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Preface
Time series analysis is the art of extracting meaningful insights and revealing patterns from
time series data using statistical and data visualization approaches. These insights and
patterns can then be utilized to explore past events and forecast future values in the series.

This book goes through all the steps of the time series analysis process, from getting the
raw data, to building a forecasting model using R. You will learn how to use tools from
packages such as stats, lubridate, xts, and zoo to clean and reformat your raw data into
structural time series data. As you make your way through Hands-On Time Series Analysis
with R, you will analyze data and extract meaningful information from it using both
descriptive statistics and rich data visualization tools in R, such as the TSstudio, plotly, and
ggplot2 packages. The latter part of the book delves into traditional forecasting models
such as time series regression models, exponential smoothing, and autoregressive
integrated moving average (ARIMA) models using the forecast package. Last but not least,
you will learn how to utilize machine learning models such as Random Forest and Gradient
Boosting Machine to forecast time series data with the h2o package. 

Who this book is for
This book is ideal for the following groups of people:

Data scientists who wish to learn how to perform time series analysis and
forecasting with R.
Data analysts who perform Excel-based time series analysis and forecasting and
wish to take their forecasting skills to the next level.

Basic knowledge of statistics (for example, regression analysis and hypothesis testing) is
required, and some knowledge of R is expected but is not mandatory (for those who never
use R, Chapter 1, Introduction to Time Series Analysis and R, provides a brief introduction).
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What this book covers
Chapter 1, Introduction to Time Series Analysis and R, provides a brief introduction to the
time series analysis process and defines the attributes and characteristics of time series data.
In addition, the chapter provides a brief introduction to R for readers with no prior
knowledge of R. This includes the mathematical and logical operators, loading data from
multiple sources (such as flat files and APIs), installing packages, and so on.

Chapter 2, Working with Date and Time Objects, focuses on the main date and time classes in
R—the Date and POSIXct/lt classes—and their attributes. This includes ways to reformat
date and time objects with the base and lubridate packages.

Chapter 3, The Time Series Object, focuses on the ts class, an R core class for time series
data. This chapter dives deep into the attributes of the ts class, methods for creating and
manipulating ts objects using tools from the stats package, and data visualization
applications with the TSstudio and dygraphs packages.

Chapter 4, Working with zoo and xts Objects, covers the applications of the zoo and xts
classes, an advanced format for time series data. This chapter focuses on the attributes of
the zoo and xts classes and the preprocessing and data visualization tools from the zoo
and xts packages

Chapter 5, Decomposition of Time Series Data, focuses on decomposing time series data
down to its structural patterns—the trend, seasonal, cycle, and random components.
Starting with the moving average function, the chapter explains how to use the function for
smoothing, and then focuses on decomposing a time series to down its components with
the moving average. 

Chapter 6, Seasonality Analysis, explains approaches and methods for exploring and
revealing seasonal patterns in time series data. This includes the use of summary statistics,
along with data visualization tools from the forecast, TSstudio, and ggplot2 packages. 

Chapter 7, Correlation Analysis, focuses on methods and techniques for analyzing the
relationship between time series data and its lags or other series. This chapter provides a
general background for correlation analysis, and introduces statistical methods and data
visualization tools for measuring the correlation between time series and its lags or
between multiple time series. 

Chapter 8, Forecasting Strategies, introduces approaches, strategies, and tools for building
time series forecasting models. This chapter covers different training strategies, different
error metrics, benchmarking, and evaluation methods for forecasting models. 
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Chapter 9, Forecasting with Linear Regression, dives into the forecasting applications of the
linear regression model. This chapter explains how to model the different components of a
series with linear regression by creating new features from the series. In addition, this
chapter covers the advanced modeling of structural breaks, outliers, holidays, and time
series with multiple seasonality.

Chapter 10, Forecasting with Exponential Smoothing Models, focuses on forecasting time series
data with exponential smoothing functions. This chapter explains the usage of smoothing
parameters to forecast time series data. This includes simplistic models such as simple
exponential smoothing, which is for time series with neither trend nor seasonal
components, to advanced smoothing models such as Holt-Winters forecasting, which is for
forecasting time series with both trend and seasonal components.

Chapter 11, Forecasting with ARIMA Models, covers the ARIMA family of forecasting
models. This chapter introduces the different types of ARIMA models—the autoregressive
(AR), moving average (MA), ARMA, ARIMA, and seasonal ARIMA (SARIMA) models. In
addition, the chapter focuses on methods and approaches to identify, tune, and optimize
ARIMA models with both autocorrelation and partial correlation functions using
applications from the stats and forecast packages.

Chapter 12, Forecasting with Machine Learning Models, focuses on methods and approaches
for forecasting time series data with machine learning models with the h2o package. This
chapter explains the different steps of modeling time series data with machine learning
models. This includes feature engineering, training and tuning approaches, evaluation, and
benchmarking a forecasting model's performance. 

To get the most out of this book
This book was written under the assumption that its readers have the following knowledge
and skills:

Basic knowledge of statistics or econometrics, which includes topics such as
regression modeling, hypothesis testing, normal distribution, and so on
Experience with R, or another programming language

You will need to have R installed (https:/ /cran. r-project. org/ ) and it is recommended
to install the RStudio IDE (https:/ /www. rstudio. com/products/ rstudio/ ).

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/
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Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Time- Series- Analysis- with- R. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781788629157_ ColorImages. pdf.
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We will use the Sys.Date and Sys.time functions to pull date and time objects
respectively."

A block of code is set as follows:

library(TSstudio)

data(USgas)

The output of the R code is prefixed by the ## sign:

ts_info(USgas)

##  The USgas series is a ts object with 1 variable and 227 observations
##  Frequency: 12
##  Start time: 2000 1
##  End time: 2018 11

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/


1
Introduction to Time Series

Analysis and R
Time series analysis is the art of extracting meaningful insights from time series data by
exploring the series' structure and characteristics and identifying patterns that can then be
utilized to forecast future events of the series. In this chapter, we will discuss the
foundations, definitions, and historical background of time series analysis, as well as the
motivation of using it. Moreover, we will present the advantages and motivation of using R
for time series analysis and provide a brief introduction to the R programming language.

In this chapter, we will cover the following topics:

Time series data
Time series analysis
Key R packages in this book
R and time series analysis

Technical requirements
In order to be able to execute the R code in this book, you need the following requirements:

You need R programming language version 3.2 and above; however, it is
recommended to install one of the most recent versions (3.5 or 3.6). More
information about the hardware requirements per operating system (for
example, macOS, Windows, and Linux) is available on the CRAN website:
https:// cran. r-project. org/ .

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
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The following packages will be used in this book:
forecast: Version 8.5 and above
h2o: Version 3.22.1.1 and above and Java version 7 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
ggplot2: Version 3.1.1 and above
dplyr: Version 0.8.1 and above
lubridate: Version 1.7.4 and above
xts: Version 0.11-2 and above
zoo: Version 1.8-5 and above
UKgrid: Version 0.1.1 and above

You can access the codes for this book from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R

Time series data
Time series data is one of the most common formats of data, and it is used to describe an
event or phenomena that occurs over time. Time series data has a simple requirement—its
values need to be captured at equally spaced time intervals, such as seconds, minutes,
hours, days, months, and so on. This important characteristic is one of the main attributes
of the series and is known as the frequency of the series. We usually add the frequency
along with the name of the series. For example, the following diagram describes the four
time series from different domains (power and utilities, finance, economics, and science):

The UK hourly demand for electricity 
The S&P 500 daily closing values 
The US monthly unemployment rate 
The annual number of sunspots
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The following diagram shows the (1) UK hourly demand for electricity, (2) S&P 500 daily
closing values, (3) US monthly unemployment rate, and (4) annual number of sunspots:

Taking a quick look at the four series, we can identify common characteristics of time series
data:

Seasonality: If we look at graph 1, there is high demand during the day and low
demand during the night time.
Trend: A clear upper trend can be seen in graph 2 that's between 2013 and 2017.
Cycles: We can see cyclic patterns in both graph 3 and graph 4.
Correlation: Although S&P 500 and the US unemployment rate are presented
with different frequencies, you can see that the unemployment rate has
decreased since 2013 (negative trend). On the other hand, S&P 500 increased
during the same period (positive trend). We can make a hypothesis that there is a
negative correlation between the two series and then test it.
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Don't worry if you are not familiar with these terms at the moment. In Chapter
5, Decomposing Time Series Data, we will dive into the details of the series' structural
components—seasonality, trend, and cycle. Chapter 6, Seasonality Analysis, is dedicated to
the analysis of seasonal patterns of time series data, and Chapter 7, Correlation Analysis, is
dedicated to methods and techniques for analyzing and identifying correlation in time
series data.

Historical background of time series
analysis
Until recently, the use of time series data was mainly related to fields of science, such as
economics, finance, physics, engineering, and astronomy. However, in recent years, as the
ability to collect data improved with the use of digital devices such as computers, mobiles,
sensors, or satellites, time series data is now everywhere. The enormous amount of data
that's collected every day probably goes beyond our ability to observe, analyze, and
understand it.

The development of time series analysis and forecasting did not start with the introduction
of the stochastic process during the previous century. Ancient civilizations such as the
Greeks, Romans, or Mayans researched and learned how to utilize cycled events such as
weather, agriculture, and astronomy over time to forecast future events. For example,
during the classic period of the Mayan civilization (between 250 AD and 900 AD), the Maya
priesthood assumed that there are cycles in astronomy events and therefore they patiently
observed, recorded, and learned those events. This allowed them to create a detailed time
series table of past events, which eventually allowed them to forecast future events, such as
the phases of the moon, eclipses of the moon and the sun, and the movement of stars such
as Venus, Jupiter, Saturn, and Mars. The Mayan's priesthood used to collect data and
analyze the data to identify patterns and cycles. This analysis was then utilized to predict
future events. We can find a similarity between the Mayan's ancient analytical process and
the time series analysis process we use now. However, the modern time series analysis
process is based on statistical modeling and heavy calculations that are possible
with today's computers and software, such as R.

Now that we defined the main characteristics of time series data, we can move forward and
start to discuss the main characteristics of time series analysis.
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Time series analysis
Time series analysis is the process of extracting meaningful insights from time series data
with the use of data visualization tools, statistical applications, and mathematical models.
Those insights can be used to learn and explore past events and to forecast future events.
The analysis process can be divided into the following steps:

Data collection: This step includes extracting data from different data sources,1.
such as flat files (such as CSV, TXT, and XLMS), databases (for example, SQL
Server, and Teradata), or other internet sources (such as academic resources and
the Bureau of Statistics datasets). Later on in this chapter, we will learn how to
load data to R from different sources.
Data preparation: In most cases, raw data is unstructured and may require2.
cleaning, transformation, aggregation, and reformatting. In Chapter 2, Working
with Date and Time Objects; Chapter 3, The Time Series Object; and Chapter 4,
Working with zoo and xts Objects, we will focus on the core data preparation
methods of time series data with R.
Descriptive analysis: This is used in summary statistics and data visualization3.
tools to extract insights from the data, such as patterns, distributions, cycles, and
relationships with other drivers to learn more about past events. In Chapter 5,
Decomposition of Time Series Data; Chapter 6, Seasonality Analysis; and Chapter 7,
Correlation Analysis, we will focus on descriptive analysis methods of time series
data.
Predictive analysis: We use this to apply statistical methods in order to forecast4.
future events. Chapter 8, Forecasting Strategies; Chapter 9, Forecasting with Linear
Regression; Chapter 10, Forecasting with Exponential Smoothing Models; Chapter
11, Forecasting with ARIMA Models; and Chapter 12, Forecasting with Machine
Learning Models, we will focus on traditional forecasting approaches (such as
linear regression, exponential smoothing, and ARIMA models), as well as
advanced forecasting approaches with machine learning models.

It may be surprising but, in reality, the first two steps may take most of the process time
and effort, which is mainly due to data challenges and complexity. For instance, companies
tend to restructure their business units (BU) and IT systems every couple of years, and
therefore it is hard to identify and track the historical contribution (production, revenues,
unit sales, and so on) of a specific BU before the changes.
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In other cases, additional effort is required to clean the raw data and handle missing values
and outliers. This sadly leaves less time for the analysis itself. Fortunately, R has a variety of
wonderful applications for data preparations, visualizations, and time series modeling. This
helps to reduce the time that's spent on the preparation steps and lets you allocate more
time to the analysis itself. Throughout the rest of this chapter, we will provide background
information on R and its applications for time series analysis.

Learning with real-life examples
Throughout the learning journey in this book, we will use real-life examples of time series
data in order to apply the methods and techniques of the analysis. All of the datasets that
we will use are available in the TSstudio and UKgrid packages (unless stated otherwise).

The first time series data we will look at is the monthly natural gas consumption in the US.
This data is collected by the US Energy Information Administration (EIA) and measures
the monthly natural gas consumption from January 2000 until November 2018. The unit of
measurement is billions of cubic feet (not seasonally adjusted). The following graph shows
the monthly natural gas consumption in the US:

The following series describe the total vehicle sales in the US from January 1976 until
January 2019. The units of this series are in thousands of units (not seasonally adjusted).
The data is sourced from the US Bureau of Economic Analysis. The following graph shows
the total monthly vehicle sales in the US:
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Another monthly series that we will use is the monthly US unemployment rate, which
represents the number of unemployed as a percentage of the labor force. The series started
in January 1948 and ended in January 2019. The data is sourced from the US Bureau of
Labor Statistics. The following graph shows the monthly unemployment rate in the US:
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Last but not the least, we will use the national demand for electricity in the UK (as
measured on the grid systems) between 2011 and 2018, since it provides an example of
high-frequency time series data with half-hourly intervals. The data source is the UK
National Grid website, and the information is shown in the following graph:

Let's start by installing R.

Getting started with R
R is an open source and free programming language for statistical computing and graphics.
With more than 13,500 indexed packages (as of May 2019, as you can see in the following
graph) and a large number of applications for statistics, machine learning, data mining, and
data visualizations, R is one of the most popular statistical programming languages. One of
the main reasons for the fast growth of R in recent years is the open source structure of R,
where users are also the main package developers. Among the package developers, you can
find individuals like us, as well as giant companies such as Microsoft, Google, and
Facebook. This reduces the dependency of the users significantly with any specific
company (as opposed to traditional statistical software), allowing for fast knowledge
sharing and a diverse portfolio of solutions.
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The following graph shows the amount packages that have been shared on CRAN over
time:

You can see that, whenever we come across any statistical problem, it is likely that someone
has already faced the same problem and developed a package with a solution (and if not,
you should create one!). Furthermore, there are a vast amount of packages for time series
analysis, from tools for data preparations and visualization to advance statistical modeling
applications. Packages such as forecast, stats, zoo, xts, and lubridate made R the leading
software for time series analysis. In the A brief introduction to R section in this chapter, we
will discuss the key packages we will use throughout this book in more detail.

Now, we will learn how to install R.

Installing R
To install R on Windows, Mac, or Linux, go to the Comprehensive R Archive Network
(CRAN) main page at https://cran.r-project.org/, where you can select the relevant
operating system.

For Windows users, the installation file includes both the 32-bit and the 64-bit versions. You
can either install one of the versions or the hybrid version, which includes both the 32-bit
and 64-bit versions. Technically, after the installation, you can start working with R using
the built-in Integrated Development Environment (IDE).

https://cran.r-project.org/
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However, it is highly recommended to install the RStudio IDE and set it as your working
environment for R. RStudio will make your code writing and debugging and the use of
visualization tools or other applications easier and simple.

RStudio offers a free version of its IDE, which is available at
https://www.rstudio.com/products/rstudio/download/.

A brief introduction to R
Throughout the learning process in this book, we will use R intensively to introduce
methods, techniques, and approaches for time series analysis. If you have never used R
before, this section provides a brief introduction, which includes the basic foundations of R,
the operators, the packages, different data structures, and loading data. This won't make
you an R expert, but it will provide you with the basic R skills you will require to start the
learning journey of this book.

R operators
Like any other programming language, the operators are one of the main elements of
programming in R. The operators are a collection of functions that are represented by one
or more symbols and can be categorized into four groups, as follows:

Assignment operators
Arithmetic operators
Logical operators
Relational operators

Assignment operators
Assignment operators are probably the family of operators that you will use the most while
working with R. As the name of this group implies, they are used to assign objects such as
numeric values, strings, vectors, models, and plots to a name (variable). This includes
operators such as the back arrow (<-) or the equals sign (=):

# Assigning values to new variable
str <- "Hello World!" # String
int <- 10 # Integer
vec <- c(1,2,3,4) # Vector

https://www.rstudio.com/products/rstudio/download/
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We can use the print function to view the values of the objects:

print(c(str, int))
## [1] "Hello World!" "10"

This is one more example of the print function:

print(vec)
## [1] 1 2 3 4

While both of the operators can be used to assign values to a variable, it is not common to
use the = symbol to assign values other than within functions (for reasons that are out of
the scope of this book; more information about operator assignment is available on the
assignOps function documentation or ?assignOps function).

Arithmetic operators
This family of operators includes basic arithmetic operations, such as addition, division,
exponentiation, and remainder. As you can see, it is straightforward to apply these
operators. We will start by assigning the values 10 and 2 to the x and
y variables, respectively:

x <- 10
y <- 2

The following code shows the usage of the addition operator:

# Addition
x + y
## [1] 12

The following code shows the usage of the division operator:

x/ 2.5
## [1] 4

The following code shows the usage of the exponentiation operator:

y ^ 3
## [1] 8

Now, let's look at the logical operators.
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Logical operators
Logical operators in R can be applied to numeric or complex vectors or Boolean objects, that
is, TRUE or FALSE, where numbers greater than one are equivalent to TRUE. It is common to
use those operators to test single or multiple conditions under the if…else statement:

# The following are reserved names in R for Boolean objects:
# TRUE, FALSE or their shortcut T and F
a <- TRUE
b <- FALSE

# We can also test if a Boolean object is TRUE or FALSE
isTRUE(a)
## [1] TRUE
isTRUE(b)
## [1] FALSE

The following code shows the usage of the AND operator:

# The AND operator
a & b
## [1] FALSE

The following code shows the usage of the OR operator:

# The OR operator
a | b
## [1] TRUE

The following code shows the usage of the NOT operator:

# The NOT operator
!a
## [1] FALSE

We can see the applications of those operators by using an if...else statement:

# The AND operator will return TRUE only if both a and b are TRUE
if (a & b) {
        print("a AND b is true")
} else {
    print("a And b is false")
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The following code shows an example of the OR operator, along with the if...else
statement:

# The OR operator will return FALSE only if both a and b are FALSE
if(a | b){
        print("a OR b is true")
} else {
         print("a OR b is false")
## [1] "a OR b is true"

Likewise, we can check whether the Boolean object is TRUE or FALSE with the isTRUE
function:

isTRUE(a)
## [1] TRUE

Here, the condition is FALSE:

isTRUE(b)
## [1] FALSE

Now, let's look at relational operators.

Relational operators
These operators allow for the comparison of objects, such as numeric objects and symbols.
Similar to logical operators, relational operators are mainly utilized for conditional
statements such as if…else, while:

# Assign for variables a and b the value 5, and 7 to c
a <- b <- 5
c <- 7

The following code shows the use of the if…else statement, along with the output:

if(a == b){
    print("a is equal to b")
    } else{
        print("a is not equal to b")
    }
## [1] "a is equal to b"
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Alternatively, you can use the ifelse function when you want to assign a value in an
if…else structure:

d <- ifelse(test = a >= c,
            yes = "a is greater or equal to c",
            no = "a is smaller than c" )

Here, the ifelse function has three arguments:

test: Evaluates a logical test
yes: Defines what should be the output if the test result is TRUE
no: Defines what should be the output if the test result is FALSE

Let's print the value of the d variable to check the output:

print(d)
## [1] "a is smaller than c"

As a core function of R, the operators are defined on the base package (one of R's inherent
packages), where each group of operators is defined by a designated function. More
information about the operators is available in the function documentation, which you can
access with the help function (? or help()):

# Each package must have documentation for each function
# To access the function documentation use the ? or the help(function)
?assignOps
?Arithmetic
?Logic
?Comparison

Now, let's look at the R package.

The R package
The naked version of R (without any installed packages) comes with seven core packages
that contain the built-in applications and functions of the software. This includes
applications for statistics, visualization, data processing, and a variety of datasets. Unlike
any other package, the core packages are inherent in R, and therefore they load
automatically. Although the core packages provide many applications, the vast amount of
the R applications are based on the uninherent packages that are stored on CRAN or in
GitHub repository.
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As of May 2019, there are more than 13,500 packages with applications for statistical
modeling, data wrangling, and data visualization for a variety of domains (statistics,
economics, finance, astronomy, and so on). A typical package may contain a collection of R
functions, as well as compiled code (utilizing other languages, such as C, Java, and
FORTRAN). Moreover, some packages include datasets that, in most cases, are related to
the package's main application. For example, the forecast package comes with a time series
dataset, which is used to demonstrate the forecasting models that are available in the
package.

Installation and maintenance of a package
There are a few methods that you can use to install package, the most common of which is
by using the install.packages function:

# Installing the forecast package:
 install.packages("forecast")

You can use this function to install more than one package at once by using a vector type of
input:

install.packages(c("TSstudio", "xts", "zoo"))

Most of the packages frequently get updates. This includes new features, improvements,
and error fixing. R provides a function for updating your installed packages. The
packageVersion function returns the version details of the input package:

packageVersion("forecast")
[1] '8.5'

The old.packages function identifies whether updates are available for any of the
installed packages, and the update.packages function is used to update all of the
installed packages automatically. You can update a specific package using the
install.packages function, with the package name as input. For instance, if we wish to
update the lubridate package, we can use the following code:

install.packages("lubridate")

Last but not least, removing a package can be done with the remove.packages function:

remove.packages("forecast")
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When updating or removing an installed package with the
install.packages or remove.packages functions, make sure that the
package is not loaded to the working environment. The following section
explains how to check whether a package has been loaded.

Loading a package in the R working environment
The R working environment defines the working space where the functions, objects, and
data that are loaded are kept and are available to use. By default, when opening R, the
global environment is loaded, and the built-in packages of R are loaded. 

An installed package becomes available for use on the R global environment once it is
loaded. The search function provides an overview of the loaded packages within your
environment. For example, if we execute the search function when opening R, this is the
output you expect to see:

search()
## [1] ".GlobalEnv"        "package:stats"     "package:graphics"
## [4] "package:grDevices" "package:utils"     "package:datasets"
## [7] "package:methods"   "Autoloads"         "package:base"

As you can see from the preceding output, currently, only the seven core packages of R are
loaded. Loading a package into the environment can be done with either the library or
the require function. While both of these functions will load an installed package and
its attached functions, the require function is usually used within a function as it returns
FALSE upon failure (compared to an error that the library function returns upon failure).
Let's load the TSstudio package and see the change in environment:

library(TSstudio)

Now, we will check the global environment again and review the changes:

search()

We get the following output:

##  [1] ".GlobalEnv"        "package:TSstudio"  "package:stats"
##  [4] "package:graphics"  "package:grDevices" "package:utils"
##  [7] "package:datasets"  "package:methods"   "Autoloads"
## [10] "package:base"
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Similarly, you can unload a package from the environment by using the detach function:

detach("package:TSstudio", unload=TRUE)

Let's check the working environment after detaching the package:

search()
## [1] ".GlobalEnv"        "package:stats"     "package:graphics"
## [4] "package:grDevices" "package:utils"     "package:datasets"
## [7] "package:methods"   "Autoloads"         "package:base"

The key packages
Here is a short list of the key packages that we will use throughout this book by topic:

Data preparation and utility functions. These include the following::
stats: One of the base packages of R, this provides a set of statistical
tools, including applications for time series, such as time series
objects (ts) and the window function.
zoo and xts: With applications for data manipulation, aggregation,
and visualization, these packages are some of the main tools that
you use to handle time series data in an efficient manner.
lubridate: This provides a set of tools for handling a variety of
dates objects and time formats.
dplyr: This is one of the main packages in R for data manipulation.
This provides a powerful tool for data transformation and
aggregation.

Data visualization and descriptive analysis. These include the following:
TSstudio: This package focuses on both descriptive and predictive
analysis of time series data. It provides a set of interactive data
visualizations tools, utility functions, and training methods for
forecasting models. In addition, the package contains all the
datasets that are used throughout this book.
ggplot2 and plotly: Packages for data visualization applications.
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Predictive analysis, statistical modeling, and forecasting. These include the
following:

forecast: This is one of the main packages for time series analysis
in R and has a variety of applications for analyzing and forecasting
time series data. This includes statistical models such as ARIMA,
exponential smoothing, and neural network time series models, as
well as automation tools.
h2o: This is one of the main packages in R for machine learning
modeling. It provides machine learning algorithms such as
Random Forest, gradient boosting machine, deep learning, and so
on.

Variables
Variables in R have a broader definition and capabilities than most typical programming
languages. Without the need to declare the type or the attribute, any R object can be
assigned to a variable. This includes objects such as numbers, strings, vectors, tables, plots,
functions, and models. The main features of these variables are as follows:

Flexibility: Any R object can be assigned to a variable, without any pre-step
(such as declaring the variable type). Furthermore, when assigning the object to a
new variable, all the attributes of the object transform, along with its content to
the new variable.
Attribute: Neither the variable nor its attributes are needed to be defined prior to
the assignment of the object. The object attribute passes to the variable upon
assignment (this simplicity is one of the strengths of R). For example, we will
assign the Hello World! string to the a variable:

a <- "Hello World!"

Let's look at the attributes of the a variable:

class(a)

We get the following output:

## [1] "character"
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Now, let's assign the a variable to the b variable and check out the characteristics
of the new variable:

b <- a
b

We get the following output:

## [1] "Hello World!"

Now, let's check the characteristics of the new variable:

class(b)

We get the following output:

## [1] "character"

As you can see, the b variable inherited both the value and attribute of
the a variable.

Name: A valid variable name could consist of letters, numbers, and the dot or
underline characters. However, it must start with either a letter or a dot, followed
by a letter (that is, var_1, var.1, var1, and .var1 are examples of valid names,
while 1var and .1var are examples of invalid names). In addition, there are sets
of reserve names that R uses for its key operations, such as if, TRUE, and FALSE,
and therefore cannot be used as variable names. Last but not least, variable
names are case-sensitive. For example, Var_1 and var_1 will refer to two
different variables.

Now that we have discussed operators, packages, and variables, it is time to jump into the
water and start working with real data!

Importing and loading data to R
Importing or loading data is one of the key elements of the work flow in any analysis. R
provides a variety of methods that you can use to import or load data into the environment,
and it supports multiple types of data formats. This includes importing data from flat files
(for example, CSV and TXT), web APIs or databases (SQL Server, Teradata, Oracle, and so
on), and loading datasets from R packages. Here, we will focus on the main methods that
we will use in this book—that is, importing data from flat files or the web API and loading 
data from the R package.
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Flat files
It is rare to find a type of the available common data format that isn't possible to import
directly to R from CSV and Excel formats to SPSS, SAS, and STATA files. RStudio has a
built-in option that you can use to import datasets either from the environment quadrant or
the main menu (File | Import Dataset). Files can be imported from your hard drive, the
web, or other sources. In the following example, we will use the read.csv function to
import a CSV file with information about the US monthly total vehicle sales from GitHub:

First, let's assign the URL address to a variable:1.

file_url <-
"https://raw.githubusercontent.com/PacktPublishing/Hands-On-Time-Se
ries-Analysis-with-R/master/Chapter%201/TOTALNSA.csv"

Next, we will use the read.csv function to read the file and assign it to an object2.
named df1:

df1 <- read.csv(file = file_url, stringsAsFactors = FALSE)

We can use class and str to review the characteristics of the object:3.

class(df1)
## [1] "data.frame"

The following code block shows the output of the str function:4.

str(df1)
## 'data.frame':    504 obs. of  2 variables:
##  $ Date : chr  "1/31/1976" "2/29/1976" "3/31/1976" "4/30/1976"
...
##  $ Value: num  885 995 1244 1191 1203 ...

The file path is stored in a variable for convenience. Alternatively, you can use the full path
directly within the read.csv function. The stringsAsFactors option transforms strings
into a categorical variable (factor) when TRUE; setting it to FALSE prevents this. The CSV
file is stored in an object name, that is, df1 (df is a common abbreviation for data frame),
which is where the read.csv file stores the table content in a data frame format. The
str() function provides an overview of the key characteristics of the data frame. This
includes the number of observations and variables, the class, and the first observation of
each variable.
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Be aware that some of your data attributes may get lost or change during
the import process, mainly when working with non-numeric objects such
as dates and mixed objects (numeric and characters). It is highly
recommended to check data attributes once they are imported into the
environment and reformat the data if needed. For example, a common
change in the data attribute occurs when importing date or time objects
from a TXT or CSV file. Since those objects are the key elements of the
time series data, the following chapter focuses on handling and
reformatting date and time objects. In Chapter 2, Working with Date and
Time Objects, we will discuss how to handle the loss of the attributes of
date and time objects when importing from external sources.

Web API
Since the ability to collect and store data has improved significantly in recent years, the use
of the web API became more popular. It opens access for an enormous amount of data that
is stored in a variety of databases, such as the Federal Reserve Economic Data (FRED), the
Bureau of Labor Statistics, the World Bank, and Google Trends. In the following example,
we will import the US total monthly vehicle sales dataset (https:/ /fred. stlouisfed. org/
series/TOTALNSA) again, this time using the Quandl API to source the data from FRED:

library(Quandl)

df2 <- Quandl(code = "FRED/TOTALNSA",
              type = "raw",
              collapse = "monthly",
              order = "asc",
              end_date="2017-12-31")

Source

U.S. Bureau of Economic Analysis, Total Vehicle Sales [TOTALNSA],
retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/TOTALNSA, May 19, 2019.

The main arguments of the Quandl function are as follows:

code: This defines the source and name of the series. In this case, the source is
FRED and the name of the series is TOTALNSA.
type: This is the data structure of the input series. This could be either raw, ts,
zoo, xts, or timeSeries objects.
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collapse: This sets the aggregation level of the series frequency. For example, if
the raw series has a monthly frequency, you can aggregate the series to a
quarterly or annually frequency.
order: This defines whether the series should be arranged in ascending or
descending order.
end_date: This sets the ending date of the series.

Now, let's review the key characteristics of the new data frame:

class(df2)
## [1] "data.frame"

This is the output when we use str(df2):

str(df2)
## 'data.frame':    504 obs. of  2 variables:
##  $ Date : Date, format: "1976-01-31" "1976-02-29" ...
##  $ Value: num  885 995 1244 1191 1203 ...
##  - attr(*, "freq")= chr "monthly"

The Quandl function is more flexible than the read.csv function we used in the previous
example. It allows the user to control the data format and preserve its attributes, customize
the level of aggregation, and be a time saver. You can see that the structure of the df2 data
frame is fairly similar to the one of the df1 data frame—a data frame with two variables
and 504 observations. However, we were able to preserve the attribute of the Date variable
(as opposed to the df1 data frame, where the Date variable transformed into character
format).

R datasets
The R package, in addition to code and functions, may contain datasets that support any of
the R designated formats (data frame, time series, matrix, and so on). In most cases, the use
of the dataset is either related to the package's functionalities or for educational reasons. For
example, the TSstudio package, which stores most time series datasets, will be used in this
book. In the following example, we will load the US total monthly vehicle sales again, this
time using the TSstudio package:

# If the package is not installed on your machine:
 install.packages("TSstudio")
# Loading the series from the package
 data("USVSales", package = "TSstudio")
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The class(USVSales) function gives us the following output:

class(USVSales)
## [1] "ts"

The head(USVSales) function gives us the following output:

head(USVSales)
## [1]  885.2  994.7 1243.6 1191.2 1203.2 1254.7

Note that the data function is not assigning the object. Rather, it is
loading it to the environment from the package. The main advantage of
storing a dataset in a package format is that there is no loss of attributes
(that is, there is no difference between the original object and the loaded
object).

We used the data function to load the USVSales dataset of the TSstudio package.
Alternatively, if you wish to assign the dataset to a variable, you can do either of the
following:

Load the data into the working environment and then assign the loaded object to
a new variable.
Assign directly from the package to a variable by using the :: operator. The ::
operator allows you to call for objects from a package (for example, functions and
datasets) without loading it into the working environment. For example, we can
load the USVSales dataset series directly from the TSstudio package with the ::
operator:

US_V_Sales <- TSstudio::USVSales

Note that the USVSales dataset series that we loaded from the TSstudio package is a time
series (ts) object, that is, a built-in R time series class. In Chapter 3, The Time Series Object,
we will discuss the ts class and its usage in more detail.

Working and manipulating data
R is a vector-oriented programming language since most of the objects are organized in
vector or matrix fashion. While most of us associate vectors and matrices with linear
algebra or other mathematics fields, R defines those as a flexible data structure that
supports both numeric and non-numeric values. This makes working with data easier and
simpler, especially when we work with mixed data classes. The matrix structure is a generic
format for many tabular data types in R.
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Among those, the most common types are as follows (the function's package name is in
brackets):

matrix (base): This is the basic matrix format and is based on the numeric
index of rows and columns. This format is strict about the data class, and it isn't
possible to combine multiple classes in the same table. For example, it is not
possible to have both numeric and strings at the same table.
data.frame (base): This is one of the most popular tabular formats in R. This
is a more progressive and liberal version of the matrix function. It includes
additional attributes, which support the combination of multiple classes in the
same table and different indexing methods.
tibble (tibble): It is part of the tidyverse family of packages (RStudio
designed packages for data science applications). This type of data is another
tabular format and an improved version of the data.frame base package with
the improvements that are related to printing and sub-setting applications.
ts (stats) and mts (stats): This is R's built-in function for time series
data, where ts is designed to be used with single time series data and multiple
time series (mts) supports multiple time series data. Chapter 3, The Time Series
Object, focuses on the time series object and its applications.
zoo (zoo) and xts (xts): Both are designated data structures for time series
data and are based on the matrix format with a timestamp index. Chapter 4,
Decomposition of Time Series Data, provides an in-depth introduction to the zoo
and xts objects.

If you have never used R before, the first data structure that you will meet will probably be
the data frame. Therefore, this section focuses on the basic techniques that you can use for
querying and exploring data frames (which, similarly, can be applied to the other data
structures). We will use the famous iris dataset as an example.

Let's load the iris dataset from the datasets package:

# Loading dataset from datasets package
 data("iris", package = "datasets")

Like we did previously, let's review the object structure using the str function:

str(iris)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
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##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1
1 1 1 1 1 ...

As you can see from the output of the str function, the iris data frame has 150
observations and 5 variables. The first four variables are numeric, while the fifth variable is
a categorical variable (factor). This mixed structure of both numeric and categorical
variables is not possible in the normal matrix format. A different view on the table is
available with the summary function, which provides summary statistics for the data
frame's variables:

summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500
##        Species
##  setosa    :50
##  versicolor:50
##  virginica :50
##
##
##

As you can see from the preceding output, the function calculates the numeric variables'
mean, median, minimum, maximum, and first and third quartiles.

Querying the data
There are several ways to query a data frame. This includes the use of built-in functions or
the use of the data frame rows and columns index. For example, let's assume that we want
to get the first five observations of the second variable (Sepal.Width). We will take a look
at four different ways that we can do this:

We can do so using the row and column index of the data frame with the square
brackets, where the left-hand side represents the row index and the right-hand
side represents the column index:

iris[1:5, 2]
## [1] 3.5 3.0 3.2 3.1 3.6
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We can do so specifying a specific variable in the data frame using the $ operator
and the relevant row index. This method is limited to one variable as opposed to
the previous method, which supports multiple rows and columns:

iris$Sepal.Width[1:5]
## [1] 3.5 3.0 3.2 3.1 3.6

Similar to the first approach, we can use the row index and column names of the
data frame with square brackets:

iris[1:5, "Sepal.Width"]
## [1] 3.5 3.0 3.2 3.1 3.6

We can do so using a function that retrieves the index parameter of the rows or
columns. In the following example, the which function returns the index value of
the Sepal.Width column based on the following argument:

iris[1:5, which(colnames(iris) == "Sepal.Width")]
## [1] 3.5 3.0 3.2 3.1 3.6

When working with R, you can always be sure that there is more than one way to do a
specific task. We used four methods, all of which achieved similar results. The use of square
brackets is typical for any index vector or matrix format in R, where the index parameters
are related to the number of dimensions. In all of these examples, besides the second one,
the object is the data frame, and therefore there are two dimensions (rows and columns
index). In the second example, we specify the variable (or the column) we want to use and,
therefore, there is only one dimension, that is, the row index. In the third method, we used
the variable name instead of the index, and in the fourth method, we used a built-in
function that returns the variable index. Using a specific name or function to identify the
variable index value is useful in a scenario where the column name is known, but the index
value is dynamic (or unknown).

Now, let's assume that we are interested in identifying the key attributes of setosa, one of
the three species of the Iris flower in the dataset. First, we have to subset the data frame and
use only the observations of setosa. Here are three simple methods to extract the setosa
values (of course, there are more methods):

We can use the subset function, where the first argument is the data that we
wish to subset and the second argument is the condition we want to apply:

Setosa_df1 <- subset(x = iris, iris$Species == "setosa")
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Let's use the head(Setosa_df1) function:

head(Setosa_df1)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa

Similarly, you can use the filter function.
Alternatively, you can use the index method we introduced previously with the
which argument in order to assign the number of rows where the species is equal
to setosa. Since we want all of the columns, we will leave the columns
argument empty:

Setosa_df2 <- iris[which(iris$Species == "setosa"), ]

Let's use the head(Setosa_df2) function:

head(Setosa_df2)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa

You can see that the results from both methods are identical:

identical(Setosa_df1, Setosa_df2)
## [1] TRUE

Using the subset data frame, we can get summary statistics for the setosa species using
the summary function:

summary(Setosa_df1)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width
##  Min.   :4.300   Min.   :2.300   Min.   :1.000   Min.   :0.100
##  1st Qu.:4.800   1st Qu.:3.200   1st Qu.:1.400   1st Qu.:0.200
##  Median :5.000   Median :3.400   Median :1.500   Median :0.200
##  Mean   :5.006   Mean   :3.428   Mean   :1.462   Mean   :0.246
##  3rd Qu.:5.200   3rd Qu.:3.675   3rd Qu.:1.575   3rd Qu.:0.300
##  Max.   :5.800   Max.   :4.400   Max.   :1.900   Max.   :0.600
##        Species
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##  setosa    :50
##  versicolor: 0
##  virginica : 0
##
##
##

The summary function has broader applications beside the summary statistics of
the data.frame object and can be used to summarize statistical models and other types of
objects.

Help and additional resources
It is not a matter of if but rather when you will get your first error or try to solve a problem.
You can be sure that dozens of people faced a similar problem before you did, and you
should look for answers on the internet. Here are some good resources to look at for some
help or information about R:

Stack Overflow: This is an online community website for developers of any
programming language. You can ask your question or look for answers to similar
questions by visiting https://stackoverflow.com/.
GitHub: This is known as a hosting service for version control with Git, but it is
also a great platform for sharing code, reporting errors, or getting answers. Each
R package has its own repository that contains information about the package
and provides a communication channel between the users and the package
maintainer (to report errors).
Package documentation and vignettes: This provides information about the
package's functions and examples of their uses.
Google it: If you couldn't find the answer you were looking for in the preceding
resources, then Google it, and try to find other resources. You will be surprised
by the amount of information that's available for R out there.

https://stackoverflow.com/
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Summary
This chapter provided an overview of time series analysis with R. We started with the basic
definition of time series data and the analysis process, which we will use throughout this
book. In addition, we discussed the uses of R for time series analysis. This included the
packages and the datasets we will use in this book. Last but not least, we provided a brief
introduction to the R programming languages so that we could align them with the R
prerequisites of this book.

In the next chapter, we will focus on the date and time object, one of the core elements of
the time series object.



2
Working with Date and Time

Objects
The main attribute of time series data is its timestamp, which could be a date object, time
object, or other index format depending on the series frequency. Typically while loading
raw data, it is not trivial to have the date or time object formatted and ready to use.
Therefore, it is most likely that the raw data may require some reformatting before you are
able to transform your data into time series format. The ability to work with time and date
objects is an essential part of the data preparation process. In this chapter, we will introduce
a set of tools and applications for dealing with those objects, starting with R's built-in tools
and classes from the base package and moving to the advanced applications of the
lubridate package.

In this chapter, we will cover the following topics:

The date and time formats
Date and time objects in R
Creating a date or time index
Manipulation of date and time with lubridate package

Technical requirements
The following packages will be used in this chapter:

lubridate: Version 1.7.4 and above
base: Version 3.6.0 and above
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You can access the code for this book from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter02

The date and time formats
One of the main challenges of working with date and time objects is the variety of formats
that can be used for representing date and time. For example, most of the common calendar
systems use an alphabetical form to represent the three date components:

Y: Refers to the year, which can display either using the yy (two-digits year, for
example, 18) or yyyy (four-digit year, for example, 2018) formats.
M: Refers to the month. Here there are four methods to display the month:

m: One-digit month (the first 9 months represented by a single
digit, for example, 1 for January, 2 for February, and so on)
mm: Two-digit month (the first 9 months represented by two digits,
for example, 01 for January, 02 for February, and so on)
mmm: Three-letter abbreviation for a month (for example, Jan for
January, Feb for February, and so on)
mmmm: Full month name (for example, January, February, and so
on)

D: Refers to the day. In a similar fashion to the month, there are four methods for
displaying it:

d: One-digit day (the first 9 days of the months represented by a
single digit, for example, 1, 2, 3, and so on)
dd: Two-digit month (the first 9 days of the months represented by
two digits, for example, 01, 02, 03, and so on)
ddd: Three-letter abbreviation for the day of the week (for example,
Mon for Monday, Tue for Tuesday, and so on)
dddd: Full name of the day of the week (for example, Monday,
Tuesday, and so on)

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter02
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In addition, each country or region uses a different order to represent the date components,
as seen in the following table:

Order
styles Main regions and countries

Approximate
population in
millions

DMY, YMD

Afghanistan, Albania, Austria, the Czech Republic,
Germany, Kenya, Macau, the Maldives, Montenegro,
Namibia, Nepal, Singapore, South Africa, Sri Lanka, and
Sweden

225

DMY
Asia (Central, South East, West), Australia, New Zealand,
parts of Europe, Latin America, North Africa, India,
Indonesia, Bangladesh, and Russia

3,565

YMD
Bhutan, Canada, China, Korea, Taiwan, Hungary, Iran,
Japan, Lithuania, and Mongolia 1,745

DMY, MDY Malaysia, Nigeria, the Philippines, Saudi Arabia, and
Somalia 380

MDY
The United States, the Federated States of Micronesia, and
the Marshall Islands 325

Table 1: Date format style by region/country

This creates a large number of possible combinations to represent a single date, for
example, October 14, 2014 would be displayed as follows:

10/14/2015 or Oct 14th, 2015 in the US
14/10/2015 or 14th Oct 2015 in Europe
2015/10/14 in Canada or China
Either 14/10/2015 or 2015/10/14 in Sweden or South Africa

With so many types of formats, working with date and time objects can be cumbersome
and challenging in any programming language. Luckily, R provides good tools to handle
those types of objects in a seamless and effective way. Among the many types of date and
time objects, this chapter focuses on R's built-in classes, as they are the core of most of the
other classes. In Chapter 4, Working with zoo and xts Objects, we will discuss the zoo
package, which provides more advanced and friendly classes for date and time objects.
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Date and time objects in R
The base package, one of R's core packages, provides two types of date and time classes:

Date: This is a simple representation of a calendar date following the ISO 86011.
international standard format (or the Gregorian calendar format) using the
YYYY-m-d date format. Each date object has a numeric value of the number of
days since the origin point (the default setting is 1970-01-01). In the Handling
numeric date objects section in this chapter, we will discuss the usage of the origin
in the reformatting process of date objects in more detail. It will make sense to
use this format when the frequency of the data is daily or lower (for example,
monthly, quarterly, and so on) and the time of the day doesn't matter.
POSIXct/POSIXlt: Also known as the DateTime classes (that is, they represent2.
both date and time), these are two POSIX date/time classes that represent the
calendar date, the time of the day, and the time zone using the ISO 8601
international standard format of YYYY-m-d H:M:S. The main difference between
the two is the form in which the values are stored internally. The POSIXct class,
similar to the Date class, represents the (signed) number of seconds since the
origin point (1970-01-01, UTC time zone) as a numeric vector. On the other hand,
the POSIXlt class stores each one of the date and time elements as a list. 

In Chapter 3, The Time Series Object, and Chapter 4, Working with zoo and xts Objects, we
will see the applications of the Date and POSIXct/POSIXlt objects as an index or
timestamp of time series objects.

For naming convenience throughout this chapter, date object refers to the
Date class and time object refers to the POSIXct/POSIXlt class (unless
stated otherwise).

It makes sense to use a time object (either POSIXct or POSIXlt objects) only if the series
frequency is higher than daily (such as hourly, half-hourly, by minute, or by second).
Otherwise, for simplicity reasons, it is recommended that you use the date object. Let's
review the differences between date and time objects. We will use the Sys.Date and
Sys.time functions to pull date and time objects respectively:

date <- Sys.Date()
date
## [1] "2019-02-10"

time_ct <- Sys.time()
time_ct
## [1] "2019-02-10 20:57:45 PST"
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Let's check the class of the two objects:

class(date)
## [1] "Date"

class(time_ct)
## [1] "POSIXct" "POSIXt"

By default, the Sys.time function returns an object of the POSIXct, POSIXt, or POSIXct
class. We can use the as.POSIXlt function to convert the object to a POSIXlt object:

time_lt <- as.POSIXlt(time_ct)

time_lt
## [1] "2019-02-10 20:57:45 PST"

class(time_lt)
## [1] "POSIXlt" "POSIXt"

While both the POSIXct and POSIXlt objects have the same representation, the key
difference between the two is in the method in which each object is stored internally in the
time details. We will use the unclass command to strip down the object to the format it is
stored internally:

unclass(time_ct)
## [1] 1549861066

The POSIXct object stored the numeric distance of the time object from the origin point. On
the other hand, POSIXlt returned a detailed list with the different time components:

 unclass(time_lt)

 ## $sec
 ## [1] 45.81006
 ## $min
 ## [1] 57
 ## $hour
 ## [1] 20
 ## $mday
 ## [1] 10
 ## $mon
 ## [1] 1
 ## $year
 ## [1] 119
 ## $wday
 ## [1] 0
 ## $yday
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 ## [1] 40
 ## $isdst
 ## [1] 0
 ## $zone
 ## [1] "PST"
 ## $gmtoff
 ## [1] -28800
 ## attr(,"tzone")
 ## [1] ""    "PST" "PDT"

Here, the POSIXct object returned the following components:

sec: The seconds of the time object.
min: The minutes of the time object.
hour: The hours of the time object (24-hour military time).
mday: The day of the month.
month: The month of the year.
year: Defines the number of years since 1900 (for example, 119 for 2019).
wday: The day of the week represented by an integer between 0 and 6 (where 0 is
Sunday).
isdst: Daylight saving time flag.
yday: The day of the year, an integer between 0 and 365.
zone: The time zone. Note that the time zone is defined by the defined time zone
of the machine.
gmtoff: The offset in seconds from GMT.

