
L E E V A U G H A N

R E A L W O R L D
P Y T H O N

A H A C K E R ’ S G U I D E T O

S O L V I N G P R O B L E M S W I T H C O D E

REAL-WORLD PYTHON

R E A L - W O R L D
P Y T H O N

A H a c k e r ’ s G u i d e t o
S o l v i n g P r o b l e m s w i t h C o d e

by Lee Vaughan

San Francisco

REAL-WORLD PYTHON. Copyright © 2021 by Lee Vaughan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0062-4 (print)
ISBN-13: 978-1-7185-0063-1 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Kassie Andreadis
Developmental Editor: Frances Saux
Project Editor: Dapinder Dosanjh
Cover Illustrator: Rob Gale
Interior Design: Octopod Studios
Technical Reviewers: Chris Kren and Eric Mortenson
Copyeditor: Kim Wimpsett
Compositor: Shawn Morningstar
Proofreader: Paula L. Fleming
Indexer: Beth Nauman-Montana

The following images are reproduced with permission: Figure 3-3 from istockphoto.com; Figure 5-1 courtesy
of Lowell Observatory Archives; Figures 5-2, 6-2, 7-6, 7-7, 8-18, and 11-2 courtesy of Wikimedia Commons;
Figures 7-2, 7-9, 7-17, 8-20, and 11-1 courtesy of NASA; Figure 8-1 photo by Evan Clark; Figure 8-4 photo by
author; Figure 9-5 from pixelsquid.com; Figure 11-9 photo by Hannah Vaughan

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Vaughan, Lee, author.
Title: Real-world python: a hacker’s guide to solving problems with code / Lee Vaughan.
Description: San Francisco, CA : No Starch Press, Inc., [2020] | Includes
 index.
Identifiers: LCCN 2020022671 (print) | LCCN 2020022672 (ebook) | ISBN
 9781718500624 (paperback) | ISBN 1718500629 (paperback) | ISBN
 9781718500631 (ebook)
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 V383 2020 (print) | LCC QA76.73.P98
 (ebook) | DDC 005.1/33--dc23
LC record available at https://lccn.loc.gov/2020022671
LC ebook record available at https://lccn.loc.gov/2020022672

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other prod-
uct and company names mentioned herein may be the trademarks of their respective owners. Rather than use
a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

For my uncle, Kenneth P. Vaughan.
He brightened every room he entered.

About the Author
Lee Vaughan is a programmer, pop culture enthusiast, educator, and author
of Impractical Python Projects (No Starch Press, 2018). As an executive-level
scientist at ExxonMobil, he constructed and reviewed computer models,
developed and tested software, and trained geoscientists and engineers.
He wrote both Impractical Python Projects and Real-World Python to help
self-learners hone their Python skills and have fun doing it!

About the Technical Reviewers
Chris Kren graduated from the University of South Alabama with an M.S. in
Information Systems. He currently works in the field of cybersecurity and
often uses Python for reporting, data analysis, and automation.

Eric Mortenson has a PhD in mathematics from the University of Wisconsin
at Madison. He has held research and teaching positions at The Pennsylvania
State University, The University of Queensland, and the Max Planck Institute
for Mathematics. He is an associate professor in mathematics at St. Petersburg
State University.

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

Chapter 1: Saving Shipwrecked Sailors with Bayes’ Rule . 1

Chapter 2: Attributing Authorship with Stylometry . 27

Chapter 3: Summarizing Speeches with Natural Language Processing 51

Chapter 4: Sending Super-Secret Messages with a Book Cipher 77

Chapter 5: Finding Pluto . 95

Chapter 6: Winning the Moon Race with Apollo 8 . 123

Chapter 7: Selecting Martian Landing Sites . 151

Chapter 8: Detecting Distant Exoplanets . 177

Chapter 9: Identifying Friend or Foe . 203

Chapter 10: Restricting Access with Face Recognition . 225

Chapter 11: Creating an Interactive Zombie Escape Map . 245

Chapter 12: Are We Living in a Computer Simulation? . 269

Appendix: Practice Project Solutions . 283

Index . . 315

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xvii

INTRODUCTION	 xix
Who Should Read This Book? . . xx
Why Python? . xx
What’s in This Book? . . xx

Python Version, Platform, and IDE . xxii
Installing Python . xxii
Running Python . xxiv
Using a Virtual Environment . . xxv

Onward! . xxv

1
SAVING SHIPWRECKED SAILORS WITH BAYES’ RULE	 1
Bayes’ Rule . 2
Project #1: Search and Rescue . 5

The Strategy . 6
Installing the Python Libraries . 6
The Bayes Code . . 9
Playing the Game . 22

Summary . 24
Further Reading . 24
Challenge Project: Smarter Searches . 24
Challenge Project: Finding the Best Strategy with MCS . 25
Challenge Project: Calculating the Probability of Detection . . 25

2
ATTRIBUTING AUTHORSHIP WITH STYLOMETRY	 27
Project #2: The Hound, The War, and The Lost World . . 28

The Strategy . 28
Installing NLTK . . 29
The Corpora . 32
The Stylometry Code . 32

Summary . 47
Further Reading . 48
Practice Project: Hunting the Hound with Dispersion . 48
Practice Project: Punctuation Heatmap . 49
Challenge Project: Fixing Frequency . 50

xii Contents in Detail

3
SUMMARIZING SPEECHES WITH NATURAL
LANGUAGE PROCESSING	 51
Project #3: I Have a Dream . . . to Summarize Speeches! . 52

The Strategy . 52
Web Scraping . . 53
The “I Have a Dream” Code . 53

Project #4: Summarizing Speeches with gensim . 61
Installing gensim . 61
The Make Your Bed Code . 61

Project #5: Summarizing Text with Word Clouds . 64
The Word Cloud and PIL Modules . 65
The Word Cloud Code . 66
Fine-Tuning the Word Cloud . 70

Summary . 71
Further Reading . 72
Challenge Project: Game Night . 72
Challenge Project: Summarizing Summaries . 73
Challenge Project: Summarizing a Novel . 74
Challenge Project: It’s Not Just What You Say,

It’s How You Say It! . 75

4
SENDING SUPER-SECRET MESSAGES WITH A BOOK CIPHER	 77
The One-Time Pad . . 78
The Rebecca Cipher . 80
Project #6: The Digital Key to Rebecca . 80

The Strategy . 81
The Encryption Code . 82
Sending Messages . 90

Summary . 91
Further Reading . 91
Practice Project: Charting the Characters . 92
Practice Project: Sending Secrets the WWII Way . 93

5
FINDING PLUTO	 95
Project #7: Replicating a Blink Comparator . 96

The Strategy . 97
The Data . 98
The Blink Comparator Code . 99
Using the Blink Comparator . . 110

Project #8: Detecting Astronomical Transients with Image Differencing 112
The Strategy . 113
The Transient Detector Code . 113
Using the Transient Detector . 119

Summary . 119
Further Reading . 119
Practice Project: Plotting the Orbital Path . 119

Contents in Detail xiii

Practice Project: What’s the Difference? . 120
Challenge Project: Counting Stars . 120

6
WINNING THE MOON RACE WITH APOLLO 8	 123
Understanding the Apollo 8 Mission . 124

The Free Return Trajectory . 125
The Three-Body Problem . 126

Project #9: To the Moon with Apollo 8! . 127
Using the turtle Module . 127
The Strategy . 131
The Apollo 8 Free Return Code . 132
Running the Simulation . 144

Summary . 146
Further Reading . 146
Practice Project: Simulating a Search Pattern . 146
Practice Project: Start Me Up! . 147
Practice Project: Shut Me Down! . 148
Challenge Project: True-Scale Simulation . 149
Challenge Project: The Real Apollo 8 . 149

7
SELECTING MARTIAN LANDING SITES	 151
How to Land on Mars . 152
The MOLA Map . 153
Project #10: Selecting Martian Landing Sites . 153

The Strategy . 154
The Site Selector Code . 155
Results . 170

Summary . 171
Further Reading . 171
Practice Project: Confirming That Drawings Become Part of an Image 172
Practice Project: Extracting an Elevation Profile . 172
Practice Project: Plotting in 3D . 173
Practice Project: Mixing Maps . 173
Challenge Project: Making It Three in a Row . 175
Challenge Project: Wrapping Rectangles . 175

8
DETECTING DISTANT EXOPLANETS	 177
Transit Photometry . 178
Project #11: Simulating an Exoplanet Transit . 179

The Strategy . 180
The Transit Code . 181
Experimenting with Transit Photometry . 186

Project #12: Imaging Exoplanets . 188
The Strategy . 188
The Pixelator Code . . 189

xiv Contents in Detail

Summary . 194
Further Reading . 194
Practice Project: Detecting Alien Megastructures . 195
Practice Project: Detecting Asteroid Transits . 197
Practice Project: Incorporating Limb Darkening . 198
Practice Project: Detecting Starspots . 200
Practice Project: Detecting an Alien Armada . . 200
Practice Project: Detecting a Planet with a Moon . . 201
Practice Project: Measuring the Length of an Exoplanet’s Day 201
Challenge Project: Generating a Dynamic Light Curve . 202

9
IDENTIFYING FRIEND OR FOE	 203
Detecting Faces in Photographs . 204
Project #13: Programming a Robot Sentry Gun . . 205

The Strategy . 207
The Code . 207
Results . 218

Detecting Faces from a Video Stream . 219
Summary . 221
Further Reading . 222
Practice Project: Blurring Faces . 222
Challenge Project: Detecting Cat Faces . 223

10
RESTRICTING ACCESS WITH FACE RECOGNITION	 225
Recognizing Faces with Local Binary Pattern Histograms . 226

The Face Recognition Flowchart . 226
Extracting Local Binary Pattern Histograms . 228

Project #14: Restricting Access to the Alien Artifact . 231
The Strategy . 231
Supporting Modules and Files . 231
The Video Capture Code . 232
The Face Trainer Code . 236
The Face Predictor Code . . 238
Results . 241

Summary . 242
Further Reading . 242
Challenge Project: Adding a Password and Video Capture . 242
Challenge Project: Look-Alikes and Twins . 243
Challenge Project: Time Machine . 243

11
CREATING AN INTERACTIVE ZOMBIE ESCAPE MAP	 245
Project #15: Visualizing Population Density with a Choropleth Map 246

The Strategy . 247
The Python Data Analysis Library . 248
The bokeh and holoviews Libraries . . 249
Installing pandas, bokeh, and holoviews . . 250

Contents in Detail xv

Accessing the County, State, Unemployment, and Population Data 250
Hacking holoviews . 252
The Choropleth Code . 254
Planning the Escape . 262

Summary . 266
Further Reading . 266
Challenge Project: Mapping US Population Change . 266

12
ARE WE LIVING IN A COMPUTER SIMULATION?	 269
Project #16: Life, the Universe, and Yertle’s Pond . 270

The Pond Simulation Code . 270
Implications of the Pond Simulation . 273
Measuring the Cost of Crossing the Lattice . 275
Results . 277
The Strategy . 278

Summary . 279
Further Reading . 279
Moving On . 279
Challenge Project: Finding a Safe Space . 279
Challenge Project: Here Comes the Sun . 280
Challenge Project: Seeing Through a Dog’s Eyes . 281
Challenge Project: Customized Word Search . 281
Challenge Project: Simplifying a Celebration Slideshow . . 281
Challenge Project: What a Tangled Web We Weave . 281
Challenge Project: Go Tell It on the Mountain . 281

APPENDIX
PRACTICE PROJECT SOLUTIONS	 283
Chapter 2: Attributing Authorship with Stylometry . 283

Hunting the Hound with Dispersion . . 283
Punctuation Heatmap . 284

Chapter 4: Sending Super-Secret Messages with a Book Cipher 285
Charting the Characters . 285
Sending Secrets the WWII Way . 286

Chapter 5: Finding Pluto . 289
Plotting the Orbital Path . 289
What’s the Difference? . 290

Chapter 6: Winning the Moon Race with Apollo 8 . 292
Simulating a Search Pattern . . 292
Start Me Up! . 293
Shut Me Down! . 296

Chapter 7: Selecting Martian Landing Sites . 298
Confirming That Drawings Become Part of an Image 298
Extracting an Elevation Profile . 298
Plotting in 3D . . 299
Mixing Maps . . 300

Chapter 8: Detecting Distant Exoplanets . 304
Detecting Alien Megastructures . 304
Detecting Asteroid Transits . 305

xvi Contents in Detail

Incorporating Limb Darkening . 306
Detecting an Alien Armada . 307
Detecting a Planet with a Moon . 309
Measuring the Length of an Exoplanet’s Day . 311

Chapter 9: Identifying Friend or Foe . 312
Blurring Faces . 312

Chapter 10: Restricting Access with Face Recognition . 312
Challenge Project: Adding a Password and Video Capture 312

INDEX	 315

A C K N O W L E D G M E N T S

Despite operating during a global pandemic, the team at No Starch Press
delivered another excellent effort at book making. They are professionals
without peer, and this book would not exist without them. They have my
deepest gratitude and respect.

Thanks also to Chris Kren and Eric Evenchick for their code reviews,
Joseph B. Paul and Sarah and Lora Vaughan for their cosplay enthusiasm,
and Hannah Vaughan for supplying useful photographs.

Special thanks to Eric T. Mortenson for his meticulous technical reviews
and many helpful suggestions and additions. Eric proposed the chapter on
Bayes’ Rule and supplied numerous practice and challenge projects including
applying Monte Carlo simulation to Bayes, summarizing a novel by chapter,
modeling interactions between the moon and Apollo 8, viewing Mars in 3D,
calculating the light curve for an exoplanet with an orbiting moon, and more.
This book is immensely better for his efforts.

Finally, thanks to all the contributors to stackoverflow.com. One of the
best things about Python is its extensive and inclusive user community. No
matter what question you may have, someone can answer it; no matter what
strange thing you want to do, someone has probably done it before, and you
can find them on Stack Overflow.

I N T R O D U C T I O N

If you’ve learned the basics of coding in
Python, you’re ready to write complete

programs that take on real-world tasks.
In Real-World Python, you’ll write programs to

win the moon race with Apollo 8, help Clyde Tombaugh
discover Pluto, select landing sites for a Mars rover,
locate exoplanets, send super-secret messages to your
friends, battle monstrous mutants, save shipwrecked
sailors, escape the walking dead, and more, all using the
Python programming language. In the process, you’ll
apply powerful computer vision, natural language pro-
cessing, and scientific modules, such as OpenCV, NLTK,
NumPy, pandas, and matplotlib, as well as a host of other
packages designed to make your computing life easier.

xx Introduction ﻿

Who Should Read This Book?
You can think of this as a sophomore Python book. It isn’t a tutorial on
programming basics but rather a way for you to continue training using a
project-based approach. This way, you won’t have to waste your money or
shelf space rehashing concepts you’ve already learned. I’ll still explain every
step of the projects, and you’ll receive detailed instructions about using the
libraries and modules, including how to install them.

These projects will appeal to anyone who wants to use programming
to conduct experiments, test theories, simulate nature, or just have fun. As
you work through them, you’ll increase your knowledge of Python libraries
and modules and learn handy shortcuts, useful functions, and helpful tech-
niques. Rather than focus on isolated modular code snippets, these projects
teach you how to build complete, working programs involving real-world
applications, datasets, and issues.

Why Python?
Python is a high-level, interpretive, general-purpose programming language.
It’s free, highly interactive, and portable across all major platforms and micro-
controllers such as the Raspberry Pi. Python supports both functional and
object-oriented programming and can interact with code written in many
other programming languages, such as C++.

Because Python is accessible to beginners and useful to experts, it has
penetrated schools, universities, large corporations, financial institutions,
and most, if not all, fields of science. As a result, it’s now the most popular
language for machine learning, data science, and artificial intelligence
applications.

What’s in This Book?
The following is an overview of the chapters in this book. You don’t have
to work through them sequentially, but I’ll explain new modules and tech-
niques more thoroughly when they’re first introduced.

Chapter 1: Saving Shipwrecked Sailors with Bayes’ Rule  Use Bayesian
probability to efficiently direct Coast Guard search and rescue efforts
off Cape Python. Gain experience with OpenCV, NumPy, and the itertools
module.

Chapter 2: Attributing Authorship with Stylometry  Use natural language
processing to determine whether Sir Arthur Conan Doyle or H. G. Wells
wrote the novel The Lost World. Gain experience with NLTK, matplotlib,
and stylometric techniques such as stop words, parts of speech, lexical
richness, and Jaccard similarity.

Chapter 3: Summarizing Speeches with Natural Language Processing 
Scrape famous speeches off the internet and automatically produce
a summary of the salient points. Then turn the text of a novel into a

Introduction xxi

cool display for advertising or promotional material. Gain experience
with BeautifulSoup, Requests, regex, NLTK, Collections, wordcloud, and
matplotlib.

Chapter 4: Sending Super-Secret Messages with a Book Cipher  Share
unbreakable ciphers with your friends by digitally reproducing the one-
time pad approach used in Ken Follet’s best-selling spy novel, The Key to
Rebecca. Gain experience with the Collections module.

Chapter 5: Finding Pluto  Reproduce the blink comparator device
used by Clyde Tombaugh to discover Pluto in 1930. Then use modern
computer vision techniques to automatically find and track subtle tran-
sients, such as comets and asteroids, moving against a starfield. Gain
experience with OpenCV and NumPy.

Chapter 6: Winning the Moon Race with Apollo 8  Take the gamble
and help America win the moon race with Apollo 8. Plot and execute
the clever free return flight path that convinced NASA to go to the moon
a year early and effectively killed the Soviet space program. Gain expe-
rience using the turtle module.

Chapter 7: Selecting Martian Landing Sites  Scope out potential land-
ing sites for a Mars lander based on realistic mission objectives. Display
the candidate sites on a Mars map, along with a summary of site statis-
tics. Gain experience with OpenCV, the Python Imaging Library, NumPy,
and tkinter.

Chapter 8: Detecting Distant Exoplanets  Simulate an exoplanet’s
passing before its sun, plot the resulting changes in relative brightness,
and estimate the diameter of the planet. Finish by simulating the direct
observation of an exoplanet by the new James Webb Space Telescope,
including estimating the length of the planet’s day. Use OpenCV, NumPy,
and matplotlib.

Chapter 9: Identifying Friend or Foe  Program a robot sentry gun
to visually distinguish between Space Force Marines and evil mutants.
Gain experience with OpenCV, NumPy, playsound, pyttsxw, and datetime.

Chapter 10: Restricting Access with Face Recognition  Restrict access
to a secure lab using face recognition. Use OpenCV, NumPy, playsound,
pyttsxw, and datetime.

Chapter 11: Creating an Interactive Zombie Escape Map  Build a pop-
ulation density map to help the survivors in the TV show The Walking Dead
escape Atlanta for the safety of the American West. Gain experience
with pandas, bokeh, holoviews, and webbrowser.

Chapter 12: Are We Living in a Computer Simulation?  Identify a way
for simulated beings—perhaps us—to find evidence that they’re living
in a computer simulation. Use turtle, statistics, and perf_counter.

Each chapter ends with at least one practice or challenge project. You
can find solutions to the practice projects in the appendix or online. These
aren’t the only solutions, or necessarily the best ones; you may come up with
better ones on your own.

xxii Introduction ﻿

When it comes to the challenge projects, however, you’re on your own.
It’s sink or swim, which is a great way to learn! My hope is that this book
motivates you to create new projects, so think of the challenge projects as
seeds for the fertile ground of your own imagination.

You can download all of the book’s code, including solutions to the
practice projects, from the book’s website at https://nostarch.com/real-world
-python/. You’ll also find the errata sheet there, along with any other updates.

It’s almost impossible to write a book like this without some initial errors.
If you see a problem, please pass it on to the publisher at errata@nostarch.com.
We’ll add any necessary corrections to the errata and include the fix in future
printings of the book, and you will gain eternal glory.

Python Version, Platform, and IDE
I built all the projects in this book with Python v3.7.2 in a Microsoft
Windows 10 environment. If you’re using a different operating system,
no problem: I suggest compatible modules for other platforms, where
appropriate.

The code examples in this book are from either the Python IDLE text
editor or the interactive shell. IDLE stands for integrated development and
learning environment. It’s an integrated development environment (IDE) with an
L added so that the acronym references Eric Idle of Monty Python fame. The
interactive shell, also called the interpreter, is a window that lets you immedi-
ately execute commands and test code without needing to create a file.

IDLE has numerous drawbacks, such as the lack of a line-number column,
but it’s free and bundled with Python, so everyone has access to it. You’re
welcome to use whichever IDE you want. Popular choices include Visual
Studio Code, Atom, Geany (pronounced “genie”), PyCharm, and Sublime
Text. These work with a wide range of operating systems, including Linux,
macOS, and Windows. Another IDE, PyScripter, works only with Windows.
For an extensive listing of available Python editors and compatible platforms,
visit https://wiki.python.org/moin/PythonEditors/.

Installing Python
You can choose to install Python directly on your machine or through a
distribution. To install directly, find the installation instructions for your
operating system at https://www.python.org/downloads/. Linux and macOS
machines usually come with Python preinstalled, but you may want to upgrade
this installation. With each new Python release, some features are added and
some are deprecated, so I recommend upgrading if your version predates
Python v3.6.

The download button on the Python site (Figure 1) may install 32-bit
Python by default.

https://nostarch.com/real-world-python/
https://nostarch.com/real-world-python/

Introduction xxiii

Figure 1: Downloads page for Python.org, with the “easy button” for the Windows platform

If you want the 64-bit version, scroll down to the listing of specific
releases (Figure 2) and click the link with the same version number.

Figure 2: Listing of specific releases from the Python.org downloads page

Clicking the specific release will take you to the screen shown in
Figure 3. From here, click the 64-bit executable installer, which will launch
an installation wizard. Follow the wizard directions and take the default
suggestions.

Figure 3: File listing for Python 3.8.2 version on Python.org

xxiv Introduction ﻿

Some of the projects in this book call for nonstandard packages that
you’ll need to install individually. This isn’t difficult, but you can make
things easier by installing a Python distribution that efficiently loads and
manages hundreds of Python packages. Think of this as one-stop shopping.
The package managers in these distributions will automatically find and
download the latest version of a package, including all of its dependencies.

Anaconda is a popular free distribution of Python provided by
Continuum Analytics. You can download it from https://www.anaconda.com/.
Another is Enthought Canopy, though only the basic version is free. You
can find it at https://www.enthought.com/product/canopy/. Whether you install
Python and its packages individually or through a distribution, you should
encounter no problems working through the projects in the book.

Running Python
After installation, Python should show up in your operating system’s list of
applications. When you launch it, the shell window should appear (shown
in the background of Figure 4). You can use this interactive environment
to run and test code snippets. But to write larger programs, you’ll use a text
editor, which lets you save your code, as shown in Figure 4 (foreground).

Figure 4: The native Python shell window (background) and text editor (foreground)

To create a new file in the IDLE text editor, click File4New File.
To open an existing file, click File4Open or File4Recent Files. From
here, you can run your code by clicking Run4Run Module or by pressing
F5 after clicking in the editor window. Note that your environment may
look different from Figure 4 if you chose to use a package manager like
Anaconda or an IDE like PyCharm.

Introduction xxv

You can also start a Python program by typing the program name in
PowerShell or Terminal. You’ll need to be in the directory where your Python
program is located. For example, if you didn’t launch the Windows PowerShell
from the proper directory, you’ll need to change the directory path using
the cd command (Figure 5).

Figure 5: Changing directories and running a Python program in the Windows PowerShell

To learn more, see https://pythonbasics.org/execute-python-scripts/.

Using a Virtual Environment
Finally, you may want to install the dependencies for each chapter in a sepa-
rate virtual environment. In Python, a virtual environment is a self-contained
directory tree that includes a Python installation and a number of addi-
tional packages. They’re useful when you have multiple versions of Python
installed, as some packages may work with one version but break with others.
Additionally, it’s possible to have projects that need different versions of the
same package. Keeping these installations separate prevents compatibility
issues.

The projects in this book don’t require the use of virtual environments,
and if you follow my instructions, you’ll install the required packages system-
wide. However, if you do need to isolate the packages from your operating
system, consider installing a different virtual environment for each chapter
of the book (see https://docs.python.org/3.8/library/venv.html#module-venv and
https://docs.python.org/3/tutorial/venv.html).

Onward!
Many of the projects in this book rely on statistical and scientific concepts
that are hundreds of years old but impractical to apply by hand. But with
the introduction of the personal computer in 1975, our ability to store, pro-
cess, and share information has increased by many orders of magnitude.

In the 200,000-year history of modern humans, only those of us living
in the last 45 years have had the privilege of using this magical device and
realizing dreams long out of reach. To quote Shakespeare, “We few. We
happy few.”

Let’s make the most of the opportunity. In the pages that follow, you’ll
easily accomplish tasks that frustrated past geniuses. You’ll scratch the surface
of some of the amazing feats we’ve recently achieved. And you might even
start to imagine discoveries yet to come.

https://pythonbasics.org/execute-python-scripts/

1
S A V I N G S H I P W R E C K E D S A I L O R S

W I T H B A Y E S ’ R U L E

Sometime around 1740, an English
Presbyterian minister named Thomas Bayes

decided to mathematically prove the existence
of God. His ingenious solution, now known as

Bayes’ rule, would become one of the most successful
statistical concepts of all time. But for 200 years it
languished, largely ignored, because its tedious math-
ematics were impractical to do by hand. It took the
invention of the modern computer for Bayes’ rule to
reach its full potential. Now, thanks to our fast pro-
cessors, it forms a key component of data science and
machine learning.

2 Chapter 1

Because Bayes’ rule shows us the mathematically correct way to incor-
porate new data and recalculate probability estimates, it penetrates almost
all human endeavors, from cracking codes to picking presidential winners
to demonstrating that high cholesterol causes heart attacks. A list of appli-
cations of Bayes’ rule could easily fill this chapter. But since nothing is more
important than saving lives, we’ll focus on the use of Bayes’ rule to help
save sailors lost at sea.

In this chapter, you’ll create a simulation game for a Coast Guard search
and rescue effort. Players will use Bayes’ rule to guide their decisions so
they can locate the sailor as quickly as possible. In the process, you’ll start
working with popular computer vision and data science tools like Open
Source Computer Vision Library (OpenCV) and NumPy.

Bayes’ Rule
Bayes’ rule helps investigators determine the probability that something is
true given new evidence. As the great French mathematician Laplace put it,
“The probability of a cause—given an event—is proportional to the prob-
ability of the event—given its cause.” The basic formula is

() () ()
()

=P A B
P B A P A

P B

where A is a hypothesis and B is data. P(A/B) means the probability of A
given B. P(B/A) means the probability of B given A. For example, assume
we know that a certain test for a certain cancer is not always accurate and
can give false positives, indicating that you have cancer when you don’t.
The Bayes expression would be

Probability of cancer
given a positive test

Probability of a positive test
among cancer patients

Probability of
having cancer

Probability of
a positive test

()() () ()
= ×

The initial probabilities would be based on clinical studies. For example,
800 out of 1,000 people who have cancer may receive a positive test result,
and 100 out of 1,000 may be misdiagnosed. Based on disease rates, the over-
all chance of a given person having cancer may only be 50 out of 10,000.
So, if the overall probability of having cancer is low and the overall prob-
ability of getting a positive test result is relatively high, the probability of
having cancer given a positive test goes down. If studies have recorded the
frequency of inaccurate test results, Bayes’ rule can correct for measure-
ment errors!

Now that you’ve seen an example application, look at Figure 1-1, which
shows the names of the various terms in Bayes’ rule, along with how they
relate to the cancer example.

Saving Shipwrecked Sailors with Bayes’ Rule 3

Likelihood
Probability of seeing the new
data given initial hypothesis
(Probability of positive test

given cancer)
Posterior

Probability being estimated
(Probability of cancer
given a positive test)

Marginal Likelihood
Overall probability of
seeing the new data

(Probability of anyone
getting a positive test)

Prior
Probability of

hypothesis
with no new data

(Probability of cancer
with no test results)

P(B/A) P(A)

P(B)
P(A/B) =

Figure 1-1: Bayes’ rule with terms defined and related to the cancer test example

To illustrate further, let’s consider a woman who has lost her reading
glasses in her house. The last time she remembers wearing them, she was in
her study. She goes there and looks around. She doesn’t see her glasses, but
she does see a teacup and remembers that she went to the kitchen. At this
point, she must make a choice: search the study more thoroughly or leave
and check the kitchen. She decides to go to the kitchen. She has unknow-
ingly made a Bayesian decision.

She went to the study first because she felt it offered the highest prob-
ability for success. In Bayesian terms, this initial probability of finding the
glasses in the study is called the prior. After a cursory search, she changed
her decision based on two new bits of information: she did not easily find
the glasses, and she saw the teacup. This represents a Bayesian update, in
which a new posterior estimate (P(A/B) in Figure 1-1) is calculated as more
evidence becomes available.

Let’s imagine that the woman decided to use Bayes’ rule for her search.
She would assign actual probabilities both to the likelihood of the glasses
being in either the study or the kitchen and to the effectiveness of her searches
in the two rooms. Rather than intuitive hunches, her decisions are now
grounded in mathematics that can be continuously updated if future
searches fail.

Figure 1-2 illustrates the woman’s search for her glasses with these prob-
abilities assigned.

4 Chapter 1

Bedroom
5%

Kitchen
10% / 0%

Initial probability / Search effectiveness Updated probabilities

Bedroom
1% / 0%

Bedroom
1% / 0%

Bedroom
5%

Study
22%

Lounge
5% Dining

5%

Kitchen
52%

Bath
5%

Dining
1% / 0%

Lounge
1% / 0%

Study
85% / 95%

Bath
1% / 0%

Figure 1-2: Initial probabilities for the location of the glasses and search effectiveness
(left) versus updated target probabilities for the glasses (right)

The left diagram represents the initial situation; the right diagram is
updated with Bayes’ rule. Initially, let’s say there was an 85 percent chance
of finding the glasses in the study and a 10 percent chance that the glasses
are in the kitchen. Other possible rooms are given 1 percent because Bayes’
rule can’t update a target probability of zero (plus there’s always a small
chance the woman left them in one of the other rooms).

Each number after a slash in the left diagram represents the search
effectiveness probability (SEP). The SEP is an estimate of how effectively you’ve
searched an area. Because the woman has searched only in the study at
this point, this value is zero for all other rooms. After the Bayesian update
(the discovery of the teacup), she can recalculate the probabilities based
on the search results, shown on the right. The kitchen is now the most likely
place to look, but the probability for the other rooms increases as well.

Human intuition tells us that if something isn’t where we think it is, the
odds that it is someplace else go up. Bayes’ rule takes this into account, and
thus the probability that the glasses are in other rooms increases. But this
can happen only if there was a chance of them being in the other room in
the first place.

The formula used for calculating the probability that the glasses are in
a given room, given the search effectiveness, is

() ()
() ()

()
=P G E

P E G P G

P E G P G

prior

priorΣ 9 9

where G is the probability that the glasses are in a room, E is the search effec-
tiveness, and Pprior is the prior, or initial, probability estimate before receiving
the new evidence.

Saving Shipwrecked Sailors with Bayes’ Rule 5

You can obtain the updated possibility that the glasses are in the study by
inserting the target and search effectiveness probabilities into the equation
as follows:

0.85 1 0.95

0.85 1 0.95 0.1 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0

()
()

()
() () () () () () ()

× −

× − + × − + × − + × − + × − + × − + × −

As you can see, the simple math behind Bayes’ rule can quickly get
tedious if you do it by hand. Fortunately for us, we live in the wonderous
age of computers, so we can let Python handle the boring stuff!

Project #1: Search and Rescue
In this project, you’ll write a Python program that uses Bayes’ rule to find a
solitary fisherman who has gone missing off Cape Python. As the director
of the Coast Guard’s search and rescue operations for the region, you’ve
already interviewed his wife and determined his last known position, now
more than six hours old. He radioed that he was abandoning ship, but no
one knows if he is in a life raft or floating in the sea. The waters around
the cape are warm, but if he’s immersed, he’ll experience hypothermia
in 12 hours or so. If he’s wearing a personal flotation device and lucky, he
might last three days.

The ocean currents off Cape Python are complex (Figure 1-3), and
the wind is currently blowing from the southwest. Visibility is good, but the
waves are choppy, making a human head hard to spot.

Figure 1-3: Ocean currents off Cape Python

6 Chapter 1

In real life, your next course of action would be to plug all the informa-
tion you have into the Coast Guard’s Search and Rescue Optimal Planning
System (SAROPS). This software considers factors such as winds, tides, cur-
rents, whether a body is in the water or in a boat, and so on. It then gener-
ates rectangular search areas, calculates the initial probabilities for finding
the sailor in each area, and plots the most efficient flight patterns.

For this project, you’ll assume that SAROPS has identified three search
areas. All you need to do is write the program that applies Bayes’ rule. You
also have enough resources available to search two of the three areas in a
day. You’ll have to decide how to allocate those resources. It’s a lot of pressure,
but you have a powerful assistant to help you out: Bayes’ rule.

T HE OBJEC T I V E

Create a search and rescue game that uses Bayes’ rule to inform player choices on how
to conduct a search.

The Strategy
Searching for the sailor is like looking for the lost glasses in our previous
example. You’ll start with initial target probabilities for the sailor’s location
and update them for the search results. If you achieve an effective search of
an area but find nothing, the probability that the sailor is in another area
will increase.

But just as in real life, there are two ways things could go wrong: you
thoroughly search an area but still miss the sailor, or your search goes
poorly, wasting a day’s effort. To equate this to search effectiveness scores,
in the first case, you might get an SEP of 0.85, but the sailor is in the
remaining 15 percent of the area not searched. In the second case, your
SEP is 0.2, and you’ve left 80 percent of the area unsearched!

You can see the dilemma real commanders face. Do you go with your gut
and ignore Bayes? Do you stick with the pure, cold logic of Bayes because
you believe it’s the best answer? Or do you act expediently and protect your
career and reputation by going with Bayes even when you doubt it?

To aid the player, you’ll use the OpenCV library to build an interface for
working with the program. Although the interface can be something simple,
like a menu built in the shell, you’ll also want a map of the cape and the
search areas. You’ll use this map to display the sailor’s last known position
and his position when found. The OpenCV library is an excellent choice for
this game since it lets you display images and add drawings and text.

Installing the Python Libraries
OpenCV is the world’s most popular computer vision library. Computer vision
is a field of deep learning that enables machines to see, identify, and process

Saving Shipwrecked Sailors with Bayes’ Rule 7

images like humans. OpenCV began as an Intel Research initiative in 1999
and is now maintained by the OpenCV Foundation, a nonprofit foundation
which provides the software for free.

OpenCV is written in C++, but there are bindings in other languages,
such as Python and Java. Although aimed primarily at real-time computer
vision applications, OpenCV also includes common image manipulation
tools such as those found in the Python Imaging Library. As of this writing,
the current version is OpenCV 4.1.

OpenCV requires both the Numerical Python (NumPy) and SciPy pack-
ages to perform numerical and scientific computing in Python. OpenCV
treats images as three-dimensional NumPy arrays (Figure 1-4). This allows for
maximum interoperability with other Python scientific libraries.

40 41 42 43 44

49

54

59

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

29

34

39

–Red channel

–Green channel

–Blue channel

Figure 1-4: Visual representation of a three-channel
color image array

OpenCV stores properties as rows, columns, and channels. For the
image represented in Figure 1-4, its “shape” would be a three-element tuple
(4, 5, 3). Each stack of cells, like 0-20-40 or 19-39-59, represents a single
pixel. The numbers shown are the intensity values for each color channel
for that pixel.

As many projects in this book require scientific Python libraries like
NumPy and matplotlib, this is a good time to install them.

There are numerous ways to install these packages. One way is to use
SciPy, an open source Python library used for scientific and technical com-
puting (see https://scipy.org/index.html).

Alternatively, if you’re going to do a lot of data analysis and plotting
on your own time, you may want to download and use a free Python dis-
tribution like Anaconda or Enthought Canopy, which work with Windows,
Linux, and macOS. These distributions spare you the task of finding and
installing the correct versions of all the required data science libraries, such
as NumPy, SciPy, and so on. A listing of these types of distributions, along with
links to their websites, can be found at https://scipy.org/install.html.

https://scipy.org/index.html
https://scipy.org/install.html

8 Chapter 1

Installing NumPy and Other Scientific Packages with pip

If you want to install the products directly, use the Preferred Installer Program
(pip), a package management system that makes it easy to install Python-
based software (see https://docs.python.org/3/installing/). For Windows and
macOS, Python versions 3.4 and newer come with pip preinstalled. Linux
users may have to install pip separately. To install or upgrade pip, see
the instructions at https://pip.pypa.io/en/stable/installing/ or search online
for instructions on installing pip on your particular operating system.

I used pip to install the scientific packages using the instructions at
https://scipy.org/install.html. Because matplotlib requires multiple dependen-
cies, you’ll need to install these as well. For Windows, run the following
Python 3–specific command using PowerShell, launched (using shift-right-
click) from within the folder containing the current Python installation:

$ python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

If you have both Python 2 and 3 installed, use python3 in place of python.
To verify that NumPy has been installed and is available for OpenCV,

open a Python shell and enter the following:

>>> import numpy

If you don’t see an error, you’re ready to install OpenCV.

Installing OpenCV with pip

You can find installation instructions for OpenCV at https://pypi.org/project/
opencv-python/. To install OpenCV for standard desktop environments
(Windows, macOS, and almost any GNU/Linux distribution), enter the
following in a PowerShell or terminal window:

pip install opencv-contrib-python

or

python -m pip install opencv-contrib-python

If you have multiple versions of Python installed (such as versions 2.7
and 3.7), you will need to specify the Python version you want to use.

py -3.7 -m pip install --user opencv-contrib-python

If you’re using Anaconda as a distribution medium, you can run this:

conda install opencv

To check that everything loaded properly, enter the following in the shell:

>>> import cv2

https://docs.python.org/3/installing/
https://pip.pypa.io/en/stable/installing/
https://scipy.org/install.html
https://pypi.org/project/opencv-python/
https://pypi.org/project/opencv-python/

Saving Shipwrecked Sailors with Bayes’ Rule 9

No error means you’re good to go! If you get an error, read the trouble-
shooting list at https://pypi.org/project/opencv-python/.

The Bayes Code
The bayes.py program you’ll write in this section simulates the search for
a missing sailor over three contiguous search areas. It will display a map,
print a menu of search choices for the user, randomly choose a location
for the sailor, and either reveal the location if a search locates him or do a
Bayesian update of the probabilities of finding the sailor for each search area.
You can download the code, along with the map image (cape_python.png),
from https://nostarch.com/real-world-python/.

Importing Modules

Listing 1-1 starts the bayes.py program by importing the required modules
and assigning some constants. We’ll look at what these modules do as we
implement them in the code.

import sys
import random
import itertools
import numpy as np
import cv2 as cv

MAP_FILE = 'cape_python.png'

SA1_CORNERS = (130, 265, 180, 315) # (UL-X, UL-Y, LR-X, LR-Y)
SA2_CORNERS = (80, 255, 130, 305) # (UL-X, UL-Y, LR-X, LR-Y)
SA3_CORNERS = (105, 205, 155, 255) # (UL-X, UL-Y, LR-X, LR-Y)

Listing 1-1: Importing modules and assigning constants used in the bayes.py program

When importing modules into a program, the preferred order is the
Python Standard Library modules, followed by third-party modules, fol-
lowed by user-defined modules. The sys module includes commands for
the operating system, such as exiting. The random module lets you generate
pseudorandom numbers. The itertools module helps you with looping.
Finally, numpy and cv2 import NumPy and OpenCV, respectively. You can also
assign shorthand names (np, cv) to reduce keystrokes later.

Next, assign some constants. As per the PEP8 Python style guide
(https://www.python.org/dev/peps/pep-0008/), constant names should be all
caps. This doesn’t make the variables truly immutable, but it does alert
other developers that they shouldn’t change these variables.

The map you’ll use for the fictional Cape Python area is an image file
called cape_python.png (Figure 1-5). Assign this image file to a constant
variable named MAP_FILE.

bayes.py, part 1

https://pypi.org/project/opencv-python/
https://www.python.org/dev/peps/pep-0008/

10 Chapter 1

Figure 1-5: Grayscale base map of Cape Python (cape_python.png)

You’ll draw the search areas on the image as rectangles. OpenCV will
define each rectangle by the pixel number at the corner points, so assign a
variable to hold these four points as a tuple. The required order is upper-
left x, upper-left y, lower-right x, and lower-right y. Use SA in the variable
name to represent “search area.”

Defining the Search Class

A class is a data type in object-oriented programming (OOP). OOP is an
alternative approach to functional/procedural programming. It’s especially
useful for large, complex programs, as it produces code that’s easier to update,
maintain, and reuse, while reducing code duplication. OOP is built around
data structures known as objects, which consist of data, methods, and the
interactions between them. As such, it works well with game programs,
which typically use interacting objects, such as spaceships and asteroids.

A class is a template from which multiple objects can be created. For
example, you could have a class that builds battleships in a World War II
game. Each battleship would inherit certain consistent characteristics, such
as tonnage, cruising speed, fuel level, damage level, weaponry, and so on.
You could also give each battleship object unique characteristics, such as a
different name. Once created, or instantiated, the individual characteristics of
each battleship would begin to diverge depending on how much fuel the ships
burn, how much damage they take, how much ammo they use, and so on.

In bayes.py, you’ll use a class as a template to create a search and rescue
mission that allows for three search areas. Listing 1-2 defines the Search
class, which will act as a blueprint for your game.

Saving Shipwrecked Sailors with Bayes’ Rule 11

class Search():
 """Bayesian Search & Rescue game with 3 search areas."""

 def __init__(self, name):
 self.name = name

  self.img = cv.imread(MAP_FILE, cv.IMREAD_COLOR)
 if self.img is None:
 print('Could not load map file {}'.format(MAP_FILE),
 file=sys.stderr)
 sys.exit(1)

  self.area_actual = 0
 self.sailor_actual = [0, 0] # As "local" coords within search area

  self.sa1 = self.img[SA1_CORNERS[1] : SA1_CORNERS[3],
 SA1_CORNERS[0] : SA1_CORNERS[2]]

 self.sa2 = self.img[SA2_CORNERS[1] : SA2_CORNERS[3],
 SA2_CORNERS[0] : SA2_CORNERS[2]]

 self.sa3 = self.img[SA3_CORNERS[1] : SA3_CORNERS[3],
 SA3_CORNERS[0] : SA3_CORNERS[2]]

  self.p1 = 0.2
 self.p2 = 0.5
 self.p3 = 0.3

 self.sep1 = 0
 self.sep2 = 0
 self.sep3 = 0

Listing 1-2: Defining the Search class and __init__() method

Start by defining a class called Search. According to PEP8, the first letter
of a class name should be capitalized.

Next, define a method that sets up the initial attribute values for your
object. In OOP, an attribute is a named value associated with an object.
If your object is a person, an attribute might be their weight or eye color.
Methods are attributes that also happen to be functions, which are passed
a reference to their instance when they run. The __init__() method is a
special built-in function that Python automatically invokes as soon as a new
object is created. It binds the attributes of each newly created instance of a
class. In this case, you pass it two arguments: self and the name you want to
use for your object.

The self parameter is a reference to the instance of the class that is
being created, or that a method was invoked on, technically referred to as a
context instance. For example, if you create a battleship named the Missouri,
then for that object, self becomes Missouri, and you can call a method for
that object, like one for firing the big guns, with dot notation: Missouri.fire_
big_guns(). By giving objects unique names when they are instantiated, the
scope of each object’s attributes is kept separate from all others. This way,
damage taken by one battleship isn’t shared with the rest of the fleet.

bayes.py, part 2

12 Chapter 1

It’s good practice to list all the initial attribute values for an object under
the __init__() method. This way, users can see all the key attributes of the
object that will be used later in various methods, and your code will be more
readable and updatable. In Listing 1-2, these are the self attributes, such as
self.name.

Attributes assigned to self will also behave like global variables in
procedural programming. Methods in the class will be able to access them
directly, without the need for arguments. Because these attributes are
“shielded” under the class umbrella, their use is not discouraged as with
true global variables, which are assigned within the global scope and are
modified within the local scope of individual functions.

Assign the MAP_FILE variable to the self.img attribute using OpenCV’s
imread() method . The MAP_FILE image is grayscale, but you’ll want to add
some color to it during the search. So, use ImreadFlag, as cv.IMREAD_COLOR, to
load the image in color mode. This will set up three color channels (B, G, R)
for you to exploit later.

If the image file doesn’t exist (or the user entered the wrong filename),
OpenCV will throw a confusing error (NoneType object is not subscriptable).
To handle this, use a conditional to check whether self.img is None. If it is,
print an error message and then use the sys module to exit the program.
Passing it an exit code of 1 indicates that the program terminated with an
error. Setting file=stderr will result in the use of the standard “error red”
text color in the Python interpreter window, though not in other windows
such as PowerShell.

Next, assign two attributes for the sailor’s actual location when found.
The first will hold the number of the search area  and the second the pre-
cise (x, y) location. The assigned values will be placeholders for now. Later,
you’ll define a method to randomly choose the final values. Note that you
use a list for the location coordinates as you need a mutable container.

The map image is loaded as an array. An array is a fixed-size collection
of objects of the same type. Arrays are memory-efficient containers that
provide fast numerical operations and effectively use the addressing logic
of computers. One concept that makes NumPy particularly powerful is vector-
ization, which replaces explicit loops with more efficient array expressions.
Basically, operations occur on entire arrays rather than their individual
elements. With NumPy, internal looping is directed to efficient C and Fortran
functions that are faster than standard Python techniques.

So that you can work with local coordinates within a search area, you
can create a subarray from the array . Notice that this is done with index-
ing. You first provide the range from the upper-left y value to the lower-
right y and then from the upper-left x to the lower-right x. This is a NumPy
feature that takes some getting used to, especially since most of us are used
to x coming before y in Cartesian coordinates.

Repeat the procedure for the next two search areas and then set the
pre-search probabilities for finding the sailor in each of the search areas .
In real life, these would come from the SAROPS program. Of course, p1
represents area 1, p2 is for area 2, and so on. Finish with placeholder attri-
butes for the SEP.

Saving Shipwrecked Sailors with Bayes’ Rule 13

Drawing the Map

Inside the Search class, you’ll use functionality within OpenCV to create a
method that displays the base map. This map will include the search areas,
a scale bar, and the sailor’s last known position (Figure 1-6).

Figure 1-6: Initial game screen (base map) for bayes.py

Listing 1-3 defines the draw_map() method that displays the initial map.

 def draw_map(self, last_known):
 """Display basemap with scale, last known xy location, search areas."""
 cv.line(self.img, (20, 370), (70, 370), (0, 0, 0), 2)
 cv.putText(self.img, '0', (8, 370), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))
 cv.putText(self.img, '50 Nautical Miles', (71, 370),
 cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))

  cv.rectangle(self.img, (SA1_CORNERS[0], SA1_CORNERS[1]),
 (SA1_CORNERS[2], SA1_CORNERS[3]), (0, 0, 0), 1)
 cv.putText(self.img, '1',
 (SA1_CORNERS[0] + 3, SA1_CORNERS[1] + 15),
 cv.FONT_HERSHEY_PLAIN, 1, 0)
 cv.rectangle(self.img, (SA2_CORNERS[0], SA2_CORNERS[1]),
 (SA2_CORNERS[2], SA2_CORNERS[3]), (0, 0, 0), 1)
 cv.putText(self.img, '2',
 (SA2_CORNERS[0] + 3, SA2_CORNERS[1] + 15),
 cv.FONT_HERSHEY_PLAIN, 1, 0)
 cv.rectangle(self.img, (SA3_CORNERS[0], SA3_CORNERS[1]),
 (SA3_CORNERS[2], SA3_CORNERS[3]), (0, 0, 0), 1)
 cv.putText(self.img, '3',
 (SA3_CORNERS[0] + 3, SA3_CORNERS[1] + 15),
 cv.FONT_HERSHEY_PLAIN, 1, 0)

  cv.putText(self.img, '+', (last_known),
 cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 255))
 cv.putText(self.img, '+ = Last Known Position', (274, 355),
 cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 255))

bayes.py, part 3

14 Chapter 1

 cv.putText(self.img, '* = Actual Position', (275, 370),
 cv.FONT_HERSHEY_PLAIN, 1, (255, 0, 0))

  cv.imshow('Search Area', self.img)
 cv.moveWindow('Search Area', 750, 10)
 cv.waitKey(500)

Listing 1-3: Defining a method for displaying the base map

Define the draw_map() method with self and the sailor’s last known
coordinates (last_known) as its two parameters. Then use OpenCV’s line()
method to draw a scale bar. Pass it the base map image, a tuple of the
left and right (x, y) coordinates, a line color tuple, and a line width as
arguments.

Use the putText() method to annotate the scale bar. Pass it the attribute
for the base map image and then the actual text, followed by a tuple of the
coordinates of the bottom-left corner of the text. Then add the font name,
font scale, and color tuple.

Now draw a rectangle for the first search area . As usual, pass the base
map image, then the variables representing the four corners of the box,
and finally a color tuple and a line weight. Use putText() again to place the
search area number just inside the upper-left corner. Repeat these steps
for search areas 2 and 3.

Use putText() to post a + at the sailor’s last known position . Note that
the symbol is red, but the color tuple reads (0, 0, 255), instead of (255, 0, 0).
This is because OpenCV uses a Blue-Green-Red (BGR) color format, not
the more common Red-Green-Blue (RGB) format.

Continue by placing text for a legend that describes the symbols for
the last known position and actual position, which should display when a
player’s search finds the sailor. Use blue for the actual position marker.

Complete the method by showing the base map, using OpenCV’s
imshow() method . Pass it a title for the window and the image.

To avoid the base map and interpreter windows interfering with each
other as much as possible, force the base map to display in the upper-right
corner of your monitor (you may need to adjust the coordinates for your
machine). Use OpenCV’s moveWindow() method and pass it the name of the
window, 'Search Area', and the coordinates for the top-left corner.

Finish by using the waitKey() method, which introduces a delay of
n milliseconds while rendering images to windows. Pass it 500, for 500 milli-
seconds. This should result in the game menu appearing a half-second after
the base map.

Choosing the Sailor’s Final Location

Listing 1-4 defines a method to randomly choose the sailor’s actual location.
For convenience, the coordinates are initially found within a search area
subarray and then converted to global coordinates with respect to the full
base map image. This methodology works because all the search areas are
the same size and shape and can thus use the same internal coordinates.

Saving Shipwrecked Sailors with Bayes’ Rule 15

 def sailor_final_location(self, num_search_areas):
 """Return the actual x,y location of the missing sailor."""
 # Find sailor coordinates with respect to any Search Area subarray.
 self.sailor_actual[0] = np.random.choice(self.sa1.shape[1], 1)
 self.sailor_actual[1] = np.random.choice(self.sa1.shape[0], 1)

  area = int(random.triangular(1, num_search_areas + 1))

 if area == 1:
 x = self.sailor_actual[0] + SA1_CORNERS[0]
 y = self.sailor_actual[1] + SA1_CORNERS[1]

  self.area_actual = 1
 elif area == 2:
 x = self.sailor_actual[0] + SA2_CORNERS[0]
 y = self.sailor_actual[1] + SA2_CORNERS[1]
 self.area_actual = 2
 elif area == 3:
 x = self.sailor_actual[0] + SA3_CORNERS[0]
 y = self.sailor_actual[1] + SA3_CORNERS[1]
 self.area_actual = 3
 return x, y

Listing 1-4: Defining a method to randomly choose the sailor’s actual location

Define the sailor_final_location() method with two parameters: self
and the number of search areas being used. For the first (x) coordinate in
the self.sailor_actual list, use NumPy’s random.choice() method to choose a
value from the area 1 subarray. Remember, the search areas are NumPy arrays
copied out of the larger image array. Because the search areas/subarrays
are all the same size, coordinates you choose from one will apply to all.

You can get the coordinates of an array with shape, as shown here:

>>> print(np.shape(self.SA1))
(50, 50, 3)

The shape attribute for a NumPy array must be a tuple with as many elements
as dimensions in the array. And remember that, for an array in OpenCV, the
order of elements in the tuple is rows, columns, and then channels.

Each of the existing search areas is a three-dimensional array 50×50 pixels
in size. So, internal coordinates for both x and y will range from 0 to 49.
Selecting [0] with random.choice() means that rows are used, and the final
argument, 1, selects a single element. Selecting [1] chooses from columns.

The coordinates generated by random.choice() will range from 0 to 49.
To use these with the full base map image, you first need to pick a search
area . Do this with the random module, which you imported at the start of
the program. According to the SAROPS output, the sailor is most likely in
area 2, followed by area 3. Since these initial target probabilities are guesses
that won’t correspond directly to reality, use a triangular distribution to
choose the area containing the sailor. The arguments are the low and high
endpoints. If a final mode argument is not provided, the mode defaults

bayes.py, part 4

16 Chapter 1

to the midpoint between the endpoints. This will align with the SAROPS
results as area 2 will be picked the most often.

Note that you use the local variable area within the method, rather than
the self.area attribute, as there’s no need to share this variable with other
methods.

To plot the sailor’s location on the base map, you need to add the
appropriate search area corner-point coordinate. This converts the “local”
search area coordinates to the “global” coordinates of the full base map
image. You’ll also want to keep track of the search area, so update the
self.area_actual attribute .

Repeat these steps for search areas 2 and 3 and then return the (x, y)
coordinates.

N O T E 	 In real life, the sailor would drift along, and the odds of his moving into area 3 would
increase with each search. I chose to use a static location, however, to make the logic
behind Bayes’ rule as clear as possible. As a result, this scenario behaves more like a
search for a sunken submarine.

Calculating Search Effectiveness and Conducting the Search

In real life, weather and mechanical problems can result in low search effec-
tiveness scores. Thus, the strategy for each search will be to generate a list
of all possible locations within a search area, shuffle the list, and then sam-
ple it based on the search effectiveness value. Because the SEP will never be
1.0, if you just sample from the start or end of the list—without shuffling—
you’ll never be able to access coordinates tucked away in its “tail.”

Listing 1-5, still in the Search class, defines a method to randomly cal-
culate the effectiveness of a given search and defines another method to
conduct the search.

 def calc_search_effectiveness(self):
 """Set decimal search effectiveness value per search area."""
 self.sep1 = random.uniform(0.2, 0.9)
 self.sep2 = random.uniform(0.2, 0.9)
 self.sep3 = random.uniform(0.2, 0.9)

  def conduct_search(self, area_num, area_array, effectiveness_prob):
 """Return search results and list of searched coordinates."""
 local_y_range = range(area_array.shape[0])
 local_x_range = range(area_array.shape[1])

  coords = list(itertools.product(local_x_range, local_y_range))
 random.shuffle(coords)
 coords = coords[:int((len(coords) * effectiveness_prob))]

  loc_actual = (self.sailor_actual[0], self.sailor_actual[1])
 if area_num == self.area_actual and loc_actual in coords:
 return 'Found in Area {}.'.format(area_num), coords
 else:
 return 'Not Found', coords

Listing 1-5: Defining methods to randomly choose search effectiveness and conduct search

bayes.py, part 5

Saving Shipwrecked Sailors with Bayes’ Rule 17

Start by defining the search effectiveness method. The only parameter
needed is self. For each of the search effectiveness attributes, such as E1,
randomly choose a value between 0.2 and 0.9. These are arbitrary values
that mean you will always search at least 20 percent of the area but never
more than 90 percent.

You could argue that the search effectiveness attributes for the three
search areas are dependent. Fog, for example, might affect all three areas,
yielding uniformly poor results. On the other hand, some of your helicop-
ters may have infrared imaging equipment and would fare better. At any
rate, making these independent, as you’ve done here, makes for a more
dynamic simulation.

Next, define a method for conducting a search . Necessary parameters
are the object itself, the area number (chosen by the user), the subarray for
the chosen area, and the randomly chosen search effectiveness value.

You’ll need to generate a list of all the coordinates within a given search
area. Name a variable local_y_range and assign it a range based on the first
index from the array shape tuple, which represents rows. Repeat for the
x_range value.

To generate the list of all coordinates in the search area, use the
itertools module . This module is a group of functions in the Python
Standard Library that create iterators for efficient looping. The product()
function returns tuples of all the permutations-with-repetition for a given
sequence. In this case, you’re finding all the possible ways to combine x and y
in the search area. To see it in action, type the following in the shell:

>>> import itertools
>>> x_range = [1, 2, 3]
>>> y_range = [4, 5, 6]
>>> coords = list(itertools.product(x_range, y_range))
>>> coords
[(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)]

As you can see, the coords list contains every possible paired combination
of the elements in the x_range and y_range lists.

Next, shuffle the list of coordinates. This is so you won’t keep searching
the same end of the list with each search event. In the next line, use index
slicing to trim the list based on the search effectiveness probability. For
example, a poor search effectiveness of 0.3 means that only one-third of
the possible locations in an area are included in the list. As you’ll check the
sailor’s actual location against this list, you’ll effectively leave two-thirds of
the area “unsearched.”

Assign a local variable, loc_actual, to hold the sailor’s actual location .
Then use a conditional to check that the sailor has been found. If the user
chose the correct search area and the shuffled and trimmed coords list con-
tains the sailor’s (x, y) location, return a string stating the sailor has been
found, along with the coords list. Otherwise, return a string stating the sailor
has not been found and the coords list.

18 Chapter 1

Applying Bayes’ Rule and Drawing a Menu

Listing 1-6, still in the Search class, defines a method and a function. The
revise_target_probs() method uses Bayes’ rule to update the target probabili-
ties. These represent the probability of the sailor being found per search
area. The draw_menu() function, defined outside of the Search class, displays a
menu that will serve as a graphical user interface (GUI) to run the game.

 def revise_target_probs(self):
 """Update area target probabilities based on search effectiveness."""
 denom = self.p1 * (1 - self.sep1) + self.p2 * (1 - self.sep2) \
 + self.p3 * (1 - self.sep3)
 self.p1 = self.p1 * (1 - self.sep1) / denom
 self.p2 = self.p2 * (1 - self.sep2) / denom
 self.p3 = self.p3 * (1 - self.sep3) / denom

def draw_menu(search_num):
 """Print menu of choices for conducting area searches."""
 print('\nSearch {}'.format(search_num))
 print(
 """
 Choose next areas to search:

 0 - Quit
 1 - Search Area 1 twice
 2 - Search Area 2 twice
 3 - Search Area 3 twice
 4 - Search Areas 1 & 2
 5 - Search Areas 1 & 3
 6 - Search Areas 2 & 3
 7 - Start Over
 """
)

Listing 1-6: Defining ways to apply Bayes’ rule and draw a menu in the Python shell

Define the revise_target_probs() method to update the probability of
the sailor being in each search area. Its only parameter is self.

For convenience, break Bayes’ equation into two parts, starting with the
denominator. You need to multiply the previous target probability by the
current search effectiveness value (see page 5 to review how this works).

With the denominator calculated, use it to complete Bayes’ equation. In
OOP, you don’t need to return anything. You can simply update the attribute
directly in the method, as if it were a declared global variable in procedural
programming.

Next, in the global space, define the draw_menu() function to draw a
menu. Its only parameter is the number of the search being conducted.
Because this function has no “self-use,” you don’t have to include it in the
class definition, though that is a valid option.

Start by printing the search number. You’ll need this to keep track of
whether you’ve found the sailor in the requisite number of searches, which
we’ve currently set as 3.

bayes.py, part 6

Saving Shipwrecked Sailors with Bayes’ Rule 19

Use triple quotes with the print() function to display the menu. Note
that the user will have the option to allocate both search parties to a given
area or divide them between two areas.

Defining the main() Function

Now that you’re finished with the Search class, you’re ready to put all those
attributes and methods to work! Listing 1-7 begins the definition of the
main() function, used to run the program.

def main():
 app = Search('Cape_Python')
 app.draw_map(last_known=(160, 290))
 sailor_x, sailor_y = app.sailor_final_location(num_search_areas=3)
 print("-" * 65)
 print("\nInitial Target (P) Probabilities:")
 print("P1 = {:.3f}, P2 = {:.3f}, P3 = {:.3f}".format(app.p1, app.p2, app.p3))
 search_num = 1

Listing 1-7: Defining the start of the main() function, used to run the program

The main() function requires no arguments. Start by creating a game
application, named app, using the Search class. Name the object Cape_Python.

Next, call the method that displays the map. Pass it the last known posi-
tion of the sailor as a tuple of (x, y) coordinates. Note the use of the keyword
argument, last_known=(160, 290), for clarity.

Now, get the sailor’s x and y location by calling the method for that
task and passing it the number of search areas. Then print the initial target
probabilities, or priors, which were calculated by your Coast Guard under-
lings using Monte Carlo simulation, not Bayes’ rule. Finally, name a variable
search_num and assign it 1. This variable will keep track of how many searches
you’ve conducted.

Evaluating the Menu Choices

Listing 1-8 starts the while loop used to run the game in main(). Within this
loop, the player evaluates and selects menu choices. Choices include search-
ing a single area twice, splitting search efforts between two areas, restarting
the game, and exiting the game. Note that the player can conduct as many
searches as it takes to find the sailor; our three-day limit hasn’t been “hard-
wired” into the game.

 while True:
 app.calc_search_effectiveness()
 draw_menu(search_num)
 choice = input("Choice: ")

 if choice == "0":
 sys.exit()

bayes.py, part 7

bayes.py, part 8

20 Chapter 1

  elif choice == "1":
 results_1, coords_1 = app.conduct_search(1, app.sa1, app.sep1)
 results_2, coords_2 = app.conduct_search(1, app.sa1, app.sep1)

  app.sep1 = (len(set(coords_1 + coords_2))) / (len(app.sa1)**2)
 app.sep2 = 0
 app.sep3 = 0

 elif choice == "2":
 results_1, coords_1 = app.conduct_search(2, app.sa2, app.sep2)
 results_2, coords_2 = app.conduct_search(2, app.sa2, app.sep2)
 app.sep1 = 0
 app.sep2 = (len(set(coords_1 + coords_2))) / (len(app.sa2)**2)
 app.sep3 = 0

 elif choice == "3":
 results_1, coords_1 = app.conduct_search(3, app.sa3, app.sep3)
 results_2, coords_2 = app.conduct_search(3, app.sa3, app.sep3)
 app.sep1 = 0
 app.sep2 = 0
 app.sep3 = (len(set(coords_1 + coords_2))) / (len(app.sa3)**2)

  elif choice == "4":
 results_1, coords_1 = app.conduct_search(1, app.sa1, app.sep1)
 results_2, coords_2 = app.conduct_search(2, app.sa2, app.sep2)
 app.sep3 = 0

 elif choice == "5":
 results_1, coords_1 = app.conduct_search(1, app.sa1, app.sep1)
 results_2, coords_2 = app.conduct_search(3, app.sa3, app.sep3)
 app.sep2 = 0

 elif choice == "6":
 results_1, coords_1 = app.conduct_search(2, app.sa2, app.sep2)
 results_2, coords_2 = app.conduct_search(3, app.sa3, app.sep3)
 app.sep1 = 0

  elif choice == "7":
 main()

 else:
 print("\nSorry, but that isn't a valid choice.", file=sys.stderr)
 continue

Listing 1-8: Using a loop to evaluate menu choices and run the game

Start a while loop that will run until the user chooses to exit. Immediately
use dot notation to call the method that calculates the effectiveness of the
search. Then call the function that displays the game menu and pass it
the search number. Finish the preparatory stage by asking the user to make
a choice, using the input() function.

The player’s choice will be evaluated using a series of conditional state-
ments. If they choose 0, exit the game. Exiting uses the sys module you
imported at the beginning of the program.

Saving Shipwrecked Sailors with Bayes’ Rule 21

If the player chooses 1, 2, or 3, it means they want to commit both
search teams to the area with the corresponding number. You’ll need to call
the conduct_search() method twice to generate two sets of results and coor-
dinates . The tricky part here is determining the overall SEP, since each
search has its own SEP. To do this, add the two coords lists together and con-
vert the result to a set to remove any duplicates . Get the length of the set
and then divide it by the number of pixels in the 50×50 search area. Since
you didn’t search the other areas, set their SEPs to 0.

Repeat and tailor the previous code for search areas 2 and 3. Use an
elif statement since only one menu choice is valid per loop. This is more
efficient than using additional if statements, as all elif statements below a
true response will be skipped.

If the player chooses a 4, 5, or 6, it means they want to divide their teams
between two areas. In this case, there’s no need to recalculate the SEP .

If the player finds the sailor and wants to play again or just wants to
restart, call the main() function . This will reset the game and clear the
map.

If the player makes a nonvalid choice, like “Bob”, let them know with
a message and then use continue to skip back to the start of the loop and
request the player’s choice again.

Finishing and Calling main()

Listing 1-9, still in the while loop, finishes the main() function and then calls
it to run the program.

 app.revise_target_probs() # Use Bayes' rule to update target probs.

 print("\nSearch {} Results 1 = {}"
 .format(search_num, results_1), file=sys.stderr)
 print("Search {} Results 2 = {}\n"
 .format(search_num, results_2), file=sys.stderr)
 print("Search {} Effectiveness (E):".format(search_num))
 print("E1 = {:.3f}, E2 = {:.3f}, E3 = {:.3f}"
 .format(app.sep1, app.sep2, app.sep3))

  if results_1 == 'Not Found' and results_2 == 'Not Found':
 print("\nNew Target Probabilities (P) for Search {}:"
 .format(search_num + 1))
 print("P1 = {:.3f}, P2 = {:.3f}, P3 = {:.3f}"
 .format(app.p1, app.p2, app.p3))
 else:
 cv.circle(app.img, (sailor_x, sailor_y), 3, (255, 0, 0), -1)

  cv.imshow('Search Area', app.img)
 cv.waitKey(1500)
 main()
 search_num += 1

if __name__ == '__main__':
 main()

Listing 1-9: Completing and calling the main() function

bayes.py, part 9

22 Chapter 1

Call the revise_target_probs() method to apply Bayes’ rule and recalcu-
late the probability of the sailor being in each search area, given the search
results. Next, display the search results and search effectiveness probabili-
ties in the shell.

If the results of both searches are negative, display the updated tar-
get probabilities, which the player will use to guide their next search .
Otherwise, display the sailor’s location on the map. Use OpenCV to draw a
circle and pass the method the base map image, the sailor’s (x, y) tuple for
the center point, a radius (in pixels), a color, and a thickness of –1. A nega-
tive thickness value will fill the circle with the color.

Finish main() by showing the base map using code similar to Listing 1-3 .
Pass the waitKey() method 1500 to display the sailor’s actual location for
1.5 seconds before the game calls main() and resets automatically. At the end
of the loop, increment the search number variable by 1. You want to do this
after the loop so that an invalid choice isn’t counted as a search.

Back in the global space, apply the code that lets the program be
imported as a module or run in stand-alone mode. The __name__ variable
is a built-in variable used to evaluate whether a program is autonomous or
imported into another program. If you run this program directly, __name__ is
set to __main__, the condition of the if statement is met, and main() is called
automatically. If the program is imported, the main() function won’t be run
until it is intentionally called.

Playing the Game
To play the game, select Run4Run Module in the text editor or just press
F5. Figures 1-7 and 1-8 show the final game screens, with the results of a
successful first search.

Figure 1-7: Python interpreter window with a successful search result

Saving Shipwrecked Sailors with Bayes’ Rule 23

Figure 1-8: Base map image for a successful search result

In this example search, the player chose to commit both searches to
area 2, which had an initial 50 percent probability of containing the sailor.
The first search was unsuccessful, but the second one found the sailor. Note
that the search effectiveness was only slightly better than 50 percent. This
means there was only a one-in-four chance (0.5 × 0.521 = 0.260) of finding
the sailor in the first search. Despite choosing wisely, the player still had to
rely on a bit of luck in the end!

When you play the game, try to immerse yourself in the scenario. Your
decisions determine whether a human being lives or dies, and you don’t
have much time. If the sailor’s floating in the water, you’ve got only three
guesses to get it right. Use them wisely!

Based on the target probabilities at the start of the game, the sailor
is most likely in area 2, followed by area 3. So, a good initial strategy is to
either search area 2 twice (menu option 2) or search areas 2 and 3 simul-
taneously (menu option 6). You’ll want to keep a close eye on the search
effectiveness output. If an area gets a high effectiveness score, which means
that it’s been thoroughly searched, you may want to focus your efforts else-
where for the rest of the game.

The following output represents one of the worst situations you can find
yourself in as a decision maker:

Search 2 Results 1 = Not Found
Search 2 Results 2 = Not Found

Search 2 Effectiveness (E):
E1 = 0.000, E2 = 0.234, E3 = 0.610

New Target Probabilities (P) for Search 3:
P1 = 0.382, P2 = 0.395, P3 = 0.223

After search 2, with only one search left, the target probabilities are so
similar they provide little guidance for where to search next. In this case,
it’s best to divide your searches between two areas and hope for the best.

24 Chapter 1

Play the game a few times by blindly searching the areas in order of
initial probability, doubling up on area 2, then 3, then 1. Then try obey-
ing the Bayes results religiously, always doubling your searches in the area
with the highest current target probability. Next, try dividing your searches
between the areas with the two highest probabilities. After that, allow your
own intuition to have a say, overruling Bayes when you feel it’s appropriate.
As you can imagine, with more search areas and more search days, human
intuition would quickly get overwhelmed.

Summary
In this chapter, you learned about Bayes’ rule, a simple statistical theorem
with broad applications in our modern world. You wrote a program that
used the rule to take new information—in the form of estimates of search
effectiveness—and update the probability of finding a lost sailor in each
area being searched.

You also loaded and used multiple scientific packages, like NumPy and
OpenCV, that you’ll implement throughout the book. And you applied the
useful itertools, sys, and random modules from the Python Standard Library.

Further Reading
The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries
of Controversy (Yale University Press, 2011), by Sharon Bertsch McGrayne,
recounts the discovery and controversial history of Bayes’ rule. The appendix
includes several example applications of Bayes’ rule, one of which inspired
the missing-sailor scenario used in this chapter.

A major source of documentation for NumPy is https://docs.scipy.org/doc/.

Challenge Project: Smarter Searches
Currently, the bayes.py program places all the coordinates within a search
area into a list and randomly shuffles them. Subsequent searches in the
same area may end up retracing previous tracks. This isn’t necessarily bad
from a real-life perspective, as the sailor will be drifting around the whole
time, but overall it would be best to cover as much of the area as possible
without repetition.

Copy and edit the program so that it keeps track of which coordinates
have been searched within an area and excludes them from future searches
(until main() is called again, either because the player finds the sailor or
chooses menu option 7 to restart). Test the two versions of the game to see
whether your changes noticeably impact the results.

https://docs.scipy.org/doc/

Saving Shipwrecked Sailors with Bayes’ Rule 25

Challenge Project: Finding the Best Strategy with MCS
Monte Carlo simulation (MCS) uses repeated random sampling to predict
different outcomes under a specified range of conditions. Create a version
of bayes.py that automatically chooses menu items and keeps track of thou-
sands of results, allowing you to determine the most successful search strat-
egy. For example, have the program choose menu item 1, 2, or 3 based on
the highest Bayesian target probability and then record the search number
when the sailor is found. Repeat this procedure 10,000 times and take the
average of all the search numbers. Then loop again, choosing from menu
item 4, 5, or 6 based on the highest combined target probability. Compare
the final averages. Is it better to double up your searches in a single area or
split them between two areas?

Challenge Project: Calculating the Probability of Detection
In a real-life search and rescue operation, you would make an estimate of
the expected search effectiveness probability for each area prior to making a
search. This expected, or planned, probability would be informed primarily
by weather reports. For example, fog might roll into one search area, while
the other two enjoy clear skies.

Multiplying target probability by the planned SEP yields the probability
of detection (PoD) for an area. The PoD is the probability an object will be
detected given all known error and noise sources.

Write a version of bayes.py that includes a randomly generated planned
SEP for each search area. Multiply the target probability for each area (such
as self.p1, self.p2, or self.p3) by these new variables to produce a PoD for the
area. For example, if the Bayes target probability for area 3 is 0.90 but the
planned SEP is only 0.1, then the probability of detection is 0.09.

