

Flutter Projects

A practical, project-based guide to building real-world cross-
platform mobile applications and games

Simone Alessandria

BIRMINGHAM - MUMBAI

Flutter Projects
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Karan Gupta
Content Development Editor: Divya Vijayan
Senior Editor: Mohammed Yusuf Imaratwale
Technical Editor: Shubham Sharma
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Joshua Misquitta

First published: April 2020

Production reference: 1070420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-777-3

www.packt.com

http://www.packt.com

For my beloved wife, Giusy, who makes my life worth living every day, and for the developer
who struggles when learning a new language: you have all my sympathy. I've been there and

will be there again, hopefully.

- Simone Alessandria

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Simone Alessandria wrote his first program when he was 12: it was a text-based fantasy
game for the Commodore 64. A few years later, he is now a trainer (MCT), author, speaker,
passionate software architect, and always a proud coder. He has published several courses
on Dart and Flutter on Pluralsight. His mission is to help developers achieve more through
training and mentoring.

About the reviewers
Rohan Bethune is a professional software architect and developer with over 20 years in the
industry. He has in-depth, hands-on experience crafting intuitive software solutions
ranging from writing complex high-performance blotters and trading applications for
leading investment banks to creating immersive cloud-based mobile solutions. Currently,
he is the chief architect and founder of Rozella Software, where he is creating an education
portal for Rozella.iStudy, a Flutter-built app that allows anyone to study and learn
practically anything through its intelligent content creation engine and series of fun
quizzes, reports, and test graphs.

Tom Alabaster has been a production-level Flutter developer for over a year, architecting
projects of all different levels from small single-user applications to a large-scale project
registered as a medical device. He's given talks and run workshops, as well as having
written several plugins and packages for others to use. Having followed Flutter for a while,
he's been carefully developing an ideal clean architecture for Flutter apps in order to help
demonstrate Flutter's scalability and performance for real-world large-scale production use.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Hello Flutter! 7
Technical requirements 8
Understanding the Dart language basics 9

Hello Dart 10
Area calculator 13
For loops and strings 16
The Arrow syntax and the ternary operator 18
While loops, lists, and generics 20

foreach() 22
map() 23
where() 24

Classes and objects 24
Using getters and setters 25
Constructors 26

This keyword 28
Creating your first Flutter app 28

Running your first Hello World app 29
Using MaterialApp and Scaffold 34
Formatting Text and Using Columns 38
Showing images and using buttons 39
Showing an AlertDialog box 41
Using padding 46
Using SingleChildScrollView 48

Summary 49
Questions 49
Further reading 50

Chapter 2: Miles or Kilometers? Using Stateful Widgets 51
Technical requirements 51
Project overview 52
Understanding state and stateful widgets 54
Creating the measure converter project 55

Using stateful widgets 56
Reading user input from TextField 58
Creating a DropdownButton widget 62
Updating a DropdownButton widget 66
Completing the UI of the app 66
Adding the business logic 72

Table of Contents

[ii]

Summary 77
Questions 78
Further reading 78

Chapter 3: My Time - Listening to a Stream of Data 80
Technical requirements 81
Building the timer home page layout 81

Installing the percent_indicator Package in your app 90
Using a stream and asynchronous programming in Flutter 93

Showing the time in the main screen: StreamBuilder 99
Enabling the buttons 102

Navigating to the settings route 104
Building the Settings screen layout 109

Using the GridView.Count() constructor 110
Adding custom SettingButtons to the widgets.dart file 111

Using shared_preferences to read and write app data 114
Summary 123
Questions 124
Further reading 124

Chapter 4: Pong Game - 2D Animations and Gestures 125
Technical requirements 126
Building the UI of the app 126

Creating the ball 128
Creating the bat 129
Creating the grid 130

Using animations 134
Adding the game logic 139
Using GestureDetector 141
Checking the bat position 143
Adding randomness to the game 145
Adding the score and completing the game 148
Summary 152
Questions 153
Further reading 154

Chapter 5: Let's Go to the Movies - Getting Data from the Web 155
Technical requirements 155
Project overview 156
Connecting to a web service and retrieving data with HTTP 158

Creating the app and connecting to the API with the HTTP library 160
Parsing JSON data and transforming it into model objects 163

Adding the Movie model class 167
Adding a ListView to show data 170

Showing a trailing icon in a ListTile 173

Table of Contents

[iii]

Showing the detail screen and passing data through screens 175
Adding the search feature 178
Summary 183
Questions 184
Further reading 184

Chapter 6: Store That Data - Using Sq(F)Lite To Store Data in a Local
Database 186

Technical requirements 187
Essential theory and context 187
Project overview 189
Using sqflite databases 192

Creating an sqflite database 192
Testing the database 194

Creating the model classes 197
Showing database data to the user 203

Inserting and editing data 214
Deleting elements 221
Challenge – completing the Items Screen functionality 224
Challenge solution – completing the Items Screen functionality 225

Step 1 225
Step 2 227
Step 3 227
Step 4 228
Step 5 229
Step 6 229

Summary 230
Questions 231
Further reading 231

Chapter 7: Firing Up the App - Integrating Firebase into a Flutter App 232
Technical requirements 233
Introducing Firebase 233
Project overview 234
Adding Firebase to your Flutter project 236

Creating a Firestore database 239
Integrating Firebase into a Flutter app 243

Configuring your Android app 244
Configuring your iOS app 246
Testing Firebase integration with your app 249

The EventDetail model class 251
Creating the Event Detail screen 253

Adding authentication to your app 259
Adding the login/signup screen 261
Adding the authentication logic 266
Introducing Firebase rules 272

Table of Contents

[iv]

Writing data to Firebase: Adding the favorite feature 273
Showing and deleting favorites 277

Summary 281
Questions 282
Further reading 282

Chapter 8: The Treasure Mapp - Integrating Maps and Using Your
Device Camera 284

Technical requirements 285
Geolocation and camera – a powerful duo 285
Integrating Google Maps into Flutter 286

Showing a map with Google Maps 290
Using geolocation to find the current position 293
Adding a marker to the map 294

Creating the place model and helper classes 297
Inserting new places on the map 303
Editing and deleting existing places 308

Using the device camera 312
Saving and retrieving pictures as local files 318

Summary 322
Questions 322
Further reading 323

Chapter 9: Let's Play Dice: Knockout - Creating an Animation with
Flare 324

Technical requirements 325
Project overview 325
What's Flare? 327
Creating objects with Flare 328

Creating new objects in Flare 330
Animating objects with Flare 336

Creating the Roll animation 339
Integrating Flare into a Flutter app 346

Creating the Dice class 347
Creating the Single Dice screen 350
Creating the Knockout game 353

Summary 362
Questions 363
Further reading 364

Chapter 10: ToDo App - Leveraging the BLoC Pattern and Sembast 365
Technical requirements 366
Project overview 366
Using sembast to store data 369

Sembast: dealing with data 371

Table of Contents

[v]

Opening a sembast database 372
Creating CRUD methods with sembast 373
Using sembast 376

The BLoC pattern 379
Using the BLoC pattern 380

The BLoC guideline step by step 381
1. Creating the BLoC class 382
2. Declaring the data that will change 382
3. Setting the StreamControllers 382
4. Creating the getters for streams and sinks 383
5. Adding the logic of the BLoC 383
6. Creating the constructor 384
7. Setting the dispose() method 384

Using BLoCs and Streams to update the UI 385
The HomePage screen user interface 386
The TodoScreen user interface 390

Summary 394
Questions 395
Further reading 396

Chapter 11: Building a Flutter Web App 397
Technical requirements 398
Essential theory and context 398
Project overview 399
Building a Flutter app that runs on a browser 402

Connecting to the Google Books API web service 404
Creating the Book model class 405
Using the HTTP service to retrieve books 407

Creating a responsive UI 409
Responsive widgets: ListView or Table? 414

Creating the Table for larger devices 415
Creating the ListView for smaller devices 419

Using shared_preferences to save data in Android, iOS, and the
web 421

Completing the UI of the app 424
Publishing a Flutter app to a web server 428
Summary 429
Questions 429
Further reading 430

Appendix A: Appendix 431
Setting up your environment to build Flutter projects 431

Installing Flutter on a Windows PC 431
Installing Git 431
Installing the Flutter Software Development Kit (SDK) 432
Installing Android Studio 434
Connecting an Android physical device 437

Table of Contents

[vi]

Configuring Android Studio 438
Installing and configuring VS Code 439

Installing Flutter on a Mac 439
Installing the Flutter SDK 440
Installing Xcode 441

Assessment 444

Other Books You May Enjoy 463

Index 466

Preface
The fastest way to learn programming, in any language or framework is… programming.
That's exactly the purpose of this book: helping you learn Flutter by doing.

Flutter is a developer-friendly, open source toolkit created by Google that you can use to
create applications for Android and iOS mobile devices, and now also for the web and
desktop.

There are eleven projects in this book, covering the main concepts useful to develop real-
world apps with Flutter. In each project, you'll learn and immediately use some of the
features that make Flutter so successful: widgets, state management, asynchronous
programming, using web services, persisting data, animations, creating full-stack
applications with Firebase, and even developing responsive apps that work with different
form factors, including the web.

Each project builds an app from scratch. You can choose to follow the flow of the book or
skip to any project if you feel confident with the concepts introduced in earlier chapters.

Flutter uses Dart as a programming language. In the first chapter, you'll see an introduction
to Dart, giving you the necessary knowledge to be productive and create your first Flutter
app.

In later chapters, you'll see Flutter projects that go beyond basic examples. You'll get the
opportunity to play with code and get hands-on experience building apps. While you
progress through this book, you'll see that some of the concepts introduced in earlier
chapters are used again, in different ways, on later projects, so that you get deeper
knowledge on several topics.

Who this book is for
This book is for developers. You should be familiar with any object-oriented programming
language: if you understand variables, functions, classes, and objects, this book is for you.

The programming language used in Flutter is Dart. If you've never seen Dart before, don't
worry: basic knowledge of languages like Java, C#, Kotlin, Swift, or JavaScript will be
enough to follow along with the projects in this book. Dart is an extremely intuitive
language for developers, with a smooth learning curve.

Preface

[2]

This book is not a Dart course, but throughout the book, and in particular in Chapter 1,
Hello Flutter, you'll get all you need to get started with Dart as well.

To sum it up, if you have some knowledge of any object-oriented programming language,
and want to start building great mobile or web apps with Flutter, this book is for you!

What this book covers
Chapter 1, Hello Flutter!, is an introductory chapter, where you'll build "Hello Flutter," an
app that shows the presentation screen of a fictitious travel agent. The project will focus on
how to create a very basic app with Dart and Flutter and give you the foundation necessary
for the rest of the book.

Chapter 2, Miles or Kilometers? Using Stateful Widgets, shows how to build a Measures
Conversion App. The main goal of this chapter is to introduce State into a Flutter app, to
make it interactive. In this project, you will use TextFields, DropDownButtons, and the
setState() method to update the state of a stateful widget.

Chapter 3, My Time – Listening to a Stream of Data, shows a more advanced way of dealing
with state: listening to streams of data. In this project, you will create a productivity timer,
with an animation based on streams. This chapter will introduce
asynchronous programming in Flutter and several core concepts, such as navigation, using
libraries, and storing data.

Chapter 4, Pong Game – 2D Animations and Gestures, is about making a simple two-
dimension animated game, where a ball will move across the screen, and the player will
need to prevent the ball from "falling" out of the screen. The main topics of this chapter
include using animations, detecting gestures with the Gesture Detector, and generating
random numbers.

Chapter 5, Let's Go to the Movies – Getting Data from the Web, deals with the creation of an
app that shows a list of movies taken from a web service. The main topics include using
ListViews, parsing JSON data, connecting to remote services through the HTTP protocol,
and building GET requests to perform searches on the API. Asynchronous programming in
Dart is used throughout the chapter.

Chapter 6, Store That Data - Using Sq(F)Lite to Store Data in a Local Database, shows how to
create a shopping list that will be built in this project. The main concepts in this project
include using SQLite in Flutter; creating model classes; performing Create, Read, Update,
and Delete (CRUD) actions; and using the singleton model.

Preface

[3]

Chapter 7, Firing Up the App – Integrating Firebase into a Flutter App, shows how to create a
full-stack application, designing both the frontend UI and the backend in record time,
leveraging Firebase.

Chapter 8, The Treasure Mapp – Integrating Maps and Using Your Device Camera, builds an
app that allows users to mark places on a map and add some data and a picture over it.
Pictures will be created by using the camera. This project covers two important features of
mobile programming: geolocation and using a device's camera.

Chapter 9, Let’s Play Dice: Knockout – Creating an Animation with Flare, focuses on a project
where you'll build a dice game in Flutter, using Flare, an online tool that makes it easy to
create beautiful animations and include them directly in Flutter.

Chapter 10, ToDo App – Leveraging the BLoC Pattern and Sembast, shows how to leverage the
BLoC (Business Logic Component) pattern to manage app state. You'll also see how to use
the Simple Embedded Application Store database to store data in your device.

Chapter 11, Building a Flutter Web App, shows how to build a Flutter app that runs on a
browser and how to create responsive user interfaces.

To get the most out of this book
Some experience in at least one object-oriented programming language is strongly
recommended.

I suggest playing with the code while you type it: try asking yourself if you could write a
project in a different way. This will make the concepts much clearer and easier to reuse in
your future projects. Answering the questions at the end of each project will also help you
get a different perspective on the app you built in the chapter.

In this book, we use the Flutter version 1.12.13 and Dart version 2.7.2. In order to follow
along with the code, you will need a Windows PC, Mac, Linux, or Chrome OS machine
connected to the web, with the permissions to install new software. An Android or iOS
device is suggested but not necessary as there are simulators/emulators that can run on
your machine. All software used in this book is open source or free to use.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copy/pasting of code.

If you like this book or want to share your ideas about it please write a review on your
favorite platform. This will help us make this book better, and you'll also earn the author's
and reviewers' everlasting gratitude.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Flutter- Projects. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In the main.dart file, remove the example code."

A block of code is set as follows:

void main() {
 var name = "Dart";
 print ("Hello $name!");
}

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

return Stack(
 children: <Widget>[
 Positioned(
 child: Ball(),
 top: posY,
 left: posX,
),

Any command-line input or output is written as follows:

cd hello_world
flutter run

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"From the Android Studio File menu, select Open...."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Hello Flutter!

Welcome to this adventure learning Flutter!

The approach that we'll be following during this book is learn by doing. In each chapter of
the book, you'll create a project from scratch, and in each project you'll learn something
new and build an app that you'll be able to use immediately on your Android or iOS
device.

The first project that most developers encounter while learning a new language or
framework is a Hello World app, and this book is no exception. This Hello World project
assumes that you have no knowledge whatsoever of Flutter or Dart. If you have already
created apps with Flutter before, you can probably skip this chapter and go straight to the
next one. By the end of this chapter, you'll be able to build the presentation screen of the
Hello World Travel company, as shown here:

Hello Flutter! Chapter 1

[8]

In order to create the app, you'll have to complete several steps. We will go through them in
this chapter, one by one:

Understanding the Dart language basics
Creating your first Flutter app:

Using some basic widgets: Scaffold, AppBar, RaisedButton, and Text
Downloading an image and showing it to the user
Responding to a button click and showing a dialog

So during this project, you'll learn all this and more.

This project should take no longer than 2 hours to complete. You should probably add 2
more hours to complete the setup process described in the appendix if you haven't
completed it yet, but this estimate may vary a lot, depending on your system.

Technical requirements
In order to start your Flutter adventure, you will need a few tools:

A PC with a recent Windows version, or a Mac with a recent version of the
macOS or Linux operating system. You can also use a Chrome OS machine, with
a few tweaks. Currently, the only way to build apps that target iOS devices is
using a Mac, unless you use a third-party service. Of course, you can write your
code on any operating system, but the .ipa file, which is the iOS installation file,
can only be created from a Mac.
A GitHub account.
An Android/iOS setup. You'll need to set up your Android and iOS
environments to build apps.
The Flutter SDK. It's free, light, and open source.
Physical device/emulator/simulator. In order to try your code, you will need an
Android or iOS device. Alternatively, you can also install an Android emulator
or iOS simulator.
Your favorite editor. The supported editors at this time are:

Android Studio/IntelliJ IDEA
Visual Studio Code

Hello Flutter! Chapter 1

[9]

Actually, you could use any other text editor, combined with the Flutter CLI, but using the
supported editors will make your life much easier as you get code completion, debugging
support, and several other advantages.

The detailed steps for setting up your environment to build Flutter Projects are given in the
Appendix section.

You can find the code files of this chapter on GitHub at https:/ / github. com/
PacktPublishing/Google- Flutter- Projects.

Let's get started with some basic Dart concepts!

Understanding the Dart language basics
When you write Flutter apps, you use Dart, a programming language that was developed
by Google. It's relatively new; the first version of Dart was released on November 14, 2013,
and version 2.0 was released in August 2018.

It's now also an official ECMA standard. It's open source, object oriented, strongly typed,
class defined, and uses a C-style syntax… which is to say, it's like many other modern
programming languages, including Java or C#, and to some extent, even JavaScript.

So, you might be wondering (and you are not alone): why another language? I'm sure there
isn't a unique answer to that question, but there are some features worth mentioning here
that make Dart noteworthy, even without considering Flutter:

It's easy to learn: If you have some knowledge of Java, C#, or JavaScript, Dart will
be extremely easy to learn, as you'll see in the next few pages.
It's aimed at productivity: Its syntax is exceptionally concise and easy to read and
debug.
It can transpile to JavaScript, in order to maximize compatibility with web
development.
It has a general purpose: You can use it for client-side, server-side, and mobile
development.
As an added bonus, Google is deeply involved in this project and has some big
plans for Dart, including a new operating system, called Google Fuchsia.

As the approach of this book is extremely practical, this is all the theory you'll get. Let's see
Dart in action, with a few code examples, which will make it easier to build your first
Flutter project later in this chapter.

https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects

Hello Flutter! Chapter 1

[10]

The goal of this section is to give you a jump-start on using Dart, so that when you write
your first Flutter app, you'll be able to focus on Flutter and not too much on Dart itself. This
is certainly not a comprehensive guide, but hopefully just enough to get you started.

Hello Dart
For the examples in this section, we'll be using DartPad. It's an online tool that lets you play
with Dart code from any browser, without having to install anything on your system. You
can reach it at https:/ /dartpad. dartlang. org/ .

In this Hello Dart example, you'll see how to use DartPad, write the simplest Dart app,
declare variables, and concatenate strings. Let's look at the steps for how we can go about it:

When you open the tool for the first time, you should see something very close to1.
the following image. On the left, you have your code, and when you click on the
RUN button, you'll see the result of your code on the right:

https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/
https://dartpad.dartlang.org/

Hello Flutter! Chapter 1

[11]

For our first example, let's delete the default code and write the following:2.

void main() {
 String name = "Dart";
 print ("Hello $name!");
}

If you run this code, you should see Hello Dart! on the right of your screen:

The main() function is the starting point of every Dart application. This function3.
is required, and you'll also find it in every Flutter app. Everything begins with
the main() function.

Hello Flutter! Chapter 1

[12]

The String name = "Dart"; line is a variable declaration; with this4.
instruction, you are declaring a variable called name, of type String, whose
value is "Dart". You can use single (') or double (") quotation marks to contain
strings, as follows:

String name = 'Dart';

The result would be identical:

The print ("Hello $name!"); line calls the print method, passing a string.5.
The interesting part here is that instead of doing a concatenation, by using the $
sign, you are inserting a variable into the string without closing it nor using the +
concatenation operator. So, this is exactly like writing the following code:

print ("Hello " + name + "!");

Hello Flutter! Chapter 1

[13]

There's also a generic variable declaration, in which you don't specify any type;
you could write the same code like this:

void main() {
 var name = "Dart";
 print ("Hello $name!");
}

In this case, you might think that name is a dynamic variable, but this is not the6.
case. Let's try to change the variable type and see what happens:

void main() {
 var name = "Dart";
 name = 42;
 print ("Hello $name!");
}

If you try running this code, you'll receive a compilation error as follows:

Error: A value of type 'int' can't be assigned to a variable of
type 'String'. name = 42; Error: Compilation failed.

Actually, you can declare a dynamic type as follows, although I believe you
should avoid it in most cases:

void main() {
 dynamic name = "Dart";
 name = 42;
 print ("Hello $name!");
}

If you try this code, you'll see Hello 42 in the console.

So the name variable, which was a string when we first declared it, has now become an
integer. And as we are talking about numbers, let's delve into those next.

Area calculator
In this example, you'll see the use of numbers, functions, and parameters in Dart.

There are two types of numbers in Dart:

int: Contains integer values no larger than 64 bits
double: Contains 64 -bit, double-precision floating-point numbers

Hello Flutter! Chapter 1

[14]

You also have the num type: both int and double are num.

Consider the following example:

void main() {
 double result = calculateArea(12, 5);
 print ('The result is ' + result.toString());
}

In this code, we are declaring a variable called result, of a type called double, which will
take the return value of a function called calculateArea, which we'll need to define later.
We are passing two numbers—12 and 5—to the function.

After the function returns its value, we will show the result, after converting it to a string.

Let's write the function:

double calculateArea(double width, double height) {
 double area = width * height;
 return area;
}

Since Dart 2.1, the int literals are automatically converted to doubles; for
example, you can write: double value = 2;. This is instead of having to
write: double value = 2.0;.

In this case, the width and height parameters are required. You can also add optional
parameters to functions, by including them in square brackets. Let's insert an optional
parameter to the calculateArea() function, so that the function can also calculate the
area of a triangle:

double calculateArea(double width, double height, [bool isTriangle]) {
 double area;
 if (isTriangle) {
 area = width * height / 2;
 }
 else {
 area = width * height;
 }
 return area;
}

Hello Flutter! Chapter 1

[15]

Now, from the main() method, we can call this function twice, with or without the
optional parameter:

void main() {
 double result = calculateArea(12,5,false);
 print ('The result for a rectangle is ' + result.toString());
 result = calculateArea(12,5,true);
 print ('The result for a triangle is ' + result.toString());
}

The full function with the expected result is shown here:

At this time, function overloading is not supported in Dart.

Overloading is a feature of some OOP languages, such as Java and C#,
which allows a class to have more than one method with the same name,
provided that their argument lists are different in number or type. For
example, you could have a method called calculateArea (double
side) to calculate the area of a square, and another method called
calculateArea (double width, double height) to calculate the
area of a rectangle. This is currently not supported in Dart.

Hello Flutter! Chapter 1

[16]

For loops and strings
Dart supports the same loops as many other C-influenced languages: the for, while, and
do while loops. In this example, you'll see a for loop, which you'll use to reverse a string.

Strings can be included in single quotes ('Dart') or double quotes ("Dart"). The escape
character is \. So, for instance, you could write the following:

String myString = 'Throw your \'Dart\'';

And the myString variable would contain Throw your 'Dart'. For our example, let's
begin with the main() method:

void main() {
 String myString = 'Throw your Dart';
 String result = reverse(myString);
 print (result);
}

Nothing major to note here. We are just setting a string and calling a reverse method,
which will reverse the string, to print the result.

So let's write the reverse() method next:

String reverse(String old) {
 int length = old.length;
 String res = '';
 for (int i = length-1; i>=0; i--) {
 res += old.substring(i,i + 1);
 }
 return res;
}

Strings are actually objects, so they have properties, for example, length. The length
property of a string, quite predictably, contains the number of characters of the string itself.

Hello Flutter! Chapter 1

[17]

Each character in a string has a position, beginning at 0. In the for loop, first, we declare an
i variable and set it to an initial value of the length of the string, minus one. The next two
steps are setting the condition (or exit criteria) and the increment. The loop will keep
repeating until i is equal to, or bigger than, 0, and at each repetition, it will decrease the
value of i by one.

What this means is that starting at the end of the string, we will loop until we reach the
beginning of the string.

The += operator is a concatenation. This is a shortened syntax for res = res +
old.substring(i,i + 1);.

The substring() method returns part of a string, starting at the position specified at the
first parameter, included, and ending at the position specified at the second parameter. So,
for example, the following code would print Wo:

String text = "Hello World";
String subText = text.substring(5,8);
print (subText);

There's actually another way that we could extract a single character from a string, instead
of using the substring() method: using the position of the character itself in the
string.For example, instead of writing this:

res += old.substring(i,i + 1);

We could also write the following code:

res += old[i];

Hello Flutter! Chapter 1

[18]

The end result of the full code that we have written is shown here:

You'll never need to write a code like this in a real-world application. You can achieve the
same result just by writing this:

 String result = myString.split('').reversed.join();

Next, you'll see two features that we will use extensively throughout the book: the arrow
syntax and the ternary operator.

The Arrow syntax and the ternary operator
The arrow syntax is a concise and elegant way to return values in a function.

Hello Flutter! Chapter 1

[19]

Take, for instance, the following function. It takes an integer as an argument (value), and

if value is zero, it returns false, otherwise, it returns true. So every number that you

pass, except zero, will return true:

bool convertToBoolLong(int value) {
 if (value == 1) {
 return false;
 }
 else {
 return true;
 }
}

With the => notation and the ternary operator, you can write the same function in a single
line of code, as follows:

bool convertToBool(int value) => (value == 0) ? false : true;

Chances are you'll probably see this kind of syntax quite often in Dart and Flutter.

The => arrow operator is a shortcut that allows you to simplify writing a method,
particularly when it has a single return statement. Here, you can see an example of what
the arrow syntax does:

In short, you could say that with the arrow syntax, you can omit the curly braces and
the return statement, and instead write everything in a single line.

Hello Flutter! Chapter 1

[20]

The ternary operator is a concise way to write an if statement. Consider the following
code:

With the ternary operator, you can omit the if statement, the curly braces, and the else
statement. In the optional parentheses, you put the Boolean control expression, value ==
0.

Together, the arrow syntax and the ternary operator are a powerful and elegant
combination.

While loops, lists, and generics
One of the first features that you generally meet when you learn a new language are arrays.
In Dart, you use List objects when you want to define a collection.

Consider the following code:

void main() {
 String mySongs = sing();
 print (mySongs);
}

String sing() {
 var songs = List<String>();
 var songString = '';
 songs.add('We will Rock You');
 songs.add('One');
 songs.add('Sultans of Swing');
 int i=0;
 while (i < songs.length) {
 songString += '${songs[i]} - ';
 i++;
 }

 return songString;
}

Hello Flutter! Chapter 1

[21]

In the main() method, we are calling the sing() method and printing its result. The
sing() method defines a list of strings:

var songs = List<String>();

A list can contain several types of objects. You could have a list of integers, Booleans, or
even user-defined objects. You can also avoid specifying the kind of object that is contained
in a list by just writing the following:

var songs = List();

The <String> after List is the generic syntax. The use of generics enforces a restriction on
the type of values that can be contained in the collection, creating a type-safe collection.

Lists implement several methods. You use the add() method to insert a new object into the
collection:

songs.add('We will Rock You');

The new object is added to the end of the list. You could reach exactly the same result by
writing the following code:

var songs = ['We will Rock You', 'One', 'Sultans of Swing'];

The songs variable would still be a list of strings. If you tried to add a different data type,
such as songs.add(24), you would get an error. This is because an integer cannot be
inserted into a list of strings, and type safety is enforced by default.

The while statement contains the condition that needs to be true for the loop to continue:

while (i < songs.length) {

When the condition (i < songs.length) becomes false, the code in the loop won't
execute anymore.

As you've already seen before, the += operator is a concatenation of strings. The $ character
allows you to insert expressions into quotes:

songString += '${songs[i]} - ';

Hello Flutter! Chapter 1

[22]

Here is the end result of the full code:

As you can see, the three wonderful songs are concatenated, and after each song, you've
added a - sign.

Now, let's see a few interesting features that you can leverage while using lists in Dart.

foreach()
The for and while loops can be generally used for any type of loop, but lists also have
some specific methods that help you write elegant and readable code.

The foreach method of a list lets you run a function on each element in the array. So, you
could delete the while loop and use the following code instead, in order to achieve the
same result:

songs.forEach((song) => songString += song + " - ");

Hello Flutter! Chapter 1

[23]

The foreach method takes a function as a parameter. This function may be anonymous.
This anonymous function takes an argument (song in this case), of the same data type as
the list itself. So, as the songs list is a list of strings, song will be a string as well.

You've seen the => arrow syntax in the previous topic. In this case, instead of returning a
value, we are setting the value of a variable, and this is totally acceptable as well.

map()
The map() method transforms each element in a list and returns the result of the
transformation in a new list. Let's see this method in action by editing our code:

void main() {
 String mySongs = sing();
 print (mySongs);
}

String sing() {
 var songs = List<String>();
 songs.add('We will Rock You');
 songs.add('One');
 songs.add('Sultans of Swing');
 var capitalSongs = songs.map((song)=> song.toUpperCase());
 return capitalSongs.toString();
}

The result of this code is that the songs are now printed in uppercase, but the interesting
part of the code is the following line:

var capitalSongs = songs.map((song)=> song.toUpperCase());

Here, you can see the map() method of a list in action. For each element of the list, in this
case a song, the element is transformed into song.toUpperCase(), and the end result is
passed to a new variable, called capitalSongs. The toString() method transforms a list
into a string. The result that you'll see printed on the screen is as follows:

(WE WILL ROCK YOU, ONE, SULTANS OF SWING)

Hello Flutter! Chapter 1

[24]

where()
The last method that I'd like to introduce in this short overview is the where() method.
Let's change the sing() function, using the where method as shown in the following
example:

String sing() {
 var songs = List<String>();
 songs.add('We will Rock You');
 songs.add('One');
 songs.add('Sultans of Swing');
 var wSongs = songs.where((song)=>song.contains('w'));
 return wSongs.toString();
}

The where() method only returns the elements that satisfy the song.contains('w') test
expression. This test will only return the songs that contain the "w". So, the end result that
you'll see printed on the screen is as follows:

(We will Rock You, Sultans of Swing)

There are several other methods that can help you sort and transform lists, and find
elements inside lists. We'll certainly use some of them throughout this book, but for now,
you can leverage the foreach(), map(), and where() methods to start using lists in your
Dart and Flutter code.

Classes and objects
Dart is an object-oriented programming language, and objects and classes are important
parts of what you'll be creating in Dart and Flutter. If you are not familiar with OOP
concepts, I suggest reading an excellent article at the following address: https:/ /medium.
freecodecamp.org/ object- oriented- programming- concepts- 21bb035f7260.

Here, we'll have a quick overview of creating classes and objects in Dart. Let's begin by
creating a Person class with two fields, name and surname:

class Person {
 String name;
 String surname;
}

https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260
https://medium.freecodecamp.org/object-oriented-programming-concepts-21bb035f7260

Hello Flutter! Chapter 1

[25]

You can create instances of the Person class from the main method, and set the name and
surname as follows:

main() {
 Person clark = Person();
 clark.name = 'Clark';
 clark.surname = 'Kent';
 print ('${clark.name} ${clark.surname}');

}

There are a couple of interesting features in this code that are worth noting. Name and
surname are both accessible from outside the class, but in Dart, there are no identifiers such
as Private or Public. So, each property of a class is considered public unless its name begins
with an underscore character (_). In this case, it becomes inaccessible from outside its
library (or file).

In the Person clark = Person(); line, you are creating an instance of a Person() class,
and the resulting object is contained in the clark variable. In Dart, you don't need to
explicitly specify the new keyword, as it is implied. So writing Person clark = new
Person(); would be exactly the same.

You'll find the omission of the new keyword extremely common with Dart developers,
especially when developing in the Flutter framework.

Using getters and setters
Getters and setters are the methods that are used to protect data in your classes: a getter
method returns a property value of an instance of the class, while a setter sets or updates its
value. In this way, you can check values before reading (getters) or writing (setters) them in
your classes.

You specify getters and setters by adding the get and set keywords before the field name.
The getter returns a value of the type that you specify, and the setter returns void:

main() {
 Person clark = Person();
 clark.name = 'Clark';
 clark.surname = 'Kent';
 clark.age = 30;
 print ('${clark.name} ${clark.surname} ${clark.age}');

}
class Person {

Hello Flutter! Chapter 1

[26]

 String name, surname;
 int _age;

 void set age(int years) {
 if (years > 0 && years < 120) {
 _age = years;
 }
 else {
 _age = 0;
 }
 }

 int get age {
 return _age;
 }
}

In this example, we protect our data in the setter by making sure that the years are a
number between 0 and 120; the getter just returns _age without any update.

Constructors
Classes can have constructors. A constructor is a special method that is automatically called
when an object of a class is created. It can be used to set initial values for properties of the
class. For instance, let's change our code to use a constructor to build a Person instance:

main() {
 Person clark = Person('Clark', 'Kent');
 print ('${clark.name} ${clark.surname}');

}
class Person {
 String name, surname;
 Person(String name, String surname) {
 this.name = name;
 this.surname = surname;
 }
}

Hello Flutter! Chapter 1

[27]

Person(name, surname) is a constructor method that requires two parameters: name and
surname. You are required to pass both parameters when you create a new instance of the
class. For example, if you try to create a Person instance, without passing two strings, you
receive an error. You can make positional parameters optional by enclosing them in square
brackets:

Person([String name, String surname]) {

Now, what if you want to add a second constructor that takes no parameters? You could
try to add the second constructor as follows:

 Person();

However, you would get an error: "The default constructor is already defined." That's
because, in Dart, you can have only one unnamed constructor, but you can have any number
of named constructors. In our example, we could add the following code:

 Person.empty() {

This would create a second named constructor. In the following screenshot, you can see an
example of a class with an unnamed constructor, Person(), and a named constructor,
person.empty():

Hello Flutter! Chapter 1

[28]

In this case, the difference between the two is that when you call the default (unnamed)
constructor, you also need to pass the two required parameters, name and surname, while
the named constructor allows you to create an empty object and then set the name and
surname later in your code.

Just to reiterate, you can have only one default unnamed constructor in
Dart, but you can have as many named constructors as you need.

This keyword
The task of assigning a constructor argument to an object variable is something that we
probably do very often, and Dart makes it extremely easy with the this shortcut. For
example, here is the code for writing the Person constructor, which we used previously:

 Person(String name, String surname) {
 this.name = name;
 this.surname = surname;
 }

However, you could also just write the following code:

Person(this.name, this.surname) {}

With classes and objects, you have all the Dart tools that you need to get started with your
first Flutter project. There are many other features and topics in Dart that you'll
see throughout this book, but we'll cover them when they are needed for our projects. So,
let's build your first Flutter project, the "Hello World Travel" company app!

Creating your first Flutter app
A Flutter application is made of widgets, and widgets are the description of a part of the
user interface. Every user interaction, and everything that the user sees when navigating
your app, is made of widgets. The app itself is a widget!

That's why when you begin using Flutter, one of the concepts that you'll hear most often is
that "in Flutter almost everything is a Widget." This is mostly true.

Hello Flutter! Chapter 1

[29]

You use Dart to write widgets. If you have some experience in mobile or web
programming, then you may find this a bit unsettling. Most of the other mobile frameworks
use some form of XML or HTML to describe the user interface, and a full programming
language for business logic. In Flutter, you use Dart to describe both—the user interface, as
well as the business logic of your app.

The app we'll build in this chapter is a single-screen app, with some text, a picture, and a
button that, when clicked, gives the user a message. So, even if the app is extremely simple,
you'll get to see many features of Flutter, including the use of widgets, styling text,
downloading images from the web, and the creation of alerts.

Running your first Hello World app
For this first project, we'll be using the Flutter CLI to create the app. So, to get started, let's
make sure everything's ready in your system:

Open your terminal window and type flutter doctor.1.

You should see a few messages, such as in the following screenshot (this is from a
Windows machine that was set up for Android):

If you see some errors here, please make sure that an emulator/simulator is
currently loaded, or that a physical device is correctly connected. If that doesn't
solve your issues, please review the installation steps in the appendix.

Hello Flutter! Chapter 1

[30]

Then, type the flutter create CLI command in order to create a new app:2.

flutter create hello_world

flutter create creates a new project, called hello_world. The rule for
naming projects is lowercase_with_underscores. The flutter create
command should have created a new folder, called hello_world, which contains
all the default project's files that are required for the execution of your app.

To see the result of this step, from your terminal, type the following code:3.

cd hello_world
flutter run

After a few seconds, you should see the Flutter default app, similar to the
following screenshot:

Hello Flutter! Chapter 1

[31]

Now, we need to change this project so that it serves our Hello World Travel agent. In
order to do this, continue with the following steps:

Let's stop the project by typing, Ctrl + C on your terminal, and then Y. 1.
Next, open your editor. For this chapter, we'll use Android Studio.2.
From the Android Studio File menu, select Open..., then navigate to the project3.
folder and click the OK button:

 This will open the Flutter project in the IDE.

In the editor, you should see a file called main.dart, which contains the code of4.
the default app. Let's delete all the content of the main.dart file, and type the
following code:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Center(
 child: Text('Hello World Travel',
 textDirection: TextDirection.ltr,),
);

Hello Flutter! Chapter 1

[32]

 }
}

You can try out this code by pressing the Run button on the Android Studio
toolbar, or by using the Shift + F10 keyboard shortcut. You should see that the app
now looks like the following screenshot:

Let's see the code that we have written, line by line:

import 'package:flutter/material.dart';

In the first line, we import the material.dart package. A package is a library
that contains reusable code. The material.dart package is a container of
widgets, and in particular, material widgets that implement Material Design.
Material Design is a visual design language that was developed by Google.

Hello Flutter! Chapter 1

[33]

Next, we create a method, called main:

void main() => runApp(MyApp());

As you've seen in the Dart examples, this is the entry point of any Dart app, and
this is the same for Flutter apps.

For the main() method, we use the arrow syntax to call runApp(). The
runApp() method inflates a widget and attaches it to the screen. To put it simply,
the runapp() method will show the widgets that you have placed inside the
app on the screen.

Flutter's widgets aren't views themselves, so they don't draw anything:
they are simply a description of the user interface. This description gets
“inflated” into an actual view when the objects are built.

The following line states that MyApp is a class that extends StatelessWidget:

class MyApp extends StatelessWidget {

In Flutter, there are two kinds of widgets: stateless and stateful. You use stateless
widgets when you do not need to change the widget after its creation. In this case,
the text in the screen ("Hello World Travel") will never change during the app
lifecycle, so a stateless widget is enough for this app. On the other hand, you'll
use stateful widgets when their content (or state) needs to change.

In Flutter, the widget tree is the way that you organize widgets in an app.

While HTML pages have the DOM, or Document Object Model, Flutter
calls the hierarchical list of widgets that makes the UI a "widget tree."

The build() method in the following line of code is automatically called by the
Flutter framework when a widget is inserted into the widget tree:

Widget build(BuildContext context) {

In our example, the widget tree is made of only two widgets: the Center widget
and the Text widget. The build() method returns a widget.

Center is a positional widget that centers its content on the screen:

return Center(

Hello Flutter! Chapter 1

[34]

So, whatever you put inside a Center widget will be centered horizontally and
vertically.

child is a property that allows you to nest widgets inside other widgets. Text is
a widget to show text:

child: Text('Hello World Travel',
 textDirection: TextDirection.ltr,),

Note that in this case, you also need to specify a textDirection instruction. ltr
means left to right. So, you are using the child property of the Center widget, to
put a Text widget in the center of the screen. By default, the background color of
the screen is black.

This is probably not the most beautiful app that you've ever seen, but we'll keep working
on it, and, most importantly, congratulations! You have written your first Hello World app!

Using MaterialApp and Scaffold
A black screen with small white text doesn't really look like a real app. We'll try to fix that
by taking the following steps:

Let's introduce the MaterialApp widget, which is the container that you'll use1.
when creating Material Design apps. Material Design is a design language that
Google developed in 2014, based on "materials," such as ink or paper, with an
implementation that was even more advanced than physical materials. Flutter
fully supports Material Design.

If you are interested in learning more about Material Design, have a look
at the material.io (https:/ /material. io/) website. It's full of examples
and ideas that you can use for the web, mobile, and of course, your next
wonderful app in Flutter!

https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/

Hello Flutter! Chapter 1

[35]

For most of your apps, you'll probably wrap your content in a MaterialApp2.
widget. This also allows you to give a title to your app. So let's change our code
like this:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: "Hello World Travel Title",
 home: Center(
 child: Text('Hello World Travel')
));
 }
}

Instead of returning a Center widget, we are now returning MaterialApp,3.
which has two properties: title and home. Home is what the user will actually
see on the screen of the app. You may notice that when you use MaterialApp,
you don't need to specify the text direction, as the text direction is chosen based
on the device's locale information.

Currently, languages that use the right-to-left text direction are Arabic,
Farsi, Hebrew, Pashto, and Urdu. All other languages use left to right.

Hello Flutter! Chapter 1

[36]

If you run the app, you'll see that a couple of things changed in it. If you are4.
using Android, you will now see the app title if you scroll through your apps,
and the font size has changed:

It looks even worse than before. Let's quickly add a Scaffold widget. A5.
Scaffold widget represents a screen in a MaterialApp widget, as it may
contain several Material Design layout widgets, including AppBar, a bottom
navigation bar, floating action buttons, and the body of the screen. We'll use
those widgets extensively throughout the book.
A Scaffold widget allows you to add an application bar to your app. In the6.
appBar property, we'll place an AppBar widget, which will contain the text that
you want to show in the application bar.

Hello Flutter! Chapter 1

[37]

Let's set the text to be added to the Hello World Travel App, as shown in the7.
following code block:

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: "Hello World Travel Title",
 home: Scaffold(
 appBar: AppBar(title: Text("Hello World Travel App")),
 body: Center(
 child: Text('Hello World Travel')
)));
 }
}

The Scaffold widget has two properties that we used: appBar, which contains
an application bar, and body, which contains the main content of the screen.

So, our app now definitely looks more like an app, even though it only contains a
small amount of text:

Hello Flutter! Chapter 1

[38]

Let's now add a few more widgets to make our app more interesting.

Formatting Text and Using Columns
Our customer, Hello World Travel, loves blue and purple, and so we need to change the
colors of our app, as well as the formatting of our text. Let's change the MyApp class code as
shown here:

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: "Hello World Travel Title",
 home: Scaffold(
 appBar: AppBar(
 title: Text("Hello World Travel App"),
 backgroundColor: Colors.deepPurple,),
 body: Center(
 child: Text(
 'Hello World Travel',
 style: TextStyle(
 fontSize: 26,
 fontWeight: FontWeight.bold,
 color: Colors.blue[800]),)
)));
 }
}

We've added a couple of features to the app. First, we added a background color for the
AppBar as shown here:

backgroundColor: Colors.deepPurple,

The Colors class contains several colors that we can use out of the box, including
deepPurple, which we used there. In the color, you can also choose a shade, which is
generally a number from 100 to 900, in increments of 100, plus the color 50. The higher the
number, the darker the color. For example, for the text, we chose a color of blue[800],
which is rather dark:

style: TextStyle(fontSize: 26,
 fontWeight: FontWeight.bold,
 color: Colors.blue[800]),)

Hello Flutter! Chapter 1

[39]

In the Text widget, we used the style property to add a TextStyle class, and there we
chose a bigger fontSize, a bold fontweight, and of course, color.

Our app is definitely getting better, but we aren't finished yet. We now need to add a
second piece of text below the first one. The problem right now is that the Center widget
only takes one child, so we cannot add a second Text widget there. The solution is
choosing a container widget that allows more than one child, and as we want to place our
widgets on the screen, one below the other, we can use a Column container widget. A
Column has the children property, instead of child, which takes an array of widgets. So
let's change the body of the Scaffold widget, like this:

body: Center(
 child: Column(children: [
 Text(
 'Hello World Travel',
 style: TextStyle(
 fontSize: 26,
 fontWeight: FontWeight.bold,
 color: Colors.blue[800]),
),
 Text(
 'Discover the World',
 style: TextStyle(
 fontSize: 20,
 color: Colors.deepPurpleAccent),
)
]))

Now, the Center widget still contains a single child, but its child is a Column widget
that now contains two Text widgets, 'Hello World Travel' and 'Discover the World.'

Showing images and using buttons
Let's now add an Image widget under the two texts, as follows:

Image.network(
'https://images.freeimages.com/images/large-previews/eaa/the-beach-1464354.
jpg',
 height: 350,
),

Hello Flutter! Chapter 1

[40]

Image is a widget that has a network() constructor, which automatically downloads an
image from a URL with a single line of code. The image is taken from FREEIMAGES
(https://www.freeimages. com/), which contains a stock of free photos for personal and
commercial use.

The height property of an image specifies its height, depending on the pixel density of the
screen. By default, the width will be resized proportionally.

In Flutter, when we speak of pixels, we are actually speaking of logical
pixels, and not physical pixels.
Physical pixels are the actual number of pixels that a device has. But, there
are several form factors, and the resolution of a screen may vary
substantially.
For example, the Sony Xperia E4 has a screen size of 5'', and a resolution
of 960 * 540 pixels. The Xperia X has the same screen size of 5'', but a
resolution of 1920 * 1080. So, if you wanted to draw a square of 540 pixels
per side, it would be much smaller on the second device. That's why
there's the need for logical pixels. Each device has a multiplier, so that
when you use logical pixels, you don't have to worry too much about the
resolution of a screen.

Let's also put a button under the image:

RaisedButton(
 child: Text('Contact Us'),
 onPressed: () => true,),

RaisedButton shows a button that a user can press (or click). Inside Raisedbutton, we
have placed Text as the widget child, and in the onPressed property, we have created an
anonymous () function with an arrow operator, and in the function, we are just returning
true. This is only temporary. When the user presses the button, we want to show a
message, and we'll do that later.

Next, you can see the code of the MyApp class so far, and the result on an Android emulator:

https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/
https://www.freeimages.com/

Hello Flutter! Chapter 1

[41]

We have almost reached the end result that we wanted to achieve, but there are a couple of
things that we need to fix. We should add some space between the widgets, and show a
message when the user selects the Contact Us button. Let's begin with the message.

Showing an AlertDialog box
AlertDialogs are widgets that you use to give feedback or to ask for some information
from your user. It is a small window that stays on top of the current screen, and only covers
part of the user interface. Some use cases include asking for confirmation before deleting an
item (Are you sure?), or giving some information to the user (Order completed!). In our
code, we'll show our user the contact information of the Hello World Travel company.

Hello Flutter! Chapter 1

[42]

Showing an AlertDialog widget requires a few steps:

Calling the showDialog() method1.
Setting context 2.
Setting builder3.
Returning the AlertDialog property4.
Setting the AlertDialog properties5.

Let's write a new method, called contactUs, at the end of the MyApp class:

void contactUs(BuildContext context) {
 showDialog(
 context: context,
 builder: (BuildContext context) {
 return AlertDialog(
 title: Text('Contact Us'),
 content: Text('Mail us at hello@world.com'),
 actions: <Widget>[
 FlatButton(
 child: Text('Close'),
 onPressed: () => Navigator.of(context).pop(),
)
],
);
 },
);
}

We are creating a contactUs method, that takes a context parameter. We then call the
showDialog() function, which is required in order to show a message to the user. The
showDialog function has a few properties that we need to set. The first one is context,
which is basically where the dialog should be shown. This is passed to our method through
the context parameter.

Next, we need to set the builder property. This requires a function, so we need to create a
function that accepts a single argument of the BuildContext type, and returns a
widget—in our example, AlertDialog, as shown here:

builder: (BuildContext context) {
 return AlertDialog(

Hello Flutter! Chapter 1

[43]

An AlertDialog widget has several properties that set the behavior of the message that
you show to the user. The three properties that we are using in this example are title,
content, and actions. In the following screenshot, you can see the result of using those
properties:

You can see the Contact Us title, the Mail us at hello@world.com content, and the
actions—the Close button. In the actions, when you have more than one choice, you can
place more than one button.

Hello Flutter! Chapter 1

[44]

In the following excerpt of the code, the pop() method of the Navigator class will close
AlertDialog. We'll talk more about screens and navigation in Flutter in the other projects
in this book:

 return AlertDialog(
 title: Text('Contact Us'),
 content: Text('Mail us at hello@world.com'),
 actions: <Widget>[
 FlatButton(
 child: Text('Close'),
 onPressed: () => Navigator.of(context).pop(),
)
],

Our AlertDialog is not showing yet. We need to make a couple of changes before you can
use it. The first change is that we need to call the contactUs function that we have just
created. We'll do that in the onPressed property of the RaisedButton widget:

onPressed: () => contactUs(context),

The second change that we need to perform is enclosing the Center widget in the body of
the Scaffold widget in a Builder widget. This allows us to take the context of the
Scaffold so that we can pass it to the showDialog method, as shown here:

body: Builder(builder: (context)=>Center(

For your reference, here is the final code that we have written so far:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: "Hello World Travel Title",
 home: Scaffold(
 appBar: AppBar(
 title: Text("Hello World Travel App"),
 backgroundColor: Colors.deepPurple,
),
 body: Builder(builder: (context)=>Center(
 child: Column(children: [
 Text(
 'Hello World Travel',
 style: TextStyle(

Hello Flutter! Chapter 1

[45]

 fontSize: 26,
 fontWeight: FontWeight.bold,
 color: Colors.blue[800]),
),
 Text(
 'Discover the World',
 style: TextStyle(fontSize: 20, color:
 Colors.deepPurpleAccent),
),
 Image.network('https://images.freeimages.com/
 images/large-previews/eaa/the-beach-1464354.jpg',
 height: 350,
),
 RaisedButton(
 child: Text('Contact Us'),
 onPressed: () => contactUs(context),
),
])))));
 }

 void contactUs(BuildContext context) {
 showDialog(
 context: context,
 builder: (BuildContext context) {
 return AlertDialog(
 title: Text('Contact Us'),
 content: Text('Mail us at hello@world.com'),
 actions: <Widget>[
 FlatButton(
 child: Text('Close'),
 onPressed: () => Navigator.of(context).pop(),
)
],
);
 },
);
 }
}

Note that, should you get lost when writing your code while following any project in this
book, you can always check the final version of the app at the GitHub repository. In
particular, the project for this chapter is available at https:/ /github. com/
PacktPublishing/Google- Flutter- Projects.

In the next section, let's see how to use padding to add some space to our app.

https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects

Hello Flutter! Chapter 1

[46]

Using padding
All the functions of our app are there, but everything seems too crowded on our screen.
Let's add some space between the widgets. Generally speaking, you can create space
between elements through padding and margin properties. In Flutter, some widgets have a
padding and a margin property to deal with the space. Padding is the space between the
content and the border of a widget (which may also not be visible), and the margin is the
space outside the border, as shown in the following diagram:

Flutter also has a widget that has been specifically created to deal with space: the Padding
widget. In order to specify the distance (also called the offset), you use the EdgeInsets
class. This class specifies offsets, for the margin or the padding, from left, top, right, and
bottom. There are several named constructors for the EdgeInsets class.

The Edgeinsets.all constructor creates an offset on all four sides of a box: top, right,
bottom, and left. In the next example, it creates an offset of 24 logical pixels on all sides of a
box:

EdgeInsets.all(24)

In order to choose the side, or sides, for the offset, you can use the only() constructor. In
the following example, you see on the screen, for instance, that you are creating a margin of
80 pixels on the right of a widget:

EdgeInsets.only(right:80)

Hello Flutter! Chapter 1

[47]

The EdgeInsets.symmetric(vertical: 48.5) constructor allows you to create
symmetrical vertical and horizontal offsets. All the constructors take double values as
parameters:

EdgeInsets.symmetric(vertical:48.5)

So, in our code, let's add some spacing now:

Let's enclose Center itself into a Padding widget, giving it an EdgeInsets.all1.
class with 20 logical pixels on each side:

body: Builder(
 builder: (context) => Padding(
 padding: EdgeInsets.all(20),
 child: Center(
 child: Column(children: [

Then, we'll repeat the same process for the two Text widgets—Image and2.
RaisedButton. Let's begin by giving a 10-pixel padding to the 'Hello World
Travel' text:

Padding(
 padding: EdgeInsets.all(10),
 child: Text(
 'Hello World Travel',

Next, let's add the padding to the 'Discover the world' text:3.

Padding(
 padding: EdgeInsets.all(5),
 child: Text(
 'Discover the World',

Next, we add padding to the Image widget:4.

Padding(
 padding: EdgeInsets.all(15),
 child: Image.network(

Finally, we add padding to the button:5.

Padding(
 padding: EdgeInsets.all(15),
 child: RaisedButton(

If you try the app right now, depending on your device, everything might look okay, but
we still have a problem. Let's see what it is in the next section.

Hello Flutter! Chapter 1

[48]

Using SingleChildScrollView
Now that we added some space into the screen, we might run into a problem. Try to rotate
your device so that you have horizontal view. You should see something like the following
screenshot:

We have an error: Bottom overflowed by 250 pixels. This happens because the size of the
UI is bigger than the size of the screen.

Always check your app in every orientation when developing for mobile.

There's an easy solution for this. We need to enclose everything in
SingleChildScrollView:

builder: (context) => SingleChildScrollView(
 child: Padding(

SingleChildScrollView is a widget that scrolls and has a single child, in our example,
Padding. This is especially useful when your widget might take more space than the
available space on the screen and you want to enable scrolling for the overflowing content.

If you try this now, you'll see that everything is working perfectly, and the user can scroll
up and down if needed.

You have completed your first project in this book! Congratulations, you are well on your
way to becoming a Flutter developer.

Hello Flutter! Chapter 1

[49]

Summary
In this first chapter, we've covered several of the basics that you'll build upon on your
journey learning Flutter. The content covered here included how to use the Flutter CLI and
how to test your installation with the flutter doctor command. You also saw how to try
your apps on an emulator (Android) or a simulator (iOS).

We introduced Dart and its syntax: using the DartPad online tool, we looked at some of the
Dart syntax, including variables, loops, using strings, the arrow syntax, lists, generics, and
the Map() method.

We've touched upon the basics of object-oriented programming with classes and objects,
including constructors, properties, and methods. Finally, we introduced Flutter and created
our first Hello World app. We saw that almost every piece of UI in Flutter is a widget, and
we introduced several basic widgets, including Center, Text, MaterialApp and
Scaffold, Column, RaisedButton, and Image.

We modified the style of our app using the widgets' properties, such as choosing colors and
sizing fonts. We also saw how to deal with the space on the screen with padding, and how
to respond to events such as the click of a button.

Finally, we used an AlertDialog widget in order to give feedback to the user.

The topics introduced in this chapter will be the foundation of your progress in Flutter, and
the skills that you have acquired here will allow you to follow along with the remaining
projects of this book, and will be invaluable when developing your own apps.

In the next chapter, we'll introduce the concept of state, which will allow you to create
interactive apps with Flutter.

Questions
At the end of each project, you'll find a few questions to help you remember and review the
content that has been covered in the chapter, and this first chapter makes no exception.
Please try to answer the following questions, and if in doubt, have a look at the content in
the chapter itself, you'll find all the answers there!

What is a widget?1.
What is the starting point of a Dart and Flutter app?2.
How many named constructors can you have in a Dart/Flutter class?3.
Can you name three EdgeInsets constructors?4.

Hello Flutter! Chapter 1

[50]

How can you style the text in a Text widget?5.
What is the purpose of the flutter doctor command?6.
What widget would you use to contain several other widgets, one below the7.
other?
What is the "arrow syntax"?8.
Which widget can you use to create space between widgets?9.
How can you show an image to the user?10.

Further reading
In technology, things change very fast, so the information provided for the
installation of Flutter may have changed when you read this book. For the up-to-
date process for installing Flutter on a Windows, Mac, or Linux machine, have a
look at the following link: https:/ /flutter. dev/docs/ get- started/ install.
Chrome OS is not officially supported at the time of writing this book, but there
are several blog articles and guides that show the process of successfully
installing the Flutter SDK on Chrome OS. To install Flutter on a Pixelbook that is
running, for example, Chrome OS have a look at this link: https:/ /
proandroiddev. com/ flutter- development- on-a- pixelbook- dde984a3fc1e.
Material Design is a fascinating topic. For a full description of the design
patterns, rules, and tools visit the comprehensive Material Design website
at https:/ /material. io/ .
With this book, I truly hope to transfer to you some of the passion for the Flutter
technology that I have. I often find inspiration and great ideas at the Flutter
community website on Medium. You can find it at https:/ /medium. com/
flutter- community.

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://proandroiddev.com/flutter-development-on-a-pixelbook-dde984a3fc1e
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://material.io/
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community
https://medium.com/flutter-community

2
Miles or Kilometers? Using

Stateful Widgets
The world is a strange place. Most of us are aware that when you travel to other countries,
you may find different languages, culture, and food, but you would expect that at least
numbers and measures would stay the same wherever you go, right? Well, this is not so.

Measures such as distance, speed, weight, volume, and temperature change based on
where you live. Actually, there are two main measurement systems in use today: the
imperial system, which is used mainly in the United States; and the metric system, which is
used in most of the other countries.

In this chapter, you'll bring some order to this confusing world: you will build a measures
conversion app, in which distance and weight measures will be converted from imperial to
metric, and vice versa.

We'll cover the following aspects in this chapter:

Project overview
Understanding state and stateful widgets
Creating the measure converter project

Technical requirements
Should you get lost in the construction of the app, you'll find the completed app code at the
end of this chapter, or on the book's GitHub repository at https:/ /github. com/
PacktPublishing/Google- Flutter- Projects.

https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects

Miles or Kilometers? Using Stateful Widgets Chapter 2

[52]

To follow along the code examples in this book, you should have the following software
installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter SDK.
When developing for Android, you'll need: the Android SDK – easily installed by
Android Studio.
When developing for iOS, you'll need: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code, Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.

You'll find an installation guide in the Appendix of this book.

The necessary time to build the app in this chapter should be approximately 2.5 hours.

Project overview
The measures conversion app will allow your users to select a measure – metric or imperial
– and convert it to another measure. For example, they'll be able to convert a distance in
miles to a distance in kilometers, or a weight in kilograms to a weight in pounds. So, next
time you travel to a country with a different system, you'll be able to easily understand the
speed of your car (and maybe avoid a fine), or the weight of the food you can buy at the
market, and along the way, you'll build on your Flutter skills.

By the end of this chapter, you'll know how to leverage State using widgets such as
TextFields to interact with users and make your apps interactive.

While doing so, you'll encounter several fundamental concepts in Flutter, and in particular,
the following:

You'll see what State is in Flutter, start using stateful widgets, and understand
when you should use stateless or stateful widgets.
You'll see how and when to update the State in your app.
You'll also see how to handle events, such as onChanged and OnSubmitted in a
TextField.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[53]

You'll see how to use the most common user input widget—TextField.
Another very important widget that you'll use for this project is
DropDownButton. It's a drop-down list where you decide the choices that your
users have. And those choices are called DropDownItems in Flutter.
You'll see how to start separating the logic of your app from the User Interface
(UI), and you'll gain a few tips on how to build the structure of your app.

While stateful widgets are the most basic way to deal with State in an app,
there are other, more efficient ways to deal with State in Flutter. Some of
those will be shown in the upcoming projects.

The following is the final layout of the project that you'll build in this chapter:

Miles or Kilometers? Using Stateful Widgets Chapter 2

[54]

As you can see, this is a rather standard form with Material Design widgets, which should
be very easy to compile for your users. You can use it as a starting point for any form that
you use in your future apps.

Understanding state and stateful widgets
The widgets that we've seen so far are stateless widgets, meaning that once created they are
immutable, and they do not keep any state information. When you interact with your users,
you expect things to change. For example, if you want to convert a measure from one
system to another, the result must change, based on some user input.

The most basic way to deal with changes in Flutter is using State.

State is information that can be used when a widget is built and can change during the
lifetime of a widget.

An important part of this definition is that state is information that can change, and the
most obvious takeaway of this concept is that when you want to add interactivity to your
app, you can use State. But, if you read this definition thoroughly, it also means that it's not
the widget itself that will change, it's the State of a widget that will change, and when it
does, the widget will be rebuilt. When a widget has a State, it's called a stateful widget. And
in Flutter, stateful widgets are immutable. It's only the State itself that changes.

Each time the State changes, the widget gets rebuilt.

Let's have a look at the main differences between a stateless widget, which we've used so
far, and a stateful widget. Of course, the most obvious difference is explained by the name
itself, the State: State/less and State/ful.

But there is a different implementation as well. In order to see it in detail, we'll create a new
app and see it in practice.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[55]

Creating the measure converter project
We will now create a new app that we'll use throughout this chapter to build a fully
functioning measure converter:

From your favorite editor, create a new app. Name the new app Unit1.
Converter.
In the main.dart file, remove the example code and write the code given as2.
follows:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Measures Converter',
 home: Scaffold(
 appBar: AppBar(
 title: Text('Measures Converter'),
),
 body: Center(
 child: Text('Measures Converter'),
),),
);}
}

As you may have noticed, the preceding code makes use of a Stateless widget:

class MyApp extends StatelessWidget {

A Stateless widget is a class that extends a StatelessWidget. Extending
a StatelessWidget class requires overriding a build() method.

In the build() method, you describe the widget returned by the method:

@override
Widget build(BuildContext context) {

The build() method that takes a context and returns a widget:

return MaterialApp(…)

Miles or Kilometers? Using Stateful Widgets Chapter 2

[56]

So to summarize, in order to have a stateless widget you need to do the following:

Create a class that extends StatelessWidget.1.
Override the build() method.2.
Return a widget.3.

Once built, a Stateless widget never changes.

Using stateful widgets
Let's now transform the MyApp class into a stateful widget, so that you can see the different
implementations of the class:

class MyApp extends StatefulWidget {

You can see immediately that you get two errors. If you hover over the MyApp class, the
error that you see is “Missing concrete implementation of StatefulWidget.createState,”
and if you hover over the build method you see “The method doesn't override an
inherited method.”

What these errors are trying to tell us is the following:

A stateful widget requires a createState() method.1.
In a stateful widget, there is no build() method to override.2.

Let's fix both these issues using the following steps:

Add the necessary createState() method, which will return MyAppState,1.
which we'll create shortly. In the MyApp class, just under its definition, write the
following code:

@override
MyAppState createState() => MyAppState();

Create a new class called MyAppState, that extends the State, and in particular,2.
the State of MyApp:

class MyAppState extends State<MyApp> {}

Miles or Kilometers? Using Stateful Widgets Chapter 2

[57]

In order to solve the second error (“Missing concrete implementation of3.
State.build”), cut the build() method that is now in the MyApp class, and paste
it into the MyAppState class. The revised code should look like this:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {
 @override
 MyAppState createState() => MyAppState();
}

class MyAppState extends State<MyApp> {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Measures Converter',
 home: Scaffold(
 appBar: AppBar(
 title: Text('Measures Converter'),
),
 body: Center(
 child: Text('Measures Converter'),
),
),
);
 }
}

To sum it up, from a syntax perspective, the difference between a Stateless widget and a
stateful widget is that the former overrides a build() method and returns a widget,
whereas a stateful widget overrides a createState() method, which returns a State. The
State class overrides a build() method, returning a widget.

From a functional point of view, in the code that we have written, there is no difference
whatsoever between the two, as in both cases the app looks and behaves exactly in the
same way. So, let's add a feature that requires a stateful widget, and could not be achieved
with a Stateless Widget.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[58]

Here, you can see the app layout so far:

Next, let's see how to read the user input from TextField.

Reading user input from TextField
In the State class, let's add a member called _numberFrom. As shown in the following
code, this is a value that will change based on user input:

double _numberFrom;

Then, in the body of the build() method, let's delete the text widget, and add TextField
instead:

body: Center(
 child: TextField(),
),

Miles or Kilometers? Using Stateful Widgets Chapter 2

[59]

You generally use TextField when you want to take some input from
your users.

As you can see, there's now TextField in the center of your app, and you can write into it
by clicking over the line and typing something:

Right now, TextField does nothing, so the first thing we need to do is read the value that
the user inputs into it.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[60]

While there are different ways to read from TextField, for this project, we'll respond to
each change in the content of TextField through the onChanged method, and then we'll
update the State.

In order to update the State, you need to call the setState() method.

The setState() method tells the framework that the state of an object
has changed, and that the UI needs to be updated.

Inside the setState() method, you change the class members that you need to update (in
our case, _numberFrom):

child: TextField(
 onChanged: (text) {
 var rv = double.tryParse(text);
 if (rv != null) {
 setState(() {
 _numberFrom = rv;
 });
 }
 },
),

In the preceding code, each time the value of TextField changes (onChanged), we check
whether the value that was typed is a number (tryParse). If it's a number, we change the
value of the _numberForm member: in this way, we have actually updated the State. In
other words, when you call the setState() method to update a class member, you are
also updating the State of the class.