The following additional feature of the POSIXlt class is very useful when you want to
query for a specific element of the time object. For instance, we can pull the second value of
the object using the following command:

unclass(time_lt)$sec
## [1] 45.81006

Or we can pull the day of the year:

unclass(time_lt)$yday
## [1] 40
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Creating date and time objects
R has a structural method to assign values to a specific class or object, which is usually the
combination of as.[the class name]. For example, as.character assigns or converts
an object to the character class. Similarly, creating a new object or converting the existing
object to Date, POSIXlt, or POSIXct can be done with as.Date, as.POSIXlt, or
as.POSIXct respectively.

As long as the assigned object follows the relevant format, the creation of the object is fairly
simple. For instance, we can convert the "2014-5-12" string into a Date object using the
as.Date function:

date <- as.Date("2014-5-12")

date
## [1] "2014-05-12"

class(date)
## [1] "Date"

The as.POSIXct or as.POSIXlt function works in a similar manner:

time_ct <- as.POSIXct("2014-5-12 20:05:35", tz = "EST")

time_ct
## [1] "2014-05-12 20:05:35 EST"

class(time_ct)
## [1] "POSIXct" "POSIXt"

The format of both the classes is well defined by the ISO 8601 international standard. This is
really helpful, as it leaves no room for interpretation once the object is created and therefore
reduces the ambiguity when working with this type of objects. However, the main
challenge remains: the import process of data with the date or time objects from external
sources such as flat files, databases, or web API. Unlike numeric values that automatically
get assigned to the numeric object, date and time objects may require additional
reformatting and conversion efforts before they can be assigned into one of the date or time
classes. In the next section, we will start to dive into the reformatting process of date and
time objects.
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Importing date and time objects
Importing date and time objects to any programming language can be a challenging
process for several reasons:

Firstly, unlike other fields of programming language, there is no single format or
a clear standard for date or time objects. While R adopted the ISO 8601 format, it
is not necessarily true that other software use the same format.
Moreover, the setting of the origin point (or the reference point) varies between
the software. While in R it is set to January 1, 1970, in SAS it is set to January 1,
1960, and in Excel, it is set to January 1, 1900. If the source of your data is coming
from other software and converted to a numeric value, then you modify the
default origin point accordingly.

Last but not least, even if your objects are already reformatted to
the ISO 8601 standard, in some cases, the attributes are lost and R
will automatically classify it as a string or categorical variable (if
the stringsAsFactors function is set to TRUE).

Once the date or time object is imported to R, the process of reformatting and converting
date and time objects to Date or POSIXct/POSIXlt classes, respectively, is fairly similar.
For reasons of simplicity, we will start first with the reformatting methods of date objects
and then generalize the process to time objects.

Reformatting and converting date objects
Reformatting or converting date objects is the process of transforming a non-date (or
POSIXct/lt) object such as character or numeric to a Date format (or POSIXct/lt). The
next example demonstrates the complexity of working with different Date formats. The
dates_formats.csv file contains a representation of a date sequence using seven different
formats. The file is available on the book's GitHub repository and can be loaded using the
following URL:

url <-
"https://raw.githubusercontent.com/PacktPublishing/Hands-On-Time-Series-Ana
lysis-with-R/master/Chapter%202/dates_formats.csv"

dates_df <- read.csv(url, stringsAsFactors = FALSE)
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Before starting with the reformatting process, let's review the structure of the data frame
using the str function:

str(dates_df)
## 'data.frame': 22 obs. of 7 variables:
## $ Japanese_format : chr "2017/1/20" "2017/1/21" "2017/1/22" "2017/1/23"
...
## $ US_format : chr "1/20/2017" "1/21/2017" "1/22/2017" "1/23/2017" ...
## $ US_long_format : chr "Friday, January 20, 2017" "Saturday, January 21,
2017" "Sunday, January 22, 2017" "Monday, January 23, 2017" ...
## $ CA_mix_format : chr "January 20, 2017" "January 21, 2017" "January 22,
2017" "January 23, 2017" ...
## $ SA_mix_format : chr "20 January 2017" "21 January 2017" "22 January
2017" "23 January 2017" ...
## $ NZ_format : chr "20/01/2017" "21/01/2017" "22/01/2017" "23/01/2017"
...
## $ Excel_Numeric_Format: num 42755 42756 42757 42758 42759 ...

The data frame contains 7 columns, where each represents a different representative of the
same date sequence. The first six columns are character objects and the seventh object is
numeric. In the following examples, we will convert each one of the columns to a date
object by identifying the date structure and reformat it accordingly.

The first variable in the data frame represents Excel's Japanese format for date. Since this
format has a similar structure to the ISO 8601 there is no need to reformat them and the
conversion from character to Date format is straightforward with the as.Date function:

dates_df$Japanese_format_new <- as.Date(dates_df$Japanese_format)

You can notice that the converted object looks exactly like the original input object:

head(dates_df[, c("Japanese_format", "Japanese_format_new")])
## Japanese_format Japanese_format_new
## 1 2017/1/20 2017-01-20
## 2 2017/1/21 2017-01-21
## 3 2017/1/22 2017-01-22
## 4 2017/1/23 2017-01-23
## 5 2017/1/24 2017-01-24
## 6 2017/1/25 2017-01-25

Although both visually look the same, each has its own unique attribute, and they are not
identical:

identical(dates_df$Japanese_format, dates_df$Japanese_format_new)
## [1] FALSE

class(dates_df$Japanese_format)
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## [1] "character"

class(dates_df$Japanese_format_new)
## [1] "Date"

If the format of the input object is different from the ISO 8601 standard, using the as.Date
function without declaring the object format structure would return incorrect results (and,
in some instances, an error). For example, let's try to convert the 31-01-2018 date to Date
format without reformatting it:

as.Date("31-01-2018")
## [1] "0031-01-20"

This is totally wrong! One way to solve this issue is by adding the format argument in the
as.Date function in order to map the different components of the input object to the
structure of the Date object. Going back to the previous example, the mapping should be
according to the date components order of the input object:

as.Date("31-01-2018", format = "%d-%m-%Y")
## [1] "2018-01-31"

That looks much better! The following table provides a summary of the main arguments for
date objects. The full list is available in the documentation of the strptime function
(?strptime) at https:/ / www. rdocumentation. org/ packages/ base/ versions/ 3.6.0/
topics/strptime:

Symbol Meaning Example

%a
Abbreviated weekday name in the current locale on this
platform Sun, Mon, Thu

%A Full weekday name in the current locale Sunday, Monday,
Thursday

%b
Abbreviated month name in the current locale on this
platform Jan, Feb, Mar

%B Full month name in the current locale January, February,
March

%d Day of the month as a decimal number 01, 02, 03
%m Month as a decimal number 01, 02, 03
%y A year without a century (two-digit) 18

%Y A year with a century (four-digit) 2018

%r For a 12-hour clock defined by the AM/PM indicator AM

Table 2: The main arguments for reformatting date objects with the format argument
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Using these arguments is fairly easy, and we need to follow a simple logic:

The order of the arguments needs to match the order of the input object
The argument type needs to be aligned with the date component type (for
example, %Y for 2018, %y for 18, and so on)
The separators between the arguments must match the ones in the input object

Going back to the dates_df data frame, we will use the format argument to reformat and
convert the other date objects in the table. The second column represents the US date
format, which is MDY:

dates_df$US_format[1]
## [1] "1/20/2017"

Since this format is different from the ISO 8601 format, we will add the format argument
to map the date component properly:

dates_df$US_format_new <- as.Date(dates_df$US_format, format = "%m/%d/%Y")

Similarly, we will apply this logic to the next columns:

dates_df$US_long_format[1]
## [1] "Friday, January 20, 2017"

dates_df$US_long_format_new <- as.Date(dates_df$US_long_format, format =
"%A, %B %d, %Y")

dates_df$CA_mix_format[1]
## [1] "January 20, 2017"

dates_df$CA_mix_format_new <- as.Date(dates_df$CA_mix_format, format = "%B
%d, %Y")

dates_df$SA_mix_format[1]
## [1] "20 January 2017"

dates_df$SA_mix_format_new <- as.Date(dates_df$SA_mix_format, format = "%d
%B %Y")

dates_df$NZ_format[1]
## [1] "20/01/2017"

dates_df$NZ_format_new <- as.Date(dates_df$NZ_format, format = "%d/%m/%Y")
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Handling numeric date objects
As discussed previously, date objects are stored internally in R as numeric values that
represent the number of days from the origin point. You can easily retrieve the numeric
value of the object by using the as.numeric function. To demonstrate how this system
works, we will store two variables with the following date:

January 1, 1970, which also represents the origin point in R
The current date, by capturing it from the system using the Sys.Date function:

date1 <- as.Date("1970-01-01")
date2 <- Sys.Date()

print(c(date1, date2))
## [1] "1970-01-01" "2019-02-10"

Now let's get the numeric representation of the two objects using the as.numeric function:

as.numeric(date1)
## [1] 0

as.numeric(date2)
## [1] 17937

Not surprisingly, the numeric value of date1 (which is also the origin date) is equal to 0,
and the numeric value of date2 is equal to 17937, which is the number of seconds
between date2 and the origin (which is represented by date1).

This attribute could be very useful when importing data from other software that uses a
similar approach (that is, setting the origin point) such as Python, SAS, Stata, and Excel. The
conversion of a numeric-date input to a date object in R is fairly simple and could save you
some time and effort if utilized correctly. For example, the last variable in the dates_df
table is an example of the numeric formation of date in Excel:

head(dates_df$Excel_Numeric_Format)
## [1] 42755 42756 42757 42758 42759 42760

In Excel, the numeric value of the origin point (that is January 1st, 1900) set
to 1, as opposed to other programming languages such as R which define
the origin point as 0. Therefore, when importing a date or time objects
from Excel, in order to align to R origin point definition, the origin point
should be set as December 31st, 1899 (which equivalent to 0 numeric
value).
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Since Excel is using a different origin point than R (December 30, 1899 versus January 1,
1970), we will have to add the origin argument and specify the original date that is used
to generate the data:

dates_df$Excel_Numeric_Format_new <- as.Date(dates_df$Excel_Numeric_Format,
origin = as.Date("1899-12-30"))

head(dates_df$Excel_Numeric_Format_new)
## [1] "2017-01-20" "2017-01-21" "2017-01-22" "2017-01-23" "2017-01-24"
## [6] "2017-01-25"

The following table provides some examples for the origin point of commonly used
software and the numeric value of the January 1, 2020 date:

Software Origin date January 1, 2020 numeric value
Excel 12/30/1899 43,831
Python 1/1/1970 18,262
R 1/1/1970 18,262
SAS 1/1/1960 21,915
Stata 1/1/1960 21,915

Table 3: The origin point setting of common software

After reformatting and converting all the seven variables in dates_df, let's check again the
structure of the data frame and compare the reformatted variables with their origin
versions:

str(dates_df)
## 'data.frame': 22 obs. of 14 variables:
## $ Japanese_format : chr "2017/1/20" "2017/1/21" "2017/1/22" "2017/1/23"
...
## $ US_format : chr "1/20/2017" "1/21/2017" "1/22/2017" "1/23/2017" ...
## $ US_long_format : chr "Friday, January 20, 2017" "Saturday, January 21,
2017" "Sunday, January 22, 2017" "Monday, January 23, 2017" ...
## $ CA_mix_format : chr "January 20, 2017" "January 21, 2017" "January 22,
2017" "January 23, 2017" ...
## $ SA_mix_format : chr "20 January 2017" "21 January 2017" "22 January
2017" "23 January 2017" ...
## $ NZ_format : chr "20/01/2017" "21/01/2017" "22/01/2017" "23/01/2017"
...
## $ Excel_Numeric_Format : num 42755 42756 42757 42758 42759 ...
## $ Japanese_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ US_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ US_long_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ CA_mix_format_new : Date, format: "2017-01-20" "2017-01-21" ...
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## $ SA_mix_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ NZ_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ Excel_Numeric_Format_new: Date, format: "2017-01-20" "2017-01-21" ...

Looking at the output of the str function, you can see that no matter what the format type
of the inputs variables or their classes (character or numeric) was, the converted variables
(any variable with format_new extension) are all date objects using the same formation.
We can now move forward and start to discuss the reformatting process of time objects.

Reformatting and conversion of time objects
After we dived into the small details of the reformatting and conversion process of the date
objects, it is time to generalize the process for time objects by using the as.POSIXct or
as.POSIXlt functions. Similar to the as.Date function, the as.POSIXct or as.POSIXlt
functions are the base package applications for reformatting and conversion of any time
input to a POSIXct or POSIXlt objects, respectively. The POSIX classes are an extension of
the Date class, with the addition of four elements (in addition to the date elements): hours,
minutes, seconds, and time zone. This makes the reformatting process a bit more
cumbersome as the mapping now includes seven elements instead of four elements, as was
previously the case.

We will start with a simple example, where the input is following the ISO 8601
international standard:

time_str <- "2018-12-31 23:59:59"

class(time_str)
## [1] "character"

The input object is assigned to the time_str variable as a character object. We can now
use the as.POSIXct function to convert the input variable to a POSIXct object:

time_posix_ct1 <- as.POSIXct(time_str)

class(time_posix_ct1)
## [1] "POSIXct" "POSIXt"

While the objects look alike, each has a different attribute and they are not identical, as one
is a string and the other one is a POSIXct object:

time_str
## [1] "2018-12-31 23:59:59"

time_posix_ct1
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## [1] "2018-12-31 23:59:59 EST"

identical(time_str, time_posix_ct1)
## [1] FALSE

The structure of the time_str object is set according to the ISO 8601 standard for time
objects, therefore the conversion to a time object is straightforward. Alternatively, you can
convert the numeric value of the time object to one of the time classes. The numeric value of
the time object represents the number of seconds since the origin point (that is, January 1,
1970). For example, let's convert the number 1546318799 to a time object using the
as.POSIXct function with the origin argument:

time_numeric <- 1546318799

class(time_numeric)
## [1] "numeric"

time_posix_ct2 <- as.POSIXct(time_numeric, origin = "1970-01-01")

We can now compare the two time objects we converted:

print(c(time_posix_ct1, time_posix_ct2))
## [1] "2018-12-31 23:59:59 EST" "2018-12-31 23:59:59 EST"

identical(time_posix_ct1, time_posix_ct2)
## [1] TRUE

Those are fairly simple examples, which do not require a reformatting step. However,
whenever the format of the input object does not follow a YYYY-m-d H:M:S structure, you
will have to use the format argument to map the object's elements. Let's use a full date and
time pattern (US format) to represent the same input we used previously: that is, Monday,
December 31, 2018 11:59:59 PM.

Firstly, you probably notice that the time format is a 12-hour clock (as opposed to the 24-
hour clock of the POSIX classes). Thus, in addition to the data and time mapping, we will
have to identify and map the cycle of the day (AM or PM). The next thing that should catch
your attention is that the number of elements in the input objects is higher than the
expected output (eight in the input versus six in the output). The two extra elements are the
day of the week (Monday), which is redundant, and the cycle of the day indicator, which is
crucial for the mapping. However, all elements, including the two extra elements, must be
included in the format argument. The following example demonstrates the transformation
process of this type of time object to a POSIX class. First, let's assign the input object into a
variable:

time_US_str <- "Monday, December 31, 2018 11:59:59 PM"
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Next, we will use the format argument to declare the structure of the input object:

time_posix_ct3 <- as.POSIXct(time_US_str, format = "%A, %B %d, %Y %I:%M:%S
%p")

time_posix_ct3
## [1] "2018-12-31 23:59:59 EST"#
 identical(time_posix_ct1, time_posix_ct2, time_posix_ct3)## [1] TRUE

The new output has the same attributes as the previous two objects we created:

time_posix_ct3
## [1] "2018-12-31 23:59:59 EST"

identical(time_posix_ct1, time_posix_ct2, time_posix_ct3)
## [1] TRUE

The following table is an extension of Table 2, which provides the most common arguments
for reformatting time objects. The full arguments list can be found in the strptime
documentation:

Symbol Meaning Example
%H Hours as a decimal number (00-23) 17:00:00

%I Hours as a decimal number (01-12) 5:00:00 PM

%M Minutes as a decimal number (00-59) 17:15:00

%S
Seconds as an integer (00-61), allowing for up to two leap-
seconds

17:15:45

%p AM/PM indicator in the locale AM, PM
%r Equivalent to %I:%M:%S %p for 12-hour clock time 9:35:00 PM

%T Equivalent to %H:%M:%S 17:15:00

%Z Time zone abbreviation as a character string GMT, EST, PDT

Table 4: The main arguments for reformatting POSIXct/lt objects with the format argument
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Time zone setting
The time zone is the seventh element of the POSIX classes and can be set by either the tz
argument of the as.POSIXct/as.POSIXlt functions or by the format argument. Those
functions synchronize and automatically calculate the time differences between two
different time zones in a similar manner to an electronic calendar. For example, if you are
working in London, UK, and your colleague from New York, US, sends you an invite for a
meeting for 10 AM EST, your calendar will automatically transform the time of the meeting
to 3 PM GMT (assuming that the time zone on your calendar is set to GMT). What will
happen if you receive an invite for a call from a different time zone and the time zone in
your calendar is not set properly? You will either be too early or miss the call. You get a
sense of where it is going: working with time objects from multiple time zones without
adjusting the time differences could yield bad errors. The Sys.timezone function returns
the time zone according to the setting of your system:

Sys.timezone()
## [1] "America/Los_Angeles"

Since the time zone in my computer is set to US Pacific Standard Time (PST), loading a
date object from different time zone without specifying it would yield a different output:

time_str <- "2018-12-31 23:59:59"

time_default_tz <- as.POSIXct(time_str)

time_assign_tz <- as.POSIXct(time_str, tz = "GMT")

print(c(time_default_tz, time_assign_tz))
## [1] "2018-12-31 23:59:59 EST" "2018-12-31 18:59:59 EST"

identical(time_default_tz, time_assign_tz) ## [1] FALSE

A full list of the 592 time zones available in R (both location and abbreviation formats) can
be found in the OlsonNames function:

head(OlsonNames(), 20) ## [1] "Africa/Abidjan" "Africa/Accra"
"Africa/Addis_Ababa"
## [4] "Africa/Algiers" "Africa/Asmara" "Africa/Asmera"
## [7] "Africa/Bamako" "Africa/Bangui" "Africa/Banjul"
## [10] "Africa/Bissau" "Africa/Blantyre" "Africa/Brazzaville"
## [13] "Africa/Bujumbura" "Africa/Cairo" "Africa/Casablanca"
## [16] "Africa/Ceuta" "Africa/Conakry" "Africa/Dakar"
## [19] "Africa/Dar_es_Salaam" "Africa/Djibouti"



Working with Date and Time Objects Chapter 2

[ 53 ]

Creating a date or time index
So far, our focus in this chapter was mainly on the attributes of the date and time classes.
Let's now connect the dots and see some useful applications of time series data. As
introduced in Chapter 1, Introduction to Time Series Analysis and R, the main characteristic of
time series data is its time index (or timestamp), an equally spaced time interval. The base
package provides two pairs of functions, seq.Date and seq.POSIXt, to create a time 
index vector with Date or POSIX objects respectively. The main difference between the two
functions (besides the class of the output) is the units of the time interval. It will make sense
to use the seq.Date function to generate a time sequence with daily frequency or lower
(for example, weekly, monthly, and so on) and as.POSIXt in other instances (for higher
frequencies than daily, such as hourly, half-hourly, or by minutes). As you can see in the
following example, the use of these functions is straightforward:

daily_index <- seq.Date(from = as.Date("2016-01-01") # Starting date
                        to = as.Date("2018-12-31"), # Ending date
                        by = "day") # Defining the time intervals

head(daily_index)
## [1] "2016-01-01" "2016-01-02" "2016-01-03" "2016-01-04" "2016-01-05"
## [6] "2016-01-06"

We used the from and to arguments of the seq.Date function to set the range of the
sequence, and the by argument to set the time intervals of the sequence. Alternatively, you
can use the length.out (number of observations to create) argument instead of the to
argument in order to set the range of the sequence. Each function has a set of possible
options for the by argument (for example, day, week, month, and so on), which can be
found in the functions documentation. In addition, it is possible to mix integers with those
arguments to create a new time interval combination. For example, if you wish to create a
series with 3-day time intervals (as opposed to a 1-day interval), you can simply define the
by argument to 3 days:

daily_3_index <- seq.Date(from = as.Date("2016-01-01"),
                          to = as.Date("2018-12-31"),
                          by = "3 days")

head(daily_3_index)
## [1] "2016-01-01" "2016-01-04" "2016-01-07" "2016-01-10" "2016-01-13"
## [6] "2016-01-16"
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The to argument is optional: you can instead use the length.out argument if you know
the length of the series. For example, let's create an hourly sequence with a length of 48
hours, using the seq.POSIXt function:

hourly_index <- seq.POSIXt(from = as.POSIXct("2018-06-01"), by = "hours",
length.out = 48)

str(hourly_index)
## POSIXct[1:48], format: "2018-06-01 00:00:00" "2018-06-01 01:00:00" ...

The following table summarizes the possible time interval arguments of each function:

Function Interval argument
seq.Date "day", "week", "month", "quarter", "year"

seq.POSIXt
"sec", "min", "hour", "day", "DSTday", "week", "month", "quarter",
"year"

Table 5: Optional time interval for the by argument

In addition to the seq.Date and seq.POSIXt functions, the base package provides
additional applications for processing and handling date and time objects. Since those
functions have a fairly similar structure to the previous ones, we will not get into the
details. However, it is worth going over the documentation of the Date and POSIXt classes
and checking the related functions of each class (in the See Also section of the function
document).

Manipulation of date and time with the
lubridate package
The title of the lubridate package documentation in CRAN is Make Dealing with Dates a
Little Easier. In my mind, this is a very modest title for a package that makes work with
date and time objects more effective, simple, and time efficient. This section introduces
alternative tools and applications with the lubridate package for reformatting, converting,
and handling date and time objects.
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Reformatting date and time objects – the
lubridate way
To understand how simple it is to reformat date and time objects with the lubridate
package, let's go back to the complex time object (Monday, December 31, 2018
11:59:59 PM) we converted earlier to a POSIXct class:

time_US_str <- "Monday, December 31, 2018 11:59:59 PM"

class(time_US_str)
## [1] "character"

time_US_str
## [1] "Monday, December 31, 2018 11:59:59 PM"

Recall that the format of the input object is not following the ISO 8601 standard, therefore,
when we used the as.POSIXct function earlier, we added the format argument to map
the input components to the POSIXct class:

time_base <- as.POSIXct(time_US_str,
                        format = "%A, %B %d, %Y %I:%M:%S %p")

class(time_base)
## [1] "POSIXct" "POSIXt"

time_base
## [1] "2018-12-31 23:59:59 EST"

Now, let's use the ymd_hms (which stands for a year, month, day, hour, minute, and
second) conversion function from the lubridate package to convert the object to a POSIXct
object:

library(lubridate)

time_lubridate <- mdy_hms(time_US_str, tz = "EST")

class(time_lubridate)
## [1] "POSIXct" "POSIXt"

time_lubridate
## [1] "2018-12-31 23:59:59 EST"
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This is much simpler than the as.POSIXct conversion. The ymd_hms function is able to
automatically map the different time components of the input object, even when some
components are redundant (such as the full weekday name in the example previously).

Note that if the tz (time zone) argument of the mdy_hms function is not
defined, the function will set UTC as the main time zone.

Unlike the manual mapping process of the as.POSIXct function (or the as.POSIXlt
function), the mdy_hms function parses the string components and aligns them according to
the order of the function letters. There are 12 possible combinations of letters, which cover 
most of the common methods of representing date with time together. Likewise, the ymd
(which stand for the year, month, and day) function converts date objects to a Date class.
We can now go back and load dates_df again and convert the first six variables into date
objects with the ymd function:

url <-
"https://raw.githubusercontent.com/RamiKrispin/Hands-On-Time-Series-Analysi
s-with-R/master/dates_formats.csv"

dates_df <- read.csv(url, stringsAsFactors = FALSE)

str(dates_df)
## 'data.frame': 22 obs. of 7 variables:
## $ Japanese_format : chr "2017/1/20" "2017/1/21" "2017/1/22" "2017/1/23"
...
## $ US_format : chr "1/20/2017" "1/21/2017" "1/22/2017" "1/23/2017" ...
## $ US_long_format : chr "Friday, January 20, 2017" "Saturday, January 21,
2017" "Sunday, January 22, 2017" "Monday, January 23, 2017" ...
## $ CA_mix_format : chr "January 20, 2017" "January 21, 2017" "January 22,
2017" "January 23, 2017" ...
## $ SA_mix_format : chr "20 January 2017" "21 January 2017" "22 January
2017" "23 January 2017" ...
## $ NZ_format : chr "20/01/2017" "21/01/2017" "22/01/2017" "23/01/2017"
...
## $ Excel_Numeric_Format: num 42755 42756 42757 42758 42759 ...

#Conversion with ymd functions
dates_df$Japanese_format_new <- ymd(dates_df$Japanese_format)
dates_df$US_format_new <- mdy(dates_df$US_format)
dates_df$US_long_format_new <- mdy(dates_df$US_long_format)
dates_df$CA_mix_format_new <- mdy(dates_df$CA_mix_format)
dates_df$SA_mix_format_new <- dmy(dates_df$SA_mix_format)
dates_df$NZ_format_new <- dmy(dates_df$NZ_format)
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The ymd function easily handles the different types of date formats; however, it is not
designed to convert numeric values of date objects. This type of conversion can be done
with the as_date function for date objects (or as_datetime for time objects), which works
in the same manner as as.Date (or the as.POSIXct/as.POSIXlt functions) works with
date numeric values:

dates_df$Excel_Numeric_Format_new <- as_date(dates_df$Excel_Numeric_Format,
                                             origin = ymd("1899-12-30"))

Let's review the data frame with the changes we applied in the preceding code:

str(dates_df)## 'data.frame': 22 obs. of 14 variables:
## $ Japanese_format : chr "2017/1/20" "2017/1/21" "2017/1/22" "2017/1/23"
...
## $ US_format : chr "1/20/2017" "1/21/2017" "1/22/2017" "1/23/2017" ...
## $ US_long_format : chr "Friday, January 20, 2017" "Saturday, January 21,
2017" "Sunday, January 22, 2017" "Monday, January 23, 2017" ...
## $ CA_mix_format : chr "January 20, 2017" "January 21, 2017" "January 22,
2017" "January 23, 2017" ...
## $ SA_mix_format : chr "20 January 2017" "21 January 2017" "22 January
2017" "23 January 2017" ...
## $ NZ_format : chr "20/01/2017" "21/01/2017" "22/01/2017" "23/01/2017"
...
## $ Excel_Numeric_Format : num 42755 42756 42757 42758 42759 ...
## $ Japanese_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ US_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ US_long_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ CA_mix_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ SA_mix_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ NZ_format_new : Date, format: "2017-01-20" "2017-01-21" ...
## $ Excel_Numeric_Format_new: Date, format: "2017-01-20" "2017-01-21" ...

As you can see from the output, we received the same results with the ymd and the
as_date functions as the results we received earlier with as.Date.

Before moving to the next topic, it is important to add the caveat that those functions (both
ymd and ymd_hms) are not able to handle rare or extreme cases where one of the separators
is a double string (such as a double apostrophe, "") or some of the formats are not written
well in a specific format of year, month, and day, such as 201811-01, 201811-1, or 111-2018
(as opposed to 2018-11-01 or 01-11-2018).



Working with Date and Time Objects Chapter 2

[ 58 ]

Utility functions for date and time objects
In some cases, you may want to extract a specific component from a date or a time object.
The lubridate package provides a set of functions for extraction and modification of the
elements of time and date objects. In most cases, those functions carry the name of the
element (that is, the second, minute, and hour functions for extracting the seconds, minute,
and an hour respectively). However, in other cases, a single function may have several
applications. For example, the day has several reference points in a calendar year: the day
of the week (1-7), month (1-31), quarter (1-92), or year (1-365). The day function contains a
set of functions for this type of querying, which we will use in the following example:

time_obj <- mdy_hms(time_US_str, tz = "EST")

class(time_obj)
## [1] "POSIXct" "POSIXt"

time_obj
## [1] "2018-12-31 23:59:59 EST"

This extracts the day of the year:

yday(time_obj)
## [1] 365

This extracts the day of the quarter:

qday(time_obj)
## [1] 92

This extracts the day of the month:

day(time_obj)
## [1] 31

This extracts the day of the week:

wday(time_obj, label = TRUE)
## [1] Mon
## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat
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In addition to the extraction functionality, you can use this function to modify any of the
object elements such as the hour, minute, or even second. For example, if you wish to
modify the hour of the object from 11 PM to 11 AM, you can use the hour function to
assign the value to the object:

hour(time_obj) <- 11

time_obj
## [1] "2018-12-31 11:59:59 EST"

Another useful application from the lubridate package is the round_date function. This
set of functions includes three applications:

round_date: A function that, as you might expect, rounds date or time object to
the nearest value of a specific time unit
floor_date: Rounds the object down according to a specific time criterion
(second, minute, hour, and so on)
ceiling_data: Rounds the object up according to a specific time criterion
(second, minute, hour, and so on)

We will again use the time_obj time object and demonstrate the uses of those functions:

time_obj <- mdy_hms(time_US_str, tz = "EST")

time_obj
## [1] "2018-12-31 23:59:59 EST"

Rounding the time object by the minute, hour, and day looks like this:

round_date(time_obj, unit = "minute")
## [1] "2019-01-01 EST"

floor_date(time_obj, unit = "hour")
## [1] "2018-12-31 23:00:00 EST"

ceiling_date(time_obj, unit = "day")
## [1] "2019-01-01 EST"

Those sets of functions are very useful when extracting mainly time objects from a different
type of format. For example, the time index of a time series object (or ts class) is stored as
the cycle units over a sequence of time (for example, months over a sequence of years).
Conversion of this type of object may suffer from rounding errors, and the correction can be
done with one of those functions.
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Summary
Date and time objects are one of the foundations of the time series data. Thus, the ability to
import, reformat, and convert this type of object in R seamlessly is an essential part of the
time series analysis process. In this chapter, we introduced the primary date and time
objects in R, the Date and POSIXct/POSIXlt classes, and their main attributes.
Furthermore, we introduced two main approaches in R to handle and process those objects,
with the base and lubridate packages. While the work with the base functions is more
technical (or hardcore coding), the work with the lubridate package is based on common
English language communication with the objects and therefore is much simpler to use. I
personally found that deep understanding of the base package approach makes working
with the lubridate package much smoother and more straightforward, as date and time
objects play a pivotal role in time series analysis.

In the following chapters, you will see the use of the applications that we learned in this
chapter. Our next chapter focuses on presenting the time series objects with their
attributions and uses. It teaches how to utilize functions for time series objects and how to
create, manipulate, and visualize a ts object and identify the object's attributes.



3
The Time Series Object

Time series data has unique features and a special signature that distinguishes it from other
types of data. Among those features, you can find the series timestamp (or the series index),
the series frequency and cycle, and the time interval in which the data was captured. We
will discuss these features in detail in this chapter. These sets of features, as you will see
throughout this book, are more than just a convenient data structure, as they have a
meaningful statistical application for both a descriptive and predictive analysis of time
series data. R provides several classes for representing time series objects for a variety of
applications. Among those classes, ts is one of the main formats for time series data in R,
mainly due to its simplicity and the wide adoption of this class by the main packages in R
for time series analysis, for example, the forecast and stats packages. In this chapter, we
will focus on the ts class and the set of supporting functions from the stats package (the R
core package for statistical applications).

In this chapter, we will cover the following topics:

Using the attributes of the ts class
Creating, manipulating, and extracting data from a ts object
Visualizing a ts object
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Technical requirement
The following packages will be used in this book:

forecast: Version 8.5 and above
stats: Version 3.6.0 and above
Quandl: Version 2.9.1 and above

You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter03

The Natural Gas Consumption dataset
In this chapter, and generally throughout this book, we will use the Natural Gas
Consumption (NGC) dataset as an example of time series data. This dataset represents the
quarterly consumption of natural gas in the US between 2000 and 2018. We will use the
Quandl package to load the data from the Federal Reserve Bank of St. Louis database
(FRED) and store it as a ts object:

library(Quandl)

NGC <-Quandl(code = "FRED/NATURALGAS",
             collapse="quarterly",
             type = "ts",
             end_date = "2018-12-31")

The class of the output can be defined by the type argument, which, in this case, was set to
the ts object:

class(NGC)
## [1] "ts"

Typically, when loading a new dataset, it is recommended that you plot the series before
moving to the next step in the analysis. This allows you to have a quick look at the series to
observe whether the data has been appropriately transformed and get a general
understanding of the series' structure. The simplest method to plot a ts object is with the
plot function, the R built-in plotting function from the graphics package:

plot.ts(NGC,
         main = "US Quarterly Natural Gas Consumption",
         ylab = "Billion of Cubic Feet")
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The following diagram shows us the quarterly consumption of natural gas in the US
between 2000-2017:

Don't worry if you are not familiar with this function; we will discuss the methods of
visualizing ts objects in detail later in this chapter.

The attributes of the ts class
The ts class is R's built-in format for a regular univariate time series object. Before we dive
into the attributes of this class, let's pause and define regular time series data and its main
characteristics.

At regular time series is defined as an ordered sequence of observations over time, which is
captured at equally spaced time intervals (that is, every day, week, month, and so on).
Whenever this condition ceases to exist, the series becomes an irregular time series. Since
this book's main topic is time series analysis and the forecasting of regular time series data,
the term time series, or series, refers to regular time series data unless stated otherwise.
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The main characteristics of regular time series data is as follows:

Cycle/period: A regular and repeating unit of time that split the series into
consecutive and equally long subsets (for example, for monthly series, a full cycle
would be a year).
Frequency: Defines the length or the number of units of the cycle (for example,
for quarterly series, the frequency is four).
Timestamp: Provides the time each observation in the series was captured, and
can be used as the series index. By definition, in a regular time series the time
difference (or delta) between two consecutive observations must be equal.

A ts object is composed of two elements—the series values and its corresponding
timestamp. In addition, it also has several attributes, such as the series, cycle, frequency,
and the time interval between each consecutive observation. Let's go back to the NGC
dataset that we loaded earlier and look at the data structure of the ts object. After loading
new data into the environment, it is always recommended that you check and verify
whether the data structure is aligned with your expectations. A fast and recommended
check to start with would be to verify the data class and length, which can be done with the
is.ts and length functions:

is.ts(NGC) # Test if the object is a "ts" class
## [1] TRUE

length(NGC) # Get the number of observations
## [1] 76

The structure of the ts object is a bit different from most data structures in R (matrix,
data.frame, data.table, tibble, and so on). While the ts object is a two-dimensional
dataset (time/index and the series observations), it doesn't share the common attributes of
most of the regular tables in R (such as matrix or data.frame) since the series index is
embedded within the object itself. Therefore, some of the common functions for R's tables
won't work with a ts object (such as the dim function). We can observe the structure of the
NGC with the head function:

head(NGC, 32)

## Qtr1 Qtr2 Qtr3 Qtr4

## 2000 2050.6 1513.1 1475.0 2587.5

## 2001 2246.6 1444.4 1494.1 2120.2

## 2002 2258.4 1591.4 1542.2 2378.9
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## 2003 2197.9 1368.4 1428.6 2263.7

## 2004 2100.9 1483.7 1482.2 2327.7

## 2005 2205.8 1534.1 1422.5 2326.4

## 2006 2126.4 1550.9 1462.1 2122.8

## 2007 2128.8 1555.2 1590.5 2399.2

The ts class transforms the series elements into table format, where the rows represent the
number of the cycle and the columns represent the cycle units.

In the case of the NGC dataset, each calendar year is a full cycle and the quarters are the
cycle units. Similarly, the cycle and the time functions from the stats package provide the
cycle units and the timestamp of each observation in the series:

head(cycle(NGC), 32)
##      Qtr1 Qtr2 Qtr3 Qtr4
## 2000    1    2    3    4
## 2001    1    2    3    4
## 2002    1    2    3    4
## 2003    1    2    3    4
## 2004    1    2    3    4
## 2005    1    2    3    4
## 2006    1    2    3    4
## 2007    1    2    3    4

Similarly, you can see the structure of the time function output in the following code
snippet:

head(time(NGC), 32)

##         Qtr1    Qtr2    Qtr3    Qtr4
## 2000 2000.00 2000.25 2000.50 2000.75
## 2001 2001.00 2001.25 2001.50 2001.75
## 2002 2002.00 2002.25 2002.50 2002.75
## 2003 2003.00 2003.25 2003.50 2003.75
## 2004 2004.00 2004.25 2004.50 2004.75
## 2005 2005.00 2005.25 2005.50 2005.75
## 2006 2006.00 2006.25 2006.50 2006.75
## 2007 2007.00 2007.25 2007.50 2007.75
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As you can see, the timestamp is a decimal number that is aligned with the cycles of the
series. The values on the left-hand side of the decimal point represent the cycle number (in
this case, the calendar year), and the values on the right-hand side represent the cycle units,
where the count of the units start from 0. A more practical and concise method to get the
characteristics of the series is with the frequency and deltat functions from the stats
package, which provide the series frequency and the time interval between the
observations:

frequency(NGC)
## [1] 4
deltat(NGC)
## [1] 0.25

Other useful utility functions are the start and end functions, which, as their names
imply, return the series timestamp's starting and ending point, respectively:

start(NGC)
## [1] 2000    1
end(NGC)
## [1] 2017    4

The ts_info function from the TSstudio package provides a concise summary of most of
the preceding functions. This includes the object class, the number of observations, the
frequency, and the starting and ending of the series. Let's load the TSstudio package and
use this function to get a summary of the NGC object:

library(TSstudio)

ts_info(NGC)
## The NGC series is a ts object with 1 variable and 76 observations
## Frequency: 4
## Start time: 2000 1
## End time: 2018 4

Let's now look at multivariate time series objects.

Multivariate time series objects
In some instances, such as correlation analysis, you may need to work with multivariate
time series objects. In those cases, working with ts objects (assuming that all the series
have the same frequency and overlap between their indices) may be cumbersome, as each
series is required to be processed individually. Alternatively, you can use the mts (multiple
time series) class, an extension of the ts class. The mts class is a combination of the ts and
matrix classes, and its advantage is that it shares the attributes of both those classes.
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The Coffee_Prices dataset from the TSstudio package is an example of an mts object.
This mts object represents the monthly prices (USD per kg) between 1960 and 2018 of
Robusta and Arabica, two popular coffee species:

data(Coffee_Prices)

ts_info(Coffee_Prices)

## The Coffee_Prices series is a mts object with 2 variables and 701
observations
## Frequency: 12
## Start time: 1960 1
## End time: 2018 5

Generally, the mts object is also a ts and matrix object, as you can see in the following
output:

class(Coffee_Prices)
## [1] "mts"    "ts"     "matrix"

As the mts class inherited the matrix class attributes, the output of the mts object is a
matrix-like table:

head(Coffee_Prices)
##        Robusta Arabica
## [1,] 0.6968643  0.9409
## [2,] 0.6887074  0.9469
## [3,] 0.6887074  0.9281
## [4,] 0.6845187  0.9303
## [5,] 0.6906915  0.9200
## [6,] 0.6968643  0.9123

Moreover, you can utilize and apply any designated function for a matrix object (when
applicable) on an mts object. Similarly, the mts object also supports the ts objects
functions, such as the frequency, time, start, or end functions. For example, we will use
the frequency, deltat, time, and cycle functions to extract the series' characteristics:

frequency(Coffee_Prices)
## [1] 12
deltat(Coffee_Prices)
## [1] 0.08333333
head(time(Coffee_Prices))
## [1] 1960.000 1960.083 1960.167 1960.250 1960.333 1960.417
head(cycle(Coffee_Prices))
## [1] 1 2 3 4 5 6
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Two or more series can be merged to an mts object only if all the following prerequisites
are met:

All inputs are regular time series
All inputs have exactly the same frequency or time interval between the
observations
All inputs start at the same cycle number and cycle unit (unless missing values
are filled with NAs)

Creating a ts object
The ts function from the stats package allows you to create a ts object by assigning
sequential observations and mapping their attributes. Let's start with a simple example,
and set an arithmetic progression series with the 1 to 60 values as a monthly series
beginning on January 2010. This series would have the following attributes:

Frequency: This is a 12 month period, where each frequency unit represents a
specific month of the year
Cycle: The units of the series are in years, where a full cycle is derived from the
frequency units of the series and is defined as 12 months
Start: The starting point of the series is January 2010, or, in other words, the
beginning point of the series is on frequency unit 1 (assuming that the mapping
of the month is aligned to the calendar order of the months), and the cycle unit is
defined as the year
End: The end point of the series is December 2014, or frequency unit 12 and cycle
unit 2014

Let's define those attributes on this arithmetic progression series and transfer the data into a
ts object:

my_ts1 <- ts(data = 1:60, # The series values
             start = c(2010, 1), # The time of the first observation
             end = c(2014, 12),  # The time of the last observation
             frequency = 12) # The Series frequency
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Let's review the attributes of the new object we created previously with the ts_info
function to verify that the new series was set properly:

ts_info(my_ts1)
##  The my_ts1 series is a ts object with 1 variable and 60 observations
##  Frequency: 12
##  Start time: 2010 1
##  End time: 2014 12

The output of the my_ts1 object can be seen as follows:

my_ts1
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 2010   1   2   3   4   5   6   7   8   9  10  11  12
## 2011  13  14  15  16  17  18  19  20  21  22  23  24
## 2012  25  26  27  28  29  30  31  32  33  34  35  36
## 2013  37  38  39  40  41  42  43  44  45  46  47  48
## 2014  49  50  51  52  53  54  55  56  57  58  59  60

The start and end arguments of the ts functions define the time of the first and the last
observations respectively, in terms of cycle and frequency units. Those arguments can be 
defined by either a single integer or by a vector of two integers:

Using a two-integer vector to define the start or end of the series is the most
convenient method, as it allows the user to be explicit about the cycle and
frequency units. It is sufficient to define either the start or end arguments, as
the end or start value of the series can be derived from the length of the series
and its frequency. For example, we can redefine the my_ts1 series by setting only
the end argument:

my_ts2 <- ts(data = 1:60,
             end = c(2014, 12),
             frequency = 12)

start(my_ts2)
## [1] 2010    1
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When setting the start or end arguments as a single integer input, the value of
the integer represents the cycle number. In this case, by default, the value of the
frequency unit is defined as 1. For example, we can define the starting point of
the series as 2010, which is equivalent to the cycle and frequency units of 2010
and 1, respectively:

my_ts3 <- ts(data = 1:60,
             start = 2010,
             frequency = 12)

start(my_ts3)
## [1] 2010    1

As you can see from the output of the following identical function, all the three series are
identical:

identical(my_ts1, my_ts2, my_ts3)
## [1] TRUE

It is most likely that your raw data won't come in ts format and some preprocessing steps
may be required before transforming the input to a ts object. Those preprocessing steps
may include the following:

Exporting the data from an external source, for example, an Excel or CSV file,
SQL database, GitHub, and so on
Reformatting the timestamp of the series or defining the series index
Reordering the series according to its chronological order

In the following example, we will demonstrate a typical process of converting data from a
data.frame object to a ts object, applying the following steps:

Let's load the US_indicators dataset from the TSstudio package. This dataset1.
is a data.frame with two series—the monthly total vehicle sales and the
unemployment rate in the US. In addition, the data includes the timestamp of the
two series in Date format. Let's load the series and view its structure:

data(US_indicators)

str(US_indicators)
## 'data.frame':    517 obs. of  3 variables:
##  $ Date             : Date, format: "1976-01-31" "1976-02-29"
...
##  $ Vehicle Sales    : num  885 995 1244 1191 1203 ...
##  $ Unemployment Rate: num  8.8 8.7 8.1 7.4 6.8 8 7.8 7.6 7.4 7.2
...
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As you can see from the str function output, this series has 517 observations and
the following three variables:

Date: The monthly timestamp of the two series in Date format
Vehicle Sales: A numeric object that represents the total
monthly amount of vehicle sales (in thousands)
Unemployment Rate: A numeric object that represents the
unemployment rate (a percentage)

For now, we will only convert the vehicle sales series into a ts object; therefore,
for the sake of simplicity, we will extract the first two columns of the series and
assign them to a new data.frame named tvs, which denotes the total vehicle
sales:

tvs <- US_indicators[, c("Date", "Vehicle Sales")]

str(tvs)
## 'data.frame':    517 obs. of  2 variables:
##  $ Date         : Date, format: "1976-01-31" "1976-02-29" ...
##  $ Vehicle Sales: num  885 995 1244 1191 1203 ...

An important pre-step before converting a data.frame, or generally any other R
table format (such as tibble and data.table) to a ts object is to arrange the 
data in chronological order. We will use the arrange function from the dplyr
package to sort the data:

library(dplyr)

tvs <- tvs %>% arrange(Date)

head(tvs)
##         Date Vehicle Sales
## 1 1976-01-31         885.2
## 2 1976-02-29         994.7
## 3 1976-03-31        1243.6
## 4 1976-04-30        1191.2
## 5 1976-05-31        1203.2
## 6 1976-06-30        1254.7
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The ts function will set the order of the series according to the original
order of the input series. Thus, if the input series is not sorted according to
the chronological order of the series, the output won't be mapped
correctly to the actual index of the series, which yields a false result.
Therefore, whenever the input series is not ordered by the series index,
you must sort it before applying the ts function (and, to be on the safe
side, it is always recommended that you sort the series, even if it is
already in order).