In the shell display, show the player the target probabilities, the planned
SEPs, and the PoD for each area, as shown next. Players can then use this
information to guide their choice from the search menu.

Actual Search 1 Effectiveness (E):
E1 = 0.190, E2 = 0.000, E3 = 0.000

New Planned Search Effectiveness and Target Probabilities (P) for Search 2:
E1 = 0.509, E2 = 0.826, E3 = 0.686
P1 = 0.168, P2 = 0.520, P3 = 0.312

Search 2

 Choose next areas to search:

 0 - Quit

 1 - Search Area 1 twice
 Probability of detection: 0.164

26 Chapter 1

 2 - Search Area 2 twice
 Probability of detection: 0.674

 3 - Search Area 3 twice
 Probability of detection: 0.382

 4 - Search Areas 1 & 2
 Probability of detection: 0.515

 5 - Search Areas 1 & 3
 Probability of detection: 0.3

 6 - Search Areas 2 & 3
 Probability of detection: 0.643

 7 - Start Over

Choice:

To combine PoD when searching the same area twice, use this formula:

PoD1 1 2()− −

Otherwise, just sum the probabilities.
When calculating the actual SEP for an area, constrain it somewhat to

the expected value. This considers the general accuracy of weather reports
made only a day in advance. Replace the random.uniform() method with a
distribution, such as triangular, built around the planned SEP value. For a
list of available distribution types, see https://docs.python.org/3/library/random
.html#real-valued-distributions. Of course, the actual SEP for an unsearched
area will always be zero.

How does incorporating planned SEPs affect gameplay? Is it easier or
harder to win? Is it harder to grasp how Bayes’ rule is being applied? If you
oversaw a real search, how would you deal with an area with a high target
probability but a low planned SEP due to rough seas? Would you search
anyway, call off the search, or move the search to an area with a low target
probability but better weather?

https://docs.python.org/3/library/random.html#real-valued-distributions
https://docs.python.org/3/library/random.html#real-valued-distributions

2
A T T R I B U T I N G A U T H O R S H I P

W I T H S T Y L O M E T R Y

Stylometry is the quantitative study of literary
style through computational text analysis.

It’s based on the idea that we all have a
unique, consistent, and recognizable style to

our writing. This includes our vocabulary, our use of
punctuation, the average length of our sentences and
words, and so on.

A common application of stylometry is authorship attribution. Do you
ever wonder if Shakespeare really wrote all his plays? Or if John Lennon
or Paul McCartney wrote the song “In My Life”? Could Robert Galbraith,
author of A Cuckoo’s Calling, really be J. K. Rowling in disguise? Stylometry
can find the answer!

28 Chapter 2

Stylometry has been used to overturn murder convictions and even
helped identify and convict the Unabomber in 1996. Other uses include
detecting plagiarism and determining the emotional tone behind words,
such as in social media posts. Stylometry can even be used to detect signs
of mental depression and suicidal tendencies.

In this chapter, you’ll use multiple stylometric techniques to determine
whether Sir Arthur Conan Doyle or H. G. Wells wrote the novel The Lost World.

Project #2: The Hound, The War, and The Lost World
Sir Arthur Conan Doyle (1859–1930) is best known for the Sherlock Holmes
stories, considered milestones in the field of crime fiction. H. G. Wells
(1866–1946) is famous for several groundbreaking science fiction novels
including The War of The Worlds, The Time Machine, The Invisible Man, and
The Island of Dr. Moreau.

In 1912, the Strand Magazine published The Lost World, a serialized version
of a science fiction novel. It told the story of an Amazon basin expedition,
led by zoology professor George Edward Challenger, that encountered living
dinosaurs and a vicious tribe of ape-like creatures.

Although the author of the novel is known, for this project, let’s pretend
it’s in dispute and it’s your job to solve the mystery. Experts have narrowed
the field down to two authors, Doyle and Wells. Wells is slightly favored
because The Lost World is a work of science fiction, which is his purview. It
also includes brutish troglodytes redolent of the morlocks in his 1895 work
The Time Machine. Doyle, on the other hand, is known for detective stories
and historical fiction.

T HE OBJEC T I V E

Write a Python program that uses stylometry to determine whether Sir Arthur Conan
Doyle or H. G. Wells wrote the novel The Lost World.

The Strategy
The science of natural language processing (NLP) deals with the interactions
between the precise and structured language of computers and the nuanced,
frequently ambiguous “natural” language used by humans. Example uses
for NLP include machine translations, spam detection, comprehension of
search engine questions, and predictive text recognition for cell phone users.

The most common NLP tests for authorship analyze the following fea-
tures of a text:

Word length  A frequency distribution plot of the length of words
in a document

Stop words  A frequency distribution plot of stop words (short,
noncontextual function words like the, but, and if)

Attributing Authorship with Stylometry 29

Parts of speech  A frequency distribution plot of words based on their
syntactic functions (such as nouns, pronouns, verbs, adverbs, adjectives,
and so on)

Most common words  A comparison of the most commonly used
words in a text

Jaccard similarity  A statistic used for gauging the similarity and
diversity of a sample set

If Doyle and Wells have distinctive writing styles, these five tests should
be enough to distinguish between them. We’ll talk about each test in more
detail in the coding section.

To capture and analyze each author’s style, you’ll need a representative
corpus, or a body of text. For Doyle, use the famous Sherlock Holmes novel
The Hound of the Baskervilles, published in 1902. For Wells, use The War of the
Worlds, published in 1898. Both these novels contain more than 50,000 words,
more than enough for a sound statistical sampling. You’ll then compare
each author’s sample to The Lost World to determine how closely the writing
styles match.

To perform stylometry, you’ll use the Natural Language Toolkit (NLTK), a
popular suite of programs and libraries for working with human language
data in Python. It’s free and works on Windows, macOS, and Linux. Created
in 2001 as part of a computational linguistics course at the University of
Pennsylvania, NLTK has continued to develop and expand with the help of
dozens of contributors. To learn more, check out the official NLTK website
at http://www.nltk.org/.

Installing NLTK
You can find installation instructions for NLTK at http://www.nltk.org/install
.html. To install NLTK on Windows, open PowerShell and install it with
Preferred Installer Program (pip).

python -m pip install nltk

If you have multiple versions of Python installed, you’ll need to specify
the version. Here’s the command for Python 3.7:

py -3.7 -m pip install nltk

To check that the installation was successful, open the Python interac-
tive shell and enter the following:

>>> import nltk
>>>

If you don’t get an error, you’re good to go. Otherwise, follow the instal-
lation instructions at http://www.nltk.org/install.html.

http://www.nltk.org/
http://www.nltk.org/install.html
http://www.nltk.org/install.html
http://www.nltk.org/install.html

30 Chapter 2

Downloading the Tokenizer

To run the stylometric tests, you’ll need to break the multiple texts—or
corpora—into individual words, referred to as tokens. At the time of this
writing, the word_tokenize() method in NLTK implicitly calls sent_tokenize(),
used to break a corpus into individual sentences. For handling sent_
tokenize(), you’ll need the Punkt Tokenizer Models. Although this is part
of NLTK, you’ll have to download it separately with the handy NLTK
Downloader. To launch it, enter the following into the Python shell:

>>> import nltk
>>> nltk.download()

The NLTK Downloader window should now be open (Figure 2-1).
Click either the Models or All Packages tab near the top; then click punkt
in the Identifier column. Scroll to the bottom of the window and set the
Download Directory for your platform (see https://www.nltk.org/data.html).
Finally, click the Download button to download the Punkt Tokenizer Models.

Figure 2-1: Downloading the Punkt Tokenizer Models

Note that you can also download NLTK packages directly in the shell.
Here’s an example:

>>> import nltk
>>> nltk.download('punkt')

You’ll also need access to the Stopwords Corpus, which can be down-
loaded in a similar manner.

Attributing Authorship with Stylometry 31

Downloading the Stopwords Corpus

Click the Corpora tab in the NLTK Downloader window and download the
Stopwords Corpus, as shown in Figure 2-2.

Figure 2-2: Downloading the Stopwords Corpus

Alternatively, you can use the shell.

>>> import nltk
>>> nltk.download('stopwords')

Let’s download one more package to help you analyze parts of speech,
like nouns and verbs. Click the All Packages tab in the NLTK Downloader
window and download the Averaged Perceptron Tagger.

To use the shell, enter the following:

>>> import nltk
>>> nltk.download('averaged_perceptron_tagger')

When NLTK has finished downloading, exit the NLTK Downloader
window and enter the following into the Python interactive shell:

>>> from nltk import punkt

Then enter the following:

>>> from nltk.corpus import stopwords

32 Chapter 2

If you don’t encounter an error, the models and corpus successfully
downloaded.

Finally, you’ll need matplotlib to make plots. If you haven’t installed it
already, see the instructions for installing scientific packages on page 6.

The Corpora
You can download the text files for The Hound of the Baskervilles (hound.txt),
The War of the Worlds (war.txt), and The Lost World (lost.txt), along with the
book’s code, from https://nostarch.com/real-world-python/.

These came from Project Gutenberg (http://www.gutenberg.org/), a great
source for public domain literature. So that you can use these texts right
away, I’ve stripped them of extraneous material such as table of contents,
chapter titles, copyright information, and so on.

The Stylometry Code
The stylometry.py program you’ll write next loads the text files as strings,
tokenizes them into words, and then runs the five stylometric analyses listed
on pages 28–29. The program will output a combination of plots and shell
messages that will help you determine who wrote The Lost World.

Keep the program in the same folder as the three text files. If you don’t
want to enter the code yourself, just follow along with the downloadable
code available at https://nostarch.com/real-world-python/.

Importing Modules and Defining the main() Function

Listing 2-1 imports NLTK and matplotlib, assigns a constant, and defines
the main() function to run the program. The functions used in main() will
be described in detail later in the chapter.

import nltk
from nltk.corpus import stopwords
import matplotlib.pyplot as plt

LINES = ['-', ':', '--'] # Line style for plots.

def main():
  strings_by_author = dict()

 strings_by_author['doyle'] = text_to_string('hound.txt')
 strings_by_author['wells'] = text_to_string('war.txt')
 strings_by_author['unknown'] = text_to_string('lost.txt')

 print(strings_by_author['doyle'][:300])

  words_by_author = make_word_dict(strings_by_author)
 len_shortest_corpus = find_shortest_corpus(words_by_author)

  word_length_test(words_by_author, len_shortest_corpus)
 stopwords_test(words_by_author, len_shortest_corpus)
 parts_of_speech_test(words_by_author, len_shortest_corpus)

stylometry.py,
part 1

https://nostarch.com/real-world-python/
https://nostarch.com/real-world-python/

Attributing Authorship with Stylometry 33

 vocab_test(words_by_author)
 jaccard_test(words_by_author, len_shortest_corpus)

Listing 2-1: Importing modules and defining the main() function

Start by importing NLTK and the Stopwords Corpus. Then import
matplotlib.

Create a variable called LINES and use the all-caps convention to indi-
cate it should be treated as a constant. By default, matplotlib plots in color,
but you’ll still want to designate a list of symbols for color-blind people and
this black-and-white book!

Define main() at the start of the program. The steps in this function are
almost as readable as pseudocode and provide a good overview of what the
program will do. The first step will be to initialize a dictionary to hold the
text for each author . The text_to_string() function will load each corpus
into this dictionary as a string. The name of each author will be the diction-
ary key (using unknown for The Lost World), and the string of text from their
novel will be the value. For example, here’s the key, Doyle, with the value
text string greatly truncated:

{'Doyle': 'Mr. Sherlock Holmes, who was usually very late in the mornings --snip--'}

Immediately after populating the dictionary, print the first 300 items
for the doyle key to ensure things went as planned. This should produce the
following printout:

Mr. Sherlock Holmes, who was usually very late in the mornings, save
upon those not infrequent occasions when he was up all night, was seated
at the breakfast table. I stood upon the hearth-rug and picked up the
stick which our visitor had left behind him the night before. It was a
fine, thick piec

With the corpora loaded correctly, the next step is to tokenize the
strings into words. Currently, Python doesn’t recognize words but instead
works on characters, such as letters, numbers, and punctuation marks. To
remedy this, you’ll use the make_word_dict() function to take the strings_
by_author dictionary as an argument, split out the words in the strings, and
return a dictionary called words_by_author with the authors as keys and a list
of words as values .

Stylometry relies on word counts, so it works best when each corpus is
the same length. There are multiple ways to ensure apples-to-apples com-
parisons. With chunking, you divide the text into blocks of, say, 5,000 words,
and compare the blocks. You can also normalize by using relative frequen-
cies, rather than direct counts, or by truncating to the shortest corpus.

Let’s explore the truncation option. Pass the words dictionary to
another function, find_shortest_corpus(), which calculates the number of
words in each author’s list and returns the length of the shortest corpus.
Table 2-1 shows the length of each corpus.

34 Chapter 2

Table 2-1: Length (Word Count) of Each Corpus

Corpus Length

Hound (Doyle) 58,387

War (Wells) 59,469

World (Unknown) 74,961

Since the shortest corpus here represents a robust dataset of almost
60,000 words, you’ll use the len_shortest_corpus variable to truncate the
other two corpora to this length, prior to doing any analysis. The assump-
tion, of course, is that the backend content of the truncated texts is not
significantly different from that in the front.

The next five lines call functions that perform the stylometric analysis,
as listed in “The Strategy” on page 28 . All the functions take the words_
by_author dictionary as an argument, and most take len_shortest_corpus, as
well. We’ll look at these functions as soon as we finish preparing the texts
for analysis.

Loading Text and Building a Word Dictionary

Listing 2-2 defines two functions. The first reads in a text file as a string.
The second builds a dictionary with each author’s name as the key and his
novel, now tokenized into individual words rather than a continuous string,
as the value.

def text_to_string(filename):
 """Read a text file and return a string."""
 with open(filename) as infile:
 return infile.read()

 def make_word_dict(strings_by_author):
 """Return dictionary of tokenized words by corpus by author."""
 words_by_author = dict()
 for author in strings_by_author:
 tokens = nltk.word_tokenize(strings_by_author[author])

  words_by_author[author] = ([token.lower() for token in tokens
 if token.isalpha()])
 return words_by_author

Listing 2-2: Defining the text_to_string() and make_word_dict() functions

First, define the text_to_string() function to load a text file. The built-in
read() function reads the whole file as an individual string, allowing rela-
tively easy file-wide manipulations. Use with to open the file so that it will
be closed automatically regardless of how the block terminates. Just like
putting away your toys, closing files is good practice. It prevents bad things
from happening, like running out of file descriptors, locking files from
further access, corrupting files, or losing data if writing to files.

stylometry.py,
part 2

Attributing Authorship with Stylometry 35

Some users may encounter a UnicodeDecodeError like the following one
when loading the text:

UnicodeDecodeError: 'ascii' codec can't decode byte 0x93 in position 365:
ordinal not in range(128)

Encoding and decoding refer to the process of converting from charac-
ters stored as bytes to human-readable strings. The problem is that the
default encoding for the built-in function open() is platform dependent and
depends on the value of locale.getpreferredencoding(). For example, you’ll
get the following encoding if you run this on Windows 10:

>>> import locale
>>> locale.getpreferredencoding()
'cp1252'

CP-1252 is a legacy Windows character encoding. If you run the same
code on a Mac, it may return something different, like 'US-ASCII' or 'UTF-8'.

UTF stands for Unicode Transformational Format, which is a text character
format designed for backward compatibility with ASCII. Although UTF-8
can handle all character sets—and is the dominant form of encoding used
on the World Wide Web—it’s not the default option for many text editors.

Additionally, Python 2 assumed all text files were encoded with latin-
1, used for the Latin alphabet. Python 3 is more sophisticated and tries to
detect encoding problems as early as possible. It may throw an error, how-
ever, if the encoding isn’t specified.

So, the first troubleshooting step should be to pass open() the encoding
argument and specify UTF-8.

 with open(filename, encoding='utf-8') as infile:

If you still have problems loading the corpora files, try adding an errors
argument as follows:

 with open(filename, encoding='utf-8', errors='ignore') as infile:

You can ignore errors because these text files were downloaded as UTF-8
and have already been tested using this approach. For more on UTF-8, see
https://docs.python.org/3/howto/unicode.html.

Next, define the make_word_dict() function that will take the dictionary
of strings by author and return a dictionary of words by author . First, ini-
tialize an empty dictionary named words_by_author. Then, loop through the
keys in the strings_by_author dictionary. Use NLTK’s word_tokenize() method
and pass it the string dictionary’s key. The result will be a list of tokens that
will serve as the dictionary value for each author. Tokens are just chopped
up pieces of a corpus, typically sentences or words.

https://docs.python.org/3/howto/unicode.html

36 Chapter 2

The following snippet demonstrates how the process turns a continuous
string into a list of tokens (words and punctuation):

>>> import nltk		
>>> str1 = 'The rain in Spain falls mainly on the plain.'		
>>> tokens = nltk.word_tokenize(str1)		
>>> print(type(tokens))		
<class 'list'>
>>> tokens		
['The', 'rain', 'in', 'Spain', 'falls', 'mainly', 'on', 'the', 'plain', '.']

This is similar to using Python’s built-in split() function, but split()
doesn’t achieve tokens from a linguistic standpoint (note that the period is
not tokenized).

>>> my_tokens = str1.split()		
>>> my_tokens		
['The', 'rain', 'in', 'Spain', 'falls', 'mainly', 'on', 'the', 'plain.']

Once you have the tokens, populate the words_by_author dictionary using
list comprehension . List comprehension is a shorthand way to execute loops
in Python. You need to surround the code with square brackets to indicate
a list. Convert the tokens to lowercase and use the built-in isalpha() method,
which returns True if all the characters in a token are part of the alphabet
and False otherwise. This will filter out numbers and punctuation. It will
also filter out hyphenated words or names. Finish by returning the words_by_
author dictionary.

Finding the Shortest Corpus

In computational linguistics, frequency refers to the number of occurrences
in a corpus. Thus, frequency means the count, and methods you’ll use later
return a dictionary of words and their counts. To compare counts in a
meaningful way, the corpora should all have the same number of words.

Because the three corpora used here are large (see Table 2-1), you can
safely normalize the corpora by truncating them all to the length of the
shortest. Listing 2-3 defines a function that finds the shortest corpus in the
words_by_author dictionary and returns its length.

def find_shortest_corpus(words_by_author):
 """Return length of shortest corpus."""
 word_count = []
 for author in words_by_author:
 word_count.append(len(words_by_author[author]))
 print('\nNumber of words for {} = {}\n'.
 format(author, len(words_by_author[author])))
 len_shortest_corpus = min(word_count)
 print('length shortest corpus = {}\n'.format(len_shortest_corpus))
 return len_shortest_corpus

Listing 2-3: Defining the find_shortest_corpus() function

stylometry.py,
part 3

Attributing Authorship with Stylometry 37

Define the function that takes the words_by_author dictionary as an argu-
ment. Immediately start an empty list to hold a word count.

Loop through the authors (keys) in the dictionary. Get the length
of the value for each key, which is a list object, and append the length to
the word_count list. The length here represents the number of words in the
corpus. For each pass through the loop, print the author’s name and the
length of his tokenized corpus.

When the loop ends, use the built-in min() function to get the lowest
count and assign it to the len_shortest_corpus variable. Print the answer and
then return the variable.

Comparing Word Lengths

Part of an author’s distinctive style is the words they use. Faulkner observed
that Hemingway never sent a reader running to the dictionary; Hemingway
accused Faulkner of using “10-dollar words.” Authorial style is expressed
in the length of words and in vocabulary, which we’ll look at later in the
chapter.

Listing 2-4 defines a function to compare the length of words per cor-
pus and plot the results as a frequency distribution. In a frequency distribu-
tion, the lengths of words are plotted against the number of counts for each
length. For words that are six letters long, for example, one author may
have a count of 4,000, and another may have a count of 5,500. A frequency
distribution allows comparison across a range of word lengths, rather than
just at the average word length.

The function in Listing 2-4 uses list slicing to truncate the word lists to
the length of the shortest corpus so the results aren’t skewed by the size of
the novel.

def word_length_test(words_by_author, len_shortest_corpus):
 """Plot word length freq by author, truncated to shortest corpus length."""
 by_author_length_freq_dist = dict()
 plt.figure(1)
 plt.ion()

  for i, author in enumerate(words_by_author):
 word_lengths = [len(word) for word in words_by_author[author]
 [:len_shortest_corpus]]
 by_author_length_freq_dist[author] = nltk.FreqDist(word_lengths)

  by_author_length_freq_dist[author].plot(15,
 linestyle=LINES[i],
 label=author,
 title='Word Length')
 plt.legend()
 #plt.show() # Uncomment to see plot while coding.

Listing 2-4: Defining the word_length_test() function

stylometry.py,
part 4

38 Chapter 2

All the stylometric functions will use the dictionary of tokens; almost
all will use the length of the shortest corpus parameter to ensure consistent
sample sizes. Use these variable names as the function parameters.

Start an empty dictionary to hold the frequency distribution of word
lengths by author and then start making plots. Since you are going to make
multiple plots, start by instantiating a figure object named 1. So that all the
plots stay up after creation, turn on the interactive plot mode with plt.ion().

Next, start looping through the authors in the tokenized dictionary .
Use the enumerate() function to generate an index for each author that
you’ll use to choose a line style for the plot. For each author, use list com-
prehension to get the length of each word in the value list, with the range
truncated to the length of the shortest corpus. The result will be a list
where each word has been replaced by an integer representing its length.

Now, start populating your new by-author dictionary to hold frequency
distributions. Use nltk.FreqDist(), which takes the list of word lengths and
creates a data object of word frequency information that can be plotted.

You can plot the dictionary directly using the class method plot(),
without the need to reference pyplot through plt . This will plot the most
frequently occurring sample first, followed by the number of samples you
specify, in this case, 15. This means you will see the frequency distribution
of words from 1 to 15 letters long. Use i to select from the LINES list and
finish by providing a label and a title. The label will be used in the legend,
called using plt.legend().

Note that you can change how the frequency data plots using the
cumulative parameter. If you specify cumulative=True, you will see a cumu-
lative distribution (Figure 2-3, left). Otherwise, plot() will default to
cumulative=False, and you will see the actual counts, arranged from highest
to lowest (Figure 2-3, right). Continue to use the default option for this
project.

Figure 2-3: The NLTK cumulative plot (left) versus the default frequency plot (right)

Finish by calling the plt.show() method to display the plot, but leave it
commented out. If you want to see the plot immediately after coding this
function, you can uncomment it. Also note that if you launch this program

Attributing Authorship with Stylometry 39

via Windows PowerShell, the plots may close immediately unless you use the
block flag: plt.show(block=True). This will keep the plot up but halt execution
of the program until the plot is closed.

Based solely on the word length frequency plot in Figure 2-3, Doyle’s
style matches the unknown author’s more closely, though there are seg-
ments where Wells compares the same or better. Now let’s run some other
tests to see whether we can confirm that finding.

Comparing Stop Words

A stop word is a small word used often, like the, by, and but. These words are
filtered out for tasks like online searches, because they provide no contex-
tual information, and they were once thought to be of little value in identi-
fying authorship.

But stop words, used frequently and without much thought, are perhaps
the best signature for an author’s style. And since the texts you’re compar-
ing are usually about different subjects, these stop words become impor-
tant, as they are agnostic to content and common across all texts.

Listing 2-5 defines a function to compare the use of stop words in the
three corpora.

def stopwords_test(words_by_author, len_shortest_corpus):
 """Plot stopwords freq by author, truncated to shortest corpus length."""
 stopwords_by_author_freq_dist = dict()
 plt.figure(2)
 stop_words = set(stopwords.words('english')) # Use set for speed.
 #print('Number of stopwords = {}\n'.format(len(stop_words)))
 #print('Stopwords = {}\n'.format(stop_words))

 for i, author in enumerate(words_by_author):
 stopwords_by_author = [word for word in words_by_author[author]
 [:len_shortest_corpus] if word in stop_words]
 �stopwords_by_author_freq_dist[author] = nltk.FreqDist(stopwords_by_

author)
 stopwords_by_author_freq_dist[author].plot(50,
 label=author,
 linestyle=LINES[i],
 title=
 '50 Most Common Stopwords')
 plt.legend()
plt.show() # Uncomment to see plot while coding function.

Listing 2-5: Defining the stopwords_test() function

Define a function that takes the words dictionary and the length of the
shortest corpus variables as arguments. Then initialize a dictionary to hold
the frequency distribution of stop words for each author. You don’t want to
cram all the plots in the same figure, so start a new figure named 2.

stylometry.py,
part 5

40 Chapter 2

Assign a local variable, stop_words, to the NLTK stop words corpus for
English. Sets are quicker to search than lists, so make the corpus a set for
faster lookups later. The next two lines, currently commented out, print the
number of stop words (179) and the stop words themselves.

Now, start looping through the authors in the words_by_author diction-
ary. Use list comprehension to pull out all the stop words in each author’s
corpus and use these as the value in a new dictionary named stopwords_
by_author. In the next line, you’ll pass this dictionary to NLTK’s FreqDist()
method and use the output to populate the stopwords_by_author_freq_dist
dictionary. This dictionary will contain the data needed to make the fre-
quency distribution plots for each author.

Repeat the code you used to plot the word lengths in Listing 2-4, but set
the number of samples to 50 and give it a different title. This will plot the
top 50 stop words in use (Figure 2-4).

Figure 2-4: Frequency plot of top 50 stop words by author

Both Doyle and the unknown author use stop words in a similar man-
ner. At this point, two analyses have favored Doyle as the most likely author
of the unknown text, but there’s still more to do.

Comparing Parts of Speech

Now let’s compare the parts of speech used in the three corpora. NLTK
uses a part-of-speech (POS) tagger, called PerceptronTagger, to identify parts
of speech. POS taggers process a sequence of tokenized words and attach a
POS tag to each word (see Table 2-2).

Attributing Authorship with Stylometry 41

Table 2-2: Parts of Speech with Tag Values

Part of Speech Tag Part of Speech Tag

Coordinating conjunction CC Possessive pronoun PRP$

Cardinal number CD Adverb RB

Determiner DT Adverb, comparative RBR

Existential there EX Adverb, superlative RBS

Foreign word FW Particle RP

Preposition or subordinating conjunction IN Symbol SYM

Adjective JJ To TO

Adjective, comparative JJR Interjection UH

Adjective, superlative JJS Verb, base form VB

List item marker LS Verb, past tense VBD

Modal MD Verb, gerund or present participle VBG

Noun, singular or mass NN Verb, past participle VBN

Noun, plural NNS Verb, non-third-person singular present VBP

Noun, proper noun, singular NNP Verb, third-person singular present VBZ

Noun, proper noun, plural NNPS Wh-determiner, which WDT

Predeterminer PDT Wh-pronoun, who, what WP

Possessive ending POS Possessive wh-pronoun, whose WP$

Personal pronoun PRP Wh-adverb, where, when WRB

The taggers are typically trained on large datasets like the Penn Treebank
or Brown Corpus, making them highly accurate though not perfect. You can
also find training data and taggers for languages other than English. You
don’t need to worry about all these various terms and their abbreviations.
As with the previous tests, you’ll just need to compare lines in a chart.

Listing 2-6 defines a function to plot the frequency distribution of POS
in the three corpora.

def parts_of_speech_test(words_by_author, len_shortest_corpus):
 """Plot author use of parts-of-speech such as nouns, verbs, adverbs."""
 by_author_pos_freq_dist = dict()
 plt.figure(3)
 for i, author in enumerate(words_by_author):
 pos_by_author = [pos[1] for pos in nltk.pos_tag(words_by_author[author]
 [:len_shortest_corpus])]
 by_author_pos_freq_dist[author] = nltk.FreqDist(pos_by_author)
 by_author_pos_freq_dist[author].plot(35,
 label=author,
 linestyle=LINES[i],
 title='Part of Speech')
 plt.legend()
 plt.show()

Listing 2-6: Defining the parts_of_speech_test() function

stylometry.py,
part 6

42 Chapter 2

Define a function that takes as arguments—you guessed it—the words
dictionary and the length of the shortest corpus. Then initialize a diction-
ary to hold the frequency distribution for the POS for each author, followed
by a function call for a third figure.

Start looping through the authors in the words_by_author dictionary
and use list comprehension and the NLTK pos_tag() method to build a list
called pos_by_author. For each author, this creates a list with each word in the
author’s corpus replaced by its corresponding POS tag, as shown here:

['NN', 'NNS', 'WP', 'VBD', 'RB', 'RB', 'RB', 'IN', 'DT', 'NNS', --snip--]

Next, make a frequency distribution of the POS list and with each loop
plot the curve, using the top 35 samples. Note that there are only 36 POS
tags and several, such as list item markers, rarely appear in novels.

This is the final plot you’ll make, so call plt.show() to draw all the
plots to the screen. As pointed out in the discussion of Listing 2-4, if you’re
using Windows PowerShell to launch the program, you may need to use
plt.show(block=True) to keep the plots from closing automatically.

The previous plots, along with the current one (Figure 2-5), should
appear after about 10 seconds.

Figure 2-5: Frequency plot of top 35 parts of speech by author

Once again, the match between the Doyle and unknown curves is clearly
better than the match of unknown to Wells. This suggests that Doyle is the
author of the unknown corpus.

Attributing Authorship with Stylometry 43

Comparing Author Vocabularies

To compare the vocabularies among the three corpora, you’ll use the
chi-squared random variable (X 2), also known as the test statistic, to measure
the “distance” between the vocabularies employed in the unknown corpus
and each of the known corpora. The closest vocabularies will be the most
similar. The formula is

X
O E

E
i i

ii

n
2

2

1
∑ ()=

−

=

where O is the observed word count and E is the expected word count
assuming the corpora being compared are both by the same author.

If Doyle wrote both novels, they should both have the same—or a
similar—proportion of the most common words. The test statistic lets you
quantify how similar they are by measuring how much the counts for each
word differ. The lower the chi-squared test statistic, the greater the similar-
ity between two distributions.

Listing 2-7 defines a function to compare vocabularies among the three
corpora.

def vocab_test(words_by_author):
 """Compare author vocabularies using the chi-squared statistical test."""
 chisquared_by_author = dict()
 for author in words_by_author:

  if author != 'unknown':
 combined_corpus = (words_by_author[author] +
 words_by_author['unknown'])
 author_proportion = (len(words_by_author[author])/
 len(combined_corpus))
 combined_freq_dist = nltk.FreqDist(combined_corpus)		
 most_common_words = list(combined_freq_dist.most_common(1000))
 chisquared = 0

  for word, combined_count in most_common_words:
 observed_count_author = words_by_author[author].count(word)
 expected_count_author = combined_count * author_proportion
 chisquared += ((observed_count_author -
 expected_count_author)**2 /
 expected_count_author)

  chisquared_by_author[author] = chisquared
 print('Chi-squared for {} = {:.1f}'.format(author, chisquared))
 most_likely_author = min(chisquared_by_author, key=chisquared_by_author.get)
 print('Most-likely author by vocabulary is {}\n'.format(most_likely_author))

Listing 2-7: Defining the vocab_test() function

The vocab_test() function needs the word dictionary but not the length
of the shortest corpus. Like the previous functions, however, it starts by cre-
ating a new dictionary to hold the chi-squared value per author and then
loops through the word dictionary.

stylometry.py,
part 7

44 Chapter 2

To calculate chi-squared, you’ll need to join each author’s corpus with
the unknown corpus. You don’t want to combine unknown with itself, so use
a conditional to avoid this . For the current loop, combine the author’s
corpus with the unknown one and then get the current author’s proportion
by dividing the length of his corpus by the length of the combined corpus.
Then get the frequency distribution of the combined corpus by calling
nltk.FreqDist().

Now, make a list of the 1,000 most common words in the combined text
by using the most_common() method and passing it 1000. There is no hard-and-
fast rule for how many words you should consider in a stylometric analysis.
Suggestions in the literature call for the most common 100 to 1,000 words.
Since you are working with large texts, err on the side of the larger value.

Initialize the chisquared variable with 0; then start a nested for loop
that works through the most_common_words list . The most_common() method
returns a list of tuples, with each tuple containing the word and its count.

[('the', 7778), ('of', 4112), ('and', 3713), ('i', 3203), ('a', 3195), --snip--]

Next, you get the observed count per author from the word dictionary.
For Doyle, this would be the count of the most common words in the corpus
of The Hound of the Baskervilles. Then, you get the expected count, which for
Doyle would be the count you would expect if he wrote both The Hound of
the Baskervilles and the unknown corpus. To do this, multiply the number
of counts in the combined corpus by the previously calculated author’s pro-
portion. Then apply the formula for chi-squared and add the result to the
dictionary that tracks each author’s chi-squared score . Display the result
for each author.

To find the author with the lowest chi-squared score, call the built-in
min() function and pass it the dictionary and dictionary key, which you
obtain with the get() method. This will yield the key corresponding to the
minimum value. This is important. If you omit this last argument, min() will
return the minimum key based on the alphabetical order of the names, not
their chi-squared score! You can see this mistake in the following snippet:

>>> print(mydict)
{'doyle': 100, 'wells': 5}
>>> minimum = min(mydict)
>>> print(minimum)
'doyle'
>>> minimum = min(mydict, key=mydict.get)
>>> print(minimum)
'wells'

It’s easy to assume that the min() function returns the minimum numer-
ical value, but as you saw, it looks at dictionary keys by default.

Complete the function by printing the most likely author based on the
chi-squared score.

Attributing Authorship with Stylometry 45

Chi-squared for doyle = 4744.4
Chi-squared for wells = 6856.3
Most-likely author by vocabulary is doyle

Yet another test suggests that Doyle is the author!

Calculating Jaccard Similarity

To determine the degree of similarity among sets created from the corpora,
you’ll use the Jaccard similarity coefficient. Also called the intersection over union,
this is simply the area of overlap between two sets divided by the area of
union of the two sets (Figure 2-6).

Area of
overlap

Area

of

union

Figure 2-6: Intersection-over-union for a set is the area
of overlap divided by the area of union.

The more overlap there is between sets created from two texts, the
more likely they were written by the same author. Listing 2-8 defines a func-
tion for gauging the similarity of sample sets.

def jaccard_test(words_by_author, len_shortest_corpus):
 """Calculate Jaccard similarity of each known corpus to unknown corpus."""
 jaccard_by_author = dict()
 unique_words_unknown = set(words_by_author['unknown']
 [:len_shortest_corpus])

stylometry.py,
part 8

46 Chapter 2

  authors = (author for author in words_by_author if author != 'unknown')
 for author in authors:
 unique_words_author = set(words_by_author[author][:len_shortest_corpus])
 shared_words = unique_words_author.intersection(unique_words_unknown)

  jaccard_sim = (float(len(shared_words))/ (len(unique_words_author) +
 len(unique_words_unknown) -
 len(shared_words)))
 jaccard_by_author[author] = jaccard_sim
 print('Jaccard Similarity for {} = {}'.format(author, jaccard_sim))

  most_likely_author = max(jaccard_by_author, key=jaccard_by_author.get)
 print('Most-likely author by similarity is {}'.format(most_likely_author))

if __name__ == '__main__':
 main()

Listing 2-8: Defining the jaccard_test() function

Like most of the previous tests, the jaccard_test() function takes the
word dictionary and length of the shortest corpus as arguments. You’ll also
need a dictionary to hold the Jaccard coefficient for each author.

Jaccard similarity works with unique words, so you’ll need to turn the
corpora into sets to remove duplicates. First, you’ll build a set from the
unknown corpus. Then you’ll loop through the known corpora, turning them
into sets and comparing them to the unknown set. Be sure to truncate all
the corpora to the length of the shortest corpus when making the sets.

Prior to running the loop, use a generator expression to get the names
of the authors, other than unknown, from the words_by_author dictionary . A
generator expression is a function that returns an object that you can iterate over
one value at a time. It looks a lot like list comprehension, but instead of square
brackets, it’s surrounded by parentheses. And instead of constructing a poten-
tially memory-intensive list of items, the generator yields them in real time.
Generators are useful when you have a large set of values that you need to use
only once. I use one here as an opportunity to demonstrate the process.

When you assign a generator expression to a variable, all you get is a
type of iterator called a generator object. Compare this to making a list, as
shown here:

>>> mylist = [i for i in range(4)]
>>> mylist
[0, 1, 2, 3]
>>> mygen = (i for i in range(4))
>>> mygen
<generator object <genexpr> at 0x000002717F547390>

The generator expression in the previous snippet is the same as this
generator function:

def generator(my_range):
 for i in range(my_range):
 yield i

Attributing Authorship with Stylometry 47

Whereas the return statement ends a function, the yield statement sus-
pends the function’s execution and sends a value back to the caller. Later,
the function can resume where it left off. When a generator reaches its end,
it’s “empty” and can’t be called again.

Back to the code, start a for loop using the authors generator. Find the
unique words for each known author, just as you did for unknown. Then use
the built-in intersection() function to find all the words shared between the
current author’s set of words and the set for unknown. The intersection of two
given sets is the largest set that contains all the elements that are common
to both. With this information, you can calculate the Jaccard similarity
coefficient .

Update the jaccard_by_author dictionary and print each outcome in the
interpreter window. Then find the author with the maximum Jaccard value 
and print the results.

Jaccard Similarity for doyle = 0.34847801578354004
Jaccard Similarity for wells = 0.30786921307869214
Most-likely author by similarity is doyle

The outcome should favor Doyle.
Finish stylometry.py with the code to run the program as an imported

module or in stand-alone mode.

Summary
The true author of The Lost World is Doyle, so we’ll stop here and declare
victory. If you want to explore further, a next step might be to add more
known texts to doyle and wells so that their combined length is closer to
that for The Lost World and you don’t have to truncate it. You could also test
for sentence length and punctuation style or employ more sophisticated
techniques like neural nets and genetic algorithms.

You can also refine existing functions, like vocab_test() and jaccard_
test(), with stemming and lemmatization techniques that reduce words to
their root forms for better comparisons. As the program is currently writ-
ten, talk, talking, and talked are all considered completely different words
even though they share the same root.

At the end of the day, stylometry can’t prove with absolute certainty that
Sir Arthur Conan Doyle wrote The Lost World. It can only suggest, through
weight of evidence, that he is the more likely author than Wells. Framing
the question very specifically is important, since you can’t evaluate all pos-
sible authors. For this reason, successful authorship attribution begins with
good old-fashioned detective work that trims the list of candidates to a
manageable length.

48 Chapter 2

Further Reading
Natural Language Processing with Python: Analyzing Text with the Natural
Language Toolkit (O’Reilly, 2009), by Steven Bird, Ewan Klein, and Edward
Loper, is an accessible introduction to NLP using Python, with lots of
exercises and useful integration with the NLTK website. A new version
of the book, updated for Python 3 and NLTK 3, is available online at
http://www.nltk.org/book/.

In 1995, novelist Kurt Vonnegut proposed the idea that “stories have
shapes that can be drawn on graph paper” and suggested “feeding them
into computers.” In 2018, researchers followed up on this idea using more
than 1,700 English novels. They applied an NLP technique called sentiment
analysis that finds the emotional tone behind words. An interesting sum-
mary of their results, “Every Story in the World Has One of These Six Basic
Plots,” can be found on the BBC.com website: http://www.bbc.com/culture/
story/20180525-every-story-in-the-world-has-one-of-these-six-basic-plots/.

Practice Project: Hunting the Hound with Dispersion
NLTK comes with a fun little feature, called a dispersion plot, that lets you
post the location of a word in a text. More specifically, it plots the occur-
rences of a word versus how many words from the beginning of the corpus
that it appears.

Figure 2-7 is a dispersion plot for major characters in The Hound of the
Baskervilles.

Figure 2-7: Dispersion plot for major characters in The Hound of the Baskervilles

If you’re familiar with the story—and I won’t spoil it if you’re not—then
you’ll appreciate the sparse occurrence of Holmes in the middle, the almost

http://www.nltk.org/book/
http://www.bbc.com/culture/story/20180525-every-story-in-the-world-has-one-of-these-six-basic-plots/
http://www.bbc.com/culture/story/20180525-every-story-in-the-world-has-one-of-these-six-basic-plots/

Attributing Authorship with Stylometry 49

bimodal distribution of Mortimer, and the late story overlap of Barrymore,
Selden, and the hound.

Dispersion plots can have more practical applications. For example,
as the author of technical books, I need to define a new term when it first
appears. This sounds easy, but sometimes the editing process can shuffle
whole chapters, and issues like this can fall through the cracks. A dispersion
plot, built with a long list of technical terms, can make finding these first
occurrences a lot easier.

For another use case, imagine you’re a data scientist working with para-
legals on a criminal case involving insider trading. To find out whether the
accused talked to a certain board member just prior to making the illegal
trades, you can load the subpoenaed emails of the accused as a continuous
string and generate a dispersion plot. If the board member’s name appears
as expected, case closed!

For this practice project, write a Python program that reproduces
the dispersion plot shown in Figure 2-7. If you have problems loading the
hound.txt corpus, revisit the discussion of Unicode on page 35. You can
find a solution, practice_hound_dispersion.py, in the appendix and online.

Practice Project: Punctuation Heatmap
A heatmap is a diagram that uses colors to represent data values. Heatmaps
have been used to visualize the punctuation habits of famous authors
(https://www.fastcompany.com/3057101/the-surprising-punctuation-habits-of-
famous-authors-visualized/) and may prove helpful in attributing authorship
for The Lost World.

Write a Python program that tokenizes the three novels used in this
chapter based solely on punctuation. Then focus on the use of semicolons.
For each author, plot a heatmap that displays semicolons as blue and all
other marks as yellow or red. Figure 2-8 shows example heatmaps for Wells’
The War of the Worlds and Doyle’s The Hound of the Baskervilles.

Figure 2-8: Heatmap of semicolon use (dark squares) for Wells (left) and Doyle (right)

50 Chapter 2

Compare the three heatmaps. Do the results favor Doyle or Wells as the
author for The Lost World?

You can find a solution, practice_heatmap_semicolon.py, in the appendix
and online.

Challenge Project: Fixing Frequency
As noted previously, frequency in NLP refers to counts, but it can also be
expressed as the number of occurrences per unit time. Alternatively, it can
be expressed as a ratio or percent.

Define a new version of the nltk.FreqDist() method that uses percent-
ages, rather than counts, and use it to make the charts in the stylometry.py
program. For help, see the Clearly Erroneous blog (https://martinapugliese
.github.io/plotting-the-actual-frequencies-in-a-FreqDist-in-nltk/).

https://martinapugliese.github.io/plotting-the-actual-frequencies-in-a-FreqDist-in-nltk/
https://martinapugliese.github.io/plotting-the-actual-frequencies-in-a-FreqDist-in-nltk/

3
S U M M A R I Z I N G S P E E C H E S W I T H

N A T U R A L L A N G U A G E P R O C E S S I N G

“Water, water everywhere, but not a drop to
drink.” This famous line, from The Rime of

the Ancient Mariner, summarizes the present
state of digital information. According to

International Data Corporation, by 2025 we’ll be
generating 175 trillion gigabytes of digital data per
year. But most of this data—up to 95 percent—will be
unstructured, which means it’s not organized into useful
databases. Even now, the key to the cure for cancer may
be right at our fingertips yet almost impossible to reach.

To make information easier to discover and consume, we need to
reduce the volume of data by extracting and repackaging salient points into
digestible summaries. Because of the sheer volume of data, there’s no way
to do this manually. Luckily, natural language processing (NLP) helps com-
puters understand both words and context. For example, NLP applications
can summarize news feeds, analyze legal contracts, research patents, study
financial markets, capture corporate knowledge, and produce study guides.

52 Chapter 3

In this chapter, you’ll use Python’s Natural Language Toolkit (NLTK)
to generate a summary of one of the most famous speeches of all time,
“I Have a Dream” by Martin Luther King Jr. With an understanding of the
basics, you’ll then use a streamlined alternative, called gensim, to summarize
the popular “Make Your Bed” speech by Admiral William H. McRaven.
Finally, you’ll use a word cloud to produce a fun visual summary of the
most frequently used words in Sir Arthur Conan Doyle’s novel The Hound
of the Baskervilles.

Project #3: I Have a Dream . . . to Summarize Speeches!
In machine learning and data mining, there are two approaches to summa-
rizing text: extraction and abstraction.

Extraction-based summarization uses various weighting functions to
rank sentences by perceived importance. Words used more often are con-
sidered more important. Consequently, sentences containing those words
are considered more important. The overall behavior is like using a yellow
highlighter to manually select keywords and sentences without altering the
text. The results can be disjointed, but the technique is good at pulling out
important words and phrases.

Abstraction relies on deeper comprehension of the document to cap-
ture intent and produce more human-like paraphrasing. This includes cre-
ating completely new sentences. The results tend to be more cohesive and
grammatically correct than those produced by extraction-based methods,
but at a price. Abstraction algorithms require advanced and complicated
deep learning methods and sophisticated language modeling.

For this project, you’ll use an extraction-based technique on the “I Have
a Dream” speech, delivered by Martin Luther King Jr. at the Lincoln Memorial
on August 28, 1963. Like Lincoln’s “Gettysburg Address” a century before, it
was the perfect speech at the perfect time. Dr. King’s masterful use of rep-
etition also makes it tailor-made for extraction techniques, which correlate
word frequency with importance.

T HE OBJEC T I V E

Write a Python program that summarizes a speech using NLP text extraction.

The Strategy
The Natural Language Toolkit includes the functions you’ll need to sum-
marize Dr. King’s speech. If you skipped Chapter 2, see page 29 for installa-
tion instructions.

To summarize the speech, you’ll need a digital copy. In previous
chapters, you manually downloaded files you needed from the internet.

Summarizing Speeches with Natural Language Processing 53

This time you’ll use a more efficient technique, called web scraping, which
allows you to programmatically extract and save large amounts of data from
websites.

Once you’ve loaded the speech as a string, you can use NLTK to split
out and count individual words. Then, you’ll “score” each sentence in the
speech by summing the word counts within it. You can use those scores to
print the top-ranked sentences, based on how many sentences you want in
your summary.

Web Scraping
Scraping the web means using a program to download and process content.
This is such a common task that prewritten scraping programs are freely
available. You’ll use the requests library to download files and web pages,
and you’ll use the Beautiful Soup (bs4) package to parse HTML. Short for
Hypertext Markup Language, HTML is the standard format used to create
web pages.

To install the two modules, use pip in a terminal window or Windows
PowerShell (see page 8 in Chapter 1 for instructions on installing and
using pip):

pip install requests
pip install beautifulsoup4

To check the installation, open the shell and import each module as
shown next. If you don’t get an error, you’re good to go!

>>> import requests
>>>
>>> import bs4
>>>

To learn more about requests, visit https://pypi.org/project/requests/.
For Beautiful Soup, see https://www.crummy.com/software/BeautifulSoup/.

The “I Have a Dream” Code
The dream_summary.py program performs the following steps:

1.	 Opens a web page containing the “I Have a Dream” speech

2.	 Loads the text as a string

3.	 Tokenizes the text into words and sentences

4.	 Removes stop words with no contextual content

5.	 Counts the remaining words

6.	 Uses the counts to rank the sentences

7.	 Displays the highest-ranking sentences

https://pypi.org/project/requests/
https://www.crummy.com/software/BeautifulSoup/

54 Chapter 3

If you’ve already downloaded the book’s files, find the program in the
Chapter_3 folder. Otherwise, go to https://nostarch.com/real-world-python/ and
download it from the book’s GitHub page.

Importing Modules and Defining the main() Function

Listing 3-1 imports modules and defines the first part of the main() function,
which scrapes the web and assigns the speech to a variable as a string.

from collections import Counter
import re
import requests
import bs4
import nltk
from nltk.corpus import stopwords

def main():
  url = 'http://www.analytictech.com/mb021/mlk.htm'

 page = requests.get(url)
 page.raise_for_status()

  soup = bs4.BeautifulSoup(page.text, 'html.parser')
 p_elems = [element.text for element in soup.find_all('p')]

 speech = ''.join(p_elems)

Listing 3-1: Importing modules and defining the main() function

Start by importing Counter from the collections module to help you keep
track of the sentence scoring. The collections module is part of the Python
Standard Library and includes several container data types. A Counter is
a dictionary subclass for counting hashable objects. Elements are stored
as dictionary keys, and their counts are stored as dictionary values.

Next, to clean up the speech prior to summarizing its contents, import
the re module. The re stands for regular expressions, also referred to as regexes,
which are sequences of characters that define a search pattern. This mod-
ule will help you clean up the speech by allowing you to selectively remove
bits that you don’t want.

Finish the imports with the modules for scraping the web and doing
natural language processing. The last module brings in the list of functional
stop words (such as if, and, but, for) that contain no useful information.
You’ll remove these from the speech prior to summarization.

Next, define a main() function to run the program. To scrape the speech
off the web, provide the url address as a string . You can copy and paste
this from the website from which you want to extract text.

The requests library abstracts the complexities of making HTTP
requests in Python. HTTP, short for HyperText Transfer Protocol, is the
foundation of data communication using hyperlinks on the World Wide
Web. Use the requests.get() method to fetch the url and assign the output
to the page variable, which references the Response object the web page
returned for the request. This object’s text attribute holds the web page,
including the speech, as a string.

dream_
summary.py,
part 1

https://nostarch.com/real-world-python/

Summarizing Speeches with Natural Language Processing 55

To check that the download was successful, call the Response object’s
raise_for_status() method. This does nothing if everything goes okay but
otherwise will raise an exception and halt the program.

At this point, the data is in HTML, as shown here:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<title>Martin Luther King Jr.'s 1962 Speech</title>
</head>
--snip--
<p>I am happy to join with you today in what will go down in
history as the greatest demonstration for freedom in the history
of our nation. </p>
--snip--

As you can see, HTML has a lot of tags, such as <head> and <p>, that let
your browser know how to format the web page. The text between starting
and closing tags is called an element. For example, the text “Martin Luther
King Jr.’s 1962 Speech” is a title element sandwiched between the starting
tag <title> and the closing tag </title>. Paragraphs are formatted using <p>
and </p> tags.

Because these tags are not part of the original text, they should be
removed prior to any natural language processing. To remove the tags,
call the bs4.BeautifulSoup() method and pass it the string containing the
HTML . Note that I’ve explicitly specified html.parser. The program will
run without this but complain bitterly with warnings in the shell.

The soup variable now references a BeautifulSoup object, which means
you can use the object’s find_all() method to locate the speech buried in
the HTML document. In this case, to find the text between paragraph tags
(<p>), use list comprehension and find_all() to make a list of just the para-
graph elements.

Finish by turning the speech into a continuous string. Use the join()
method to turn the p_elems list into a string. Set the “ joiner” character to a
space, designated by ''.

Note that with Python, there is usually more than one way to accom-
plish a task. The last two lines of the listing can also be written as follows:

 p_elems = soup.select('p')
 speech = ''.join(p_elems)

The select() method is more limited overall than find_all(), but in
this case it works the same and is more succinct. In the previous snippet,
select() finds the <p> tags, and the results are converted to text when con-
catenated to the speech string.

56 Chapter 3

Completing the main() Function

Next, you’ll prep the speech to fix typos and remove punctuation, special
characters, and spaces. Then you’ll call three functions to remove stop
words, count word frequency, and score the sentences based on the word
counts. Finally, you’ll rank the sentences and display those with the highest
scores in the shell.

Listing 3-2 completes the definition of main() that performs these tasks.

 speech = speech.replace(')mowing', 'knowing')
 speech = re.sub('\s+', ' ', speech)
 speech_edit = re.sub('[^a-zA-Z]', ' ', speech)
 speech_edit = re.sub('\s+', ' ', speech_edit)

  while True:
 max_words = input("Enter max words per sentence for summary: ")
 num_sents = input("Enter number of sentences for summary: ")
 if max_words.isdigit() and num_sents.isdigit():
 break
 else:
 print("\nInput must be in whole numbers.\n")

 speech_edit_no_stop = remove_stop_words(speech_edit)
 word_freq = get_word_freq(speech_edit_no_stop)
 sent_scores = score_sentences(speech, word_freq, max_words)

  counts = Counter(sent_scores)
 summary = counts.most_common(int(num_sents))
 print("\nSUMMARY:")
 for i in summary:
 print(i[0])

Listing 3-2: Completing the main() function

The original document contains a typo (mowing instead of knowing), so
start by fixing this using the string.replace() method. Continue cleaning
the speech using regex. Many casual programmers are turned off by this
module’s arcane syntax, but it’s such a powerful and useful tool that every-
one should be aware of the basic regex syntax.

Remove extra spaces using the re.sub() function, which replaces sub-
strings with new characters. Use the shorthand character class code \s+ to
identify runs of whitespace and replace them with a single space, indicated
by ' '. Finish by passing re.sub() the name of the string (speech).

Next, remove anything that’s not a letter by matching the [^a-zA-Z] pat-
tern. The caret at the start instructs regex to “match any character that isn’t
between the brackets.” So, numbers, punctuation marks, and so on, will be
replaced by a space.

Removing characters like punctuation marks will leave an extra space.
To get rid of these spaces, call the re.sub() method again.

Next, request that the user input the number of sentences to include in the
summary and the maximum number of words per sentence. Use a while loop
and Python’s built-in isdigit() function to ensure the user inputs an integer .

dream_
summary.py,
part 2

Summarizing Speeches with Natural Language Processing 57

N O T E 	 According to research by the American Press Institute, comprehension is best with
sentences of fewer than 15 words. Similarly, the Oxford Guide to Plain English
recommends using sentences that average 15 to 20 words over a full document.

Continue cleaning the text by calling the remove_stop_words() function.
Then call functions get_word_freq() and score_sentences() to calculate the
frequency of the remaining words and to score the sentences, respectively.
You’ll define these functions after completing the main() function.

To rank the sentences, call the collection module’s Counter() method .
Pass it the sent_scores variable.

To generate the summary, use the Counter object’s most_common() method.
Pass it the num_sents variable input by the user. The resulting summary variable
will hold a list of tuples. For each tuple, the sentence is at index [0], and its
rank is at index [1].

[('From every mountainside, let freedom ring.', 4.625), --snip--]

For readability, print each sentence of the summary on a separate line.

Removing Stop Words

Remember from Chapter 2 that stop words are short, functional words like
if, but, for, and so. Because they contain no important contextual informa-
tion, you don’t want to use them to rank sentences.

Listing 3-3 defines a function called remove_stop_words() to remove stop
words from the speech.

def remove_stop_words(speech_edit):
 """Remove stop words from string and return string."""
 stop_words = set(stopwords.words('english'))
 speech_edit_no_stop = ''
 for word in nltk.word_tokenize(speech_edit):
 if word.lower() not in stop_words:
 speech_edit_no_stop += word + ' '
 return speech_edit_no_stop

Listing 3-3: Defining a function to remove stop words from the speech

Define the function to receive speech_edit, the edited speech string, as
an argument. Then create a set of the English stop words in NLTK. Use a
set, rather than a list, as searches are quicker in sets.

Assign an empty string to hold the edited speech sans stop words. The
speech_edit variable is currently a string in which each element is a letter.

To work with words, call the NLTK word_tokenize() method. Note that
you can do this while looping through words. Convert each word to lower-
case and check its membership in the stop_words set. If it’s not a stop word,
concatenate it to the new string, along with a space. Return this string to
end the function.

dream_
summary.py,
part 3

58 Chapter 3

How you handle letter case in this program is important. You’ll want
the summary to print with both uppercase and lowercase letters, but you
must do the NLP work using all lowercase to avoid miscounting. To see why,
look at the following code snippet, which counts words in a string (s) with
mixed cases:

>>> import nltk
>>> s = 'one One one'
>>> fd = nltk.FreqDist(nltk.word_tokenize(s))
>>> fd
FreqDist({'one': 2, 'One': 1})
>>> fd_lower = nltk.FreqDist(nltk.word_tokenize(s.lower()))
>>> fd_lower
FreqDist({'one': 3})

If you don’t convert the words to lowercase, one and One are considered
distinct elements. For counting purposes, every instance of one regardless of
its case should be treated as the same word. Otherwise, the contribution
of one to the document will be diluted.

Calculating the Frequency of Occurrence of Words

To count the occurrence of each word in the speech, you’ll create the
get_word_freq() function that returns a dictionary with the words as keys
and the counts as values. Listing 3-4 defines this function.

def get_word_freq(speech_edit_no_stop):
 """Return a dictionary of word frequency in a string."""
 word_freq = nltk.FreqDist(nltk.word_tokenize(speech_edit_no_stop.lower()))
 return word_freq

Listing 3-4: Defining a function to calculate word frequency in the speech

The get_word_freq() function takes the edited speech string with no
stop words as an argument. NLTK’s FreqDist class acts like a dictionary
with the words as keys and their counts as values. As part of the process,
convert the input string to lowercase and tokenize it into words. End the
function by returning the word_freq dictionary.

Scoring Sentences

Listing 3-5 defines a function that scores sentences based on the frequency
distribution of the words they contain. It returns a dictionary with each sen-
tence as the key and its score as the value.

def score_sentences(speech, word_freq, max_words):
 """Return dictionary of sentence scores based on word frequency."""
 sent_scores = dict()
 sentences = nltk.sent_tokenize(speech)

  for sent in sentences:
 sent_scores[sent] = 0

dream_
summary.py,
part 4

dream_
summary.py,
part 5

Summarizing Speeches with Natural Language Processing 59

 words = nltk.word_tokenize(sent.lower())
 sent_word_count = len(words)

  if sent_word_count <= int(max_words):
 for word in words:
 if word in word_freq.keys():
 sent_scores[sent] += word_freq[word]

  sent_scores[sent] = sent_scores[sent] / sent_word_count
 return sent_scores

if __name__ == '__main__':
 main()

Listing 3-5: Defining a function to score sentences based on word frequency

Define a function, called score_sentences(), with parameters for the
original speech string, the word_freq object, and the max_words variable input
by the user. You want the summary to contain stop words and capitalized
words—hence the use of speech.

Start an empty dictionary, named sent_scores, to hold the scores for
each sentence. Next, tokenize the speech string into sentences.

Now, start looping through the sentences . Start by updating the
sent_scores dictionary, assigning the sentence as the key, and setting its
initial value (count) to 0.

To count word frequency, you first need to tokenize the sentence
into words. Be sure to use lowercase to be compatible with the word_freq
dictionary.

You’ll need to be careful when you sum up the word counts per sen-
tence to create the scores so you don’t bias the results toward longer sen-
tences. After all, longer sentences are more likely to have a greater number
of important words. To avoid excluding short but important sentences, you
need to normalize each count by dividing it by the sentence length. Store the
length in a variable called sent_word_count.

Next, use a conditional that constrains sentences to the maximum
length input by the user . If the sentence passes the test, start looping
through its words. If a word is in the word_freq dictionary, add it to the count
stored in sent_scores.

At the end of each loop through the sentences, divide the score for the
current sentence by the number of words in the sentence . This normal-
izes the score so long sentences don’t have an unfair advantage.

End the function by returning the sent_scores dictionary. Then, back in
the global space, add the code for running the program as a module or in
stand-alone mode.

Running the Program

Run the dream_summary.py program with a maximum sentence length of
14 words. As mentioned previously, good, readable sentences tend to con-
tain 14 words or fewer. Then truncate the summary at 15 sentences, about
one-third of the speech. You should get the following results. Note that the
sentences won’t necessarily appear in their original order.

60 Chapter 3

Enter max words per sentence for summary: 14
Enter number of sentences for summary: 15

SUMMARY:
From every mountainside, let freedom ring.
Let freedom ring from Lookout Mountain in Tennessee!
Let freedom ring from every hill and molehill in Mississippi.
Let freedom ring from the curvaceous slopes of California!
Let freedom ring from the snow capped Rockies of Colorado!
But one hundred years later the Negro is still not free.
From the mighty mountains of New York, let freedom ring.
From the prodigious hilltops of New Hampshire, let freedom ring.
And I say to you today my friends, let freedom ring.
I have a dream today.
It is a dream deeply rooted in the American dream.
Free at last!
Thank God almighty, we're free at last!"
We must not allow our creative protest to degenerate into physical violence.
This is the faith that I go back to the mount with.

Not only does the summary capture the title of the speech, it captures
the main points.

But if you run it again with 10 words per sentence, a lot of the sentences
are clearly too long. Because there are only 7 sentences in the whole speech
with 10 or fewer words, the program can’t honor the input requirements. It
defaults to printing the speech from the beginning until the sentence count
is at least what was specified in the num_sents variable.

Now, rerun the program and try setting the word count limit to 1,000.

Enter max words per sentence for summary: 1000
Enter number of sentences for summary: 15

SUMMARY:
From every mountainside, let freedom ring.
Let freedom ring from Lookout Mountain in Tennessee!
Let freedom ring from every hill and molehill in Mississippi.
Let freedom ring from the curvaceous slopes of California!
Let freedom ring from the snow capped Rockies of Colorado!
But one hundred years later the Negro is still not free.
From the mighty mountains of New York, let freedom ring.
From the prodigious hilltops of New Hampshire, let freedom ring.
And I say to you today my friends, let freedom ring.
I have a dream today.
But not only there; let freedom ring from the Stone Mountain of Georgia!
It is a dream deeply rooted in the American dream.
With this faith we will be able to work together, pray together; to struggle
together, to go to jail together, to stand up for freedom forever, knowing
that we will be free one day.
Free at last!
One hundred years later the life of the Negro is still sadly crippled by the
manacles of segregation and the chains of discrimination.

Summarizing Speeches with Natural Language Processing 61

Although longer sentences don’t dominate the summary, a few slipped
through, making this summary less poetic than the previous one. The lower
word count limit forces the previous version to rely more on shorter phrases
that act like a chorus.

Project #4: Summarizing Speeches with gensim
In an Emmy award–winning episode of The Simpsons, Homer runs for sani-
tation commissioner using the campaign slogan, “Can’t someone else do
it?” That’s certainly the case with many Python applications: often, when
you need to write a script, you learn that someone else has already done it!
One example is gensim, an open source library for natural language process-
ing using statistical machine learning.

The word gensim stands for “generate similar.” It uses a graph-based
ranking algorithm called TextRank. This algorithm was inspired by PageRank,
invented by Larry Page and used to rank web pages in Google searches.
With PageRank, the importance of a website is determined by how many
other pages link to it. To use this approach with text processing, algorithms
measure how similar each sentence is to all the other sentences. The sen-
tence that is the most like the others is considered the most important.

In this project, you’ll use gensim to summarize Admiral William H.
McRaven’s commencement address, “Make Your Bed,” given at the University
of Texas at Austin in 2014. This inspirational, 20-minute speech has been
viewed more than 10 million times on YouTube and inspired a New York
Times bestselling book in 2017.

T HE OBJEC T I V E

Write a Python program that uses the gensim module to summarize a speech.

Installing gensim
The gensim module runs on all the major operating systems but is dependent
on NumPy and SciPy. If you don’t have them installed, go back to Chapter 1
and follow the instructions in “Installing the Python Libraries” on page 6.

To install gensim on Windows, use pip install -U gensim. To install it in a
terminal, use pip install --upgrade gensim. For conda environments, use conda
install -c conda-forge gensim. For more on gensim, go to https://radimrehurek
.com/gensim/.

The Make Your Bed Code
With the dream_summary.py program in Project 3, you learned the funda-
mentals of text extraction. Since you’ve seen some of the details, use gensim
as a streamlined alternative to dream_summary.py. Name this new program
bed_summary.py or download it from the book’s website.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/

62 Chapter 3

Importing Modules, Scraping the Web, and Preparing the Speech String

Listing 3-6 repeats the code used in dream_summary.py to prepare the
speech as a string. To revisit the detailed code explanation, see page 54.

import requests
import bs4
from nltk.tokenize import sent_tokenize

 from gensim.summarization import summarize

 �url = 'https://jamesclear.com/great-speeches/make-your-bed-by-admiral
 -william-h-mcraven'

page = requests.get(url)
page.raise_for_status()
soup = bs4.BeautifulSoup(page.text, 'html.parser')
p_elems = [element.text for element in soup.find_all('p')]

speech = ''.join(p_elems)

Listing 3-6: Importing modules and loading the speech as a string

You’ll test gensim on the raw speech scraped from the web, so you won’t
need modules for cleaning the text. The gensim module will also do any
counting internally, so you don’t need Counter, but you will need gensim’s
summarize() function to summarize the text . The only other change is to
the url address .

Summarizing the Speech

Listing 3-7 completes the program by summarizing the speech and printing
the results.

print("\nSummary of Make Your Bed speech:")
summary = summarize(speech, word_count=225)
sentences = sent_tokenize(summary)
sents = set(sentences)
print(' '.join(sents))

Listing 3-7: Running gensim, removing duplicate lines, and printing the summary

Start by printing a header for your summary. Then, call the gensim
summarize() function to summarize the speech in 225 words. This word
count will produce about 15 sentences, assuming the average sentence has
15 words. In addition to a word count, you can pass summarize() a ratio, such
as ratio=0.01. This will produce a summary whose length is 1 percent of the
full document.

Ideally, you could summarize the speech and print the summary in
one step.

print(summarize(speech, word_count=225))

bed_summary.py,
part 1

bed_summary.py,
part 2

Summarizing Speeches with Natural Language Processing 63

Unfortunately, gensim sometimes duplicates sentences in summaries,
and that occurs here:

Summary of Make Your Bed speech:
Basic SEAL training is six months of long torturous runs in the soft sand,
midnight swims in the cold water off San Diego, obstacle courses, unending
calisthenics, days without sleep and always being cold, wet and miserable.
Basic SEAL training is six months of long torturous runs in the soft sand,
midnight swims in the cold water off San Diego, obstacle courses, unending
calisthenics, days without sleep and always being cold, wet and miserable.
--snip--

To avoid duplicating text, you first need to break out the sentences in
the summary variable using the NLTK sent_tokenize() function. Then make
a set from these sentences, which will remove duplicates. Finish by printing
the results.

Because sets are unordered, the arrangement of the sentences may
change if you run the program multiple times.

Summary of Make Your Bed speech:
If you can't do the little things right, you will never do the big things
right.And, if by chance you have a miserable day, you will come home to a
bed that is made — that you made — and a made bed gives you encouragement
that tomorrow will be better.If you want to change the world, start off
by making your bed.During SEAL training the students are broken down into
boat crews. It's just the way life is sometimes.If you want to change the
world get over being a sugar cookie and keep moving forward.Every day during
training you were challenged with multiple physical events — long runs, long
swims, obstacle courses, hours of calisthenics — something designed to test
your mettle. Basic SEAL training is six months of long torturous runs in the
soft sand, midnight swims in the cold water off San Diego, obstacle courses,
unending calisthenics, days without sleep and always being cold, wet and
miserable.
>>>
======= RESTART: C:\Python372\sequel\wordcloud\bed_summary.py =======

Summary of Make Your Bed speech:
It's just the way life is sometimes.If you want to change the world get over
being a sugar cookie and keep moving forward.Every day during training you
were challenged with multiple physical events — long runs, long swims,
obstacle courses, hours of calisthenics — something designed to test your
mettle. If you can't do the little things right, you will never do the big
things right.And, if by chance you have a miserable day, you will come home to
a bed that is made — that you made — and a made bed gives you encouragement
that tomorrow will be better.If you want to change the world, start off by
making your bed.During SEAL training the students are broken down into boat
crews. Basic SEAL training is six months of long torturous runs in the soft
sand, midnight swims in the cold water off San Diego, obstacle courses,
unending calisthenics, days without sleep and always being cold, wet and
miserable.

64 Chapter 3

If you take the time to read the full speech, you’ll probably conclude
that gensim produced a fair summary. Although these two results are differ-
ent, both extracted the key points of the speech, including the reference to
making your bed. Given the size of the document, I find this impressive.

Next up, we’ll look at a different way of summarizing text using key-
words and word clouds.

Project #5: Summarizing Text with Word Clouds
A word cloud is a visual representation of text data used to display keyword
metadata, called tags on websites. In a word cloud, font size or color shows
the importance of each tag or word.

Word clouds are useful for highlighting keywords in a document. For
example, generating word clouds for each US president’s State of the Union
address can provide a quick overview of the issues facing the nation that
year. In Bill Clinton’s first year, the emphasis was on peacetime concerns
like healthcare, jobs, and taxes (Figure 3-1).

Figure 3-1: Word cloud made from 1993 State of the Union address
by Bill Clinton

Less than 10 years later, George W. Bush’s word cloud reveals a focus on
security (Figure 3-2).

Figure 3-2: Word cloud made from 2002 State of the Union address
by George W. Bush

Summarizing Speeches with Natural Language Processing 65

Another use for word clouds is to extract keywords from customer feed-
back. If words like poor, slow, and expensive dominate, you’ve got a problem!
Writers can also use the clouds to compare chapters in a book or scenes in a
screenplay. If the author is using very similar language for action scenes and
romantic interludes, some editing is needed. If you’re a copywriter, clouds can
help you check your keyword density for search engine optimization (SEO).

There are lots of ways to generate word clouds, including free websites
like https://www.wordclouds.com/ and https://www.jasondavies.com/wordcloud/.
But if you want to fully customize your word cloud or embed the generator
within another program, you need to do it yourself. In this project, you’ll
use a word cloud to make a promotional flyer for a school play based on the
Sherlock Holmes story The Hound of the Baskervilles.

Instead of using the basic rectangle shown in Figures 3-1 and 3-2, you’ll
fit the words into an outline of Holmes’s head (Figure 3-3).

Figure 3-3: Silhouette of Sherlock Holmes

This will make for a more recognizable and eye-catching display.

T HE OBJEC T I V E

Use the wordcloud module to generate a shaped word cloud for a novel.

The Word Cloud and PIL Modules
You’ll use a module called wordcloud to generate the word cloud. You can
install it using pip.

pip install wordcloud

Or, if you’re using Anaconda, use the following command:

conda install -c conda-forge wordcloud

https://www.wordclouds.com/
https://www.jasondavies.com/wordcloud/

66 Chapter 3

You can find the web page for wordcloud here: http://amueller.github.io
/word_cloud/.

You’ll also need the Python Imaging Library (PIL) to work with images.
Use pip again to install it.

pip install pillow

Or, for Anaconda, use this:

conda install -c anaconda pillow

In case you’re wondering, pillow is the successor project of PIL,
which was discontinued in 2011. To learn more about it, visit https://pillow
.readthedocs.io/en/stable/.

The Word Cloud Code
To make the shaped word cloud, you’ll need an image file and a text
file. The image shown in Figure 3-3 came from iStock by Getty Images
(https://www.istockphoto.com/vector/detective-hat-gm698950970-129478957/).
This represents the “small” resolution at around 500×600 pixels.

A similar but copyright-free image (holmes.png) is provided with the
book’s downloadable files. You can find the text file (hound.txt), image file
(holmes.png), and code (wc_hound.py) in the Chapter_3  folder.

Importing Modules, Text Files, Image Files, and Stop Words

Listing 3-8 imports modules, loads the novel, loads the silhouette image
of Holmes, and creates a set of stop words you’ll want to exclude from the
cloud.

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS

Load a text file as a string.
 with open('hound.txt') as infile:

 text = infile.read()

Load an image as a NumPy array.
mask = np.array(Image.open('holmes.png'))

Get stop words as a set and add extra words.
stopwords = STOPWORDS

 stopwords.update(['us', 'one', 'will', 'said', 'now', 'well', 'man', 'may',
 'little', 'say', 'must', 'way', 'long', 'yet', 'mean',
 'put', 'seem', 'asked', 'made', 'half', 'much',
 'certainly', 'might', 'came'])

Listing 3-8: Importing modules and loading text, image, and stop words

wc_hound.py,
part 1

http://amueller.github.io/word_cloud/
http://amueller.github.io/word_cloud/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://www.istockphoto.com/vector/detective-hat-gm698950970-129478957

Summarizing Speeches with Natural Language Processing 67

Begin by importing NumPy and PIL. PIL will open the image, and NumPy
will turn it into a mask. You started using NumPy in Chapter 1; in case you
skipped it, see the “Installing the Python Libraries” section on page 6.
Note that the pillow module continues to use the acronym PIL for backward
compatibility.