We are not giving any feedback to the user, so unless we use the debugging tools of our
editor, we cannot actually check whether this update actually happened. In order to solve
that, let's add a Text widget that will show the content of the TextEdit widget, and then
wrap the two widgets into a Column widget:

 body: Center(
 child: Column(
 children: [
 TextField(
 onChanged: (text) {
 var rv = double.tryParse(text);
 if (rv != null) {
 setState(() {
 _numberFrom = rv;

Miles or Kilometers? Using Stateful Widgets Chapter 2

[61]

 });
 }
 },
),Text((_numberFrom == null) ? '' : _numberFrom.toString())
],
),
),

Before trying the app, let's add another method to the MyAppState class:

 @override
 void initState() {
 _numberFrom = 0;
 super.initState();
 }

The initState() method is called once for each State object when the State is built. This
is where you generally put the initial values that you might need when you build your
classes. In this case, we are setting the _numberFrom initial value. Also note, that you
should always call super.initState() at the end of the initState() method.

Now, if you write a number in the TextField, you'll see the same number in the Text
widget, as well. In this apparently simple example, many things are happening at once:

You are setting an initial State of the app through the _numberForm class
member in the InitState() method.
The widget is drawn on screen.
You are responding to a TextField event: the onChanged event, which is called
every time the content of the TextField changes.
You are changing the State by calling the setState() method, and there you
change the value of _numberForm.
The widget is redrawn with the new State, which contains the number that you
write in TextField, so the Text widget, which reads _numberForm, contains
the modified value of the State.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[62]

Here is a diagram that highlights the steps described previously: with a few variations,
you'll notice a similar pattern whenever you use stateful widgets in your apps:

To sum it up, calling setState(), does the following:

Notifies the framework that the internal state of this object has changed
Calls the build() method and redraws its children with the updated State
object

Now you have the ability to create an app that responds to the user input and changes the
UI based on a changing State, which in Flutter is the most basic way to create interactive
apps.

Next, we need to complete the UI of our app, and in order to do that, we need another
widget: DropDownButton. Let's create this in the following section.

Creating a DropdownButton widget
DropdownButton is a widget that lets users select a value from a list of items.
DropdownButton shows the currently selected item, as well as a small triangle that opens a
list for selecting another item.

Here are the steps that are required to add DropdownButton to your apps:

Create an instance of DropdownButton, specifying the type of data that will be1.
included in the list.
Add an items property that will contain the list of items that will be shown to2.
the user.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[63]

The items property requires a list of DropdownMenuItem widgets. Therefore,3.
you need to map each value that you want to show into DropdownMenuItem.
Respond to the user actions by specifying an event; typically, for4.
DropdownButton, you will call a function in the onChanged property.

As an example, the following code creates a DropdownButton widget that shows a list of
fruits (that are good for your health):

var fruits = ['Orange', 'Apple', 'Strawberry', 'Banana'];

DropdownButton<String>(
 items: fruits.map((String value) {
 return DropdownMenuItem<String>(
 value: value,
 child: Text(value),);
 }).toList(),
 onChanged: (String newValue) {}
),

DropDownButton is a generic, as it's built as DropDownButton<T>, where the generic type,
T, is the type of item in your DropDownButton widget (in this case, T is a string).

Dart supports generics or generic types. For example, a list can contain
several types: List<int> is a list of integers, List<String> is a list of
strings, and List<dynamic> is a list of objects of any type. Using generics
helps to ensure type safety: in the example of the list, for instance, you
cannot add a number to List<String>.

The map() method iterates through all the values of the array, and performs a function on
each value of the list. The function inside the map() method returns a DropDownMenuItem
widget, which, in the previous example, has a value property and a child property. The
child is what the user will see, in this case, a Text widget. The value is what you'll use to
retrieve the selected item on the list.

The map() method returns an iterable, which is a collection of values that can be accessed
sequentially.

Over that, you call the toList() method, which creates a list that contains the elements
that should be returned. This is required by the items property.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[64]

In our app, we need two DropdownButton widgets, one for the starting unit, and one for
the converted unit:

Let's create a list of strings that will contain all the measures that we want to deal1.
with. At the beginning of the State class, let's add the following code:

final List<String> _measures = [
 'meters',
 'kilometers',
 'grams',
 'kilograms',
 'feet',
 'miles',
 'pounds (lbs)',
 'ounces',
];

Next, we'll create a DropDownButton widget, which will read the values of the2.
list, and place it at the top of the column, above the TextField:

DropdownButton(
 items: _measures.map((String value) {
 return DropdownMenuItem<String>(value: value, child:
Text(value),);
 }).toList(),
 onChanged: (_) {},
),

If you try out the app now, you'll see that at the top of the screen there's a small triangle.
When you click on it, the list of measures is shown, and you can click on any of them to
select one. At this time, when you select a value, DropdownButton still remains empty.
This is because we need to implement the function inside the onChanged member of
DropDownButton.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[65]

The following screenshot shows how DropdownButton contains a list of items:

In the next section, we will learn how to respond to the user input when they change the
value in DropDownButton.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[66]

Updating a DropdownButton widget
Let's modify the onChanged property using the following steps:

Create a new string called _startMeasure at the top of the MyAppState class. It1.
will contain the selected value from DropdownButton:

String _startMeasure;

Instead of the underscore, call the parameter that is passed to the function,2.
value.
Inside the function, call the setState() method to update _startMeasure3.
with the new value that's passed. Here is the resulting code:

onChanged: (value) {
 setState(() {
 _startMeasure = value;
 });
}

The last step of this task is reading the selected value so that DropdownButton4.
reads it when the app starts and every time it changes. Let's add the following
line to DropDownButton:

value: _startMeasure,

Now, if you try the app, when you select a value from the list, the value shows up
in DropdownButton, which is exactly the behavior that you would expect from it.

 In the next section, we'll complete the UI for this screen.

Completing the UI of the app
Let's now complete the UI of our app. The final result is shown in the following screenshot:

Miles or Kilometers? Using Stateful Widgets Chapter 2

[67]

We actually need to show eight widgets on screen:

Text containing Value
TextField for the start value
Text containing From
A DropdownButton widget for the start measure
Another Text containing To
A DropdownButton widget for the measure of the conversion
RaisedButton to call the method that will convert the value.
Text for the result of the conversion

Each element of the Column should also be spaced and styled.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[68]

Let's begin by creating two TextStyle widgets. The advantage of this approach is that we
can use them several times without needing to specify the styling details for each widget:

At the top of the build() method, let's first create a TextStyle widget, which1.
we'll use for TextFields, DropDownButtons, and Button. We'll call it
inputStyle:

final TextStyle inputStyle = TextStyle(
 fontSize: 20,
 color: Colors.blue[900],
);

Then, let's create a second TextStyle widget, which we'll use for the Text2.
widgets in the column. We'll call it labelStyle:

final TextStyle labelStyle = TextStyle(
 fontSize: 24,
 color: Colors.grey[700],
);

 We also want Column to take some distance from the horizontal device borders.3.
So, instead of returning a Center widget, we can return Container, which takes
a padding of 20 logical pixels. EdgeInsets.symmetric allows you to specify a
value for the horizontal or vertical padding:

body: Container(
 padding: EdgeInsets.symmetric(horizontal: 20),
 child: Column(

And speaking of spacing, we want to create some space between the widgets in4.
the column. A simple way of achieving this is using the Spacer widget: Spacer
creates an empty space that can be used to set spacing between widgets in a
flexible container, such as the Column in our interface. A Spacer widget has
a flex property, whose default value is 1, which determines how much space
we want to use. For instance, if you have two Spacer widgets, one with a flex
property of 1, and another with a flex property of 2, the second will take double
the space of the first. At the top of the Column let's add an initial Spacer widget:

child: Column(
 children: [
 Spacer(),

Miles or Kilometers? Using Stateful Widgets Chapter 2

[69]

Under the Spacer widget, add the first text in the Column containing the5.
'Value' string. We'll also apply labelStyle to this widget, and under Text we
will place another Spacer:

Text(
 'Value',
 style: labelStyle,
),
Spacer(),

Under the Text that contains 'Value' and its Spacer, we need to place the6.
TextField that we previously created, to allow the user to input the number
that they want to convert. Let's edit TextField so that it takes the inputStyle
TextStyle. We'll also set the decoration property of the TextField.

The decoration property of a TextField takes an InputDecoration
object. InputDecoration allows you to specify the border, labels, icons,
and styles that will be used to decorate a text field.

hintText is a piece of text that is shown when TextField is empty, to suggest7.
which kind of input is expected from the user. In this case, add "Please insert
the measure to be converted" as a hintText prompt for our TextField:

TextField(
 style: inputStyle,
 decoration: InputDecoration(
 hintText: "Please insert the measure to be converted",
),
 onChanged: (text) {
 var rv = double.tryParse(text);
 if (rv != null) {
 setState(() {
 _numberFrom = rv;
 });
 }
 },
),

Miles or Kilometers? Using Stateful Widgets Chapter 2

[70]

Under TextField, place another Spacer(), then a Text with 'From' and the8.
labelStyle style:

Spacer(),
 Text(
 'From',
 style: labelStyle,
),

Under the 'From' Text, place the DropDownButton widget, whose value is9.
_startMeasure, which you wrote in the previous section:

DropdownButton(
 isExpanded: true,
 items: _measures.map((String value) {
 return DropdownMenuItem<String>(
 value: value,
 child: Text(value),
);
 }).toList(),
 onChanged: (value) {
 setState(() {
 _startMeasure = value;
 });
 },
 value: _startMeasure,
),

Next, add another Text for the second dropdown: in this case, the Text will10.
contain 'To', and the style will be labelStyle, as before:

Spacer(),
Text(
 'To',
 style: labelStyle,
),

Under the 'To' Text we need to place the second DropdownButton widget, and11.
this requires another class member: the first DropdownButton widget
used _startMeasure for its value; this new one will use _convertedMeasure.
At the top of the MyAppState class, add the following declaration:

 String _convertedMeasure;

Miles or Kilometers? Using Stateful Widgets Chapter 2

[71]

Now, we are ready to add the second DropDownButton widget: this will contain12.
the same measures list as the previous one. The only difference here is that it will
reference the _convertedMeasure variable. As usual, don't forget to add a
Spacer() before the widget:

Spacer(),
DropdownButton(
 isExpanded: true,
 style: inputStyle,
 items: _measures.map((String value) {
 return DropdownMenuItem<String>(
 value: value,
 child: Text(
 value,
 style: inputStyle,
),
);
 }).toList(),
 onChanged: (value) {
 setState(() {
 _convertedMeasure = value;
 });
 },
 value: _convertedMeasure,
),

Next, add the button that will apply the conversion: it will be a RaisedButton13.
with a Text of 'Convert', and the style of inputStyle. At this time, the
onPressed event will do nothing, as we don't have the logic of the app ready
yet. Before and after the button we'll place a Spacer, but this time, we will also
set its flex property to 2. This way, the space between the button and the other
widgets on screen will be twice the amount of the other spacers:

Spacer(flex: 2,),
 RaisedButton(
 child: Text('Convert', style: inputStyle),
 onPressed: () => true,
),
 Spacer(flex: 2,),

Miles or Kilometers? Using Stateful Widgets Chapter 2

[72]

Finally, we'll add the Text for the result of the conversion. For now, let's just14.
leave the _numberFrom value as Text; we'll change that in the next section. At
the end of the result, we'll add the largest Spacer of this screen, with a flex
value of 8, in order to leave some space at the end of the screen:

Text((_numberFrom == null) ? '' : _numberFrom.toString(),
 style: labelStyle),
Spacer(flex: 8,),

There's one very last step that we need to perform before we complete the UI. On15.
some devices, the UI that we have designed may be bigger than the available
screen when the keyboard appears on screen. This may cause an error in your
app. In order to solve this issue, there's a simple solution, which I recommend
that you always use when designing your layouts with Flutter. You should put
the Column widget into a scrollable widget, in this case,
SingleChileScrollView. What this will do is make the widgets on the screen
scroll if they take more space than is available on screen. So just enclose Column
into a SingleChildScrollView widget like in the following example:

body: Container(
 padding: EdgeInsets.symmetric(horizontal: 20),
 child: SingleChildScrollView(
 child: Column(
 ...
),
),

If you try the app now, you should see the final look of the app, but other than for choosing
values from the DropdownButton widgets, and adding some text to TextField, the screen
doesn't do anything useful. Let's add the logic of the app next.

Adding the business logic
You have completed the layout of the app, but right now the app is missing the part that
converts the values that are based on the user input.

Generally speaking, it's always a good idea to separate the logic of your apps from the UI,
and there are great patterns in Flutter that help you achieve this result. You'll use some of
those, such as ScopedModel and Business Logic Components (BLoCs), in the following
projects, but for now, we can just add the conversion functions into our class.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[73]

There are certainly several ways to write the code to perform the conversion between
measures for this app. The approach that I find easiest is seeing the formulas that we need
to apply as a two-dimensional array of values, also called a matrix. This matrix contains all
the possible combinations of choices that the user can perform.

A diagram of this approach is shown here:

So, for example, when you want to convert 100 kilometers into miles, you multiply 100 by
the number that you find in the array (in this case, 0.621371). It's a bit like playing
Battleships. When the conversion is not possible, the multiplier is 0, so any impossible
conversion returns 0.

As you might recall from Chapter 1, Hello Flutter!, in Dart we use List in order to create
arrays. In this case, it's a two-dimensional array or matrix, and therefore we'll create an
object that contains List's. Let's look at the steps:

We'll need to convert the Strings of the measure units into numbers. At the top1.
of the MyAppState class, add the following code, using Map:

final Map<String, int> _measuresMap = {
 'meters' : 0,
 'kilometers' : 1,
 'grams' : 2,
 'kilograms' : 3,
 'feet' : 4,
 'miles' : 5,

Miles or Kilometers? Using Stateful Widgets Chapter 2

[74]

 'pounds (lbs)' : 6,
 'ounces' : 7,
};

Maps allow you to insert key–value pairs, where the first element is the key, and2.
the second is the value. When you need to retrieve a value from Map, you can use
the following syntax:

myValue = measures['miles'];

The myValue variable will have a value of 5.

Next, we'll create a list that contains all of the multipliers that were shown in the3.
previous diagram:

 final dynamic _formulas = {
 '0':[1,0.001,0,0,3.28084,0.000621371,0,0],
 '1':[1000,1,0,0,3280.84,0.621371,0,0],
 '2':[0,0,1,0.0001,0,0,0.00220462,0.035274],
 '3':[0,0,1000,1,0,0,2.20462,35.274],
 '4':[0.3048,0.0003048,0,0,1,0.000189394,0,0],
 '5':[1609.34, 1.60934,0,0,5280,1,0,0],
 '6':[0,0,453.592,0.453592,0,0,1,16],
 '7':[0,0,28.3495,0.0283495,3.28084,0,0.0625, 1],
 };

If you don't want to type this code, I've created a Gist file that contains the
Conversion class. You'll find the full file at https:/ /gist. github. com/
simoales/ 66af9a23235abcb537621e5bf9540bc6.

Now that we have created a matrix that contains all of the possible combinations4.
of conversion formulas, we only need to write the method that will convert the
values using the formulas and the measures Map. Add the following code at the
bottom of the MyAppState class:

void convert(double value, String from, String to) {
 int nFrom = _measuresMap[from];
 int nTo = _measuresMap[to];
 var multiplier = _formulas[nFrom.toString()][nTo];
 var result = value * multiplier;
}

https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6
https://gist.github.com/simoales/66af9a23235abcb537621e5bf9540bc6

Miles or Kilometers? Using Stateful Widgets Chapter 2

[75]

The convert() method takes three parameters:

The number that will be converted (double value)
The unit of measure in which this value is currently expressed, as a String
(String from)
The unit of measure unit in which the value will be converted, also a String
(String to)

For example, if you want to convert 10 meters into feet, 10 is the number, meters is the unit
in which the value is currently expressed, and feet is the unit to which the number will be
converted.

Let's see in detail how the convert() method has worked so far:

Inside the convert() method, you find the number associated with the from the1.
measure:

int nFrom = measures[from];

Then, you do the same with the to measure:2.

int nTo = measures[to];

Next, you create a multiplier value that takes the correct conversion formula3.
from the formulas matrix:

var multiplier = formulas[nFrom.toString()][nTo];

Finally, you calculate the result of the conversion:4.

double result = value * multiplier;

In this case, if the conversion is not possible, for example, when the user tries to convert a
weight measure into a distance measure, this function does not raise any error.

Next, we need to show the result of the conversion to the user:

Declare a String variable at the top of the MyAppState class:1.

String _resultMessage;

Miles or Kilometers? Using Stateful Widgets Chapter 2

[76]

In the convert() method, after calculating the result, populate the2.
_resultMessage String, and call the setState() method to notify the
framework that an update to the UI is needed:

if (result == 0) {
 _resultMessage = 'This conversion cannot be performed';
 }
 else {
 _resultMessage = '${_numberFrom.toString()} $_startMeasure are
${result.toString()} $_convertedMeasure';
 }
 setState(() {
 _resultMessage = _resultMessage;
 });

Finally, we need to call the convert() method when the user taps on the3.
Convert button. Before calling the method, we'll check that every value has been
set to prevent potential errors. Edit RaisedButton, as shown here:

RaisedButton(
 child: Text('Convert', style: inputStyle),
 onPressed: () {
 if (_startMeasure.isEmpty || _convertedMeasure.isEmpty ||
_numberFrom==0) {
 return;
 }
 else {
 convert(_numberFrom, _startMeasure, _convertedMeasure);
 }
 },
),

In order to show the result, let's also update the Text widget, so that it shows the4.
string that contains the message to the user:

Text((_resultMessage == null) ? '' : _resultMessage,
 style: labelStyle),

Congratulations, the app is now complete! If you try it out now, you should see a screen
like the one shown here:

Miles or Kilometers? Using Stateful Widgets Chapter 2

[77]

As you can see in the preceding screenshot, when we select two compatible measures, you
should get the correct result on the screen.

Summary
In the project that you've built in this chapter, you've seen how to create interactive apps
using State.

You've created a Stateless widget and transformed it into a stateful widget. In doing so,
you've seen the different implementations between the two, and you've learned that in
Flutter, widgets are immutable. It's the State that changes.

You have used two very important widgets, which help you to interact with the
users: TextField and DropdownButton.

For TextField, you've used one of the possible ways to respond to the user input, which is
using the onChanged() event, and from there, you called the setState() method, which
updates the inner State of a widget.

Miles or Kilometers? Using Stateful Widgets Chapter 2

[78]

You've seen how to add a DropdownButton widget to your apps, and also how to set
the items property that will contain a list of DropdownMenuItem widgets to show to the
user, and again, how to use the onChanged property to respond to the user input.

In other projects in this book, you'll see other, more efficient ways to deal with State in
Flutter. In the next chapter, in particular, you'll see how to leverage streams of data in your
apps in order to build a timer app.

Questions
At the end of each project, you'll find a few questions to help you remember and review the
contents that have been covered in the chapter, and this chapter is no exception. Please try
to answer the following questions, and when in doubt, have a look at the content in the
chapter itself: you'll find all the answers there!

When should you use stateful widgets in your apps?1.
Which method updates the State of your class?2.
Which widget would you use to allow your user to select an option from a3.
dropdown list?
Which widget would you use to allow your user to type some text?4.
Which event can you use when you want to react to some user input?5.
What happens when your widgets take more space than what's available on the6.
screen? How do you solve this issue?
How can you get the width of the screen?7.
What is Map in Flutter?8.
How can you style your text?9.
How can you separate the logic of your apps from the UI?10.

Further reading
As Flutter is rapidly gaining momentum, you'll find a lot of articles and documents on the
topics that we've touched in this project.

For padding, EdgeInsets, the box model, and layouts in general, the Flutter official
documentation has a fantastic article to get you started at: https:/ /flutter. dev/docs/
development/ui/layout.

https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/layout

Miles or Kilometers? Using Stateful Widgets Chapter 2

[79]

For TextFields have a look at: https:/ /flutter. dev/ docs/ cookbook/ forms/ text- input.

For use cases of DropdownButton widgets, again the official documentation has a nice
page at: https:// docs. flutter. io/ flutter/ material/ DropdownButton- class. html.

https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://flutter.dev/docs/cookbook/forms/text-input
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html
https://docs.flutter.io/flutter/material/DropdownButton-class.html

3
My Time - Listening to a Stream

of Data
As you are reading this book, you are probably at war. It's a war with battles that happen
daily and has an impact on the quality of your life. It's the war against distractions.

Right now, you may be tempted to check your email or have a look at social media, to listen
to the people talking nearby or grab that snack waiting for you in the room nearby, or to
have a quick look at your smartphone.

Well, please don't!

There are several studies showing that, if you want to be successful in your activities, you
need to practice deep work. Deep work is in a state of concentration that allows you to
maximize your cognitive capabilities. You can use deep work when you study a book such
as this, when you learn a new language, or when you write an app—in short, whenever
you need to perform work that creates value or improves your skills.

The definition of deep work comes from the bestselling book "Deep Work: Rules for
Focused Success in a Distracted World," by Cal Newport.

There is a simple solution, and we will address that in the app that we'll be building in this
chapter: you need to plan work and break time, and you have to stick to that plan. In this
chapter, you'll build an app that will help you set the time intervals that work for you, and
measure your work and break time. In fact, you'll be building a productivity app
containing a countdown that tells you your remaining working or break time, with an
animation on the screen. On a second screen, you'll also be able to set the duration of your
work time, short break, and long breaks, and save them on your device.

By the end of this chapter, you'll know how to use Stream and StreamBuilder, add simple
navigation to your apps, integrate external libraries in your Flutter projects, and
use SharedPreferences to persist data.

My Time - Listening to a Stream of Data Chapter 3

[81]

It will be a good exercise in learning several important Flutter features that we haven't
touched on so far, such as the following:

Building a layout leveraging an external library
Listening to data streams and using asynchronous programming
Navigating from one screen to another in your app
Using shared preferences to persist data in your device
Using a GridView and choosing the right colors for your app

Following this project should take approximately 3 hours.

Technical requirements
You'll find the completed app code on the book's GitHub repository at https:/ /github.
com/PacktPublishing/ Google- Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter software development kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code (VS Code), Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.

Building the timer home page layout
In the following screenshot, you can see the layout we will be building in this first part. In
order to make it easier to understand what we need to do for this layout, I've added
borders that show how the widgets will be placed on the screen:

https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects

My Time - Listening to a Stream of Data Chapter 3

[82]

I believe the easiest way to build this layout is by using a combination of Column and Row
widgets. The main container widget in this screen will be a column that will divide the
space into three parts, as follows:

The three buttons at the top: Work, Short Break, and Long Break1.
The timer in the middle2.
The two buttons at the bottom: Stop and Restart3.

My Time - Listening to a Stream of Data Chapter 3

[83]

We will now create a new app that we'll use throughout this chapter to build the
productivity timer, as follows:

From your favorite editor, create a new app.1.
Name the new app productivity_timer.2.
In the main.dart file, remove the example code.3.
Type the following code (If you want to save some time typing, I’ve created a gist4.
on GitHub. It's a generic start for a basic Flutter app, which you can reuse
whenever you start a new project. The link is http:/ /bit. ly/basic_ flutter.):

import 'package:flutter/material.dart';
void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
@override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'My Work Timer',
 theme: ThemeData(
 primarySwatch: Colors.blueGrey,
),
 home: Scaffold(
 appBar: AppBar(
 title: Text('My Work Timer'),
),
 body: Center(
 child: Text('My work Timer'),
),),
);}
}

This code creates a basic Scaffold, which is the base layout for most of our screens, and
puts a title in the AppBar—My Work Timer—and a Text at the center of the body (again, My
Work Timer). The result should be similar to the following screenshot:

http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter
http://bit.ly/basic_flutter

My Time - Listening to a Stream of Data Chapter 3

[84]

Next, instead of just returning a Text, let's create a class for the layout of the5.
screen at the bottom of the main.dart file. Let's call it TimerHomePage(). If you
are using VS Code, Android Studio, or IntelliJ IDEA, you can also use the
stless shortcut to make the framework write part of your code. After the end of
the MyApp class, just type stless.
As for the class name, let's choose TimerHomePage. The final result should be as6.
follows:

class TimerHomePage extends StatelessWidget {
@override
Widget build(BuildContext context) {
 return Container();
 }
}

My Time - Listening to a Stream of Data Chapter 3

[85]

In the build() method, instead of returning a Container, we’ll move the7.
Scaffold from the MyApp class: in the appBar, we'll show the title of the app
and in the body a Center widget containing a Column. Add the following code in
the TimerHomePage class:

@override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('My work timer'),
),
 body: Center(
 child: Column(),),
); }
}

We can simplify the code on the build() method of the MyApp class by calling8.
the new class we've just created, like this:

home: TimerHomePage(),

If you try the app right now, you should still see an empty screen, with the My Work
Timer app bar title, just as before.

Now, we are ready to start placing the widgets on the screen. As we need to build five
button widgets that will have very similar features, it might be a good idea to create a new
class for those, in order to keep the rest of the code cleaner and save a bit of typing.

So, let's create a new file in the lib folder of the app, called widgets.dart, as follows:

Here, we'll create a new stateless widget called ProductivityButton. This will1.
expose four fields: a color, a text, a size, and a Callback method, with a
constructor that sets the values. The code for the widget is as follows:

import 'package:flutter/material.dart';
class ProductivityButton extends StatelessWidget {
 final Color color;
 final String text;
 final double size;
 final VoidCallback onPressed;

 ProductivityButton({@required this.color, @required this.text,
@required this.onPressed, @required this.size});
 @override
 Widget build(BuildContext context) {
 return MaterialButton(

My Time - Listening to a Stream of Data Chapter 3

[86]

 child:Text(
 this.text,
 style: TextStyle(color: Colors.white)),
 onPressed: this.onPressed,
 color: this.color,
 minWidth: this.size,
); }
}

You may have noticed that the parameters are included in curly brackets ({}) and
have a @required annotation. This is because we are using named parameters
here. The purpose of using named parameters is that when you call the function
and pass values, you also specify the name of the parameter you are setting. For
example, when creating an instance of ProductivityButton, you can use the
syntax ProductivityButton (color: Colors.blueAccent, text: 'Hello
World', onPressed: doSomething, size: 150). As named parameters are
referenced by name, they can be used in any order.

Named parameters are optional, but you can annotate them with the
@required annotation to indicate that the parameter is mandatory.

Now that we have created a generic button widget, we need to place a few
instances of the button on the screen.

The top buttons should be placed on a single row at the top of the screen. They
should take all the available horizontal space, save for some space for the
margins, and they should vary their width based on the size and orientation of
the screen.

Create a temporary empty method to have a method to pass to the buttons. We'll2.
remove it later on. Add the following code at the bottom of the MyApp class:

 void emptyMethod() {}

At the top of the MyApp class, let's declare a constant for the default padding we3.
want to use in our screen, as follows:

final double defaultPadding = 5.0;

My Time - Listening to a Stream of Data Chapter 3

[87]

Now, let's place the top buttons on the screen: we'll need to use a Row widget4.
here, and include it as the first element of the Column widget. In Flutter, it's
actually possible to include Row widgets into Column widgets, and the opposite
is also true.
We want the buttons to take all the available horizontal space. To achieve that,
we'll use an Expanded widget that takes all the available space of a Column (or a
Row) after placing the fixed elements. Each button will have a leading and trailing
Padding, to create some space between the elements. Write the code to add the
first three buttons to the screen, as follows:

body: Column(children: [
 Row(
 children: [
 Padding(padding: EdgeInsets.all(defaultPadding),),
 Expanded(child: ProductivityButton(color: Color(0xff009688),
 text: "Work", onPressed: emptyMethod)),
 Padding(padding: EdgeInsets.all(defaultPadding),),
 Expanded(child: ProductivityButton(color: Color(0xff607D8B),
 text: "Short Break", onPressed: emptyMethod)),
 Padding(padding: EdgeInsets.all(defaultPadding),),
 Expanded(child: ProductivityButton(color: Color(0xff455A64),
 text: "Long Break", onPressed: emptyMethod)),
 Padding(padding: EdgeInsets.all(defaultPadding),),
],
),
])

Try the app. The result of the preceding code should be similar to the following5.
screenshot:

My Time - Listening to a Stream of Data Chapter 3

[88]

The timer should be placed in the middle of the screen and take all the remaining6.
space after placing the top and bottom rows, which have a fixed size. For now,
we'll just use a "Hello" Text as a placeholder, under the Column widget. Note
that, in this case, Expanded is used in a column instead of the row, so it takes all
the vertical available space, as illustrated in the following code snippet:

Expanded(child: Text("Hello")),

We'll then place the remaining two buttons, Stop and Restart, at the bottom of7.
the screen, and they will also take all the horizontal space, except for some
padding between them and the border of the screen, as illustrated in the
following code block:

Row(children: [
 Padding(padding: EdgeInsets.all(defaultPadding),),
 Expanded(child: ProductivityButton(color: Color(0xff212121),
text: 'Stop', onPressed: emptyMethod)),

My Time - Listening to a Stream of Data Chapter 3

[89]

 Padding(padding: EdgeInsets.all(defaultPadding),),
 Expanded(child: ProductivityButton(color: Color(0xff009688),
text: 'Restart', onPressed: emptyMethod)),
 Padding(padding: EdgeInsets.all(defaultPadding),),
],)

The final result should look like the following screenshot:8.

Now, you might wonder: where do these colors come from?

Personally, I'm not a designer, and it's sometimes difficult for me to choose the right colors
for my apps, so I need a tool to guide me with the choice. There are several excellent tools
that generate colors, but the one I use consistently—and, therefore, my suggestion for you,
at least at the beginning—is the materialpalette.com website.

https://www.materialpalette.com

My Time - Listening to a Stream of Data Chapter 3

[90]

This tool allows you to choose two main colors for your layout, and it will automatically
create for you the best combination of the two, giving the color codes you can use in your
layouts. You can use it for any User Interface (UI) or website design.

For example, for the colors of the app we are building now, the colors are a combination of
BLUE GREY and TEAL, as shown in the following screenshot:

Now, we have completed the layout for the buttons of our app, but we still need to put the
main content at the center of the screen, which is the timer itself. Let's add it to our layout
next.

Installing the percent_indicator Package in your
app
We need to place the Timer in the center of the screen, where the "Hello" Text is now
showing. For this timer, we'll use the CircularPercentIndicator widget, which is
included in the percent_indicator package, that you can get at https:/ /pub. dartlang.
org/packages/percent_ indicator. This is a nice widget that makes it very easy to create
circular and linear percent indicators in your apps.

https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator
https://pub.dartlang.org/packages/percent_indicator

My Time - Listening to a Stream of Data Chapter 3

[91]

In Flutter, packages are reusable bits of code generally developed by the community that
you can include in your projects. Using packages, you can quickly build an app without
having to develop everything from scratch.
The main site where you can look for packages is https:/ /pub. dev/flutter.

We'll now use a procedure that is valid to install any package in your Flutter apps, as
follows:

In order to use the CircularPercentIndicator package, from the https:/ /1.
pub.dev/ flutter website, let's look for percent_indicator. The first result
should be the package we need, which is the percent_indicator library, as shown
in the following screenshot:

Click on the library link. The package page shows information and examples2.
on how to install and use the package. In particular, for any package, we need to
add the dependency in the pubspec.yaml configuration file.
Copy the dependency from the Getting Started section. At the time this book is3.
written, it is percent_indicator: "^2.1.1+1", but it might have changed when
you read this.

https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter
https://pub.dev/flutter

My Time - Listening to a Stream of Data Chapter 3

[92]

Open the pubspec.yaml file in the root folder of your app. Every Flutter project4.
has a file named pubspec.yaml, written in the YAML language. This is where
you specify the required dependencies in your Flutter project.
Find the dependencies section and add the percent_indicator dependency5.
under the Flutter SDK, as shown in the following code snippet:

dependencies:
 flutter:
 sdk: flutter
 percent_indicator: ^2.1.1+1

The percent_indicator dependency MUST be indented like the flutter
dependency, as shown in the preceding code, as YAML files use indentation to
represent relationships between layers.

Next, back in the main.dart file, let's add the percent_indicator import, as6.
follows:

import 'package:percent_indicator/percent_indicator.dart';

Then, in the column, let's delete the "hello" text, and, in its place, let's use a7.
CircularPercentIndicator. We'll include it in an Expanded widget so that it
takes all the available vertical space in the column. The code is shown under
bullet point 9.
A CircularPercentIndicator requires a radius property that represents the8.
size of the circle, in logical pixels. We could certainly choose an arbitrary size,
such as 200, but a better approach might be choosing a relative size that depends
on the available space on the screen.

In this case, we can use a LayoutBuilder. A LayoutBuilder provides the
parent widget's constraints, so that you can find out how much space you have
for your widgets.

In the body of the Scaffold, instead of returning a Column, let's return a9.
LayoutBuilder in its builder method; we'll find the available width by calling
the maxWidth property of the BoxContraints instance that was passed to the
method and put it into an availableWidth constant, like this:

body: LayoutBuilder(builder: (BuildContext context, BoxConstraints
constraints) {
 final double availableWidth = constraints.maxWidth;
 return Column(children: [

My Time - Listening to a Stream of Data Chapter 3

[93]

Inside the Column widget, under the first row containing the Work and Break10.
buttons, let's add a CircularPercentIndicator. The radius of the circle will
be half of the availableWidth, and the lineWidth will be 10. If you like a
thicker border, you can also try another value, such as 15, or even 20. The code is
shown in the following snippet:

Expanded(
 child: CircularPercentIndicator(
 radius: availableWidth / 2,
 lineWidth: 10.0,
 percent: 1,
 center: Text("30:00",
 style: Theme.of(context).textTheme.display1),
 progressColor: Color(0xff009688),
,),

The layout of the main screen of our app is now ready. Now, we need to add the logic to
make the timer actually count the time. This is what we're doing next.

Using a stream and asynchronous
programming in Flutter
Until now in this book, you've seen two kinds of widgets: Stateless and Stateful. The State is
what allows you to use data that can change over the lifetime of the widget. And, while this
works perfectly in several cases, there are other ways to change data in your app, and one
of those is using Streams.

Streams provide an asynchronous sequence of data.

The key concept here is that streams are asynchronous. This is a very powerful concept in
programming. Asynchronous programming allows a piece of code to run separately from
the main line of execution. That means that the execution of several tasks can run at the
same time, instead of running sequentially.

Dart is a single-threaded programming language and uses Isolates to process multiple tasks
at the same time.
An Isolate is a space in your app's thread, with its own private memory and line of
execution.

My Time - Listening to a Stream of Data Chapter 3

[94]

In the following screenshot, you can see how secondary or background processes run
parallel to the main process without blocking it: the main line of execution responds to the
user inputs, deals with animations, builds widgets, and in general deals with the UI:

When a long-running operation, such as a network call, must be performed, this is executed
in another line of execution, an Isolate in Dart. When the operation has finished running,
the main Isolate receives a message, and deals with it as required.

Maybe a real-world example will make it a bit easier.

Example 1: Single-process programming

You go to a nice restaurant; the waiter comes to your table and takes your order:
a plate of spaghetti with pesto sauce.
The waiter is also a cook, so he goes to the kitchen and prepares your dish. This
takes 25 minutes.
Meanwhile, other customers enter the restaurant.
After the dish is ready, the waiter comes to your table and serves you the dish,
which you eat with great satisfaction.
The problem is that during the 25 minutes that were required to prepare your
dish, the other customers in the restaurant were waiting, and could not place any
order. So, some of them left, and some of them complained about the time it took
them to place their orders.

Example 2: Asynchronous programming

You go to a nice restaurant; the waiter comes to your table and takes your order:
a plate of spaghetti with pesto sauce.
The waiter gives the piece of paper on which they wrote your order to the
kitchen, and the cook begins preparing your dish. This takes the waiter
approximately 1 minute.

My Time - Listening to a Stream of Data Chapter 3

[95]

Other customers enter the restaurant, and the waiter takes their orders and
brings them to the kitchen.
After 25 minutes, a bell rings from the kitchen, and the waiter comes to your
table and serves you the dish, which you eat with great satisfaction.
During the 25 minutes that were required to prepare your dish, the other
customers in the restaurant placed their orders, and all of them were served
within a reasonable amount of time.

The key in these two examples (which, of course, oversimplify the tasks involved in
running a restaurant) is concurrency.

Concurrency happens when two or more tasks can start, run, and complete in overlapping
time periods.

In our example, while the waiter was taking orders (main Isolate), the cook could prepare
the dishes. The time of preparation does not change (it always takes 25 minutes), but the
main execution line is always responding to the user requests, because long-running
operations are executed in secondary Isolates.

When you have a long-running operation in your app, such as an HTTP connection or a
database connection, you should always make it asynchronous. The logic behind that is
that you may have a slow connection, so retrieving data could block your app for too long,
or the time required to update your data might also take a long time, making your app
unresponsive.

In Flutter, some tasks can only be performed asynchronously.

This is particularly important in mobile apps because if you run long operations in the
main thread, your user would see the screen freezing, and they could not interact with your
app in any way. And, after a few seconds, the operating system might give a message to the
user, asking them if they want to keep waiting or close the app, and you really want to
avoid this message.

In Flutter, you have two types of asynchronous results: a Future and a Stream. We'll talk
about Futures later. A Stream is a sequence of results. So, going back to our previous
example, a Stream is like a restaurant where plates keep coming to your table. Think of the
belt carrying dishes in a sushi restaurant, or a Brazilian restaurant where dishes keep
coming until you put a "stop" sign on your table.

Let's see the Stream in action in our app by executing the following steps:

Create a model for the CircularPercentIndicator that takes a text and a1.
percentage: in the lib folder of our app, add a file called timermodel.dart.

My Time - Listening to a Stream of Data Chapter 3

[96]

In the timermodel.dart file, add a class called TimerModel, with two fields2.
and a constructor that sets them both, as shown in the following code snippet:

class TimerModel {
 String time;
 double percent;

 TimerModel(this.time, this.percent);
}

Next, create a new file in the lib folder of the app, called timer.dart, and type3.
the following code:

import 'dart:async';
import './timermodel.dart';

class CountDownTimer {
 double _radius = 1;
 bool _isActive = true;
 Timer timer;
 Duration _time;
 Duration _fullTime;
}

In the preceding code, we are creating a new class, called CountDownTimer, with
five fields: _radius is what we'll use to express the percentage of completed
time; the _isActive Boolean will tell us if the counter is active or not. When the
user presses the stop button, it will become inactive.

A Timer is a class that you can use to create countdown timers. We have created a
Timer called timer. Then, there are two Duration fields: _time, which we'll use
to express the remaining time, and _fulltime, which is the beginning time (a
short break, for instance—maybe 5 minutes).

Before returning the time that will be shown in the4.
CircularProgressIndicator, we need to perform some formatting. In the
CountDownTimer, let's create a function to do that, as follows:

String returnTime(Duration t) {
 String minutes = (t.inMinutes<10) ? '0' +
t.inMinutes.toString() :
 t.inMinutes.toString();
 int numSeconds = t.inSeconds - (t.inMinutes * 60);
 String seconds = (numSeconds < 10) ? '0' +
numSeconds.toString() :

My Time - Listening to a Stream of Data Chapter 3

[97]

 numSeconds.toString();
 String formattedTime = minutes + ":" + seconds;
 return formattedTime;
 }

Duration is a Dart class used to contain a span of time. What happens in the
preceding code is that the Duration that's passed to the function gets transformed
into a String, with two digits for the minutes and two digits for the seconds, for
example, "05:42".

With the inMinutes property, we get the minutes, and with the inSeconds, the
total seconds in a Duration object. We make sure that, if minutes or seconds have
only one digit, we add a "0" before the number, and then concatenate the two
values with a ":" sign. At the end of the function, we return the formatted string.

 Under the fields, let's create the stream() method. The asterisk (*) after async is5.
used to say that a Stream is being returned, as shown in the following code
block:

Stream<TimerModel> stream() async* {
 yield* Stream.periodic(Duration(seconds: 1), (int a) {
 String time;
 if (this._isActive) {
 _time = _time - Duration(seconds: 1);
 _radius = _time.inSeconds / _fullTime.inSeconds;
 if (_time.inSeconds <= 0) {
 _isActive = false;
 }
 }
 time = returnTime(_time);
 return TimerModel(time, _radius);
 });
 }

The stream() method returns a Stream.

A Stream is generic, meaning that you can return a Stream of any type. In this
case, we are returning a Stream of TimerModel. The method is asynchronous
(async*). In Flutter, you use async (without the * sign) for Futures and async*
(with the * sign) for Streams.

What's the difference between a Stream and a Future? It's that any number of
events can be returned in a Stream, whereas a Future only returns once.

When you mark a function async*, you are creating a generator function.

My Time - Listening to a Stream of Data Chapter 3

[98]

You use the yield* statement to deliver a result. To make it simple, it's like a6.
return statement, but it doesn't end the function. As stated previously, you use
the "*" sign after yield because we are returning a Stream; if it were a single
value, you would just use yield. The code can be seen in the following snippet:

yield* Stream.periodic(Duration(seconds: 1), (int a) {

Stream.periodic() is a constructor creating a Stream that emits events at the
intervals specified in the first parameter. In our code, this will emit a value every
1 second.

Then, we declare a String called time and check whether the _isActive field is7.
true, as follows:

String time;
if (this._isActive) {

If it is, we decrease the value of time by 1 second (it's a countdown, after all), like
this:

_time = _time - Duration(seconds: 1);

Next, we also update the _radius value. This is the remaining time divided by8.
the total time, as follows:

_radius = _time.inSeconds / _fullTime.inSeconds;

This value goes from 1, at the beginning of the countdown, to 0 at the end of the
countdown.

Next, we check whether the _time field got down to 0, and, if it did, we change9.
the value of _isActive to false to stop the countdown, as follows:

if (_time.inSeconds <= 0) {
 _isActive = false;
}

My Time - Listening to a Stream of Data Chapter 3

[99]

We call the returnTime method to transform the remaining Duration into a String, like
this:

time = returnTime(_time);

Finally, we return a TimerModel object containing the time String and the _radius double,
like this:

return TimerModel(time, _radius);

So, this function returns a Stream of TimerModel, decrementing the Duration every second.

Next, we need a way to start the timer and show the result in the main view.

Showing the time in the main screen:
StreamBuilder
Right now, our main screen never changes, so what we need to do is show the countdown
to the user, and also make sure the user can start and stop the timer whenever they need, as
follows:

We'll begin by creating the function that will count the work time. For now, we1.
want the work time to be 30 minutes (we’ll make this editable later in this
chapter). So, first, in the CountDownTimer class in the timer.dart file, create a
field called work and set it to 30. This is the default number of minutes for the
work time, and is shown in the following code snippet:

int work = 30;

Next, still in the CountDownTimer class, create a void function that will set the2.
_time duration to the number of minutes contained in the work variable, and the
same for the _fullTime field, as follows:

void startWork() {
 _radius = 1;
 _time = Duration(minutes: this.work, seconds: 0);
 _fullTime = _time;
 }

My Time - Listening to a Stream of Data Chapter 3

[100]

The startWork() method should be called from the main screen when it loads.3.
So, let's get back to the main.dart file, and import the timer.dart file, as
follows:

import './timer.dart';

Then, at the top of the MyApp class, create a CountDownTimer variable called4.
timer, like this:

final CountDownTimer timer = CountDownTimer();

 At the top of the build() method of MyApp, call the startWork() method, like5.
this:

timer.startWork();

Now, we can access the timer properties—time and radius—and show them on6.
the screen: in the CircularPercentIndicator in the Column in the build()
method, add the following code:

 return Expanded(
 child: CircularPercentIndicator(
 radius: availableWidth / 2,
 lineWidth: 10.0,
 percent: timer.percent,
 center: Text(timer.time,
 style: Theme.of(context).textTheme.headline4),
 progressColor: Color(0xff009688),
));

If you try the app right now, you should see the timer, but the countdown is not active.
That's because we are still missing an important part of the Stream, which is the
StreamBuilder. This is what you need to use when you want to listen to events that come
from Streams.

A StreamBuilder rebuilds its children at any change in the Stream.

My Time - Listening to a Stream of Data Chapter 3

[101]

Let's use it in our app, including the Expanded widget into a StreamBuilder, as follows:

We'll set some initialData to have the builder show something while it's1.
waiting for data coming from the stream.
Then, we’ll set the stream itself that we’ve created in the TimerModel class.2.
Finally, we need to set a builder: this takes a context and a snapshot of type3.
AsyncSnapshot, and the child is what gets rebuilt every time some data comes
from the stream. An AsyncSnapshot contains the data of the most recent
interaction with a StreamBuilder (or a FutureBuilder).

Wrap the CircularPercentIndicator into a StreamBuilder, as shown in the following
code block:

child: StreamBuilder(
 initialData: '00:00',
 stream: timer.stream(),
 builder: (BuildContext context, AsyncSnapshot snapshot) {
 TimerModel timer = (snapshot.data == '00:00') ? TimerModel('00:00',
 1) : snapshot.data;
 return Expanded(
 child: CircularPercentIndicator(
 radius: availableWidth / 2,
 lineWidth: 10.0,
 percent: timer.percent,
 center: Text(timer.time,
 style: Theme.of(context).textTheme.headline4),
 progressColor: Color(0xff009688),
));
})),

In the preceding code, note that the snapshot contains a data property: this is what was
received from the yield* in the stream() method of the CountDownTimer class, which
returned a TimerModel object.

If you try the app right now, the timer should work correctly. However, while the timer is
working, the user cannot interact with our app right now. We need to respond when our
user taps on one of the buttons. Let's add interactivity to our app next.

My Time - Listening to a Stream of Data Chapter 3

[102]

Enabling the buttons
First, let's make the start and stop buttons work. In order to do that, let's get back to the
timer.dart file using the following steps:

Add a new void method, called stopTimer. This will only set the _isActive1.
variable to false, as follows:

void stopTimer() {
 this._isActive = false;
 }

Next, let's write another method called startTimer that will check whether the2.
remaining time is bigger than 0 seconds, and will set the _isActive Boolean to
true, as follows:

void startTimer() {
 if (_time.inSeconds > 0) {
 this._isActive = true;
 }
 }

Finally, in the main.dart file, let's call these two new methods from the Start3.
and Stop buttons, like this:

Expanded(
 child: ProductivityButton(
 color: Color(0xff212121),
 text: 'Stop',
 onPressed: () => timer.stopTimer())),
Padding(
 padding: EdgeInsets.all(defaultPadding),
),
Expanded(
 child: ProductivityButton(
 color: Color(0xff009688),
 text: 'Restart',
 onPressed: () => timer.startTimer())),

If you try the app now, you'll be able to stop and start the timer at will.

My Time - Listening to a Stream of Data Chapter 3

[103]

Now, let's deal with the upper buttons. We need to make 'Work', 'Short Break', and 'Long
Break' buttons available to the user. Temporarily, we will hardcode the duration of the
three buttons, but later in this chapter, we'll give the user the power to set the values. Let's
look at the steps to do just that here:

In the timer.dart file, in the CountDownTimer class, let's declare two more1.
variables for the times of the short and long breaks, as follows:

int shortBreak = 5;
int longBreak = 20;

Then, let's add a method for the short and long breaks, as shown in the following2.
code snippet:

void startBreak(bool isShort) {
 _radius = 1;
 _time = Duration(
 minutes: (isShort) ? shortBreak: longBreak,
 seconds: 0);
 _fullTime = _time;
}

In the main.dart file, let's add the correct method to the three top buttons, as3.
follows:

Expanded(
 child: ProductivityButton(
 color: Color(0xff009688),
 text: "Work",
 onPressed: () => timer.startWork())),
Padding(
 padding: EdgeInsets.all(defaultPadding),
),
Expanded(
 child: ProductivityButton(
 color: Color(0xff607D8B),
 text: "Short Break",
 onPressed: () => timer.startBreak(true))),
Padding(
 padding: EdgeInsets.all(defaultPadding),
),
Expanded(
 child: ProductivityButton(
 color: Color(0xff455A64),
 text: "Long Break",
 onPressed:() => timer.startBreak(false))),

My Time - Listening to a Stream of Data Chapter 3

[104]

Note that the onPressed parameter takes a function as its value. This is because, in Dart
and Flutter, you can pass a function as a parameter, in a constructor or any other method.

If you try the app right now, you'll notice that all the main functions work correctly! Now,
we only need to make the user choose their work and break times, and save them in the
device memory. For that, we need a Settings screen, which we'll build in the next section.

Navigating to the settings route
Right now, our app is working, but there is no way for the user to change the time settings
for the timer. There might be some people for whom 15 minutes is the maximum working
time, or, for some tasks, 90 minutes might be better. So, in this part, we’ll build a Settings
screen for our app, where the user will be able to set the time chunks that work better for
them. And, in building this part of the app, you'll learn one simple and effective way to
save data onto a device with Flutter.

At the end of this part, the Settings screen will look like the following screenshot:

My Time - Listening to a Stream of Data Chapter 3

[105]

So, let's add a new file in the lib folder of our app and call it settings.dart, proceeding
as follows:

We'll create a SettingsScreen StatelessWidget that, in the build() method,1.
will return a Scaffold, with an AppBar whose title will be 'Settings', and a
Container with a 'Hello World' Text that we'll use as a placeholder for now, as
illustrated in the following code block:

import 'package:flutter/material.dart';
class SettingsScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Settings'),),
 body:Container(
 child: Text('Hello World'),
));
 }
}

Right now, there's no way to reach the Settings route, so we need to add a2.
function to open it from the main screen.

In Flutter, screens or pages are called routes. We'll use the terms as
synonyms in this book.

In order to do that, let's get back to the main.dart file, and, in the build()
method of the TimerHomePage class, let's add the following code:

final List<PopupMenuItem<String>> menuItems =
List<PopupMenuItem<String>>();
 menuItems.add(PopupMenuItem(
 value: 'Settings',
 child: Text('Settings'),
));

In Flutter, a PopupMenuButton displays a menu when pressed. In its
itemBuilder property, it can show a List of PopupMenuItems. That's why, in
this portion of code, we have created a List of PopupMenuItems, even if the
menu is just one at this time.

My Time - Listening to a Stream of Data Chapter 3

[106]

In order to make the PopupMenuButton show in the screen, add it to the AppBar3.
in the Scaffold, like this:

 appBar: AppBar(
 title: Text('My Work Timer'),
 actions: [
 PopupMenuButton<String>(
 itemBuilder: (BuildContext context) {
 return menuItems.toList();
 },

In the following screenshot, you can see a PopupMenuButton before and after clicking
on it:

Next, let's create a goToSettings method: this is the method that actually4.
navigates to the Settings route.

My Time - Listening to a Stream of Data Chapter 3

[107]

Navigation in Flutter is based on a stack. A stack contains the screens that an app
has built from the beginning of its execution. Whenever you need to change the
screen in a Flutter app, you can use the Navigator object.

Navigator has several methods that interact with the stack, but we only need to
worry about two for now: the push() method and the pop() method. The
push() method puts a new page at the top of the stack. The pop() method
removes the page at the top of the stack so that the previous screen on your stack
becomes visible again.

When you use the push() method, you need to specify a route, which is the
screen you want to load. For that purpose, you use
the MaterialPageRoute class, in which you specify the name of the page you
want to push. Both push() and pop() require the current context.

Let's understand the navigation flow using images, with the push() and pop()
methods:

When you call the push() method of the navigator, the new route or screen gets to the
top of the navigation stack, as shown in the following screenshot:

My Time - Listening to a Stream of Data Chapter 3

[108]

The pop() method removes the screen from the navigation stack, as shown in the
following screenshot:

Moving back to our code, let's write the goToSettings() method, as shown in5.
the following code snippet:

void goToSettings(BuildContext context) {
 Navigator.push(
 context, MaterialPageRoute(builder: (context) =>
SettingsScreen()));
 }

My Time - Listening to a Stream of Data Chapter 3

[109]

Don't forget to import the settings.dart file, as follows:6.

import 'settings.dart';

Then, in the appBar of the Scaffold, let's add the actions that will specify a7.
PopupMenuButton with the itemBuilder containing our menuItems, as
follows:

actions: [
 PopupMenuButton<String>(
 itemBuilder: (BuildContext context) {
 return menuItems.toList();
 },
 onSelected: (s) {
 if(s=='Settings') {
 goToSettings(context);
 }
)
],

Now, if you try the app, you can actually navigate from one screen to the other!

Next, we will create the layout of the Settings screen.

Building the Settings screen layout
The settings for this app will need to keep the state, so let's create a stateful widget called
Settings. If you are using one of the supported editors (VS Code, IntelliJ IDEA, or Android
Studio), you can just type the stful shortcut to save some typing: this will create the
boilerplate code for a new stateful widget.

In the settings.dart file, at the end of the file, type stful and type Settings as the
name of the widget, as shown in the following code block:

class Settings extends StatefulWidget {
 @override
 _SettingsState createState() => _SettingsState();
}

class _SettingsState extends State<Settings> {
 @override
 Widget build(BuildContext context) {
 return Container(

);

My Time - Listening to a Stream of Data Chapter 3

[110]

 }
}

In the settings page, in the next section, we will add a GridView to the Settings screen to
build the UI.

Using the GridView.Count() constructor
We could use a combination of Row and Column widgets to build this screen, but we'll use
a new widget here: it's the GridView.

A GridView is a scrollable, 2D array of widgets, and you can use it to show some data to
your users in a tabular form.

Possible use cases for the GridView include a picture gallery, a table of songs, a list of
movies, and many others. The GridView is scrollable, and has two dimensions: in other
words, it's a scrollable table. It can scroll horizontally or vertically. There are several
constructors for the GridView that cover several different use cases, but, for this app, we
will use the GridView.Count() constructor. You can use it when you know the number of
items that the grid will show on the screen, as follows:

class _SettingsState extends State<Settings> {
 @override
 Widget build(BuildContext context) {
 return Container(
 child: GridView.count(
 scrollDirection: Axis.vertical,
 crossAxisCount: 3,
 childAspectRatio: 3,
 crossAxisSpacing: 10,
 mainAxisSpacing: 10,
 children: <Widget>[],
 padding: const EdgeInsets.all(20.0),
)
);
 }
}

The first property that we set is the scroll direction, which is Axis.Vertical. This means
that, if the content of the GridView is bigger than the available space, the content will scroll
vertically.

My Time - Listening to a Stream of Data Chapter 3

[111]

Then, we set the crossAxisCount property: as we're scrolling vertically, this is the
number of items that will appear on each row. The childAspectRatio property
determines the size of the children in the GridView. The value represents the itemWidth /
itemHeight ratio. In this case, by setting 3, we are saying that the width must be three
times the height.

As there's no space between the children of a GridView by default, we can add some
spacing for the main axis, using the mainAxisSpacing parameter, and giving it a value of
10.

You could do the same for the cross-axis as well, again with a value of 10. And to complete
this example, we've added some padding taking an EdgeInsets.all of 20.

Adding custom SettingButtons to the widgets.dart file
As we did for the ProductivityButton, in order to avoid unnecessary code duplication,
we can create a button that we can reuse several times within the Settings screen. This
button has some properties that are different from the ProductivityButton, so we'll
create a new widget using the following steps:

In the widgets.dart file, let's create a new stateless widget called1.
SettingButton, like this:

class SettingButton extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
);
 }
}

This class will have a few properties that we will use in the constructor method,
as follows:

final Color color;
final String text;
final int value;
SettingsButton(this.color, this.text, this.value);

Next, instead of returning a Container, we'll return a MaterialButton that will2.
use the properties that were set in the constructor, as follows:

return MaterialButton(
 child:Text(

My Time - Listening to a Stream of Data Chapter 3

[112]

 this.text,
 style: TextStyle(color: Colors.white)),
 onPressed: () => null,
 color: this.color,
);
}

For now, the method in the onPressed property just returns null, but we will change that
later.

Let's get back to the settings.dart file, so that we can place it in the GridView.1.
At the top of the build() method of the SettingsState class in the2.
settings.dart file, let's create a TextStyle that we will use to specify the font
size, as follows:

TextStyle textStyle = TextStyle(fontSize: 24);

Next, in the children parameter of the GridView.count() constructor, let's3.
insert all the widgets we need to place on the screen, as follows:

children: <Widget>[
 Text("Work", style: textStyle),
 Text(""),
 Text(""),
 SettingsButton(Color(0xff455A64), "-", -1),
 TextField(
 style: textStyle,
 textAlign: TextAlign.center,
 keyboardType: TextInputType.number),
 SettingsButton((0xff009688), +", 1,),
 Text("Short", style: textStyle),
 Text(""),
 Text(""),
 SettingsButton(Color(0xff455A64), "-", -1,),
 TextField(
 style: textStyle,
 textAlign: TextAlign.center,
 keyboardType: TextInputType.number),
 SettingsButton(Color(0xff009688), "+", 1),
 Text("Long", style: textStyle,),
 Text(""),
 Text(""),
 SettingsButton(Color(0xff455A64), "-", -1,),
 TextField(
 style: textStyle,
 textAlign: TextAlign.center,
 keyboardType: TextInputType.number),

My Time - Listening to a Stream of Data Chapter 3

[113]

 SettingsButton(Color(0xff009688), "+", 1,),
],

When you create a GridView, each cell has the same size. As we set the4.
crossAxisCount property to 3, for each row of the grid there are three elements:
in the first row, we just place three texts, one containing "Work", and two empty.
The two empty texts are just to make sure that the following widget will end up
in the second row:

 Text("Work", style: textStyle),
 Text(""),
 Text(""),

In the second row, we have two buttons and a TextField.

A Textfield is a widget that you can use to interact with your users, as they can
enter text with a hardware keyboard or with an onscreen keyboard, and you can
then read the values that they typed.

This pattern is repeated for the next rows: basically, we use this screen to read5.
and write three time settings: the work time, the short break time, and the long
break time, as illustrated in the following code block:

SettingButton(Color(0xff455A64), "-", -1),
TextField(
 style: textStyle,
 textAlign: TextAlign.center,
 keyboardType: TextInputType.number),
SettingButton(Color(0xff009688), "+", 1,),

Finally, let’s call the Settings() widget from the build() method of the6.
SettingsScreen widget: instead of returning a Container, we'll return our
Settings class, as follows:

return Scaffold(
 appBar: AppBar(
 title: Text('Settings'),
),
 body: Settings()
);

If you try the app right now, the Settings screen should look like the following7.
screenshot:

My Time - Listening to a Stream of Data Chapter 3

[114]

Now that we have the layout for the second screen, we need to add the logic, as we want to
read and write the settings of our app.

Using shared_preferences to read and write
app data
There are several ways to save data onto a mobile device: you can persist data to a file, or
you can use a local database, such as SQLite, or you can use SharedPreferences (on
Android) or NSUserDefaults (on iOS).

shared_preferences should not be used for critical data as data
stored there is not encrypted, and writes are not always guaranteed.

When using Flutter, you can take advantage of the shared_preferences library: it wraps
both NSUserDefaults and SharedPreferences so that you can store simple data seamlessly
in both iOS and Android without dealing with the specifics of the two operating systems.

My Time - Listening to a Stream of Data Chapter 3

[115]

Data is always persisted to disk asynchronously when you use shared_preferences.

SharedPreferences is an easy way to persist key-value data on disk. You can only store
primitive data: int, double, bool, String, and stringList.

SharedPreference data is saved within the app, so, when the user uninstalls your app, the
data will also be deleted.

It's not designed to store a lot of data, but, for our app, this tool is perfect. We will also see
other different methods to deal with data in later chapters.

We need to include SharedPreferences in our project. So, in the pubspec.yaml file, let's
add the dependency, as follows:

shared_preferences: ^0.5.6+2

The version number may vary when you read this book, so have a look at the library page
to use the correct version, at https:/ /pub. dev/packages/ shared_ preferences.

When you want to add a dependency in the pubspec.yaml file, you use the following
syntax: package_name: version_number.
A version number is three numbers separated by dots,such as 1.2.34. It can also have an
optional build (+1, +2) at the end.
The caret sign "^" is used to tell the framework that any version from the specified version
up to (but not including) the next major build is allowed. For example, ^1.2.34 allows any
version below 2.0.0.

Then, we need to include the library in the settings.dart file, by running the following code:

import 'package:shared_preferences/shared_preferences.dart';

Before getting into the specifics of using SharedPreferences, we need a way to read data
from the TextFields when the user changes value, and write to the TextField when we load
the screen and need to read from the SharedPreferences. When using TextFields, an
effective way of reading and writing data is using a TextEditingController. Let's look
at the steps:

Add the following code at the top of the _SettingState class:1.

TextEditingController txtWork;
TextEditingController txtShort;
TextEditingController txtLong;

https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences

My Time - Listening to a Stream of Data Chapter 3

[116]

Next, override the InitState() method to set the new2.
TextEditingControllers, as follows:

 @override
 void initState() {
 TextEditingController txtWork = TextEditingController();
 TextEditingController txtShort = TextEditingController();
 TextEditingController txtLong = TextEditingController();
 super.initState();
 }

Here, we are creating the objects that will allow us to read from and write to the TextField
widgets.

Next, let's add the TextEditingController to the relevant TextFields, and we'll do that
using the controller property of the three TextFields we have created before in the
build() method, as follows:

So, we'll add the controller to the TextField of the work time, like this:1.

controller: txtWork,

Then, we do the same for the TextField of the short break, as follows:2.

controller: txtShort,

Finally, we add the controller to the TextField of the long break, like this:3.

controller: txtLong,

At the top of the _SettingState class, let's create the constants and variables4.
that we'll use to interact with shared_preferences, as follows:

static const String WORKTIME = "workTime";
static const String SHORTBREAK = "shortBreak";
static const String LONGBREAK = "longBreak";
int workTime;
int shortBreak;
int longBreak;

Let's also create a variable for the SharedPreferences, still at the beginning of the5.
_SettingState class, like this:

SharedPreferences prefs;

Next, we'll need to create two methods: the first one will read from shared_preferences, and
the second will write any change the user makes.

My Time - Listening to a Stream of Data Chapter 3

[117]

Let's begin by reading the settings, as follows:

After the build() method of the _SettingState class, let's add a method1.
called readSettings(), as illustrated in the following code block:

readSettings() async {
 prefs = await SharedPreferences.getInstance();
 int workTime = prefs.getInt(WORKTIME);
 int shortBreak = prefs.getInt(SHORTBREAK);
 int longBreak = prefs.getInt(LONGBREAK);
 setState(() {
 txtWork.text = workTime.toString();
 txtShort.text = shortBreak.toString();
 txtLong.text = longBreak.toString();
 });
 }

This will be asynchronous (async).

Asynchronous operations return Future objects (futures), which is something to
be completed at a later time. To suspend execution until a Future completes, we
use await in an async function.

SharedPreferences.getInstance() is asynchronous, so we can use the await
statement to make sure prefs gets instantiated before the next lines of code are
executed.

When we call prefs.getInt(KEY), we are calling a method that returns an2.
integer from the SharedPreferences—in particular, the integer that, as a key, has
the value we pass as an argument. So, if we have a key called "work" and a value
of 25, this function will return 25. If there is no value at the key you've passed,
this function will return null.

We repeat this for all the values we want to store for the settings. Then, we update
the state of the class by changing the text property of the textControllers.

In short, this function reads the values of the settings from SharedPreferences,
and then it writes the values in the textFields.

Now, under the readSettings method, let's also create the method that writes3.
the settings. We'll call it updateSettings(), as illustrated in the following code
block:

 void updateSetting(String key, int value) {
 switch (key) {

My Time - Listening to a Stream of Data Chapter 3

[118]

 case WORKTIME:
 {
 int workTime = prefs.getInt(WORKTIME);
 workTime += value;
 if (workTime >= 1 && workTime <= 180) {
 prefs.setInt(WORKTIME, workTime);
 setState(() {
 txtWork.text = workTime.toString();
});
 }
 }
 break;
 case SHORTBREAK:
 {
 int short = prefs.getInt(SHORTBREAK);
 short += value;
 if (short >= 1 && short <= 120) {
 prefs.setInt(SHORTBREAK, short);
 setState(() {
 txtShort.text = short.toString();
 });
 }
 }
 break;
 case LONGBREAK:
 {
 int long = prefs.getInt(LONGBREAK);
 long += value;
 if (long >= 1 && long <= 180) {
 prefs.setInt(LONGBREAK, long);
 setState(() {
 txtLong.text = long.toString();
 });
 }
 }
 break;
 }
 }

The updateSettings() method takes two parameters: a key and a value. We want the
user to update the value by clicking the + and - buttons on the screen, so the value will be 1
for the + button or -1 for the - button.

My Time - Listening to a Stream of Data Chapter 3

[119]

The key will be one of the constants we've declared at the top of the class. This method
reads the value of the key that was passed and adds the value (+1 or -1). The following code
reads the saved work time and adds value to it:

int workTime = prefs.getInt(WORKTIME);
workTime += value;

Next, you check whether workTime is within the accepted range (between 1 and 180
minutes):

if (workTime >= 1 && workTime <= 180)

The code updates the key that was passed and also updates the text property of the text
controller, as follows:

prefs.setInt(WORKTIME, workTime);
 setState(() {
 txtWork.text = workTime.toString();
});

We then repeat the same steps for the other two settings: shortBreak and longBreak.