Next, we want to define the start (or end) argument of the series. Since the2.
input series is monthly, we need to define the cycle (year) and frequency
(month) units of the first observation of the series. This can be done manually, by
observing the first date of the series and set the start point accordingly. In this
case, the series started in January 1976, and therefore we can define it as start =
c(1976, 1). Alternatively, we can write a code to capture the starting point of
the series. This is useful when working with multiple series and/or when the
starting point is changing over time. We will use the lubridate package to extract
the year and month of the first observation with the year and month functions:

library(lubridate)

start_point <- c(year(min(tvs$Date)), month(min(tvs$Date)))

start_point
## [1] 1976    1

We can now define the series with the ts function, utilizing the start_point
variable to define the beginning of the series:

tvs_ts <- ts(data = tvs$`Vehicle Sales`,
             start = start_point,
             frequency = 12)
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One of the main limitations of the ts class is that its timestamp or index supports only two
input elements, which represents the cycle and frequency units. This creates two problems:

It doesn't support timestamps with multiple seasonality or cycles, such as daily
time series, which can have both weekdays and yearly cycles
In cases where the timestamp of the series is more than two elements, such as
date or time, it is not possible to retrieve the original value of the series
timestamp, as one or more elements are lost during the transformation process

For example, once we transformed the tvs dataset to a ts object, the day component was
lost, as we were able to store only the month and year:

head(tvs$Date, 5)
## [1] "1976-01-31" "1976-02-29" "1976-03-31" "1976-04-30" "1976-05-31"
head(time(tvs_ts), 5)
## [1] 1976.000 1976.083 1976.167 1976.250 1976.333

On the other hand, the series' values do not change during the transformation and can
therefore be retrieved from the ts object:

head(tvs$`Vehicle Sales`)
## [1]  885.2  994.7 1243.6 1191.2 1203.2 1254.7

head(tvs_ts)
## [1]  885.2  994.7 1243.6 1191.2 1203.2 1254.7

identical(tvs$`Vehicle Sales`, as.numeric(tvs_ts))
## [1] TRUE

Let's now create an mts object.

Creating an mts object
The process of converting a multiple time series object from a data frame to ts format is
fairly similar to that of the ts object. We will now go back to the US_indicators dataset
and join both the vehicle sales and the unemployment rate series to an mts object. First, let's
make sure that the series is sorted in chronological order with the arrange function:

US_indicators <- US_indicators %>% arrange(Date)
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Similarly, as we defined earlier, the ts object we will create is the mts object by using the
ts function, where the input data includes two columns (as opposed to a single one for the
ts object):

US_indicators_ts <- ts(data = US_indicators[, c("Vehicle Sales",
"Unemployment Rate")],
                        start = c(year(min(tvs$Date)),
month(min(tvs$Date))),
                        frequency = 12)

We can review the transformed object with the ts_info and head functions:

ts_info(US_indicators_ts)
##  The US_indicators_ts series is a mts object with 2 variables and 517
observations
##  Frequency: 12
##  Start time: 1976 1
##  End time: 2019 1

head(US_indicators_ts)
##      Vehicle Sales Unemployment Rate
## [1,]         885.2               8.8
## [2,]         994.7               8.7
## [3,]        1243.6               8.1
## [4,]        1191.2               7.4
## [5,]        1203.2               6.8
## [6,]        1254.7               8.0

Let's now set the series frequency.

Setting the series frequency
The frequency of the series has an important role in defining the series attributes, as it sets
(along with the time interval between the series observations) the length of the cycle.
Moreover, it defines the cycle units; for example, the units of a series with a frequency of 12
is 1 to 12. Generally, the most common length of a cycle is a calendar year. The calculation
of the series frequency, in this case, can be divided into two groups:

A daily frequency or any other frequency that is derived from the number of
days in a calendar year (such as the number of the weeks, hours, or minutes in a
year)
Any other frequency that is not derived from the number of days in a year (such
as monthly, quarterly, or half-year)
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The frequency setting of the last group is straightforward and is derived from the number
of periods per cycle. In most cases, the cycle length is one year, and we will therefore set the
frequency of monthly, quarterly, and half-year to 12, 4, and 2 respectively. Moreover, you
can generalize this calculation for an R series with different cycle lengths:

Frequency = cycle length / time interval between observation

For the first group (daily and its subsets) the calculation is fairly similar, with a small
transformation that is required due to leap years. A leap year contains one additional day
(hence, 366 days instead of 365 days in a common year), by extending February to 29 days.
This occurs every 4 years (with some exceptions), in order to synchronize the calendar year
with the astronomical year. Hence, if you are setting the frequency of a daily series to 365,
you will have a day gap every 4 years. Therefore, in order to avoid this gap, we will have to
add a quarter of a day every year and set the frequency to 365.25. The leap year effect also
affects the series so that their frequency units are derived from the number of calendar days
per year. For example, a weekly series will be set to 52.178 instead of 52 (or 365.25 / 7). The
following table summarizes the frequencies of the most common series:

Time interval Cycle length Frequency
Half-year Year 2
Quarterly Year 4
Monthly Year 12
Weekly Year 52.179 (or 365.25 / 7)
Daily Year 365.25 (or (365 * 3 + 366) / 4)
Daily Weekly 7
Hourly Daily 24
Hourly Weekly 168 (or 24 * 7)
Hourly Yearly 8,766 (or 24 * 365.25)
Minutes Hourly 60
Minutes Daily 1,440 (or 60 * 24)
Minutes Weekly 10,080 (or 60 * 24 * 7)
Minutes Yearly 525,960 (or 60 * 24 * 365.25)

Table 1: Common frequency types
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The downside of including the leap year effect on the frequency setting
(for example, setting series with a daily frequency of 365.25 as opposed to
365) is that it may shift some of the seasonal patterns of the series, such as
holidays, as we are shifting each year by a quarter of a day. In addition,
some forecasting models do not support non-integer series.

In the following example, you can see how setting the frequency impacts the structure of
the ts object output. First, we will simulate close to ten years of daily data. We will use
the seq.Date method to create a sequence of 3,650 days (or 365 times 10, which is 10 years
excluding the extra day during leap years) starting on January 1, 2010. We will then use the
rnorm function to generate the corresponding values of the series following a normal
distribution with a mean of 15 and a standard deviation (sd) of 2:

daily_df <- data.frame(date = seq.Date(from = as.Date("2010-01-01"),
                       length.out = 365 * 10, by = "day"),
                       y = rnorm(365 * 10, mean = 15, sd = 2))

We now have a data.frame object with date and numeric objects:

str(daily_df)

We will get the following output:

## 'data.frame':    3650 obs. of  2 variables:
##  $ date: Date, format: "2010-01-01" "2010-01-02" ...
##  $ y   : num  14.25 10.79 9.82 11.71 15.48 ...

We will assign the first date of the series to a variable (start_date) and use it to set the
start point of the series:

start_date <- min(daily_df$date)

For a daily series with weekly cycles, the frequency of the series should be set to seven (for
example, Monday to Sunday) as can be seen in the following example:

days_week_ts <- ts(daily_df$y,
                   start = c(1, wday(start_date)),
                   frequency = 7)

Note that we utilized the wday function from the lubridate package to extract the day of the
week from the first date of the series. Using the ts_info function, you can see the
attributes of the series:

ts_info(days_week_ts)
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We will get the following output:

##  The days_week_ts series is a ts object with 1 variable and 3650
observations
##  Frequency: 7
##  Start time: 1 6
##  End time: 523 1

If the dominant cycle of the series is yearly (for example, a full cycle is 365 days), then you
have two options. The first option is to set the frequency to 365, if you are ignoring the
leap year effect:

daily_ts <- ts(daily_df$y,
               start = c(year(start_date), yday(start_date)),
frequency = 365)

ts_info(daily_ts)

We will get the following output:

##  The daily_ts series is a ts object with 1 variable and 3650
observations
##  Frequency: 365
##  Start time: 2010 1
##  End time: 2019 365

Alternatively, we can set the frequency as 365.25 to smooth the effect of the leap year:

daily_leap_ts <- ts(daily_df$y,
                    start = c(year(start_date), yday(start_date)),
frequency = 365.25)

ts_info(daily_leap_ts)

We will get the following output:

##  The daily_leap_ts series is a ts object with 1 variable and 3650
observations
##  Frequency: 365.25
##  Start time: 2010
##  End time: 2019.99041752225

As can see in the two preceding examples, we used the year and yday functions from the
lubridate package as well to set the start point of the series. In the case of daily series, the
year is used as the cycle number and the day of the year as the frequency unit of the series.
The setting of both start and frequency can be determined, as shown in the output of the
ts_info function in the preceding three cases.
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Data manipulation of ts objects
The data preprocessing does not complete once the series is transformed into a ts object
because, in many cases, you may be required to apply some additional transformation or
preprocessing steps. This includes steps such as extracting or subsetting a specific element
of the series or aggregating the series to a different frequency (for example, from monthly
to quarterly). A typical example of such a step is splitting the series into training and testing
partitions when training a forecasting model. Due to the unique structure of the ts object,
in most cases, the common extraction methods for data.frame do not apply to ts objects.
In this section, we will introduce methods and designated functions for data manipulation
of ts objects by using the window, aggregate, and other functions.

The window function
One of the main functions associated with the ts class is the window function from the stats
package. The main purpose of the window function is to subset a ts object based on a time
range. It is fairly similar to the famous subset function from the base package, where the
input of the function is a ts object, and the output is a subset of that object, based on the
window time setting. Let's go back to the NGC dataset we loaded earlier and see how these
functions work:

start(NGC)
## [1] 2000    1
end(NGC)
## [1] 2018    4
frequency(NGC)
## [1] 4

The main arguments of the window function are the start and end arguments, which
define the range of time to extract from the input object. For example, let's use the window
function to extract all the observations of the year 2005 from the NGC series:

window(NGC, start = c(2005,1), end = c(2005, 4))
##        Qtr1   Qtr2   Qtr3   Qtr4
## 2005 2205.8 1534.1 1422.5 2326.4
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Similarly, we can extract a specific frequency unit from the series. For example, let's assume
that we are interested in extracting all the observations of the series that occurred in the
third quarter of the year. This can be done by setting the starting point at the third quarter
of the first year and the frequency to 1 (which will set the output to a yearly series):

window(NGC, start = c(2000, 3), frequency = 1)
## Time Series:
## Start = 2000
## End = 2018
## Frequency = 1
##  [1] 1475 1494 1542 1429 1482 1422 1462 1590 1461 1575 1638 1656 1807
1767
## [15] 1809 1901 1948 1923 2156

Setting the starting and ending point of the subset series is done with the start and end
arguments of the window function. It is sufficient to use either the start or end argument
when you wish to subset the series from or up to a specific point, respectively. The use of
both arguments is required whenever you wish to bind the series between two points of
time. For example, extracting the third quarter of the series between the years 2006 and
2012 can be done by doing the following:

Setting the start and end cycles of the subset series as the years 2006 and 2012,
respectively
Setting the start and end frequency unit as the third quarter (for example, 3)
Defining the frequency of the series as 1

The following code snippet demonstrates this process:

window(NGC, start = c(2006, 3), end = c(2012, 3),frequency = 1)
## Time Series:
## Start = 2006.5
## End = 2012.5
## Frequency = 1
## [1] 1462.1 1590.5 1460.9 1575.0 1637.5 1655.6 1807.2

The output of this function is a yearly series (that is, a series with a frequency of one), with
the third quarter values of the series during the selected time range.

Let's now learn how to aggregate ts objects.
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Aggregating ts objects
The aggregate function from the stats package is a generic function for aggregating ts
and data.frame objects. This splits the data into subsets, computes specific summary
statistics (based on the user's choice), and then aggregates the results to a ts or
data.frame object (depending on the input type). In the context of the ts object, it is a
handy application, as it provides the ability to collapse the series' frequency to a lower
frequency (for example, from monthly to quarterly). For example, let's use the aggregate
function to transform the NGC series from a quarterly frequency to yearly:

NGC_year <- aggregate(NGC, nfrequency = 1, FUN = "sum")

The FUN argument defines the calculation method to apply to each subset. The most
common method (and the default) is the sum function, which sums each of the subsets and
joins the output into a new series, as shown in the preceding example.

Alternatively, you can apply other functions on the aggregate data with the FUN argument,
such as mean, sd, and median. By setting the nfrequency argument to 1, the function
aggregates the series from a quarterly series with a frequency of four to a yearly series with
a frequency of one:

NGC_year
## Time Series:
## Start = 2000
## End = 2018
## Frequency = 1
##  [1] 7626 7305 7771 7259 7394 7489 7262 7674 7743 7765 8144 8085 8307
8952
## [15] 8792 8981 9171 9430 9811

Handling missing values, if these exist, can be done by using the na.action argument of
the aggregate function, which, by default, ignores missing values. 

Let's now learn how to create lags and leads for ts objects.
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Creating lags and leads for ts objects
The use of lags in time series analysis is widespread because, typically, a time series is
correlated with some of its previous lags. We can generally distinguish between two types
of lags:

Past lags, or simply lags, represent a shift in the series by n steps back, with
respect to the original series. For a series with t observations, the n lag of the
series begins at time n+1 and ends at time t+n (where the first n observations are
missing).
Lead or negative lags represent a shift in the series by n steps forward, with
respect to the original series. In this case, for a series with t observations, the lead
n of the series begins at the time n and end at time t-n (where the last n
observations are missing).

The following table demonstrates the relationship between a series and its first lag and
lead. You can note that for Lag-1 and Lead-1 of the series, the first and last observations are
missing:

Table 2: An example of the lag and lead of a series

The lag function from the stats package (this should not be confused with the lag function
from the dplyr package) can be used to create lags or leads for ts objects. This function has
one argument, k, which defines the number of lags or leads to be created for a given input
series. The n lag of the series is defined by k = -n and, similarly, the n lead of the series is
defined by k = n. For example, if we wish to create a seasonal lag (seasonal lag is defined
as n = frequency of the series) of the NGC series, we need set k to -4:

NGC_lag4 <- stats::lag(NGC, k = -4)
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You can see that, in the preceding function, we added the package name
with double colons (::), or stats::lag, before the lag function. Using
this method ensures that we are calling the lag function from the stats
package and not from the dplyr package. Generally, you should apply
this method whenever the function name exists in two different packages
that are loaded to the working environment. 

We will get the following data when we use ts_info(NGC_lag4):

ts_info(NGC_lag4)
##  The NGC_lag4 series is a ts object with 1 variable and 76 observations
##  Frequency: 4
##  Start time: 2001 1
##  End time: 2019 4

As you can see in the preceding output, the series shifted by four observations, and each
observation of the new series represents the fourth lag of the original series (for example,
the first quarter of 2001 is the lag of the corresponding quarter in 2000).

Visualizing ts and mts objects
One of the first things that you probably want to do once you create or convert your data to
a ts or mts format is to visualize it. This step is a quick sanity check to make sure that your
data looks like you expect it would and to identify outliers, seasonality, and other patterns
within your data. There are two approaches for visualizing a time series object:

Direct: This approach uses a visualization function to plot the object without any
data transformation or conversion to another class. There are few packages that
provide direct tools for visualizing time series objects. In this chapter, we will
focus on three packages:

stats: In addition to the ts objects, this provides the plot.ts
function for visualizing time series objects. This function is an
extension of the plot function, which is an R built-in visualization
function.
dygraphs: This R package is an interface for the dygraphs
JavaScript visualization library. It provides an interactive
application for visualizing ts objects.
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TSstudio: This is a designated package for descriptive and
predictive analysis of time series data. This includes rich and
interactive visualization applications for time series objects, such as
ts, mts, zoo, xts, and other table-based formats (such as
data.frame and tibble). Like the previous package, the
TSstudio package is uses the plotly package engine.

In-direct: This approach involves applying some data transformation steps to
restructure the data as a numeric two-dimensional structure (values over time).
This includes the use of packages such as ggplot2, plotly, highcharter,
and rbokeh. Using these packages for a time series object is not in the scope of
this book.

The main difference between the direct and indirect approaches is that the former was
designed to work with the ts objects and it therefore automatically transfers the value of
the series and timestamp onto a y-axis and x-axis respectively. On the other hand, in the
indirect approach, you will have to define those two dimensions (values versus time)
manually.

Let's now look at the plot.ts function.

The plot.ts function
The plot.ts function from the stats package is built-in R function for visualizing of a ts
object. It is straightforward to plot a ts object with this function, as it based on the plot
function. Therefore, most of the arguments of the plot function (such as title and labeling
options) can be used with the plot.ts function (generally, using the plot function with
a ts object is the equivalent of using the plot.ts function). For instance, let's use the
function to visualize the tvs_ts series we created earlier:

plot.ts(tvs_ts,
 main = "US Monthly Total Vehicle Sales",
 ylab = "Thousands of Vehicle",
 xlab = "Time"
 )
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This will give us the following graph:

We used the main argument to add to the plot title, and the ylab and xlab variables to add
labeling for the y and x-axis, respectively. Similarly, we can use the function to plot an mts
object:

plot.ts(US_indicators_ts,
         plot.type = "multiple",
         main = "US Monthly Vehicle Sales vs. Unemployment Rate",
         xlab = "Time")



The Time Series Object Chapter 3

[ 85 ]

The following is the output:

When plotting an mts object, you can choose to plot all the series in a single plot or to
separate them on multiple plots (one for each series) with the plot.type argument. The
single mode is more applicable when all the series are on the same scale. On the other
hand, when the series are in a different scales (as in the preceding example), it will make
more sense to use the multiple option. Let's now look at the dygraphs package.

The dygraphs package
The dygraphs package is an R interface to the dygraphs JavaScript charting library, and it
is completely dedicated to visualizing time series objects, including the ts class. In
addition, it is highly customized, interactive, and supports HTML implementation (for
example, the rmarkdown and Shiny packages).
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Let's plot the tvs_ts and US_indicators_ts series again with the dygraph function:

library(dygraphs)

 dygraph(tvs_ts,
         main = "US Monthly Total Vehicle Sales",
         ylab = "Thousands of Vehicle") %>%
   dyRangeSelector()

We will get the following output:

You can see that the main dygraph arguments are fairly similar to the plot.ts function
arguments (titles and labeling options). We used the dyRangeSelector argument to add a
time slider, which allows the user to change the time frame of the plot. For the
US_indicators_ts series, we will add a second y-axis, which allows us to plot and
compare the two series that are not on the same scale (for example, thousands of units
versus percentage):

dygraph(US_indicators_ts,
         main = "US Monthly Vehicle Sales vs. Unemployment Rate") %>%
   dyAxis("y", label = "Vehicle Sales") %>%
   dyAxis("y2", label = "Unemployment Rate") %>%
   dySeries("Vehicle Sales", axis = 'y', color = "green") %>%
   dySeries("Unemployment Rate", axis = 'y2', color = "red") %>%
   dyLegend(width = 400)
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We will then get the following plot:

The dygraph argument is using an object-oriented approach, which allows you to add a
different component to the plot with the pipe operator (%>%). This allows the user to add 
additional arguments for the plot, as opposed to a large amount of arguments in one
function. Looking at the plot of the US_indecator_ts series when using two y-axes, you
can see that it is easier to identify the relationship between the two series as opposed to
plotting them on a separate plot (as we did with the plot.ts function earlier). With a
quick glance at the graph, you can see that, generally, unemployment increases when
vehicle sales decrease. Although this is not conclusive evidence about the relationship
between the two, it provides you with a directional path when starting the analysis. Let's
now look at the TSstudio package.
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The TSstudio package
The TSstudio package provides us with a set of interactive applications for descriptive and
predictive analysis of time series. This includes the ts_plot function for visualizing time
series objects using the plotly package visualization engine. In addition, this function
supports both time series objects, such as ts, mts, zoo, and xts, and also data frame types
such as data.frame, data.table, and tibble. Let's now plot the tvs_ts series with the
ts_plot function:

library(TSstudio)

 ts_plot(tvs_ts,
         title = "US Monthly Total Vehicle Sales",
         Ytitle = "Thousands of Vehicle",
         slider = TRUE
 )

This gives us the following graph:
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As with the dygraph function, you can add an interactive slider for the x-axis. Similarly,
the ts_plot function supports mts objects:

ts_plot(US_indicators_ts,
 title = "US Monthly Vehicle Sales vs. Unemployment Rate",
 type = "multiple")

This will give us the following graphs showing Unemployment.Rate and
Vehicle.Sales:

We will extensively use the TSstudio package throughout this book for a descriptive
analysis of time series with data visualization.
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Summary
The ts class is one of the most common formats for time series data and is widely used in
the domain of forecasting. In this chapter, we focused on the main attributes of the ts class
and its associated functions from the stats package. Those attributes will be handy when we
dive more into time series analysis in the advanced chapters of this book. In addition, we
introduced common methods for visualizing a ts object with the basic plot function, as
well as advanced visualization tools from the dygraph and TSstudio packages.

The main advantage of the ts class is that it sets a clear standard about both the structure
and attributes of the time series object in R. On the other hand, due to the unique structure
of the ts object, preprocessing and working with it could be cumbersome, with respect to
other data classes in R, such as data.frame.

In the next chapter, we will introduce the xts and zoo classes, formats that are flexible and
easy to work with for time series data.



4
Working with zoo and xts

Objects
In the previous chapter, we introduced the core class in R for time series data, the ts object.
In this chapter, we will focus on another common data structure for time series data—the
zoo class and its extension and the xts class, from the zoo and xts packages respectively.
Those two classes are popular in the domain of financial time series analysis (that is, stock
prices, indices, and so on), mainly due to their index format, which can store external date
and time objects such as the Date, POSIXct/lt, yearmon, and yearqtr classes.
Throughout this chapter, we will introduce methods and techniques for creating,
manipulating, and visualizing zoo and xts objects.

In this chapter, we will cover the following topics:

Creating, working with, and manipulating zoo and xts objects
The attributes of the zoo and xts classes
The yearmon and yearqtr time classes
Visualizing zoo and xts objects

Technical requirement
The following packages will be used in this chapter:

xts: Version 0.11-2 and above
zoo: Version 1.8-5 and above

You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter04

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter04
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The zoo class
The zoo package provides a framework for working with regular and irregular time series
data. This includes the zoo class, an indexed object for storing time series data, and a set of
functions for creating, preprocessing, and visualizing time series data. Similar to the ts and
mts classes, the zoo class is comprised of two components:

Data structure: A vector (for univariate time series data) or matrix (for
multivariance time series data) format
Index vector: This stores the series observation's corresponding index

On the other hand, unlike the ts class, the index of the zoo class has a flexible structure, as
it can store different date and time classes, such as Date, POSIXct/lt, yearmon or
yearqtr, as indices.

yearmon and yearqtr are two index classes for regular time series data.
The yearmon class is suitable for representing a monthly time series when
there is no meaning for the day or time for which the observations were
captured. Similarly, the yearqtr class is suitable for representing
quarterly time series data. In this case, the class describes the year and
quarter in which the observations were captured.

The Brent Crude Oil Prices series from the TSstudio package is an example of a zoo object.
Let's load and review the main characteristics of the series:

library(TSstudio)

data(EURO_Brent)
library(zoo)

The ts_info function from the TSstudio package, which we introduced in the previous
chapter, also supports the zoo and xts classes. We will utilize this to get a summary of the
EURO_Brent dataset:

ts_info(EURO_Brent)
##  The EURO_Brent series is a zoo object with 1 variable and 380
observations
##  Frequency: monthly
##  Start time: May 1987
##  End time: Dec 2018
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As you can see from the output of the ts_info function, the EURO_Brent series is a
monthly series with 380 observations. In addition, the index of the series uses the month
and the year of the observation. We will discuss the attributes of the zoo object and its
index in the following section.

The zoo class attributes
The zoo class can handle both regular (where the time intervals between the observations
are equally spaced) and irregular time series data. The zoo object automatically identifies
whether the series is regular or not based on the index of the object, and will classify it
accordingly.

The classification of the zoo object to regular or irregular can be observed by the class of the
object:

class (EURO_Brent)

## [1] "zooreg" "zoo"

In this case, you can see that the object has two classes: zoo and zooreg. The zooreg class
is the indication that the object was classified as a regular time series.

You should note that, in some cases, the zoo function won't be able to
identify that the object is regular time series data due to the index
structure. For example, if the input series is monthly and is captured on
the first of each month, it won't necessarily be classified as regular,
although we could consider it regular. This is mainly because the number
of days in each month varies (28 days in February and 30 or 31 days in the
rest of the year), which will cause the index to be unequally spaced over
time.

The zoo class supports some of the stats package functions, which were introduced in
Chapter 3, The Time Series Object, in retrieving the different attributes of the object. Those
functions, such as the frequency or cycle functions, are applicable only if the object was
classified as zooreg. For example, we can pull the frequency and cycle units of the series
with the frequency and cycle functions:

frequency(EURO_Brent)
## [1] 12

head(cycle(EURO_Brent), 12)
## May 1987 Jun 1987 Jul 1987 Aug 1987 Sep 1987 Oct 1987 Nov 1987 Dec 1987
##        5       6        7        8        9       10       11       12
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## Jan 1988 Feb 1988 Mar 1988 Apr 1988
##        1        2        3        4

Similarly, we can retrieve the starting, ending, and index units of the zoo object with the
start, end, and time functions:

start(EURO_Brent)
## [1] "May 1987"

end(EURO_Brent)
## [1] "Dec 2018"

head(time(EURO_Brent), 12)
##  [1] "May 1987" "Jun 1987" "Jul 1987" "Aug 1987" "Sep 1987" "Oct 1987"
##  [7] "Nov 1987" "Dec 1987" "Jan 1988" "Feb 1988" "Mar 1988" "Apr 1988"

You can see that the output of those functions is consistently aligned to the structure of the
index, which, in this case, is the yearmon class.

The index of the zoo object
One of the main features of the zoo class is the unique structure of its index. Unlike the
index of the ts class, the zoo index supports the use of external date and time objects as the
series index. The main advantage of this method is that it allows us to preserve the original
index format (for example, Date, POSIXct/lt, and so on) when transforming a time series
object from a different format, such as data.frame. Furthermore, it can store more
granular information about the timestamp of the series as opposed to the ts index, which is
limited to two elements. This will become handy when you are working with high-
frequency (that is, a high number of observations per cycle unit) time series data, such as
the hourly series. We will continue to use the EURO_Brent series to review the main
features of the index function. We will start by using the index function from the zoo
package to view the first observations of the series index:

head(index(EURO_Brent))
## [1] "May 1987" "Jun 1987" "Jul 1987" "Aug 1987" "Sep 1987" "Oct 1987"

Generally, you can see that the output of the index function is similar to the output of the
time function that we used before. However, the zoo index is an independent object,
therefore it has its own attributes and class functions. We will use these class and
attributes functions to review the characteristics of the series index:

class(index(EURO_Brent))
## [1] "yearmon"
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attributes(index(EURO_Brent))
## $class
## [1] "yearmon"

As the zoo index is an independent object, you can convert it to other classes as long as it is
applicable. Since the EURO_Brent series has a monthly frequency, we can transform the
index from a yearmon object to a Date object:

index(EURO_Brent) <- as.Date(index(EURO_Brent))

head(EURO_Brent)
## 1987-05-01 1987-06-01 1987-07-01 1987-08-01 1987-09-01 1987-10-01
##      18.58      18.86      19.86      18.98      18.31      18.76

class(index(EURO_Brent))
## [1] "Date"

Working with date and time objects
Date and time objects are some of the core elements of the time series object, as they set
series attributes (that is, frequency, cycle, and so on) and help to index series observations.
The zoo package provides us with a set of utility functions for handling and preprocessing
date and time objects. In addition, the package provides us with two types of date
objects, yearmon and yearqtr, for indexing a monthly and quarterly series, respectively.
as.yearmon and as.yearqtr are two conversion functions that allow us to convert Date
objects to yearmon and yearqtr objects, respectively. The following example demonstrates
the conversion of a Date object to a yearmon object with the as.yearmon function. First,
let's create a sequence of 12 dates, representing the beginning of each month in 2019, with
the seq.Date function:

monthly_dates <- seq.Date(from = as.Date("2019-01-01"), length.out = 12, by
= "month")

head(monthly_dates)

We will get the following output:

## [1] "2019-01-01" "2019-02-01" "2019-03-01" "2019-04-01" "2019-05-01"
## [6] "2019-06-01"
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Next, we will use the as.yearmon function to convert the monthly_dates object to a
yearmon object:

monthly_yearmon <- as.yearmon(monthly_dates)

head(monthly_yearmon)

We will get the following output:

## [1] "Jan 2019" "Feb 2019" "Mar 2019" "Apr 2019" "May 2019" "Jun 2019"

In a similar manner, you can convert a sequence of dates spaced by three months (that is, a
quarter) to a yearqtr object with the as.yearqtr function. The use of the yearmon and
yearqtr classes, in my mind, provides a more concise representation of the monthly or
quarterly data, assuming that there is no meaning for the day element of the date.

When converting a Date object to either the yearmon or yearqtr class,
the day element of the original object is lost. Conversion back to a Date
object can be done with the as.Date function, which, by default, will
assign the first day of the month as the day element of the object.

Another useful function is the as.Date.ts function, which allows us to convert the
timestamp (or index) of a ts object to a Date object when applicable (for example, in a
monthly series). For example, let's load the USgas series, which represents the US monthly
consumption of natural gas, from the TSstudio package and convert the series timestamp
to a Date object:

data(USgas)

head(time(USgas))

We will get the following output:

## [1] 2000.000 2000.083 2000.167 2000.250 2000.333 2000.417

Let's now use the head function to view the output of the as.Date.ts function for the
USgas series:

head(as.Date.ts(USgas))
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We will get the following output:

## [1] "2000-01-01" "2000-02-01" "2000-03-01" "2000-04-01" "2000-05-01"
## [6] "2000-06-01"

Creating a zoo object
Creating a zoo object is relatively simple and follows the same logic as the ts function we
introduced in the previous chapter. Generally, there are two methods for creating a zoo
object:

Convert an existing time series object from a different class by using the as.zoo
function. This function supports a variety of time series classes, such as ts and
xts.
Create a zoo object with the zoo function, using a numeric vector as an input.

We will start with a simple example of converting a data.frame object to a zoo object with
the zoo function. We will use the US_indicators dataset as an input object. Let's load the
US_indicators series from the TSstudio package again, and review its structure:

data(US_indicators)

str(US_indicators)

We will get the following output:

## 'data.frame':    517 obs. of  3 variables:
##  $ Date             : Date, format: "1976-01-31" "1976-02-29" ...
##  $ Vehicle Sales    : num  885 995 1244 1191 1203 ...
##  $ Unemployment Rate: num  8.8 8.7 8.1 7.4 6.8 8 7.8 7.6 7.4 7.2 ...

You should recall that this dataset represents the monthly vehicle sales and the
unemployment rate in the US since 1976. Next, we will use the zoo function to convert the
second column of the data.frame object (Vehicle Sales) to a zoo object. Since this is a
monthly series, we will set the frequency argument of the zoo function to 12:

Vehicle_Sales1 <- zoo(x = US_indicators$`Vehicle Sales`,
                      frequency = 12)
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We can review the characteristics of the new object with the class, frequency, and head
functions:

class(Vehicle_Sales1)
## [1] "zooreg" "zoo"

frequency(Vehicle_Sales1)
## [1] 12

head(Vehicle_Sales1)
## Jan 0001 Jan 0002 Jan 0003 Jan 0004 Jan 0005 Jan 0006
## 885.2 994.7 1243.6 1191.2 1203.2 1254.7

By default, if not assigning an index with the input object, the zoo function sets the object's
index based on the frequency setting. In the case of a monthly or quarterly series, the zoo
function sets the index as yearmon or yearqtr, respectively. Otherwise, it will define a
sequence of ordered integers as the index (that is, 1, 2, ..., t, for a series with t observations).

The order.by argument of the zoo function can be used to set the index operator of the
output object. In the case of the vehicle sales series, we can assign the Date object with the
order.by argument as the series index:

Vehicle_Sales2 <- zoo(x = US_indicators$`Vehicle Sales`,
                      order.by = US_indicators$Date,
                      frequency = 12)

As we can see in the following output, the order.by argument persevered with the
attributes of the original series and set the series index as an original Date object:

head(Vehicle_Sales2)
## 1976-01-31 1976-02-29 1976-03-31 1976-04-30 1976-05-31 1976-06-30
##      885.2      994.7     1243.6     1191.2     1203.2     1254.7

class(index(Vehicle_Sales2))
## [1] "Date"

In addition to the zoo function, the package provides the as.zoo function, a
transformation function of a variety of time series classes (such as ts, fts, and xts), to a
zoo class. For instance, we can use the as.zoo function to convert the USgas series from a
ts object to a zoo object.
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You should recall that the USgas series represents the US monthly natural gas consumption
since January 2000, and this series is available in the TSstudio package. The conversion
process with the as.zoo function is straightforward:

data(USgas)

USgas_zoo <- as.zoo(USgas)

We will use the ts_info function to compare the main characteristics of the original and
the transformed objects:

ts_info(USgas)
##  The USgas series is a ts object with 1 variable and 227 observations
 ##  Frequency: 12
 ##  Start time: 2000 1
 ##  End time: 2018 11

ts_info(USgas_zoo)
##  The USgas_zoo series is a zoo object with 1 variable and 227
observations
 ##  Frequency: monthly
 ##  Start time: Jan 2000
 ##  End time: Nov 2018

You will notice from the output of the original and transformed objects
that the as.zoo function is automatically mapped and transformed from
the original index of the ts object to the yearmon object.

As previously mentioned, the zoo class supports both regular and irregular time series
data, where the zooreg class indicates that the zoo object is a regular time series.
Generally, the zoo package defines three types of time series structures:

The irregular time series: This is any time series data where the time intervals
between the series observations are unequally spaced
The strictly regular time series: This is any time series where all the observations
of the series are equally spaced
The underlying regularity time series: This is any time series object that is
created from a regular time series, such as a subset of a regular series

While all three types are defined as a zoo class, only the last two have the additional
attribute of the zooreg class.
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If an object has only the zoo attribute, this does not necessarily imply that
the object is an irregular time series data object. On the other hand,
whenever an object has both of the attributes (zoo and zooreg), this
implies that the object is a regular time series object (according to the
definition of the zoo package).

The zoo function can identify whether the input series has the characteristics of a regular
time series data object only if the following two inputs occur:

The index defines a date or time object with the order.by argument that does
not leave room for ambiguity (for example, a yearmon class for a monthly
frequency)
The frequency of the series is appropriately set with the frequency argument

Using those two inputs, the zoo function can identify the characteristics of the series and
classify it accordingly.

The is.regular function can be used for identifying whether a zoo object is regular or
not. If the strict argument of the function is set to TRUE, the function will test whether the
object is strictly regular. For example, we can examine the zoo objects that we have used so
far with the is.regular function and test whether they are strictly regular:

is.regular(EURO_Brent, strict = TRUE)
## [1] FALSE

is.regular(Vehicle_Sales1, strict = TRUE)
## [1] TRUE

is.regular(Vehicle_Sales2, strict = TRUE)
## [1] FALSE

is.regular(USgas_zoo, strict = TRUE)
## [1] TRUE

Both the EURO_Brent and Vehicle_Sales2 are not strictly regular, as their index is a
Date object (as opposed to a yearmon object). The use of a Date object as an index creates
some ambiguity, as the distance between each observation could be either 28 or 29 (on a
leap year) days during February, and 30 or 31 days throughout the rest of the year. On the
other hand, since the frequency of those objects is well defined, they will be considered to
be regular (but not strictly regular):

is.regular(EURO_Brent, strict = FALSE)
## [1] TRUE
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is.regular(Vehicle_Sales2, strict = FALSE)
## [1] TRUE

Working with multiple time series objects
Creating a multivariate time series zoo object is straightforward and is fairly similar to the
process of creating a univariate time series object, as shown previously. The main
distinction between the two object types is that, in the case of a multivariate time series
object, the input contains a multiple columns object (as opposed to a single vector). In the
following example, we will use the US_indicators dataset again, but this time we will
transform both the vehicle sales and unemployment rate into a single zoo object:

US_indicators_zoo <- zoo(x = US_indicators[,c("Vehicle Sales",
"Unemployment Rate")],
                          frequency = 12,
                          order.by = US_indicators$Date)

We will use the ts_info and head functions to review the characteristics of the new object:

ts_info(US_indicators_zoo)
##  The US_indicators_zoo series is a zoo object with 2 variables and 517
observations
##  Frequency: monthly
##  Start time: 1976-01-31
##  End time: 2019-01-31

head(US_indicators_zoo)
##            Vehicle Sales Unemployment Rate
## 1976-01-31         885.2               8.8
## 1976-02-29         994.7               8.7
## 1976-03-31        1243.6               8.1
## 1976-04-30        1191.2               7.4
## 1976-05-31        1203.2               6.8
## 1976-06-30        1254.7               8.0

Similarly, the new object is a regular time series object (but not strict, as it has a Date
index):

is.regular(US_indicators_zoo, strict = FALSE)
## [1] TRUE
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The xts class
The eXtensible time series, xts package is an extension of the zoo package. It provides the
xts class and a set of functions and tools for preprocessing, manipulating, and visualizing
time series data. The xts class is a zoo object with additional attributes. Therefore, by
default, any xts object carries zoo class attributes, and any of the zoo functions can be
applied to the xts object. In the following examples, we will use the Michigan_CS
series, which is an xts object that represents the famous consumer sentiment index of the
University of Michigan since 1980. This series is available on the TSstudio package. We will
start by loading the series and will review its main characteristics:

data(Michigan_CS)

ts_info(Michigan_CS)
##  The Michigan_CS series is a xts object with 1 variable and 468
observations
##  Frequency: monthly
##  Start time: Jan 1980
##  End time: Dec 2018

class(Michigan_CS)
## [1] "xts" "zoo"

You can see from the preceding class function output that the class of the series is both xts
and zoo, which is the standard attribute of the xts object. Therefore, any of the functions
from either the zoo or the stats functions we used before can also be applied on the xts
objects. An example of this is shown in the following code snippet:

class(index(Michigan_CS))
## [1] "yearmon"

frequency(Michigan_CS)
## [1] 12

is.regular(Michigan_CS, strict = TRUE)
## [1] TRUE

One of the main improvements of the xts class with respect to the zoo class is the matrix
format structure of the object (as opposed to the vector representation of the zoo class):

head(Michigan_CS)
##          [,1]
## Jan 1980 67.0
## Feb 1980 66.9
## Mar 1980 56.5



Working with zoo and xts Objects Chapter 4

[ 103 ]

## Apr 1980 52.7
## May 1980 51.7
## Jun 1980 58.7

This is more than just an aesthetic representation of the object; it is easier to extract or
subset data from this code. Creating a univariate or multivariate time series object with the
xts package follows the same process as in the zoo package. For example, we can transform
the US_indicators data.frame object to an xts object with the xts function:

library(xts)

US_indicators_xts <- xts(x = US_indicators[,c("Vehicle Sales",
"Unemployment Rate")],
                          frequency = 12,
                          order.by = US_indicators$Date)

head(US_indicators_xts)

We will get the following output:

##            Vehicle Sales Unemployment Rate
## 1976-01-31         885.2               8.8
## 1976-02-29         994.7               8.7
## 1976-03-31        1243.6               8.1
## 1976-04-30        1191.2               7.4
## 1976-05-31        1203.2               6.8
## 1976-06-30        1254.7               8.0

The xts class attributes
Generally, as the xts object is also a zoo object, it automatically inherits all the attributes
and functionality of the zoo class. Therefore, all the attributes of the zoo object that we
have introduced can also be applied to the xts object. The main distinction between the
two classes is related to the structure of the univariate time series object. While the zoo
object has a vector structure, the xts object has a matrix structure. The uniqueness of the
xts object is related to the rich functionality of the xts package.

The xts functionality
The xts package provides us with a set of utility functions that make working with the xts
object seamless. In the following examples, we will apply some of the main utility functions
to the Michigan_CS series.
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We will start with the periodicity function.

The periodicity function
The output of the function is a combination of the frequency, start, and end functions
which we used with the ts and zoo objects, as this returns text with a short description of
those attributes:

periodicity(Michigan_CS)
## Monthly periodicity from Jan 1980 to Dec 2018

Manipulating the object index
The xts package provides us with a set of functions for handling the index of the xts object.
The indexClass family of functions (use ?indexClass to get the full list of functions)
provides us with a set of tools for extracting or replacing the xts class index. The
indexClass function itself returns the index class of the object:

indexClass(Michigan_CS)
## [1] "yearmon"

The converIndex function, as its name implies, converts the object index class. For
instance, we can utilize the function to convert the index of the Michigan_CS series from
yearmon to Date:

Michigan_CS <-  convertIndex(Michigan_CS, "Date")

indexClass(Michigan_CS)
## [1] "Date"

In addition, the indexClass function provides a set of functions for extracting the date or
time component of the object index. For example, the .indexmon function returns the
corresponding months of the index:

head(.indexmon(Michigan_CS), 12)
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11

You will notice that the count of the index starts at 0, which, in this case, corresponds to the
month of January. Another useful function is indexFormat, which allows us to modify the
index format.
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In the next example, we will utilize the function to modify the index format from year,
month, day (y-m-d) to month, day, year (m-d-y):

indexFormat(Michigan_CS) <- "%m-%d-%Y"

head(Michigan_CS)

We will get the following output:

##            [,1]
## 01-01-1980 67.0
## 02-01-1980 66.9
## 03-01-1980 56.5
## 04-01-1980 52.7
## 05-01-1980 51.7
## 06-01-1980 58.7

Subsetting an xts object based on the index properties
In many instances, you may want or need to extract or subset some elements or parts of
your series. A typical example of this would be extracting the first or last 12 months of the
series, or splitting it into the training and testing partitions. One of the strengths of the xts
class is the ability to extract data from an object in a seamless way without the need for a
window or any other function (as opposed to the ts class we saw in the previous chapter).
As the xts class is a semi-data frame, it is relatively simple to manipulate or extract data by
using a data.frame style. Moreover, it is possible to retrieve data based on a specific time
range using the series index. For example, let's say that you wish to extract the first 12
months of the vehicle sales data from the US_indicators dataset that we created. We will
start with the data frame style extraction of the first 12 months:

Vehicle_Sales_xts1 <- US_indicators_xts$`Vehicle Sales`[1:12]

ts_info(Vehicle_Sales_xts1)

We will get the following output:

##  The Vehicle_Sales_xts1 series is a xts object with 1 variable and 12
observations
##  Frequency: monthly
##  Start time: 1976-01-31
##  End time: 1976-12-31
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The xts object supports text-based queries for subsetting the series. For instance, we can
extract the first year of the series by specifying the year value (that is, 1976):

Vehicle_Sales_xts2 <- US_indicators_xts$`Vehicle Sales`["1976"]

ts_info(Vehicle_Sales_xts2)

We will get the following output:

##  The Vehicle_Sales_xts2 series is a xts object with 1 variable and 12
observations
##  Frequency: monthly
##  Start time: 1976-01-31
##  End time: 1976-12-31

Furthermore, it is possible to have a more granular subset by using other elements of the
index object. For instance, if you wish to extract the first 6 months of the year 1976, you can
use the following structure:

Vehicle_Sales_xts3 <- US_indicators_xts$`Vehicle Sales`["1976-01/06"]

ts_info(Vehicle_Sales_xts3)

We will get the following output:

##  The Vehicle_Sales_xts3 series is a xts object with 1 variable and 6
observations
##  Frequency: monthly
##  Start time: 1976-01-31
##  End time: 1976-06-30

Manipulating the zoo and xts objects
One of the main advantages of the zoo class and, in particular, the xts class (with respect
to the ts object), is their friendly and simple structure. This allows us to preprocess and
manipulate these types of objects in a seamless manner. Both the zoo and the xts packages
provide a variety of utility functions for working with these types of objects. In this section,
we will introduce some of the main functions for manipulating the zoo and xts objects.
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Merging time series objects
In some instances, you may want to join or merge different series into a single object. Both
the zoo and xts packages provide functions for merging a time series object (including 
merging mixed classes, such as zoo or xts).

The merging process is based on identifying any overlap between the input indices.
Therefore, the first step is to identify the type or structure of the input indices before
starting the merging process. If the indices do not follow the same structure, a
transformation of the indices is required. The main difference between the merge.xts and
merge.zoo functions is that the first provides the ability to set the type of join in a SQL-like
style. This includes the common join options, such as outer, inner, left, or right, which are
defined by the join argument.

For example, let's assume that you want to merge the Michigan_CS series (an xts object)
with the EURO_Brent series (a zoo object). The first step is to identify the structure of the
indices of both of the objects:

indexClass(Michigan_CS)
## [1] "Date"

class(index(EURO_Brent))
## [1] "Date"

As both of the indices are Date objects, we can move forward to the next step and observe
whether there is any overlap between the indices of those two objects, as it makes sense to
merge time series objects whenever there is some level of overlap between the series. We
will utilize the ts_info function to observe the date range of the indices:

ts_info(Michigan_CS)
##  The Michigan_CS series is a xts object with 1 variable and 468
observations
##  Frequency: monthly
##  Start time: 1980-01-01
##  End time: 2018-12-01

ts_info(EURO_Brent)
##  The EURO_Brent series is a zoo object with 1 variable and 380
observations
##  Frequency: monthly
##  Start time: 1987-05-01
##  End time: 2018-12-01
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You can see in the preceding output that both of the series have an overlap between their
indices, as the Michigan_CS series starts in January 1980 and ends in December 2018, while
the EURO_Brend series starts in May 1987 and ends in December 2018.