You’ll need matplotlib, which you downloaded in the “Installing the
Python Libraries” section of Chapter 1, to display the word cloud. The
wordcloud module comes with its own list of stop words, so import STOPWORDS
along with the cloud functionality.

Next, load the novel’s text file and store it in a variable named text .
As described in the discussion of Listing 2-2 in Chapter 2, you may encounter
a UnicodeDecodeError when loading the text.

UnicodeDecodeError: 'ascii' codec can't decode byte 0x93 in position 365:
ordinal not in range(128)

In this case, try modifying the open() function by adding encoding and
errors arguments.

 with open('hound.txt', encoding='utf-8', errors='ignore') as infile:

With the text loaded, use PIL’s Image.open() method to open the image
of Holmes and use NumPy to turn it into an array. If you’re using the iStock
image of Holmes, change the image’s filename as appropriate.

Assign the STOPWORDS set imported from wordcloud to the stopwords vari-
able. Then update the set with a list of additional words that you want to
exclude . These will be words like said and now that dominate the word
cloud but add no useful content. Determining what they are is an iterative
process. You generate the word cloud, remove words that you don’t think
contribute, and repeat. You can comment out this line to see the benefit.

N O T E 	 To update a container like STOPWORDS, you need to know whether it’s a list, dictionary,
set, and so on. Python’s built-in type() function returns the class type of any object
passed as an argument. In this case, print(type(STOPWORDS)) yields <class 'set'>.

Generating the Word Cloud

Listing 3-9 generates the word cloud and uses the silhouette as a mask, or
an image used to hide portions of another image. The process used by word-
cloud is sophisticated enough to fit the words within the mask, rather than
simply truncating them at the edges. In addition, numerous parameters are
available for changing the appearance of the words within the mask.

wc = WordCloud(max_words=500,
 relative_scaling=0.5,
 mask=mask,
 background_color='white',
 stopwords=stopwords,
 margin=2,
 random_state=7,

wc_hound.py,
part 2

68 Chapter 3

 contour_width=2,
 contour_color='brown',
 colormap='copper').generate(text)

colors = wc.to_array()

Listing 3-9: Generating the word cloud

Name a variable wc and call WordCloud(). There are a lot of parameters,
so I’ve placed each on its own line for clarity. For a list and description of all
the parameters available, visit https://amueller.github.io/word_cloud/generated
/wordcloud.WordCloud.html.

Start by passing the maximum number of words you want to use. The
number you set will display the n most common words in the text. The
more words you choose to display, the easier it will be to define the edges
of the mask and make it recognizable. Unfortunately, setting the maximum
number too high will also result in a lot of tiny, illegible words. For this
project, start with 500.

Next, to control the font size and relative importance of each word, set
the relative_scaling parameter to 0.5. For example, a value of 0 gives prefer-
ence to a word’s rank to determine the font size, while a value of 1 means that
words that occur twice as often will appear twice as large. Values between 0
and 0.5 tend to strike the best balance between rank and frequency.

Reference the mask variable and set its background color to white.
Assigning no color defaults to black. Then reference the stopwords set that
you edited in the previous listing.

The margin parameter will control the spacing of the displayed words.
Using 0 will result in tightly packed words. Using 2 will allow for some
whitespace padding.

To place the words around the word cloud, use a random number
generator and set random_state to 7. There’s nothing special about this value;
I just felt that it produced an attractive arrangement of words.

The random_state parameter fixes the seed number so that the results
are repeatable, assuming no other parameters are changed. This means the
words will always be arranged in the same way. Only integers are accepted.

Now, set contour_width to 2. Any value greater than zero creates an outline
around a mask. In this case, the outline is squiggly due to the resolution of
the image (Figure 3-4).

Set the color of the outline to brown using the contour_color parameter.
Continue using a brownish palette by setting colormap to copper. In matplotlib,
a colormap is a dictionary that maps numbers to colors. The copper colormap
produces text ranging in color from pale flesh to black. You can see its spec-
trum, along with many other color options, at https://matplotlib.org/gallery
/color/colormap_reference.html. If you don’t specify a colormap, the program
will use the default colors.

Use dot notation to call the generate() method to build the word cloud.
Pass it the text string as an argument. End this listing by naming a colors
variable and calling the to_array() method on the wc object. This method
converts the word cloud image into a NumPy array for use with matplotlib.

https://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html
https://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html
https://matplotlib.org/gallery/color/colormap_reference.html
https://matplotlib.org/gallery/color/colormap_reference.html

Summarizing Speeches with Natural Language Processing 69

Figure 3-4: Example of masked word cloud with an outline (left) versus without (right)

Plotting the Word Cloud

Listing 3-10 adds a title to the word cloud and uses matplotlib to display it. It
also saves the word cloud image as a file.

plt.figure()
plt.title("Chamberlain Hunt Academy Senior Class Presents:\n",
 fontsize=15, color='brown')
plt.text(-10, 0, "The Hound of the Baskervilles",
 fontsize=20, fontweight='bold', color='brown')
plt.suptitle("7:00 pm May 10-12 McComb Auditorium",
 x=0.52, y=0.095, fontsize=15, color='brown')
plt.imshow(colors, interpolation="bilinear")
plt.axis('off')
plt.show()
##plt.savefig('hound_wordcloud.png')

Listing 3-10: Plotting and saving the word cloud

Start by initializing a matplotlib figure. Then call the title() method
and pass it the name of the school, along with a font size and color.

You’ll want the name of the play to be bigger and bolder than the other
titles. Since you can’t change the text style within a string with matplotlib,
use the text() method to define a new title. Pass it (x, y) coordinates (based
on the figure axes), a text string, and text style details. Use trial and error
with the coordinates to optimize the placement of the text. If you’re using
the iStock image of Holmes, you may need to change the x coordinate from
-10 to something else to achieve the best balance with the asymmetrical
silhouette.

wc_hound.py,
part 3

70 Chapter 3

Finish the titles by placing the play’s time and venue at the bottom of
the figure. You could use the text() method again, but instead, let’s take
a look at an alternative, pyplot’s suptitle() method. The name stands for
“super titles.” Pass it the text, the (x, y) figure coordinates, and styling
details.

To display the word cloud, call imshow()—for image show—and
pass it the colors array you made previously. Specify bilinear for color
interpolation.

Turn off the figure axes and display the word cloud by calling show().
If you want to save the figure, uncomment the savefig() method. Note that
matplotlib can read the extension in the filename and save the figure in the
correct format. As written, the save command will not execute until you
manually close the figure.

Fine-Tuning the Word Cloud
Listing 3-10 will produce the word cloud in Figure 3-5. You may get a differ-
ent arrangement of words as the algorithm is stochastic.

Figure 3-5: The flyer generated by the wc_hound.py code

You can change the size of the display by adding an argument when you
initialize the figure. Here’s an example: plt.figure(figsize=(50, 60)).

There are many other ways to change the results. For example, setting
the margin parameter to 10 yields a sparser word cloud (Figure 3-6).

Summarizing Speeches with Natural Language Processing 71

Figure 3-6: The word cloud generated with margin=10

Changing the random_state parameter will also rearrange the words
within the mask (Figure 3-7).

Figure 3-7: The word cloud generated with
margin=10 and random_state=6

Tweaking the max_words and relative_scaling parameters will also change
the appearance of the word cloud. Depending on how detail-oriented you
are, all this can be a blessing or a curse!

Summary
In this chapter, you used extraction-based summarization techniques to
produce a synopsis of Martin Luther King Jr.’s “I Have a Dream” speech.
You then used a free, off-the-shelf module called gensim to summarize
Admiral McRaven’s “Make Your Bed” speech with even less code. Finally,
you used the wordcloud module to create an interesting design with words.

72 Chapter 3

Further Reading
Automate the Boring Stuff with Python: Practical Programming for Total Beginners
(No Starch Press, 2015), by Al Sweigart, covers regular expressions in
Chapter 7 and web scraping in Chapter 11, including use of the requests
and Beautiful Soup modules.

Make Your Bed: Little Things That Can Change Your Life…And Maybe the
World, 2nd ed. (Grand Central Publishing, 2017), by William H. McRaven,
is a self-help book based on the admiral’s commencement address at the
University of Texas. You can find the actual speech online on https://www
.youtube.com/.

Challenge Project: Game Night
Use wordcloud to invent a new game for game night. Summarize Wikipedia
or IMDb synopses of movies and see whether your friends can guess the
movie title. Figure 3-8 shows some examples.

Figure 3-8: Word clouds for two movies released in 2010: How to
Train Your Dragon and Prince of Persia

https://www.youtube.com/watch?v=FPQJIxq30ak
https://www.youtube.com/watch?v=FPQJIxq30ak

Summarizing Speeches with Natural Language Processing 73

If you’re not into movies, pick something else. Alternatives include
famous novels, Star Trek episodes, and song lyrics (Figure 3-9).

Figure 3-9: Word cloud made from song lyrics (Donald Fagen’s “I.G.Y.”)

Board games have seen a resurgence in recent years, so you could follow
this trend and print the word clouds on card stock. Alternatively, you could
keep things digital and present the player with multiple-choice answers for
each cloud. The game should keep track of the number of correct answers.

Challenge Project: Summarizing Summaries
Test your program from Project 3 on previously summarized text, such as
Wikipedia pages. Only five sentences produced a good overview of gensim.

Enter max words per sentence for summary: 30
Enter number of sentences for summary: 5

SUMMARY:
Gensim is implemented in Python and Cython.
Gensim is an open-source library for unsupervised topic modeling and natural
language processing, using modern statistical machine learning.
[12] Gensim is commercially supported by the company rare-technologies.com,
who also provide student mentorships and academic thesis projects for Gensim
via their Student Incubator programme.
The software has been covered in several new articles, podcasts and
interviews.
Gensim is designed to handle large text collections using data streaming and
incremental online algorithms, which differentiates it from most other machine
learning software packages that target only in-memory processing.

Next, try the gensim version from Project 4 on those boring services
agreements no one ever reads. An example Microsoft agreement is available
at https://www.microsoft.com/en-us/servicesagreement/default.aspx. Of course, to
evaluate the results, you’ll have to read the full agreement, which almost no
one ever does! Enjoy the catch-22!

https://www.microsoft.com/en-us/servicesagreement/default.aspx

74 Chapter 3

Challenge Project: Summarizing a Novel
Write a program that summarizes The Hound of the Baskervilles by chapter.
Keep the chapter summaries short, at around 75 words each.

For a copy of the novel with chapter headings, scrape the text off the
Project Gutenberg site using the following line of code: url = 'http://www
.gutenberg.org/files/2852/2852-h/2852-h.htm'.

To break out chapter elements, rather than paragraph elements, use
this code:

chapter_elems = soup.select('div[class="chapter"]')
chapters = chapter_elems[2:]

You’ll also need to select paragraph elements (p_elems) from within
each chapter, using the same methodology as in dream_summary.py.

The following snippets show some of the results from using a word
count of 75 per chapter:

--snip--

Chapter 3:
"Besides, besides—" "Why do you hesitate?” "There is a realm in which the most
acute and most experienced of detectives is helpless." "You mean that the
thing is supernatural?" "I did not positively say so." "No, but you evidently
think it." "Since the tragedy, Mr. Holmes, there have come to my ears several
incidents which are hard to reconcile with the settled order of Nature." "For
example?" "I find that before the terrible event occurred several people had
seen a creature upon the moor which corresponds with this Baskerville demon,
and which could not possibly be any animal known to science.

--snip--

Chapter 6:
"Bear in mind, Sir Henry, one of the phrases in that queer old legend which
Dr. Mortimer has read to us, and avoid the moor in those hours of darkness
when the powers of evil are exalted." I looked back at the platform when we
had left it far behind and saw the tall, austere figure of Holmes standing
motionless and gazing after us.

Chapter 7:
I feared that some disaster might occur, for I was very fond of the old man,
and I knew that his heart was weak." "How did you know that?" "My friend
Mortimer told me." "You think, then, that some dog pursued Sir Charles, and
that he died of fright in consequence?" "Have you any better explanation?" "I
have not come to any conclusion." "Has Mr. Sherlock Holmes?" The words took
away my breath for an instant but a glance at the placid face and steadfast
eyes of my companion showed that no surprise was intended.

--snip--

Summarizing Speeches with Natural Language Processing 75

Chapter 14:
"What’s the game now?" "A waiting game." "My word, it does not seem a very
cheerful place," said the detective with a shiver, glancing round him at the
gloomy slopes of the hill and at the huge lake of fog which lay over the
Grimpen Mire.

Far away on the path we saw Sir Henry looking back, his face white in the
moonlight, his hands raised in horror, glaring helplessly at the frightful
thing which was hunting him down.

--snip--

Challenge Project: It’s Not Just What You Say,
It’s How You Say It!

The text summarization programs you have written so far print sentences
strictly by their order of importance. That means the last sentence in a speech
(or any text) might become the first sentence in the summary. The goal of
summarization is to find the important sentences, but there’s no reason you
can’t alter the way that they’re displayed.

Write a text summarization program that displays the most important
sentences in their original order of appearance. Compare the results to those
produced by the program in Project 3. Does this make a noticeable improve-
ment in the summaries?

4
S E N D I N G S U P E R - S E C R E T

M E S S A G E S W I T H A B O O K C I P H E R

The Key to Rebecca is a critically acclaimed
best-selling novel by Ken Follett. Set in

Cairo in World War II and based on actual
events, it tells the story of a Nazi spy and the

British intelligence officer who pursued him. The
title refers to the spy’s cipher system, which used the
famous gothic novel Rebecca, written by Daphne du
Maurier, as a key. Rebecca is considered one of the
greatest novels of the 20th century, and the Germans
really did use it as a code book during the war.

The Rebecca cipher is a variation of the one-time pad, an unbreakable
encryption technique that requires a key that is at least the same size as the
message being sent. Both the sender and receiver have a copy of the pad,
and after one use, the top sheet is ripped off and discarded.

78 Chapter 4

One-time pads provide absolute, perfect security—uncrackable even
by a quantum computer! Despite this, the pads have several practical
drawbacks that prevent widespread use. Key among these are the need to
securely transport and deliver the pads to the sender and receiver, the need
to safely store them, and the difficulty in manually encoding and decoding
the messages.

In the The Key to Rebecca, both parties must know the encryption rules
and have the same edition of the book to use the cipher. In this chapter, you’ll
transfer the manual method described in the book into a more secure—
and easier to use—digital technique. In the process, you’ll get to work with
useful functions from the Python Standard Library, the collections module,
and the random module. You’ll also learn a little more about Unicode, a stan-
dard used to ensure that characters, such as letters and numbers, are uni-
versally compatible across all platforms, devices, and applications.

The One-Time Pad
A one-time pad is basically an ordered stack of sheets printed with truly
random numbers, usually in groups of five (Figure 4-1). To make them easy
to conceal, the pads tend to be small and may require a powerful magni-
fying glass to read. Despite being old-school, one-time pads produce the
most secure ciphers in the world, as every letter is encrypted with a unique
key. As a result, cryptanalysis techniques, such as frequency analysis, simply
can’t work.

73983 91543 74556 01283
24325 88622 92061 02865
22764 47630 14408 80067
13154 81950 11992 84763
46381 99463 49155 40241
98484 77841 03878 14645

73919 83946 40337
12396 26327 76612 12471
18432 41657 93893 10041
77381 39150 47951 83242
34211 02998 15002 08183

11774

Figure 4-1: Example of a one-time pad sheet

To encrypt a message with the one-time pad in Figure 4-1, start by
assigning each letter of the alphabet a two-digit number. A equals 01,
B equals 02, and so on, as shown in the following table.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

B C D E F G H I J K L M N O P Q R S T U V W X Y ZA

Sending Super-Secret Messages with a Book Cipher 79

Next, convert the letters in your short message into numbers:

08 05 18 05 11 09 20 20 25 11 09 20 20 25 convert letters to numbers

E R E K I T T Y K I T T Y original messageH

Starting at the upper left of the one-time pad sheet and reading left to
right, assign a number pair (key) to each letter and add it to the number
value of the letter. You’ll want to work with base 10 number pairs, so if your
sum is greater than 100, use modular arithmetic to truncate the value to
the last two digits (103 becomes 03). The numbers in shaded cells in the
following diagrams are the result of modular arithmetic.

08 05 18 05 11 09 20 20 25 11 09 20 20 25 convert letters to numbers

E R E K I T T Y K I T T Y original messageH

81 03 57 20 54 83 75 80 37 94 33 52 78 11 ciphertext

98 39 15 43 74 55 60 12 83 24 32 58 86 from sender’s OTP73

The last row in this diagram represents the ciphertext. Note that KITTY,
duplicated in the plaintext, is not repeated in the ciphertext. Each encryp-
tion of KITTY is unique.

To decrypt the ciphertext back to plaintext, the recipient uses the same
sheet from their identical one-time pad. They place their number pairs
below the ciphertext pairs and subtract. When this results in a negative
number, they use modular subtraction (adding 100 to the ciphertext value
before subtracting). They finish by converting the resulting number pairs
back to letters.

81 03 57 20 54 83 75 80 37 94 33 52 78 11 ciphertext

98 39 15 43 74 55 60 12 83 24 32 58 86 from recipient’s OTP73

08 05 18 05 11 09 20 20 25 11 09 20 20 25 convert numbers to letters

E R E K I T T Y K I T T Y decrypted plaintextH

To ensure that no keys are repeated, the number of letters in the mes-
sage can’t exceed the number of keys on the pad. This forces the use of
short messages, which have the advantage of being easier to encrypt and
decrypt and which offer a cryptanalyst fewer opportunities to decipher the
message. Some other guidelines include the following:

•	 Spell out numbers (for example, TWO for 2).

•	 End sentences with an X in place of a period (for example, CALL AT
NOONX).

•	 Spell out any other punctuation that can’t be avoided (for example,
COMMA).

•	 End the plaintext message with XX.

80 Chapter 4

The Rebecca Cipher
In the novel The Key to Rebecca, the Nazi spy uses a variant of the one-time
pad. Identical editions of the novel Rebecca are purchased in Portugal. Two
are retained by the spy; the other two are given to Field Marshal Rommel’s
staff in North Africa. The encrypted messages are sent by radio on a pre-
determined frequency. No more than one message is sent per day and always
at midnight.

To use the key, the spy would take the current date—say, May 28,
1942—and add the day to the year (28 + 42 = 70). This would determine
which page of the novel to use as a one-time pad sheet. Because May is the
fifth month, every fifth word in a sentence would be discounted. Because
the Rebecca cipher was meant to be used only during a relatively short
period in 1942, the spy didn’t have to worry about repetitions in the calen-
dar causing repetition in the keys.

The spy’s first message was the following: HAVE ARRIVED. CHECKING
IN. ACKNOWLEDGE. Beginning at the top of page 70, he read along until
he found the letter H. It was the 10th character, discounting every 5th letter.
The 10th letter of the alphabet is J, so he used this in his ciphertext to
represent H. The next letter, A, was found three letters after H, so it was
encoded using the third letter of the alphabet, C. This continued until the
full message was encrypted. For rare letters like X or Z, author Ken Follett
states that special rules were applied but does not describe them.

Using a book in this manner had a distinct advantage over a true
one-time pad. To quote Follett, “A pad was unmistakably for the purpose
of encipherment, but a book looked quite innocent.” A disadvantage
remained, however: the process of encryption and decryption is tedious
and potentially error prone. Let’s see if we can remedy this using Python!

Project #6: The Digital Key to Rebecca
Turning the Rebecca technique into a digital program offers several advan-
tages over a one-time pad:

•	 The encoding and decoding processes become fast and error-free.

•	 Longer messages can be sent.

•	 Periods, commas, and even spaces can be directly encrypted.

•	 Rare letters, like z, can be chosen from anywhere in the book.

•	 The code book can be hidden among thousands of ebooks on a hard
drive or in the cloud.

The last item is important. In the novel, the British intelligence offi-
cer finds a copy of Rebecca at a captured German outpost. Through simple
deductive reasoning he recognizes it as a substitute for a one-time pad.
With a digital approach, this would have been much more difficult. In fact,
the novel could be kept on a small, easily concealed device such as an SD card.

Sending Super-Secret Messages with a Book Cipher 81

This would make it similar to a one-time pad, which is often no bigger than
a postage stamp.

A digital approach does have one disadvantage, however: the program
is a discoverable item. Whereas a spy could simply memorize the rules for a
one-time pad, with a digital approach the rules must be ensconced in the
software. This weakness can be minimized by writing the program so that
it looks innocent—or at least cryptic—and having it request input from the
user for the message and the name of the code book.

T HE OBJEC T I V E

Write a Python program that encrypts and decrypts messages using a digital novel as a
one-time pad.

The Strategy
Unlike the spy, you won’t need all the rules used in the novel, and many
wouldn’t work anyway. If you’ve ever used any kind of ebook, you know that
page numbers are meaningless. Changes to screen sizes and text sizes ren-
der all such page numbers nonunique. And because you can choose letters
from anywhere in the book, you don’t necessarily need special rules for rare
letters or for discounting numbers in a count.

So, you don’t need to focus on perfectly reproducing the Rebecca
cipher. You just need to produce something similar and, ideally, better.

Luckily, Python iterables, such as lists and tuples, use numerical indexes
to keep track of every single item within them. By loading a novel as a list,
you can use these indexes as unique starting keys for each character. You
can then shift the indexes based on the day of the year, emulating the spy’s
methodology in The Key to Rebecca.

Unfortunately, Rebecca is not yet in the public domain. In its place, we’ll
substitute the text file of Sir Arthur Conan Doyle’s The Lost World that you
used in Chapter 2. This novel contains 51 distinct characters that occur
421,545 times, so you can randomly choose indexes with little chance of
duplication. This means you can use the whole book as a one-time pad each
time you encrypt a message, rather than restrict yourself to a tiny collection
of numbers on a single one-time pad sheet.

N O T E 	 You can download and use a digital version of Rebecca if you want. I just can’t
provide you with a copy for free!

Because you’ll be reusing the book, you’ll need to worry about both
message-to-message and in-message duplication of keys. The longer the mes-
sage, the more material the cryptanalyst can study, and the easier it is to
crack the code. And if each message is sent with the same encryption key,
all the intercepted messages can be treated as a single large message.

82 Chapter 4

For the message-to-message problem, you can imitate the spy and
shift the index numbers by the day of the year, using a range of 1 to 366 to
account for leap years. In this scheme, February 1 would be 32. This will
effectively turn the book into a new one-time pad sheet each time, as dif-
ferent keys will be used for the same characters. Shifting, by one or more
increments, resets all the indexes and essentially “tears off” the previous
sheet. And unlike a one-time pad, you don’t have to bother with disposing
of a piece of paper!

For the in-message duplication problem, you can run a check before
transmitting the message. It’s unlikely but possible for the program to pick
the same letter twice during encryption and thus use the same index twice.
Duplicate indexes are basically repeating keys, and these can help a crypt-
analyst break your code. So, if duplicate indexes are found, you can rerun
the program or reword the message.

You’ll also need similar rules to those used in The Key to Rebecca.

•	 Both parties need identical digital copies of The Lost World.

•	 Both parties need to know how to shift the indexes.

•	 Keep messages as short as possible.

•	 Spell out numbers.

The Encryption Code
The following rebecca.py code will take a message and return an encrypted or
plaintext version, as specified by the user. The message can be typed in or
downloaded from the book’s website. You’ll also need the lost.txt text file in
the same folder as the code.

For clarity, you’ll use variable names like ciphertext, encrypt, message, and
so on. If you were a real spy, however, you’d avoid incriminating terms in
case the enemy got their hands on your laptop.

Importing Modules and Defining the main() Function

Listing 4-1 imports modules and defines the main() function, used to run
the program. This function will ask for user input, call the functions
needed to encrypt or decrypt text, check for duplicate keys, and print the
ciphertext or plaintext.

Whether you define main() at the start or end of a program is a matter
of choice. Sometimes it provides a good, easily readable summary of the
whole program. Other times it may feel out of place, like the cart before the
horse. From Python’s perspective, it won’t matter where you place it so long
as you call the function at the end.

import sys
import os
import random
from collections import defaultdict, Counter

rebecca.py,
part 1

Sending Super-Secret Messages with a Book Cipher 83

def main():
 message = input("Enter plaintext or ciphertext: ")
 process = input("Enter 'encrypt' or 'decrypt': ")
 while process not in ('encrypt', 'decrypt'):
 process = input("Invalid process. Enter 'encrypt' or 'decrypt': ")
 shift = int(input("Shift value (1-366) = "))
 while not 1 <= shift <= 366:
 shift = int(input("Invalid value. Enter digit from 1 to 366: ")

  infile = input("Enter filename with extension: ")

 if not os.path.exists(infile):
 print("File {} not found. Terminating.".format(infile), file=sys.stderr)
 sys.exit(1)
 text = load_file(infile)
 char_dict = make_dict(text, shift)

 if process == 'encrypt':
 ciphertext = encrypt(message, char_dict)

  if check_for_fail(ciphertext):
 print("\nProblem finding unique keys.", file=sys.stderr)
 print("Try again, change message, or change code book.\n",
 file=sys.stderr)
 sys.exit()

  print("\nCharacter and number of occurrences in char_dict: \n")
 print("{: >10}{: >10}{: >10}".format('Character', 'Unicode', 'Count'))
 for key in sorted(char_dict.keys()):
 print('{:>10}{:>10}{:>10}'.format(repr(key)[1:-1],
 str(ord(key)),
 len(char_dict[key])))
 print('\nNumber of distinct characters: {}'.format(len(char_dict)))
 print("Total number of characters: {:,}\n".format(len(text)))

 print("encrypted ciphertext = \n {}\n".format(ciphertext))
 print("decrypted plaintext = ")

  for i in ciphertext:
 print(text[i - shift], end='', flush=True)

 elif process == 'decrypt':
 plaintext = decrypt(message, text, shift)
 print("\ndecrypted plaintext = \n {}".format(plaintext))

Listing 4-1: Importing modules and defining the main() function

Start by importing sys and os, two modules that let you interface with
the operating system; then the random module; and then defaultdict and
Counter from the collections module.

The collections module is part of the Python Standard Library and
includes several container data types. You can use defaultdict to build a
dictionary on the fly. If defaultdict encounters a missing key, it will supply
a default value rather than throw an error. You’ll use it to build a dictionary
of the characters in The Lost World and their corresponding index values.

84 Chapter 4

A Counter is a dictionary subclass for counting hashable objects. Elements
are stored as dictionary keys, and their counts are stored as dictionary
values. You’ll use this to check your ciphertext and ensure no indexes are
duplicated.

At this point, you begin the definition of the main() function. The
function starts by asking the user for the message to encrypt or decrypt.
For maximum security, the user should type this in. The program then asks
the user to specify whether they want encryption or decryption. Once the
user chooses, the program asks for the shift value. The shift value represents
the day of the year, over the inclusive and consecutive range of 1 to 366.
Next, ask for the infile, which will be lost.txt, the digital version of The Lost
World .

Before proceeding, the program checks that the file exists. It uses the
operating system module’s path.exists() method and passes it the infile
variable. If the file doesn’t exist or if the path and/or filename is incorrect,
the program lets the user know, uses the file=sys.stderr option to color the
message “error red” in the Python shell, and terminates the program with
sys.exit(1). The 1 is used to flag that the program terminated with an error,
as opposed to a clean termination.

Next, you call some functions that you’ll define later. The first function
loads the lost.txt file as a string named text, which includes nonletter charac-
ters such as spaces and punctuation. The second builds a dictionary of the
characters and their corresponding indexes, with the shift value applied.

Now you start a conditional to evaluate the process being used. As I
mentioned, we’re using incriminating terms like encrypt and decrypt for
clarity. You’d want to disguise these for real espionage work. If the user
has chosen to encrypt, call the function that encrypts the message with
the character dictionary. When the function returns, the program has
encrypted the message. But don’t assume it worked as planned! You need
to check that it decrypted correctly and that no keys are duplicated. To do
this, you start a series of quality control steps.

First, you check for duplicate keys . If this function returns True,
instruct the user to try again, change the message, or change the book to
something other than The Lost World. For each character in the message,
you’ll use the char_dict and choose an index at random. Even with hundreds
or even thousands of indexes for each character, you may still choose the
same index more than once for a given character.

Rerunning the program with slightly different parameters, as listed
earlier, should fix this, unless you have a long message with a lot of low-
frequency characters. Handling this rare case may require rewording the
message or finding a larger manuscript than The Lost World.

N O T E 	 Python’s random module does not produce truly random numbers but rather pseudo-
random numbers that can be predicted. Any cipher using pseudorandom numbers
can potentially be cracked by a cryptanalyst. For maximum security when generating
random numbers, you should use Python’s os.urandom() function.

Sending Super-Secret Messages with a Book Cipher 85

Now, print the contents of the character dictionary so you can see how
many times the various characters occur in the novel . This will help
guide what you put in messages, though The Lost World contains a healthy
helping of useful characters.

Character and number of occurrences in char_dict:

 Character Unicode Count
 \n 10 7865
 32 72185
 ! 33 282
 " 34 2205
 ' 39 761
 (40 62
) 41 62
 , 44 5158
 - 45 1409
 . 46 3910
 0 48 1
 1 49 7
 2 50 3
 3 51 2
 4 52 2
 5 53 2
 6 54 1
 7 55 4
 8 56 5
 9 57 2
 : 58 41
 ; 59 103
 ? 63 357
 a 97 26711
 b 98 4887
 c 99 8898
 d 100 14083
 e 101 41156
 f 102 7705
 g 103 6535
 h 104 20221
 i 105 21929
 j 106 431
 k 107 2480
 l 108 13718
 m 109 8438
 n 110 21737
 o 111 25050
 p 112 5827
 q 113 204
 r 114 19407
 s 115 19911
 t 116 28729
 u 117 10436
 v 118 3265

86 Chapter 4

 w 119 8536
 x 120 573
 y 121 5951
 z 122 296
 { 123 1
 } 125 1

Number of distinct characters: 51
Total number of characters: 421,545

To generate this table, you use Python’s Format Specification Mini-
Language (https://docs.python.org/3/library/string.html#formatspec) to print
headers for the three columns. The number in curly brackets denotes how
many characters should be in the string, and the greater-than sign desig-
nates right justification.

The program then loops through the keys in the character dictionary
and prints them using the same column width and justification. It prints the
character, its Unicode value, and the number of times it occurs in the text.

You use repr() to print the key. This built-in function returns a string
containing a printable representation of an object. That is, it returns all
information about the object in a format useful for debugging and develop-
ment purposes. This allows you to explicitly print characters like newline
(\n) and space. The index range [1:-1] excludes the quotes on both sides of
the output string.

The ord() built-in function returns an integer representing the Unicode
code point for a character. Computers deal only with numbers, so they must
assign a number to every possible character, such as %, 5, , or A. The
Unicode Standard ensures that every character, no matter what platform,
device, application, or language, has a unique number and is universally
compatible. By showing the user the Unicode values, the program lets the
user pick up on anything strange happening with a text file, such as the same
letter showing up as multiple distinct characters.

For the third column, you get the length of each dictionary key. This
will represent the number of times that character appears in the novel. The
program then prints the number of distinct characters and the total of all
characters in the text.

Finally, you finish the encryption process by printing the ciphertext,
and then the decrypted plaintext, as a check. To decipher the message, the
program loops through each item in the ciphertext and uses the item as an
index for text , subtracting the shift value, which was added earlier. When
you print the results, the program uses end='' in place of the default new-
line, so each character isn’t on a separate line.

The main() function ends with a conditional statement to check whether
process == 'decrypt'. If the user chooses to decrypt the message, the pro-
gram calls the decrypt() function and then prints the decrypted plaintext.
Note that you could simply use else here, but I chose to use elif for clarity
and readability.

Sending Super-Secret Messages with a Book Cipher 87

Loading a File and Making a Dictionary

Listing 4-2 defines functions to load a text file and make a dictionary of
characters in the file and their corresponding indexes.

def load_file(infile):
 """Read and return text file as a string of lowercase characters."""
 with open(infile) as f:
 loaded_string = f.read().lower()
 return loaded_string

 def make_dict(text, shift):
 """Return dictionary of characters and shifted indexes."""
 char_dict = defaultdict(list)
 for index, char in enumerate(text):

  char_dict[char].append(index + shift)
 return char_dict

Listing 4-2: Defining the load_file() and make_dict() functions

This listing begins by defining a function to load a text file as a string.
Using with to open the file ensures it will close automatically when the func-
tion ends.

Some users may get an error, such as the following one, when loading
text files:

UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position
27070:character maps to <undefined>

In this case, try modifying the open function by adding the encoding and
errors arguments.

 with open(infile, encoding='utf-8', errors='ignore') as f:

For more on this issue, see page 35 in Chapter 2.
After opening the file, read it to a string and convert all the text to lower-

case. Then return the string.
The next step is to turn the string into a dictionary. Define a function that

takes this string and the shift value as arguments . The program creates a
char_dict variable using defaultdict(). This variable will be a dictionary. The
program then passes the type constructor for list to defaultdict(), as you
want the dictionary values to be a list of indexes.

With defaultdict(), whenever an operation encounters an item that isn’t
already in the dictionary, a function named default_factory() is called with
no arguments, and the output is used as the value. Any key that doesn’t
exist gets the value returned by default_factory, and no KeyError is raised.

If you tried to make the dictionary on the fly without the handy collections
module, you’d get the KeyError, as shown in the next example.

rebecca.py,
part 2

88 Chapter 4

>>> mylist = ['a', 'b', 'c']
>>> d = dict()
>>> for index, char in enumerate(mylist):
 d[char].append(index)

Traceback (most recent call last):
 File "<pyshell#16>", line 2, in <module>
 d[char].append(index)
KeyError: 'a'

The built-in enumerate() function acts as an automatic counter, so you
can easily get the index for each character in the string derived from The
Lost World. The keys in char_dict are characters, and the characters can
occur thousands of times within text. So, the dictionary values are lists that
hold the indexes for all these character occurrences. By adding the shift
value to the index when it is appended to a value list, you ensure that the
indexes will be unique for each message .

Finish the function by returning the character dictionary.

Encrypting the Message

Listing 4-3 defines a function to encrypt the message. The resulting cipher-
text will be a list of indexes.

def encrypt(message, char_dict):
 """Return list of indexes representing characters in a message."""
 encrypted = []
 for char in message.lower():

  if len(char_dict[char]) > 1:
 index = random.choice(char_dict[char])
 elif len(char_dict[char]) == 1: # Random.choice fails if only 1 choice
 index = char_dict[char][0]

  elif len(char_dict[char]) == 0:
 print("\nCharacter {} not in dictionary.".format(char),
 file=sys.stderr)
 continue
 encrypted.append(index)
 return encrypted

Listing 4-3: Defining a function to encrypt the plaintext message

The encrypt() function will take the message and char_dict as arguments.
Start it by creating an empty list to hold the ciphertext. Next, start loop-
ing through the characters in message and converting them to lowercase to
match the characters in char_dict.

If the number of indexes associated with the character is greater than 1,
the program uses the random.choice() method to choose one of the character’s
indexes at random .

If a character occurs only once in char_dict, random.choice() will throw
an error. To handle this, the program uses a conditional and hardwires the
choice of the index, which will be at position [0].

rebecca.py,
part 3

Sending Super-Secret Messages with a Book Cipher 89

If the character doesn’t exist in The Lost World, it won’t be in the diction-
ary, so use a conditional to check for this . If it evaluates to True, print an
alert for the user and use continue to return to the start of the loop without
choosing an index. Later, when the quality control steps run on the cipher-
text, a space will appear in the decrypted plaintext where this character
should be.

If continue is not called, then the program appends the index to the
encrypted list. When the loop ends, you return the list to end the function.

To see how this works, let’s look at the first message the Nazi spy sends
in The Key to Rebecca, shown here:

HAVE ARRIVED. CHECKING IN. ACKNOWLEDGE.

Using this message and a shift value of 70 yielded the following ran-
domly generated ciphertext:

[125711, 106950, 85184, 43194, 45021, 129218, 146951, 157084, 75611, 122047,
121257, 83946, 27657, 142387, 80255, 160165, 8634, 26620, 105915, 135897,
22902, 149113, 110365, 58787, 133792, 150938, 123319, 38236, 23859, 131058,
36637, 108445, 39877, 132085, 86608, 65750, 10733, 16934, 78282]

Your results may differ due to the stochastic nature of the algorithm.

Decrypting the Message

Listing 4-4 defines a function to decrypt the ciphertext. The user will copy
and paste the ciphertext when asked for input by the main() function.

def decrypt(message, text, shift):
 """Decrypt ciphertext list and return plaintext string."""
 plaintext = ''
 indexes = [s.replace(',', '').replace('[', '').replace(']', '')
 for s in message.split()]
 for i in indexes:
 plaintext += text[int(i) - shift]
 return plaintext

Listing 4-4: Defining a function to decrypt the plaintext message

The listing starts by defining a function named decrypt() with the
message, the novel (text), and the shift value as parameters. Of course,
the message will be in ciphertext form, consisting of a list of numbers
representing shifted indexes. You immediately create an empty string to
hold the decrypted plaintext.

Most people will copy and paste the ciphertext when prompted for
input by the main() function. This input may or may not contain the square
brackets that came with the list. And because the user entered the cipher-
text using the input() function, the results are a string. To convert the
indexes to integers that can be shifted, you first need to remove the non-
digit characters. Do this using the string replace() and split() methods,
while also using list comprehension to return a list. List comprehension is
a shorthand way to execute loops in Python.

rebecca.py,
part 4

90 Chapter 4

To use replace(), you pass it the character you want replaced followed
by the character used to replace it. In this case, use a space for the replace-
ment. Note that you can “string” these together with dot notation, handling
the commas and brackets all in one go. How cool is that?

Next, start looping through the indexes. The program converts the
current index from a string to an integer so you can subtract the shift value
that was applied during encryption. You use the index to access the charac-
ter list and get the corresponding character. Then you add the character to
the plaintext string and return plaintext when the loop ends.

Checking for Failure and Calling the main() Function

Listing 4-5 defines a function to check the ciphertext for duplicate indexes
(keys) and finishes the program by calling the main() function. If the func-
tion discovers duplicate indexes, the encryption might have been com-
promised, and the main() function will tell the user how to fix it before
terminating.

def check_for_fail(ciphertext):
 """Return True if ciphertext contains any duplicate keys."""
 check = [k for k, v in Counter(ciphertext).items() if v > 1]
 if len(check) > 0:
 return True

if __name__ == '__main__':
 main()

Listing 4-5: Defining a function to check for duplicate indexes and calling main()

This listing defines a function named check_for_fail() that takes the
ciphertext as an argument. It checks to see whether any of the indexes in
the ciphertext are repeated. Remember, the one-time pad approach works
because every key is unique; thus, every index in the ciphertext should be
unique.

To look for repeats, the program uses Counter again. It employs list
comprehension to build a list containing all the duplicate indexes. Here, k
stands for (dictionary) key, and v stands for (dictionary) value. Since Counter
produces a dictionary of counts for each key, what you’re saying here is this:
For every key-value pair in a dictionary made from the ciphertext, create
a list of all the keys that occur more than once. If there are duplicates,
append the corresponding key to the check list.

Now all you need to do is get the length of check. If it is greater than
zero, the encryption is compromised, and the program returns True.

The program ends with the boilerplate code to call the program as a
module or in stand-alone mode.

Sending Messages
The following message is based on a passage from The Key to Rebecca. You
can find it in the downloadable Chapter_4 folder as allied_attack_plan.txt.

rebecca.py,
part 5

Sending Super-Secret Messages with a Book Cipher 91

As a test, try sending it with a shift of 70. Use your operating system’s Select
All, Copy, and Paste commands to transfer the text when asked for input. If
it doesn’t pass the check_for_fail() test, run it again!

Allies plan major attack for Five June. Begins at oh five twenty with
bombardment from Aslagh Ridge toward Rommel east flank. Followed by tenth
Indian Brigade infantry with tanks of twenty second Armored Brigade on Sidi
Muftah. At same time, thirty second Army Tank Brigade and infantry to charge
north flank at Sidra Ridge. Three hundred thirty tanks deployed to south and
seventy to north.

The nice thing about this technique is that you can use proper punc-
tuation, at least if you type the message into the interpreter window. Text
copied in from outside may need to be stripped of the newline character
(such as \r\n or \n), placed wherever the carriage return was used.

Of course, only characters that occur in The Lost World can be encrypted.
The program will warn you of exceptions and then replace missing charac-
ters with a space.

To be sneaky, you don’t want to save plaintext or ciphertext messages to
a file. Cutting and pasting from the shell is the way to go. Just remember to
copy something new when you’re finished so you don’t leave incriminating
evidence on your clipboard!

If you want to get fancy, you can copy and paste text to the clipboard
straight from Python using pyperclip, written by Al Sweigart. You can learn
more at https://pypi.org/project/pyperclip/.

Summary
In this chapter, you got to work with defaultdict and Counter from the collec-
tions module; choice() from the random module; and replace(), enumerate(),
ord(), and repr() from the Python Standard Library. The result was an
encryption program, based on the one-time pad technique, that produces
unbreakable ciphertext.

Further Reading
The Key to Rebecca (Penguin Random House, 1980), by Ken Follett, is an
exciting novel noted for its depth of historical detail, accurate descriptions
of Cairo in World War II, and thrilling espionage storyline.

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography (Anchor, 2000), by Simon Singh, is an interesting review of
cryptography through the ages, including a discussion of the one-time pad.

If you enjoy working with ciphers, check out Cracking Codes with Python
(No Starch Press, 2018), by Al Sweigart. Aimed at beginners in both cryp-
tography and Python programming, this book covers many cipher types,
including reverse, Caesar, transposition, substitution, affine, and Vigenère.

https://pypi.org/project/pyperclip/

92 Chapter 4

Impractical Python Projects: Playful Programming Activities to Make You Smarter
(No Starch Press, 2019), by Lee Vaughan, includes additional ciphers such
as the Union route cipher, the rail fence cipher, and the Trevanion null
cipher as well as a technique for writing with invisible electronic ink.

Practice Project: Charting the Characters
If you have matplotlib installed (see “Installing the Python Libraries” on
page 6), you can visually represent the available characters in The Lost World,
along with their frequency of occurrence, using a bar chart. This can com-
plement the shell printout of each character and its count currently used in
the rebecca.py program.

The internet is rife with example code for matplotlib plots, so just search
for make a simple bar chart matplotlib. You’ll want to sort the counts in descend-
ing order before plotting.

The mnemonic for remembering the most common letters in English is
“etaoin.” If you plot in descending order, you’ll see that The Lost World data-
set is no exception (Figure 4-2)!

Figure 4-2: Frequency of occurrence of characters in the digital version of The Lost World

Note that the most common character is a space. This makes it easy to
encrypt spaces, further confounding any cryptanalysis!

You can find a solution, practice_barchart.py, in the appendix and on the
book’s website.

Sending Super-Secret Messages with a Book Cipher 93

Practice Project: Sending Secrets the WWII Way
According to the Wikipedia article on Rebecca (https://en.wikipedia.org/wiki/
Rebecca_(novel)), the Germans in North Africa in World War II really did
attempt to use the novel as the key to a book code. Rather than encode the
message letter by letter, sentences would be made using single words in the
book, referred to by page number, line, and position in the line.

Copy and edit the rebecca.py program so that it uses words rather than
letters. To get you started, here’s how to load the text file as a list of words,
rather than characters, using list comprehension:

with open('lost.txt') as f:
 words = [word.lower() for line in f for word in line.split()]
 words_no_punct = ["".join(char for char in word if char.isalpha())
 for word in words]

print(words_no_punct[:20]) # Print first 20 words as a QC check

The output should look like this:

['i', 'have', 'wrought', 'my', 'simple', 'plan', 'if', 'i', 'give', 'one',
'hour', 'of', 'joy', 'to', 'the', 'boy', 'whos', 'half', 'a', 'man']

Note that all punctuation, including apostrophes, has been removed.
Messages will need to follow this convention.

You’ll also need to handle words, such as proper names and place
names, that don’t occur in The Lost World. One approach would be a “first-
letter mode” where the recipient uses only the first letter of each word
between flags. The flags should be commonly occurring words, like a and
the, doubled. Alternate their use to make it easier to identify the start and
end flags. In this case, a a indicates the start of first-letter mode, and the the
indicates the end. For example, to handle the phrase Sidi Muftah with ten
tanks, first run it straight up to identify missing words.

Enter plaintext or ciphertext: sidi muftah with ten tanks
Enter 'encrypt' or 'decrypt': encrypt
Shift value (1-365) = 5
Enter filename with extension: lost.txt

Character sidi not in dictionary.

Character muftah not in dictionary.

Character tanks not in dictionary.

encrypted ciphertext =
 [23371, 7491]

decrypted plaintext =
with ten

https://en.wikipedia.org/wiki/Rebecca_(novel)
https://en.wikipedia.org/wiki/Rebecca_(novel)

94 Chapter 4

With the missing words identified, reword the message to spell them
using first-letter mode. I’ve highlighted the first letters in gray in the follow-
ing snippet:

Enter plaintext or ciphertext: a a so if do in my under for to all he the the
with ten a a tell all night kind so the the
Enter 'encrypt' or 'decrypt': encrypt
Shift value (1-365) = 5
Enter filename with extension: lost.txt

encrypted ciphertext =
 [29910, 70641, 30556, 60850, 72292, 32501, 6507, 18593, 41777, 23831, 41833,
16667, 32749, 3350, 46088, 37995, 12535, 30609, 3766, 62585, 46971, 8984,
44083, 43414, 56950]

decrypted plaintext =
a a so if do in my under for to all he the the with ten a a tell all night
kind so the the

There are 1,864 occurrences of a and 4,442 of the in The Lost World. If
you stick to short messages, you shouldn’t duplicate keys. Otherwise, you
may need to use multiple flag characters or disable the check-for-fail()
function and accept some duplicates.

Feel free to come up with your own method for handling problem
words. As consummate planners, the Germans surely had something in mind
or they wouldn’t have considered a book code in the first place!

You can find a simple first-letter solution, practice_WWII_words.py, in the
appendix or online at https://nostarch.com/real-world-python/.

https://nostarch.com/real-world-python/

5
F I N D I N G P L U T O

According to Woody Allen, 80 percent of
success is just showing up. This certainly

describes the success of Clyde Tombaugh,
an untrained Kansas farm boy growing up in

the 1920s. With a passion for astronomy but no money
for college, he took a stab in the dark and mailed his
best astronomical sketches to Lowell Observatory. To
his great surprise, he was hired as an assistant. A year
later, he had discovered Pluto and gained eternal glory!

Percival Lowell, the famous astronomer and founder of Lowell
Observatory, had postulated the presence of Pluto based on perturbations
in the orbit of Neptune. His calculations were wrong, but by pure coincidence,
he correctly predicted Pluto’s orbital path. Between 1906 and his death
in 1916, he had photographed Pluto twice. Both times, his team failed to
notice it. Tombaugh, on the other hand, photographed and recognized
Pluto in January 1930, after only a year of searching (Figure 5-1).

96 Chapter 5

Figure 5-1: Discovery plates for Pluto, indicated by the arrow

What Tombaugh accomplished was extraordinary. Without computers,
the methodology he followed was impractical, tedious, and demanding.
He had to photograph and re-photograph small parts of the sky night after
night, usually in a freezing cold dome shaken by icy winds. He then devel-
oped and sifted through all the negatives, searching for the faintest signs of
movement within crowded star fields.

Although he lacked a computer, he did have a state-of-the-art device,
known as a blink comparator, that let him rapidly switch between negatives from
successive nights. As viewed through the blink comparator, the stars remained
stationary, but Pluto, a moving object, flashed on and off like a beacon.

In this chapter, you’ll first write a Python program that replicates an
early 20th-century blink comparator. Then you’ll move into the 21st century
and write a program that automates the detection of moving objects using
modern computer vision techniques.

N O T E 	 In 2006, the International Astronomical Union reclassified Pluto as a dwarf planet.
This was based on the discovery of other Pluto-sized bodies in the Kuiper Belt, including
one—Eris—that is volumetrically smaller but 27 percent more massive than Pluto.

Project #7: Replicating a Blink Comparator
Pluto may have been photographed with a telescope, but it was found with a
microscope. The blink comparator (Figure 5-2), also called the blink micro-
scope, lets the user mount two photographic plates and rapidly switch from
looking at one to the other. During this “blinking,” any object that changes
position between photographs will appear to jump back and forth.

Finding Pluto 97

Figure 5-2: A blink comparator

For this technique to work, the photos need to be taken with the same
exposure and under similar viewing conditions. Most importantly, the stars
in the two images must line up perfectly. In Tombaugh’s day, technicians
achieved this through painstaking manual labor; they carefully guided the
telescope during the hour-long exposures, developed the photographic
plates, and then shifted them in the blink comparator to fine-tune the
alignment. Because of this exacting work, it would sometimes take Tombaugh
a week to examine a single pair of plates.

In this project, you’ll digitally duplicate the process of aligning the plates
and blinking them on and off. You’ll work with bright and dim objects, see
the impact of different exposures between photos, and compare the use of
positive images to the negative ones that Tombaugh used.

T HE OBJEC T I V E

Write a Python program that aligns two nearly identical images and displays each one in
rapid succession in the same window.

The Strategy
The photos for this project are already taken, so all you need to do is align
them and flash them on and off. Aligning images is often referred to as
image registration. This involves making a combination of vertical, horizon-
tal, or rotational transformations to one of the images. If you’ve ever taken
a panorama with a digital camera, you’ve seen registration at work.

Image registration follows these steps:

1.	 Locate distinctive features in each image.

2.	 Numerically describe each feature.

98 Chapter 5

3.	 Use the numerical descriptors to match identical features in each
image.

4.	 Warp one image so that matched features share the same pixel locations
in both images.

For this to work well, the images should be the same size and cover close to
the same area.

Fortunately, the OpenCV Python package ships with algorithms that
perform these steps. If you skipped Chapter 1, you can read about OpenCV
on page 6.

Once the images are registered, you’ll need to display them in the same
window so that they overlay exactly and then loop through the display a
set number of times. Again, you can easily accomplish this with the help of
OpenCV.

The Data
The images you’ll need are in the Chapter_5 folder in the book’s supporting
files, downloadable from https://nostarch.com/real-world-python/. The folder
structure should look like Figure 5-3. After downloading the folders, don’t
change this organizational structure or the folder contents and names.

Figure 5-3: The folder structure for Project 7

The night_1 and night_2 folders contain the input images you’ll use to
get started. In theory, these would be images of the same region of space
taken on different nights. The ones used here are the same star field image
to which I’ve added an artificial transient. A transient, short for transient
astronomical event, is a celestial object whose motion is detectable over rela-
tively short time frames. Comets, asteroids, and planets can all be consid-
ered transients, as their movement is easily detected against the more static
background of the galaxy.

Table 5-1 briefly describes the contents of the night_1 folder. This folder
contains files with left in their filenames, which means they should go on
the left side of a blink comparator. The images in the night_2 folder contain
right in the filenames and should go on the other side.

Finding Pluto 99

Table 5-1: Files in the night_1 folder

Filename Description

1_bright_transient_left.png Contains a large, bright transient

2_dim_transient_left.png Contains a dim transient a single pixel in diameter

3_diff_exposures_left.png Contains a dim transient with an overexposed
background

4_single_transient_left.png Contains a bright transient in left image only

5_no_transient_left.png Star field with no transient

6_bright_transient_neg_left.png A negative of the first file to show the type of
image Tombaugh used

Figure 5-4 is an example of one of the images. The arrow points to the
transient (but isn’t part of the image file).

Figure 5-4: 1_bright_transient_left.png with an arrow indicating the transient

To duplicate the difficulty in perfectly aligning a telescope from night
to night, I’ve slightly shifted the images in the night_2 folder with respect to
those in night_1. You’ll need to loop through the contents of the two folders,
registering and comparing each pair of photos. For this reason, the num-
ber of files in each folder should be the same, and the naming convention
should ensure that the photos are properly paired.

The Blink Comparator Code
The following blink_comparator.py code will digitally duplicate a blink com-
parator. Find this program in the Chapter_5 folder from the website. You’ll
also need the folders described in the previous section. Keep the code in
the folder above the night_1 and night_2 folders.

100 Chapter 5

Importing Modules and Assigning a Constant

Listing 5-1 imports the modules you’ll need to run the program and assigns
a constant for the minimum number of keypoint matches to accept. Also
called interest points, keypoints are interesting features in an image that you
can use to characterize the image. They’re usually associated with sharp
changes in intensity, such as corners or, in this case, stars.

import os
from pathlib import Path
import numpy as np
import cv2 as cv

MIN_NUM_KEYPOINT_MATCHES = 50

Listing 5-1: Importing modules and assigning a constant for keypoint matches

Start by importing the operating system module, which you’ll use to list
the contents of folders. Then import pathlib, a handy module that simplifies
working with files and folders. Finish by importing NumPy and cv (OpenCV)
for working with images. If you skipped Chapter 1, you can find installation
instructions for NumPy on page 8.

Assign a constant variable for the minimum number of keypoint
matches to accept. For efficiency, you ideally want the smallest value that
will yield an acceptable registration result. In this project, the algorithm
runs so quickly that you can increase this value without a significant cost.

Defining the main() Function

Listing 5-2 defines the first part of the main() function, used to run the pro-
gram. These initial steps create lists and directory paths used to access the
various image files.

def main():
 """Loop through 2 folders with paired images, register & blink images."""
 night1_files = sorted(os.listdir('night_1'))
 night2_files = sorted(os.listdir('night_2'))
 path1 = Path.cwd() / 'night_1'
 path2 = Path.cwd() / 'night_2'
 path3 = Path.cwd() / 'night_1_registered'

Listing 5-2: Defining the first part of main(), used to manipulate files and folders

Start by defining main() and then use the os module’s listdir() method
to create a list of the filenames in the night_1 and night_2 folders. For the
night_1 folder, listdir() returns the following:

['1_bright_transient_left.png', '2_dim_transient_left.png', '3_diff_exposures_
left.png', '4_no_transient_left.png', '5_bright_transient_neg_left.png']

Note that os.listdir() does not impose an order on the files when
they’re returned. The underlying operating system determines the order,

blink
_comparator.py,
part 1

blink
_comparator.py,
part 2

Finding Pluto 101

meaning macOS will return a different list than Windows! To ensure that
the lists are consistent and the files are paired correctly, wrap os.listdir()
with the built-in sorted() function. This function will return the files in
numerical order, based on the first character in the filename.

Next, assign path names to variables using the pathlib Path class. The
first two variables will point to the two input folders, and the third will
point to an output folder to hold the registered images.

The pathlib module, introduced in Python 3.4, is an alternative to
os.path for handling file paths. The os module treats paths as strings, which
can be cumbersome and requires you to use functionality from across the
Standard Library. Instead, the pathlib module treats paths as objects and
gathers the necessary functionality in one place. The official documentation
for pathlib is at https://docs.python.org/3/library/pathlib.html.

For the first part of the directory path, use the cwd() class method to get
the current working directory. If you have at least one Path object, you can
use a mix of objects and strings in the path designation. You can join the
string, representing the folder name, with the / symbol. This is similar to
using os.path.join(), if you’re familiar with the os module.

Note that you will need to execute the program from within the project
directory. If you call it from elsewhere in the filesystem, it will fail.

Looping in main()

Listing 5-3, still in the main() function, runs the program with a big for
loop. This loop will take a file from each of the two “night” folders, load
them as grayscale images, find matching keypoints in each image, use the
keypoints to warp (or register) the first image to match the second, save the
registered image, and then compare (or blink) the registered first image
with the original second image. I’ve also included a few optional quality
control steps that you can comment out once you’re satisfied with the results.

 for i, _ in enumerate(night1_files):
 img1 = cv.imread(str(path1 / night1_files[i]), cv.IMREAD_GRAYSCALE)
 img2 = cv.imread(str(path2 / night2_files[i]), cv.IMREAD_GRAYSCALE)
 print("Comparing {} to {}.\n".format(night1_files[i], night2_files[i]))

  kp1, kp2, best_matches = find_best_matches(img1, img2)
 img_match = cv.drawMatches(img1, kp1, img2, kp2,
 best_matches, outImg=None)
 height, width = img1.shape
 cv.line(img_match, (width, 0), (width, height), (255, 255, 255), 1)

  QC_best_matches(img_match) # Comment out to ignore.
 img1_registered = register_image(img1, img2, kp1, kp2, best_matches)

  blink(img1, img1_registered, 'Check Registration', num_loops=5)
 out_filename = '{}_registered.png'.format(night1_files[i][:-4])
 cv.imwrite(str(path3 / out_filename), img1_registered) # Will overwrite!
 cv.destroyAllWindows()
 blink(img1_registered, img2, 'Blink Comparator', num_loops=15)

Listing 5-3: Running the program loop in main()

blink
_comparator.py,
part 3

https://docs.python.org/3/library/pathlib.html

102 Chapter 5

Begin the loop by enumerating the night1_files list. The enumerate()
built-in function adds a counter to each item in the list and returns this
counter along with the item. Since you only need the counter, use a single
underscore (_) for the list item. By convention, the single underscore indi-
cates a temporary or insignificant variable. It also keeps code-checking pro-
grams, such as Pylint, happy. Were you to use a variable name here, such as
infile, Pylint would complain about an unused variable.

W: 17,11: Unused variable 'infile' (unused-variable)

Next, load the image, along with its pair from the night2_files list, using
OpenCV. Note that you have to convert the path to a string for the imread()
method. You’ll also want to convert the image to grayscale. This way, you’ll
need to work with only a single channel, which represents intensity. To keep
track of what’s going on during the loop, print a message to the shell indi-
cating which files are being compared.

Now, find the keypoints and their best matches . The find_best_matches()
function, which you’ll define later, will return these values as three variables:
kp1, which represents the keypoints for the first loaded image; kp2, which
represents the keypoints for the second; and best_matches, which represents
a list of the matching keypoints.

So you can visually check the matches, draw them on img1 and img2
using OpenCV’s drawMatches() method. As arguments, this method takes
each image with its keypoints, the list of best matching keypoints, and an
output image. In this case, the output image argument is set to None, as
you’re just going to look at the output, not save it to a file.

To distinguish between the two images, draw a vertical white line down
the right side of img1. First get the height and width of the image using
shape. Next, call OpenCV’s line() method and pass it the image on which
you want to draw, the start and end coordinates, the line color, and the
thickness. Note that this is a color image, so to represent white, you need
the full BGR tuple (255, 255, 255) rather than the single intensity value (255)
used in grayscale images.

Now, call the quality control function—which you’ll define later—to
display the matches . Figure 5-5 shows an example output. You may want to
comment out this line after you confirm the program is behaving correctly.

Figure 5-5: Example output of the QC_best_matches() function

Finding Pluto 103

With the best keypoint matches found and checked, it’s time to register
the first image to the second. Do this with a function you’ll write later. Pass the
function the two images, the keypoints, and the list of best matches.

The blink comparator, named blink(), is another function that you’ll
write later. Call it here to see the effect of the registration process on the
first image. Pass it the original and registered images, a name for the display
window, and the number of blinks you want to perform . The function will
flash between the two images. The amount of “wiggle” you see will depend
on the amount of warping needed to match img2. This is another line you
may want to comment out after you’ve confirmed that the program runs as
intended.

Next, save the registered image into a folder named night_1_registered,
which the path3 variable points to. Start by assigning a filename variable
that references the original filename, with _registered.png appended to the
end. So you don’t repeat the file extension in the name, use index slicing
([:-4]) to remove it before adding the new ending. Finish by using imwrite()
to save the file. Note that this will overwrite existing files with the same
name without warning.

You’ll want an uncluttered view when you start looking for transients, so
call the method to destroy all the current OpenCV windows. Then call the
blink() function again, passing it the registered image, the second image,
a window name, and the number of times to loop through the images.
The first images are shown side by side in Figure 5-6. Can you find the
transient?

Figure 5-6: Blink Comparator windows for first image in night_1_registered and night_2 folders

Finding the Best Keypoint Matches

Now it’s time to define the functions used in main(). Listing 5-4 defines the
function that finds the best keypoint matches between each pair of images
extracted from the night_1 and night_2 folders. It should locate, describe, and

104 Chapter 5

match keypoints, generate a list of the matches, and then truncate that list by
the constant for the minimum number of acceptable keypoints. The function
returns the list of keypoints for each image and the list of best matches.

def find_best_matches(img1, img2):
 """Return list of keypoints and list of best matches for two images."""
 orb = cv.ORB_create(nfeatures=100) # Initiate ORB object.

  kp1, desc1 = orb.detectAndCompute(img1, mask=None)
 kp2, desc2 = orb.detectAndCompute(img2, mask=None)
 bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)

  matches = bf.match(desc1, desc2)
 matches = sorted(matches, key=lambda x: x.distance)
 best_matches = matches[:MIN_NUM_KEYPOINT_MATCHES]

 return kp1, kp2, best_matches

Listing 5-4: Defining the function to find the best keypoint matches

Start by defining the function, which takes two images as arguments.
The main() function will pick these images from the input folders with each
run of the for loop.

Next, create an orb object using OpenCV’s ORB_create() method. ORB is
an acronym of nested acronyms: Oriented FAST and Rotated BRIEF.

FAST, short for Features from Accelerated Segment Test, is a fast, effi-
cient, and free algorithm for detecting keypoints. To describe the keypoints so
that you can compare them across different images, you need BRIEF. Short
for Binary Robust Independent Elementary Features, BRIEF is also fast,
compact, and open source.

ORB combines FAST and BRIEF into a matching algorithm that works
by first detecting distinctive regions in an image, where pixel values change
sharply, and then recording the position of these distinctive regions as key-
points. Next, ORB describes the feature found at the keypoint using numeri-
cal arrays, or descriptors, by defining a small area, called a patch, around a
keypoint. Within the image patch, the algorithm uses a pattern template to
take regular samples of intensity. It then compares preselected pairs of sam-
ples and converts them into binary strings called feature vectors (Figure 5-7).

A vector is a series of numbers. A matrix is a rectangular array of num-
bers in rows and columns that’s treated as a single entity and manipulated
according to rules. A feature vector is a matrix with one row and multiple col-
umns. To build one, the algorithm converts the sample pairs into a binary
series by concatenating a 1 to the end of the vector if the first sample has
the largest intensity and a 0 if the reverse is true.

blink
_comparator.py,
part 4

Finding Pluto 105

Keypoint

Sampling
pattern

Patch

Lines connect
paired points
used to build

feature vectors

Figure 5-7: Cartoon example of how ORB generates keypoint descriptors

Some example feature vectors are shown next. I’ve shortened the list of
vectors, because ORB usually compares and records 512 pairs of samples!

V1 = [010010110100101101100--snip--]
V2 = [100111100110010101101--snip--]
V3 = [001101100011011101001--snip--]
--snip--

These descriptors act as digital fingerprints for features. OpenCV uses
additional code to compensate for rotation and scale changes. This allows
it to match similar features even if the feature sizes and orientations are dif-
ferent (see Figure 5-8).

106 Chapter 5

Figure 5-8: OpenCV can match keypoints despite differences in scale and orientation.

When you create the ORB object, you can specify the number of key-
points to examine. The method defaults to 500, but 100 will be more than
enough for the image registration needed in this project.

Next, using the orb.detectAndCompute() method , find the keypoints and
their descriptors. Pass it img1 and then repeat the code for img2.

With the keypoints located and described, the next step is to find the
keypoints common to both images. Start this process by creating a BFMatcher
object that includes a distance measurement. The brute-force matcher takes
the descriptor of one feature in the first image and compares it to all the
features in the second image using the Hamming distance. It returns the
closest feature.

For two strings of equal length, the Hamming distance is the number of
positions, or indexes, at which the corresponding values are different. For
the following feature vectors, the positions that don’t match are shown in
bold, and the Hamming distance is 3:

1001011001010
1100111001010

The bf variable will be a BFMatcher object. Call the match() method and
pass it the descriptors for the two images . Assign the returned list of
DMatch objects to a variable named matches.

The best matches will have the lowest Hamming distance, so sort the
objects in ascending order to move these to the start of the list. Note that
you use a lambda function along with the object’s distance attribute. A
lambda function is a small, one-off, unnamed function defined on the fly.
Words and characters that directly follow lambda are parameters. Expressions
come after the colon, and returns are automatic.

Finding Pluto 107

Since you only need the minimum number of keypoint matches
defined at the start of the program, create a new list by slicing the matches
list. The best matches are at the start, so slice from the start of matches up to
the value specified in MIN_NUM_KEYPOINT_MATCHES.

At this point, you’re still dealing with arcane objects, as shown here:

best matches = [<DMatch 0000028BEBAFBFB0>, <DMatch 0000028BEBB21090>, --snip--

Fortunately, OpenCV knows how to handle these. Complete the function
by returning the two sets of keypoints and the list of best matching objects.

Checking the Best Matches

Listing 5-5 defines a short function to let you visually check the keypoint
matches. You saw the results of this function in Figure 5-5. By encapsulating
these tasks in a function, you can reduce the clutter in main() and allow the
user to turn off the functionality by commenting out a single line.

def QC_best_matches(img_match):
 """Draw best keypoint matches connected by colored lines."""
 cv.imshow('Best {} Matches'.format(MIN_NUM_KEYPOINT_MATCHES), img_match)
 cv.waitKey(2500) # Keeps window active 2.5 seconds.

Listing 5-5: Defining a function to check the best keypoint matches

Define the function with one parameter: the matched image. This
image was generated by the main() function in Listing 5-3. It consists of the
left and right images with the keypoints drawn as colored circles and with
colored lines connecting corresponding keypoints.

Next, call OpenCV’s imshow() method to display the window. You can
use the format() method when naming the window. Pass it the constant for
the number of minimum keypoint matches.

Complete the function by giving the user 2.5 seconds to view the window.
Note that the waitKey() method doesn’t destroy the window; it just suspends
the program for the allocated amount of time. After the wait period, new
windows will appear as the program resumes.

Registering Images

Listing 5-6 defines the function to register the first image to the second
image.

def register_image(img1, img2, kp1, kp2, best_matches):
 """Return first image registered to second image."""
 if len(best_matches) >= MIN_NUM_KEYPOINT_MATCHES:
 src_pts = np.zeros((len(best_matches), 2), dtype=np.float32)
 dst_pts = np.zeros((len(best_matches), 2), dtype=np.float32)

  for i, match in enumerate(best_matches):
 src_pts[i, :] = kp1[match.queryIdx].pt
 dst_pts[i, :] = kp2[match.trainIdx].pt
 h_array, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC)

blink
_comparator.py,
part 5

blink
_comparator.py,
part 6

108 Chapter 5

  height, width = img2.shape # Get dimensions of image 2.
 img1_warped = cv.warpPerspective(img1, h_array, (width, height))

 return img1_warped

 else:
 print("WARNING: Number of keypoint matches < {}\n".format
 (MIN_NUM_KEYPOINT_MATCHES))
 return img1

Listing 5-6: Defining a function to register one image to another

Define a function that takes the two input images, their keypoint lists,
and the list of DMatch objects returned from the find_best_matches() function
as arguments. Next, load the location of the best matches into NumPy arrays.
Start with a conditional to check that the list of best matches equals or
exceeds the MIN_NUM_KEYPOINT_MATCHES constant. If it does, then initialize two
NumPy arrays with as many rows as there are best matches.

The np.zeros() NumPy method returns a new array of a given shape and
data type, filled with zeros. For example, the following snippet produces a
zero-filled array three rows tall and two columns wide:

>>> import numpy as np
>>> ndarray = np.zeros((3, 2), dtype=np.float32)
>>> ndarray
array([[0., 0.],
 [0., 0.],
 [0., 0.]], dtype=float32)

In the actual code, the arrays will be at least 50×2, since you stipulated
a minimum of 50 matches.

Now, enumerate the matches list and start populating the arrays with
actual data . For the source points, use the queryIdx.pt attribute to get the
index of the descriptor in the list of descriptors for kp1. Repeat this for the
next set of points, but use the trainIdx.pt attribute. The query/train termi-
nology is a bit confusing but basically refers to the first and second images,
respectively.

The next step is to apply homography. Homography is a transformation,
using a 3×3 matrix, that maps points in one image to corresponding points
in another image. Two images can be related by a homography if both are
viewing the same plane from a different angle or if both images are taken
from the same camera rotated around its optical axis with no shift. To run
correctly, homography needs at least four corresponding points in two
images.

Homography assumes that the matching points really are correspond-
ing points. But if you look carefully at Figures 5-5 and 5-8, you’ll see that
the feature matching isn’t perfect. In Figure 5-8, around 30 percent of the
matches are incorrect!

Finding Pluto 109

Fortunately, OpenCV includes a findHomography() method with an outlier
detector called random sample consensus (RANSAC). RANSAC takes random
samples of the matching points, finds a mathematical model that explains
their distribution, and favors the model that predicts the most points. It
then discards outliers. For example, consider the points in the “Raw data”
box in Figure 5-9.

Raw data Random subset model 1

Random subset model 2 Random subset model 3

Outliers

Outliers

Inliers

Final line fit based on
model 3

Figure 5-9: Example line fit using RANSAC to ignore outliers

As you can see, you want to fit a line through the true data points
(called the inliers) and ignore the smaller number of spurious points (the
outliers). Using RANSAC, you randomly sample a subset of the raw data
points, fit a line to these, and then repeat this process a set number of times.
Each line-fit equation would then be applied to all the points. The line that
passes through the most points is used for the final line fit. In Figure 5-9,
this would be the line in the rightmost box.

To run findHomography(), pass it the source and destination points and
call the RANSAC method. This returns a NumPy array and a mask. The mask
specifies the inlier and outlier points or the good matches and bad matches,
respectively. You can use it to do tasks like draw only the good matches.

The final step is to warp the first image so that it perfectly aligns with
the second. You’ll need the dimensions of the second image, so use shape()
to get the height and width of img2 . Pass this information, along with img1
and the homography h_array, to the warpPerspective() method. Return the
registered image, which will be a NumPy array.

If the number of keypoint matches is less than the minimum number you
stipulated at the start of the program, the image may not be properly aligned.
So, print a warning and return the original, nonregistered image. This will
allow the main() function to continue looping through the folder images
uninterrupted. If the registration is poor, the user will be aware something is
wrong as the problem pair of images won’t be properly aligned in the blink
comparator window. An error message will also appear in the shell.

110 Chapter 5

Comparing 2_dim_transient_left.png to 2_dim_transient_right.png.
WARNING: Number of keypoint matches < 50

Building the Blink Comparator

Listing 5-7 defines a function to run the blink comparator and then calls
main() if the program is run in stand-alone mode. The blink() function
loops through a specified range, showing first the registered image and
then the second image, both in the same window. It shows each image for
only one-third of a second, Clyde Tombaugh’s preferred frequency when
using a blink comparator.

def blink(image_1, image_2, window_name, num_loops):
 """Replicate blink comparator with two images."""
 for _ in range(num_loops):
 cv.imshow(window_name, image_1)
 cv.waitKey(330)
 cv.imshow(window_name, image_2)
 cv.waitKey(330)

if __name__ == '__main__':
 main()

Listing 5-7: Defining a function to blink images on and off

Define the blink() function with four parameters: two image files, a
window name, and the number of blinks to perform. Start a for loop with
a range set to the number of blinks. Since you don’t need access to the
running index, use a single underscore (_) to indicate the use of an insig-
nificant variable. As mentioned previously in this chapter, this will prevent
code-checking programs from raising an “unused variable” warning.

Now call OpenCV’s imshow() method and pass it the window name and
the first image. This will be the registered first image. Then pause the pro-
gram for 330 milliseconds, the amount of time recommended by Clyde
Tombaugh himself.

Repeat the previous two lines of code for the second image. Because the
two images are aligned, the only thing that will change in the window are tran-
sients. If only one image contains a transient, it will appear to blink on and off.
If both images capture the transient, it will appear to dance back and forth.

End the program with the standard code that lets it run in stand-alone
mode or be imported as a module.

