent Data Encryption (TDE), 87,

89, 111, 238, 395
Troubleshooting Guides (TSG), 373
T-SQL BEGIN DISTRIBUTED

TRANSACTION statement, 184
T-SQL Language

extensibility framework, 167, 168
Java extension, tutorial, 170–173
language extension, 174

T-SQL notebook, 43
T-SQL query, 162
T-SQL statements, 94
Tuning Assistant (TunA), 407

U
Ultra Disk Storage, 410
Union file system, 200
User-defined function (UDF), 52

Actual Execution Plan, 53–55
APPROX_COUNT_DISTINCT, 60
COUNT and DISTINCT, 59
Execution Plan, inlining, 57
Execution Plan, not inlined, 56
types, 52

User experience, 386, 387
MaxDOP, 387
memory configuration, 388, 389

UTF-8 Support
unicode encoding, 156
nchar and nvarchar data types, 157
Windows, Linux, and containers, 158

UTF-16, 157

Index

422

V
varchar data types, 157
Verbose truncation warnings, 386
Virtualization-based security (VBS)

memory enclaves, 90
virtual machine (VM), 195, 340

W, X, Y, Z
WideWorldImporters (WWI), 314
Windows containers, 243–246
Windows Subsystem for Linux (WSL), 199
Worker stealing, 385

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: Why SQL Server 2019?
	Project Seattle
	Project Aris
	Seattle Becomes SQL Server 2019
	Modernizing Your Database with SQL Server 2019
	Data Virtualization
	Performance
	Security
	Mission-Critical Availability
	Modern Development Platform
	Investing in the Platform of Your Choice
	Azure Data Studio
	Voice of the Customer

	Getting Started with SQL Server 2019
	Download SQL Server 2019
	Deploy SQL Server 2019
	Migrate to SQL Server 2019
	What’s New in SQL Server 2019
	Download Book Code and Sample Databases
	SQL Server Workshops
	It Is Your Grandpa’s SQL Server?

	Chapter 2: Intelligent Performance
	Why Intelligent Performance?
	Intelligent Query Processing
	Prerequisites for Using the Examples for Intelligent Query Processing
	Memory Grant Feedback Row Mode
	Underestimated Memory Grant
	Excessive Memory Grant

	Table Variable Deferred Compilation
	Batch Mode on Rowstore
	Scalar UDF Inlining
	Approximate Count Distinct

	Lightweight Query Profiling
	Prerequisites for Using the Examples for Lightweight Query Profiling
	Should I Kill an Active Query?
	I Can’t Catch It

	In-Memory Database
	Memory-Optimized TempDB Metadata
	Hybrid Buffer Pool
	Persistent Memory Support

	Last-Page Insert Contention
	Summary

	Chapter 3: New Security Capabilities
	Enhancing What We Have Built
	Always Encrypted with Secure Enclaves
	Why Enclaves?
	Using Always Encrypted with Enclaves

	Data Classification
	Prerequisites for Using the Examples
	Using Data Classification
	Auditing and Data Classification

	Other New Security Features
	TDE Pause and Resume
	Certificate Management

	Summary

	Chapter 4: Mission-Critical Availability
	Online Index Maintenance
	Resumable Index Operations
	Prerequisites to Using the Example
	Try Out Resumable Index Creation
	Online Index Maintenance for Columnstore

	Enhancing Always On Availability Groups
	Support for More Synchronous Replicas
	Secondary to Primary Replica Read/Write Connection Redirection

	Accelerated Database Recovery
	The Challenge of Long Active Transactions
	How Accelerated Database Recovery Works
	SQL Server Normal Recovery
	SQL Server Using Accelerated Database Recovery (ADR)

	Using Accelerated Database Recovery
	Fast Rollback and Aggressive Log Truncation
	Speeding Up Recovery

	Accelerate Database Recovery Nuts and Bolts
	Performance and Size
	Unexpected Scenarios
	Tracking ADR
	Should I Use ADR?

	Summary

	Chapter 5: Modern Development Platform
	Languages, Drivers, and Platforms
	Languages and Drivers
	Platforms and Editions

	Graph Database
	What Is a Graph Database in SQL Server?
	Using a Graph Database in SQL Server
	Graph Enhancements for SQL Server 2019
	SHORTEST_PATH
	Edge Constraints
	Using MERGE with Graph Tables

	UTF-8 Support
	Unicode and SQL Server
	Why Would You Use UTF-8?

	SQL Server Machine Learning Services
	How It Works
	Security, Isolation, and Governance
	What’s New in SQL Server 2019?