Therefore, in this case, the merge process is straightforward. The next step is to set the
merge.xts function and merge those objects:

xts_merge_outer <- merge.xts(Michigan_CS = Michigan_CS,
 EURO_Brent = EURO_Brent,
 join = "outer" )

ts_info(xts_merge_outer)

We will get the following output:

##  The xts_merge_outer series is a xts object with 2 variables and 468
observations
##  Frequency: monthly
##  Start time: 1980-01-01
## End time: 2018-12-01

Since we applied an outer join, the merged object will start at the earliest starting point
(January 1980) and end at the latest (December 2018) of the two series timestamps. As the
starting point of the EURO_Brent series is about 7 years after the ones in the Michigan_CS
series (May 1987 versus January 1980), all those missing observations will be filled by
an NA value:

head(xts_merge_outer["1987"])
##            Michigan_CS EURO_Brent
## 01-01-1987        90.4         NA
## 02-01-1987        90.2         NA
## 03-01-1987        90.8         NA
## 04-01-1987        92.8         NA
## 05-01-1987        91.1      18.58
## 06-01-1987        91.5      18.86

Similarly, when setting the join argument to inner, the merged object will be bound by
the overlapping period of the two series:

xts_merge_inner <- merge.xts(Michigan_CS = Michigan_CS,
                             EURO_Brent = EURO_Brent,
                             join = "inner" )

ts_info(xts_merge_inner)
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We will get the following output:

##  The xts_merge_inner series is a xts object with 2 variables and 380
observations
##  Frequency: monthly
##  Start time: 1987-05-01
##  End time: 2018-12-01

Let's now use the head function to check the output:

head(xts_merge_inner)

We will get the following output:

##            Michigan_CS EURO_Brent
## 05-01-1987        91.1      18.58
## 06-01-1987        91.5      18.86
## 07-01-1987        93.7      19.86
## 08-01-1987        94.4      18.98
## 09-01-1987        93.6      18.31
## 10-01-1987        89.3      18.76

Rolling windows
In some instances, you may want to apply some mathematical calculations to consecutive
observations of a series with a rolling window. A typical application for the use of a rolling
window is the moving average or smoothing functions. Those functions are based on the
use of a rolling window to calculate the average of each observation with its n consecutive
observations. We will discuss the moving average and its applications in detail in the next
chapter. The rollapply function from the zoo package provides this functionality, as it
applies a mathematical function with a rolling window on a series. The function's main
arguments are:

data: This defines the input series
width: This is an integer that sets the width of the rolling window
align: This defines the structure of the rolling window; the argument is set to
center by default
FUN: This is a function to apply along with the rolling window
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For a series with t observations, a rolling window with a width of n is
defined as a function that subsets each observation of the series (when
applicable) with its n-1 neighbors' observations. The subset of the
neighbors' observations is defined by the window structure. Common
types of window structure are as follows:

Center: The subset of the t observation of the series includes the
t observation and its n-1/2 preceding and following
observations (assuming that n is an odd number). For example,
for a window of size 3, the rolling window of the t observation
of the series includes the observations t-1, t, and t +1.
Left/Right: The subset of the t observation of the series includes
the t observation and its n-1 preceding/following observations,
respectively.

For example, we can calculate the 3 months, moving average for the EURO_Brent series by
using the rollapply function. By default, the rollapply function uses a center window.
Therefore, for a 3-month rolling window, the function subsets the t observation of the series
along with the preceding observation, t-1, and the next observation, t+1:

EURO_Brent_3ma <- rollapply(EURO_Brent,
                            width = 3,
                            FUN = mean)

Let's review the characteristics of the new series with the ts_info function:

ts_info(EURO_Brent_3ma)

We will get the following output:

##  The EURO_Brent_3ma series is a zoo object with 1 variable and 378
observations
##  Frequency: monthly
##  Start time: 1987-06-01
##  End time: 2018-11-01

You will note that the new series is missing the first and last observations of the original
series. This is related to the window size and structure. In this case, as we used a rolling
window of size 3, we cannot create a window for the first and last observations.
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Creating lags
As with the ts object, creating lags for the zoo and xts objects can be done with the lag
function from the stats package. You may recall that the function's main parameter is the
k parameter, which sets the number of lags (for negative values) or the number of leading
observations (for positive values). For example, we can create a 3-month lag with the lag
function for the EURO_Brent series and merge it with the original series:

EURO_Brent_lag3 <- lag(EURO_Brent, k = -3)

EURO_Brent_merge <- merge.zoo(EURO_Brent, EURO_Brent_lag3)

head(EURO_Brent_merge)

We will get the following output:

##            EURO_Brent EURO_Brent_lag3
## 1987-05-01      18.58              NA
## 1987-06-01      18.86              NA
## 1987-07-01      19.86              NA
## 1987-08-01      18.98           18.58
## 1987-09-01      18.31           18.86
## 1987-10-01      18.76           19.86

Aggregating the zoo and xts objects
Aggregating the zoo and xts objects is straightforward with the aggregate function. The 
aggregation process can be done by defining the aggregate level with the by argument (that
is, the new frequency unit of the aggregate object), and by setting the FUN argument to
the sum function. For example, let's aggregate the USgas_zoo series we created previously
from monthly to quarterly:

USgas_zoo_qtr <-  aggregate(USgas_zoo,
                              by = as.yearqtr,
                              FUN = sum)

As you can see, we set the index of the new series as quarterly with the as.yearqtr
function from the zoo package. We can review the aggregate object characteristics with
the ts_info function:

ts_info(USgas_zoo)
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We will get the following output:

##  The USgas_zoo series is a zoo object with 1 variable and 227
observations
##  Frequency: monthly
##  Start time: Jan 2000
##  End time: Nov 2018

In a similar manner, we can aggregate the USgas_zoo object to a yearly frequency by using
the year function from the lubridate package as the new object index:

library(lubridate)

USgas_zoo_yr <- aggregate(USgas_zoo,
 by = year,
 FUN = sum)

head(USgas_zoo_yr)

We will get the following output:

##    2000    2001    2002    2003    2004    2005
## 22538.6 22238.8 23027.0 22276.5 22402.5 22014.5

Plotting zoo and xts objects
As we discussed in the previous chapter, there are two main approaches for plotting time
series objects such as the zoo and xts objects:

Direct: Using built-in or customized functions to visualize either the zoo or xts
objects, such as plot.zoo and plot.xts functions, or other visualization tools
from the TSstudio or dygraph packages
Indirect: By transforming or reformatting the structure of the object and using
some data visualization packages, such as ggplot2, plotly, and rbokeh

Note that plotting the zoo or xts objects with the TSstudio or dygraph
packages follows the exact same process as we demonstrated in the
previous chapter with the ts object. Therefore, to avoid redundancy, we
will focus in this section only on the built-in visualization functions of the
zoo and xts packages.

The use of either approach depends on the user's needs and preferences, but the direct
approach is simple to use, as no preprocessing or transformation steps are required.
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The plot.zoo function
The plot.zoo function is based on the plot function (R has built-in plotting functions
from the graphics package). Therefore, it is straightforward to utilize this function along
with any of the plot function arguments (it generally makes no difference whether you are
using plot or plot.zoo). For example, let's use this function to plot the EURO_Brent
function:

plot.zoo(EURO_Brent,
         main = "Crude Oil Prices: Brent - Europe",
         ylab = "USD per Barrel",
         col = "blue")

The following graph shows the plot for the crude oil prices for the EURO_Brent series:

You can see that we have added the main and ylab arguments to set the plot and y-axis
titles, respectively. The col argument is used to set the color of the plot. In a similar
manner, you can apply the plot.zoo function to plot a multiple time series object.

The following example demonstrates the use of the function for plotting the
US_indicators dataset that we transformed before into a zoo object:

plot.zoo(US_indicators_zoo,
         main = "Monthly Vehicle Sales and Unemployment Rate in the US",
         ylab = c("Vehicle Sales (Thousands of Units)", "Unemployment Rate
(%)"),
         col = c("blue", "red"))
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We will get the following output plot:

As shown in the preceding output, you can customize each plot by setting each argument
with the corresponding setting for each plot.

The plot.xts function
The plot.xts function is also based on the plot function, yet it provides additional built-
in functionality (with respect to the plot.zoo function) that makes the customization of
the plot simpler. We will start with a simple plot and then demonstrate how to customize it
and create additional features. Let's plot the Michigan_CS series:

plot.xts(Michigan_CS)
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We will get the following output plot:

By default, the plot.xts function returns the index range of the series on the top right,
and in the top left it returns the series name. In addition, it automatically set the x-axis ticks
and provides the y-axis values from both sides of the plot. We can modify the range of the
plot with the subset argument, and adjust the x-axis grid lines and the ticks intervals with
the grid.ticks.on and minor.ticks arguments, respectively. We will set the interval of
the x-axis grid and ticks for a year:

plot.xts(Michigan_CS,
          subset = "2010/",
          main = "University of Michigan Consumer Sentiment Index",
          col = "blue",
          grid.ticks.on = "years",
          minor.ticks = "years")
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We will get the following output plot:

The functionality of plot.xts becomes handy when working with multiple time series
objects, as it is more straightforward to customize or modify the plot's parameters. Let's
plot the US_indicators dataset again; this time, we will use the xts version we created
before:

plot.xts(US_indicators_xts,
         multi.panel = 2,
         yaxis.same = FALSE,
         grid.ticks.on = "years",
         minor.ticks = FALSE,
         main = "Monthly Vehicle Sales and Unemployment Rate in the US")
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We will get the following output plot:

For multiple time series objects, you can either plot all the series in a single object or
dedicate a separate panel for each series. The multi.panel argument allows you to set the
number of panels to use in the plot. It would make sense to set all the plots in a single panel
when all the series are within the same range.

In the preceding case, as the two series have different scales of units (the units of the vehicle
sales series are in thousands, whereas the unemployment rate is in percentages), we used a 
separate panel for each plot by setting the multi.panel argument to 2.

In the last example, we will connect all the elements we learned about in this chapter and
create a summary plot of the USgas dataset. The summary plot will include the following
features:

A plot of the series itself.
A moving average of the series. This will provide a rough estimate about the
trend of the series (don't worry if, at this point, you are not familiar with those
terms; we will discuss trend estimation and smoothing methods in detail with
the moving average in the next chapter). We will use the rollapply function to
calculate the moving average of the series.
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The monthly percentage change of the series. We will use the lag function to
calculate the first lag of the series and use that to calculate the monthly change of
the series over time.
The year-over-year percentage growth of each observation of the series, by using
the yearly lag (that is, lag 12) of the series to calculate it.

We will start by converting the USgas series from a ts object to an xts object with the
as.xts function:

USgas_xts <- as.xts(USgas)

indexClass(USgas_xts)

We will get the following output:

## [1] "yearmon"

You can see that the index of the transformed object is a yearmon object. The next step is to
calculate the moving average of the series with the rollapply function. We will set the
width of the rolling window to 12:

USgas_xts_ma <- rollapply(USgas_xts,
                          width = 12,
                          FUN = mean)

We can now merge the two series (USgas_xts and USgas_xts_ma) to a multiple time
series object with the merge.xts function:

USgas_merge <- merge.xts(USgas = USgas_xts,
                         USgas_Smooth = USgas_xts_ma)

Last but not least, we will calculate the monthly percentage difference and the year-over-
year growth by utilizing the lag function:

USgas_month_diff <- 100 * (USgas_xts / lag(USgas_xts, n = 1) - 1)
USgas_yoy_diff <- 100 * (USgas_xts / lag(USgas_xts, n = 12) - 1)
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Now, one we have prepared all the required inputs for the summary plot, we can start to
build it. One of the downsides of the plot function is that it does not support pipes (that is,
%>%), therefore, the plot and its additional features must run step by step in a sequential
order. The first step is to create the main plot, which will include both the main series, the
US natural gas consumption, and its moving average (using the merged data of both of
these series). As we wish to overlay the moving average of the series on top of it, we will set
the multi.panel argument to FALSE:

plot.xts(USgas_merge,
         main = "US Natural Gas Consumption Summary",
         multi.panel = FALSE,
         col = c("black", "blue"),
         ylim = c(1400, 3700))

Note that the col argument automatically aligns the colors input according to the order of
the input series (that is, black for the first series and blue for the second). Generally, the
setting of the y-axis range with the ylim argument is not required, as it automatically
adjusts it. However, in order to be able to fit the plot legend, we will slightly increase the y-
axis range. The next step is to add the graphs of the monthly percentage change and the
year-over-year growth to the plot by using the lines function:

lines(USgas_month_diff ,
      col = "red",
      type = "h",
      on = NA,
      main = "Monthly Difference (%)")

lines(USgas_yoy_diff ,
      col = "purple",
      type = "h",
      on = NA,
      main = "YoY Growth (%)")

As both of those features (monthly percentage change and year-over-year growth)
represent a percentage change, we will plot each feature on a separate panel using a
barchart. Setting the type argument to h sets the plot as a barchart. Setting the on argument
as NA adds a new panel to the existing plot. Last but not least, we will utilize the
addLegend function from the xts package to add a legend to the plot:

addLegend("topleft",
          on=1,
 legend.names = c("Gas Consumption", "Moving Average", "Monthly Diff. (%)",
"YoY Change (%)"),
 lty=c(1, 1), lwd=c(2, 1),
 col=c("black", "blue", "red", "purple"))
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The final output of the plot is as follows:

xts, zoo, or ts – which one to use?
It depends.

There is no doubt that out of the three objects we have introduced so far (ts, zoo, and xts),
the xts class is the most advanced and friendly to use. Moreover, since the xts class is also
a zoo class with additional functionalities and improvements, the question actually should
be xts or ts—which one to use? This mainly depends on the type of packages and
applications you are using for time series analysis. However, in my mind, working
with xts objects has more benefits compared to ts objects, since most of the forecasting
models in R support only ts objects.

On the other hand, if you're not bound by requirements or if you just want to slice and dice
a time series object, it is highly recommended that you use the xts (or zoo) object. The
good news here, as we saw in some instances, is that both the xts and zoo packages provide
tools for transforming and working with ts objects.
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Summary
In this chapter, we introduced two of the most advanced classes for time series data in R,
the zoo and xts classes, and their applications. It is safe to claim that working with those
objects, in particular, the xts class, is more friendly and convenient than the ts class. Their
unique structure of data frames and well-organized time indices gives users seamless
preprocessing and faster data querying. Furthermore, the zoo and xts packages have rich
functionality and applications; more than we can cover in one chapter. Therefore, it is
highly recommended that you look at the documentation and vignettes of the packages for
more information.

In the next chapter, we will look at the decomposition of time series data process.



5
Decomposition of Time Series

Data
Our primary focus in the previous chapters has been on the attributes and structure of time
series data. Starting from this chapter, we are shifting gears and moving toward the
analysis phase of time series data. This chapter focuses on one of the essential elements of
time series analysis—the decomposition process of time series data to its components: the
trend, seasonal, and random components. We will start with the moving average function
and see its applications for smoothing time series data, removing seasonality, and
estimating a series trend. In addition, we will introduce the decompose function and look
at its applications. The topics in this chapter are an introduction to more advanced time
series analysis topics that will be introduced later in the book.

In this chapter, we will cover the following topics:

The moving average function
Identifying time series components
Decomposing a series down to its components

Technical requirement
The following packages will be used in this chapter:

forecast: Version 8.5 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
xts: Version 0.11-2 and above
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You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter05

The moving average function
The moving average (MA) is a simple function for smoothing time series data. This
function is based on averaging each observation of a series, when applicable, with its 
surrounding observations, that is, with a past, future, or a combination of both past and
future observations, in chronological order. The output of this transformation process is a
smoothed version of the original series. The MA function has a variety of applications, such
as data smoothing, noise reduction, and trend estimation. Also, with some small
modifications, this function can be used as a forecasting model. In Chapter 10, Forecasting
with Exponential Smoothing Models, we will discuss the forecasting applications of the MA
function in detail. The main components of the MA function are as follows:

The rolling window: This is a generic function that slides across the series in
chronological order to extract sequential subsets
Average function: This is either a simple or weighted average, which is applied
on each subset of the rolling window function

The characteristics of the MA function are defined by those components, and we will
discuss their applications in detail.

The rolling window structure
The rolling window function plays a pivotal role in the smoothing of time series data
process with the MA function, as its structure defines the sub-setting method of series
observations. The most common types of window structures are as follows:

The one-sided window: This is a sliding window with a width of n, which
groups each observation of the series (when applicable) with its past consecutive
n-1 observations. The following diagram demonstrates the smoothing of time
series data process with a one-sided rolling window:
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The preceding diagram shows the smoothing process of Y, time series data with T
observations, with the use of a one-sided rolling window function. In this case,
the rolling window function has a width value of three, and it therefore groups
each observation of the series with its past consecutive observations, starting with
the third observation of the series. As the previous two consecutive observations
are not available for the first and second observations of the series, we cannot
smooth the first and the second observations of the series. Therefore, the output of
the MA function (marked in green), is missing the first two observations (marked
in red), which are considered to be the cost of the transformation process when
using a one-sided rolling window.

The two-sided window: This defines a rolling window with a width of n, which
groups each observation of the series (when applicable) with its past n1 and
future n2 observations. If n is an odd number and n1 is equal to n2, we can define
the two-sided rolling window as centered. Similarly, the following diagram
demonstrates the smoothing of time series data process with a two-sided rolling
window:
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Similar to the first diagram, the second diagram describes the smoothing process of Y, time
series data with T observations, but this time with the use of a two-sided rolling window
function. Note that, in this case, as the window width is set to three, the window function
groups each observation with its preceding and leading observations. You should also note
that, in the case of a two-sided window with a width of three, we cannot transform the first
and last observations of the series (marked in red).

Using these two examples, we can generalize the characteristics of both the one-sided and
two-sided rolling window structure functions. In the following equation,  represents the
smoothed value of , the t observation of series Y with the use of a one-sided rolling
window function with a width of n, and an arithmetic average:

Similarly, for a two-sided window function with a width of n, using past n1 and future n2

observations, we will use the following equation:

The average method 
The second element of the MA function, besides the window structure, is the averaging 
method of the window's subset. There are two types of averaging methods:

The arithmetic average: This is the most common and basic method for
averaging a sequence of observations. It is based on summing all the
observations and dividing them by the number of observations. This method is
also known as the arithmetic mean or simple average, and can be formalized
with the following expression:

The weighted average: This method is based on applying weight to each
observation of the series, and can be formalized with the following equation:
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Here, wi represents the corresponding weight of the i observation of Y.

A weighted average should be used with time series data when there is a
systematic relationship between some observations in the series based on
their timestamp distance. Chapter 7, Correlation Analysis, focuses on the
identity of this type of systematic relationship based on correlation
analysis.

The MA attributes
In addition, the MA function has two primary attributes that are derived directly from the
window structure:

Order: This defines the magnitude of the MA and is equal to the length of the
window. In the case of the one-sided window, the width of the window is
defined by n, as we are using the current observation with the past n -1
consecutive observation. (In the case of forecasting, we are using the past n
observations to predict the current one. Don't worry about it now, we will return
to discuss this in detail in Chapter 10, Forecasting with Exponential Smoothing
Models). Likewise, if we are using a two-sided window function, using past n1

and future n2 observations, then the length of the window is n1 + n2 + 1, or 2n + 1
when using an equal number of past and future observations.
Cost: There are no free lunches; the use of the MA comes at a cost. This cost is the
loss of observations during the transformation of the origin series to the
smoothed series by the MA process. This process shaves the first n observations
in the case of the one-sided window, and the first n1 and last n2 observations in
the case of the two-sided window, where n or n1 and n2 refer to the use of past
and future observations by the window, as defined previously.

Once the parameters of the function (the window structure and average type) are set, the
function starts to roll the window over the series observations (when applicable) in
chronological order, to calculate the series, MAs. The observations of the new series
represent the corresponding MAs of the original series in chronological order. Where the
new series inherits the main characteristics of the origin series, such as the frequency and
timestamp, the main applications of the MA function are the following:

Noise reduction: The use of the MA method creates a smoothing effect that
reduces the series variation, smoothing the random noise and outliers.
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De-seasonalize: In addition to the noise reduction, MAs can be used to remove
the seasonal component (if any). This process has a pivotal role in the classical
decomposing process, as it provides an estimation for the trend component,
which is then utilized to estimate the seasonal component.
Forecasting: With some small modifications, the MA function can be used to
forecast the future observations of the series by averaging the past observations
to estimate future values of the series. The averaging method varies from a
simple average to more advanced averaging methods.

In this chapter, we will focus on the smoothing applications of the MA function. Just one
word of caution before we delve into the MA function, in time series analysis, the term MA
refers to two common, yet distinct methods. The MA as defined refers to the use of a
smoothing function to smooth or forecast time series data. On the other hand, the second
definition refers to the process of establishing a relationship between the error term of the
forecasting model and the use of regression analysis.

Throughout this book, unless stated otherwise, the term MA refers to the
smoothing function, and the term MA model or MA process refers to the
regression analysis of the error term (which will be one of the topics of
Chapter 11, Forecasting with ARIMA Models).

The interesting thing about MA functions is their simplicity. The main two parameters to
set are the window size and average type; it is relatively easy to customize a function and
set it according to the user's requirements. Those unique combinations of different window
structures, along with different averaging methods, create multiple types of MA functions.

In the following section, we will introduce the most common MA methods—a one-sided
MA with an arithmetic average, also known as a simple MA, a two-sided MA, and, last but
not least, a weighted MA.

In the following examples, we will use the US monthly vehicle sales to demonstrate the
applications of each method. Let's load the dataset from the TSstudio package:

library(TSstudio)

data(USVSales)

Let's recall the essential characteristics of this series using the ts_info and ts_plot
functions:

ts_info(USVSales)
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We will get the following output:

##  The USVSales series is a ts object with 1 variable and 517 observations
 ##  Frequency: 12
 ##  Start time: 1976 1
 ##  End time: 2019 1

Let's now plot USVSales:

ts_plot(USVSales,
         title = "US Monthly Total Vehicle Sales",
         Ytitle = "Thousands of Units",
         Xtitle = "Years",
         Xgrid = TRUE,
         Ygrid = TRUE)

We will get the following graph:

Let's now look at the simple moving average.
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The simple moving average
The simple moving average (SMA) is one of the common MA functions, and, as the name
implies, it is also one of the simplest MA functions. This transformation method is based on
applying an arithmetic average on a one-sided rolling window. Hence, the rolling window
groups each observation in the series (when applicable) with its previous n consecutive
observations in order to calculate their arithmetic average. We can formalize the
transformation process of , the t observation of the Y series, that is, a time series with T
observations, with the use of an SMA function with a window width, n, by using the
following formula:

Shifting this window across all the observations in the series, in chronological order, yields
a new time series, . Where  represents the corresponding average of the original series
observation at time (or index) t with its past n-1 consecutive observations. The length of the
window, as mentioned previously, defines the MA order and the cost of the function. In the
case of SMA, the order is n, and the cost is the first n -1 observation of the series.

You can be sure that there is more than one package in R that provides an MA
transformation function. Throughout this chapter, we will use the ts_ma function from the
TSstudio package to demonstrate the different types of MAs. However, there is added
value to building a MA function from scratch in order to get a better understanding of the
mechanics of this method.

Let's dedicate a few lines of code to creating an SMA function for the time series objects. We
will code the logic of the MA method by constructing the following functions:

The rolling window: For simplicity, we won't use the window function but will 
mimic its applications by adding the series, its n lags to it (according to the order
of the function)
The average function: This returns the average of each window and constructs a
new series
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We will start with the rolling window lags function:

# The lags function return the series with its l lags
 lags <- function(ts.obj, l){
   ts_merged <- NULL
   # Creating n lags
   for(i in 1:l){
     ts_merged <- ts.union(ts_merged, stats::lag(ts.obj, k = -i))
   }
   # Merge the lags with the original series
   ts_merged <- ts.union(ts.obj, ts_merged)
   # Set the columns names
   colnames(ts_merged) <- c("y", paste0("y_", 1:i))
   # Removing missing values as results of creating the lags
   ts_merged <- window(ts_merged,
                       start = start(ts.obj) + l,
                       end = end(ts.obj))
   return(ts_merged)
 }

The input of this function is a ts object and the number of lags to construct. It then utilizes
the ts.union and lag functions from the stats package to create l lag and then unites
them with the original series.

The output of this function is a multiple time series object (mts class):

head(lags(USVSales, l = 3))
##           y    y_1    y_2    y_3
## [1,] 1304.6 1483.8 1148.7 1077.5
## [2,] 1373.0 1304.6 1483.8 1148.7
## [3,] 1183.8 1373.0 1304.6 1483.8
## [4,] 1164.4 1183.8 1373.0 1304.6
## [5,] 1207.2 1164.4 1183.8 1373.0
## [6,] 1029.6 1207.2 1164.4 1183.8

ts_info(lags(USVSales, l = 3))
##  The lags(USVSales, l = 3) series is a mts object with 4 variables and
478 observations
##  Frequency: 12
##  Start time: 1979 4
##  End time: 2019 1
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The output of the lags function illustrates the cost associated with the MA method. In this
case, we lost the first three observations as a result of creating three lags for the USVSales
series (since we cannot create lags for the first three observations). The lags function
automatically drops the first l observation (where l is the lag setting argument in the
preceding lags function) of the original series. Therefore, the first observation of USVSales
is April 1974 (as opposed to January 1974 in the original series).

The second and last step of this process is to calculate the arithmetic average of the series
with its n lags. We will utilize the ts_sum function from the TSstudio package, which sums
up the rows of the mts objects and returns a ts object:

ts_mean <- function(mts.obj){
  ts_avg <- ts_sum(mts.obj) / dim(mts.obj)[2] # Simple average calculation
  return(ts_avg)
}

We can now finalize the sma function by linking the lags and the average functions. Note
that the input parameters of the sma function are the series and the order of the SMA:

sma <- function(ts.obj, order){
  l <- order -1
  l <- lags(ts.obj = ts.obj, l = l)
  m <- ts_mean(l)
  u <- ts.union(ts.obj, m)
  colnames(u) <- c("original", "transformed")
  return(u)
}

Let's utilize this function to smooth the US vehicle sales series. We will set the order of the
sma function to 4 (hence, we will calculate the average price of each month with the past 3
consecutive months):

sma_4 <- sma(USVSales, order = 4)

ts_plot(sma_4, type = "multiple",
        title = "US Vehicle Sales - SMA (Order 4)",
        Ytitle = "Thousands of Units",
        Ygrid = TRUE,
        Xgrid = TRUE,
        Xtitle = "Year")
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We will get the following graph:

The immediate effect of this transformation process, as you can see in the preceding graph,
is noise (or oscillation) reduction. The use of a relevantly lower-order (with respect to the
frequency of the series) SMA reduces some of the oscillation in the series that can be related
to random noise.

The remaining oscillation of the series is mainly related to the seasonality pattern of the
series and to the trend and cycle of the series (for now, don't worry if you are not familiar
with the terms seasonality, trend, and cycle; we will define them later on in this chapter).
The use of the more aggressive order of the SMA function will reduce the series oscillation
further. For example, let's increase the order from 4 to 12:

sma_12 <- sma(USVSales, order = 12)

ts_plot(sma_12, type = "multiple",
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        title = "US Vehicle Sales - SMA (Order 12)",
        Ytitle = "Thousands of Units",
        Ygrid = TRUE,
        Xgrid = TRUE,
        Xtitle = "Year")

We will get the following graph:

The change in the order of the SMA function from 4 to 12 reduces the remaining
oscillation of the series, which is mainly related to the seasonal patterns of the USVSales
series. The removal of both the seasonal patterns and random noise by the SMA with the
order of 12 provides an estimation of the trend and cycle of the series. This use of an MA to
estimate the series trend and then to estimate the seasonal pattern is part of the 
decomposition process of the time series and we will discuss this later on in this chapter.
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Two-sided MA
The two-sided MA method, as its name implies, is based on a two-sided rolling window
function. As mentioned previously, the two-sided rolling window function groups each 
observation of the series with the past n1 and future n2 consecutive observations (as
opposed to the SMA or one-sided MA, which use only past n-1 observations). The term
two-sided MA refers to the use of the two-sided window function with an arithmetic
average unless mentioned otherwise.

Let's now dive into the formula of the two-sided MA function as previously defined:

Here,  represents the average of the t observation of the original series along with
its past n1 and future n2 consecutive observations. Similar to the SMA function, the order
and cost of this function are derived from the length of the window, which in this case are
n1 + n2 + 1 and n1 + n2 respectively.

On the other hand, the loss of observation when using a two-sided window is from both
sides of the series (the beginning and end of the series). This is related to the use of both
past and future observations in the window function. The function shaves both the first n1

observations and the last n2 observations. The output of the two-sided MA function could
be either of the following:

Centered: This is when n1 and n2 are equal, which ensures that the function
output at time t is centered around the t observation of the original y series
Uncentered: This is when the length of n1 is different from the length of n2, or the
order of the MA is an even number

Typically, the default option of the two is the centered output. However, for a variety of
reasons, in some instances, you may choose to use an uncentered MA.

A typical example of this is classic trend estimation with the two-sided MA method. In this
case, the order is set to the value of the frequency of the series. Hence, whenever you use a
series with an even frequency, such as quarterly or monthly, the order value will also be an
even number. As a result, the MA output will be uncentered.
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For instance, if the input series has a monthly frequency, we will use a 12-order two-sided
MA function. Whenever the value of the series frequency is an even number, the order of
the MA will be even and, as a result, will be uncentered. This type of order can be defined
as follows:

In this case, to keep the MA as centered as possible, you can set the number of past and
future periods to use in the window (n1 and n2) to either five and six or six and five,
respectively.

Let's return to the US vehicle sales dataset and look at the effect of a different order two-
sided MA using the ts_ma function. The ts_ma function from the TSstudio package allows
us to generate and plot multiple MA outputs simultaneously, using different orders and
methods (SMA, two-sided MA, and so on). The main parameters of this function are as
follows:

n: This sets the length of the past and future observations to be used in a two-
sided MA function. For example, if n is set to three, the window function will
group each observation with its past and future three consecutive observations,
which will yield a 7 order MA. In addition, it is possible to set this parameter
with multiple values in order to generate multiple two-sided MA
functions simultaneously using a different order.
n_left/n_right: These are used to customize the MA function by setting the
length of the past (n_left) manually and/or the future (n_right) side of the
window function. If both parameters are defined, the output is a two-sided MA
function, either centered or uncentered. If only one of those parameters is set, the
function output is a one-sided MA.

The following code generates three versions of two-sided MA outputs with an order of 5,
11, and 12, using the ts_ma function. The first two outputs with an order of 5 and 11 are
defined by setting the n parameter to 2 and 5. This yields a centered output, as the window
of this function is symmetric. The third output of an order of 12 is uncentered, as its
window is set to the past 6 and future 5 observations, using the n_left and n_right
parameters:

two_sided_ma <- ts_ma(ts.obj = USVSales,
                n = c(2,5),# Setting an order 5 and 11 moving average
                n_left = 6, n_right = 5, # Setting an order 12 moving
average
                plot = TRUE,
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                multiple = TRUE,
                margin = 0.04)

We will get the following graphs:

As you can see from the preceding graphs, the behavior of the two-sided MA is relatively
similar to the one of the SMA, as we saw earlier.

The higher the order of the function, the smoother the output. Of course, the smoothing
effect comes at the cost of losing observations from both the start and end of the series. The
loss of observations is a function of the order of the function, since the higher the order of
the MA function, the higher the loss of observations.
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In the case of the US vehicle sales series, the fifth order function performed well on
smoothing some of the series oscillation and left the seasonal and trend patterns. While
both the eleventh and twelfth order functions successfully removed the seasonal pattern,
some of the noise that was left on the eleventh one was smoothed by the twelfth one.

In this case, the selection of the order of the functions depends on the level of smoothing
you want and the cost you are willing to pay.

A simple MA versus a two-sided MA
The selection of a specific type of MA method depends on the aim of the transformation.
Moreover, the use of a different range of order, as we saw in the preceding examples, may
change the outcome significantly. Generally, when applying both simple and two-sided
MAs with arithmetic average using the same order, as in the following example, the output
of both methods will be identical but lagged. The two-sided window at time t will group
observations t-n1 until t+n2 inclusively, which is the same group of observations when using
the one-sided window at time t+n2 (assuming that both windows have the same order):

# Creating one-sided and two-sided moving average with an order of 12
 one_sided_12 <- ts_ma(USVSales, n = NULL, n_left = 11, plot = FALSE)
 two_sided_12 <- ts_ma(USVSales, n = NULL, n_left = 6, n_right = 5,plot =
FALSE)
 one_sided <- one_sided_12$unbalanced_ma_12
 two_sided <- two_sided_12$unbalanced_ma_12

We will now bind the output of the one-sided and two-sided MA functions with the
USVSales series and plot it with the ts_plot function:

ma <- cbind(USVSales, one_sided, two_sided)
 p <- ts_plot(ma,
         Xgrid = TRUE,
         Ygrid = TRUE,
         type = "single",
         title = "One-Sided vs. Two-Sided Moving Average - Order 12")

Next, we will use the layout function from the plotly package to set the plot legend and
labels:

library(plotly)
 p <- p %>% layout(legend = list(x = 0.05, y = 0.95),
                   yaxis = list(title = "Thousands of Units"),
                   xaxis = list(title = "Year"))
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We will get the following graph:

Typically, time series data describes a continuous phenomenon over time, where each
observation is relatively close in value or highly correlated to a certain degree with its past
and future consecutive observations. Therefore, the use of a centered two-sided MA
function (or close to centered when the order of the function is even) is generally more
appropriate to apply as a smoother or data filter method. In the case of the one-sided
MA function, it would make sense to use it when you need to have the most recent
observations (as the loss of observations, in this case, is from the beginning of the series). 
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The selection of a specific MA method depends primarily on the aim of the transformation
and the cost that is associated with it. In the preceding example, you can see that the output
of the two-sided MA function fits better with the overall changes in the series trend with
respect to the one-sided function output. This is mainly due to the fact that there is a delay
of five periods between the two methods.

On the other hand, this comes at the cost of losing the series' last 5 observations in addition
to the first 6 (as opposed to the last of the first 11 observations of the one-sided function).
While the loss of observations by both functions is equal to 11 (as the order of both
functions is equal to 12), typically, the value of the last observations is higher than the first
observations in the series. This makes the use of the two-sided function more expensive
when you care about the most recent observations of the series.

The time series components
Patterns in time series data are the backbone of the analysis of it. As with other fields of
statistics and, in particular, the field of machine learning, one of the primary goals of time
series analysis is to identify patterns in data. Those patterns can then be utilized to provide
meaningful insights about both past and future events such as seasonal, outliers, or unique
events. Patterns in time series analysis can be categorized into one of the following:

Structural patterns: These are also known as series components, which
represent, as the name implies, the core structure of the series. There are three
types of structural patterns—trend, cycle, and seasonal. You can think about
those patterns as binary events, which may or may not exist in the data. This
helps to classify the series characteristics and identify the best approach to
analyze the series.
Non-structural: This is also known as the irregular component, and refers to any
other types of patterns in the data that are not related to the structural patterns.

We can use these two groups of patterns (structural and non-structural) to express time
series data using the following equation, when the series has an additive structure:

And when the series has a multiplicative structure:
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Where  represents the series observation at time t and , , , and  represent the value
of the trend, seasonal, cycle, and irregular components of the series at time t, respectively.
Don't worry if you are not familiar with the terms additive and multiplicative models; we
will define these later on in the chapter.

The cycle component
The definition of the cycle in a time series is derived from the broad definition of a cycle in
macroeconomics. A cycle can be described as a sequence of repeatable events over time,
where the starting point of a cycle is at a local minimum of the series and the ending point
is at the next one, and the ending point of one cycle is the starting point of the following
cycle.

Moreover, unlike the seasonal pattern, cycles do not necessarily occur at equally spaced
time intervals, and their length could change from cycle to cycle. The US monthly
unemployment rate series is an example of a series with a cycle pattern. Let's load the series
from the TSstudio package and review its main characteristics with the ts_info function:

data(USUnRate)

ts_info(USUnRate)

##  The USUnRate series is a ts object with 1 variable and 853 observations
##  Frequency: 12
##  Start time: 1948 1
##  End time: 2019 1

The USUnRate series is a ts object with a monthly frequency, and it starts in January 1948.
As we do not need the full length of the series to view its cycles, we will use the window
function to subset the series using January 1990 as the starting point, and plot it with the
ts_plot function:

unemployment <- window(USUnRate, start = c(1990,1))
ts_plot(unemployment,
        title = "US Monthly Unemployment Rate",
        Ytitle = "Unemployment Rate (%)",
        Xtitle = "Year",
        Xgrid = TRUE,
        Ygrid = TRUE)
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We will get the following graph:

Looking at the preceding series plot, you can easily observe that the series has had three
cycles since 1990:

The first cycle occurred between 1990 and 2000, which was close to an 11-year
cycle
The second cycle started in 2000 and ended in 2007, which was a 7-year cycle
A third cycle, which began in 2007 and as of May 2019 has not been completed
yet, which means that this has continued for more than 12 years

As you can see in the preceding graph, the three cycles of the unemployment rate series
have a different length.

Just a word of caution about the cycle function in R. The usage of the
cycle function from the stats package is completely different from the
definition of the preceding cycle.

The cycle function, as introduced in Chapter 3, The Time Series Object,
retrieves the frequency units from the ts object and should not be
confused with the preceding cycle definition.
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The trend component
A trend, if it exists in time series data, represents the general direction of the series, either
up or down, over time. Furthermore, a trend could have either linear or exponential growth
(or close to either one), depending on the series characteristics. We will use simulated data
to demonstrate different types of trends, before starting to work with real-life data.

First, let's create a non-trend series as our baseline data. We will use the runif function to
generate a monthly series with 200 uniform observations distributed between 5 and 5.2.
To be able to reproduce this plot with the same value, we will set the seed to 1234 with the
set.seed function:

set.seed(1234)

ts_non_trend <- ts(runif(200, 5,5.2),
                   start = c(2000,1),
                   frequency = 12)

The non-trending series will be used as a baseline for the following series:

 ts_linear_trend_p <- ts_non_trend + 1:length(ts_non_trend) / (0.5 *
length(ts_non_trend))

 ts_linear_trend_n <- ts_non_trend - 1:length(ts_non_trend) / (0.5 *
length(ts_non_trend))

 ts_exp_trend <- ts_non_trend + exp((1:length(ts_non_trend) -1 ) / (0.5 *
length(ts_non_trend))) - 1

The series mentioned in the preceding code are explained as follows:

ts_linear_trend_p: This is a series with a positive linear trend, which adds an
increasing arithmetic progression sequence as a function of time
ts_linear_trend_n: This is a series with a negative linear trend, which adds a
decreasing arithmetic progression sequence as a function of time
ts_exp_trend: This is a series with an exponential trend, which adds an
increasing geometric progression sequence as a function of time

Let's plot the series and review the different types of trends. For convenience, we will first
merge the four series to multiple time series objects with the xts package:

library(xts)

merged_series <- merge(Baseline_No_Trend = as.xts(ts_non_trend),
                       Positive_Linear_Trend = as.xts(ts_linear_trend_p),
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                       Negative_Linear_Trend = as.xts(ts_linear_trend_n),
                       Exponential_Trend = as.xts(ts_exp_trend))

Next, we will plot the output with the TSstudio and plotly packages:

ts_plot(merged_series,
             type = "single",
             Xgrid = TRUE,
             Ygrid = TRUE,
             title = "Different Types of Trends",
             Ytitle = "The Values of the Series",
             Xtitle = "Year") %>%
  layout(legend = list(x = 0.1, y = 0.9))

We will get the following graph:
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Those simple examples represent non-complex time series data with a clear trend
component, and it is therefore simple to identify the trend and classify its growth type.
Typically, your data could have additional components and patterns, such as seasonality,
as we saw in the natural gas consumption series in Chapter 4, Working with zoo and xts
Objects. Next, we will introduce the seasonal component and see how the two (trend and
seasonal components) combine together.

The seasonal component
The seasonal component (or seasonality) is another common pattern in time series data. If
this exists, it represents a repeated variation in the series, which is related to the frequency
units of the series (for example, the months of the year for a monthly series). One of the
common examples for a series with a strong seasonality pattern is the demand for
electricity or natural gas. In those cases, the seasonal pattern is derived from a variety of
seasonal events, such as weather patterns, the season of the year, and sunlight hours.

In addition, a series could have more than one seasonal pattern. A classic example of this is
the hourly demand for electricity, which could potentially have three different seasonality
patterns:

Hourly seasonality, which is derived from parameters such as sunlight hours and
temperatures throughout the day
Weekly seasonality, which depends on the day of the week (weekdays versus the
weekend)
Monthly seasonality, which is related to the season of the year (high
consumption during the winter months versus low consumption during the
summer months, assuming that the heating system is powered by electricity)

We will focus on tools for seasonality analysis in the next chapter.

Let's simulate a seasonal pattern by using a sin function as a function of the series
frequency units, along with some random noise. We will utilize the non-trending
(ts_non_trend) series we created earlier as the random noise and plot it with the ts_plot
function:

seasonal_pattern <- sin(2*pi * (1:length(ts_non_trend)) /
frequency(ts_non_trend))

ts_seasonal <- ts_non_trend + seasonal_pattern

ts_plot(ts_seasonal,
        title = "Seasonal Pattern without Trend",
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        Xgrid = TRUE,
        Ygrid = TRUE,
        Ytitle = "The Values of the Series",
        Xtitle = "Year")

We get the following output graph:

This is a simplistic example of a series with a seasonal pattern. However, unless you are
very lucky, it is most likely that your series will be a combination of multiple patterns,
which will create a more complex data structure.

A common example of a mixture of patterns is a series with both seasonal and trend
patterns. In a similar manner to how we added the seasonal pattern to the non-trending
series, let's add the patterns to the rest of the trend series we created before (both linear and
exponential) and merge it to a single xts object:

seasonal_with_Ptrend <- ts_linear_trend_p + seasonal_pattern
seasonal_with_Ntrend <- ts_linear_trend_n - seasonal_pattern
seasonal_with_Etrend <- ts_exp_trend + seasonal_pattern

merged_series_seasonal <- merge(Positive_Linear_Trend =
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as.xts(seasonal_with_Ptrend),
                                Negative_Linear_Trend =
as.xts(seasonal_with_Ntrend),
                                Exponential_Trend =
as.xts(seasonal_with_Etrend))

Let's now generate the graph by using the following code snippet:

 ts_plot(merged_series_seasonal,
        type = "single",
        Xgrid = TRUE,
        Ygrid = TRUE,
        title = "Seasonal Pattern with Trend",
        Ytitle = "The Values of the Series",
        Xtitle = "Year") %>%
  layout(legend = list(x = 0.1, y = 0.9))

We will get the following output graph:

Let's now look at the difference between the seasonal component versus the cycle
component.
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The seasonal component versus the cycle
component
The seasonal and cycle components both describe cyclic events over time, where the length
of their cycle distinguish the two. As defined previously, the seasonal component has a
constant cycle, which is derived and tied to the series frequency. On the other hand, the
cycle length of the cycle component is not necessarily constant and can typically vary from
one cycle to the next one. A simplistic way to identify whether a cycle pattern exists in a
series is with the use of a heatmap for the time series data.

A time series heatmap is a three-dimensional plot, where the y-axis and x-axis represent the
frequency units and year respectively, and the color represents the magnitude of the
observation value. We will use the ts_heatmap function from the TSstudio package to plot
the heatmap of the monthly natural gas consumption (USgas) and the unemployment rate
(USUnRate) in the US. While the first series (USgas) represents a time series with a strong
seasonal pattern, the second (USUnRate), as we saw before, represents a series with a
strong cycle pattern:

ts_heatmap(USgas,
            title = "Heatmap - the US Natural Gas Consumption")

We will get the following output heatmap:
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As you can see from the heatmap plot of the USgas series, the color flow derives from the
frequency units. In this case, the winter months, December and January, usually have the
darkest color with respect to the rest of the months of the year. On the other hand, the
months of May, June, and September consistently have the brightest color:

ts_heatmap(USUnRate,
            title = "Heatmap - The US Unemployment Rate")

We will get the following output heatmap:
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In this example, the color flow of USUnRate is vertical, which indicates the state of the
cycle. In this case, the brightest vertical strips represent the ending of one cycle and the
beginning of the following one. Likewise, the darkest vertical strips represent the cycle
peaks.

White noise
Paradoxically, the main pattern of a white noise series is the lake of patterns. A series is
defined as white noise when there is no correlation between the series observations or
patterns. In other words, the relationship between different observations is random. In
many of the applications of white noise in time series, there are some assumptions made
about the distribution of the white noise series. Typically, unless mentioned otherwise, we 
assume that white noise is an independent and identically distributed random
variables (i.i.d), with a mean of 0 and a variance of . For instance, we can simulate white
noise with the rnorm function and generate random numbers with a normal distribution of
mean of 0 and variance of 1:

set.seed(1234)

white_noise <- ts(rnorm(12*10, mean =  0, sd = 1),
                  start = c(2008, 1),
                  frequency = 12)

Again, as we are generating a sequence of random numbers, we will set the seed number.
Let's plot the series as follows:

ts_plot(white_noise, title = "White Noise ~ N(0, 1)",
         line.mode = "lines+markers",
         Xgrid = TRUE,
         Ygrid = TRUE,
         Ytitle = "The Values of the Series")
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We will get the following output:

There are a few methods for testing whether a time series is white noise:

The basic method is carried out by plotting and eyeballing the series to identify
whether the variation of the series appears to be random or not.
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We can measure the correlation between the series and its lags with the
autocorrelation function (ACF). A series is considered to be white noise
whenever there is no correlation between the series and its lag. The acf function
from the stats package calculates the level of correlation between a series and its
lags. We will use the acf function to calculate and plot the level of correlation of
the white_noise series we created previously:

The plot of the acf function describes the level of correlation between the series
and its lags, where the x-axis represents the lag number and the y-axis represents
the level of correlation between the series and the lags. The two dotted blue lines
represent the null hypothesis that the level of correlation between the series and a
lag is zero using a chi-square statistical test. Therefore, we would consider a lag to
have some degree of correlation with the series only if the level of correlation is
either above the upper or below the lower dotted line (that is, fails to reject the
null hypothesis). In the case of the preceding white_noise series, there is only
one significant lag with a relatively low level of correlation, and we can therefore
conclude that the series is white noise. We will come back to the ACF function in
Chapter 7, Correlation Analysis in order to go into more detail.

The Ljung-Box test is another statistical test to evaluate whether the series is
correlated with its lags. In this case, the null hypothesis assumes that the lags are
not correlated. Therefore, lags with lower p-values (with respect to the level of
significance of the test) would be considered as being correlated with the series.
The Box.test function, another stats package function, performs a Ljung-Box
test on a series and a specific lag.
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In the following example, we will use the lapply function with the Box.test function to
apply a Ljung-Box test to the white_noise series and its first 24 lags:

library(dplyr)
x <- lapply(1:24, function(i){
   p <- Box.test(white_noise, lag = i, type = "Ljung-Box")
   output <- data.frame(lag = i, p_value = p$p.value)
 return(output) }) %>% bind_rows

Next, we will plot the results using the plot function and add a horizontal line with the
abline function to define the level of significance of 0.05:

plot(x = x$lag,
     y = x$p_value, ylim = c(0,1),
     main = "Series white_noise - Ljung-Box Test",
     xlab = "Lag", ylab = "P-Value")

abline(h = 0.05, col="red", lwd=3, lty=2)

We will get the following plot:

You can see in the preceding Ljung-Box test summary that the p-value of all the lags is
above the red dotted line, which indicates that we failed to reject the null hypothesis for a
level of significance of 0.05. This indicates that the series is not correlated with its first 24
lags and is, therefore, a white noise series.
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The irregular component
Now that we have defined white noise, we can introduce the fourth component of the
series—the irregular component. This component, which is the remainder between the
series and structural components, provides an indication of irregular events in the series.
This includes non-systematic patterns or events in the data, which cause irregular
fluctuation. In addition, the irregular component could provide some indication of the
appropriate fit of the other components when using a decomposing method. A high
correlation in this component is an indication that some patterns related to one of the other
components were leftover due to an inaccurate estimate.