Using the Blink Comparator
Before you run blink_comparator.py, dim your room lights to simulate look-
ing through the device’s eyepieces. Then launch the program. You should
first see two obvious bright dots flashing near the center of the image. In
the next pair of images, the same dots will become very small—only a pixel
across—but you should still be able to detect them.

blink
_comparator.py,
part 7

Finding Pluto 111

The third loop will show the same small transient, only this time the
second image will be brighter overall than the first. You should still be
able to find the transient, but it will be much more difficult. This is why
Tombaugh had to carefully take and develop the images to a consistent
exposure.

The fourth loop contains a single transient, shown in the left image. It
should blink on and off rather than dance back and forth as in the previous
images.

The fifth image pair represents control images with no transients. This
is what the astronomer would see almost all the time: disappointing static
star fields.

The final loop uses negative versions of the first image pair. The bright
transient appears as flashing black dots. This is the type of image Clyde
Tombaugh used, as it saved time. Since a black dot is as easy to spot as a
white one, he felt no need to print positive images for each negative.

If you look along the left side of the registered negative image, you’ll
see a black stripe that represents the amount of translation needed to align
the images (Figure 5-10). You won’t notice this on the positive images
because it blends in with the black background.

Figure 5-10: The negative image, 6_bright_transient_neg_left_registered.png

In all the loops, you may notice a dim star blinking in the upper-left
corner of each image pair. This is not a transient but a false positive caused
by an edge artifact. An edge artifact is a change to an image caused by image
misalignment. An experienced astronomer would ignore this dim star because:
it occurs very close to the edge of the image, and the possible transient doesn’t
move between images but just dims.

You can see the cause of this false positive in Figure 5-11. Because only
part of a star is captured in the first frame, its brightness is reduced relative
to the same star in the second image.

112 Chapter 5

Star partly truncated

Star not truncated

Image 1

Image 2

Image 1
registered

Shifted truncated star

Figure 5-11: Registering a truncated star in Image 1 results in a noticeably dimmer star
than in Image 2

Humans can handle edge effects intuitively, but computers require
explicit rules. In the next project, you’ll address this issue by excluding the
edges of images when searching for transients.

Project #8: Detecting Astronomical Transients with Image Differencing
Blink comparators, once considered as important as telescopes, now sit idly
gathering dust in museums. Astronomers no longer need them, as modern
image-differencing techniques are much better at detecting moving objects
than human eyes. Today, every part of Clyde Tombaugh’s work would be
done by computers.

In this project, let’s pretend you’re a summer intern at an observatory.
Your job is to produce a digital workflow for an ancient astronomer still
clinging to his rusty blink comparator.

T HE OBJEC T I V E

Write a Python program that takes two registered images and highlights any differences
between them.

Finding Pluto 113

The Strategy
Instead of an algorithm that blinks the images, you now want one that
automatically finds the transients. This process will still require registered
images, but for convenience, just use the ones already produced in Project 7.

Detecting differences between images is a common enough practice
that OpenCV ships with an absolute difference method, absdiff(), dedicated
to this purpose. It takes the per-element difference between two arrays.
But just detecting the differences isn’t enough. Your program will need to
recognize that a difference exists and show the user only the images con-
taining transients. After all, astronomers have more important things to do,
like demoting planets!

Because the objects you’re looking for rest on a black background and
matching bright objects are removed, any bright object remaining after
differencing is worth noting. And since the odds of having more than one
transient in a star field are astronomically low, flagging one or two differ-
ences should be enough to get an astronomer’s attention.

The Transient Detector Code
The following transient_detector.py code will automate the process of detecting
transients in astronomical images. Find it in the Chapter_5 folder from the
website. To avoid duplicating code, the program uses the images already
registered by blink_comparator.py, so you’ll need the night_1_registered_transients
and night_2 folders in the directory for this project (see Figure 5-3). As in
the previous project, keep the Python code in the folder above these two
folders.

Importing Modules and Assigning a Constant

Listing 5-8 imports the modules needed to run the program and assigns
a pad constant to manage edge artifacts (see Figure 5-11). The pad repre-
sents a small distance, measured perpendicular to the image’s edges, that
you want to exclude from the analysis. Any objects detected between the
edge of the image and the pad will be ignored.

import os
from pathlib import Path
import cv2 as cv

PAD = 5 # Ignore pixels this distance from edge

Listing 5-8: Importing modules and assigning a constant to manage edge effects

transient
_detector.py,
part 1

114 Chapter 5

You’ll need all the modules used in the previous project except for
NumPy, so import them here. Set the pad distance to 5 pixels. This value may
change slightly with different datasets. Later, you’ll draw a rectangle around
the edge space within the image so you can see how much area this param-
eter is excluding.

Detecting and Circling Transients

Listing 5-9 defines a function you’ll use to find and circle up to two tran-
sients in each image pair. It will ignore transients in the padded area.

def find_transient(image, diff_image, pad):
 """Find and circle transients moving against a star field. """
 transient = False
 height, width = diff_image.shape
 cv.rectangle(image, (PAD, PAD), (width - PAD, height - PAD), 255, 1)
 minVal, maxVal, minLoc, maxLoc = cv.minMaxLoc(diff_image)

  if pad < maxLoc[0] < width - pad and pad < maxLoc[1] < height - pad:
 cv.circle(image, maxLoc, 10, 255, 0)
 transient = True
 return transient, maxLoc

Listing 5-9: Defining a function to detect and circle transients

The find_transient() function has three parameters: the input image,
an image representing the difference between the first and second input
images (representing the difference map), and the PAD constant. The function
will find the location of the brightest pixel in the difference map, draw a
circle around it, and return the location along with a Boolean indicating
that an object was found.

Begin the function by setting a variable, named transient, to False.
You’ll use this variable to indicate whether a transient has been discovered.
As transients are rare in real life, its base state should be False.

To apply the PAD constant and exclude the area near the edge of the
image, you’ll need the limits of the image. Get these with the shape attribute,
which returns a tuple of the image’s height and width.

Use the height and width variables and the PAD constant to draw a white
rectangle on the image variable using OpenCV’s rectangle() method. Later,
this will show the user which parts of the image were ignored.

The diff_image variable is a NumPy array representing pixels. The back-
ground is black, and any “stars” that changed position (or appeared out of
nowhere) between the two input images will be gray or white (see Figure 5-12).

transient
_detector.py,
part 2

Finding Pluto 115

Figure 5-12: Difference image derived from the “bright transient”
input images

To locate the brightest transient present, use OpenCV’s minMaxLoc()
method, which returns the minimum and maximum pixel values in the
image, along with their location tuple. Note that I’m naming the variables
to be consistent with OpenCV’s mixed-case naming scheme (evident in
names such as maxLoc). If you want to use something more acceptable to
Python’s PEP8 style guide (https://www.python.org/dev/peps/pep-0008/), feel
free to use names like max_loc in place of maxLoc.

You may have found a maximum value near the edge of the image, so
run a conditional to exclude this case by ignoring values found in the area
delimited by the PAD constant . If the location passes, circle it on the image
variable. Use a white circle with a radius of 10 pixels and a line width of 0.

If you’ve drawn a circle, then you’ve found a transient, so set the
transient variable to True. This will trigger additional activity later in the
program.

End the function by returning the transient and maxLoc variables.

N O T E 	 The minMaxLoc() method is susceptible to noise, such as false positives, as it works on
individual pixels. Normally, you would first run a preprocessing step, like blurring,
to remove spurious pixels. This can cause you to miss dim astronomical objects, how-
ever, which can be indistinguishable from noise in a single image.

Preparing Files and Folders

Listing 5-10 defines the main() function, creates lists of the filenames in the
input folders, and assigns the folder paths to variables.

116 Chapter 5

def main():
 night1_files = sorted(os.listdir('night_1_registered_transients'))
 night2_files = sorted(os.listdir('night_2'))
 path1 = Path.cwd() / 'night_1_registered_transients'
 path2 = Path.cwd() / 'night_2'
 path3 = Path.cwd() / 'night_1_2_transients'

Listing 5-10: Defining main(), listing the folder contents, and assigning path variables

Define the main() function. Then, just as you did in Listing 5-2 on page
100, list the contents of the folders containing the input images and assign
their paths to variables. You’ll use an existing folder to hold images contain-
ing identified transients.

Looping Through Images and Calculating Absolute Difference

Listing 5-11 starts the for loop through the image pairs. The function reads
corresponding image pairs as grayscale arrays, calculates the difference
between the images, and shows the result in a window. It then calls the
find_transient() function on the difference image.

 for i, _ in enumerate(night1_files[:-1]): # Leave off negative image
 img1 = cv.imread(str(path1 / night1_files[i]), cv.IMREAD_GRAYSCALE)
 img2 = cv.imread(str(path2 / night2_files[i]), cv.IMREAD_GRAYSCALE)

 diff_imgs1_2 = cv.absdiff(img1, img2)
 cv.imshow('Difference', diff_imgs1_2)
 cv.waitKey(2000)

 temp = diff_imgs1_2.copy()
 transient1, transient_loc1 = find_transient(img1, temp, PAD)
 cv.circle(temp, transient_loc1, 10, 0, -1)

 transient2, _ = find_transient(img1, temp, PAD)

Listing 5-11: Looping through the images and finding the transients

Start a for loop that iterates through the images in the night1_files list.
The program is designed to work on positive images, so use image slicing
([:-1]) to exclude the negative image. Use enumerate() to get a counter;
name it i, rather than _, since you’ll use it as an index later.

To find the differences between images, just call the cv.absdiff()
method and pass it the variables for the two images. Show the results for
two seconds before continuing the program.

Since you’re going to blank out the brightest transient, first make a
copy of diff_imgs1_2. Name this copy temp, for temporary. Now, call the
find_transient() function you wrote earlier. Pass it the first input image,
the difference image, and the PAD constant. Use the results to update the
transient variable and to create a new variable, transient_loc1, that records
the location of the brightest pixel in the difference image.

transient
_detector.py,
part 3

transient
_detector.py,
part 4

Finding Pluto 117

The transient may or may not have been captured in both images taken
on successive nights. To see if it was, obliterate the bright spot you just found
by covering it with a black circle. Do this on the temp image by using black
as the color and a line width of –1, which tells OpenCV to fill the circle.
Continue to use a radius of 10, though you can reduce this if you’re con-
cerned the two transients will be very close together.

Call the find_transient() function again but use a single underscore for
the location variable, as you won’t be using it again. It’s unlikely there’ll be
more than two transients present, and finding even one will be enough to
open the images up to further scrutiny, so don’t bother looking for more.

Revealing the Transient and Saving the Image

Listing 5-12, still in the for loop of the main() function, displays the first
input image with any transients circled, posts the names of the image files
involved, and saves the image with a new filename. You’ll also print a log of
the results for each image pair in the interpreter window.

 if transient1 or transient2:
 print('\nTRANSIENT DETECTED between {} and {}\n'
 .format(night1_files[i], night2_files[i]))

  font = cv.FONT_HERSHEY_COMPLEX_SMALL
 cv.putText(img1, night1_files[i], (10, 25),
 font, 1, (255, 255, 255), 1, cv.LINE_AA)
 cv.putText(img1, night2_files[i], (10, 55),
 font, 1, (255, 255, 255), 1, cv.LINE_AA)

 blended = cv.addWeighted(img1, 1, diff_imgs1_2, 1, 0)
 cv.imshow('Surveyed', blended)
 cv.waitKey(2500)

  out_filename = '{}_DECTECTED.png'.format(night1_files[i][:-4])
 cv.imwrite(str(path3 / out_filename), blended) # Will overwrite!

 else:
 print('\nNo transient detected between {} and {}\n'
 .format(night1_files[i], night2_files[i]))

if __name__ == '__main__':
 main()

Listing 5-12: Showing the circled transients, logging the results, and saving the results

Start a conditional that checks whether a transient was found. If this
evaluates to True, print a message in the shell. For the four images evaluated
by the for loop, you should get this result:

TRANSIENT DETECTED between 1_bright_transient_left_registered.png and 1_bright_transient_right.png

TRANSIENT DETECTED between 2_dim_transient_left_registered.png and 2_dim_transient_right.png

transient
_detector.py,
part 5

118 Chapter 5

TRANSIENT DETECTED between 3_diff_exposures_left_registered.png and 3_diff_exposures_right.png

TRANSIENT DETECTED between 4_single_transient_left_registered.png and 4_single_transient_right.png

No transient detected between 5_no_transient_left_registered.png and 5_no_transient_right.png

Posting a negative outcome shows that the program is working as
expected and leaves no doubt that the images were compared.

Next, post the names of the two images with a positive response on the
img1 array. Start by assigning a font variable for OpenCV . For a listing of
available fonts, search for HersheyFonts at https://docs.opencv.org/4.3.0/.

Now call OpenCV’s putText() method and pass it the first input image,
the filename of the image, a position, the font variable, a size, a color (white),
a thickness, and a line type. The LINE_AA attribute creates an anti-aliased line.
Repeat this code for the second image.

If you found two transients, you can show them both on the same image
using OpenCV’s addWeighted() method. This method calculates the weighted
sum of two arrays. The arguments are the first image and a weight, the
second image and a weight, and a scalar that’s added to each sum. Use the
first input image and the difference image, set the weights to 1 so that each
image is used fully, and set the scalar to 0. Assign the result to a variable
named blended.

Show the blended image in a window named Surveyed. Figure 5-13
shows an example outcome for the “bright” transient.

Figure 5-13: Example output window of transient_detector.py with the pad
rectangle indicated by the arrow

Finding Pluto 119

Note the white rectangle near the edges of the image. This represents
the PAD distance. Any transients outside this rectangle were ignored by the
program.

Save the blended image using the filename of the current input image
plus “DETECTED” . The dim transient in Figure 5-13 would be saved as
1_bright_transient_left_registered_DECTECTED.png. Write it to the night_1_2
_transients folder, using the path3 variable.

If no transients were found, document the result in the shell window.
Then end the program with the code to run it as a module or in stand-
alone mode.

Using the Transient Detector
Imagine how happy Clyde Tombaugh would’ve been with your transient
detector. It’s truly set-it-and-forget-it. Even the changing brightness between
the third pair of images, so problematic with the blink comparator, is no
challenge for this program.

Summary
In this chapter, you replicated an old-time blink comparator device and
then updated the process using modern computer vision techniques. Along
the way, you used the pathLib module to simplify working with directory
paths, and you used a single underscore for insignificant, unused variable
names. You also used OpenCV to find, describe, and match interesting
features in images, align the features with homography, blend the images
together, and write the result to a file.

Further Reading
Out of the Darkness: The Planet Pluto (Stackpole Books, 2017), by Clyde Tombaugh
and Patrick Moore, is the standard reference on the discovery of Pluto, told
in the discoverer’s own words.

Chasing New Horizons: Inside the Epic First Mission to Pluto (Picador, 2018),
by Alan Stern and David Grinspoon, records the monumental effort to
finally send a spacecraft—which, incidentally, contained Clyde Tombaugh’s
ashes—to Pluto.

Practice Project: Plotting the Orbital Path
Edit the transient_detector.py program so that if the transient is present in
both input image pairs, OpenCV draws a line connecting the two transients.
This will reveal the transient’s orbital path against the background stars.

This kind of information was key to the discovery of Pluto. Clyde
Tombaugh used the distance Pluto traveled in the two discovery plates,
along with the time between exposures, to verify that the planet was near
Lowell’s predicted path and not just some asteroid orbiting closer to Earth.

120 Chapter 5

You can find a solution, practice_orbital_path.py, in the appendix and in
the Chapter_5 folder.

Practice Project: What’s the Difference?
The feature matching you did in this chapter has broad-reaching applications
beyond astronomy. For example, marine biologists use similar techniques
to identify whale sharks by their spots. This improves the accuracy of the
scientists’ population counts.

In Figure 5-14, something has changed between the left and right pho-
tos. Can you spot it? Even better, can you write Python programs that align
and compare the two images and circle the change?

Figure 5-14: Spot the difference between the left and right images.

The starting images can be found in the montages folder in the Chapter_5
folder, downloadable from the book’s website. These are color images that
you’ll need to convert to grayscale and align prior to object detection. You
can find solutions, practice_montage_aligner.py and practice_montage_difference
_finder.py, in the appendix and in the montages folder.

Challenge Project: Counting Stars
According to Sky and Telescope magazine, there are 9,096 stars visible to the
naked eye from both hemispheres (https://www.skyandtelescope.com/astronomy-
resources/how-many-stars-night-sky-09172014/). That’s a lot on its own, but if
you look through a telescope, the number increases exponentially.

Finding Pluto 121

To estimate large numbers of stars, astronomers survey small regions
of the sky, use a computer program to count the stars, and then extrapolate
the results to larger areas. For this challenge project, pretend you’re an
assistant at Lowell Observatory and you’re on a survey team. Write a Python
program that counts the number of stars in the image 5_no_transient_left.png,
used in Projects 7 and 8.

For hints, search online for how to count dots in an image with Python and
OpenCV. For a solution using Python and SciPy, see http://prancer.physics
.louisville.edu/astrowiki/index.php/Image_processing_with_Python_and_SciPy.
You may find your results improve if you divide the image into smaller parts.

http://prancer.physics.louisville.edu/astrowiki/index.php/Image_processing_with_Python_and_SciPy
http://prancer.physics.louisville.edu/astrowiki/index.php/Image_processing_with_Python_and_SciPy

6
W I N N I N G T H E M O O N

R A C E W I T H A P O L L O 8

In the summer of 1968, America was losing
the space race. The Soviet Zond spacecraft

appeared moon-ready, the Central Intelligence
Agency had photographed a giant Soviet N-1

rocket sitting on its launch pad, and the Americans’
troubled Apollo program still needed three more test
flights. But in August, NASA manager George Low
had an audacious idea. Let’s go to the moon now.
Instead of more tests in the earth’s orbit, let’s circle
the moon in December and let that be the test.
In that moment, the space race was essentially over.
Less than a year later, the Soviets had capitulated,
and Neil Armstrong had taken his great leap for all
mankind.

124 Chapter 6

The decision to take the Apollo 8 spacecraft to the moon was hardly
trivial. In 1967, three men had died in the Apollo 1 capsule, and multiple
unmanned missions had blown up or otherwise failed. Against this back-
drop and with so much at stake, everything hinged on the concept of the
free return. The mission was designed so that if the service module engine
failed to fire, the ship would simply swing around the moon and return to
the earth like a boomerang (Figure 6-1).

Figure 6-1: The Apollo 8 insignia, with the circumlunar free return trajectory
serving as the mission number

In this chapter, you’ll write a Python program that uses a drawing
board module called turtle to simulate Apollo 8’s free return trajectory.
You’ll also work with one of the classic conundrums in physics: the three-
body problem.

Understanding the Apollo 8 Mission
The goal of the Apollo 8 mission was merely to circle the moon, so there was
no need to take a lunar lander component. The astronauts traveled in the
command and service modules, collectively known as the CSM (Figure 6-2).

Figure 6-2: Apollo command and service modules

Winning the Moon Race with Apollo 8 125

In the fall of 1968, the CSM engine had been tested in the earth’s orbit
only, and there were legitimate concerns about its reliability. To orbit the
moon, the engine would have to fire twice, once to slow the spacecraft to enter
lunar orbit and then again to leave orbit. With the free return trajectory, if the
first maneuver failed, the astronauts could still coast home. As it turned out,
the engine fired perfectly both times, and Apollo 8 orbited the moon 10 times.
(The ill-fated Apollo 13, however, made great use of its free return trajectory!)

The Free Return Trajectory
Plotting a free return trajectory requires a lot of intense mathematics. It is
rocket science, after all! Fortunately, you can simulate the trajectory in a
two-dimensional graph with a few simplified parameters (Figure 6-3).

Figure 6-3: The free return trajectory (not to scale)

This 2D simulation of the free return uses a few key values: the starting
position of the CSM (R0), the velocity and orientation of the CSM (V0), and
the phase angle between the CSM and the moon (g0). The phase angle, also
called the lead angle, is the change in the orbital time position of the CSM
required to get from a starting position to a final position. The translunar
injection velocity (V0) is a propulsive maneuver used to set the CSM on a
trajectory to the moon. It’s achieved from a parking orbit around the earth,
where the spacecraft performs internal checks and waits until the phase
angle with the moon is optimal. At this point, the third stage of the Saturn V
rocket fires and falls away, leaving the CSM to coast to the moon.

126 Chapter 6

Because the moon is moving, before you perform the translunar injec-
tion, you have to predict its future position, or lead it, like when you’re
shooting skeet with a shotgun. This requires knowing the phase angle (g0)
at the time of translunar injection. Leading the moon is a little different
from shooting a shotgun, however, as space is curved and you need to factor
in the gravity of the earth and the moon. The tug of these two bodies on the
spacecraft creates perturbations that are difficult to calculate—so difficult,
in fact, that the calculation has earned its own special name in the field of
physics: the three-body problem.

The Three-Body Problem
The three-body problem is the challenge of predicting the behavior of three
interacting bodies. Isaac Newton’s gravity equations work great for predict-
ing the behavior of two orbiting bodies, such as the earth and the moon, but
add one more body to the mix, whether a spacecraft, comet, moon, or so
on, and things get complicated. Newton was never able to encapsulate the
behavior of three or more bodies into a simple equation. For 275 years—
even with kings offering prizes for a solution—the world’s greatest math-
ematicians worked the problem in vain.

The issue is that the three-body problem can’t be solved using simple
algebraic expressions or integrals. Calculating the impact of multiple gravi-
tational fields requires numerical iteration on a scale that’s impractical
without a high-speed computer, such as your laptop.

In 1961, Michael Minovitch, a summer intern at the Jet Propulsion
Laboratory, found the first numerical solution using an IBM 7090 main-
frame, at the time the fastest computer in the world. He discovered that
mathematicians could reduce the number of computations needed to solve
a restricted three-body problem, like our earth-moon-CSM problem, by
using a patched conic method.

The patched conic method is an analytical approximation that assumes
you’re working with a simple two-body problem while the spacecraft is
in the earth’s gravitational sphere of influence and another when you’re
within the moon’s sphere of influence. It’s a rough, “back-of-the-envelope”
calculation that provides reasonable estimates of departure and arrival
conditions, reducing the number of choices for initial velocity and position
vectors. All that’s left is to refine the flight path with repeated computer
simulations.

Because researchers have already found and documented the Apollo 8
mission’s patched conic solution, you won’t need to calculate it. I’ve already
adapted it to the 2D scenario you’ll be doing here. You can experiment with
alternative solutions later, however, by varying parameters such as R0 and V0
and rerunning the simulation.

Winning the Moon Race with Apollo 8 127

Project #9: To the Moon with Apollo 8!
As a summer intern at NASA, you’ve been asked to create a simple simulation
of the Apollo 8 free return trajectory for consumption by the press and
general public. As NASA is always strapped for cash, you’ll need to use open
source software and complete the project quickly and cheaply.

T HE OBJEC T I V E

Write a Python program that graphically simulates the free return trajectory proposed for
the Apollo 8 mission.

Using the turtle Module
To simulate the flight of Apollo 8, you’ll need a way to draw and move
images on the screen. There are a lot of third-party modules that can help
you do this, but we’ll keep things simple by using the preinstalled turtle
module. Although originally invented to help kids learn programming,
turtle can easily be adapted to more sophisticated uses.

The turtle module lets you use Python commands to move a small image,
called a turtle, around a screen. The image can be invisible, an actual image, a
custom shape, or one of the predefined shapes shown in Figure 6-4.

Arrow

Turtle

Circle

Square

Triangle

Classic

Figure 6-4: Standard turtle shapes provided with the turtle module

As the turtle moves, you can choose to draw a line behind it to trace its
movement (Figure 6-5).

128 Chapter 6

Figure 6-5: Moving the turtle around the Turtle Graphics window

This simple drawing was made with the following script:

>>> import turtle
>>> steve = turtle.Turtle('turtle') # Creates a turtle object with turtle shape.
>>> steve.fd(50) # Moves turtle forward 50 pixels.
>>> steve.left(90) # Rotates turtle left 90 degrees.
>>> steve.fd(50)
>>> steve.left(90)
>>> steve.fd(50)

You can use Python functionality with turtle to write more concise
code. For example, you can use a for loop to create the same pattern.

>>> for i in range(3):
	 steve.fd(50)
	 steve.left(90)

Here, steve moves forward 50 pixels and then turns to the left at a right
angle. These steps are repeated three times by the for loop.

Other turtle methods let you change the shape of the turtle, change its
color, lift the pen so no path is drawn, “stamp” its current position on the
screen, set the heading of the turtle, and get its position on the screen. Figure
6-6 shows this functionality, which is described in the script that follows.

Winning the Moon Race with Apollo 8 129

u x

y

z

{|}

Figure 6-6: More examples of turtle behaviors. Numbers refer to script annotations.

>>> import turtle
>>> steve = turtle.Turtle('turtle')

 >>> a_stamp = steve.stamp()
 >>> steve.position()
 (0.00,0.00)
>>> steve.fd(150)

 >>> steve.color('gray')
>>> a_stamp = steve.stamp()
>>> steve.left(45)

 >>> steve.bk(75)
>>> a_stamp = steve.stamp()

 >>> steve.penup()
>>> steve.bk(75)
>>> steve.color('black')

 >>> steve.setheading(180)
>>> a_stamp = steve.stamp()

 >>> steve.pendown()
>>> steve.fd(50)

 >>> steve.shape('triangle')

After importing the turtle module and instantiating a turtle object
named steve, leave behind an image of steve using the stamp() method .

130 Chapter 6

Then use the position() method  to get the turtle’s current (x, y) coordi-
nates as a tuple . This will come in handy when calculating the distance
between objects for the gravity equation.

Move the turtle forward 150 spaces and change its color to gray .
Then leave a stamp behind, rotate the turtle 45 degrees, and move it back-
ward 75 spaces using the bk() (backward) method .

Leave another stamp and then stop drawing the turtle’s path by using
the penup() method . Move steve backward another 75 spaces and color
him black. Now use an alternative to rotate(), which is to directly set the
heading of the turtle . The heading is simply the direction the turtle is
traveling. Note that the default “standard mode” directions are referenced
to the east, not the north (Table 6-1).

Table 6-1: Common Directions in Degrees
for the turtle Module in Standard Mode

Degrees Direction

0 East

90 North

180 West

270 South

Leave another stamp and then put the pen down to once more draw a
path behind the turtle . Move steve forward 50 spaces and then change
his shape to a triangle . That completes the drawing.

Don’t be fooled by the simplicity of what we’ve done so far. With the
right commands, you can draw intricate designs, such as the Penrose tiling
in Figure 6-7.

Figure 6-7: A Penrose tiling produced by the turtle module demo, penrose.py

Winning the Moon Race with Apollo 8 131

The turtle module is part of the Python Standard Library, and you can
find the official documentation at https://docs.python.org/3/library/turtle.html
?highlight=turtle#module-turtle/. For a quick tutorial, do an online search for
Al Sweigart’s Simple Turtle Tutorial for Python.

The Strategy
We’ve now made a strategic decision to use turtle to draw the simulation,
but how should the simulation look? For convenience, I’d suggest basing it
on Figure 6-3. You’ll start with the CSM in the same parking orbit position
around the earth (R0) and the moon at the same approximate phase angle
(g0). You can use images to represent the earth and the moon and custom
turtle shapes to build the CSM.

Another big decision at this point is whether to use procedural or
object-oriented programming (OOP). When you plan to generate multiple
objects that behave similarly and interact with each other, OOP is a good
choice. You can use an OOP class as a blueprint for the earth, the moon,
and the CSM objects and automatically update the object attributes as the
simulation runs.

You can run the simulation using time steps. Basically, each program
loop will represent one unit of dimensionless time. With each loop, you’ll
need to calculate each object’s position and update (redraw) it on the
screen. This requires solving the three-body problem. Fortunately, not only
has someone done this already, they’ve done it using turtle.

Python modules often include example scripts to show you how to use
the product. For instance, the matplotlib gallery includes code snippets and
tutorials for making a huge number of charts and plots. Likewise, the turtle
module comes with turtle-example-suite, which includes demonstrations of
turtle applications.

One of the demos, planet_and_moon.py, provides a nice “recipe” for han-
dling a three-body problem in turtle (Figure 6-8). To see the demos, open
a PowerShell or terminal window and enter python –m turtledemo. Depending
on your platform and how many versions of Python you have installed, you
may need to use python3 -m turtledemo.

Figure 6-8: Screen capture of the planet_and_moon.py turtle demo

https://docs.python.org/3/library/turtle.html?highlight=turtle#module-turtle/
https://docs.python.org/3/library/turtle.html?highlight=turtle#module-turtle/

132 Chapter 6

This demo addresses the sun-earth-moon three-body problem, but it
can be easily adapted to handle an earth-moon-CSM problem. Again, for
the specific Apollo 8 situation, you’ll use Figure 6-3 to guide development
of the program.

The Apollo 8 Free Return Code
The apollo_8_free_return.py program uses turtle graphics to generate a top-
down view of the Apollo 8 CSM leaving the earth’s orbit, circling the moon,
and returning to the earth. The core of the program is based on the planet_
and_moon.py demo discussed in the previous section.

You can find the program in the Chapter_6 folder, downloadable from
the book’s website at https://nostarch.com/real-world-python/. You’ll also need the
earth and moon images found there (Figure 6-9). Be sure to keep them in
the same folder as the code and don’t rename them.

Figure 6-9: earth_100x100.gif and moon_27x27.gif images
used in the simulation

Importing turtle and Assigning Constants

Listing 6-1 imports the turtle module and assigns constants that represent
key parameters: the gravitational constant, the number of times to run the
main loop, and the x and y values for R0 and V0 (see Figure 6-3). Listing these
values near the top of the program makes them easy to find and alter later.

from turtle import Shape, Screen, Turtle, Vec2D as Vec

User input:
G = 8
NUM_LOOPS = 4100
Ro_X = 0
Ro_Y = -85
Vo_X = 485
Vo_Y = 0

Listing 6-1: Importing turtle and assigning constants

apollo_8_free
_return.py, part 1

Winning the Moon Race with Apollo 8 133

You’ll need to import four helper classes from turtle. You’ll use the
Shape class to make a custom turtle that looks like the CSM. The Screen sub-
class makes the screen, called a drawing board in turtle parlance. The Turtle
subclass creates the turtle objects. The Vec2D import is a two-dimensional
vector class. It will help you define velocity as a vector of magnitude and
direction.

Next, assign some variables that the user may want to tweak later.
Start with the gravitational constant, used in Newton’s gravity equations
to ensure the units come out right. Assign it 8, the value used in the turtle
demo. Think of this as a scaled gravitational constant. You can’t use the true
constant, as the simulation doesn’t use real-world units.

You’ll run the simulation in a loop, and each iteration will represent a
time step. With each step, the program will recalculate the position of the
CSM as it moves through the gravity fields of the earth and the moon. The
value of 4100, arrived at by trial and error, will stop the simulation just after
the spacecraft arrives back on the earth.

In 1968, a round-trip to the moon took about six days. Since you’re
incrementing the time unit by 0.001 with each loop and running 4,100 loops,
this means a time step in the simulation represents about two minutes of
time in the real world. The longer the time step, the faster the simulation
but the less accurate the results, as small errors compound over time. In
actual fight path simulations, you can optimize the time step by first running
a small step, for maximum accuracy, and then using the results to find the
largest time step that yields a similar result.

The next two variables, Ro_X and Ro_Y, represent the (x, y) coordinates of
the CSM at the time of the translunar injection (see Figure 6-3). Likewise,
Vo_X and Vo_Y represent the x - and y -direction components of the translunar
injection velocity, which is applied by the third stage of the Saturn V rocket.
These values started out as best guesses and were refined with repeated
simulations.

Creating a Gravity System

Because the earth, the moon, and CSM form a continuously interacting
gravity system, you’ll want a convenient way to represent them and their
respective forces. For this, you’ll need two classes, one to create a gravity
system and one to create the bodies within it. Listing 6-2 defines the GravSys
class that helps you create a mini solar system. This class will use a list to
keep track of all the bodies in motion and loop them through a series of
time steps. It’s based on the planet_and_moon.py demo in the turtle library.

class GravSys():
 """Runs a gravity simulation on n-bodies."""

 def __init__(self):
 self.bodies = []
 self.t = 0
 self.dt = 0.001

apollo_8_free
_return.py, part 2

134 Chapter 6

  def sim_loop(self):
 """Loop bodies in a list through time steps."""
 for _ in range(NUM_LOOPS):
 self.t += self.dt
 for body in self.bodies:
 body.step()

Listing 6-2: Defining a class to manage the bodies in the gravity system

The GravSys class defines how long the simulation will run, how much
time will pass between time steps (loops), and what bodies will be involved.
It also calls the step() method of the Body class you’ll define in Listing 6-3.
This method will update each body’s position as a result of gravitational
acceleration.

Define the initialization method and, as per convention, pass it self as
a parameter. The self parameter represents the GravSys object you’ll create
later in the main() function.

Create an empty list named bodies to hold the earth, the moon, and the
CSM objects. Then assign attributes for when the simulation starts and the
amount to increment time with each loop, known as delta time or dt. Set the
starting time to 0 and set the dt time step to 0.001. As discussed in the previ-
ous section, this time step will correspond to about two minutes in the real
world and will produce a smooth, accurate, and fast simulation.

The last method controls the time steps in the simulation . It uses a for
loop with the range set to the NUM_LOOPS variable. Use a single underscore (_)
rather than i to indicate the use of an insignificant variable (see Listing 5-3
in Chapter 5 for details).

With each loop, increment the gravity system’s time variable by dt. Then,
apply the time shift to each body by looping through the list of bodies and
calling the body.step() method, which you’ll define later within the Body
class. This method updates the position and velocity of the bodies due to
gravitational attraction.

Creating Celestial Bodies

Listing 6-3 defines the Body class used to build the earth, the moon, and the
CSM Body objects. Although no one would ever mistake a planet for a small
spacecraft, they’re not that different from a gravitational standpoint, and
you can stamp them both out of the same mold.

class Body(Turtle):
 """Celestial object that orbits and projects gravity field."""
 def __init__(self, mass, start_loc, vel, gravsys, shape):
 super().__init__(shape=shape)
 self.gravsys = gravsys
 self.penup()
 self.mass = mass
 self.setpos(start_loc)
 self.vel = vel

apollo_8_free
_return.py, part 3

Winning the Moon Race with Apollo 8 135

 gravsys.bodies.append(self)
 #self.resizemode("user")
 #self.pendown() # Uncomment to draw path behind object.

Listing 6-3: Defining a class to create objects for the earth, the moon, and the CSM

Define a new class by using the Turtle class as its ancestor. This means
the Body class will conveniently inherit all the Turtle class’s methods and
attributes.

Next, define an initializer method for the body object. You’ll use this
to create new Body objects in the simulation, a process called instantiation
in OOP. As parameters, the initialize method takes itself, a mass attribute,
a starting location, a starting velocity, the gravity system object, and a shape.

The super() function lets you invoke the method of a superclass to gain
access to inherited methods from the ancestor class. This allows your Body
objects to use attributes from the prebuilt Turtle class. Pass it the shape attri-
bute, which will allow you to pass a custom shape or image to your bodies
when you build them in the main() function.

Next, assign an instance attribute for the gravsys object. This will allow
the gravity system and body to interact. Note that it’s best to initialize attri-
butes through the __init__() method, as we do in this case, since it’s the first
method called after the object is created. This way, these attributes will be
immediately available to any other methods in the class, and other develop-
ers can see a list of all the attributes in one place.

The following penup() method of the Turtle class will remove the drawing
pen so the object doesn’t leave a path behind it as it moves. This gives you
the option of running the simulation with and without visible orbital paths.

Initialize a mass attribute for the body. You’ll need this to calculate the
force of gravity. Next, assign the body’s starting position using the setpos()
method of the Turtle class. The starting position of each body will be an
(x, y) tuple. The origin point (0, 0) will be at the center of the screen. The
x -coordinate increases to the right, and the y -coordinate increases upward.

Assign an initialization attribute for velocity. This will hold the starting
velocity for each object. For the CSM, this value will change throughout the sim-
ulation as the ship moves through the gravity fields of the earth and the moon.

As each body is instantiated, use dot notation to append it to the list
of bodies in the gravity system. You’ll create the gravsys object from the
GravSys() class in the main() function.

The final two lines, commented out, allow the user to change the simu-
lation window size and choose to draw a path behind each object. Start
out with a full-screen display and keep the pen in the up position to let the
simulation run quickly.

Calculating Acceleration Due to Gravity

The Apollo 8 simulation will begin immediately after the translunar injec-
tion. At this point, the third stage of the Saturn V   has fired and fallen away,
and the CSM is beginning its coast to the moon. All changes in velocity or
direction will be entirely due to changes in gravitational force.

136 Chapter 6

The method in Listing 6-4 loops through the bodies in the bodies list,
calculates acceleration due to gravity for each body, and returns a vector
representing the body’s acceleration in the x and y directions.

 def acc(self):
 """Calculate combined force on body and return vector components."""
 a = Vec(0, 0)
 for body in self.gravsys.bodies:
 if body != self:
 r = body.pos() - self.pos()
 a += (G * body.mass / abs(r)**3) * r
 return a

Listing 6-4: Calculating acceleration due to gravity

Still within the Body class, define the acceleration method, called acc(),
and pass it self. Within the method, name a local variable a, again for accel-
eration, and assign it to a vector tuple using the Vec2D helper class. A 2D
vector is a pair of real numbers (a, b), which in this case represent x and y
components, respectively. The Vec2D helper class enforces rules that permit
easy mathematical operations using vectors, as follows:

	• (a, b) + (c, d) = (a + c, b + d)

	• (a, b) – (c, d) = (a – c, b – d)

	• (a, b) × (c, d) = ac + bd

Next, start looping through the items in the bodies list, which contains
the earth, the moon, and the CSM. You’ll use the gravitational force of
each body to determine the acceleration of the object for which you’re call-
ing the acc() method. It doesn’t make sense for a body to accelerate itself, so
exclude the body if it’s the same as self.

To calculate gravitational acceleration (stored in the g variable) at a
point in space, you’ll use the following formula:

g
GM

r̂
r 2=

where M is the mass of the attracting body, r is the distance (radius) between
bodies, G is the gravitational constant you defined earlier, and r is the unit
vector from the center of mass of the attracting body to the center of mass
of the body being accelerated. The unit vector, also known as the direction
vector or normalized vector, can be described as r/|r|, or:

−
−

position of attracting body position of body being attracted
position of attracting body position of body being attracted

()
()

The unit vector allows you to capture the direction of acceleration,
which will be either positive or negative. To calculate the unit vector, you’ll

apollo_8_free
_return.py, part 4

ˆ

Winning the Moon Race with Apollo 8 137

have to calculate the distance between bodies by using the turtle pos()
method to get each body’s current position as a Vec2D vector. As described
previously, this is a tuple of the (x, y) coordinates.

You’ll then input that tuple into the acceleration equation. Each time
you loop through a new body, you’ll change the a variable based on the
gravitational pull of the body being examined. For example, while the
earth’s gravity may slow the CSM, the moon’s gravity may pull in the oppo-
site direction and cause it to speed up. The a variable will capture the net
effect at the end of the loop. Complete the method by returning a.

Stepping Through the Simulation

Listing 6-5, still in the Body class, defines a method to solve the three-body
problem. It updates the position, orientation, and velocity of bodies in the
gravity system with each time step. The shorter the time steps, the more
accurate the solution, though at the cost of computational efficiency.

 def step(self):
 """Calculate position, orientation, and velocity of a body."""
 dt = self.gravsys.dt
 a = self.acc()
 self.vel = self.vel + dt * a
 self.setpos(self.pos() + dt * self.vel)

  if self.gravsys.bodies.index(self) == 2: # Index 2 = CSM.
 rotate_factor = 0.0006
 self.setheading((self.heading() - rotate_factor * self.xcor()))

  if self.xcor() < -20:
 self.shape('arrow')
 self.shapesize(0.5)
 self.setheading(105)

Listing 6-5: Applying the time step and rotating the CSM

Define a step() method to calculate position, orientation, and velocity
of a body. Assign it self as an argument.

Within the method definition, set a local variable, dt, to the gravsys
object of the same name. This variable has no link to any real-time system;
it’s just a floating-point number that you’ll use to increment velocity with each
time step. The larger the dt variable is, the faster the simulation will run.

Now call the self.acc() method to calculate the acceleration that the
current body experiences due to the combined gravitational fields of the
other bodies. This method returns a vector tuple of (x, y) coordinates.
Multiply it by dt and add the results to self.vel(), which is also a vector, to
update the body’s velocity for the current time step. Recall that, behind the
scenes, the Vec2D class will manage the vector arithmetic.

To update the body’s position in the turtle graphics window, multiply
the body’s velocity by the time step and add the result to the body’s position
attribute. Now each body will move according to the gravitational pull of
the other bodies. You just solved the three-body problem!

apollo_8_free
_return.py, part 5

138 Chapter 6

Next, add some code to refine the CSM’s behavior. Thrust comes out
of the back of the CSM, so in real missions, the rear of the spacecraft is
oriented toward its target. This way, the engine can fire and slow the ship
enough to enter lunar orbit or the earth’s atmosphere. Orienting the ship
this way isn’t necessary with a free return trajectory, but since Apollo 8
planned to fire its engines and enter lunar orbit (and did), you should orient
the ship properly throughout its journey.

Start by selecting the CSM from the list of bodies . In the main() func-
tion, you’ll create the bodies in order of size, so the CSM will be the third
item in the list, at index 2.

To get the CSM to rotate as it coasts through space, assign a small
number to a local variable named rotate_factor. I arrived at this number
through trial and error. Next, set the heading of the CSM turtle object
using its selfheading attribute. Instead of passing it (x, y) coordinates, call
the self.heading() method, which returns the object’s current heading in
degrees, and subtract from it the rotate_factor variable multiplied by the
body’s current x location, obtained by calling the self.xcor() method. This
will cause the CSM to rotate faster as it approaches the moon to keep its tail
pointed in the direction of travel.

You’ll need to eject the service module before the spacecraft enters the
earth’s atmosphere. To do this at a position similar to that in real Apollo
missions, use another conditional to check the spacecraft’s x -coordinate .
The simulation expects the earth to be near the center of the screen, at
coordinates (0, 0). In turtle, the x -coordinate will decrease as you move left
of the center and increase as you move to the right. If the CSM’s x -coordinate
is less than –20 pixels, you can assume that it’s returning home and that it’s
time to part company with the service module.

You’ll model this event by changing the shape of the turtle represent-
ing the CSM. Since turtle includes a standard shape—called arrow—that
looks similar to the command module, all you need to do now is call the
self.shape() method and pass it the name of the shape. Then call the self
.shapesize() method and halve the size of the arrow to make it match the
command module in the CSM custom shape, which you’ll make later. When
the CSM passes the –20 x -position, the service module will magically disap-
pear, leaving the command module to complete the voyage home.

Finally, you’ll want to orient the base of the command module, with
its heat-resistant shielding, toward the earth. Do this by setting the arrow
shape’s heading to 105 degrees.

Defining main(), Setting Up the Screen, and Instantiating the Gravity System

You used object-oriented programming to build the gravity system and
the bodies within it. To run the simulation, you’ll return to procedural
programming and use a main() function. This function sets up the turtle
graphics screen, instantiates objects for the gravity system and the three
bodies, builds a custom shape for the CSM, and calls the gravity system’s
sim_loop() method to walk through the time steps.

Winning the Moon Race with Apollo 8 139

Listing 6-6 defines main() and sets up the screen. It also creates a gravity
system object to manage your mini solar system.

def main():
 screen = Screen()
 screen.setup(width=1.0, height=1.0) # For fullscreen.
 screen.bgcolor('black')
 screen.title("Apollo 8 Free Return Simulation")

 gravsys = GravSys()

Listing 6-6: Setting up the screen and making a gravsys object in main()

Define main() and then instantiate a screen object (a drawing window)
based on the TurtleScreen subclass. Then invoke the screen object’s setup()
method to set the size of screen to full. Do this by passing width and height
arguments of 1.

If you don’t want the drawing window to take up the full screen, pass
setup() the pixel arguments shown in the following snippet:

screen.setup(width=800, height=900, startx=100, starty=0)

Note that a negative startx value uses right justification, a negative
starty uses bottom alignment, and the default settings create a centered
window. Feel free to experiment with these parameters to get the best fit to
your monitor.

Complete setting up the screen by setting its background color to black
and giving it a title. Next, instantiate a gravity system object, gravsys, using
the GravSys class. This object will give you access to the attributes and meth-
ods in the GravSys class. You’ll pass it to each body when you instantiate
them shortly.

Creating the Earth and Moon

Listing 6-7, still in the main() function, creates turtle objects for the earth and
the moon using the Body class you defined earlier. The earth will remain
stationary at the center of the screen, while the moon will revolve around
the earth.

When you create these objects, you’ll set their starting coordinates. The
starting position of the earth is near the center of the screen, biased down-
ward a bit to give the moon and CSM room to interact near the top of the
window.

The starting position of the moon and CSM should reflect what you see
in Figure 6-3, with the CSM vertically beneath the center of the earth. This
way, you only need to thrust in the x direction, rather than calculate a vec-
tor component velocity that includes some movement in the x direction and
some in the y direction.

apollo_8_free_
return.py, part 6

140 Chapter 6

 image_earth = 'earth_100x100.gif'
 screen.register_shape(image_earth)
 earth = Body(1000000, (0, -25), Vec(0, -2.5), gravsys, image_earth)
 earth.pencolor('white')
 earth.getscreen().tracer(n=0, delay=0)

  image_moon = 'moon_27x27.gif'
 screen.register_shape(image_moon)
 moon = Body(32000, (344, 42), Vec(-27, 147), gravsys, image_moon)
 moon.pencolor('gray')

Listing 6-7: Instantiating turtles for the earth and moon

Start by assigning the image of the earth, which is included in the folder
for this project, to a variable. Note that images should be gif files and cannot
be rotated to show the turtle’s heading. So that turtle recognizes the new
shape, add it to the TurtleScreen shapelist using the screen.register_shape()
method. Pass it the variable that references the earth image.

Now it’s time to instantiate the turtle object for the earth. You call the
Body class and pass it the arguments for mass, starting position, starting
velocity, gravity system, and turtle shape—in this case, the image. Let’s talk
about each of these arguments in more detail.

You’re not using real-world units here, so mass is an arbitrary number. I
started with the value used for the sun in the turtle demo planet_and_moon.py,
on which this program is based.

The starting position is an (x, y) tuple that places the earth near the
center of the screen. It’s biased downward 25 pixels, however, as most of the
action will take place in the upper quadrant of the screen. This placement
will provide a little more room in that region.

The starting velocity is a simple (x, y) tuple provided as an argument to
the Vec2D helper class. As discussed previously, this will allow later methods
to alter the velocity attribute using vector arithmetic. Note that the earth’s
velocity is not (0, 0), but (0, -2.5). In real life and in the simulation, the
moon is massive enough to affect the earth so that the center of gravity
between the two is not at the center of the earth, but farther out. This will
cause the earth turtle to wobble and shift positions in a distracting man-
ner during the simulation. Because the moon will be in the upper part of
the screen during simulation, shifting the earth downward a small amount
each time step will dampen the wobbling.

The last two arguments are the gravsys object you instantiated in the
previous listing and the image variable for the earth. Passing gravsys means
the earth turtle will be added to the list of bodies and included in the sim_loop()
class method.

Note that if you don’t want to use a lot of arguments when instantiat-
ing an object, you can change an object’s attributes after it’s created. For
example, when defining the Body class, you could’ve set self.mass = 0, rather
than using an argument for mass. Then, after instantiating the earth body,
you could reset the mass value using earth.mass = 1000000.

apollo_8_free
_return.py, part 7

Winning the Moon Race with Apollo 8 141

Because the earth wobbles a little, its orbital path will form a tight circle
at the top of the planet. To hide it in the polar cap, use the turtle pencolor()
method and set the line color to white.

Finish the earth turtle with code that delays the start of the simula-
tion and prevents the various turtles from flashing on the screen as the
program first draws and resizes them. The getscreen() method returns the
TurtleScreen object the turtle is drawing on. TurtleScreen methods can then
be called for that object. In the same line, call the tracer() method that
turns the turtle animation on or off and sets a delay for drawing updates.
The n parameter determines the number of times the screen updates. A
value of 0 means the screen updates with every loop; larger values progres-
sively repress the updates. This can be used to accelerate the drawing of
complex graphics, but at the cost of image quality. The second argument
sets a delay value, in milliseconds, between screen updates. Increasing the
delay slows the animation.

You’ll build the moon turtle in a similar fashion to the one for the earth.
Start by assigning a new variable to hold the moon image . The moon’s mass
is only a few percent of the earth’s mass, so use a much smaller value for the
moon. I started out with a mass of around 16,000 and tweaked the value until
the CSM’s flight path produced a visually pleasing loop around the moon.

The moon’s starting position is controlled by the phase angle shown
in Figure 6-3. Like this figure, the simulation you’re creating here is not to
scale. Although the earth and moon images will have the correct relative
sizes, the distance between the two is smaller than the actual distance, so
the phase angle will need to be adjusted accordingly. I’ve reduced the dis-
tance in the model because space is big. Really big. If you want to show the
simulation to scale and fit it all on your computer monitor, then you must
settle for a ridiculously tiny earth and moon (Figure 6-10).

Figure 6-10: Earth and moon system at closest approach, or perigee, shown to scale

To keep the two bodies recognizable, you’ll instead use larger, properly
scaled images but reduce the distance between them (Figure 6-11). This
configuration will be more relatable to the viewer and still allow you to
replicate the free return trajectory.

Because the earth and the moon are closer together in the simulation,
the moon’s orbital velocity will be faster than in real life, as per Kepler’s
second law of planetary motion. To compensate for this, the moon’s starting
position is designed to reduce the phase angle compared to that shown in
Figure 6-3.

142 Chapter 6

Figure 6-11: The earth and moon system in the simulation, with only the body sizes at the
correct scale

Finally, you’ll want the option to draw a line behind the moon to trace
its orbit. Use the turtle pencolor() method and set the line color to gray.

N O T E 	 Parameters such as mass, initial position, and initial velocity are good candidates
for global constants. Despite this, I chose to enter them as method arguments to avoid
overloading the user with too many input variables at the start of the program.

Building a Custom Shape for the CSM

Now it’s time to instantiate a turtle object to represent the CSM. This requires
a little more work than the last two objects.

First, there’s no way to show the CSM at the same scale as the earth and
the moon. To do that, you’d need less than a pixel, which is impossible. Plus,
where’s the fun in that? So, once again, you’ll take liberties with scale and
make the CSM large enough to be recognizable as an Apollo spacecraft.

Second, you won’t use an image for the CSM, as you did with the other
two bodies. Because image shapes don’t automatically rotate when a turtle
turns and you want to orient the CSM tail-first through most of its journey,
you must instead customize your own shape.

Listing 6-8, still in main(), builds a representation of the CSM by draw-
ing basic shapes, such as rectangles and triangles. You then combine these
individual primitives into a final compound shape.

 csm = Shape('compound')
 cm = ((0, 30), (0, -30), (30, 0))
 csm.addcomponent(cm, 'white', 'white')
 sm = ((-60, 30), (0, 30), (0, -30), (-60, -30))
 csm.addcomponent(sm, 'white', 'black')
 nozzle = ((-55, 0), (-90, 20), (-90, -20))
 csm.addcomponent(nozzle, 'white', 'white')
 screen.register_shape('csm', csm)

Listing 6-8: Building a custom shape for the CSM turtle

Name a variable csm and call the turtle Shape class. Pass it 'compound',
indicating you want to build the shape using multiple components.

apollo_8_free_
return.py, part 8

Winning the Moon Race with Apollo 8 143

The first component will be the command module. Name a variable cm
and assign it to a tuple of coordinate pairs, known as a polygon type in turtle.
These coordinates build a triangle, as shown in Figure 6-12.

(–90, 20)

(–90, –20)

(–60, 30) (0, 30)

(0, –30)(–60, –30)

(30, 0)(–55, 0)nozzle sm cm

Figure 6-12: CSM compound shape with coordinates
for nozzle, service module, and command module

Add this triangle component to the csm shape using the addcomponent()
method, called with dot notation. Pass it the cm variable, a fill color, and an
outline color. Good fill colors are white, silver, gray, or red.

Repeat this general process for the service module rectangle. Set the
outline color to black when you add the component to delineate the service
and command modules (see Figure 6-12).

Use another triangle for the nozzle, also called the engine bell. Add the
component and then register the new csm compound shape to the screen.
Pass the method a name for the shape and then the variable referencing
the shape.

Creating the CSM, Starting the Simulation, and Calling main()

Listing 6-9 completes the main() function by instantiating a turtle for the
CSM and calling the simulation loop that runs the time steps. It then calls
main() if the program is run in stand-alone mode.

 ship = Body(1, (Ro_X, Ro_Y), Vec(Vo_X, Vo_Y), gravsys, 'csm')
 ship.shapesize(0.2)
 ship.color('white')
 ship.getscreen().tracer(1, 0)
 ship.setheading(90)

 gravsys.sim_loop()

if __name__ == '__main__':
 main()

Listing 6-9: Instantiating a CSM turtle, calling the simulation loop and main()

Create a turtle named ship to represent the CSM. The starting position
is an (x, y) tuple that places the CSM in a parking orbit directly below the
earth on the screen. I first approximated the proper height for the parking
orbit (R0 in Figure 6-3) and then fine-tuned it by repeatedly running the

apollo_8_free
_return.py, part 9

144 Chapter 6

simulation. Note that you use the constants assigned at the start of the
program, rather than actual values. This is to make it easier for you to
experiment with these values later.

The velocity argument (Vo_X, Vo_Y) represents the speed of the CSM at
the moment the Saturn third stage stops firing during translunar injection.
All the thrust is in the x direction, but the earth’s gravity will cause the flight
path to immediately curve upward. Like the R0 parameter, a best-guess
velocity was input and refined through simulation. Note that the velocity
is a tuple input using the Vec2D helper class, which allows later methods to
alter the velocity using vector arithmetic.

Next, set the size of the ship turtle using the shapesize() method. Then
set its path color to white so it will match the ship color. Other attractive col-
ors are silver, gray, and red.

Control the screen updates with the getscreen() and tracer() methods,
described in Listing 6-7, and then set the ship’s heading to 90 degrees,
which will point it due east on the screen.

That completes the body objects. Now all that’s left is to launch the
simulation loop, using the gravsys object’s sim_loop() method. Back in the
global space, finish the program with the code to run the program as an
imported module or in stand-alone mode.

As the program is currently written, you’ll have to manually close the
Turtle Graphics window. If you want the window to close automatically, add
the following command as the last line in main():

screen.bye()

Running the Simulation
When you first run the simulation, the pen will be up, and none of the bod-
ies will draw their orbital path (Figure 6-13). The CSM will smoothly rotate
and reorient itself as it approaches the moon and then the earth.

Figure 6-13: The simulation run with the pen up and the CSM approaching the moon

Winning the Moon Race with Apollo 8 145

To trace the journey of the CSM, go to the definition of the Body class
and uncomment this line:

 self.pendown() # uncomment to draw path behind object

You should now see the figure-eight shape of the free return trajectory
(Figure 6-14).

Figure 6-14: The simulation run with the pen down and the CM
at splashdown in the Pacific

You can also simulate gravity propulsion—otherwise known as a slingshot
maneuver—by setting the Vo_X velocity variable to a value between 520 and
540 and rerunning the simulation. This will cause the CSM to pass behind
the moon and steal some of its momentum, increasing the ship’s velocity
and deflecting its flight path (Figure 6-15). Bye-bye Apollo 8!

Figure 6-15: The gravitational slingshot maneuver achieved with Vo_X = 520

146 Chapter 6

This project should teach you that space travel is a game of seconds and
centimeters. If you continue to experiment with value of the Vo_X variable,
you’ll find that even small changes can doom the mission. If you don’t crash
into the moon, you’ll reenter the earth’s atmosphere too steeply or miss it
entirely!

The nice thing about simulations is that, if you fail, you can live to try
again. NASA runs countless simulations for all its proposed missions. The
results help NASA choose between competing flight plans, find the most
efficient routes, decide what to do if things go wrong, and much more.

Simulations are especially important for outer solar system exploration,
where great distances make real-time communications impossible. The tim-
ing of key events, such as firing thrusters, taking photographs, or dropping
probes, are all preprogrammed based on meticulous simulations.

Summary
In this chapter, you learned how to use the turtle drawing program, includ-
ing how to make customized turtle shapes. You also learned how to use
Python to simulate gravity and solve the famous three-body problem.

Further Reading
Apollo 8: The Thrilling Story of the First Mission to the Moon (Henry Holt and
Co., 2017), by Jeffrey Kluger, covers the historic Apollo 8 mission from its
unlikely beginning to its “unimaginable triumph.”

An online search for PBS Nova How Apollo 8 Left Earth Orbit should
return a short video clip on the Apollo 8 translunar injection maneuver,
marking the first time humans left the earth’s orbit and traveled to another
celestial body.

NASA Voyager 1 & 2 Owner’s Workshop Manual (Haynes, 2015), by
Christopher Riley, Richard Corfield, and Philip Dolling, provides interest-
ing background on the three-body problem and Michael Minovitch’s many
contributions to space travel.

The Wikipedia Gravity assist page contains lots of interesting anima-
tions of various gravity-assist maneuvers and historic planetary flybys that
you can reproduce with your Apollo 8 simulation.

Chasing New Horizons: Inside the Epic First Mission to Pluto (Picador, 2018),
by Alan Stern and David Grinspoon, documents the importance—and
ubiquity—of simulations in NASA missions.

Practice Project: Simulating a Search Pattern
In Chapter 1, you used Bayes’ rule to help the Coast Guard search for a
sailor lost at sea. Now, use turtle to design a helicopter search pattern to
find the missing sailor. Assume the spotters can see for 20 pixels and make
the spacing between long tracks 40 pixels (see Figure 6-16).

Winning the Moon Race with Apollo 8 147

Figure 6-16: Two screenshots from practice_search_pattern.py

For fun, add a helicopter turtle and orient it properly for each pass.
Also add a randomly positioned sailor turtle, stop the simulation when the
sailor is found, and post the joyous news to the screen (Figure 6-17).

Figure 6-17: The sailor is spotted in practice_search_pattern.py.

You can find a solution, practice_search_pattern.py, in the appendix. I’ve
included a digital version, along with helicopter and sailor images, in the
Chapter_6 folder, downloadable from the book’s website.

Practice Project: Start Me Up!
Rewrite apollo_8_free_return.py  so that a moving moon approaches a station-
ary CSM, causes the CSM to start moving, and then swings it up and away.
For fun, orient the CSM turtle so that it always points in the direction of
travel, as if under its own propulsion (see Figure 6-18).

148 Chapter 6

Figure 6-18: The moon approaches a stationary CSM (left) and then flings it to the stars (right).

For a solution, see practice_grav_assist_stationary.py in the appendix or
download it from https://nostarch.com/real-world-python/.

Practice Project: Shut Me Down!
Rewrite apollo_8_free_return.py so that the CSM and moon have crossing
orbits, the CSM passes before the moon, and the moon’s gravity slows the
CSM’s progress to a crawl while changing its direction by about 90 degrees.
As in the previous practice project, have the CSM point in the direction of
travel (see Figure 6-19).

Figure 6-19: The moon and CSM cross orbits, and the moon slows and turns the CSM.

For a solution, see practice_grav_assist_intersecting.py in the appendix or
download it from https://nostarch.com/real-world-python/.

https://nostarch.com/real-world-python/

Winning the Moon Race with Apollo 8 149

Challenge Project: True-Scale Simulation
Rewrite apollo_8_free_return.py so that the earth, the moon, and the distance
between them are all accurately scaled, as shown in Figure 6-10. Use colored
circles, rather than images, for the earth and the moon and make the CSM
invisible (just draw a line behind it). Use Table 6-2 to help determine the
relative sizes and distances to use.

Table 6-2: Length Parameters for the Earth-Moon System

Earth radius 6,371 km

Moon radius 1,737 km

Earth-moon distance 356,700 km*

*Closest approach during Apollo 8 mission in December 1968

Challenge Project: The Real Apollo 8
Rewrite apollo_8_free_return.py so that it simulates the entire Apollo 8 mission,
not just the free return component. The CSM should orbit the moon 10 times
before returning to the earth.

7
S E L E C T I N G M A R T I A N

L A N D I N G S I T E S

Landing a spacecraft on Mars is extraordi-
narily difficult and fraught with peril. No

one wants to lose a billion-dollar probe, so
engineers must emphasize operational safety.

They may spend years searching satellite images for
the safest landing sites that satisfy mission objectives.
And they have a lot of ground to cover. Mars has
almost the same amount of dry land as Earth!

Analyzing an area this large requires the help of computers. In this
chapter, you’ll use Python and the Jet Propulsion Laboratory’s pride and
joy, the Mars Orbiter Laser Altimeter (MOLA) map, to choose and rank
candidate landing sites for a Mars lander. To load and extract useful
information from the MOLA map, you’ll use the Python Imaging Library,
OpenCV, tkinter, and NumPy.

152 Chapter 7

How to Land on Mars
There are many ways to land a probe on Mars, including with parachutes,
balloons, retro rockets, and jet packs. Regardless of the method, most land-
ings follow the same basic safety rules.

The first rule is to target low-lying areas. A probe may enter the Martian
atmosphere going as fast as 27,000 kilometers per hour (kph). Slowing it
down for a soft landing requires a nice thick atmosphere. But the Martian
atmosphere is thin—roughly 1 percent the density of Earth’s. To find enough
of it to make a difference, you need to aim for the lowest elevations, where
the air is denser and the flight through it takes as long as possible.

Unless you have a specialty probe, like one designed for a polar cap,
you’ll want to land near the equator. Here, you’ll find plenty of sunshine to
feed the probe’s solar panels, and temperatures stay warm enough to pro-
tect the probe’s delicate machinery.

You’ll want to avoid sites covered in boulders that can destroy the
probe, prevent its panels from opening, block its robotic arm, or leave it
tilted away from the sun. For similar reasons, you’ll want to stay away from
areas with steep slopes, such as those found on the rims of craters. From a
safety standpoint, flatter is better, and boring is beautiful.

Another challenge of landing on Mars is that you can’t be very precise.
It’s hard to fly 50 million kilometers or more, graze the atmosphere, and
land exactly where you intended. Inaccuracies in interplanetary navigation,
along with variances in Martian atmospheric properties, make hitting a
small target very uncertain.

Consequently, NASA runs lots of computer simulations for each landing
coordinate. Each simulation run produces a coordinate, and the scatter of
points that results from thousands of runs forms an elliptical shape with the
long axis parallel to the probe’s flight path. These landing ellipses can be quite
large (Figure 7-1), though the accuracy improves with each new mission.

Mars Pathfinder
200 x 100 km

landing footprint

Figure 7-1: Scaled comparison of 1997 Mars Pathfinder landing site (left) with Southern California (right)

The 2018 InSight lander had a landing ellipse of only 130 km × 27 km.
The probability of the probe landing somewhere within that ellipse was
around 99 percent.

Selecting Martian Landing Sites 153

The MOLA Map
To identify suitable landing spots, you’ll need a map of Mars. Between 1997
and 2001, a tool aboard the Mars Global Surveyor (MGS) spacecraft shined
a laser on Mars and timed its reflection 600 million times. From these mea-
surements, researchers led by Maria Zuber and David Smith produced a
detailed global topography map known as MOLA (Figure 7-2).

Figure 7-2: MOLA shaded relief map of Mars

To see the spectacular color version of MOLA, along with a legend, go
to the Wikipedia page for the Mars Global Surveyor. The blues in this map
correspond to where oceans and seas probably existed on Mars billions of
years ago. Their distribution is based on a combination of elevation and
diagnostic surface features, like ancient shorelines.

The laser measurements for MOLA have a vertical positional accuracy
of around 3 to 13 m and a horizontal positional accuracy of about 100 m.
Pixel resolution is 463 m per pixel. By itself, the MOLA map lacks the detail
needed to safely choose a final landing ellipse, but it’s perfect for the scop-
ing work you’ll be asked to do.

Project #10: Selecting Martian Landing Sites
Let’s pretend you’re a NASA summer intern working on the Orpheus
Project, a mission designed to listen for marsquakes and study the interior of
the planet, much like the 2018 Mars InSight mission. Because the purpose
of Orpheus is to study the interior of Mars, interesting features of the plan-
et’s surface aren’t that important. Safety is the prime concern, making this
mission an engineer’s dream come true.

Your job is to find at least a dozen regions from which NASA staff can
select smaller candidate landing ellipses. According to your supervisor, the
regions should be rectangles 670 km long (E–W) and 335 km wide (N–S).
To address safety concerns, the regions should straddle the equator between
30° N and 30° S latitude, lie at low elevations, and be as smooth and flat as
possible.

154 Chapter 7

T HE OBJEC T I V E

Write a Python program that uses an image of the MOLA map to choose the 20 safest
670 km × 335 km regions near the Martian equator from which to select landing ellipses
for the Orpheus lander.

The Strategy
First, you’ll need a way to divide the MOLA digital map into rectangular
regions and extract statistics on elevation and surface roughness. This means
you’ll be working with pixels, so you’ll need imaging tools. And since NASA
is always containing costs, you’ll want to use free, open source libraries like
OpenCV, the Python Imaging Library (PIL), tkinter, and NumPy. For an over-
view and installation instructions, see “Installing the Python Libraries” on
page 6 for OpenCV and NumPy, and see “The Word Cloud and PIL Modules”
on page 65 for PIL. The tkinter module comes preinstalled with Python.

To honor the elevation constraints, you can simply calculate the aver-
age elevation for each region. For measuring how smooth a surface is at
a given scale, you have lots of choices, some of them quite sophisticated.
Besides basing smoothness on elevation data, you can look for differential
shadowing in stereo images; the amount of scattering in radar, laser, and
microwave reflections; thermal variations in infrared images; and so on.
Many roughness estimates involve tedious analyses along transects, which
are lines drawn on the planet’s surface along which variations in height are
measured and scrutinized. Since you’re not really a summer intern with
three months to burn, you’re going to keep things simple and use two com-
mon measurements that you’ll apply to each rectangular region: standard
deviation and peak-to-valley.

Standard deviation, also called root-mean-square by physical scientists, is
a measure of the spread in a set of numbers. A low standard deviation indi-
cates that the values in a set are close to the average value; a high standard
deviation indicates they are spread out over a wider range. A map region with
a low standard deviation for elevation means that the area is flattish, with
little variance from the average elevation value.

Technically, the standard deviation for a population of samples is the
square root of the average of the squared deviations from the mean, repre-
sented by the following formula:

∑σ ()= −
=N

h h
1

i
i

N

0
2

1

where s is the standard deviation, N is the number of samples, hi is the cur-
rent height sample, and h0 is the mean of all the heights.

The peak-to-valley statistic is the difference in height between the highest
and lowest points on a surface. It captures the maximum elevation change

Selecting Martian Landing Sites 155

for the surface. This is important as a surface may have a relatively low stan-
dard deviation—suggesting smoothness—yet contain a significant hazard,
as shown in the cross section in Figure 7-3.

PV = 6

StD = 0.694

−4

−3

−2

−1

0

1

2

3

4

Figure 7-3: A surface profile (black line) with standard deviation (StD) and peak-to-valley
(PV) statistics

You can use the standard deviation and peak-to-valley statistics as compar-
ative metrics. For each rectangular region, you’re looking for the lowest values
of each statistic. And because each statistic records something slightly differ-
ent, you’ll find the best 20 rectangular regions based on each statistic and
then select only the rectangles that overlap to find the best rectangles overall.

The Site Selector Code
The site_selector.py program uses a grayscale image of the MOLA map (Figure
7-4) to select the landing site rectangles and the shaded color map (Figure 7-2)
to post them. Elevation is represented by a single channel in the grayscale
image, so it’s easier to use than the three-channel (RGB) color image.

Figure 7-4: Mars MGS MOLA Digital Elevation Model 463m v2 (mola_1024x501.png)

156 Chapter 7

You can find the program, the grayscale image (mola_1024x501.png),
and the color image (mola_color_1024x506.png) in the Chapter_7 folder,
downloadable from https://nostarch.com/real-world-python/. Keep these files
together in the same folder and don’t rename them.

N O T E 	 The MOLA map comes in multiple file sizes and resolutions. You’re using the smallest
size here to speed up the download and run times.

Importing Modules and Assigning User Input Constants

Listing 7-1 imports modules and assigns constants that represent user input
parameters. These include image filenames, the dimensions of the rectan-
gular regions, a maximum elevation limit, and the number of candidate
rectangles to consider.

import tkinter as tk
from PIL import Image, ImageTk
import numpy as np
import cv2 as cv

CONSTANTS: User Input:
IMG_GRAY = cv.imread('mola_1024x501.png', cv.IMREAD_GRAYSCALE)
IMG_COLOR = cv.imread('mola_color_1024x506.png')
RECT_WIDTH_KM = 670
RECT_HT_KM = 335
MAX_ELEV_LIMIT = 55
NUM_CANDIDATES = 20
MARS_CIRCUM = 21344

Listing 7-1: Importing modules and assigning user input constants

Start by importing the tkinter module. This is Python’s default GUI
library for developing desktop applications. You’ll use it to make the final
display: a window with the color MOLA map at the top and a text descrip-
tion of the posted rectangles at the bottom. Most Windows, macOS, and
Linux machines come with tkinter already installed. If you don’t have it or
need the latest version, you can download and install it from https://www
.activestate.com/. Online documentation for the module can be found at
https://docs.python.org/3/library/tk.html.

Next, import the Image and ImageTK modules from the Python Imaging
Library. The Image module provides a class that represents a PIL image. It
also provides factory functions, including functions to load images from
files and create new images. The ImageTK module contains support for cre-
ating and modifying tkinter’s BitmapImage and PhotoImage objects from PIL
images. Again, you’ll use these at the end of the program to place the color
map and some descriptive text in a summary window. Finally, finish the
imports with NumPy and OpenCV.

Now, assign some constants that represent user input that won’t change
as the program runs. First, use the OpenCV imread() method to load the
grayscale MOLA image. Note that you have to use the cv.IMREAD_GRAYSCALE
flag, as the method loads images in color by default. Repeat the code

site_selector.py,
part 1

https://www.activestate.com/
https://www.activestate.com/
https://docs.python.org/3/library/tk.html

Selecting Martian Landing Sites 157

without the flag to load the color image. Then add constants for the rect-
angle size. In the next listing, you’ll convert these dimensions to pixels for
use with the map image.

Next, to ensure the rectangles target smooth areas at low elevations, you
should limit the search to lightly cratered, flat terrain. These regions are
believed to represent old ocean bottoms. Thus, you’ll want to set the maxi-
mum elevation limit to a grayscale value of 55, which corresponds closely to
the areas thought to be remnants of ancient shorelines (see Figure 7-5).

Figure 7-5: MOLA map with pixel values ≤ 55 colored black to represent
ancient Martian oceans

Now, specify the number of rectangles to display, represented by the
NUM_CANDIDATES variable. Later, you’ll select these from a sorted list of rect-
angle statistics. Complete the user input constants by assigning a constant
to hold the Martian circumference, in kilometers. You’ll use this later to
determine the number of pixels per kilometer.

Assigning Derived Constants and Creating the screen Object

Listing 7-2 assigns constants that are derived from other constants. These
values will update automatically if the user changes the previous constants,
for example, to test different rectangle sizes or elevation limits. The listing
ends by creating tkinter screen and canvas objects for the final display.