Now, the question is: when do we call those two methods?

When the screen is shown, we need to read the values immediately, as we want to show
them in the TextFields. So, let's call readSettings() in the initState() method, before
calling super.initState(), as follows:

@override
 void initState() {
 txtWork = TextEditingController();
 txtShort = TextEditingController();
 txtLong = TextEditingController();
 readSettings();
 super.initState();
 }

If everything is working as it should, the TextFields now contain the values (null the first
time you try the app).

We want to update the settings every time the user changes the value pressing one of the +
or - buttons. This should change the values in the relevant TextField and also update the
setting in SharedPreferences.

My Time - Listening to a Stream of Data Chapter 3

[120]

When we press any of the buttons, a method should then be called, updating the right
TextField and setting. And, in order to achieve this goal, we need to tweak our
SettingButton widget.

Let's get back to the widgets.dart file and perform the following steps:

Before the class definition, let's also create a pointer to a function, like this:1.

typedef CallbackSetting = void Function(String, int);

In Dart, typedef can be used as a pointer that references a function. This is
because we want to call the function, with the correct parameters, from the
relevant button.

Now, let's tweak the SettingButton widget, adding two new parameters:2.
setting and callback.
The updated SettingsButton looks like this:3.

class SettingsButton extends StatelessWidget {
 final Color color;
 final String text;
 final double size;
 final int value;
 final String setting;
 final CallbackSetting callback;
 SettingButton(this.color, this.text, this.size, this.value,
this.setting, this.callback);
 @override
 Widget build(BuildContext context) {
 return MaterialButton(
 child:Text(
 this.text,
 style: TextStyle(color: Colors.white)),
 onPressed: () => this.callback(this.setting, this.value),
 color: this.color,
 minWidth: this.size,
);
 }

Note that now, the onPressed property contains the callback of the method
that gets passed, with the setting and value parameters. This is a very
powerful approach that allows you to pass methods as parameters, including
their arguments.

My Time - Listening to a Stream of Data Chapter 3

[121]

Now, let's actually fix the creation of the SettingButton widgets in the4.
settings.dart file, like this:

SettingButton(Color(0xff455A64), "-", buttonSize, -1, WORKTIME,
updateSetting),
SettingButton(Color(0xff009688), "+", buttonSize, 1, WORKTIME,
updateSetting),
SettingButton(Color(0xff455A64), "-", buttonSize, -1, SHORTBREAK,
updateSetting),
SettingButton(Color(0xff009688), "+", buttonSize, 1, SHORTBREAK,
updateSetting),
SettingButton(Color(0xff455A64), "-", buttonSize, -1,LONGBREAK,
updateSetting),
SettingButton(Color(0xff009688), "+", buttonSize, 1, LONGBREAK,
updateSetting),

If you try the app right now, you'll realize that we have an issue we still need to solve, as
shown in the following screenshot:

You probably guessed it: null strings shouldn't be there at all. The problem is that we
haven't written anything into the SharedPreferences yet, and we are unable to do so as you
cannot add any value to null. So, the first time the app is run, we need to write some
default settings into the SharedPreferences so that the user will then be able to change the
settings if they wish to do so.

My Time - Listening to a Stream of Data Chapter 3

[122]

Refactor the readSettings() method so that when one of the values is null, it will
populate the setting with some default values, as follows:

readSettings() async {
 prefs = await SharedPreferences.getInstance();
 int workTime = prefs.getInt(WORKTIME);
 if (workTime==null) {
 await prefs.setInt(WORKTIME, int.parse('30'));
 }
 int shortBreak = prefs.getInt(SHORTBREAK);
 if (shortBreak==null) {
 await prefs.setInt(SHORTBREAK, int.parse('5'));
 }
 int longBreak = prefs.getInt(LONGBREAK);
 if (longBreak==null) {
 await prefs.setInt(LONGBREAK, int.parse('20'));
 }
 setState(() {
 txtWork.text = workTime.toString();
 txtShort.text = shortBreak.toString();
 txtLong.text = longBreak.toString();
 });
 }

The last step to complete our app is reading the setting from the timer.dart file as well.
To do this, perform the following steps:

At the top of the timer.dart file, import the shared_preferences package,1.
like this:

import 'package:shared_preferences/shared_preferences.dart';

Create a method that retrieves the settings saved in the SharedPreferences2.
instance or sets default values, as follows:

Future readSettings() async {
 SharedPreferences prefs = await
SharedPreferences.getInstance();
 work = prefs.getInt('workTime') == null ? 30 :
prefs.getInt('workTime');
 shortBreak = prefs.getInt('shortBreak') == null ? 30 :
prefs.getInt('shortBreak');
 longBreak = prefs.getInt('longBreak') == null ? 30 :
prefs.getInt('longBreak');
 }

My Time - Listening to a Stream of Data Chapter 3

[123]

Add a call to the readSettings() method at the top of the startWork()3.
method, like this:

void startWork() async{
 await readSettings();
 _radius = 1;
 _time = Duration(minutes: this.work, seconds: 0);
 _fullTime = _time;
 }

If you try the app now, you'll see that it finally works! Well done—you have completed a
rather rich Flutter app!

You can download the code for the finished app in the GitHub project repository for this
book.

Summary
My Time is a simple app, but by building it you've covered a lot of Flutter features. In
particular, you've used the GridView layout—a scrollable, 2D array of widgets that you can
use to show data to your users in tabular form.

You've seen ways to implement asynchronous programming with Flutter. In particular,
you've used a Stream to implement the countdown for the app, and you've used a
StreamBuilder to listen to the events that came from the Stream. You've seen that the
Streambuilder rebuilds its children at any change of the Stream.

Then, you've used the Navigator class to show different screens to your users, through the
push() and pop() methods.

Finally, you've seen that there is a simple and effective way to store data for your apps: the
SharedPreferences class, from the shared_preference library. You've also seen how to install
an external library in your app using the pubspec.yaml file, and used the await statement in
an async method.

Now, you are able to persist simple data in any app that you'll build, create multi-screen
apps, and create streams of data.

We've covered a lot of ground in this chapter: it's time to have some fun with a game! In the
next chapter, we'll build a simple game using animations and gesture control.

My Time - Listening to a Stream of Data Chapter 3

[124]

Questions
At the end of each project, you'll find a few questions to help you remember and review the
content covered in the chapter. Please try to answer the following questions, and when in
doubt, have a look at the content in the chapter itself: you'll find all the answers there!

Which is the cross-axis for a GridView scrolling vertically?1.
How do you retrieve a value from SharedPreferences?2.
Which instruction would you use to retrieve the width of the screen?3.
How do you open another screen in your app?4.
Which file contains all the dependencies of your app?5.
What's the difference between a Stream and a Future?6.
How do you change the value of a TextField?7.
How do you create a new Duration object?8.
How can you add a menu button to your apps?9.
What are the steps to install an external library into your app?10.

Further reading
This chapter has been at least partly inspired by reading Deep Work by Cal Newport. I
think the author describes one of the best ways to be successful in any activity that requires
thought. More information can be found at http:/ /www. calnewport. com/ books/ deep-
work/.

Many developers struggle when they are first exposed to asynchronous programming. The
Dart team did a good job explaining how this model works in Dart and Flutter: you'll find a
lot of content and examples here: https:/ /dart. dev/ tutorials/ language/ futures.

For specific guidance on Streams, have a look at https:/ /dart. dev/ tutorials/ language/
streams.

Currently, there's a lot of interest in functional programming, and the typedef declarations
that we used while building this app are an important part of it for Dart. If you are
interested in learning more about functional programming in Dart, have a look at https:/ /
buildflutter.com/ functional- programming- with- flutter/ .

http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
http://www.calnewport.com/books/deep-work/
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/futures
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/

4
Pong Game - 2D Animations

and Gestures
Animations are an important feature that you can add to your apps to make them more
attractive. They make it possible to add important functionality in a way that is pleasant for
your users. For example, you could use animations to notify the user that an action has
been completed, or you can use them to get user input. In any case, animations are often
required to give your apps a polished look that can help make them successful. The good
news is that Flutter has very good support for animations.

If you are like me, you probably love games, and usually, animations are what games are
made of. So, in this chapter, we'll build a simplified single-player version of the ancient
Pong game. We'll build a ball that will bounce through the screen, and we'll use a bat to
avoid it touching the bottom part of the screen.

Building this game will give us the opportunity to see in detail how animations work in
Flutter. We will also see how to add gesture detection to your widgets, another important
feature. Finally, we'll add some randomness to the game to make it a bit more interesting.

As usual, we'll start from scratch. The result will probably not be something you would
publish to the stores, but I believe it can be a fun way to see animations in an
unconventional way and a good starting point to think about the logic of a game.

The time required for this project is approximately 2 hours and 30 minutes.

In particular, the topics we will cover include the following:

Using Stack and Positioned to build the user interface
Using Animation and AnimationController to build Tween animations
Using GestureDetector
Using Random() from the Dart Math library

Pong Game - 2D Animations and Gestures Chapter 4

[126]

Technical requirements
You'll find the completed app code in the book's Github repository at https:/ /github. com/
PacktPublishing/Google- Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, macOS , Linux, or Chrome OS device:

The Flutter SDK.
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS) or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code, Android Studio, or IntelliJ Idea are
recommended. All should have the Flutter/Dart extensions installed.

Building the UI of the app
The first step toward creating the game is to build the basic components of the UI. After
creating a new app, we'll build a ball, a bat, and a text for the score:

Let's create a new app, which we can call simple_pong.1.
In the main.dart file, in the build() method of the MyApp stateless widget,2.
we'll return a MaterialApp, whose title is "Pong Demo", and, for the theme,
we'll use the classic blue as primarySwatch.
In the home of MaterialApp, we'll place a scaffold whose AppBar will take a3.
text containing "Simple Pong".
In the body, we'll place an empty container for now, but we will fix that later on.4.

You can see the steps listed in the following code:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Pong Demo',

https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects
https://github.com/PacktPublishing/Google-Flutter-Projects

Pong Game - 2D Animations and Gestures Chapter 4

[127]

 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: Scaffold(
 appBar: AppBar(
 title: Text('Simple Pong'),
),
 body: Container()
));
}}

There's nothing particularly new or exciting about this. As you can see, most apps tend to
have the same boilerplate code. You may change colors and styles, but most of your apps
are likely to have a MaterialApp containing a Scaffold as a starting point.

As you can see from the following screenshot, our app contains three UI elements that the
user will see: the ball, the bat, and the score text. Those three elements will need to be
included in a grid for the game itself:

So, let's build the UI components next.

Pong Game - 2D Animations and Gestures Chapter 4

[128]

Creating the ball
We'll deal with the ball first. This deserves a new file in our project, called ball.dart:

Create a new file called ball.dart, and inside it create a stateless widget, which1.
you can call "Ball". This widget is stateless because it does not need to know its
position or state during the app. The animation will change the position of the
ball widget from the calling class.

Remember that, in order to create a stateless widget, if you are using
Visual Studio Code, Android Studio, or IntelliJ Idea, just type stless,
and the boilerplate code will be created for you by the editor itself.

You can find the complete version of the file here:

import 'package:flutter/material.dart';

class Ball extends StatelessWidget {

@override
Widget build(BuildContext context) {
 final double diam = 50;
 return Container(
 width: diam,
 height: diam,
 decoration: new BoxDecoration(
 color: Colors.amber[400],
 shape: BoxShape.circle,
),);
}}

In the Ball class, first, we can set the diameter of the shape at 50 logical pixels.2.
Of course, feel free to reduce or expand it based on your preferences.
Then we return a container, whose height and width will be the diameter we3.
have just set, and the decoration will have the shape of BoxShape.circle.

When you create a container, the default shape is a rectangle. By specifying
BoxShape.circle, you can avoid dealing with angles in an extremely easy way.

Let's also set the color to be Colors.amber[400].

Pong Game - 2D Animations and Gestures Chapter 4

[129]

In the preceding example, we use Colors.amber[400]. Most colors have
values from 100 to 900 in increments of 100, plus the color 50. Greater
numbers mean darker colors. The accent colors, such as
Colors.blueAccent, have a smaller set of values: 100, 200, 400, and 700.

And this is everything we need for the ball. In the next section, we'll deal with the bat.

Creating the bat
The bat is the shape we'll use to keep the ball from falling to the bottom of the screen. This
will also require a separate file.

Create a new file called bat.dart:

This will also contain a stateless widget, as the bat does not need to know its1.
position or deal with the user. All these actions will be performed by the caller:

import 'package:flutter/material.dart';
class Bat extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

The bat will have a width and a height that will depend on the size of the screen.2.
These will be passed from the caller, so in the bat class, create two final double
variables called width and height:

final double width;
final double height;

Next, create a constructor that will take two parameters, populating the two3.
variables:

Bat(this.width, this.height);

Again, the build method will return a Container, whose width and height are4.
the values of the parameters passed in the constructor, and will have a
decoration that will set the background color to be Colors.blue[900]. The
final code for the class is shown here:

import 'package:flutter/material.dart';
class Bat extends StatelessWidget {

Pong Game - 2D Animations and Gestures Chapter 4

[130]

 final double width;
 final double height;
 Bat(this.width, this.height);
 @override
 Widget build(BuildContext context) {
 return Container(
 width: width,
 height: height,
 decoration: new BoxDecoration(
 color: Colors.blue[900],
),);
}}

At this time, we have the two main elements of the UI. We'll deal with the score text later
on, when we incorporate the logic of the game. So now, we require a grid to contain the ball
and the bat.

Creating the grid
Let's create a new file for the game: we can call this pong.dart. This time, we'll need to
create a Stateful widget, as there will be several values that will change during this class
life cycle:

Using the stful shortcut, let's create a new stateful widget called Pong:1.

import 'package:flutter/material.dart';
import './ball.dart';
import './bat.dart';

class Pong extends StatefulWidget {
 @override
 _PongState createState() => _PongState();
}

class _PongState extends State<Pong> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }}

Instead of returning a Container, let's return a LayoutBuilder. This is a useful2.
widget when you want to measure the space available in the context, including
the parent constraints. We'll use this to make sure that the ball will not go out of
the visible space in the app.

Pong Game - 2D Animations and Gestures Chapter 4

[131]

A LayoutBuilder widget requires a builder in its constructor. This takes a
function with the context and the constraints. Inside this function, we'll return a
Stack:

return LayoutBuilder(
 builder: (BuildContext context, BoxConstraints constraints)
{
 return Stack();
});

There are several ways to achieve this, but among the available containers
in Flutter, there is one that is perfect for our purposes, and this is the
Stack. A Stack is a widget that positions its children relative to the edges
of its box.

As both the ball and the bat will need to move during the lifetime of our game, we'll be able
to change their position by changing their distance from the borders of the Stack.
A Stack widget has a children property where we can place all the elements contained in
the Stack itself. One way to position the elements inside it is by using the Positioned
widget. Here, you can specify top, left, bottom, or right properties.

Positioned is a widget that controls where a child of a stack is
positioned.

Let's add the Ball and the Bat to the Stack. For now, we'll just put the ball at position
top:0, which means at the top of the available space, and the bat at position bottom:0,
which means at the bottom of the available space. The size of the bat will be an arbitrary
200 width and 50 height, but we'll change that shortly:

return Stack(
 children: <Widget>[
 Positioned(
 child: Ball(),
 top: 0
),
 Positioned(
 bottom: 0,
 child: Bat(200,25),)
],);

Pong Game - 2D Animations and Gestures Chapter 4

[132]

In order to be able to try out the layout so far, we only need to call the Pong() widget from
the MyApp class in the main.dart file. First, we'll need to import at the top of the MyApp
class:

import './pong.dart';

This is followed by importing the body of the scaffold:

body: SafeArea(
 child: Pong()
)

A SafeArea is a widget that automatically adds some padding to its child
in order to avoid intrusions by the operating system, such as the status bar
at the top of the screen or the notch on a newer iPhone.

And if you try the app right now, you'll be able to see the ball and the bat in the top-left
corner and bottom-left corner of the screen, respectively, as follows:

Before dealing with the animation, let's prepare this layout to be able to deal with changes
in size and positions.

Pong Game - 2D Animations and Gestures Chapter 4

[133]

At the top of the _PongState class, let's create a few variables that will deal with the
available space, the size of the bat, and the position of the bat and ball:

double width;
double height;
double posX = 0;
double posY = 0;
double batWidth = 0;
double batHeight = 0;
double batPosition = 0;

width and height represent the available space on the screen, posX and posY are the
horizontal and vertical position of the ball, batWidth and batHeight represent the size of
the bat, and batPosition is the horizontal position of the bat. The bat won't be able to
move vertically, as it will remain at the bottom of the screen.

Inside LayoutBuilder, let's first set the variables that contain the height and width of the
layout, and the size of the bat. These values are contained in the BoxConstraints instance
that's passed as a parameter to the builder method in LayoutBuilder.

The BoxContraints class contains four useful properties: minWidth,
minHeight, maxWidth, and maxHeight. They are set at runtime and are
useful whenever you need to know the constraints of the parent of a
widget.

We will make the bat size relative to the dimensions of the screen. Hence, the width will be
20% of the screen (width/5), and the height 5% of the available space (height/20).

In the build() method of the _PongState class, and in the builder method of
LayoutBuilder, add the following code:

builder: (BuildContext context, BoxConstraints constraints) {
 height = constraints.maxHeight;
 width = constraints.maxWidth;
 batWidth = width / 5;
 batHeight = height / 20;
 return Stack(
 ...

Pong Game - 2D Animations and Gestures Chapter 4

[134]

Next, in the Stack returned by the builder, let's use these values when we build the bat:

return Stack(
 children: <Widget>[
 Positioned(child: Ball(), top: 0),
 Positioned(
 bottom: 0,
 child: Bat(batWidth, batHeight),
)
],
);

With the main elements of the layout complete, we are now ready to start building the
animation.

Using animations
In order to create the animation that will make our ball move inside the screen, we'll use
three classes, which are the base of most animations in Flutter:

The first class is quite predictably called Animation. The Animation class takes
some values and translates them into animations. An instance of Animation is
not bound to any widget on the screen, so it is unaware of what is happening on
the screen: it has listeners that can check the state of the animation during each
frame change.
The second class is AnimationController. AnimationController, as the
name implies, controls the animation objects. For example, you can use it to start
an animation, give it a duration, and repeat it when needed. An
AnimationController can control more than one animation. For the project in
this chapter, we'll only use one animation.
The last class we'll use is Tween. Tween is short for "in between", and it contains
the value of the property that needs to change during the animation. For
example, if you're animating the left position of a widget from 0 to 200, your
Tween will represent the values at 1, 2, 3 … up to 200.

Pong Game - 2D Animations and Gestures Chapter 4

[135]

In the next few steps, we'll see these three classes in action in our code to move the ball
through the screen:

At the top of the _PongState class, create the variables that will contain the1.
instances of Animation and AnimationController:

Animation<double> animation;
AnimationController controller;

Next, let's override the initState() method:2.

@override
void initState() {
 super.initState();
}

You may be wondering what the initState method is. Let's have a look at the following
diagram:

There are several event methods that are called during the life cycle of a Stateful widget.

The initState method is called when a State is created. You can use this method for any
initialization, as it is called only once.

We've used the build() method several times in this and previous projects. It's worth
noting that each time you call the setState() method, the build() method is
automatically triggered. This is where you can put values that change, but it is useless for
any initialization value, as it would get overwritten each time the setState() method is
called. At the end of the lifetime of any stateful widget, you can override the dispose()
method. This helps to free resources from the system.

Pong Game - 2D Animations and Gestures Chapter 4

[136]

So, from this description, you probably guessed that we'll need to set up our ball animation
in the initState method, and set its position in the build method. The first animation
we'll build will just move the ball from the position top: 0, left: 0 to the position top: 100,
left: 100. Let's look at the steps:

Let's begin with initState. We are using posX for the horizontal position and1.
posY for the vertical position of the ball. At the beginning of the animation, both
will be 0.
Next, we will initialize AnimationController. Its duration will be 3 seconds, as2.
we want the ball to take three seconds to get from position 0, 0 to position 100,
100.
An AnimationController requires a TickerProvider, which is configured3.
using the vsync argument on the constructor. We'll set the vsync property to be
this:

@override
void initState() {
 posX = 0;
 posY = 0;
 controller = AnimationController(
 duration: const Duration(seconds: 3),
 vsync: this,);
 super.initState();
}

You may notice that we get an error here. That is because vsync takes a4.
TickerProvider. In order to solve this issue, we need to add the with
SingleTickerProviderStateMixin clause to our state:

class _PongState extends State<Pong> with
SingleTickerProviderStateMixin {

This requires a little bit of theory. In object-oriented programming languages, a
Mixin is a class that contains methods that can be used by other classes without
having to be the parent class of those other classes. That's why we use the with
clause in Flutter, because, in this way, we are including the class, not inheriting
from it. In other words, Mixins are a way to reuse code in a class in multiple class
hierarchies.

Pong Game - 2D Animations and Gestures Chapter 4

[137]

If you want to dive deeper in the use of mixins in Dart, there's an excellent
article on Medium at the following link: https:/ /medium. com/ flutter-
community/ dart- what- are- mixins- 3a72344011f3.

The SingleTickerProviderStateMixin provides one Ticker. In simple
terms, a Ticker is a class that sends a signal at an almost regular interval, which,
in Flutter, is about 60 times per second, or once every 16 milliseconds, if your
device allows this frame rate.

Next, still in the initState() method of the _PongState class, under5.
AnimationController, create the animation itself:

animation = Tween<double>(begin: 0, end: 100).animate(controller);
animation.addListener(() {
 setState(() {
 posX++;
 posY++;
});

Here we are using a Tween. As mentioned previously, a Tween is a linear
interpolation between a beginning and ending value. The beginning value is 0,
and the end value is 100. On that, we call the animate() method, passing the
controller that we've just created. This returns the animation itself.

In the animation, we then set a listener calling the addListener() method. This6.
will be called whenever the object changes.
Inside the setState() method, we just increment the horizontal and vertical7.
positions at each iteration of the animation, so that the ball will move down 100
pixels in both directions.
The last step is changing the top and left parameters of the ball Positioned8.
widget. They'll both take the animation value, which we defined when we
created the Tween and is between 0 and 100. Basically, the ball will take three
seconds to go from position 0, 0 to position 100, 100:

return Stack(
 children: <Widget>[
 Positioned(
 child: Ball(),
 top: posY,
 left: posX,
),

https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3
https://medium.com/flutter-community/dart-what-are-mixins-3a72344011f3

Pong Game - 2D Animations and Gestures Chapter 4

[138]

In order to start the animation, in the initState() method, before the9.
super.initState() instruction, call the forward() method on the controller:

controller.forward();

If you try the app right now, you should be able to see the ball moving slowly to10.
the bottom-right corner, and the final position should look similar to the
following screenshot:

To summarize, we are using the animation controller to define how long the animation
should run, we are using a Tween to set a linear value increment, and we are using the
forward() method to start the animation.

If we left the app as it is now, this would certainly be the most boring game ever. The first
thing we need to do is to keep the ball moving, and when it reaches the edges of the
available space, we need it to change direction. So, let's make a few tweaks to our app.

Pong Game - 2D Animations and Gestures Chapter 4

[139]

Adding the game logic
The ball should never stop, and it should bounce at the edges of the available space. What
we see as bouncing is actually a change in direction. So when the ball meets the right-hand
edge, it should move left, and vice versa. The same is true for the vertical direction when it
moves up. The ball should change direction and move down when it meets the top border.
Also, the animation value wouldn't be useful, so we need to separate the ball position from
the animation value, and use the animation only as a way to redraw the ball in the correct
position. Let's look at the steps to apply this logic:

In the pong.dart file, first, let's create an enum for the directions, under the1.
import declarations, as shown here:

enum Direction { up, down, left, right }

In case you've never seen it before, the enum keyword creates an Enumerated
type. This is a special kind of class that you can use to represent a fixed number of
constant values. In our example, we are creating an enumerator called Direction
that can have four values: up, down, left, and right. This will allow our code to
be a bit more readable, and it's an alternative to using numbers or constants for
the direction.

Next, at the top of the _PongState class, let's add two variables, of type2.
Direction, that will contain the vertical (vDir) and the horizontal (hDir)
directions. In the beginning, the ball will need to move down and left:

Direction vDir = Direction.down;
Direction hDir = Direction.right;

Next, we need to check whether the ball has reached its boundaries. We already3.
know the boundaries of our app, as we have set the width and height variables in
the LayoutBuilder builder method. So, we just need to check the position of the
ball to see whether it reached those boundaries. Still in the PongState class, let's
create a method called checkBorders(), which will check whether the ball has
reached its border, and will change the direction whenever it has:

void checkBorders() {
 if (posX <= 0 && hDir == Direction.left) {
 hDir = Direction.right;
 }
 if (posX >= width - 50 && hDir == Direction.right) {
 hDir = Direction.left;
 }
 if (posY >= height - 50 && vDir == Direction.down) {

Pong Game - 2D Animations and Gestures Chapter 4

[140]

 vDir = Direction.up;
 }
 if (posY <= 0 && vDir == Direction.up) {
 vDir = Direction.down;
 }
}

Next, we need to keep the animation going for as long as it's needed. In the4.
initState() method of the _PongState class, let's set it to 10,000 minutes
instead of 3 seconds (a very long game…) for now:

controller = AnimationController(
 duration: const Duration(minutes: 10000),
 vsync: this,
);

Next, let's move the ball according to the direction. Still in the initState()5.
method, when we create the animation, in addListener(), let's change the code
for setState() as shown here:

animation.addListener(() {
 setState(() {
 (hDir == Direction.right)? posX += 1 : posX -= 1;
 (vDir == Direction.down)? posY += 1 : posY -= 1;
 });
 checkBorders();
});

In the preceding code, we are using a ternary operator to move the ball based on
the direction. If the horizontal direction is Direction.right, we need to
increment the horizontal position, otherwise, we need to decrement it. The same
logic applies to the vertical position as well: we increment posY when the
direction is down, and we decrement it when the direction is up. After each
movement, we call the checkBorders() method to see whether it's necessary to
change direction.

You can try this out immediately, and the ball should be bouncing through the
screen. You may find the ball is moving too slowly. You can adjust the speed of
the ball by changing the increment of the position. In this case, we are always
adding or subtracting 1. If we want to make the animation faster, we can just
make it 3 or 5 instead of 1. If we want to make it slower, we can make it less than
1, for example, 0.5.

Pong Game - 2D Animations and Gestures Chapter 4

[141]

Now, let's create a variable to contain the increment number. For my emulator, a6.
value of 5 works fine. At the top of the _PongState class, let's add the
declaration provided here:

double increment = 5;

Then, let's use the increment in our code:7.

animation.addListener(() {
 setState(() {
 (hDir == Direction.right)? posX += increment :
 posX -= increment;
 (vDir == Direction.down)? posY += increment :
 posY -= increment;
 });
 checkBorders();
});

If you try out the app right now, you will see that the speed of the ball should be much
higher. Feel free to adjust the increment value based on the speed you feel correct for the
game.

Our next step will be to move the bat so that we can stop the ball from falling!

Using GestureDetector
As the name implies, GestureDetector is a widget that detects gestures.

In the body of your layout, insert a GestureDetector. This widget has properties that
respond to gestures of your user. You can respond to several user gestures. The most
common ones include onTap, onDoubleTap, and onLongPress. Inside each of those
gesture properties, you can add the code needed to respond to the user's gestures.
Generally, what you'll do is change the state of the widget, but you are certainly not limited
to that.

In our case, we'll need to move the bat, so the state value that will change is the left
property of the positioned widget that contains the bat. We only need to respond to the
horizontal drag, as the bat won't need to move vertically. Let's look at the steps to do that:

In the build() method of pong.dart file, as a child of the batPositioned1.
widget, let's add a GestureDetector, with an onHorizontalDragUpdate
parameter. This will take a DragUpdateDetails object, which we can call
update, containing information about the drag that's happening on the screen.

Pong Game - 2D Animations and Gestures Chapter 4

[142]

Inside the function, we call a method called moveBat(), which will take the2.
updated value:

Positioned(
 bottom: 0,
 left: batPosition,
 child: GestureDetector(
 onHorizontalDragUpdate: (DragUpdateDetails update)
 => moveBat(update),
 child: Bat(batWidth, batHeight))
),

Next, at the bottom of the _PongState class, write the moveBat() method:3.

void moveBat(DragUpdateDetails update) {
 setState(() {
 batPosition += update.delta.dx;
 });
}

DragUpdateDetails has a delta property that contains the distance moved during the
drag operation. dx is the horizontal delta. We just update the batPosition by adding the
delta, which can be a positive or negative number.

If we try the app right now, we'll be able to move the bat horizontally across the screen.

Before giving the user the ability to interact with the game, let's override an important
method in the _PongState class, which is dispose(): you should use it to release the
resources used by the animation. In this case, the dispose() method will be automatically
called when the _PongState object is discarded. Inside this method, we add a call to the
dispose() method of the animation controller to prevent memory leaks:

@override
void dispose() {
 controller.dispose();
 super.dispose();
}

At this time, the ball and the bat are not linked in any way, but we're going to fix that next.

Pong Game - 2D Animations and Gestures Chapter 4

[143]

Checking the bat position
Now that we have the ball moving, and the bat responding to our gestures, we need to tell
when the ball reaches the bottom of the screen without touching the bat. This is when we
actually lose the game.

We need to modify the checkBorders() method. Here, we are dealing with the four
borders of the screen: top, left, right, and bottom. The only change we need to make is for
the bottom. It is here that we need to check whether the bat is in the correct position to
make the ball bounce back up, or if the game needs to stop.

In the pong.dart file, edit the checkBorders() method, at the point where you check for
Direction.down, as indicated here:

if (posY >= height - 50 - batHeight && vDir == Direction.down) {
 //check if the bat is here, otherwise loose
 if (posX >= (batPosition - 50) && posX <= (batPosition +
 batWidth + 50)) {
 vDir = Direction.up;
 } else {
 controller.stop();
 dispose();
 }
}

50 is the diameter of the ball. Instead of bouncing at the very bottom of the screen, the ball
needs to bounce over the bat. So, we check when the ball reaches the bottom minus the
diameter of the ball.

In the nested if statement, we check the horizontal position. The "ideal" position of the bat,
which allows the ball to bounce, is between batPosition, which is the horizontal starting
position of the bat, and batPosition + batWidth, which is the horizontal end position of
the bat. To this, again, we add the diameter of the ball. If the position of the ball is included
in these two values, the ball bounces back up. Otherwise, we stop the animation and free
the system resources.

As we are using number 50 several times, let's add a variable, and use that instead:

So, at the top of the checkBorders method, let's add the following:1.

double diameter = 50;

Pong Game - 2D Animations and Gestures Chapter 4

[144]

Use the diameter variable for our checks. The final checkBorders method is2.
shown here:

void checkBorders() {
 double diameter = 50;
 if (posX <= 0 && hDir == Direction.left) {
 hDir = Direction.right;
 }
 if (posX >= width - diameter && hDir == Direction.right) {
 hDir = Direction.left;
 }
 if (posY >= height - diameter - batHeight && vDir ==
 Direction.down) {
 //check if the bat is here, otherwise loose
 if (posX >= (batPosition - diameter) && posX <= (batPosition
 + batWidth + diameter)) {
 vDir = Direction.up;
 } else {
 controller.stop();
 dispose();
 }
 }
 if (posY <= 0 && vDir == Direction.up) {
 vDir = Direction.down;
 }
 }

When we call the dispose() method on an object, the object is no longer usable. Any
subsequent call will raise an error. To prevent getting errors in our app, we can create a
method that, prior to calling the setState() method, will check whether the controller is
still mounted and the controller is active:

Add the following code at the end of the _PongState class:1.

void safeSetState(Function function) {
 if (mounted && controller.isAnimating) {
 setState(() {
 function();
 });
 }
 }

The mounted property checks whether the state object is currently
mounted. A state object is "mounted" before calling initState() and
until dispose() is called. Calling setState() when mounted is not true
will raise an error.

Pong Game - 2D Animations and Gestures Chapter 4

[145]

In the initState() method, in animation.addListener, call the2.
safeSetState() method instead of setState():

animation.addListener(() {
 safeSetState(() {
 (hDir == Direction.right) ? posX += increment :
 posX -= increment;
 (vDir == Direction.down) ? posY += increment :
 posY -= increment;
 });
 checkBorders();

In the moveBat() method, also call safeSetState():3.

 void moveBat(DragUpdateDetails update) {
 safeSetState(() {
 batPosition += update.delta.dx;
 });
 }

If you try the app, you'll finally be able to play the game!

There are still a couple of fixes we need to add, and we'll do that in the next section, but
still, the basics are all there.

Adding randomness to the game
One of the basic ingredients that make a game interesting is the random element. There are
two moments in our game where we can add some randomness. One is the bouncing angle:
it doesn't need to be exactly 45 degrees each time it bounces. Making the bouncing less
regular will make the game less predictable. And we can also work with the speed of the
ball.

Let's consider the perfect bouncing we are using now to be 1. If the bouncing could take a
value between 0.5 and 1.5, the bouncing would be less regular, but still keep a degree of
realism:

In order to use random values in Flutter and Dart, we need to import the math1.
library. In the pong.dart file, add the import statement as shown here:

import 'dart:math';

Pong Game - 2D Animations and Gestures Chapter 4

[146]

Then, in the _PongState class, let's write a method, called randomNumber(),2.
which returns a random double number between 0.5 and 1.5:

double randomNumber() {
 //this is a number between 0.5 and 1.5;
 var ran = new Random();
 int myNum = ran.nextInt(101);
 return (50 + myNum) / 100;
}

The Random class generates random bool, int, or double values. Its nextInt
method returns a random integer from 0, inclusive, and the parameter you pass,
exclusive. In this case, it will be a number between 0 and 100 inclusive.

To that, we add 50 and we add the generated integer, obtaining a number
between 50 and 150, and we then divide it by 100. So, the function will return a
number between 0.5 and 1.5.

Next, at the top of the _PongState class, let's create two variables, one for the3.
vertical direction and one for the horizontal, which will contain the random
number. As you can see, at the beginning of the execution, the value for both
randX and randY is 1:

double randX = 1;
double randY = 1;

Every time the ball bounces, we want to change the value of the random number,4.
based on the border that is reached. So, when the ball bounces left or right, we
want to change the randX value; when the ball bounces at the top or the bottom,
we want to change randY.

Modify the checkBorders() function, adding the calls to the randomNumber()
method:

void checkBorders() {
 double diameter = 50;
 if (posX <= 0 && hDir == Direction.left) {
 hDir = Direction.right;
 randX = randomNumber();
 }
 if (posX >= width - diameter && hDir == Direction.right) {
 hDir = Direction.left;
 randX = randomNumber();
 }
 //check the bat position as well
 if (posY >= height - diameter - batHeight && vDir ==

Pong Game - 2D Animations and Gestures Chapter 4

[147]

 Direction.down) {
 //check if the bat is here, otherwise loose
 if (posX >= (batPosition - diameter) && posX <= (batPosition
 + batWidth + diameter)) {
 vDir = Direction.up;
 randY = randomNumber();
 } else {
 controller.stop();
 dispose();
 }}
 if (posY <= 0 && vDir == Direction.up) {
 vDir = Direction.down;
 randY = randomNumber();
 } }

Finally, go back to the Tween defined in the initState() method, and replace5.
the animation definition so that, instead of incrementing the position by a fixed
value, we'll use the random number to vary the speed as well:

 animation = Tween<double>(begin: 0, end: 100).animate(controller);
 animation.addListener(() {
 safeSetState(() {
 (hDir == Direction.right)
 ? posX += ((increment * randX).round())
 : posX -= ((increment * randX).round());
 (vDir == Direction.down)
 ? posY += ((increment * randY).round())
 : posY -= ((increment * randY).round());
 });
 checkBorders();
 });

If you play the game now, you'll notice that the speed and bounce of the ball are less
regular, making the game a bit more unpredictable. Of course, you could also increase or
decrease the random element by returning a different range in the randomNumber function.

There is one last element that every game should have, and this is the score. Let's add this
to our app.

Pong Game - 2D Animations and Gestures Chapter 4

[148]

Adding the score and completing the game
A game wouldn't be complete without a way to measure performance. In this case, the
action to perform is pretty obvious. Every time the ball touches the bat, we can add one
point to the score. Let's look at how we can apply this action:

Let's create a variable that will contain the score, at the top of the _PongState1.
class:

 int score = 0;

Next, in the build() method, add a new Positioned widget to the stack. This2.
will contain a Text with the score:

return Stack(
 children: <Widget>[
 Positioned(
 top: 0,
 right: 24,
 child: Text('Score: ' + score.toString()),
),

Then, in the checkBorders() method, update the score each time the ball3.
touches the bat:

if (posX >= (batPosition - diameter) && posX <= (batPosition +
batWidth + diameter)) {
 vDir = Direction.up;
 randY = randomNumber();
 safeSetState(() {
 score++;
 });
}

Pong Game - 2D Animations and Gestures Chapter 4

[149]

If you try this out, you should see that the score is now visible in the top-right corner of the
screen, as shown here:

Pong Game - 2D Animations and Gestures Chapter 4

[150]

Now, let's add a final touch to our app: when the player loses, we want to give them a
message asking whether they want to play again, and, if so, we start the animation again:

Let's create a new method in the _PongState class. We can call it showMessage.1.
What we want to achieve is a dialog over the screen, as shown in the following
screenshot:

Pong Game - 2D Animations and Gestures Chapter 4

[151]

This will call the showDialog method, which displays a dialog window above2.
the screen, with material design animations. This method takes a builder method,
where you build a Dialog widget and take the current BuildContext:

void showMessage(BuildContext context) {
 showDialog(
 context: context,
 builder: (BuildContext context) {
 return AlertDialog(
);});
 }

In our app, we'll use AlertDialog to ask the user whether they want to play3.
again. The alert dialog takes a title, content, and actions.
In the showMessage method, we have the following:4.

title shows on top of the dialog window.
content is the main content of the dialog.
actions is an array of widgets that specify the actions that users will
be able to perform: in our app, we'll use two buttons, one for YES and
one for NO as actions.

If the user presses the YES FlatButton, we'll call the setState method to place5.
the ball at position 0,0, and reset the score to 0 as well.
The pop method of Navigator will remove the dialog from the screen and the6.
controller.repeat method will play the animation again. Complete the
AlertDialog with the following code:

return AlertDialog(
 title: Text('Game Over'),
 content: Text('Would you like to play again?'),
 actions: <Widget>[
 FlatButton(
 child: Text('Yes'),
 onPressed: () {
 setState(() {
 posX = 0;
 posY = 0;
 score = 0;
 });
 Navigator.of(context).pop();
 controller.repeat();
 },
),
 FlatButton(
 child: Text('No'),

Pong Game - 2D Animations and Gestures Chapter 4

[152]

 onPressed: () {
 Navigator.of(context).pop();
 dispose();
 },
)
],
);

Finally, in the checkBorders() method, instead of calling the dispose()7.
method of controller, we'll call the showMessage() method:

controller.stop();
showMessage(context);

If you try this out, you'll see the dialog whenever you lose.

This completes this project. There are several features you could add to improve this game,
including the creation of a wall of fame, saving the best scores to the device, adding bricks
at the top of the screen, adding sound, changing the angle of bouncing based on the
position of the bat, and adding a second bat for a second player. If you want to test
yourself, try adding some of these functions to this app. It might be a fun way to improve
your Flutter skills.

Summary
In this chapter, you've built a simple game, based on animation and on detecting a user's
gestures.

Animations in Flutter are fast and relatively easy to implement. The moving parts involved
in the animation are the Animation class, which takes in some values and translates them
into animations, AnimationController, which controls the animation objects, Tween,
which contains the value of the property that needs to change during the animation, and
Ticker, which calls its callback once per animation frame.

Enclosing any widget in a GestureDetector will allow you to listen to several gestures
the user performs over your user interface. This allowed a moving bat to be constructed on
the screen, leveraging the onHorizontalDragUpdate property of GestureDetector.

Adding some randomness generally makes a game more interesting. We've also seen how
to use the Random class to generate a random integer value with the nextInt method.

Pong Game - 2D Animations and Gestures Chapter 4

[153]

While building the game, you've also seen how to use LayoutBuilder to get the available
space on a screen, and a Stack to control exactly how widgets should be positioned on the
screen of your app.

To give some feedback to the user, and have them perform a choice, you've also used an
AlertDialog, setting its title, content, and actions.

In the next chapter, we'll create a movies app that will connect to a web service using the
HTTP library service.

Questions
At the end of each project, you'll find a few questions to help you remember and review the
content covered in the chapter. Please try to answer the following questions and, when in
doubt, have a look at the content in the chapter itself: you'll find all the answers there!

Which child widget can you use inside a Stack to decide exactly its position1.
relative to the borders of the Stack?
What's the difference between the initState and build methods?2.
How can you set the duration of an animation?3.
How can you use a Mixin class in your own classes?4.
What is a Ticker?5.
What's the difference between an Animation and an AnimationController?6.
How do you stop a running animation? And how do you free its resources?7.
How can you generate a random number between 0 and 10?8.
If you wanted to respond to a tap of the user over one of your widgets, for9.
example, a container, which widget could you use?
How do you show an AlertDialog in an app?10.

Pong Game - 2D Animations and Gestures Chapter 4

[154]

Further reading
The first place to consult if you want to use animations in your apps is the official Flutter
guide, which you can find at the following link: https:/ /flutter. dev/ docs/ development/
ui/animations. Another great resource with videos, examples, and step-by-step guides is
https://buildflutter. com/ functional- programming- with- flutter/ .

In this chapter, we've built a game starting from scratch. This is probably not the most
common scenario for a real-world game, as there are several libraries and toolkits that you
can leverage to create complex apps and games. If you are serious about creating
compelling animations, there's a third-party tool, called Rive, that allows you to create
incredible animations and add them to your Flutter apps. More on this can be found at
https://rive.app/ .

There's a great example on how to build a multi-platform game with Flutter at https:/ /
medium.com/flutter- community/ from- zero- to- a-multiplatform- flutter- game- in- a-
week-8245da931c7e. Also, have a look at https:/ /flutterawesome. com/ high-
performance-animations- and- 2d- games- with-flutter/ to find ideas and see what's
possible with Flutter.

Even though Flutter is very young, there are already several libraries that make it easier to
create games and animations in Flutter without starting from scratch, and projects are
added very frequently. For example, have a look at Flame, at https:/ /pub. dev/packages/
flame. You'll also find great tutorials and documentation on creating games with Flutter.

https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://buildflutter.com/functional-programming-with-flutter/
https://rive.app/
https://rive.app/
https://rive.app/
https://rive.app/
https://rive.app/
https://rive.app/
https://rive.app/
https://rive.app/
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://medium.com/flutter-community/from-zero-to-a-multiplatform-flutter-game-in-a-week-8245da931c7e
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://flutterawesome.com/high-performance-animations-and-2d-games-with-flutter/
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame
https://pub.dev/packages/flame

5
Let's Go to the Movies - Getting

Data from the Web
Who doesn't like movies?

In this chapter, we'll build a movie app. As soon as the user opens the app, it will show a
list of movies that are about to come out in cinemas. I love this project for several reasons:
it's easy to read, does not require a huge amount of code, and at the same time, contains
many incredibly important concepts. These include asynchronous programming in Flutter,
reading JSON data from the web, using ListView widgets, and passing data from one
screen to another. In short, this project is packed with concepts you're likely to use very
often if you keep dealing with Flutter. And you'll be building a full stack real-world app
that deals with both the client side and the server side, or the frontend/backend as many
people call them.

In particular, the topics we'll cover include the following:

Using the HTTP library to retrieve data from a web service
Parsing JSON data and transforming it into model objects
Adding a ListView to show data
Showing a detail screen and passing data through screens

Technical requirements
You'll find the completed app code on this book's GitHub repository at https:/ /github.
com/PacktPublishing/ Flutter- Projects.

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

Let's Go to the Movies - Getting Data from the Web Chapter 5

[156]

To follow the code examples in this book, you should have the following software installed
on your Windows, Mac, Linux, or Chrome OS device:

The Flutter SDK
When developing for Android, the Android SDK, which is easily installed using
Android Studio
When developing for iOS, MacOS and Xcode
An emulator (Android), simulator (iOS), or a connected iOS or Android device
enabled for debugging
An editor: Visual Studio Code, Android Studio, or IntelliJ IDEA are
recommended and should all have the Flutter/Dart extensions installed

Project overview
In this chapter, we'll build a Movies app. As soon as the user opens it, the app will show a
list of movies that are about to come out in cinemas. The user will also be able to search for
movies by title on the same screen, like so:

Let's Go to the Movies - Getting Data from the Web Chapter 5

[157]

If they tap on one of the movies, the app will show a second screen, which is a more
detailed view of the movie with a bigger image and an overview:

To retrieve the data, the app will use an open web service, which is The Movie Database
API.

By the end of this chapter, you'll have built a fully functional app that connects to the web
and retrieves data from a remote web service.

The time required for this project is approximately three hours.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[158]

Connecting to a web service and retrieving
data with HTTP
Very few mobile apps are completely independent of external data: think of the apps you
use for weather forecasts, listening to music, reading books, news, or emails. They all have
something in common: they rely on data taken from an external source. The most common
source to get data from a mobile (or any client) app is called a web service or web API.

What happens is that a client app connects to a web service, makes a request to get data,
and if the request is legitimate, the web service responds by sending the data to the app,
which then will parse the data for its features. The advantage of this approach is that
developers only need to create and maintain one source of data and can have as many
clients as needed. Actually this pattern (client/server) is nothing new, but it's extremely
common when designing apps.

In the following, you can see a diagram showing this pattern. At the center, you have a
remote server, which is the data source, and all around it are the clients, such as your
mobile app, that connect to the server to retrieve data:

Web services generally expose data in two formats: JSON or XML. They are both text
formats that can represent mostly the same kind of data, but as JSON is a bit more compact,
it's a format you'll probably find more often when using web services.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[159]

In the following screenshot, you can see an example of each format:

In both formats, you can see an example of a movie, with the title, the year it was produced,
the genre, and the actors. We don't need to get into the details of these formats; just note
that both formats allow you to express complex data, and in Flutter, you can easily retrieve
and parse both JSON and XML. The service we'll use in this chapter delivers JSON.

We won't deal with creating web services; we'll just use the one inside our app, but don't
worry, you'll see how to create a server-side data source with Firebase in a later chapter.

In particular, we'll be using the Movie Database API (https:/ /www. themoviedb. org). This
is a community-built database with huge amounts of data that provides movies and TV
information in several languages.

Before making your first connection to the database, you'll need to get an API key. You can
obtain an API key by creating an account at https:/ /www. themoviedb. org/ , then clicking
the API link in the bar on the left-hand side of your account page. This is free but requires a
valid email to activate the account. Having an API key is also required to follow along with
the examples in this chapter.

In the following sections, we'll create the app and retrieve the first set of data from the
Movie Database web service.

https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/
https://www.themoviedb.org/

Let's Go to the Movies - Getting Data from the Web Chapter 5

[160]

Creating the app and connecting to the API with
the HTTP library
Let's create a new Flutter app. We will call it Movies:

The first thing to do is to open the pubspec.yaml file and add a dependency to1.
the HTTP library, which we'll use to make HTTP requests. Please check the latest
available version at https:/ / pub. dev/packages/ http.
Add the http library under the flutter dependency, as follows:

dependencies:
 flutter:
 sdk: flutter
 http: ^0.12.0+4

Then, let's create a new file, called http_helper.dart, that we'll use to create2.
the settings and methods that we'll use to connect to the web service. In the new
file, let's import the HTTP library:

import 'package:http/http.dart' as http;

With the as http command, we are giving the library a name and therefore,
we'll be using all functions and classes of the HTTP library through the http
name.

Then, let's create a new class, which we'll call HttpHelper:3.

class HttpHelper {}

The next step is creating the address url to connect to the service. This will4.
require a few strings, which we'll concatenate as needed to retrieve data from the
service. Add the following declarations at the top of the HttpHelper class:

 final String urlKey = 'api_key=YOUR API KEY HERE';
 final String urlBase = 'https://api.themoviedb.org/3/movie';
 final String urlUpcoming = '/upcoming?';
 final String urlLanguage = '&language=en-US';

https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http
https://pub.dev/packages/http

Let's Go to the Movies - Getting Data from the Web Chapter 5

[161]

To make it easier to retrieve the values of these strings, all of them begin with a
url prefix. The first string, urlKey, contains the value, api_key =, and the API
key you've obtained from the Movie Database service. The urlBase string is the
beginning of every address we'll be using. urlUpcoming is the part of the URL
that's specific for the upcoming movies. Finally, urlLanguage contains an
optional parameter that allows you to specify which language you want to use for
the results of your queries.

We are now ready to write the first method of this class, which we'll use to5.
retrieve a list of 20 upcoming movies:

Future<String> getUpcoming() async { }

You may notice an unfamiliar syntax here. The getUpcoming() function returns a future
and is signed as async. These two elements are both related to asynchronous
programming.

In Chapter 3, My Time – Listening to a Stream of Data, you have already
used asynchronous programming with streams. In this chapter, you'll see
how to use Futures.

Generally speaking, when you run your code, for example, in a method, each line executes
from the first to the last, in order. If there are 10 lines of code in your function, line 5
executes only after line 4 has finished executing.

On the other hand, we generally take for granted that our devices can do more than one
thing at the same time. When you are listening to music on your device, you also expect to
be able to browse your playlist or adjust the volume. You would be very disappointed if
you had to wait for the song to finish before being able to adjust the volume!

The thing is, by default, every single action is executed is a single thread, generally called
the main thread, or the UI thread.

You should avoid an unresponsive UI at all costs: after a few seconds,
both Android and iOS will ask the user if they want to kill your app.

What we can do to solve this issue in Flutter is create different isolates, or lines of execution,
when we have long-running tasks in our app so that, for example, our network tasks run at
the same time (or concurrently) as our main thread.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[162]

Concurrency is what happens when two or more tasks can start, run, and
complete in overlapping time periods.

In other words, asynchronous operations let your program complete work while waiting
for another operation to finish. Here are some common asynchronous scenarios:

Retrieving data from the web
Reading and writing data to a file
Reading and writing to a local database

To perform asynchronous operations in Flutter, you can use the Future class and the
async, await, and then keywords.

A Future is used to represent a potential value, or error, that will be available at some time
in the future. Basically, when a function returns a Future, it means that it takes a while for
its result to be ready, and the result will be available in the future. The Future itself is
returned immediately and its underlying object is returned at some time in the future.

Writing Future<String> means that the function will immediately return a Future
without interrupting the code, and then, when it completes retrieving all of the data, it will
return String.

In the getUpcoming() method, we are adding the async keyword. In Dart and Flutter,
you must add async when you use an await keyword in the body of the function. Any
method returning a Future is asynchronous anyway, whether or not you mark it with
async.

Let's retrieve some data from the web service:

In the getUpcoming method, let's add a string to create the URL that we'll use1.
during the connection:

final String upcoming = urlBase + urlUpcoming + urlKey +
urlLanguage;

Next, let's use the HTTP library to create a connection to the URL we've built:2.

http.Response result = await http.get(upcoming);

The get method of the http class returns a Future that contains Response. The
http.Response class contains the data that has been received from a successful
HTTP call.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[163]

The await keyword, which only works in functions marked as async, waits for a
Future to complete. It won't go to the next line of its thread until it completes this
line, behaving a lot like synchronous code, but remember, this happens on a
secondary line of execution, so it won't stop the UI thread.

Now, how do we read the response? Let's write the following code:3.

if (result.statusCode == HttpStatus.ok) {
 String responseBody = result.body;
 return responseBody;
}
else {
 return null;
}

The HttpStatus class requires the dart:io library. At the top of the4.
http_helper.dart file, add the required import:

import 'dart:io';

Response has statusCode and body properties. The status code may express a successful
response, which is a code 200 of HttpStatus.ok or an error. You may be familiar with
error 404; in Dart, you would just express it with HttpStatus.notFound.

In the preceding code, if the response has a valid status code, we read the body of the
response, which is a string containing all of the data that was retrieved by the http.get
method, and we return it to the caller.

To sum it up, we now have an asynchronous function that makes an HTTP request and
returns a Future containing a string. Now we need to call this function from the main
method and show the result to the user. Let's do that next.

Parsing JSON data and transforming it into
model objects
We are now ready to show the data that was retrieved from the web service in the UI:

Open the main.dart file, delete the default code of the app, and create a basic1.
empty app like this:

import 'package:flutter/material.dart';
void main() => runApp(MyMovies());

Let's Go to the Movies - Getting Data from the Web Chapter 5

[164]

class MyMovies extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'My Movies',
 theme: ThemeData(
 primarySwatch: Colors.deepOrange,
),
 home: Home(),
);
 }
}

class Home extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MovieList();
 }
}

There's nothing new in this code. Just notice that we chose ThemeData,2.
with Colors.deepOrange primarySwatch, and in Home StatelessWidget,
we are calling the MovieList class, which we haven't created yet. Let's
immediately fix this by adding a new file in our lib folder called
movie_list.dart and adding a MovieList stateful widget:

import 'package:flutter/material.dart';

class MovieList extends StatefulWidget {
 @override
 _MovieListState createState() => _MovieListState();
}

class _MovieListState extends State<MovieList> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

Let's import this new file in the main.dart file to fix the error we are receiving3.
right now:

import 'movie_list.dart';

Let's Go to the Movies - Getting Data from the Web Chapter 5

[165]

Now, we need to show the data retrieved by the getUpcoming() async method4.
in the HttpHelper class. To do that, first, let's import the http_helper.dart
file at the top of the movie_list.dart file:

import 'http_helper.dart';

In the _MovieListState class, let's create String that will contain the data that5.
we need to show an HttpHelper called helper:

String result;
HttpHelper helper;

Let's override the initState method and create an HttpHelper instance:6.

@override
 void initState() {
 helper = HttpHelper();
 super.initState();
 }

Then, in the build method, we'll call the getUpcoming asynchronous method,7.
and when the results are returned (this is the then method), we call the
setState method to update the result string with the value that was returned:

 @override
 Widget build(BuildContext context) {
 helper.getUpcoming().then(
 (value) {
 setState(() {
 result = value;
 });
 }
);
 return Scaffold(
 appBar: AppBar(title: Text('Movies'),),
 body: Container(
 child: Text(result)
));
 }

Next, we'll return Scaffold that, in its body, shows Container with a Text8.
child, containing the result string.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[166]

If you try the app right now, the end result should look similar to this:9.

Here, you have some text that takes up all of the available space on the screen and contains
all of the JSON code retrieved from the Movies API. This is probably not the most user-
friendly way to show data to your users, but we'll fix that next!

Let's Go to the Movies - Getting Data from the Web Chapter 5

[167]

Adding the Movie model class
In object-oriented languages, a common pattern when dealing with data, especially
structured data, is creating classes that will serve as an interface between the data and the
application. This is to make our code easier to both read and maintain, so we'll follow this
pattern and create a Movie class that will contain the movie properties that we want to
show to our user.

There are several pieces of data in the JSON file we received from the Movies API, but we'll
just select a few of them: the ID, the title, the average votes, the release date, the overview
(which is a description of the movie), and the poster path (this will contain the path of the
image to show in our app, if one is available).

In the next few steps, we'll create the properties and methods of the Movie class and update
the HttpHelper class to start parsing the data received from the web service:

Let's create a new file, called movie.dart, and in the file, let's create a Movie1.
class, as follows:

class Movie {
 int id;
 String title;
 double voteAverage;
 String releaseDate;
 String overview;
 String posterPath;
}

Next, let's also create a constructor that will set all of the fields in the class:2.

Movie(this.id, this.title, this.voteAverage, this.releaseDate,
this.overview, this.posterPath);

When we get the data from the web API, we want to transform it into a Movie.3.
So, we need a method to get data in JSON format and output a Movie object.
Let's write the following code:

Movie.fromJson(Map<String, dynamic> parsedJson) {
 this.id = parsedJson['id'];
 this.title = parsedJson['title'];
 this.voteAverage = parsedJson['vote_average']*1.0;
 this.releaseDate = parsedJson['release_date'];
 this.overview = parsedJson['overview'];
 this.posterPath = parsedJson['poster_path'];
 }

Let's Go to the Movies - Getting Data from the Web Chapter 5

[168]

This named constructor will return a Movie object. As a parameter, it will take
a Map, which is a key-value pair set. The key will be a string (for example,
"title"), and the value needs to be dynamic, as it can be text or a number.

When you get a Map, you can access its values with square brackets and the key
name. That's why we can access the value of the title key by
writing parsedJson['title'].

We now have a function that can transform a Map into a Movie. But at this
moment, we don't have any Map, we just have a String containing all of the text
that we retrieved from the web service.

Let's get to the httpHelper getUpcoming() function and parse the JSON4.
content that we receive, as shown here:

Future<List> getUpcoming() async {
 final String upcoming = urlBase + urlUpcoming + urlkey
 + urlLanguage;
 http.Response result = await http.get(upcoming);
 if (result.statusCode == HttpStatus.ok) {
 final jsonResponse = json.decode(result.body);
 final moviesMap = jsonResponse['results'];
 List movies = moviesMap.map((i) =>
 Movie.fromJson(i)).toList();
 return movies;
 }
 else {
 return null;
 }
 }

This will require importing the convert.dart library and movie.dart at the5.
top of the file:

import 'dart:convert';
import 'movie.dart';

OK, let's see what's happening there. You might remember that the body property of a
Response object is a string. To make it easy to parse the result of our request, we want to
transform this string into an object:

final jsonResponse = json.decode(result.body);

Let's Go to the Movies - Getting Data from the Web Chapter 5

[169]

The type returned by json.decode is dynamic. This means that it can
contain any type at runtime.

If you have a look at the JSON text retrieved from the web service, it contains a header with
information about the response, and a results node that contains an array with all of the
movies that were returned. We are not interested in the header, so we just need to parse the
'results' array:

final moviesMap = jsonResponse['results'];

From there, we call the map() method. You can call the map() method over an Iterable
(which basically means a set of objects). This will iterate each element of the set (in this
case, i), and for each object inside moviesMap, it will return Movie, as returned by the
fromJSON constructor of the Movie class. Yes, several different things are happening in this
single line of code:

List movies = moviesMap.map((i) => Movie.fromJson(i)).toList();

Sometimes, I explain this concept with an example that may be a bit more familiar: imagine
that you want to make 10 glasses of lemonade. You go to the store and the seller gives you a
box with the content description (10 lemons) and, of course, the 10 lemons inside. When
you go home, you take the 10 lemons from the box, throw the box away, and cut the lemons
so that you can squeeze them to prepare 10 glasses of lemonade. This is what we are trying
to achieve here: we get the full JSON (the lemon box) from the web service (the store)
with http.get(upcoming); we only take the movies (only the lemons, we don't need the box)
with jsonResponse['results'];. We then transform the dynamic objects into movies
(from lemon to lemonade) with moviesMap.map((i) => Movie.fromJson(i)).toList().

Now we have a list of movies. In the next section, we'll show those movies to the user in a
ListView.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[170]

Adding a ListView to show data
Instead of showing a single piece of text, with no user interaction whatsoever, for the UI,
we'll use one of the most common widgets that deals with data: the ListView. This will
allow our user to scroll vertically through the movies. And as the ListView can contain
any type of widget, it will give us the freedom to show data in any way we want:

So, let's open the movie_list.dart file, and at the top of the1.
_MovieListState class, let's create two variables, which will contain the list of
movies and the number of movies that were retrieved:

int moviesCount;
List movies;

Then, create a new method, called initialize. It returns a future and is marked2.
as async.
Inside the method, call the getUpcoming method from the httpHelper class,3.
and then call the setState method so that we can set moviesCount and the
movie's properties:

Future initialize() async {
 movies = List();
 movies = await helper.getUpcoming();
 setState(() {
 moviesCount = movies.length;
 movies = movies;
 });
 }

In the build() method of the class, delete the call to the getUpcoming method4.
and the text containing the result string. The new build method should look like
this:

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Movies'),),
 body: Container()
);
 }

Let's Go to the Movies - Getting Data from the Web Chapter 5

[171]

Instead of returning a Container, we want to return a ListView showing the5.
Movies objects returned by the getUpcoming() method. So, in the body of the
Scaffold, let's write the following code:

body: ListView.builder (
 itemCount: (this.moviesCount==null) ? 0 : this.moviesCount,
 itemBuilder: (BuildContext context, int position) {
 })

As we've already mentioned, a ListView is a scrolling widget: it displays its
children one after another either horizontally or vertically, and its default
direction is vertical. The ListView.builder constructor that we're using here
makes it easy to create a ListView and is very performant, as it creates items as
they're scrolled onto the screen. This is recommended whenever you have long
lists.

The itemCount parameter of the builder constructor takes the number of items
that the ListView will contain. In our code, we are using a ternary operator. If
the moviesCount property is null, then the number of items will be 0, otherwise,
it will be the moviesCount property set in the initialize() method.

The second parameter is itemBuilder. This is an iteration method for each item
in the ListView and takes BuildContext and the current position. It's here that
we'll decide what to show to our user.

Let's return a Card, which is a container widget with slightly rounded corners6.
and a shadow. When using a Card, you can choose a color and an elevation. In
this case, let's set the color to white and the elevation to 2.0.
In the child of a Card, let's put a ListTile as follows:7.

itemBuilder: (BuildContext context, int position) {
 return Card(
 color: Colors.white,
 elevation: 2.0,
 child: ListTile(
 title: Text(movies[position].title),
 subtitle: Text('Released: '
 + movies[position].releaseDate + ' - Vote: ' +
 movies[position].voteAverage.toString()),
));
 })

Let's Go to the Movies - Getting Data from the Web Chapter 5

[172]

ListTile is another material widget that can contain one to three lines of text
with optional icons at the beginning and end.

Let's also call the initialize method in the initState method so that we can8.
try out the app:

@override
 void initState() {
 helper = HttpHelper();
 initialize();
 super.initState();
 }

The result should look similar to this (the titles should be different, as movies9.
come out every day!):

Let's Go to the Movies - Getting Data from the Web Chapter 5

[173]

As you can see, the results are much more readable now; your user will be able to scroll
through the movies vertically and will only see the information that we have decided they
should see. Now let's add a small poster image to the left of the text.

Showing a trailing icon in a ListTile
Most movies have a poster image. We want to add the poster image at the left of the title
and subtitle in ListTile. Let's look at how we can do that:

In the Movie Database API, there's a path for the poster icons. Let's add it at the1.
top of the _MovieListState class:

final String iconBase = 'https://image.tmdb.org/t/p/w92/';

If there is no poster image, we want to show a default image. Let's also create2.
a final String for it at the top of the class:

final String defaultImage =
'https://images.freeimages.com/images/large-previews/5eb/movie-clap
board-1184339.jpg';

In the build method, let's declare a NetworkImage called image; then, in3.
the itemBuilder, before returning Card, let's set the image depending on the
path of the movie:

Widget build(BuildContext context) {
 NetworkImage image;
 return Scaffold(
 appBar: AppBar(title: Text('Movies'),),
 body: ListView.builder (
 itemCount: (this.moviesCount==null) ? 0 : this.moviesCount,
 itemBuilder: (BuildContext context, int position) {
 if (movies[position].posterPath != null) {
 image = NetworkImage(
 iconBase + movies[position].posterPath
);
 }
 else {
 image = NetworkImage(defaultImage);
 }

Let's Go to the Movies - Getting Data from the Web Chapter 5

[174]

The image variable contains a NetworkImage, either the one specified in the4.
posterPath string or the default image. Now we need a way to show the image
inside the ListTile. To do that, we can add a leading parameter that contains
a CircleAvatar widget. Add the following code in the ListTile widget in the
build() method:

leading: CircleAvatar(
 backgroundImage: image,
),

CircleAvatar is a circle that can contain an image or some text. Even if it's5.
typically used for user's images, we can certainly adapt it for our movies.
The result is as follows:6.

Well done! The UI of the first screen of the app is now complete. Of course, you could play
with the text style or the size of CircleAvatar, but I'll leave this up to your preferences.
What we need to do next is adding the second screen of our app: the Movie Detail screen.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[175]

Showing the detail screen and passing data
through screens
The detail screen of the app will show a bigger poster image and an overview of the movie.
All of the required data, except the image, has already been downloaded and parsed from
the web service, so we won't need to use the HTTP library for this screen.

The steps required to complete this part are as follows:

Create the second screen, with the widgets that will need to receive the movie1.
data to set the title, the image, and the overview of the movie.
Respond to the tap of the user in the ListView.2.
Pass the movie data from the first screen to the second screen.3.