On the other hand, if the irregular component is not correlated with its lags (that is, a white
noise), we can assume (depending on the series structure) that the estimation of the trend
and seasonal components captured the majority of the information about the series
structure. Later on in this chapter, we will see an example of the irregular component and
its applications.

The additive versus the multiplicative model
Now that we have defined the series components, and before we continue onto our next
topic, the decomposition of time series, it is time to introduce the additive and
multiplicative models. These terms describe the model structure. As the name implies, a
model is defined as additive whenever we add together its components:

Similarly, a model is defined as multiplicative whenever we multiply its components:

Here, as before, Yt represents the series observation at time t and , , , and  represent
the value of the trend, seasonal, cycle, and irregular components of the series at time t,
respectively. 

We classify a series as additive whenever there is a growth in the trend (with respect to the
previous period), or if the amplitude of the seasonal component roughly remains the same
over time. On the other hand, we classify a series as multiplicative whenever the growth of
the trend or the magnitude of the seasonal component increases or decreases by some
multiplicity from period to period over time. 
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The US monthly natural gas consumption series is an example of an additive series. You
can easily notice that the amplitude of the seasonal component remains the same (or close
to the same) over time:

ts_plot(USgas,
         title = "US Monthly Natural Gas consumption",
         Ytitle = "Billion Cubic Feet",
         Xtitle = "Year",
         Xgrid = TRUE,
         Ygrid = TRUE)

We will get the following graph:

As you can see, the amplitude of the USgas series seasonal component over the past 20
years did not change by much (apart from some years, which may be related to some
unusual weather patterns). In addition, the series trend seems to be linear, with some
structural breaks during 2010. On the other hand, the famous AirPassengers dataset
(available in the dataset package), which describes the total monthly international airline
passengers between the years 1949 and 1960, is an excellent example for multiplicative
series. During those years, right after World War II, the improvement in aviation
technology contributed to the fast growth in the airline industry. As you can see in the
following data, the amplitude of the seasonal component increases from year to year:

 data(AirPassengers)
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We will then plot this with the ts_plot function:

ts_plot(AirPassengers,
        title = "Monthly Airline Passenger Numbers 1949-1960",
        Ytitle = "Thousands of Passengers",
        Xtitle = "Years",
        Xgrid = TRUE,
        Ygrid = TRUE)

We will then get the following graph:

Let's now learn how to handle multiplicative series.

Handling multiplicative series
Most forecasting models assume that the variation of the input series remains constant over
time. This assumption typically holds for a series with an additive structure. However, it
fails when the series has a multiplicative structure. The typical approach for handling a
series with a multiplicative structure is by applying a data transformation on the input
series. The most common data transformation approaches for time series data are the
following:

Log transformation: This applies a log on both sides of the series equation:
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Using the mathematical characteristics of the log function—log(a × b) = log(a) +
log(b), we can transform the equation into a new series with an additive structure:

This new structure of the series allows us to treat it as a normal additive series.

Box-Cox transformation: This is based on applying power on the input series
using the following formula:

As you can see from the preceding Box-Cox equation, for , the
transformation is a log transformation.

The forecast package provides several tools for applying a Box-Cox transformation on time
series data. The BoxCox.lambda function estimates the value of λ, which minimizes the
coefficient variation of the input series. For example, we will use this function to identify
the λ value for the AirPassenger series:

library(forecast)

AirPassenger_lamda <- BoxCox.lambda(AirPassengers)

AirPassenger_lamda

## [1] -0.2947156

We can then use this λ value to transform the input series with the BoxCox function and
plot it with the ts_plot function:

AirPassenger_transform <- BoxCox(AirPassengers, lambda =
AirPassenger_lamda)

ts_plot(AirPassenger_transform,
        title = "Monthly Airline Passenger Numbers 1949-1960 with Box-Cox
Transformation",
        Ytitle = "Number of Passengers - Scaled",
        Xtitle = "Years",
        Xgrid = TRUE,
        Ygrid = TRUE)
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We will get the following graph:

As you can see from the transformation plot of the AirPassenger series, the values of the
series are scaled. Most of the forecasting models in the forecast package automatically 
transform the series before applying the model, and then re-transform the forecast output
back to the original scale.

The decomposition of time series
Once the data has been cleaned and reformatted, one of the first steps of the analysis is to
identify the structure of the series components. The decomposition of time series is a
generic name for the process of separating a series into its components. This process
provides insights into the structural patterns of the series. Typically, those insights utilize
and identify the most appropriate approaches to handle the series, based on the aim of the
analysis (for example, seasonality analysis, and forecasting). For example, if you identify in
this process that the series has a strong seasonality pattern, you should select models that
have the ability to handle this pattern. Although there are multiple decomposition
methods, in this chapter, we will focus on the classical seasonal decomposition method, as
most methods are based on a type of extension of this method.
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Classical seasonal decomposition
Classical decomposition (or classical seasonal decomposition by MA) is one of the most
common methods of decomposing a time series down to its components. This simplistic 
method for estimating the three components is based on the use of an MA function
followed by simple arithmetic calculations.

This is a three-step process, where each step is dedicated to the estimation of one of the
components in sequential order (hence, the calculation of each component is derived from
the estimate of the previous component):

Trend estimation: This is the first step of the decomposing process, by using the1.
MA function to remove the seasonal component from the series. The order of the
MA function is defined by the frequency of the series. For instance, if the
frequency of the input series is monthly (or 12), then the order of the MA should
be set to 12. Since we are using a two-sided MA, some of the first and last
observations of the trend estimation will be missing. You may recall that the loss
of observations in this process depends on the order of the MA function.
Seasonal component estimation: A two-step process, starting with detrending2.
the series by subtracting the trend estimation from the previous step from the
series, where:

You can use  when using the additive model, and when the
model is multiplicative. Here, Yt is the original series observation at
time t and is the corresponding trend estimation.
After the series is detrended, the next step is to estimate the
corresponding seasonal component for each frequency unit (for
example, for a monthly series, the seasonal component for January,
February, and so on). This simple calculation is done by grouping the
observations by their frequency unit and then averaging each group.
The output of this process is a new series with a length that is equal to
the series frequency and is ordered accordingly. This series represents
the seasonal component of each frequency unit, so this estimation is
one-to-many (one estimation for multiple observations). For example,
if the input series has a monthly frequency, the seasonal component of
observations that occurred during January will be the same across the
series.
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Irregular component estimation: This is a straightforward2.
calculation, subtracting the estimation of the trend and seasonal
components from the original series. This is for an additive series,
and  for a multiplicative series. Here, Yt represents the original 
series at time t, and , , and  represent the corresponding trend and seasonal
and irregular components estimate. 

The decompose function from the stats package is an implementation of this method. The
following code is an example of the use of the decompose function to decompose the US
monthly vehicle sales series down to its components. By default, this function is set to an
additive model:

data(USVSales)

usv_decompose <- decompose(USVSales)

Let's review the class and structure of the decompose output function:

str(usv_decompose)

We will get the following output:

## List of 6
##  $ x       : Time-Series [1:517] from 1976 to 2019: 885 995 1244 1191
1203 ...
##  $ seasonal: Time-Series [1:517] from 1976 to 2019: -223.5 -100.3 142.4
37.6 147.7 ...
##  $ trend   : Time-Series [1:517] from 1976 to 2019: NA NA NA NA NA ...
##  $ random  : Time-Series [1:517] from 1976 to 2019: NA NA NA NA NA ...
##  $ figure  : num [1:12] -223.5 -100.3 142.4 37.6 147.7 ...
##  $ type    : chr "additive"
##  - attr(*, "class")= chr "decomposed.ts"

Let's review the class of the decompose output using the class function:

class(usv_decompose)

## [1] "decomposed.ts"

As you can see from the preceding output, the function returns a list of six objects:

x: This is the original series, a ts object.
seasonal: This is the estimate of the seasonal component, a ts object.
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trend: This is the estimate of the series trend, a ts object. You can see that the
first (and also the last) observations are missing due to the use of the two-sided
MA function. The number of missing values is defined by the order of the MA
function.
random: This is the estimate of the irregular component, a ts object. This output
is nothing but the remainder of the series and the preceding two components.
The random object is missing whenever the trend estimation is missing.
figure: This is the estimated seasonal figure only.
type: This is the type of decomposition, either an additive (the default), or
multiplicative model.

R's built-in plot function can plot the output of the decompose function in a
straightforward way as it supports the decomposed.ts class (as is defined in the function
methods; see methods(plot)):

plot(usv_decompose)

We will get the following graph for the additive time series:



Decomposition of Time Series Data Chapter 5

[ 161 ]

Similarly, if the series has multiplicative growth, like the AirPassengers series, you can
set the decomposition process with a multiplicative model:

air_decompose <- decompose(AirPassengers, type = "multiplicative")

plot(air_decompose)

We will get the following graph for the multiplicative time series:

One of the downsides of the classical decomposition method is that seasonal component
estimation is based on the arithmetic average, which results in a one-to-many estimation, so
there is a single seasonal component estimation for each cycle unit (for example, all
observations of the series that occurred in January will have the same seasonal component
estimation if the series is monthly).
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This is not problematic when applying this method to an additive series, such as the US
vehicle sales or the monthly natural gas consumption datasets, as the magnitude of the
seasonal oscillation remains the same (or close to the same) over time. On the other hand,
this not the case for a series with multiplicative growth, as the magnitude of the seasonal
oscillation grows over time. An excellent example of this is the preceding AirPassengers
dataset, as the magnitude of the seasonal component increases over time. An average
would not represent the seasonal oscillation at the beginning and end of the series, as it
would both over and underestimate them respectively. On the other hand, it would have a
good fit somewhere in the middle, where it is close to the mean. A good indication of this
can be found in the irregular component, which, in the case of the AirPassengers data, is
relatively high at the beginning and end of the series and low in the middle.

This, of course, should not come as a surprise, as the irregular component
represents the remainder between the series and the trend and the
seasonal estimation.

Seasonal adjustment
Seasonal adjustment is the process of removing the seasonal fluctuation from a series. The
use of this process is popular in the field of economic research, as it provides a better
overview of series changes over time. A common example is the Gross Domestic
Production (GDP) index, one of the main indicators of economic health. This indicator has
a strong seasonal pattern, as the majority of production in most sectors is affected by
seasonal events through the calendar year, such as weather (for example, the agriculture
sector) or holidays (for example, the retail and airline sectors). As a result, in a calendar
year, some calendar quarters (for example, the first quarter of the year) will be higher (or
lower) than others.
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The US GDP is a good example as, historically, the growth in the first quarter is the lowest
and highest in the second quarter, due to those seasonal patterns. In this case, the removal
of the seasonal pattern from the GDP allows us to estimate the real growth of the GDP
between the first and the second quarter of the year. The transformation process of the
seasonal adjustment method is straightforward:

Estimate the seasonal component using a decomposition process1.
Remove the seasonal component from the series, which leaves the series with2.
only the trend and the irregular component
Optionally, you can apply a smoothing function to remove noise and outliers3.

Typically, most of the economic data that you hear about in the news, such as GDP,
unemployment rate, and consumption indices, are seasonally adjusted.

Summary
The decomposition of time series data down to its components is one of the core methods in
time series analysis. The use of this method is part of descriptive analysis, as it can provide
some useful insights into series patterns and structures. Those insights can be utilized to
identify the best approaches and models to be used with a series.

The focus of this chapter has been on the classical seasonal decomposition process with
MA, one of the most common decomposition methods. Although this method is not the
most advanced or accurate, it is the basis of most advanced methods. Therefore,
understanding the mechanisms of this process, such as the role of the MA, means that you
can apply more sophisticated methods with minimum effort.

In the next chapter, we will focus on the analysis of the seasonal component of time series
data.



6
Seasonality Analysis

Seasonality, as we saw in the previous chapter, is one of the main components of time series
data. Furthermore, this component, when existing in a series, plays a pivotal role in the
forecasting process of the future values of the series, as we will see in the coming chapters,
since it contains structural patterns. In this chapter, we will focus on methods and
approaches for identifying and then classifying the seasonal patterns of a series. This
includes the use of descriptive statistics tools, such as summary statistics, as well as data
visualization methods, utilizing packages such as dplyr, ggplot2, plotly, forecast, and
TSstudio.

In this chapter, we will cover the following topics:

Single and multiple seasonality patterns
Descriptive statistic methods to identify seasonality patterns
Data visualization tools to explore and identify seasonality patterns

Technical requirement
The following packages will be used in this chapter:

forecast: Version 8.5 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
ggplot2: Version 3.1.1 and above
dplyr: Version 0.8.1 and above
UKgrid: Version 0.1.1 and above

You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter06

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter06
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Seasonality types
The series frequency, as we saw in the preceding chapters, defines the amounts of intervals
in a single cycle unit of the series. The term cycle here refers to constant cycles, and should
not be confused with the term cycle component, which was introduced in the previous
chapter. In addition, the frequency units are ordered and repeated in the same order. For
example, January and December would always be the first and last units, respectively, for a
calendric series with a monthly frequency. A seasonal pattern exists in a time series
whenever we can tie a repeated event in the series to a specific frequency unit, for example,
the average temperature in New York during the month of January, or the average number
of passengers in the London underground between 8 a.m. and 9 a.m. Hence, there is a
strong relationship between seasonal pattern and the frequency of the series.

Furthermore, as funny as it may sound, most of the seasonal patterns in nature are related
to two astrophysical phenomena:

The orbit of Earth around the Sun (also known as the orbital period of Earth),
which is defined as 365 days
The rotation of Earth (or solar day) with a length of 86,400 seconds or 24 hours

For instance, the seasonality patterns of natural phenomena such as weather (temperature,
rain, and snow fall), sunrise and sunset times, or the tide level are dictated directly from the
orbital period and the solar time of Earth. This, of course, triggers a sequence of sub-events,
which automatically change the seasonal pattern from the original phenomena; for
example, the demand for electricity or the consumption of natural gas derived from the
weather. When seasonality exists in the time series data, we can classify this into one of the
following categories:

Single seasonal pattern: Whenever there is only one dominant seasonal pattern
in the series
Multiple seasonal patterns: If more than one dominant seasonal pattern exists in
the series

Typically, multiple seasonal patterns are more likely to occur whenever the series has a
high frequency (for example, daily, hourly, half-hourly, and so on), as there are more
options to aggregate the series to a lower frequency. A typical example of multiple
seasonality is the hourly demand for electricity, which could have multiple seasonal
patterns, as the demand is derived from the hour of the day, the day of the week, or the
yearly patterns, such as weather or the amount of daylight throughout the day. On the
other hand, as the frequency of the series is lower (for example, monthly, quarterly, and so
on), it is more likely to have only one dominant seasonal pattern as opposed to a high-
frequency series, as there are fewer aggregation options for another type of frequencies.
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Throughout the examples in this chapter, we will continue to use the USgas dataset and
will introduce the UKgrid dataset as an example of a time series with single and multiple
seasonal patterns, respectively.

You may recall that the USgas dataset represents the total monthly consumptions of natural
gas in the US since January 2000, and this is available in the TSstudio package:

library(TSstudio)

data(USgas)

ts_info(USgas)
## The USgas series is a ts object with 1 variable and 223 observations
## Frequency: 12
## Start time: 2000 1
## End time: 2018 7

Let's use the ts_plot function to plot and review the series structure:

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year",
        Xgrid = TRUE,
        Ygrid = TRUE)

The output is as follows:
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The UKgrid dataset represents the national demand in the UK high-voltage electric power
transmission network since 2011 in a half-hourly frequency. This dataset is available on the
UKgrid package. For convenience reasons, we will transform the series from a half-hourly 
frequency to hourly and will use an xts format. We will use the extract_grid function
from the UKgrid package for this transformation:

library(UKgrid)

UKgrid_xts <- extract_grid(type = "xts",
                           columns = "ND",
                           aggregate = "hourly",
                           na.rm = TRUE)
## The UKgrid series is a xts object with 1 variable and 69720 observations
## Frequency: hourly
## Start time: 2011-01-01
## End time: 2018-12-14 23:00:00

Let's review the structure of the UKgrid series:

ts_plot(UKgrid,
         title = "National Hourly Demand UK Grid",
         Ytitle = "Megawatts",
         Xtitle = "Year",
         Xgrid = TRUE,
         Ygrid = TRUE)

The output is as follows:
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As you can see in the preceding plot, the national demand of the UK high-voltage electric
power transmission network (or the UKgrid series), similar to the USgas series, has a
strong seasonal pattern. The main difference between the two series is their density (or
granularity) per cycle unit (which, in this case, is a calendar year), as the UKgrid series has
8,760 observations per cycle unit (or 24 × 365) as opposed to 12 observations of the USgas
series. Having more observations per cycle unit, that is, high-frequency time series data,
could potentially provide more insightful information about the series behavior as opposed
to a lower frequency time series data. However, this comes with the price of additional
complexity, which therefore requires more effort in the analysis process.

Seasonal analysis with descriptive statistics
Descriptive statistics are a simple yet powerful method to describe the key statistical
characteristics of the data. This method is based on the use of summary statistics tables and
is a summary of the key statistical indicators, such as the mean, median, quantile, and
standard deviation, and data visualization tools, such as box plots and bar charts.
Descriptive statistics can be used to describe the characteristics of the frequency units of a
series. This allows us to identify whether we can segment each period of the series by some
statistical criteria, for example, the mean, the quantile range, and so on.

The applications of the descriptive statistics methods are different from
the ones of the statistical inference methods. While the first provides
descriptions and insights on the data, the second offers conclusive insights
about relations and causation in the data.

Summary statistics tables
The dplyr package, one of the most popular packages in R, provides a set of tools for
working and seamlessly summarizing data frame objects. In the following example, we will
use the dplyr package to group the USgas series by its frequency units (the months of the
year), and then summarize the mean and standard deviation of each frequency unit. Before
starting the process, we will transform the USgas series (and later on the UKgrid series)
into a data frame object:

# Transforming the ts object to data.frame object
USgas_df <- data.frame(year = floor(time(USgas)), month = cycle(USgas),
USgas = as.numeric(USgas))

# Setting the month abbreviation and transforming it to a factor
USgas_df$month <- factor(month.abb[USgas_df$month], levels = month.abb)
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head(USgas_df)##   year month  USgas
## 1 2000   Jan 2510.5
## 2 2000   Feb 2330.7
## 3 2000   Mar 2050.6
## 4 2000   Apr 1783.3
## 5 2000   May 1632.9
## 6 2000   Jun 1513.1

Next, we will use the group_by and summaries functions to group, summarize the data by
its frequency units, and then plot the results with the plotly package:

# Summarized the series by its frequency units
 library(dplyr)

 USgas_summary <- USgas_df %>%
   group_by(month) %>%
   summarise(mean = mean(USgas),
                  sd = sd(USgas))

 USgas_summary## # A tibble: 12 x 3
##    month  mean    sd
##    <fct> <dbl> <dbl>
##  1 Jan   2773.  281.
##  2 Feb   2474.  193.
##  3 Mar   2294.  201.
##  4 Apr   1869.  162.
##  5 May   1686.  172.
##  6 Jun   1669.  197.
##  7 Jul   1830.  223.
##  8 Aug   1836.  180.
##  9 Sep   1633.  182.
## 10 Oct   1723.  172.
## 11 Nov   1976.  234.
## 12 Dec   2517.  261.
library(plotly)

plot_ly (data = USgas_summary, x = ~ month, y = ~ mean, type = "bar", name
= "Mean") %>%
layout (title = "USgas - Monthly Average", yaxis = list(title = "Mean",
range = c(1500, 2700)))
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The output is shown in the following graph:

You can see from the summary statistic table of the series that, on average, each month is
different from the next consecutive month by its standard deviation with the exception of
the two pairs May/June and July/August, which are relatively close to each other. This
allows us to characterize some months with a distinct behavior from the rest, such as
January, February, March, and November. It is worth mentioning that the variation in the
monthly averages mainly results in the series trend as we saw in the previous chapter, with
the decomposing function that shifts up the series from year to year. In the case of a linear
trend, detrending the series won't change the monthly difference by much as it will shift the
series down in the same proportion. On the other hand, it will reduce the variation (that is,
the standard deviation) of the monthly average, as it will be aligning each observation
closer to its frequency unit peers.
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The first indication for the potential existence of multiple seasonal patterns in the series is a
high frequency, such as daily, hourly, and minutely. In those cases, there is more than one
way to set the frequency of the series. For example, if we capture a time series in a daily
interval, the series frequency can be set as follows:

Daily (or 365), assuming that the most appropriate cycle is a full year
Weekdays (or 7) whenever the weekday oscillation is more dominant than the
one of the full-year cycle

When using a descriptive statistics process with this type of series, it will make sense to
apply this method for each potential frequency of the series (or at least the main ones) in
order to examine whether there is an indication for the seasonal pattern. For
example, UKgrid is an hourly time series, which marks it automatically as a suspect of
having multiple seasonal patterns. Potentially, as mentioned previously, the hourly
demand for electricity could have three different seasonal patterns:

Hourly: This is probably the main seasonal pattern in the series, as there is a
direct relationship between the demand for electricity and the hour of the day
(there is high demand during the day and low demand during the night).
Weekday: The demand for electricity throughout the day is, potentially, derived
from the day of the week. It would make sense to expect a high consumption
during working days and a lower rate of consumption throughout the weekend.
Monthly: As weather patterns vary throughout the year, the amount of daylight
and other seasonal factors could impact the demand for electricity.

As with the USgas series, we will first transform the UKgrid series into data.frame
format:

library(xts)
UKgrid_df <- data.frame(time = index(UKgrid_xts), UKgrid =
as.numeric(UKgrid_xts))
str(UKgrid_df)## 'data.frame': 66456 obs. of 2 variables:
##  $ time  : POSIXct, format: "2011-01-01 00:00:00" "2011-01-01 01:00:00"
...
##  $ UKgrid: num  69698 68374 64736 60975 56892 ...

The next step is to create seasonal features based on the periods we wish to check. For this,
we will use the lubridate package to create indicators for the hour of the day, the day of the
week, and the month by using the hour, wday, and month functions respectively. This will
allow us to group and summarize the series based on each periodicity:

library(lubridate)
 UKgrid_df$hour <- hour(UKgrid_df$time)
 UKgrid_df$weekday <- wday(UKgrid_df$time, label = TRUE, abbr = TRUE)
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 UKgrid_df$month <- factor(month.abb[month(UKgrid_df$time)], levels =
month.abb)

 head(UKgrid_df)
##                  time UKgrid hour weekday month
## 1 2011-01-01 00:00:00  69698    0     Sat   Jan
## 2 2011-01-01 01:00:00  68374    1     Sat   Jan
## 3 2011-01-01 02:00:00  64736    2     Sat   Jan
## 4 2011-01-01 03:00:00  60975    3     Sat   Jan
## 5 2011-01-01 04:00:00  56892    4     Sat   Jan
## 6 2011-01-01 05:00:00  54751    5     Sat   Jan

It will be more efficient to start to explore the most granular layer of the series first, as it
could indicate the direction of the aggregations of the series. Therefore, we will first
summarize the series by its hourly cycle:

UKgrid_hourly <- UKgrid_df %>%
 dplyr::group_by(hour) %>%
 dplyr::summarise(mean = mean(UKgrid, na.rm = TRUE), sd = sd(UKgrid, na.rm
= TRUE))

We can now use the summary statistics table to plot both the hourly mean and its standard
deviation. Since those two variables are not on the same scale, we will use a two y axes plot,
where the left-hand side represents the hourly mean and the right-hand side represents the
hourly mean standard deviation:

# Plotting the mean and the standard deviation
 plot_ly(UKgrid_hourly) %>%
   add_lines(x = ~ hour, y = ~ mean, name = "Mean") %>%
   add_lines(x = ~ hour, y = ~ sd, name = "Standard Deviation", yaxis =
"y2",
             line = list(color = "red", dash = "dash", width = 3)) %>%
   layout(
     title = "The UK Grid National Demand - Hourly Average vs. Standard
Deviation",
     yaxis = list(title = "Mean"),
     yaxis2 = list(overlaying = "y",
                   side = "right",
                   title = "Standard Deviation"
     ),
     xaxis = list(title="Hour of the day"),
     legend = list(x = 0.05, y = 0.9),
     margin = list(l = 50, r = 50)
   )
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The output is shown in the following graph:
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Looking at the plot of the preceding summary statistic table, we can see the following
behavior of the series:

There is low demand during the nighttime (between midnight and 6 a.m.) and
high demand between the morning hours and early evening.
There is a strong correlation between the average demand and its standard
deviation.
The relatively low standard deviation of the demand average during the
nighttime could indicate that there is strong sub-seasonal effect during those
hours beside the hourly seasonality. This should make sense, as those are normal
sleep hours, and therefore, on average, the demand is reasonably the same
throughout the weekdays.
On the other hand, the high standard deviation throughout the high-demand
hours could indicate that the demand is distributed differently on different
periodicity views (such as weekday or month of the year).

To examine the last point, we will subset the series into two groups representing the
demand in the middle of the night and the demand throughout the day (3 a.m. and 9 a.m.,
respectively), and then we will group them by the weekday:

UKgrid_weekday <- UKgrid_df %>%
   dplyr::filter(hour == 3 | hour == 9) %>%
 dplyr::group_by(hour, weekday) %>%
 dplyr::summarise(mean = mean(UKgrid, na.rm = TRUE),
                  sd = sd(UKgrid, na.rm = TRUE))

 UKgrid_weekday$hour <- factor(UKgrid_weekday$hour)

 plot_ly(data = UKgrid_weekday, x = ~ weekday, y = ~ mean, type =
"bar",color = ~ hour) %>%
   layout(title = "The Hourly Average Demand by Weekday",
          yaxis = list(title = "Mean", range = c(30000, 75000)),
          xaxis = list(title = "Weekday"))
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The following plot shows the output:

You will see in the preceding bar chart that the demand for electricity at 3 a.m. is relatively
stable throughout all the days of the week, with a slight difference between the average
during the weekdays and the days in the weekend (about 2% different). On the other hand,
there is a significant difference between the weekday and weekend demand at 9 a.m. (that
is, the demand on Monday is higher on average by 28% from the one on Sunday). Not
surprisingly, those results aligned with our earlier expectations. We can now leverage those
insights to examine whether a monthly seasonal pattern exists in the series. We will now
select the same hours (3 a.m. and 9 a.m.); however, this time we will group this data by
month (instead of weekdays):

UKgrid_month <- UKgrid_df %>%
   dplyr::filter(hour == 3 | hour == 9) %>%
 dplyr::group_by(hour, month) %>%
 dplyr::summarise(mean = mean(UKgrid, na.rm = TRUE),
                  sd = sd(UKgrid, na.rm = TRUE))



Seasonality Analysis Chapter 6

[ 176 ]

 UKgrid_month$hour <- factor(UKgrid_month$hour)

 plot_ly(data = UKgrid_month, x = ~ month, y = ~ mean, type = "bar",color =
~ hour) %>%
   layout(title = "The Hourly Average Demand by Weekday",
          yaxis = list(title = "Mean", range = c(30000, 75000)),
          xaxis = list(title = "Month"))

The output is as follows:

We can see from the bar plot of the monthly aggregation summary that, on average, the
demand during both the night (3 a.m.) and morning (9 a.m.) vary throughout the months of
the year. Moreover, there is a significant change in demand during the nighttime as
opposed to the weekday aggregation. The variation of the series from month to month
indicates the existence of monthly seasonality in the series.
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Seasonal analysis with density plots
Another approach for analyzing seasonal patterns in time series data is by plotting the
distribution of the frequency units by using histogram or density plots. This will allow us to
examine whether each frequency unit has a unique distribution that can distinguish it from
the rest of the units. In the following examples, we will use the ggplot2 package to plot the
density plot of each frequency unit using the geom_density geometric object (geom). This
geom is using the kernel density estimation method to smooth the histogram plot. We will
start by plotting the density of each of the USgas months:

# Plotting the density of each frequency unit
 library(ggplot2)
 ggplot(USgas_df, aes(x = USgas)) +
   geom_density(aes(fill = month)) +
   ggtitle("USgas - Kernel Density Estimates by Month") +
   facet_grid(rows = vars(as.factor(month)))

The output is in the following plot:
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This plot is an excellent example of the use of data visualization tools for storytelling. The
shape of the density plot of each month provides us with insights about the characteristics
of each month (or frequency unit). We can see some indication of a seasonal pattern in the
series, as the density plots are not overlapping on each other (with the exception of some
consecutive months, such as May and June). In addition, we can see that, for some months,
the shape of the distributions is flatter with long tails (mainly during the winter
months—November, December, and January). This could be a result of the volatility in
some of the exogenous factors; for instance, a combination of weather patterns along with
the elasticity or sensitivity of the series for changes in weather. For example, in the case of
natural gas consumption, there is a higher elasticity during the winter months due to the
dependency of the heating systems for this resource, which does not exist during summer
time.

Nevertheless, don't forget the effect of the trend or the growth from year to year (as we
know from the previous chapter, the USgas series had a linear trend since the year 2010) as
we did not remove it from the series. Let's repeat this process; this time we will detrend the
USgas series before plotting it. We will apply a simple method for detrending the series by
using the decompose function to compute the series trend and then subtract it from the
series:

USgas_df$USgas_detrend <- USgas_df$USgas - decompose(USgas)$trend

 ggplot(USgas_df, aes(x = USgas_detrend)) +
   geom_density(aes(fill = month)) +
   ggtitle("USgas - Kernel Density Estimates by Month") +
   facet_grid(rows = vars(as.factor(month)))
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The output is as follows:

As you can notice, the removal of the series trend sharpens the seasonal effect as the tail of
all the distribution become shorter. Although, in the case of the USgas series, the indication
of the existence of seasonal pattern was very clear before removing the trend, in other cases
it may not be as clear. Therefore, it is recommended that you remove the series trend
whenever the trend is non-linear or when there is distribution that has a long tail.

In the case where the distribution of most of the frequency units is flat with a long tail, it
could be an indication of multiple seasonal patterns in the series. Let's return to the UKgrid
series and plot the 24-hour density plots:

# Density plot - 24 hour frequency
 UKgrid_df$hour <- as.factor(UKgrid_df$hour)
 ggplot(UKgrid_df, aes(x = UKgrid)) +
   geom_density(aes(fill = hour)) +
   ggtitle("UKgrid - Kernel Density Estimates by Hour of the day") +
   facet_grid(rows = vars(as.factor(hour)))



Seasonality Analysis Chapter 6

[ 180 ]

The output is as follows:
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As we observed earlier with the summary statistics tables, the distribution of the net
demand for electricity during the nighttime is relatively stable (hence the non-flat
distribution with short tails as opposed to flat with long tail distribution during the
daytime). If we subset one of the hours during the day and plot its distribution by the day
of the week, we should expect an overlapping during the nighttime and be able to
distinguish between the distribution during the weekdays and weekend, as opposed to just
the weekday.

For example, the following plot represents the distribution of the demand at 9 a.m.
throughout the days of the week. You can see that the distribution during the weekdays is
distinguished from the one at the weekend:

UKgrid_df$weekday <- as.factor(UKgrid_df$weekday)

 UKgrid_df %>% dplyr::filter(hour == 0) %>%
 ggplot(aes(x = UKgrid)) +
   geom_density(aes(fill = as.factor(weekday))) +
   ggtitle("UKgrid - Kernel Density Estimates by Hour of the day") +
   facet_grid(rows = vars(as.factor(weekday)))

The output is shown in the following plot:

Let's now look at the structural tools for seasonal analysis.
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Structural tools for seasonal analysis
Data visualization methods have a pivotal role in time series analysis, and in particular
with seasonal analysis. As we saw in the preceding examples, the use of data visualization
tools allows us to communicate statistical results in an intuitive and insightful way. In the
coming sections, we will introduce built-in tools for seasonal analysis with the forecast and
TSstudio packages.

Seasonal analysis with the forecast package
The forecast package provides several functions for seasonal analysis based on the
ggplot2 package graphics engine (and the base plot function) and it supports the ts
objects. The ggseasonplot function creates a seasonal plot of the series by splitting and
plotting each year as a separate line. This allows the user to obtain the changes in the series
from year to year. Let's use this function to create the seasonal plot of the USgas series:

library(forecast)
ggseasonplot(USgas,year.labels=TRUE,continuous=TRUE)

The output is as follows:
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We can easily learn from this simple representation of the USgas series that the series has a
strong repeated pattern, which indicates the existence of the monthly seasonal pattern.
Furthermore, as you can see from the color scale and the years labels, the series is growing
from year to year.

Another intuitive way to represent a series by its frequency cycle is with the polar plot. The
polar plot spreads the frequency units across 360 degrees, depending on the number of
frequency units (here this is 360/frequency), where the distance from the polar center
represents the magnitude of the observations. ggseasonplot provides a polar
representation of the time series data by setting the polar argument to TRUE:

ggseasonplot(USgas,  polar = TRUE)

The output is as follows:

Likewise, in the normal preceding seasonal plot, you can see in the polar representation of
the USgas series that the series has repeated seasonal patterns along with a year-to-year
growth or trend.
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Seasonal analysis with the TSstudio package
The TSstudio package provides a set of interactive data visualization functions based on
the plotly package engine for seasonal analysis. It supports multiple time series objects,
such as ts, xts, zoo, and data frame objects (data.frame, data.table, and tbl).

The ts_seasonal function provides several types of seasonal plots. The type argument
sets the type of plot. The default option of the type argument is normal, which provides a
similar seasonal plot as the ggseasonplot function:

ts_seasonal(USgas,type ="normal")

The output is as follows:



Seasonality Analysis Chapter 6

[ 185 ]

The cycle option group plots the series frequency units over time in chronological order;
for example, all the observations that occurred during January over a certain amount of
time for a monthly series. This allows us to identify seasonal pattern without detrending
the series. For instance, in the following plot of the USgas series, you can see that, despite
the growth from year to year, in most of the cases the order of the months (from high to
low) remains the same:

ts_seasonal(USgas, type = "cycle")

The output is as follows:

The box option provides a box plot representation for each frequency unit:

ts_seasonal(USgas, type = "box")
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The output is as follows:

The box plot can be very informative plot, as it provides the range and quartile
representation of the observations of each frequency unit. On the other hand, some of the
oscillation in the box plot representation may occur as results of the series trend. Therefore,
it is always recommended that you use a combination of different views of the series
seasonality to get the full picture. The all option returns a plot of all of the three plots
(normal, cycle, and box) side by side. This allows you to connect the information from the
three different representations of the series to get a better understanding of the patterns (if
any exist) and characteristics of the series:

ts_seasonal(USgas, type = "all")
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The output is as follows:

A time series heat map is another informative way to explore seasonality in time series
data. The ts_heatmap function returns a heatmap plot of the time series object where the
y-axis represents the frequency units (the months, for example, in the case of a monthly
series) and the x-axis represents the cycle units of the series (the years, for example, in the
case of a monthly series). The magnitude of each observation is represented by the color
scale of the map, so the darker it is, the higher the value of the observation with respect to
the overall values of the series:

ts_heatmap(USgas, color = "Reds")
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The output is shown in the following graph:

Last but not least, we will look at the ts_quantile function for visualizing the quantile
plot of time series data. This function supports time series objects with a time or date index
(such as the xts, zoo, and data.frame objects), and it's mainly useful on high-frequency
time series data, such as hourly or daily. By default, the function returns a quantile plot of
the series frequency units, where the middle line represents the median and the lower and
upper lines represent the 25th and 75th percentiles. For instance, we will use this function to
visualize the 24 cycles of the UKgrid dataset:

ts_quantile(UKgrid)
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The output is as follows:

The period argument allows you to examine whether the seasonal patterns of the series
are changing when using a different subset of time. This allows you to examine whether the
series has additional seasonal patterns. For example, we can plot the 24-hour cycle of the
UKgrid series by the day of the week by setting the period argument to weekdays:

ts_quantile(UKgrid, period = "weekdays", n = 2)
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The output is as follows:

As we saw earlier with the density plots, the demand for electricity during the daytime is
relatively higher throughout the weekdays in comparison to during the weekends. In the
same way, you can plot the 24-hour cycle by month:

ts_quantile(UKgrid, period = "monthly", n = 2)
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The output is as follows:

The main advantage of the quantile plots of multiple periods (for example, days of the
week, months, and so on) over the density plot we used earlier is that the first represents all
the frequency units (and, in the case of the UKgrid series, with a 24-hour frequency), while
the second represents a single frequency unit (for example, the density of 9 a.m. throughout
the weekdays).
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Summary
The use of descriptive statistics and data visualization tools plays a pivotal role in the
seasonality analysis of time series data. As we saw in this chapter, there is a close
relationship between the frequency of the series and the type of seasonal patterns. A series
with a lower frequency (such as monthly or quarterly) would potentially have a single
dominant seasonal pattern. On the other hand, if the series frequency is higher, the
probability is that multiple seasonal patterns exist in the series. This, of course, should help
you to determine which tools or approaches to use in the analysis process. Last but not
least, in some instances, you should consider removing exogenous factors (such as the
series trend) to get a clear picture of the seasonal patterns and to avoid misleading results.

In the next chapter, we will focus on the correlation analysis of time series data.



7
Correlation Analysis

Due to the continuous and chronologically ordered nature of time series data, there is a
likelihood that there will be some degree of correlation between the series observations. For
instance, the temperature in the next hour is not a random event since, in most cases, it has
a strong relationship with the current temperature or the temperatures that have occurred
during the past 24 hours. In many cases, the series of past observations contains predictive
information about future events, which can be utilized to forecast the series' future
observations. Throughout this chapter, we will focus on identifying and revealing those
relationships with the use of correlation analysis techniques, such as the autocorrelation
and cross-correlation functions, along with the data visualization tools.

This chapter will cover the following topics:

Causality versus correlation
The autocorrelation and partial autocorrelation functions
Data visualization tools for correlation analysis

Technical requirement
The following packages will be used in this chapter:

TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
stats: Version 3.6.0 and above

You can access the codes for this chapter from the following link:

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/ma
ster/Chapter07

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter07
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Correlation between two variables
One of the main goals of correlation analysis is to identify and quantify the relationship
between two variables. This relationship could vary from having a full dependency or
linear relationship between the two, to complete independence. One of the most popular
methods for measuring the level of correlation between two variables is the Pearson
correlation coefficient. Although this method is not necessarily the most appropriate one for
time series data, it is a simple and intuitive representative of the statistical logic beyond
most of the methods for measuring correlation. This method, also known as the population
correlation coefficient, is a ratio between the covariance of two variables and the
multiplication of their standard deviation:

The values of the correlation coefficient segment the level of correlation into three main
groups:

Positively correlated: This is where the value of the coefficient is greater than 0.
This indicates some degree of a positive linear relationship between the variables,
depending on the value of the coefficient. As the value of , the correlation
coefficient, grows closer to 1, the linear relationship between the two variables
grows stronger; 1 indicates a perfect linear dependency.
Negatively correlated: This is where the value of the coefficient is lower than 0.
This is the reflection of the positive correlation, and it is an indication for an
inverse linear relationship. In this case, as the value of  is closer to -1, the
negative linear relationship of the two variables (for example, when one variable
goes up the other goes down); -1 represents a perfect inverse linear dependency
between the two variables.
Not correlated: This is where the value of the coefficient is equal to 0, which
indicates that the two variables are independent.

This interpretation of the correlation values can easily be derived from the formula
mentioned previously. You may remember from your stats class that two random
variables are entirely independent of each other when the covariance of the two is equal to
0 (or COV (X, Y) = 0), therefore the correlation coefficient will be equal to 0 in those cases.
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If two random variables are independent, you can conclude that the correlation between
the two variables is zero. On the other hand, if the correlation between two random
variables is zero, we cannot conclude by default that the variables are independent, as a
non-linear relationship may exist. 

Similarly, when a variable is a linear combination of another variable, the covariance of the
two is equal to the multiplication of their standard deviation (or ). A special
case is a correlation of a variable with itself, which is the variance divided by its square
standard deviation:

Typically, we would consider the correlation between two variables to be
strong if the value of the correlation coefficient is higher than 0.75 or lower
than -0.75 (but this, of course, could change according to the field of
research).

Measuring and analyzing the correlation between two variables, in the context of time
series analysis, can be categorized in the following two categories:

Analyzing the correlation between a series and its lags, as some of the past lags
may contain predictive information, which can be utilized to forecast future
events of the series. One of the most popular methods for measuring the level of
correlation between a series and its lags is the autocorrelation function.
Analyzing the correlation between two series in order to identify exogenous
factors or predictors, which can explain the variation of the series over time (for
example, the effect of weather patterns such as rainfall or temperature on taxi
rides in New York City). In this case, the measurement of correlation is typically
done with the cross-correlation function.

In the context of time series analysis, the first method (also know as lags analysis) is an 
integrated part of the analysis, whereas the use of the second method (also known as
causality analysis) is less common. This is mainly related to the cost associated with each
method. While in lags analysis we extract the required data (the series lags) from the series
itself, causality analysis requires additional effort, such as identifying and extracting
external variables, which may not always available. We will start with the lags analysis
methods and techniques and then generalize them to the causality analysis approaches.
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Lags analysis
The goal of lags analysis is to identify and quantify the relationship between a series and its
lags. This relationship is typically measured by calculating the correlation between the two
and with the use of data visualization tools. The level of correlation between a series and its
lags is derived from the series characteristics. For instance, you should expect the series to
have a strong correlation with its seasonal lags (for example, lags 12, 24, and 36 when the
series frequency is monthly) when the series has strong seasonal patterns. This should
make sense, as the direction of the series is impacted by its seasonal pattern. Another
example is the price of a stock over time, which, in this case, should be correlated with the
most recent lags. In the following examples, we will use the USgas, EURO_Brent, and
USVSales series, each with different characteristics to demonstrate the correlation pattern
that is associated with each type. Before continuing to the autocorrelation function, let's
load the three series from the TSstudio package and review their main characteristics: 

library(TSstudio)

We will start with the US monthly natural gas consumption:

data(USgas)

Let's generate a plot, as follows:

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year")

We will get the following plot:
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As we saw in the previous chapter, the main characteristic of the USgas series is the strong
seasonal pattern. The second series is the EURO_Brent series, which represents the monthly
prices of the Brent crude oil in USD. As you can observe in the following plot, the price of
the oil does not have seasonal patterns or general trends:

data(EURO_Brent)

ts_plot(EURO_Brent,
        title = "Brent Crude Oil Prices",
        Ytitle = "US Dollars per Barrel",
        Xtitle = "Year")

We will get the following plot:

The last series that we will utilize in this chapter is USVSales, the US monthly total vehicle
sales. This series, as can be seen in the following plot, is an example of a series with both
seasonal and cycle patterns:

data(USVSales)

ts_plot(USVSales,
        title = "US Monthly Total Vehicle Sales",
        Ytitle = "Thousands of units",
        Xtitle = "Year")
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We will get the following plot:

Let's now look at the autocorrelation function.

The autocorrelation function
The autocorrelation function (ACF) is the main method in time series analysis for
quantifying the level of correlation between a series and its lags. This method is fairly
similar (both mathematically and logically) to the Pearson correlation coefficient, which we
saw earlier, and can be formalized with the following expression:

Here,  represents the ACF correlation coefficient of the series with its k lag; and n, , and
 denote the number of observations of the series, the t observation of the series, and the

mean, respectively. The acf function from the stats package is R's built-in ACF, which, by
default, visualizes the results using a bar plot. Let's use this function to plot the correlation
of the USgas series and its first 60 lags (by setting the lag.max argument to 60):

acf(USgas, lag.max = 60)
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We will get the following plot:

Each bar in the ACF plot represents the level of correlation between the series and its lags
in chronological order. Note that the x-axis notation is a bit misleading, as the units
represent the seasonal lags (for example, lags 1 and 2 represent the 12 and 24 lags). The blue
dotted lines indicate whether the level of correlation between the series and each lag is
significant or not. By testing the null hypothesis that the correlation of the lag with the
series is equal to zero, we can reject it whenever the level of correlation is either above or
below the upper and lower dotted lines, respectively, with a level of significance of 5%.
Otherwise, whenever the correlation is between the upper and lower dotted lines, we fail to
reject the null hypothesis, and we can therefore ignore those lags (or assume that there is no
significant correlation between the two).

As you can see from the preceding ACF plot of the USgas series, the series has a strong
positive correlation with the seasonal lags (which decay over time) along with negative 
correlation with the mid-seasonal lags (for example, lags 6, 18, and 30). This should not
come as a surprise, as this behavior is aligned with the strong seasonal pattern of the series.
Similarly, we can plot the correlation of the EURO_Brent and USVSales series and review
how their unique correlation pattern aligns with their characteristics:

acf(EURO_Brent, lag.max = 60)
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We will get the following plot:

In the case of the EURO_Brent series, you can see that the correlation of the series with its
lags is decaying over time, whereas the closer the lag is, chronologically to the series, the
stronger the relationship with the series.

This type of correlation is also an indication that the series is not
stationary and a differencing of the series is required. Do not worry if you
are not familiar with those terms (stationary and differencing); in Chapter
11, Forecasting with ARIMA models, we will introduce the stationary state
of time series data and its applications.

Let's now generate a plot for USVSales:

acf(USVSales, lag.max = 60)
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We get the following plot:

The correlation pattern of USVSales has a unique shape, which is a result of the
combination of seasonal and cycle patterns of the series. Similarly to USgas, the correlation
plot has a cyclic shape as a result of the seasonal pattern of the series. On the other hand,
the decay rate of USVSales is faster compared to the rate of USgas due to the cycle pattern
of the series, which shifts the series direction over time. As a result, the series is mainly
correlated with the first seasonal lag. That being said, if we remove the series cycle (or
detrend it) we will probably have a similar correlation pattern as USgas.