CONSTANTS: Derived:
IMG_HT, IMG_WIDTH = IMG_GRAY.shape
PIXELS_PER_KM = IMG_WIDTH / MARS_CIRCUM
RECT_WIDTH = int(PIXELS_PER_KM * RECT_WIDTH_KM)
RECT_HT = int(PIXELS_PER_KM * RECT_HT_KM)

 LAT_30_N = int(IMG_HT / 3)
LAT_30_S = LAT_30_N * 2
STEP_X = int(RECT_WIDTH / 2)
STEP_Y = int(RECT_HT / 2)

 screen = tk.Tk()
canvas = tk.Canvas(screen, width=IMG_WIDTH, height=IMG_HT + 130)

Listing 7-2: Assigning derived constants and setting up the tkinter screen

site_selector.py,
part 2

158 Chapter 7

Start by unpacking the height and width of the image using the shape
attribute. OpenCV stores images as NumPy ndarrays, which are n-dimensional
arrays—or tables—of elements of the same type. For an image array, shape
is a tuple of the number of rows, columns, and channels. The height repre-
sents the number of pixel rows in the image, and the width represents the
number of pixel columns in the image. Channels represent the number of
components used to represent each pixel (such as red, green, and blue).
For grayscale images with one channel, shape is just a tuple of the area’s
height and width.

To convert the rectangle dimensions from kilometers to pixels, you
need to know how many pixels there are per kilometer. So, divide the image
width by the circumference to get the pixels per kilometer at the equator.
Then convert width and height into pixels. You’ll use these to derive values
for index slicing later, so make sure they are integers by using int(). The
value of these constants should now be 32 and 16, respectively.

You want to limit your search to the warmest and sunniest areas, which
straddle the equator between 30° north latitude and 30° south latitude
(Figure 7-6). In terms of climatic criteria, this region corresponds to the
tropics on Earth.

Figure 7-6: Latitude ( y-axis) and longitude ( x-axis) on Mars

Latitude values start at 0° at the equator and end at 90° at the poles.
To find 30° north, all you need to do is divide the image height by 3 . To
get to 30° south, double the number of pixels it took to get to 30° north.

Restricting the search to the equatorial region of Mars has a beneficial
side effect. The MOLA map you’re using is based on a cylindrical projection,
used to transfer the surface of a globe onto a flat plane. This causes converg-
ing lines of longitude to be parallel, badly distorting features near the poles.
You may have noticed this on wall maps of the earth, where Greenland looks
like a continent and Antarctica is impossibly huge (see Figure 7-7).

Fortunately, this distortion is minimized near the equator, so you don’t
have to factor it into the rectangle dimensions. You can verify this by check-
ing the shape of craters on the MOLA map. So long as they’re nice and
circular—rather than oval—projection-related effects can be ignored.

Selecting Martian Landing Sites 159

Figure 7-7: Forcing lines of longitude to be parallel distorts the size of features
near the poles.

Next, you’ll need to divide up the map into rectangular regions. A
logical place to begin is the upper-left corner, tucked under the 30° north
latitude line (Figure 7-8).

Figure 7-8: Position of the first numbered rectangle

The program will draw this first rectangle, number it, and calculate the
elevation statistics within it. It will then move the rectangle eastward and
repeat the process. How far you move the rectangle each time is defined by
the STEP_X and STEP_Y constants and depends on something called aliasing.

Aliasing is a resolution issue. It occurs when you don’t take enough
samples to identify all the important surface features in an area. This can
cause you to “skip over” a feature, such as a crater, and fail to recognize
it. For example, in Figure 7-9A, there’s a suitably smooth landing ellipse
between two large craters. However, as laid out in Figure 7-9B, no rectan-
gular region corresponds to this ellipse; both rectangles in the vicinity
partially sample a crater rim. As a result, none of the drawn rectangles
contains a suitable landing ellipse, even though one exists in the vicinity.

160 Chapter 7

With this arrangement of rectangles, the ellipse in Figure 7-9A is aliased.
But shift each rectangle by half its width, as in Figure 7-9C, and the smooth
area is properly sampled and recognized.

Acceptable
landing ellipse

Rectangular region

Rectangular region
shifted 1/2 rect width

A

B

C

Figure 7-9: Example of aliasing due to rectangle positioning

The rule of thumb to avoid aliasing effects is to make the step size less
than or equal to half the width of the smallest feature you want to identify.
For this project, use half the rectangle width so the displays don’t become
too busy.

Now it’s time to look ahead to the final display. Create a screen instance
of the tkinter Tk() class . The tkinter application is Python’s wrapper of
the GUI toolkit Tk, originally written in a computer language called TCL.
It needs the screen window to link to an underlying tcl/tk interpreter that
translates tkinter commands into tcl/tk commands.

Next, create a tkinter canvas object. This is a rectangular drawing area
designed for complex layouts of graphics, text, widgets, and frames. Pass it
the screen object, set its width equal to the MOLA image, and set its height
equal to the height of the MOLA image plus 130. The extra padding beneath
the image will hold the text summarizing the statistics for the displayed
rectangles.

It’s more typical to place the tkinter code just described at the end of
programs, rather than at the beginning. I chose to put it near the top to
make the code explanation easier to follow. You can also embed this code
within the function that makes the final display. However, this can cause
problems for macOS users. For macOS 10.6 or newer, the Apple-supplied
Tcl/Tk 8.5 has serious bugs that can cause application crashes (see https://
www.python.org/download/mac/tcltk/).

https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/

Selecting Martian Landing Sites 161

Defining and Initializing a Search Class

Listing 7-3 defines a class that you’ll use to search for suitable rectangular
regions. It then defines the class’s __init__() initialization method, used
to instantiate new objects. For a quick overview of OOP, see “Defining the
Search Class” on page 10, where you also define a search class.

class Search():
 """Read image and identify landing rectangles based on input criteria."""

 def __init__(self, name):
 self.name = name

  self.rect_coords = {}
 self.rect_means = {}
 self.rect_ptps = {}
 self.rect_stds = {}

  self.ptp_filtered = []
 self.std_filtered = []
 self.high_graded_rects = []

Listing 7-3: Defining the Search class and __init__() method

Define a class called Search. Then define the __init__() method used to
create new objects. The name parameter will allow you to give a personalized
name to each object when you create it later in the main() function.

Now you’re ready to start assigning attributes. Start by linking the
object’s name with the argument you’ll provide when you create the object.
Then assign four empty dictionaries to hold important statistics for each
rectangle . These include the rectangle’s corner-point coordinates and its
mean elevation, peak-to-valley, and standard deviation statistics. For a key,
all these dictionaries will use consecutive numbers, starting with 1. You’ll
want to filter the statistics to find the lowest values, so set up two empty lists
to hold these . Note that I use the term ptp, rather than ptv, to represent
the peak-to-valley statistic. That’s to be consistent with the NumPy built-in
method for this calculation, which is called peak-to-peak.

At the end of the program, you’ll place rectangles that occur in both
the sorted standard deviation and peak-to-valley lists in a new list named
high_graded_rects. This list will contain the numbers of the rectangles with
the lowest combined scores. These rectangles will be the best places to look
for landing ellipses.

Calculating Rectangle Statistics

Still in the Search class, Listing 7-4 defines a method that calculates statistics
in a rectangle, adds the statistics to the appropriate dictionary, and then
moves to the next rectangle and repeats the process. The method honors
the elevation limit by using the rectangles in low-lying areas only to popu-
late the dictionaries.

site_selector.py,
part 3

162 Chapter 7

 def run_rect_stats(self):
 """Define rectangular search areas and calculate internal stats."""
 ul_x, ul_y = 0, LAT_30_N
 lr_x, lr_y = RECT_WIDTH, LAT_30_N + RECT_HT
 rect_num = 1

 while True:

  rect_img = IMG_GRAY[ul_y : lr_y, ul_x : lr_x]
 self.rect_coords[rect_num] = [ul_x, ul_y, lr_x, lr_y]
 if np.mean(rect_img) <= MAX_ELEV_LIMIT:
 self.rect_means[rect_num] = np.mean(rect_img)
 self.rect_ptps[rect_num] = np.ptp(rect_img)
 self.rect_stds[rect_num] = np.std(rect_img)
 rect_num += 1

 ul_x += STEP_X
 lr_x = ul_x + RECT_WIDTH

  if lr_x > IMG_WIDTH:
 ul_x = 0
 ul_y += STEP_Y
 lr_x = RECT_WIDTH
 lr_y += STEP_Y

  if lr_y > LAT_30_S + STEP_Y:
 break

Listing 7-4: Calculating rectangle statistics and moving the rectangle

Define the run_rect_stats() method, which takes self as an argument.
Then assign local variables for the upper-left and lower-right corners of
each rectangle. Initialize them using a combination of coordinates and
constants. This will place the first rectangle along the left side of the image
with its top boundary at 30° north latitude.

Keep track of the rectangles by numbering them, starting with 1. These
numbers will serve as the keys for the dictionaries used to record coordinates
and stats. You’ll also use them to identify the rectangles on the map, as
demonstrated earlier in Figure 7-8.

Now, start a while loop that will automate the process of moving the
rectangles and recording their statistics. This loop will run until more than
half of a rectangle extends below latitude 30° south, at which time the loop
will break.

As mentioned previously, OpenCV stores images as NumPy arrays. To
calculate the stats within the active rectangle, rather than the whole image,
create a subarray using normal slicing . Call this subarray rect_img, for
“rectangular image.” Then, add the rectangle number and these coordi-
nates to the rect_coords dictionary. You’ll want to keep a record of these
coordinates for the NASA staff, who’ll use your rectangles as the starting
point for more detailed investigations later.

Next, start a conditional to check that the current rectangle is at or
below the maximum elevation limit specified for the project. As part of
this statement, use NumPy to calculate the mean elevation for the rect_img
subarray.

site_selector.py,
part 4

Selecting Martian Landing Sites 163

If the rectangle passes the elevation test, populate the three dictionar-
ies with the coordinates, peak-to-valley, and standard deviation statistics,
as appropriate. Note that you can perform the calculation as part of the
process, using np.ptp for peak-to-valley and np.std for standard deviation.

Next, advance the rect_num variable by 1 and move the rectangle. Move
the upper-left x -coordinate by the step size and then shift the lower-right
x -coordinate by the width of the rectangle. You don’t want the rectangle
to extend past the right side of the image, so check whether lr_x is greater
than the image width . If it is, set the upper-left x -coordinate to 0 to move
the rectangle back to the starting position on the left side of the screen.
Then move its y -coordinates down so that the new rectangles move along a
new row. If the bottom of this new row is more than half a rectangle height
below 30° south latitude, you’ve fully sampled the search area and can end
the loop .

Between 30° north and south latitude, the image is bounded on both
sides by relatively high, cratered terrain that isn’t suitable for a landing site
(see Figure 7-6). Thus, you can ignore the final step that shifts the rectan-
gle by one-half its width. Otherwise, you would need to add code that wraps
a rectangle from one side of the image to the other and calculates the statis-
tics for each part. We’ll take a closer look at this situation in the final chal-
lenge project at the end of the chapter.

N O T E 	 When you draw something on an image, such as a rectangle, the drawing becomes
part of the image. The altered pixels will be included in any NumPy analyses you run,
so be sure to calculate any statistics before you annotate the image.

Checking the Rectangle Locations

Still indented under the Search class, Listing 7-5 defines a method that
performs quality control. It prints the coordinates of all the rectangles and
then draws them on the MOLA map. This will let you verify that the search
area has been fully evaluated and the rectangle size is what you expected it
to be.

def draw_qc_rects(self):
 """Draw overlapping search rectangles on image as a check."""
 img_copy = IMG_GRAY.copy()
 rects_sorted = sorted(self.rect_coords.items(), key=lambda x: x[0])
 print("\nRect Number and Corner Coordinates (ul_x, ul_y, lr_x, lr_y):")
 for k, v in rects_sorted:
 print("rect: {}, coords: {}".format(k, v))
 cv.rectangle(img_copy,
 (self.rect_coords[k][0], self.rect_coords[k][1]),
 (self.rect_coords[k][2], self.rect_coords[k][3]),
 (255, 0, 0), 1)
 cv.imshow('QC Rects {}'.format(self.name), img_copy)
 cv.waitKey(3000)
 cv.destroyAllWindows()

Listing 7-5: Drawing all the rectangles on the MOLA map as a quality control step

site_selector.py,
part 5

164 Chapter 7

Start by defining a method to draw the rectangles on the image. Anything
you draw on an image in OpenCV becomes part of the image, so first make
a copy of the image in the local space.

You’ll want to provide NASA with a printout of the identification num-
ber and coordinates for each rectangle. To print these in numerical order,
sort the items in the rect_coords dictionary using a lambda function. If you
haven’t used a lambda function before, you can find a short description on
page 106 in Chapter 5.

Print a header for the list and then start a for loop through the keys
and values in the newly sorted dictionary. The key is the rectangle number,
and the value is the list of coordinates, as shown in the following output:

Rect Number and Corner Coordinates (ul_x, ul_y, lr_x, lr_y):
rect: 1, coords: [0, 167, 32, 183]
rect: 2, coords: [16, 167, 48, 183]

--snip--

rect: 1259, coords: [976, 319, 1008, 335]
rect: 1260, coords: [992, 319, 1024, 335]

Use the OpenCV rectangle() method to draw the rectangles on the
image. Pass it the image on which to draw, the rectangle coordinates, a
color, and a line width. Access the coordinates directly from the rect_coords
dictionary using the key and the list index (0 = upper-left x, 1 = upper-left y,
2 = lower-right x, 3 = lower-right y).

To display the image, call the OpenCV imshow() method and pass it a
name for the window and the image variable. The rectangles should cover
Mars in a band centered on the equator (Figure 7-10). Leave the window up
for three seconds and then destroy it.

Figure 7-10: All 1,260 rectangles drawn by the draw_qc_rects() method

Selecting Martian Landing Sites 165

If you compare Figure 7-10 to Figure 7-8, you may notice that the rect-
angles appear smaller than expected. This is because you stepped the
rectangles across and down the image using half the rectangle width and
height so that they overlap each other.

Sorting the Statistics and High Grading the Rectangles

Continuing with the Search class definition, Listing 7-6 defines a method to
find the rectangles with the best potential landing sites. The method sorts
the dictionaries containing the rectangle statistics, makes lists of the top
rectangles based on the peak-to-valley and standard deviation statistics,
and then makes a list of any rectangles shared between these two lists. The
shared rectangles will be the best candidates for landing sites, as they’ll
have the smallest peak-to-valley and standard deviation statistics.

 def sort_stats(self):
 """Sort dictionaries by values and create lists of top N keys."""
 ptp_sorted = (sorted(self.rect_ptps.items(), key=lambda x: x[1]))
 self.ptp_filtered = [x[0] for x in ptp_sorted[:NUM_CANDIDATES]]
 std_sorted = (sorted(self.rect_stds.items(), key=lambda x: x[1]))
 self.std_filtered = [x[0] for x in std_sorted[:NUM_CANDIDATES]]
 for rect in self.std_filtered:
 if rect in self.ptp_filtered:
 self.high_graded_rects.append(rect)

Listing 7-6: Sorting and high grading the rectangles based on their statistics

Define a method called sort_stats(). Sort the rect_ptps dictionary with
a lambda function that sorts the values rather than the keys. The values in
this dictionary are the peak-to-valley measurements. This should create a
list of tuples, with the rectangle number at index 0 and the peak-to-valley
value at index 1.

Next, use list comprehension to populate the self.ptp_filtered attribute
with the rectangle numbers in the ptp_sorted list. Use index slicing to select
only the first 20 values, as stipulated by the NUM_CANDIDATES constant. You now
have the 20 rectangles with the lowest peak-to-valley scores. Repeat this same
basic code for standard deviation, producing a list of the 20 rectangles with
the lowest standard deviation.

Finish the method by looping through the rectangle numbers in the
std_filtered list and comparing them to those in the ptp_filtered list. Append
matching numbers to the high_graded_rects instance attribute you created
previously with the __init__() method.

Drawing the Filtered Rectangles on the Map

Listing 7-7, still indented under the Search class, defines a method that draws
the 20 best rectangles on the grayscale MOLA map. You’ll call this method
in the main() function.

site_selector.py,
part 6

166 Chapter 7

 def draw_filtered_rects(self, image, filtered_rect_list):
 """Draw rectangles in list on image and return image."""
 img_copy = image.copy()
 for k in filtered_rect_list:
 cv.rectangle(img_copy,
 (self.rect_coords[k][0], self.rect_coords[k][1]),
 (self.rect_coords[k][2], self.rect_coords[k][3]),
 (255, 0, 0), 1)
 cv.putText(img_copy, str(k),
 (self.rect_coords[k][0] + 1, self.rect_coords[k][3]- 1),
 cv.FONT_HERSHEY_PLAIN, 0.65, (255, 0, 0), 1)

  cv.putText(img_copy, '30 N', (10, LAT_30_N - 7),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.line(img_copy, (0, LAT_30_N), (IMG_WIDTH, LAT_30_N),
 (255, 0, 0), 1)
 cv.line(img_copy, (0, LAT_30_S), (IMG_WIDTH, LAT_30_S),
 (255, 0, 0), 1)
 cv.putText(img_copy, '30 S', (10, LAT_30_S + 16),
 cv.FONT_HERSHEY_PLAIN, 1, 255)

 return img_copy

Listing 7-7: Drawing filtered rectangles and latitude lines on MOLA map

Start by defining the method, which in this case takes multiple argu-
ments. Besides self, the method will need a loaded image and a list of
rectangle numbers. Use a local variable to copy the image and then start
looping through the rectangle numbers in the filtered_rect_list. With each
loop, draw a rectangle by using the rectangle number to access the corner
coordinates in the rect_coords dictionary.

So you can tell one rectangle from another, use OpenCV’s putText()
method to post the rectangle number in the bottom-left corner of each
rectangle. It needs the image, the text (as a string), coordinates for the
upper-left x and lower-right x, a font, a line width, and a color.

Next, draw the annotated latitude limits, starting with the text for 30°
north . Then draw the line using OpenCV’s line() method. It takes as
arguments an image, a pair of (x, y) coordinates for the start and end of the
line, a color, and a thickness. Repeat these basic instructions for 30° south
latitude.

End the method by returning the annotated image. The best rect-
angles, based on the peak-to-valley and standard deviation statistics, are
shown in Figures 7-11 and 7-12, respectively.

These two figures show the top 20 rectangles for each statistic. That
doesn’t mean they always agree. The rectangle with the lowest standard
deviation may not appear in the peak-to-valley figure due to the presence of
a single small crater. To find the flattest, smoothest rectangles, you need to
identify the rectangles that appear in both figures and show them in their
own display.

site_selector.py,
part 7

Selecting Martian Landing Sites 167

Figure 7-11: The 20 rectangles with the lowest peak-to-valley scores

Figure 7-12: The 20 rectangles with the lowest standard deviations

Making the Final Color Display

Listing 7-8 finishes the Search class by defining a method to summarize the
best rectangles. It uses tkinter to make a summary window with the rectan-
gles posted on the color MOLA image. It also prints the rectangles’ statistics
below the image as text objects. This adds a little work, but it’s a cleaner-
looking solution than posting the summarized stats directly on the image
with OpenCV.

168 Chapter 7

 def make_final_display(self):
 """Use Tk to show map of final rects & printout of their statistics."""
 screen.title('Sites by MOLA Gray STD & PTP {} Rect'.format(self.name))

 img_color_rects = self.draw_filtered_rects(IMG_COLOR,
 self.high_graded_rects)

  img_converted = cv.cvtColor(img_color_rects, cv.COLOR_BGR2RGB)
 img_converted = ImageTk.PhotoImage(Image.fromarray(img_converted))
 canvas.create_image(0, 0, image=img_converted, anchor=tk.NW)

  txt_x = 5
 txt_y = IMG_HT + 20
 for k in self.high_graded_rects:
 canvas.create_text(txt_x, txt_y, anchor='w', font=None,
 text="rect={} mean elev={:.1f} std={:.2f} ptp={}"
 .format(k, self.rect_means[k], self.rect_stds[k],
 self.rect_ptps[k]))
 txt_y += 15

  if txt_y >= int(canvas.cget('height')) - 10:
 txt_x += 300
 txt_y = IMG_HT + 20
 canvas.pack()
 screen.mainloop()

Listing 7-8: Making the final display using the color MOLA map

After defining the method, give the tkinter screen window a title that
links to the name of your search object.

Then, to make the final color image for display, name a local variable
img_color_rects and call the draw_filtered_rects() method. Pass it the color
MOLA image and the list of high-graded rectangles. This will return the
colored image with the final rectangles and latitude limits.

Before you can post this new color image in the tkinter canvas, you need
to convert the colors from OpenCV’s Blue-Green-Red (BGR) format to the
Red-Green-Blue (RGB) format used by tkinter. Do this with the OpenCV
cvtColor() method. Pass it the image variable and the COLOR_BGR2RGB flag .
Name the result img_converted.

At this point, the image is still a NumPy array. To convert to a tkinter-
compatible photo image, you need to use the PIL ImageTk module’s PhotoImage
class and the Image module’s fromarray() method. Pass the method the RGB
image variable you created in the previous step.

With the image finally tkinter ready, place it in the canvas using the
create_image() method. Pass the method the coordinates of the upper-left
corner of the canvas (0, 0), the converted image, and a northwest anchor
direction.

Now all that’s left is to add the summary text. Start by assigning coor-
dinates for the bottom-left corner of the first text object . Then begin
looping through the rectangle numbers in the high-graded rectangle list.
Use the create_text() method to place the text in the canvas. Pass it a pair

site_selector.py,
part 8

Selecting Martian Landing Sites 169

of coordinates, a left-justified anchor direction, the default font, and a text
string. Get the statistics by accessing the different dictionaries using the
rectangle number, designated k for “key.”

Increment the text box’s y -coordinate by 15 after drawing each text
object. Then write a conditional to check that the text is greater than or
within 10 pixels of the bottom of the canvas . You can obtain the height of
the canvas using the cget() method.

If the text is too close to the bottom of the canvas, you need to start
a new column. Shift the txt_x variable over by 300 and reset txt_y to the
image height plus 20.

Finish the method definition by packing the canvas and then calling the
screen object’s mainloop(). Packing optimizes the placement of objects in the
canvas. The mainloop() is an infinite loop that runs tkinter, waits for an event
to occur, and processes the event until the window is closed.

N O T E 	 The height of the color image (506 pixels) is slightly larger than that of the grayscale
image (501 pixels). I chose to ignore this, but if you’re a stickler for accuracy, you
can use OpenCV to shrink the height of the color image using IMG_COLOR = cv.resize
(IMG_COLOR, (1024, 501), interpolation = cv.INTER_AREA).

Running the Program with main()

Listing 7-9 defines a main() function to run the program.

def main():
 app = Search('670x335 km')
 app.run_rect_stats()
 app.draw_qc_rects()
 app.sort_stats()
 ptp_img = app.draw_filtered_rects(IMG_GRAY, app.ptp_filtered)
 std_img = app.draw_filtered_rects(IMG_GRAY, app.std_filtered)

  cv.imshow('Sorted by ptp for {} rect'.format(app.name), ptp_img)
 cv.waitKey(3000)
 cv.imshow('Sorted by std for {} rect'.format(app.name), std_img)
 cv.waitKey(3000)

 app.make_final_display() # Includes call to mainloop().

 if __name__ == '__main__':
 main()

Listing 7-9: Defining and calling the main() function used to run the program

Start by instantiating an app object from the Search class. Name it 670x335
km to document the size of the rectangular regions being investigated. Next,
call the Search methods in order. Run the statistics on the rectangles and
draw the quality control rectangles. Sort the statistics from smallest to larg-
est and then draw the rectangles with the best peak-to-valley and standard
deviation statistics. Show the results  and finish the function by making
the final summary display.

site_selector.py,
part 9

170 Chapter 7

Back in the global space, add the code that lets the program run as an
imported module or in stand-alone mode .

Figure 7-13 shows the final display. It includes the high-graded rectan-
gles and the summary statistics sorted based on standard deviation.

Figure 7-13: Final display with high-graded rectangles and summary statistics sorted by
standard deviation

Results
After you’ve made the final display, the first thing you should do is perform
a sanity check. Make sure that the rectangles are within the allowed latitude
and elevation limits and that they appear to be in smooth terrain. Likewise,
the rectangles based on the peak-to-valley and standard deviation statistics,
shown in Figures 7-11 and 7-12, respectively, should match the constraints
and mostly pick the same rectangles.

As noted previously, the rectangles in Figures 7-11 and 7-12 don’t per-
fectly overlap. That’s because you’re using two different metrics for smooth-
ness. One thing you can be sure of, though, is that the rectangles that do
overlap will be the smoothest of all the rectangles.

While all the rectangle locations look reasonable in the final display, the
concentration of rectangles on the far-west side of the map is particularly
encouraging. This is the smoothest terrain in the search area (Figure 7-14),
and your program clearly recognized it.

This project focused on safety concerns, but scientific objectives drive
site selection for most missions. In the practice projects at the end of the
chapter, you’ll get a chance to incorporate an additional constraint—
geology—into the site selection equation.

Selecting Martian Landing Sites 171

30◦ North

Olympus
Mons

Figure 7-14: The very smooth terrain west of the Olympus Mons lava fields

Summary
In this chapter, you used Python, OpenCV, the Python Imaging Library,
NumPy, and tkinter to load, analyze, and display an image. Because OpenCV
treats images as NumPy arrays, you can easily extract information from parts
of an image and evaluate it with Python’s many scientific libraries.

The dataset you used was quick to download and fast to run. While a
real intern would have used a larger and more rigorous dataset, such as one
composed of millions of actual elevation measurements, you got to see how
the process works with little effort and reasonable results.

Further Reading
The Jet Propulsion Laboratory has several short and fun videos about land-
ing on Mars. Find them with online searches for Mars in a Minute: How Do
You Choose a Landing Site?, Mars in a Minute: How Do You Get to Mars?, and
Mars in a Minute: How Do You Land on Mars?.

Mapping Mars: Science, Imagination, and the Birth of a World (Picador,
2002), by Oliver Morton, tells the story of the contemporary exploration of
Mars, including the creation of the MOLA map.

The Atlas of Mars: Mapping Its Geography and Geology (Cambridge
University Press, 2019), by Kenneth Coles, Kenneth Tanaka, and Philip
Christensen, is a spectacular all-purpose reference atlas of Mars that
includes maps of topography, geology, mineralogy, thermal properties,
near-surface water-ice, and more.

The data page for the MOLA map used in Project 10 is at
https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS
_MOLA_DEM_mosaic_global_463m/.

Detailed Martian datasets are available on the Mars Orbital Data
Explorer site produced by the PDS Geoscience Node at Washington
University in St. Louis (https://ode.rsl.wustl.edu/mars/index.aspx).

https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m
https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m
https://ode.rsl.wustl.edu/mars/index.aspx

172 Chapter 7

Practice Project: Confirming That Drawings Become Part of an
Image

Write a Python program that verifies that drawings added to an image,
such as text, lines, rectangles, and so on, become part of that image. Use
NumPy to calculate the mean, standard deviation, and peak-to-valley statistics
on a rectangular region in the MOLA grayscale image, but don’t draw the
rectangle outline. Then draw a white line around the region and rerun the
statistics. Do the two runs agree?

You can find a solution, practice_confirm_drawing_part_of_image.py, in
the appendix or Chapter_7 folder, downloadable from https://nostarch.com
/real-world-python/.

Practice Project: Extracting an Elevation Profile
An elevation profile is a two-dimensional, cross-sectional view of a land-
scape. It provides a side view of a terrain’s relief along a line drawn between
locations on a map. Geologists can use profiles to study the smoothness of
a surface and visualize its topography. For this practice project, draw a west-
to-east profile that passes through the caldera of the largest volcano in the
solar system, Olympus Mons (Figure 7-15).

Figure 7-15: Vertically exaggerated west-east profile through Olympus Mons

Use the Mars MGS MOLA - MEX HRSC Blended DEM Global 200m v2 map
shown in Figure 7-15. This version has better lateral resolution than the one
you used for Project 10. It also uses the full elevation range in the MOLA
data. You can find a copy, mola_1024x512_200mp.jpg, in the Chapter_7 folder,
downloadable from the book’s website. A solution, practice_profile_olympus.py,
is available in the same folder and in the appendix.

https://nostarch.com/real-world-python/
https://nostarch.com/real-world-python/

Selecting Martian Landing Sites 173

Practice Project: Plotting in 3D
Mars is an asymmetrical planet, with the southern hemisphere dominated
by ancient cratered highlands and the north characterized by smooth, flat
lowlands. To make this more apparent, use the 3D plotting functionality in
matplotlib to display the mola_1024x512_200mp.jpg image you used in the
previous practice project (Figure 7-16).

Olympus Mons

Argyre Planitia

Hellas Planitia
Elysium Mons

Northern Lowlands

Polar C
ap

Southern Highlands

Figure 7-16: A 3D contour plot of Mars, looking toward the west

With matplotlib, you can make 3D relief plots using points, lines, con-
tours, wireframes, and surfaces. Although the plots are somewhat crude,
you can generate them quickly. You can also use the mouse to interactively
grab the plot and change the viewpoint. They are particularly useful for
people who have trouble visualizing topography from 2D maps.

In Figure 7-16, the exaggerated vertical scale makes the elevation
difference from south to north easy to see. It’s also easy to spot the tallest
mountain (Olympus Mons) and the deepest crater (Hellas Planitia).

You can reproduce the plot in Figure 7-16—sans annotation—with the
practice_3d_plotting.py program in the appendix or Chapter_7 folder, down-
loadable from the book’s website. The map image can be found in the same
folder.

Practice Project: Mixing Maps
Make up a new project that adds a bit of science to the site selection
process. Combine the MOLA map with a color geology map and find the
smoothest rectangular regions within the volcanic deposits at Tharsis
Montes (see arrow in Figure 7-17).

174 Chapter 7

Figure 7-17: Geological map of Mars. The arrow points to the Tharsis volcanic deposits.

Since the Tharsis Montes region lies at a high altitude, focus on find-
ing the flattest and smoothest parts of the volcanic deposits, rather than
targeting the lowest elevations. To isolate the volcanic deposits, consider
thresholding a grayscale version of the map. Thresholding is a segmentation
technique that partitions an image into a foreground and a background.

With thresholding, you convert a grayscale image into a binary image
where pixels above or between specified threshold values are set to 1 and all
others are set to 0. You can use this binary image to filter the MOLA map,
as shown in Figure 7-18.

Figure 7-18: Filtered MOLA map over the Tharsis Montes region, with ptp (left) and std
(right) rectangles

Selecting Martian Landing Sites 175

You can find the geological map, Mars_Global_Geology_Mariner9_1024.jpg,
in the Chapter_7 folder, downloadable from the book’s website. The volcanic
deposits will be light pink in color. For the elevation map, use mola_1024x512
_200mp.jpg  from the “Extracting an Elevation Profile” practice project on
page 172.

A solution, contained in practice_geo_map_step_1of2.py  and practice_geo
_map_step_2of2.py, can be found in the same folder and in the appendix.
Run the practice_geo_map_step_1of2.py program first to generate the filter
for step 2.

Challenge Project: Making It Three in a Row
Edit the “Extracting an Elevation Profile” project so that the profile passes
through the three volcanoes on Tharsis Montes, as shown in Figure 7-19.

Th
ar

sis
 M

on
tes

Valles Marineris

Hellas
Planitia

Figure 7-19: Diagonal profile through the three volcanoes on Tharsis Montes

Other interesting features to profile are Valles Marineris, a canyon
nine times as long and four times as deep as the Grand Canyon, and Hellas
Planitia, considered the third or fourth largest impact crater in the solar
system (Figure 7-19).

Challenge Project: Wrapping Rectangles
Edit the site_selector.py code so that it accommodates rectangle dimensions
that don’t divide evenly into the width of the MOLA image. One way to do
this is to add code that splits the rectangle into two pieces (one along the
right edge of the map and the other along the left edge), calculates statistics
for each, and then recombines them into a full rectangle. Another approach
is to duplicate the image and “stitch” it to the original image, as shown in
Figure 7-20. This way, you won’t have to split the rectangles; just decide
when to stop stepping them across the map.

176 Chapter 7

Figure 7-20: The grayscale MOLA image duplicated and repeated

Of course, for efficiency, you don’t have to duplicate the whole map. You
only need a strip along the eastern margin wide enough to accommodate
the final overlapping rectangle.

8
D E T E C T I N G D I S T A N T

E X O P L A N E T S

Extrasolar planets, called exoplanets for
short, are planets that orbit alien suns. By

the end of 2019, more than 4,000 exoplanets
had been discovered. That’s an average of 150

per year since the first confirmed discovery in 1992!
These days, finding a faraway planet seems as easy as
catching a cold, yet it took almost all human history—
up to 1930—to discover the eight planets, plus Pluto,
that make up our own solar system.

Astronomers detected the first exoplanets by observing gravitation-
ally induced wobble in the motion of stars. Today, they rely mainly on the
slight dimming of a star’s light as the exoplanet passes between the star
and Earth. And with powerful next-generation devices like the James Webb
Space Telescope, they’ll directly image exoplanets and learn about their
rotation, seasons, weather, vegetation, and more.

178 Chapter 8

In this chapter, you’ll use OpenCV and matplotlib to simulate an exo-
planet passing before its sun. You’ll record the resulting light curve and then
use it to detect the planet and estimate its diameter. Then, you’ll simulate
how an exoplanet might look to the James Webb Space Telescope. In the
“Practice Project” sections, you’ll investigate unusual light curves that may
represent enormous alien megastructures designed to harness a star’s energy.

Transit Photometry
In astronomy, a transit occurs when a relatively small celestial body passes
directly between the disc of a larger body and an observer. When the small
body moves across the face of the larger body, the larger body dims slightly.
The best-known transits are those of Mercury and Venus against our own
sun (Figure 8-1).

Figure 8-1: Clouds and Venus (the black dot) passing before the sun in June 2012

With today’s technology, astronomers can detect the subtle dimming
of a faraway star’s light during a transit event. The technique, called transit
photometry, outputs a plot of a star’s brightness over time (Figure 8-2).

1 2 3 4

Star
Planet

Light curve

Observations

Time

Br
ig

ht
ne

ss 5

Figure 8-2: The transit photometry technique for detecting exoplanets

Detecting Distant Exoplanets 179

In Figure 8-2, the dots on the light curve graph represent measure-
ments of the light given off by a star. When a planet is not positioned over
the star , the measured brightness is at a maximum. (We’ll ignore light
reflected off the exoplanet as it goes through its phases, which would very
slightly increase the apparent brightness of the star). As the leading edge of
a planet moves onto the disc , the emitted light progressively dims, form-
ing a ramp in the light curve. When the entire planet is visible against the
disc , the light curve flattens, and it remains flat until the planet begins
exiting the far side of the disc. This creates another ramp , which rises
until the planet passes completely off the disc . At that point, the light
curve flattens at its maximum value, as the star is no longer obscured.

Because the amount of light blocked during a transit is proportional
to the size of the planet’s disc, you can calculate the radius of the planet
using the following formula:

R R Depthp s=

where Rp is the planet’s radius and Rs is the star’s radius. Astronomers
determine the star’s radius using its distance, brightness, and color, which
relates to its temperature. Depth refers to the total change in brightness dur-
ing the transit (Figure 8-3).

Depth

Time

Light curve

Br
ig

ht
ne

ss

Transit time

Figure 8-3: Depth represents the total change in brightness observed in a light curve.

Of course, these calculations assume that the whole exoplanet, not just
part of it, moved over the face of the star. The latter may occur if the exoplanet
skims either the top or bottom of the star (from our point of view). We’ll look
at this case in “Experimenting with Transit Photometry” on page 182.

Project #11: Simulating an Exoplanet Transit
Before I flew to Idaho to photograph the Great American Eclipse of 2017,
I did my homework. The totality event, when the moon completely covered
the sun, lasted only 2 minutes and 10 seconds. That left no time for experi-
menting, testing, or figuring things out on the fly. To successfully capture

180 Chapter 8

images of the penumbra, umbra, solar flares, and diamond ring effect
(Figure 8-4), I had to know exactly what equipment to take, what camera
settings to use, and when these events would occur.

Figure 8-4: Diamond ring effect at the end of totality, 2017 solar eclipse

In a similar fashion, computer simulations prepare you for making
observations of the natural world. They help you understand what to
expect, when to expect it, and how to calibrate your instruments. In this
project, you’ll create a simulation of an exoplanet transit event. You can run
this simulation with different planet sizes to understand the impact of a
transit’s size on the light curve. Later, you’ll use this simulation to evaluate
light curves related to asteroid fields and possible alien megastructures.

T HE OBJEC T I V E

Write a Python program that simulates an exoplanet transit, plots the resulting light curve,
and calculates the radius of the exoplanet.

The Strategy
To generate a light curve, you need to be able to measure changes in bright-
ness. You can do this by performing mathematical operations on pixels,
such as finding mean, minimum, and maximum values, with OpenCV.

Instead of using an image of a real transit and star, you’ll draw circles
on a black rectangle, just as you drew rectangles on the Mars map in the
previous chapter. To plot the light curve, you can use matplotlib, Python’s
main plotting library. You installed matplotlib in “Installing NumPy and
Other Scientific Packages with pip” on page 8 and began using it to make
graphs in Chapter 2.

Detecting Distant Exoplanets 181

The Transit Code
The transit.py program uses OpenCV to generate a visual simulation of an
exoplanet transiting a star, plots the resulting light curve with matplotlib,
and estimates the size of the planet using the planetary radius equation
from page 179. You can enter the code yourself or download it from
https://nostarch.com/real-world-python/.

Importing Modules and Assigning Constants

Listing 8-1 imports modules and assigns constants representing user input.

import math
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

IMG_HT = 400
IMG_WIDTH = 500
BLACK_IMG = np.zeros((IMG_HT, IMG_WIDTH, 1), dtype='uint8')
STAR_RADIUS = 165
EXO_RADIUS = 7
EXO_DX = 3
EXO_START_X = 40
EXO_START_Y = 230
NUM_FRAMES = 145

Listing 8-1: Importing modules and assigning constants

Import the math module for the planetary radius equation, NumPy for cal-
culating the brightness of the image, OpenCV for drawing the simulation,
and matplotlib for plotting the light curve. Then start assigning constants
that will represent user-input values.

Start with a height and width for the simulation window. The window
will be a black, rectangular image built using the np.zeros() method, which
returns an array of a given shape and type filled with zeros.

Recall that OpenCV images are NumPy arrays and items in the arrays
must have the same type. The uint8 data type represents an unsigned integer
from 0 to 255. You can find a useful listing of other data types and their
descriptions at https://numpy.org/devdocs/user/basics.types.html.

Next, assign radius values, in pixels, for the star and exoplanet. OpenCV
will use these constants when it draws circles representing them.

The exoplanet will move across the face of the star, so you need to define
how quickly it will move. The EXO_DX constant will increment the exoplanet’s
x position by three pixels with each programming loop, causing the exoplanet
to move left to right.

Assign two constants to set the exoplanet’s starting position. Then assign
a NUM_FRAMES constant to control the number of simulation updates. Although
you can calculate this number (IMG_WIDTH/EXO_DX), assigning it lets you fine-
tune the duration of the simulation.

transit.py, part 1

182 Chapter 8

Defining the main() Function

Listing 8-2 defines the main() function used to run the program. Although
you can define main() anywhere, placing it at the start lets it serve as a sum-
mary for the whole program, thus giving context to the functions defined
later. As part of main(), you’ll calculate the exoplanet’s radius, nesting the
equation within the call to the print() function.

def main():
 intensity_samples = record_transit(EXO_START_X, EXO_START_Y)
 relative_brightness = calc_rel_brightness(intensity_samples)
 print('\nestimated exoplanet radius = {:.2f}\n'
 .format(STAR_RADIUS * math.sqrt(max(relative_brightness)
 - min(relative_brightness))))
 plot_light_curve(relative_brightness)

Listing 8-2: Defining the main() function

After defining the main() function, name a variable intensity_samples
and call the record_transit() function. Intensity refers to the amount of light,
represented by the numerical value of a pixel. The record_transit() function
draws the simulation to the screen, measures its intensity, appends the mea-
surement to a list called intensity_samples, and returns the list. It needs the
starting point (x, y) coordinates for the exoplanet. Pass it the starting con-
stants EXO_START_X and EXO_START_Y, which will place the planet in a position
similar to  in Figure 8-2. Note that if you increase the exoplanet’s radius
significantly, you may need to move the starting point farther to the left
(negative values are acceptable).

Next, name a variable relative_brightness and call the calc_rel_brightness()
function. As its name suggests, this function calculates relative brightness,
which is the measured intensity divided by the maximum recorded inten-
sity. It takes the list of intensity measurements as an argument, converts the
measurements to relative brightness, and returns the new list.

You’ll use the list of relative brightness values to calculate the radius
of the exoplanet, in pixels, using the equation from page 179. You can
perform the calculation as part of the print() function. Use the {:.2f}
format to report the answer to two decimal points.

End the main() function by calling the function to plot the light curve.
Pass it the relative_brightness list.

Recording the Transit

Listing 8-3 defines a function to simulate and record the transit event. It
draws the star and exoplanet on a black rectangular image and then moves
the exoplanet. It also calculates and displays the average intensity of the
image with each move, appends the intensity to a list, and returns the list
at the end.

transit.py, part 2

Detecting Distant Exoplanets 183

def record_transit(exo_x, exo_y):
 """Draw planet transiting star and return list of intensity changes."""
 intensity_samples = []
 for _ in range(NUM_FRAMES):
 temp_img = BLACK_IMG.copy()
 cv.circle(temp_img, (int(IMG_WIDTH / 2), int(IMG_HT / 2)),
 STAR_RADIUS, 255, -1)

  cv.circle(temp_img, (exo_x, exo_y), EXO_RADIUS, 0, -1)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity), (5, 390),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 cv.waitKey(30)

  intensity_samples.append(intensity)
 exo_x += EXO_DX
 return intensity_samples

Listing 8-3: Drawing the simulation, calculating the image intensity, and returning it as a list

The record_transit() function takes a pair of (x, y) coordinates as
arguments. These represent the starting point for the exoplanet or, more
specifically, the pixel to use as the center of the first circle drawn in the sim-
ulation. It should not overlap with the star’s circle, which will be centered in
the image.

Next, create an empty list to hold the intensity measurements. Then
start a for loop that uses the NUM_FRAMES constant to repeat the simulation a
certain number of times. The simulation should last slightly longer than it
takes for the exoplanet to exit the face of the star. That way, you get a full
light curve that includes post-transit measurements.

Drawings and text placed on an image with OpenCV become part of
that image. Consequently, you need to replace the previous image with each
loop by copying the original BLACK_IMG to a local variable called temp_img.

Now you can draw the star by using the OpenCV circle() method. Pass
it the temporary image, the (x, y) coordinates for the center of the circle
that correspond to the center of the image, the STAR_RADIUS constant, a fill
color of white, and a line thickness. Using a negative number for thickness
fills the circle with color.

Draw the exoplanet circle next. Use the exo_x and exo_y coordinates as
its starting point, the EXO_RADIUS constant as its size, and a black fill color .

At this point, you should record the intensity of the image. Since the
pixels already represent intensity, all you need to do is take the mean of the
image. The number of measurements you take is dependent on the EXO_DX
constant. The larger this value, the faster the exoplanet will move, and the
fewer times you will record the mean intensity.

Display the intensity reading on the image using OpenCV’s putText()
method. Pass it the temporary image, a text string that includes the mea-
surement, the (x, y) coordinates for the bottom-left corner of the text
string, a font, a text size, and a color.

Now, name the window Transit and display it using OpenCV’s imshow()
method. Figure 8-5 shows a loop iteration.

transit.py, part 3

184 Chapter 8

Figure 8-5: The exoplanet transiting the star

After showing the image, use the OpenCV waitKey() method to update
it every 30 milliseconds. The lower the number passed to waitKey(), the
faster the exoplanet will move across the star.

Append the intensity measurement to the intensity_samples list and then
advance the exoplanet circle by incrementing its exo_x value by the EXO_DX
constant . Finish the function by returning the list of mean intensity
measurements.

Calculating Relative Brightness and Plotting the Light Curve

Listing 8-4 defines functions to calculate the relative brightness of each
intensity sample and display the light curve graph. It then calls the main()
function if the program is not being used as a module in another program.

def calc_rel_brightness(intensity_samples):
 """Return list of relative brightness from list of intensity values."""
 rel_brightness = []
 max_brightness = max(intensity_samples)
 for intensity in intensity_samples:
 rel_brightness.append(intensity / max_brightness)
 return rel_brightness

 def plot_light_curve(rel_brightness):
 """Plot changes in relative brightness vs. time."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2, label='Relative Brightness')
 plt.legend(loc='upper center')
 plt.title('Relative Brightness vs. Time')
 plt.show()

 if __name__ == '__main__':
 main()

Listing 8-4: Calculating relative brightness, plotting the light curve, and calling main()

transit.py, part 4

Detecting Distant Exoplanets 185

Light curves display the relative brightness over time so that an un-
obscured star has a value of 1.0 and a totally eclipsed star has a value of 0.0.
To convert the mean intensity measurements to relative values, define the
calc_rel_brightness() function, which takes a list of mean intensity measure-
ments as an argument.

Within the function, start an empty list to hold the converted values
and then use Python’s built-in max() function to find the maximum value in
the intensity_samples list. To get relative brightness, loop through the items
in this list and divide them by the maximum value. Append the result to the
rel_brightness list as you go. End the function by returning the new list.

Define a second function to plot the light curve and pass it the rel
_brightness list . Use the matplotlib plot() method and pass it the list, a
line color, a line style, a line width, and a label for the plot legend. Add the
legend and plot title and then show the plot. You should see the chart in
Figure 8-6.

Figure 8-6: Example light curve plot from transit.py

The brightness variation on the plot might seem extreme at first glance,
but if you look closely at the y -axis, you’ll see that the exoplanet diminished
the star’s brightness by only 0.175 percent! To see how this looks on a plot
of the star’s absolute brightness (Figure 8-7), add the following line just
before plt.show():

plt.ylim(0, 1.2)

The deflection in the light curve caused by the transit is subtle but
detectable. Still, you don’t want to go blind squinting at a light curve, so
continue to let matplotlib automatically fit the y -axis as in Figure 8-6.

Finish the program by calling the main() function . In addition to the
light curve, you should see the estimated radius of the exoplanet in the shell.

estimated exoplanet radius = 6.89

186 Chapter 8

That’s all there is to it. With fewer than 50 lines of Python code, you’ve
developed a means of discovering exoplanets!

Figure 8-7: Light curve from Figure 8-6 with rescaled y-axis

Experimenting with Transit Photometry
Now that you have a working simulation, you can use it to model the behav-
ior of transits, allowing you to better analyze real-life observations you’ll
make in the future. One approach would be to run a lot of possible cases
and produce an “atlas” of expected exoplanet responses. Researchers could
use this atlas to help them interpret actual light curves.

For example, what if the plane of an exoplanet’s orbit is tilted with respect
to Earth so that the exoplanet only partly crosses the star during transit? Would
researchers be able to detect its position from its light curve signature, or
would it just look like a smaller exoplanet doing a complete transit?

If you run the simulation with an exoplanet radius of 7 and let it skim
the base of the star, you should get a U-shaped curve (Figure 8-8).

Figure 8-8: Light curve for an exoplanet with a radius of 7 that only partly crosses its star

If you run the simulation again with an exoplanet radius of 5 and let the
exoplanet pass fully over the face of the star, you get the graph in Figure 8-9.

Detecting Distant Exoplanets 187

Figure 8-9: Light curve for an exoplanet with a radius of 5 that fully crosses its star

When an exoplanet skims the side of a star, never fully passing over it,
the overlapping area changes constantly, generating the U-shaped curve in
Figure 8-8. If the entire exoplanet passes over the face of the star, the base
of the curve is flatter, as in Figure 8-9. And because you never see the plan-
et’s full disc against the star in a partial transit, you have no way to measure
its true size. Thus, size estimates should be taken with a grain of salt if your
light curve lacks a flattish bottom.

If you run a range of exoplanet sizes, you’ll see that the light curve
changes in predictable ways. As size increases, the curve deepens, with lon-
ger ramps on either side, because a larger fraction of the star’s brightness is
diminished (Figures 8-10 and 8-11).

Increasing

Long sm
ooth ram

p

depth

Figure 8-10: Light curve for EXO_RADIUS = 28

“V” shape

Long smooth ramp

Figure 8-11: Light curve for EXO_RADIUS = 145

188 Chapter 8

Because exoplanets are circular objects with smooth edges, they should
produce light curves with smooth ramps that continuously increase or
decrease. This is important knowledge, as astronomers have recorded decid-
edly bumpy curves when looking for exoplanets. In the “Practice Project”
sections at the end of the chapter, you’ll use your program to explore oddly
shaped light curves that might be explained by extraterrestrial engineering!

Project #12: Imaging Exoplanets
By 2025, three powerful telescopes—two on Earth and one in space—will
use infrared and visible light to directly image Earth-sized exoplanets. In
the best-case scenario, the exoplanet will show up as a single saturated
pixel with some bleed into the surrounding pixels, but that’s enough to tell
whether the planet rotates, has continents and seas, experiences weather
and seasons, and could support life as we know it!

In this project, you’ll simulate the process of analyzing an image taken
from those telescopes. You’ll use Earth as a stand-in for a distant exoplanet.
This way, you can easily relate known features, such as continents and oceans,
to what you see in a single pixel. You’ll focus on the color composition and
intensity of reflected light and make inferences about the exoplanet’s atmo-
sphere, surface features, and rotation.

T HE OBJEC T I V E

Write a Python program that pixelates images of Earth and plots the intensity of the red,
green, and blue color channels.

The Strategy
To demonstrate that you can capture different surface features and cloud
formations with a single saturated pixel, you need only two images: one of
the western hemisphere and one of the eastern. Conveniently, NASA has
already photographed both hemispheres of Earth from space (Figure 8-12).

earth_west.png earth_east.png

Figure 8-12: Images of the western and eastern hemispheres

Detecting Distant Exoplanets 189

The size of these images is 474×474 pixels, a resolution far too high for a
future exoplanet image, where the exoplanet is expected to occupy 9 pixels,
with only the center pixel fully covered by the planet (Figure 8-13).

Figure 8-13: The earth_west.png and earth_east.png images overlaid with a 9-pixel grid

You’ll need to degrade the Earth images by mapping them into a 3×3
array. Since OpenCV uses NumPy, this will be easy to do. To detect changes
in the exoplanet’s surface, you’ll need to extract the dominant colors (blue,
green, and red). OpenCV will let you average these color channels. Then
you can display the results with matplotlib.

The Pixelator Code
The pixelator.py program loads the two images of Earth, resizes them to 3×3
pixels, and then resizes them again to 300×300 pixels. These final images are
just for visualization; they have the same color information as the 3×3 images.
The program then averages the color channels in both resized images and
plots the results as pie charts that you can compare. You can download the
code and two images (earth_west.png and earth_east.png) from the book’s
website. Keep them in the same folder and don’t rename the images.

Importing Modules and Downscaling Images

Listing 8-5 imports modules for plotting and image processing and then
loads and degrades two images of Earth. It first reduces each to 9 pixels in a
3×3 array. It then enlarges the decimated images to 300×300 pixels so they
are large enough to see and posts them to the screen.

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

files = ['earth_west.png', 'earth_east.png']

for file in files:

pixelator.py, part 1

190 Chapter 8

 img_ini = cv.imread(file)
 pixelated = cv.resize(img_ini, (3, 3), interpolation=cv.INTER_AREA)
 img = cv.resize(pixelated, (300, 300), interpolation=cv.INTER_AREA)
 cv.imshow('Pixelated {}'.format(file), img)
 cv.waitKey(2000)

Listing 8-5: Importing modules and loading, degrading, and showing images

Import NumPy and OpenCV to work with the images and use matplotlib
to plot their color components as pie charts. Then start a list of filenames
containing the two images of Earth.

Now start looping through the files in the list and use OpenCV to load
them as NumPy arrays. Recall that OpenCV loads color images by default, so
you don’t need to add an argument for this.

Your goal is to reduce the image of Earth into a single saturated pixel
surrounded by partially saturated pixels. To degrade the images from their
original 474×474 size to 3×3, use OpenCV’s resize() method. First, name the
new image pixelated and pass the method the current image, the new width
and height in pixels, and an interpolation method. Interpolation occurs when
you resize an image and use known data to estimate values at unknown
points. The OpenCV documentation recommends the INTER_AREA interpolation
method for shrinking images (see the geometric image transformations at
https://docs.opencv.org/4.3.0/da/d54/group__imgproc__transform.html).

At this point, you have a tiny image that’s too small to visualize, so resize
it again to 300×300 so you can check the results. Use either INTER_NEAREST
or INTER_AREA as the interpolation method, as these will preserve the pixel
boundaries.

Show the image (Figure 8-14) and delay the program for two seconds
using waitKey().

Figure 8-14: Grayscale view of the pixelated color images

Note that you can’t restore the images to their original state by resizing
them to 474×474. Once you average the pixel values down to a 3×3 matrix,
all the detailed information is lost forever.

Detecting Distant Exoplanets 191

Averaging the Color Channels and Making the Pie Charts

Still in the for loop, Listing 8-6 makes and displays pie charts of the blue,
green, and red color components of each pixelated image. You can com-
pare these to make inferences about the planet’s weather, landmasses, rota-
tion, and so on.

 b, g, r = cv.split(pixelated)
 color_aves = []
 for array in (b, g, r):
 color_aves.append(np.average(array))

 labels = 'Blue', 'Green', 'Red'
 colors = ['blue', 'green', 'red']
 fig, ax = plt.subplots(figsize=(3.5, 3.3)) # size in inches

  _, _, autotexts = ax.pie(color_aves,
 labels=labels,
 autopct='%1.1f%%',
 colors=colors)
 for autotext in autotexts:
 autotext.set_color('white')
 plt.title('{}\n'.format(file))

plt.show()

Listing 8-6: Splitting out and averaging color channels and making a pie chart of colors

Use OpenCV’s split() method to break out the blue, green, and red
color channels in the pixelated image and unpack the results into b, g, and
r variables. These are arrays, and if you call print(b), you should see this
output:

[[49 93 22]
 [124 108 65]
 [52 118 41]]

Each number represents a pixel—specifically, the pixel’s blue value—in
the 3×3 pixelated image. To average the arrays, first make an empty list to
hold the averages and then loop through the arrays and call the NumPy aver-
age method, appending the results to the list.

Now you’re ready to make pie charts of the color averages in each pix-
elated image. Start by assigning color names to a variable named labels,
which you’ll use to annotate the pie wedges. Next, specify the colors you
want to use in the pie chart. These will override the matplotlib default
choices. To make the chart, use the fig, ax naming convention for figure
and axis, call the subplots() method, and pass it a figure size in inches.

Because the colors will vary only slightly between images, you’ll want
to post the percentage of each color in its pie wedge so you can easily see
whether there’s a difference between them. Unfortunately, the matplotlib
default is to use black text that can be hard to see against a dark background.
To fix this, call the ax.pie() method for making pie charts and use its

pixelator.py, part 2

192 Chapter 8

autotexts list . The method returns three lists, one concerning the pie
wedges, one concerning the labels, and one for numeric labels, called auto-
texts. You need only the last one, so treat the first two as unused variables by
assigning them to an underscore symbol.

Pass ax.pie() the list of color averages and the list of labels and set its
autopct parameter to show numbers to one decimal place. If this parameter
is set to None, the autotexts list will not be returned. Finish the arguments by
passing the list of colors to use for the pie wedges.

The autotexts list for the first image looks like this:

[Text(0.1832684031431146, 0.5713253822554821, '40.1%'), Text(-0.5646237442340427,
-0.20297789891298565, '30.7%'), Text(0.36574010704848686, -0.47564080364930983, '29.1%')

Each Text object has (x, y) coordinates and a percent value as a text
string. These will still post in black, so you need to loop through the objects
and change the color to white using their set_color() method. Now all
you need to do is set the chart title to the filename and show the plots
(Figure 8-15).

Figure 8-15: The pie charts produced by pixelator.py

Although the pie charts are similar, the differences are meaningful.
If you compare the original color images, you’ll see that the earth_west.png
photograph includes more ocean and should produce a larger blue wedge.

Plotting a Single Pixel

The charts in Figure 8-15 are for the whole image, which includes a sam-
pling of black space. For an uncontaminated sample, you could use the
single saturated pixel at the center of each image, as shown in Listing 8-7.

Detecting Distant Exoplanets 193

This code represents an edited copy of pixelator.py, with the lines that
change annotated. You can find a digital copy in the Chapter_8 folder as
pixelator_saturated_only.py.

import cv2 as cv
from matplotlib import pyplot as plt

files = ['earth_west.png', 'earth_east.png']

Downscale image to 3x3 pixels.
for file in files:
 img_ini = cv.imread(file)
 pixelated = cv.resize(img_ini, (3, 3), interpolation=cv.INTER_AREA)
 img = cv.resize(pixelated, (300, 300), interpolation=cv.INTER_NEAREST)
 cv.imshow('Pixelated {}'.format(file), img)
 cv.waitKey(2000)

  color_values = pixelated[1, 1] # Selects center pixel.

 # Make pie charts.
 labels = 'Blue', 'Green', 'Red'
 colors = ['blue', 'green', 'red']
 fig, ax = plt.subplots(figsize=(3.5, 3.3)) # Size in inches.

  _, _, autotexts = ax.pie(color_values,
 labels=labels,
 autopct='%1.1f%%',
 colors=colors)
 for autotext in autotexts:
 autotext.set_color('white')

  plt.title('{} Saturated Center Pixel \n'.format(file))

plt.show()

Listing 8-7: Plotting pie charts for the colors in the center pixel of the pixelated image

The four lines of code in Listing 8-6 that split the image and averaged
the color channels can be replaced with one line . The pixelated vari-
able is a NumPy array, and [1, 1] represents row 1, column 1 in the array.
Remember that Python starts counting at 0, so these values correspond to
the center of a 3×3 array. If you print the color_values variable, you’ll see
another array.

[108 109 109]

These are the blue, green, and red color channel values for the center
pixel, and you can pass them directly to matplotlib . For clarity, change
the plot title so it indicates that you’re analyzing the center pixel only .
Figure 8-16 shows the resulting plots.

pixelator_
saturated_only.py

194 Chapter 8

Figure 8-16: The single-pixel pie charts produced by pixelator_saturated_only.py

The color differences between the western and eastern hemispheres
in Figures 8-15 and 8-16 are subtle, but you know they’re real because you
forward modeled the response. That is, you produced the result from actual
observations, so you know the result is meaningful, repeatable, and unique.

In a real exoplanet survey, you’d want to take as many images as pos-
sible. If similar intensity and color patterns persist over time, then you can
rule out stochastic effects such as weather. If the color patterns change
predictably over long time periods, you may be seeing the effect of seasons,
such as the presence of white polar caps in the winter and the spread of
green vegetation in the spring and summer.

 If measurements repeat periodically over relatively short time spans,
you can infer that the planet is rotating on its axis. In the “Practice Project”
sections at the end of the chapter, you’ll get a chance to calculate the length
of an exoplanet’s day.

Summary
In this chapter, you used OpenCV, NumPy, and matplotlib to create images
and measure their properties. You also resized images to different resolu-
tions and plotted image intensity and color channel information. With
short and simple Python programs, you simulated important methods that
astronomers use to discover and study distant exoplanets.

Further Reading
How to Search for Exoplanets, by the Planetary Society (https://www.planetary.org/),
is a good overview of the techniques used to search for exoplanets, including
the strengths and weaknesses of each method.

Detecting Distant Exoplanets 195

“Transit Light Curve Tutorial,” by Andrew Vanderburg, explains the
basics of the transit photometry method and provides links to Kepler Space
Observatory transit data. You can find it at https://www.cfa.harvard.edu
/~avanderb/tutorial/tutorial.html.

“NASA Wants to Photograph the Surface of an Exoplanet” (Wired, 2020),
by Daniel Oberhaus, describes the effort to turn the sun into a giant cam-
era lens for studying exoplanets.

“Dyson Spheres: How Advanced Alien Civilizations Would Conquer
the Galaxy” (Space.com, 2014), by Karl Tate, is an infographic on how an
advanced civilization could capture the power of a star using vast arrays of
solar panels.

Ringworld (Ballantine Books, 1970), by Larry Niven, is one of the classic
novels of science fiction. It tells the story of a mission to a massive abandoned
alien construct—the Ringworld—that encircles an alien star.

Practice Project: Detecting Alien Megastructures
In 2015, citizen scientists working on data from the Kepler space telescope
noticed something odd about Tabby’s Star, located in the constellation Cygnus.
The star’s light curve, recorded in 2013, exhibited irregular changes in
brightness that were far too large to be caused by a planet (Figure 8-17).

1.00

0.95

0.90

0.85

0.80

N
or

m
al

iz
ed

 F
lu

x

Time
Feb 25 Feb 27 Mar 1 Mar 3 Mar 5 Mar 7

Figure 8-17: Light curve for Tabby’s Star, measured by the Kepler Space Observatory

Besides the dramatic drop in brightness, the light curve was asym-
metrical and included weird bumps that aren’t seen in typical planetary
transits. Proposed explanations posited that the light curve was caused by
the consumption of a planet by the star, the transit of a cloud of disintegrat-
ing comets, a large ringed planet trailed by swarms of asteroids, or an alien
megastructure.

Scientists speculated that an artificial structure of this size was most
likely an attempt by an alien civilization to collect energy from its sun. Both
science literature and science fiction describe these staggeringly large solar
panel projects. Examples include Dyson swarms, Dyson spheres, ringworlds,
and Pokrovsky shells (Figure 8-18).

https://www.cfa.harvard.edu/~avanderb/tutorial/tutorial.html
https://www.cfa.harvard.edu/~avanderb/tutorial/tutorial.html

196 Chapter 8

Figure 8-18: Pokrovsky shell system of rings around a star designed to intercept
the star’s radiation

In this practice project, use the transit.py program to approximate
the shape and depth of the Tabby’s Star light curve. Replace the circular
exoplanet used in the program with other simple geometric shapes. You
don’t need to match the curve exactly; just capture key features such as the
asymmetry, the “bump” seen around February 28, and the large drop in
brightness.

You can find my attempt, practice_tabbys_star.py, in the Chapter_8  folder,
downloadable from the book’s website at https://nostarch.com/real-world-python/,
and in the appendix. It produces the light curve shown in Figure 8-19.

Figure 8-19: Light curve produced by practice_tabbys_star.py

We now know that whatever is orbiting Tabby’s Star allows some wave-
lengths of light to pass, so it can’t be a solid object. Based on this behavior
and the wavelengths it absorbed, scientists believe dust is responsible for the
weird shape of the star’s light curve. Other stars, however, like HD 139139
in the constellation Libra, have bizarre light curves that remain unexplained
at the time of this writing.

Detecting Distant Exoplanets 197

Practice Project: Detecting Asteroid Transits
Asteroid fields may be responsible for some bumpy and asymmetrical
light curves. These belts of debris often originate from planetary collisions
or the creation of a solar system, like the Trojan asteroids in Jupiter’s
orbit (Figure 8-20). You can find an interesting animation of the Trojan
asteroids on the web page “Lucy: The First Mission to the Trojan Asteroids”
at https://www.nasa.gov/.

Figure 8-20: More than one million Trojan asteroids share Jupiter’s orbit.

Modify the transit.py  program so that it randomly creates asteroids with
radii between 1 and 3, weighted heavily toward 1. Allow the user to input the
number of asteroids. Don’t bother calculating the exoplanet radius, since the
calculation assumes you’re dealing with a single spherical object, which you’re
not. Experiment with the number of asteroids, the size of the asteroids, and
the spread (the x -range and y -range in which the asteroids exist) to see the
impact on the light curve. Figure 8-21 shows one such example.

Figure 8-21: Irregular, asymmetrical light curve produced by a randomly generated
asteroid field

198 Chapter 8

You can find a solution, practice_asteroids.py, in the appendix and on the
book’s web page. This program uses object-oriented programming (OOP)
to simplify the management of multiple asteroids.

Practice Project: Incorporating Limb Darkening
The photosphere is the luminous outer layer of a star that radiates light and
heat. Because the temperature of the photosphere falls as the distance from
the star’s center increases, the edges of a star’s disk are cooler and there-
fore appear dimmer than the center of the star (Figure 8-22). This effect is
known as limb darkening.

Figure 8-22: Limb darkening and sunspots on the sun

Rewrite the transit.py program so that it addresses limb darkening.
Rather than draw the star, use the image limb_darkening.png  in the Chapter_8
folder, downloadable from the book’s website.

Limb darkening will affect the light curves produced by planetary
transits. Compared to the theoretical curves you produced in Project 11,
they will appear less boxy, with rounder, softer edges and a curved bottom
(Figure 8-23).

Figure 8-23: The effect of limb darkening on a light curve

Detecting Distant Exoplanets 199

Use your modified program to revisit “Experimenting with Transit
Photometry” on page 186, where you analyzed the light curves produced
by partial transits. You should see that, compared to partial transits, full
transits still produce broader dips with flattish bottoms (Figure 8-24).

R = 7

1.001

1.000

0.999

0.998

0.997

0.996

R = 7 (partial transit)

R = 3

Transit time

Transit time

0 20 40 60 80 100 120 140

Figure 8-24: Limb-darkened light curves for full and partial transits (R = exoplanet radius)

If the full transit of a small planet occurs near the edge of a star, limb
darkening may make it difficult to distinguish from the partial transit of a
larger planet. You can see this in Figure 8-25, where arrows denote the loca-
tion of the planets.

Partial transit
R = 8

Full transit
R = 5

Figure 8-25: Partial transit of planet with a radius of 8 pixels versus full transit
of planet with a radius of 5 pixels

200 Chapter 8

Astronomers have many tools for extracting information entangled in
a light curve. By recording multiple transit events, they can determine an
exoplanet’s orbital parameters, such as the distance between the planet and
the star. They can use subtle inflections in the light curve to tease out the
amount of time the planet is fully over the surface of the star. They can esti-
mate the theoretical amount of limb darkening, and they can use model-
ing, as you’re doing here, to bring it all together and test their assumptions
against actual observations.

You can find a solution, practice_limb_darkening.py, in the appendix and
in the Chapter_8 folder downloadable from the book’s website.

Practice Project: Detecting Starspots
Sunspots—called starspots on alien suns—are regions of reduced surface
temperature caused by variations in the star’s magnetic field. Starspots
can darken the face of stars and do interesting things to light curves. In
Figure 8-26, an exoplanet passes over a starspot, causing a “bump” in the
light curve.

Starspots

Figure 8-26: An exoplanet (arrow, left image) passing over a starspot produces a bump in
the light curve.

To experiment with starspots, use the practice_limb_darkening.py code
from the previous practice project and edit it so that an exoplanet roughly
the same size as the starspots passes over them during its transit. To repro-
duce Figure 8-26, use EXO_RADIUS = 4, EXO_DX = 3, and EXO_START_Y = 205.

Practice Project: Detecting an Alien Armada
The hyper-evolved beavers of exoplanet BR549 have been as busy as, well,
beavers. They’ve amassed an armada of colossal colony ships that are now
loaded and ready to leave orbit. Thanks to some exoplanet detection of
their own, they’ve decided to abandon their chewed-out homeworld for the
lush green forests of Earth!

Detecting Distant Exoplanets 201

Write a Python program that simulates multiple spaceships transiting
a star. Give the ships different sizes, shapes, and speeds (such as those in
Figure 8-27).

Figure 8-27: An armada of alien colony ships preparing to invade Earth

Compare the resultant light curves to those from Tabby’s Star (Figure 8-17)
and the asteroids practice project. Do the ships produce distinctive curves,
or can you get similar patterns from asteroid swarms, starspots, or other
natural phenomena?

You can find a solution, practice_alien_armada.py, in the appendix and in
the Chapter_8  folder, downloadable from the book’s website.

Practice Project: Detecting a Planet with a Moon
What kind of light curve would an exoplanet with an orbiting moon produce?
Write a Python program that simulates a small exomoon orbiting a larger
exoplanet and calculate the resulting light curve. You can find a solution,
practice_planet_moon.py, in the appendix and on the book’s website.

Practice Project: Measuring the Length of an Exoplanet’s Day
Your astronomer boss has given you 34 images of an exoplanet designated
BR549. The images were taken an hour apart. Write a Python program that
loads the images in order, measures the intensity of each image, and plots
the measurements as a single light curve (Figure 8-28). Use the curve to
determine the length of a day on BR549.

202 Chapter 8

Figure 8-28: Composite light curve for 34 images of exoplanet BR549

You can find a solution, practice_length_of_day.py, in the appendix. The
digital version of the code, along with the folder of images (br549_pixelated),
are in the Chapter_8  folder downloadable from the book’s website.

Challenge Project: Generating a Dynamic Light Curve
Rewrite transit.py so that the light curve dynamically updates as the simula-
tion runs, rather than just appearing at the end.

9
I D E N T I F Y I N G

F R I E N D O R F O E

Face detection is a machine learning tech-
nology that locates human faces in digital

images. It’s the first step in the process of
face recognition, a technique for identifying

individual faces using code. Face detection and rec-
ognition methods have broad applications, such as
tagging photographs on social media, autofocusing
digital cameras, unlocking cell phones, finding miss-
ing children, tracking terrorists, facilitating secure
payments, and more.

In this chapter, you’ll use machine learning algorithms in OpenCV
to program a robot sentry gun. Because you’ll be distinguishing between
humans and otherworldly mutants, you’ll only need to detect the presence
of human faces rather than identify specific individuals. In Chapter 10,
you’ll take the next step and identify people by their faces.

204 Chapter 9

Detecting Faces in Photographs
Face detection is possible because human faces share similar patterns.
Some common facial patterns are the eyes being darker than the cheeks
and the bridge of the nose being brighter than the eyes, as seen in the left
image of Figure 9-1.

Face Eyes versus cheeks Eyes versus nose

Figure 9-1: Example of some consistently bright and dark regions in a face

You can extract these patterns using templates like those in Figure 9-2.
These yield Haar features, a fancy name for the attributes of digital images
used in object recognition. To calculate a Haar feature, place one of the
templates on a grayscale image, add up the grayscale pixels that overlap
with the white part, and subtract them from the sum of the pixels that over-
lap the black part. Thus, each feature consists of a single intensity value.
We can use a range of template sizes to sample all possible locations on the
image, making the system scale invariant.

Figure 9-2: Some example Haar feature templates

In the middle image in Figure 9-1, an “edge feature” template extracts
the relationship between the dark eyes and the bright cheeks. In the far-
right image in Figure 9-1, a “line feature” template extracts the relationship
between the dark eyes and the bright nose.

By calculating Haar features on thousands of known face and nonface
images, we can determine which combination of Haar features is most
effective at identifying faces. This training process is slow, but it facilitates
fast detection later. The resulting algorithm, known as a face classifier, takes
the values of features in an image and predicts whether it contains a human
face by outputting 1 or 0. OpenCV ships with a pretrained face detection
classifier based on this technique.

Identifying Friend or Foe 205

To apply the classifier, the algorithm uses a sliding window approach.
A small rectangular area is incrementally moved across the image and
evaluated using a cascade classifier consisting of multiple stages of filters.
The filters at each stage are combinations of Haar features. If the window
region fails to pass the threshold of a stage, it’s rejected, and the window
slides to the next position. Quickly rejecting nonface regions, like the one
shown in the right inset in Figure 9-3, helps speed up the overall process.

Figure 9-3: Images are searched for faces using a rectangular sliding window.

If a region passes the threshold for a stage, the algorithm processes
another set of Haar features and compares them to the threshold, and so
on, until it either rejects or positively identifies a face. This causes the slid-
ing window to speed up or slow down as it moves across an image. You can
find a fantastic video example of this at https://vimeo.com/12774628/.

For each face detected, the algorithm returns the coordinates of a rect-
angle around the face. You can use these rectangles as the basis for further
analysis, such as identifying eyes.

Project #13: Programming a Robot Sentry Gun
Imagine that you’re a technician with the Coalition Marines, a branch of
the Space Force. Your squad has been deployed to a secret research base
operated by the Wykham-Yutasaki Corporation on planet LV-666. While
studying a mysterious alien apparatus, the researchers have inadvertently
opened a portal to a hellish alternate dimension. Anyone who gets near the
portal, including dozens of civilians and several of your comrades, mutates
into a murderous mindless monstrosity! You’ve even caught security footage
of the result (Figure 9-4).

https://vimeo.com/12774628/

206 Chapter 9

CAMERA 5: 2179-02-04 11:48:50.400866CAMERA 5: 2179-02-03 12:06:40.310776

Figure 9-4: Security camera footage of a mutated scientist (left) and marine (right)

According to the remaining scientists, the mutation affects more
than just organic matter. Any gear the victim is wearing, such as helmets
and goggles, is also transmogrified and fused into the flesh. Eye tissue is
especially vulnerable. All the mutants formed so far are eyeless and blind,
though this doesn’t seem to affect their mobility. They’re still ferocious,
deadly, and unstoppable without military-grade weapons.