So let's create a new file, called movie_detail.dart, in the lib folder of the app. Here,
we'll only need to import the material.dart library to access the material widgets, and
our movie.dart file for the Movie class:

import 'package:flutter/material.dart';
import 'movie.dart';

The question we need to answer now is: do we use a stateless or a stateful widget for this screen?
As you already know, you use stateful widgets when the state of a widget changes during
its life cycle. You might be tempted to think that as the image, title, and overview of a
movie can change, we need a stateful widget here, but this is not the case. When the user
clicks on one of the items of the ListView, we will always build a new instance of the
screen, passing the movie data. So this screen will not need to change during its life cycle:

Create a stateless widget using the stless shortcut. We can call this class1.
MovieDetail:

class MovieDetail extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
);
 }
}

Let's Go to the Movies - Getting Data from the Web Chapter 5

[176]

When we call MovieDetail, we want to pass a Movie. So, at the top of the2.
MovieDetail class, create a movie property, and mark it as final as this is a
stateless widget:

final Movie movie;

Then, create a constructor that sets the movie property of our Widget class:3.

MovieDetail(this.movie);

In the build() method, instead of returning a Container, return a Scaffold.4.
Its appBar will contain the title of the Movie, and in the body, we'll place
a SingleChildScrollView. This widget will make its child scrollable if it
doesn't fit the screen.
In the SingleChildScrollView, we'll place a Center widget, whose child will5.
be a Column containing Text with the movie overview:

return Scaffold(
 appBar: AppBar(
 title: Text(movie.title),
),
 body:SingleChildScrollView(child: Center(child:Column(
 children: <Widget>[
 Container(
 padding: EdgeInsets.only(left: 16, right: 16),
 child: Text(movie.overview),
)],
))));

Now we only need to add the image of the poster. Let's create a final String6.
containing the path of the image under the movie declaration:

final String imgPath='https://image.tmdb.org/t/p/w500/';

Let's Go to the Movies - Getting Data from the Web Chapter 5

[177]

Then, let's use the same logic we've used in the MovieList screen: if the image is7.
available, we'll show it; otherwise, we'll only show a default picture. So, at the
top of the build method, add the code to set the path of the image:

String path;
if (movie.posterPath != null) {
 path= imgPath + movie.posterPath;
}
else {
 path =
'https://images.freeimages.com/images/large-previews/5eb/movie-clap
board-1184339.jpg';
}

Still in the build method, to decide the size of the image, we'll get the height of8.
the screen:

double height = MediaQuery.of(context).size.height;

Then, in the column, above the overview, let's add a Container that, as child,9.
will have the correct image, shown by calling the Image.network constructor.
We'll also add some padding, and the height of the image will be the context
height divided by 1.5:

Container(
 padding: EdgeInsets.all(16),
 height: height / 1.5,
 child:Image.network(path)
),

The UI of the detail view is ready. We only need to call it from the ListView. So10.
let's get back to the movie_list.dart file and import the movie_detail.dart
file:

import 'movie_detail.dart';

Then, let's add the onTap parameter to the ListTile in the build method.11.
Here, we'll declare MaterialPageRoute that will get to MovieDetail, but in its
builder, we'll also pass the movie at the current position. This is how easy it is to
pass data to another widget in Flutter!
Then, we just call the Navigator.push method to actually add the12.
MovieDetail route to the Navigator stack:

 onTap: () {
 MaterialPageRoute route = MaterialPageRoute(

Let's Go to the Movies - Getting Data from the Web Chapter 5

[178]

 builder: (_) => MovieDetail(movies[position]));
 Navigator.push(context, route);
 },

And if you try the app now, you'll be able to tap on any movie on the screen and13.
see the Detail view, as shown here:

Now our app is almost complete. We only need to add a search function and we'll close this
project!

Adding the search feature
By leveraging the Movie Database web service search feature, we'll allow our users to
search any movie by title. What we want to do is show a search icon button in the AppBar.
When the user taps on the button they will be able to enter part of a movie title into a
TextField, and when they press the search button on the keyboard, the app will call the
web service to retrieve all movies that contain the user's input.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[179]

Let's add the logic that we'll use to implement the search feature and call the Movie
Database web API with the title we want to search:

In the http_helper.dart file, in the HttpHelper class, let's declare1.
a final String, containing the beginning of the URL required to perform a
movie search. Obviously each API has its own URL structure, but most public
web services have thorough documentation that will help you to build the
correct URLs:

final String urlSearchBase =
'https://api.themoviedb.org/3/search/movie?api_key=[YOUR API KEY
HERE]&query=';

I generally recommend creating a settings structure in your files. For
example, in this project, we set all of the URL constants at the beginning of
the httpHelper class. It's usually not a good idea to build the URLs when
you need to use them, as your code gets harder to debug.

Next, let's create a new function, called findMovies, that will return a List of2.
Movies, and will take a string containing the title or part of the title:

Future<List> findMovies(String title) async {
 final String query = urlSearchBase + title ;
 http.Response result = await http.get(query);
 if (result.statusCode == HttpStatus.ok) {
 final jsonResponse = json.decode(result.body);
 final moviesMap = jsonResponse['results'];
 List movies = moviesMap.map((i) =>
 Movie.fromJson(i)).toList();
 return movies;
 }
 else {
 return null;
 } }

In the findMovies() function, we first create the query to pass to the web API,3.
which is a concatenation of urlSearchBase and the title that was passed to the
function.
Then we call the http.get method, passing the query and getting back a4.
Response object, which we call result.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[180]

If the status code of result is HttpStatus.ok, we decode and parse the body of
the result and create and return a List of Movies based on the result. The
process is very similar to the getUpcoming method, but here we are passing a
query based on the user input.

Next, we need to implement the search function in the UI. There are several ways5.
we could achieve this, but what we'll do is leverage the AppBar widget, which
can contain not only text but also icons, buttons, and several other widgets,
including a TextField.
Let's get back to the movie_list.dart file. We'll create two properties in the6.
_MovieListState class: one for the visible icon (the search icon when the screen
is loaded) and the second a generic widget that at the beginning will be a
Text widget containing Movies:

Icon visibleIcon = Icon(Icons.search);
Widget searchBar= Text('Movies');

Next, in the appBar of the Scaffold in the build() method, let's change the7.
title to take the searchBar widget, and let's add an actions parameter. This
takes an array of widgets that are displayed after the title. Usually, they are
buttons representing common operations. This will only contain a single
IconButton containing Icons.search:

 title: searchBar,
 actions: <Widget>[
 IconButton(
 icon: visibleIcon,
 onPressed: () {}
),]),

For the onPressed function of IconButton, we'll call the setState method so8.
that we can show the TextField and change the icon when the user presses the
search button:

onPressed: () {
 setState(() {
 if (this.visibleIcon.icon == Icons.search) {
 this.visibleIcon = Icon(Icons.cancel);
 this.searchBar = TextField(
 textInputAction: TextInputAction.search,
 style: TextStyle(
 color: Colors.white,
 fontSize: 20.0,),
); }
 else {

Let's Go to the Movies - Getting Data from the Web Chapter 5

[181]

 setState(() {
 this.visibleIcon = Icon(Icons.search);
 this.searchBar= Text('Movies');
});}});},

A few notes about the preceding code: Icons.search and Icons.cancel are
two graphics that should help to make it clear what actions can be expected in the
app. You can find a full updated list of the available Flutter icons at https:/ / api.
flutter. dev/ flutter/ material/ Icons- class. html.

The textInputAction property of TextField allows you to specify the main
action of the soft keyboard. TextInputAction.search should show a
magnifying glass on the keyboard, but the end result always depends on the
operating system you're using.

If you try the app right now, you'll notice that the search button is visible at the
top right of the screen, and if you tap on it, input text will appear on AppBar,
allowing you to type some text.

Now, we only need to call the findMovies method from the HttpHelper class
when the user presses the search button on the keyboard.

In the _MovieListState class, let's write a method to do that: we can call it9.
search. It will be asynchronous, as it will be calling an async function, and it
takes the text that's been typed by the user:

Future search(text) async {
 movies = await helper.findMovies(text);
 setState(() {
 moviesCount = movies.length;
 movies = movies;
 });
 }

The purpose of the search method is to call the HttpHelper findMovies
method, wait for its result, and then call the setState method to update the
moviesCount and movies properties so that the UI will show the movies that
were found.

https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html
https://api.flutter.dev/flutter/material/Icons-class.html

Let's Go to the Movies - Getting Data from the Web Chapter 5

[182]

Finally, in the TextField in the AppBar, let's call the search() method when10.
the user submits the query:

onSubmitted: (String text) {
 search(text);
},

And if you try the app now, you'll be able to search for any movie you want:11.

Well done, your app is now complete! And by the way, if you have a look at the titles on
the screen, you'll notice that there's a The Matrix 4 movie there: this is how I discovered
that there would be a fourth installment of that movie!

Let's Go to the Movies - Getting Data from the Web Chapter 5

[183]

Summary
With the project we've built in this chapter, you are now able to read data from an external
source in any app that you'll design. This opens up literally endless opportunities for your
creations.

In particular, we've seen how to leverage the get() method of the http library to retrieve
data from a URL. We've seen an example of JSON, used the decode method, and seen how
to deal with an http.Response object. We've checked the Response status with the
HttpStatus enumerator and parsed some JSON content using the map() method.

We've dealt with a powerful tool in Dart and Flutter, which is asynchronous programming:
using the async, await, and then keywords, together with the Future object, we've
created a set of functions and features that do not block the main execution thread of your
app. Hopefully, you now understand how to leverage multi-threading in your Flutter
apps.

We've also downloaded images from the web with Image.network() and NetworkImage.

For the UI, we've seen how to use a ListView using the builder constructor. By setting the
itemCount and itemBuilder parameters, we created a nice, scrolling list in an efficient
way. We've also added ListTile widgets, with their title, subtitle, and leading
properties.

We've seen how easy it is to pass data through screens in Flutter by leveraging the
MaterialPageRoute builder constructor and hence creating a second screen for the
details of a Movie without having to download any data.

Finally, we've added a search feature to our app. Using AppBar again, we've changed the
widgets dynamically based on the user actions and performed a search over the Movie
Database web service.

You've added a powerful tool to your Flutter toolkit: the ability to retrieve data from an
outside service.

In the next chapter, you'll see how to store data inside your device in a relational database.
Used together, these two features make most of what's needed to build a successful
business app.

Let's Go to the Movies - Getting Data from the Web Chapter 5

[184]

Questions
At the end of each project, you'll find a few questions to help you to remember and review
the contents covered in each chapter. Please try to answer the following questions, and
when in doubt, have a look at the content in this chapter: you'll find all of the answers
there!

Is this code correct?1.

String data = http.get(url);

If not, why?

What are the JSON and XML formats used for?2.
What is a thread?3.
Can you name a few common asynchronous scenarios?4.
When should you use the async/await keywords?5.
What's the difference between ListView and ListTile?6.
How can you use the map method to parse data and create a list?7.
How do you pass data from one screen to another?8.
When should you use the json.decode method over the body of a Response9.
object?
What is CircleAvatar?10.

Further reading
As retrieving data from the web is a hot topic, you'll find plenty of resources that deal with
it. A good starting point is a short article on the official website explaining the process with
a simple example. You can find it at https:/ /flutter. dev/ docs/ cookbook/ networking/
fetch-data.

Multi-threading and asynchronous programming might be confusing for many developers
when they first deal with it. There's a really useful guide at https:/ /dart. dev/ codelabs/
async-await that thoroughly explains the main concepts of how to use this pattern with
several examples and use cases.

Parsing JSON content can get complicated when data is complex. You can find a complete
guide to it at https:/ /flutter. dev/ docs/ development/ data- and- backend/ json.

https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://flutter.dev/docs/cookbook/networking/fetch-data
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json
https://flutter.dev/docs/development/data-and-backend/json

Let's Go to the Movies - Getting Data from the Web Chapter 5

[185]

For a deeper understanding of the ListView widget, a necessary step is reading the
content at https:/ /api. flutter. dev/ flutter/ widgets/ ListView- class. html.

Even if, for this project, we haven't added any testing features, when you're adding
complexity, it's always a good idea to use automated testing systems. A great place to start
is https://flutter. dev/ docs/ cookbook/ testing/ unit/ introduction.

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction
https://flutter.dev/docs/cookbook/testing/unit/introduction

6
Store That Data - Using

Sq(F)Lite To Store Data in a
Local Database

The project we'll build in this chapter will be a simple Shopping List app: if you are like
me, you might forget things now and then, and while this project will probably not solve
your memory issues, it might help you come back from the supermarket with all the
groceries you need.

In Chapter 5, Let's Go to the Movies - Getting Data from the Web, you've seen how to retrieve
data from a web service. In this chapter, you'll learn how to store data in the device itself.
Together, HTTP methods and storing data cover the core functionalities of most business
apps: think of an app that keeps an inventory of a store, or an app to keep track of your
personal expenses, or a fitness app that measures your exercise time. All these apps have
something in common: they store data.

By the end of this chapter, you'll build a fully functional database app, and you'll learn how
to do the following:

Use SQLite in Flutter.
Create model classes.
Show data to users of the app.
Use singletons, and perform Create, Read, Update and Delete (CRUD) actions
on a local database.

Following the project described in the next few pages, you'll be able to create an app with
Flutter that stores data in a local relational database.

The time required to build the project described here is approximately 3 hours.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[187]

Technical requirements
You'll find the completed app code on the book's GitHub repository
at https://github.com/PacktPublishing/Flutter-Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter software development kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code, Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.
For this chapter, some knowledge of relational databases will be helpful, even if
not strictly required.

Essential theory and context
According to the official site (SQLite.org), SQLite is a "small, fast, self-contained, high-
reliability, full-featured, SQL database engine".

Let's see what that means to us, as Flutter mobile developers: first of all, SQLite is an SQL
database engine. That means that you can use the SQL language to build queries, so if you
are already familiar with SQL, you can leverage your knowledge. If you are totally new to
databases, I suggest you have a look at the excellent W3Schools SQL tutorial at https:/ /
www.w3schools.com/ sql/ default. asp: you'll find it much easier to follow along with the
project in this chapter.

The main features of SQLite are as follows:

Small and fast: Developers have extensively tested SQLite speed and file size,
and it outperformed several other technologies, both as space on disk and for its
speed of retrieval of data. More information is available at: https:/ /sqlite. org/
fasterthanfs. html and https:/ /sqlite. org/footprint. html.

http://sqlite.org
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/fasterthanfs.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html
https://sqlite.org/footprint.html

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[188]

Self-contained means that SQLite requires very few external libraries, making it
the perfect choice for any lightweight, platform-independent app. SQLite reads
and writes directly from the database files on disk, so you don't have to set up
any client-server connection in order to use it.
High reliability: SQLite has been used without problems in several billions of
mobile, Internet of Things (IoT), and desktop devices for over a decade, proving
itself extremely reliable.
Full-featured: SQLite has a full-featured SQL implementation, including tables,
views, indexes, triggers, foreign key constraints, and several standard SQL
functions.

SQLite is a very good choice for persisting data in Android and iOS because it's easy to
implement, and is secure, in the public domain, cross-platform, and compact.

There are two schools of thought about how to pronounce SQLite: "Ess-Cue-El-
Ight" or "See-Quel-Light". The creator of SQLite, Richard Hipp, generally uses
the first one, but he also says that you can pronounce it however you want, and
adds that there's no "official" pronunciation.

In order to add the SQLite features in Flutter, we will use the sqflite plugin, which is the
SQLite plugin for Flutter that currently supports both iOS and Android, and contains
asynchronous helper methods for SELECT, INSERT, UPDATE, AND DELETE queries.
We'll see the steps required to use the sqflite plugin library throughout this chapter.

The database that we will create has two tables: lists and items. This can be seen in the
following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[189]

The lists table has three fields: id (integer), name (text), and priority (integer).

The items table has an id (integer), a name (text), a quantity (text), a note (text), and an
idList (integer) that will be a foreign key constraint that points to the id of the list. As you
can see, the schema is very simple, but it will allow us to experiment with many of the
features that are needed in order to build a database app.

Project overview
The Shopping List app we'll build in this chapter is made of two screens. The first screen,
which the user will see when they open the app, shows a shopping list, as illustrated in the
following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[190]

Each item on the list has a priority, which is the number you see on the left of the preceding
screenshot, a name (Bakery, Fruit, and so on), and an edit button on the right. When you
swipe on any of the items in the list, the item will be deleted, and when you tap on the edit
button, the app will show an edit dialog screen, allowing you to edit the Shopping List
name and priority, as illustrated in the following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[191]

When you tap on one of the shopping lists, you'll get to the second screen of the app, which
shows another list: the items contained in the shopping list you selected. For example, if
you tap on the Fruit shopping list, you'll see the items: Oranges and Apples, as shown in
the following screenshot:

Each item on the list will have a name, a quantity, and a note. The functionality of the
screen will be similar to the first screen: you'll be able to add new items by tapping on the
Floating Action Button (FAB), edit items by tapping on the edit button, and delete items
from the list by swiping any element of the list.

As usual, we'll create a new project from scratch, and in the next section, you'll see how to
add a SQLite database to your Flutter app.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[192]

Using sqflite databases
In this section, we'll create a new project, add the sqflite dependencies, and create our
database through a SQL raw query. Then, we will test the database we've created by
adding some mock data and printing it in the debug console. This will require a few
methods to insert and retrieve data from the database.

Creating an sqflite database
Let's create a new Flutter project from your editor. We can call it shopping. Follow the
steps given here:

As sqflite is a package, the first step to perform in order to be able to use it in1.
our project is adding the dependency in the pubspec.yaml file.

In order to find the latest version of the dependency, please visit https:/ /pub.
dev/packages/ sqflite. The dependencies that we are going to use in this project
are shown in the following code block:

dependencies:
 flutter:
 sdk: flutter
 sqflite: ^1.2.0
 path: ^1.6.4

In the lib folder, create a subfolder called util. Here, we'll create a new file:2.
dbhelper.dart. This file will contain the methods to create the database, and to
retrieve and write data.
At the top of the file, we'll import sqflite.dart and path.dart. path.dart is3.
a library that allows you to manipulate file paths. This is useful here, as each
platform (iOS or Android) saves the file in different paths. By using the
path.dart library, we don't need to know how files are saved in the current
operating system, and we can still access the database using the same code.
Import the path and sqflite libraries at the top of the dbhelper.dart file, as
follows:

import 'package:path/path.dart';
import 'package:sqflite/sqflite.dart';

https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[193]

Create a class that can be called from other parts of our code: quite predictably,4.
we can call it DbHelper, as shown in the following snippet:

class DbHelper {}

Inside the class, create two variables: an integer called version and a database5.
called db. version contains a number that represents the version of the
database, which at the beginning is 1. This will make it easier to update the
database when you need to change something in its structure. db will contain the
SQLite database itself. Place the two declarations at the top of the DbHelper
class, like this:

final int version = 1;
Database db;

Create a method that will open the database if it exists, or create it if it doesn't;6.
we can call it openDb.
As database operations may take some time to execute, especially when they7.
involve dealing with a large quantity of data, they are asynchronous. Therefore,
the openDb function will be asynchronous and return a Future of type
Database. Let's place the following code at the end of the DbHelper class:

Future<Database> openDb() async {}

Inside the function, first, we need to check whether the db object is null. This is8.
because we want to avoid opening a new instance of the database unnecessarily.
In the openDb() method, let's add the following code:

if (db == null) {}

If db is null, we need to open the database. The sqflite library has an9.
openDatabase method. We'll set three parameters in our call: the path of the
database to be opened, the version of the database, and the onCreate parameter.
The onCreate parameter will only be called if the database at the path specified
is not found, or the version is different. The code for this is shown in the
following block:

if (db == null) {
 db = await openDatabase(join(await getDatabasesPath(),
 'shopping.db'),
 onCreate: (database, version) {
 database.execute(
 'CREATE TABLE lists(id INTEGER PRIMARY KEY, name TEXT,
 priority

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[194]

 INTEGER)');
 database.execute(
 'CREATE TABLE items(id INTEGER PRIMARY KEY,
 idList INTEGER, name TEXT, quantity TEXT,
 note TEXT, ' + 'FOREIGN KEY(idList)
 REFERENCES lists(id))');
 }, version: version);
 }

The function inside the onCreate parameter takes two values: a database and
a version. In the function, we call the execute() method, which performs raw
SQL queries in a database. Here, we are calling it twice: the first time to create the
lists table, and the second time for the items table.

You may notice that we are using only two data types: INTEGER and TEXT.

In SQLite, there are only five data types: NULL, INTEGER, REAL, TEXT, and
BLOB. Note that there are no Boolean or Date data types.

The quantity field of the items table is a TEXT and not a number because we want
to allow the user to insert the measure as well, such as "5 lbs" or "2 kg".

When an integer field is called id and is a primary key, when you provide
NULL while inserting a new record, the database will automatically assign
a new value, with an auto-increment logic. So, if the greatest ID is 10, the
next record will automatically take 11.

Finally, let's return the database at the end of the openDb() method, like this:10.

return db;

To sum up, what happens here is that if a database named shopping.db exists and has a
version number of 1, the database gets opened. Otherwise, it gets created.

Let's check if everything works as expected, next.

Testing the database
At this time, even if we called the openDb() method, we would have no way of knowing
whether the database has been correctly created or not.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[195]

In order to test the database, we'll create a method in the DbHelper class that will insert
one record in the lists table, one record in the items table, and then will retrieve both and
print them in the debug console. Finally, we'll refactor the main method so that it calls the
testing method. This way, we'll be sure that the database has been created correctly and we
can read and write data to it. Follow these steps:

Create a new method in the DbHelper class, called testDb(), that will insert1.
some mock data into our database, and then retrieve the data and print it into the
debug console. All database methods are asynchronous, so testDb() returns a
Future, and is marked async, as follows:

Future testDb() async { }

For a refresher on Future, async and await, see Chapter 5, Let's Go to
the Movies - Getting Data from the Web.

Insert a record inside this method in the lists table, as shown in the following2.
code block:

Future testDb() async {
 db = await openDb();
 await db.execute('INSERT INTO lists VALUES (0, "Fruit", 2)');
 await db.execute('INSERT INTO items VALUES (0, 0, "Apples",
 "2 Kg",
 "Better if they are green")');
 List lists = await db.rawQuery('select * from lists');
 List items = await db.rawQuery('select * from items');
 print(lists[0].toString());
 print(items[0].toString());
 }

Let's see what's happening in the preceding code:

First, we await the openDb() method, which returns the database: db
= await openDb();. The first time you call this method, the database
is created.
Then, we call the execute method twice: await db.execute. We call
this the first time to insert a record into the lists table, and the second
time, we call it to insert a record into the items table. In both cases, we
are using the SQL language, with an insert query.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[196]

Next, we read from the tables in the database using the rawQuery
method and passing a select query.
Select * takes all the values from the specified table. We return the
retrieved values into a List.
Finally, we print into the debug console the first element of the two lists
we have populated with the rawQuery method: lists and items.

Now, we need to call the testDb() method from the main method of our app.3.
Go to the main.dart file and remove the default code created by the framework,
leaving only the basic code, as shown in the following block:

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Shoppping List',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: Container()
);
 }
}

At the top of the file, import dbhelper.dart, as follows:4.

import './util/dbhelper.dart';

At the beginning of the build() method of the MyApp class, create an instance of5.
the DbHelper class, called helper, and then call its testDb() method, like this:

DbHelper helper = DbHelper();
helper.testDb();

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[197]

We are now ready to try the app: if you run it and have a look at the debug console, you
should see the result of the SELECT query that we performed over the database. In the
following code snippet, you can see an example of the debug console content:

I/flutter (4766): {id: 0, name: Fruit, priority: 2}
I/flutter (4766): {id: 0, idList: 0, name: Apples, quantity: 2 Kg, note:
Better if they are green}

This means that we successfully inserted and retrieved data from the two tables—lists and
items—in our database. That's a good starting point, but right now, our app is just showing
a white screen. In the next sections of the chapter, we'll have to make the app more
interactive, allowing our users to view and edit data from the app itself.

Please note that if you run the app more than once, you will get an SQL
exception due to a constraint failure, as you'll insert records with the same
unique row key into the tables. Just change the ID value in the insert
statement to add more data.

In the next section, we'll begin the process by creating the model classes that we'll use in
our code to interact more efficiently with the database.

Creating the model classes
A common approach when dealing with a database from an Object-Oriented
Programming language (or OOP for short) is to deal with objects that mirror the structure
of the tables in a database: this makes the code more reliable, easier to read, and helps
prevent data inconsistencies.

Our shopping.db structure is extremely simple, so we'll just have to create two model
classes, containing the same fields that are now in the tables, and a map method to simplify
the process of inserting and editing data into the database. Follow these next steps to create
a model class:

We'll begin with the lists: create a new folder, called models.1.
Inside the models folder, create a new file called shopping_list.dart.2.
Inside the file, create a class called ShoppingList that will contain three3.
properties: the id integer, the name String, and the priority integer, as
shown in the following code snippet:

class ShoppingList {
 int id;
 String name;

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[198]

 int priority;
}

Next, create a constructor that will set the three properties, as follows:4.

ShoppingList(this.id, this.name, this.priority);

Finally, we'll create a toMap() method that will return a Map of type String,5.
dynamic. A map is a collection of key/value pairs: the first type we specify is for
the key, which in this case will always be a string. The second type is for the
value: as we have different types in the table, this will be dynamic. In a Map, you
can retrieve a value using its key. Add the code below to create the method:

Map<String, dynamic> toMap() {
 return {
 'id': (id==0)?null:id,
 'name': name,
 'priority': priority,
 };
 }

In an SQLite database, when you provide a null value when you insert a new record, the
database will automatically assign a new value, with an auto-increment logic. That's why
for the id, we are using a ternary operator: when the id is equal to 0, we change it to null,
so that SQLite will be able to set the id for us.

For the other two fields, the Map will take the values of the class.

Now, we can repeat the same steps for the Items model class. Follow these next steps:

Create a new file called list_items.dart in the models folder.1.
Inside the file, create a class called ListItem that will contain five properties: an2.
id (an integer), the ID of the List (again, an integer), the name (a String),
quantity (an integer), and note (a String), as follows:

class ListItem {
 int id;
 int idList;
 String name;
 String quantity;
 String note;
}

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[199]

Then, we'll create a constructor that will set all the properties, like this:3.

ListItem(this.id, this.idList, this.name, this.quantity,
this.note);

Create a toMap() method that will return a Map of type String, dynamic,4.
using the same ternary operator to make the ID null when its value is 0, as
follows:

Map<String, dynamic> toMap() {
 return {
 'id': (id==0)?null:id,
 'idList': idList,
 'name': name,
 'quantity': quantity,
 'note': note
 };
 }

Now, in the DbHelper class, we need to create two methods that will make use of
the model classes to insert data into the shopping.db database.

Import the two model classes into the DbHelper class in the dbhelper.dart5.
file, like this:

import '../models/list_items.dart';
import '../models/shopping_list.dart';

We'll begin with the insertList() method, which will insert a new record into6.
the lists table. As with every database operation, this will be an asynchronous
function, and it will return a Future of type int, as the insert method will
return the ID of the record that was inserted. This method will take an instance of
the ShoppingList model class as a parameter, called list, as shown in the
following code snippet:

Future<int> insertList(ShoppingList list) async {}

Inside the insertList() method, we will call the insert() method of the7.
database object: this is a specific helper method exposed by the sqflite library
that takes three arguments, as shown in the following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[200]

The insert() method allows you to specify the following parameters:

The name of the table where we want to insert data—lists, in this
case.
A Map of the data that we want to insert: in order to get that, we'll call
our toMap() function of the list parameter.
Optionally, the conflictAlgorithm specifies the behavior that should
be followed when you try to insert a record with the same ID twice. In
this case, if the same list is inserted multiple times, it will replace the
previous data with the new list that was passed to the function.

So, in our app, let's write the following code in the insertList() method:8.

int id = await this.db.insert(
 'lists',
 list.toMap(),
 conflictAlgorithm: ConflictAlgorithm.replace,
);

insert() is an asynchronous method, so we'll call it with the await command;
the id will contain the ID of the new record that was inserted.

Finally, let's return the id by using the following code statement:9.

return id;

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[201]

Still in the DbHelper class, create a second method, called insertItem, with10.
exactly the same behavior as the insertList() method, which will insert a
ListItem into the items table, as shown in the following code snippet:

Future<int> insertItem(ListItem item) async {
 int id = await db.insert(
 'items',
 item.toMap(),
 conflictAlgorithm: ConflictAlgorithm.replace,
);
 return id;
 }

We are now ready to test those two methods: we'll call them from the main.dart11.
file. At the top of the file, let's import our two model classes, as follows:

import './models/list_items.dart';
import './models/shopping_list.dart';

We'll need to do some refactoring here, because the content of the main screen
will change during the lifetime of the app, and therefore we'll need a stateful
widget to redraw the content of the screen. So, it's probably worth doing it now
when we only have little code here.

At the bottom of the main.dart file, after the MyApp class, let's create a new12.
stateful widget, using the stful shortcut. We'll call this ShList, as shown in the
following code snippet:

class ShList extends StatefulWidget {
 @override
 _ShListState createState() => _ShListState();
}
class _ShListState extends State<ShList> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

At the top of the _ShListState class, create an instance of the DbHelper class13.
by adding the following code:

DbHelper helper = DbHelper();

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[202]

Remove the following code from the build() method of the MyApp class: we14.
don't need it here anymore:

DbHelper helper = DbHelper();
helper.testDb();

Inside the _ShListState class, add an async method called showData(). Later15.
on, this method will actually show the data on the screen, but for now, we'll just
use it to test our new insertList and insertItem methods. The following
code snippet shows this:

Future showData () async {}

Inside the showData() function, we'll call the openDb method over the helper16.
object. Using the await command makes sure the database has been opened
before we try to insert data into it. This is illustrated in the following code
snippet:

await helper.openDb();

Create a ShoppingList instance, and call the insertList() method on the17.
helper object. We'll put the value returned by insertList into a listId
integer, as follows:

ShoppingList list = ShoppingList(0, 'Bakery', 2);
int listId = await helper.insertList(list);

Let's repeat the same for a ListItem: here, the list ID will be taken from the18.
listId variable, as follows:

 ListItem item = ListItem(0, listId, 'Bread', 'note', '1 kg');
 int itemId = await helper.insertItem(item);

Finally, let's print into the debug console the values that were retrieved, to make19.
sure everything is working as expected, as follows:

 print('List Id: ' + listId.toString());
 print('Item Id: '+ itemId.toString());

The last step for this section is to call the showData() method. In the build()20.
method of the _ShListState class, let's call the showData() method, like this:

showData();

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[203]

In the home property of the MaterialApp, in the build() method of the MyApp21.
class, let's create a Scaffold whose body calls the ShList class, as follows:

home: Scaffold(
 appBar: AppBar(title: Text('Shopping List'),),
 body: ShList()
));

We are now ready to run the app.

If everything worked as expected, you should now see the IDs of the records that we've
inserted in the database (the numbers you see may vary based on the number of records in
your database), as follows:

I/flutter (4589): List Id: 2
I/flutter (4589): Item Id: 3

Well done! We've created the model classes that will make it easier to deal with the
database and used the insert helper method to insert data into our tables. It's now time to
show that data to our user, which we'll do next!

Showing database data to the user
Now that we have added some data into our shopping.db database, it's time to show that
data to the user. We'll begin by showing the available shopping lists on the first screen, in a
ListView. After the user taps on any item of the list, they'll get to the second screen of the
app, which will show all the items in the shopping list.

First, we'll create a function that retrieves the content of the lists table in our database, using
a sqflite helper method, as follows:

In the DbHelper class, add a new method called getLists() that will return a1.
Future of a List, containing a ShoppingList. As usual, this will be
asynchronous. The following code snippet illustrates this:

Future<List<ShoppingList>> getLists() async {}

Inside the function, call the query helper method on the database. As this will2.
retrieve all the data in the lists table, the only required parameter here is the
name of the table, as shown in the following code snippet:

final List<Map<String, dynamic>> maps = await db.query('lists');

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[204]

Note that the query() helper method returns a List of Map items. In order to use
them easily, we need to convert the List<Map<String, dynamic> into a
List<ShoppingList>. We can do that by calling the List.generate()
method, which you can use to generate a list of values. The first parameter
specifies the size of the list, and the second is a function that generates the values
of the list.

Add the following code given in the getLists() function:3.

return List.generate(maps.length, (i) {
 return ShoppingList(
 maps[i]['id'],
 maps[i]['name'],
 maps[i]['priority'],
);
});

The return value here is a List of ShoppingList objects, which is what we
wanted to obtain. Once we've got the List of ShoppingList objects, we need to
show those on the first screen of our app.

In the main.dart file, at the top of the _ShListState class, create a4.
shoppingList property that will be a List of ShoppingList items, as follows:

List<ShoppingList> shoppingList;

In the showData() method, delete all the test code except the await5.
helper.openDb(); line. Under that, we'll call the getLists() function of our
helper object, as follows:

shoppingList = await helper.getLists();

Call the setState() method to tell our app that the ShoppingList has6.
changed, like this:

setState(() {
 shoppingList = shoppingList;
});

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[205]

Now that we have retrieved all the needed data, we need to show it on the7.
screen. In the build() method of the _ShListState class, return a
ListView.builder, which will contain the number of items available in the
shoppingList property. If shoppingList is null, then the itemCount of the
ListView will be 0. In order to achieve this, as usual, we'll use the ternary
operator syntax, which is shown in the following code snippet:

return ListView.builder(
 itemCount: (shoppingList != null)? shoppingList.length : 0,
);

In the itemBuilder, return a ListTile whose title will be the name property of8.
the shoppingList list, at position index, like this:

itemBuilder:(BuildContext context, int index) {
 return ListTile(
 title: Text(shoppingList[index].name));
});

If everything worked as expected, if you try the app right now, you should see a9.
list of the names of the shopping lists that we've inserted up to this point. This
can be seen in the following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[206]

In order to complete this screen, we'll add a few more data for our items, as follows:

First, to make the user interface (UI) a bit more appealing, add a1.
CircleAvatar to the leading property the ListTile, containing the priority,
as follows:

return ListTile(
 title: Text(shoppingList[index].name),
 leading: CircleAvatar(child:
Text(shoppingList[index].priority.toString()),),
);

Then, still in the ListTile, add a trailing icon that we'll use later on to edit2.
the shoppingList, like this:

trailing: IconButton(
 icon: Icon(Icons.edit),
 onPressed: (){},
)

Now that we can see the Shopping List, let's also show the items on each list. For this, we'll
need a new file, as follows:

In order to organize better our code, create a new folder called ui that will1.
contain the UI files of our projects, except main.dart, which will remain in the
lib folder.
In the ui folder, create a new file called items_screen.dart. Inside the new2.
file, first, import the files that we'll need in order to show the items, as follows:

import 'package:flutter/material.dart';
import '../models/list_items.dart';
import '../models/shopping_list.dart';
import '../util/dbhelper.dart';

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[207]

Create a stateful widget, called ItemsScreen, like this:3.

class ItemsScreen extends StatefulWidget {
 @override
 _ItemsScreenState createState() => _ItemsScreenState();
}
class _ItemsScreenState extends State<ItemsScreen> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

Each time we'll get to this screen, it will be because we have selected a
ShoppingList object. We will never need to call this screen independently. So, it
makes sense that when we create the ItemsScreen widget, we expect a
ShoppingList to be passed.

At the top of the ItemsScreen class, create a final ShoppingList called4.
shoppingList, and let's also create a constructor that will set the
shoppingList property, as follows:

 final ShoppingList shoppingList;
 ItemsScreen(this.shoppingList);

We'll do the same for the State: at the top of the _ItemsScreenState class,5.
declare a ShoppingList, and create the constructor that sets it, as follows:

final ShoppingList shoppingList;
_ItemsScreenState(this.shoppingList);

Now, when calling the createState() method, add the shoppingList6.
argument, like this:

 @override
 _ItemsScreenState createState() =>
_ItemsScreenState(this.shoppingList);

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[208]

Now that we have set the shoppingList, in the build() method of the7.
_ItemsScreenState class, return a Scaffold that, in the AppBar title, shows
the name of the shoppingList, as follows:

@override
Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(shoppingList.name),
),
 body:Container()
);
}

In order to test the app, call ItemsScreen when the user taps on one of the items8.
in the ListView of the main screen. So, back to the main.dart file, first, we'll
import the items_screen.dart file, like this:

import './ui/items_screen.dart';

Then, in the build() method of the _ShLstState class, inside the ListTile of9.
the ListView, add an onTap parameter. Inside it, call the Navigator.push()
method to call the ItemsScreen, passing the object in the shoppingList at
position index, as follows:

onTap: (){
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) =>
ItemsScreen(shoppingList[index])),
);},

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[209]

If you try this out, when you tap on one of the items in the ListView, you'll get10.
to the second screen, which right now only shows the title of the shoppingList,
as shown in the following screenshot:

The next step we need to perform is showing the list into the second screen, which will
contain the items in the shopping list that were selected from the first screen. Therefore, we
need to create a method that queries the database in the items table, passing the ID of the
ShoppingList that was selected, and returns all the retrieved elements. We'll add this
method in the DbHelper class, together with all the other methods that deal with the
database. Let's look at the steps to achieve that, as follows:

As usual, this will be an asynchronous method that will return a Future of type1.
List<ListItem>, as shown in the following code snippet:

Future<List<ListItem>> getItems(int idList) async { }

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[210]

Then, as we did for the getLists() method, we'll call the query method over2.
the database, passing the name of the table, Items, as the first argument. But
we'll also set a second argument, named where, that will filter the results based
on a specific field—in this case, idList. The idList variable will be equal to the
value that we'll set into the whereArgs named parameter. In this case, the
idList will have to be equal to the value that was passed to the getItems()
function. As you may recall, this will return a List<Map<String, dynamic>>.
We'll place the result of the query on a variable called maps, as shown in the
following code snippet:

final List<Map<String, dynamic>> maps =
 await db.query('items',
 where: 'idList = ?',
 whereArgs: [idList]);

Convert the List<Map<String, dynamic>> into a List<ListItem>, and3.
return it to the caller, like this:

return List.generate(maps.length, (i) {
 return ListItem(
 maps[i]['id'],
 maps[i]['idList'],
 maps[i]['name'],
 maps[i]['quantity'],
 maps[i]['note'],
);
});

It's now time to show the items to the user: back in the items_screen.dart file,4.
at the top of the _ItemsScreenState class, we'll create two properties: one will
be the DbHelper, and another one will contain all the ListItems that will be
shown, as follows:

DbHelper helper;
List<ListItem> items;

Now, if you think about it, we don't need to have multiple instances of the
DbHelper class throughout the app. Having a single connection to the database is
what we actually need.

In Dart and Flutter, there is a feature called "factory constructors" that overrides
the default behavior when you call the constructor of a class: instead of creating a
new instance, the factory constructor only returns an instance of the class.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[211]

In our case, this means that the first time the factory constructor gets called, it will
return a new instance of DbHelper. After DbHelper has already been
instantiated, the constructor will not build another instance, but just return the
existing one.

Add the following code in the DbHelper class to make the magic happen:

static final DbHelper _dbHelper = DbHelper._internal();

DbHelper._internal();

factory DbHelper() {
 return _dbHelper;
}

In detail, first, we are creating a private constructor named _internal. Then, in
the factory constructor, we just return it to the outside caller.

In Dart and Flutter, factory constructors are used for implementing the
"singleton" pattern, which restricts the instantiation of a class to one
"single" instance. This is useful whenever just one object is needed in your
app. As an example, you could use those with databases, as here, or with
connections to a web service, or in general, whenever you need to access a
resource that is shared by the entire app.

 In the items_screen.dart file in the _ItemsScreenState class, we'll create5.
an asynchronous method named showData() that will take the ID of the
ShoppingList that was passed to the class.
Inside the class, first, call the openDb() method to make sure the database is6.
available and open, then the getItems() method from the helper object passing
idList. The result of the getItems() method will be placed in the items
property.
Next, call the setState() method to update the State of the items property,7.
so that the UI will be redrawn, as shown in the following code snippet:

Future showData(int idList) async {
 await helper.openDb();
 items = await helper.getItems(idList);
 setState(() {
 items = items;
 });
}

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[212]

Still in the _ItemsScreenState class, at the top of the build() method, set8.
helper as a new instance of DbHelper(), and then call the showData()
method, passing the ID of the shoppingList, as follows:

helper = DbHelper();
showData(this.shoppingList.id);

Next, let's create the UI, using the following steps:

In the body of the Scaffold returned by the build() method of the1.
_ItemsScreenState class, we'll place a ListView, calling its builder
constructor. As we did previously for the ListView of ShoppingList, for the
itemCount parameter, we'll use a ternary operator. When the items property is
null, the itemCount will be set to 0; otherwise, it will be set to the length of the
items list. The following code snippet shows this:

ListView.builder(
 itemCount: (items != null) ? items.length : 0,
 itemBuilder: (BuildContext context, int index) {}
)

In the itemBuilder, we'll return a ListTile.2.
Here, we want to show the name, quantity, and note for each of the items on3.
the list. We'll place the name in the title of the ListTile, and the subtitle
will contain both quantity and note.
We'll also set the onTap parameter to an empty method, and we'll place a trailing4.
icon, with an edit icon. When the user clicks this, they will be able to edit the
item in the ShoppingList. For now, we'll leave it empty. The following code
block illustrates this:

itemBuilder: (BuildContext context, int index) {
 return ListTile(
 title: Text(items[index].name),
 subtitle: Text(
 'Quantity: ${items[index].quantity} - Note:
 ${items[index].note}'),
 onTap: () {},
 trailing: IconButton(
 icon: Icon(Icons.edit),
 onPressed: () {},),);
})

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[213]

If you try this out, you should be able to see each item in the shopping list, with a trailing
edit icon, as shown in the following screenshot:

Our app is now showing all the data to our user: when they first enter the app, they
immediately see the saved shopping lists; then, if they click on one of the items, they get to
the second screen, which contains the item details of the list.

Right now, though, our user cannot insert, edit, or delete any data, so this is what we will
work on next.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[214]

Inserting and editing data
We now need to allow our users to insert new data and edit or delete existing records in the
database. Both the insert and edit functions require some UI that can contain the text that
the user types, and for that, we'll use dialog boxes, which are ideal when you need some
information from the user, and then come back to the caller when they are finished.

So, we'll create two new files, one for the ShoppingList and one for the ListItems. We'll
call these shopping_list_dialog.dart and list_item_dialog.dart. We'll place both
in the ui folder of the app.

Let's begin with the shopping_list_dialog.dart file. What we want to achieve here is
showing our user a dialog window that allows them to insert or edit a ShoppingList, as
shown in the following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[215]

This dialog will always be called from the main screen. You can follow the steps given next
to accomplish this:

Import the required dependencies: the inevitable material.dart, our1.
dbHelper, and the listItems.dart file, as follows:

import 'package:flutter/material.dart';
import '../util/dbhelper.dart';
import '../models/shopping_list.dart';

Create the class that will contain the UI for the dialog. We'll call2.
it ShoppingListDialog, as follows:

class ShoppingListDialog {}

For this class, we want to show the user two textboxes, one for the title of the3.
ShoppingList and one for the priority that the user will choose. So, at the top of
the ShoppingListDialog class, create two TextController widgets that will
contain the name and priority of the ShoppingList. Quite predictably, we can
call them txtName and txtPriority, as shown in the following code snippet:

final txtName = TextEditingController();
final txtPriority = TextEditingController();

Then we'll create a method called buildDialog() that will take the current4.
BuildContext (which in Flutter is required to show a dialog window), the
ShoppingList object that we want to manipulate, and a Boolean value that will
tell whether the list is a new list or if we need to update an existing list.
The buildDialog() method will return a Widget, as follows:

Widget buildDialog(BuildContext context, ShoppingList list, bool
isNew) {}

Inside the buildDialog() method, call the DbHelper class. Here, we don't need5.
to call the openDb() method, as from this window we already know that it's
been called previously, and we are receiving an existing instance of the class. The
following code snippet illustrates this:

DbHelper helper = DbHelper();

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[216]

Next, we'll check whether the instance of ShoppingList that was passed is an6.
existing list. If it is, we'll set the text of the two TextControllers to the values
of the ShoppingList that were passed, as follows:

 if (!isNew) {
 txtName.text = list.name;
 txtPriority.text = list.priority.toString();
 }

Finally, we can return the AlertDialog that will contain the UI that our users7.
will see, as follows:

return AlertDialog();

We'll use the title to inform whether this dialog is used to insert a new list or to8.
update an existing one. For simplicity, here, we can use a ternary operator. Add
the following code in the AlertDialog():

return AlertDialog(
 title: Text((isNew)?'New shopping list':'Edit shopping list'),
);

The content will contain all the UI for this dialog window. We'll place all the9.
widgets into a SingleChildScrollView, to make scrolling available in case the
widgets do not fit into the screen. Add the following code in the
AlertDialog():

content: SingleChildScrollView()

Inside the SingleChildScrollView, we'll place a Column, as we want the10.
widget in this dialog to be placed vertically, as follows:

child: Column(children: <Widget>[]),

The first elements inside the Column will be two TextField widgets, one for the11.
name and one for the priority. After setting the relevant controller for both the
TextFields, we'll set the hintText of an InputDecoration object to guide the
user in using the UI. Add the widgets into the Column, as shown in the following
code block:

TextField(
 controller: txtName,
 decoration: InputDecoration(
 hintText: 'Shopping List Name'
)

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[217]

),
TextField(
 controller: txtPriority,
 keyboardType: TextInputType.number,
 decoration: InputDecoration(
 hintText: 'Shopping List Priority (1-3)'
),
),

Next, place a RaisedButton that will save the changes. The child of the button12.
will be a Text with 'Save Shopping List'. In the onPressed method, first,
we will update the list object with the new data coming from the two
TextFields, and then, we'll call the insertList() method of our helper
object, passing the list. Add the following code into the Column, under the two
TextField widgets:

RaisedButton(
 child: Text('Save Shopping List'),
 onPressed: (){
 list.name = txtName.text;
 list.priority = int.parse(txtPriority.text);
 helper.insertList(list);
 Navigator.pop(context);
},),

We'll also change the shape of the Dialog to a RoundedRectangleBorder,13.
rounding its corners with a borderRadius of 30.0. Add the shape property to
the AlertDialog, as follows:

shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(30.0)
)

Before we try this out, we need to call the alertDialog from the main screen, using the
following steps:

At the top of the main.dart file, we'll import the1.
shopping_list_dialog.dart file, like this:

import './ui/shopping_list_dialog.dart';

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[218]

In the _ShListState class, let's first declare a ShoppingListDialog, called2.
dialog, then override the initState() method to create an instance of the
class, as follows:

ShoppingListDialog dialog;
@override
void initState() {
 dialog = ShoppingListDialog();
 super.initState();
}

For the edit functionality, in the onPressed parameter of the edit button in the3.
ListTile, call the showDialog method. In its builder, let's call the
buildDialog() method that we've created, passing the context, the current
ShoppingList, and false, as this is an edit and not an insert, as follows:

onPressed: (){
 showDialog(
 context: context,
 builder: (BuildContext context) =>
 dialog.buildDialog(context, shoppingList[index], false)
);
},

We can already try this out. Just press any edit button in the List, and you should be able
to edit the name and priority of the ShoppingList.

Now, we only need to add the UI necessary to insert a new ShoppingList. We could
consider this the primary action on the first screen of our app.

According to the Material Design guidelines, a FAB represents the main
action of a screen.

As this is such an important action for our screen, we'll use a FAB to insert a new
ShoppingList.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[219]

This will require a small refactoring of the main.dart file, necessary to pass the correct
context to the dialog screen. We just need to move the Scaffold that is now in the MyApp
stateless widget to the ShList stateful widget, as follows:

In the home parameter of the MaterialApp, just call the SHList widget, like this:1.

 home: ShList()

In the build() method of the _ShListState widget, instead of returning a2.
ListView.builder, we'll return a Scaffold, whose body contains the
ListView.builder, as follows:

Widget build(BuildContext context) {
 ShoppingListDialog dialog = ShoppingListDialog();
 showData();
 return Scaffold(
 appBar: AppBar(
 title: Text("Shopping List"),
),
 body: ListView.builder(
[…]

Now, under the body of the Scaffold, add a FloatingActionButton.3.
For the function in the onPressed parameter, we'll call the showDialog()
method, passing the current context. In its builder, we'll call the
dialog.buildDialog() method, again passing the context, a new
ShoppingList, whose id will be 0, an empty name and a priority of 0, and
true, to tell the function that this is a new ShoppingList, as illustrated in the
following code block:

floatingActionButton: FloatingActionButton(
 onPressed: () {
 showDialog(
 context: context,
 builder: (BuildContext context) =>
 dialog.buildDialog(context, ShoppingList(0, '',
 0), true),
); },
 child: Icon(Icons.add),
 backgroundColor: Colors.pink,
),

If you try this out and press the FAB, you'll be able to insert new shopping lists to the
database, as shown in the following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[220]

CRUD: Create, Read, Update, and Delete are the four basic functions for
storing data.

Each letter in the acronym can map to a SQL statement (INSERT, SELECT,
UPDATE, and DELETE) or HTTP method (POST, GET, PUT, and
DELETE).

We can now create, read, and update ShoppingLists. The last verb of the CRUD acronym
is Delete. Let's have a look at it next.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[221]

Deleting elements
One of the touch gestures that has won a wide adoption over time in mobile apps is the
"swipe-to-delete" gesture, in which you simply drag a finger across an item, and swipe it
left—or in some cases, also right.

This was introduced by Apple in the Mail app, and today it's widely spread in both iOS
and Android systems.

What we want to achieve here is to delete an item in the ListView by swiping left or right.
The first step is creating a method in our DbHelper class that will actually delete a record
from the database, as follows:

We'll call this method deleteList(). As usual, it will be asynchronous and will1.
return a Future of type int, and take the ShoppingList object that needs to be
deleted.
Inside the method, we need to perform two actions: first, we will delete all the2.
items that belong to the ShopppingList, and then, we'll delete the
ShoppingList itself.
So, inside the function, we'll call the delete method of the database object,3.
passing the name of the table (items), and a where named parameter: this will
take the name of the field we want to use as a filter. In this case, we want to
delete all the items that have an idList that equals the id of the ShoppingList
that was passed, so we'll specify idList = ?, where the question mark will be
set by the whereArgs named parameter.
whereArgs will take an array with a single element, which is the id of the list.4.
The delete() method returns the id of the deleted record, and that's what we'll5.
return, as shown in the following code snippet:

Future<int> deleteList(ShoppingList list) async {
 int result = await db.delete("items", where: "idList = ?",
 whereArgs: [list.id]);
 result = await db.delete("lists", where: "id = ?", whereArgs:
 [list.id]);
 return result;
 }

Now that the deleteList() method is complete, we can call it when the user swipes an
item on the main screen.

There's a very useful widget in Flutter that's perfect when you want to use this pattern to
delete an item: it's called Dismissible.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[222]

You could also use the swipe action to bring out a contextual menu: this
can help you avoid cluttering your UI with elements that are not always
needed. This equates to bringing out a contextual menu with the mouse
right-click on a classic PC.

By providing the Dismissible widget, Flutter makes the task of deleting an item by
swiping very easy. Dragging a Dismissible widget in the implemented
DismissDirection makes an item slide out of view, with a nice animation.

Let's see how to use a Dismissible widget in our code to delete a ShoppingList from the
main screen, as follows:

 In the itemBuilder parameter of the ListView.builder in the body of the1.
Scaffold, let's return a Dismissable widget.
The Dismissible widget takes a key. This allows Flutter to uniquely identify2.
widgets, and it's a required parameter.
Then, set the onDismissed parameter. This gets called when you swipe in the3.
specified direction. In this case, we don't care about the direction: we'll delete the
item for both left and right swipes.
Inside the function, in the onDismissed parameter, we can get the name of the4.
current item, which we'll use to give some feedback to the user.
Then, we'll call the helper.deleteList method, passing the current item in the5.
ListView.
 Next, we'll call the setState method, removing the current item from the list.6.
 Finally, we'll call the showSnackBar method of the current Scaffold, telling7.
the user that the ShoppingList was removed.

A SnackBar is a widget that shows messages at the bottom of your app.
Generally, you use a SnackBar to inform your users that an action has
been performed. It's particularly useful when you want to give some
visible feedback for a successful task. In a real-world app, you should also
give your users the option to undo the action.

The code for the Dismissible widget is shown in the following code block. Add it to the
itemBuilder in the ListView:

itemBuilder:(BuildContext context, int index) {
 return Dismissible(
 key: Key(shoppingList[index].name),
 onDismissed: (direction) {
 String strName = shoppingList[index].name;
 helper.deleteList(shoppingList[index]);

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[223]

 setState(() {
 shoppingList.removeAt(index);
 });
 Scaffold
 .of(context)
 .showSnackBar(SnackBar(content: Text("$strName deleted")));
 },
 child:ListTile(
[...]

The delete function is now complete. If you try the app and swipe left or right any item on
the main screen, you should see the element of the list disappearing and the SnackBar at
the bottom of the screen, as shown in the following screenshot:

There's only one last step in order to complete the app: completing the CRUD functionality
for the items as well, and for this, it's time for a challenge.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[224]

Challenge – completing the Items Screen
functionality
At this time, the second screen in our app lists the items that are available in the items table
in the database, but we have no way to insert, delete, or update items in the table. Basically,
the steps required to complete the implementation are the same as those you already
performed for the ShoppingList, with a few tweaks. As a challenge and a useful exercise,
I recommend you try to implement those features yourself.

The steps required to complete this challenge are as follows:

Create the UI that will allow the user to insert and update items, as shown in the1.
following screenshot:

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[225]

Add a trailing edit IconButton to the ListTile, to allow the user to edit an2.
existing item.
Add a FAB to the items screen, to allow the user to insert a new item.3.
Create a function in the DBHelper class, called deleteItem(), that deletes the4.
ListItem that's passed as an argument.
Add a Dismissable widget that allows the user to delete an existing item.5.
Test the functionalities you've just added to make sure they work correctly.6.

In the next section, you'll find the completed solution in case you want to have a look at the
final implementation of the app to check your code or for a little help during the exercise.

Challenge solution – completing the Items Screen
functionality
Each step of the challenge is explained here. For each task, the key points will be
highlighted at the beginning of the step, then the complete code will be shown.

Step 1
Key points:

Create a TextEditingController widget for each TextField that the user
will see.
Use the same UI both for insert and update. The isnew Boolean value will help
decide which task to perform.
It's always a good idea to place widgets in scrolling widgets. Here, we use the
SingleChildScrollView widget.

Solution:

Create the ListItemDialog class in the list_item_dialog.dart file, as follows:

import 'package:flutter/material.dart';
import '../models/list_items.dart';
import '../util/dbhelper.dart';

class ListItemDialog {
 final txtName = TextEditingController();
 final txtQuantity = TextEditingController();
 final txtNote = TextEditingController();

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[226]

 Widget buildAlert(BuildContext context, ListItem item, bool isNew) {
 DbHelper helper = DbHelper();
 helper.openDb();
 if (!isNew) {
 txtName.text = item.name;
 txtQuantity.text = item.quantity;
 txtNote.text = item.note;
 }
 return AlertDialog(
 title: Text((isNew)?'New shopping item':'Edit shopping item'),
 content: SingleChildScrollView(
 child: Column(children: <Widget>[
 TextField(
 controller: txtName,
 decoration: InputDecoration(
 hintText: 'Item Name'
)
),
 TextField(
 controller: txtQuantity,
 decoration: InputDecoration(
 hintText: 'Quantity'
) ,
),
 TextField(
 controller: txtNote,
 decoration: InputDecoration(
 hintText: 'Note'
) ,
),
 RaisedButton(
 child: Text('Save Item'),
 onPressed: (){
 item.name = txtName.text;
 item.quantity = txtQuantity.text;
 item.note = txtNote.text;
 helper.insertItem(item);
 Navigator.pop(context);
 },
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(30.0)
))],),),); }}

Now that the ListItemDialog is complete, let's add it to the ItemsScreen.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[227]

Step 2
Key points:

Use the trailing parameter or the ListTile to place the edit icon.
In the onPressed parameter of the IconButton, and in its builder parameter,
call the buildAlert method of a ListItemDialog instance.

Solution:

In the build() method in the items_screen.dart file, create an instance of the1.
ListItemDialog class called dialog, like this:

ListItemDialog dialog = new ListItemDialog();

Update the ListTile in the itemBuilder, in the ListView.builder of the2.
same method, like this:

return ListTile(
 title: Text(items[index].name),
 subtitle: Text(
 'Quantity: ${items[index].quantity} - Note:
${items[index].note}'),
 onTap: () {},
 trailing: IconButton(
 icon: Icon(Icons.edit),
 onPressed: () {
 showDialog(
 context: context,
 builder: (BuildContext context) =>
 dialog.buildAlert(context, items[index], false));
 },),)

In the next step, let's add a FAB to the screen.

Step 3
Key points:

Use the floatingActionButton parameter of a Scaffold to show a FAB to the
user.
Respond to the click of the user by creating a function in the onPressed()
parameter in the call to the FloatingActionButton constructor.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[228]

Solution:

In the Scaffold returned by the build() method of the _ItemsScreenState class, add a
FloatingActionButton, as follows:

 floatingActionButton: FloatingActionButton(
 onPressed: () {
 showDialog(
 context: context,
 builder: (BuildContext context) => dialog.buildAlert(
 context, ListItem(0, shoppingList.id, '', '', ''), true),
);
 },
 child: Icon(Icons.add),
 backgroundColor: Colors.pink,
),

Next, let's write the method to delete an item from the items table.

Step 4
Key points:

The delete helper method of a database object is asynchronous, as with every
database task.
In the delete method, use the where and whereArgs named parameters to filter
the data you want to delete.

Solution:

In the DbHelper class of the dbhelper.dart file, add a deleteItem method, as follows:

 Future<int> deleteItem(ListItem item) async {
 int result = await db.delete("items", where: "id = ?", whereArgs:
 [item.id]);
 return result;
 }

Let's add a Dismissible widget to the items screen, next.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[229]

Step 5
Key points:

Use a Dismissible widget to allow an item in a list to be deleted.
Each Dismissable must have a unique key.
You can use a SnackBar to give feedback to your users.

Solution:

In the itemBuilder of the ListView.builder, in the build() method of the
_ItemsScreenState class in the items_screen.dart file, add a Dismissible widget,
as follows:

 itemBuilder: (BuildContext context, int index) {
 return Dismissible(
 key: Key(items[index].name),
 onDismissed: (direction) {
 String strName = items[index].name;
 helper.deleteItem(items[index]);
 setState(() {
 items.removeAt(index);
 });
 Scaffold.of(context)
 .showSnackBar(SnackBar(content: Text("$strName
 deleted")));
 },
 child: ListTile(

The app is now complete. There's only one more step to perform: making sure that it works
as expected.

Step 6
Key points:

Trying out your app after adding new features might be the most rewarding part of your
development, especially when everything works perfectly the first time… which is to say:
almost never!

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[230]

Usually, you need to debug and fine-tune your code several times before it works exactly as
you want. But remember: you really learn to code by trial and error. If something's wrong,
you have several tools at your disposal, but arguably, your first stop should be a good use
of breaking points to check what's really happening with your code.

Solution:

Try adding new items in the Items screen, then edit them several times. Try adding
unexpected values and see how your app behaves.

Try also deleting items by swiping right and left.

Summary
Storing data into a device is a key skill in Flutter development. In this chapter, we have
created a data-driven app, leveraging the SQLite database.

In order to add the SQLite features in Flutter, we used the sqflite library, which contains
asynchronous helper methods for SELECT, INSERT, UPDATE, and DELETE queries.

We used the openDb method, which returns a database object. The first time we called
this method, the database was created with the specified name and version, and the
following times, it was only opened.

We called the execute method to use the SQL language to insert records, and
the rawQuery method to use a SELECT statement against the database.

We've created model classes that mirrored the structure of the tables in a database to make
the code more reliable, easier to read, and to prevent data inconsistencies.

We used the insert, update, and delete helper methods specifying the where and
whereArgs parameters, and used Map objects to deal with the data.

We've seen factory constructors, which allow you to override the default behavior
whenever you call the constructor of a class. Instead of creating a new instance, the factory
constructor only returns an instance of the class, thus implementing the "singleton" pattern,
which restricts the instantiation of a class to one "single" instance.

We've used the showDialog() method to build parts of the UI to interact with our user,
and leveraged the Swipe action with the Dismissible objects to delete data.

Store That Data - Using Sq(F)Lite To Store Data in a Local Database Chapter 6

[231]

Now, you know how to store data into your device and read data from an internet
connection. Let's leverage this knowledge, and add new features with Firebase in the next
chapter!

Questions
At the end of each project, you'll find a few questions to help you remember and review the
content covered in the chapter. Please try to answer the following questions, and, when in
doubt, have a look at the content in the chapter itself: you'll find all the answers there!

What happens when you call the openDatabase() method? 1.
What's the difference between the rawQuery() and query() methods of a2.
database object?
How do you use a factory constructor? When should you use it?3.
What's the purpose of a Dismissible widget?4.
How do we use the where and whereArgs parameters of a query() method?5.
When should you use model classes in an app?6.
When would you use a SnackBar?7.
What's the syntax of an insert() method on an SQLite database?8.
What is the purpose of the key in a Dismissable widget?9.
When would you use a FAB?10.

Further reading
If you are serious about developing data-driven apps in Flutter, you should study some
database concepts. In particular, if you're interested in SQLite, you should have a look
at https://www.sqlitetutorial. net/ . Here, you'll find an extensive tutorial, with
examples and use cases.

If you've never heard of SQL before, or you want to study the language itself, there's a great
free guide/tutorial at https:/ / www. w3schools. com/ sql/ default. asp.

The singleton pattern is a fascinating topic: should you want to investigate it further, a
good starting point is the Wikipedia entry at https:/ /en. wikipedia. org/ wiki/ Singleton_
pattern.

https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.sqlitetutorial.net/
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/sql/default.asp
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

7
Firing Up the App - Integrating

Firebase into a Flutter App
Let's face it: developers tend to be lazy, so they always look for ways to build solid and
maintainable software with the least possible effort. The good news is that Flutter and
Firebase work well together so you can to build full-stack apps in record time, and this is
what we'll be covering in this chapter.

The app we'll build in this project is an event app. Your user will be able to see the program
of an event— for example, a developers' conference, a concert, or a business meeting—and,
once authenticated, they will be able to select their favorite parts of the schedule. All the
data will be saved remotely, in a Cloud Firestore database.

The following topics will be covered in this chapter:

Creating a Firebase project
Adding Firebase and Firestore to your app
Reading data from a Firestore database and showing it in your Flutter app
Implementing an authentication screen and connecting it to Firebase
Writing data to a Firestore database (create, read, update, delete (CRUD))

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[233]

Technical requirements
You'll find the completed app code on the book's GitHub repository at https:/ /github.
com/PacktPublishing/ Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter Software Development Kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
with debugging enabled.
An editor: Visual Studio Code (VS Code), Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.
For this chapter, a Google account is required to use Firebase.

Introducing Firebase
Firebase is a set of tools with which to build scalable applications in the cloud. Among
those tools, you'll find authentication, storage, databases, notifications, and hosting.

You can actually choose between two databases: the Firebase Realtime Database
and Cloud Firestore. In this chapter, we'll be using the Cloud Firestore database, which is a
NoSQL document database that simplifies storing, querying, and updating data in the
cloud. More importantly in the context of this book, you can use it as the backend of your
iOS and Android apps, with no need to write the code for a web service and, in many cases,
without writing any code at all for your server-side service.

Relational databases use tables to store data, with a fixed schema that all records must
follow. For example, if you store user data, you can create a users table with three fields:
user_id, name, and password. Each record in the table will follow the constraints (rules)
you define when you design your table.

In relational databases, you store data in tables. The "columns" of the
tables are called fields, and the "rows" of the table are called records. For
example, if you store users, the table name might be Users, and the
fields might be "Name" and "Surname". "John" - "Doe" and "Bill" -
"Smith" are records.

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[234]

A NoSQL database, on the other hand, is self-describing, so it does not require a schema.
All its documents are JSON documents, and, theoretically, each document could have
different fields and values (or key-value pairs). In the example we mentioned previously, in
the users collection, the first user might have a user_id, name, and password, but the
following could also contain a "user_role" field or a "user_age" field. Both documents
would still be valid.

Another huge difference is the language used. SQL databases use Structured Query
Language to define and manipulate data. This makes SQL databases easy to use and wide
spread, but SQL requires you use predefined schemas to design the structure of your data.

In a NoSQL database, you have a dynamic schema and data is unstructured, and can be
stored in many different ways.

Generally speaking, when you need to perform complex queries in multiple tables and you
have structured data, SQL is the best option. When you don't need to perform queries that
require several "JOINS" between tables and you want an easily scalable and fast solution,
you would probably choose a NoSQL database.

As an added bonus, a backend created with Firebase can scale over Google server farms, so
it's virtually limitless.