The partial autocorrelation function
One of the downsides of the autocorrelation function is that it does not remove the effect of
lags 1 up to k-1 on the series when calculating the correlation of the series with the k lag.
The partial autocorrelation function (PACF), the sister function of the ACF, provides a
solution for this by computing the conditional correlation of the series with the k lag given
the relationship of the 1, 2, ..., and k-1 lags with the series. In other words, the PACF
provides an estimation for the direct correlation of the series with the k lag after removing
the correlation of the k lag with the previous lags. The pacf function from the stats package
provides an estimation for the PACF values for a given input. Let's review the PACF output
for the first 60 lags of the USgas dataset:

pacf(USgas, lag.max = 60)
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We will get the following plot:

Both the ACF and PACF values play a pivotal role in the tuning process of the
AutoRegressive Integrated Moving Average (ARIMA) family of models (for example,
AutoRegressive or Moving Average). Don't worry if you are not familiar with those terms,
as we will discuss them in detail in Chapter 11, Forecasting with ARIMA Models.

Lag plots
A lag plot is a simplistic and non-statistical approach for analyzing the relationship
between a series and its lags. As the name indicates, this method is based on data
visualization tools, with the use of two-dimensional scatter plots for visualizing the series
(typically on the y-axis) against the k lag of the series. Hence, each pair of points represents
a combination of the series observations and their corresponding lagged values. As
more points on the lag plot are closer to the 45 degree line, the higher the correlation will be
between the series and the corresponding lag. The TSstudio package provides a
customized function, ts_lags, for creating multiple lag plots. Let's use the function to plot
the USgas series against its lags:

ts_lags(USgas)

https://cdp.packtpub.com/hands_on_time_series_analysis_with_r/wp-admin/post.php?post=210&action=edit#post_788
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We will get the following plot:

Looking at the lag plots of the USgas series, you can see that, moving along from the first
lag up to the sixth lag, the relationship between the series and its lags become less linear.
This process starts to reverse from the seventh lag as the relationship gradually becomes
more linear, where the seasonal lag (or lag 12) has the strongest relationship with the series.
Those results are aligned with the ones we saw earlier with the ACF plot. By default, the
ts_lags function plots the first 12 lags of the series, where the lag argument allows you to
set the number of lags.

For example, we can plot the most recent seasonal lags (that is, lags 12, 24, 36, and 48) by
setting the lags number with the lags argument to the corresponding lags:

ts_lags(USgas, lags = c(12, 24, 36, 48))
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We will get the following plot:

Similarly, we can plot the lag plots for the EURO_Brent and USVSales series. As you can
see in the following plot, the results in both cases are aligned with the ones we received
before with the ACF:

ts_lags(EURO_Brent)
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We will get the following plot:

The EURO_Brent series has a strong linear relationship with the first lag, where the
strength of that relationship decays as the distance of the lag from the series is higher:

ts_lags(USVSales)
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We will get the following plot:

In the case of USVSales, the 12 lag has the closest linear relationship with the series (as we
observed before with the ACF plot).
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Causality analysis
The use of the series lags to forecast the future value of the series is beneficial whenever the
series has stable repeated patterns over time. An excellent example of this type of series is
the US natural gas consumption, as it has a strong seasonal pattern along with a consistent
trend (or growth) pattern. Yet, the main pitfall of this method is that it will fail whenever
the changes in the series derive from exogenous factors. In these cases, using only past lags
could potentially lead to misleading results, as the lags do not necessarily drive the changes
in the series. The goal of causality analysis, in the context of time series analysis, is to
identify whether a causality relationship exists between the series we wish to forecast and
other potential exogenous factors. The use of those external factors as drivers of the
forecasting model (whenever exists) could potentially provide accurate and robust forecast
(as oppose of using only the past observation of the series). Before diving into the details of
causality analysis, let's pause and define causality and its characteristics and the
distinctions between causality and correlation.

Causality versus correlation
Two variables will have a causality relationship whenever the change of one variable
triggers a direct change of the second variable. This is also known as a cause-and-effect
relationship. For instance, the temperatures in Chicago have a direct impact on the
consumption of natural gas throughout the year (as most of the heating systems operate
with natural gas) and we can therefore assume that there is a causality relationship between
the two. One of the main characteristics of causality is a high correlation between the two
variables. This should make sense, as there is a high dependency between the two
variables. On the other hand, this could be misleading in some cases, as high correlation by
itself between two variables should not instantly imply the existence of a causality
relationship, as the two may have a high dependency on a third variable.

For example, you should expect to have a high correlation between the sales of ice cream
and bathing suits (high demand during the summer and low throughout the winter).
However, there is no causal relationship between the two besides the fact that both are
highly correlated with the same factor—the season of the year (or weather patterns).
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The following diagram describes this type of relationship:

In the context of time series analysis, the causality between two time series can be
categorized into the following two types:

Direct causality: This is where series B reacts immediately to the changes of
series A at time t. For example, the speed of the wind will have a direct impact on
the level of electricity production of a wind turbine.
In-direct causality: This is where the change of series A at time t triggers a
change of series B at time t + n (where n > 0). This lag effect is common in 
economic indicators, such as Gross Domestic Product (GDP) and consumption
or the unemployment rate, where the change in the first triggers a gradual
change in the other over time (for example, a drop in the GDP this quarter will
impact the employment rate in the next quarter).

Typically, a series from the first type will have a stronger dependency and a higher level of
correlation compared to the second type. Yet, it is harder (or even not practical in some
cases) to utilize series A as a predictor of series B, as the future values of series A are
unknown and therefore need to be forecast as well (unless the future values are
deterministic).
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This could potentially increase the level of uncertainty of the model output, due to the fact
that the input values are forecasted and will therefore come with some degree of
uncertainty (as opposed to the actual input values of series A that were used in the training
process).

For example, if you wish to forecast the level of electricity production of a wind turbine
during the next 10 days by using the wind speed as a predictor, you will have to forecast
the wind speed in the next 10 days as well. The forecast of wind speed by itself could be a
challenging process. On the other hand, it is more common to use the n lag of series A as a
predictor of series B (when applicable), as in this case, the input is the actual values of the
series (assuming the length of n is equal to or less than the forecast horizon). Don't worry if
at this point you are not familiar with the training process of the forecasting model. We will
discuss this in detail in the next chapter.

Analyzing and identifying causality between two series is based on the use of correlation
measurement and lag plots, along with some intuition and common sense (as mentioned
previously, high correlation by itself is not necessarily an indication for causality). In the
next section, we will introduce the cross-correlation function for measuring the correlation
between two time series.

The cross-correlation function
The cross-correlation function (CCF) is the sister function of the ACF and it measures the
level of correlation between two series and their lags in a fairly similar way. In the coming
example, we will analyze the relationship between the total vehicle sales (USVSales) and
the unemployment rate (USUnRate) in the US to understand whether there is a cause and
effect relationship between the two. The monthly unemployment rate in the US is available
in the TSstudio package, so let's load the series and review it with the ts_plot function:

data(USUnRate)

ts_plot(USUnRate,
        title = "US Monthly Civilian Unemployment Rate",
        Ytitle = "Unemployment Rate (%)",
        Xtitle = "Year")
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We will get the following plot:

As you can observe in the preceding plot, the USUnRate series starts during the 1950s, as
opposed to the USVSales series, which began in 1976. Therefore, before starting, let's align
the two series to the same time frame using the window function:

us_vsales <- window(USVSales, start = c(1976,1), end = c(2018,6))
us_unrate <- window(USUnRate, start = c(1976,1), end = c(2018,6))

Next, we will plot the two series on a two-y-axis plot (as the units of the two series are
different) using the plotly package:

library(plotly)

 plot_ly(x = time(us_vsales),
         y = us_vsales,
         type = "scatter",
         mode = "line",
         name = "Total Vehicle Sales") %>%
   add_lines(x = time(us_unrate),
             y = us_unrate,
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             name = "Unemployment Rate",
             yaxis = "y2") %>%
   layout(
     title = "Total Monthly Vehicle Sales vs Unemployment Rate in the US",
     yaxis2 =  list(
       overlaying = "y",
       side = "right",
       title = "Percentage",
       showgrid = FALSE
     ),
     yaxis = list(title = "Thousands of Units",
                  showgrid = FALSE),
     legend = list(orientation = 'h'),
     margin = list(l = 50, r = 50, b = 50, t = 50, pad = 2)
   )

We will get the following plot:
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It is pretty clear from the preceding plot that the two series move to the opposite direction,
so when the vehicle sales increase, the unemployment rate decreases and the other way
around. You can also see that, in most of the cases, the changes in the vehicle sales series are
leading to the changes in the unemployment rate. In order to explore this assumption
further, we can measure the level of correlation between the unemployment rate and the
vehicle sales and its lags using the ccf function from the stats package as well:

ccf(x = us_vsales, y = us_unrate, lag.max = 36)

We will get the following plot:

Similarly to the ACF output, each bar in the CCF plot represents the level of correlation
between the main series and the lags of the secondary. Lag 0 represents the direct
correlation between the two series, where the negative and positive lags represent the
correlation between the unemployment rate and the past and leading lags of the vehicle
sales series, respectively. The main thing to note from the preceding plot is that the
unemployment rate is correlated more to the past lags as opposed to the leading lags of the
vehicle sales.

The highest correlation between the two series was observed with the 5 lag of the vehicle
sales and was not far away from the seasonal lag as well (that is, lag 12). It is difficult (and
probably even wrong) to conclude from the results that the vehicle sales explicitly drive the
changes in the unemployment rate (and it is definitely not in the scope of this book).
However, there is some indication of a causality relationship, which can be derived from
the level of correlation along with common sense, given the size of the vehicle industry in
the US and its historical impact on the economy. 
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Alternatively, you can plot the relationship between US vehicle sales and the lags of the
unemployment rate with the ccf_plot function from the TSstudio package. This function
works similarly to the ts_lags function we previously introduced:

ccf_plot(x = USVSales, y = USUnRate, lags = 0:12)

We will get the following plot:

The main advantage of the ccf_plot function over the ccf function is that the first 
automatically aligns the two series according to their chronological order, whereas the ccf
function does not have this automatic functionality, and therefore requires a preprocessing
step (as we used previously with the window function).
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Summary
Correlation analysis of time series data is one of the main steps of the analysis process.
Throughout this chapter, we introduced different approaches for identifying the correlation
between a series and its lags and causality between two time series. Those approaches
include the use of both statistical methods, such as the ACF and PACF, and data
visualization methods. The application of the correlation analysis plays a pivotal role in
many time series applications, from the descriptive analysis of a series, as we saw in this
chapter, to tuning time series forecasting models, such as the ARIMA model.

In the next chapter, we will introduce strategies for training, testing, benchmarking, and
evaluating forecasting models.



8
Forecasting Strategies

So far, we have mainly been focusing on the first two components of the time series
analysis workflow—data preprocessing and descriptive analysis. Starting from this chapter,
we will shift gear and move on to the third and last component of the analysis—the
forecast. Before we dive into different forecasting models in the upcoming chapters, we will
introduce the main elements of the forecasting workflow. This includes approaches for
training a forecasting model, performance evaluation, and benchmark methods. This will
provide you with a set of tools for designing and building a forecasting model according to
the goal of the analysis.

This chapter covers the following topics:

Training and testing approaches for a forecasting model
Performance evaluation methods and error measurement matrices
Benchmark methods
Quantifying forecast uncertainty with confidence intervals and simulation

Technical requirement
The following packages will be used in this chapter:

forecast: Version 8.5 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above

You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter08
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https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter08


Forecasting Strategies Chapter 8

[ 216 ]

The forecasting workflow
Traditional time series forecasting follows the same workflow as most of the fields of
predictive analysis, such as regression or classification, and typically includes the following
steps:

Data preparation: Here, we prepare the data for the training and testing process1.
of the model. This step includes splitting the series into training (in-sample) and
testing (out-sample) partitions, creating new features (when applicable), and
applying a transformation if needed (for example, log transformation, scaling,
and so on).
Train the model: Here, we used the training partition to train a statistical model.2.
The main goal of this step is to utilize the training set to train, tune, and estimate
the model coefficients that minimize the selected error criteria (later on in this
chapter, we will discuss common error metrics in detail). The fitted values and
the model estimation of the training partition observations will be used later on
to evaluate the overall performance of the model.
Test the model: Here, we utilize the trained model to forecast the corresponding3.
observations of the testing partition. The main idea here is to evaluate the
performance of the model with a new dataset (that the model did not see during
the training process).
Model evaluation: Last but not least, after the model was trained and tested, it is4.
time to evaluate the overall performance of the model on both the training and
testing partitions.

Based on the evaluation process of the model, if the model meets a certain threshold or
criteria, then we either retain the model using the full series in order to generate the final
forecast or select a new training parameter/different model and repeat the training process.

One of the main pitfalls when training a statistical model is overfitting the
model to the training set. Overfitting occurs when the model is
overlearning the data that the model trained with and fails to generalize the
model's performance on the training set on other datasets. One of the
main signs for overfitting is a high ratio between the error rate on the
testing set and training set (for example, a high error on the training
partition versus a low error on the training partition). Therefore, the
evaluation of the model's performance on both the training and testing
partitions is essential to identify overfitting. Generally, overfitting is
caused by incorrectly tuning the model parameters or by using a model
with high complexity.
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On the other hand, this process has its own unique characteristics, which distinguish it
from other predictive fields:

The training and testing partitions must be ordered in chronological order, as
opposed to random sampling.
Typically, once we have trained and tested the model using the training and
testing partitions, we will retrain the model with all of the data (or at least the
most recent observation in chronological order). At first glance, this might be
shocking and terrifying for people with a background in traditional machine
learning or supervised learning modeling, as typically it leads to overfitting and
other problems. We will discuss the reason behind this and how to avoid
overfitting later.

The following diagram demonstrates the forecasting workflow:

Now, we will take a look at the different training approaches.
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Training approaches
One of the core elements of the forecasting workflow is the model training process. The
quality of the model's training will have a direct impact on the forecast output. The main
goals of this process are as follows:

Formalize the relationship of the series with other factors, such as seasonal and
trend patterns, correlation with past lags, and external variables in a predictive
manner
Tune the model parameters (when applicable)
The model is scalable on new data, or in other words, avoids overfitting

As we mentioned previously, prior to the training process, the series is split into training
and testing partitions, where the model is being trained on the training partition and tested
on the testing partition. These partitions must be in chronological order, regardless of the
training approach that has been used. The main reason for this is that most of the time
series models establish a mathematical relationship between the series in terms of its past
lags and error terms.

Training with single training and testing
partitions
One of the most common training approaches is using single training and testing (or single
out-of-sample) partitions. This simplistic approach is based on splitting the series into
training and testing partitions (or in-sample and out-sample partitions, respectively),
training the model on the training partition, and testing its performance on the testing set:
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As you can see in the preceding diagram, the training and testing partitions are ordered
and organized in chronological order. This approach has a single parameter—the length of
the out-of-sample (or the length of the testing partition). Typically, the length of the testing
partition is derived from the following rules of thumb:

The length of the testing partition should be up to 30% of the total length of the
series in order to have enough observation data for the training process.
The length of the forecasting horizon (as long it is not violating the previous
term). This is mainly related to the fact that the level of uncertainty increases as
the forecast horizon increases. Therefore, aligning the testing set to the forecast
horizon could, potentially, provide a closer estimate of the forecast's expected
error.

For example, if we have a monthly series with 72 observations (or 6 years) and the goal is to
forecast the next year (or 12 months), it would make sense to use the first 60 observations
for training and test the performance using the last 12 observations. Creating partitions in R
can be done manually with the window function from the stats package. For instance, let's
split the USgas series into partitions, leaving the last 12 observations of the series as the
testing partition and the rest as training:

First, let's load the USgas series from the TSstudio package into the1.
environment:

library(TSstudio)

data(USgas)

We can observe the main characteristics of the USgas series with the ts_info2.
function:

ts_info(USgas)

We get the following output:

##  The USgas series is a ts object with 1 variable and 227
observations
##  Frequency: 12
##  Start time: 2000 1
##  End time: 2018 11

Let's use the window function to split the series into training and testing3.
partitions:

train <- window(USgas,
                start = time(USgas)[1],
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                end = time(USgas)[length(USgas) - 12])

test <- window(USgas,
               start = time(USgas)[length(USgas) - 12 + 1],
               end = time(USgas)[length(USgas)])

The summary of the testing and testing partition can be seen in the following4.
output:

ts_info(train)

We get the following output:

##  The train series is a ts object with 1 variable and 215
observations
##  Frequency: 12
##  Start time: 2000 1
##  End time: 2017 11

Now, let's take a look at the test partition:5.

ts_info(test)

We get the following output:

##  The test series is a ts object with 1 variable and 12
observations
##  Frequency: 12
##  Start time: 2017 12
##  End time: 2018 11

Alternatively, the ts_split function from the TSstudio package provides a6.
customized way for creating training and testing partitions for time series data:

# The sample.out argument set the size of the testing partition
(and therefore the training partition)
USgas_partitions <- ts_split(USgas, sample.out = 12)

train <- USgas_partitions$train
test <- USgas_partitions$test

You can observe from the following output that we received the same execute7.
results that we received previously:

ts_info(train)
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We get the following output:

##  The train series is a ts object with 1 variable and 215
observations
##  Frequency: 12
##  Start time: 2000 1
##  End time: 2017 11

Now, let's look at the test partition:8.

ts_info(test)

We get the following output:

##  The test series is a ts object with 1 variable and 12
observations
##  Frequency: 12
##  Start time: 2017 12
##  End time: 2018 11

The simplicity of this method is its main advantage, as it is fairly fast to train and test a
model while using (relatively) cheap compute power. On the other hand, it isn't possible to
come to a conclusion about the stability and scalability of the model's performance based
on a single test unit. It is feasible that a model, only by chance, will have relatively good
performance on the testing set but do poorly on the actual forecast as it isn't stable over
time. One way to mitigate that risk is with the backtesting approach, which is based on
training a model with multiple training and testing partitions.

Forecasting with backtesting
The backtesting approach for training a forecasting model is an advanced version of the
single out-of-sample approach we saw previously. It is based on the use of a rolling
window to split the series into multiple pairs of training and testing partitions. A basic
backtesting training process includes the following steps:

Data preparation: Create multiple pairs of training and testing partitions.1.
Train a model: This is done on each one of the training partitions.2.
Test the model: Score its performance on the corresponding testing partitions.3.
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Evaluate the model: Evaluate the model's accuracy, scalability, and stability4.
based on the testing score. Based on the evaluation, you would do one of the
following:

Generate the final forecast to check whether the model score meets a
specific threshold or criteria
Apply additional tuning and optimization for the model and repeat
the training and evaluations steps

The use of scoring methodology allows us to assess the model's stability by examining the
model's error rate on the different testing sets. We would consider a model as stable
whenever the model's error distribution on the testing sets is fairly narrow. In this case, the
error rate of the actual forecast should be within the same range of the testing sets
(assuming there are no abnormal events that impact the forecast error rate).

This method is, conceptually, similar to the cross-validation approach for
training machine learning models. The main distinction between the two
approaches is related to how their partitions are set. While the backtesting
partitions are ordered chronologically, the ones of the cross-validation
approach are based on random sampling.

The main setting parameters of a backtesting training model are as follows:

The length of the training partitions: It is set by the window setting. There are
two common types of rolling windows:

Expanding window: Using the first N observations as the initial
training partition, add the following n observations to create the
following training partition. The length of the training partition
grows as the window rolls over the series.
Sliding window: Set the first N observations as the initial training
partition and shift the window by n observations to create the
following training partition. The length of the training partitions
remains the same as the window rolls over the series:

The length of the testing partitions—a constant
value, typically aligned with the length of the
forecasting horizon (under the limitation of the
minimum number of observations required to train
the model)
The space between each training partition—defines
the pace of the rolling window
The number of training and testing partitions
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The following diagram demonstrates the structure of the backtesting with an expanding
window:

As you can see in the preceding diagram, all of the training partitions of the expanding
window method start at the same index point, , where each training partition is a
combination of the previous training partition with the following n observations (where n is
a constant that represents the expanded rate of the window). It would make sense to use
this method when the series has a strong seasonal pattern and stable trend. In this case, the
first observations of the series could, potentially, have predictive information that can be
utilized by the model. The downside of this method is training the model with different
length partitions, as typically a model tends to learn more and therefore perform better
when more data is available. Therefore, we may observe that the performance of models
that are trained on the latest partitions perform better than the ones that are trained with
the first partitions.
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This bias does not exist in the second training approach—the sliding window, as all of the
training partitions, are of the same length, as you can see in the following diagram:

It would make more sense to use the sliding window whenever the input series has
structural change or high volatility, or when most of the predictive power is linked to the
most recent history (or high correlation with the most recent lags of the series). For
example, as we saw in the previous chapter, monthly crude oil prices have a strong
relationship with the most recent lags of the series, and the far history doesn't contain
powerful predictive information about the series' future direction.

While the backtesting approach provides us with intuitive information about the stability
and scalability of the model, it comes with a higher computation cost compared to the
single training and testing partition approach. Hence, this trade-off between the two
approaches should be taken into consideration when selecting the training approach.
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Forecast evaluation
The primary goal of the evaluation step is to assess the ability of the trained model to
forecast (or based on other criteria) the future observations of the series accurately. This
process includes doing the following:

Residual analysis: This focuses on the quality of the model, with fitted values in
the training partition
Scoring the forecast: This is based on the ability of the model to forecast the
actual values of the testing set

Residual analysis
Residual analysis tests how well the model captured and identified the series patterns. In
addition, it provides information about the residuals distributions, which are required to
build confidence intervals for the forecast. The mathematical definition of a residual is the
difference between the actual observation and the corresponding fitted value of the model,
which was observed in the training process, or as the following equation:

Here, , , and  represent the residual, actual, and fitted values, respectively, at time t.

This process includes the use of data visualizations tools and statistical test to assess the
following:

Test the goodness of the fit against the actual values: You do this by plotting
the residuals values over time in chronological order. The plot indicates how well
the model was able to capture the oscillation of the series in the training
partition. Residuals with random oscillation around the zero and with constant
variation (white noise) indicate that the model is able to capture the majority of
the series variation. On the other hand, if the residual oscillation does not have
the white noise characteristics, it is an indication that the model failed to capture
the series patterns. Here are some potential interpretations of the possible output:

All or most of the residuals are above the zero lines: This is an
indication that the model tends to underestimate the actual values
All or most of the residuals are below the zero lines: This is an
indication that the model tends to overestimate the actual values
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Random spikes: This is an indication for potential outliers in the
training partition:

The residual autocorrelation: This indicates how
well the model was able to capture the patterns of
the series. Non-correlated lags indicate that there
were no patterns that the model did not capture.
Similarly, the existence of correlated lags indicates
patterns that the model did not capture.
The residuals distribution: This is required to
conclude about the reliability of the forecast
confidence interval. If the residuals are not normally
distributed, we cannot use it to create confidence
intervals as it is based on the assumption that the
residuals are normally distributed.

To demonstrate the residual analysis process, we will train an ARIMA model on
the training partition we created earlier for the USgas series. Don't worry if
you're not familiar with the ARIMA model—we will discuss it in detail in
Chapter 11, Forecasting with the ARIMA Model. We will train the model with the
auto.arima function from the forecast package:

library(forecast)

 md <- auto.arima(train)

To examine the residuals, we will use the checkresiduals function from the forecast
package, which returns the following four outputs:

Time series plot of the residuals
ACF plot of the residuals
Distribution plot of the residuals
The output of the Ljung-Box test

The Ljung-Box test is a statistical method for testing whether the autocorrelation of a series
(which, in this case, is the residuals) is different from zero and uses the following
hypothesis:

H0: The level of correlation between the series and its lag is equal to zero, and
therefore the series observations are independent
H1: The level of correlation between the series and its lag is different from zero,
and therefore the series observations are not independent
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Let's use the checkresiduals function to evaluate the trained model's performance on the
training partition:

checkresiduals(md)

We get the following residuals from the ARIMA model:

The output is as follows:

##
##  Ljung-Box test
##
## data:  Residuals from ARIMA(1,0,0)(1,1,2)[12] with drift
## Q* = 48.345, df = 19, p-value = 0.0002287
##
## Model df: 5.   Total lags used: 24
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Starting with the output of the Ljung-Box test output, you will notice that, based on the P-
value results, we can reject the null hypothesis with a level of significate of 0.01. Hence,
there is an indication that the correlation between the residual series and its lags are
different from zero. The ACP plot provides additional support for that as well. This
indicates that the model did not fully capture all of the series patterns, and you may want
to modify the model tuning parameters. The residual time series plot oscillates around the
x-axis, with the exception of a few residuals, which cross the value of  250. This could
indicate that some outliers occur during these periods, and you should check those data
points in the series (later on in this chapter, we will look at a more intuitive method to
compare the fitted values with the actual values using the test_forecast function from
the TSstudio package). Last but not least is the distribution plot of the residuals, which
seem to be a fairly good representation of a normal distribution.

In an ideal world, you should end this process with white noise and
independent residuals. Yet, in reality, in some cases, it will be harder to
achieve this goal due to the series' structure (outliers, structural breaks,
and so on), and you may have to select a model that brings you closer to
this goal.

Scoring the forecast
Once you finalize the model tuning, it is time to test the ability of the model to predict
observations that the model didn't see before (as opposed to the fitted values that the model
saw throughout the training process). The most common method for evaluating the success
of the forecast in order to predict the actual values is to use accuracy or error metrics. The
most common method for evaluating the forecast's success is to predict the actual values
with the use of an error metric to quantify the forecast's overall accuracy. The selection of a
specific error metric depends on the forecast accuracy's goals. An example of common error
metrics are as follows:

Mean Squared Error (MSE): This quantifies the average squared distance
between the actual and forecasted values:
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The squared effect of the error prevents positive and negative values from
cancelling each other out and panelize the error score as the error rate increases.

Root Mean Squared Error (RMSE): This is the root of the average squared
distance of the actual and forecasted values:

Like MSE, the RMSE has a large error rate due to the squared effect and is
therefore sensitive to outliers.

Mean Absolute Error (MAE): This measures the absolute error rate of the
forecast:

Similarly to MSE and RMSE, this method can only have positive values. This is so
that is can avoid the cancellation of positive and negative values. On the other
hand, there is no error penalization, and therefore this method is not sensitive to
outliers.

Mean Absolute Percentage Error (MAPE): This measures the average percentage
absolute error:

It is easier to compare, benchmark, or communicate with non-technical people due to the
percentage representative.
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For example, let's use the model we trained earlier to forecast the 12 observations we left for
testing and score its performance. We will use the forecast function from the forecast
package to forecast the following 12 mounts (with respect to the end point of the training
partition):

fc <- forecast(md, h = 12)

Now that we've assigned the forecast to the fc object, we will use the accuracy function
from the forecast package to score the model's performance with respect to the actual
values in the testing partition:

accuracy(fc, test)
##                      ME      RMSE       MAE       MPE     MAPE      MASE
 ## Training set  -7.049742  98.39066  72.24738 -0.584141 3.525916
0.6760411
 ## Test set     192.851978 208.01192 192.85198  7.840542 7.840542
1.8045758
 ##                     ACF1 Theil's U
 ## Training set -0.03702499        NA
 ## Test set     -0.29130569  0.658966

The accuracy function, which we will use intensively in the upcoming chapters, returns
several error metrics for both the fitted values (the Training set row) and the actual
forecast (the Test set row). You will notice that the model MAPE results are 3.52% and
7.84% on the training and testing partitions, respectively. A higher error rate on the testing
partition compared to the training partition should not come as a surprise, as typically the
model saw the training partition data throughout the training process. A fairly low error
rate in the training set, along with the high error rate in the testing set, is a clear indication
of overfitting in the model.

An alternative approach to evaluating the fit of the model on both the training and testing
is with the test_forecast function from the TSstudio package. This function visualizes
the actual series, the fitted values on the training partition, and the forecasted values on the
testing set. Hovering over the fitted or forecasted values makes a textbox pop up with the
RMSE and MAPE results on both the training and testing partitions (which, unfortunately,
cannot transfer to the book itself):

test_forecast(actual = USgas,
               forecast.obj = fc,
               test = test)
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The output is as follows:

It is easier and faster to identify insights about the goodness of the fit of both the fitted and
forecasted values when plotting those values against the actual values of the series. For
instance, you will immediately notice that the residual peak during 2006 is caused by
outliers (or lower consumption than the normal pattern of the series). In addition, the actual
forecast missed the 2018 yearly peak. Those insights cannot be observed with error metrics.

Forecast benchmark
According to the error metrics, the trained model scored a MAPE of 7.84% or RMSE of
208.01. How can we assess whether these results are too high or low? The most common
method is to benchmark the model's performance to some baseline forecast or to some
legacy method that we wish to replace. A popular benchmark approach would be to use a
simplistic forecasting approach as a baseline. For instance, let's forecast the series with a
naive approach and use it as a benchmark for the previous forecast we created with the
ARIMA model.
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A simple naive approach typically assumes that the most recently observed value is the
true representative of the future. Therefore, it will continue with the last value to infinity
(or as the horizon of the forecast). We can create a naive forecast with the naive function
from the forecast package and use the training set as the model input:

library(forecast)

We can review the performance of the model on the training and testing partitions using
the following test_forecast function:

 naive_model <- naive(train, h  = 12)
 test_forecast(actual = USgas,
               forecast.obj = naive_model,
               test = test)

We get the following output:

Similarly, we can utilize the accuracy function to evaluate the model's performance on
both the training and testing partitions:

accuracy(naive_model, test)
##                      ME     RMSE      MAE        MPE     MAPE     MASE
 ## Training set  -2.223474 281.3634 225.4507 -0.9763903 10.96819 2.109612
 ## Test set     432.466667 580.8980 432.4667 15.6592587 15.65926 4.046725
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 ##                   ACF1 Theil's U
 ## Training set 0.3893404        NA
 ## Test set     0.6063137  1.637631

In the case of the naive model, there is no training process, and the fitted values are set as
the actual values (as you can see from the preceding plot). Since USgas has a strong
seasonal pattern, it would make sense to use a seasonal naive model that takes into account
seasonal variation. snaive_model from the forecast package uses the last seasonal point as
a forecast of all of the corresponding seasonal observations. For example, if we are using
monthly series, the value of the most recent January in the series will be used as the point
forecast for all future January months:

snaive_model <- snaive(train, h = 12)
 test_forecast(actual = USgas,
               forecast.obj = snaive_model,
               test = test)

The output is shown in the following screenshot:
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Let's use the accuracy function once more to review the seasonal naive performance on
the training and testing partitions:

accuracy(snaive_model, test)
##                     ME     RMSE      MAE       MPE     MAPE     MASE
## Training set  20.69505 138.1953 106.8683 0.8499305 5.216692 1.000000
## Test set     242.78333 260.0920 242.7833 9.7342130 9.734213 2.271799
##                   ACF1 Theil's U
## Training set 0.4089415        NA
## Test set     0.1542089 0.7419918

It seems that the seasonal naive model has a better fit for the type of series we are
forecasting, that is, USgas, due to its strong seasonal pattern (compared to the naive
model). Therefore, we will use it as a benchmark for the ARIMA model. By comparing both
the MAPE and RMSE of the two models in the testing partition, it is clear that the ARIMA
model provides a lift (in terms of accuracy) with respect to the benchmark model:

Model MAPE RMSE
ARIMA 7.84% 208.01
snaive 9.73% 250.09

Finalizing the forecast
Now that the model has been trained, tested, tuned (if required), and evaluated
successfully, we can move forward to the last step and finalize the forecast. This step is
based on recalibrating the model's weights or coefficients with the full series. There are two
approaches to using the model parameter setting:

If the model was tuned manually, you should use the exact tuning parameters
that were used on the trained model
If the model was tuned automatically by an algorithm (such as the auto.arima
function we used previously), you can do either of the following:

Extract the parameter setting that was used by with the training
partition
Let the algorithm retune the model parameters using the full
series, under the assumption that the algorithm has the ability to
adjust the model parameters correctly when training the model
with new data
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The use of algorithms to automate the model tuning process is recommended when the
model's ability to tune the model is tested with backtesting. This allows you to review
whether the algorithm has the ability to adjust the model parameters correctly, based on the
backtesting results. For simplicity reasons, we will keep using the auto.arima model to
train the final model:

md_final <- auto.arima(USgas)

fc_final <- forecast(md_final, h = 12)

We will use the plot_forecast function from the TSstudio package to plot the final
forecast:

plot_forecast(fc_final,
              title = "The US Natural Gas Consumption Forecast",
              Xtitle = "Year",
              Ytitle = "Billion Cubic Feet")

The output is as follows:
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Handling forecast uncertainty
The main goal of the forecasting process, as we saw previously, is to minimize the level of
uncertainty around the future values of the series. Although we cannot completely
eliminate this uncertainty, we can quantify it and provide some range around the point
estimate of the forecast (which is nothing but the model's expected value of each point in
the future). This can be done by using either the confidence interval (or a credible interval,
when using the Bayesian model) or by using simulation.

Confidence interval
The confidence interval is a statistical approximation method that's used to express the
range of possible values that contain the true value with some degree of confidence (or
probability). There are two parameters that determine the range of confidence interval:

The level of confidence or the probability that the true value will be in that range.
The higher the level of confidence is, the wider the interval range.
The estimated standard deviation of the forecast at time T+i, where T represents
the length of the series and i represents the i forecasted value. The lower the error
rate, the shorter the range of the prediction interval.

By default, the forecast function generates a prediction interval with a level of confidence
of 80% and 95%, but you can modify it using the level argument. For example, let's use the
trained model's md_final and forecast functions for the next 60 months using the
prediction interval with confidence levels of 80% and 90%:

fc_final2 <- forecast(md_final,
                      h = 60,
                      level = c(80, 90))

plot_forecast(fc_final2,
              title = "The US Natural Gas Consumption Forecast",
              Xtitle = "Year",
              Ytitle = "Billion Cubic Feet")
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The output is shown in the following screenshot:

Simulation
An alternative approach is to use the model distribution to simulate possible paths for the
forecast. This method can only be used when the model distribution is available. The
forecast_sim function from the TSstudio package provides a built-in function for
simulating possible forecasting paths. This estimate can be used to calculate the forecast
point estimate (for example, using the mean or median of all of the paths), or to calculate
probabilities of getting different values. We will feed the same model to the function and
run 100 iterations:

fc_final3 <- forecast_sim(model = md_final,
                          h = 60,
                          n = 500)
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The output of the preceding function contains all of the calculate simulations and the
simulated paths. Let's extract the simulation plot (and use the plotly package to add titles
for the plot):

library(plotly)

fc_final3$plot %>%
  layout(title = "US Natural Gas Consumption - Forecasting Simulation",
         yaxis = list(title = "Billion Cubic Feet"),
         xaxis = list(title = "Year"))

The output is as follows:

Now, let's take a look at the horse race approach.
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Horse race approach
Last but not least, we will end this chapter with a robust forecasting approach that
combines what we've learned so far in this chapter. The horse race approach is based on
training, testing, and evaluating multiple forecasting models and selecting the model that
performs the best on the testing partitions. In the following example, we will apply horse
racing between seven different models (we will review the models in the upcoming
chapters; for now, don't worry if you are not familiar with them) using six periods of
backtesting. The ts_backtesting function from the TSstudio package conducts the full
process of training, testing, evaluating, and then forecasting, using the model that
performed the best on the backtesting testing partitions. By default, the model will test the
following models:

auto.arima: Automated ARIMA model
bsts: Bayesian structural time series model
ets: Exponential smoothing state space model
hybrid: An ensemble of multiple models
nnetar: Neural network time series model
tbats: Exponential smoothing state space model, along with Box-Cox
transformation, trend, ARMA errors, and seasonal components
HoltWinters: Holt-Winters filtering

Before we run the function, let's set the seed value with the set.seed function so that
we're able to reproduce the results:

set.seed(1234)

Now, let's run the ts_backtesting function and see its output:

USgas_forecast <- ts_backtesting(ts.obj = USgas,
                                 periods = 6,
                                 models = "abehntw",
                                 error = "MAPE",
                                 window_size = 12,
                                 h = 60,
                                 plot = FALSE)

The output of the ts_backtesting function is as follows:

##    Model_Name  avgMAPE    sdMAPE  avgRMSE    sdRMSE
## 1        bsts 6.341667 0.5825261 184.9650 19.414553
## 2         ets 6.721667 0.5984786 176.9167 12.839003
## 3  auto.arima 6.908333 0.9675416 192.2400 17.169408
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## 4      hybrid 6.930000 0.6554998 190.9467  7.320794
## 5 HoltWinters 7.308333 0.3264608 204.8283  8.812086
## 6       tbats 7.986667 0.9594721 215.8633 18.279782
## 7      nnetar 8.508333 1.2979587 268.6117 23.842204

The model provides a leaderboard (as we can see in the preceding output) that's ordered
based on the error criteria that's set. In this case, the bsts model had the lowest error rate,
and therefore the function recommended that we use it (although all of the models and
their forecasts are available for extraction from the function output). We can plot the error
rate and the suggested forecast using the model stored in the output object:

USgas_forecast$summary_plot

The output is shown as follows:

Those error plots provide an informative overview of the performance of each model. We
consider a model good if the error distribution is both narrow and low with respect to the
rest of the tested models (such as the bsts model).
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Summary
The training process of a forecasting model is the final step of the time series analysis. The
focus of this chapter was to introduce the principle of the forecasting workflow. As we saw,
there are several methods that we can use to train a forecasting model, and the method
selection process should align with the forecasting goals and available resources. In the
following chapters, you will see these applications in practice.

In the next chapter, we will use the applications of the linear regression model to forecast
time series data.



9
Forecasting with Linear

Regression
The linear regression model is one of the most common methods for identifying and
quantifying the relationship between a dependent variable and a single (univariate linear
regression) or multiple (multivariate linear regression) independent variables. This model
has a wide range of applications, from causal inference to predictive analysis and, in
particular, time series forecasting.

The focus of this chapter is on methods and approaches for forecasting time series data
with linear regression. That includes methods for decomposing and forecasting the series
components (for example, the trend and seasonal patterns), handling special events (such
as outliers and holidays), and using external variables as regressors.

This chapter covers the following topics:

Forecasting approaches with linear regression models
Extracting and estimating the series components
Handling structural breaks, outliers, and special events
Forecasting series with multiseasonality

Technical requirement
The following packages will be used in this chapter:

TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
dplyr: Version 0.8.1 and above
lubridate: Version 1.7.4 and above
forecast: Version 8.5 and above
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You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter09

The linear regression
The primary usage of the linear regression model is to quantify the relationship between
the dependent variable Y (also known as the response variable) and the independent
variable/s X (also known as the predictor, driver, or regressor variables) in a linear manner.
In other words, the model expresses the dependent variable as a linear combination of the
independent variables. A linear relationship between the dependent and independent
variables can be generalized by the following equations:

In the case of a single independent variable, the equation is as follows:

For n independent variables, the equation looks as follows:

 

The model variables for these equations are as follows:

i represents the observations index, i = 1,..., N
Yi represents the i observation of the dependent variable
Xj,i represents the i value of the j independent variable, where j = 1,..., n
β0 represents the value of the constant term (or intercept)
βj represents the corresponded parameters (or coefficients) of the j independent
variables
εi defines the error term, which is nothing but all the information that was not
captured by independent variables for the i observation

The term linear, in the context of regression, referred to the model
coefficients, which must follow a linear structure (as this allows us to
construct a linear combination from the independent variables). On the
other hand, the independent variables can follow both a linear and non-
linear formation.
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Assuming the preceding equations represent the true nature of the linear relationship
between the dependent and independent variables, then the linear regression model
provides an estimation for those coefficients (that is, ), which can be
formalized by the following equations:

For the univariate linear regression model, the equation is as follows:

For the multivariate linear regression model, the equation is as follows:

The variables for these equations are as follows:

i represents the observation's index, i = 1,..., N
 represents the estimate of the dependent variable i observation

 represents the i value of the j independent variable, where j = 1,..., n

 represents the estimate of the constant term (or intercept)
 are the estimate of the corresponded parameters (or coefficients) of the

n independent variables

The estimation of the model's coefficients is based on the following two steps:

Define a cost function (also known as loss function)—setting some error metric to
minimize
Apply mathematical optimization for minimizing the cost function

The most common estimation approach is applying the Ordinary Least Squares (OLS)

method as an optimization technique for minimizing the residuals sum of squares ( ).

Squaring the residuals has two effects:

It prevents positive and negative values canceling each other when summing
them together
The square effect provides an exponential penalization for residuals with longer
distance, as their cost becomes higher
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There are multiple estimation techniques besides the OLS, such as the maximum
likelihood, method of moments, and Bayesian. Although those methods are not in the scope
of the book, it is highly recommended to read and learn about alternative approaches.

Coefficients estimation with the OLS method
The OLS is a simple optimization method that is based on basic linear algebra and calculus,
or matrix calculus. (This section is for general knowledge—if you are not familiar with
matrix calculus you can skip this section.) The goal of the OLS is to identify the coefficients
that minimize the residuals sum of squares. Suppose the residual of the i observation
defines as the following:

We can then set the cost function with the following expression:

Before applying the OLS method for minimizing the residuals sum of squares, for
simplicity reasons, we will transform the representative of the cost function into a matrix
formation:

, , , 

Those sets of matrices represent the following:

Vector Y (or  matrix), representing a dependent variable with N
observations
X, a  dimensions matrix, representing the corresponding n independent
variables and a scalar of 1's for the intercept component ( )
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, an  dimensions matrix, representing the model coefficients
, an  dimensions matrix, representing the corresponding error (or the

difference between) the actual value Y and its estimate 

The residual term  should not be confused with the error term . While
the first represents the difference between the series Y and its estimate ,
the second (error term) represents the difference between the series and its
expected value

Let's set the cost function using the matrix form as we defined it previously:

We will now start to expand this expression by using the formula of  as we outlined
previously:

Next, we will multiply the two components (  and ) and open the brackets:

Since our goal is to find the  that minimizes this equation, we will differentiate the

equation with respect to  and then set it to zero:

Solving this equation will yield the following output:

Manipulating this equation allows us to extract  matrix, the estimate of the coefficient
matrix :
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Note that we changed the notation of  to  on the final output as it
represents the estimate of the true value of .

The key properties of the OLS coefficients estimation are as follows:

The main feature of the OLS coefficients estimation method is the unbiasedness
of the estimation of the coefficients with respect to the actual values. In other

words, for any given, , 
The sample regression line will always go through the mean of X and Y
The mean of , the OLS estimation of the dependent variable , is equal to ,
the mean the dependent variable

The mean of the residuals vector  is equal to zero, or 

The OLS assumptions
The OLS model's main assumptions are the following:

The model coefficients must follow a linear structure (for example, 

 is a linear model but is not).
There is no perfect collinearity between independent variables . In
other words, none of the independent variables are a linear combination of any
of the other independent variables.
All the independent variables must be a non-zero variance (or non-constant).
The error term , conditioned on the matrix of independent variables X, is
an independent and identically distributed (i.i.d) variable with mean 0 and
constant variance .
Both the dependent and independent variables draw from the population in a
random sample. This assumption does not hold when regressing time series data,
as typically the observations have some degree of correlation. Therefore, this
assumption is relaxed when regressing time series data.
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The OLS assumption about the error term —i.i.d. with mean 0 and
variance  is in many cases violated when working with time series
data, as, typically, some degree of correlation exists in the model
residuals. This is mainly an indication that the regression model didn't
capture all the patterns or information of the series. In Chapter 11,
Forecasting with ARIMA Models, we will introduce a method for handling
this type of case, by modeling the error term with ARIMA model.

Forecasting with linear regression
The linear regression model, unlike the traditional time series models such as the ARIMA
or Holt-Winters, was not designed explicitly to handle and forecast time series data.
Instead, it is a generic model with a wide range of applications from causal inference to
predictive analysis.

Therefore, forecasting with a linear regression model is mainly based on the following two
steps:

Identifying the series structure, key characteristics, patterns, outliers, and other1.
features
Transforming those features into input variables and regressing them with the2.
series to create a forecasting model

The core features of a linear regression forecasting model are the trend and seasonal
components. The next section focuses on identifying the series trend and seasonal
components and then transforming them into input variables of the regression model.

Forecasting the trend and seasonal components
In Chapter 5, Decomposition of Time Series Data, we introduced the series structural
components: the trend, cycle, seasonal and irregular components, and methods for
decomposing them with the decompose function.
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Recall that the decomposition of a series can be defined by one of the following expressions:

, when the series has an additive structure
, when the series has a multiplicative structure

The explanation is as follows:

Trend: Represents the series' growth over time after adjusting and removing the
seasonal effects
Seasonal: A recurring cyclical pattern that derived directly from the series
frequency units (for example, the month of the year for a series with a monthly
frequency)
Cycle: A cyclical pattern that is not related to the series frequency unit
Irregular: Any other patterns that are not captured by the trend, seasonal, and
cycle components

For the sake of simplicity, we can drop the cycle component as it typically merged into the
trend component (or ignored the cycle component). Therefore, we can update and replace
the preceding equations with the following:

, when the series has an additive structure
, when the series has a multiplicative structure

We can now transform those equations for a linear regression model, by modifying the
equations notation:

Where:

Y represents a time series with n observations
T, an independent variable with n observations, represents the series trend
component
S, an independent variable with n observations, represents the series seasonal
component

, the regression error term, represents the irregular component or any pattern
that is not captured by the series trend and seasonal component

, , and , represent the model intercept, and coefficients of the trend and
seasonal components, respectively
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For the sake of convenience and in the context of working with time
series, we will change the observations notation from i to t, as it represents
the time dimension of the series.

The transformation of a series with a multiplicative structure into linear regression
formation required a transformation of the series into an additive structure. This can be
done by applying log transformation for both sides of the equations:

Once the series transformed into an additive structure, the transformation to a linear
regression formation is straightforward and follows the same process as described
previously:

Features engineering of the series components
Before creating the regression inputs that represent the series trend and seasonal
components, we first have to understand their structure. In the following examples, we will
demonstrate the process of creating new features from existing series using the USgas
series.

Let's load the series from the TSstudio package again and plot it with the ts_plot
function:

library(TSstudio)

data(USgas)

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year")



Forecasting with Linear Regression Chapter 9

[ 251 ]

The output is shown as follows:

Also, let's review the main characteristics of the series using the ts_info function:

ts_info(USgas)
##  The USgas series is a ts object with 1 variable and 227 observations
##  Frequency: 12
##  Start time: 2000 1
##  End time: 2018 11

As you can see in the series plot, and as we saw on the previous chapters, USgas is a
monthly series with a strong monthly seasonal component and fairly stable trend line. We
can explore the series components structure with the ts_decompose function further:

ts_decompose(USgas)
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The output is shown as follows:

You can see in the preceding plot that the trend of the series is fairly flat between 2000 and
2010, and has a fairly linear growth moving forward. Therefore, the overall trend between
2000 and 2018 is not strictly linear. This is an important insight that will help us to define
the trend input for the regression model.