That’s where you come in. It’s your job to set up an automatic firing
station to guard Corridor 5, a key access point in the compromised facility.
Without it, your small squad is in danger of being outflanked and overrun
by hordes of rampaging mutants.

The firing station consists of a UAC 549-B automated sentry gun,
called a robot sentry by the grunts (Figure 9-5). It’s equipped with four M30
autocannons with 1,000 rounds of ammo and multiple sensors, including a
motion detector, laser ranging unit, and optical camera. The gun also inter-
rogates targets using an identification friend or foe (IFF) transponder. All
Coalition Marines carry these transponders, allowing them to safely pass
active sentry guns.

Figure 9-5: A UAC 549-B automated sentry gun

Identifying Friend or Foe 207

Unfortunately, the squad’s sentry gun was damaged during landing,
so the transponders no longer function. Worse, the requisitions corporal
forgot to download the software that visually interrogates targets. With the
transponder sensor down, there’s no way to positively identify marines and
civilians. You’ll need to get this fixed as quickly as possible, because your
buddies are badly outnumbered and the mutants are on the move!

Fortunately, planet LV-666 has no indigenous life forms, so you need to
distinguish between humans and mutants only. Since the mutants are basi-
cally faceless, a face detection algorithm is the logical solution.

T HE OBJEC T I V E

Write a Python program that disables the sentry gun’s firing mechanism when it detects
human faces in an image.

The Strategy
In situations like this, it’s best to keep things simple and leverage existing
resources. This means relying on OpenCV’s face detection functionality
rather than writing customized code to recognize the humans on the base.
But you can’t be sure how well these canned procedures will work, so you’ll
need to guide your human targets to make the job as easy as possible.

The sentry gun’s motion detector will handle the job of triggering the
optical identification process. To permit humans to pass unharmed, you’ll
need to warn them to stop and face the camera. They’ll need a few seconds
to do this and a few seconds to proceed past the gun after they’re cleared.

You’ll also want to run some tests to ensure OpenCV’s training set
is adequate and you’re not generating any false positives that would let a
mutant sneak by. You don’t want to kill anyone with friendly fire, but you
can’t be too cautious, either. If one mutant gets by, everyone could perish.

N O T E 	 In real life, the sentry guns would use a video feed. Since I don’t have my own film
studio with special effects and makeup departments, you’ll work off still photos
instead. You can think of these as individual video frames. Later in the chapter,
you’ll get a chance to detect your own face using your computer’s video camera.

The Code
The sentry.py code will loop through a folder of images, identify human
faces in the images, and show the image with the faces outlined. It will then
either fire or disable the gun depending on the result. You’ll use the images
in the corridor_5 folder in the Chapter_9  folder, downloadable from https://
nostarch.com/real-world-python/. As always, don’t move or rename any files
after downloading and launch sentry.py from the folder in which it’s stored.

You’ll also need to install two modules, playsound and pyttsx3. The first
is a cross-platform module for playing WAV and MP3 format audio files.

208 Chapter 9

You’ll use it to produce sound effects, such as machine gun fire and an “all
clear” tone. The second is a cross-platform wrapper that supports the native
text-to-speech libraries on Windows and Linux-based systems, including
macOS. The sentry gun will use this to issue audio warnings and instruc-
tions. Unlike other text-to-speech libraries, pyttsx3 reads text directly from
the program, rather than first saving it to an audio file. It also works offline,
making it reliable for voice-based projects.

You can install both modules with pip in a PowerShell or Terminal window.

pip install playsound
pip install pyttsx3

If you encounter an error installing pyttsx3 on Windows, such as No module
named win32.com.client, No module named win32, or No module named win32api, then
install pypiwin32.

pip install pypiwin32

You may need to restart the Python shell and editor following this
installation.

For more on playsound, see https://pypi.org/project/playsound/. The docu-
mentation for pyttsx3 can be found at https://pyttsx3.readthedocs.io/en/latest/
and https://pypi.org/project/pyttsx3/.

If you don’t already have OpenCV installed, see “Installing the Python
Libraries” on page 6.

Importing Modules, Setting Up Audio, and Referencing the Classifier Files and Corridor Images

Listing 9-1 imports modules, initializes and sets up the audio engine, assigns
the classifier files to variables, and changes the directory to the folder con-
taining the corridor images.

import os
import time

 from datetime import datetime
from playsound import playsound
import pyttsx3
import cv2 as cv

 engine = pyttsx3.init()
engine.setProperty('rate', 145)
engine.setProperty('volume', 1.0)

root_dir = os.path.abspath('.')
gunfire_path = os.path.join(root_dir, 'gunfire.wav')
tone_path = os.path.join(root_dir, 'tone.wav')

 path= "C:/Python372/Lib/site-packages/cv2/data/"
face_cascade = cv.CascadeClassifier(path +
 'haarcascade_frontalface_default.xml')

sentry.py, part 1

Identifying Friend or Foe 209

eye_cascade = cv.CascadeClassifier(path + 'haarcascade_eye.xml')

 os.chdir('corridor_5')
contents = sorted(os.listdir())

Listing 9-1: Importing modules, setting up the audio, and locating the classifier files and
corridor images

Except for datetime, playsound, and pytts3, the imports should be familiar
to you if you’ve worked through the earlier chapters . You’ll use datetime to
record the exact time at which an intruder is detected in the corridor.

To use pytts3, initialize a pyttsx3 object and assign it to a variable
named, by convention, engine . According to the pyttsx3 docs, an applica-
tion uses the engine object to register and unregister event callbacks, pro-
duce and stop speech, get and set speech engine properties, and start and
stop event loops.

In the next two lines, set the rate of speech and volume properties.
The rate of speech value used here was obtained through trial and error.
It should be fast but still clearly understandable. The volume should be set
to the maximum value (1.0) so any humans stumbling into the corridor can
easily hear the warning instructions.

The default voice on Windows is male, but other voices are available.
For example, on a Windows 10 machine, you can switch to a female voice
using the following voice ID:

engine.setProperty('voice',
'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-US_ZIRA_11.0')

To see a list of voices available on your platform, refer to “Changing
voices” at https://pyttsx3.readthedocs.io/en/latest/.

Next, set up the audio recording of gunfire, which you’ll play when a
mutant is detected in the corridor. Specify the location of the audio file by
generating a directory path string that will work on all platforms, which you
do by combining the absolute path with the filename using the os.path.join()
method. Use the same path for the tone.wav  file, which you’ll use as an “all
clear” signal when the program identifies a human.

The pretrained Haar cascade classifiers should download as .xml files
when you install OpenCV. Assign the path for the folder containing the
classifiers to a variable . The path shown is for my Windows machine; your
path may be different. On macOS, for example, you may find them under
opencv/data/haarcascades. You can also find them online at https://github.com
/opencv/opencv/tree/master/data/haarcascades/.

Another option for finding the path to the cascade classifiers is to use
the preinstalled sysconfig module, as in the following snippet:

>>> import sysconfig
>>> path = sysconfig.get_paths()['purelib'] + '/cv2/data'
>>> path
'C:\\Python372\\Lib\\site-packages/cv2/data'

https://pyttsx3.readthedocs.io/en/latest/
https://github.com/opencv/opencv/tree/master/data/haarcascades/
https://github.com/opencv/opencv/tree/master/data/haarcascades/

210 Chapter 9

This should work for Windows inside and outside of virtual environments.
However, this will work on Ubuntu only within a virtual environment.

To load a classifier, use OpenCV’s CascadeClassifier() method. Use
string concatenation to add the path variable to the filename string for the
classifier and assign the result to a variable.

Note that I use only two classifiers, one for frontal faces and one for
eyes, to keep things simple. Additional classifiers are available for profiles,
smiles, eyeglasses, upper bodies, and so on.

Finish by pointing the program to the images taken in the corridor you
are guarding. Change the directory to the proper folder ; then list the
folder contents and assign the results to a contents variable. Because you’re
not providing a full path to the folder, you’ll need to launch your program
from the folder containing it, which should be one level above the folder
with the images.

Issuing a Warning, Loading Images, and Detecting Faces

Listing 9-2 starts a for loop to iterate through the folder containing the cor-
ridor images. In real life, the motion detectors on the sentry guns would
launch your program as soon as something entered the corridor. Since we
don’t have any motion detectors, we’ll assume that each loop represents the
arrival of a new intruder.

The loop immediately arms the gun and prepares it to fire. It then ver-
bally requests that the intruder stop and face the camera. This would occur
at a set distance from the gun, as determined by the motion detector. As a
result, you know the faces will all be roughly the same size, making it easy
to test the program.

The intruder is given a few seconds to comply with the command. After
that, the cascade classifier is called and used to search for faces.

for image in contents:
  print(f"\nMotion detected...{datetime.now()}")

 discharge_weapon = True
  engine.say("You have entered an active fire zone. \

 Stop and face the gun immediately. \
 When you hear the tone, you have 5 seconds to pass.")
 engine.runAndWait()
 time.sleep(3)

  img_gray = cv.imread(image, cv.IMREAD_GRAYSCALE)
 height, width = img_gray.shape
 cv.imshow(f'Motion detected {image}', img_gray)
 cv.waitKey(2000)
 cv.destroyWindow(f'Motion detected {image}')

  face_rect_list = []
 face_rect_list.append(face_cascade.detectMultiScale(image=img_gray,
 scaleFactor=1.1,
 minNeighbors=5))

Listing 9-2: Looping through images, issuing a verbal warning, and searching for faces

sentry.py, part 2

Identifying Friend or Foe 211

Start looping through the images in the folder. Each new image repre-
sents a new intruder in the corridor. Print a log of the event and the time
at which it occurred . Note the f before the start of the string. This is the
new f-string format introduced with Python 3.6 (https://www.python.org/dev
/peps/pep-0498/). An f-string is a literal string that contains expressions,
such as variables, strings, mathematical operations, and even function calls,
inside curly braces. When the program prints the string, it replaces the
expressions with their values. These are the fastest and most efficient string
formats in Python, and we certainly want this program to be fast!

Assume every intruder is a mutant and prepare to discharge the
weapon. Then, verbally warn the intruder to stop and be scanned.

Use the pyttsx3 engine object’s say() method to speak . It takes a string
as an argument. Follow this with the runAndWait() method. This halts pro-
gram execution, flushes the say() queue, and plays the audio.

N O T E 	 For some macOS users, the program may exit with the second call to runAndWait().
If this occurs, download the sentry_for_Mac_bug.py code from the book’s website.
This program uses the operating system’s text-to-speech functionality in place of
pyttsx3. You’ll still need to update the Haar cascade path variable in this program,
as you did at  in Listing 9-1.

Next, use the time module to pause the program for three seconds. This
gives the intruder time to squarely face the gun’s camera.

At this point, you’d make a video capture, except we’re not using video.
Instead, load the images in the corridor_5 folder. Call the cv.imread() method
with the IMREAD_GRAYSCALE flag .

Use the image’s shape attribute to get its height and width in pixels. This
will come in handy later, when you post text on the images.

Face detection works only on grayscale images, but OpenCV will convert
color images behind the scenes when applying the Haar cascades. I chose
to use grayscale from the start as the results look creepier when the images
display. If you want to see the images in color, just change the two previous
lines as follows:

 img_gray = cv.imread(image)
 height, width = img_gray.shape[:2]

Next, show the image prior to face detection, keep it up for two seconds
(input as milliseconds), and then destroy the window. This is for quality
control to be sure all the images are being examined. You can comment out
these steps later, after you’re satisfied everything is working as planned.

Create an empty list to hold any faces found in the current image .
OpenCV treats images as NumPy arrays, so the items in this list are the corner-
point coordinates (x, y, width, height) of a rectangle that frames the face, as
shown in the following output snippet:

[array([[383, 169, 54, 54]], dtype=int32)]

212 Chapter 9

Now it’s time to detect faces using the Haar cascades. Do this for the
face_cascade variable by calling the detectMultiscale() method. Pass the
method the image and values for the scale factor and minimum number of
neighbors. These can be used to tune the results in the event of false posi-
tives or failure to recognize faces.

For good results, the faces in an image should be the same size as the
ones used to train the classifier. To ensure they are, the scaleFactor param-
eter rescales the original image to the correct size using a technique called
a scale pyramid (Figure 9-6).

Original image

Sc
al

e

Figure 9-6: Example “scale pyramid”

The scale pyramid resizes the image downward a set number of times.
For example, a scaleFactor of 1.2 means the image will be scaled down in
increments of 20 percent. The sliding window will repeat its movement
across this smaller image and check again for Haar features. This shrink-
ing and sliding will continue until the scaled image reaches the size of the
images used for training. This is 20×20 pixels for the Haar cascade classifier
(you can confirm this by opening one of the .xml files). Windows smaller
than this can’t be detected, so the resizing ends at this point. Note that the
scale pyramid will only downscale images, as upscaling can introduce arti-
facts in the resized image.

With each rescaling, the algorithm calculates lots of new Haar features,
resulting in lots of false positives. To weed these out, use the minNeighbors
parameter.

To see how this process works, look at Figure 9-7. The rectangles in
this figure represent faces detected by the haarcascade_frontalface_alt2.xml
classifier, with the scaleFactor parameter set to 1.05 and minNeighbors set to 0.
The rectangles have different sizes depending on which scaled image—
determined by the scaleFactor parameter—was in use when the face was
detected. Although there are many false positives, the rectangles tend to
cluster around the true face.

Identifying Friend or Foe 213

Figure 9-7: Detected face rectangles with minNeighbors=0

Increasing the value of the minNeighbors parameter will increase the
quality of the detections but reduce their number. If you specify a value
of 1, only rectangles with one or more closely neighboring rectangles are
preserved, and all others are discarded (Figure 9-8).

Figure 9-8: Detected face rectangles with minNeighbors=1

Increasing the number of minimum neighbors to around five generally
removes the false positives (Figure 9-9). This may be good enough for most
applications, but dealing with terrifying interdimensional monstrosities
demands more rigor.

214 Chapter 9

Figure 9-9: Detected face rectangles with minNeighbors=5

To see why, check out Figure 9-10. Despite using a minNeighbor value of 5,
the toe region of the mutant is incorrectly identified as a face. With a little
imagination, you can see two dark eyes and a bright nose at the top of the
rectangle, and a dark, straight mouth at the base. This could allow the
mutant to pass unharmed, earning you a dishonorable discharge at best
and an excruciatingly painful death at worst.

Figure 9-10: A mutant’s right toe region
incorrectly identified as a face

Fortunately, this problem can be easily remedied. The solution is to
search for more than just faces.

Identifying Friend or Foe 215

Detecting Eyes and Disabling the Weapon

Still in the for loop through the corridor images, Listing 9-3 uses OpenCV’s
built-in eye cascade classifier to search for eyes in the list of detected face
rectangles. Searching for eyes reduces false positives by adding a second
verification step. And because mutants don’t have eyes, if at least one eye is
found, you can assume a human is present and disable the sentry gun’s fir-
ing mechanism to let them pass.

 print(f"Searching {image} for eyes.")
 for rect in face_rect_list:
 for (x, y, w, h) in rect:

  rect_4_eyes = img_gray[y:y+h, x:x+w]
 eyes = eye_cascade.detectMultiScale(image=rect_4_eyes,
 scaleFactor=1.05,
 minNeighbors=2)

  for (xe, ye, we, he) in eyes:
 print("Eyes detected.")
 center = (int(xe + 0.5 * we), int(ye + 0.5 * he))
 radius = int((we + he) / 3)
 cv.circle(rect_4_eyes, center, radius, 255, 2)
 cv.rectangle(img_gray, (x, y), (x+w, y+h), (255, 255, 255), 2)

  discharge_weapon = False
 break

Listing 9-3: Detecting eyes in face rectangles and disabling the weapon

Print the name of the image being searched and start a loop through
the rectangles in the face_rect_list. If a rectangle is present, start looping
through the tuple of coordinates. Use these coordinates to make a subarray
from the image, in which you’ll search for eyes .

Call the eye cascade classifier on the subarray. Because you’re now
searching a much smaller area, you can reduce the minNeighbors argument.

Like the cascade classifiers for faces, the eye cascade returns coordi-
nates for a rectangle. Start a loop through these coordinates, naming them
with an e on the end, which stands for “eye,” to distinguish them from the
face rectangle coordinates .

Next, draw a circle around the first eye you find. This is just for your
own visual confirmation; as far as the algorithm’s concerned, the eye is
already found. Calculate the center of the rectangle and then calculate
a radius value that’s slightly larger than an eye. Use OpenCV’s circle()
method to draw a white circle on the rect_4_eyes subarray.

Now, draw a rectangle around the face by calling OpenCV’s rectangle()
method and passing it the img_gray array. Show the image for two seconds
and then destroy the window. Because the rect_4_eyes subarray is part of
img_gray, the circle will show up even though you didn’t explicitly pass the
subarray to the im_show() method (Figure 9-11).

sentry.py, part 3

216 Chapter 9

Figure 9-11: Face rectangle and eye circle

With a human identified, disable the weapon  and break out of the
for loop. You need to identify only one eye to confirm that you have a face,
so it’s time to move on to the next face rectangle.

Passing the Intruder or Discharging the Weapon

Still in the for loop through the corridor images, Listing 9-4 determines
what happens if the weapon is disabled or if it’s allowed to fire. In the
disabled case, it shows the image with the detected face and plays the “all
clear” tone. Otherwise, it shows the image and plays the gunfire audio file.

 if discharge_weapon == False:
 playsound(tone_path, block=False)
 cv.imshow('Detected Faces', img_gray)
 cv.waitKey(2000)
 cv.destroyWindow('Detected Faces')
 time.sleep(5)

 else:
 print(f"No face in {image}. Discharging weapon!")
 cv.putText(img_gray, 'FIRE!', (int(width / 2) - 20, int(height / 2)),
 cv.FONT_HERSHEY_PLAIN, 3, 255, 3)
 playsound(gunfire_path, block=False)
 cv.imshow('Mutant', img_gray)
 cv.waitKey(2000)
 cv.destroyWindow('Mutant')
 time.sleep(3)

engine.stop()

Listing 9-4: Determining the course of action if the gun is disabled or enabled

sentry.py, part 4

Identifying Friend or Foe 217

Use a conditional to check whether the weapon is disabled. You set the
discharge_weapon variable to True when you chose the current image from the
corridor_5 folder (see Listing 9-2). If the previous listing found an eye in a
face rectangle, it changed the state to False.

If the weapon is disabled, show the positive detection image (such as
in Figure 9-11) and play the tone. First, call playsound, pass it the tone_path
string, and set the block argument to False. By setting block to False, you
allow playsound to run at the same time as OpenCV displays the image. If
you set block=True, you won’t see the image until after the tone audio has
completed. Show the image for two seconds and then destroy it and pause
the program for five seconds using time.sleep().

If discharge_weapon is still True, print a message to the shell that the gun
is firing. Use OpenCV’s putText() method to announce this in the center of
the image and then show the image (see Figure 9-12).

Figure 9-12: Example mutant window

Now play the gunfire audio. Use playsound, passing it the gunfire_path
string and setting the block argument to False. Note that you have the
option of removing the root_dir and gunfire_path lines of code in Listing 9-1
if you provide the full path when you call playsound. For example, I would
use the following on my Windows machine:

playsound('C:/Python372/book/mutants/gunfire.wav', block=False)

Show the window for two seconds and then destroy it. Sleep the pro-
gram for three seconds to pause between showing the mutant and display-
ing the next image in the corridor_5 folder. When the loop completes, stop
the pyttsx3 engine.

218 Chapter 9

Results
Your sentry.py program repaired the damage to the sentry gun and allowed
it to function without the need for transponders. It’s biased to preserve
human life, however, which could lead to disastrous consequences: if
a mutant enters the corridor at around the same time as a human, the
mutant could slip by the defenses (Figure 9-13).

Figure 9-13: A worst-case scenario. Say “Cheese!”

Mutants might also trigger the firing mechanism with humans in the
corridor, assuming the humans look away from the camera at the wrong
moment (Figure 9-14).

Figure 9-14: You had one job!

I’ve seen enough sci-fi and horror movies to know that in a real scenario,
I’d program the gun to shoot anything that moved. Fortunately, that’s a
moral dilemma I’ll never have to face!

Identifying Friend or Foe 219

Detecting Faces from a Video Stream
You can also detect faces in real time using video cameras. This is easy to
do, so we won’t make it a dedicated project. Enter the code in Listing 9-5 or
use the digital version, video_face_detect.py, in the Chapter_9  folder download-
able from the book’s website. You’ll need to use your computer’s camera or
an external camera that works through your computer.

import cv2 as cv

path = "C:/Python372/Lib/site-packages/cv2/data/"
face_cascade = cv.CascadeClassifier(path + 'haarcascade_frontalface_alt.xml')

 cap = cv.VideoCapture(0)

while True:
 _, frame = cap.read()
 face_rects = face_cascade.detectMultiScale(frame, scaleFactor=1.2,
 minNeighbors=3)

 for (x, y, w, h) in face_rects:
 cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

 cv.imshow('frame', frame)

  if cv.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv.destroyAllWindows()

Listing 9-5: Detecting faces in a video stream

After importing OpenCV, set up your path to the Haar cascade classifi-
ers as you did at  in Listing 9-1. I use the haarcascade_frontalface_alt.xml file
here as it has higher precision (fewer false positives) than the haarcascade
_frontalface_default.xml file you used in the previous project. Next, instantiate
a VideoCapture class object, called cap for “capture.” Pass the constructor the
index of the video device you want to use . If you have only one camera,
such as your laptop’s built-in camera, then the index of this device should
be 0.

To keep the camera and face detection process running, use a while
loop. Within the loop, you’ll capture each video frame and analyze it for
faces, just as you did with the static images in the previous project. The face
detection algorithm is fast enough to keep up with the continuous stream,
despite all the work it must do!

To load the frames, call the cap object’s read() method. It returns a tuple
consisting of a Boolean return code and a NumPy ndarray object representing
the current frame. The return code is used to check whether you’ve run out
of frames when reading from a file. Since we’re not reading from a file here,
assign it to an underscore to indicate an insignificant variable.

video_face_detect.py

220 Chapter 9

Next, reuse the code from the previous project that finds face rect-
angles and draws the rectangles on the frame. Display the frame with the
OpenCV imshow() method. The program should draw a rectangle on this
frame if it detects a face.

To end the loop, you’ll press the q key, for quit . Start by calling
OpenCV’s waitKey() method and passing it a short, one-millisecond time-
span. This method will pause the program as it waits for a key press, but we
don’t want to interrupt the video stream for too long.

Python’s built-in ord() function accepts a string as an argument and
returns the Unicode code point representation of the passed argument,
in this case a lowercase q. You can see a mapping of characters to numbers
here: http://www.asciitable.com/. To make this lookup compatible with all
operating systems, you must include the bitwise AND operator, &, with the
hexadecimal number FF (0xFF), which has an integer value of 255. Using
& 0xFF ensures only the last 8 bits of the variable are read.

When the loop ends, call the cap object’s release() method. This frees
up the camera for other applications. Complete the program by destroying
the display window.

You can add more cascades to the face detection to increase its accu-
racy, as you did in the previous project. If this slows detection too much, try
scaling down the video image. Right after the call to cap.read(), add the fol-
lowing snippet:

 frame = cv.resize(frame, None, fx=0.5, fy=0.5,
 interpolation=cv.INTER_AREA)

The fx and fy arguments are scaling factors for the screen’s x and y
dimensions. Using 0.5 will halve the default size of the window.

The program should have no trouble tracking your face unless you do
something crazy, like tilt your head slightly to the side. That’s all it takes to
break detection and make the rectangle disappear (Figure 9-15).

Figure 9-15: Face detection using video frames

Haar cascade classifiers are designed to recognize upright faces, both
frontal and profile views, and they do a great job. They can even handle
eyeglasses and beards. But tilt your head, and they can quickly fail.

An inefficient but simple way to manage tilted heads is to use a loop
that rotates the images slightly before passing them on for face detection.

Identifying Friend or Foe 221

The Haar cascade classifiers can handle a bit of tilt (Figure 9-16), so you
could rotate the image by 5 degrees or so with each pass and have a good
chance of getting a positive result.

Figure 9-16: Rotating the image facilitates face detection.

The Haar feature approach to face detection is popular because it’s
fast enough to run in real time with limited computational resources. As
you probably suspect, however, more accurate, sophisticated, and resource-
intensive techniques are available.

For example, OpenCV ships with an accurate and robust face detector
based on the Caffe deep learning framework. To learn more about this
detector, see the tutorial “Face Detection with OpenCV and Deep Learning”
at https://www.pyimagesearch.com/.

Another option is to use OpenCV’s LBP cascade classifier for face
detection. This technique divides a face into blocks and then extracts
local binary pattern histograms (LBPHs) from them. Such histograms
have proved effective at detecting unconstrained faces in images—that is,
faces that aren’t well aligned and with similar poses. We’ll look at LBPH in
the next chapter, where we’ll focus on recognizing faces rather than simply
detecting them.

Summary
In this chapter, you got to work with OpenCV’s Haar cascade classifier for
detecting human faces; playsound, for playing audio files; and pyttsx3, for
text-to-speech audio. Thanks to these useful libraries, you were able to
quickly write a face detection program that also issued audio warnings and
instructions.

222 Chapter 9

Further Reading
“Rapid Object Detection Using a Boosted Cascade of Simple Features”
(Conference on Computer Vision and Pattern Recognition, 2001), by Paul
Viola and Michael Jones, is the first object detection framework to provide
practical, real-time object detection rates. It forms the basis for the face
detection process used in this chapter.

Adrian Rosebrock’s https://www.pyimagesearch.com/ website is an excel-
lent source for building image search engines and finding loads of interest-
ing computer vision projects, such as programs that detect fire and smoke,
find targets in drone video streams, distinguish living faces from printed
faces, automatically recognize license plates, and do much, much more.

Practice Project: Blurring Faces
Have you ever seen a documentary or news report where a person’s face has
been blurred to preserve their anonymity, like in Figure 9-17? Well, this cool
effect is easy to do with OpenCV. You just need to extract the face rectangle
from a frame, blur it, and then write it back over the frame image, along
with an (optional) rectangle outlining the face.

Figure 9-17: Example of face blurring with OpenCV

Blurring averages pixels within a local matrix called a kernel. Think
of the kernel as a box you place on an image. All the pixels in this box are
averaged to a single value. The larger the box, the more pixels are averaged,
and thus the smoother the image appears. Thus, you can think of blurring
as a low-pass filter that blocks high-frequency content, such as sharp edges.

Blurring is the only step in this process you haven’t done before. To
blur an image, use the OpenCV blur() method and pass it an image and a
tuple of the kernel size in pixels.

blurred_image = cv.blur(image, (20, 20))

Identifying Friend or Foe 223

In this example, you replace the value of a given pixel in image with
the average of all the pixels in a 20×20 square centered on that pixel. This
operation repeats for every pixel in image.

You can find a solution, practice_blur.py, in the appendix and in the
Chapter_9 folder downloadable from the book’s website.

Challenge Project: Detecting Cat Faces
It turns out there are three animal life forms on planet LV-666: humans,
mutants, and cats. The base’s mascot, Mr. Kitty, has free rein of the place
and is prone to wander through Corridor 5.

Edit and calibrate sentry.py so that Mr. Kitty can freely pass. This will be
a challenge, as cats aren’t known for obeying verbal orders. To get him to at
least look at the camera, you might add a “Here kitty, kitty” or “Puss, puss,
puss” to the pyttsx3 verbal commands. Or better, add the sound of a can of
tuna being opened using playsound!

You can find Haar classifiers for cat faces in the same OpenCV folder
as the classifiers you used in Project 13, and an empty corridor image,
empty_corridor.png, in the book’s downloadable Chapter_9  folder. Select a few
cat images from the internet, or your personal collection, and paste them in
different places in the empty corridor. Use the humans in the other images
to gauge the proper scale for the cat.

10
R E S T R I C T I N G A C C E S S

W I T H F A C E R E C O G N I T I O N

In the previous chapter, you were a techni-
cian in the Coalition Marines, a branch of

the Space Force. In this chapter, you’re that
same technician, only your job just got harder.

Your role is now to recognize faces, rather than just
detect them. Your commander, Captain Demming, has
discovered the lab containing the mutant-producing
interdimensional portal, and he wants access to it
restricted to just himself.

226 Chapter 10

As in the previous chapter, you’ll need to act quickly, so you’ll rely
on Python and OpenCV for speed and efficiency. Specifically, you’ll use
OpenCV’s local binary pattern histogram (LBPH) algorithm, one of the
oldest and easiest to use face recognition algorithms, to help lock down the
lab. If you haven’t installed and used OpenCV before, check out “Installing
the Python Libraries” on page 6.

Recognizing Faces with Local Binary Pattern Histograms
The LBPH algorithm relies on feature vectors to recognize faces. Remember
from Chapter 5 that a feature vector is basically a list of numbers in a specific
order. In the case of LBPH, the numbers represent some qualities of a face.
For instance, suppose you could discriminate between faces with just a few
measurements, such as the separation of the eyes, the width of the mouth,
the length of the nose, and the width of the face. These four measurements,
in the order listed and expressed in centimeters, could compose the follow-
ing feature vector: (5.1, 7.4, 5.3, 11.8). Reducing faces in a database to these
vectors enables rapid searches, and it allows us to express the difference
between them as the numerical difference, or distance, between two vectors.

Recognizing faces computationally requires more than four features,
of course, and the many available algorithms work on different features.
Among these algorithms are Eigenfaces, LBPH, Fisherfaces, scale-invariant
feature transform (SIFT), speeded-up robust features (SURF), and various
neural network approaches. When the face images are acquired under con-
trolled conditions, these algorithms can have a high accuracy rate, about as
high as that of humans.

Controlled conditions for images of faces might involve a frontal view
of each face with a normal, relaxed expression and, to be usable by all algo-
rithms, consistent lighting conditions and resolutions. The face should be
unobscured by facial hair and glasses, assuming the algorithm was taught
to recognize the face under those conditions.

The Face Recognition Flowchart
Before getting into the details of the LBPH algorithm, let’s look at how face
recognition works in general. The process consists of three main steps: cap-
turing, training, and predicting.

In the capture phase, you gather the images that you’ll use to train
the face recognizer (Figure 10-1). For each face you want to recognize, you
should take a dozen or more images with multiple expressions.

Restricting Access with Face Recognition 227

Bobby
ID = 1

Lloyd
ID = 2

ID = 1

ID = 2

Database

Webcam

Capture

Figure 10-1: Capturing facial images to train the face recognizer

The next step in the capture process is to detect the face in the image,
draw a rectangle around it, crop the image to the rectangle, resize the
cropped images to the same dimensions (depending on the algorithm),
and convert them to grayscale. The algorithms typically keep track of faces
using integers, so each subject will need a unique ID number. Once pro-
cessed, the faces are stored in a single folder, which we’ll call the database.

The next step is to train the face recognizer (Figure 10-2). The algorithm
—in our case, LBPH—analyzes each of the training images and then writes
the results to a YAML (.yml) file, a human-readable data-serialization lan-
guage used for data storage. YAML originally meant “Yet Another Markup
Language” but now stands for “YAML Ain’t Markup Language” to stress
that it’s more than just a document markup tool.

Database Recognizer trainer.yml

Train

ID = 1

ID = 2

Figure 10-2: Training the face recognizer and writing the results to a file

228 Chapter 10

With the face recognizer trained, the final step is to load a new, untrained
face and predict its identity (Figure 10-3). These unknown faces are prepped
in the same manner as the training images—that is, cropped, resized, and
converted to grayscale. The recognizer then analyzes them, compares the
results to the faces in the YAML file, and predicts which face matches best.

ID = 1
Recognizer

trainer.yml

Webcam

ID = 2
Confidence = 159

Unknown

Unknown

Unknown

ID = 1
Confidence threshold = 80

ID = 2
Confidence threshold = 95

Predict

ID = 1 ID = 2

Confidence = 64
Bobby

Figure 10-3: Predicting unknown faces using the trained recognizer

Note that the recognizer will make a prediction about the identity of
every face. If there’s only one trained face in the YAML file, the recognizer
will assign every face the trained face’s ID number. It will also output a
confidence factor, which is really a measurement of the distance between the
new face and the trained face. The larger the number, the worse the match.
We’ll talk about this more in a moment, but for now, know that you’ll use a
threshold value to decide whether the predicted face is correct. If the con-
fidence exceeds the accepted threshold value, the program will discard the
match and classify the face as “unknown” (see Figure 10-3).

Extracting Local Binary Pattern Histograms
The OpenCV face recognizer you’ll use is based on local binary patterns.
These texture descriptors were first used around 1994 to describe and classify
surface textures, differentiating concrete from carpeting, for example. Faces
are also composed of textures, so the technique works for face recognition.

Before you can extract histograms, you first need to generate the binary
patterns. An LBP algorithm computes a local representation of texture by
comparing each pixel with its surrounding neighbors. The first computa-
tional step is to slide a small window across the face image and capture the
pixel information. Figure 10-4 shows an example window.

Restricting Access with Face Recognition 229

160 110 50

180 90 50

200 115 100

Threshold
90

1 1 0

1 0

1 1 1

3x3 pixels

Binary
11010111

215

Decimal
215

Figure 10-4: Example 3×3 pixel sliding window used to capture local binary patterns

The next step is to convert the pixels into a binary number, using the
central value (in this case 90) as a threshold. You do this by comparing the
eight neighboring values to the threshold. If a neighboring value is equal
to or higher than the threshold, assign it 1; if it’s lower than the threshold,
assign it 0. Next, ignoring the central value, concatenate the binary values
line by line (some methods use a clockwise rotation) to form a new binary
value (11010111). Finish by converting this binary number into a decimal
number (215) and storing it at the central pixel location.

Continue sliding the window until all the pixels have been converted to
LBP values. In addition to using a square window to capture neighboring
pixels, the algorithm can use a radius, a process called circular LBP.

Now it’s time to extract histograms from the LBP image produced in the
previous step. To do this, you use a grid to divide the LBP image into rectan-
gular regions (Figure 10-5). Within each region, you construct a histogram
of the LBP values (labeled “Local Region Histogram” in Figure 10-5).

Regions (Grid)LBP ResultOriginal

Local Region Histogram

Concatenated Histogram of All the Regions

Figure 10-5: Extracting the LBP histograms

230 Chapter 10

After constructing the local region histograms, you follow a predeter-
mined order to normalize and concatenate them into one long histogram
(shown truncated in Figure 10-5). Because you’re using a grayscale image
with intensity values between 0 and 255, there are 256 positions in each
histogram. If you’re using a 10×10 grid, as in Figure 10-5, then there are
10×10×256 = 25,600 positions in the final histogram. The assumption is that
this composite histogram includes diagnostic features needed to recognize a
face. They are thus representations of a face image, and face recognition con-
sists of comparing these representations, rather than the images themselves.

To predict the identity of a new, unknown face, you extract its concat-
enated histogram and compare it to the existing histograms in the trained
database. The comparison is a measure of the distance between histograms.
This calculation may use various methods, including Euclidian distance,
absolute distance, chi-square, and so on. The algorithm returns the ID
number of the trained image with the closest histogram match, along with
the confidence measurement. You can then apply a threshold to the confi-
dence value, as in Figure 10-3. If the confidence for the new image is below
the threshold value, assume you have a positive match.

Because OpenCV encapsulates all these steps, the LBPH algorithm is
easy to implement. It also produces great results in a controlled environ-
ment and is unaffected by changes in lighting conditions (Figure 10-6).

Figure 10-6: LBPs are robust against changes in illumination

The LBPH algorithm handles changes to lighting conditions well
because it relies on comparisons among pixel intensities. Even if illumina-
tion is much brighter in one image than another, the relative reflectivity of
the face remains the same, and LBPH can capture it.

Restricting Access with Face Recognition 231

Project #14: Restricting Access to the Alien Artifact
Your squad has fought its way to the lab containing the portal-producing
alien artifact. Captain Demming orders it locked down immediately, with
access restricted to just him. Another technician will override the current
system with a military laptop. Captain Demming will gain access through
this laptop using two levels of security: a typed password and face verifica-
tion. Aware of your skills with OpenCV, he’s ordered you to handle the
facial verification part.

T HE OBJEC T I V E

Write a Python program that recognizes Captain Demming’s face.

The Strategy
You’re pressed for time and working under adverse conditions, so you want
to use a fast and easy tool with a good performance record, like OpenCV’s
LBPH face recognizer. You’re aware that LBPH works best under controlled
conditions, so you’ll use the same laptop webcam to capture both the train-
ing images and the face of anyone trying to access the lab.

In addition to pictures of Demming’s face, you’ll want to capture
some faces that don’t belong to Captain Demming. You’ll use these faces
to ensure that all the positive matches really belong to the captain. Don’t
worry about setting up the password, isolating the program from the user,
or hacking into the current system; the other technician will handle these
tasks while you go out and blast some mutants.

Supporting Modules and Files
You’ll use both OpenCV and NumPy to do most of the work in this project. If
you don’t already have them installed, see “Installing the Python Libraries”
on page 6. You’ll also need playsound, for playing sounds, and pyttsx3, for
text-to-speech functionality. You can find out more about these modules,
including installation instructions, in “The Code” on page 207.

The code and supporting files are in the Chapter_10  folder from the
book’s website, https://nostarch.com/real-world-python/. Keep the folder
structure and filenames the same after downloading them (Figure 10-7).
Note that the tester and trainer folders are created later and will not be
included in the download.

232 Chapter 10

Provided images of Captain Demming for
calibrating and testing the face recognizer

Provided images of Captain Demming
for training the face recognizer

Empty folder for reader-provided images for
calibrating and testing the face recognizer

Empty folder for reader-provided images
for training the face recognizer

Empty text file for recording lab access requests

Audio file

YAML file of trained images

Project code

Figure 10-7: File structure for Project 14

The demming_trainer and demming_tester folders contain images of
Captain Demming and others that you can use for this project. The code
currently references these folders.

If you want to supply your own images—for example, to use your own
face to represent Captain Demming’s—then you’ll use the folders named
trainer and tester. The code that follows will create the trainer folder for you.
You’ll need to manually create the tester folder and add some images of
yourself, as described later. Of course, you’ll need to edit the code so that
it points to these new folders.

The Video Capture Code
The first step (performed by the 1_capture.py code) is to capture the facial
images that you’ll need for training the recognizer. You can skip this step
if you plan to use the images provided in the demming_trainer folder.

To use your own face for Captain Demming, use your computer’s cam-
era to record about a dozen face shots with various expressions and no
glasses. If you don’t have a webcam, you can skip this step, take selfies with
your phone, and save them to a folder named trainer, as shown in Figure 10-7.

Importing Modules, and Setting Up Audio, a Webcam, Instructions, and File Paths

Listing 10-1 imports modules, initializes and sets up the audio engine
and the Haar cascade classifier, initializes the camera, and provides user

Restricting Access with Face Recognition 233

instructions. You need the Haar cascades because you must detect a face
before you can recognize it. For a refresher on Haar cascades and face
detection, see “Detecting Faces in Photographs” on page 204.

import os
import pyttsx3
import cv2 as cv
from playsound import playsound

engine = pyttsx3.init()
 engine.setProperty('rate', 145)

engine.setProperty('volume', 1.0)

root_dir = os.path.abspath('.')
tone_path = os.path.join(root_dir, 'tone.wav')

 path = "C:/Python372/Lib/site-packages/cv2/data/"
face_detector = cv.CascadeClassifier(path +
 'haarcascade_frontalface_default.xml')

cap = cv.VideoCapture(0)
if not cap.isOpened():
 print("Could not open video device.")

 cap.set(3, 640) # Frame width.
cap.set(4, 480) # Frame height.

engine.say("Enter your information when prompted on screen. \
 Then remove glasses and look directly at webcam. \
 Make multiple faces including normal, happy, sad, sleepy. \
 Continue until you hear the tone.")
engine.runAndWait()

 name = input("\nEnter last name: ")
user_id = input("Enter assigned ID Number: ")
print("\nCapturing face. Look at the camera now!")

Listing 10-1: Importing modules and setting up audio and detector files, a webcam, and
instructions

The imports are the same as those used to detect faces in the previous
chapter. You’ll use the operating system (via the os module) to manipulate
file paths, pyttsx3 to play text-to-speech audio instructions, cv to work with
images and run the face detector and recognizer, and playsound to play a tone
that lets users know when the program has finished capturing their image.

Next, set up the text-to-speech engine. You’ll use this to tell the user
how to run the program. The default voice is dependent on your particular
operating system. The engine’s rate parameter is currently optimized for
the American “David” voice on Windows . You may want to edit the argu-
ment if you find the speech to be too fast or too slow. If you want to change
the voice, see the instructions accompanying Listing 9-1 on page 209.

You’ll use a tone to alert the user that the video capture process has
ended. Set up the path to the tone.wav audio file as you did in Chapter 9.

1_capture.py,
part 1

234 Chapter 10

Now, provide the path to the Haar cascade file  and assign the clas-
sifier to a variable named face_detector. The path shown here is for my
Windows machine; your path may be different. On macOS, for example,
you can find the files under opencv/data/haarcascades. You can also find them
online at https://github.com/opencv/opencv/tree/master/data/haarcascades/.

In Chapter 9, you learned how to capture your face using your computer’s
webcam. You’ll use similar code in this program, starting with a call to
cv.VideoCapture(0). The 0 argument refers to the active camera. If you have
multiple cameras, you may need to use another number, such as 1, which
you can determine through trial and error. Use a conditional to check that
the camera opened, and if it did, set the frame width and height, respec-
tively . The first argument in both methods refers to the position of the
width or height parameter in the list of arguments.

For security reasons, you’ll be present to supervise the video capture
phase of the process. Nevertheless, use the pyttsx3 engine to explain the
procedure to the user (this way you don’t have to remember it). To control
the acquisition conditions to ensure accurate recognition later, the user will
need to remove any glasses or face coverings and adopt multiple expres-
sions. Among these should be the expression they plan to use each time
they access the lab.

Finally, they’ll need to follow some printed instructions on the screen.
First, they’ll enter their last name . You don’t need to worry about dupli-
cates right now, as Captain Demming will be the only user. Plus, you’ll assign
the user a unique ID number. OpenCV will use this variable, user_id, to keep
track of all the faces during training and prediction. Later, you’ll create a
dictionary so you can keep track of which user ID belongs to which person,
assuming more people are granted access in the future.

As soon as the user enters their ID number and presses enter, the cam-
era will turn on and begin capturing images, so let them know this with
another call to print(). Remember from the previous chapter that the Haar
cascade face detector is sensitive to head orientation. For it to function
properly, the user must look right at the webcam and keep their head as
straight as possible.

Capturing the Training Images

Listing 10-2 uses the webcam and a while loop to capture a specified num-
ber of face images. The code saves the images to a folder and sounds a tone
when the operation is complete.

if not os.path.isdir('trainer'):
 os.mkdir('trainer')
os.chdir('trainer')

frame_count = 0

while True:
 # Capture frame-by-frame for total of 30 frames.
 _, frame = cap.read()
 gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)

1_capture.py,
part 2

Restricting Access with Face Recognition 235

  face_rects = face_detector.detectMultiScale(gray, scaleFactor=1.2,
 minNeighbors=5)
 for (x, y, w, h) in face_rects:
 frame_count += 1
 cv.imwrite(str(name) + '.' + str(user_id) + '.'
 + str(frame_count) + '.jpg', gray[y:y+h, x:x+w])
 cv.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 cv.imshow('image', frame)
 cv.waitKey(400)

  if frame_count >= 30:
 break

print("\nImage collection complete. Exiting...")
playsound(tone_path, block=False)
cap.release()
cv.destroyAllWindows()

Listing 10-2: Capturing video images using a loop

Start by checking for a directory named trainer. If it doesn’t exist, use
the operating system module’s mkdir() method to make the directory. Then
change the current working directory to this trainer folder.

Now, initialize a frame_count variable to 0. The code will capture and
save a video frame only if it detects a face. To know when to end the pro-
gram, you’ll need to keep count of the number of captured frames.

Next, start a while loop set to True. Then call the cap object’s read()
method. As noted in the previous chapter, this method returns a tuple con-
sisting of a Boolean return code and a numpy ndarray object representing the
current frame. The return code is typically used to check whether you’ve
run out of frames when reading from a file. Since we’re not reading from a
file here, assign it to an underscore to indicate an unused variable.

Both face detection and face recognition work on grayscale images, so
convert the frame to grayscale and name the resulting array gray. Then, call
the detectMultiscale() method to detect faces in the image . You can find
details of how this method works in the discussion of Listing 9-2 on page 212.
Because you’re controlling conditions by having the user look into a laptop’s
webcam, you can rest assured that the algorithm will work well, though you
should certainly check the results.

The previous method should output the coordinates for a rectangle
around the face. Start a for loop through each set of coordinates and imme-
diately advance the frame_count variable by 1.

Use OpenCV’s imwrite() method to save the image to the trainer folder.
The folders use the following naming logic: name.user_id.frame_count.jpg
(such as demming.1.9.jpg). Save only the portion of the image within the face
rectangle. This will help ensure you aren’t training the algorithm to recog-
nize background features.

The next two lines draw a face rectangle on the original frame and
show it. This is so the user—Captain Demming—can check that his head
is upright and his expressions are suitable. The waitKey() method delays the
capture process enough for the user to cycle through multiple expressions.

236 Chapter 10

Even if Captain Demming will always adopt a relaxed, neutral expression
when having his identity verified, training the software on a range of expres-
sions will lead to more robust results. Along these lines, it’s also helpful if the
user tilts their head slightly from side to side during the capture phase.

Next, check whether the target frame count has been reached, and if
it has, break out of the loop . Note that, if no one is looking at the cam-
era, the loop will run forever. It counts frames only if the cascade classifier
detects a face and returns a face rectangle.

Let the user know that the camera has turned off by printing a message
and sounding the tone. Then end the program by releasing the camera and
destroying all the image windows.

At this point, the trainer folder should contain 30 images of the user’s
closely cropped face. In the next section, you’ll use these images—or the set
provided in the demming_trainer folder—to train OpenCV’s face recognizer.

The Face Trainer Code
The next step is to use OpenCV to create an LBPH-based face recognizer,
train it with the training images, and save the results as a reusable file. If
you’re using your own face to represent Captain Demming’s, you’ll point
the program to the trainer folder. Otherwise, you’ll need to use the demming
_trainer folder, which, along with the 2_train.py file containing the code, is
in the downloadable Chapter_10 folder.

Listing 10-3 sets up paths to the Haar cascades used for face detection
and the training images captured by the previous program. OpenCV keeps
track of faces using label integers, rather than name strings, and the listing
also initializes lists to hold the labels and their related images. It then loops
through the training images, loads them, extracts a user ID number from
the filename, and detects the faces. Finally, it trains the recognizer and
saves the results to a file.

import os
import numpy as np
import cv2 as cv

cascade_path = "C:/Python372/Lib/site-packages/cv2/data/"
face_detector = cv.CascadeClassifier(cascade_path +
 'haarcascade_frontalface_default.xml')

 train_path = './demming_trainer' # Use for provided Demming face.
#train_path = './trainer' # Uncomment to use your face.
image_paths = [os.path.join(train_path, f) for f in os.listdir(train_path)]
images, labels = [], []

for image in image_paths:
 train_image = cv.imread(image, cv.IMREAD_GRAYSCALE)

  label = int(os.path.split(image)[-1].split('.')[1])
 name = os.path.split(image)[-1].split('.')[0]
 frame_num = os.path.split(image)[-1].split('.')[2]

  faces = face_detector.detectMultiScale(train_image)
 for (x, y, w, h) in faces:

2_train.py

Restricting Access with Face Recognition 237

 images.append(train_image[y:y + h, x:x + w])
 labels.append(label)
 print(f"Preparing training images for {name}.{label}.{frame_num}")
 cv.imshow("Training Image", train_image[y:y + h, x:x + w])
 cv.waitKey(50)

cv.destroyAllWindows()

 recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.train(images, np.array(labels))
recognizer.write('lbph_trainer.yml')
print("Training complete. Exiting...")

Listing 10-3: Training and saving the LBPH face recognizer

You’ve seen the imports and the face detector code before. Although
you’ve already cropped the training images to face rectangles in 1_capture.py,
it doesn’t hurt to repeat this procedure. Since 2_train.py is a stand-alone
program, it’s best not to take anything for granted.

Next, you must choose which set of training images to use: the ones you
captured yourself in the trainer folder or the set provided in the demming
_trainer folder . Comment out or delete the line for the one you don’t use.
Remember, because you’re not providing a full path to the folder, you’ll
need to launch your program from the folder containing it, which should
be one level above the trainer and demming_trainer folders.

Create a list named image_paths using list comprehension. This will hold
the directory path and filename for each image in the training folder. Then
create empty lists for the images and their labels.

Start a for loop through the image paths. Read the image in grayscale;
then extract its numeric label from the filename and convert it to an inte-
ger . Remember that the label corresponds to the user ID input through
1_capture.py right before it captured the video frames.

Let’s take a moment to unpack what’s happening in this extraction and
conversion process. The os.path.split() method takes a directory path and
returns a tuple of the directory path and the filename, as shown in the fol-
lowing snippet:

>>> import os
>>> path = 'C:\demming_trainer\demming.1.5.jpg'
>>> os.path.split(path)
('C:\\demming_trainer', 'demming.1.5.jpg')

You can then select the last item in the tuple, using an index of -1, and
split it on the dot. This yields a list with four items (the user’s name, user
ID, frame number, and file extension).

>>> os.path.split(path)[-1].split('.')
['demming', '1', '5', 'jpg']

To extract the label value, you choose the second item in the list using
index 1.

238 Chapter 10

>>> os.path.split(path)[-1].split('.')[1]
'1'

Repeat this process to extract the name and frame_num for each image.
These are all strings at this point, which is why you need to turn the user ID
into an integer for use as a label.

Now, call the face detector on each training image . This will return a
numpy.ndarray, which you’ll call faces. Start looping through the array, which
contains the coordinates of the detected face rectangles. Append the part of
the image in the rectangle to the images list you made earlier. Also append the
image’s user ID to the labels list.

Let the user know what’s going on by printing a message in the shell.
Then, as a check, show each training image for 50 milliseconds. If you’ve
ever seen Peter Gabriel’s popular 1986 music video for “Sledgehammer,”
you’ll appreciate this display.

It’s time to train the face recognizer. Just as you do when using OpenCV’s
face detector, you start by instantiating a recognizer object . Next, you call
the train() method and pass it the images list and the labels list, which you
turn into a NumPy array on the fly.

You don’t want to train the recognizer every time someone verifies their
face, so write the results of the training process to a file called lbph_trainer.yml.
Then let the user know the program has ended.

The Face Predictor Code
It’s time to start recognizing faces, a process we’ll call predicting, because it
all comes down to probability. The program in 3_predict.py will first calcu-
late the concatenated LBP histogram for each face. It will then find the
distance between this histogram and all the histograms in the training set.
Next, it will assign the new face the label and name of the trained face
that’s closest to it, but only if the distance falls below a threshold value that
you specify.

Importing Modules and Preparing the Face Recognizer

Listing 10-4 imports modules, prepares a dictionary to hold user ID
numbers and names, sets up the face detector and recognizer, and estab-
lishes the path to the test data. The test data includes images of Captain
Demming, along with several other faces. An image of Captain Demming
from the training folder is included to test the results. If everything is work-
ing as it should, the algorithm should positively identify this image with a
low distance measurement.

import os
from datetime import datetime
import cv2 as cv

names = {1: "Demming"}

3_predict.py, part 1

Restricting Access with Face Recognition 239

cascade_path = "C:/Python372/Lib/site-packages/cv2/data/"
face_detector = cv.CascadeClassifier(cascade_path +
 'haarcascade_frontalface_default.xml')

 recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.read('lbph_trainer.yml')

#test_path = './tester'
 test_path = './demming_tester'

image_paths = [os.path.join(test_path, f) for f in os.listdir(test_path)]

Listing 10-4: Importing modules and preparing for face detection and recognition

After some familiar imports, create a dictionary to link user ID numbers
to usernames. Although there’s only one entry currently, this name dictionary
makes it easy to add more entries in the future. If you’re using your own
face, feel free to change the last name, but leave the ID number set to 1.

Next, repeat the code that sets up the face_detector object. You’ll need
to input your own cascade_path (see Listing 10-1 on page 233).

Create a recognizer object as you did in the 2_train.py code . Then use
the read() method to load the .yml file that contains the training information.

You’ll want to test the recognizer using face images in a folder. If you’re
using the Demming images provided, set up a path to the demming_tester
folder . Otherwise, use the tester folder you created earlier. You can add
your own images to this blank folder. If you’re using your face to represent
Captain Demming’s, you shouldn’t reuse the training images here, although
you might consider using one as a control. Instead, use the 1_capture.py
program to produce some new images. If you wear glasses, include some
images of you with and without them. You’ll want to include some strangers
from the demming_tester folder, as well.

Recognizing Faces and Updating an Access Log

Listing 10-5 loops through the images in the test folder, detects any faces
present, compares the face histogram to those in the training file, names
the face, assigns a confidence value, and then logs the name and access
time in a persistent text file. As part of this process, the program would
theoretically unlock the lab if the ID is positive, but since we don’t have a
lab, we’ll skip that part.

for image in image_paths:
 predict_image = cv.imread(image, cv.IMREAD_GRAYSCALE)
 faces = face_detector.detectMultiScale(predict_image,
 scaleFactor=1.05,
 minNeighbors=5)
 for (x, y, w, h) in faces:
 print(f"\nAccess requested at {datetime.now()}.")

  face = cv.resize(predict_image[y:y + h, x:x + w], (100, 100))
 predicted_id, dist = recognizer.predict(face)

  if predicted_id == 1 and dist <= 95:
 name = names[predicted_id]
 print("{} identified as {} with distance={}"

3_predict.py, part 2

240 Chapter 10

 .format(image, name, round(dist, 1)))
  print(f"Access granted to {name} at {datetime.now()}.",

 file=open('lab_access_log.txt', 'a'))
 else:
 name = 'unknown'
 print(f"{image} is {name}.")

 cv.rectangle(predict_image, (x, y), (x + w, y + h), 255, 2)
 cv.putText(predict_image, name, (x + 1, y + h - 5),
 cv.FONT_HERSHEY_SIMPLEX, 0.5, 255, 1)
 cv.imshow('ID', predict_image)
 cv.waitKey(2000)
 cv.destroyAllWindows()

Listing 10-5: Running face recognition and updating the access log file

Start by looping through the images in the test folder. This will be
either the demming_tester folder or the tester folder. Read each image in as
grayscale and assign the resulting array to a variable named predict_image.
Then run the face detector on it.

Now loop through the face rectangles, as you’ve done before. Print a
message about access being requested; then use OpenCV to resize the face
subarray to 100×100 pixels . This is close to the dimensions of the train-
ing images in the demming_trainer folder. Synchronizing the size of the
images isn’t strictly necessary but helps to improve results in my experience.
If you’re using your own images to represent Captain Demming, you should
check that the training image and test image dimensions are similar.

Now it’s time to predict the identity of the face. Doing so takes only one
line. Just call the predict() method on the recognizer object and pass it the
face subarray. This method will return an ID number and a distance value.

The lower the distance value, the more likely the predicted face has
been correctly identified. You can use the distance value as a threshold: all
images that are predicted to be Captain Demming and score at or below the
threshold will be positively identified as Captain Demming. All the others
will be assigned to 'unknown'.

To apply the threshold, use an if statement . If you’re using your own
training and test images, set the distance value to 1,000 the first time you
run the program. Review the distance values for all the images in the test
folder, both known and unknown. Find a threshold value below which all
the faces are correctly identified as Captain Demming. This will be your
discriminator going forward. For the images in the demming_trainer and
demming_tester folders, the threshold distance should be 95.

Next, get the name for the image by using the predicted_id value as
a key in the names dictionary. Print a message in the shell stating that the
image has been identified and include the image filename, the name from
the dictionary, and the distance value.

For the log, print a message indicating that name (in this case, Captain
Demming) has been granted access to the lab and include the time using
the datetime module .

Restricting Access with Face Recognition 241

You’ll want to keep a persistent file of people’s comings and goings.
Here’s a neat trick for doing so: just write to a file using the print() func-
tion. Open the lab_access_log.txt file and include the a parameter for
“append.” This way, instead of overwriting the file for each new image,
you’ll add a new line at the bottom. Here’s an example of the file contents:

Access granted to Demming at 2020-01-20 09:31:17.415802.
Access granted to Demming at 2020-01-20 09:31:19.556307.
Access granted to Demming at 2020-01-20 09:31:21.644038.
Access granted to Demming at 2020-01-20 09:31:23.691760.
--snip--

If the conditional is not met, set name to 'unknown' and print a message to
that effect. Then draw a rectangle around the face and post the user’s name
using OpenCV’s putText() method. Show the image for two seconds before
destroying it.

Results
You can see some example results, from the 20 images in the demming_tester
folder, in Figure 10-8. The predictor code correctly identified the eight images
of Captain Demming with no false positives.

Figure 10-8: Demmings and non-Demmings

For the LBPH algorithm to be highly accurate, you need to use it under
controlled conditions. Remember that by forcing the user to gain access
through the laptop, you controlled their pose, the size of their face, the
image resolution, and the lighting.

242 Chapter 10

Summary
In this chapter, you got to work with OpenCV’s local binary pattern histo-
gram algorithm for recognizing human faces. With only a few lines of code,
you produced a robust face recognizer that can easily handle variable light-
ing conditions. You also used the Standard Library’s os.path.split() method
to break apart directory paths and filenames to produce customized vari-
able names.

Further Reading
“Local Binary Patterns Applied to Face Detection and Recognition”
(Polytechnic University of Catalonia, 2010), by Laura María Sánchez López,
is a thorough review of the LBPH approach. The PDF can be found online
at sites such as https://www.semanticscholar.org/.

“Look at the LBP Histogram,” on the AURlabCVsimulator site (https://
aurlabcvsimulator.readthedocs.io/en/latest/), includes Python code that lets you
visualize an LBPH image.

If you’re a macOS or Linux user, be sure to check out Adam Geitgey’s
face_recognition library, a simple-to-use and highly accurate face recognition
system that utilizes deep learning. You can find installation instructions and
an overview at the Python Software Foundation site: https://pypi.org/project
/face_recognition/.

“Machine Learning Is Fun! Part 4: Modern Face Recognition with Deep
Learning” (Medium, 2016), by Adam Geitgey, is a short and enjoyable over-
view of modern face recognition using Python, OpenFace, and dlib.

“Liveness Detection with OpenCV” (PyImageSearch, 2019), by Adrian
Rosebrock, is an online tutorial that teaches you how to protect your face
recognition system against spoofing by fake faces, such as a photograph of
Captain Demming held up to the webcam.

Cities and colleges around the world have begun banning facial recog-
nition systems. Inventors have also gotten into the act, designing clothing
that can confound the systems and protect your identity. “These Clothes
Use Outlandish Designs to Trick Facial Recognition Software into Thinking
You’re Not Human” (Business Insider, 2020), by Aaron Holmes, and “How
to Hack Your Face to Dodge the Rise of Facial Recognition Tech” (Wired,
2019), by Elise Thomas, review some recent practical—and impractical—
solutions to the problem.

“OpenCV Age Detection with Deep Learning” (PyImageSearch, 2020)
by Adrian Rosebrock, is an online tutorial for using OpenCV to predict a
person’s age from their photograph.

Challenge Project: Adding a Password and Video Capture
The 3_predict.py program you wrote in Project 14 loops through a folder of
photographs to perform face recognition. Rewrite the program so that it

https://pypi.org/project/face_recognition/
https://pypi.org/project/face_recognition/

Restricting Access with Face Recognition 243

dynamically recognizes faces in the webcam’s video stream. The face rect-
angle and name should appear in the video frame as they do on the folder
images.

To start the program, have the user enter a password that you verify. If
it’s correct, add audio instructions telling the user to look at the camera.
If the program positively identifies Captain Demming, use audio to announce
that access is granted. Otherwise, play an audio message stating that access
is denied.

If you need help with identifying the face from the video stream, see
the challenge_video_recognize.py program in the appendix. Note that you may
need to use a higher confidence value for the video frame than the value
you used for the still photographs.

So that you can keep track of who has tried to enter the lab, save a
single frame to the same folder as the lab_access_log.txt file. Use the logged
results from datetime.now() as the filename so you can match the face to the
access attempt. Note that you’ll need to reformat the string returned from
datetime.now() so that it only contains characters acceptable for filenames,
as defined by your operating system.

Challenge Project: Look-Alikes and Twins
Use the code from Project 14 to compare celebrity look-alikes and twins.
Train it with images from the internet and see whether you can fool the
LBPH algorithm. Some pairings to consider are Scarlett Johansson and
Amber Heard, Emma Watson and Kiernan Shipka, Liam Hemsworth
and Karen Khachanov, Rob Lowe and Ian Somerhalder, Hilary Duff and
Victoria Pedretti, Bryce Dallas Howard and Jessica Chastain, and Will
Ferrell and Chad Smith.

For famous twins, look at astronaut twins Mark and Scott Kelly and
celebrity twins Mary-Kate and Ashley Olsen.

Challenge Project: Time Machine
If you ever watch reruns of old shows, you’ll encounter famous actors in
their younger—sometimes much younger—days. Even though humans excel
at face recognition, we may still struggle to identify a young Ian McKellen
or Patrick Stewart. That’s why sometimes it takes a certain inflection of
voice or curious mannerism to send us scurrying to Google to check the
cast members.

Face recognition algorithms are also prone to fail when identifying
faces across time. To see how the LBPH algorithm performs under these
conditions, use the code from Project 14 and train it on faces of yourself
(or your relatives) at a certain age. Then test it with images over a range
of ages.

11
C R E A T I N G A N I N T E R A C T I V E

Z O M B I E E S C A P E M A P

In 2010, The Walking Dead premiered on the
AMC television channel. Set at the beginning

of a zombie apocalypse, it told the story of a
small group of survivors in the area of Atlanta,

Georgia. The critically acclaimed show soon became
a phenomenon, turning into the most watched series
in cable television history, spawning a spin-off called
Fear the Walking Dead, and starting an entirely new
genre of television, the post-episode discussion show,
with Talking Dead.

In this chapter, you’ll play a quick-thinking data scientist who foresees
the coming collapse of civilization. You’ll prepare a map to help the Walking
Dead survivors escape the crowded Atlanta metropolitan area for the more
sparsely populated lands west of the Mississippi. In the process, you’ll use
the pandas library to load, analyze, and clean the data, and you’ll use the
bokeh and holoviews modules to plot the map.

246 Chapter 11

Project #15: Visualizing Population Density with a Choropleth Map
According to scientists (yes, they’ve studied this), the key to surviving a
zombie apocalypse is to live as far from a city as possible. In the United
States, that means living in one of the large black areas shown in Figure 11-1.
The brighter the lights, the greater the population, so if you want to avoid
people, don’t “go into the light.”

Atlanta

Figure 11-1: Nighttime image of US city lights in 2012

Unfortunately for our Walking Dead survivors in Atlanta, they’re a long
way from the relative safety of the American West. They’ll need to weave
their way through a gauntlet of cities and towns, ideally passing through the
least populated areas. Service station maps don’t provide that population
information, but the US census does. Before civilization collapses and the
internet fails, you can download population density data onto your laptop
and sort it out later using Python.

The best way to present this type of data is with a choropleth map, a visu-
alization tool that uses colors or patterns to represent statistics about pre-
defined geographical regions. You may be familiar with choropleth maps of
US presidential election results, which color counties red for a Republican
victory and blue for a Democratic one (Figure 11-2).

If the survivors had a choropleth map of population density that
showed the number of people per square mile in each county, they could
find the shortest, and theoretically safest, routes out of Atlanta and across
the American South. Although you could get even higher-resolution data
from the census, using its county-level data should be enough. Walking Dead
zombie herds migrate as they get hungry, quickly rendering detailed statis-
tics obsolete.

Creating an Interactive Zombie Escape Map 247

Figure 11-2: Choropleth map of the 2016 US presidential election results
(light gray = Democrat, dark gray = Republican)

To determine the best routes through the counties, the survivors can
use state highway maps like the ones found in service stations and welcome
centers. These paper maps include county and parish outlines, making it
easy to relate their network of cities and roads to a page-sized printout of
the choropleth map.

T HE OBJEC T I V E

Create an interactive map of the conterminous United States (the 48 adjoining states) that
displays population density by county.

The Strategy
Like all data visualization exercises, this task consists of the following basic
steps: finding and cleaning the data, choosing the type of plot and the tool
with which to show the data, preparing the data for plotting, and drawing
the data.

Finding the data is easy in this case, as the US census population data
is made readily available to the public. You still need to clean it, however, by
finding and handling bogus data points, null values, and formatting issues.
Ideally you would also verify the accuracy of the data, a difficult job that
data scientists probably skip far too often. The data should at least pass a
sanity check, something that may have to wait until the data is drawn. New
York City should have a greater population density than Billings, Montana,
for example.

248 Chapter 11

Next, you must decide how you’ll present the data. You’ll use a map, but
other options might include a bar chart or a table. Even more important is
choosing the tool—in this case, the Python library—that you’ll use to make
the plot. The choice of tool can have a big impact on how you prepare the
data and exactly what you end up showing.

Years ago, a fast-food company ran a commercial in which a customer
claimed to like “a variety, but not too much of a variety.” When it comes
to visualization tools in Python, you can argue that there are too many
choices, with too little to distinguish them: matplotlib, seaborn, plotly, bokeh,
folium, altair, pygal, ggplot, holoviews, cartopy, geoplotlib, and built-in func-
tions in pandas.

These various visualization libraries have their strengths and weaknesses,
but since this project requires speed, you’ll focus on the easy-to-use holoviews
module, with a bokeh backend for plotting. This combination will allow you
to produce an interactive choropleth map with only a few lines of code, and
bokeh conveniently includes US state and county polygons in its sample data.

Once you’ve chosen your visualization tool, you must put the data in
the format that the tool expects. You’ll need to figure out how to fill in the
county shapes, which you get from one file, with the population data from
another file. This will involve a little reverse engineering using example
code from the holoviews gallery. After that, you’ll plot the map with bokeh.

Fortunately, data analysis with Python almost always relies on the
Python Data Analysis Library (pandas). This module will let you load the
census data, analyze it, and reformat it for use with holoviews and bokeh.

The Python Data Analysis Library
The open source pandas library is the most popular library available for per-
forming data extraction, processing, and manipulation in Python. It con-
tains data structures designed for working with common data sources, such
as SQL relational databases and Excel spreadsheets. If you plan on being a
data scientist in any form, you’ll surely encounter pandas at some point.

The pandas library contains two primary data structures: series and
dataframes. A series is a one-dimensional labeled array that can hold any
type of data, such as integers, floats, strings, and so on. Because pandas is
based on NumPy, a series object is basically two associated arrays (see the
introduction to arrays on page 12 in Chapter 1 if you’re new to arrays). One
array contains the data point values, which can have any NumPy data type. The
other array contains labels for each data point, called indexes (Table 11-1).

Table 11-1: A Series Object

Index Value

0 25

1 432

2 –112

3 99

Creating an Interactive Zombie Escape Map 249

Unlike the indexes of Python list items, the indexes in a series don’t have
to be integers. In Table 11-2, the indexes are the names of people, and the
values are their ages.

Table 11-2: A Series Object
with Meaningful Labels

Index Value

Javier 25

Carol 32

Lora 19

Sarah 29

As with a list or NumPy array, you can slice a series or select individual
elements by specifying an index. You can manipulate the series many ways,
such as filtering it, performing mathematical operations on it, and merging
it with other series.

A dataframe is a more complex structure comprising two dimensions.
It has a tabular structure similar to a spreadsheet, with columns, rows, and
data (Table 11-3). You can think of it as an ordered collection of columns
with two indexing arrays.

Table 11-3: A Dataframe Object

Columns

Index Country State County Population

0 USA Alabama Autauga 54,571

1 USA Alabama Baldwin 182,265

2 USA Alabama Barbour 27,457

3 USA Alabama Bibb 22,915

The first index, for the rows, works much like the index array in a series.
The second keeps track of the series of labels, with each label representing
a column header. Dataframes also resemble dictionaries; the column names
form the keys, and the series of data in each column forms the values. This
structure lets you easily manipulate dataframes.

Covering all the functionality in pandas would require a whole book, and
you can find plenty online! We’ll defer additional discussion until the code
section, where we’ll look at specific examples as we apply them.

The bokeh and holoviews Libraries
The bokeh module (https://bokeh.org/) is an open source interactive visualiza-
tion library for modern web browsers. You can use it to construct elegant
interactive graphics over large or streaming datasets. It renders its graphics
using HTML and JavaScript, the predominant programming languages for
creating interactive web pages.

https://bokeh.org/

250 Chapter 11

The open source holoviews library (http://holoviews.org/) aims to make
data analysis and visualization simple. With holoviews, instead of building a
plot by making a direct call to a plotting library, such as bokeh or matplotlib,
you first create an object describing your data, and the plots become auto-
matic visual representations of this object.

The holoviews example gallery includes several choropleth maps visual-
ized using bokeh (such as http://holoviews.org/gallery/demos/bokeh/texas_choropleth
_example.html). Later, we’ll use the unemployment rate example from this
gallery to figure out how to present our population density data in a similar
manner.

Installing pandas, bokeh, and holoviews
If you worked through the project in Chapter 1, you already have pandas and
NumPy installed. If not, see the instructions in “Installing the Python Libraries”
on page 6.

One option for installing holoviews, along with latest version of all the
recommended packages for working with the module on Linux, Windows,
or macOS, is to use Anaconda.

conda install -c pyviz holoviews bokeh

This installation method includes the default matplotlib plotting library
backend, the more interactive bokeh plotting library backend, and the
Jupyter/IPython Notebook.

You can install a similar set of packages using pip.

pip install 'holoviews[recommended]'

Additional minimal installation options are available through pip,
assuming you already have bokeh installed. You can find these and other
installation instructions at http://holoviews.org/install.html and http://holoviews
.org/user_guide/Installing_and_Configuring.html.

Accessing the County, State, Unemployment, and Population Data
The bokeh library comes with data files for the state and county outlines and
the 2009 US unemployment data per county. As mentioned, you’ll use the
unemployment data to determine how to format the population data, which
comes from the 2010 census.

To download the bokeh sample data, connect to the internet, open a
Python shell, and enter the following:

>>> import bokeh
>>> import bokeh.sampledata
>>> bokeh.sampledata.download()
Creating C:\Users\lee_v\.bokeh directory
Creating C:\Users\lee_v\.bokeh\data directory
Using data directory: C:\Users\lee_v\.bokeh\data

http://holoviews.org/
http://holoviews.org/gallery/demos/bokeh/texas_choropleth_example.html
http://holoviews.org/gallery/demos/bokeh/texas_choropleth_example.html
http://holoviews.org/install.html
http://holoviews.org/user_guide/Installing_and_Configuring.html
http://holoviews.org/user_guide/Installing_and_Configuring.html

Creating an Interactive Zombie Escape Map 251

As you can see, the program will tell you where on your machine it’s
putting the data so that bokeh can automatically find it. Your path will differ
from mine. For more on downloading the sample data, see https://docs.bokeh
.org/en/latest/docs/reference/sampledata.html.

Look for US_Counties.csv and unemployment09.csv in the folder of down-
loaded files. These plaintext files use the popular comma-separated values
(CSV) format, in which each line represents a data record with multiple
fields separated by commas. (Good luck saying “CSV” right if you regularly
shop at a CVS pharmacy!)