Project overview
The app we'll build in this chapter is an event app where the user will be able to see the
program of an event, with the details of the schedule. All data will be hosted remotely, in a
Firebase project. The events will be stored in a Cloud Firestore database.

Once authenticated, the user will be able to choose their favorite parts of the event by
pressing a star icon. In this way, the "favorites" will be also saved remotely.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[235]

The following screenshot shows the app's main screen:

Another interesting aspect of the app is dealing with authentication. This is generally a
cumbersome process, but the good news is that dealing with authentication with Firebase
and Flutter is rather straightforward. You can see the app's authentication screen in the
following screenshot:

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[236]

Building the project should take about 3 hours.

Adding Firebase to your Flutter project
As mentioned before, Firebase is a set of tools that you can use to build applications in the
cloud. As it's a cloud service, you won't need to install any software on your device.
Firebase is operated by Google, so you will need a Google account to create your first
project.

What are the advantages of using Firebase, instead of following the traditional approach of
writing a client-side app, and a server-side (or backend) service?

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[237]

The tools that are available within Firebase cover most of the services that you would
typically have to build yourself, including authentication, databases, and file storage, just
to name a few. The client that connects to Firebase—in our case, a Flutter app—interacts
with these backend services directly, without any middleware server-side service. This
means that, when you use the Firestore database, you'll write queries directly in your
Flutter app! This is totally different from traditional app development, which usually
requires both client and server software to be written, and it's probably the main advantage
of using Firebase when developing an app that requires a backend service. You won't need
to write, install, or maintain a web service using PHP, or Java, or C#. You'll deal with
Firebase directly from your Flutter app.

Every project that involves the use of Firebase begins with the Firebase console. You can
reach it at the following address: https:/ /console. firebase. google. com/ .

You will be asked to authenticate yourself before accessing the console. In the remote
chance that you do not have any Google accounts, you can create one for free from the
authentication page. So, let's begin, as follows:

The container of all services in Firebase is a project. So, we'll begin building our1.
app by creating a new Firebase project.

A Firebase project is the top-level entity for Firebase. Each Firebase
feature, including Cloud Firestore and Authentication, belongs to a
Firebase project, and the connection from client apps is made through the
project itself.

Once you click on the Add Project button (or New Project, depending on the2.
console interface), you'll need to choose a project name. Let's call it Events, as
shown in the following screenshot:

https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[238]

Next, just press Continue to keep configuring the new project and accept the3.
Terms and Conditions.
In the next screen, you'll be asked to set up Google Analytics for your Firebase4.
project. In the context of this chapter, this is not necessary as we won't use it, but
it's generally recommended or real-world projects.
Click Continue again, and after a few seconds your project will be created. We5.
now have the Firebase project that we'll use in our app. At the end of the process,
you should see a page similar to the one in the following screenshot:

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[239]

This is the Firebase Project Overview page, which contains the name of the project (Events,
in this case) and the billing plan (Spark plan means that it's a free plan); on the left side of
the page, you have the main tools you can add to your project.

Firebase is free for apps with relatively little traffic, but as your apps grow
and require more power, you'll be asked to pay, based on your app's
usage. For details about Firebase prices, have a look at the following page:
https:/ /firebase. google. com/ pricing.

Now that our Firebase project has been built, let's create a Firestore database and add some
data that we'll read in our app.

Creating a Firestore database
In the previous chapter, we've built an app that used a SQL database. The Firestore
database is a NoSQL database. These two have very different ways of storing data and
change the way you design a storage solution. In Firebase, you have two different database
tools: the Cloud Firestore and the Realtime Database. Both are NoSQL databases, but their
architecture is rather different. The Cloud Firestore is the most recent, and it's the
recommended choice for most new projects as it features a more intuitive data model, with
faster queries and enhanced scaling options.

If you want to learn more about the differences between Cloud Firestore
and Realtime Database, have a look at the guide available at the following
address: https:/ / firebase. google. com/docs/ database/ rtdb- vs-
firestore.

Let's see how to create a Cloud Firestore database first, and then we'll highlight a few tips
on how to think about data in a NoSQL database. To create a Cloud Firestore database,
perform the following steps:

On the left side of the Firebase Project Overview page, click on the Database1.
link.
From there, under the Cloud Firestore pane, click on the Create Database2.
button.

https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[240]

In the Create database window, choose Start in test mode, as this is the option3.
that allows access to data without authentication, as shown in the following
screenshot:

 Later on, we'll also add authentication to the project.

Click Next. You'll be asked to choose among the locations of the Cloud Firestore.4.
Choose one that is close to where you and your users will access data. For
example, as I live in Europe, I'll choose one of the europe-west options.
Finally, click Done.5.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[241]

You have now created a Cloud Firestore database, and should see a page like the one
shown in the following screenshot:

We'll now insert some data, as follows:

Click on Start collection. A Collection is a container for a set of documents. Call1.
this container event_details, and click Next.
From there, in the Document ID option, click on Auto-ID, then add a few fields2.
and values, as shown in the following screenshot, then click Save:

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[242]

Repeat the process for another couple of documents, using the same fields and3.
changing the values in line with your preferences.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[243]

There are a few rules when dealing with collections and documents in the Cloud Firestore
database, as follows:

Collections can only contain documents, not other collections, strings, or blobs.
Documents must take up less than 1 MB, which is OK for most use cases but
you'll need to split the content into several documents when they take more than
1 MB.
A document cannot contain another document.
A document CAN contain a sub-collection, which can then contain other
documents.
The Firestore root can only contain collections and not documents.

Now that we have created our Firebase project, a Cloud Firestore database, and inserted
some data, it's time to create our Flutter app and integrate Firebase into it.

Integrating Firebase into a Flutter app
There are a few steps required in order to integrate a Cloud Firestore database into a Flutter
app, as follows:

Create a Firebase project. You can do this in the Firebase console. You'll need to1.
log in. If you already have any Google account, such as Gmail, you can use that
for your Firebase projects.
Create a Firestore database instance, then insert collections and documents as2.
required.
Register your Android and/or iOS app in your project, and download the3.
configuration file that will be created in the process. If you are planning to
release your app on both platforms, you'll need to repeat the process for each
operating system.
Create your Flutter project and add the configuration files downloaded4.
previously.
Add Google services to your projects (platform-specific).5.
Add dependencies to the pubspec.yaml file.6.

We have already performed Steps 1 and 2 in the task list outlined at the end of the previous
section, so let's now see how to deal with the remaining steps.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[244]

Configuring your Android app
Let's create a new Flutter project, calling it events, and update the main.dart file so that it
looks like the following code:

import 'package:flutter/material.dart';
void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Events',
 theme: ThemeData(
 primarySwatch: Colors.orange,
),
 home: Scaffold(),
); } }

When targeting Android devices, we'll need to register our app as an Android app in the
Firebase console. First, we need to set a package name, and we can do that by setting
applicationId in the app build.gradle file, as follows:

Open the file at the following path:1.

<project-name>/android/app/build.gradle

In it, in the defaultConfig node, you should find an applicationId key, with2.
a com.example.events as a value. This is a unique identifier for your Android
app, and you should change it to your own domain name, if you have one, or to
a name that uniquely identifies you. For example, in my case, I'll change it to the
following:

it.softwarehouse.events_book

This is needed to actually register the app with Firebase and to eventually3.
publish the app into the Google Play Store if you wish to do so later on.
Next, let's get to the Project Overview page in Firebase. There, under the Project4.
Name, click on the Add App button, and select Android.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[245]

You'll be asked to insert the Android package name. Insert it, with an optional5.
nickname, as shown in the following screenshot:

The app nickname isn't visible to users, but it's used throughout the
Firebase console to represent your app.

Click on the Register app button, and download the google-services.json6.
file, then put the file into the android/app folder of your project.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[246]

Next, add the google-services plugin to the Gradle files.7.
In your project-level Gradle file (android/build.gradle), add the following8.
rule (please check the latest version of the google-services plugin at the
following address: https:/ /developers. google. com/ android/ guides/ google-
services- plugin):

dependencies {
 // ...

 // Add the line below:
 classpath 'com.google.gms:google-services:4.3.2' }

Next, let's open the pubspec.yaml file and add the required dependencies. For9.
our app, we'll need the Firebase firebase_auth code dependency for
authentication, and cloud_firestore to store data (don't forget to check more
recent versions of the dependencies at the address: https:/ /
firebaseopensource. com/ projects/ firebaseextended/ flutterfire/):

Firebase dependencies
 firebase_core: ^0.4.0+9
 firebase_auth: ^0.14.0+5
 cloud_firestore: ^0.12.9+5

That's it. You're now ready to use Firebase for your Android app! Let's now see how to
configure your app for iOS.

Configuring your iOS app
In your Mac, from your favorite editor, open the Flutter project that you have created, and
make sure you update the main.dart file, as shown at the beginning of the previous
section.

https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://developers.google.com/android/guides/google-services-plugin
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[247]

Next, we'll need to change the bundle Id of our Flutter project. This is the value that
identifies your iOS app. Let's see how to do this here:

Open the app in Xcode (you may just open the iOS folder of your app), then1.
access the General tab in the top-level Runner directory.
Next, change the Bundle Identifier value to a string that uniquely identifies your2.
project, as shown in the following screenshot:

If you have a domain name, you can use that (for example, mine
is it.softwarehouse.events). This is needed to register the app with Firebase
and to eventually publish the app to the App Store if you wish to do so later on.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[248]

Save your project and get back to the Firebase console.3.

Next, let's get to the Project Overview page in Firebase. There, under the Project4.
Name, click on the Add App button, and select iOS.
You'll be asked to insert the iOS bundle ID. Insert it, as shown in the following5.
screenshot, then press the Register app button:

Click Download GoogleService-Info.plist to get the Firebase iOS configuration6.
file, named GoogleService-Info.plist.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[249]

Next, from Xcode, move the downloaded file into the Runner directory of your7.
Flutter app, as shown in the following screenshot:

Back in the Firebase console, click Next. You can skip the remaining steps of the
configuration.

Testing Firebase integration with your app
Now that we have completed the app configuration to use Firebase, we need to test
whether we can connect to the Firestore database. Let's begin, as follows:

In the pubspec.yaml file, make sure you have the latest FlutterFire1.
dependencies.

FlutterFire is a set of Flutter plugins that enable Flutter apps to use
Firebase services. You can find the latest versions of the FlutterFire
libraries at the following address: https:/ /firebaseopensource. com/
projects/ firebaseextended/ flutterfire/ .

firebase_core is always required in order to use Firebase. firebase_auth is
for the Authentication service, and cloud_firestore is rather self-explanatory.

https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/
https://firebaseopensource.com/projects/firebaseextended/flutterfire/

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[250]

In the main.dart file, add the following import to use the Cloud Firestore2.
package:

import 'package:cloud_firestore/cloud_firestore.dart';

Then, create an asynchronous method, called testData(), that will attempt to3.
connect to the Cloud Firestore database and print some data in the Debug
console, as follows:

Future testData() async {}

Inside the method, we'll create an instance of a Firestore database and call it db,4.
as illustrated in the following code snippet:

Firestore db = Firestore.instance;

Then, we'll call the getDocuments() asynchronous method on the collection5.
called event_details. This method will get all the available data from the
specified collection. We'll put the results into a data variable, as follows:

var data = await db.collection('event_details').getDocuments();

If data is not null, we'll get the documents contained into the details variable,6.
and place them into a List called details, as follows:

var details = data.documents.toList();

For each item in the details list, we'll print the documentId of the item.7.
documentId is the unique identifier inside a Firestore collection. The code for
this can be seen in the following snippet:

 details.forEach((d) {
 print(d.documentID);
 });

Add the call to the testData() method in the build() method of MyApp, as8.
follows:

testData();

Try the app. If everything worked as expected, in the Debug console you should9.
see a line like the following:

I/flutter (11381): n9qGRgBsOleb0FV0cSx4

This means that we can retrieve data from the Cloud Firestore, and import it into our app!

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[251]

In Android, you might receive an error relating to the number of references in your app.
In this case, you need to add the following code in your app.gradle file, at the end of the
defaultConfig node:

 defaultConfig {
 …
 multiDexEnabled true
 }

Now that we've successfully connected our app to Firebase, let's design the user interface
(UI) so that the user will be able to see a list of event details on the screen.

The EventDetail model class
Now our app successfully reads data from the Cloud Firestore database, but we can only
see a Scaffold with a blank body. We need to create a list with all the detail events, but
first we will create a model for a single event detail, in the same way we did when creating
the database app, as follows:

In the lib folder of our app, we'll create a new folder called models. In it, we'll1.
create a new file, called event_detail.dart.
There, we'll create a class called EventDetail.2.
In this, we'll create fields that mirror the fields we've specified in the Firestore3.
documents, as follows:

class EventDetail {
 String id;
 String _description;
 String _date;
 String _startTime;
 String _endTime;
 String _speaker;
 String _isFavorite;
 }

Inside the class, we'll also create a constructor that takes all the fields we have4.
defined previously, as follows:

EventDetail(this.id, this._description, this._date,
this._startTime, this._endTime, this._speaker, this._isFavorite);

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[252]

You may have noticed that all the fields in the EventDetail class, except
for the id, have an underscore (_). When fields begin with an
underscore, they can only be accessed in the same file where they are
defined.

As all fields except id are private, we'll need to create the getters for the5.
EventDetail properties that we want to make readable, by running the
following code:

 String get description => _description;
 String get date => _date;
 String get startTime => _startTime;
 String get endTime => _endTime;
 String get speaker => _speaker;
 String get isFavourite => _isFavourite;

Next, let's create a named constructor, called fromMap(), that will take a6.
dynamic object and transform it into EventDetail, as follows:

EventDetail.fromMap(dynamic obj) {
 this.id = obj['id'];
 this._description = obj['description'];
 this._date = obj['date'];
 this._startTime = obj['start_time'];
 this._endTime = obj['end_time'];
 this._speaker = obj['speaker'];
 this._isFavourite = obj['is_favourite'];
 }

We also need to create a method that transforms the EventDetail object7.
into Map. You might recall that Map in Dart is a collection of key-value pairs.
These are an excellent way to share data when interacting with web services.

We'll call this method toMap(). It will return a Map instance of type String,
dynamic. This is because the key is always a String, and the value may be any
type of data as, in the EventDetail class, we are using both a String and Boolean
as data types. The code is shown in the following block:

Map<String, dynamic> toMap() {
 var map = Map<String, dynamic>();
 if (id != null) {
 map['id'] = id;
 }
 map['description'] = _description;
 map['date'] = _date;

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[253]

 map['start_time'] = _startTime;
 map['end_time'] = _endTime;
 map['speaker'] = _speaker;
 return map;

The EventDetail class is now complete. We need to use it when we retrieve data from the
Cloud Firestore database and show the data to our user.

Creating the Event Detail screen
When the app is completed, users will interact with two screens: a list of event details,
which is the program of the event, and a second screen for authentication.

We'll now create the event detail screen, as follows:

First, let's create a new folder in the lib folder of the app, called screens.1.
Next, we'll add a new file to the screens folder, called event_screen.dart.2.
In the event_screen.dart file, let's import the material.dart library, and3.
then create a stateless widget called EventScreen, as shown in the following
code block:

import 'package:flutter/material.dart';
class EventScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
);
 }
}

In the build() method of the EventScreen class, let's return4.
Scaffold. In Scaffold, in appBar, we'll create a new AppBar titled Event, as
shown in the following code snippet:

return Scaffold(
 appBar: AppBar(
 title: Text('Event'),
),

In the body of the Scaffold, we'll place a widget called EventList, as follows:5.

body: EventList()

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[254]

Outside the EventScreen class, we'll create a new stateful widget called6.
EventList.

The end result of the steps we've yet outlined is shown in the following code block:

import 'package:flutter/material.dart';

class EventScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Event'),),
 body: EventList()
);
 }}

class EventList extends StatefulWidget {
 @override
 _EventListState createState() => _EventListState();
}
class _EventListState extends State<EventList> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }}

When this screen loads, we want to retrieve the event details from the Cloud Firestore
database and show them to the user in a ListView. Let's look at the steps to do that, as
follows:

At the top of the _EventsScreenState class, we'll declare a final instance of1.
Firestore and a List of EventDetails that will be populated with the data
taken from the instance, as follows:

final Firestore db = Firestore.instance;
List<EventDetail> details = [];

Of course, don't forget the required imports, which are shown in the following
code snippet:

import 'package:cloud_firestore/cloud_firestore.dart';
import '../models/event_detail.dart';

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[255]

Now, let's create a method that will retrieve the data. We can call this2.
getDetails(). It will be asynchronous and will return a List instance of
EventDetails, as follows:

Future<List<EventDetail>> getDetailsList() async {}

Inside the getDetailList() method, we'll retrieve all the documents in the3.
event_details collection, as follows:

 var data = await db.collection('event_details').getDocuments();

Then, if the data variable is not null, we'll call the map() method on the4.
documents retrieved by the getDocuments() method, and there we'll create a
list of EventDetail objects, calling the fromMap constructor that we created
previously, as shown in the following code snippet:

if (data!= null) {details = data.documents.map((document) =>
EventDetail.fromMap(document)).toList();

Next, for each EventDetail in the details list, we'll set id as the5.
documentID instance of the document (this is because the id is saved at a higher
level than the object itself). Finally, we'll return the details, as follows:

int i = 0;
details.forEach((detail){
 detail.id = data.documents[i].documentID;
 i++;
 });
 }
 return details;
 }

We now need to call the getDetails() method, but we cannot call it from the6.
build() method. This is because, whenever the state changes, the build()
method is automatically called. As we are calling setState from
getDetails(), this will automatically trigger build(); if the build contains a
call to getDetails(), you get an infinite call loop.

 So, the best place to call the getDetails() method is in the initState()
method, which is called only once, when the widget is created.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[256]

As the getDetailsList() returns Future, and not the details themselves,7.
we'll call the then method on Future; inside its function, after checking the
widget is mounted, we'll call setState() and set the details as the result of
the getDetailsList() call. Add the following code in the initState()
method of the _EventListState class:

@override
void initState() {
 if (mounted) {
 getDetailsList().then((data){
 setState(() {
 details = data;
 });
 });
 }
 super.initState();
 }

So, when the screen is loaded, we call the getDetailsList() method and, after
some time, the details list is updated and contains the EventDetail object of
the event we are viewing.

The only remaining step to perform is showing the results to the user, and we'll8.
do this in the build() method of the _EventListState class. In the build()
method, instead of returning a Container, we'll return a
ListView.builder that, as itemCount, will have the length of the details
list. The itemBuilder parameter takes a function that returns a ListTile, as
follows:

@override
 Widget build(BuildContext context) {
 return ListView.builder(
 itemCount: (details!= null)? details.length : 0,
 itemBuilder: (context, position){
 return ListTile();
 },
);
 }

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[257]

In the ListTile, for now, we'll just specify a title and a subtitle. We'll set9.
the title to contain the description of the EventDetail, and for the subtitle,
we'll concatenate the date, start time, and end time of the event detail, as shown
in the following code snippet:

 @override
 Widget build(BuildContext context) {
 return ListView.builder(
 itemCount: (details!= null)? details.length : 0,
 itemBuilder: (context, position){
 String sub='Date: ${details[position].date} - Start:
${details[position].startTime} - End:
${details[position].endTime}';
 return ListTile(
 title: Text(details[position].description),
 subtitle: Text(sub),
);
 },
);
 }

Before trying out the app, in the main.dart file, we need to call the10.
EventScreen widget, like this:

home: EventScreen(),

Now, if you run the app, you should see a screen like the one shown in the following
screenshot:

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[258]

Well done! Now that we have seen the program of our event, let's talk about the
authentication with Firebase for our app, and how to improve it by adding a login screen.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[259]

Adding authentication to your app
Most apps need to know the identity of users. For example, in the app we are building in
this chapter, we want the user to be able to select their favorite parts of the event program
and save that data remotely. In order to do this, we need to know who the user is.

Identifying users generally means two different tasks:

Authentication means confirming the user's identity.
Authorization means the user is allowed to access different parts of the app or
the data behind the app.

Firebase Authentication provides several services you can leverage in order to provide
authentication to your apps, including:

Authentication through a username and password, or providers such as Google,
Microsoft, Facebook, and several others. Basically, you can delegate the
authentication process to an external provider, and your user won't have to
remember another username and password to access your data.
Creation of user identities.
Methods such as Login, Logout, Signup, and Reset password.
Integration with other services in Firebase, so you can easily deal with
authorization rules once the identity has been created.

In our app, we'll add authentication with a username and password, and we'll allow our
users to sign up and sign in. Then, we'll set a rule so that only authenticated users will be
able to access the data in our Cloud Firestore database. Also, from our app, we'll give each
user the ability to read and write their favorite event details. So, let's see how it's done, as
follows:

In order to enable authentication, we'll need to get back to the Firebase console.1.
From there, we'll get to the Authentication option inside the Develop section of
the Firebase project dashboard and click on the Sign-in method tab.
You'll notice that all authentication methods are disabled by default. At this time,2.
we'll only need to enable the Email/Password authentication method. Since we're
enabling this provider, we'll be able to sign up and log in with an email and
password. In many apps, you may wish to add other providers, such as Google
or Facebook, to sign in.
The final result should look similar to the following screenshot:3.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[260]

If you want to learn more about signing in with other providers, have a
look at the Further reading section at the end of this chapter.

Make sure you have added the latest version of firebase_auth, the official4.
plugin for authentication maintained by the Firebase team, in the pubspec.yaml
file, as follows (for the latest version of the plugin, check https:/ /pub. dev/
packages/ firebase_ auth):

dependencies:
 […]
 firebase_auth: ^0.15.5+2

Now that authentication is enabled in our Firebase project, we are ready to create the login
screen in our app.

https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[261]

Adding the login/signup screen
The login screen will serve two purposes: it will allow our user to log in to our app, or to
sign up and obtain an identity. We'll use email and password authentication, so we'll need
to design a screen that allows the input of a login and a password. We won't need or use
any other data from our users. We will proceed as follows:

Back in the app code, let's create a new file in the screens folder and call it1.
login_screen.dart.
Inside the login_screen.dart file, we'll import the material.dart library,2.
and create a new stateful widget using the stful shortcut. We'll call this widget
LoginScreen.
Inside the _LoginScreenState class, we'll create a few state-level variables,3.
such as those shown in the following code block:

bool _isLogin = true;
String _userId;
String _password;
String _email;
String _message;

_userId, _password, and _email are the variables that will contain the
authentication data. When the _islogin Boolean is used, we'll perform a login,
and when it's false, we'll enable signup. The _message String holds a message
for any error that might occur during login or signup.

The screen will contain a column with five widgets: two TextFormField widgets
for the email and password, two buttons, and a Text for the message. For each of
those widgets, we'll create a method so that our code is easier to read and
maintain.

You can see the end result of the login screen in the following screenshot:

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[262]

Let's begin with email input. We'll create a method that returns a widget called4.
emailInput, as follows:

Widget emailInput() {
 return Padding(
 padding: EdgeInsets.only(top:120),
 child: TextFormField(
 controller: txtEmail,
 keyboardType: TextInputType.emailAddress,
 decoration: InputDecoration(
 hintText: 'email',
 icon: Icon(Icons.mail)
),

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[263]

 validator: (text) => text.isEmpty ? 'Email is required' :
 '',
)
);
 }

The emailInput() method returns a Padding, with some spacing at the top, and
in its child contains a TextFormField. This is a widget that wraps a TextField
into a FormField and allows easy validation. You may have noticed that we
added a keyboardType, showing the specific keyboard for emails, and we added
an InputDecoration with a hintText and an Icon.

This also needs a TextEditingController widget that we can declare at the5.
top of the State class and then call txtEmail, as shown in the following code
snippet:

final TextEditingController txtEmail = TextEditingController();

We'll repeat the same pattern for the passwordInput() method, changing6.
keyboardType and Icon, and adding the obscureText parameter, and setting
it to true, so that the characters are not visible while typing, as follows:

Widget passwordInput() {
 return Padding(
 padding: EdgeInsets.only(top:120),
 child: TextFormField(
 controller: txtPassword,
 keyboardType: TextInputType.emailAddress,
 obscureText: true,
 decoration: InputDecoration(
 hintText: 'password',
 icon: Icon(Icons.enhanced_encryption)
),
 validator: (text) => text.isEmpty ? 'Password is required'
 : '',
)
);
 }

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[264]

In this case, the TextEditingController is called txtPassword, as can be7.
seen in the following code snippet:

final TextEditingController txtPassword = TextEditingController();

Now, let's add the two buttons. Based on the _isLogin field, we'll show a8.
different main button and a secondary button. This is because, when _isLogin is
true, the user needs to log in, and the primary button will be the login action,
while the secondary button will enable the signup process. When _isLogin is
false, the primary button will be the signup submit action, and the secondary
button will bring us to the login process.

When pressed, the main button will call the submit() method (which we will
create shortly); this will validate and submit the data that was typed by the user.
It will be positioned right below the two text fields.

To make it a bit nicer, we'll give it a RoundedRectangleBorder shape, with a9.
circular radius. We'll also give it a background color, taken from the current
theme, so that, when the theme changes, the button color will also be updated, as
shown in the following code block:

Widget mainButton() {
 String buttonText = _isLogin ? 'Login' : 'Sign up';
 return Padding(
 padding: EdgeInsets.only(top: 120),
 child: Container(
 height: 50,
 child: RaisedButton(
 shape: RoundedRectangleBorder(borderRadius:
 BorderRadius.circular(20)),
 color: Theme.of(context).accentColor,
 elevation: 3,
 child: Text(buttonText),
 onPressed: submit,
)
)
);
 }

The secondary button will switch from the login to the signup function, and vice
versa. When pressed, it will call the setState() method, using the value of
_isLogin like a toggle. That is, if _isLogin is true, it will become false, and if
it's false, it will become true.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[265]

Its position will be under the main button and it will be slightly smaller, as the
main button is the most important action of the screen. The code is shown in the
following snippet:

 Widget secondaryButton() {
 String buttonText = !_isLogin ? 'Login' : 'Sign up';
 return FlatButton(
 child: Text(buttonText),
 onPressed: () {
 setState(() {
 _isLogin = !_isLogin;
 });
 },
);

The last widget of the screen is the Text containing the error message, which is10.
activated when the user doesn't insert any data in the email or password fields. If
there is no validation error, nothing will show. We'll call this last method
validationMessage(), and it will return a Text, as shown in the following
code snippet:

Widget validationMessage() {
 return Text(_message,
 style: TextStyle(
 fontSize: 14,
 color: Colors.red,
 fontWeight: FontWeight.bold),);
 }

Now that we have completed the widgets, we need to compose the screen UI in11.
the build() method of the _LoginScreenState class.

As usual, the build() method will return a Scaffold, with an appbar and a
body. In the body of the Scaffold, we will place a Container with a Form
widget. A Form in Flutter is a field container, and it makes it easier to validate
fields.

In the Form, we'll place a scrolling Column with all the widgets we have created12.
previously, as shown in the following code block:

Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Login'),),
 body: Container(
 padding: EdgeInsets.all(24),
 child:SingleChildScrollView(

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[266]

 child: Form(child: Column(
 children: <Widget>[
 emailInput(),
 passwordInput(),
 mainButton(),
 secondaryButton(),
 validationMessage(),
],),),),),);

Now that we have completed the UI of the LoginScreen, we need to add the
authentication logic and interact with Firebase Authentication.

Adding the authentication logic
We'll place the authentication logic in a new class. This class will contain four methods:

A method to log in
A method to sign up
A method to log out
A method to retrieve the current user

Let's begin adding our login, as follows:

Create a new folder in the lib folder of our app and call it shared. Inside the1.
shared folder, let's also create a new file called authentication.dart.
In this file, we'll import the firebase_auth package and async.dart.2.
Next, we'll create a new class called Authentication, as follows:3.

import 'dart:async';
import 'package:firebase_auth/firebase_auth.dart';
class Authentication {}

In the Authentication class, we'll declare an instance of FirebaseAuth, which4.
is the object that enables the use of Firebase Authentication's methods and
properties, as follows:

final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

All methods in FirebaseAuth are asynchronous.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[267]

Then, we'll create a method that will allow our users to log in. It will be5.
asynchronous, will return a Future of type String, and will take two strings,
one for the username and one for the password, as follows:

Future<String> login(String email, String password) async {}

Inside the login() method, we just need to call the6.
signInWithEmailAndPassword() method, which does exactly what its name
implies, as follows:

AuthResult authResult = await
_firebaseAuth.signInWithEmailAndPassword(
 email: email, password: password
);

Next, let's create a FirebaseUser object. The FirebaseUser represents a user7.
and has several properties that can be used by the app, such as uid, which is the
user ID, and email. In this case, the function returns the user's uid, as shown in
the following snippet:

FirebaseUser user = authResult.user;
return user.uid;

For a full list of properties for the FirebaseUser class, have a look at the
documentation page at https:/ /pub. dev/ documentation/ firebase_
auth/ latest/ firebase_ auth/ FirebaseUser- class. html.

The signup process is very similar. We'll create an asynchronous method called8.
signUp() and, instead of calling the
signInWithUserNameAndPassword() method, we will call the
createUserWithUserNameAndPassword() method, which will create a new
user in our Firebase project. The code for this method is shown in the following
snippet:

Future<String> signUp(String email, String password) async {
 AuthResult authResult = await
 _firebaseAuth.createUserWithEmailAndPassword(
 email: email, password: password
);
 FirebaseUser user = authResult.user;
 return user.uid;
 }

https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html
https://pub.dev/documentation/firebase_auth/latest/firebase_auth/FirebaseUser-class.html

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[268]

We now need to create a method that will sign out the logged-in user. This is9.
extremely simple, as we'll only need to call the signOut() method on the
FirebaseAuth instance, as follows:

 Future<void> signOut() async {
 return _firebaseAuth.signOut();
 }

The last method we'll add to the Authentication class is a method that10.
retrieves the current user. This will be useful when we need to check whether a
user is logged in or not. We'll call it getUser() and it will call
the FirebaseAuth.currentUser() method, as illustrated in the following code
snippet:

Future<FirebaseUser> getUser() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user;
 }

Now that we have completed the authentication logic, we need to add the methods of the
Authentication class in the authentication screen. Also, when the user enters the app for
the first time, they should see the authentication screen. Once logged in, the user should see
the event screen.

In order to make this possible, we can use the getUser() method to check whether a
CurrentUser is available or not. We'll do that from a new screen, called LaunchScreen.
This screen's task will be to show a loading animation while the user data is retrieved. It
will then redirect the user to the appropriate screen—that is, either the authentication
screen or the event screen.

Let's create the launch screen for our app, as follows:

Let's create a new file in the screens folder, called launch_screen.dart. At1.
the top of the file, we'll import material.dart, the two screens that may be
opened by the launch screen, the firebase_auth package, and the
cloud_firestore package.
Next, we'll create a stateful widget called LaunchScreen. In the build()2.
method of the _launchScreenState class, we'll show a
CircularProgressIndicator widget, which shows a nice animation while
data is loading, as follows:

import 'package:flutter/material.dart';
import 'package:firebase_auth/firebase_auth.dart';
import 'package:cloud_firestore/cloud_firestore.dart';

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[269]

import 'login_screen.dart';
import 'event_screen.dart';

class LaunchScreen extends StatefulWidget {
 @override
 _LaunchScreenState createState() => _LaunchScreenState();
}

class _LaunchScreenState extends State<LaunchScreen> {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: Center(child: CircularProgressIndicator(),),

);
 }
}

Next, we will override the InitState() method, which checks the current user3.
status.
Inside the method, we'll call an instance of the Authentication class and then4.
call the getUser() method.
If there is a logged-in user available, we'll show the user the EventScreen;5.
otherwise, we'll just show the Login screen.
Notice that, instead of using the push() method on the navigator, we're using6.
pushReplacement(). This not only pushes the new route to the top of the
screen, but it also removes the previous route. This prevents the user from
navigating to the LaunchScreen. This is illustrated in the following code block:

@override
 void initState() {
 super.initState();
 Authentication auth = Authentication();
 auth.getUser().then((user) {
 MaterialPageRoute route;
 if (user != null) {
 route = MaterialPageRoute(builder: (context) =>
 EventScreen());
 }
 else {
 route = MaterialPageRoute(builder: (context) =>
 LoginScreen());
 }
 Navigator.pushReplacement(context, route);
 }).catchError((err)=> print(err));
 }

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[270]

In order to try this out, we'll need to change what happens when the user opens the app for
the first time. Currently, as it opens, the app shows the EventScreen, but we want to
change that. This is because, if the user is already logged in, they will see the EventScreen;
otherwise, we need to show the LoginScreen. Before trying the LaunchScreen, we need
to call it from the MyApp class in the main.dart file. So, let's change the home of the
MaterialApp,so it calls LaunchScreen, as follows:

home: LaunchScreen(),

If you try the app right now, after a very short CircularProgressIndicator animation
(depending on your device, it might be so fast you won't even see it), you should see the
Login screen.

Unfortunately, from there, we can neither log in nor sign in yet, but we are very close. Let's
get back to the loginscreen.dart file and add the logic to perform the login and signup
tasks, as follows:

First, we'll import the authentication.dart file that contains the calls to the1.
Firebase Authentication service, as follows:

import '../shared/authentication.dart';

Then, we'll create an Authentication variable called auth, override the2.
initState() method, and create an instance of the Authentication class, as
follows:

Authentication auth;
 @override
 void initState() {
 auth = Authentication();
 super.initState();
 }

In the submit() method in the _LoginScreenState class, which is called when3.
the user presses the main button, we will reset the _message so that, if there was
a previous validation message, it's removed from the screen. We'll also make the
method asynchronous, as follows:

Future submit() async {
 setState(() {
 _message = "";
 });

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[271]

Then, in a try-catch block, we'll call the login or signup methods of the auth4.
object, based on the value of the _isLogin Boolean variable. After each action,
we'll also print information about the logged-in or signed-up user in the Debug
console, as follows:

try {
 if (_isLogin) {
 _userId = await auth.login(txtEmail.text,
 txtPassword.text);
 print('Login for user $_userId');
 }
 else
 {
 _userId = await auth.signUp(txtEmail.text,
 txtPassword.text);
 print('Sign up for user $_userId');
 }
 if (_userId != null) {
 Navigator.push(context, MaterialPageRoute(builder:
 (context)=> EventScreen()));
 }
 } catch (e) {
 print('Error: $e');
 setState(() {
 _message = e.message;
 });
 }

If the login or signup tasks were successful, the _userId should now contain the
ID of the logged-in user. However, if the username or password is wrong, or the
call wasn't successful, the Firebase Authentication call should fail, and in this
case, we'll print an error message so that the user will be able to see the problem.

In order to try the login procedure, I suggest you try to fail the login a few times,
by using a badly formatted email, skipping the password, or entering a wrong
email and password, just to see the different messages that the Firebase
Authentication service returns when something goes wrong.

After trying the different error messages, you can sign up with your correct data;
if the process is successful, you should be redirected to the event screen. Now, if
you restart the app, you should skip the login process and be redirected to the
event screen immediately, as the app is keeping your login data.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[272]

We need to add a way for the user to log out. We'll use an IconButton widget in5.
the actions of the AppBar of the Scaffold in the EventScreen class to call the
logout method of our Authentication class, as shown in the following code
block:

final Authentication auth = new Authentication();
 return Scaffold(
 appBar: AppBar(
 title: Text('Event'),
 actions:[
 IconButton(
 icon: Icon(Icons.exit_to_app),
 onPressed: () {
 auth.signOut().then((result) {
 Navigator.push(context,
 MaterialPageRoute(builder: (context) =>
 LoginScreen()));
 });
 },
)
],
),

If you try the app now and press the logout IconButton, you should be redirected to the
login screen again; if you log in, you will be taken back to the EventScreen. So now in our
app, only logged-in users can access event information.

But the security we've implemented here is only client-side, and any security expert would
tell us that this means almost no security at all. The good news is that we can very easily set
up server-side security in Firebase. Let's see how, next!

Introducing Firebase rules
In Firebase, and specifically in the Cloud Firestore, you can implement server-side security
leveraging the user authentication information and setting authorization rules, thus
controlling access to data based on user identity. For example, you can decide that only
authenticated users can read data, or can write their own data.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[273]

You can access the authorization rules in the Cloud Firestore database page, by clicking on
the Rules pane, as shown in the following screenshot:

From there, we want to allow access to data—with read and write permissions—only to
logged-in users. We can achieve this by setting the following rules:

// Allow read/write access on all documents to any user signed in to the
application
service cloud.firestore {
 match /databases/{database}/documents {
 match /{document=**} {
 allow read, write: if request.auth.uid != null;
 } } }

If you try the app right now, you should still see all the data as before, but now you have
the benefit of server-side security.

The only feature we'll add to the app is giving our users the chance to choose their favorite
items in the event calendar.

Writing data to Firebase: Adding the favorite
feature
We want to give users the ability to choose their favorite parts of the event program. In this
way, we'll also see how to write data to the Cloud Firestore database, and to query data
based on specific selection criteria.

Just as we did for the EventDetail class, let's create a new model class that will contain
the user's favorites, as follows:

Let's create a new file in the models directory, called favorite.dart.1.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[274]

A favorite object needs to contain an ID, the user ID (UID) of the user, and the ID2.
of the selected event detail. We'll mark all the properties as private, and we'll
create an unnamed constructor to set a new instance of a favorite, as follows:

class Favorite {
 String _id;
 String _eventId;
 String _userId;
 Favourite(this._id, this._eventId, this._userId);
}

Then, we'll create a named constructor called map that will take a3.
DocumentSnapshot containing data read from a document in a Cloud Firestore
database. In a DocumentSnapshot object, you always find a documentId, which
is the ID of the document, and a data object, which contains the key-value pairs
that were specified inside the document, as shown in the following code snippet:

 Favourite.map(DocumentSnapshot document) {
 this._id = document.documentID;
 this._eventId = document.data['eventId'];
 this._userId = document.data['userId'];
 }

We also need to create a method that returns a Map, so that it will be easier to4.
write data to the Cloud Firestore database. We can call this method toMap().
The keys of the Map will be Strings, and its values will be dynamic. The code of
the toMap() method is shown in the following code snippet:

 Map<String, dynamic> toMap() {
 Map map = Map<String, dynamic>();
 if (_id!= null) {
 map['id'] = _id;
 }
 map['eventId'] = _eventId;
 map['userId'] = _userId;
 return map;
 }

The Favourite class is now complete. What we need now is to build the methods that will
perform the required reading and writing tasks. As there will be several methods, and it's
always a good idea to separate the logic of an app from the UI, we'll create a new file to
host those methods, as follows:

In the shared folder, create a new file called firestore_helper.dart. This1.
will contain helper methods to interact with the Cloud Firestore database.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[275]

In this file, import the two model classes and the Cloud Firestore package.2.
Then, create a static db property, which will be an instance of Firestore and will3.
be used throughout the class, as shown in the following code snippet:

import '../models/event_detail.dart';
import '../models/favourite.dart';
import 'package:cloud_firestore/cloud_firestore.dart';
class FirestoreHelper {
 static final Firestore db = Firestore.instance;
}

All methods of this class will be static, as we don't actually need to instantiate this
class in order to use them.

The first method we'll create in this class will add a new favorite into the4.
Firestore database. It's a static method called addFavourite that will take the
currently logged-in user uid, and the Event that will be added as a favorite, as
follows:

 static Future addFavourite(EventDetail eventDetail, String uid) {
 Favourite fav = Favourite(null, uid, eventDetail.id);
 var result = db.collection('favourites').add(fav.toMap())
 .then((value) => print(value))
 .catchError((error)=> print (error));
 return result;
 }

As you can see, inside the method, we create an instance of the Favourite class and call it
fav. Then, from the database instance, we add to the collection called favourites the fav
object, transformed into a Map.

We print the result in the Debug console if everything works correctly, or print the error if
something goes wrong.

Now, we need a way to enable the user to add their favorites from the UI. To make this
possible, we can add a star icon in the event calendar list so that, when the user presses the
star icon, the favorite will be added. Later on, we'll also change the icon color, so that the
favorites will be immediately recognizable.

Before we add the star IconButton, after logging in, let's send to the event screen the UID
of the user that was logged in. In this way, it will be easier to read and write the favorites
data from the screen itself.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[276]

We will proceed as follows:

In the EventScreen class, let's add a String uid property and set it in the1.
constructor, as follows:

final String uid;

When we call the EventList class from the body of the Scaffold, let’s pass the2.
uid, like this:

EventList(uid);

We'll do the same in the EventList class, adding a uid property and receiving it3.
in the constructor, as follows:

final String uid;
EventList(this.uid);

In this way, we've propagated the uid from the authentication process back to4.
the _EventListState, and now we have all the data we need to read and write
the user's favorites.

Now, let's create a method called toggleFavourite() that will take the5.
EventDetail that has to become a favorite and call the FirestoreHelper
addFavourite() method, as follows:

void toggleFavourite(EventDetail ed) {
 FirestoreHelper.addFavourite(ed, widget.uid);
 }

Then, in the build() method of the EventListState class in the6.
event_screen.dart file, let's add a trailing IconButton widget to the
ListTile in the ListViewBuilder widget. This will be the widget that will add
the favorites from the Cloud Firestore database; later, we'll also use colors to tell
the user whether the current item on a list is a favorite or not and whether to
remove the favorite from the database. The code for this is illustrated in the
following snippet:

trailing: IconButton(
 icon: Icon(Icons.star, color: Colors.grey),
 onPressed: () {toggleFavourite(details[position]);},
),

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[277]

Before trying this new feature, we need to modify the calls to the EventScreen7.
class. One is in the LaunchScreenState class, in the launchscreen.dart file.
When we set the route that calls the EventScreen class, we need to modify the
route, as shown in the following snippet:

route = MaterialPageRoute(builder: (context) =>
EventScreen(user.uid));

Then, in the login_screen.dart file, in the submit() method of the8.
_LoginScreenState class, we need to add the _userId variable to the
MaterialPageRoute, as shown in the following snippet:

if (_userId != null) {
 Navigator.push(
 context, MaterialPageRoute(builder: (context)=>
 EventScreen(_userId))
);
 }

Let's try the app now. In the events screen, press the star IconButton on any item9.
of the List. If everything is working correctly, when you go to your Firebase
console and see the database data, you should find a Favorites collection with
some data in it, as shown in the following screenshot:

This means that the app is now writing favorites to the Cloud Firestore database.

Next, we need to read the favorites, give some feedback to the user, and delete the favorites
from the database.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[278]

Showing and deleting favorites
In the FirestoreHelper class, we need to add two new features: a method to delete an
existing favorite from the database, and a method to retrieve all the favorites for the
currently logged-in user.

Let's begin with the deleteFavourite() method. This will just take the ID of the
Favourite that will be deleted; as usual, it will be static and asynchronous. In order to
actually delete an item from a collection in a Cloud Firestore database, you just need to
navigate to the collection, go to the specific document with its ID, and then call the
delete() method, as follows:

static Future deleteFavourite(String favId) async {
 await db.collection('favourites').document(favId).delete();
 }

The static and asynchronous getUserFavourites() method will take the user id as a
parameter and return a Future containing a list of Favourite objects.

Inside the function, we have the chance to see an incredibly useful feature of the Cloud
Firestore database, which is querying inside a collection with the where() method. This
takes the field where we want to apply the filter and the type of filter we need to apply—in
this case, isEqualTo—and the value of the filter itself. We apply the getDocuments()
method to return an object of type QuerySnapshot that we can use to transform the result
of the query into a List of Favourite, and return it to the caller.

Basically, this method will return a list containing all the favorite documents of the user
whose ID is passed as a parameter, as follows:

static Future<List<Favourite>> getUserFavourites(String uid) async {
 List<Favourite> favs;
 QuerySnapshot docs = await db.collection('favourites')
 .where('userId', isEqualTo: uid).getDocuments();
 if (docs != null) {
 favs = docs.documents.map((data)=> Favourite.map(data)).toList();
 }
 return favs;
 }

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[279]

Now we need to show which items in the event calendar are user favorites, and we'll do
that by coloring the star icon with a bright amber color, proceeding as follows:

Back in the _EventListState class in the eventscreen.dart file, let's declare1.
a List of Favourite, called favourites:

List<Favourite> favourites = [];

Then, in the initState() method, we'll call the2.
FirestoreHelper.getUserFavourites() method, which will call the
setState() method to update the favorites array, as follows:

FirestoreHelper.getUserFavourites(uid).then((data){
 setState(() {
 favourites = data;
 });
 });

As favorites and details are two separate objects, we need a way to quickly check3.
whether an event detail is actually a favorite or not. Let's create a method that
does exactly that. It will return true if the event detail is a favorite, and false if
it's not, as illustrated in the following code snippet:

bool isUserFavourite (String eventId) {
 Favourite favourite = favourites
 .firstWhere((Favourite f) => (f.eventId == eventId),
 orElse: () => null);
 if (favourite==null)
 return false;
 else
 return true;
 }

The firstWhere() method, called from a List, retrieves the first element in the
List that satisfies the condition that you specify in the test parameter. The
favorite variable will contain the first Favorite whose id is equal to the
Event id that was passed to the function, if available. Otherwise, it will return
null.

In order for this code to work, we also need to create a getter method in the4.
Favourite class in the favourite.dart file, as follows:

String get eventId => _eventId;

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[280]

Now we only need to leverage everything we've prepared so far to color the star5.
icon in the list. In the build() method of the _EventListState class, in the
itemBuilder parameter of the ListView.builder constructor, we'll declare a
Color widget that will depend on the EventDetail being a favorite or not.
We'll set amber when the detail is a favorite and grey if it's not, as follows:

Color starColor = (isUserFavourite(details[position].id) ?
Colors.amber : Colors.grey);

For the trailing icon, instead of returning a fixed color, we'll return the6.
starColor value, as follows:

trailing: IconButton(
 icon: Icon(Icons.star, color: starColor),

Now, if you restart the app, you should see that the values you clicked7.
previously have an amber star color. This helps the user see which items on the
list are their favorites.
So far, we can add favorites, but we cannot remove them. We need to add a small8.
tweak to the toggleFavourite() method, as shown in the following code
block:

toggleFavourite(EventDetail ed) async{
 if (isUserFavourite(ed.id)) {
 Favourite favourite = favourites
 .firstWhere((Favourite f) => (f.eventId == ed.id));
 String favId = favourite.id;
 await FirestoreHelper.deleteFavourite(favId);
 }
 else {
 await FirestoreHelper.addFavourite(ed, uid);
 }
 List<Favourite> updatedFavourites =
 await FirestoreHelper.getUserFavourites(uid);
 setState(() {
 favourites = updatedFavourites;
 });
 }

As you can see now, the method can call addFavourite() as before, but also
deleteFavourite(), depending on the result of the call to the isUserFavourite method
over the ID of the EventDetail that was passed to the method.

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[281]

After adding or deleting the Favourite in the database, the method also calls the
getUserFavourites() method to update the state. This will update the UI with the
changes to the favorites list. Depending on the device connection speed, you might notice a
small delay when the user presses the star icon button, but this is normal while the network
calls are completed.

If you try the app right now, you'll find that you can add or remove favorites from the list
by clicking the star IconButton. And with this last feature, the app is now complete. Well
done! You now have the skills required to create a full-stack application leveraging Flutter
and Firebase!

Summary
In this chapter, you've seen how to build a full-stack app from scratch: server-side, we've
used Firebase to create a web service, including database and authentication services;
client-side, we've used Flutter to read and write data to the cloud.

In detail, you've seen how to create a new Firebase project, which is the entry point for all
Flutter services. Inside the project, you’ve created a new NoSQL database with the Cloud
Firestore database. This database contains collections, which in turn contain documents.
Documents are made up of key-value pairs or fields. Then, we saw how to integrate
Firebase into a Flutter project, both in iOS and Android. This multi-step process includes
downloading a configuration file, different for the two operating systems, and adding it in
your projects; of course, it also includes adding the relevant packages to the pubspec.yaml
file.

We've seen how to add an instance of a Cloud Firestore database, and how to retrieve
documents from a collection, with or without filters. We've also seen how to add and delete
documents from Flutter code. All read and write methods in Firebase are asynchronous.
We've seen how the Authentication service works in Firebase. We have added new users
for our app and logged them before letting them retrieve data. In this context, we
introduced Firestore authorization rules, and at the same time, how to implement server-
side security.

Finally, we seen how to provide personalized content to our users by querying the
database, and adding user information when inserting new documents. Adding Firebase to
your toolbox gives you the power to create remote services without the need to write
server-side code or create databases, and gives you virtually unlimited scaling capabilities.

In the next chapter, we'll use two very important features for your apps: Geo-localisation
and maps!

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[282]

Questions
Please try to answer the following questions (when in doubt, have a look at the content in
the chapter itself—you'll find all the answers there!):

In a Cloud Firestore database, what's the difference between a document and a1.
collection? And can a document contain a collection?
Can you name three of the main differences between a SQL and a NoSQL2.
database?
Consider the following code:3.

 docs = await db.collection('favourites')
.where('userId', isEqualTo: uid).getDocuments();

 What does this query perform? And which data type is the docs variable?

In a Cloud Firestore database, is it possible to allow data access only to4.
authenticated users? If so, how can you achieve that?
How can you create an instance of a FirebaseAuth class?5.
Consider the following code:6.

var result = db.collection('favourites').add(fav.toMap()
 .then((value) => print(value.documentID))
 .catchError((error)=> print (error));

 Can you explain what these instructions perform?

When would you create a getter method for a property in a class? And how do7.
you write the code to create it?
When do you need a Map object to interact with a Cloud Firestore database?8.
How do you delete a document from a Cloud Firestore database?9.
How do you pass data from one screen to another?10.

Further reading
The most comprehensive resource if you want to learn more about Firebase in general, and
how to integrate Firebase with the technology of your choice in particular, is the official
Firebase documentation, available at the following address: https:/ /firebase. google.
com/docs/guides.

https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides
https://firebase.google.com/docs/guides

Firing Up the App - Integrating Firebase into a Flutter App Chapter 7

[283]

Still in the official documentation, you'll also find guides on the Firestore database at
https://firebase. google. com/ docs/ firestore and Firestore Authentication at https:/ /
firebase.google. com/ docs/ firestore/ security/ get- started, as well as a specific guide
on how to install Firebase with
Flutter: https://firebase.google.com/docs/flutter/setup. For an updated list of
available authentication providers, have a look at https:/ /firebase. google. com/ docs/
reference/js/firebase. auth. AuthProvider.

For a detailed explanation about NoSQL database and for the different kinds on the NoSQL
database, IBM has provided a very easy-to-read document
at https://www.ibm.com/cloud/learn/nosql-databases.

A concept that may cause confusion the first time you deal with security is the difference
between authentication and authorization. There's a brief but very clear explanation
at https://auth0.com/docs/authorization/concepts/authz-and-authn.

https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/firestore/security/get-started
https://firebase.google.com/docs/flutter/setup
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://firebase.google.com/docs/reference/js/firebase.auth.AuthProvider
https://www.ibm.com/cloud/learn/nosql-databases
https://auth0.com/docs/authorization/concepts/authz-and-authn

8
The Treasure Mapp -

Integrating Maps and Using
Your Device Camera

Let's say you are walking along the street, and you see a new shop that inspires you; or,
maybe you've had dinner in a memorable restaurant, and want to remember its location
and how it looks; or, you've parked your car, and need to remember where you left it.
Wouldn't it be great if you could mark any place, and maybe add a brief description and a
picture?

The Treasure Mapp is an app that allows users to mark places on a map, and then add a
name and a picture over it. Pictures will be taken by using the device camera. Users will be
able to see all the saved places, marked on a map or through a list. They will also be able to
edit or delete them.

This project covers two important features of mobile programming: geolocation, and the
device camera. It also covers dealing with device permissions.

The following topics will be covered in this chapter:

Geolocation and camera: a powerful duo
Integrating Google Maps into Flutter
Using the device camera

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[285]

Technical requirements
You'll find the completed app code on the book's GitHub repository at https:/ /github.
com/PacktPublishing/ Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter Software Development Kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code (VS Code), Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.
For this chapter, an iOS or Android device is required to use the hardware
camera and geolocation features.

Geolocation and camera – a powerful duo
If you were asked to name some of the most important features of your mobile device, you
would probably include in your list the camera and the built-in Global Positioning System
(GPS). These two features that we take for granted today are very specific to mobile
development and can make your apps stand out from the crowd.

The geolocation feature enables you as a developer to identify the coordinates of your app's
users—in particular, their latitude and longitude. It will also potentially save those
coordinates for future use. This gives developers a huge potential: think of social networks
suggesting nearby events, or travel agents recommending restaurants or hotels, or dating
apps suggesting new contacts. There are so many potential scenarios to give your users
relevant and personalized information!

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[286]

The case for pictures is even more obvious: people love shooting and sharing their pictures.
The most successful social media contain more pictures than text messages. Even the phone
manufacturers base an important part of their marketing on how good their camera is. So,
as developers, we should be ready to leverage this opportunity and give our users what
they love, which is the ability to use their camera whenever it may add quality to your app.

And what if we put together geolocation and camera in a single app? Welcome to the
Treasure Mapp!

Integrating Google Maps into Flutter
For this project, we'll be using the Google Maps API to show the user a map and add
markers to it. As with other Google services, Maps is free up to a certain threshold. You, as
a developer, should be able to use it for free in most cases. For production purposes,
though, this threshold might not be enough.

For details about pricing and thresholds in Google Maps for a production
app, have a look at the following page: https:/ /cloud. google. com/ maps-
platform/ pricing/ .

Let's begin integrating our maps into Flutter, as follows

Create a new Flutter app, and call it treasure_mapp.1.
Add the Google Maps plugin as a dependency in the pubspec.yaml file. The2.
package is called google_maps_flutter, and you can find the latest version on
pub.dartlang.org. The code can be seen in the following snippet:

dependencies:
 google_maps_flutter: ^0.5.24+1

Then, you need to obtain an API key to use Google Maps. You can get one from3.
the Google Cloud Platform (GCP) console at the following address: https:/ /
console. cloud. google. com.

https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
https://cloud.google.com/maps-platform/pricing/
http://pub.dartlang.org
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[287]

After logging in with your Google Account, you should see the console, as4.
shown in the following screenshot:

Every API key belongs to a project, so you'll need to create one or select an5.
existing one before obtaining your credentials. Let's call the project
Treasure_Mapp, leave No organization for your location, and then click
Create, as shown in the following screenshot:

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[288]

Now, click the menu button and select APIs & Services | Credentials, and, on6.
the Credentials page, select Create credentials | API key.
Now that you have the key, we need to add it to our project. For Android, you 7.
need to add the information into
the android/app/src/main/AndroidManifest.xml application manifest. Just
place the code in the application node, under the icon, as follows:

<application
 android:name="io.flutter.app.FlutterApplication"
 android:label="testing"
 android:icon="@mipmap/ic_launcher">
 <meta-data android:name="com.google.android.geo.API_KEY"
 android:value="ADD YOUR KEY HERE"/>

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[289]

You might wonder about the role of this file in your Flutter project. The
Android App Manifest, which is a necessary file for any Android build,
contains essential information about your app. This information is used
for the Android build tools, the Android operating system (OS) itself, and
the Google Play store when you publish your app.

For example, among several other things, the manifest contains the app's
package name, the permissions that the app needs in order to access
protected parts of the system (such as the camera, or an internet
connection) or other apps, and the hardware and software feature the app
requires.

For an iOS app, the procedure is slightly different. After obtaining the API key,8.
you need to open the AppDelegate file at the following location:
ios/Runner/AppDelegate.swift.
At the top of the file, import GoogleMaps, as follows:9.

import UIKit
import Flutter
import GoogleMaps

Then, add the code line in bold in the AppDelegate class, as follows:10.

@objc class AppDelegate: FlutterAppDelegate {
 override func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LaunchOptionsKey: Any]?
) -> Bool {
 GMSServices.provideAPIKey("YOUR API KEY HERE")
 GeneratedPluginRegistrant.register(with: self)
 return super.application(application,
 didFinishLaunchingWithOptions: launchOptions)
}

The AppDelegate.swift file manages the app's shared behaviors and is the root
object of an iOS app.

For your iOS project, you also need to opt in to the embedded views preview. Get
to this by adding a Boolean property to the app's Info.plist file.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[290]

So, open your project ios/Runner/Info.plist file, and add the following code11.
in the <dict> node:

<key>io.flutter.embedded_views_preview</key>
<true/>

Now that Google Maps is correctly set up in your Android or iOS app, let's show a map on
the screen.

Showing a map with Google Maps
With everything ready for iOS and Android, we can now add a GoogleMap widget to the
main screen of our app, as follows:

To use a package, as usual, we can import it at the top of the file. So, let's include1.
the required Google Maps dependency in the main.dart file, like this:

import 'package:flutter/material.dart';
import 'package:google_maps_flutter/google_maps_flutter.dart';

You’ll find the entire code for main.dart here: https:/ /github. com/
PacktPublishing/ Flutter- Projects/ blob/ master/ ch_ 08/ lib/main. dart

Then, remove the stateful widget from the default app, and create a new stateful2.
widget called MainMap, as follows:

class MainMap extends StatefulWidget {
 @override
 _MainMapState createState() => _MainMapState();
}

class _MainMapState extends State<MainMap> {
 @override
 Widget build(BuildContext context) {
 return Container(
);
}}

https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart
https://github.com/PacktPublishing/Flutter-Projects/blob/master/ch_08/lib/main.dart

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[291]

In the _MainMapState class, we'll return a Scaffold whose title is 'The3.
Treasure Mapp' (I'm so proud of this app's nerdy title), and the body will
contain a Container whose child will be a GoogleMap widget.
GoogleMap is the object that shows a map on the screen. In our app, it will take
all the available space. This is illustrated in the following block of code:

 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('The Treasure Mapp'),),
 body: Container(child: GoogleMap(),),
);
 }

You may notice that the GoogleMap widget requires an
initialCameraPosition parameter. This is the center of the map when we first
show it to our user. Google uses geographic coordinates—latitude and
longitude—to position a map or place markers on it.

The latitude/longitude system has been in use, with a few small changes,
since the mathematician, astronomer, and geographer Claudius Ptolemy
wrote the Geography world atlas in the year 150 AD. It's fascinating how
two numbers can tell you exactly your position, wherever you are on
earth.
Until recently, mariners have been the primary users of this system, but
now, with the availability of GPS and easy access to maps, it's important
you understand how this system works. If you want to learn more about
this, have a look at https:/ / gisgeography. com/latitude- longitude-
coordinates/ .

Let's temporarily create a fixed coordinate for the initialCameraPosition of
our map. They are the coordinates of Rome, Italy, but feel free to choose your
favorite position, possibly near your own location.

A CameraPosition requires a target, which takes a LatLng to express the4.
actual position. Optionally, you can also specify a zoom level—the bigger the
number, the higher the scale of the map. We'll begin with a zoom level of 12. At
the top of the _MainMapState class, let's write the following code:

 final CameraPosition position = CameraPosition(
 target: LatLng(41.9028, 12.4964),
 zoom: 12,
);

https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/
https://gisgeography.com/latitude-longitude-coordinates/

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[292]

Then, in the GoogleMap constructor, we can specify the5.
initialCameraPosition, as follows:

 body: Container(
 child: GoogleMap(
 initialCameraPosition: position,
),),

If you try out the app right now, you should see a map similar to the one in the6.
following screenshot:

This means that everything is working so far. The next step will be adding a marker to the
map, which highlights our position.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[293]

Using geolocation to find the current position
There's a Flutter plugin called Geolocator that provides access to the platform-specific
location services. Let's get started, as follows:

We need to add the dependency in the pubspec.yaml file, like this:1.

 geolocator: ^5.3.0

Then, in the main.dart file, we'll import the Geolocator library, as follows:2.

import 'package:geolocator/geolocator.dart';

In order to find the current location of our user, we'll create a new method called3.
_getCurrentLocation that will use the device GPS to find the latitude and
longitude of the current location, and return it to the caller, as follows:

 Future _getCurrentLocation() async {}

Geolocator methods are all asynchronous, so our method will be asynchronous
as well.

Not all devices have the geolocation service available, so, inside the4.
_getCurrentLocation method, we can check whether the functionality is
available or not before finding the current position, by running the following
code:

bool isGeolocationAvailable = await
Geolocator().isLocationServiceEnabled();

Then, if the service is available, we'll try to get the current position; otherwise,5.
we'll return the previously set fixed position, as follows:

Position _position = Position(latitude:
this.position.target.latitude, longitude:
this.position.target.longitude);
 if (isGeolocationAvailable) {
 try {
 _position = await Geolocator().getCurrentPosition(
 desiredAccuracy: LocationAccuracy.best);
 }
 catch (error) {
 return _position;
 }
 }
 return _position;

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[294]

The Geolocator().getCurrentPosition() method returns a
Position object. This not only contains latitude and longitude, but can
also contain other data—such as altitude, speed, and heading—that we
don't need for this app but which might be useful to you for other apps.

Now that we have the current location of our user, let's see how to place a marker on that
position on the map.

Adding a marker to the map
A Marker identifies a location on a Map. We'll use markers to show our user their current
position, and we'll also add the saved places' markers to our map. Let's look at the steps:

 Create a List of markers at the top of the _MainMapState class, like this:1.

List<Marker> markers = [];

Then, we'll add a generic method that will add a Marker to the markers list. It2.
will take a Position, a String containing the identifier of the Marker, and
another String for the title.
The way to show information about the Marker itself to the user is the
infoWindow parameter. In particular, this takes a title that contains a text that
will appear whenever the user taps on the Marker itself.

A Marker uses a default image, but it's also possible to choose custom images3.
for a Marker. We'll use the default icon for this app, but we'll change the color
for the marker of the current position. The default color for a Marker is red. In
our app, if the MarkerId is currpos, we'll choose an azure color to help the user
identify their position. For the other markers, we'll choose an orange color.
Once the marker is added, we'll call the setState method to update the screen.4.
Here is the code for the steps described previously—add it at the bottom of the
_MainMapState class, like this:

void addMarker(Position pos, String markerId, String markerTitle)
{
 final marker = Marker(
 markerId: MarkerId(markerId),
 position: LatLng(pos.latitude, pos.longitude),
 infoWindow: InfoWindow(title: markerTitle),
 icon: (markerId=='currpos') ?
 BitmapDescriptor.defaultMarkerWithHue
 (BitmapDescriptor.hueAzure):BitmapDescriptor
 .defaultMarkerWithHue(BitmapDescriptor

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[295]

 .hueOrange)
);
 markers.add(marker);
 setState(() {
 markers = markers;
 });
 }

Now, we need to call this method after the current position has been found. So,5.
we'll override the initState method, and, inside it, we'll call the
_getCurrentLocation() method. After the result is retrieved, we'll call the
addMarker method to actually show the marker on the map. In case of an error,
we'll just print the error in the debug console. All of this is achieved by running
the following code:

@override
void initState() {
 _getCurrentLocation().then((pos){
 addMarker(pos, 'currpos', 'You are here!');
 }).catchError(
 (err)=> print(err.toString()));
 super.initState();
}

The last detail for this part is adding the markers to the map. In the build()6.
method, when we call the GoogleMap constructor, we'll add the markers as
shown in the following code block:

child: GoogleMap(
 initialCameraPosition: position,
 markers: Set<Marker>.of(markers),

If you try the app right now, you should see your current position, as shown in the
following screenshot:

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[296]

Now, let's give our users the power to save their favorite places and show them on our
map!

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[297]

Creating the place model and helper classes
In order to save the user's favorite places, we will use an SQLite database. As we did for the
project in Chapter 6, Store That Data - Using Sq(F)Lite to Store Data in a Local Database, we'll
use a model to insert the places to the database. So, let's begin, as follows:

Create a new file in our project, called place.dart. Inside the file, we'll create a1.
class, called Place, which will contain five properties:

The id integer.
The name String.
Two doubles for the latitude and longitude.
A String that will later contain an image.

The properties under Place will look like the following:

class Place {
 int id;
 String name;
 double lat;
 double lon;
 String image;
}

Next, let's create a constructor that will set all the properties, like this:2.

Place(this.id, this.name, this.lat, this.lon, this.image);

Finally, we'll create a toMap() method that will return a Map of type String,3.
dynamic. As you might recall, a Map is a collection of key/value pairs: the key is a
String, and, as we have different types in the table, the value will be dynamic.
The code is shown in the following block:

 Map<String, dynamic> toMap() {
 return {
 'id': (id==0)?null:id,
 'name': name,
 'lat': lat,
 'lon': lon,
 'image': image
 };
 }

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[298]

Now that we have completed the Place class, let's also create a helper file that4.
will interact with the database: let's call it dbhelper.dart. This file will contain
the methods to create the database and to retrieve and write data.

As we'll be using the sqflite package, we need to add the dependency in the
pubspec.yaml file, as follows:

dependencies:
 […]
sqflite: ^1.2.1
path: ^1.6.4

In order to find the latest version of the dependency, please visit https:/ /
pub.dev/ packages/ sqflite. We'll also be using the path package so that
we can access the database with the same code for iOS and Android.