	Extending the T-SQL Language
	The Extensibility Framework
	Extending T-SQL with Java
	Prerequisites for the Tutorial
	Tips for the Tutorial

	Implementing and Using Other Languages

	Summary

	Chapter 6: SQL Server 2019 on Linux
	The Amazing Story of SQL Server on Linux
	What Is New for SQL Server 2019 on Linux
	Platform and Deployment Enhancements
	Platform Enhancements
	Memory Notifications
	Ring Buffer Dynamic Management Views

	SQL Server 2019 on Linux Deployment
	Supporting New Linux Releases

	Persistent Memory Support
	SQL Server Replication on Linux
	Change Data Capture (CDC) on Linux
	DTC on Linux
	Active Directory with OpenLDAP
	SQL Server Machine Learning Services and Extensibility on Linux
	Deployment of SQL Server ML Services on Linux
	How It Works
	The Extensibility Framework and Language Extensions

	Polybase on Linux
	Summary

	Chapter 7: Inside SQL Server Containers
	Why SQL Server Containers?
	How SQL Server Containers Work
	Container Hosting
	Is Docker Magic?
	Container Lifecycle
	The SQL Server Container

	What Is New for SQL Server 2019
	Prerequisites for the Examples
	Deploying a SQL Server Container
	A New Way to Update SQL Server
	Deploying Container As an Application
	The docker-compose.yml File
	Building Each Container
	Running the Containers for Replication

	Deploying SQL Containers in Production
	Performance
	Security
	Active Directory Authentication
	Non-root Containers

	High Availability
	Resource Control
	Server or Database Configuration
	Using Other Packages
	Editions and Licensing

	SQL Server Windows Containers
	Summary

	Chapter 8: SQL Server on Kubernetes
	What Is k8s?
	References on k8s
	k8s Objects
	Comment on Internals of k8s

	k8s Deployment Options
	Prerequisites for the Examples
	Deploying SQL Server on k8s
	Tips with k8s
	k8s Extension
	Other kubectl Commands Include
	The k8s Dashboard
	Metrics and Logs with AKS

	SQL Server High Availability on k8s
	Updating SQL Server on k8s
	Using Helm Charts
	SQL Server Availability Groups on k8s
	Summary

	Chapter 9: SQL Server Data Virtualization
	What Is Polybase?
	The History of Polybase
	What Is Data Virtualization?

	How Polybase Works
	The Polybase Workflow
	SQL Server 2019 Polybase Architecture
	How External Tables Work
	The Polybase Standalone Instance
	A Polybase Scale-Out Group
	Query Processing and Polybase
	How Does It Work on Linux?
	How Is This Different Than Azure?

	Prerequisites for the Examples
	Setting Up and Enabling Polybase
	Using the Examples

	Using External Tables
	Tools and External Tables
	Using an External Table with Azure SQL Database
	Using Built-in Connectors for External Tables
	Using an External Table with HDFS
	Using External Tables with ODBC Connectors

	Considerations for External Tables
	A New Semantic Layer
	External Tables vs. Linked Servers
	Restrictions and Limitations

	Summary

	Chapter 10: SQL Server Big Data Clusters
	Why Big Data Clusters?
	What Comes with Big Data Clusters?
	SQL Server 2019
	Polybase
	Hadoop Distributed File System (HDFS)
	Spark
	Data Cache
	Tools and Services
	Endpoints
	Application Deployment
	Machine Learning

	Prerequisites for the Examples
	Deploying Big Data Clusters
	Plan the Deployment
	Decide on k8s
	Pick the Client and Download Tools
	Deployment Method
	Offline Deployment

	The BDC Deployment Experience
	Verify the Deployment
	Configuring Deployment for Production

	Big Data Cluster Architecture
	SQL Server Master Instance
	Controller
	Storage Pool
	Compute Pool
	Data Pool
	Application Pool

	Using Big Data Clusters
	Using Data Virtualization
	Using the Data Pool
	Using Spark
	Run Spark Jobs from Azure Data Studio
	Running Spark Jobs from Other Tools
	MSSQL Spark Connector

	Deploying and Using Applications
	Security
	High Availability
	Jupyter Books for SQL Server Big Data Clusters

	Machine Learning and Big Data Clusters
	Machine Learning Packages
	Using Examples

	Managing and Monitoring Big Data Clusters
	Managing Kubernetes (k8s)
	Managing and Monitoring Big Data Clusters

	Summary

	Chapter 11: The Voice of the Customer and Migration
	The Voice of the Customer
	Performance Enhancements
	User Experience
	Diagnostics

	What About Business Intelligence?
	Migration to SQL Server 2019
	The Pam and Pedro Show
	Database Migration Assistant
	Database Experimentation Assistant
	Upgrading to SQL Server 2019
	In-Place Upgrade
	Restore a Database
	SQL Server Integration Services (SSIS) or Bulk Import/Export
	Live Migration

	Database Compatibility
	Query Tuning Assistant and Post Migration
	Running in Azure Virtual Machine
	SQL Server Migration Assistant

	Summary

	Index