The unemployment file is instructive of the plight of the data scientist.
If you open it, you’ll see that there are no column names describing the data
(Figure 11-3), though it’s possible to guess what most of the fields represent.
We’ll deal with this later.

Figure 11-3: The first few rows of unemployment09.csv

If you open the US counties file, you’ll see lots of columns, but at least
they have headers (Figure 11-4). Your challenge will be to relate the un-
employment data in Figure 11-3 to the geographical data in Figure 11-4 so
that you can do the same later with the census data.

Figure 11-4: The first few rows of US_Counties.csv

You can find the population data, census_data_popl_2010.csv, in the
Chapter_11 folder, downloadable from the book’s website. This file, origi-
nally named DEC_10_SF1_GCTPH1.US05PR_with_ann.csv, came from the
American FactFinder website. By the time this book is published, the US
government will have migrated the census data to a new site called https://
data.census.gov (see https://www.census.gov/data/what-is-data-census-gov.html).

If you look at the top of the census file, you’ll see lots of columns with
two header rows (Figure 11-5). You’re interested in column M, titled Density
per square mile of land area – Population.

https://docs.bokeh.org/en/latest/docs/reference/sampledata.html
https://docs.bokeh.org/en/latest/docs/reference/sampledata.html

252 Chapter 11

Figure 11-5: The first few rows of census_data_popl_2010.csv

At this point, you have all the Python libraries and data files you need
to generate a population density choropleth map in theory. Before you can
write the code, however, you need to know how you’re going to link the
population data to the geographical data so that you can place the correct
county data in the correct county shape.

Hacking holoviews
Learning to adapt existing code for your own use is a valuable skill for a
data scientist. This may require a bit of reverse engineering. Because open
source software is free, it’s sometimes poorly documented, so you have to
figure out how it works on your own. Let’s take a moment and apply this
skill to our current problem.

In previous chapters, we took advantage of the gallery examples provided
by open source modules such as turtle and matplotlib. The holoviews library
also has a gallery (http://holoviews.org/gallery/index.html), and it includes
Texas Choropleth Example, a choropleth map of the Texas unemployment
rate in 2009 (Figure 11-6).

Figure 11-6: Choropleth map of the 2009 Texas unemployment rate from the holoviews gallery

Creating an Interactive Zombie Escape Map 253

Listing 11-1 contains the code provided by holoviews for this map.
You’ll build your project based on this example, but to do so, you’ll have
to address two main differences. First, you plan to plot population density
rather than unemployment rate. Second, you want a map of the contermi-
nous United States, not just Texas.

import holoviews as hv
from holoviews import opts
hv.extension('bokeh')

 from bokeh.sampledata.us_counties import data as counties
from bokeh.sampledata.unemployment import data as unemployment

counties = [dict(county, Unemployment=unemployment[cid])
 for cid, county in counties.items()

  if county["state"] == "tx"]

choropleth = hv.Polygons(counties, ['lons', 'lats'],
 [('detailed name', 'County'), 'Unemployment'])

choropleth.opts(opts.Polygons(logz=True,
 tools=['hover'],
 xaxis=None, yaxis=None,
 show_grid=False,
 show_frame=False,
 width=500, height=500,
 color_index='Unemployment',
 colorbar=True, toolbar='above',
 line_color='white'))

Listing 11-1: holoviews gallery code for generating the Texas choropleth

The code imports the data from the bokeh sample data . You’ll need to
know the format and content of both the unemployment and counties variables.
The unemployment rate is accessed later using the unemployment variable and
an index or key of cid, which may stand for “county ID” . The program
selects Texas, rather than the whole United States, based on a conditional
using a state code .

Let’s investigate this in the Python shell.

>>> from bokeh.sampledata.unemployment import data as unemployment
 >>> type(unemployment)

<class 'dict'>
 >>> first_2 = {k: unemployment[k] for k in list(unemployment)[:2]}

>>> for k in first_2:
 print(f"{k} : {first_2[k]}")

 (1, 1) : 9.7
(1, 3) : 9.1
>>>
>>> for k in first_2:
 for item in k:
 print(f"{item}: {type(item)}")

texas_
choropleth_
example.html

254 Chapter 11

 1: <class 'int'>
1: <class 'int'>
1: <class 'int'>
3: <class 'int'>

Start by importing the bokeh sample data using the syntax from the gal-
lery example. Next, use the type() built-in function to check the data type
of the unemployment variable . You’ll see that it’s a dictionary.

Now, use dictionary comprehension to make a new dictionary comprising
the first two lines in unemployment . Print the results, and you’ll see that the
keys are tuples and the values are numbers, presumably the unemployment
rate in percent . Check the data type for the numbers in the key. They’re
integers rather than strings .

Compare the output at  to the first two rows in the CSV file in
Figure 11-3. The first number in the key tuple, presumably a state code,
comes from column B. The second number in the tuple, presumably a
county code, comes from column C. The unemployment rate is obviously
stored in column I.

Now compare the contents of unemployment to Figure 11-4, representing
the county data. The STATE num (column J) and COUNTY num (column K)
obviously hold the components of the key tuple.

So far so good, but if you look at the population data file in Figure 11-5,
you won’t find a state or county code to direct into a tuple. There are numbers
in column E, however, that match those in the last column of the county
data, labeled FIPS formula in Figure 11-4. These FIPS numbers seem to
relate to the state and county codes.

As it turns out, a Federal Information Processing Series (FIPS) code is
basically a ZIP code for a county. The FIPS code is a five-digit numeric
code assigned to each county by the National Institute of Standards and
Technology. The first two digits represent the county’s state, and the final
three digits represent the county (Table 11-4).

Table 11-4: Identifying US Counties Using a FIPS Code

US County State Code County Code FIPS

Baldwin County, AL 01 003 1003

Johnson County, IA 19 103 19103

Congratulations, you now know how to link the US census data to the
county shapes in the bokeh sample data. It’s time to write the final code!

The Choropleth Code
The choropleth.py program includes code for both cleaning the data and
plotting the choropleth map. You can find a copy of the code, along with
the population data, in the Chapter_11 folder downloadable from the book’s
website at https://nostarch.com/real-world-python/.

https://nostarch.com/real-world-python/

Creating an Interactive Zombie Escape Map 255

Importing Modules and Data and Constructing a Dataframe

Listing 11-2 imports modules and the bokeh county sample data that
includes coordinates for all the US county polygons. It also loads and cre-
ates a dataframe object to represent the population data. Then it begins the
process of cleaning and preparing the data for use with the county data.

from os.path import abspath
import webbrowser
import pandas as pd
import holoviews as hv
from holoviews import opts

 hv.extension('bokeh')
from bokeh.sampledata.us_counties import data as counties

 df = pd.read_csv('census_data_popl_2010.csv', encoding="ISO-8859-1")

df = pd.DataFrame(df,
 columns=
 ['Target Geo Id2',
 'Geographic area.1',
 'Density per square mile of land area - Population'])

df.rename(columns =
 {'Target Geo Id2':'fips',
 'Geographic area.1': 'County',
 'Density per square mile of land area - Population':'Density'},
 inplace = True)

print(f"\nInitial popl data:\n {df.head()}")
print(f"Shape of df = {df.shape}\n")

Listing 11-2: Importing modules and data, creating a dataframe, and renaming columns

Start by importing abspath from the operating system library. You’ll use
this to find the absolute path to the choropleth map HTML file after it’s
created. Then import the webbrowser module so you can launch the HTML
file. You need this because the holoviews library is designed to work with a
Jupyter Notebook and won’t automatically display the map without some help.

Next, import pandas and repeat the holoviews imports from the gallery
example in Listing 11-1. Note that you must specify bokeh as the holoviews
extension, or backend . This is because holoviews can work with other plot-
ting libraries, such as matplotlib, and needs to know which one to use.

You brought in the geographical data with the imports. Now load the
population data using pandas. This module includes a set of input/output
API functions to facilitate reading and writing data. These readers and writers
address major formats such as comma-separated values (read_csv, to_csv),
Excel (read_excel, to_excel), Structured Query Language (read_sql, to_sql),
HyperText Markup Language (read_html, to_html), and more. In this project,
you’ll work with the CSV format.

choropleth.py,
part 1

256 Chapter 11

In most cases, you can read CSV files without specifying the character
encoding.

df = pd.read_csv('census_data_popl_2010.csv')

In this case, however, you’ll get the following error:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf1 in position 31:
invalid continuation byte

That’s because the file contains characters encoded with Latin-1, also
known as ISO-8859-1, rather than the default UTF-8 encoding. Adding the
encoding argument will fix the problem .

Now, turn the population data file into a tabular dataframe by calling
the DataFrame() constructor. You don’t need all the columns in the original
file, so pass the names of the column you want to keep to the constructor.
These represent columns E, G, and M in Figure 11-5, or the FIPS code,
county name (without the state name), and population density, respectively.

Next, use the rename() dataframe method to make the column labels
shorter and more meaningful. Call them fips, County, and Density.

Finish the listing by printing the first few rows of the dataframe using
the head() method and by printing the shape of the dataframe using its
shape attribute. By default, the head() method prints the first five rows. If you
want to see more rows, you can pass it the number as an argument, such as
head(20). You should see the following output in the shell:

Initial popl data:
 fips County Density
0 NaN United States 87.4
1 1.0 Alabama 94.4
2 1001.0 Autauga County 91.8
3 1003.0 Baldwin County 114.6
4 1005.0 Barbour County 31.0
Shape of df = (3274, 3)

Notice that the first two rows (rows 0 and 1) are not useful. In fact,
you can glean from this output that each state will have a row for its name,
which you’ll want to delete. You can also see from the shape attribute that
there are 3,274 rows in the dataframe.

Removing Extraneous State Name Rows and Preparing the State and County Codes

Listing 11-3 removes all rows whose FIPS code is less than or equal to 100.
These are header rows that indicate where a new state begins. It then cre-
ates new columns for the state and county codes, which it derives from the
existing column of FIPS codes. You’ll use these later to select the proper
county outline from the bokeh sample data.

Creating an Interactive Zombie Escape Map 257

df = df[df['fips'] > 100]
print(f"Popl data with non-county rows removed:\n {df.head()}")
print(f"Shape of df = {df.shape}\n")

 df['state_id'] = (df['fips'] // 1000).astype('int64')
df['cid'] = (df['fips'] % 1000).astype('int64')
print(f"Popl data with new ID columns:\n {df.head()}")
print(f"Shape of df = {df.shape}\n")
print("df info:")

 print(df.info())

print("\nPopl data at row 500:")
 print(df.loc[500])

Listing 11-3: Removing extraneous rows and preparing the state and county codes

To display the population density data in the county polygons, you need
to turn it into a dictionary where the keys are a tuple of the state code and
county code and the values are the density data. But as you saw previously,
the population data does not include separate columns for the state and
county codes; it has only the FIPS codes. So, you’ll need to split out the state
and county components.

First, get rid of all the noncounty rows. If you look at the previous shell
output (or rows 3 and 4 in Figure 11-5), you’ll see that these rows do not
include a four- or five-digit FIPS code. You can thus use the fips column to
make a new dataframe, still named df, that preserves only rows with a fips
value greater than 100. To check that this worked, repeat the printout from
the previous listing, as shown here:

 Popl data with non-county rows removed:
 fips County Density
2 1001.0 Autauga County 91.8
3 1003.0 Baldwin County 114.6
4 1005.0 Barbour County 31.0
5 1007.0 Bibb County 36.8
6 1009.0 Blount County 88.9
Shape of df = (3221, 3)

The two “bad” rows at the top of the dataframe are now gone, and
based on the shape attribute, you’ve lost a total of 53 rows. These represent
the header rows for the 50 states, United States, District of Columbia (DC),
and Puerto Rico. Note that DC has a FIPS code of 11001 and Puerto Rico
uses a state code of 72 to go with the three-digit county code for its 78
municipalities. You’ll keep DC but remove Puerto Rico later.

Next, create columns for state and county code numbers. Name the
first new column state_id . Dividing by 1,000 using floor division (//)
returns the quotient with the digits after the decimal point removed. Since
the last three numbers of the FIPS code are reserved for county codes, this
leaves you with the state code.

choropleth.py,
part 2

258 Chapter 11

Although // returns an integer, the new dataframe column uses the
float datatype by default. But our analysis of the bokeh sample data indicated
that it used integers for these codes in the key tuples. Convert the column
to the integer datatype using the pandas astype() method and pass it 'int64'.

Now, make a new column for the county code. Name it cid so it will
match the terminology used in the holoviews choropleth example. Since
you’re after the last three digits in the FIPS code, use the modulo operator (%).
This returns the remainder from the division of the first argument to the
second. Convert this column to the integer datatype as in the previous line.

Print the output again, only this time call the info() method on the
dataframe . This method returns a concise summary of the dataframe,
including datatypes and memory usage.

Popl data with new ID columns:
 fips County Density state_id cid
2 1001.0 Autauga County 91.8 1 1
3 1003.0 Baldwin County 114.6 1 3
4 1005.0 Barbour County 31.0 1 5
5 1007.0 Bibb County 36.8 1 7
6 1009.0 Blount County 88.9 1 9
Shape of df = (3221, 5)

df info:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3221 entries, 2 to 3273
Data columns (total 5 columns):
fips 3221 non-null float64
County 3221 non-null object
Density 3221 non-null float64
state_id 3221 non-null int64
cid 3221 non-null int64
dtypes: float64(2), int64(2), object(1)
memory usage: 151.0+ KB
None

As you can see from the columns and information summary, the state_id
and cid numbers are integer values.

The state codes in the first five rows are all single-digit numbers, but
it’s possible for state codes to have double digits, as well. Take the time to
check the state codes of later rows. You can do this by calling the loc()
method on the dataframe and passing it a high row number . This will
let you check double-digit state codes.

Popl data at row 500:
fips 13207
County Monroe County
Density 66.8
state_id 13
cid 207
Name: 500, dtype: object

Creating an Interactive Zombie Escape Map 259

The fips, state_id, and cid all look reasonable. This completes the data
preparation. The next step is to turn this data into a dictionary that holoviews
can use to make the choropleth map.

Preparing the Data for Display

Listing 11-4 converts the state and county IDs and the density data into sep-
arate lists. It then recombines them into a dictionary with the same format
as the unemployment dictionary used in the holoviews gallery example. It also
lists the states and territories to exclude from the map and makes a list of
the data needed to plot the choropleth map.

state_ids = df.state_id.tolist()
cids = df.cid.tolist()
den = df.Density.tolist()

tuple_list = tuple(zip(state_ids, cids))
popl_dens_dict = dict(zip(tuple_list, den))

EXCLUDED = ('ak', 'hi', 'pr', 'gu', 'vi', 'mp', 'as')

counties = [dict(county, Density=popl_dens_dict[cid])
 for cid, county in counties.items()
 if county["state"] not in EXCLUDED]

Listing 11-4: Preparing the population data for plotting

Earlier, we looked at the unemployment variable in the holoviews gallery
example and found that it was a dictionary. Tuples of the state and county
codes served as the keys, and the unemployment rates served as the values,
as follows:

(1, 1) : 9.7
(1, 3) : 9.1
--snip--

To create a similar dictionary for the population data, first use the
pandas tolist() method to create separate lists of the dataframe’s state_id,
cid, and Density columns. Then, use the built-in zip() function to merge
the state and county code lists as tuple pairs. Create the final dictionary,
popl_dens_dict, by zipping this new tuple_list with the density list. (The
name tuple_list is misleading; technically, it’s a tuple_tuple.) That’s it for
the data preparation.

The Walking Dead survivors will be lucky to get out of Atlanta. Let’s
forget about them reaching Alaska. Make a tuple, named EXCLUDED, of states
and territories that are in the bokeh county data but aren’t part of the con-
terminous United States. These include Alaska, Hawaii, Puerto Rico, Guam,
Virgin Islands, Northern Mariana Islands, and American Samoa. To reduce
typing, you can use the abbreviations provided as a column in the county
dataset (see Figure 11-4).

choropleth.py,
part 3

260 Chapter 11

Next, as in the holoviews example, make a dictionary and put it in a list
named counties. Here’s where you add the population density data. Link it
to the proper county using the cid county identifier number. Use a condi-
tional to apply the EXCLUDED tuple.

If you print the first index in this list, you’ll get the (truncated) output
that follows:

[{'name': 'Autauga', 'detailed name': 'Autauga County, Alabama', 'state':
'al', 'lats': [32.4757, 32.46599, 32.45054, 32.44245, 32.43993, 32.42573,
32.42417, --snip-- -86.41231, -86.41234, -86.4122, -86.41212, -86.41197,
-86.41197, -86.41187], 'Density': 91.8}]

The Density key-value pair now replaces the unemployment rate pair
used in the holoviews gallery example. Next up, plotting the map!

Plotting the Choropleth Map

Listing 11-5 creates the choropleth map, saves it as an .html file, and opens it
with the webbrowser.

choropleth = hv.Polygons(counties,
 ['lons', 'lats'],
 [('detailed name', 'County'), 'Density'])

 choropleth.opts(opts.Polygons(logz=True,
 tools=['hover'],
 xaxis=None, yaxis=None,
 show_grid=False, show_frame=False,
 width=1100, height=700,
 colorbar=True, toolbar='above',
 color_index='Density', cmap='Greys', line_color=None,
 title='2010 Population Density per Square Mile of Land Area'
))

 hv.save(choropleth, 'choropleth.html', backend='bokeh')
url = abspath('choropleth.html')
webbrowser.open(url)

Listing 11-5: Creating and plotting the choropleth map

According to the holoviews documentation, the Polygons() class creates a
contiguous filled area in a 2D space as a list of polygon geometries. Name
a variable choropleth and pass Polygons() the counties variable and the dic-
tionary keys, including the lons and lats used to draw the county polygons.
Also pass it the county names and population density keys. The holoviews
hover tool will use this tuple, ('detailed name', 'County'), to show you the
full county name, such as County: Claiborne County, Mississippi, when you
move the cursor around the map (Figure 11-7).

choropleth.py,
part 4

Creating an Interactive Zombie Escape Map 261

Figure 11-7: Choropleth map with the hover feature active

Next, set the options for the map . First, permit use of a logarithmic
color bar by setting the logz argument to True.

The holoviews window will come with a set of default tools such as pan,
zoom, save, refresh, and so on (see the upper-right corner of Figure 11-7).
Use the tools argument to add the hover feature to this list. This allows you
query the map and get both the county name and detailed information on
the population density.

You’re not making a standard plot with an annotated x -axis and y -axis,
so set these to None. Likewise, don’t show a grid or frame around the map.

Set the width and height of the map in pixels. You may want to adjust
this for your monitor. Next set colorbar to True and place the toolbar at the
top of the display.

Since you want to color the counties based on population density, set
the color_index argument to Density, which represents the values in popl_dens
_dict. For the fill colors, use the Greys cmap. If you want to use brighter colors,
you can find a list of available colormaps at http://build.holoviews.org/user_guide
/Colormaps.html. Be sure to choose one with “bokeh” in the name. Finish
the color scheme by selecting a line color for the county outlines. Good
choices for a gray colormap are None, 'white', or 'black'.

Complete the options by adding a title. The choropleth map is now
ready for plotting.

To save your map in the current directory, use the holoviews save() method
and pass it the choropleth variable, a file name with the .html extension, and
the name of the plotting backend being used . As mentioned previously,
holoviews is designed for use with a Jupyter Notebook. If you want the map
to automatically pop up on your browser, first assign the full path to the
saved map to a url variable. Then use the webbrowser module to open url and
display the map (Figure 11-8).

http://build.holoviews.org/user_guide/Colormaps.html
http://build.holoviews.org/user_guide/Colormaps.html

262 Chapter 11

Figure 11-8: The 2010 population density choropleth map. Lighter colors represent lower population density

You can use the toolbar at the top of the map to pan, zoom (using a
box or lasso), save, refresh, or hover. The hover tool, shown in Figure 11-7,
will help you find the least populated counties in places where the map
shading makes the difference hard to distinguish visually.

N O T E 	 The Box Zoom tool permits a quick view of a rectangular area but may stretch or
squeeze the map axes. To preserve the map’s aspect ratio when zooming, use a combi-
nation of the Wheel Zoom and Pan tools.

Planning the Escape
The Chisos Mountains, an extinct supervolcano in Big Bend National Park,
might be one of the best places on Earth to ride out a zombie apocalypse.
Remote and fortress-like in appearance (Figure 11-9), the mountains tower
4,000 feet above the surrounding desert plain, reaching a maximum eleva-
tion of almost 8,000 feet. At their heart lies a natural basin with park facili-
ties, including a lodge, cabins, store, and restaurant. Fish and game are
abundant in the area, desert springs provide fresh water, and the banks of
the Rio Grande are suitable for farming.

Creating an Interactive Zombie Escape Map 263

Figure 11-9: The Chisos Mountains of west Texas (left) with 3D relief map representation (right)

With your choropleth map, you can quickly plan a route to this natural
fortress far, far away. But first, you need to escape Atlanta. The shortest route
out of the metropolitan area is a narrow passage squeezed between the cities
of Birmingham and Montgomery in Alabama (Figure 11-10). You can skirt
the next big city, Jackson, Mississippi, by going either north or south. To
choose the best route, however, you need to look farther ahead.

Atlanta

Birmingham

Jackson

Memphis
Little
Rock

Monroe
Montgomery

Figure 11-10: Escape from Atlanta

The southerly route around Jackson is shorter but forces the survivors
to pass over the highly developed I-35 corridor, anchored by San Antonio in
the south and Dallas–Fort Worth (DFW) in the north (Figure 11-11). This
creates a potentially dangerous choke point at Hill County, Texas (circled
in Figure 11-11).

264 Chapter 11

11-11 .eps

Atlanta

San
Antonio

Monroe

Austin

DFW

Red River

Houston

Birmingham

Jackson

MonrBend
Big

Figure 11-11: The way west

Alternatively, the northerly route through the Red River Valley, between
Oklahoma and Texas, would be longer but safer, especially if you took
advantage of the navigable river. Once west of Fort Worth, the survivors
could cross the river and turn south to salvation.

This type of planning would be even simpler if holoviews provided a
slider tool that allowed you to interactively alter the color bar. For example,
you could filter out or change the shading of counties by simply dragging
your cursor up and down the legend. This would make it easier to find
connected routes through the lowest population counties.

Unfortunately, a slider tool isn’t one of the holowviews window options.
Since you know pandas, though, that won’t stop you. Simply add the following
snippet of code after the line that prints the information at location 500:

df.loc[df.Density >= 65, ['Density']] = 1000

This will change the population density values in the dataframe, setting
those greater than or equal to 65 to a constant value of 1000. Run the pro-
gram again, and you’ll get the plot in Figure 11-12. With the new values,
the San Antonio–Austin–Dallas barrier becomes more apparent, as does the
relative safety of the Red River Valley that forms the northern border of
east Texas.

You may be wondering, where did the survivors go in the TV show?
They went nowhere! They spent the first four seasons in the vicinity of
Atlanta, first camping at Stone Mountain and then holed up in a prison
near the fictional town of Woodbury (Figure 11-13).

Creating an Interactive Zombie Escape Map 265

Atlanta

San
Antonio

Austin

DFW

Big
Bend

Houston

Birmingham

Jackson

Red River

Figure 11-12: Counties with more than 65 people per square mile shaded black

Woodbury

Atlanta
Stone Mountain

Figure 11-13: Location of Stone Mountain and the fictional town of Woodbury

Stone Mountain is less than 20 miles from downtown Atlanta and in
DeKalb County, with 2,586 people per square mile. Woodbury (the real
town of Senoia) is only 35 miles from downtown Atlanta and on the border
of Coweta County, with 289 people per square mile, and Fayette County, with
549 people per square mile. No wonder these guys had so much trouble. If
only there had been a data scientist in the group.

266 Chapter 11

Summary
In this chapter, you got to work with the Python Data Analysis Library (pandas)
and the bokeh and holoviews visualization modules. In the process, you did
some real-world data wrangling to clean and link data from different sources.

Further Reading
“If the Zombie Apocalypse Happens, Scientists Say You Should Run for the
Hills” (Business Insider, 2017), by Kevin Loria, describes the application of
standard disease models to infection rates in a theoretical zombie outbreak.

“What to Consider When Creating Choropleth Maps” (Chartable, 2018),
by Lisa Charlotte Rost, provides useful guidelines for making choropleth maps.
You can find it at https://blog.datawrapper.de/choroplethmaps/.

“Muddy America: Color Balancing the Election Map—Infographic”
(STEM Lounge, 2019) by Larry Weru, demonstrates ways to increase the
useful detail in choropleth maps, using the iconic red-blue United States
election map as an example.

Python Data Science Handbook: Essential Tools for Working with Data
(O’Reilly Media, 2016), by Jake VanderPlas, is a thorough reference for
important Python data science tools, including pandas.

Beneath the Window: Early Ranch Life in the Big Bend Country (Iron Mountain
Press, 2003), by Patricia Wilson Clothier, is an engaging recollection of
growing up in the early 20th century on a vast ranch in the Big Bend coun-
try of Texas, before it became a national park. It provides insight into how
apocalypse survivors might deal with life in the harsh country.

Game Theory: Real Tips for SURVIVING a Zombie Apocalypse (7 Days to Die)
(The Game Theorists, 2016) is a video on the best place in the world to escape
a zombie apocalypse. Unlike The Walking Dead, the video assumes that the
zombie virus can be transmitted by mosquitoes and ticks, and it selects the
location with this in mind. It’s available online.

Challenge Project: Mapping US Population Change
The US government will release population data from the 2020 census in
2021. However, less accurate, intercensal population estimates for 2019
are currently available. Use one of these, along with the 2010 data from
Project 15, to generate a new choropleth map that captures population
change, by county, over that time period.

Hint: you can subtract columns in pandas dataframes to generate the
difference data, as demonstrated in the toy example that follows. The 2020
population values represent dummy data.

>>> import pandas as pd
>>>
>>> # Generate example population data by county:
>>> pop_2010 = {'county': ['Autauga', 'Baldwin', 'Barbour', 'Bibb'],
 'popl': [54571, 182265, 27457, 22915]}

https://blog.datawrapper.de/choroplethmaps/

Creating an Interactive Zombie Escape Map 267

>>> pop_2020 = {'county': ['Autauga', 'Baldwin', 'Barbour', 'Bibb'],
 'popl': [52910, 258321, 29073, 29881]}
>>>
>>> df_2010 = pd.DataFrame(pop_2010)
>>> df_2020 = pd.DataFrame(pop_2020)
>>> df_diff = df_2020.copy() # Copy the 2020 dataframe to a new df
>>> df_diff['diff'] = df_diff['popl'].sub(df_2010['popl']) # Subtract popl columns
>>> print(df_diff.loc[:4, ['county', 'diff']])
 county diff
0 Autauga -1661
1 Baldwin 76056
2 Barbour 1616
3 Bibb 6966

12
A R E W E L I V I N G I N A

C O M P U T E R S I M U L A T I O N ?

In 2003, the philosopher Nick Bostrom
postulated that we live in a computer simu-

lation run by our advanced, possibly post-
human, descendants. Today, many scientists

and big thinkers, including Neil DeGrasse Tyson and
Elon Musk, believe there’s a good chance this simulation
hypothesis is true. It certainly explains why mathematics
so elegantly describes nature, why observers seem to
influence quantum events, and why we appear to be
alone in the universe.

Even stranger, you could be the only real thing in this simulation.
Perhaps you’re a brain in a vat, immersing yourself in a historical simula-
tion. For computational efficiency, the simulation might render only those
things with which you currently interact. When you go inside and close your
door, the world outside might turn off like a refrigerator light. How would
you really know one way or the other?

270 Chapter 12

Scientists take this hypothesis seriously, holding debates and publishing
papers on how we might devise some test to prove it. In this chapter, you’ll
attempt to answer the question using an approach proposed by physicists:
you’ll build a simple simulated world and then analyze it for clues that
might give the simulation away. In doing so, you’ll work through this proj-
ect backward, writing the code before coming up with the problem-solving
strategy. You’ll find that even the simplest model can provide profound
insights on the nature of our existence.

Project #16: Life, the Universe, and Yertle’s Pond
The ability to simulate reality isn’t just a far-off dream. Physicists have used
the world’s most powerful supercomputers to accomplish this feat, simulat-
ing subatomic particle behavior at a scale of a few femtometers (10−15 m).
Although the simulation represents only a tiny piece of the cosmos, it’s
indistinguishable from what we understand to be reality.

But don’t worry, you won’t need a supercomputer or a degree in physics
to solve this problem. All you need is the turtle module, a drawing program
designed for kids. You used turtle to simulate the Apollo 8 mission in
Chapter 6. Here, you’ll use it to understand one of the foundational features
of computer models. You’ll then apply that knowledge to devise the same
basic strategy that physicists plan to apply to the simulation hypothesis.

T HE OBJEC T I V E

Identify a feature of a computer simulation that might be detectable by those being simulated.

The Pond Simulation Code
The pond_sim.py code creates a turtle-based simulation of a pond that
includes a mud island, a floating log, and a snapping turtle named Yertle.
Yertle will swim out to the log, swim back, and then swim out again. You
can download the code from the book’s website at https://nostarch.com
/real-world-python/.

The turtle module ships with Python, so you don’t have to install any-
thing. For an overview of the module, see “Using the turtle Module” on
page 127.

Importing turtle, Setting Up the Screen, and Drawing the Island

Listing 12-1 imports turtle, sets up a screen object to use as a pond, and
draws a mud island for Yertle to survey his domain.

import turtle

pond = turtle.Screen()
pond.setup(600, 400)

pond_sim.py, part 1

https://nostarch.com/real-world-python/
https://nostarch.com/real-world-python/

Are We Living in a Computer Simulation? 271

pond.bgcolor('light blue')
pond.title("Yertle's Pond")

mud = turtle.Turtle('circle')
mud.shapesize(stretch_wid=5, stretch_len=5, outline=None)
mud.pencolor('tan')
mud.fillcolor('tan')

Listing 12-1: Importing the turtle module and drawing a pond and mud island

After importing the turtle module, assign a screen object to a variable
named pond. Use the turtle setup() method to set the screen size, in pixels,
and then color the background light blue. You can find tables of turtle
colors and their names on multiple sites, such as https://trinket.io/docs/colors.
Finish the pond by providing a title for the screen.

Next, make a circular mud island for Yertle to sunbathe on. Use the
Turtle() class to instantiate a turtle object named mud. Although turtle
comes with a method for drawing circles, it’s easier here to just pass the
constructor the 'circle' argument, which produces a circular turtle object.
This circle shape is too small to make much of an island, however, so use
the shapesize() method to stretch it out. Finish the island by setting its out-
line and fill colors to tan.

Drawing the Log, a Knothole, and Yertle

Listing 12-2 completes the program by drawing the log, complete with
knothole and Yertle the turtle. It then moves Yertle so that he can leave his
island to check out the log.

SIDE = 80
ANGLE = 90
log = turtle.Turtle()
log.hideturtle()
log.pencolor('peru')
log.fillcolor('peru')
log.speed(0)

 log.penup()
log.setpos(215, -30)
log.lt(45)
log.begin_fill()

 for _ in range(2):
 log.fd(SIDE)
 log.lt(ANGLE)
 log.fd(SIDE / 4)
 log.lt(ANGLE)
log.end_fill()

knot = turtle.Turtle()
knot.hideturtle()
knot.speed(0)
knot.penup()
knot.setpos(245, 5)
knot.begin_fill()

pond_sim.py, part 2

272 Chapter 12

knot.circle(5)
knot.end_fill()

yertle = turtle.Turtle('turtle')
yertle.color('green')
yertle.speed(1) # Slowest.
yertle.fd(200)
yertle.lt(180)
yertle.fd(200)

 yertle.rt(176)
yertle.fd(200)

Listing 12-2: Drawing a log and a turtle and then moving the turtle around

You’ll draw a rectangle to represent the log, so start by assigning two
constants, SIDE and ANGLE. The first represents the length of the log, in pixels;
the second is the angle, in degrees, by which you’ll turn the turtle at each
corner of the rectangle.

By default, all turtles initially appear at the center of the screen, at coor-
dinates (0, 0). Since you’ll place your log off to the side, after you instanti-
ate the log object, use the hideturtle() method to make it invisible. This way,
you don’t have to watch it fly across the screen to get to its final position.

Color the log brown, using peru for the log color. Then set the object’s
speed to the fastest setting (oddly, 0). This way, you won’t have to watch
it slowly draw on the screen. And so you don’t see the path it takes from
the screen’s center to its edge, pick up the drawing pen using the penup()
method .

Use the setpos() method—for set position—to place the log near the
right edge of the screen. Then turn the object left by 45 degrees and call
the begin_fill() method.

You can save a few lines of code by drawing the rectangle using a for
loop . You’ll loop twice, drawing two sides of the rectangle with each loop.
Make the log’s width 20 pixels by dividing SIDE by 4. After the loop, call
end_fill() to color the log brown.

Give the log some character by adding a knothole, represented by a knot
turtle. To draw the knothole, call the circle() method and pass it 5, for a
radius of five pixels. Note that you don’t need to specify a fill color as black
is the default.

Finally, end the program by drawing Yertle, the king of all he surveys.
Yertle is an old turtle, so set his drawing speed to the slowest setting of 1.
Have him swim out and inspect the log and then turn around and swim
back. Yertle is a touch senile, and he forgets what he just did. So, have him
swim back out—only this time, angle his course so that he’s no longer swim-
ming due east . Run the program, and you should get the results shown in
Figure 12-1.

Look carefully at this figure. Despite the simplicity of the simulation, it
contains powerful insights into whether we, like Yertle, dwell in a computer
simulation.

Are We Living in a Computer Simulation? 273

Figure 12-1: Screenshot of completed simulation

Implications of the Pond Simulation
Because of finite computational resources, all computer simulations require
a framework of some type on which to “hang” their model of reality. Whether
it’s called a grid, a lattice, a mesh, a matrix, or whatever, it provides a way to
both distribute objects in 2D or 3D space and assign them a property, such
as mass, temperature, color, or something else.

The turtle module uses the pixels in your monitor as its coordinate
system, as well as to store properties. The pixel locations define the shapes,
such as the log’s outline, and the pixel color property helps differentiate
one shape from another.

Pixels form an orthogonal pattern, which means the rows and columns
of pixels intersect at right angles. Although individual pixels are square and
too small to easily see, you can use the turtle module’s dot() method to gen-
erate a facsimile, as in the following snippet:

>>> import turtle
>>>
>>> t = turtle.Turtle()
>>> t.hideturtle()
>>> t.penup()
>>>
>>> def dotfunc(x, y):
	 t.setpos(x, y)
	 for _ in range(10):
		 t.dot()
		 t.fd(10)
		
>>> for i in range(0, 100, 10):
	 dotfunc(0, -i)

274 Chapter 12

This produces the pattern in Figure 12-2.

Figure 12-2: Orthogonal grid of black dots
representing the centers of square pixels

In the turtle world, pixels are true atoms: indivisible. A line can’t be
shorter than one pixel. Movement can occur only as integers of pixels
(though you can input float values without raising an error). The smallest
object possible is one pixel in size.

An implication of this is that the simulation’s grid determines the
smallest feature you can observe. Since we can observe incredibly small sub-
atomic particles, our grid, assuming we’re a simulation, must be incredibly
fine. This leads many scientists to seriously doubt the simulation conjecture,
since it would require a staggering amount of computer memory. Still, who
knows what our distant descendants, or aliens, are capable of?

Besides setting a limit on the size of objects, a simulation grid might
force a preferred orientation, or anisotropy, on the fabric of the cosmos.
Anisotropy is the directional dependence of a material, such as the way
wood splits more easily along its grain rather than across it. If you look
closely at Yertle’s paths in the turtle simulation (Figure 12-3), you can see
evidence of anisotropy. His upper, slightly angled path zigzags, while the
lower, east-west path is perfectly straight.

Figure 12-3: The angled versus straight path

Drawing a nonorthogonal line on an orthogonal grid isn’t pretty. But
there’s more involved than just aesthetics. Moving along the x or y direction
requires only integer addition or subtraction (Figure 12-4, left). Moving at
an angle requires trigonometry to calculate the partial movement in the
x and y directions (Figure 12-4, right).

For a computer, mathematical calculations equal work, so we can surmise
that moving at an angle takes more energy. By timing the two calculations
in Figure 12-4, we can get a relative measure of this difference in energy.

Are We Living in a Computer Simulation? 275

1 + 1 + 1 + 1 + . . . OppositeHypotenuse

Adjacent

Ѳ

Figure 12-4: Movement along rows or columns (left) requires simpler arithmetic than
moving across them (right)

Measuring the Cost of Crossing the Lattice
To time the difference between drawing a line diagonally across a pixel grid
and drawing the line along it, you need to draw two lines of equal length.
But remember, turtle works only with integers. You need to find an angle
for which all sides of a triangle—the opposite, adjacent, and hypotenuse in
Figure 12-4—are integers. This way, you’ll know that your angled line is the
same length as your straight line.

To find these angles, you can use a Pythagorean triple, a set of positive
integers a, b, and c that fit the right triangle rule a2 + b2 = c2. The best-known
triple is 3-4-5, but you’ll want a longer line, to ensure that the runtime of the
drawing function isn’t less than the measurement precision of your computer’s
clock. Fortunately, you can find other, larger triples online. The triplet
62-960-962 is a good choice, as it’s long but will still fit in a turtle screen.

The Line Comparison Code

To compare the cost of drawing a diagonal line to the cost of drawing a
straight one, Listing 12-3 uses turtle to draw the two lines. The first line is
parallel to the x -axis (that is, east-west), and the second line is at a shallow
angle to the x -axis. You can figure out the correct degree of the angle using
trigonometry; in this case, it’s 3.695220532 degrees. The listing draws these
lines many times using a for loop and records the time it takes to draw each
one using the built-in time module. The final comparison uses the averages
of these runs.

You need to use averages because your central processing unit (CPU)
is constantly running multiple processes. The operating system schedules
these processes behind the scenes, executing one while delaying another
until a resource, such as input/output, becomes available. Consequently, it’s
difficult to record the absolute runtime of a given function. Calculating the
average time of many runs compensates for this.

276 Chapter 12

You can download the code, line_compare.py, from the book’s website.

from time import perf_counter
import statistics
import turtle

turtle.setup(1200, 600)
screen = turtle.Screen()

ANGLES = (0, 3.695220532) # In degrees.
NUM_RUNS = 20
SPEED = 0
for angle in ANGLES:

  times = []
 for _ in range(NUM_RUNS):
 line = turtle.Turtle()
 line.speed(SPEED)
 line.hideturtle()
 line.penup()
 line.lt(angle)
 line.setpos(-470, 0)
 line.pendown()
 line.showturtle()

  start_time = perf_counter()
 line.fd(962)
 end_time = perf_counter()
 times.append(end_time - start_time)

 line_ave = statistics.mean(times)
 print("Angle {} degrees: average time for {} runs at speed {} = {:.5f}"
 .format(angle, NUM_RUNS, SPEED, line_ave))

Listing 12-3: Drawing a straight line and an angled line and recording the runtimes for each

Start by importing perf_counter—short for performance counter—from
the time module. This function returns the float value of time in seconds.
It gives you a more precise answer than time.clock(), which it replaces as of
Python 3.8.

Next, import the statistics module to help you calculate the average of
many simulation runs. Then import turtle and set up the turtle screen. You
can customize the screen for your monitor, but remember, you need to be
able to see a line 962 pixels long.

Now, assign some key values for the simulation. Put the angles for a
straight line and a diagonal line in a tuple named ANGLES and then assign a
variable to hold the number of times to run the for loop and the speed at
which to draw the line.

Start looping through the angles in the ANGLES tuple. Create an empty
list to hold the time measurements  before setting up a turtle object, as
you’ve done before. Rotate the turtle object left by the angle amount and
then use setpos() to move it to the far-left side of the screen.

line_compare.py

Are We Living in a Computer Simulation? 277

Move the turtle forward by 962 pixels, sandwiching this command
between calls to perf_counter() to time the movement . Subtract the end
time from the start time and append the result to the times list.

Finish by using the statistics.mean() function to find the average runtime
for each line. Print the results to five decimal places. After the program runs,
the turtle screen should look like Figure 12-5.

Figure 12-5: Completed turtle screen for line_compare.py

Because you used a Pythagorean triple, the angled line truly ends
on a pixel. It doesn’t just snap to the nearest pixel. Consequently, you
can be confident that the straight and angled lines have the same length
and that you’re comparing apples to apples when it comes to the timing
measurements.

Results
If you draw each line 500 times and then compare the results, you should
see that it takes roughly 2.4 times as long to draw the angled line as the
straight line.

Angle 0 degrees: average time for 500 runs at speed 0 = 0.06492
Angle 3.695220532 degrees: average time for 500 runs at speed 0 = 0.15691

Your times will likely differ slightly, as they’re affected by other pro-
grams you may have running concurrently on your computer. As noted pre-
viously, CPU scheduling will manage all these processes so that your system
is fast, efficient, and fair.

If you repeat the exercise for 1,000 runs, you should get similar results.
(If you decide to do so, you’ll want to get yourself a cup of coffee and some
of that good pie.) The angled line will take about 2.7 times as long to draw.

Angle 0 degrees: average time for 1000 runs at speed 0 = 0.10911
Angle 3.695220532 degrees: average time for 1000 runs at speed 0 = 0.29681

278 Chapter 12

You’ve been running a short function at a high drawing speed. If you’re
worried that turtle performs optimizations to achieve speed at the expense
of accuracy, you can slow it down and rerun the program. With the draw-
ing speed set to normal (speed = 6), the angled line takes about 2.6 times as
long to draw, close to the outcome with the fastest speed.

Angle 0 degrees: average time for 500 runs at speed 6 = 1.12522
Angle 3.695220532 degrees: average time for 500 runs at speed 6 = 2.90180

Clearly, moving across the pixel grid requires more work than moving
along it.

The Strategy
The goal of this project was to identify a way for simulated beings, perhaps
us, to find evidence of the simulation. At this point, we know at least two
things. First, if we’re living in a simulation, the grid is extremely small, as
we can observe subatomic particles. Second, if these small particles cross
the simulation’s grid at an angle, we should expect to find computational
resistance that translates into something measurable. This resistance might
look like a loss of energy, a scattering of particles, a reduction in velocity, or
something similar.

In 2012, physicists Silas R. Beane, from the University of Bonn, and
Zohreh Davoudi and Martin J. Savage, from the University of Washington,
published a paper arguing exactly this point. According to the authors,
if the laws of physics, which appear continuous, are superimposed on
a discrete grid, the grid spacing might impose a limitation on physical
processes.

They proposed investigating this by observing ultra-high energy cosmic
rays (UHECRs). UHECRs are the fastest particles in the universe, and they
are affected by increasingly smaller features as they get more energetic. But
there’s a limit to how much energy these particles can have. Known as the
GZK cutoff and confirmed by experiments in 2007, this limit is consistent
with the kind of boundary a simulation grid might cause. Such a boundary
should also cause UHECRs to travel preferentially along the grid’s axes and
scatter particles that try to cross it.

Not surprisingly, there are many potential obstacles to this approach.
UHECRs are rare, and anomalous behavior might not be obvious. If the
spacing of the grid is significantly smaller than 10−12 femtometers, we prob-
ably can’t detect it. There may not even be a grid, at least as we understand
it, as the technology in use may far exceed our own. And, as the philoso-
pher Preston Greene pointed out in 2019, there may be a moral obstacle to
the entire project. If we live in a simulation, our discovery of it may trigger
its end!

Are We Living in a Computer Simulation? 279

Summary
From a coding standpoint, building Yertle’s simulated world was simple.
But a big part of coding is solving problems, and the small amount of work
you did had major implications. No, we didn’t make the leap to cosmic rays,
but we started the right conversation. The basic premise that a computer
simulation requires a grid that could imprint observable signatures on the
universe is an idea that transcends nitty-gritty details.

In the book Harry Potter and the Deathly Hallows, Harry asks the wizard
Dumbledore, “Tell me one last thing. Is this real? Or has this been happen-
ing inside my head?” Dumbledore replies, “Of course it is happening inside
your head, Harry, but why on Earth should that mean that it is not real?”

Even if our world isn’t located at the “fundamental level of reality,” as
Nick Bostrom postulates, you can still take pleasure in your ability to solve
problems such as this. As Descartes might’ve said, had he lived today, “I
code, therefore I am.” Onward!

Further Reading
“Are We Living in a Simulated Universe? Here’s What Scientists Say” (NBC
News, 2019), by Dan Falk, provides an overview of the simulation hypothesis.

“Neil deGrasse Tyson Says ‘It’s Very Likely’ the Universe Is a Simulation”
(ExtremeTech, 2016), by Graham Templeton, is an article with an embedded
video of the Isaac Asimov Memorial Debate, hosted by astrophysicist Neil
deGrasse Tyson, that addresses the possibility that we’re living in a simulation.

“Are We Living in a Computer Simulation? Let’s Not Find Out” (New
York Times, 2019), by Preston Greene, presents a philosophical argument
against investigating the simulation hypothesis.

“We Are Not Living in a Simulation. Probably.” (Fast Company, 2018), by
Glenn McDonald, argues that the universe is too big and too detailed to be
simulated computationally.

Moving On
There’s never enough time in life to do all the things we want, and that goes
double for writing a book. The challenge projects that follow represent the
ghosts of chapters not yet written. There was no time to finish these (or in
some cases, even start them), but you might have better luck. As always, the
book provides no solutions for challenge projects—not that you’ll need them.

This is the real world, baby, and you’re ready for it.

Challenge Project: Finding a Safe Space
The award-winning 1970 novel Ringworld introduced the world to the
Pierson’s puppeteer, a sentient and highly advanced alien herbivore. Being
herd animals, puppeteers were extremely cowardly and cautious. When

280 Chapter 12

they realized that the core of the Milky Way had exploded and the radia-
tion would reach them in 20,000 years, they started fleeing the galaxy
immediately!

In this project, you’re part of a 29th-century diplomatic team assigned
to the puppeteer ambassador. Your job is to select a state, within the con-
terminous United States, that they’ll find suitably safe for the puppeteer
embassy. You’ll need to screen each state for natural hazards, such as earth-
quakes, volcanoes, tornadoes, and hurricanes, and present the ambassador
with a map summarizing the results. Don’t worry that the data you’ll use is
hundreds of years out-of-date; just pretend it’s current to the year 2850 CE.

You can find earthquake data at https://earthquake.usgs.gov/earthquakes
/feed/v1.0/csv.php/. Use dots to plot the epicenters of those quakes that are
6.0 or greater in magnitude.

You can post the tornado data as the average number per year per state
(see https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado
-climatology). Use a choropleth format like you did in Chapter 11.

You can find a listing of dangerous volcanoes in Table 2 of the 2018
Update to the U.S. Geological Survey National Volcanic Threat Assessment
(https://pubs.usgs.gov/sir/2018/5140/sir20185140.pdf). Represent these as dots
on the map, but assign them a different color or shape than the earthquake
data. Also, ignore the ashfall from Yellowstone. Assume the experts moni-
toring this supervolcano can predict an eruption soon enough for the
ambassador to safely flee the planet.

To find hurricane tracks, visit the National Oceanic and Atmospheric
Administration site (https://coast.noaa.gov/digitalcoast/data/) and search
for “Historical Hurricane Tracks.” Download and post the Category 4 and
higher storm segments on the map.

Try to think like a puppeteer and use the final composite map to choose
a candidate state for the embassy. You might have to ignore a tornado or two.
America is a dangerous place!

Challenge Project: Here Comes the Sun
In 2018, 13-year-old Georgia Hutchinson from Woodside, California, won
$25,000 at the Broadcom Masters nationwide science, technology, engineer-
ing, and mathematics (STEM) competition for middle-school students. Her
entry, “Designing a Data-Driven Dual-Axis Solar Tracker,” will make solar
panels cheaper and more efficient by eliminating the need for costly light
sensors.

This new sun tracker is based on the premise that we already know the
location of the sun at any moment from any given point on Earth. It uses
public data from the National Oceanic and Atmospheric Administration to
continuously determine the sun’s position and tilt the solar panels for maxi-
mum power production.

Write a Python program that calculates the sun’s position based on a
location of your choosing. To get started, check out the Wikipedia page
“Position of the Sun” (https://en.wikipedia.org/wiki/Position_of_the_Sun).

https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php/
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php/
https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology
https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology

Are We Living in a Computer Simulation? 281

Challenge Project: Seeing Through a Dog’s Eyes
Use your knowledge of computer vision to write a Python program that
takes an image and simulates what a dog would see. To get started, check
out https://www.akc.org/expert-advice/health/are-dogs-color-blind/ and https://
dog-vision.andraspeter.com/.

Challenge Project: Customized Word Search
Boy, does your Granny love doing word searches! For her birthday, use Python
to design and print her customized word searches using family names, vintage
TV shows like Matlock and Columbo, or the common names of her prescription
drugs. Allow the words to print horizontally, vertically, and diagonally.

Challenge Project: Simplifying a Celebration Slideshow
Your spouse, sibling, parent, best friend, or whoever is having a celebration
dinner, and you’re in charge of the slideshow. You have tons of pictures in
the cloud, many featuring the honoree, but the filenames just list the date
and time at which they were taken, providing no clue as to the contents. It
looks like you’ll spend your Saturday sifting through them all.

But wait, didn’t you learn about face recognition in that book Real-World
Python? All you really need to do is find a few training images and do a bit
of coding.

First, pick someone in your personal digital photo collection to represent
the guest of honor. Next, write a Python program that searches through your
folders, finds photos containing this person, and copies the photos into
a special folder for your review. When training, be sure to include face
profiles as well as frontal views, and include a profile Haar cascade when
detecting faces.

Challenge Project: What a Tangled Web We Weave
Use Python and the turtle module to simulate a spider building a web.
For some guidance on web construction, see https://www.brisbaneinsects.com
/brisbane_weavers/index.htm and http://recursiveprocess.com/mathprojects/index
.php/2015/06/09/spider-webs-creepy-or-cool/.

Challenge Project: Go Tell It on the Mountain
“What’s the closest mountain to Houston, Texas?” This seemingly straight-
forward question, asked on Quora, isn’t easy to answer. For one thing, you
need to consider mountains in Mexico, as well as those in the United States.
For another, there’s no universally accepted definition of a mountain.

https://www.brisbaneinsects.com/brisbane_weavers/SpiderWeb.htm
https://www.brisbaneinsects.com/brisbane_weavers/SpiderWeb.htm
http://recursiveprocess.com/mathprojects/index.php/2015/06/09/spider-webs-creepy-or-cool/
http://recursiveprocess.com/mathprojects/index.php/2015/06/09/spider-webs-creepy-or-cool/

282 Chapter 12

To make this somewhat easier, use one of the UN Environmental
Program’s definitions of mountainous terrain. Find prominences with an
elevation of at least 2,500 m (8,200 feet) and consider them mountains.
Calculate their distance from the center of Houston to find the closest.

P R A C T I C E P R O J E C T S O L U T I O N S

This appendix contains solutions to the
practice projects in each chapter. Digital

versions are available on the book’s website
at https://nostarch.com/real-world-python/.

Chapter 2: Attributing Authorship with Stylometry

Hunting the Hound with Dispersion

"""Use NLP (nltk) to make dispersion plot."""
import nltk
import file_loader

corpus = file_loader.text_to_string('hound.txt')
tokens = nltk.word_tokenize(corpus)
tokens = nltk.Text(tokens) # NLTK wrapper for automatic text analysis.

practice_hound
_dispersion.py

284 Practice Project Solutions

dispersion = tokens.dispersion_plot(['Holmes',
 'Watson',
 'Mortimer',
 'Henry',
 'Barrymore',
 'Stapleton',
 'Selden',
 'hound'])

Punctuation Heatmap

"""Make a heatmap of punctuation."""
import math
from string import punctuation
import nltk
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn as sns

Install seaborn using: pip install seaborn.

PUNCT_SET = set(punctuation)

def main():
 # Load text files into dictionary by author.
 strings_by_author = dict()
 strings_by_author['doyle'] = text_to_string('hound.txt')
 strings_by_author['wells'] = text_to_string('war.txt')
 strings_by_author['unknown'] = text_to_string('lost.txt')

 # Tokenize text strings preserving only punctuation marks.
 punct_by_author = make_punct_dict(strings_by_author)

 # Convert punctuation marks to numerical values and plot heatmaps.
 plt.ion()
 for author in punct_by_author:
 heat = convert_punct_to_number(punct_by_author, author)
 arr = np.array((heat[:6561])) # trim to largest size for square array
 arr_reshaped = arr.reshape(int(math.sqrt(len(arr))),
 int(math.sqrt(len(arr))))
 fig, ax = plt.subplots(figsize=(7, 7))
 sns.heatmap(arr_reshaped,
 cmap=ListedColormap(['blue', 'yellow']),
 square=True,
 ax=ax)
 ax.set_title('Heatmap Semicolons {}'.format(author))
 plt.show()

practice_heatmap
_semicolon.py

Practice Project Solutions 285

def text_to_string(filename):
 """Read a text file and return a string."""
 with open(filename) as infile:
 return infile.read()

def make_punct_dict(strings_by_author):
 """Return dictionary of tokenized punctuation by corpus by author."""
 punct_by_author = dict()
 for author in strings_by_author:
 tokens = nltk.word_tokenize(strings_by_author[author])
 punct_by_author[author] = ([token for token in tokens
 if token in PUNCT_SET])
 print("Number punctuation marks in {} = {}"
 .format(author, len(punct_by_author[author])))
 return punct_by_author

def convert_punct_to_number(punct_by_author, author):
 """Return list of punctuation marks converted to numerical values."""
 heat_vals = []
 for char in punct_by_author[author]:
 if char == ';':
 value = 1
 else:
 value = 2
 heat_vals.append(value)
 return heat_vals

if __name__ == '__main__':
 main()

Chapter 4: Sending Super-Secret Messages with a Book Cipher

Charting the Characters

"""Plot barchart of characters in text file."""
import sys
import os
import operator
from collections import Counter
import matplotlib.pyplot as plt

def load_file(infile):
 """Read and return text file as string of lowercase characters."""
 with open(infile) as f:
 text = f.read().lower()
 return text

practice
_barchart.py

286 Practice Project Solutions

def main():
 infile = 'lost.txt'
 if not os.path.exists(infile):
 print("File {} not found. Terminating.".format(infile),
 file=sys.stderr)
 sys.exit(1)

 text = load_file(infile)

 # Make bar chart of characters in text and their frequency.
 char_freq = Counter(text)
 char_freq_sorted = sorted(char_freq.items(),
 key=operator.itemgetter(1), reverse=True)
 x, y = zip(*char_freq_sorted) # * unpacks iterable.
 fig, ax = plt.subplots()
 ax.bar(x, y)
 fig.show()

if __name__ == '__main__':
 main()

Sending Secrets the WWII Way

"""Book code using the novel The Lost World

For words not in book, spell-out with first letter of words.
Flag 'first letter mode' by bracketing between alternating
'a a' and 'the the'.

credit: Eric T. Mortenson
"""
import sys
import os
import random
import string
from collections import defaultdict, Counter

def main():
 message = input("Enter plaintext or ciphertext: ")
 process = input("Enter 'encrypt' or 'decrypt': ")
 shift = int(input("Shift value (1-365) = "))
 infile = input("Enter filename with extension: ")

 if not os.path.exists(infile):
 print("File {} not found. Terminating.".format(infile), file=sys.stderr)
 sys.exit(1)
 word_list = load_file(infile)
 word_dict = make_dict(word_list, shift)
 letter_dict = make_letter_dict(word_list)

 if process == 'encrypt':
 ciphertext = encrypt(message, word_dict, letter_dict)
 count = Counter(ciphertext)

practice_WWII
_words.py

Practice Project Solutions 287

 encryptedWordList = []
 for number in ciphertext:
 encryptedWordList.append(word_list[number - shift])

 print("\nencrypted word list = \n {} \n"
 .format(' '.join(encryptedWordList)))
 print("encrypted ciphertext = \n {}\n".format(ciphertext))

 # Check the encryption by decrypting the ciphertext.
 print("decrypted plaintext = ")
 singleFirstCheck = False
 for cnt, i in enumerate(ciphertext):
 if word_list[ciphertext[cnt]-shift] == 'a' and \
 word_list[ciphertext[cnt+1]-shift] == 'a':
 continue
 if word_list[ciphertext[cnt]-shift] == 'a' and \
 word_list[ciphertext[cnt-1]-shift] == 'a':
 singleFirstCheck = True
 continue
 if singleFirstCheck == True and cnt<len(ciphertext)-1 and \
 word_list[ciphertext[cnt]-shift] == 'the' and \
 word_list[ciphertext[cnt+1]-shift] == 'the':
 continue
 if singleFirstCheck == True and \
 word_list[ciphertext[cnt]-shift] == 'the' and \
 word_list[ciphertext[cnt-1]-shift] == 'the':
 singleFirstCheck = False
 print(' ', end='', flush=True)
 continue
 if singleFirstCheck == True:
 print(word_list[i - shift][0], end = '', flush=True)
 if singleFirstCheck == False:
 print(word_list[i - shift], end=' ', flush=True)

 elif process == 'decrypt':
 plaintext = decrypt(message, word_list, shift)
 print("\ndecrypted plaintext = \n {}".format(plaintext))

def load_file(infile):
 """Read and return text file as a list of lowercase words."""
 with open(infile, encoding='utf-8') as file:
 words = [word.lower() for line in file for word in line.split()]
 words_no_punct = ["".join(char for char in word if char not in \
 string.punctuation) for word in words]
 return words_no_punct

def make_dict(word_list, shift):
 """Return dictionary of characters as keys and shifted indexes as values."""
 word_dict = defaultdict(list)
 for index, word in enumerate(word_list):
 word_dict[word].append(index + shift)
 return word_dict

def make_letter_dict(word_list):
 firstLetterDict = defaultdict(list)

288 Practice Project Solutions

 for word in word_list:
 if len(word) > 0:
 if word[0].isalpha():
 firstLetterDict[word[0]].append(word)
 return firstLetterDict

def encrypt(message, word_dict, letter_dict):
 """Return list of indexes representing characters in a message."""
 encrypted = []
 # remove punctuation from message words
 messageWords = message.lower().split()
 messageWordsNoPunct = ["".join(char for char in word if char not in \
 string.punctuation) for word in messageWords]
 for word in messageWordsNoPunct:
 if len(word_dict[word]) > 1:
 index = random.choice(word_dict[word])
 elif len(word_dict[word]) == 1: # Random.choice fails if only 1 choice.
 index = word_dict[word][0]
 elif len(word_dict[word]) == 0: # Word not in word_dict.
 encrypted.append(random.choice(word_dict['a']))
 encrypted.append(random.choice(word_dict['a']))

 for letter in word:
 if letter not in letter_dict.keys():
 print('\nLetter {} not in letter-to-word dictionary.'
 .format(letter), file=sys.stderr)
 continue
 if len(letter_dict[letter])>1:
 newWord =random.choice(letter_dict[letter])
 else:
 newWord = letter_dict[letter][0]
 if len(word_dict[newWord])>1:
 index = random.choice(word_dict[newWord])
 else:
 index = word_dict[newWord][0]
 encrypted.append(index)

 encrypted.append(random.choice(word_dict['the']))
 encrypted.append(random.choice(word_dict['the']))
 continue
 encrypted.append(index)
 return encrypted

def decrypt(message, word_list, shift):
 """Decrypt ciphertext string and return plaintext word string.

 This shows how plaintext looks before extracting first letters.
 """
 plaintextList = []
 indexes = [s.replace(',', '').replace('[', '').replace(']', '')
 for s in message.split()]
 for count, i in enumerate(indexes):
 plaintextList.append(word_list[int(i) - shift])
 return ' '.join(plaintextList)

Practice Project Solutions 289

def check_for_fail(ciphertext):
 """Return True if ciphertext contains any duplicate keys."""
 check = [k for k, v in Counter(ciphertext).items() if v > 1]
 if len(check) > 0:
 print(check)
 return True

if __name__ == '__main__':
 main()

Chapter 5: Finding Pluto

Plotting the Orbital Path

import os
from pathlib import Path
import cv2 as cv

PAD = 5 # Ignore pixels this distance from edge

def find_transient(image, diff_image, pad):
 """Takes image, difference image, and pad value in pixels and returns
 boolean and location of maxVal in difference image excluding an edge
 rind. Draws circle around maxVal on image."""
 transient = False
 height, width = diff_image.shape
 cv.rectangle(image, (PAD, PAD), (width - PAD, height - PAD), 255, 1)
 minVal, maxVal, minLoc, maxLoc = cv.minMaxLoc(diff_image)
 if pad < maxLoc[0] < width - pad and pad < maxLoc[1] < height - pad:
 cv.circle(image, maxLoc, 10, 255, 0)
 transient = True
 return transient, maxLoc

def main():
 night1_files = sorted(os.listdir('night_1_registered_transients'))
 night2_files = sorted(os.listdir('night_2'))
 path1 = Path.cwd() / 'night_1_registered_transients'
 path2 = Path.cwd() / 'night_2'
 path3 = Path.cwd() / 'night_1_2_transients'

 # Images should all be the same size and similar exposures.
 for i, _ in enumerate(night1_files[:-1]): # Leave off negative image
 img1 = cv.imread(str(path1 / night1_files[i]), cv.IMREAD_GRAYSCALE)
 img2 = cv.imread(str(path2 / night2_files[i]), cv.IMREAD_GRAYSCALE)

 # Get absolute difference between images.
 diff_imgs1_2 = cv.absdiff(img1, img2)
 cv.imshow('Difference', diff_imgs1_2)
 cv.waitKey(2000)

practice_orbital
_path.py

290 Practice Project Solutions

 # Copy difference image and find and circle brightest pixel.
 temp = diff_imgs1_2.copy()
 transient1, transient_loc1 = find_transient(img1, temp, PAD)

 # Draw black circle on temporary image to obliterate brightest spot.
 cv.circle(temp, transient_loc1, 10, 0, -1)

 # Get location of new brightest pixel and circle it on input image.
 transient2, transient_loc2 = find_transient(img1, temp, PAD)

 if transient1 or transient2:
 print('\nTRANSIENT DETECTED between {} and {}\n'
 .format(night1_files[i], night2_files[i]))
 font = cv.FONT_HERSHEY_COMPLEX_SMALL
 cv.putText(img1, night1_files[i], (10, 25),
 font, 1, (255, 255, 255), 1, cv.LINE_AA)
 cv.putText(img1, night2_files[i], (10, 55),
 font, 1, (255, 255, 255), 1, cv.LINE_AA)
 if transient1 and transient2:
 cv.line(img1, transient_loc1, transient_loc2, (255, 255, 255),
 1, lineType=cv.LINE_AA)

 blended = cv.addWeighted(img1, 1, diff_imgs1_2, 1, 0)
 cv.imshow('Surveyed', blended)
 cv.waitKey(2500) # Keeps window open 2.5 seconds.

 out_filename = '{}_DECTECTED.png'.format(night1_files[i][:-4])
 cv.imwrite(str(path3 / out_filename), blended) # Will overwrite!

 else:
 print('\nNo transient detected between {} and {}\n'
 .format(night1_files[i], night2_files[i]))

if __name__ == '__main__':
 main()

What’s the Difference?
This practice project uses two programs, practice_montage_aligner.py and
practice_montage_difference_finder.py. The programs should be run in the
order presented.

practice_montage_aligner.py

import numpy as np
import cv2 as cv

MIN_NUM_KEYPOINT_MATCHES = 150

img1 = cv.imread('montage_left.JPG', cv.IMREAD_COLOR) # queryImage
img2 = cv.imread('montage_right.JPG', cv.IMREAD_COLOR) # trainImage

practice_montage
_aligner.py

Practice Project Solutions 291

img1 = cv.cvtColor(img1, cv.COLOR_BGR2GRAY) # Convert to grayscale.
img2 = cv.cvtColor(img2, cv.COLOR_BGR2GRAY)

orb = cv.ORB_create(nfeatures=700)

Find the keypoints and descriptions with ORB.
kp1, desc1 = orb.detectAndCompute(img1, None)
kp2, desc2 = orb.detectAndCompute(img2, None)

Find keypoint matches using Brute Force Matcher.
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc1, desc2, None)

Sort matches in ascending order of distance.
matches = sorted(matches, key=lambda x: x.distance)

Draw best matches.
img3 = cv.drawMatches(img1, kp1, img2, kp2,
 matches[:MIN_NUM_KEYPOINT_MATCHES],
 None)

cv.namedWindow('Matches', cv.WINDOW_NORMAL)
img3_resize = cv.resize(img3, (699, 700))
cv.imshow('Matches', img3_resize)
cv.waitKey(7000) # Keeps window open 7 seconds.
cv.destroyWindow('Matches')

Keep only best matches.
best_matches = matches[:MIN_NUM_KEYPOINT_MATCHES]

if len(best_matches) >= MIN_NUM_KEYPOINT_MATCHES:
 src_pts = np.zeros((len(best_matches), 2), dtype=np.float32)
 dst_pts = np.zeros((len(best_matches), 2), dtype=np.float32)

 for i, match in enumerate(best_matches):
 src_pts[i, :] = kp1[match.queryIdx].pt
 dst_pts[i, :] = kp2[match.trainIdx].pt

 M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC)

 # Get dimensions of image 2.
 height, width = img2.shape
 img1_warped = cv.warpPerspective(img1, M, (width, height))

 cv.imwrite('montage_left_registered.JPG', img1_warped)
 cv.imwrite('montage_right_gray.JPG', img2)

else:
 print("\n{}\n".format('WARNING: Number of keypoint matches < 10!'))

292 Practice Project Solutions

practice_montage_difference_finder.py

import cv2 as cv

filename1 = 'montage_left.JPG'
filename2 = 'montage_right_gray.JPG'

img1 = cv.imread(filename1, cv.IMREAD_GRAYSCALE)
img2 = cv.imread(filename2, cv.IMREAD_GRAYSCALE)

Absolute difference between image 2 & 3:
diff_imgs1_2 = cv.absdiff(img1, img2)

cv.namedWindow('Difference', cv.WINDOW_NORMAL)
diff_imgs1_2_resize = cv.resize(diff_imgs1_2, (699, 700))
cv.imshow('Difference', diff_imgs1_2_resize)

crop_diff = diff_imgs1_2[10:2795, 10:2445] # x, y, w, h = 10, 10, 2790, 2440

Blur to remove extraneous noise.
blurred = cv.GaussianBlur(crop_diff, (5, 5), 0)

(minVal, maxVal, minLoc, maxLoc2) = cv.minMaxLoc(blurred)
cv.circle(img2, maxLoc2, 100, 0, 3)
x, y = int(img2.shape[1]/4), int(img2.shape[0]/4)
img2_resize = cv.resize(img2, (x, y))
cv.imshow('Change', img2_resize)

Chapter 6: Winning the Moon Race with Apollo 8

Simulating a Search Pattern

import time
import random
import turtle

SA_X = 600 # Search area width.
SA_Y = 480 # Search area height.
TRACK_SPACING = 40 # Distance between search tracks.

Setup screen.
screen = turtle.Screen()
screen.setup(width=SA_X, height=SA_Y)
turtle.resizemode('user')
screen.title("Search Pattern")
rand_x = random.randint(0, int(SA_X / 2)) * random.choice([-1, 1])
rand_y = random.randint(0, int(SA_Y / 2)) * random.choice([-1, 1])

practice_montage
_difference_finder
.py

practice_search
_pattern.py

Practice Project Solutions 293

Set up turtle images.
seaman_image = 'seaman.gif'
screen.addshape(seaman_image)
copter_image_left = 'helicopter_left.gif'
copter_image_right = 'helicopter_right.gif'
screen.addshape(copter_image_left)
screen.addshape(copter_image_right)

Instantiate seaman turtle.
seaman = turtle.Turtle(seaman_image)
seaman.hideturtle()
seaman.penup()
seaman.setpos(rand_x, rand_y)
seaman.showturtle()

Instantiate copter turtle.
turtle.shape(copter_image_right)
turtle.hideturtle()
turtle.pencolor('black')
turtle.penup()
turtle.setpos(-(int(SA_X / 2) - TRACK_SPACING), int(SA_Y / 2) - TRACK_SPACING)
turtle.showturtle()
turtle.pendown()

Run search pattern and announce discovery of seaman.
for i in range(int(SA_Y / TRACK_SPACING)):
 turtle.fd(SA_X - TRACK_SPACING * 2)
 turtle.rt(90)
 turtle.fd(TRACK_SPACING / 2)
 turtle.rt(90)
 turtle.shape(copter_image_left)
 turtle.fd(SA_X - TRACK_SPACING * 2)
 turtle.lt(90)
 turtle.fd(TRACK_SPACING / 2)
 turtle.lt(90)
 turtle.shape(copter_image_right)
 if turtle.ycor() - seaman.ycor() <= 10:
 turtle.write(" Seaman found!",
 align='left',
 font=("Arial", 15, 'normal', 'bold', 'italic'))
 time.sleep(3)

 break

Start Me Up!

"""gravity_assist_stationary.py

Moon approaches stationary ship, which is swung around and flung away.

Credit: Eric T. Mortenson
"""

practice_grav
_assist_stationary
.py

294 Practice Project Solutions

from turtle import Shape, Screen, Turtle, Vec2D as Vec
import turtle
import math

User input:
G = 8 # Gravitational constant used for the simulation.
NUM_LOOPS = 4100 # Number of time steps in simulation.
Ro_X = 0 # Ship starting position x coordinate.
Ro_Y = -50 # Ship starting position y coordinate.
Vo_X = 0 # Ship velocity x component.
Vo_Y = 0 # Ship velocity y component.

MOON_MASS = 1_250_000

class GravSys():
 """Runs a gravity simulation on n-bodies."""

 def __init__(self):
 self.bodies = []
 self.t = 0
 self.dt = 0.001

 def sim_loop(self):
 """Loop bodies in a list through time steps."""
 for _ in range(NUM_LOOPS):
 self.t += self.dt
 for body in self.bodies:
 body.step()

class Body(Turtle):
 """Celestial object that orbits and projects gravity field."""
 def __init__(self, mass, start_loc, vel, gravsys, shape):
 super().__init__(shape=shape)
 self.gravsys = gravsys
 self.penup()
 self.mass=mass
 self.setpos(start_loc)
 self.vel = vel
 gravsys.bodies.append(self)
 self.pendown() # uncomment to draw path behind object

 def acc(self):
 """Calculate combined force on body and return vector components."""
 a = Vec(0,0)
 for body in self.gravsys.bodies:
 if body != self:
 r = body.pos() - self.pos()
 a += (G * body.mass / abs(r)**3) * r # units dist/time^2
 return a

Practice Project Solutions 295

 def step(self):
 """Calculate position, orientation, and velocity of a body."""
 dt = self.gravsys.dt
 a = self.acc()
 self.vel = self.vel + dt * a
 xOld, yOld = self.pos() # for orienting ship
 self.setpos(self.pos() + dt * self.vel)
 xNew, yNew = self.pos() # for orienting ship
 if self.gravsys.bodies.index(self) == 1: # the CSM
 dir_radians = math.atan2(yNew-yOld,xNew-xOld) # for orienting ship
 dir_degrees = dir_radians * 180 / math.pi # for orienting ship
 self.setheading(dir_degrees+90) # for orienting ship

def main():
 # Setup screen
 screen = Screen()
 screen.setup(width=1.0, height=1.0) # for fullscreen
 screen.bgcolor('black')
 screen.title("Gravity Assist Example")

 # Instantiate gravitational system
 gravsys = GravSys()

 # Instantiate Planet
 image_moon = 'moon_27x27.gif'
 screen.register_shape(image_moon)
 moon = Body(MOON_MASS, (500, 0), Vec(-500, 0), gravsys, image_moon)
 moon.pencolor('gray')

 # Build command-service-module (csm) shape
 csm = Shape('compound')
 cm = ((0, 30), (0, -30), (30, 0))
 csm.addcomponent(cm, 'red', 'red')
 sm = ((-60,30), (0, 30), (0, -30), (-60, -30))
 csm.addcomponent(sm, 'red', 'black')
 nozzle = ((-55, 0), (-90, 20), (-90, -20))
 csm.addcomponent(nozzle, 'red', 'red')
 screen.register_shape('csm', csm)

 # Instantiate Apollo 8 CSM turtle
 ship = Body(1, (Ro_X, Ro_Y), Vec(Vo_X, Vo_Y), gravsys, "csm")
 ship.shapesize(0.2)
 ship.color('red') # path color
 ship.getscreen().tracer(1, 0)
 ship.setheading(90)

 gravsys.sim_loop()

if __name__=='__main__':
 main()

296 Practice Project Solutions

Shut Me Down!