In the dbHelper.dart file, we'll import sqflite.dart and path.dart, as5.
follows:

import 'package:path/path.dart';
import 'package:sqflite/sqflite.dart';

Next, let's create the DbHelper class, like this:6.

class DbHelper {}

Inside the class, we'll create two variables. One is an integer with the version of7.
the database, which at the beginning is 1; then, we will create the variable that
will contain the database itself, called db, as follows:

final int version = 1;
Database db;

Next, we'll create the openDb() method: this will open the database if it exists, or8.
create it if it doesn't. All database operations are asynchronous, so the openDb()
function will be asynchronous and will return a Future of type Database, as
illustrated in the following code snippet:

Future<Database> openDb() async { }

Inside the function, we'll first check whether the db object is null by running the9.
following code:

if (db == null) {}

https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite
https://pub.dev/packages/sqflite

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[299]

If db is null, we need to open the database. We'll call the sqflite
opendatabase() method, passing the path and version of the database, and the
onCreate parameter that will be called if the database at the path specified is not
found. We'll call this database mapp.db, and it will only contain a single table that
has the same schema as the Place class.

After opening or creating the database, we'll return it to the caller, like this:10.

Future<Database> openDb() async {
 if (db == null) {
 db = await openDatabase(join(await getDatabasesPath(),
 'mapp.db'),
 onCreate: (database, version) {
 database.execute(
 'CREATE TABLE places(id INTEGER PRIMARY KEY, name TEXT,
 lat DOUBLE, lon DOUBLE, image TEXT)');
 }, version: version);
 }
 return db;
 }

We don't need to have multiple instances of the DbHelper class throughout the11.
app, so we'll create a Factory constructor that, instead of creating a new
instance each time it's called, only returns a single instance of the class, as
follows:

static final DbHelper _dbHelper = DbHelper._internal();
DbHelper._internal();

factory DbHelper() {
 return _dbHelper;
}

Now, let's insert some fake data so that we can see the markers on our map and
test if everything is working correctly.

We'll create a new method, called insertMockData(), whose purpose is to12.
insert some default data into our database. We'll insert three records in the
places table (feel free to change the coordinates so that they are closer to where
you are right now), and, as usual, this method will be asynchronous, as
illustrated in the following code block:

 Future insertMockData() async {
 db = await openDb();
 await db.execute('INSERT INTO places VALUES (1,
 "Beautiful park", 41.9294115, 12.5380785, "")');

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[300]

 await db.execute('INSERT INTO places VALUES (2,
 "Best Pizza in the world", 41.9294115, 12.5268947, "")');
 await db.execute('INSERT INTO places VALUES (3,
 "The best icecream on earth", 41.9349061, 12.5339831, "")');
 List places = await db.rawQuery('select * from places');
 print(places[0].toString());
 }

At the top of the DbHelper class, declare a List of the Place object that will13.
contain the result of the query, as follows:

 List<Place> places = List<Place>();

Then, let's create a method that will retrieve all records from the places table.14.
Here, we will use the query() helper method to retrieve all records from the
places table. The query() method returns a List of Map, and we will use it to
transform each Map into a Place. We'll call the method getPlaces(), as
illustrated in the following code block:

Future<List<Place>> getPlaces() async {
 final List<Map<String, dynamic>> maps = await
 db.query('places');
 this.places = List.generate(maps.length, (i) {
 return Place(
 maps[i]['id'],
 maps[i]['name'],
 maps[i]['lat'],
 maps[i]['lon'],
 maps[i]['image'],
);
 });
 return places;
 }

Now, in the main.dart file, let's import the dbhelper.dart and place.dart15.
files, like this:

import 'dbhelper.dart';
import 'place.dart';

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[301]

Then, in the _MainMapState class, we'll declare a DbHelper object, as follows:16.

DbHelper helper;

In the initState() method, we'll call the object instance, like this:17.

helper = DbHelper();

Still in the _MainMapState class, let's create a new method that will retrieve the18.
places from the database. We'll call it _getData(), as shown in the following
code snippet:

Future _getData() async {}

Inside the method, we'll call the helper openDb() method, then the
insertMockData() method to add the first markers to our app, and then, we'll
read them with the getPlaces() method. The _places list will contain the
places that were retrieved.

Next, for each Place in the _places list, we'll call the addMarker() method19.
that we've created previously, as follows:

 await helper.openDb();
 // await helper.testDb();
 List <Place> _places = await helper.getPlaces();
 for (Place p in _places) {
 addMarker(Position(latitude: p.lat, longitude: p.lon),
 p.id.toString(), p.name) ;
 }
 setState(() {
 markers = markers;
 });}

Finally, at the end of the initState() method, let's also call20.
insertMockData() (only the first time the app executes) and _getData(), as
follows:

helper.insertMockData();
_getData();

From the second execution of our app, we'll comment out the helper.insertMockData()
instruction.

Now that we can retrieve our current position and all the saved places we've saved, let’s try
out the app. You should see a screen similar to the one in the following screenshot:

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[302]

If you tap on any of the markers on the map, you should also be able to see its title.

To sum up, our app is now showing all the data to our user. When they first enter the app,
they immediately see their current position and the saved places on the map.

At the moment, users cannot insert, edit, or delete any data relative to the saved places.
This is what we will cover next.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[303]

Inserting new places on the map
We now need to allow our users to insert new data and edit or delete existing records in the
database.

The first step is creating the asynchronous method that will add a new record to the
places table. This will take an instance of Place, and call the insert() database helper
method to add the new place. Add the following code in the DbHelper class in
the dbhelper.dart file:

 Future<int> insertPlace(Place place) async {
 int id = await this.db.insert('places',
 place.toMap(),
 conflictAlgorithm: ConflictAlgorithm.replace,
);
 return id;
 }

Both the insert and edit functions require some user interface (UI) that can contain the text
that the user types. We'll use another dialog box for the add and edit features, and proceed
as follows:

Let's create a new file, called place_dialog.dart, in the lib folder of our app.1.
Here, we want to show our user a dialog window that allows them to insert or
edit a Place, including its coordinates. This dialog will be called from the main
screen when the user wants to add a new Place.
At the top of the new file, we'll import the required2.
dependencies—material.dart, our dbHelper, and the places.dart file, as
follows:

import 'package:flutter/material.dart';
import './dbhelper.dart';
import './place.dart';

Then, create the class that will contain the UI for the dialog, as follows:3.

class PlaceDialog{}

For this class, we want to show the user some text boxes. So, at the top of the4.
PlaceDialog class, let's first create three TextEditingControllers that will
contain the name and coordinates of the Place, as follows:

final txtName = TextEditingController();
final txtLat = TextEditingController();
final txtLon = TextEditingController();

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[304]

Next, we'll create two other fields for this class: a Boolean telling whether this is a5.
new place, and a Place object, as follows:

final bool isNew;
final Place place;

When PlaceDialog gets called, we want it to always receive a Place and a6.
Boolean telling whether the Place is new, so we'll create a constructor that takes
both parameters, like this:

PlaceDialog(this.place, this.isNew);

Then, we'll create a method called buildDialog() that will take the current7.
BuildContext, which, in Flutter is required to show a dialog window. The
buildDialog method will return a generic Widget, as follows:

Widget buildAlert(BuildContext context) {}

Inside the buildDialog() method, first, we'll call the DbHelper class. Here, we8.
don't need to call the openDb() method, as, from this window, we already know
that it's been called previously, and we are receiving an existing instance of the
class, as shown in the following code snippet:

DbHelper helper = DbHelper();

Then, we'll set the text of the TextEditingController widgets to the values of9.
the Place that was passed, as follows:

txtName.text = place.name;
txtLat.text = place.lat.toString();
txtLon.text = place.lon.toString();

Finally, we can return the AlertDialog that will contain the UI that our users10.
will see, as follows:

return AlertDialog();

The title of the AlertDialog will simply be a Text widget containing 'Place',11.
as illustrated in the following code snippet:

title: Text('Place'),

For the content, we'll place all the widgets into a SingleChildScrollView, to12.
make scrolling available in case the widgets do not fit into the screen, as follows:

content: SingleChildScrollView()

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[305]

Inside the SingleChildScrollView, we'll place a Column, as we want the13.
widget in this dialog to be placed vertically, as follows:

child: Column(children: <Widget>[]),

The first element inside the Column will be three TextField widgets—one for14.
the name, one for the latitude, and one for the longitude. After setting the
relevant controller, for all the TextFields, we'll set the hintText of an
InputDecoration object to guide the user in using the UI, as follows:

TextField(
 controller: txtName,
 decoration: InputDecoration(
 hintText: 'Name'
),
),
TextField(
 controller: txtLat,
 decoration: InputDecoration(
 hintText: 'Latitude'
),
),
TextField(
 controller: txtLon,
 decoration: InputDecoration(
 hintText: 'Longitude'
),
),

Later on, we'll also add an image here, but for now, let's place a15.
RaisedButton as the last widget of the Column. When pressed, all changes will
be saved. The child of the button will be a Text with an 'OK' String. In the
onPressed property, we will update the Place object with the new data coming
from the TextFields, and then we'll call insertPlace() on the helper object,
passing the Place containing the data in the TextFields.
Finally, we'll call the pop() method of the Navigator to close the dialog and16.
return to the caller, which at the moment is the map screen, as follows:

RaisedButton(
 child: Text('OK'),
 onPressed: () {
 place.name = txtName.text;
 place.lat = double.tryParse(txtLat.text);
 place.lon = double.tryParse(txtLon.text);
 helper.insertPlace(place);
 Navigator.pop(context);

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[306]

 },
)

The next step is calling the dialog from the map. I'd say that adding a new place from the
map is the main action of the screen, so we can add a FloatingActionButton widget to
the Scaffold of the _MainMapState class.

Back in the main.dart file, in the build() method of the _MainMapState, when we call
the Scaffold, let's add a floatingActionButton parameter that will contain a
FloatingActionButton widget. There's an icon called add_location that's perfect for
our purpose, and we'll use this as a child.

When the user presses the FloatingActionButton, first, we'll find the marker whose
markerId contains the String currpos that contains the current position that we found
previously. If this marker isn't found, we just create a LatLng object with 0 as latitude and
longitude.

In case the Marker containing the current position is found, we'll get the coordinates on a
LatLng object, and we'll create a Place object with the current position.

Next, we create a PlaceDialog instance, passing the place and a true value, as this is a
new Place. Finally, we'll call the showDialog() method, passing the current context, as
shown in the following code block:

 floatingActionButton: FloatingActionButton(
 child: Icon(Icons.add_location),
 onPressed: () {
 int here = markers.indexWhere((p)=> p.markerId ==
 MarkerId('currpos'));
 Place place;
 if (here == -1) {
 //the current position is not available
 place = Place(0, '', 0, 0, '');
 }
 else {
 LatLng pos = markers[here].position;
 place = Place(0, '', pos.latitude, pos.longitude, '');
 }
 PlaceDialog dialog = PlaceDialog(place, true);
 showDialog(
 context: context,
 builder: (context) =>
 dialog.buildAlert(context));
 },
)

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[307]

If you try the app right now, you should see a new FloatingActionButton, and, when
you press it, you should see the dialog with the current coordinates, as shown in the
following screenshot:

And if you insert a name and press the OK button, the new place will be saved into the
database. Now that we can add a new Place to our list, we also need a way to edit and
delete saved items from the database. Let's do that next!

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[308]

Editing and deleting existing places
The easiest way to add the features to edit and delete items from the database is probably
by creating a new screen with a ListView widget, containing all the items that were saved.
In order to achieve this, we'll create a new screen in our app, as follows:

In the lib folder, create a new file called manage_places.dart.1.

After importing the material.dart library, we'll also import the2.
place_dialog.dart file and our dbhelper.dart, as follows:

import 'package:flutter/material.dart';
import 'place_dialog.dart';
import 'dbhelper.dart';

Inside this file, we'll create a new stateless widget, calling it ManagePlaces. This3.
will contain a Scaffold whose AppBar title is 'Manage Places', and, in the
body, we'll call a new widget, called PlacesList, that we'll create next, as
follows:

class ManagePlaces extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Manage Places'),),
 body: PlacesList(),
);
 }
}

Now, we need to create the PlacesList class. It will be a stateful widget. At the4.
top of the class, we'll call an instance of DbHelper, calling it helper, which
includes the methods to interact with the database, and, in the build() method,
we'll return a ListView.builder() constructor, as shown in the following code
block:

class PlacesList extends StatefulWidget {
 @override
 _PlacesListState createState() => _PlacesListState();
}

class _PlacesListState extends State<PlacesList> {
 DbHelper helper = DbHelper();
 @override
 Widget build(BuildContext context) {
 return ListView.builder()

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[309]

 }
}

The itemCount parameter contains the length of the placesList of the helper
object. For the itemBuilder, we'll return a Dismissible to make it easy for the
user to delete an item through a gesture. As you may remember, a Dismissible
requires a key, which, in this case will be the name of the item in the places list,
at the current position.

In the DbHelper class in the dbhelper.dart file, let's add the method that will5.
delete a record from the places table. We'll use the delete() helper method of
the database to remove the Place, as illustrated in the following code block:

Future<int> deletePlace(Place place) async {
 int result = await db.delete("places", where: "id = ?", whereArgs:
[place.id]);
 return result;
}

For the onDismissed function, we can call the deletePlace() method of the
helper object, passing the place at the current position. Then, we call the
setState() method to update the UI, and we show a message using a
SnackBar, informing the user that the Place has been removed, as illustrated in
the following code block:

 Widget build(BuildContext context) {
 return ListView.builder(
 itemCount: helper.places.length,
 itemBuilder: (BuildContext context, int index) {
 return Dismissible(
 key: Key(helper.places[index].name),
 onDismissed: (direction) {
 String strName = helper.places[index].name;
 helper.deletePlace(helper.places[index]);
 setState(() {
 helper.places.removeAt(index);
 });
 Scaffold.of(context)
 .showSnackBar(SnackBar(content: Text("$strName
 deleted")));
 },
));
 },
);

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[310]

For the child of the Dismissible, we can use a ListTile, whose title is the6.
name of the Place at the current position. For the trailing parameter, we'll use
an IconButton, whose icon is the edit icon.

When the user presses the IconButton, we want to call an instance of
PlaceDialog to allow the user to edit an existing Place. Note that when we
create the instance of PlaceDialog, we are passing false as the second
parameter, as this is NOT a new Place, but an existing one. This is illustrated in
the following code block:

child:ListTile(
 title: Text(helper.places[index].name),
 trailing: IconButton(
 icon: Icon(Icons.edit),
 onPressed: () {
 PlaceDialog dialog = PlaceDialog(helper.places[index],
 false);
 showDialog(
 context: context,
 builder: (context) =>
 dialog.buildAlert(context));
 },
),

Now, we need a way to call this screen from the main screen of the app. From the7.
main.dart file, in the build() method of the _MainMapState class, we can
add an actions parameter to the Scaffold.

Here, we can add an IconButton, with a list icon, which, when pressed, will
create a MaterialPageRoute that builds an instance of ManagePlaces and calls
the Navigator.push() method, to change the screen and show
the ListView with the saved places, instead of showing the map, as follows:

return Scaffold(
 appBar: AppBar(title: Text('The Treasure Mapp'),
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.list),
 onPressed: () {
 MaterialPageRoute route =
 MaterialPageRoute(builder: (context)=>
 ManagePlaces());
 Navigator.push(context, route);

 },

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[311]

),
],
),

If you try the app right now, when you click the IconButton list, you should see8.
your list of saved places, as shown in the following screenshot:

If you swipe any of the places in the list, the place will be deleted, and you'll see the
SnackBar confirmation message. If you press the edit IconButton, you'll see the dialog
with the name and coordinates of the place you've selected, and you'll be able to change the
place data.

Now, there's one last feature that we need to introduce in our app, and it's the ability to
shoot pictures and add them to the places: let's do that next.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[312]

Using the device camera
Being able to use the camera functionality is an important part of any mobile development
framework, and Flutter provides the camera plugin for this purpose. The camera plugin
allows you to get a list of the available cameras in the device, show previews, and take
photos and videos.

The first step in order to use the camera is to set up the app. To do so, we'll proceed as
follows:

In the pubspec.yaml file, let's add the dependencies. We'll—of course—need1.
camera, but also path (which we already added at the beginning of this project)
and path_provider, to save and retrieve the photos we take from the app, as
shown in the following code block:

camera: ^0.5.7
path_provider: ^1.4.4

For Android, you'll need to change the minimum Android SDK version to 21 (or
higher) in your android/app/build.gradle file, as follows:

minSdkVersion 21

If you're using iOS, you'll need to add two rows to the ios/Runner/Info.plist
file, as follows:

<key>NSCameraUsageDescription</key>
<string>Enable TreasureMapp to access your camera to capture your
photo</string>
<key>NSMicrophoneUsageDescription</key>
<string>Enable TreasureMapp to access mic to record your
voice</string>

Now that the app is configured, we can actually write the code to use the camera.
We'll be able to take a picture when the user clicks an IconButton from the
PlaceDialog screen. In order to save the picture to the right place, we'll always
need to pass the place Id.

In our app, we'll create a new file, called camera_screen.dart. This will2.
contain the UI to take a new picture. At the top of the file, let's import all the
required libraries, as follows:

import 'package:flutter/material.dart';
import 'package:camera/camera.dart';
import 'package:path/path.dart';

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[313]

import 'package:path_provider/path_provider.dart';
import 'place.dart';

Next, we'll create a stateful widget called CameraScreen, like this:3.

class CameraScreen extends StatefulWidget {
 @override
 _CameraScreenState createState() => _CameraScreenState();
}

class _CameraScreenState extends State<CameraScreen> {
 @override
 Widget build(BuildContext context) {
 return Container(
); } }

At the top of the _CameraScreenState class, we'll declare a few4.
fields—a Place called place, and a CameraController called _controller. A
CameraController establishes a connection to the device's camera, and you
can use it to actually take the pictures. The code for this is shown in the
following snippet:

Place place;
CameraController _controller;

Let's fix the CameraScreen as well so that it can receive a Place from its caller,5.
like this:

class CameraScreen extends StatefulWidget {
 final Place place;
 CameraScreen(this.place);
 @override
 _CameraScreenState createState() => _CameraScreenState();
}

Most devices have two cameras, one on the front and the other on the
back, but depending on the user's device, there may be only one—or even
more than two—if they connect an external camera. In this project, we'll
only use the first camera, but it's very easy to switch from one camera to
another. If you want to learn more about switching cameras, have a look
at the following link: https:/ / pub.dev/ packages/ camera.

https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera
https://pub.dev/packages/camera

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[314]

Still in the _CameraScreenState class, at the top of it, we'll declare a few other6.
variables— a list of the available cameras, the selected camera, a generic widget
for the preview, and an image. The widget that contains a camera is
CameraDescription, as shown in the following code snippet:

List<CameraDescription> cameras;
CameraDescription camera;
Widget cameraPreview;
Image image;

The first method we'll create in the _CameraScreenState class will set the
camera on our device.

The method that returns all the available cameras is, predictably, called
availableCameras(), and it returns a Future of type
List<CameraDescription>. So, the setCamera() method will be
asynchronous as well and will set the camera to be the first camera on the device
(which is generally the main one), on the back of the device.

To avoid raising an error if there is no camera, we will also check if the List is7.
empty, as follows:

Future setCamera() async {
 cameras = await availableCameras();
 if (cameras.length != 0) {
 camera = cameras.first;
 }
 }

Next, we'll override the initState() method. Inside the method, we'll call8.
setCamera(), and when the asynchronous method returns, we'll create a new
CameraController, passing the specific camera we will use for this controller
and defining the resolution to use—in this case, ResolutionPreset.medium.
Then, we'll call the asynchronous initialize() method for the9.
CameraController, and when in the then() function, we'll call the
setState() method to set the cameraPreview widget to a CameraPreview
widget of the controller, as follows:

@override
 void initState() {
 setCamera().then((_) {
 _controller = CameraController(
 // Get a specific camera from the list of available
 // cameras.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[315]

 camera,
 // Define the resolution to use.
 ResolutionPreset.medium,
);
 _controller.initialize().then((snapshot) {
 cameraPreview = Center(child: CameraPreview(_controller));
 setState(() {
 cameraPreview = cameraPreview;
 });
 });
 });
 super.initState();
 }

A CameraPreview widget displays a preview of the camera's feed.

Next, we'll override the dispose() method for the _CameraScreenState10.
class—this will dispose of the controller when the widget itself is disposed of, as
follows:

@override
void dispose() {
 _controller.dispose();
 super.dispose();
}

Now, this screen is ready to show a camera preview to our user. Let's build the UI to test
this functionality, as follows:

In the build() method, we'll return a Scaffold. In the appBar of the1.
Scaffold, we'll show a Text with 'Take Picture'. Later, we'll use the
appBar to take the picture as well, but for now, we'll just show the preview.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[316]

In the body of the Scaffold, we'll place a Container whose child is the2.
cameraPreview we've set in the initState() method, as follows:

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('Take Picture'),
),
 body: Container(
 child: cameraPreview,
));
 }

To check whether the camera is working, we need to call this screen from the3.
PlaceDialog class. So, in the place_dialog.dart file, in the buildAlert()
method, let's add an IconButton under the longitude TextField.

The icon will be a camera_front icon, and, when the user presses the
IconButton, if the Place is a new place, first we insert it into the database by
calling the insertPlace() method over the DbHelper instance.

Then, we create a new MaterialPageRoute to call the CameraScreen route.4.

The full code is shown here:

IconButton(
 icon: Icon(Icons.camera_front),
 onPressed: () {
 if (isNew) {
 helper.insertPlace(place).then((data){
 place.id = data;
 MaterialPageRoute route = MaterialPageRoute(builder:
 (context)=>
 CameraScreen(place));
 Navigator.push(context, route);
 });
 }
 else {
 MaterialPageRoute route = MaterialPageRoute(builder:
 (context)=>
 CameraScreen(place));
 Navigator.push(context, route);
 }
 }),

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[317]

In order to try the camera preview, from the PlaceList screen, tap on any place. In the
dialog, you should see the camera IconButton—click on it, and the camera preview should
be visible. An example that will probably be very close to what you can see right now (if
you are following along and building the app, as you should be!) is shown in the following
screenshot:

If you are using an iOS emulator, you cannot use the camera—you should
use a real device to test the camera functionality for this app.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[318]

What we need to do now is take the picture itself.

Saving and retrieving pictures as local files
Still in the _CameraScreenState class, in the AppBar in the build() method, we'll set the
actions parameter so that it contains an IconButton. When pressed, this will store the
picture in the temp directory, which can be found using the path_provider plugin. The
name of the file will just be the current date and time.

Next, we can finally call the takePicture() method of the CameraController. This will
save the picture into the provided path, as shown in the following code block:

actions: <Widget>[
 IconButton(
 icon: Icon(Icons.camera_alt),
 onPressed: () async {
 final path = join(
 (await getTemporaryDirectory()).path,
 '${DateTime.now()}.png',
);
 // Attempt to take a picture and log where it's been saved.
 await _controller.takePicture(path);
 },
)
],

After we take the picture, we want to show it to our users. We'll create another screen,
called PictureScreen.

Let's add the code that will change the screen, calling the new one that we'll create next,
after the await _controller.takePicture(path); instruction, as follows:

MaterialPageRoute route = MaterialPageRoute(
 builder: (context) => PictureScreen(path, place)
);
Navigator.push(context, route);

For your apps, you may want to choose a different place for your pictures,
and probably interact with the gallery itself. If you want to learn more
about how to save an image to the device gallery with Flutter, have a look
at the image_gallery_saver plugin, available at this link: https:/ / pub.
dev/packages/ image_ gallery_ saver.

https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver
https://pub.dev/packages/image_gallery_saver

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[319]

We'll now create the PictureScreen widget. The purpose of this screen is to show the
picture that was taken and save its path in the database, in the relevant Place record.

So, in the lib folder, let's create a new file, called picture_screen.dart. Into that file, we
will import the required dependencies and create a stateless widget, as follows:

import 'dart:io';
import 'package:flutter/material.dart';
import './main.dart';
import 'place.dart';
import 'dbhelper.dart';

class PictureScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
);
 }
}

This widget will receive two variables: one is the path of the image that has been taken
from the calling screen, and the other is the place whose picture has been taken. So, let's
create the fields and the constructor at the top of the PictureScreen class, as follows:

final String imagePath;
final Place place;
PictureScreen(this.imagePath, this.place);

In the build() method, we'll call the instance of DbHelper; then, we'll return a Scaffold.
In the body of the Scaffold, we will place a Container whose child will be an Image.

The Image.file() constructor creates a widget that displays an image
obtained from a file in your device.

In the appBar of the Scaffold, in the actions property, we'll place an
IconButton whose icon will be the save icon. In the onPressed property, we'll save the
path of the image to the database, calling the insertPlace() method.

Note that even if the Place already exists in the database, we can still call
insertPlace() because the conflict algorithm we chose is replace.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[320]

After saving the path, we return to the main screen of the app, as follows:

DbHelper helper = DbHelper();
 return Scaffold(
 appBar: AppBar(
 title: Text('Save picture'),
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.save),
 onPressed: () {
 place.image = imagePath;
 //save image
 helper.insertPlace(place);
 MaterialPageRoute route = MaterialPageRoute(
 builder:(context)=> MainMap());
 Navigator.push(context, route);
 },
)
],
),
 body:Container(
 child: Image.file(File(imagePath)),
)
);

At the moment, we have no way of knowing whether the picture has been correctly saved
or not. In the PlaceDialog screen, we want to show the picture we've taken, if it's
available.

So, in the buildAlert() method of the PlaceDialog class, let's add an image—if
available—under the latitude TextField, just before the IconButton, as follows:

(place.image!= '')?Container(child:
Image.file(File(place.image))):Container(),

Let's try the app now, to see if we can add a new picture to an existing place. Here are the
steps:

From the PlaceList screen, choose an item from the List.1.
From the dialog screen, press the camera IconButton.2.
From the preview, take a picture using the appbar IconButton.3.
From the pictureScreen, press the Save IconButton on the AppBar.4.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[321]

Open the list again, and press on the item you chose before. You should now see5.
the picture, as illustrated in the following screenshot:

And with that, we have completed all the functions for this app.

Let's recap on what we've accomplished, and see what you can do to make this app better.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[322]

Summary
Geolocation is a technology that allows you to identify the physical location of a device,
and this is a very useful tool for a mobile developer because today, location-enabled
smartphones are in almost everyone's pocket, and it's incredibly important for an app to
give relevant messages that meet users' needs. In this chapter, you've learned how to find
your users' coordinates by using Geolocator, the library that provides access to platform-
specific location services.

Another very interesting feature of this project has been integrating the Google Maps API
into the app, using the google_maps_flutter package. You've seen how to show a map,
and how to add Markers into it. This was a rare opportunity to use information stored in
an SQLite database and show it in a different way—instead of using the usual ListViews
or forms, all data was placed in a Map.

You've also seen how to leverage the camera plugin to use your device's camera. You've
used camera previews, taken pictures, and saved the pictures in a temporary directory of
the device, using the path and path_provider libraries.

At this time, the app is still a prototype: the files should probably be saved in a different
place; pictures and data could be shared and saved over the web; the interaction with the
camera could be smoother, and the app itself could be made more secure and reliable.
However, the main functions we've used here can serve as a starting point to create
personalized and engaging experiences for your users.

The next chapter will be fun: you'll create a dice game using animations with Flare!

Questions
At the end of each project, you'll find a few questions to help you remember and review the
contents covered in the chapter. Please try to answer the following questions (when in
doubt, have a look at the content in the chapter itself—you'll find all the answers there!):

What is the purpose of adding the path and path_provider libraries into your1.
app?
In which files do you add the API key for Google Maps in your project for2.
Android and/or iOS?
When you pass the initialCameraPosition to a GoogleMap widget, which3.
type of widget do you need to pass?
How can you get the current position of a device?4.

The Treasure Mapp - Integrating Maps and Using Your Device Camera Chapter 8

[323]

What is a Marker and when do you use it?5.
When do you need to use a LatLng widget in a Marker?6.
Which is the method that returns a List of the available cameras on a device?7.
How can you show the camera preview to your users?8.
What's the purpose of a CameraController, and how do you create one?9.
How do you take a picture in Flutter?10.

Further reading
Google Codelabs provide guided tutorials that show how to build small applications that
use a specific technology: there's one very clear and easy-to-follow tutorial that uses a web
service to retrieve data and show it on a map. This could be a perfect tutorial to follow to
add new features to the project you've built in this chapter. You can access the codelab at
the following link: https:/ /codelabs. developers. google. com/ codelabs/ google- maps-
in-flutter.

Similar to Google Codelabs, but specific to Flutter, are the Flutter cookbooks: there is one
that shows ways to use the camera. You can find it at this address: https:/ /flutter. dev/
docs/cookbook/plugins/ picture- using- camera.

You can find an example of an app using the camera plugin extensively at https:/ /
flutterawesome.com/ a- simple- camera- app- built- with- flutter- and- using- sqlfite-
for-sqlite-storage/ .

There are several ways you could make the project of this chapter better: one is dealing
with files and folders in your app in a more solid way. If you want to learn more about that,
have a look at the following cookbook about reading and writing files with Flutter: https:/
/flutter.dev/docs/ cookbook/ persistence/ reading- writing- files.

Apps using geolocation and the device camera need permissions when you create a
production app: there's a great tool in Flutter called permission_handler. For more
information, visit the package page at https:/ /pub. dev/ packages/ permission_ handler.

https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://codelabs.developers.google.com/codelabs/google-maps-in-flutter
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutter.dev/docs/cookbook/plugins/picture-using-camera
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutterawesome.com/a-simple-camera-app-built-with-flutter-and-using-sqlfite-for-sqlite-storage/
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://flutter.dev/docs/cookbook/persistence/reading-writing-files
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler

9
Let's Play Dice: Knockout -
Creating an Animation with

Flare
An important part of what makes an app special for its users is how engaging and smooth
the animations in the user interface (UI) are. Flutter has several ways to include animations
in your apps, and you've already seen some of those in Chapter 4, Pong Game - 2D
Animations and Gestures. In this chapter, we'll introduce another powerful software to bring
your animation skills to the next level: Flare.

The following topics will be covered in this chapter:

What's Flare?
Creating objects with Flare
Animating objects with Flare
Integrating Flare into a Flutter app

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[325]

Technical requirements
You'll find the completed app code on the book's GitHub repository at https:/ /github.
com/PacktPublishing/ Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter software development kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code (VS Code), Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.

Project overview
The app we will build in this chapter is the second (and last) game of this book, after the
Pong game we built in Chapter 4, Pong Game - 2D Animations and Gestures. This time, we'll
deal with dice, and create a revisited version of the Knockout dice game.

The app will contain two screens: the first one will only contain a single dice that the user
will be able to roll. This will show the animation that you'll create with Flare.

The screen will look similar to the following screenshot:

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[326]

The second screen will contain the Knockout game. The rules are very simple:

The player plays against the device (which we will call AI in the app).
The player clicks the Play button. This will animate two dice (with six faces, from
1 to 6), and, after a few seconds, a random result will be generated.
The sum of the two dice will be added to the player's score unless the sum of the
dice is 7 (knockout number).
If the sum of the two dice is 7, nothing will be added to the score.
The same rules apply to the AI, but the animation will be performed only for the
human player. For the AI, only the score will change.
The game stops when the player or the AI reaches at least 50 points. When that
happens, the player wins if their score is higher than the AI's score, and loses if
the opposite is true. In the case of a draw, nobody wins.
At any time, the game can be reset by clicking the Restart button.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[327]

You can see an example of the layout of the Knockout Game screen in the following
screenshot:

Completing this project should require about 3 hours, including the creation of the Flare
animation.

What's Flare?
Flare is a vector design and animation tool that exports directly to Flutter. It was presented
at Flutter Live 2018, and one of the greatest features about it is that you get to work exactly
on the same assets that will be used in your Flutter app. The animations you create with
Flare can be changed from your Flutter code at runtime, making it great for apps that need
user interaction.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[328]

This means that you have a designer's tool whereby you can create assets and animate
them, and then enclose the final results of your design work straight into Flutter.

Flare supports not only Flutter, but also JavaScript, React, Swift, and
Framer. For an updated list of the runtimes, have a look at the following
link: https:/ /rive. app/ runtimes.

In larger workgroups, with Flare, designers can create, animate, and share their files with
developers, and that's exactly how the end users will see them in the finished app.

Even developers can easily import assets to Flare and animate them with a smooth learning
curve. Flare itself can be used directly from your browser, so you won't need to install
anything on your PC or Mac. Flare is completely free to use, as long as you share your work
with the community.

Creating objects with Flare
In order to use Flare, you just need to sign in into the rive.app website (formerly
2dimensions.com), and then you'll be able to use it for free from your browser.

Here are the steps involved:

In your browser, navigate to the rive.app site, and choose the Register button.1.
You'll be asked to create a free account. Just follow the instructions provided by2.
the service itself.

https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
https://rive.app/runtimes
http://rive.app
https://rive.app/

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[329]

Once registered, you'll be able to navigate through several projects: have a look3.
at them if you want to get an idea of what other designers have created. You'll
also find a Your Files button at the top right of the screen. You should see a page
like the following:

Create a new project by clicking on the + button, and choose Flare as project type.4.
Call this new project Dice.
From there, you can open your new project. You are now ready to start building5.
your objects and animations with Flare.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[330]

Flare is part of the Open Design movement. You can use Flare for free, but
you will be sharing your files with the community. This means that other
designers can open the source of your creations directly in their browser.
This is great when experimenting and learning, but, in some cases, you
may want to protect your work, especially if it is for commercial purposes.
In this case, Rive offers a paid plan, at a reasonable price. For more
information about this, have a look at their pricing page: https:/ /rive.
app/pricing.

Next, let's start designing the dice that we'll later use in Flutter.

Creating new objects in Flare
When you enter a new project in Flare, you see your Stage. The Stage is the working area
where you create all your designs, and where you place Artboards.

An Artboard is the top-level node of a Flare hierarchy, and this is where you place all
your objects and animations. The Hierarchy is a tree view that shows the parent/child
relationships between the items on the stage. So, you have an Artboard, and everything you
put into it is its child. You can add items to the hierarchy by adding other objects and
making them children of their ancestors.

Each Flare project requires at least one Artboard, but you can create as many as you like.

Flare has two modes of operations: Design and Animate. In Design mode, you create
graphic objects, and in Animate mode, you animate the objects that you have designed.
Flare's interface and tools will change based on the mode in which you are working.

In the following screenshot, you can see the interface, as follows:

On the left Current View mode, the hierarchy, and the assets
In the center, the Create tool button and the Artboard
On the right, the properties and Options pane

https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing
https://rive.app/pricing

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[331]

In order to rename the artboard, just double-click on its name in the Hierarchy pane, as
shown in the following screenshot:

We will now design the dice surface, as follows:

From the Design mode, click on the Create tool button, and add a Rectangle to1.
the Artboard, as you can see in the following screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[332]

After drawing the rectangle on the Artboard, you can select it, so that its2.
properties appear on the right.
Change the position to 500 for X and 400 for Y.3.
Change the size to 600 both for Width and Height.4.
Set the Corner Radius to 25. This will smooth the angles of our dice.5.
Change the Fill color to be white (Hex #FFFFFF).6.
Remove the Stroke. The Stroke is the border of the shape.7.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[333]

The shape should now look like the one in the following screenshot. Note that, when an
object is selected, it's light blue, even if the selected Fill color is white:

Now the surface of our dice is complete, we need to add the numbers for each side of the
dice. We'll use the classic six-sided dice, and we'll design the numbers with the shapes, as
you can see in the following image:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[334]

In order to achieve this, we'll design seven black circles that will cover all the possible
combinations of values for the dice, as follows:

Add a new shape to the Artboard, of type Ellipse. It will be the first circle for1.
the dice.
Place the shape at the top-left corner of the dice.2.
Make the Ellipse shape a child of the Rectangle shape, by dragging it under the3.
rectangle in the hierarchy pane.
Double-click the Ellipse shape and rename the shape as TopLeft.4.
Change the properties of the TopLeft shape.5.
Position: -180 for X and Y.6.
Size: 80 for Width and Height.7.
Fill: Black color (Hex: #000000).8.
Remove the Stroke.9.

The final result is shown in the following screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[335]

Now, let's copy TopLeft six times. All the Ellipse shapes should be children of the
rectangle. This is because, in that way, we are grouping all the objects together, and when
moving the rectangle, we'll be able to also move all its content.

For each of the circles, we'll change name and position, based on the following values:

Name Position
CenterLeft -180 0
BottomLeft -180 180
TopRight 180 -180
CenterRight 180 0
BottomRight 180 180
CenterCenter 0 0

The final result is shown in the following screenshot:

This completes the design process of our dice. Next, the fun part: we will create animations
that will make our app more interesting to use.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[336]

Animating objects with Flare
Let's switch from Design mode to Animate mode. You'll notice that a timeline appears at
the bottom of the page. You'll probably find the timeline familiar if you've used other
animation tools, or you've produced video or audio content. A timeline is where you
control the progression of your animation. In Flare, you can also specify the duration of
the animation and the number of frames per second (FPS).

In the following screenshot, you can see the animation page for our project. Notice the
timeline and the duration, and the FPS settings:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[337]

FPS, or frame rate, tells how many images will be displayed for every
second of animation. The default value of 60 is generally considered
extremely high and creates very smooth animations. Flutter aims to
provide 60 FPS performance, and this is one of its strengths. Of course, if
you want to save some resources in your device, you can try to see how
the animation behaves at 30 FPS. In the example in this chapter, we'll
leave the default value of 60 FPS.

Now, we'll see how to create our first animation so that we can get familiar with the
timeline.

If you select the rectangle, in the Properties pane on the right of the page, you will see all
the settings that can be changed in order to perform the animation. For example, you could
change the Size/Position of the rectangle. Let's look at the steps, as follows:

Let's say we want to rotate the square 90 degrees. Select the square in the Dice1.
Artboard.
Check that the playhead is positioned at the beginning of the animation2.
(00.00.00 seconds).
The timeline displays objects and properties that have been "keyed". Keying in3.
Flare means adding an object to the animation sequence. Press the diamond
shape near the Rotation property of the square—this will key the rotation in the
timeline at the beginning of the animation. The diamond changes color and the
rectangle appears on the timeline. In the following screenshot, you can see a
detail of the result in the Properties pane:

Move the playhead in the timeline to 2 seconds, as shown in the following4.
screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[338]

Set the rotation of the square to 45° and key the square again, as shown in the5.
following screenshot:

If you press the spacebar, you will see that the square is rotating from the initial6.
position to 45 degrees, and it's taking 2 seconds to do that. Flare is "magically"
filling all the frames to get there in the 2 seconds that we specified as the duration
from the first to the second key.
Repeat the process according to the following table:7.

0:00 0°
2:00 45°
4:00 90°
6:00 135°
8:00 180°

Set the duration of the animation to 8 seconds.8.
Rename the animation by double-clicking on its name (untitled). Let's call it9.
Rotate.
Press the Loop button so that the animation will automatically restart as soon as10.
it finishes, and try the animation: you should see the dice rotating endlessly.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[339]

You may have noticed that all the circles that you designed on the surface
of the square are rotating with the square itself. This happens because the
circles are children of the square.

You have now created your first animation and, hopefully, familiarized yourself with the
Flare interface. Unfortunately, we won't be using this specific animation in our app, but we
can keep it here for reference. Next, we'll create the real animations that will be needed in
our app.

Creating the Roll animation
In our app, there will be several animations. The first one we will create is to simulate the
dice "rolling". We won't create a 3D animation as this goes far beyond the scope of this
project, so we'll just change the numbers that are shown to the user, from 1 to 6. We'll reach
this result by changing the Fill Opacity of each of the circles that we have placed on the
surface of our Rectangle. Perform the following steps:

Create a new animation by clicking the + button in the animations pane, and call1.
it Roll.
Set the duration of the animation to 1 second.2.
Select all the circles on the dice surface except the central one, by pressing the3.
Ctrl button (cmd on a Mac) on your keyboard and clicking on each circle except
CenterCenter.
Set the Fill Opacity to be 0, and press the Key button near the Fill Opacity value.4.
Change the KEY INTERPOLATION value to Hold.5.
Select the CenterCenter circle while pressing the Ctrl/cmd key, then set the Fill6.
Opacity value to 1, the KEY INTERPOLATION type value to Hold, and key the
object.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[340]

The result of this task should look like the following screenshot:

Move the playhead in the timeline to 00.00.10 seconds.7.
Select the central circle, called CenterCenter in the hierarchy pane; set the Fill8.
Opacity value to 0, the KEY INTERPOLATION value to Hold, and key the
object.
Select the TopLeft and BottomRight circles, and set the Fill Opacity value to 1,9.
the KEY INTERPOLATION value to Hold, and key the object. We have now
completed the animation to circle 2.
Move the playhead in the timeline to 00.00.20 seconds.10.
Select the CentralCentral circle in the hierarchy pane, set the Fill Opacity value11.
to 1, the KEY INTERPOLATION value to Hold, and key the object. We have
now completed the animation to circle 3.
Move the playhead in the timeline to 00.00.30 seconds.12.
Select the CentralCentral circle in the hierarchy pane, set the Fill Opacity value13.
to 0, the KEY INTERPOLATION value to Hold, and key the object.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[341]

Select the TopRight and BottomLeft circles, and set the Fill Opacity value to 1,14.
the KEY INTERPOLATION value to Hold, and key the object. We have now
completed the animation to circle 4.
Move the playhead in the timeline to 00.00.40 seconds.15.
Select the CentralCentral circle in the hierarchy pane, set the Fill Opacity value16.
to 1, the KEY INTERPOLATION value to Hold, and key the object. We have
now completed the animation to circle 5.
Move the playhead in the timeline to 00.00.50 seconds.17.
Select the CentralCentral circle in the hierarchy pane, set the Fill Opacity value18.
to 0, the KEY INTERPOLATION value to Hold, and key the object.
Select the CenterLeft and CenterRight circles, and set the Fill Opacity value to 1,19.
the KEY INTERPOLATION value to Hold, and key the object. We have now
completed the animation to circle 6 and have thus completed this animation.
Press the Loop button, so that the animation will loop whenever it completes.20.

Try the animation by pressing the spacebar on your keyboard. You should see the dice
changing its values from 1 to 6 in a single second, as shown in the following screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[342]

Now, the Roll animation is complete. This animation will be called from the app whenever
the user plays and throws the dice. After rolling, the result of any of the numbers will be
between 1 and 6. Therefore, we now need to create an animation for each of the possible
results.

We'll keep things simple here: we'll just rotate the dice surface left and right, and show the
number of the result. Let's begin with 1, then we'll repeat from 2 to 6, as follows:

Create a new animation by clicking the + button in the animations pane, and call1.
it Set1.
Set the duration of the animation to 1 second.2.
Set the Fill Opacity property of the CenterCenter circle to 1, and all the other3.
circles to 0, and key the objects.
Move the playhead to 00:00:06.4.
Select the surface of the dice.5.
Set the Rotation property to 5° and key the object. The result is shown in the6.
following screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[343]

Move the playhead to 00:00:11.7.
Set the Rotation property to -5° and key the object, as shown in the following8.
screenshot:

Move the playhead to 00:00:15.9.
Set the Rotation property to 0° and key the object, as shown in the following10.
screenshot:

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[344]

Try the animation—you should see the surface of the dice going left and right very quickly,
and then stopping and showing 1 as a result.

Now, repeat the preceding steps for the remaining possible results, calling the animations
Set2, Set3, up to Set6.

There is only one small animation we have to create before getting to Flutter: the animation
that will be shown at the beginning before the user plays. Actually, it won't even be an
animation, but just a static image of number 6 on the surface of the dice. To do this, perform
the following steps:

Create a new animation by clicking the + button in the animations pane, and call1.
it Start.
Set the duration of the animation to 1 second.2.
Set the Fill Opacity property of the CenterCenter circle to 0, and all the other3.
circles to 1, and key the objects.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[345]

The result of these tasks is shown in the following screenshot:

That's it. We have completed everything we need for the app in Flare. Feel free to
experiment with some animations if you want to move the dice when the screen of the app
is built.

Just to recap, in Flare, you should have built the following animations that we'll call from
our app:

Start
Roll
Set1
Set2
Set3
Set4
Set5
Set6

Next, we'll create the app and see how to integrate Flare animations in Flutter.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[346]

Integrating Flare into a Flutter app
As you have seen, Flare is a great tool to build animations, but it would be completely
useless for our purposes if we couldn't use them in a Flutter app. These are a few easy steps
to help us do so:

Adding the flare_flutter package1.
Exporting the Flare animation as a file2.
Including the exported file into the app assets3.
Declaring the assets into the pubspec.yaml file4.

Once the setup is complete, we'll also need to integrate Flare in our Dart code so that we
can interact with our users and show them the relevant animation. Let's begin, as follows:

Create a new Flutter project, calling it 'Dice', and update the main.dart file so1.
that it contains the following code:

import 'package:flutter/material.dart';
 void main() => runApp(MyApp());
 class MyApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Dice',
      theme: ThemeData(
        primarySwatch: Colors.orange,
      ),
      home: Scaffold(),
    );
  }
}

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[347]

Create a new folder in the root of your app, called assets.2.
We need to get back briefly to our Flare files, only to export the files that we will3.
add to the assets folder. Let's go to the rive.app website, and from the dice
file, press the Export button at the top right of the screen, and select the
Export menu, choosing the Binary option.
Depending on your system, the file that should be called dice.flr will be4.
downloaded locally. Move the downloaded file to the assets folder that you
created in Step 2.
Open the pubspec.yaml file and add the flare_flutter dependency (please5.
check the right version in the library page), as follows:

dependencies:
 flutter:
 sdk: flutter
 flare_flutter: ^1.8.0

Still in the pubspec.yaml file, also add the animation in the assets section, like6.
this:

assets:
- assets/dice.flr

Now, the setup is complete. Let's add the animations to our code next!

Creating the Dice class
The first screen we will create in the app will show a single dice. When opening the screen,
our users will see the dice at the Start position, and a button to play. When they press the
button, they will be able to roll the dice, see the Roll animation, and get a random result
from 1 to 6. You can see an example of the Single Dice screen in the following screenshot:

http://rive.app

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[348]

Before adding the first screen, let's create a new service class that will contain the methods
necessary to get a random number and the names of the animations for the result, as
follows:

Create a new file in the lib folder of your project, called dice.dart.1.
At the top of the new file, import the math library that is needed to generate a2.
random number, as follows:

import 'dart:math';

Create a new class called Dice, as follows:3.

class Dice {}

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[349]

In the class, add a static list of animations, called animations. This contains the4.
animations that will be called from the app when the result must be shown, and
the code can be seen in the following block:

static List<String> animations = [
 'Set1',
 'Set2',
 'Set3',
 'Set4',
 'Set5',
 'Set6',
];

Create a static method called getRandomNumber() that returns a random5.
number between 1 and 6, as follows:

static getRandomNumber() {
 var random = Random();
 int num = random.nextInt(5) + 1;
 return num;
 }

Create another static method, returning a Map of type int and a String called6.
getRandomAnimation. The purpose of the method is to generate a random
number between 0 and 5 and return a Map containing the number and the name
of the animation in the animations list at the position of the number itself. You
can see the necessary code in the following snippet:

static Map<int, String> getRandomAnimation() {
 var random = Random();
 int num = random.nextInt(5);
 Map<int, String> result = {num: animations[num]};
 return result;
}

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[350]

The last method of this class, still static, is called wait3seconds(). The purpose7.
of the function, as you might guess, is just waiting 3 seconds. This is the duration
we want to give the rolling animation of the dice. You might recall that the
original duration of the rolling animation is only 1 second. By waiting for 3
seconds, we will repeat the animation three times, as each one only lasts 1
second.

Add the following code in the class:

static Future wait3seconds() {
 return new Future.delayed(const Duration(seconds: 3), () {});
}

That completes the Dice class. Now, we'll create the single.dart screen!

Creating the Single Dice screen
The first screen that we will create in the app is a screen that will allow the user to "throw" a
single dice: no rules, no play. We'll just give the user a random value between 1 and 6. This
will give us the opportunity to see a Flare animation in action in a Flutter screen. To do this,
perform the following steps:

Create a new file in the lib folder of the project, called single.dart.1.
At the top of the file, import three files—the usual material.dart, our2.
dice.dart file, and the library that will allow us to use Flare, which is
flare_actor.dart, as follows:

import 'dice.dart';
import 'package:flutter/material.dart';
import 'package:flare_flutter/flare_actor.dart';

Create a stateful widget, using the stful shortcut, and call this class Single.3.
Declare a String called currentAnimation at the top of the _SingleState4.
class, as follows:

class _SingleState extends State<Single> {
String currentAnimation;

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[351]

Override the initState() method, and inside it, set the currentAnimation5.
String so that it contains Start. This is the name of the Flare animation that we
want to show at the beginning when the screen is loaded for the first time, and
the necessary code can be seen in the following snippet:

@override
void initState() {
 currentAnimation = 'Start';
 super.initState();
}

At the top of the build() method, find the available height and width for the6.
app, calling the MediaQuery.of(context) size properties.
Still in the build() method, return a Scaffold, whose appBar contains a title7.
of Single Dice.
The body of the Scaffold contains a Center widget, whose child is a Column.8.
The first widget of the Column is a Container. Set the height of the Container9.
to be height / 1.7, and the width to be width * 0.8. You may adjust this
setting according to your preferences.
The child of the Container widget is, finally, the Flare animation. In order to10.
show it, call the FlareActor constructor, which, as a first parameter, takes the
name of the asset that we want to show—in this case, it's assets/dice.flr.
The second parameter is the fit property. Set it to BoxFit.contain so that the11.
Flare content is included within the bounds of the widget. The last parameter is
the name of the animation that will be shown. Here, we'll place the
currentAnimation String.
Under the animation, insert a button that will allow the user to play. As we want12.
to make this button rather large, based on the available width and height of the
screen, use a SizedBox as a parent of the MaterialButton. The text of the
button will be just Play.
When the button is pressed, we want to show the Roll animation.13.
After 3 seconds, we want to show the animation containing the result, and in14.
order to achieve this, we will create a function called callResult().

At the end of this process, your code should look like the following:

@override
Widget build(BuildContext context) {
 double width = MediaQuery.of(context).size.width;
 double height = MediaQuery.of(context).size.height ;
 return Scaffold(appBar: AppBar(

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[352]

 title: Text('Single Dice'),
),
 body: Center(
 child: Column(
 children: <Widget>[
 Container(
 height: height / 1.7,
 width: width * 0.8,
 child: FlareActor(
 'assets/dice.flr',
 fit: BoxFit.contain,
 animation: currentAnimation,
)),
 SizedBox(
 width: width/2.5,
 height: height / 10,
 child:RaisedButton(
 child: Text('Play'),
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(24)
),
 onPressed: () {
 setState(() {
 currentAnimation = 'Roll';
 });
 Dice.wait3seconds().then((_){
 callResult();
 });},))],)),);}

Now, in order to complete the screen, add the callResult() method, which15.
will be asynchronous.
Inside the method, declare a Map of type int, String called animation, which16.
will call the getRandomAnimation() static method from the Dice class.
Once the animation is ready, just call the setState() method to set the17.
currentAnimation to be the one that was randomly returned. You may
remember that the getRandomAnimation() method returns Set1, Set2, and so
on. The necessary code can be seen in the following snippet:

void callResult() async {
 Map<int, String> animation = Dice.getRandomAnimation();
 setState(() {
 currentAnimation = animation.values.first;
 });
}

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[353]

The last step before trying the animation in our app is calling the screen from the18.
MyApp class in the main.dart file: we'll need to import single.dart and set the
Single class as the home of the MaterialApp, like this:

import 'single.dart';
import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 brightness: Brightness.dark,
 primarySwatch: Colors.blue,
),
 home: Single(),
);
 }
}

Now, just try the app. When you open the app, you should see the dice at the top of the
screen. When you press the Play button, the rolling animation is shown for 3 seconds, and
after that, you get a random number.

To sum everything up, on this screen, you added a Flare animation and interacted with it.
You are now ready to create the screen and logic for the Knockout game.

Creating the Knockout game
The final screen for this project contains the Knockout game. In this screen, the player will
play against the device. Instead of having a single dice, there will be two dice that will use
the same animations that you've already used in the single screen class.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[354]

When the user plays, the sum of the two dice will be added to their score, unless the sum of
the dice is 7. In this case, nothing will be added to the score. When the player or the AI
reaches at least 50 points, the player with the highest score wins. So, let's begin, as follows:

Start by adding a new screen to the app: we'll call it knockout.dart.1.
At the top of the file, add the required imports: we'll need the2.
flare_actor.dart library for the animations, the dice.dart for the dice logic,
the usual material.dart, and the other screen of the app, single.dart, which
we'll use to be able to navigate from the Knockout screen to the Single Dice
screen. All of this can be achieved by running the following code:

import 'single.dart';
import 'package:flare_flutter/flare_actor.dart';
import 'package:flutter/material.dart';
import 'dice.dart';

Then, create a stateful widget using the stful shortcut, and call it3.
KnockOutScreen, as follows:

class KnockOutScreen extends StatefulWidget {
 @override
 _KnockOutScreenState createState() => _KnockOutScreenState();
}
class _KnockOutScreenState extends State<KnockOutScreen> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

At the top of the _KnockOutScreenState class, we'll create a few variables: two4.
integers for the player's and AI's score, two strings for the animations of the two
dice, and a String called _message that we'll use to give the player a message
when the game ends. We'll also create a GlobalKey that we'll later use to retrieve
the correct context to use a SnackBar for the message at the end of the game. The
necessary code can be seen in the following snippet:

int _playerScore = 0;
int _aiScore = 0;
String _animation1;
String _animation2;
String _message;
var _scaffoldKey = new GlobalKey<ScaffoldState>();

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[355]

Global keys are used to uniquely identify elements. Global keys give
access to other objects related to those elements, including the
BuildContext.

Next, override the InitState method, to set the initial animations to the5.
'Start' animation that you've already created in Flare, as follows:

@override
void initState() {
 _animation1='Start';
 _animation2='Start';
 super.initState();
}

In the build() method, retrieve the current screen width and height using the6.
MediaQuery.of(context) size values, then return a Scaffold.
In the appBar of the Scaffold, we'll just place the Knockout Game title, in a7.
Text widget. For the body, in a SingleChildScrollView, insert a Column
widget that will contain the UI widgets for this screen, as follows:

@override
Widget build(BuildContext context) {
 double width = MediaQuery.of(context).size.width;
 double height = MediaQuery.of(context).size.height;
 return Scaffold(
 key: _scaffoldKey,
 appBar: AppBar(
 title: Text('Knockout Game'),
),
 body: SingleChildScrollView(
 child: Container(
 alignment: Alignment.center,
 padding: EdgeInsets.all(24),
 child: Column(
 children: []
)
)))};

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[356]

The first widgets inside the Column will be two dice containing the Flare8.
animations. The two dice will be positioned next to each other, in the same row.
Inside the Column, create a Row widget whose children will be two Containers.9.
Each Container will have a height of one-third of the screen, and a width of the
available screen width divided by 2.5.
Each Container will include a FlareActor that will load our dice.flr asset:10.
the animation for the first dice will be _animation1, and the second—quite
predictably—_animation2, as shown in the following code block:

child: Column(
 children: [
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Container(
 height: height / 3,
 width: width / 2.5,
 child: FlareActor(
 'assets/dice.flr',
 fit: BoxFit.contain,
 animation: _animation1,
)),
 Container(
 height: height / 3,
 width: width / 2.5,
 child: FlareActor(
 'assets/dice.flr',
 fit: BoxFit.contain,
 animation: _animation2,
)),
],),

Under the Row containing the two dice, we'll place a few Text widgets for the scores of the
player and the AI. As these widgets need to be repeated several times, we'll create a new
widget specifically for that, as follows:

At the bottom of the file, let's create a new stateless widget using the stless1.
shortcut. Let's call this GameText.

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[357]

Inside the class, create two final properties: a String called text and a Color2.
called color. Both will be set in the constructor.
In the build() method, return a Container whose child will be a Text widget,3.
containing the text that was passed to the widget, and whose style will set the
font size to 24 and the color to the color that was passed.

Here is the code after you have executed the preceding steps:

class GameText extends StatelessWidget {
 final String text;
 final Color color;
 GameText(this.text, this.color);
 @override
 Widget build(BuildContext context) {
 return Container(
 child: Text(text,
 style: TextStyle(
 fontSize: 24,
 color: color
),),);}
}

Back to the Column in the body of the Scaffold in the build() method of the4.
_KnockOutScreenState class, add two new rows that will show the player's
and the AI's scores. Each row will contain a label Player or AI, and the score
itself, and the two widgets will be spaced evenly, using the mainAxisAlignment
property of the Row widget.
Between the two rows and after the second row, add a Padding widget, taking5.
the screen height divided by 24. This will create some space between the rows,
and the code for this can be seen in the following block:

Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 GameText('Player: ', Colors.deepOrange, false),
 GameText(_playerScore.toString(), Colors.white, true),
],),
 Padding(padding: EdgeInsets.all(height / 24),),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 GameText('AI: ', Colors.lightBlue, false),
 GameText(_aiScore.toString(), Colors.white, true),
],),
 Padding(

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[358]

 padding: EdgeInsets.all(height / 12),
),

The last row of the column will contain two buttons: one to play, and one to reset
the game. This time, instead of using a Container, we'll use a SizedBox.

There is very little difference between a Container and a SizedBox in
this case. When you use a SizedBox, you should specify the width or
height, or both. To learn more about the SizedBox, have a look at the
following clip: https:/ /www. youtube. com/ watch? v= EHPu_ DzRfqA vl= it.

In each of the SizedBox widgets, insert a RaisedButton. The first one's child6.
has a 'play' text, and its color is green; the second has a 'Restart' text, and its
color is grey. Both will have rounded corners, so the shape contains a
RoundedRectangleBorder with a circular borderRadius, with a radius of 24.
When pressed, the first button will call a play() method, and the second, a7.
reset() method. We'll create the methods next.

You can see the code for the described steps here:

Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 SizedBox(
 width: width / 3,
 height: height / 10,
 child:RaisedButton(
 child: Text('Play'),
 color: Colors.green,
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(24)
),
 onPressed: () {
 play(context);
 },
)),
 SizedBox(
 width: width / 3,
 height: height / 10,
 child:RaisedButton(
 color: Colors.gray,
 child: Text('Restart'),
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(24)
),
 onPressed: () {

https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it
https://www.youtube.com/watch?v=EHPu_DzRfqA&vl=it

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[359]

 reset();
 },
)),
],),

The reset() method is rather simple. It just needs to call the setState()8.
method to set the animation strings to the 'Start' value, and the scores for the
player and the AI to 0.

Add the following code to the _KnockOutScreenState class:

void reset() {
 setState(() {
 _animation1 = 'Start';
 _animation2 = 'Start';
 _aiScore = 0;
 _playerScore = 0;
 });
}

The play() method contains the logic of the game. This method will be
responsible for throwing the dice, calling the relevant animations for the result,
adding the score to the player and the AI, and updating the screen with the result.
This will also call a method that will show a message to the user at the end of the
game.

Add a new method called play() in the _KnockOutScreenState class. As this9.
will call an animation lasting a few seconds, the play() method will be
asynchronous. It will also take a BuildContext parameter to show the
SnackBar to the user, as shown in the following code snippet:

Future play(BuildContext context) async {}

Inside the play() method, create a String, called message, and set its initial10.
value to be an empty String, as follows:

String message = '';

Next, call the setState() method, to set the animations to be the 'Roll'11.
animation that you've already created in Flare, as follows:

setState(() {
 _animation1 = 'Roll';
 _animation2 = 'Roll';
});

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[360]

Keep the rolling animation going for 3 seconds to add some suspense to the12.
game by calling the static wait3seconds() method in the Dice class. After the 3
seconds have passed, using the then function we can generate a random number
(and animation) by calling the getRandomAnimation() method of the Dice
class: we will call this for both animation1 and animation2, as follows:

Dice.wait3seconds().then((_) {
 Map<int, String> animation1 = Dice.getRandomAnimation();
 Map<int, String> animation2 = Dice.getRandomAnimation();
}

Still in the then() function, add the two dice results (as the List is zero-based,13.
we need to add 1 to the position in the List) and put the sum into a new
variable called result, as follows:

int result = animation1.keys.first +1 + animation2.keys.first+1;

Next, still in the then() function, the AI will play as well: we just need to call the14.
getRandomNumber() of the Dice class twice and sum the results. The variable
we'll declare here is called aiResult, as shown in the following code snippet:

int aiResult = Dice.getRandomNumber() + Dice.getRandomNumber();

The knockout number is 7: so, if the sum of the two dice equals 7, nothing will be15.
added to the total score of the player or the AI. Add the code under the previous
instruction, still in the then() method, as follows:

if (result == 7) result = 0;
if (aiResult == 7) aiResult = 0;

The probability of throwing a 7 with two dice is 16.67%, or 1 out of 6,
which is the highest probability of all the possible outcomes. The lowest
probability is throwing 2 or 12: each of them has a probability of 2.78%, or
1 out of 36.

Next, still in the then() method, call the setState() method to update the16.
player and AI scores, and the dice animations, as follows:

setState(() {
 _playerScore += result;
 _aiScore += aiResult;
 _animation1 = animation1.values.first;
 _animation2 = animation2.values.first;
});

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[361]

After updating the scores, we need to check whether the player or the AI has17.
reached 50 points. When they do, the message gets updated, and a new
method, showMessage(), gets called. We'll create that method next. Meanwhile,
add the following code at the bottom of the play() method:

if (_playerScore >= 50 || _aiScore >= 50) {
 if (_playerScore > _aiScore) {message = 'You win!';}
 else if (_playerScore == _aiScore) {message = 'Draw!'; }
 else {message = 'You lose!';}
 showMessage(message);
}

The last method of our app is the showMessage() method. It just creates a18.
SnackBar telling the player whether they won, lost, or got a draw. Please note
that we are using the _scaffoldKey as the context for the SnackBar. Add the
following code in the _KnockOutScreenState class:

void showMessage (String message) {
 SnackBar snackBar = SnackBar(content: Text(message),);
 _scaffoldKey.currentState.showSnackBar(snackBar);
}

In order to complete our app, we only need to add the navigation that will allow the user to
navigate from the Single Dice screen to the Knockout game and vice versa. Let's do that:

So, in the single.dart file, add the required import, as follows:1.

import 'knockout.dart';

In the build() method, add to the Appbar the IconButton that, when pressed,2.
will call the Navigator.push() method to open the Knockout screen, as
follows:

appBar: AppBar(
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.fitness_center),
 onPressed: () {
 MaterialPageRoute route =
 MaterialPageRoute(builder:
 (context)=>
 KnockOutScreen());
 Navigator.push(context, route);
 },
)
],

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[362]

Then, do the same in the knockout.dart file, but this time, we need to call the3.
single.dart screen instead, as follows:

appBar: AppBar(
 actions: <Widget>[
 IconButton(
 icon: Icon(Icons.repeat_one),
 onPressed: () {
 MaterialPageRoute route =
 MaterialPageRoute(builder: (context)=>
 Single());
 Navigator.push(context, route);
 },
)
],

And with that, the app is now complete! Just play Knockout a few times to check whether
everything is working as expected, but don't spend too much time on it. You still have a
couple of projects to complete in this book!

Summary
Flare is a vector design and animation tool that exports directly to Flutter. There are several
advantages to using Flare for your Flutter apps, one being that the animations you create
with Flare can be changed from your Flutter code at runtime. You can create assets and
animate them, and then enclose the objects straight into Flutter. Flare can be used from a
browser and does not require any installation. Flare is free to use, as long as you agree to
share your work.

You've seen how to interact with the Stage, the working area where you create your
designs, and where you place Artboards, which, in turn, are the top-level nodes of a Flare
hierarchy. We've used both the Design and Animate modes. In the Design mode, we've
created the dice for our app, and in the Animate mode, you have created the dice
animations that we've used in our app.

After exporting and downloading the .flr file in the rive.app website, we've followed the
steps required to use a Flare asset into a Flutter project.

http://rive.app

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[363]

Once we completed the integration of our dice into the app, we've started interacting with
them from the app: in particular, we've leveraged the FlareActor widget, which allows
you to specify the asset you wish to use, the animation you wish to show, and how the
animation should fit into the screen.

We've interacted with the Flare animations by adding some logic to our app. We've seen
how to use random numbers to change the dice result and programmatically set the
animations based on the dice results. Finally, we've added the Knockout game logic to the
app.

In the next chapter, we'll see a design pattern that Google developers recommend for your
Flutter apps: the Business Logic Component (BLoC) pattern.