Before using the lm function, the built-in R linear regression function from the stats
package, we will have to transform the series from a ts object to a data.frame object.
Therefore, we will utilize the ts_to_prophet function from the TSstudio package:

USgas_df <- ts_to_prophet(USgas)
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The function transforms the ts object into two columns of data.frame, where the two
columns represent the time and numeric components of the series, respectively:

head(USgas_df)

We get the following output:

##           ds      y
## 1 2000-01-01 2510.5
## 2 2000-02-01 2330.7
## 3 2000-03-01 2050.6
## 4 2000-04-01 1783.3
## 5 2000-05-01 1632.9
## 6 2000-06-01 1513.1

After we transform the series into a data.frame object, we can start to create the
regression input features. The first feature we will create is the series trend. A basic
approach for constructing the trend variable is by indexing the series observations in
chronological order:

USgas_df$trend <- 1:nrow(USgas_df)

Regressing the series with the series index provides an estimate of the marginal growth
from month to month, as the index is in chronological order with constant increments.

The second feature we want to create is the seasonal component. Since we want to measure
the contribution of each frequency unit to the oscillation of the series, we will use a
categorical variable for each frequency unit. In the case of the USgas series, the frequency
units represent the months of the year, and, therefore, we will create a categorical variable
with 12 categories, each category corresponding to a specific month of the year. We will use
the month function from the lubridate package to extract the month of the year from
the ds date variable:

library(lubridate)

USgas_df$seasonal <- factor(month(USgas_df$ds, label = T), ordered = FALSE)
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We used the factor function to convert the output of the month function into no ordered
categorical variable. Let's now review the data frame after adding the new features:

head(USgas_df)

We get the following output:

##           ds      y trend seasonal
## 1 2000-01-01 2510.5     1      Jan
## 2 2000-02-01 2330.7     2      Feb
## 3 2000-03-01 2050.6     3      Mar
## 4 2000-04-01 1783.3     4      Apr
## 5 2000-05-01 1632.9     5      May
## 6 2000-06-01 1513.1     6      Jun

Last but not least, before we start to regress the series with those features, we will split the
series into a training and testing partition. We will set the last 12 months of the series as a
testing partition:

h <- 12 # setting a testing partition length

train <- USgas_df[1:(nrow(USgas_df) - h), ]

test <- USgas_df[(nrow(USgas_df) - h + 1):nrow(USgas_df), ]

Now, after we created the training and testing data frames, let's review how the regression
model captures each one of the components separately and all together.

Modeling the series trend and seasonal
components
We will first model the series trend by regressing the series with the trend variable, on the
training partition:

md_trend <- lm(y ~ trend, data = train)

We will use the summary function to review the model details:

summary(md_trend)
##
## Call:
## lm(formula = y ~ trend, data = train)
##
## Residuals:
##    Min     1Q Median     3Q    Max
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## -537.6 -305.3 -150.1  317.1 1067.7
##
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)
## (Intercept) 1772.2648    53.3781  33.202 < 0.0000000000000002 ***
## trend          2.1548     0.4285   5.029           0.00000105 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 390 on 213 degrees of freedom
## Multiple R-squared:  0.1061, Adjusted R-squared:  0.1019
## F-statistic: 25.29 on 1 and 213 DF,  p-value: 0.000001048

As you can see from the preceding regression output, the coefficient of the trend variable is
statistically significant to a level of 0.001. However, the adjusted R-squared of the
regression is fairly low, which generally makes sense, as most of the series variation of the
series is related to the seasonal pattern as we saw in the plots previously.

As you can note from the preceding regression output, the fourth column
represents the p-value of each one of the model coefficients. The p-value
provides the probability that we will reject the null hypothesis given it is
actually true, or the type I error. Therefore, for the p-value smaller than ,
the threshold value, we will reject the null hypothesis with a level of
significance of , where typical values of  are 0.1, 0.05, 0.01, and so on.

As always, it is recommended that you put some context to the numbers with data
visualization. Therefore, we will use the model we created to predict the fitted values on
the training partition and the forecasted values on the testing partition. The predict
function from the stats package, as the name implies, predicts the values of an input data
based on a given model.

We will use it to predict both the fitted and forecasted values of the trend model we trained
before:

train$yhat <- predict(md_trend, newdata = train)

test$yhat <- predict(md_trend, newdata = test)
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We will create a utility function that plots the series and the model output, utilizing
the plotly package:

library(plotly)

plot_lm <- function(data, train, test, title = NULL){
 p <- plot_ly(data = data,
         x = ~ ds,
         y = ~ y,
         type = "scatter",
         mode = "line",
         name = "Actual") %>%
   add_lines(x =  ~ train$ds,
             y = ~ train$yhat,
             line = list(color = "red"),
             name = "Fitted") %>%
   add_lines(x =  ~ test$ds,
             y = ~ test$yhat,
             line = list(color = "green", dash = "dot", width = 3),
             name = "Forecasted") %>%
   layout(title = title,
          xaxis = list(title = "Year"),
          yaxis = list(title = "Billion Cubic Feet"),
          legend = list(x = 0.05, y = 0.95))
 return(p)
 }

The function arguments are as follows:

data: The input data, a data.frame object following the same structure as the
one of the USgas_df (including the yhat variable) 
train: The corresponding training set that was used to train the model
test: Likewise, the corresponding testing set that was used to evaluate the
forecast model
title: The plot title, by default, set to NULL

Let's set the inputs of the plot_lm function with the model output:

plot_lm(data = USgas_df,
         train = train,
         test = test,
         title = "Predicting the Trend Component of the Series")
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The output is shown as follows:

Overall, the model was able to capture the general movement of the trend, yet a linear
trend may fail to capture the structural break of the trend that occurred around 2010. Later
on, in this chapter, we will see an advanced method to capture a non-linear trend.

Last but not least, for comparison analysis, we want to measure the model error rate both in
the training and the testing sets:

mape_trend <- c(mean(abs(train$y - train$yhat) / train$y),
                 mean(abs(test$y - test$yhat) / test$y))
mape_trend

We get the following output:

## [1] 0.1646270 0.1201788

The process of modeling and forecasting the seasonal component follows the same process
as we applied with the trend, by regressing the series with the seasonal variable we created
before:

md_seasonal <- lm(y ~ seasonal, data = train)



Forecasting with Linear Regression Chapter 9

[ 258 ]

Let's review the model details:

summary(md_seasonal)

We get the following output: 

##
## Call:
## lm(formula = y ~ seasonal, data = train)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -577.1 -141.1  -41.9  130.0  462.2
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   2742.4       45.3   60.52  < 2e-16 ***
## seasonalFeb   -279.4       64.1   -4.36  2.1e-05 ***
## seasonalMar   -474.5       64.1   -7.41  3.4e-12 ***
## seasonalApr   -900.2       64.1  -14.05  < 2e-16 ***
## seasonalMay  -1076.6       64.1  -16.80  < 2e-16 ***
## seasonalJun  -1095.2       64.1  -17.09  < 2e-16 ***
## seasonalJul   -936.3       64.1  -14.61  < 2e-16 ***
## seasonalAug   -906.5       64.1  -14.15  < 2e-16 ***
## seasonalSep  -1110.1       64.1  -17.32  < 2e-16 ***
## seasonalOct  -1019.3       64.1  -15.91  < 2e-16 ***
## seasonalNov   -766.0       64.1  -11.95  < 2e-16 ***
## seasonalDec   -258.1       65.0   -3.97  1.0e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 192 on 203 degrees of freedom
## Multiple R-squared:  0.793,  Adjusted R-squared:  0.782
## F-statistic: 70.7 on 11 and 203 DF,  p-value: <2e-16

Since we regress the dependent variable with a categorical variable, the regression model
creates coefficients for 11 out of the 12 categories, which are those embedded with the slope
values. As you can see in the regression summary of the seasonal model, all the model's
coefficients are statistically significant. Also, you can notice that the adjusted R-squared of
the seasonal model is somewhat higher with respect to the trend model (0.78 as opposed
to 0.1).

Before we plot the fitted model and forecast values with the plot_lm function, we will
update the values of yhat with the predict function:

train$yhat <- predict(md_seasonal, newdata = train)
test$yhat <- predict(md_seasonal, newdata = test)
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Now we can use the plot_lm function to visualize the fitted model and forecast values:

plot_lm(data = USgas_df,
        train = train,
        test = test,
        title = "Predicting the Seasonal Component of the Series")

The output is shown as follows:

As you can see in the preceding plot, the model is doing a fairly good job of capturing the
structure of the series seasonal pattern. However, you can observe that the series trend is
missing. Before we add both the trend and the seasonal components, we will score the
model performance:

mape_seasonal <- c(mean(abs(train$y - train$yhat) / train$y),
                   mean(abs(test$y - test$yhat) / test$y))

mape_seasonal



Forecasting with Linear Regression Chapter 9

[ 260 ]

We get the following output:

## [1] 0.07786439 0.19906796

The high error rate on the testing set is related to the trend component that was not
included in the model. The next step is to join the two components into one model and to
forecast the feature values of the series:

md1 <- lm(y ~ seasonal + trend, data = train)

Let's review the model summary after regressing the series with both the trend and
seasonal components:

summary(md1)

We get the following output:

##
## Call:
## lm(formula = y ~ seasonal + trend, data = train)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -506.7  -71.2  -13.8   79.0  328.5
##
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept)  2500.682     31.620   79.09  < 2e-16 ***
## seasonalFeb  -281.769     40.302   -6.99  3.9e-11 ***
## seasonalMar  -479.227     40.303  -11.89  < 2e-16 ***
## seasonalApr  -907.201     40.304  -22.51  < 2e-16 ***
## seasonalMay -1085.948     40.305  -26.94  < 2e-16 ***
## seasonalJun -1106.933     40.307  -27.46  < 2e-16 ***
## seasonalJul  -950.374     40.310  -23.58  < 2e-16 ***
## seasonalAug  -922.932     40.312  -22.89  < 2e-16 ***
## seasonalSep -1128.862     40.316  -28.00  < 2e-16 ***
## seasonalOct -1040.442     40.319  -25.81  < 2e-16 ***
## seasonalNov  -789.461     40.324  -19.58  < 2e-16 ***
## seasonalDec  -269.863     40.895   -6.60  3.6e-10 ***
## trend           2.347      0.133   17.64  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 121 on 202 degrees of freedom
## Multiple R-squared:  0.919,  Adjusted R-squared:  0.914
## F-statistic:  190 on 12 and 202 DF,  p-value: <2e-16
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Regressing the series with both the trend and the seasonal components together provides
additional lift to the adjusted R-squared of the model from 0.78 to 0.91. This can be seen
in the plot of the model output:

train$yhat <- predict(md1, newdata = train)
test$yhat <- predict(md1, newdata = test)

plot_lm(data = USgas_df,
        train = train,
        test = test,
        title = "Predicting the Trend and Seasonal Components of the
Series")

The output is shown as follows:
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Let's measure the model's MAPE score on both the training and testing partitions:

mape_md1 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))

mape_md1

We get the following output:

## [1] 0.04501471 0.09192438

Regressing the series with both the trend and the seasonal components provides a
significant lift in both the quality of fit of the model and with the accuracy of the model.
However, when looking at the plot of the model fit and forecast, you can notice that the
model trend is too linear and missing the structural break of the series trend. This is the
point where adding a polynomial component for the model could potentially provide
additional improvement for the model accuracy.

A simple technique to capture a non-linear trend is to add a polynomial component to the
series trend in order to capture the trend curvature over time. We will use the I argument,
which allows us to apply mathematical operations on any of the input objects. Therefore,
we will use this argument to add a second degree of the polynomial for the trend input:

md2 <- lm(y ~ seasonal + trend + I(trend^2), data = train)

The summary of the model can be seen as follows:

summary(md2)

We get the following output:

##
## Call:
## lm(formula = y ~ seasonal + trend + I(trend^2), data = train)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -466.5  -55.5   -5.1   60.1  309.5
##
## Coefficients:
##                Estimate  Std. Error t value Pr(>|t|)
## (Intercept)  2617.20174    33.00223   79.30  < 2e-16 ***
## seasonalFeb  -281.63380    36.26107   -7.77  4.0e-13 ***
## seasonalMar  -478.98651    36.26167  -13.21  < 2e-16 ***
## seasonalApr  -906.88591    36.26267  -25.01  < 2e-16 ***
## seasonalMay -1085.58755    36.26406  -29.94  < 2e-16 ***
## seasonalJun -1106.55810    36.26584  -30.51  < 2e-16 ***
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## seasonalJul  -950.01422    36.26801  -26.19  < 2e-16 ***
## seasonalAug  -922.61703    36.27057  -25.44  < 2e-16 ***
## seasonalSep -1128.62207    36.27352  -31.11  < 2e-16 ***
## seasonalOct -1040.30714    36.27686  -28.68  < 2e-16 ***
## seasonalNov  -789.46112    36.28061  -21.76  < 2e-16 ***
## seasonalDec  -263.18413    36.80761   -7.15  1.6e-11 ***
## trend          -0.89541     0.48054   -1.86    0.064 .
## I(trend^2)      0.01501     0.00215    6.97  4.5e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 109 on 201 degrees of freedom
## Multiple R-squared:  0.934,  Adjusted R-squared:  0.93
## F-statistic:  220 on 13 and 201 DF,  p-value: <2e-16

Adding the second-degree polynomial to the regression model did not lead to a significant
improvement of the goodness of fit of the model. On the other model, as you can see in the
following model output plot, this simple change in the model structure allows us to capture
the structural break of the trend over time:

train$yhat <- predict(md2, newdata = train)
test$yhat <- predict(md2, newdata = test)

 plot_lm(data = USgas_df,
         train = train,
         test = test,
         title = "Predicting the Trend (Polynomial) and Seasonal Components
of the Series")
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The output is shown as follows:

As we can see from the model following the MAPE score, the model accuracy
significantly improved from adding the polynomial trend to the regression model, as the
error on the testing set dropped from 9.2% to 4.5%:

mape_md2 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))

mape_md2

We get the following output:

## [1] 0.03706897 0.04559134
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The tslm function
So far, we have seen the manual process of transforming a ts object to a linear regression
forecasting model format. The tslm function from the forecast package provides a built-in
function for transforming a ts object into a linear regression forecasting model. Using the
tslm function, you can set the regression component along with other features.

We will now repeat the previous example and forecast the last 12 observations of the USgas
series with the tslm function using the trend, square of the trend, and the seasonal
components. First, let's split the series to training and testing partitions using the ts_split
function:

USgas_split <- ts_split(USgas, sample.out = h)

train.ts <- USgas_split$train

test.ts <- USgas_split$test

Next, we will apply the same formula we used to create the preceding md2 forecasting
model using the tslm function:

library(forecast)

md3 <- tslm(train.ts ~ season + trend + I(trend^2))

Let's now review md3, the output of the tslm function, and compare it with the output of
md2:

summary(md3)

We get the following output:

##
## Call:
## tslm(formula = train.ts ~ season + trend + I(trend^2))
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -466.52  -55.46   -5.13   60.06  309.53
##
## Coefficients:
##                 Estimate   Std. Error t value             Pr(>|t|)
## (Intercept)  2617.201742    33.002235  79.304 < 0.0000000000000002 ***
## season2      -281.633803    36.261068  -7.767    0.000000000000404 ***
## season3      -478.986514    36.261672 -13.209 < 0.0000000000000002 ***
## season4      -906.885912    36.262671 -25.009 < 0.0000000000000002 ***
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## season5     -1085.587550    36.264062 -29.936 < 0.0000000000000002 ***
## season6     -1106.558097    36.265843 -30.512 < 0.0000000000000002 ***
## season7      -950.014218    36.268012 -26.194 < 0.0000000000000002 ***
## season8      -922.617026    36.270570 -25.437 < 0.0000000000000002 ***
## season9     -1128.622074    36.273520 -31.114 < 0.0000000000000002 ***
## season10    -1040.307142    36.276865 -28.677 < 0.0000000000000002 ***
## season11     -789.461118    36.280610 -21.760 < 0.0000000000000002 ***
## season12     -263.184126    36.807605  -7.150    0.000000000015734 ***
## trend          -0.895408     0.480540  -1.863               0.0639 .
## I(trend^2)      0.015010     0.002155   6.966    0.000000000045450 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 108.8 on 201 degrees of freedom
## Multiple R-squared:  0.9344, Adjusted R-squared:  0.9301
## F-statistic: 220.1 on 13 and 201 DF,  p-value: < 0.00000000000000022

As you can observe from the preceding output, both models (md2 and md3) are identical.

There are several advantages to using the tslm function, as opposed to manually setting a
regression model for the series with the lm function:

Efficiency—does not require transforming the series to a data.frame object and
feature engineering
The output object supports all the functionality of the forecast (such as the
accuracy and checkresiduals functions) and TSstudio packages (such as the
test_forecast and plot_forecast functions)

Modeling single events and non-seasonal events
In some cases, time series data may contain unusual patterns that are either re-occurring
over time or not. The following are examples of such events:

Outliers: A single event or events that are out of the normal patterns of the
series.
Structural break: A significant event that changes the historical patterns of the
series. A common example is a change in the growth of the series.
Non-seasonal re-occurring events: An event that repeats from cycle to cycle, but
the time at which they occur changes from cycle to cycle. A common example of
such an event is the Easter holidays, which occur every year around March/April.
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By not expressing in the regression model, this type of events will bias the estimated
coefficients, as the model will weight those types of events along with the regular events of
the series. The use of hot encoding, binary, or flag variables could help the model to either
ignore this type of events or adjust the model coefficients accordingly.

For instance, you can observe in the decompose plot of the USgas series shown previously
that the series trend had a structural break around the year 2010. While growth before the
year 2010 was relatively flat, the slope of the trend changed afterwards, with positive
growth. In this case, we can use a binary variable that equals zero for observations before
the year 2010 and one year afterwards.

Regressing a tslm model with external variables requires a separated data.frame object
with the corresponding variables. The following example demonstrates the creation process
of an external binary variable that equals 0 before the year 2010 and 1 afterward, using the
USgas_df table:

r <- which(USgas_df$ds == as.Date("2014-01-01"))

USgas_df$s_break <- ifelse(year(USgas_df$ds) >= 2010, 1, 0)

USgas_df$s_break[r] <- 1

We will now use the new feature to remodel the USgas series:

md3 <- tslm(USgas ~ season + trend + I(trend^2) + s_break, data = USgas_df)

Let's use the summary function to review the model output:

summary(md3)

##
## Call:
## tslm(formula = USgas ~ season + trend + I(trend^2) + s_break,
##     data = USgas_df)
##
## Residuals:
##    Min     1Q Median     3Q    Max
## -461.4  -55.9   -6.4   67.4  285.8
##
## Coefficients:
##                Estimate  Std. Error t value Pr(>|t|)
## (Intercept)  2647.44816    32.30603   81.95  < 2e-16 ***
## season2      -298.73237    35.05548   -8.52  2.9e-15 ***
## season3      -481.80356    35.05753  -13.74  < 2e-16 ***
## season4      -910.06095    35.06096  -25.96  < 2e-16 ***
## season5     -1094.53085    35.06576  -31.21  < 2e-16 *
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## season6     -1114.15537    35.07195  -31.77  < 2e-16 ***
## season7      -950.33977    35.07952  -27.09  < 2e-16 ***
## season8      -925.83668    35.08849  -26.39  < 2e-16 ***
## season9     -1129.21978    35.09886  -32.17  < 2e-16 ***
## season10    -1039.14697    35.11065  -29.60  < 2e-16 ***
## season11     -783.59194    35.12386  -22.31  < 2e-16 ***
## season12     -256.28337    35.59344   -7.20  1.0e-11 ***
## trend          -1.67443     0.46052   -3.64  0.00035 ***
## I(trend^2)      0.01678     0.00188    8.91  2.4e-16 ***
## s_break        74.57388    28.93187    2.58  0.01063 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 108 on 212 degrees of freedom
## Multiple R-squared:  0.939,  Adjusted R-squared:  0.935
## F-statistic:  234 on 14 and 212 DF,  p-value: <2e-16

As can see in the summary of the preceding model, the structural break variable is
statistically significant, with a level of 0.01. Likewise, in the case of outliers or holidays,
hot encoding can be applied by setting a binary variable that equals 1 whenever an outlier
or non-seasonal re-occurring event occurs, and 0 otherwise.

Note that, once you have trained a forecasting model with the tslm
function with the use of external variables, you will have to produce the
future values of those variables as they are going to be used as input of the
forecast.

Forecasting a series with multiseasonality
components – a case study
One of the main advantages of the regression model, as opposed to the traditional time
series models such as ARIMA or Holt-Winters, is that it provides a wide range of
customization options and allows us to model and forecast complex time series data such
as series with multiseasonality.

In the following examples, we will use the UKgrid series to demonstrate the forecasting
approach of a multiseasonality series with a linear regression model.
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The UKgrid series
The UKgrid series represents the national grid demand for electricity in the UK, and it is 
available in the UKgrid package. This series represents a high-frequency time series data
with half-hourly frequency. We will utilize the extract_grid function from the UKgrid
package to define the series, main characteristics (for example, data format, variables,
frequency, and so on). This transformation function allows us to aggregate the series
frequency from half-hourly to a lower frequency such as hourly, daily, or monthly. As our
goal here is to forecast the daily demand in the next 365 days, we will set the series to daily
frequency using the data.frame structure:

library(UKgrid)

UKdaily <- extract_grid(type = "data.frame",
                        columns = "ND",
                        aggregate = "daily")

We will use the head function to review the series variables:

head(UKdaily)

We get the following output:

##    TIMESTAMP      ND
## 1 2011-01-01 1671744
## 2 2011-01-02 1760123
## 3 2011-01-03 1878748
## 4 2011-01-04 2076052
## 5 2011-01-05 2103866
## 6 2011-01-06 2135202

As you can see, this series has two variables:

TIMESTAMP: A date object used as the series timestamp or index
ND: The net demand of electricity

We will use the ts_plot function to plot and review the series structure:

ts_plot(UKdaily,
        title = "The UK National Demand for Electricity",
        Ytitle = "MW",
        Xtitle = "Year")
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The following shows the output:

As you can see in the preceding plot, the series has a clear downtrend and has a string
seasonal pattern. As we saw in Chapter 6, Seasonality Analysis, this series has multiple
seasonality patterns:

Daily: A cycle of 365 days a year
Day of the week: A 7-day cycle
Monthly: Effected from the weather

Evidence for those patterns can be seen in the following heatmap of the series since 2016
using the ts_heatmap function from the TSstudio package:

ts_heatmap(UKdaily[which(year(UKdaily$TIMESTAMP) >= 2016),],
           title = "UK the Daily National Grid Demand Heatmap")
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The following shows the output:

As you can see in the series heatmap, the overall demand increases throughout the winter
weeks (for example, calendar weeks 1 to 12 and weeks 44 to 52). In addition, you can
observe the change of the series during the days of the weeks, as the demand increases
during the working days of the week, and decreases over the weekend. 

Preprocessing and feature engineering of the
UKdaily series
In order to capture the seasonal components of the series, we will set the series as daily
frequency and create the following two features:

Day of the week indicator
Month of the year indicator



Forecasting with Linear Regression Chapter 9

[ 272 ]

In addition, as it is reasonable to assume (we will confirm this assumption with the ACF
function once we have transformed the series into a ts object) that the series has a strong
correlation with the seasonal lags, we will create a lag variable with a lag of 365
observations. We will utilize the dplyr package for creating those features:

library(dplyr)

UKdaily <- UKdaily %>%
  mutate(wday = wday(TIMESTAMP, label = TRUE),
         month = month(TIMESTAMP, label = TRUE),
         lag365 = dplyr::lag(ND, 365)) %>%
  filter(!is.na(lag365)) %>%
  arrange(TIMESTAMP)

Recall that the cost of using a lag variable with a length of N is the loss of
the first N observations (as the lags of those observations cannot be
generated from the series). Therefore, we used the filter functions for
removing the rows of the table that the lag365 variable is missing (that is,
the first 365 observations).

Let's review the structure of the UKdaily table after adding those new features:

str(UKdaily)

We get the following output:

## 'data.frame':    2540 obs. of  5 variables:
##  $ TIMESTAMP: Date, format: "2012-01-01" "2012-01-02" ...
##  $ ND       : int  1478868 1608394 1881072 1956360 1936635 1939424
1698505 1679311 1898593 1922898 ...
##  $ wday     : Factor w/ 7 levels "Sun","Mon","Tue",..: 1 2 3 4 5 6 7 1 2
3 ...
##  $ month    : Factor w/ 12 levels "Jan","Feb","Mar",..: 1 1 1 1 1 1 1 1
1 1 ...
##  $ lag365   : int  1671744 1760123 1878748 2076052 2103866 2135202
2121523 1861515 1837427 2093269 ...

As the tslm function input must be in a ts format (at least for the series), we will convert
the series to a ts object. We will use the first timestamp of the series and the year and
yday (the day of the year) functions from the lubridate package to set the object starting
point:

start_date <- min(UKdaily$TIMESTAMP)

start <- c(year(start_date), yday(start_date))
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As we saw in Chapter 3, The Time Series Object, we will use the ts function from the stats
package to set the ts object: 

 UK_ts <- ts(UKdaily$ND,
             start = start,
             frequency = 365)

After we transform the series into a ts object, we can go back and confirm the assumption
we made about the correlation level between the series and its seasonal lags with the
ts_acf function (an interactive version of the acf function from the TSstudio package).
We will review the correlation of the series with its lags from the past four years:

ts_acf(UK_ts, lag.max = 365 * 4)

We get the following output:
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The preceding ACF plot confirms our assumption, and the series has a strong relationship
with the seasonal lags, in particular lag 365, the first lag.

As a side note, you can be sure that the series also has a strong correlation
with the weekly lags (that is, lag 7, 14, 21, and so on). However, generally,
it is not recommended that you use lags that are smaller than the forecast
horizon (for example, lag 7, when the forecast horizon is 365), as you will
have to forecast those lags as well to be able to use them as an input in the
model. This involves additional effort, as you will have to forecast those
lags. Furthermore, it may increase the forecast bias as we are using
forecasted values as inputs.

Now, after we have created the new features for the model and set the ts object, we are
ready to split the input series and the corresponding external features object we created
(UKdaily) into a training and testing partition. As our goal is to forecast the next 365
observations, and the length of the series is large enough (2,540 observations), we can
afford to set the testing partition to the length of the forecasting horizon—365 observations.
We will set h, an indicator variable, to 365 and use it to define the partitions and, later on,
the forecast horizon:

h <-  365

As before, we will split the series into a training and testing partitions with the ts_split
function:

UKpartitions <- ts_split(UK_ts, sample.out = h)

train_ts <- UKpartitions$train
test_ts <- UKpartitions$test

In a similar manner, we have to split the features we created for the regression model (the
seasonal and lag features) into a training and testing partition following the exact same
order as we used for the corresponding ts object. We will use the data.frame index
functionality to set the UKdaily table to training and testing partitions:

train_df <- UKdaily[1:(nrow(UKdaily) - h), ]
test_df <- UKdaily[(nrow(UKdaily) - h + 1):nrow(UKdaily), ]
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Training and testing the forecasting model 
After we have created the different features for the model, we are ready to start the training
process of the forecasting model. We will use the training partition and start to train the
following three models:

Baseline model: Regressing the series with the seasonal and trend component
using the built-in features of the tslm function. As we set the series frequency to
365, the seasonal feature of the series refers to the daily seasonality.
Multiseasonal model: Adding the day of the week and month of the year
indicators for capturing the multiseasonality of the series.
A multiseasonal model with a seasonal lag: Using, in addition to the seasonal
indicators, the seasonal lag variable.

The comparison of these three models will be based on the following criteria:

Performance of the model on the training and testing set using the MAPE score
Visualizing the fitted and forecasted values versus the actual values of the series
using the test_forecast function

Starting with a simplistic model (baseline model) will allow us to observe
whether adding new features contributes to the model performance or
whether we should avoid it, as adding more features or complexity to the
model does not always yield better results.

We will start with the baseline model, regressing the series with its seasonal and trend
components:

md_tslm1 <- tslm(train_ts ~ season + trend)

Next, we will utilize the trained model, md_tslm1, to forecast the next 365 days of the
series, corresponding to the observations of the testing partition, using the forecast
function:

fc_tslm1 <- forecast(md_tslm1, h = h)

Let's compare the model performance on the training and testing sets using the
test_forecast function:

test_forecast(actual = UK_ts,
               forecast.obj = fc_tslm1,
               test = test_ts)
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The output is shown as follows:

We can observe from the preceding performance plot that the baseline model is doing a
great job of capturing both the series trend and the day of the year seasonality. On the other
hand, it fails to capture the oscillation that related to the day of the week. The MAPE score
of the model, as we can see in the output of the following accuracy function, is 6.09% and
7.77% on the training and testing partitions, respectively:

accuracy(fc_tslm1, test_ts)

We get the following output:

##                                     ME     RMSE       MAE        MPE
## Training set    -0.0000000000007315552 112133.5  92602.47 -0.5399055
## Test set     48298.6969219034435809590 135141.0 113146.70  2.6201812
##                  MAPE      MASE     ACF1 Theil's U
## Training set 6.097994 0.7644557 0.502279        NA
## Test set     7.777603 0.9340533 0.508189  1.136721
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We will now try improve the model accuracy, by adding the day of the week and month of
the year features to the model:

md_tslm2 <- tslm(train_ts ~ season + trend + wday + month,
                 data = train_df)

As we are now using features from an external data source, we have to specify the input
data with the data argument. We will now repeat the same process as before, by using a
forecast with the trained model and evaluating the model performance:

Looking at the preceding performance plot of the second model, we can observe the
contribution of the seasonal features on the forecast, as the second model was able to
capture both the trend and the multiseasonal patterns of the series. This can also be
observed on the model MAPE score, which dropped to 2.87% and 5.23% in the training and
testing partitions, respectively:

accuracy(fc_tslm2, test_ts)



Forecasting with Linear Regression Chapter 9

[ 278 ]

We get the following output:

##                                    ME     RMSE      MAE        MPE
## Training set    -0.000000000001671321 61384.46 45614.64 -0.1462402
## Test set     48475.302282246622780804 98603.29 77795.70  3.1031691
##                  MAPE      MASE      ACF1 Theil's U
## Training set 2.874880 0.3765599 0.7127754        NA
## Test set     5.236208 0.6422223 0.6565167 0.8053068

Last but not least, let's add the lag variable to the model, and repeat the same process as
before:

md_tslm3 <- tslm(train_ts ~ season + trend + wday + month + lag365,
 data = train_df)

fc_tslm3 <- forecast(md_tslm3, h = h, newdata = test_df)

The performance of the third model can be seen in the following plot:

test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm3,
              test = test_ts)

We get the plot as seen in the following graph:
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It is hard to observe from the performance plot of the third model, if there is a significant
difference from the second model. Therefore, let's review the MAPE score of the third
model:

accuracy(fc_tslm3, test_ts)

We get the following output:

##                                    ME     RMSE      MAE       MPE
MAPE
## Training set     0.000000000003641324 59271.32 44457.55 -0.137529
2.814302
## Test set     44255.320284163266478572 96357.83 75372.88  2.795172
5.078317
##                   MASE      ACF1 Theil's U
## Training set 0.3670078 0.7020265        NA
## Test set     0.6222213 0.6245326 0.7888625

The results of the third model show a small improvement in the model accuracy with 2.81%
on the training set and 5.07% on the testing set.

Model selection 
Now it's time to select a model. At this point, it is clear that the second and third models
perform better than the first model. As both the second and third model achieved a fairly
similar MAPE score, with a small advantage for the third model, we should ask ourselves
whether an improvement of less than 0.2% on the error rate of the testing set is worth the
cost of using the lag variable (that is, the loss of 365 observations and additional cost of a
degree of freedom for the model).

It depends.

There is no straightforward answer to this question. Furthermore, it depends on the goal of
the forecast. It is recommended that you consider the following test:

The first question you should ask in this case: Is the lag variable statistically
significant? If the variable is not statistically significant, there is no point in
continuing the discussion, and it is better to drop the variable. In the case of the
third model, we can use the summary function to observe the level of significance
of the lag365 variable:

summary(md_tslm3)$coefficients %>% tail(1)
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We get the following output:

##        Estimate Std. Error t value Pr(>|t|)
## lag365   -0.251      0.022   -11.4 4.06e-29

The p-value of the lag365 variable indicated that the variable is statistically
significant at a level of 0.001.

Similarly, we can apply a single ANOVA test with the anova function from the
stats package, and check if the additional variable is significant:

anova(md_tslm3)

We get the following output:

## Analysis of Variance Table
##
## Response: train_ts
##             Df   Sum Sq  Mean Sq F value Pr(>F)
## season     364 6.70e+13 1.84e+11   43.12 <2e-16 ***
## trend        1 1.53e+13 1.53e+13 3595.90 <2e-16 ***
## wday         6 1.91e+13 3.18e+12  745.71 <2e-16 ***
## month       11 6.42e+10 5.84e+09    1.37   0.18
## lag365       1 5.55e+11 5.55e+11  129.98 <2e-16 ***
## Residuals 1791 7.64e+12 4.27e+09
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA test also indicated that the lag365 variable is statistically
significant.

Backtesting: It might be the case that the third model is more accurate just by
chance and not because the lag variable contributes to the model accuracy, as the
difference is relatively small. Therefore, the backtesting of both models could
help to validate whether the contribution of the lag variable is consistent over
several testing periods. I will leave it to you to conduct backtesting for both of the
models as a fun exercise.

More robust methods can apply for feature selection such as stepwise,
ridge, or lasso regression. Although those methods are not in the scope of
this book, it is recommended that you read about them. In Chapter
12, Forecasting with Machine Learning Models, we will explore advanced
regression approaches with machine learning models, which include
feature selection methods. 
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For the sake of simplicity, we will go with the accuracy criteria and select the third model to
forecast the series. The next step is to retrain the model on all series and forecast the next
365 days:

final_md <- tslm(UK_ts ~ season + trend + wday + month + lag365,
 data = UKdaily)

Residuals analysis
Just before we finalize the forecast, let's do some analysis of the selected model residuals
using the checkresiduals function:

checkresiduals(final_md)

We get the following output:
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As you can see from the preceding residual summary plot, the residuals are not white
noise, as some autocorrelation exists between the residuals series and their lags. This is
technically an indication that the model did not capture all the patterns or information that
exists in the series. One way to address this issue is to identify additional variables that can
explain the variation in the residuals. The main challenge with this approach is that it is
hard to identify external variables that can explain the variation of the residuals, and are
also feasible to forecast. For example, it is reasonable to assume that weather patterns affect
the demand for electricity, yet it is hard to predict those weather patterns a year ahead.

An alternative approach, when patterns leftover in the residuals of the model is to treat the
model's residuals as a separate time series data and to model it with other time series
forecasting model. A common approach is a regression with ARIMA error, which we will
introduce in Chapter 11, Forecasting with ARIMA Models.

Finalizing the forecast 
Let's finalize the process and utilize the selected trained model to forecast the future 365
observations. Since we used external variables with the tslm function, we will have to
generate their future values. This is relatively simple, as we used deterministic variables.
Therefore, we will create a data.frame object with the values of wday, month, and lag365
for the next 365 future observations. A simplistic approach is to first create the
corresponding dates of the forecasted observations, and then extract from this object the
day of the week and month of the year:

UK_fc_df <- data.frame(date = seq.Date(from = max(UKdaily$TIMESTAMP) +
days(1),
                                       by = "day",
                                       length.out = h))

Next, we can utilize the date variable for creating the wday and month variables with the
lubridate package:

UK_fc_df$wday <- factor(wday(UK_fc_df$date, label = TRUE), ordered = FALSE)

UK_fc_df$month <- factor(month(UK_fc_df$date, label = TRUE), ordered =
FALSE)

UK_fc_df$lag365 <- tail(UKdaily$ND, h)
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Let's use the forecast function to create the forecast:

UKgrid_fc <- forecast(final_md, h = h, newdata = UK_fc_df)

Last but not least, we will plot the final forecast with the plot_forecast function from the
TSstudio package:

plot_forecast(UKgrid_fc,
              title = "The UK National Demand for Electricity Forecast",
              Ytitle = "MW",
              Xtitle = "Year")

We get the following output:
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Summary
In this chapter, we introduced the forecasting applications of the linear regression model.
Although the linear regression model was not designed to handle time series data, with
simple feature engineering we can transform a forecasting problem into a linear regression
problem. The main advantage of the linear regression model with respect to other
traditional time series models is the ability of the model to incorporate external
variables and factors. Nevertheless, this model can handle time series with multiseasonality
patterns, as we saw with the UK demand for electricity forecast. Last but not least, the
forecasting approaches we demonstrated in this chapter will be the base for advanced
modeling with machine learning models that we will discuss in Chapter 12, Forecasting
with Machine Learning Models.

In the next chapter, we will introduce the exponential smoothing methods, a family of
forecasting models based on a weighted moving average approach.

https://cdp.packtpub.com/hands_on_time_series_analysis_with_r/wp-admin/post.php?post=586&action=edit#post_790


10
Forecasting with Exponential

Smoothing Models
In Chapter 5, Decomposition of Time Series Data, we looked at the application of smoothing
functions for noise reduction in time series data and trend estimation. In this chapter, we
will expand on the use of smoothing functions and introduce their forecasting applications.
This family of forecasting models can handle a variety of time series types, from series with
neither trends nor seasonal components to series with both trends and seasonal
components. We will start with the basic moving average model and simple exponential
smoothing models, and then add more layers to the model, as well as the model's ability to
handle complex time series data.

In this chapter, we will cover the following topics:

Forecasting with moving average models
Forecasting approaches with smoothing models
Tuning parameters for smoothing models

Technical requirement
The following packages will be used in this chapter:

forecast: Version 8.5 and above
h2o: Version 3.22.1.1 and above and Java version 7 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
dplyr: Version 0.8.1 and above
tidyr: Version 0.8.3 and above
Quandl: Version 2.9.1 and above
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You can access the codes for this chapter from the following link:

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/ma
ster/Chapter10

Forecasting with moving average models
In Chapter 5, Decomposition of Time Series Data, we looked at the application of the moving
average functions to smooth time series data. Those functions, with a small tweak, can be
used as a forecasting model. In the upcoming section, we will introduce two of the most
common moving average forecasting functions—the simple and weighted moving average.
These models, as you will see later on in this chapter, are the foundation for the exponential
smoothing forecasting models.

The simple moving average
The simple moving average (SMA) function, which we used in Chapter 5, Decomposition of
Time Series Data, for smooth time series data can be utilized, with some simple steps, as a 
forecasting model. First, let's recall the structure of the SMA function for smoothing time
series data:

This occurs when we use a two-sided rolling window. Let's take a look at the following
equation:

This occurs when we use a left tail rolling window. Here the following applies:

 represents the t observation of series Y with T observations, where 
 represents the smoothed value of 

m represents the length of the rolling window, where 

https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Time-Series-Analysis-with-R/tree/master/Chapter10
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As you can see, in both cases (and generally with any other type of rolling window), the
rolling window includes the t observation of the series. Converting an SMA smoothing
function into a forecasting model is based on averaging the past consecutive m observations

of the series. For example, , which is the value of the first forecasting observation of
the series (that is, observation T+1) is equal to the average of the past m observations:

Where, the following terms are used in the preceding equation:

are the past last m observations of series Y with T
observations, given 

 represents the first forecasted value of a series with T observations (that
is, given t is equal to the last observation of the series T)
Like the previous equation, m represents the length of the rolling window

You can observe from the preceding formulas of both the smoothing function ( ) and

forecasting functions ( ) that the smoothed value of the last observation of the series
(observation T) is the forecasted value of observation T+1. Moreover, only the first
forecasted value (observation T+1) is constructed by averaging only actual values of the
series (for example, ). As we shift the rolling window to forecast the
following observations of the series, the actual values are replaced with the previously
forecasted values. For instance, the calculation of the second forecasted value on-line, T+2,
is defined by the following expression:

In this case, the function inputs are the last m-1 observations of the series, along with the

first forecasted value, . From the  observation and onward, the function
inputs are the last m forecasted values.
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Forecasting with the SMA function is recommended when the input series has no structural
patterns, such as trend and seasonal components. In this case, it is reasonable to assume
that the forecasted values are relatively close to the last observations of the series.

In the following example, we will create a customized SMA function and use it to forecast
the monthly prices of the Robusta coffee prices in the next 12 months. The Robusta coffee
prices (USD per kg) are an example of time series data that has no specific trend or seasonal
patterns. Rather, this series has a cycle component, where the magnitude and length of the
cycle keep changing from cycle to cycle. This series is part of the Coffee_Prices dataset
and is available on the TSstudio package:

library(TSstudio)

data(Coffee_Prices)

Let's review the properties of the Coffee_Prices dataset with the ts_info function:

ts_info(Coffee_Prices)

We get the following output:

## The Coffee_Prices series is a mts object with 2 variables and 1402
observations
## Frequency: 12
## Start time: 1960 1
## End time: 2018 5

This dataset is an mts object and contains both the monthly prices (USD per kg) of the
Robusta and Arabica coffee prices between 1960 and 2018. We will extract the monthly
prices of the Robusta coffee from the Coffee_Prices object:

robusta <- Coffee_Prices[,1]

Let's review the series:

ts_plot(robusta,
        title = "The Robusta Coffee Monthly Prices",
        Ytitle = "Price in USD",
        Xtitle = "Year")
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The output is as follows:

Next, we will create a basic SMA function using some of the functionality of the tidyr
package:

library(tidyr)

sma_forecast <- function(df, h, m, w = NULL){
  # Error handling
  if(h > nrow(df)){
    stop("The length of the forecast horizon must be shorter than the
length of the series")}
  if(m > nrow(df)){
    stop("The length of the rolling window must be shorter than the length
of the series")}
  if(!is.null(w)){
    if(length(w) != m){
      stop("The weight argument is not aligned with the length of the
rolling window")
    } else if(sum(w) !=1){
      stop("The sum of the average weight is different than 1")
    }}
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  # Setting the average weigths
  if(is.null(w)){
    w <- rep(1/m, m)
  }
  ### Setting the data frame ###
  # Changing the Date object column name
  names(df)[1] <- "date"
  # Setting the training and testing partition
  # according to the forecast horizon
  df$type <- c(rep("train", nrow(df) - h), rep("test", h))
  # Spreading the table by the partition type
  df1 <- df %>% spread(key = type, value = y)
  # Create the target variable
  df1$yhat <- df1$train
  # Simple moving average function
  for(i in (nrow(df1) - h + 1):nrow(df1)){
    r <- (i-m):(i-1)
    df1$yhat[i] <- sum(df1$yhat[r] * w)
  }
  # dropping from the yhat variable the actual values
  # that were used for the rolling window
  df1$yhat <- ifelse(is.na(df1$test), NA, df1$yhat)
  df1$y <- ifelse(is.na(df1$test), df1$train, df1$test)
  return(df1)
}

The function arguments are as follows:

df: The input series in a two-column data frame format, where the first column is
a Date object and the second one is the actual values of the series.
h: The horizon of the forecast. For the purpose of the following example, the
function set the last h observations as a testing set. This allows us to compare
model performance.
m: The length of the rolling window.
w: The weights of the average, by default, using equal weights (or arithmetic
average).
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The sma_forecast function has the following components:

Error handling: Test and verify whether the input arguments of the function are
valid. If one of the defined tests isn't true, it will stop the function from running
and trigger an error message.
Data preparation: This defines the data.frame object based on the window
length and the forecast horizon.
Data calculation: Calculates the simple moving average and return the results.

Let's utilize this function to demonstrate the performance of the SMA function. We will
forecast the last 24 months of the Robusta series using a rolling window of 3, 6, 12, 24, and
36 months:

robusta_df <- ts_to_prophet(robusta)

robusta_fc_m1 <-  sma_forecast(robusta_df, h = 24, m = 1)
robusta_fc_m6 <-  sma_forecast(robusta_df, h = 24, m = 6)
robusta_fc_m12 <- sma_forecast(robusta_df, h = 24, m = 12)
robusta_fc_m24 <- sma_forecast(robusta_df, h = 24, m = 24)
robusta_fc_m36 <- sma_forecast(robusta_df, h = 24, m = 36)

We will use the plotly package to plot the results of the different moving average functions:

library(plotly)

 plot_ly(data = robusta_df[650:nrow(robusta_df),], x = ~ ds, y = ~ y,
         type = "scatter", mode = "lines",
         name = "Actual") %>%
   add_lines(x = robusta_fc_m1$date, y = robusta_fc_m1$yhat,
             name = "SMA - 1", line = list(dash = "dash")) %>%
   add_lines(x = robusta_fc_m6$date, y = robusta_fc_m6$yhat,
             name = "SMA - 6", line = list(dash = "dash")) %>%
   add_lines(x = robusta_fc_m12$date, y = robusta_fc_m12$yhat,
             name = "SMA - 12", line = list(dash = "dash")) %>%
   add_lines(x = robusta_fc_m24$date, y = robusta_fc_m24$yhat,
             name = "SMA - 24", line = list(dash = "dash")) %>%
    add_lines(x = robusta_fc_m36$date, y = robusta_fc_m36$yhat,
             name = "SMA - 36", line = list(dash = "dash")) %>%
   layout(title = "Forecasting the Robusta Coffee Monthly Prices",
          xaxis = list(title = ""),
          yaxis = list(title = "USD per Kg."))
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We get the following plot:

The main observations from the preceding plot are as follows:

If the length of the rolling window is shorter:
The range of the forecast is fairly close to the most recent
observations of the series
The faster the forecast converges to some constant value

If the window length is longer:
The longer it takes until the forecast converges to some constant
value
 It can handle better shocks and outliers

An SMA forecasting model with a rolling window of a length of 1 is equivalent
to the Naïve forecasting model

While the SMA function is fairly simple to use and cheap on compute power, it has some
limitations:

The forecasting power of the SMA function is limited to a short horizon and may
have poor performance in the long run.
This method is limited for time series data, with no trend or seasonal patterns.
This mainly effects the arithmetic average that smooths the seasonal pattern and
becomes flat in the long run.
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Weighted moving average
The weighted moving average (WMA) is an extended version of the SMA function, and
it is based on the use of the weighted average (as opposed to arithmetic average). The main 
advantage of the WMA function, with respect to the SMA function, is that it allows you to
distribute the weight of the lags on the rolling window. This can be useful when the series
has a high correlation with some of its lags. The WMA function can be formalized by the
following expression:

Here,  is the n forecasted value of the series at time T + n, and w is a scalar of a size m
which defines the weight of each observation in the rolling window. The use of the
weighted average provides more flexibility as it can handle series with a seasonal pattern.
In the following example, we will use the sma_forecast function we created previously to
forecast the last 24 months of the USgas dataset. In this case, we will utilize the w argument
to set the average weight and therefore transform the function from SMA to WMA. Like we
did previously, we will first transform the series into data.frame format with the
ts_to_prophet function:

data(USgas)

USgas_df <- ts_to_prophet(USgas)

In the following example, we will use the following two strategies:

The WMA model for applying all the weight on the seasonal lag (lag 12):

USgas_fc_m12a <- sma_forecast(USgas_df,
                              h = 24,
                              m = 12,
                              w = c(1, rep(0,11)))

The WMA model for weighting the first lag with 0.2 and the seasonal lag (lag
12) with 0.8:

USgas_fc_m12b <- sma_forecast(USgas_df,
                              h = 24,
                              m = 12,
                              w = c(0.8, rep(0,10), 0.2))
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Let's utilize the plotly package to plot the output of both of the WMA models:

plot_ly(data = USgas_df[190:nrow(USgas_df),],
        x = ~ ds,
        y = ~ y,
        type = "scatter",
        mode = "lines",
        name = "Actual") %>%
  add_lines(x = USgas_fc_m12a$date,
            y = USgas_fc_m12a$yhat,
            name = "WMA - Seasonal Lag",
            line = list(dash = "dash")) %>%
  add_lines(x = USgas_fc_m12b$date,
            y = USgas_fc_m12b$yhat,
            name = "WMA - 12 (0.2/0.8)",
            line = list(dash = "dash")) %>%
  layout(title = "Forecasting the Monthly Consumption of Natural
Gas in the US",
         xaxis = list(title = ""),
         yaxis = list(title = "Billion Cubic Feet"))

We get the following output:
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As you can see in the preceding plot, both models captured the seasonal oscillation of the
series to some extent. Setting the full weight on the seasonal lag is equivalent to the
seasonal Naïve model. This strategy could be useful for a series with a dominant seasonal
pattern, such as USgas. In the second example, we weighted the average between the most
recent lag and the seasonal lag. It would make sense to distribute the weights between the
different lags when the series has a high correlation with those lags.