"""gravity_assist_intersecting.py

Moon and ship cross orbits and moon slows and turns ship.

Credit: Eric T. Mortenson
"""
from turtle import Shape, Screen, Turtle, Vec2D as Vec
import turtle
import math
import sys

User input:
G = 8 # Gravitational constant used for the simulation.
NUM_LOOPS = 7000 # Number of time steps in simulation.
Ro_X = -152.18 # Ship starting position x coordinate.
Ro_Y = 329.87 # Ship starting position y coordinate.
Vo_X = 423.10 # Ship translunar injection velocity x component.
Vo_Y = -512.26 # Ship translunar injection velocity y component.

MOON_MASS = 1_250_000

class GravSys():
 """Runs a gravity simulation on n-bodies."""

 def __init__(self):
 self.bodies = []
 self.t = 0
 self.dt = 0.001

 def sim_loop(self):
 """Loop bodies in a list through time steps."""
 for index in range(NUM_LOOPS): # stops simulation after while
 self.t += self.dt
 for body in self.bodies:
 body.step()

class Body(Turtle):
 """Celestial object that orbits and projects gravity field."""
 def __init__(self, mass, start_loc, vel, gravsys, shape):
 super().__init__(shape=shape)
 self.gravsys = gravsys
 self.penup()
 self.mass=mass
 self.setpos(start_loc)
 self.vel = vel
 gravsys.bodies.append(self)
 self.pendown() # uncomment to draw path behind object

practice_grav
_assist
_intersecting.py

Practice Project Solutions 297

 def acc(self):
 """Calculate combined force on body and return vector components."""
 a = Vec(0,0)
 for body in self.gravsys.bodies:
 if body != self:
 r = body.pos() - self.pos()
 a += (G * body.mass / abs(r)**3) * r # units dist/time^2
 return a

 def step(self):
 """Calculate position, orientation, and velocity of a body."""
 dt = self.gravsys.dt
 a = self.acc()
 self.vel = self.vel + dt * a
 xOld, yOld = self.pos() # for orienting ship
 self.setpos(self.pos() + dt * self.vel)
 xNew, yNew = self.pos() # for orienting ship
 if self.gravsys.bodies.index(self) == 1: # the CSM
 dir_radians = math.atan2(yNew-yOld,xNew-xOld) # for orienting ship
 dir_degrees = dir_radians * 180 / math.pi # for orienting ship
 self.setheading(dir_degrees+90) # for orienting ship

def main():
 # Setup screen
 screen = Screen()
 screen.setup(width=1.0, height=1.0) # for fullscreen
 screen.bgcolor('black')
 screen.title("Gravity Assist Example")

 # Instantiate gravitational system
 gravsys = GravSys()

 # Instantiate Planet
 image_moon = 'moon_27x27.gif'
 screen.register_shape(image_moon)
 moon = Body(MOON_MASS, (-250, 0), Vec(500, 0), gravsys, image_moon)
 moon.pencolor('gray')

 # Build command-service-module (csm) shape
 csm = Shape('compound')
 cm = ((0, 30), (0, -30), (30, 0))
 csm.addcomponent(cm, 'red', 'red')
 sm = ((-60,30), (0, 30), (0, -30), (-60, -30))
 csm.addcomponent(sm, 'red', 'black')
 nozzle = ((-55, 0), (-90, 20), (-90, -20))
 csm.addcomponent(nozzle, 'red', 'red')
 screen.register_shape('csm', csm)

 # Instantiate Apollo 8 CSM turtle
 ship = Body(1, (Ro_X, Ro_Y), Vec(Vo_X, Vo_Y), gravsys, "csm")
 ship.shapesize(0.2)
 ship.color('red') # path color
 ship.getscreen().tracer(1, 0)
 ship.setheading(90)

298 Practice Project Solutions

 gravsys.sim_loop()

if __name__=='__main__':
 main()

Chapter 7: Selecting Martian Landing Sites

Confirming That Drawings Become Part of an Image

"""Test that drawings become part of an image in OpenCV."""
import numpy as np
import cv2 as cv

IMG = cv.imread('mola_1024x501.png', cv.IMREAD_GRAYSCALE)

ul_x, ul_y = 0, 167
lr_x, lr_y = 32, 183
rect_img = IMG[ul_y : lr_y, ul_x : lr_x]

def run_stats(image):
 """Run stats on a numpy array made from an image."""
 print('mean = {}'.format(np.mean(image)))
 print('std = {}'.format(np.std(image)))
 print('ptp = {}'.format(np.ptp(image)))
 print()
 cv.imshow('img', IMG)
 cv.waitKey(1000)

Stats with no drawing on screen:
print("No drawing")
run_stats(rect_img)

Stats with white rectangle outline:
print("White outlined rectangle")
cv.rectangle(IMG, (ul_x, ul_y), (lr_x, lr_y), (255, 0, 0), 1)
run_stats(rect_img)

Stats with rectangle filled with white:
print("White-filled rectangle")
cv.rectangle(IMG, (ul_x, ul_y), (lr_x, lr_y), (255, 0, 0), -1)
run_stats(rect_img)

Extracting an Elevation Profile

"""West-East elevation profile through Olympus Mons."""
from PIL import Image, ImageDraw
from matplotlib import pyplot as plt

practice_confirm
_drawing_part_of
_image.py

practice_profile
_olympus.py

Practice Project Solutions 299

Load image and get x and z values along horiz profile parallel to y _coord.
y_coord = 202
im = Image.open('mola_1024x512_200mp.jpg').convert('L')
width, height = im.size
x_vals = [x for x in range(width)]
z_vals = [im.getpixel((x, y_coord)) for x in x_vals]

Draw profile on MOLA image.
draw = ImageDraw.Draw(im)
draw.line((0, y_coord, width, y_coord), fill=255, width=3)
draw.text((100, 165), 'Olympus Mons', fill=255)
im.show()

Make profile plot.
fig, ax = plt.subplots(figsize=(9, 4))
axes = plt.gca()
axes.set_ylim(0, 400)
ax.plot(x_vals, z_vals, color='black')
ax.set(xlabel='x-coordinate',
 ylabel='Intensity (height)',
 title="Mars Elevation Profile (y = 202)")
ratio = 0.15 # Reduces vertical exaggeration in profile.
xleft, xright = ax.get_xlim()
ybase, ytop = ax.get_ylim()
ax.set_aspect(abs((xright-xleft)/(ybase-ytop)) * ratio)
plt.text(0, 310, 'WEST', fontsize=10)
plt.text(980, 310, 'EAST', fontsize=10)
plt.text(100, 280, 'Olympus Mons', fontsize=8)
##ax.grid()
plt.show()

Plotting in 3D

"""Plot Mars MOLA map image in 3D. Credit Eric T. Mortenson."""
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

IMG_GRAY = cv.imread('mola_1024x512_200mp.jpg', cv.IMREAD_GRAYSCALE)

x = np.linspace(1023, 0, 1024)
y = np.linspace(0, 511, 512)

X, Y = np.meshgrid(x, y)
Z = IMG_GRAY[0:512, 0:1024]

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 150, cmap='gist_earth') # 150=number of contours
ax.auto_scale_xyz([1023, 0], [0, 511], [0, 500])
plt.show()

practice_3d
_plotting.py

300 Practice Project Solutions

Mixing Maps
This practice project uses two programs, practice_geo_map_step_1of2.py and
practice_geo_map_step_2of2.py, that must be run in order.

practice_geo_map_step_1of2.py

"""Threshold a grayscale image using pixel values and save to file."""
import cv2 as cv

IMG_GEO = cv.imread('Mars_Global_Geology_Mariner9_1024.jpg',
 cv.IMREAD_GRAYSCALE)
cv.imshow('map', IMG_GEO)
cv.waitKey(1000)
img_copy = IMG_GEO.copy()
lower_limit = 170 # Lowest grayscale value for volcanic deposits
upper_limit = 185 # Highest grayscale value for volcanic deposits

Using 1024 x 512 image
for x in range(1024):
 for y in range(512):
 if lower_limit <= img_copy[y, x] <= upper_limit:
 img_copy[y, x] = 1 # Set to 255 to visualize results.
 else:
 img_copy[y, x] = 0

cv.imwrite('geo_thresh.jpg', img_copy)
cv.imshow('thresh', img_copy)
cv.waitKey(0)

practice_geo_map_step_2of2.py

"""Select Martian landing sites based on surface smoothness and geology."""
import tkinter as tk
from PIL import Image, ImageTk
import numpy as np
import cv2 as cv

CONSTANTS: User Input:
IMG_GRAY = cv.imread('mola_1024x512_200mp.jpg', cv.IMREAD_GRAYSCALE)
IMG_GEO = cv.imread('geo_thresh.jpg', cv.IMREAD_GRAYSCALE)
IMG_COLOR = cv.imread('mola_color_1024x506.png')
RECT_WIDTH_KM = 670 # Site rectangle width in kilometers.
RECT_HT_KM = 335 # Site rectangle height in kilometers.
MIN_ELEV_LIMIT = 60 # Intensity values (0-255).
MAX_ELEV_LIMIT = 255
NUM_CANDIDATES = 20 # Number of candidate landing sites to display.

#--

practice_geo_map
_step_1of2.py

practice_geo_map
_step_2of2.py

Practice Project Solutions 301

CONSTANTS: Derived and fixed:
IMG_GRAY_GEO = IMG_GRAY * IMG_GEO
IMG_HT, IMG_WIDTH = IMG_GRAY.shape
MARS_CIRCUM = 21344 # Circumference in kilometers.
PIXELS_PER_KM = IMG_WIDTH / MARS_CIRCUM
RECT_WIDTH = int(PIXELS_PER_KM * RECT_WIDTH_KM)
RECT_HT = int(PIXELS_PER_KM * RECT_HT_KM)
LAT_30_N = int(IMG_HT / 3)
LAT_30_S = LAT_30_N * 2
STEP_X = int(RECT_WIDTH / 2) # Dividing by 4 yields more rect choices
STEP_Y = int(RECT_HT / 2) # Dividing by 4 yields more rect choices

Create tkinter screen and drawing canvas
screen = tk.Tk()
canvas = tk.Canvas(screen, width=IMG_WIDTH, height=IMG_HT + 130)

class Search():
 """Read image and identify landing sites based on input criteria."""

 def __init__(self, name):
 self.name = name
 self.rect_coords = {}
 self.rect_means = {}
 self.rect_ptps = {}
 self.rect_stds = {}
 self.ptp_filtered = []
 self.std_filtered = []
 self.high_graded_rects = []

 def run_rect_stats(self):
 """Define rectangular search areas and calculate internal stats."""
 ul_x, ul_y = 0, LAT_30_N
 lr_x, lr_y = RECT_WIDTH, LAT_30_N + RECT_HT
 rect_num = 1

 while True:
 rect_img = IMG_GRAY_GEO[ul_y : lr_y, ul_x : lr_x]
 self.rect_coords[rect_num] = [ul_x, ul_y, lr_x, lr_y]
 if MAX_ELEV_LIMIT >= np.mean(rect_img) >= MIN_ELEV_LIMIT:
 self.rect_means[rect_num] = np.mean(rect_img)
 self.rect_ptps[rect_num] = np.ptp(rect_img)
 self.rect_stds[rect_num] = np.std(rect_img)
 rect_num += 1

 # Move the rectangle.
 ul_x += STEP_X
 lr_x = ul_x + RECT_WIDTH
 if lr_x > IMG_WIDTH:
 ul_x = 0

302 Practice Project Solutions

 ul_y += STEP_Y
 lr_x = RECT_WIDTH
 lr_y += STEP_Y
 if lr_y > LAT_30_S + STEP_Y:
 break

 def draw_qc_rects(self):
 """Draw overlapping search rectangles on image as a check."""
 img_copy = IMG_GRAY_GEO.copy()
 rects_sorted = sorted(self.rect_coords.items(), key=lambda x: x[0])
 print("\nRect Number and Corner Coordinates (ul_x, ul_y, lr_x, lr_y):")
 for k, v in rects_sorted:
 print("rect: {}, coords: {}".format(k, v))
 cv.rectangle(img_copy,
 (self.rect_coords[k][0], self.rect_coords[k][1]),
 (self.rect_coords[k][2], self.rect_coords[k][3]),
 (255, 0, 0), 1)
 cv.imshow('QC Rects {}'.format(self.name), img_copy)
 cv.waitKey(3000)
 cv.destroyAllWindows()

 def sort_stats(self):
 """Sort dictionaries by values and create lists of top N keys."""
 ptp_sorted = (sorted(self.rect_ptps.items(), key=lambda x: x[1]))
 self.ptp_filtered = [x[0] for x in ptp_sorted[:NUM_CANDIDATES]]
 std_sorted = (sorted(self.rect_stds.items(), key=lambda x: x[1]))
 self.std_filtered = [x[0] for x in std_sorted[:NUM_CANDIDATES]]

 # Make list of rects where filtered std & ptp coincide.
 for rect in self.std_filtered:
 if rect in self.ptp_filtered:
 self.high_graded_rects.append(rect)

 def draw_filtered_rects(self, image, filtered_rect_list):
 """Draw rectangles in list on image and return image."""
 img_copy = image.copy()
 for k in filtered_rect_list:
 cv.rectangle(img_copy,
 (self.rect_coords[k][0], self.rect_coords[k][1]),
 (self.rect_coords[k][2], self.rect_coords[k][3]),
 (255, 0, 0), 1)
 cv.putText(img_copy, str(k),
 (self.rect_coords[k][0] + 1, self.rect_coords[k][3]- 1),
 cv.FONT_HERSHEY_PLAIN, 0.65, (255, 0, 0), 1)

 # Draw latitude limits.
 cv.putText(img_copy, '30 N', (10, LAT_30_N - 7),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.line(img_copy, (0, LAT_30_N), (IMG_WIDTH, LAT_30_N),
 (255, 0, 0), 1)
 cv.line(img_copy, (0, LAT_30_S), (IMG_WIDTH, LAT_30_S),
 (255, 0, 0), 1)

Practice Project Solutions 303

 cv.putText(img_copy, '30 S', (10, LAT_30_S + 16),
 cv.FONT_HERSHEY_PLAIN, 1, 255)

 return img_copy

 def make_final_display(self):
 """Use Tk to show map of final rects & printout of their statistics."""
 screen.title('Sites by MOLA Gray STD & PTP {} Rect'.format(self.name))
 # Draw the high-graded rects on the colored elevation map.
 img_color_rects = self.draw_filtered_rects(IMG_COLOR,
 self.high_graded_rects)
 # Convert image from CV BGR to RGB for use with Tkinter.
 img_converted = cv.cvtColor(img_color_rects, cv.COLOR_BGR2RGB)
 img_converted = ImageTk.PhotoImage(Image.fromarray(img_converted))
 canvas.create_image(0, 0, image=img_converted, anchor=tk.NW)
 # Add stats for each rectangle at bottom of canvas.
 txt_x = 5
 txt_y = IMG_HT + 15
 for k in self.high_graded_rects:
 canvas.create_text(txt_x, txt_y, anchor='w', font=None,
 text=
 "rect={} mean elev={:.1f} std={:.2f} ptp={}"
 .format(k, self.rect_means[k],
 self.rect_stds[k],
 self.rect_ptps[k]))
 txt_y += 15
 if txt_y >= int(canvas.cget('height')) - 10:
 txt_x += 300
 txt_y = IMG_HT + 15
 canvas.pack()
 screen.mainloop()

def main():
 app = Search('670x335 km')
 app.run_rect_stats()
 app.draw_qc_rects()
 app.sort_stats()
 ptp_img = app.draw_filtered_rects(IMG_GRAY_GEO, app.ptp_filtered)
 std_img = app.draw_filtered_rects(IMG_GRAY_GEO, app.std_filtered)

 # Display filtered rects on grayscale map.
 cv.imshow('Sorted by ptp for {} rect'.format(app.name), ptp_img)
 cv.waitKey(3000)
 cv.imshow('Sorted by std for {} rect'.format(app.name), std_img)
 cv.waitKey(3000)

 app.make_final_display() # includes call to mainloop()

if __name__ == '__main__':
 main()

304 Practice Project Solutions

Chapter 8: Detecting Distant Exoplanets

Detecting Alien Megastructures

"""Simulate transit of alien array and plot light curve."""
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

IMG_HT = 400
IMG_WIDTH = 500
BLACK_IMG = np.zeros((IMG_HT, IMG_WIDTH), dtype='uint8')
STAR_RADIUS = 165
EXO_START_X = -250
EXO_START_Y = 150
EXO_DX = 3
NUM_FRAMES = 500

def main():
 intensity_samples = record_transit(EXO_START_X, EXO_START_Y)
 rel_brightness = calc_rel_brightness(intensity_samples)
 plot_light_curve(rel_brightness)

def record_transit(exo_x, exo_y):
 """Draw array transiting star and return list of intensity changes."""
 intensity_samples = []
 for _ in range(NUM_FRAMES):
 temp_img = BLACK_IMG.copy()
 # Draw star:
 cv.circle(temp_img, (int(IMG_WIDTH / 2), int(IMG_HT / 2)),
 STAR_RADIUS, 255, -1)
 # Draw alien array:
 cv.rectangle(temp_img, (exo_x, exo_y),
 (exo_x + 20, exo_y + 140), 0, -1)
 cv.rectangle(temp_img, (exo_x - 360, exo_y),
 (exo_x + 10, exo_y + 140), 0, 5)
 cv.rectangle(temp_img, (exo_x - 380, exo_y),
 (exo_x - 310, exo_y + 140), 0, -1)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity), (5, 390),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 cv.waitKey(10)
 intensity_samples.append(intensity)
 exo_x += EXO_DX
 return intensity_samples

def calc_rel_brightness(intensity_samples):
 """Return list of relative brightness from list of intensity values."""
 rel_brightness = []
 max_brightness = max(intensity_samples)
 for intensity in intensity_samples:
 rel_brightness.append(intensity / max_brightness)

practice_tabbys
_star.py

Practice Project Solutions 305

 return rel_brightness

def plot_light_curve(rel_brightness):
 """Plot changes in relative brightness vs. time."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2)
 plt.title('Relative Brightness vs. Time')
 plt.xlim(-150, 500)
 plt.show()

if __name__ == '__main__':
 main()

Detecting Asteroid Transits

"""Simulate transit of asteroids and plot light curve."""
import random
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

STAR_RADIUS = 165
BLACK_IMG = np.zeros((400, 500, 1), dtype="uint8")
NUM_ASTEROIDS = 15
NUM_LOOPS = 170

class Asteroid():
 """Draws a circle on an image that represents an asteroid."""

 def __init__(self, number):
 self.radius = random.choice((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3))
 self.x = random.randint(-30, 60)
 self.y = random.randint(220, 230)
 self.dx = 3

 def move_asteroid(self, image):
 """Draw and move asteroid object."""
 cv.circle(image, (self.x, self.y), self.radius, 0, -1)
 self.x += self.dx

def record_transit(start_image):
 """Simulate transit of asteroids over star and return intensity list."""
 asteroid_list = []
 intensity_samples = []

 for i in range(NUM_ASTEROIDS):
 asteroid_list.append(Asteroid(i))

 for _ in range(NUM_LOOPS):
 temp_img = start_image.copy()
 # Draw star.

practice
_asteroids.py

306 Practice Project Solutions

 cv.circle(temp_img, (250, 200), STAR_RADIUS, 255, -1)
 for ast in asteroid_list:
 ast.move_asteroid(temp_img)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity),
 (5, 390), cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 intensity_samples.append(intensity)
 cv.waitKey(50)
 cv.destroyAllWindows()
 return intensity_samples

def calc_rel_brightness(image):
 """Calculate and return list of relative brightness samples."""
 rel_brightness = record_transit(image)
 max_brightness = max(rel_brightness)
 for i, j in enumerate(rel_brightness):
 rel_brightness[i] = j / max_brightness
 return rel_brightness

def plot_light_curve(rel_brightness):
 "Plot light curve from relative brightness list."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2, label='Relative Brightness')
 plt.legend(loc='upper center')
 plt.title('Relative Brightness vs. Time')
 plt.show()

relative_brightness = calc_rel_brightness(BLACK_IMG)
plot_light_curve(relative_brightness)

Incorporating Limb Darkening

"""Simulate transit of exoplanet, plot light curve, estimate planet radius."""
import cv2 as cv
import matplotlib.pyplot as plt

IMG_HT = 400
IMG_WIDTH = 500
BLACK_IMG = cv.imread('limb_darkening.png', cv.IMREAD_GRAYSCALE)
EXO_RADIUS = 7
EXO_START_X = 40
EXO_START_Y = 230
EXO_DX = 3
NUM_FRAMES = 145

def main():
 intensity_samples = record_transit(EXO_START_X, EXO_START_Y)
 relative_brightness = calc_rel_brightness(intensity_samples)
 plot_light_curve(relative_brightness)

def record_transit(exo_x, exo_y):
 """Draw planet transiting star and return list of intensity changes."""

practice_limb
_darkening.py

Practice Project Solutions 307

 intensity_samples = []
 for _ in range(NUM_FRAMES):
 temp_img = BLACK_IMG.copy()
 # Draw exoplanet:
 cv.circle(temp_img, (exo_x, exo_y), EXO_RADIUS, 0, -1)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity), (5, 390),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 cv.waitKey(30)
 intensity_samples.append(intensity)
 exo_x += EXO_DX
 return intensity_samples

def calc_rel_brightness(intensity_samples):
 """Return list of relative brightness from list of intensity values."""
 rel_brightness = []
 max_brightness = max(intensity_samples)
 for intensity in intensity_samples:
 rel_brightness.append(intensity / max_brightness)
 return rel_brightness

def plot_light_curve(rel_brightness):
 """Plot changes in relative brightness vs. time."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2, label='Relative Brightness')
 plt.legend(loc='upper center')
 plt.title('Relative Brightness vs. Time')
plt.ylim(0.995, 1.001)
 plt.show()

if __name__ == '__main__':
 main()

Detecting an Alien Armada

"""Simulate transit of alien armada with light curve."""
import random
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

STAR_RADIUS = 165
BLACK_IMG = np.zeros((400, 500, 1), dtype="uint8")
NUM_SHIPS = 5
NUM_LOOPS = 300 # Number of simulation frames to run

class Ship():
 """Draws and moves a ship object on an image."""

 def __init__(self, number):
 self.number = number

practice_alien
_armada.py

308 Practice Project Solutions

 self.shape = random.choice(['>>>|==H[X)',
 '>>|==H[XX}=))-',
 '>>|==H[XX]=(-'])
 self.size = random.choice([0.7, 0.8, 1])
 self.x = random.randint(-180, -80)
 self.y = random.randint(80, 350)
 self.dx = random.randint(2, 4)

 def move_ship(self, image):
 """Draws and moves ship object."""
 font = cv.FONT_HERSHEY_PLAIN
 cv.putText(img=image,
 text=self.shape,
 org=(self.x, self.y),
 fontFace=font,
 fontScale=self.size,
 color=0,
 thickness=5)
 self.x += self.dx

def record_transit(start_image):
 """Runs simulation and returns list of intensity measurements per frame."""
 ship_list = []
 intensity_samples = []

 for i in range(NUM_SHIPS):
 ship_list.append(Ship(i))

 for _ in range(NUM_LOOPS):
 temp_img = start_image.copy()
 cv.circle(temp_img, (250, 200), STAR_RADIUS, 255, -1) # The star.
 for ship in ship_list:
 ship.move_ship(temp_img)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity),
 (5, 390), cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 intensity_samples.append(intensity)
 cv.waitKey(50)
 cv.destroyAllWindows()
 return intensity_samples

def calc_rel_brightness(image):
 """Return list of relative brightness measurments for planetary transit."""
 rel_brightness = record_transit(image)
 max_brightness = max(rel_brightness)
 for i, j in enumerate(rel_brightness):
 rel_brightness[i] = j / max_brightness
 return rel_brightness

def plot_light_curve(rel_brightness):
 """Plots curve of relative brightness vs. time."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2, label='Relative Brightness')

Practice Project Solutions 309

 plt.legend(loc='upper center')
 plt.title('Relative Brightness vs. Time')
 plt.show()

relative_brightness = calc_rel_brightness(BLACK_IMG)
plot_light_curve(relative_brightness)

Detecting a Planet with a Moon

"""Moon animation credit Eric T. Mortenson."""
import math
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

IMG_HT = 500
IMG_WIDTH = 500
BLACK_IMG = np.zeros((IMG_HT, IMG_WIDTH, 1), dtype='uint8')
STAR_RADIUS = 200
EXO_RADIUS = 20
EXO_START_X = 20
EXO_START_Y = 250
MOON_RADIUS = 5
NUM_DAYS = 200 # number days in year

def main():
 intensity_samples = record_transit(EXO_START_X, EXO_START_Y)
 relative_brightness = calc_rel_brightness(intensity_samples)
 print('\nestimated exoplanet radius = {:.2f}\n'
 .format(STAR_RADIUS * math.sqrt(max(relative_brightness)
 -min(relative_brightness))))
 plot_light_curve(relative_brightness)

def record_transit(exo_x, exo_y):
 """Draw planet transiting star and return list of intensity changes."""
 intensity_samples = []
 for dt in range(NUM_DAYS):
 temp_img = BLACK_IMG.copy()
 # Draw star:
 cv.circle(temp_img, (int(IMG_WIDTH / 2), int(IMG_HT/2)),
 STAR_RADIUS, 255, -1)
 # Draw exoplanet
 cv.circle(temp_img, (int(exo_x), int(exo_y)), EXO_RADIUS, 0, -1)
 # Draw moon
 if dt != 0:
 cv.circle(temp_img, (int(moon_x), int(moon_y)), MOON_RADIUS, 0, -1)
 intensity = temp_img.mean()
 cv.putText(temp_img, 'Mean Intensity = {}'.format(intensity), (5, 10),
 cv.FONT_HERSHEY_PLAIN, 1, 255)
 cv.imshow('Transit', temp_img)
 cv.waitKey(10)
 intensity_samples.append(intensity)
 exo_x = IMG_WIDTH / 2 - (IMG_WIDTH / 2 - 20) * \

practice_planet
_moon.py

310 Practice Project Solutions

 math.cos(2 * math.pi * dt / (NUM_DAYS)*(1 / 2))
 moon_x = exo_x + \
 3 * EXO_RADIUS * math.sin(2 * math.pi * dt / NUM_DAYS *(5))
 moon_y = IMG_HT / 2 - \
 0.25 * EXO_RADIUS * \
 math.sin(2 * math.pi * dt / NUM_DAYS * (5))
 cv.destroyAllWindows()

 return intensity_samples

def calc_rel_brightness(intensity_samples):
 """Return list of relative brightness from list of intensity values."""
 rel_brightness = []
 max_brightness = max(intensity_samples)
 for intensity in intensity_samples:
 rel_brightness.append(intensity / max_brightness)
 return rel_brightness

def plot_light_curve(rel_brightness):
 """Plot changes in relative brightness vs. time."""
 plt.plot(rel_brightness, color='red', linestyle='dashed',
 linewidth=2, label='Relative Brightness')
 plt.legend(loc='upper center')
 plt.title('Relative Brightness vs. Time')
 plt.show()

if __name__ == '__main__':
 main()

Figure A-1 summarizes the output from the practice_planet_moon.py program.

Figure A-1: Light curve for planet and moon where moon passes behind planet

Practice Project Solutions 311

Measuring the Length of an Exoplanet’s Day

"""Read-in images, calculate mean intensity, plot relative intensity vs time."""
import os
from statistics import mean
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal # See Chap. 1 to install scipy.

Switch to the folder containing images.
os.chdir('br549_pixelated')
images = sorted(os.listdir())
intensity_samples = []

Convert images to grayscale and make a list of mean intensity values.
for image in images:
 img = cv.imread(image, cv.IMREAD_GRAYSCALE)
 intensity = img.mean()
 intensity_samples.append(intensity)

Generate a list of relative intensity values.
rel_intensity = intensity_samples[:]
max_intensity = max(rel_intensity)
for i, j in enumerate(rel_intensity):
 rel_intensity[i] = j / max_intensity

Plot relative intensity values vs frame number (time proxy).
plt.plot(rel_intensity, color='red', marker='o', linestyle='solid',
 linewidth=2, markersize=0, label='Relative Intensity')
plt.legend(loc='upper center')
plt.title('Exoplanet BR549 Relative Intensity vs. Time')
plt.ylim(0.8, 1.1)
plt.xticks(np.arange(0, 50, 5))
plt.grid()
print("\nManually close plot window after examining to continue program.")
plt.show()

Find period / length of day.
Estimate peak height and separation (distance) limits from plot.
height and distance parameters represent >= limits.
peaks = signal.find_peaks(rel_intensity, height=0.95, distance=5)
print(f"peaks = {peaks}")
print("Period = {}".format(mean(np.diff(peaks[0]))))

practice_length
_of_day.py

312 Practice Project Solutions

Chapter 9: Identifying Friend or Foe

Blurring Faces

import cv2 as cv

path = "C:/Python372/Lib/site-packages/cv2/data/"
face_cascade = cv.CascadeClassifier(path + 'haarcascade_frontalface_alt.xml')

cap = cv.VideoCapture(0)

while True:
 _, frame = cap.read()
 face_rects = face_cascade.detectMultiScale(frame, scaleFactor=1.2,
 minNeighbors=3)

 for (x, y, w, h) in face_rects:
 face = cv.blur(frame[y:y + h, x:x + w], (25, 25))
 frame[y:y + h, x: x + w] = face
 cv.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0), 2)

 cv.imshow('frame', frame)
 if cv.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv.destroyAllWindows()

Chapter 10: Restricting Access with Face Recognition

Challenge Project: Adding a Password and Video Capture
The following snippet addresses the part of the challenge project con-
cerned with recognizing faces from a video stream.

"""Recognize Capt. Demming's face in video frame."""
import cv2 as cv

names = {1: "Demming"}

Set up path to OpenCV's Haar Cascades
path = "C:/Python372/Lib/site-packages/cv2/data/"
detector = cv.CascadeClassifier(path + 'haarcascade_frontalface_default.xml')

Set up face recognizer and load trained data.
recognizer = cv.face.LBPHFaceRecognizer_create()
recognizer.read('lbph_trainer.yml')

practice_blur.py

challenge_video
_recognize.py

Practice Project Solutions 313

Prepare webcam.
cap = cv.VideoCapture(0)
if not cap.isOpened():
 print("Could not open video device.")
##cap.set(3, 320) # Frame width.
##cap.set(4, 240) # Frame height.

while True:
 _, frame = cap.read()
 gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
 face_rects = detector.detectMultiScale(gray,
 scaleFactor=1.2,
 minNeighbors=5)

 for (x, y, w, h) in face_rects:
 # Resize input so it's closer to training image size.
 gray_resize = cv.resize(gray[y:y + h, x:x + w],
 (100, 100),
 cv.INTER_LINEAR)
 predicted_id, dist = recognizer.predict(gray_resize)
 if predicted_id == 1 and dist <= 110:
 name = names[predicted_id]
 else:
 name = 'unknown'
 cv.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)
 cv.putText(frame, name, (x + 1, y + h -5),
 cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
 cv.imshow('frame', frame)

 if cv.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv.destroyAllWindows()

A
absdiff() method, 113
absolute runtimes, 275
abstraction, 52
Adding a Password and Video Capture

project, 242–243, 312–313
algorithms, 226–227

face recognition, 205, 227
LBP, 228
LBPH, 230
PageRank, 61
performance, 243
TextRank, 61

aliasing, 159–160
alien megastructures, 195
All Packages tab, in the Natural

Language Toolkit (NLTK), 31
Anaconda, xxiv, 7
ancestors, using the Turtle class as, 135
ANGLE constants, 272
anisotropy, 274
arguments

color_index, 261
fx, 220
fy, 220
representations, 144
using when instantiating an

object, 140
arrays, 12, 158

looping through, 238
ORB, 104
series, 248

ASCII, 35
astype() method, 258
Atom, xxii
attributes, 11–12

changing, 140
self.area_actual, 16

audio recordings, 209, 217
autotexts, 192
ax.pie() method, 191–192

B
backends, 255
bar charts, creating, 92
Bayes’ rule, 1–5

applying, 18–19
basic formula, 2
terms in, 2–3
Bayes, Thomas, 1

Bayesian updates, 3
Beane, Silas R., 278
Beautiful Soup (bs4) package, 53, 55
BFMatcher objects, 105
Binary Robust Independent

Elementary Features
(BRIEF), 104

blink comparators
building, 110
defining, 103
using, 96–97, 110–112

blink()function, 103, 110
blink microscopes, 96
Blue-Green-Red (BGR) format, 168

converting to Red-Green-Blue
(RGB) format, 168

used by OpenCV, 14
blur() method, 222
Blurring Faces project, 222–223, 312
Body class, 134
bokeh module, 248–250

extension, 255
installing, 250
sample data, 250, 254

Bostrom, Nick, 269
Box Zoom tool, 262
BRIEF (Binary Robust Independent

Elementary Features), 104
brute-force matchers, 105
bs4.BeautifulSoup() method, 53, 55

I N D E X

316 Index

C
calc_rel_brightness() function, 182
Calculating the Probability of

Detection project, 25–26
canvas, 169
cascade classifiers, 205, 209–210
central processing units (CPUs), 275
cget() method, 169
challenge projects

Adding a Password and Video
Capture, 242–243, 312–313

Calculating the Probability of
Detection, 25–26

Customized Word Search, 281
Detecting Cat Faces, 223
Finding a Safe Space, 279–280
Finding the Best Strategy with

MCS, 25
Fixing Frequency, 50
Game Night, 72–73
Generating a Dynamic Light

Curve, 202
Go Tell It on the Mountain, 281–282
Here Comes the Sun, 280
It’s Not Just What You Say, It’s How

You Say It! 75
Look-alikes and Twins, 243
Making It Three in a Row, 175
Mapping US Population Change,

266–267
The Real Apollo 8, 149
Seeing Through a Dog’s Eyes, 281
Simplifying a Celebration

Slideshow, 281
Smarter Searches, 24
Summarizing a Novel, 74–75
Summarizing Summaries, 73
Time Machine, 243
True-Scale Simulation, 149
What a Tangled Web We Weave, 281
Wrapping Rectangles, 175–176
see also projects

characters, 33
Charting the Characters project, 92,

285–286
charts

bar, 92
dataframes, 249
histograms, 229
pie, 191–192

check_for_fail()function, 90
chi-squared random variable (X 2), 43–44
choice() method, 15, 88
choropleth maps, 246–247, 252, 260–265
chunking, 33
ciphertext, 79
circle() method, 215, 272
circular LBP, 229
classes, 10–12

defining, 10–12, 133–134
object-oriented programming

(OOP), 10
collections module, 54, 83
color, 141–143, 168–169

Blue-Green-Red (BGR) format, 168
converting to Red-Green-Blue

(RGB) format, 168
used by OpenCV, 14

channels, 191
color_index argument, 261
images, height of, 169
Red-Green-Blue (RGB) format,

14, 168
converting to Blue-Green-Red

(BGR) format, 168
selecting for setting up the

screen, 139
tuple data

Blue-Green-Red (BGR) format,
14, 102

using, 14
colormaps, 68
comma-separated values (CSV),

251–252, 255–256
common words, analyzed by natural

language processing
(NLP), 29

comprehension, 57
computer vision, 6–7
conditionals

errors, 88
using, 59, 216

conduct_search() method, 21
confidence factors, 228
Confirming That Drawings Become

Part of an Image project,
172, 298

constants, 9, 33, 142, 157–158
ANGLE, 272
assigning, 100, 113–114, 132–133,

181–182

Index 317

derived, 157–158
SIDE, 272
user input, 156

context instances, 11
Corpora tab, in the Natural Language

Toolkit (NLTK), 31
corpus

analyzed by natural language
processing (NLP), 29

loading, 33
normalizing, 36

Counter()method, 54, 57, 84
Counting Stars project, 120–121
counts, 36
CP-1252, 35
CPUs (central processing units), 275
cryptanalysis techniques, effectiveness, 78
CSM (command and service modules),

124, 143
CSV format, 255–256
cumulative parameter, 38
Customized Word Search project, 281
cv module, 100
cwd() class method, 101
cylindrical projections, 158

D
data formats, 255

comma-separated values (CSV),
255–256

Excel, 255
HTML (Hypertext Markup

Language), 255
elements used in, 55
graphics and, 249
parsing, 53
tags used in, 55
using requests library with, 54

Structured Query Language, 255
dataframes, 248–249, 255
datetime module, 209
Davoudi, Zohreh, 278
decoding, defined, 35
decrypt() function, 89
decryption, and encryption of data,

78–79
defaultdict() function, 83, 87
delta time (dt), 134
derived constants, 157–158
descriptors, 104

Detecting a Planet with a Moon project,
201, 309–310

Detecting Alien Megastructures
project, 195–196, 304–305

Detecting an Alien Armada project,
200–201, 307–309

Detecting Asteroid Transits project,
197–198, 305–306

Detecting Astronomical Transients
with Image Differencing
project, 112–119

Detecting Cat Faces project, 223
Detecting Starspots project, 200
detectMultiscale() method, 212, 235
dictionaries, making, 87–88
dictionary comprehension, 254
difference maps, images, 114
diff_image variable, pixels, 114
The Digital Key to Rebecca project, 80–91
direction vectors, formula, 136
discoverable items, Rebecca cipher, 81
dispersion plots, 48–49

applying, 49
documentation

holoviews module, 260
NumPy (Numerical Python) package, 24
OpenCV, 190
pathlib module, 101
playsound module, 208
pyttsx3 module, 208
tkinter module, 156
turtle module, 131

dot() method, 273
dot notation, using to call generate()

method, 68
downscaling images, 212
Doyle, Sir Arthur Conan, 28
draw_map() method, defining, 14
drawMatches() method, 102
draw_menu() function, 18
drawing boards, 133
dt (delta time), 134

E
edge artifacts, 111
elements, 55
elevation profiles, 172
encoding, defined, 35
encrypt() function, 88
end_fill() method, 272

318 Index

Enthought Canopy, xxiv, 7
enumerate() function, 38, 88, 102
errata, xxii
etaoin mnemonic, for remembering

the most common letters in
English, 92

Excel, 255
exoplanets, 177–194
extensions, 255
Extracting an Elevation Profile project,

172, 298–299
extraction, 52

F
face recognition, 203–205

algorithm, 205, 227
face classifiers, 204–205
flowchart, 226–228
Haar feature approach, 221
LBP cascade classifier, 221
photographs, 204–205
sliding window approach, 205
video feeds, 219–221

false positives, 111, 213, 215
feature vectors, ORB, 104
Federal Information Processing Series

(FIPS) code, 254
files

.html extension, 261
audio recordings, 209
loading, 87–88
preparing, 115–116
structure, 232

find_all() method, 53
find_best_matches() function, 102
Finding a Safe Space project, 279–280
Finding the Best Strategy with MCS

project, 25
find_transient() function

calling, 117
parameters, 114

Fixing Frequency project, 50
floor division returns (//), 257–258
folders

images, 239
preparing, 115–116

fonts, 118
for loops, 101–102, 116

turtle module, 128
Format Specification Mini-Language, 86

forward modeling, 194
forward slash (/), 101
free return trajectory, plotting, 124
FreqDist() method, 38
frequency, 36, 50
fromarray() method, 168
f-string format, 211
fx arguments, 220
fy arguments, 220

G
Game Night project, 72–73
Geany, xxii
generate() method, dot notation, 68
Generating a Dynamic Light Curve

project, 202
generator expressions, 46

defined, 46
generator objects, 46

defined, 46
genism, 61–64

installing, 61
running, 62
summarize() function, 62

get() method, obtaining, 44
getscreen() method, 144

turtle module, 141
get_word_freq() function, 57–58
gif files, 140
global constants, 142
Go Tell It on the Mountain project,

281–282
graphics

bar charts, 92
charts, 92, 190–192, 229
choropleth maps, 246–247, 252,

260–265
dataframes, 249
diff_image variable, and pixels, 114
dispersion plots, 48–49
histograms, 229
HTML (Hypertext Markup

Language) and, 249
images, 66, 140, 163, 189–194

analyzing, 188
blurring, 222
calculating absolute differences

between, 116–117
difference, 116
downscaling, 189, 212

Index 319

gif files, 140
importing, 66
looping through, 116–117
positive, 116
registering, 108
saving, 103, 117–119
and tuple data, 114

pie charts, 190–192
pixelated images, 190
pixels, 192–193, 273–274

blurring, 222
and the diff_image variable, 114

turtle module, 129
see also Python Imaging Library (PIL)

gravity propulsion, 145
simulation, 145

Greene, Preston, 278
GZK cutoff, 278

H
Haar features, 203–205

example templates, 204
face recognition, 221
Windows OS, 234

Hamming distance, string length, 105
heatmaps, 49–50

defined, 49
Here Comes the Sun project, 280
hideturtle() method, 272
histograms, 229
holoviews module, 248–250, 252–254

documentation, 260
extension, 255
installing, 250
Windows OS, 250

homography, 108
findHomography() method, 109

Hound of the Baskervilles, The, 32
The Hound, The War, and The Lost

World project, 28–47
HTML (Hypertext Markup Language)

elements used in, 55
file extensions, 261
graphics and, 249
parsing, 53
tags used in, 55
using requests library with, 54

Hunting the Hound with Dispersion
project, 48–49, 283–284

Hutchinson, Georgia, 280

I
I Have a Dream . . . to Summarize

Speeches! project, 52–61
IDLE (integrated development and

learning environment) text
editor, xxii

Idle, Eric, xxii
if statements, 240
Image and ImageTK modules, 156
images, 66, 140, 163, 189–194

analyzing, 188
calculating absolute differences

between, 116–117
choropleth maps, 246–247, 252,

260–265
dataframes, 249
difference, 116
diff_image variable, and pixels, 114
downscaling, 189, 212
drawing on, 163–164
gif files, 140
importing, 66
loading, 210
looping through, 116–117
negative, 111, 116
orthogonal patterns, 273–275
pixelated images, 190
pixels, 192–193, 273–274

blurring, 222
and the diff_image variable, 114

positive, 111, 116
registering

applying homography, 108
and defining a function, 108

rescaling, 212
saving, 103, 117–119
scale pyramids, 212
stored by OpenCV, 158, 162
storing, 237
tuple data, 114
see also Python Imaging Library (PIL)

Imaging Exoplanets project, 188–194
imread() method, 102, 156
imshow() method, 14, 107
imwrite() method, 235
Incorporating Limb Darkening project,

198–200, 306–307
indexes, 81, 248–249
info() method, 258

320 Index

__init__() method, 11–12
and attributes, 135

inliers, 109
in-message duplication of keys,

Rebecca cipher, 81–82
installing Python, xxii–xxiv
instantiation, 10, 135
intensity, 182
International Data Corporation, 51
interpolation, 190
intersection() function, 47
intersection over union, 45–47
isalpha() method, 36
isdigit() function, 56
iterables, 81
itertools module, 9, 17
It’s Not Just What You Say, It’s How You

Say It! project, 75

J
Jaccard similarity

analyzed by natural language
processing (NLP), 29

calculating, 45–47
Jaccard similarity coefficient, 45–47
jaccard_test() function, defining, 46
join() method, 53

turning elements into a string
with, 55

K
keypoints, 100, 103–107

finding matches, 103–104, 107
keys, 44, 79

checking for duplicates, 84
printing, 86

keyword metadata
extracting, 65
in word clouds, 64

keywords, 65

L
labels, 192

indexes, 248–249
integers, 236
numeric, 192

lambda functions, 164
using, 106

landing ellipses, 152
latin-1, 35
LBP cascade classifier, 221
lead angles, defined, 125
lemmatization, 47
libraries, 6–8

installing, 6–7
Life, the Universe, and Yertle’s Pond

project, 270–278
limb darkening, 198–199
line() method, 14, 102, 166
Linux, xxii
list comprehension, 36

using to compare parts of speech, 42
list item markers, 42
load_file() function, 87
local binary pattern histograms

(LBPHs), 221, 226–230
loc() method, 258
Look-alikes and Twins project, 243
loops

delta time (dt), 134
images, 116–117
for loops, 101–102, 116, 210–211
in the main() function, 101–103
simulation loops, 144
using, 37
while loops, 19–20, 219

Lost World, The, 28
Low, George, 123
Lowell, Percival, 95
lowercase and uppercase letters,

handling with natural
language processing
(NLP), 58

M
macOS, xxii

Tcl/Tk 8.5 bugs, 160
main() function, 19–22

calling, 21–22, 90, 143
completing, 56–57
defining, 19, 32–34, 54–55, 83,

100–101, 139, 182
finishing, 21–22
looping in, 101–103
running programs with, 169

make_dict() function, 87
make_word_dict() function, 33

defining, 35

Index 321

Making It Three in a Row project, 175
Mapping US Population Change

project, 266–267
margin parameter, 68
Mars Global Surveyor (MGS), 153
Mars Orbiter Laser Altimeter (MOLA)

map, 151, 153
math module, 181
matplotlib, 7, 67

plotting light curves with, 180
matrices, ORB, 104
max() function, 185
maximum values, 185
Measuring the Length of an

Exoplanet’s Day project,
201–202, 311

menu choices, evaluating, 19–21
message-to-message duplication of keys,

Rebecca cipher, 81–82
metadata

extracting, 65
in word clouds, 64

methods, 11
defining, 14–15

min() function, 37
using to compare vocabularies, 44

minMaxLoc() method, 115
Minovitch, Michael, 126
Mixing Maps project, 173–175, 300–303
mkdir() method, 235
modules

bokeh, 248–250
collections, 54, 83
cv, 100
datetime, 209
holoviews, 248–250, 252–254
Image and ImageTK, 156
importing, 9–10, 32–34, 54–55, 62,

66, 82–83, 100, 113–114,
156, 181–182, 238, 255

itertools, 9
math, 181
order for importing, 9–10
os, 83
pathlib, 100–101
pillow, 66
playsound, 207–208, 217
pyttsx3, 207–209
random, 9, 83

re, 54
statistics, 276
supporting, 231–232
sys, 9, 83
time, 211, 276
tkinter, 156
turtle, 127–131, 270–271
webbrowser, 261

modulo operator (%), 258
Monte Carlo simulation (MCS), 25
most_common() method, 44, 57

using to compare vocabularies, 44
moveWindow() method, 14
Musk, Elon, 269

N
__name__ variable, 22
natural language processing (NLP),

28–29
handling uppercase and lowercase

letters, 58
using, 28, 51

Natural Language Toolkit (NLTK),
29–31

All Packages tab, 31
Corpora tab, 31
installing, 29–32

downloading the stopwords
corpus, 31

downloading the tokenizer,
30, 33

Punkt Tokenizer Models, 30
sent_tokenize() method, 63
truncation option, 33–34
word_tokenize() method, 35

n-dimensional arrays, 158
Newton, Isaac, 126
normalization, 59

word counts, 59
normalized vectors, formula, 136
np.zeros() method, 108, 181
numeric labels, 192
numerical arrays, ORB, 104
NumPy (Numerical Python) package,

7–8, 24, 67
documentation, 24
importing, 67
random.choice() method, 15

322 Index

O
object-oriented programming (OOP),

10, 131
classes, 10
using, 131

objects, 10
one-time pads, 77–79
OpenCV, 6–8, 168

absdiff() method, 113
addWeighted() method, 118
blur() method, 222
documentation, 190
drawMatches() method, 102
findHomography() method, 109
images stored by, 158, 162
imshow() method, 220
installing with pip, 8–9
LBP cascade classifier, 221
line() method, 14, 102, 166
ORB_create() method, 104
putText() method, 118, 183
random sample consensus

(RANSAC), 109
rectangle() method, 114, 215
split() method, 191
use of Blue-Green-Red (BGR)

format, 14
VideoCapture() method, 219, 234
waitKey() method, 184, 220

open()function, 35, 67
ORB_create() method, 104
orb.detectAndCompute() method, 105
ord() function, 86

using, 86
Oriented FAST and Rotated BRIEF

(ORB), 104
orthogonal patterns, 273–274
os.listdir() method, 100
os module, 83
os.path.exists() method, 84
os.path.split() method, 237
outliers, 109

P
<p> and </p> tags, formatting

paragraphs with, 55
page variable, Response objects, 54–55
PageRank algorithm, 61

pandas (Python Data Analysis Library),
248–249

installing, 250
paragraph elements (p_elems),

selecting, 74
paragraphs, formatting with <p> and

</p> tags, 55
parking orbits, 125
part-of-speech (POS), 40–41
parts of speech

analyzed by natural language
processing (NLP), 29

comparing, 40–42
parts_of_speech_test() function,

defining, 41
patched conic method, assumptions

of, 126
patches, ORB, 104
pathlib module, 100–101

documentation, 101
patterns, orthogonal, 273–275
peak-to-valley statistics

overview, 154–155
calculating, 161
sorting, 165

pencolor() method, 141–142
Penrose tiling, 130
penup() method, 130

using, 135
PEP8 Python style guide, 9, 115
PerceptronTagger, comparing parts of

speech using, 40–41
perf_counter, 276–277
phase angles, defined, 125
photospheres, 198
pie charts, 191–192
pillow module, 66
pip (preferred installer program), 8

installing, 8
pixelated images, 190
pixels, 273–274

blurring, 222
diff_image variable, 114
plotting, 192–193

plaintext messages, encryption, 88
playsound module, 207–208, 217

audio recordings, 217
documentation, 208

plot() method, 38, 185
Plotting in 3D project, 173, 299

Index 323

Plotting the Orbital Path project,
119–120, 289–290

plt.ion() method, 38
plt.legend() method, 38
plt.show() method, 38
Pokrovsky shells

overview, 195–196
rings around, 196

Polygons() class, 260
polygon types, 143
position() method, 130
pos_tag() method, 42
PowerShell, xxv, 42
predict() method, 240
preferred installer program (pip), 8
print() function, 19
priors, 3
probabilities, 2

calculating, 4–5
probability of detection (PoD), 25–26
Programming a Robot Sentry Gun

project, 205–220
Project Gutenberg, 32
projects

Blurring Faces, 222–223, 312
Charting the Characters, 92, 285–286
Confirming That Drawings Become

Part of an Image, 172, 298
Counting Stars, 120–121
Detecting a Planet with a Moon,

201, 309–310
Detecting Alien Megastructures,

195–196, 304–305
Detecting an Alien Armada, 200–

201, 307–309
Detecting Asteroid Transits, 197–

198, 305–306
Detecting Astronomical Transients

with Image Differencing,
112–119

Detecting Starspots, 200
The Digital Key to Rebecca, 80–91
Extracting an Elevation Profile,

172, 298–299
The Hound, The War, and The

Lost World, 28–47
Hunting the Hound with

Dispersion, 48–49, 283–284
I Have a Dream . . . to Summarize

Speeches! 52–61
Imaging Exoplanets, 188–194

Incorporating Limb Darkening,
198–200, 306–307

Life, the Universe, and Yertle’s
Pond, 270–278

Measuring the Length of an
Exoplanet’s Day, 201–202, 311

Mixing Maps, 173–175, 300–303
Plotting in 3D, 173, 299
Plotting the Orbital Path, 119–120,

289–290
Programming a Robot Sentry Gun,

205–220
Punctuation Heatmap, 49–50,

284–285
Replicating a Blink Comparator,

96–112
Restricting Access to the Alien

Artifact, 231–241
Search and Rescue, 5–24
Selecting Martian Landing Sites,

153–171
Sending Secrets the WWII Way,

93–94, 286–289
Shut Me Down! 148, 296–298
Simulating a Search Pattern,

146–147, 292–293
Simulating an Exoplanet Transit,

179–188
Start Me Up! 147–148, 293–295
Summarizing Speeches with

gensim, 61–64
Summarizing Text with Word

Clouds, 64–71
To the Moon with Apollo 8! 127–146
Visualizing Population Density with

a Choropleth Map, 246–265
What’s the Difference? 120, 290–292
see also challenge projects

pseudorandom numbers, 84
random module, 84

Punctuation Heatmap project, 49–50,
284–285

Punkt Tokenizer Models, 30
putText() method, 14, 183, 241
PyCharm, xxii
Pylint, unused variables, 102
pyperclip, copying and pasting text to

the clipboard with, 91
PyScripter, xxii
Pythagorean triple, 275

324 Index

Python
built-in functions

enumerate(), 38, 88, 102
__init__(), 11–12, 135
intersection(), 47
isalpha(), 36
isdigit(), 56
max(), 185
min(), 37, 44
open(), 35
ord(), 86
read(), 34
repr(), 86
sorted(), 101
type(), 67

Format Specification
Mini-Language, 86

IDE, xxii
installing, xxii–xxiv
PEP8 style guide, 115
platform, xxii
running, xxiv–xxv
split() function, 36, 89, 191
version, xxii
visualization tools, 248

Python Data Analysis Library (pandas),
248–249

Python Imaging Library (PIL), 66, 156
importing, 67
Image module, 156
Image.open() method, 67
ImageTK module, 156
word clouds, 65–66

Python Standard Library
collections module, 93
functions, 17

pyttsx3 module
documentation, 208
initializing objects, 209
installing, 207–209
say() method, 211

Q
Q key, 220
quality control

function, 102
steps, 101

queryIdx.pt attribute, 108
quit, 220

R
raise_for_status() method, 55
random.choice() method, 15, 88
random module, 9, 83

pseudorandom numbers, 84
random sample consensus

(RANSAC), 109
random_state parameter, 68
Raspberry Pi, xx
readers, 255
read() method, 235
The Real Apollo 8 project, 149
Rebecca cipher, 80
record_transit() function, 183
rectangle() method, 114, 164
Red-Green-Blue (RGB) format, 14, 168

converting to Blue-Green-Red
(BGR) format, 168

regex syntax, 56
registration, of images, 97–98
regular expressions, 54

defined, 54
relative_scaling parameter, 68
release() method, 220
re module, 54
remove_stop_words() function, 57
replace()function, 90

using, 90
Replicating a Blink Comparator

project, 96–112
repr() function, 86
requests, importing, 53
requests.get() method, 54
requests library, 53–54
Response object, referencing with page

variable, 54–55
Restricting Access to the Alien Artifact

project, 231–241
re.sub() function, 56
return statements, ending fuctions

with, 47
revise_target_probs() method, 18, 22
robot sentry, 206
root-mean-square

applying, 154–155
formula, 154

rotate() method, 130
runAndWait() method, 211
run_rect_stats() method, 162

Index 325

S
Savage, Martin J., 278
save() method, 261
say() method, 211
scale pyramids, 212
scaled gravitational constants, 133
SciPy package, 7–8
score_sentences() function, 57–59
scraping the web, 53, 62
screen, setting up, 139
Screen subclass, 133
screen updates, 144
search

calculating effectiveness, 16–17
conducting, 16–17

Search and Rescue project, 5–24
search classes, 10–12

defining, 10–12, 161
initializing, 161

search effectiveness probability (SEP), 4
search engine optimization (SEO), 65
Seeing Through a Dog’s Eyes project, 281
Selecting Martian Landing Sites

project, 153–171
select() method, 53

limits, 55
self.area_actual attribute, 16
self attributes, 12
self parameter

function, 134
using, 136

Sending Secrets the WWII Way project,
93–94, 286–289

sentry guns
automated, 206
use of video feeds, 207

sent_tokenize() method, 63
series, 248–249
setpos() method, 135, 272
setup() method, 271
Shape class, 133
shape()function, 109
shapes, 142–143

building, 142–143
shift value, 84

overview, 84
Shut Me Down! project, 148, 296–298
SIDE constants, 272
sim_loop() method, 144
Simplifying a Celebration Slideshow

project, 281

Simulating a Search Pattern project,
146–147, 292–293

Simulating an Exoplanet Transit
project, 179–188

simulation hypothesis, 269
simulation loops, 144
sliding window approach, 205
slingshot maneuver, 145

simulation, 145
Smarter Searches project, 24
Smith, David, 153
sorted() function, 101
sound

audio recordings, 209, 217
files, 209
playsound module, 217

split() function, 36, 89, 191
tokens, 36

standard deviation
applying, 154–155
formula, 154
sorting, 165

starspots, 200
Start Me Up! project, 147–148, 293–295
statistics.mean() function, 277
statistics module, 276
stemming, 47
step() method, defining, 137
stop words, 39–40, 57–58, 67

analyzed by natural language
processing (NLP), 28

comparing, 39–40
examples, 54
functional, 54
importing, 66
removing, 57–58

Stopwords Corpus, 30–31
string.replace() method, 56, 89
strings

f-string format, 211
Hamming distance, and string

length, 105
join() method, turning elements

into a string with, 55
length, 105
ord() function, 220
string.replace() method, 56, 89
string.split() method, 89
text_to_string() function, 33, 34

Structured Query Language, 255

326 Index

stylometry, 27–28
performing, 29

subarrays, 12
Sublime Text, xxii
subplots() method, 191
summarize() function, 62
Summarizing a Novel project, 74–75
Summarizing Speeches with gensim

project, 61–64
Summarizing Summaries project, 73
Summarizing Text with Word Clouds

project, 64–71
super() function, using, 135
suptitle() method, 70
sys module, 9, 83
sysconfig module, 209

T
Tabby’s Star, 195–196
taggers, 40–41
tags, 55

values, 64
Tcl/Tk 8.5 bugs, 160
test statistic, 43–44
text

adding, 168–169
files, 66
fonts, 118
titles, formatting with <title> and

</title> tags, 55
TextRank algorithm, 61
text_to_string() function, 33

defining, 34
three-body problem, 126
3D plotting, 173
thresholding

defined, 174
using, 174–175

Time Machine project, 243
time module, 211, 276
time steps, 131
titles, formatting with <title> and

</title> tags, 55
tkinter module, 156

creating canvas objects, 160
documentation, 156
placement of code, 160
Windows OS, 156

to_array() method, 68
calling, 68

tokens, 30, 35

tolist() method, 259
Tombaugh, Clyde, 95–96, 110–111
To the Moon with Apollo 8! project,

127–146
tracer() method, 141, 144
trainIdx.pt attribute, 108
train() method, 238
transects, 154
transient astronomical events,

defined, 98
transients, detecting and circling, 114–115
transits and transit photometry, 178–179

experimenting with, 186–188
translunar injection velocity (V0), 125
triangular distribution, 15
Trojan asteroids, 197
True-Scale Simulation project, 149
truncation option, 33
tuple data type

overview, 7
Blue-Green-Red (BGR) color

format, 14, 102
elements used in

channels, 15
columns, 15
rows, 15, 17

images, 114
list, 57
most_common() method, 44
shapes, 17
vectors, 136, 137

turtle module, 127–131, 270–271
addcomponent() method, 142–143
assigning constants, 132–133
documentation, 131
example suite, 131
getscreen() method, 141
graphics, 129
hideturtle() method, 272
importing, 132–133, 270–271
polygon type, 143
pencolor() method, 141
screen.register_shape() method, 140
shapes provided with, 127
shapesize() method, 144
tracer() method, 141
using, 127–131

bk() method, 130
penup() method, 130
position() method, 130
rotate() method, 130
stamp() method, 129

Index 327

type() function, 67
Tyson, Neil DeGrasse, 269

U
ultra-high energy cosmic rays

(UHECRs), 278
unconstrained faces, 221
underscore (_), 102
Unicode Transformational Format

(UTF), 35, 86
UnicodeDecodeError, 35

while loading text, 67
unit vectors, formula, 136
unknown, 44, 47
unstructured data, 51
unused variables, 102

Pylint, 102
uppercase and lowercase letters,

handling with natural
language processing
(NLP), 58

UTF (Unicode Transformational
Format), 35

V
values

max() function, 185
maximum values, 185

variables, 17, 33, 102, 115
assigning, local, 17, 162
built-in, 22
chi-squared random variable (X 2),

43–44
diff_image variable, 114
excessive, 142
global, 12
__name__ variable, 22
naming, 68
page variable, 54–55
Pylint, 102
unused, 102

Vec2D, 133, 136
vectors, ORB, 104
video feeds

capturing, 232–236
streams, 219–221

virtual environments, xxv
using, xxv

Visual Studio Code, xxii

Visualizing Population Density with a
Choropleth Map project,
246–265

vocab_test() function, defining, 43
vocabularies, analyzed by natural

language processing (NLP),
43–45

voices
changing, 209
Windows OS

American “David,” 233
default, 233
default voice, 209
female, 209
male, 209

Vonnegut, Kurt, 48

W
waitKey() method, 14, 107, 184, 235
War of the Worlds, The, 32
warpPerspective() method, 109
webbrowser module, 255, 261
web scraping, 53, 62
Wells, H. G., 28
What a Tangled Web We Weave

project, 281
What’s the Difference? project, 120,

290–292
while loops, 19–20, 56, 219
Windows OS, xxii

character encoding, 35
CP-1252, 35
Haar features, 209, 234
holoviews module, 250
PyScripter, xxii
pyttsx3 module, 208
tkinter module, 156
using PowerShell, 42
voices on, 209, 233

word clouds, 64–71
displaying, 70
fine-tuning, 70–71
generating, 67–68
plotting, 69–70

word length
analyzed by natural language

processing (NLP), 28
comparing, 37–39

word_tokenize() method, 30, 35, 57
Wrapping Rectangles project, 175–176
writers, 255

328 Index

Y
YAML (.yml) files

overview, 227
loading, 239

yield statements, 47
suspending fuctions with, 47

Z
zip() function, 259
Zuber, Maria, 153

Real-World Python is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed.

RESOURCES
Visit https://nostarch.com/real-world-python/ for errata and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

SERIOUS PYTHON
Black-Belt Advice on Deployment,
Scalability, Testing, and More
by Julien Danjou

240 pp., $34.95
isbn 978-1-59327-878-6

PYTHON BEYOND THE BASICS
Best Practices for Writing Clean Code
by Al Sweigart

Fall 2020, 286 pp., $34.95
isbn 978-1-59327-966-0

NATURAL LANGUAGE PROCESSING
WITH PYTHON AND SPACY
A Practical Introduction
by Yuli Vasiliev

216 pp., $44.95
isbn 978-1-7185-0052-5

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based
Introduction to Programming
by Eric Matthes

544 pp., $39.95
isbn 978-1-59327-928-8

More no-nonsense books from NO STARCH PRESS

IMPRACTICAL PYTHON PROJECTS
Playful Programming Activities to
Make You Smarter
by Lee Vaughan

424 pp., $29.95
isbn 978-1-59327-890-8

PYTHON ONE-LINERS
Write Concise, Eloquent Python
Like a Professional
by Christian Mayer

216 pp., $39.95
isbn 978-1-7185-0050-1

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

With its emphasis on project-based practice, Real
World Python will take you from playing with syntax
to writing complete programs in no time. You’ll conduct
experiments, explore statistical concepts, and solve
novel problems that have frustrated geniuses throughout
history, like detecting distant exoplanets, as you continue
to build your Python skills.

Chapters begin with a clearly defined project goal and a
discussion of ways to attack the problem, followed by a
mission designed to make you think like a programmer.
You’ll direct a Coast Guard search-and-rescue effort, plot
and execute a NASA flight to the moon, protect access to
a secure lab using facial recognition, and more. Along the
way you’ll learn how to:

•	Use libraries like matplotlib, NumPy, Bokeh, pandas,
Requests, Beautiful Soup, and turtle

•	Work with Natural Language Processing and
computer vision modules like NLTK and OpenCV

•	Write a program to detect and track objects moving
across a starfield

•	Scrape speeches from the internet and auto-
summarize them

•	Use the Mars Orbiter Laser Altimeter (MOLA) map
to select spacecraft landing sites

•	Survive a zombie apocalypse with the aid of
data-plotting and visualization tools

The book’s programs are beginner-friendly, but as you
progress you’ll learn more sophisticated techniques to
help you grow your coding capabilities. Once your
missions are accomplished, you’ll be ready to solve
real-world problems with Python on your own.

A B O U T T H E A U T H O R

Lee Vaughan is a programmer, pop culture enthusiast,
educator, and author of Impractical Python Projects
(No Starch Press). As a former executive-level scientist
at ExxonMobil, he spent decades constructing and
reviewing complex computer models, developed
and tested software, and trained geoscientists and
engineers.

P R O G R A M
P Y T H O N L I K E

A P R O F E S S I O N A L

$34.95 ($45.95 CDN)

	Brief Contents
	Contents in Detail
	Introduction
	Who Should Read This Book?
	Why Python?
	What’s in This Book?
	Python Version, Platform, and IDE
	Installing Python
	Running Python
	Using a Virtual Environment

	Onward!

	Chapter 1: Saving Shipwrecked Sailors with Bayes’ Rule
	Bayes’ Rule
	Project #1: Search and Rescue
	The Strategy
	Installing the Python Libraries
	The Bayes Code
	Playing the Game

	Summary
	Further Reading
	Challenge Project: Smarter Searches
	Challenge Project: Finding the Best Strategy with MCS
	Challenge Project: Calculating the Probability of Detection

	Chapter 2: Attributing Authorship with Stylometry
	Project #2: The Hound, The War, and The Lost World
	The Strategy
	Installing NLTK
	The Corpora
	The Stylometry Code

	Summary
	Further Reading
	Practice Project: Hunting the Hound with Dispersion
	Practice Project: Punctuation Heatmap
	Challenge Project: Fixing Frequency

	Chapter 3: Summarizing Speeches with Natural Language Processing
	Project #3: I Have a Dream . . . to Summarize Speeches!
	The Strategy
	Web Scraping
	The “I Have a Dream” Code

	Project #4: Summarizing Speeches with gensim
	Installing gensim
	The Make Your Bed Code

	Project #5: Summarizing Text with Word Clouds
	The Word Cloud and PIL Modules
	The Word Cloud Code
	Fine-Tuning the Word Cloud

	Summary
	Further Reading
	Challenge Project: Game Night
	Challenge Project: Summarizing Summaries
	Challenge Project: Summarizing a Novel
	Challenge Project: It’s Not Just What You Say,
It’s How You Say It!

	Chapter 4: Sending Super-Secret Messages with a Book Cipher
	The One-Time Pad
	The Rebecca Cipher
	Project #6: The Digital Key to Rebecca
	The Strategy
	The Encryption Code
	Sending Messages

	Summary
	Further Reading
	Practice Project: Charting the Characters
	Practice Project: Sending Secrets the WWII Way

	Chapter 5: Finding Pluto
	Project #7: Replicating a Blink Comparator
	The Strategy
	The Data
	The Blink Comparator Code
	Using the Blink Comparator

	Project #8: Detecting Astronomical Transients with Image Differencing
	The Strategy
	The Transient Detector Code
	Using the Transient Detector

	Summary
	Further Reading
	Practice Project: Plotting the Orbital Path
	Practice Project: What’s the Difference?
	Challenge Project: Counting Stars

	Chapter 6: Winning the Moon Race with Apollo 8
	Understanding the Apollo 8 Mission
	The Free Return Trajectory
	The Three-Body Problem

	Project #9: To the Moon with Apollo 8!
	Using the turtle Module
	The Strategy
	The Apollo 8 Free Return Code
	Running the Simulation

	Summary
	Further Reading
	Practice Project: Simulating a Search Pattern
	Practice Project: Start Me Up!
	Practice Project: Shut Me Down!
	Challenge Project: True-Scale Simulation
	Challenge Project: The Real Apollo 8

	Chapter 7: Selecting Martian Landing Sites
	How to Land on Mars
	The MOLA Map
	Project #10: Selecting Martian Landing Sites
	Strategy
	The Site Selector Code
	Results

	Summary
	Further Reading
	Practice Project: Confirming That Drawings Become Part of an Image
	Practice Project: Extracting an Elevation Profile
	Practice Project: Plotting in 3D
	Practice Project: Mixing Maps
	Challenge Project: Making It Three in a Row
	Challenge Project: Wrapping Rectangles

	Chapter 8: Detecting Distant Exoplanets
	Transit Photometry
	Project #11: Simulating an Exoplanet Transit
	The Strategy
	The Transit Code
	Experimenting with Transit Photometry

	Project #12: Imaging Exoplanets
	The Strategy
	The Pixelator Code

	Summary
	Further Reading
	Practice Project: Detecting Alien Megastructures
	Practice Project: Detecting Asteroid Transits
	Practice Project: Incorporating Limb Darkening
	Practice Project: Detecting Starspots
	Practice Project: Detecting an Alien Armada
	Practice Project: Detecting a Planet with a Moon
	Practice Project: Measuring the Length of an Exoplanet’s Day
	Challenge Project: Generating a Dynamic Light Curve

	Chapter 9: Identifying Friend or Foe
	Detecting Faces in Photographs
	Project #13: Programming a Robot Sentry Gun
	The Strategy
	The Code
	Results

	Detecting Faces from a Video Stream
	Summary
	Further Reading
	Practice Project: Blurring Faces
	Challenge Project: Detecting Cat Faces

	Chapter 10: Restricting Access with Face Recognition
	Recognizing Faces with Local Binary Pattern Histograms
	The Face Recognition Flowchart
	Extracting Local Binary Pattern Histograms

	Project #14: Restricting Access to the Alien Artifact
	The Strategy
	Supporting Modules and Files
	The Video Capture Code
	The Face Trainer Code
	The Face Predictor Code
	Results

	Summary
	Further Reading
	Challenge Project: Adding a Password and Video Capture
	Challenge Project: Look-alikes and Twins
	Challenge Project: Time Machine

	Chapter 11: Creating an Interactive Zombie Escape Map
	Project #15: Visualizing Population Density with a Choropleth Map
	The Strategy
	The Python Data Analysis Library
	The bokeh and holoviews Libraries
	Installing pandas, bokeh, and holoviews
	Accessing the County, State, Unemployment, and Population Data
	Hacking holoviews
	The Choropleth Code
	Planning the Escape

	Summary
	Further Reading
	Challenge Project: Mapping US Population Change

	Chapter 12: Are We Living in a Computer Simulation?
	Project #16: Life, the Universe, and Yertle’s Pond
	The Pond Simulation Code
	Implications of the Pond Simulation
	Measuring the Cost of Crossing the Lattice
	Results
	The Strategy

	Summary
	Further Reading
	Moving On
	Challenge Project: Finding a Safe Space
	Challenge Project: Here Comes the Sun
	Challenge Project: Seeing Through a Dog’s Eyes
	Challenge Project: Customized Word Search
	Challenge Project: Simplifying a Celebration Slideshow
	Challenge Project: What a Tangled Web We Weave
	Challenge Project: Go Tell It on the Mountain

	Practice Project Solutions
	Chapter 2: Attributing Authorship with Stylometry
	Hunting the Hound with Dispersion
	Punctuation Heatmap

	Chapter 4: Sending Super-Secret Messages with a Book Cipher
	Charting the Characters
	Sending Secrets the WWII Way

	Chapter 5: Finding Pluto
	Plotting the Orbital Path
	What’s the Difference?

	Chapter 6: Winning the Moon Race with Apollo 8
	Simulating a Search Pattern
	Start Me Up!
	Shut Me Down!

	Chapter 7: Selecting Martian Landing Sites
	Confirming That Drawings Become Part of an Image
	Extracting an Elevation Profile
	Plotting in 3D
	Mixing Maps

	Chapter 8: Detecting Distant Exoplanets
	Detecting Alien Megastructures
	Detecting Asteroid Transits
	Incorporating Limb Darkening
	Detecting an Alien Armada
	Detecting a Planet with a Moon
	Measuring the Length of an Exoplanet’s Day

	Chapter 9: Identifying Friend or Foe
	Blurring Faces

	Chapter 10: Restricting Access with Face Recognition
	Challenge Project: Adding a Password and Video Capture

	Index
	Blank Page