Questions
At the end of each project, you'll find a few questions to help you remember and review the
contents covered in the chapter. Please try to answer the following questions (when in
doubt, have a look at the content in the chapter itself: you'll find all the answers there!):

In the pubspec.yaml file, where should you place the .flr file you have1.
exported from Flare?
In Flare, what is the difference between the Design and Animate modes?2.
How many Artboards are required in a Flare project?3.
What is the purpose of the timeline in Flare?4.
What is a hierarchy in Flare?5.
When using a Flare asset in a Flutter project, when and why do you use the6.
animation name?
Which widget can you use to show a Flare animation in Flutter?7.
How do you generate a random number between 1 and 6 in a Flutter app?8.
When would you use a Flare animation in an app, instead of built-in animations?9.
 In the following code, what would you put as the first parameter?10.

FlareActor([YOUR ANSWER HERE],
 fit: BoxFit.contain,
 animation: _animation1,
)

Let's Play Dice: Knockout - Creating an Animation with Flare Chapter 9

[364]

Further reading
The fastest way to learn a new technology is using it, but a not-so-distant second is looking
at projects that experienced developers and designers have already created: for a few great
samples in Flare, have a look at https:/ /github. com/ 2d- inc/ Flare- Flutter/ tree/
master/example.

In this chapter, you've built a simple game using Flare. If you are interested in developing
games with Flutter, you'll probably be glad to know that there's also a gaming engine that
can make your life easier: have a look at Flame (https:/ / flame- engine. org) for more info
about that!

For a refresher on using built-in animations into your apps, have a look at the official
Flutter guide, which you can find at the following link: https:/ /flutter. dev/ docs/
development/ui/animations.

If you are really serious about developing games, there's a great free resource that will give
you general principles on which you can rely, whichever language or platform you are
using—have a look at https:/ /www. freecodecamp. org/ news/ learn- game- development-
from-harvard/ for more info.

https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://github.com/2d-inc/Flare-Flutter/tree/master/example
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flame-engine.org
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://flutter.dev/docs/development/ui/animations
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/
https://www.freecodecamp.org/news/learn-game-development-from-harvard/

10
ToDo App - Leveraging the
BLoC Pattern and Sembast

Designing the structure or architecture of an app is often one of the most important
problems that developers need to solve when creating or upgrading an app, especially
when the complexity and size of the project grows.

Each language has a 'favorite' pattern, such as model–view–controller (MVC), or
model–view–viewmodel (MVVM). Flutter is no exception, and the pattern that Google
developers are suggesting at this time is the BLoC (business logic components) pattern.
There are many advantages of using BLoCs, and one of them is that they don't require any
plugin, as they're already integrated into Flutter.

In previous chapters, you've seen the different ways to persist data in an app, such as
SQFlite and the Firebase Firestore database. For this project, we'll introduce another tool so
that you can choose the best solution in different contexts—the simple embedded
application store database (short for sembast). Using this tool is far easier than
remembering its name.

Also, instead of using setState() to deal with the state of our app, we will use the BLoC
pattern. This leverages the streams functionality to manage state changes in Flutter. Using
the BLoC pattern helps to separate the business logic from the UI.

By the end of this project, you'll be able to use the simple embedded application store
database with the BLoC pattern to persist the data and states in your apps. In this chapter's
project, we'll use a BLoC pattern as the interface between the UI and the data.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[366]

The following topics will be covered in this chapter:

Using the simple embedded application store database, or sembast
Introducing the BLoC pattern
Using BLoCs and streams to update the UI

Technical requirements
You'll find the completed app code in the book's Github repository at https:/ /github. com/
PacktPublishing/Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter SDK.
If you are developing for Android, you should have the Android SDK, which is
easily installed by Android Studio.
If you are developing for iOS, you should have MacOS and Xcode.
An emulator (Android), simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code, Android Studio, and IntelliJ Idea are
recommended. All should have the Flutter/Dart extensions installed.

Project overview
The app we'll build in this chapter is a simple 'to do' management application. It consists of
two screens: the first one contains a list of todos that need to be completed: from here, the
user will be able to delete any item on the list by swiping left or right, and add a new todo
item or edit an existing one by calling the second screen of the app. The following is a
screenshot of the first page of the app:

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[367]

The second screen of the app is the detail of a single todo: here the user will be able to insert
the details of the todo and save them to the sembast database. The fields required for a
todo are the name of the todo, its description, priority, and date.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[368]

By clicking the Save button, all changes will be persisted; by clicking the 'back' button, the
changes will be discarded. The following is a picture of the second screen:

The project in this chapter is particularly code intensive, as there are several steps required
to implement the BLoC pattern in an app, but once this chapter is completed, you'll be able
to easily reuse the code in other projects.

The total time required to complete this project is approximately three hours.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[369]

Using sembast to store data
In many cases, when you need to persist structured data in your app, you will likely choose
an SQL database, such as SQFLite, which we've used in Chapter 6, Store That Data - Using
Sq(F)Lite To Store Data in a Local Database. But, there are cases where your data is not
structured, or it's so simple that you don't need an SQL database. For those cases, there is a
very efficient solution for Flutter—the simple embedded application store database.

Sembast is a document-based database that resides in a single file. It is loaded in memory
when you open it from the app, and it's very efficient, as the file is automatically compacted
when needed. Data is stored in JSON format, with key–value pairs. You can even encrypt
data if your app requires it.

The library is written in Dart and the only requirement that you need in order to use
Sembast is the addition of the dependency in your pubspec.yaml file:

Create a new app with your editor and open the pubspec.yaml file. In the dependencies
node, add the code to add the sembast and path_provider libraries. As usual, I
recommend checking out the latest versions in the Dart packages website at https:/ /pub.
dev/:

sembast: ^2.3.0
path_provider: ^1.6.5

The reason why path_provider is included here is that each device saves into the file
system in a different way; by using path_provider, you make sure that the app is
compatible with both iOS and Android.

As usual, everything begins with a class. The first step in our project is the creation of the
class for the todo itself:

In the lib folder of your app, create a data folder.1.
In the data folder, create a new file called todo.dart.2.

https://pub.dev/
https://pub.dev/
https://pub.dev/
https://pub.dev/
https://pub.dev/
https://pub.dev/
https://pub.dev/

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[370]

In the file, add a class called Todo with the fields that we'll use in the database:3.
id, name, description, a completeBy string that will contain the date that the
task should be completed by, and an integer for the priority:

class Todo {
 int id;
 String name;
 String description;
 String completeBy;
 int priority;
}

To simplify the creation of a todo, create a constructor that will take all the fields4.
(except the ID) of a todo object:

Todo(this.name, this.description, this.completeBy, this.priority);

In sembast, the ID is automatically generated from the database and is
unique for each store/document, similar to what happens with SQLite.

As data is stored as JSON in sembast, we need a method to convert a Todo object
into a Map; the sembast engine will then automatically convert the Map to JSON.

In the Todo class, create a function called toMap() that will return a Map of the5.
String, dynamic type containing the fields of the Todo. Add the following
code to create the toMap() method:

 Map<String, dynamic> toMap() {
 return {
 'name': name,
 'description': description,
 'completeBy': completeBy,
 'priority': priority,
 };
 }

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[371]

The last method of the Todo class will do exactly the opposite: when a Map is6.
passed, the function will return a new Todo. This method is static, as it does not
require an object to return a Todo. Add the following code to create the
fromMap() function:

static Todo fromMap(Map<String, dynamic> map) {
 return Todo(map['name'], map['description'],
map['completeBy'],map['priority']);
 }

This completes the Todo class. Next, let's deal with the data.

Sembast: dealing with data
In this section, we'll create the class to create the database, open it, and then add the
methods to perform the CRUD operations over it:

In the data folder of the app, create a new file called todo_db.dart.1.
Place the following required imports at the top of the todo_db.dart file:2.

import 'dart:async';
import 'package:path_provider/path_provider.dart';
import 'package:path/path.dart';
import 'package:sembast/sembast.dart';
import 'package:sembast/sembast_io.dart';
import 'todo.dart';

The TodoDb class needs to be a singleton, as it wouldn't make sense to open the3.
database more than once. So, after creating the TodoDb class, add a named
constructor called _internal, then create a static private TodoDb object called
_singleton that we will return whenever a new TodoDb instance is called:

class TodoDb {
 //this needs to be a singleton
 static final TodoDb _singleton = TodoDb._internal();
 //private internal constructor
 TodoDb._internal();
}

Finally, create a factory constructor that will return the _singleton object:4.

 factory TodoDb() {
 return _singleton;
 }

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[372]

A normal constructor returns a new instance of the current class. A factory
constructor can only return a single instance of the current class: that's
why factory constructors are often used when you need to implement the
singleton pattern.

Next, we will add the objects and methods that are needed to interact with the database.

Opening a sembast database
The first object we'll use is a DatabaseFactory. A database factory allows us to open a
sembast database. Each database is a file. Let's look at the steps:

Add the following code under the constructors to create a DatabaseFactory:1.

DatabaseFactory dbFactory = databaseFactoryIo;

After opening the database, you need to specify the location in which you want2.
to save files. Stores could be considered 'folders' inside the database: they are
persistent maps, and their values are the Todo objects. Add the following code to
specify the store for our read/write operations:

final store = intMapStoreFactory.store('todos');

Next, we'll open the database itself: first declare a Database object, called3.
_database:

Database _database;

Then add a getter that will check whether the _database has already been set: if4.
it has, the getter will return the existing _database. If it hasn't, it will call the
_openDb() asynchronous method, which we will create in the next step. This is a
pattern that you can use whenever you need a singleton in your code:

Future<Database> get database async {
 if (_database == null) {
 await _openDb().then((db) {
 _database = db;
 });
 }
 return _database;
 }

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[373]

Now we are ready to write the _openDb() asynchronous method, which will5.
open the sembast database:

Future _openDb() async {}

Inside the openDb() method, we'll get the specific directory where data will be6.
stored: this is platform specific, but as we are using the path library, there's no
need to worry about the way the operating system is storing data. Add the
following code to retrieve the document directory for your system:

 final docsPath = await getApplicationDocumentsDirectory();

Next, call the join() method to join the docsPath and the name of the7.
database, which we will predictably call todos.db, into a single path using the
current platform's separator. The .db extension is optional:

 final dbPath = join(docsPath.path, 'todos.db');

Finally, using the dbFactory, call the openDatabase() method to actually open8.
the sembast database and return it:

 final db = await dbFactory.openDatabase(dbPath);
 return db;

Now that the database is open, we need to write the methods for the create, read, update,
and delete tasks. Let's do that next:

Creating CRUD methods with sembast
CRUD methods in sembast are similar to those in other databases that we have seen in
previous projects in this book: the syntax is shown in the following table:

Task Method
Insert a new document add()

Update an existing document update()

Delete a document delete()

Retrieve one or more documents find()

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[374]

Let's see these methods in action in our project:

To insert a new item in a sembast database, you just need to call the add()1.
method over the Store, passing the database and the Map of the object you want
to insert. As you can expect, read and write operations in a sembast database are
asynchronous.
Add the following code to implement the insertTodo() method:2.

Future insertTodo(Todo todo) async {
 await store.add(_database, todo.toMap());
 }

Similarly, to update an existing item in the database, you can call the update()3.
method of the store. The difference here is that you also need another object:
a Finder. A Finder is a helper that you can use to search inside a store. With the
update() method, you need to retrieve a Todo before updating it, so you need
the Finder before you update the document.

A Finder takes a parameter named filter, which you can use to specify how to
filter the documents. In this case, we'll search for the Todo using its ID, so we'll
use the byKey() method of the filter.

Add the following code to implement the updateTodo() method:4.

Future updateTodo(Todo todo) async {
 //Finder is a helper for searching a given store
 final finder = Finder(filter: Filter.byKey(todo.id));
 await store.update(_database, todo.toMap(), finder: finder);
 }

We also need the finder to delete an existing item. This time, the method to call
over the store is delete(), which takes only the database and a finder.

Add the following code to implement the deleteTodo() method:5.

Future deleteTodo(Todo todo) async {
 final finder = Finder(filter: Filter.byKey(todo.id));
 await store.delete(_database, finder: finder);
 }

It might also be useful to create a method that can delete all records from the6.
store. Add the following code to implement the deleteAll() method:

Future deleteAll() async {
 // Clear all records from the store

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[375]

 await store.delete(_database);
 }

We also need a method to retrieve the available Todos. In this case, we can still
use a finder, but instead of filtering data, we can specify a sort order for the list.
We'll sort the items by priority and id.

The function returns a List of Todo, and, as usual, is asynchronous.

Add the following code to create the getTodos() function:7.

Future<List<Todo>> getTodos() async {
 await database;
 final finder = Finder(sortOrders: [
 SortOrder('priority'),
 SortOrder('id'),
]);
}

Now the Finder is set. The method to retrieve data from a sembast store is the
find() method, which again takes a database and a Finder.

The find() method returns a Future<List<RecordSnapshot>> and
not a List<Todo>.

Add the following code inside the getTodos() function after setting the finder:8.

final todosSnapshot = await store.find(_database, finder: finder);

As the find method returns a Snapshot, we need to use the map() method to9.
convert the snapshot into a Todo. We can call the map() function on any list to
convert the values of the list from one type to another. Add the following code to
call the map() method on the todosSnapshot object and transform the snapshot
into a List of Todo objects:

return todosSnapshot.map((snapshot){
 final todo = Todo.fromMap(snapshot.value);
 //the id is automatically generated
 todo.id = snapshot.key;
 return todo;
 }).toList();

The data part of our Todo app is complete. Let's test whether everything's working as
expected.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[376]

Using sembast
We can now test the methods to check that everything is working and add a few sample
data before moving to the next part of our project:

Open the main.dart file, delete the existing code, and add the required imports:1.

import 'package:flutter/material.dart';
import 'data/todo_db.dart';
import 'data/todo.dart';

Add the main() method, which will call a stateless widget that we can call2.
MyApp. Also remove the debug sign at the top of the screen by adding
debugShowCheckedModeBanner: false to the MaterialApp:

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Todos BLoC',
 debugShowCheckedModeBanner: false,
 theme: ThemeData(
 primarySwatch: Colors.orange,
),
 home: HomePage(),
);
 }
}

Now create a stateful widget called HomePage(). This is the main screen of our3.
app that will contain the list of todos. At this time, we'll only use it for testing
purposes:

class HomePage extends StatefulWidget {
 @override
 _HomePageState createState() => _HomePageState();
}

class _HomePageState extends State<HomePage> {
 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[377]

In the _HomePageState class, add an asynchronous method called4.
_testData(), that will call and test the CRUD methods that we've written in the
todo_db.dart file.
Inside the _testData() method, create an instance of the TodoDb class.5.
Call the getTodos() method once; this will also open the database.6.
Call the deleteAll() method to delete all the records from the database. This7.
will make sure that we do not have data remaining from previous tests if we
need to call _testData() more than once.

The code for steps 4 to 7 is shown as follows:

Future _testData() async {
 TodoDb db = TodoDb();
 await db.database;
 List<Todo> todos = await db.getTodos();
 await db.deleteAll();
 todos = await db.getTodos();
}

After the initial setup, while we're still in the _testData() method, let's test the8.
insertTodo() method. We'll create three simple Todo objects and we'll call the
insertTodo() method on each of them.
Next, update the todos list again, calling the getTodos() method:9.

await db.insertTodo(Todo('Call Donald', 'And tell him about Daisy',
'02/02/2020', 1));
await db.insertTodo(Todo('Buy Sugar', '1 Kg, brown', '02/02/2020',
2));
await db.insertTodo(Todo('Go Running', '@12.00, with neighbours',
'02/02/2020', 3));
todos = await db.getTodos();

After inserting the three documents into the database, we can use the debug10.
console to check whether everything worked as expected:

debugPrint('First insert');
todos.forEach((Todo todo){
 debugPrint(todo.name);
});

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[378]

Next, we can test the updateTodo() method by changing the first document11.
from 'Call Donald' to 'Call Tim', as shown in the following code block:

Todo todoToUpdate = todos[0];
todoToUpdate.name = 'Call Tim';
await db.updateTodo(todoToUpdate);

Now test the deleteTodo() method by removing the 'Buy sugar' todo: after12.
all, sugar isn't good for your health!

Todo todoToDelete = todos[1];
await db.deleteTodo(todoToDelete);

Now read the data again. We expect to have only two documents instead of the13.
initial three, and the first one should be 'Call Tim':

debugPrint('After Updates');
 todos = await db.getTodos();
 todos.forEach((Todo todo){
 debugPrint(todo.name);
 });

In the build() method of the _HomePageState class, call the _testData()14.
method:

@override
 Widget build(BuildContext context) {
 _testData();
 return Container();
 }

Run the app. After a few seconds, you should see a result in the Debug Console15.
that looks like the following image:

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[379]

If the debug console shows the data correctly, then that means you can read and write data
in the sembast database. In the next section, we'll use a BLoC pattern to interact with the
database.

The BLoC pattern
In most of the projects we have built so far, we've dealt with the state using stateful
widgets. While this approach is great for prototyping or simple apps, it is not ideal when
your app grows.

There are several reasons for this. Arguably, the most important reason is that you would
put at least part of the logic of your app in the same class as your layout. You should avoid
mixing layout and code, as it's hard to maintain and reuse the same code in different
circumstances. It also makes it easier for developers in a group to work on the same code
base if you keep the logic and UI clearly separated.

Also, if you have data that changes in your app, and you need to update several widgets on
different screens, then you also risk unnecessarily duplicating your code. Maintaining your
app may become extremely costly, and keeping the quality of your software might become
challenging.

The BLoC pattern is a state management system for Flutter recommended by Google
developers. BLoC helps in managing the state and accessing data from a shared class in
your project.

There are several ways to manage the state in Flutter. BloC is the
recommended one at this time, but it's also worth mentioning
the inherited widget method, which allows the propagation of data to its
child widgets, and the scoped model method, which is an external
package built on top of Inherited Widget, and Redux, which may be
familiar to you if you've used React. For more information about the
different options for maintaining a state, have a look at https:/ / flutter.
dev/docs/ development/ data- and-backend/ state- mgmt/ options.

https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[380]

Using the BLoC pattern
When using the BLoC pattern, everything is a stream of events.

A BLoC is a layer between a source of data in your app and the widgets that need the data—for
example, the source might be an HTTP response from a web API or a query result from a
database, and the widget might be a ListView that receives the data.

The BLoC receives streams of events or data from your source, deals with the business
logic, and returns or publishes one or more streams of data to widgets that listen or
subscribe to them.

A simple diagram of the role of a BLoC is shown in the following image:

Futures and streams are two ways to deal with asynchronous
programming in Dart. The difference is that futures have a single request
and response, whereas streams are a continuous series of responses to a
single request.

A BLoC has two components, sinks and streams, both of which are part of a
StreamController.

You could think of a stream as a pipe. This pipe has two ends: a way in and a way out. It's a
'one-way only' pipe. When you insert something into the pipe, it enters by the Sink,
possibly being transformed inside (if you want it to be), and then exits from the Stream.

You should bear in mind the following facts when using the BLoC pattern in Flutter:

The pipe is called a Stream.
To control the stream, you use a StreamController.
The way into the stream is the sink property of the StreamController.
The

way out of the stream is the stream property of the StreamController.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[381]

For a strange choice of properties and class names, Stream (uppercase S)
is the class that provides an asynchronous sequence of data, and stream
(lowercase s) is the property of the StreamController where data comes
out.

In order to use the Stream and be notified when something comes out of it, you need
to listen to the Stream. You define a listener with a StreamSubscription object.

The StreamSubscription is notified every time an event related to the Stream is
triggered—for example, whenever some data flows out from the stream or when there is an
error.

You can also transform the data inside a Stream through an object
called StreamTransformer—for example, to filter or modify the data.

The BLoC guideline step by step
There are several steps involved in implementing a BLoC in your app: I'll highlight them
here so that we have a map for the next few steps:

Create a class that will serve as the BLoC.1.
In the class, declare the data that needs to be updated in the app (in this case, the2.
list of Todo objects).
Set the StreamControllers.3.
Create the getters for streams and sinks.4.
Add the logic of the BLoC.5.
Add a constructor in which you'll set data6.

and listen to changes.1.
Set the dispose() method.2.
From the UI, create an instance of the BLoC.3.
Use a StreamBuilder to build the widgets that will use the BLoC data.4.
Add events to the sink for any changes to the data.5.
Call the dispose() method.6.

I'll use this list as a map for the steps that we will perform in the remainder of this chapter.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[382]

1. Creating the BLoC class
In order to implement the BLoC pattern in the app, create a new folder in the lib folder of
our app called bloc.

Inside the bloc folder, create a new file called todo_bloc.dart.

The StreamControllers can be accessed via the 'dart:async' library, so, in our
imports, we'll add the dart:async, our todo.dart file, and the todo_db.dart to connect
to the database.

Add the code for the required imports:

import 'dart:async';
import '../data/todo.dart';
import '../data/todo_db.dart';

This file will contain a class called TodoBloc, which will serve as an interface between the
UI and the data of the app:

class TodoBloc {}

2. Declaring the data that will change
Inside the class, declare a TodoDb class and a List of Todo items:

TodoDb db;
List<Todo> todoList;

3. Setting the StreamControllers
Create the StreamControllers: one for the List of Todo items and three more for the
insert, update, and delete tasks. The StreamControllers are generics, so we also need to
specify the type of data that the StreamController will manage: a single todo for the
updates and a List of the Todo type for the _todosStreamController.

There are two kinds of Streams: single-subscription Streams and broadcast Streams.
Single-subscription Streams only allow a single listener during the whole lifetime of the
Stream. Broadcast Streams, on the other hand, allow multiple listeners that can be added at
any time: each listener will receive data from the moment it begins listening to the Stream.
In our project, we will use a broadcast stream, allowing multiple listeners:

 final _todosStreamController = StreamController<List<Todo>>.broadcast();
 //for updates
 final _todoInsertController = StreamController<Todo>();

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[383]

 final _todoUpdateController = StreamController<Todo>();
 final _todoDeleteController = StreamController<Todo>();

4. Creating the getters for streams and sinks
Now, let's create the Stream getters. In our data flow, we'll use the sink property to add
data and the stream property to get data:

 Stream<List<Todo>> get todos => _todosStreamController.stream;
 StreamSink<List<Todo>> get todosSink => _todosStreamController.sink;
 StreamSink<Todo> get todoInsertSink => _todoInsertController.sink;
 StreamSink<Todo> get todoUpdateSink => _todoUpdateController.sink;
 StreamSink<Todo> get todoDeleteSink => _todoDeleteController.sink;

5. Adding the logic of the BLoC
Next, still in the TodoBloc class, create the functions needed to implement the stream of
data, starting with the method that will get the todos from the sembast database.
The getTodos() returns a Future, and will await the result of db.Todos before updating
the todos list:

Future getTodos() async {
 List<Todo> todos = await db.getTodos();
 todoList = todos;
 todosSink.add(todos);
}

Also, create a function that just returns the todos list, calling it returnTodos:

 List<Todo> returnTodos (todos) {
 return todos;
 }

Finally, create the three methods needed to call the database methods to delete, update,
and add a Todo. After calling each database function, call the getTodos() method to
update the stream of data:

void _deleteTodo(Todo todo) {
 db.deleteTodo(todo).then((result){
 getTodos();
 });
}
void _updateTodo(Todo todo) {
 db.updateTodo(todo).then((result){
 getTodos();
 });

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[384]

}
void _addTodo(Todo todo) {
 db.insertTodo(todo).then((result) {
 getTodos();
});

6. Creating the constructor
The next step is to add a constructor to the TodoBloc class:

 TodoBloc() {}

In the constructor, call the instance of the TodoDb class and then call the getTodos()
method:

db = TodoDb();
getTodos();

Next, still in the constructor, listen to the changes for each of the methods that we have
created:

 //listen to changes:
 _todosStreamController.stream.listen(returnTodos);
 _todoInsertController.stream.listen(_addTodo);
 _todoUpdateController.stream.listen(_updateTodo);
 _todoDeleteController.stream.listen(_deleteTodo);

7. Setting the dispose() method
As the last step for this class, add a dispose() method, in which you'll close the four
StreamController objects. This may prevent memory leaks and errors that are difficult to
debug:

//in the dispose method we need to close the stream controllers.
 void dispose() {
 _todosStreamController.close();
 _todoInsertController.close();
 _todoUpdateController.close();
 _todoDeleteController.close();
 }

The BLoC is now complete. The last step required is to implement the user interface in a
way that will use the BLoC pattern to deal with the state in our app.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[385]

Using BLoCs and Streams to update the UI
All of the plumbing of the app is now complete. We just need to add the user interface in
order to interact with the BLoC and show data to the user.

The main screen of the app will contain the list of todos in a ListView. The screen will look
similar to the following image:

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[386]

In this section, we will complete the remaining steps required to interact with a BLoC from
the user interface:

We'll create an instance of the BLoC.1.
Then we'll include the UI in the StreamBuilder, which is the object you use2.
when showing a stream.
Next, we'll add events to the sink for the changes to the data.3.
Finally, we'll override the dispose() method and, from there, call the4.
dispose() method of the BLoC in order to prevent memory leaks, which are
very difficult to debug; that's also why a Stateful widget is recommended, even
though you don't need to use the setState() method.

The HomePage screen user interface
The HomePage screen will read data from the BLoC and show a ListView containing the
Todo objects to the user. From this screen, the user will also write to the BLoC by deleting
an object when they swipe an element from the ListView:

In the main.dart file, edit the imports so that they contain a reference to the1.
todo_bloc.dart file and a file that we will add shortly called
todo_screen.dart. Remove all other imports:

import 'package:flutter/material.dart';
import 'todo_screen.dart';
import 'data/todo.dart';
import 'bloc/todo_bloc.dart';

At the beginning of the _HomePageState class, create a field for the2.
TodoBloc and one for the List of Todo that will be shown on the screen, and
remove the preexisting code:

class HomePage extends StatefulWidget {
 @override
 _HomePageState createState() => _HomePageState();
}

class _HomePageState extends State<HomePage> {
 TodoBloc todoBloc;
 List<Todo> todos;
}

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[387]

Override the initState() method and inside the function, let's set the3.
todoBloc field to be an instance of the TodoBLoc class. This creates an instance of
the BLoC:

 @override
 void initState() {
 todoBloc = TodoBloc();
 super.initState();
 }

Also override the dispose() method so we don't forget to do it later. Here, we'll4.
just call the dispose() method of the todoBloc object:

@override
void dispose() {
 todoBloc.dispose();
 super.dispose();
}

In the build() method, add the code to create a new empty todo and to5.
populate the list of Todo objects that we called todos. The todoList property of
the BLoC contains the objects retrieved from the database:

 @override
 Widget build(BuildContext context) {
 Todo todo = Todo('', '', '', 0);
 todos = todoBloc.todoList;
 }

Then, still in the build() method, return a Scaffold whose AppBar will have a6.
title of 'Todo List', and a body with a Container:

return Scaffold(
 appBar: AppBar(
 title: Text('Todo List'),
),
 body: Container()
);

Finally, after building all the plumbing for our app, we can use the
Streambuilder widget. This will listen to the events from the Stream and will
rebuild all its descendants, using the latest data in the Stream. You can connect it
to the Streams through the stream property and a builder that contains the UI
that needs to be updated. We can also set the initialData property to make
sure we control what is shown at the beginning before we receive any event.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[388]

In the Container, add a Streambuilder as a child that connects to the todos7.
Stream of the todoBloc instance, and has the todos list as the initial data: as you
might remember, you use a StreamBuilder to build the widgets that will use the BLoC
data:

child: StreamBuilder<List<Todo>>(
 stream: todoBloc.todos,
 initialData: todos,
)

Then set the builder method, which takes the context, and the snapshot, which8.
contains the data received from the Stream:

builder: (BuildContext context, AsyncSnapshot snapshot) {}

Inside the builder method of the StreamBuilder, add a ListView.builder.9.
For the itemCount parameter, we'll use a ternary operator. If the
snapshot.hasData property is true, we'll use the length of the data contained
in the snapshot; otherwise, we'll use 0. Then we'll set an empty itembuilder for
the ListView:

return ListView.builder(
 itemCount: (snapshot.hasData) ? snapshot.data.length : 0,
 itemBuilder: (context, index) {}
);

In the builder function of the ListView, return a Dismissible so that the user10.
will be able to swipe on the item and delete the Todo from the sembast database.
This will happen by the app calling the todoDeleteSink and adding the Todo
at the index position. This is step 10 of the BLoC guideline in the previous
section:

return Dismissible(
 key: Key(snapshot.data[index].id.toString()),
 onDismissed: (_) =>
 todoBloc.todoDeleteSink.add(snapshot.data[index])
);

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[389]

The child of the Dismissible widget is a ListTile that shows the priority in a11.
CircleAvatar, then the name of the Todo as title, and the description as
subtitle. Add the following code to set the ListTile in the Dismissible
widget:

child: ListTile(
 leading: CircleAvatar(
 backgroundColor: Theme.of(context).highlightColor,
 child: Text("${snapshot.data[index].priority}"),
),
 title: Text("${snapshot.data[index].name}"),
 subtitle: Text("${snapshot.data[index].description}"),
)

Still inside the ListTile, we'll add a trailing icon. When the user presses the
icon, the app will bring them to the second screen of the app, which shows the
todo detail and allows the user to edit and save the todo that they selected. As this
is for editing, we'll choose the Icons.edit icon, and in the onPressed function,
we'll use the Navigator.push() method to navigate to the TodoScreen that
we'll create right after completing this screen. We'll pass to the to-be-created
screen the todo that was selected and a Boolean (false) that tells the screen that
this is not a new todo, but an existing one.

Add the following code to create a trailing IconButton and navigate to the12.
second screen of the app:

trailing: IconButton(
 icon: Icon(Icons.edit),
 onPressed: () {
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => TodoScreen(
 snapshot.data[index], false)),
);
 },
),

In the Scaffold, under the appBar, set a FloatingActionButton that the user13.
will press to create a new Todo. This will also navigate to the second screen of the
app, but this time the boolean value that is passed is true, as this is a new todo.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[390]

Add the following code in the Scaffold to add the FloatingActionButon:14.

floatingActionButton: FloatingActionButton(
 child: Icon(Icons.add),
 onPressed: () {
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) =>
 TodoScreen(todo, true)),
);
 },
),

Now that the HomePage screen is ready, let's add the TodoScreen next.

The TodoScreen user interface
The last part of the app we need to create is the todo detail screen, which will allow the user
to view, edit, or add a todo in the sembast database:

In the Lib folder, add a new file called todo_screen.dart. At the top of the1.
file, add the required imports:

import 'package:flutter/material.dart';
import 'bloc/todo_bloc.dart';
import 'data/todo.dart';
import 'main.dart';

Next, add a stateless widget and call it TodoScreen:2.

class TodoScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Container(
);
 }
}

At the top of the class, declare a few final variables: one for the Todo object that3.
will be shown and edited by the user, a Boolean that will tell whether the todo is
a new or existing one, and the TextEditingController for the TextField
widgets we'll put in the screen:

final Todo todo;
final bool isNew;

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[391]

final TextEditingController txtName = TextEditingController();
final TextEditingController txtDescription =
TextEditingController();
final TextEditingController txtCompleteBy =
TextEditingController();
final TextEditingController txtPriority = TextEditingController();

Add a TodoBloc, called bloc, and create a constructor that will set the Todo4.
with the one that is passed and the boolean variable to decide whether the Todo
is new.
Inside the constructor, create an instance of the TodoBloc class:5.

final TodoBloc bloc;
TodoScreen(this.todo, this.isNew) : bloc = TodoBloc();

The part after the colon in the TodoScreen constructor is an initializer list,
a comma-separated list that you can use to initialize final fields with
calculated expressions.

Inside this screen, we only need one method—save()—that will be called when
the user presses the Save button on the screen. The purpose of this method is to
read the data in the form and use the BLoC to update the events of the stream. If
the Todo object is new, it will call the add() method of the todoInsertSink in
the BLoC; otherwise, it will call the same method in the todoUpdateSink.

Add the following code to create the save() method:6.

Future save() async {
 todo.name=txtName.text;
 todo.description = txtDescription.text;
 todo.completeBy = txtCompleteBy.text;
 todo.priority = int.tryParse(txtPriority.text);
 if (isNew) {
 bloc.todoInsertSink.add(todo);
 }
 else {
 bloc.todoUpdateSink.add(todo);
 }
 }

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[392]

At the top of the build() method, we'll set the content of the TextField7.
widgets based on the value of the Todo object that was passed, and create a
constant to add some spacing between the widgets:

final double padding = 20.0;
txtName.text = todo.name;
txtDescription.text = todo.description;
txtCompleteBy.text = todo.completeBy;
txtPriority.text = todo.priority.toString();

Return a Scaffold whose appBar contains a Text with 'Todo Details' and8.
whose body contains a SingleChildScrollView to prevent the widget from
taking up more than the available space:

return Scaffold(
 appBar: AppBar(
 title: Text('Todo Details'),
),
 body: SingleChildScrollView()
)

As a child of the SingleChildScrollView, place a Column whose children will9.
contain the TextFields for the Todo: in order to create some space between the
form widgets, each TextField will be included in a Padding widget. The first
TextField will be for the name property of the todo, and, to help the user, we'll
also add a hintText of 'Name':

body: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 Padding(
 padding: EdgeInsets.all(padding),
 child: TextField(
 controller: txtName,
 decoration: InputDecoration(
 border: InputBorder.none,
 hintText: 'Name'
),
)),

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[393]

The second TextField widget in the Column is for the description of the Todo,10.
with a hintText of 'Description':

 Padding(
 padding: EdgeInsets.all(padding),
 child: TextField(
 controller: txtDescription,
 decoration: InputDecoration(
 border: InputBorder.none,
 hintText: 'Description'
),
)),

Under the description, put another TextField, this time for the 'Complete by'11.
field, setting the hintText accordingly:

 Padding(
 padding: EdgeInsets.all(padding),
 child: TextField(
 controller: txtCompleteBy,
 decoration: InputDecoration(
 border: InputBorder.none,
 hintText: 'Complete by'
),
)),

The last TextField is for the priority. As this is a number, we can set the12.
keyboardType to numeric:

 Padding(
 padding: EdgeInsets.all(padding),
 child: TextField(
 controller: txtPriority,
 keyboardType: TextInputType.number,
 decoration: InputDecoration(
 border: InputBorder.none,
 hintText: 'Priority',
),
)),

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[394]

The last widget of this screen is the Save MaterialButton. When pressed, it will13.
call the save() asynchronous method, and, when this completes its execution,
the user will get back to the home screen. In this case, instead of using a simple
push() method on the navigator, we can use a pushAndRemoveUntil() that
will delete the navigation stack, which means it doesn't have to show the back
button from the home screen:

Padding(
 padding: EdgeInsets.all(padding),
 child: MaterialButton(
 color: Colors.green,
 child: Text('Save'),
 onPressed: () {
 save().then((_)=> Navigator.pushAndRemoveUntil(
 context,
 MaterialPageRoute(builder: (context) => HomePage()),
 (Route<dynamic> route) => false,
));
 },
)),

This completes this chapter's project. You are now ready to try the app and start adding,
editing, and deleting items from the sembast database using the BLoC pattern.

Summary
The main point of working on the project that you've built in this chapter isn't the app
features themselves—you could create a todo app in much simpler ways. The focus here is
the architecture that you've seen in action: using an asynchronous stream of data to update
the state of an app is a pattern that can help you scale your projects to enterprise levels.

At the beginning of this chapter, you saw how to use the simple embedded application
store database, or sembast, a document-based database that resides in a single file where
data is stored in JSON format.

In sembast, a DatabaseFactory allows you to open a database where each database is a file
and stores are locations in the database where you can save and retrieve data.

To insert a new item in a sembast database, you need to call the add() method over the
store, passing the database and the map of the object you want to insert. A finder is a helper
for filtering and ordering data into a given store.

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[395]

To delete an existing item, you call the delete() method on the store: this takes the
database and a finder as parameters.

To update an existing item, you call the update() method on the store: this takes the
database, a map of the updated object, and the finder. To retrieve data, you use a finder and
the find() method.

Next, you saw how to leverage the BLoC pattern to manage the state of your apps.

When using a BLoC, everything is a stream of events: the BLoC receives streams of
events/data from the source, handles any required business logic, and publishes streams of
data. A BLoC has two components: Sinks and Streams, both of which are part of a
StreamController.

In order to use the Stream and be notified when something comes out of it, you need to
listen to the Stream. Therefore, you define a listener with a StreamSubscription object
that is notified every time an event related to the Stream is triggered.

The StreamBuilder widget listens to the events from the Stream and rebuilds its
descendants, using the latest data in the Stream.

In the next chapter, you'll see how you can create responsive web apps with Flutter.

Questions
Please try to answer the following questions. When in doubt, have a look at the content in
the chapter itself: you'll find all the answers there!

When would you prefer to use sembast over SQLite in an app?1.
How can you retrieve all the documents from a store in a sembast database?2.
How can you delete all the documents from a store in a sembast database?3.
How would you complete the following method to update an existing object in a4.
sembast database?

Future updateTodo(Todo todo) async {
 //add your code here
}

ToDo App - Leveraging the BLoC Pattern and Sembast Chapter 10

[396]

What are the main differences between Futures and Streams?5.
When would you use the BLoC pattern in an app?6.
In a StreamController, what are the purposes of stream and sink?7.
Which is the object that allows you to listen to the events from the Stream and8.
rebuild all its descendants?
How do you listen to changes in a Stream?9.
Why would you use a stateful widget when dealing with BLoCs, even though10.
you never called the setState() method?

Further reading
The BLoC pattern is the recommended state-management pattern at this time, but you have
other choices when using Flutter: the different options for maintaining a state in Flutter are
explained in the official documentation at https:/ / flutter. dev/ docs/ development/ data-
and-backend/state- mgmt/ options.

In particular, you should be aware of the following :

Inherited Widget: This propagates data to its child widgets: https:/ /api.
flutter. dev/ flutter/ widgets/ InheritedWidget- class. html.
Scoped Model: A package to simplify state management: https:/ /pub. dev/
packages/ scoped_ model.
Redux: Another package that is great if you've used React: https:/ /pub. dev/
packages/ flutter_ redux.

As with state management, there are several tools to choose from when persisting data in
Flutter. For a list of your options, have a look at the official documentation at https:/ /
flutter.dev/docs/ cookbook/ persistence.

Working with Streams may be challenging at first: to fully understand the main concepts of
using Streams in Dart, check out the great tutorial at https:/ /dart. dev/ tutorials/
language/streams.

https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://flutter.dev/docs/development/data-and-backend/state-mgmt/options
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/scoped_model
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://pub.dev/packages/flutter_redux
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://flutter.dev/docs/cookbook/persistence
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams
https://dart.dev/tutorials/language/streams

11
Building a Flutter Web App

The dream of being able to create universal apps is not new, but today, the challenge of
creating an app that can run on several form factors is even more urgent. Just think of the
many devices people use every day: smartphones, tablets, smartwatches, notebooks, smart
TVs, gaming consoles, and desktop PCs. These are all clients where we, as developers,
could potentially install our software.

Flutter has been supporting iOS and Android since the beginning, which already solves a
huge need for developers, but it's taking huge steps in the direction of the dream of every
developer: having a truly universal platform to develop apps that can run anywhere.

The Flutter implementation for the web was presented at Flutter Interact 2019 and is called
Flutter for Web.

At the time I'm writing this, Flutter supports web development in the beta channel of
Flutter and desktop development for macOS in its alpha channel. In this chapter, we'll be
focusing on web development with Flutter, but the same design principles apply to
desktops as well.

The following topics will be covered in this chapter:

Building a Flutter app that runs on a browser
Creating a responsive user interface (UI)
Using shared_preferences to save data in Android, iOS, and the web
Publishing a Flutter app to a web server

Building a Flutter Web App Chapter 11

[398]

Technical requirements
You'll find the complete app code on the book's GitHub repository at https:/ /github. com/
PacktPublishing/Flutter- Projects.

To follow along with the code examples in this book, you should have the following
software installed on your Windows, Mac, Linux, or Chrome OS device:

The Flutter software development kit (SDK).
When developing for Android: the Android SDK, easily installed by Android
Studio.
When developing for iOS: macOS and Xcode.
An emulator (Android), a simulator (iOS), or a connected iOS or Android device
enabled for debugging.
An editor: Visual Studio Code (VS Code), Android Studio, or IntelliJ IDEA are
recommended. All should have the Flutter/Dart extensions installed.
For this chapter, you should also have a Chrome browser installed on your
computer.

Essential theory and context
You already know how to build mobile apps with Flutter, and, therefore, you also already
know how to build beautiful, engaging, interactive web sites, as the principles for
developing web apps with Flutter for the web are mostly the same. You still use Dart,
widgets, libraries, and manage the state of your apps in the same way. There are some
features still missing, such as hot reload, and some web-specific limitations, such as writing
files on a disk, but you'll find that most of the great reasons for using Flutter are also valid
for the web.

Using Flutter for Web actually has several advantages: it's easy to deploy, it allows you to
quickly iterate on your applications, and—most important—it allows you to use the same
code base for both mobile and web platforms.

Browsers today only support HTML, JavaScript, and CSS. With Flutter for Web, your code
gets compiled in those languages, and therefore you don't need any browser plugin, nor
any specific web server.

On Flutter version 1.14, web support is available on the beta channel, and the Chrome
browser is required to debug your Flutter apps.

https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects
https://github.com/PacktPublishing/Flutter-Projects

Building a Flutter Web App Chapter 11

[399]

Another great addition to Flutter for Web is the use of plugins. There are already several
libraries that also support Flutter for Web. The updated list is available on the following
page: https://pub. dev/ flutter/ packages? platform= web.

In the project in this chapter, we will be using the shared_preferences library that works
on iOS, Android, and the web.

Project overview
The app we will build in this chapter contains two pages. On the home page, the user will
see a text field to search for books. After pressing the search button, if books are found, they
will see a list of books, with their title and description. For each list, there will be a button
that will allow the user to add a book to their favorites. The favorite books will be saved
locally.

One of the challenges in having to deal with different form factors is the way you use the
space on the screen. So, we will add a small tweak to the app. If the screen is "small", such
as in a smartphone, the user will see ListView; otherwise, they will see a table.

Here, you can see a screenshot of the first page for larger screens, containing a table:

https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web

Building a Flutter Web App Chapter 11

[400]

Here, you can see a screenshot of the first page for smaller screens. This is a ListView with
ListTiles. Notice that the appBar shows icons to change the routes, instead of full text:

The second screen of the app will be the Favorite Books page. This will list all the books
marked as favorites. Here, the user will be able to remove a book from their favorites.

Building a Flutter Web App Chapter 11

[401]

Again, the controls used for the app will change based on the size of the screen. Here, you
can see a screenshot of the larger screen:

And here is, a screenshot of the smaller version of the same screen:

The build time for this project is approximately 2.5 hours.

Building a Flutter Web App Chapter 11

[402]

Building a Flutter app that runs on a
browser
Let's summarize the requirements for this app, as follows:

The app must work for iOS, Android, and the web.1.
The favorite books need to be saved locally.2.
Depending on the screen size, we will show the user a different layout.3.

As of Flutter version 1.14, web development for Flutter is available in the beta channel, and
you need to set up the environment to explicitly enable web support. However, please
check if this is still true when you read this information on the official documentation page
at https://flutter. dev/ web.

The cli commands required to add web support to your environment are detailed as
follows:

Open your Terminal/command prompt and type the following commands to1.
enable the beta channel and web development:

flutter channel beta
flutter config --enable-web

Run the flutter devices command, as follows:2.

flutter devices

If the web is enabled, you should see a Chrome device, as shown here:

https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web
https://flutter.dev/web

Building a Flutter Web App Chapter 11

[403]

Create a new Flutter app with your favorite editor, and then move to the folder3.
where you saved the new project.
Next, run the app specifying the Chrome browser as a device, as follows:4.

flutter run -d chrome

This will open the Chrome browser with your Flutter app, and a local web server serving
the app. Maybe for the first time since you started reading this book, you'll see the Flutter
example app running in Chrome, as shown here:

The thing that should be obvious the first time you see the example app in your browser is
the impressive amount of space you have to deal with. This is one of the challenges you
must consider when you design an app that can run both on mobile devices and on the web
(or desktop). In this chapter, we'll see a few suggestions that may help you make
responsive apps that allow different form factors.

Building a Flutter Web App Chapter 11

[404]

Connecting to the Google Books API web service
In order to enable searching for books in our app, we'll connect to the Google Books API.
This is an incredible web service. Its purpose is to share information about most of the
books ever published, anywhere in the world. By leveraging the Google Books API
service, the web app you'll build in this chapter will contain the data of millions of books.

In order to get the information we need, we have to reach the Google API through a
Uniform Resource Locator (URL). This URL is made of several parts, described here:

The scheme: HTTPS, in this case.
The authority: www.googleapis.com. 
The path that is specific for the books API: books/v1/volumes.
The query string: a question mark, "q", an equals sign, and the title we are
looking for—for example, ?q=flutter.

The full URL would be https:/ / www. googleapis. com/ books/ v1/ volumes? q=flutter.

If you put this URL in a browser, you'll see that indeed, we are connecting to the Google
Books API and receiving data in the JSON format. Here, you can see a screenshot of the
JSON data retrieved from the service:

https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter
https://www.googleapis.com/books/v1/volumes?q=flutter

Building a Flutter Web App Chapter 11

[405]

As with most web services, the Google Books API takes a key to connect to the web service.
To obtain a key to be added to the service, have a look at the https:/ /developers. google.
com/books/docs/v1/ using#APIKey page.

When you get the API key, make sure you enable the API key for the
Books API.

The data you see in the browser is what we are going to put into the first page of our web
app. From the items node that contains an array of volumes, we'll only get the fields we
need: the ID, the title from the volumeInfo node, the authors, and the description.

We won't get into the details of parsing JSON data here. For a refresher on
connecting to a web service and using JSON, have a look at Chapter 5,
Let's Go to the Movies - Getting Data from the Web.

In the next section, we'll create the model class from the parsed JSON.

Creating the Book model class
Let's create a model class, with a selection of the JSON data retrieved from the Google
Books API that will serve as the content for our app, as follows:

In the lib folder of the app, create a new directory called data.1.
Inside the directory, add a new file called book.dart. This will contain the Book2.
class that we will use as a model in our app, as shown in the following code
snippet:

class Book {}

Add to the Book class the properties that we will need in our app: id, title,3.
authors, description, and publisher, as follows:

String id;
String title;
String authors;
String description;
String publisher;

The authors are returned as an array in the JSON retrieved from the Google Books
API, but we'll treat them as a simple string.

https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey
https://developers.google.com/books/docs/v1/using#APIKey

Building a Flutter Web App Chapter 11

[406]

Create the constructor that will set all the fields upon creating the class, like this:4.

Book(this.id, this.title, this.authors, this.description, this.publis
her);

We also need a named constructor that takes a map and returns a Book. This will
be useful when parsing the JSON data and transforming it into a list of Book
objects.

Add the following code to create the fromJson named constructor:5.

factory Book.fromJson(Map<String, dynamic> parsedJson) {
    final String id =  parsedJson['id'];
    final String title = parsedJson['volumeInfo']['title'];
    String authors = (parsedJson['volumeInfo']
 ['authors'] == null) ? '' : parsedJson[
 'volumeInfo']['authors'].toString();
    authors = authors.replaceAll('[', '');
    authors = authors.replaceAll(']', '');
    final String description = (parsedJson['volumeInfo']['description']
 ==null) ? '' : parsedJson['volumeInfo']['description'];
    final String publisher = (parsedJson['volumeInfo']
 ['publisher'] == null) ? '': 
 parsedJson['volumeInfo']['publisher'];
    return Book(
      id,
      title,
      authors,
      description,
      publisher,
    );
  }

In the code, note that, for the authors, we transform the JSON array into a String using the
toString() method, and then we remove the square brackets using the replaceAll()
method. We use the ternary operator several times to prevent errors, by checking whether a
value is null. At the end of the constructor, we return a Book by calling the default
constructor.

In order to complete the Book class, we need to create the toJson() method that returns
the values of the class instance in JSON format, as shown in the following code block:

Map <String, dynamic> toJson() {
 return {
 'id': id,
 'title': title,
 'authors': authors,

Building a Flutter Web App Chapter 11

[407]

 'description': description,
 'publisher': publisher
 };
}

Now that we have created a model class, let's understand how we can retrieve books using
the HTTP service.

Using the HTTP service to retrieve books
Our app will need to connect to the service through HTTP, so the first step we need to
perform is adding the latest version of the http package in the pubspec.yaml file. As we
are editing this file, let's also add support for shared_preferences, which we'll use later
in the chapter. As usual, please make sure you check the latest version on the https:/ /pub.
dev website.

In the dependencies node of pubspec.yaml, add the support for HTTP and
shared_preferences, as follows:

http: ^0.12.0+4
shared_preferences: ^0.5.6+1

In the lib/data folder of our app, let's create a new file called books_helper.dart that
will contain the class that builds the queries to the Google Books API.

For a refresher on how to connect to a web service and work with JSON,
have a look at Chapter 5, Let's Go to the Movies - Getting Data from the Web
in the Connecting to a web service and retrieving data with HTTP section.

In the file, we'll need the http package for the connection, the dart:convert package, to
decode the JSON data, the dart:async library to use asynchronous methods,
material.dart for the navigation, shared_preferences to save data locally (more on
that later), and, of course, the Book class.

Let's start building the books_helper.dart file, as follows:

Add the following code to add the required imports:1.

import 'package:http/http.dart' as http;
import 'package:flutter/material.dart';
import 'dart:convert';
import 'dart:async';
import 'package:http/http.dart';

https://pub.dev
https://pub.dev
https://pub.dev
https://pub.dev
https://pub.dev
https://pub.dev

Building a Flutter Web App Chapter 11

[408]

import 'package:shared_preferences/shared_preferences.dart';
import 'book.dart';

Still in the bookshelper.dart file, create a class called BooksHelper, like this:2.

class BooksHelper { }

Inside the BooksHelper class, create a few constants to build the URL of the3.
query. urlKey will contain your Google Books API key, urlQuery contains the
user query, and urlBase is the fixed part to retrieve information from the web
service, as shown in the following code snippet:

final String urlKey = '&key=[ADD YOUR KEY HERE]';
final String urlQuery = 'volumes?q=';
final String urlBase = 'https://www.googleapis.com/books/v1/';

Now, create a new method called getBooks(). This will take a String containing4.
the books the user is looking for and will return a Future for a List of dynamic
items, as follows:

Future<List<dynamic>> getBooks(String query) async {}

In the getBooks() method, create the full url containing the query and the key,5.
like this:

final String url = urlBase + urlQuery + query + urlKey;

Once the url String is ready, we can leverage the http library to call the get()6.
method that will retrieve the books data. This is asynchronous and returns a
Response object, so here, we'll use the await statement to get the result, like
this:

Response result = await http.get(url);

If the status of the response is successful (statusCode 200), we'll decode the7.
body of the result into a variable called jsonResponse. In particular, we need a
node called items from the body, which contains the volume's information.

Once the items node is retrieved, just call the map() method over it, and for each
volume in the items node, create a Book from the json object and then return a
List of the books that were created.

If the status of the Response is not successful, then this method returns null.8.
Add the following code in the getBooks() method to retrieve the data from the
Google Books API:

Building a Flutter Web App Chapter 11

[409]

    if (result.statusCode == 200) {
      final jsonResponse = json.decode(result.body);
      final booksMap = jsonResponse['items'];
      List<dynamic> books = booksMap.map((i) => Book.fromJson(i)).toList(
);
      return books;
    }
    else {
      return null;
    }

Now that we have written the method to search books from the Google Books API, let's add
a user interface (UI) so that we can show some results to our user!

Creating a responsive UI
On the home page of our app, we want to show the user a text field to search for any book
from the Google Books API library. The results will be shown under the search box, and the
appearance of the results will depend on the screen. From here, the user will be able to add
a book to their favorites. Let's look at the steps, as follows:

Replace the default example code in the main.dart file with the following:1.

import 'package:flutter/material.dart';
import './data/bookshelper.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'My Books',
      theme: ThemeData(
        primarySwatch: Colors.blueGrey,
      ),
      home: MyHomePage(),
    );  } }

Building a Flutter Web App Chapter 11

[410]

Please note that in the preceding code, we have imported the bookshelper.dart
file and changed the theme colors and the title for the MateriaLApp.

Next, create a StatefulWidget called MyHomePage, using the stful shortcut. It2.
will generate the following code:

class MyHomePage extends StatefulWidget {
   @override
  _MyHomePageState createState() => _MyHomePageState();
}

class _MyHomePageState extends State<MyHomePage> {
  @override
  Widget build(BuildContext context) {
    return Container(  );  
} }

In the _MyHomePageState class, create a few fields. The first one is an instance3.
of the BooksHelper class, then one for the List of books that will be shown on
the screen, an integer for the number of books retrieved, and a
TextEditingController for the search text field, as shown in the following
code block:

 BooksHelper helper;
 List<dynamic> books = List<dynamic>();
 int booksCount;
 TextEditingController txtSearchController;

When this screen loads, we want to set the BooksHelper instance and the4.
txtSearchController object, and then retrieve a List of books. For this last
action, we'll create a new method called initialize(), as follows:

@override
  void initState() {
    helper = BooksHelper();
    txtSearchController = TextEditingController();
    initialize();
    super.initState();
  }

The initialize() method will be asynchronous and will return a Future.
Inside the method, we'll call the getBooks() method from our BooksHelper.

Building a Flutter Web App Chapter 11

[411]

For this example, we'll just retrieve the books containing "Flutter". In a real-world
app, you would probably choose a smoother first screen, maybe guiding to a new
search, but, for this project, this is totally adequate.

After retrieving the books, call the setState() method to update the books list5.
and the booksCount fields. Add the following code at the end of the
_MyHomePageState class:

Future initialize() async {
    books = await helper.getBooks('Flutter');
    setState(() {
      booksCount = books.length;
      books = books;
    });
  }

Next, we'll update the build() method, and here, we'll add the first piece of code
that will help us build a responsive app.

In the build() method, create a Boolean called isSmall and set it to false, as6.
follows:

bool isSmall = false;

We'll consider a "small" screen to be every screen that has a width of less than 600
units. In order to retrieve the screen size, we'll use the MediaQuery widget.

Flutter measures size with "logical pixels", which are basically the same as
device-independent pixels (dips) for Android. This allows your apps to
look roughly the same size on every device. For more information on the
way logical pixels relate to physical pixels, have a look at the following
page: https:/ /api. flutter. dev/ flutter/ dart- ui/Window/
devicePixelRatio. html.

Add the code to check whether the device is "small", as follows:7.

if (MediaQuery.of(context).size.width < 600) {
      isSmall = true;
    }

As usual, we'll return a Scaffold here. The Scaffold will contain an AppBar,
with the title of "My Books". Let's also add an actions array. From the actions of
our user, we'll be able to change the page, and here, we'll add the first responsive
widgets for this app.

https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html
https://api.flutter.dev/flutter/dart-ui/Window/devicePixelRatio.html

Building a Flutter Web App Chapter 11

[412]

Add the following code to return a Scaffold in the build() method:8.

return Scaffold(
        appBar: AppBar(
          title: Text('My Books'),
          actions: <Widget>[]
));

In the actions of the AppBar, we'll add two InkWell widgets, which are simply
rectangular areas that respond to touch (or click on desktops).

For the first InkWell widget child, add a Padding, with a padding of 20 on9.
every side. The child of the Padding widget will depend on the size of the
screen. On smaller screens, the user will see the home icon from the Icons
enumerator. For larger screens, they will see a text with Home, as follows:

InkWell(
 child: Padding(
 padding: EdgeInsets.all(20.0),
 child: (isSmall) ? Icon(Icons.home) : Text('Home')),
),

The second InkWell will follow the same logic, but instead of showing the home10.
icon, we'll show the star icon, and the text will be 'Favorites', as shown in the
following code block:

InkWell(
 child: Padding(
 padding: EdgeInsets.all(20.0),
 child: (isSmall) ? Icon(Icons.star) : Text('Favorites')),           
),

In the body of the Scaffold, place a SingleChildScrollView to prevent the11.
content of the screen overflowing the available space. Its child will be a Column,
as shown in the following code snippet:

body: SingleChildScrollView(
 child: Column(children: []),

Building a Flutter Web App Chapter 11

[413]

The first widget in the Column is a Padding so that the small form allowing the12.
user to search for a book will have 20 logical pixels of space in all directions. The
child of the Padding will be a Row, as shown in the following code snippet:

Padding(
 padding: EdgeInsets.all(20),
 child: Row(children: []),
)

In the Row, put a Text containing a 'Search book' string, as follows:13.

Text('Search book'),

Still in the Row, add a Container with the same 20 logical pixels padding and a14.
width of 200. Its child will be a TextField, as shown in the following code
snippet:

Container(
 padding: EdgeInsets.all(20),
 width: 200,
 child: TextField()
)

Now, we need to set the TextField. Its controller will be the15.
txtSearchController that we created at the top of the class. For mobile
devices that have a virtual keyboard, the keyboardType will be of type text,
and the textInputAction will be of type search, as shown in the following
code snippet:

controller: txtSearchController,
keyboardType: TextInputType.text,
textInputAction: TextInputAction.search,

Still, only for virtual keyboards, we want to submit the search query when the
user clicks on the search button.

Building a Flutter Web App Chapter 11

[414]

Add an onSubmitted() method that will call the helper getBooks()16.
asynchronous method, and when the value of the query returns, call the
setState() method to update the books List, as follows:

onSubmitted: (text) {
 helper.getBooks(text).then((value) {
 setState(() {
 books = value;
 });
 });
},

The last widget in the Row will be a search icon button, necessary for all devices17.
that have no virtual keyboards, but visible in all devices. Enclose it into another
Padding of 20, like this:

Container(
 padding: EdgeInsets.all(20),
 child: IconButton(
 icon: Icon(Icons.search),
 onPressed: () =>
 helper.getBooks(txtSearchController.text)
)),

Now, the Row contains the Search Text, TextField, and IconButton. Under18.
this Row, we'll need to place the actual result of the query. For now, just add a
Padding in the column, with a child that will be an empty Container, as
follows:

Padding(
 padding: EdgeInsets.all(20),
 child: Container(),
),

The child of the padding should contain the list of Books that we retrieved using the
helper.getBooks() method. And that's exactly what we'll do in the next section.

Responsive widgets: ListView or Table?
The home page (or main screen) of our app will contain a list of volumes. In previous
projects in this book, whenever we had a list of data to show to our users, we used the
ListView widget with vertical scrolling. This is ideal on smartphones, where the height of
the device is usually larger than its width, and the user takes for granted scrolling as the
default way to view data.

Building a Flutter Web App Chapter 11

[415]

On a notebook or a desktop, the width of the screen is generally larger than its height, and
large amounts of data are generally placed in tables that leverage the available space,
dividing several pieces of data into rows and columns. Things can only get more
complicated when you think about tablets, with their various sizes, resolutions, and
orientations.

So, the question is, where should we put our data: in a scrolling ListView or in a Table?

The answer is… both: if the screen is small, we'll show a ListView; otherwise, we'll show a
Table.

Before we design the UI, there's also another issue. In our app, there are two pages: one to
look for books, and another to show the favorites. If you think about it, both pages share
the same kind of content: a list of books. What's different is the source of data (web or
internal storage) and the actions the user can perform. On the home page, the user will be
able to add a book to their favorites; on the favorites page, the opposite is true: they will be
able to remove books from the favorites list. The origin of the books does not change the
layout, but the action does.

What might work for us is trying to use the same layout for both pages, and only changing
the action button in the table or list, and we'll do that next.

Creating the Table for larger devices
Let's begin by designing the table for larger devices, as follows:

Create a new file called ui.dart, and add two imports at the top of the file—one1.
for the material.dart library and another for our bookshelper.dart file, as
follows:

import 'package:flutter/material.dart';
import 'data/bookshelper.dart';

Next, create a stateless widget called BooksTable. When called, this class will2.
take the list of books and a Boolean value specifying whether the caller is the
home page or the favorites page (which we still have to create). It will also create
an instance of the BooksHelper class. Add the following code to create the
BooksTable stateless widget:

class BooksTable extends StatelessWidget {
 final List<dynamic> books;
 final bool isFavorite;

Building a Flutter Web App Chapter 11

[416]

 BooksTable(this.books, this.isFavorite);
 final BooksHelper helper = BooksHelper();

 @override
 Widget build(BuildContext context) {
 return Container();
 }
}

In the build() method, instead of returning a Container, we will return a3.
Table that allows you to place your widgets in a grid. Using a Table is rather
easy; you simply need to create a Table widget and add TableRow widgets to it.

You can also decide the width for each Column. In this case, we will use the
FlexColumnWidth widget to make sure each column takes a relative space in the
Table. For example, if we create a Table with two columns, one with a width of
FlexColumnWidth(1) and the second with a width of FlexColumnWidth(2),
the second column will take twice the space of the first one.

You can also specify the width of table columns with absolute values. For
more information, have a look at the official guide at https:/ / api.
flutter. dev/ flutter/ widgets/ Table- class. html.

In our table, we want four columns: title, authors, publisher, and the action icon4.
button. Add the following code to specify the relative size of each column:

return Table(
 columnWidths: {
 0: FlexColumnWidth(3),
 1: FlexColumnWidth(2),
 2: FlexColumnWidth(2),
 3: FlexColumnWidth(1),
 },

Another great feature of a Table widget is being able to specify a border. Add5.
the following code to set the border for our Table:

border: TableBorder.all(color: Colors.blueGrey),

https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html
https://api.flutter.dev/flutter/widgets/Table-class.html

Building a Flutter Web App Chapter 11

[417]

We are finally ready to put the contents of the table. We can do this using its6.
children property. In this case, just call the map() method over the books list
to iterate through the books, like this:

children: books.map((book) {}

As we want to add some style to the text in the table, we'll create a stateless7.
widget called TableText that will take the string we want to show to the user,
and will add some style and padding to each value of the book we'll show in the
table. Add the following code at the bottom of the ui.dart file:

class TableText extends StatelessWidget {
 final String text;
 TableText(this.text);

 @override
 Widget build(BuildContext context) {
 return Container(
 padding: EdgeInsets.all(10),
 child: Text(text,
 style: TextStyle(color:
 Theme.of(context).primaryColorDark),),
);
 }
}

In the build() method in the BooksTable class, in the map() method, we'll
return a TableRow. Each row in a table must have the same number of children.

A TableRow contains one or more TableCell widgets, which are the single cells
of the table. In each cell, we will place the values of the book passed in the map()
method: title, authors, and publisher. The last column will contain an
IconButton, which, depending on the isFavourite value, will allow the user to
add or remove a book from their favorites. We haven't written the methods to
save values locally, but we'll add them in the Using shared_preferences to save data
in Android, iOS, and the web section, later in this chapter.

Add the following code to complete the BooksTable class:8.

books.map((book) {
 return TableRow(
 children: [
 TableCell(child:TableText(book.title)),
 TableCell(child:TableText(book.authors)),
 TableCell(child:TableText(book.publisher)),
 TableCell(

Building a Flutter Web App Chapter 11

[418]

 child: IconButton(
 color: (isFavorite) ? Colors.red : Colors.amber,
 tooltip: (isFavorite) ? 'Remove from favorites' :
 'Add to favorites',
 icon: Icon(Icons.star),
 onPressed: () {}))
]);
 }).toList(),

The last step before trying the table layout is calling this class from the home page
of our app.

Get back to the main.dart file, and in the last Padding in the build() method9.
of the _MyHomePageState class, add the call to the BooksTable class, as
follows:

Padding(
 padding: EdgeInsets.all(20),
 child: BooksTable(books, false)
),

We are now ready to try the table in our Chrome browser. The final result should look
similar to the following screenshot:

Next, let's design the layout for smaller devices.

Building a Flutter Web App Chapter 11

[419]

Creating the ListView for smaller devices
While the Table layout is perfect for larger screens, the ListView is what we need for
smaller devices. The logic of building a UI is very similar to that for a table. We'll just need
to iterate through the list of books and show the values to our user, but instead of using
Table, TableRow, and TableCell widgets, we'll use ListView and ListTile widgets.
Let's look at the steps here:

In the ui.dart file, add another stateless widget called BooksList, and create a1.
constructor that takes the books list and the isFavorite Boolean value. When
called, this class will also create an instance of the BooksHelper class, as shown
in the following code snippet:

class BooksList extends StatelessWidget {
 final List<dynamic> books;
 final bool isFavorite;
 BooksList(this.books, this.isFavorite);
 final BooksHelper helper = BooksHelper();

 @override
 Widget build(BuildContext context) {
 return Container(
); } }

In the build() method of the BooksList, create an integer variable that will2.
contain the number of books, and in the Container, set the height to be the
height of the screen divided by 1.4 (this will be approximately 60% of the screen
height).
The child of the Container widget is a ListView. Call the ListView.builder3.
constructor to create an instance of the ListView. For the itemCount parameter,
use a ternary operator. If the booksCount variable is null, the itemCount will be
0; otherwise, it will take the value of booksCount, as shown in the following
code block:

@override
Widget build(BuildContext context) {
 final int booksCount = books.length;
 return Container(
 height: MediaQuery.of(context).size.height /1.4,
 child: ListView.builder(
 itemCount: (booksCount==null) ? 0: booksCount,
 itemBuilder: (BuildContext context, int position) {}
}));

Building a Flutter Web App Chapter 11

[420]

In the itemBuilder parameter, return a ListTile. The title will take the book4.
title, the subtitle, and the authors. Here, we'll skip the publisher, but, as trailing,
add the add/remove favorite action, as shown in the following code block:

return ListTile(
 title: Text(books[position].title),
 subtitle: Text(books[position].authors),
 trailing: IconButton(
 color: (isFavorite) ? Colors.red : Colors.amber,
 tooltip: (isFavorite) ? 'Remove from favorites' :
 'Add to favorites',
 icon: Icon(Icons.star),
 onPressed: () {}
));

When the app is running on a smaller screen, we want to show the BooksList5.
instead of the BooksTable widget. Get back to the main.dart file, in the last
Padding in the build() method of the _MyHomePageState class, and edit the
code, as shown here:

Padding(
 padding: EdgeInsets.all(20),
 child: (isSmall) ? BooksList(books, false) : BooksTable(books,
 false)),

You can now try the app on smaller screens. If you are using a browser, just reduce the
width of the browser until you see the ListView appearing instead of the table. If you are
trying it on a smartphone or simulator/emulator, you should already see the ListView.

And, with our first responsive layout in place, let's now get into locally saving the favorites
data on our device... universally.

Building a Flutter Web App Chapter 11

[421]

Using shared_preferences to save data in
Android, iOS, and the web
The shared_preferences plugin allows simple data (key-value pairs) to be
asynchronously persisted locally and is currently available for Android, iOS, and Flutter for
Web.

This is possible because shared_preferences wraps different technologies based on the
system on which it's run. In iOS, it leverages NSUserDefaults; in Android, it leverages
SharedPreferences, and in the browser, it leverages the window.localStorage object.
Basically, you have a universal way to save data and don't have to worry about duplicating
any code for the different devices on which your app will be running.

shared_preferences should not be used for critical data as data stored
there is not encrypted, and writes are not always guaranteed. For sensitive
or critical data, other technologies that we've used in previous chapters,
such as sembast and the Firestore database, are already compatible
with Flutter for Web.

At this time, there are already several libraries that also support Flutter for Web, but many
of them don't. Things are changing very fast, and I wouldn't be surprised if, by the time you
read this, most of the libraries that are not totally device-specific become available for the
web (and for desktop).

For an updated list of the libraries that currently support Flutter for Web,
have a look at the following page: https:/ /pub. dev/flutter/ packages?
platform= web.

Now, let's add the code to persist data into our app.

We'll use the existing bookshelper.dart file to add the methods to read and write to
shared_preferences. We'll need three methods: one to add items to the favorites, one to
remove them, and one to get the favorites list. We'll begin by adding favorites to
shared_preferences, as follows:

In the BooksHelper class, add a new asynchronous method called1.
addToFavorites(). This will take a Book object and return a Future. In the
method, call an instance of SharedPreferences called preferences.

https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web
https://pub.dev/flutter/packages?platform=web

Building a Flutter Web App Chapter 11

[422]

Next, we will check if the book already exists in the local storage: if it doesn't, call2.
the setString() method of the preferences to add it to the store.
SharedPreferences only take simple data, so we need to transform the object3.
into a string, and we can achieve this by calling the json.encode() method
over the book, transformed in json format, as shown in the following code
snippet:

Future addToFavorites(Book book) async {
 SharedPreferences preferences = await
SharedPreferences.getInstance();
 String id = preferences.getString(book.id);
 if (id != '') {
 await preferences.setString(book.id,
json.encode(book.toJson()));
 }
}

Next, we'll write the method to delete an existing book from the favorites list. This
takes the book to be deleted, and the current BuildContext. This is to reload the
FavoriteScreen so that it gets updated. It's probably not the most elegant
solution, as we could use a different approach to keep the state of the app, but it's
good enough for this example.

The method to remove data from SharedPreferences is called remove(), and
only takes the key of the value to be deleted.

Add the following code to add the removeFromFavorites() method to the4.
app:

Future removeFromFavorites(Book book, BuildContext context) async {
 SharedPreferences preferences = await
 SharedPreferences.getInstance();
 String id = preferences.getString(book.id);
 if (id != '') {
 await preferences.remove(book.id);
 Navigator.push(context, MaterialPageRoute(builder:
 (context)=> FavoriteScreen()));
 }
}

The last method we need to add in the BooksHelper class is the
getFavorites() async method. This will return the list of books that we'll
retrieve from SharedPreferences.

Building a Flutter Web App Chapter 11

[423]

After creating an instance of SharedPreferences and creating the list that5.
contains the books, use the getKeys() method to retrieve all the keys currently
stored in SharedPreferences.
If the set of keys is not empty, for each key, retrieve the value at the current6.
position, using the get() method of the instance of SharedPreferences. This
will be a String, so after converting it to a json, create a Book from the json,
and add it to the list of books.
Add the following code to complete the getFavorites() method:7.

Future<List<dynamic>> getFavorites() async {
// returns the favorite books or an empty list
 final SharedPreferences prefs = await
 SharedPreferences.getInstance();
 List<dynamic> favBooks = List<dynamic>();
 Set allKeys = prefs.getKeys();
 if (allKeys.isNotEmpty) {
 for(int i = 0; i < allKeys.length; i++) {
 String key = (allKeys.elementAt(i).toString());
 String value = prefs.get(key);
 dynamic json = jsonDecode(value);
 Book book = Book(json['id'], json['title'],
 json['authors'], json['description'],
 json['publisher']);
 favBooks.add(book);
 }
 }
 return favBooks;
}

Now that the methods to read and write data to the favorites in our app are ready, we need
to call them from the UI. Let's do that in the next section.

Building a Flutter Web App Chapter 11

[424]

Completing the UI of the app
On the home page of the app, we already have an IconButton that the user can press to
add a book to their favorites. We only need to connect it to the addFavorites() method in
the BooksHelper class to make it work. Let's look at the steps to do that here:

Get to the ui.dart file, and in the BooksTable class in the build() method, in1.
the last TableCell, edit the IconButton so that in the onPressed() method, it
can add (or remove) a book in the favorites list, as follows:

child: IconButton(
 color: (isFavorite) ? Colors.red : Colors.amber,
 tooltip: (isFavorite) ? 'Remove from favorites' :
 'Add to favorites',
 icon: Icon(Icons.star),
 onPressed: () {
 if (isFavorite) {
 helper.removeFromFavorites(book, context);
 } else {
 helper.addToFavorites(book);
 }
}))

We'll need to do the same in the BookList widget. In the trailing IconButton in2.
the build() method, update the code so that it calls the addToFavorites() or
removeFromFavorites() methods of the BooksHelper class, as follows:

trailing: IconButton(
 color: (isFavorite) ? Colors.red : Colors.amber,
 tooltip: (isFavorite) ? 'Remove from favorites' :
 'Add to favorites',
 icon: Icon(Icons.star),
 onPressed: () {
 if (isFavorite) {
 helper.removeFromFavorites(books[position], context);
 } else {
 helper.addToFavorites(books[position]);
} }),

Building a Flutter Web App Chapter 11

[425]

The last step to complete the app is adding the second page of the app, the favorites screen,
which can be done in the following way:

In the lib folder, add a new file called favorite_screen.dart.1.
At the top of the file, add the required imports, as follows:2.

import 'package:flutter/material.dart';
import 'ui.dart';
import 'data/books_helper.dart';
import 'main.dart';

Create a new stateful widget, called FavoriteScreen, like this:3.

class FavoriteScreen extends StatefulWidget {
@override
 _FavoriteScreenState createState() => _FavoriteScreenState();
}

class _FavoriteScreenState extends State<FavoriteScreen> {
@override
 Widget build(BuildContext context) {
 return Container();
}}

In the _FavoriteScreenState class, add a BooksHelper object and the4.
properties that make the state—a list called books and an integer called
booksCount, as follows:

BooksHelper helper;
List<dynamic> books = List<dynamic>();
int booksCount;

When this screen is called, it should load the favorite books currently stored in
SharedPreferences.

Create a new asynchronous method called initialize() that will update the5.
state of the screen, and, in particular, the books list and the bookCount property,
as shown in the following code block:

Future initialize() async {
 books = await helper.getFavorites();
 setState(() {
 booksCount = books.length;
 books = books;
}); }

Building a Flutter Web App Chapter 11

[426]

Override the initState() method, calling an instance of the BooksHelper6.
class and calling the initialize() method that we've just created, like this:

@override
void initState() {
 helper = BooksHelper();
 initialize();
 super.initState();
}

The build() method will be very similar to the build() method in the
MyHomePage class: it will share the same menu and will check whether the screen
is small or large, and, depending on that, it will choose whether to show a Table
or a ListView for the favorites. Note that the isFavorite parameter of the
BooksList and BooksTable is set to true from now on.

The following snippet shows the code for the build() method of the Favorites7.
screen. Add it to your project:

@override
Widget build(BuildContext context) {
 bool isSmall = false;
 if (MediaQuery.of(context).size.width < 600) {
 isSmall = true;
 }
 return Scaffold(
 appBar: AppBar(title: Text('Favorite Books'),
 actions: <Widget>[
 InkWell(
 child: Padding(
 padding: EdgeInsets.all(20.0),
 child: (isSmall) ? Icon(Icons.home) : Text('Home')),
 onTap: () {
 Navigator.push(context,
 MaterialPageRoute(builder: (context) =>
 MyHomePage())
); },),
 InkWell(
 child: Padding(
 padding: EdgeInsets.all(20.0),
 child:(isSmall) ? Icon(Icons.star) :
 Text('Favorites')),
) ,],),
 body: Column(children: <Widget>[
 Padding(
 padding: EdgeInsets.all(20),
 child: Text('My Favourite Books')

Building a Flutter Web App Chapter 11

[427]

),
 Padding(
 padding: EdgeInsets.all(20),
 child: (isSmall) ? BooksList(books, true) :
 BooksTable(books, true)
),
],),
); }

From here, we can easily navigate to the HomePage, but we also need a way to get
from the home page to the Favorites screen.

Get back to the main.dart file, and, in the InkWell that contains the star icon or8.
the 'Favorites' text, add the code to navigate to the FavoriteScreen, as
follows:

InkWell(
 child: Padding(
 padding: EdgeInsets.all(20.0),
 child: (isSmall) ? Icon(Icons.star) : Text('Favorites')),
 onTap: () {
 Navigator.push(context,
 MaterialPageRoute(builder: (context) =>
 FavoriteScreen()));
 },
),

Try the app in your browser, add favorites to your list, change the size of the window to see
how the UI responds to the available space, and think of the (many) ways you could make
this app better, including building a details page with the description of the book, which
we retrieved from the API but never used.

Also, congratulate yourself, as this completes this app and the last project of this book!

Building a Flutter Web App Chapter 11

[428]

Publishing a Flutter app to a web server
Now that our web app is complete, you might wonder how to publish it to a web server. At
this time, browsers only support HTML, CSS, and JavaScript, so you cannot just publish
your code to a web server and expect it to run on a browser as we did during the debug
process.

Fortunately, the support for building web apps in Flutter includes a tool to transform your
Flutter code into JavaScript. From the command-line interface on your development
machine, just run the following command:

flutter build web

Running this command will create the \build\web folder in your app directory. If you
open it, you should see an index.html file, which is the home page of your web app.

When you build a web release version, the framework will minify and
perform obfuscation on your files. For more information about the
process, see https:/ /flutter. dev/ docs/ deployment/ web.

If you open the file, you should see a very simple HTML code, as shown here:

<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <title>web_app</title>
</head>
<body>
  <script src="main.dart.js" type="application/javascript"></script>
</body>
</html>

The body of the web page only contains a JavaScript file called main.dart.js. This is the
actual translation of our Dart code into JavaScript. As this file is minified for performance
reasons, if you open the main.dart.js file, you will not be able to see anything very
interesting, but the key point here is that when you run the flutter build web
command, the Flutter framework will translate your code into a fully compatible HTML,
CSS, and JavaScript app that you'll be able to publish to any web server. After publishing,
the app will be compatible with any browser, not only Chrome.

As the compiled web version is HTML, CSS, and JavaScript, you can use a File Transfer
Protocol (FTP) client to publish to any web server. Linux and Windows servers will both
work. The folder you'll need to copy is the \build\web directory of your project.

https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web
https://flutter.dev/docs/deployment/web

Building a Flutter Web App Chapter 11

[429]

Summary
Flutter can now create apps for mobile, web, and desktop, and, while using the same code
for several devices is a huge advantage for developers, the different form factors may be
challenging when designing the UI of an app. A possible approach to deliver a great user
experience to users is using responsive layouts. In the project in this chapter, you've used
MediaQuery.of(context).size.width to choose different layouts based on the number
of logical pixels available in the screen; a Table for larger screens; and a ListView for
smaller screens.

Flutter for Web allows you to debug Flutter apps with a Chrome browser, but, once
published, the apps will be compatible with any recent browser.

A challenge for apps that run on different systems is using their specific features. Saving
data on iOS, Android, or a browser is radically different in each case. The Flutter approach
involves creating wrappers around different platform-specific technologies. In the app
you've built in this project, you've used the shared_preferences library to save data
locally, avoiding writing custom code for each platform. There are several libraries that are
already compatible with both mobile and web development, and the list is rapidly growing.

Browsers today only support HTML, CSS, and JavaScript. When you build a Flutter app for
the web, the framework transforms your Flutter code into JavaScript, automatically
performing minification and obfuscation. In order to build a Flutter app for the web, you
need to use the flutter build web command from a Terminal window.

Thank you for being part of this journey of learning Flutter. I truly hope you found value in
this book. Even if it may be challenging at times, coding is the only way to learn coding; so,
again: congratulations on making it to the end. If you want to keep learning, the web is full
of resources, as Flutter is getting more and more popular: who knows, maybe we'll make
another part of this journey together in the future. Meanwhile, keep coding!

Questions
Please try to answer the following questions (when in doubt, have a look at the content in
the chapter itself: you'll find all the answers there!):

What are the steps required to enable web development to your Flutter1.
environment?
What's the difference between physical and logical pixels?2.
How can you know the width of your user's device?3.

Building a Flutter Web App Chapter 11

[430]

When using a Table widget, how do you add rows and cells?4.
What's the meaning of responsive design?5.
What's the purpose of the FlexColumnWidth widget?6.
What's the purpose of shared_preferences?7.
Would you use shared_preferences to store passwords? Why?8.
How can a browser run a Flutter app?9.
How can you publish a Flutter app to a web server?10.

Further reading
The Google Books Library project is fascinating and ambitious. Imagine a service that
allows anyone to search through millions of books, including rare and out-of-print books,
for free. That's the Google Books Library project. As of October 2019, there are over 40
million books scanned and available on Google. For more information about the project,
have a look at the following page: https:/ /support. google. com/books/ partner/ answer/
3398488?hl=enref_ topic= 3396243.

Many of the technologies we have used in this book are made by Google. These include
Flutter itself, Dart, Android, and Firebase, just to name a few. However, there's a
technology that is made by Microsoft: VS Code. I spend most of my time as a developer on
that editor, not only for Flutter but for most client-side development. It's fast, reliable, and
free. And it's not only me. Stack Overflow, in its 2019 Developer Survey, found that VS
Code was the most popular developer tool, with over 50% of thousands of developers
claiming to use it, just over 4 years after it was produced. Have a look at the official page
for more info about this editor: https:/ /code. visualstudio. com/.

This chapter focused on creating web apps with Flutter. Another great addition is desktop
support for macOS, Windows, and Linux. It's still at its initial stages at this time, but it will
be fascinating to see how this grows. For an updated view of desktop support, have a look
at https://flutter. dev/ desktop.

https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://support.google.com/books/partner/answer/3398488?hl=en&ref_topic=3396243
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop
https://flutter.dev/desktop

Appendix

Setting up your environment to build Flutter
projects
In this section, we will be completing all the required installations you need to get started
with Flutter. You'll see processes for Windows and Mac, but if you are using a Linux
machine, you'll also be able to use Flutter. An updated, complete guide for setting up your
devices to use Flutter is available at https:/ /flutter. dev/docs/ get- started/ install.

The editors that we'll be covering and using throughout this chapter include Android
Studio and Visual Studio Code (VS Code). For the remainder of the book, most of the
screenshots will be taken from VS Code.

Installing Flutter on a Windows PC
In order to install Flutter on Windows, you will need Windows 7 Service Pack 1 (SP1) (64-
bit) or later.

The installation steps described in this section target a Windows 10 machine, but they
should work similarly for any other supported Windows system.

Flutter requires Windows PowerShell 5.0 or newer and Git for Windows. If you are using
Windows 10, the correct version of PowerShell is already installed, so you'll only need to
install Git.

Installing Git
Git is a version control system (VCS). It basically keeps track of any modifications in your
source code. Among other things, it allows you to step back when you make a mistake, and
it's invaluable when several developers work together and update different pieces of the
source, which often creates potential conflicts that would be a nightmare to solve without a
source control system.

https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install

Appendix

[432]

You can download Git from https:/ / git- scm. com/ downloads. It's available for Windows,
macOS, and Linux. The Git installation wizard is quite straightforward unless you have
reasons to do the installation differently. You can just accept the default options in most
screens, except the default editor, where I suggest you choose your favorite editor. My
choice—and recommendation—is VS Code. The following screenshot shows how you
would choose this as the default editor to be used by Git:

Then, just click Next until the end of the installation.

Installing the Flutter Software Development Kit (SDK)
You'll find many of the tools you need to set up your environment at https:/ /flutter.
dev. Perform the following steps to install the Flutter SDK:

Here, you can expect a very visible Get Started link or button on the page. Click1.
this.
From there, you'll have to choose your operating system (Windows), and then2.
download the Flutter SDK.
The Flutter SDK is a .zip file, and you will need to create a folder for the content3.
of the file, such as c:\FlutterSDK.
Then, extract the content of the zipped file into the new folder. At the end of the4.
process, you should have a folder containing the flutter folder, with its files.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev

Appendix

[433]

Next, you'll need to update the PATH environment variable. In order to do so,5.
from the Start search bar, type env. Then, click on the Edit the system
environment variables icon and, from the System Properties window, in
the Advanced tab, click on the Environment Variables button and add
the bin folder of the FlutterSDK directory you have just created, as shown in
the following screenshot:

From the flutter folder, double-click on the flutter_console.bat file.6.
From the console that opens, type the following command:7.

flutter doctor

Appendix

[434]

You will see a Doctor summary, as shown in the following screenshot:8.

Don't worry if at this point the doctor is showing elements you need to fix, such as the
Android toolchain: we haven't finished the installation yet. flutter doctor is an easy
tool that you can use to solve issues for the Flutter installation on your system. We'll use it
again later.

Installing Android Studio
Next, we'll install Android Studio. This is not necessarily the editor you'll be using to code,
but it's the easiest way to install the Android SDK and emulators. Let's look at the
installation steps, as follows:

Find Android Studio at the following link: https:/ /developer. android. com/1.
studioD.
On the Download Android Studio page, check the box at the bottom of the page2.
and click on Download Android Studio for Windows. This is an installation
wizard. On the first screen, make sure that Android Virtual Device is selected
before clicking Next. You can leave the default options as-is.

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio

Appendix

[435]

The installation will be completed when you open Android Studio for the first3.
time. The following screenshot shows how Android Studio will be displayed on
your screen:

From the Welcome to Android Studio screen, click the Configure button and4.
select the AVD Manager option.

Appendix

[436]

Click on the Create Virtual Device option. In this book, you'll see screenshots5.
from the Pixel Emulator, but feel free to choose another device for your system.
For the system image, choose the most recent stable release. The examples in this
book are tested on Android Pie (API level 28—Android 9.0), as shown in the
following screenshot:

After installing the Android Virtual Device (AVD), you can test it by clicking on
the Launch button from the action bar. If everything worked as expected, you will be able
to see the emulator running on your system.

Appendix

[437]

Connecting an Android physical device
You can also choose to run and test your apps on a physical device, and I'd especially
recommend this option if you have an older PC, as an emulator takes its toll on system
memory and resources.

Depending on your Android device, you may need to download a driver.

For a list of the available third-party drivers, have a look at the following
link: https:/ /developer. android. com/ studio/ run/ oem- usb.

If you have a Nexus device, you will need to install the Google USB Driver, available
at https://developer. android. com/ studio/ run/ win- usb. html.

Before debugging, you should enable the developers' options on your device. The process
may depend on the version of Android that you are using, but if you have a recent version
of Android, the process is as follows:

Open the Settings app.1.
Select System.2.
At the bottom of the screen, select About Phone.3.
At the bottom of the screen, tap seven times on the Build Number.4.
On the Settings screen, you'll find the Developer options. From there, make sure5.
that USB Debugging is enabled.
In order to test whether the setup of your device worked as expected, from the6.
Command Prompt, type flutter devices.

https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html
https://developer.android.com/studio/run/win-usb.html

Appendix

[438]

You will see your device listed on the screen, as shown in the following7.
screenshot:

In case something didn't work as expected during this setup process, make sure to review
the preceding steps, and have a look at the following page: https:/ /flutter. dev/docs/
get-started/install/ windows.

The last step you need to complete before creating your first app is choosing your editor.
The recommended choices are Android Studio, IntelliJ IDEA, or VS Code.

Configuring Android Studio
You should already have Android Studio if you followed the preceding instructions, so you
only need to install the Flutter and Dart plugins. After starting Android Studio, execute the
following steps:

Choose File | Settings | Plugins.1.
Select Browse Repositories, and search for Flutter.2.

https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows
https://flutter.dev/docs/get-started/install/windows

Appendix

[439]

Install the Flutter plugin. You'll receive a message that will inform you that3.
Flutter depends on Dart. Accept this by clicking Yes.
Restart Android Studio.4.

You are now ready to start developing applications in Flutter with Android Studio.

Installing and configuring VS Code
Alternatively, or in addition, you can also use VS Code to develop with Flutter.
You can download it from https:/ /code. visualstudio. com/ download.

Again, the setup is a wizard; you can leave the default options as-is and complete the
installation. After installing VS Code, you'll need to install the Flutter and Dart plugins by
executing the following steps:

From the View menu, select Command Palette.1.
Type install and choose Extensions | Install Extensions.2.
Type flutter and install the Flutter support and debugger for VS Code.3.
From the View menu, select Command Palette.4.
Type doctor and click on the Flutter: Run Flutter Doctor option.5.
You may have to accept some Android licenses. If needed, type the following6.
command:

flutter doctor --android-licenses

Accept the required licenses.7.

Congratulations! Now, your PC should be ready to start developing with Flutter, both with
Android Studio and VS Code.

Installing Flutter on a Mac
In order to install Flutter on a Mac, you need to have a 64-bit version of macOS. The
installation steps and images highlighted here are for macOS Mojave.

At the time of writing, a Mac is the only system that allows you to test and run your apps
on both Android and iOS.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Appendix

[440]

Installing the Flutter SDK
You'll find many of the tools you need to set up your environment at https:/ /flutter.
dev. Execute the following steps:

Click on a very visible Get Started link or button on the page.1.
From there, you'll have to choose your operating system (in this case, macOS),2.
and then download the Flutter SDK, which is a .zip file. Create a folder for the
content of the file, such as ~/flutterdev.
In order to create a new directory on the root of your Mac, open a Terminal3.
window, and type the following command:

mkdir ~/flutterdev

Next, extract the content of the zipped file into the new directory. From the4.
Terminal, type the following code:

cd ~/ flutterdev

$ unzip ~/Downloads/flutter_macos_v1.2.1-stable.zip

You may need to change the Flutter SDK version, depending on the version5.
available at the time you perform the installation.
At the end of the process, you should have a folder containing the6.
flutterdev folder, with its files.
Next, you'll need to update your PATH variable. This will allow you to run Flutter7.
commands in any Terminal session.
From a Terminal window, go to your root folder by typing cd ~/.8.
Then, if you haven't created a .bash_profile yet, type the following command:9.

touch .bash_profile

https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev

Appendix

[441]

Create your new file. Edit .bash_profile with your favorite editor, or type the10.
following command:

open -e .bash_profile

In the file, type export PATH=/home/flutterdev/bin:$PATH and then, from11.
the Terminal, run source $HOME/.bash_profile.
Check whether the PATH has been correctly updated by typing $ echo $PATH.12.

You will see the path you've set on the Terminal.

Installing Xcode
Xcode is Apple's official integrated development environment (IDE) for Mac and iOS. To
develop apps for iOS with Flutter, you need Xcode 9.0 or newer. You can download it from
the Mac App Store or from the web, at the following address: https:/ /developer. apple.
com/xcode/.

You can also get and install Xcode from the Mac App Store by following these steps:

Open the App Store from the launcher and type Xcode in the search box.1.
Press the get button to download and install the app.2.
Once it's installed, open it to accept all the required licenses.3.
Next, open a simulator from a Terminal window, by typing the following4.
command:

Open -a Simulator

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Appendix

[442]

You can choose which device to use from the Hardware | Devices5.
Manage Devices menu. Make sure you're using an iPhone 5s or later. The
following screenshot shows an iPhone XR:

Appendix

[443]

To make sure everything is working as expected, from the Terminal window6.
type flutter doctor, and the result is shown in the following screenshot:

The iOS toolchain should now be correctly installed!

If you want to test your apps on a physical device (iPhone/iPad), you'll
need to have an Apple account and to do some configuration, which is
subject to change with an incoming update of libusbmuxd. Please have a
look at the following link for an updated installation guide: https:/ /
flutter. dev/ docs/ get- started/ install/ macos#deploy- to- ios-
devices.

You can also use a Mac to deploy to Android. In order to do that, just follow the
instructions in the Installing Android Studio section. If you want to also use VS Code to
develop your apps, also have a look at the Installing and configuring VS Code section.

https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices

Assessment

Assessment
You'll find the answers to the questions at the end of each chapter here.

Chapter 1
What is a widget?1.
A widget is a description of the user interface. This description gets “inflated”
into an actual view when objects are built.

What is the starting point of a Dart and Flutter app?2.
The main() function is the starting point of every Dart and Flutter application.

How many named constructors can you have in a Dart/Flutter class?3.
In a Dart/Flutter class, you can have any number of named constructors, but only
one unnamed constructor.

Can you name three EdgeInsets constructors?4.
In this chapter, we used EdgeInsets.all, EdgeInsets.only,
and EdgeInsets.symmetric.

How can you style the text in a Text widget?5.
The Text widget has a style property. There you can use TextStyle() to set
the font size, its weight, color, and several other properties.

What is the purpose of the flutter doctor command?6.
It is a CLI tool that you can use to check the Flutter installation on your system.

What widget would you use to contain several other widgets, one below the7.
other?
The Column widget contains a children property that places widgets one below
the other.

Assessment

[445]

What is the "arrow syntax"?8.
The arrow syntax is a concise way to return values in a function. An example of
arrow syntax is as follows:

bool convertToBool(int value) => (value == 0) ? false : true;

Which widget can you use to create space between widgets?9.
Several widgets can be used for that. A Padding widget can be used to create
space between its child and all other widgets on the screen.

How can you show an image to the user?10.
You can show images using the Image widget. Image has a network constructor,
which automatically downloads an image from a URL with a single line of code.

Chapter 2
When should you use Stateful widgets in your apps?1.
In your apps, you use Stateful widgets when your widgets need to keep a State,
which is information that can change during the lifecycle of the user interface.

Which method updates the State of your class?2.
The setState() method updates the State.

Which widget would you use to allow your user to select an option from a3.
dropdown list?
The DropdownButton widget allows you to create a list
of DropdownMenuItem widgets that can be selected by the user.

Which widget would you use to allow your user to type some text?4.
A TextField is a widget that allows the user to type some text.

Which event can you use when you want to react to some user input?5.
The onChanged event allows you to respond to changes in the content
of TextField.

What happens when your widgets take more space than what's available on6.
the screen? How do you solve this issue?
You can enclose your widgets into a scrolling widget, like the
SingleChildScrollView widget.

Assessment

[446]

How can you get the width of the screen?7.
You can use the MediaQuery.of(context).size.width instruction to get the
width of the screen.
What is Map in Flutter?8.
In Flutter, Map widgets allow you to insert key-value pairs, where the first
element is the key, and the second is the value.

How can you style your text?9.
You can create a TextStyle widget, and you can use it to apply the same text
style to several widgets.

How can you separate the logic of your apps from the UI?10.
There are several approaches to separate the logic from the UI in Flutter. The
most basic one, that you’ve seen in this chapter, is creating classes that contain
the logic of your app, and use them from the user interface when appropriate.

Chapter 3
Which is the cross-axis for a GridView scrolling vertically?1.
If the main axis is vertical, the cross axis is horizontal.

How do you retrieve a value from SharedPreferences?2.
After creating an instance of SharedPreferences, you can call one of its methods,
like getInt or getString, passing the key. This will retrieve its value. An
example is shown in the following code block:

prefs = await SharedPreferences.getInstance();
int workTime = prefs.getInt(WORKTIME);

Which instruction would you use to retrieve the width of the screen?3.
You can use the MediaQuery.of(context).size.width instruction to get the
width of the screen.

Assessment

[447]

How do you open another screen on your app?4.
You can call the push() method of the Navigator to add a route to the
navigation stack. For example:

Navigator.push(
 context, MaterialPageRoute(builder: (context)
=>SettingsScreen()));
}

Which file contains all the dependencies of your app?5.
The pubspec.yaml file contains the dependencies of your app.

What's the difference between a Stream and a Future?6.
A Stream is a sequence of results: any number of events can be returned in
a Stream, whereas a Future only returns once.

How do you change the value of a TextField?7.
You can use a TextEditingController to change the values inside
a TextField.

How do you create a new Duration object?8.
Duration is a Dart class used to contain a span of time. In order to create
a Duration you call its constructor specifying the length of the duration, like in
this example:

Duration(seconds: 1)

How can you add a menu button to your apps?9.
You can use a PopupMenuButton widget, adding it to the AppBar in
the Scaffold, like this:

appBar: AppBar(
 title: Text('My Work Timer'),
 actions: [
 PopupMenuButton<String>(
 itemBuilder: (BuildContext context) {
 return menuItems.toList(); },

What are the steps to install an external library into your app?10.
You add the dependency in the pubspec.yaml file, then you import the library
at the top of the file that will use it, and finally, you can use it in your code.

Assessment

[448]

Chapter 4
Which child widget can you use inside a Stack to decide exactly its position1.
relative to the borders of the Stack?
The Positioned widget controls where a child of a stack is positioned.

What's the difference between the initState() and build() methods?2.
The initState() method is called once for each State object when the State is
built. This is where you generally put the initial values that you might need
when you build your classes. The build() method is called
after initState and every time the state changes.

How can you set the duration of an animation?3.
You can set the duration property of an AnimationController, and there you
can use a Duration object like shown in the following example:

AnimationController(
 duration: const Duration(seconds: 3)
);

How can you use a Mixin class in your own classes?4.
A Mixin is a class that contains methods that can be used by other classes
without having to be the parent class of those other classes. In Flutter you use
the with clause to use a Mixin in your classes like shown in the following code
block:

class _PongState extends State<Pong> with
SingleTickerProviderStateMixin {}

What is a Ticker?5.
A Ticker is a class that sends a signal at an almost regular interval, which, in
Flutter, is about 60 times per second, or once every 16 milliseconds, if your device
allows this frame rate.

What's the difference between an Animation and an AnimationController?6.
An AnimationController controls one or more Animation objects.

How do you stop a running animation? And how do you free its resources?7.
You can use the stop() method in AnimationController to stop a running
animation and the dispose() method to free the resources.

Assessment

[449]

How can you generate a random number between 0 and 10?8.

You can generate a random number between 0 and 10 using the Random class,
and calling the nextInt() method. The nextInt() method takes a max value.
The random number starts from 0 and the max value is exclusive, so for a number
between 0 and 10 you could write:

Random random = new Random();
int randomNumber = random.nextInt(11);

If you wanted to respond to a tap of the user over one of your widgets, for9.
example, a container, which widget could you use?
A GestureDetector is a widget that detects gestures, including tap. So you
could enclose a Container into a GestureDetector in order to respond to the
tap of your users.

How do you show an AlertDialog in an app?10.
AlertDialog is a widget that you use to give feedback or to ask for some
information from your user. Showing an AlertDialog widget requires the
following steps:

Calling the showDialog() method1.
Setting the context2.
Setting the builder3.
Returning the AlertDialog property4.
Setting the AlertDialog properties5.

In the following code block you can find an example of a method showing an
AlertDialog:

void contactUs(BuildContext context) {
 showDialog(
 context: context,
 builder: (BuildContext context) {
 return AlertDialog(
 title: Text('Contact Us'),
 content: Text('Mail us at hello@world.com'),
 actions: <Widget>[
 FlatButton(
 child: Text('Close'),
 onPressed: () => Navigator.of(context).pop(),
)],); },); }

Assessment

[450]

Chapter 5
Is this code correct?1.

String data = http.get(url);

If not, why?

The code is not correct, as the get() method of http is asynchronous, and
therefore returns a Future and not a String.

What are the JSON and XML formats used for?2.
JSON and XML are text formats that represent data. They can be returned by web
services and then used in client apps.

What is a thread?3.
A thread is a single line of execution.

Can you name a few common asynchronous scenarios?4.
Some scenarios where you need to use asynchronous programming include http
requests, database writes, and in general all long-running tasks.

When should you use the async/await keywords?5.
Asynchronous operations return Future objects (futures), which is something to
be completed at a later time. To suspend execution until a Future completes, we
use await in an async function.

What's the difference between ListView and ListTile?6.
A ListTile is a material widget that can contain one to three lines of text with
optional icons at the beginning and end. A ListView is a scrolling widget that
displays its children one after another either horizontally or vertically. You can
include ListTile widgets into a ListView.

How can you use the map method to parse data and create a list?7.
The map() method transforms each element in a list and returns the result of the
transformation in a new list. For example, you can transform some JSON data
into an object, as shown in the following code block:

final moviesMap = jsonResponse['results'];
List movies = moviesMap.map((i) => Movie.fromJson(i)).toList();

Assessment

[451]

How do you pass data from one screen to another?8.
You need to pass the data in the builder when you create the new route as shown
in the following example:

MaterialPageRoute route = MaterialPageRoute(builder: (_) =>
YourScreen(yourData));
Navigator.push(context, route);

When should you use the json.decode() method over the body of a9.
Response object?
You use the json.decode() method to convert the Response into a list of data
that is usable in your app, like custom objects or Strings.

What is a CircleAvatar?10.
CircleAvatar is a widget that draws a circle that can contain an image or some
text.

Chapter 6
What happens when you call the openDatabase() method?1.
The sqflite library has an openDatabase() method, that opens and returns an
existing database. The method takes the path of the database to be opened and
the version of the database. The optional onCreate parameter will be called if
the database does not exist. There you can specify the instruction to create the
database.

What's the difference between the rawQuery() and query() methods of a2.
database object?
Both are methods to retrieve data from a database. The rawQuery() method
takes a SQL instruction, the query() method is a helper where you specify the
table, a where filter, and a whereArgs parameter. An example of the two
methods is shown in the following code block:

List places = await db.rawQuery('select * from items where idList =
1');
List places = await db.query('items', where: 'idList = ?',
whereArgs: [1]);

Assessment

[452]

How do you use a factory constructor? When should you use it?3.
A factory constructor overrides the default behavior of the constructor of a class,
instead of creating a new instance, the factory constructor only returns a single
instance of the class. The syntax to create a factory constructor is as follows:

static final DbHelper _dbHelper = DbHelper._internal();
DbHelper._internal();
factory DbHelper() {
 return _dbHelper;
}

What's the purpose of a Dismissible widget?4.
A Dismissible is a widget that detects the left and right swipe gestures of the
user and shows an animation that removes an object. Using Dismissible is
ideal when you want to delete an item.

How do we use the where and whereArgs parameters of a query() method?5.
You use where and whereArgs when you want to filter the data retrieved from
the query() method. The where parameter takes field names and the
comparison operators and whereArgs takes the values. An example is shown in
the following code block:

List places = await db.query('items', where: 'idList = ?',
whereArgs: [1]);

When should you use model classes in an app?6.
Model classes create objects that mirror the structure of the tables in a database:
this makes the code more reliable, easier to read, and helps prevent data
inconsistencies.

When would you use a SnackBar?7.
A SnackBar is a widget that shows messages at the bottom of your app.
Generally, you use a SnackBar to inform your users that an action has been
performed.

Assessment

[453]

What's the syntax of an insert() method on an SQLite database?8.
The insert() asynchronous method allows you to specify the name of the table
where we want to insert data, a Map of the data that you want to insert, and
optionally a conflictAlgorithm that specifies the behavior that should be
followed when you try to insert a record with the same ID twice. It will return
the ID of the new record that was inserted. Take a look at the following example:

int id = await this.db.insert('lists',list.toMap(),
conflictAlgorithm: ConflictAlgorithm.replace,);

What is the purpose of the key in a Dismissible widget?9.
The key in a Dismissible widget is used to uniquely identify the item that will
be deleted.

When would you use a FAB?10.
The FAB, or Floating Action Button, is a circular button that you can use for the
main action on the screen. If you have a list of items, the main action could be
adding a new item.

Chapter 7
In a Cloud Firestore database, what's the difference between a document and a1.
collection? And can a document contain a collection?
A Collection is a container for a set of documents, where a document is the data
itself, expressed in key-value pairs. A document can contain a collection.

Can you name three of the main differences between a SQL and a NoSQL2.
database?
SQL Databases use the SQL language to perform queries, use of JOINS to express
relations between tables, and have a fixed schema. NOSQL stores contain self-
describing data, do not require a schema and do not allow using the SQL
language to perform queries.

Consider the following code:3.

docs = await db.collection('favorites') .where('userId', isEqualTo:
uid).getDocuments();

Assessment

[454]

What does this query perform? And which data type is the docs variable?

The getDocuments() asynchronous method retrieves data from the specified
collection (in this case favorites), where the userId is equal to the value of the
variable uid. docs will contain a QuerySnapshot object.

In a Cloud Firestore database, is it possible to allow data access only to4.
authenticated users? If so, how can you achieve that?
In a Cloud Firestore database, it is possible to allow data access only to
authenticated users by setting a rule. An example is shown here:

application
service cloud.firestore {
match /databases/{database}/documents { match /{document=**} {
allow read, write: if request.auth.uid != null; } }}

How can you create an instance of a FirebaseAuth class?5.
FirebaseAuth is the object that enables the use of Firebase Authentication's
methods and properties. You can create an instance of a FirebaseAuth class
with the instruction:

final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

Consider the following code:6.

var result = db.collection('favorites').add(fav.toMap()
.then((value) => print(value.documentID)) .catchError((error)=>
print (error));

Can you explain what these instructions perform?

A new document is added to the favorites collection. If the task succeeds, the code
will print the documentId of the new document in the Debug Console. In case of
error, the error itself will be printed.

Assessment

[455]

When would you create a getter method for a property in a class? And how do7.
you write the code to create it?
A getter method returns a property value of an instance of the class, In this way,
you can check or transform values before reading them in your classes. You
specify getters by adding the get keyword before the field name. The getter
returns a value of the type that you specify: an example is shown here:

int get price {
 return _price * 1.2;
}

When do you need a Map object to interact with a Cloud Firestore database?8.
When interacting with a Cloud Firestore database, you can pass a Map object to
write data to a collection. You can also parse the results of queries into Map
objects when retrieving data.

How do you delete a document from a Cloud Firestore database?9.
You use the delete() method on a document, as shown in the following code
block:

await db.collection('favourites').document(favId).delete();

How do you pass data from one screen to another?10.
You need to pass the data in the builder when you create the new route like
shown in the following example:

MaterialPageRoute route = MaterialPageRoute(builder: (_) =>
YourScreen(yourData));
Navigator.push(context, route);

Chapter 8
What is the purpose of adding the path and path_provider libraries into1.
your app?
The path package provides common operations for manipulating paths: joining,
splitting, and normalizing. You can use path_provider to retrieve commonly
used locations on the Android and iOS file systems, like the data folder.'

Assessment

[456]

In which files do you add the API key for Google Maps in your project for2.
Android and/or iOS?
For Android, you need to add the information into the
android/app/src/main/AndroidManifest.xml application manifest. For
iOS, you need to update the AppDelegate file at
ios/Runner/AppDelegate.swift.

When you pass the initialCameraPosition to a GoogleMap widget, which3.
type of widget do you need to pass?
When you pass the initialCameraPosition to a GoogleMap widget, you pass
a CameraPosition, which in turn takes a LatLng object. An example is shown
here:

CameraPosition(target: LatLng(41.9028, 12.4964),
 zoom: 12,
);

How can you get the current position of a device?4.
You can use the Geolocator package: from a Geolocator instance, you can call
the getCurrentPosition() method, that returns a Position object like shown
in the following example:

pos = await Geolocator().getCurrentPosition(desiredAccuracy:
LocationAccuracy.best);

What is a Marker and when do you use it?5.
A Marker identifies a location on a Map. You can use markers to show your user
their current position, or any relevant position in the context of your app.

When do you need to use a LatLng widget in a Marker?6.
A Marker takes a LatLng in its position property, to identify its position on a
map.

final marker = Marker(
position: LatLng(pos.latitude, pos.longitude)),

Which is the method that returns a List of the available cameras on a device?7.
The availableCameras() method of the camera package returns a List of the
available cameras on a device.

Assessment

[457]

How can you show the camera preview to your users?8.
The camera package contains a CameraController. Passing a
CameraController, you can create an instance of a CameraPreview, that you
can then show in your app. An example of using a CameraPreview is as follows:

cameraPreview = Center(child: CameraPreview(_controller));

What's the purpose of a CameraController, and how do you create one?9.
A CameraController, part of the camera package, establishes a connection to
the device's camera, and you can use it to actually take the pictures. An example
of creation is shown in the following code block:

_controller = CameraController(camera,
ResolutionPreset.medium,
);

How do you take a picture in Flutter?10.
In order to take a picture you need to retrieve a CameraController, and over
that call the takePicture() method passing the path where you want to save
the file like shown in the following example:

await _controller.takePicture(path);

Chapter 9
In the pubspec.yaml file, where should you place the .flr file you have1.
exported from Flare?
In the pubspec.yaml file, you have to place your .flr animation in the assets
section, like this:

assets:
 - assets/dice.flr

In Flare, what is the difference between the Design and Animate modes?2.
Flare has two modes of operations: Design and Animate. In Design mode, you
create graphic objects, and in Animate mode, you animate the objects that you
have designed. Flare's interface and tools will change based on the mode in
which you are working.

Assessment

[458]

How many Artboards are required in a Flare project?3.
An Artboard is the top-level node of a Flare hierarchy, and this is where you
place all your objects and animations. Each Flare project requires at least one
Artboard, but you can create as many as you like.

What is the purpose of the timeline in Flare?4.
A timeline is where you control the progression of your animation. In Flare, you
can also specify the duration of the animation and the number of Frames Per
Second (FPS).

What is a hierarchy in Flare?5.
The Hierarchy is a tree view that shows the parent/child relationships between
the items on the stage.

When using a Flare asset in a Flutter project, when and why do you use the6.
animation name?
A FlareActor widget allows you to specify the asset you wish to use, the
animation you wish to show, and how the animation should fit into the screen:
it’s there that you specify the animation name like shown here:

FlareActor(animation: currentAnimation, […])

Which widget can you use to show a Flare animation in Flutter?7.
You use a FlareActor to show a Flare animation in Flutter.

How do you generate a random number between 1 and 6 in a Flutter app?8.
You can use the Random library, and call the nextInt() method passing the max
limit and adding 1 as the first value is 0: the code is shown here:

var random = Random();
int num = random.nextInt(5) + 1;

When would you use a Flare animation in an app, instead of built-in9.
animations?
Flare is a vector design and animation tool that exports directly to Flutter and
allows you to work on the same assets that will be used in your Flutter app. The
animations you create with Flare can be changed from your Flutter code at
runtime, making it great for apps that need user interaction.

You use it whenever you need a designer's tool to create assets and animate
them, and then enclose the final results of your design work into Flutter.

Assessment

[459]

In the following code, what would you put as the first parameter?10.

FlareActor([YOUR ANSWER HERE], fit: BoxFit.contain, animation:
_animation1,)

The first parameter requires the file name of your .flr animation file.

Chapter 10
When would you prefer to use sembast over SQLite in an app?1.
When your data is not structured, or it’s so simple that you don’t need an SQL
database, the simple embedded application store database (sembast) is an ideal
solution.

How can you retrieve all the documents from a store in a sembast database?2.
The find() method allows you to retrieve documents from a store in a sembast
database. If you want to retrieve all documents from a store, you don’t specify
any filter when calling the find() method. An example is shown in the
following code block:

final todosSnapshot = await store.find(_database, finder: finder);

How can you delete all the documents from a store in a sembast database?3.
You can call the delete() method without any filter over a store to delete all the
documents in the store as shown here:

await store.delete(_database);

How would you complete the following method to update an existing object in4.
a sembast database?

Future updateTodo(Todo todo) async {
//add your code here
}

You can call the update() method over the store, passing the document that can
be found by using a filter, as shown here:

final finder = Finder(filter: Filter.byKey(todo.id));
await store.update(_database, todo.toMap(), finder: finder);

Assessment

[460]

What are the main differences between Futures and Streams?5.
A Stream is a sequence of results: any number of events can be returned in a
Stream, whereas a Future only returns once.

When would you use the BLoC pattern in an app?6.
The BLoC pattern is a state management system for Flutter recommended by
Google developers. BLoC helps in managing the state and accessing data from a
shared class in your project, and you can use it when you want to manage the
state of your app centrally, in a class separated from the other components of
your app.

In a StreamController, what are the purposes of stream and sink?7.
In a StreamController, the way into the Stream is the sink property, the way
out is the stream.

Which is the object that allows you to listen to the events from the Stream and8.
rebuild all its descendants?
A StreamBuilder rebuilds its children after any change in the Stream.

How do you listen to changes in a Stream?9.
The StreamBuilder widget listens to the events from the Stream and rebuilds
all its descendants, using the latest data in the Stream. You can connect it to the
Streams through the stream property and a builder that contains the UI that
needs to be updated.

Why would you use a stateful widget when dealing with BLoCs, even10.
though you never called the setState() method?Stateful widgets override the
dispose() method, which is useful to free the resources used in implementing
the BLoC pattern.

Assessment

[461]

Chapter 11
What are the steps required to enable web development to your Flutter1.
environment?
As of Flutter version 1.14, web development for Flutter is available in the beta
channel, and you need to set up the environment to explicitly enable web
support. In your Terminal/command prompt you need to type the following
command to enable the beta channel and web development:

flutter channel beta flutter config --enable-web

What's the difference between physical and logical pixels?2.
Physical pixels are the actual number of pixels that a device has. In Flutter, when
we speak of pixels, we are actually speaking of logical pixels, and not physical
pixels. Each device has a multiplier so that when you use logical pixels, you don't
have to worry too much about the resolution of a screen.

How can you know the width of your user's device?3.
You can use the MediaQuery.of(context).size.width instruction to get the
width of your user’s device.

When using a Table widget, how do you add rows and cells?4.
In the children property of a Table, you return as many TableRow widgets as
are required. The TableRow widget contains TableCell widgets, which in turn
contain the data that will be shown in the Table.

What's the meaning of responsive design?5.
It’s a design that responds to the user’s device. In this chapter, we chose different
layouts based on the number of logical pixels available on the screen.

What's the purpose of the FlexColumnWidth widget?6.
A FlexColumnWidth widget makes each column take a relative space in
the Table. For example, if you create a Table with two columns, one with a
width of FlexColumnWidth(1) and the second with a width
of FlexColumnWidth(2), the second column will take twice the space of the first
one.

Assessment

[462]

What's the purpose of shared_preferences?7.
shared_preferences is an easy way to persist key-value data on disk. You can
only store primitive data: int, double, bool, String, and stringList.
shared_preferences data is saved within the app and is not designed to store
a lot of data.

Would you use shared_preferences to store passwords? Why?8.
It’s not recommended to use shared_preferences to store passwords: data
stored there is not encrypted, and writes are not always guaranteed.

How can a browser run a Flutter app?9.
Browsers today support HTML, JavaScript, and CSS. With Flutter Web, your
code gets compiled in those languages, and therefore you don't need any
browser plugin, nor any specific web server.

How can you publish a Flutter app to a web server?10.
From the console of your developing machine, you can run the command:

flutter build web

This will create the \build\web folder in your app directory, that contains the
web version of your app. The index.html file is the home page of the web app.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

iOS 13 Programming for Beginners - Fourth Edition
Ahmad Sahar, Craig Clayton

ISBN: 978-1-83882-190-6

Get to grips with the fundamentals of Xcode 11 and Swift 5, the building blocks
of iOS development
Understand how to prototype an app using storyboards
Discover the Model-View-Controller design pattern, and how to implement the
desired functionality within the app
Implement the latest iOS features such as Dark Mode and Sign In with Apple
Understand how to convert an existing iPad app into a Mac app
Design, deploy, and test your iOS applications with industry patterns and
practices

https://www.packtpub.com/in/mobile/ios-13-programming-for-beginners-fourth-edition

Other Books You May Enjoy

[464]

Mastering Xamarin.Forms - Third Edition
Ed Snider

ISBN: 978-1-83921-338-0

Find out how, when, and why to use architecture patterns and best practices with
Xamarin.Forms
Implement the Model-View-ViewModel (MVVM) pattern and data binding in
Xamarin.Forms mobile apps
Incorporate client-side validation in Xamarin.Forms mobile apps
Extend the Xamarin.Forms navigation API with a custom ViewModel-centric
navigation service
Leverage the inversion of control and dependency injection patterns in
Xamarin.Forms mobile apps
Work with online and offline data in Xamarin.Forms mobile apps
Use platform-specific APIs to build rich custom user interfaces in Xamarin.Forms
mobile apps
Explore how to monitor mobile app quality using Visual Studio App Center

https://www.packtpub.com/in/mobile/mastering-xamarin-forms-third-edition

Other Books You May Enjoy

[465]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
alert dialog box
 displaying 41, 42, 43, 45
AlertDialogs 41
alpha channel 397
Android
 shared_preferences plugin, using to save data

421, 423
animations
 using 134, 135, 136, 137, 138
area calculator
 example 13, 14
arrow syntax 18, 19
Artboard 330
asynchronous programming 93, 94
authentication
 adding, to Events app 259, 260

B
beta channel 397
BLoC guideline
 steps 381, 382, 383, 384
BLoC pattern
 about 379
 sinks 380
 streams 380
 using 380, 381
BooksList widget 419
Business Logic Components (BLoCs) 72
buttons
 using 40

C
classes 24
Cloud Firestore 233
Cloud Firestore, versus Realtime Database

 reference link 239
collections 243
columns
 using 39
constructors 26, 27, 28
Create, Read, Update, and Delete (CRUD) 220
CRUD methods
 creating, with sembast 373, 374, 375

D
Dart
 about 93
 basics 9
 features 9
DartPad
 URL 10
data
 storing, with sembast 369, 370, 371
 writing, to Firebase 273
device-independent pixels (dips) 411
documents 243

E
Events app
 authentication logic, adding 266, 267, 268, 270,

271, 272
 authentication, adding 259, 260
 Event Detail screen, creating 253, 254, 255,

256, 257
 EventDetail model class 251, 252
 favorite feature, adding 273, 275, 276, 277
 favorites, deleting 280
 favorites, displaying 278, 279
 login/signup screen, adding 261, 262, 264, 265
 project overview 234, 235

[467]

F
fields 233
File Transfer Protocol (FTP) 428
Firebase Authentication
 services 259
Firebase integration
 testing, into app 249, 250
Firebase prices
 reference link 239
Firebase project 237
Firebase Realtime Database 233
Firebase, integrating into Flutter app
 about 243
 Android app, configuring 244, 246
 iOS app, configuring 246, 248
Firebase
 about 233
 adding, to Flutter project 236, 238, 239
 data, writing to 273
 rules 272, 273
Firestore database
 creating 239, 240, 241
Flare
 about 327
 integrating, into Flutter app 346, 347
 objects, animating 336, 337, 338, 339
 objects, creating 328, 329, 330, 331, 333, 334,

335

Floating Action Button (FAB) 191
Flutter app, version build
 reference link 428
Flutter app, web support
 reference link 402
Flutter app
 creating 28
 Flare, integrating into 346, 347
 overview 401
 publishing, to web server 428
Flutter Web App
 Book model class, creating 405, 406
 building 402, 403
 Google Books API web service, connecting 404,

405

 HTTP service, using to retrieve books 407, 408
 overview 399, 400, 401

 responsive UI, creating 409, 410, 411, 413, 414
 UI, completing 424, 425, 427
Flutter Web
 about 398
 shared_preferences plugin, using to save data

421, 423
Flutter
 Google Maps, integrating into 286, 287, 288,

290

for loops 16
foreach() method 22
frames per second (FPS) 336

G
generics 21
geolocation
 about 285
 used, for finding current position 293
GestureDetector
 using 141, 142
getters 25
Global Positioning System (GPS) 285
Google Maps
 integrating, into Flutter 286, 287, 288, 290
 map, displaying with 290, 291

H
Hello Dart example 10, 11, 12, 13
Hello World app
 running 29, 30, 31, 32, 33, 34

I
images
 displaying 40
iOS
 shared_preferences plugin, using to save data

421, 423
Isolate 93, 94

K
Knockout dice game
 creating 353, 354, 355, 356, 357, 359, 360,

361, 362
 Dice class, creating 347, 348, 349, 350

[468]

 project overview 325, 326
 Single Dice screen, creating 350, 351, 352, 353

L
lists 20, 21
ListView
 creating, for smaller devices 419, 420

M
map() method 23
map
 displaying, with Google Maps 290, 291
 marker, adding to 294
material.io
 URL 34
MaterialApp widget
 using 34, 35
measure converter project
 business logic, adding 72, 73, 74, 75, 76
 creating 55
 DropdownButton widget, creating 62, 63, 64, 65
 DropdownButton widget, updating 66
 overview 52, 53
 stateful widgets, using 56, 57
 UI, completing 66, 67, 68, 69, 70, 71, 72
 user input, reading from TextField 58, 59, 61
Mixin 136
mixins, Dart
 reference link 136
Movies app
 connecting, to web service 158
 creating 160, 161, 162
 data, retrieving with HTTP 159
 detail screen, displaying 175, 176, 177, 178
 JSON data, parsing 163, 165, 166
 ListView, adding to display data 170, 171, 172
 Movie model class, adding 167, 168, 169
 project overview 156, 157
 search feature, adding 178, 179, 180, 182
 trailing icon, displaying in ListTile 173, 174
My Work Timer app
 buttons, enabling 102, 103, 104
 custom SettingButtons, adding to widgets.dart

file 111, 112, 113
 GridView.Count() constructor 110, 111

 navigating, to settings route 104, 105, 107, 108,
109

 percent_indicator Package, installing 90, 91, 93
 settings screen layout, building 109
 shared_preferences, to read and write app data

114, 115, 116, 117, 119, 120, 121, 122, 123
 Stream, in action 96, 97, 99
 StreamBuilder 99, 100, 101
 time, displaying in main screen 99, 100, 101
 timer home page layout, building 81, 82, 83, 85,

86, 87, 88, 90

N
NoSQL database 234

O
Object-Oriented Programming (OOP) 197
objects
 about 25
 animating, with Flare 336, 337, 338
 creating, in Flare 330, 331, 333, 334, 335
 creating, with Flare 328, 329
OOP concepts
 reference link 24
overloading 15

P
packages, Flutter Web
 reference link 399
padding
 using 46, 47
Pong Game
 animations, using 134, 135, 136, 137, 138
 ball, creating 128
 bat position, checking 143, 144, 145
 bat, creating 129
 completing 150, 151, 152
 game logic, adding 139, 140, 141
 GestureDetector, using 141, 142
 grid, creating 130, 131, 132, 133, 134
 randomness, adding 145, 146, 147
 score, adding 148, 149
 UI, building of app 126, 127
pricing and thresholds, Google Maps
 reference link 286

[469]

pricing, Rive
 reference link 330

R
record 233
relational databases 233
responsive widgets
 ListView 414
 table 414
Roll animation
 creating 339, 340, 341, 342, 343, 344, 345
runtime lists
 reference link 328

S
Scaffold widget
 using 36, 37
sembast database
 opening 372, 373
sembast
 CRUD methods, creating 373, 374, 375
 data, managing 371
 used, for storing data 369, 370, 371
 using 376, 377, 378
setters 25
shared_preferences plugin
 using, to save data in Android 421, 422
 using, to save data in Flutter Web 421, 423
 using, to save data in iOS 421, 423
Shopping List app
 data, editing 215, 217, 218
 data, inserting 214, 215, 217, 218
 database data, showing to user 203, 204, 205,

206, 207, 208, 209, 210, 211, 212, 213
 elements, deleting 221, 222, 223
 Items Screen functionality, completing 224, 225,

227, 228, 229, 230
 model classes, creating 197, 198, 199, 200,

201, 202, 203
 project overview 189, 190, 191
single-process programming 94
SingleChildScrollView
 using 48
sqflite databases
 creating 192, 193, 194

 testing 194, 195, 196, 197
 using 192
sqflite plugin 188
SQL databases 234
SQLite
 about 187
 features 187, 188
 reference link 187
state 54
stateful widgets
 about 54
 using 56, 57
streams
 using 93, 95
strings 16, 17

T
Table class
 reference link 416
table
 about 233
 creating, for larger devices 415, 416, 417, 418
ternary operator 20
text
 formatting 38
The Movie Database API 157
The Treasure Mapp app
 device camera, using 312, 313, 314, 315, 316,

317

 existing places, deleting 308, 309, 310
 existing places, editing 308, 309, 310
 geolocation, used for finding current position 293
 helper classes, creating 297, 298, 301
 marker, adding to map 294, 295
 new places, inserting on map 303, 305, 306
 pictures, retrieving as local files 318, 319, 320
 pictures, saving as local files 318, 319, 320
 place model, creating 297, 298, 301
THIS keyword 28
timeline 336
timer home page layout
 building 81, 82, 83, 85, 86, 87, 88, 90
ToDo App
 BLoCs and Streams, used for updating UI 385,

386

 HomePage screen user interface 386, 387, 388,
389

 project overview 366, 367, 368
 TodoScreen user interface 390, 391, 392, 393,

394

U
Uniform Resource Locator (URL) 404

W

W3Schools SQL tutorial
 reference link 187
web API 158
web server
 Flutter app, publishing 428
web service 158
where() method 24
while loop 21
widgets 28

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Hello Flutter!
	Technical requirements
	Understanding the Dart language basics
	Hello Dart
	Area calculator
	For loops and strings
	The Arrow syntax and the ternary operator
	While loops, lists, and generics
	foreach()
	map()
	where()

	Classes and objects
	Using getters and setters
	Constructors
	This keyword

	Creating your first Flutter app
	Running your first Hello World app
	Using MaterialApp and Scaffold
	Formatting Text and Using Columns
	Showing images and using buttons
	Showing an AlertDialog box
	Using padding
	Using SingleChildScrollView

	Summary
	Questions
	Further reading

	Chapter 2: Miles or Kilometers? Using Stateful Widgets
	Technical requirements
	Project overview
	Understanding state and stateful widgets
	Creating the measure converter project
	Using stateful widgets
	Reading user input from TextField
	Creating a DropdownButton widget
	Updating a DropdownButton widget
	Completing the UI of the app
	Adding the business logic

	Summary
	Questions
	Further reading

	Chapter 3: My Time - Listening to a Stream of Data
	Technical requirements
	Building the timer home page layout
	Installing the percent_indicator Package in your app

	Using a stream and asynchronous programming in Flutter
	Showing the time in the main screen: StreamBuilder
	Enabling the buttons

	Navigating to the settings route
	Building the Settings screen layout
	Using the GridView.Count() constructor
	Adding custom SettingButtons to the widgets.dart file

	Using shared_preferences to read and write app data
	Summary
	Questions
	Further reading

	Chapter 4: Pong Game - 2D Animations and Gestures
	Technical requirements
	Building the UI of the app
	Creating the ball
	Creating the bat
	Creating the grid

	Using animations
	Adding the game logic
	Using GestureDetector
	Checking the bat position
	Adding randomness to the game
	Adding the score and completing the game
	Summary
	Questions
	Further reading

	Chapter 5: Let's Go to the Movies - Getting Data from the Web
	Technical requirements
	Project overview
	Connecting to a web service and retrieving data with HTTP
	Creating the app and connecting to the API with the HTTP library

	Parsing JSON data and transforming it into model objects
	Adding the Movie model class

	Adding a ListView to show data
	Showing a trailing icon in a ListTile

	Showing the detail screen and passing data through screens
	Adding the search feature
	Summary
	Questions
	Further reading

	Chapter 6: Store That Data - Using Sq(F)Lite To Store Data in a Local Database
	Technical requirements
	Essential theory and context
	Project overview
	Using sqflite databases
	Creating an sqflite database
	Testing the database

	Creating the model classes
	Showing database data to the user
	Inserting and editing data
	Deleting elements
	Challenge – completing the Items Screen functionality
	Challenge solution – completing the Items Screen functionality
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Summary
	Questions
	Further reading

	Chapter 7: Firing Up the App - Integrating Firebase into a Flutter App
	Technical requirements
	Introducing Firebase
	Project overview
	Adding Firebase to your Flutter project
	Creating a Firestore database
	Integrating Firebase into a Flutter app
	Configuring your Android app
	Configuring your iOS app
	Testing Firebase integration with your app

	The EventDetail model class
	Creating the Event Detail screen

	Adding authentication to your app
	Adding the login/signup screen
	Adding the authentication logic
	Introducing Firebase rules

	Writing data to Firebase: Adding the favorite feature
	Showing and deleting favorites

	Summary
	Questions
	Further reading

	Chapter 8: The Treasure Mapp - Integrating Maps and Using Your Device Camera
	Technical requirements
	Geolocation and camera – a powerful duo
	Integrating Google Maps into Flutter
	Showing a map with Google Maps
	Using geolocation to find the current position
	Adding a marker to the map

	Creating the place model and helper classes
	Inserting new places on the map
	Editing and deleting existing places

	Using the device camera
	Saving and retrieving pictures as local files

	Summary
	Questions
	Further reading

	Chapter 9: Let's Play Dice: Knockout - Creating an Animation with Flare
	Technical requirements
	Project overview
	What's Flare?
	Creating objects with Flare
	Creating new objects in Flare

	Animating objects with Flare
	Creating the Roll animation

	Integrating Flare into a Flutter app
	Creating the Dice class
	Creating the Single Dice screen
	Creating the Knockout game

	Summary
	Questions
	Further reading

	Chapter 10: ToDo App - Leveraging the BLoC Pattern and Sembast
	Technical requirements
	Project overview
	Using sembast to store data
	Sembast: dealing with data
	Opening a sembast database
	Creating CRUD methods with sembast
	Using sembast

	The BLoC pattern
	Using the BLoC pattern
	The BLoC guideline step by step
	1. Creating the BLoC class
	2. Declaring the data that will change
	3. Setting the StreamControllers
	4. Creating the getters for streams and sinks
	5. Adding the logic of the BLoC
	6. Creating the constructor
	7. Setting the dispose() method

	Using BLoCs and Streams to update the UI
	The HomePage screen user interface
	The TodoScreen user interface

	Summary
	Questions
	Further reading

	Chapter 11: Building a Flutter Web App
	Technical requirements
	Essential theory and context
	Project overview
	Building a Flutter app that runs on a browser
	Connecting to the Google Books API web service
	Creating the Book model class
	Using the HTTP service to retrieve books

	Creating a responsive UI
	Responsive widgets: ListView or Table?
	Creating the Table for larger devices
	Creating the ListView for smaller devices

	Using shared_preferences to save data in Android, iOS, and the web
	Completing the UI of the app

	Publishing a Flutter app to a web server
	Summary
	Questions
	Further reading

	Appendix
	Setting up your environment to build Flutter projects
	Installing Flutter on a Windows PC
	Installing Git
	Installing the Flutter Software Development Kit (SDK)
	Installing Android Studio
	Connecting an Android physical device
	Configuring Android Studio
	Installing and configuring VS Code

	Installing Flutter on a Mac
	Installing the Flutter SDK
	Installing Xcode

	Assessment
	Other Books You May Enjoy
	Index