While WMA can capture the seasonal component of a series, it cannot capture the series
trend (due to the average effect). Therefore, this method will start to lose its effectiveness
once the forecast horizon crosses the length of the series frequency (for example, more than
a year for monthly series). Later on in this chapter, we will introduce the Holt-Winters
model, which can handle time series with both seasonal and trend components. 

Forecasting with exponential smoothing
Among the traditional time series forecasting models, the exponential smoothing functions
are one of the most popular forecasting approaches. This approach, conceptually, is close to
the moving average approach we introduced previously, as both are based on forecasting
the future values of the series by averaging the past observations of the series. The main
distinction between the exponential smoothing and the moving average approaches is that
the first is averaging all series observations, as opposed to a subset of m observations by the
latter.

Furthermore, the advance exponential smoothing functions can handle series with a trend
and seasonal components. In this section, we will focus on the main exponential smoothing
forecasting models:

Simple exponential smoothing model
Holt model
Holt-Winters model

Simple exponential smoothing model
The Simple exponential smoothing (SES) as its name implies, is the simplest forecasting
model among the exponential smoothing family. The main assumption of this model is that
the series stays at the same level (that is, the local mean of the series is constant) over time,
and therefore, this model is suitable for series with neither trend nor seasonal components.
The SES model shares some of the attributes of the WMA model, as both models forecast
the future values of the series by a weighted average of the past observations of the series.
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On the other hand, the main distinction between the two is that the SES model is utilizing
all the previous observations, whereas the WMA model is using only the most recent m
observations (for a model with a rolling window of a length of m). The main attribute of the
SES model is the weighted average technique, which is based on the exponential decay of
the observation weights according to their chronological distance (that is, series index or
timestamp) from the first forecasted values. The decay rate of the observation weights is set
by , the smoothing parameter of the model.

In addition, the SES function is a step function, where the n forecasted value of the model
becomes the input of the next forecast of the next observations, n+1. We can formalize this
relationship by using the following equations:

Where, the following terms are used in the preceding equation:

  is the forecasted value of the observation T+1 for a series with n
observations (for example, T = 1,...,n)

is the T observation of the series
 is the smoothing parameter of the model, where 
 is the forecasted value of observation T at step T-1

Since the model assumes that the level of the model doesn't change over time, we can
generalize the preceding equation for the forecast of the T+n observation of the series
(where ):

Hence, the goal of the model is to calculate the series level based on the input data. This
results in a flat forecast.

The process of identifying the model level is relatively simple and can be obtained from the
preceding model equation. Since this is a recursive equation, we can expand this equation
by assigning the value of  the forecasted value of the previous period, T-1:
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In the same manner, we can keep expanding this equation by recursively assigning the
formulas of all the previous observation's forecasts. This expansion process continues all
the way to the first forecasted value of the series (in chronological order) :

Chronologically, the first observation that can be forecast is  (since there are no available
observations to forecast , the first observation of the series). Therefore, the preceding
equation can be expanded to the forecast value of the second observation, or as follows: 

Since there is no supporting data to forecast  (since this is the first available observation of
the series), we need to initialize the value of . This is typically done by assigning the
actual value of the first observation (that is, ), or by estimating it. We can simplify this
equation further by assigning the equation of  and rearranging the right-hand side of this
equation:

This can simplify the preceding equation so that it now looks as follows:

This can be compressed further into the following expression:

Another interpretation of the forecast equation of the SES model can be observed by
manipulating the forecast equation, as follows:

.

As we saw in the previous chapter,  denote the error term of the fitted value of
observation t. Therefore, the forecast value of the observation T+1 by the SES model is
nothing but the forecasted value of the previous observation, , and the proportion of the
forecast error term as a function of , or as follows:
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 is defined as the forecast error for T observation of the series (for example, the last
observation of a series with T observations), or as follows:

A more common form for this equation is the component form, which in the case of the SES
model is the estimation of  and  to denote the model estimation of the series level at
time T and T-1, respectively. The preceding equation can be rewritten like so:

The smoothing parameter of the model, , defines the rate of the model weight's decay.
Since  is closer to 1, the weights of the most recent observations are higher. On the other
hand, the decay rate, in this case, is faster. A special case is a SES model with , which is
equivalent to a naive forecasting model:

This is also equivalent to the n forecasted value:

The following example demonstrates the decay of the weights of the observations on the
most recent 15 observations, for  values between 0.01 to 1:

alpha_df <- data.frame(index = seq(from = 1, to = 15, by = 1),
                        power = seq(from = 14, to = 0, by = -1))

alpha_df$alpha_0.01 <- 0.01 * (1 - 0.01) ^ alpha_df$power
alpha_df$alpha_0.2 <- 0.2 * (1 - 0.2) ^ alpha_df$power
alpha_df$alpha_0.4 <- 0.4 * (1 - 0.4) ^ alpha_df$power
alpha_df$alpha_0.6 <- 0.6 * (1 - 0.6) ^ alpha_df$power
alpha_df$alpha_0.8 <- 0.8 * (1 - 0.8) ^ alpha_df$power
alpha_df$alpha_1 <- 1 * (1 - 1) ^ alpha_df$power

Let's plot the results:

plot_ly(data = alpha_df) %>%
  add_lines(x = ~ index, y = ~ alpha_0.01, name = "alpha = 0.01") %>%
  add_lines(x = ~ index, y = ~ alpha_0.2, name = "alpha = 0.2") %>%
  add_lines(x = ~ index, y = ~ alpha_0.4, name = "alpha = 0.4") %>%
  add_lines(x = ~ index, y = ~ alpha_0.6, name = "alpha = 0.6") %>%
  add_lines(x = ~ index, y = ~ alpha_0.8, name = "alpha = 0.8") %>%
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  add_lines(x = ~ index, y = ~ alpha_1, name = "alpha = 1") %>%
  layout(title = "Decay Rate of the SES Weights",
         xaxis = list(title = "Index"),
         yaxis = list(title = "Weight"))

We get the following output:

We can transform the preceding equations into component from, which describes the
model by its components. In the case of the SES model, we have a single component—the
model level. As we mentioned previously, the model's main assumption is that the series
level remains the same over time, and therefore we can rewrite the model equation using
the following notations:

Here,  defines the model level at time T, which is a weighted average of  and the level
of the previous period, :
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Forecasting with the ses function
The forecast package provides a customized SES model with the ses function. The main 
arguments of this function are as follows:

initial: Defines the method for initializing the value of , which can be
calculated by using the first few observations of the series by setting the
argument to simple, or by estimating it with ets model (an advanced version of
the Holt-Winters model from the forecast package) when setting it to optimal.
alpha: Defines the value of the smoothing parameter of the model. If set to NULL,
the function will estimate it.
h: Sets the forecast horizon.

Let's use the ses function to forecast the monthly prices of the Robusta coffee again. We
will leave the last 12 months of the series as a testing set for benchmarking the model's
performance. We will do this using the ts_split function from the TSstudio package:

robusta_par <- ts_split(robusta, sample.out = 12)
train <- robusta_par$train
test <- robusta_par$test

After we set the training and testing partition, we will use the training partition to train a
SES model with the ses function:

library(forecast)
fc_ses <- ses(train, h = 12, initial = "optimal")

Let's review the model details:

fc_ses$model

## Simple exponential smoothing
##
## Call:
##  ses(y = train, h = 12, initial = "optimal")
##
##   Smoothing parameters:
##     alpha = 0.9999
##
##   Initial states:
##     l = 0.6957
##
##   sigma:  0.161
##
##      AIC     AICc      BIC
## 1989.646 1989.681 2003.252
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As you can see from the output of the model, the ses function set the initial value to 0.69,
which is fairly close to the value of the first observations ( ), and set the alpha
parameter to 0.9999 (which technically is fairly close to the NAIVE forecast). We can
review the model's performance by using the test_forecast function:

test_forecast(actual = robusta,
              forecast.obj = fc_ses,
              test = test) %>%
  layout(title = "Robusta Coffee Prices Forecast vs. Actual",
         xaxis = list(range = c(2010, max(time(robusta)))),
         yaxis = list(range = c(1, 3)))

We get the following output:

As we can see from the preceding forecast plot, the ses function is utilizing the training set
to identify the series level by estimating the alpha parameter and the initial level of the
model (or ). The forecast value level is fairly close to the value of the last observation of
the series since the  value, in this case, is close to 1. Since the goal of the SES model is to
forecast the level of the series, the model won't capture any short-term oscillation.
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In the case of a flat forecast, the confidence intervals of the model play a critical role, since
the level of uncertainty is higher. Therefore, it will be useful to evaluate whether the
forecast values are within the model confidence interval bounds. We will use the
plot_forecast function from the TSstudio package to create an interactive plot for the
fs_ses model we created and plot the testing set:

plot_forecast(fc_ses) %>%
  add_lines(x = time(test) + deltat(test),
            y = as.numeric(test),
            name = "Testing Partition") %>%
  layout(title = "Robusta Coffee Prices Forecast vs. Actual",
         xaxis = list(range = c(2010, max(time(robusta)) +
deltat(robusta))),
         yaxis = list(range = c(0, 4)))

The output is as follows:

As you can see from the preceding forecast plot, the testing set is within the range of the
80% confidence interval.
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Model optimization with grid search
The ses function optimizes the values of the model parameters (  and ) that minimize the
sum of squared errors (SSE) of the model on the training set. An alternative optimization
approach is to use a grid search. A grid search is a simplistic but powerful approach that's
used to identify the values of the model's parameters that minimize the model error. In the
case of the SES model, we will apply a grid search to identify the optimal value of  that
minimizes some error metric of the model (for example, MAPE, RMSE, and so on).

In the following example, we will use a grid search to tune the model parameters  and ,
which minimize the model's MAPE for the Robusta prices series. As we saw in the
preceding performance plot of the Robusta forecast, there is a gap between the structure of
the fitted values (marked in red) and the forecasted value (marked in green) since the SES
model has a flat forecast. Therefore, we will split the model into training, testing, and
validation partitions, and for each value of , we will apply the following steps:

Train the SES model using the training partition and forecast the observations of1.
the testing partition
Evaluate the performance of the model on both the training and testing partition2.
Append the training and testing partitions (in chronological order) and retrain3.
the model on the new partition (training and testing) before forecasting the
values of the validation partition
Evaluate the performance of the second model on the validation partition4.

These steps will allow us to select the alpha value that minimizes the MAPE on the testing
partition and use the validation set to validate the performance of the model. Before we set
the function, let's set the training, testing, and validation partitions using the ts_split
function:

robusta_par1 <- ts_split(robusta, sample.out = 24)

train1 <- robusta_par1$train
test1 <- ts_split(robusta_par1$test, sample.out = 12)$train

robusta_par2 <- ts_split(robusta, sample.out = 12)

train2 <- robusta_par2$train
valid <- robusta_par2$test
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We will use the train1 and test1 variables for training and testing partition, and train2
for retraining the model and validating the results on the valid partition. The
following alpha variable defines the search range. We will assign a sequence of values
between 0 and 1 with an increment of 0.01 using the seq function:

alpha <- seq(from = 0, to = 1, by = 0.01)

Since the value of alpha must be greater than zero, we will replace 0 with a small number
that's fairly close to zero:

alpha[1] <- 0.001

We will use the lapply function to iterate on the model using the different values of :

library(dplyr)

ses_grid <- lapply(alpha, function(i){
  md1 <- md_accuracy1 <- md2 <- md_accuracy2 <- results <-  NULL
  md1 <- ses(train1, h = 12, alpha = i, initial = "simple")
  md_accuracy1 <- accuracy(md1, test1)
  md2 <- ses(train2, h = 12, alpha = i, initial = "simple")
  md_accuracy2 <- accuracy(md2, valid)

  resutls <- data.frame(alpha = i,
                        train = md_accuracy1[9],
                        test = md_accuracy1[10],
                        valid = md_accuracy2[10])

 }) %>% bind_rows()

As you can see in the following testing results, while  minimizes the MAPE on the
training partition,  minimizes the error rate on the testing partition. The results on
the validation partition are following the same pattern as the testing partition, with an
MAPE score of 9.98% on the testing partition and 6.60% on the validation partition:

plot_ly(data = ses_grid, x = ~ alpha, y = ~ train,
         line = list(color = 'rgb(205, 12, 24)'),
         type = "scatter",
         mode = "lines",
         name = "Training") %>%
   add_lines(x = ~ alpha, y = ~ test, line = list(color = "rgb(22, 96,
167)", dash = "dash"), name=  "Testing") %>%
   add_lines(x = ~ alpha, y = ~ valid, line = list(color = "green", dash =
"dot"), name = "Validation") %>%
   layout(title = "SES Model Grid Search Results",
          yaxis = list(title = "MAPE (%)"))
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The output is shown in the following screenshot:

Now, let's take a look at the Holt method.

Holt method
The Holt method, also known as the double exponential smoothing model, is an expanded
version of the SES model. It's based on estimating the most recent level and trend with the
use of two smoothing parameters,  and . Once the model estimates the most recent level
and trend ( , and , respectively), it utilizes them to construct the series forecast using
the following equation:

For a series with additive trend, 
For a series with multiplicative trend, 
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Here, the variables of those equations are as follows:

 is the forecast value of the h forecasted value of a series with T observations
 is the estimate of the series level at time T
 is the estimate of the marginal impact of the series trend at time T (for

example, the added value from advance series by one frequency unit)
h is the number of forecasting steps since time T

Similar to the SES model, the calculation of the series level and trend by the Holt model is
based on a weighted average with the use of two smoothing parameters,  and . For a
series with an additive trend, the calculation of the most recent level and trend of the series
can be obtained with the following equations:

The following equations can be used for a series with a multiplicative trend:

As we saw in the previous chapters, a multiplicative model can transform
into an additive model if we apply log transformation on both sides of the
equation.

The Holt model estimates the values of  and , the series level and trend at time T, using
a weighted average of all the series observations. In a similar manner to the SES model
estimation process, this recursive process starts with the forecast of the second observation
of the model:
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Where, the following terms are used in the preceding equation:
 and  are the forecast of the level of the first and second observations of the

series, respectively
 and  are the trend forecast of the first and second observations of the series,

respectively

Since we cannot forecast the level and trend value for the first observation of the series, we
will have to approximate  and  (similar to the  approximation process of the SES
model). The forecast of the next observations in line (for example, 3 to T) are recursively
created using the level and trend estimation, as well as the actual values of the preceding
observations.

Forecasting with the holt function 
The forecast package provides an implementation of the Holt model with the holt
function. This function automatically initializes the values of  and , and identifies the
values of  and  that minimize the SSE of the model on the training set. In the following
example, we will retrieve the US Gross Domestic Product (GDP) quarterly data from the
Federal Reserve Economic Data (FRED) API using the Quandl package:

library(Quandl)

gdp <- Quandl("FRED/GDP", start_date = "2010-01-01", type = "ts")

ts_info(gdp)
##  The . series is a ts object with 1 variable and 37 observations
##  Frequency: 4
##  Start time: 2010 1
##  End time: 2019 1

You will notice in the following plot that the GDP series has a strong linear trend and no
seasonal component (since the series is seasonally adjusted):

ts_plot(gdp,
         title = "US Gross Domestic Product",
         Ytitle = "Billions of Dollars",
         Xtitle = "Source: U.S. Bureau of Economic Analysis /
fred.stlouisfed.org")
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The output is as follows:

Like we did previously, we will leave the last eight quarters for testing and train the model
with the rest of the observations of the series with the holt function:

gdp_par <- ts_split(gdp, sample.out = 8)

train <- gdp_par$train
test <- gdp_par$test

fc_holt <- holt(train,  h = 8, initial = "optimal")

Let's review the model's parameters:

fc_holt$model

We get the following output:

## Holt's method
##
## Call:
##  holt(y = train, h = 8, initial = "optimal")
##
##   Smoothing parameters:
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##     alpha = 0.7418
##     beta  = 0.0001
##
##   Initial states:
##     l = 14583.6552
##     b = 157.8047
##
##   sigma:  80.2774
##
##      AIC     AICc      BIC
## 357.7057 360.3144 364.5422

The initialized values of  and  of the function are relatively close to the values of the
first observation of the series ( ) and the average difference between each
quarter. In addition, the selected  of 0.74 indicated that the model heavily weighed the last
observation of the series, . On the other hand, the value of  is fairly close to zero, which
indicates that updating the trend value from period to period doesn't take into account the
change in the level and carries the initial value of the trend, , forward.

Let's compare the model's performance in the training and testing partitions with the
accuracy function:

accuracy(fc_holt, test)

We get the following output:

##                       ME      RMSE       MAE          MPE      MAPE
## Training set  -0.2600704  74.53567  58.08445 -0.004075414 0.3403528
## Test set     362.8135830 423.92339 362.81358  1.764266683 1.7642667
##                    MASE       ACF1 Theil's U
## Training set 0.09300079 0.04713728        NA
## Test set     0.58091192 0.67212430  1.776891

As you can see from the output of the accuracy function, the ratio between the error rate
on the testing and training set is more than 5 times for the RMSE and 4.5 for the MAPE.
This large ratio in the error metrics is mainly derived from the following two reasons:

The fitted values of the model on the training set are not bound by a linear line
(as opposed to the forecast output)
The growth of the trend in the last few quarters shift from a linear rate of growth
to an exponential rate

The changes in the trend growth and the forecast can be observed with the test_forecast
function:

test_forecast(gdp, forecast.obj = fc_holt, test = test)



Forecasting with Exponential Smoothing Models Chapter 10

[ 310 ]

The output is shown in the following screenshot:

While the Holt model was designed to handle time series with the linear trend, the
exponential argument of the holt function provides the option to handle series with
exponential or decaying trends when set to TRUE. For the preceding example, we can utilize
the exponential argument to modify the growth pattern of the trend.

In this case, we would like to have a higher weight for the trend, and we will set  to 0.75 (a
more robust approach for identifying the optimal value of  would be to use a grid search):

fc_holt_exp <- holt(train,
                    h = 8,
                    beta = 0.75,
                    initial = "optimal",
                    exponential = TRUE)

The output of this model is as follows:

fc_holt_exp$model
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We get the following output:

## Holt's method with exponential trend
##
## Call:
##  holt(y = train, h = 8, initial = "optimal", exponential = TRUE,
##
##  Call:
##      beta = 0.75)
##
##   Smoothing parameters:
##     alpha = 0.75
##     beta  = 0.75
##
##   Initial states:
##     l = 14586.0855
##     b = 1.0117
##
##   sigma:  0.0064
##
##      AIC     AICc      BIC
## 358.7179 360.4570 364.0467

Let's review the model's accuracy on the training and testing set with the
accuracy function:

accuracy(fc_holt_exp, test)

We get the following output:

##                      ME     RMSE       MAE         MPE     MAPE
MASE
## Training set  -1.637148 100.0329  83.38575 -0.01160733 0.489303
0.1335115
## Test set     210.935365 255.0026 210.93537  1.02384022 1.023840
0.3377351
##                    ACF1 Theil's U
## Training set -0.2076372        NA
## Test set      0.6778485  1.069639

Similarly, we can plot the fitted and forecasted values against the actual data with
the test_forecast functions:

 test_forecast(gdp, forecast.obj = fc_holt_exp, test = test)
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The output is as follows:

As you can see, the error rate of the second Holt model is more balanced, where the ration
between the error on the testing and training set is 2.5 and 2.1 for the RMSE and MAPE
metrics, respectively.

The use of the exponential or damped arguments required some prior
knowledge or assumption on the future growth rate of the trend.

Holt-Winters model
We will close this chapter with the third and most advanced model among the exponential
smoothing family of forecasting models—the Holt-Winters model. The Holt-Winters (HW)
model is an extended version of the Holt model and can handle time series data with both
trend and seasonal components. Forecasting the seasonal component required a third
smoother parameter and equation, in addition to the ones of the level and trend.
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Both of the trend and seasonal components could have either an additive or multiplicity
structure, which adds some complexity to the model as there are multiple possible
combinations:

Additive trend and seasonal components
Additive trend and multiplicative seasonal components
Multiplicative trend and additive seasonal components
Multiplicative trend and seasonal components

Therefore, before building an HW model, we need to identify the structure of the trend and
the seasonal components. The following equations describe the HW model for a series with
additive seasonal component:

The following equations describe the HW model for a series with a multiplicative seasonal
structure:

The most common implementation of the HW model in R is the HoltWinters and
hw functions from the stats and forecast packages. The main difference between the two
functions is that the hw function can handle time series with an exponential or damped
trend (similar to the Holt model). In the following example, we will use the HoltWinters
function to forecast the last 12 months of the USgas series.
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Let's use the decompose function to diagnose the structure of the trend and seasonal
components of the series:

data(USgas)

decompose(USgas) %>% plot()

The output is as follows:

We can observe from the preceding plot that both the trend and seasonal components of the
series have an additive structure. Like we did previously, we will create training and
testing partitions using the last 12 months of the series to evaluate the performance of the
model:

USgas_par <- ts_split(USgas, 12)

train <- USgas_par$train
test <- USgas_par$test

Next, we will use the HoltWinters model to forecast the last 12 months of the series (or
the testing set):

md_hw <- HoltWinters(train)

Let's review the parameters of the trained model:

md_hw
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We get the following output:

## Holt-Winters exponential smoothing with trend and additive seasonal
component.
 ##
 ## Call:
 ## HoltWinters(x = train)
 ##
 ## Smoothing parameters:
 ##  alpha: 0.3462899
 ##  beta : 0
 ##  gamma: 0.3766804
 ##
 ## Coefficients:
 ##             [,1]
 ## a   2299.3445761
 ## b     -0.1287005
 ## s1   516.2274996
 ## s2   788.9916937
 ## s3   396.5624290
 ## s4   285.0458175
 ## s5  -200.5519515
 ## s6  -311.8029253
 ## s7  -309.0225553
 ## s8  -133.0658271
 ## s9  -141.1034536
 ## s10 -339.8285611
 ## s11 -270.8429591
 ## s12   23.6032284

You will notice from the preceding model output that the model is mainly learning from
the level and seasonal update (with  and ). On the other hand, there is no
learning from the trend initialized value . The next step is to forecast the next 12
months (or the values of the testing set) and evaluate the model's performance with the
accuracy and test_forecast functions:

fc_hw <- forecast(md_hw, h = 12)

accuracy(fc_hw, test)
##                     ME     RMSE       MAE       MPE     MAPE      MASE
## Training set   6.08587 115.1122  86.92766 0.2617263 4.273029 0.8102333
## Test set     174.39927 194.4311 174.39927 6.9486812 6.948681 1.6255368
##                   ACF1 Theil's U
## Training set 0.2407121        NA
## Test set     0.1170619 0.7198667
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The accuracy metrics of the model are fairly balanced, with an MAPE of 4.3% in the
training set and 7% in the testing set. In the plot of the following model performance, you
will notice that most of the forecast errors are related to the seasonal peak and the last
observations of the series, which the model was underestimating:

test_forecast(actual = USgas,
               forecast.obj = fc_hw,
               test = test)

The output is as follows:

Plotting the fitted and forecasted values provides us with a better understanding of the
model's performance. As we can see in the preceding plot, the HW model is doing a good
job of capturing both the series seasonal patterns. On the other hand, the model is missing
the peak of the year during the month of January in most cases. 

Alternatively, the model can be trained with a grid search in a similar manner to what we
did with the SES model. In this case, there are three parameters to optimize: , , and . The
TSstudio package provides a customized grid search function based on the backtesting
approach for training a HoltWinters function.
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A grid search is a generic optimization approach for tuning models with
multiple tuning parameters, such as tuning the , , and  parameters of
the HW model. This simple algorithm is based on setting (when
applicable) a set of values for each parameter of the model and then
iterating and testing the model with a different combination of the
model's parameter values. Based on the selected error metric, the
combination that minimizes the error criteria will be used with the final
model. Generally, the main caveat of this approach is that it could be
expensive to compute as the number of search combinations increase. In
Chapter 12, Forecasting with Machine Learning Models, we will look at a
more robust grid search algorithm with the h2o package.

For efficiency reasons, we will start with a shallow search that includes larger increments in
the parameters' values. This will help us narrow down the search area and then apply a
deeper search on those areas. The shallow search will include backtesting over 6 different
periods using a sequence between 0 and 1 with an increment of 0.1:

shallow_grid <- ts_grid(train,
                         model = "HoltWinters",
                         periods = 6,
                         window_space = 6,
                         window_test = 12,
                         hyper_params = list(alpha = seq(0,1,0.1),
                                             beta = seq(0,1,0.1),
                                             gamma = seq(0,1,0.1)),
                         parallel = TRUE,
                         n.cores = 8)

The output of the following grid provides any combination of , , and  with the error rate
on each testing period and its overall mean. The table sorts the overall mean of the model
from the best combination to the worst:

shallow_grid$grid_df[1:10,]

We get the following output:

##    alpha    beta gamma        1        2        3        4        5
## 1    0.4 0.00001   0.3 4.413769 2.605433 2.257627 3.725283 5.237407
## 2    0.3 0.00001   0.2 4.260377 2.632491 2.377467 3.922444 5.333127
## 3    0.3 0.10000   0.2 5.066178 2.548095 2.453950 3.743206 5.249969
## 4    0.3 0.00001   0.3 4.557990 2.455461 2.351108 4.313726 5.431035
## 5    0.4 0.00001   0.4 4.592116 2.311381 2.480636 4.241562 5.322397
## 6    0.2 0.00001   0.2 4.480924 2.962627 2.408871 4.231048 5.455692
## 7    0.4 0.00001   0.2 4.282419 2.688454 3.023123 3.872748 5.440050
## 8    0.5 0.00001   0.4 5.241874 3.425948 2.410089 3.373926 5.109618
## 9    0.1 0.00001   0.2 4.010023 3.321816 2.802651 4.507483 5.615869
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## 10   0.1 0.10000   0.2 5.777916 2.320443 2.768832 4.249258 5.507453
##           6     mean
## 1  4.662878 3.817066
## 2  4.579267 3.850862
## 3  4.385781 3.907863
## 4  4.435515 3.924139
## 5  4.908380 3.976079
## 6  4.350566 3.981621
## 7  4.958675 4.044245
## 8  4.844823 4.067713
## 9  4.278671 4.089419
## 10 4.145535 4.128239

The plot_grid provides an intuitive view of the optimal range of values of each
parameter by using a paracords plot. By default, the function is highlighting the top 10%
models:

plot_grid(shallow_grid)

The output is as follows:
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You will notice from the search plot output that the optimal range of  varies between 0.1
and 0.5,  is between 0 and 0.1, and  is between 0.2 and 0.4. This will help us set the
range of the hyperparameter search for the deeper grid search by narrowing down the
range of search but using a more granular search:

deep_grid <-  ts_grid(train,
                          model = "HoltWinters",
                          periods = 6,
                          window_space = 6,
                          window_test = 12,
                          hyper_params = list(alpha = seq(0.1,0.5,0.01),
                                              beta = seq(0,0.1,0.01),
                                              gamma = seq(0.2,0.4,0.01)),
                          parallel = TRUE,
                          n.cores = 8)

As you can see in the following plot, the error range of the top 10% models has dropped
with respect to the one of the shallow search:

plot_grid(deep_grid)

The output is as follows:
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This plot can be viewed in a 3D view (when conducting a search for three parameters):

plot_grid(deep_grid, type = "3D", top = 250)

The output is shown in the following screenshot:

The last step of this process is to pull the values of the optimal smoothing parameters from
the grid model based on the search, retrain the HW model, and utilize it to forecast the
future values of the series:

md_hw_grid <- HoltWinters(train,
                          alpha = deep_grid$alpha,
                          beta = deep_grid$beta,
                          gamma = deep_grid$gamma)

fc_hw_grid <- forecast(md_hw_grid, h = 12)
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We will use the accuracy and test_forecast functions in order to review the
performance of the HW model that's been optimized by a grid search:

accuracy(fc_hw_grid, test)
##                      ME     RMSE      MAE       MPE     MAPE     MASE
## Training set   3.839412 116.7249  89.1783 0.2097637 4.401512 0.831211
## Test set     143.356247 171.8245 151.0337 5.6297541 5.914167 1.407751
##                   ACF1 Theil's U
## Training set 0.2560556        NA
## Test set     0.1230779 0.6220483

The plot of the fitted and forecasted values versus the actual values can be seen as follows:

test_forecast(actual = USgas,
forecast.obj = fc_hw_grid,
test = test)

The output is as follows:

As you can see from the output of the accuracy and test_forecast functions,
optimizing the model with grid search provides, in this case, a lift in the model's
performance by reducing the MAPE score from 6.95% to 5.92%.
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Summary
In this chapter, we introduced the use of a weighted average of past observations for
forecast time series data. We started with a simplistic and naive forecasting approach with
the moving average function. Although this function is limited to short-term forecasts and
can only handle time series with no seasonal and trend components, it provides context for
exponential smoothing functions. The exponential smoothing family of forecasting models
is based on the use of different smoothing parameters, that is , , and , for modeling the
main components of time series data—level, trend, and seasonal, respectively. The main
advantages of exponential smoothing functions are their simplicity, they're cheap for
computing, and their modularity, which allows them to handle different types of time
series data, such as linear and exponential trends and seasonal components.

In the next chapter, we will learn about a more advanced forecasting approach with the
ARIMA family of forecasting models.



11
Forecasting with ARIMA

Models
The Autoregressive Integrated Moving Average (ARIMA) model is the generic name for a
family of forecasting models that are based on the Autoregressive (AR) and Moving
Average (MA) processes. Among the traditional forecasting models (for example, linear
regression, exponential smoothing, and so on), the ARIMA model is considered as the most
advanced and robust approach. In this chapter, we will introduce the model
components—the AR and MA processes and the differencing component. Furthermore, we
will focus on methods and approaches for tuning the model's parameters with the use of
differencing, the autocorrelation function (ACF), and the partial autocorrelation function
(PACF).

In this chapter, we will cover the following topics:

The stationary state of time series data
The random walk process
The AR and MA processes
The ARMA and ARIMA models
The seasonal ARIMA model 
Linear regression with the ARIMA errors model
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Technical requirement
The following packages will be used in this chapter:

forecast: Version 8.5 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
dplyr: Version 0.8.1 and above
lubridate: Version 1.7.4 and above
stats: Version 3.6.0 and above
datasets: Version 3.6.0 and above
base: Version 3.6.0 and above

You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter11

The stationary process
One of the main assumptions of the ARIMA family of models is that the input series
follows the stationary process structure. This assumption is based on the Wold
representation theorem, which states that any stationary process can be represented as a
linear combination of white noise. Therefore, before we dive into the ARIMA model
components, let's pause and talk about the stationary process. The stationary process, in the
context of time series data, describes a stochastic state of the series. Time series data is
stationary if the following conditions are taking place:

The mean and variance of the series do not change over time
The correlation structure of the series, along with its lags, remains the same over
time
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In the following examples, we will utilize the arima.sim function from the stats package
to simulate a stationary and non-stationary time series data and plot it with the ts_plot
function from the TSstudio package. The arima.sim function allows us to simulate time
series data based on the ARIMA model's components and main characteristics:

An Autoregressive (AR) process: Establish a relationship between the series and
its past p lags with the use of a regression model (between the series and its p
lags)
A Moving Average (MA) process: Similar to the AR process, the MA process
establishes the relationship with the error term at time t and the past error terms,
with the use of regression between the two components (error at time t and the
past error terms)
Integrated (I) process: The process of differencing the series with its d lags to
transform the series into a stationary state

Here, the model argument of the function defines p, q, and d, as well as the order of the AR,
MA, and I processes of the model. For now, don't worry if you are not familiar with this
function—we will discuss it in detail later in this chapter.

The arima.sim function has a random component. Therefore, in order to
be able to reproduce the examples throughout this chapter, we will use
the set.seed function. The set.seed function allows you to create
random numbers in a reproducible manner in R by setting the random
generating seed value.

For instance, in the following example, we will simulate an AR process with one lag (that is,
p = 1) and 500 observations with the arima.sim function. Before running the simulation,
we will set the seed value to 12345:

set.seed(12345)

stationary_ts <- arima.sim(model = list(order = c(1,0,0),
                                        ar = 0.5 ),
                           n = 500)

Now, let's plot the simulate time series with the ts_plot function:

library(TSstudio)

ts_plot(stationary_ts,
        title = "Stationary Time Series",
        Ytitle = "Value",
        Xtitle = "Index")
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We get the following output:

In this case, you can see that, overall, the mean of the series, over time, remains around the
zero line. In addition, the series' variance does not change over time. Let's utilize the
arima.sim function to create an example for non-stationary series:

set.seed(12345)

non_stationary_ts <- arima.sim(model = list(order = c(1,1,0),ar = 0.3),n =
500)

ts_plot(non_stationary_ts,
        title = "Non-Stationary Time Series",
        Ytitle = "Value",
        Xtitle = "Index")
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We get the following output:

On the other hand, the second example violates the stationary condition as it is trending
over time, which means it is changing over time.

We would consider a time series data as non-stationary whenever those conditions do not
hold. Common examples of a series with a non-stationary structure are as follows:

A series with a dominant trend: The series' mean changes over time as a
function of the change in the series trend, and therefore the series is non-
stationary
A series with a multiplicative seasonal component: In this case, the variance of
the series is a function of the seasonal oscillation over time, which either
increases or decreases over time
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The classic AirPassenger series (the monthly airline passenger numbers between 1949
and 1960) from the datasets package is a good example of a series that violates the two
conditions of the stationary process. Since the series has both a strong linear trend and a
multiplicative seasonal component, the mean and variance are both changing over time:

data(AirPassengers)

ts_plot(AirPassengers,
        title = "Monthly Airline Passenger Numbers 1949-1960",
        Ytitle = "Thousands of Passengers",
        Xtitle = "Year")

We get the following output:

Transforming a non-stationary series into a
stationary series
In most cases, unless you are very lucky, your raw data would probably come with a trend
or other form of oscillation that violates the assumptions of the stationary process.
Therefore, to handle this, you will have to apply some transformation steps in order to 
bring the series into a stationary state. Common transformations methods are differencing
the series (or de-trending) and log transformation (or both). Let's review the applications of
these methods.
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Differencing time series
The most common approach to transforming a non-stationary time series data into a
stationary state is by differencing the series with its lags. The main effect of differencing a
series is the removal of the series trend (or detrending the series), which help to stabilize
the mean of the series. We measured the degree or order of the series differencing by the
number of times we difference the series with its lags. For example, the following equation
defines the first order difference:

Here,  represents the first order difference of the series, and  and  represent the
series itself and its first lag. In some cases, the use of the first order difference is not
sufficient to bring the series to a stationary state, and you may want to apply second order
differencing:

Another form of differencing is seasonal differencing, which is based on differencing the
series with the seasonal lag:

Here, f represents the frequency of the series and  represents the seasonal lag of the
series. It is common to use seasonal differencing when a series has a seasonal component.
The diff function from the base package differences the input series with a specific lag by
setting the lag argument of the function to the relevant lag. Let's go back to the
AirPassenger series and see how the first order and seasonal differencing affect the
structure of the series. We will start with the first order difference:

ts_plot(diff(AirPassengers, lag = 1),
        title = "AirPassengers Series - First Differencing",
        Xtitle = "Year",
        Ytitle = "Differencing of Thousands of Passengers")
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We get the following output:

You can see that the first difference of the AirPassenger series removed the series trend
and that the mean of the series is, overall, constant over time. On the other hand, there is
clear evidence that the variation of the series is increasing over time, and therefore the 
series is not stationary yet. In addition to the first order difference, taking the seasonal
difference of the series could solve this issue. Let's add the seasonal difference to the first
order difference and plot it again:

ts_plot(diff(diff(AirPassengers, lag = 1), 12),
        title = "AirPassengers Series - First and Seasonal Differencing",
        Xtitle = "Year",
        Ytitle = "Differencing of Thousands of Passengers")



Forecasting with ARIMA Models Chapter 11

[ 331 ]

We get the following output:

The seasonal difference did a good job of stabilizing the series variation, as the series now
seems to be stationary.

Log transformation
In Chapter 5, Decomposition of Time Series Data, we saw the applications of the log
transformation for handling multiplicative time series data. Likewise, we can utilize this 
approach to stabilize a multiplicative seasonal oscillation, if it exists. This approach is not a
replacement for differencing, but an addition. For instance, in the example of the
AirPassenger in the preceding section, we saw that the first differencing is doing a great
job in stabilizing the mean of the series, but is not sufficient enough to stabilize the variance
of the series. Therefore, we can apply a log transformation to transform the seasonal
structure from multipliable to additive and then apply the first-order difference to
stationarize the series:

ts_plot(diff(log(AirPassengers), lag = 1),
        title = "AirPassengers Series - First Differencing with Log
Transformation",
        Xtitle = "Year",
        Ytitle = "Differencing/Log of Thousands of Passengers")
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We get the following output:

The log transformation with the first-order differencing is doing a better job of transforming
the series into a stationary state with respect to the double differencing (first-order with
seasonal differencing) approach we used prior.

The random walk process
The random walk, in the context of time series, describes a stochastic process of an object
over time, where the main characteristics of this process are as follows:

The starting point of this process at time 0 - Y0 is known
The movement (or the walk) of the series with random walk process from time
t-1 to time t are defined with the following equation:
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Here,  and  represent the value of the series at time t-1 and t, respectively, and 

represents a random number (or a white noise) with a mean of 0 and a variance of .
While the random walk process is not stationary, the first difference of a random walk
represents a stationary process like so:

As we mentioned previously,  has a constant mean and variance, and therefore  is a
stationary process. A random walk is commonly used to simulate possible future paths of a
series. For instance, we can simulate a random walk with the arima.sim function by
setting the d parameter of the order argument to 1. This is equivalent to a non-stationary
series with a first difference structure. The following code demonstrates the simulation of
20 different random walk paths of 500 steps, all starting at point 0 at time 0. We will create
two plots: one for the random walk paths and another for their first-order difference. We
will use the plotly package to do this:

library(plotly)

set.seed(12345)

p1 <- plot_ly()
p2 <- plot_ly()

for(i in 1:20){
   rm <- NULL
   rw <- arima.sim(model = list(order = c(0, 1, 0)), n = 500)
   p1 <- p1 %>% add_lines(x = time(rw), y = as.numeric(rw))
   p2 <- p2 %>% add_lines(x = time(diff(rw)), y = as.numeric(diff(rw)))
 }

Here, p1 represents the plot of the random walk simulation:

p1 %>% layout(title = "Simulate Random Walk",
              yaxis = list(title = "Value"),
              xaxis = list(title = "Index")) %>%
   hide_legend()
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We get the following output:

Here, p2 represents the corresponding plot of the first-order differencing of the random
walk simulation:

p2 %>% layout(title = "Simulate Random Walk with First-Order Differencing",
              yaxis = list(title = "Value"),
              xaxis = list(title = "Index")) %>%
   hide_legend()
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We get the following output:

The AR process
The AR process defines the current value of the series, Yt, as a linear combination of the
previous p lags of the series, and can be formalized with the following equation:

Following are the terms used in the preceding equation:

AR(p) is the notation for an AR process with p-order
c represents a constant (or drift)
p defines the number of lags to regress against Yt
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 is the coefficient of the i lag of the series (here,  must be between -1 and 1,
otherwise, the series would be trending up or down and therefore cannot be
stationary over time)
Yt-i is the i lag of the series
∈t represents the error term, which is white noise

An AR process can be used on time series data if, and only if, the series is
stationary. Therefore, before applying an AR process on a series, you will
have to verify that the series is stationary. Otherwise, you will have to
apply some transformation method (such as differencing, log
transformation, and so on) to transform the series into a stationary state.
Later in this chapter, we will introduce the ARIMA model, which can
handle non-stationary time series data. 

For instance, AR(1), the first-order AR process, is defined by the following equation:

Note that in the case of the AR(1) process, if the value of  or ,
the series is a random walk (assuming  is white noise). Whenever 

 or  the series is trending and therefore it cannot be
stationary.

Similarly, AR(2), the second-order AR process defines by the next equation:

In the following example, we will utilize the arima.sim function again to simulate an
AR(2) process structure time series data with 500 observations, and then use it to fit an AR
model. We will use the model argument to set the AR order to 2 and set the lags
coefficients  and :

set.seed(12345)

ar2 <- arima.sim(model = list(order = c(2,0,0),
                              ar = c(0.9, -0.3)),
                 n = 500)
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Let's review the simulate time series:

ts_plot(ar2,
         title = "Simulate AR(2) Series",
         Ytitle = "Value",
         Xtitle = "Index")

We get the following output:

The ar function from the stats package allows us to fit an AR model on time series data and
than forecast its future values. This function identifies the AR order automatically based on
the Akaike Information Criterion (AIC). The method argument allows you to define the
coefficients estimation method, such as the ordinary least squares (OLS) (which we saw in
Chapter 9, Forecasting with Linear Regression), maximum likelihood estimation (MLE), and
Yule-Walker (default). Let's apply the ar function to identify the AR order and estimate its
coefficients accordingly:

md_ar <- ar(ar2)
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Let's review the fitted model details:

md_ar

We get the following output:

##
## Call:
## ar(x = ar2)
##
## Coefficients:
## 1 2
## 0.8851 -0.2900
##
## Order selected 2 sigma^2 estimated as 1.049

As you can see from the preceding model summary, the ar function was able to identify
that the input series is a second order AR process, and provided a fairly close estimate for
the value of the actual coefficients,  (as opposed to the actual
coefficients' values, ).

Later on in this chapter, we will return to the AR model and discuss methods and
approaches for identifying whether a series has an AR structure and its order.

Identifying the AR process and its characteristics
In the preceding example, we simulated an AR(2) series, and it was clear that we need to
apply an AR model on the data. However, when working with real-time series data, you
will have to identify the structure of the series before modeling it. In the world of the non-
seasonal ARIMA family of models, a series could have one of the following structures:

AR
MA
Random walk
A combination of the preceding three (for example, AR and MA processes)

In this section, we will introduce the method for identifying the first case, that is, a series
with only an AR structure. In the following sections, we will generalize this method to the
rest of the cases (for example, MA, AR, MA, and so on). 
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Identifying the series structure includes the following two steps:

Categorizing the type of process (for example, AR, MA, and so on)
Once we have classified the process type, we need to identify the order of the
process (for example, AR(1), AR(2), and so on)

Utilizing the autocorrelation function (ACF) and partial autocorrelation function (PACF),
which we introduced in Chapter 7, Correlation Analysis, allows us to classify the process
type and identify its order. If the ACF output tails off and the PACF output cuts off at lag p,
this indicates that the series is an AR(p) process. Let's calculate and plot the ACF and PACF
for the simulated AR(2) series we created previously with the ACF and PACF functions.
First, we will use the par function to plot the two plots side by side by setting the mfrow
argument to c(1,2) (one row, two columns):

par(mfrow=c(1,2))

Now, we will generate the plots with the acf and pacf functions:

acf(ar2)
pacf(ar2)

We get the following output:
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In the case of the ar2 series, you can see that the ACF plot is tailing off and that the PACF
plot is cut off at the second lag. Therefore, we can conclude that the series has a second
order AR process.

The moving average process
In some cases, the forecasting model is unable to capture all the series patterns, and
therefore some information is left over in model residuals (or forecasting error) . The goal
of the moving average process is to capture patterns in the residuals, if they exist, by
modeling the relationship between Yt, the error term, ∈t, and the past q error terms of the
models (for example, ). The structure of the MA process is fairly
similar to the ones of the AR. The following equation defines an MA process with a q order:

The following terms are used in the preceding equation:

MA(q) is the notation for an MA process with q-order
 represents the mean of the series

 are white noise error terms
is the corresponding coefficient of 

q defines the number of past error terms to be used in the equation

Like the AR process, the MA equation holds only if the series is a
stationary process; otherwise, a transformation must be used on the series
before applying the MA process.

For example, the second-order MA process is defined by the following equation:



Forecasting with ARIMA Models Chapter 11

[ 341 ]

In a similar manner, since we simulated the AR(2) series in the previous section, we will
utilize the arima.sim function to simulate a series with an MA(2) structure. In this case, we
will set the q parameter in the order argument to 2 and set the MA coefficients to 
 and :

set.seed(12345)

ma2 <- arima.sim(model = list(order = c(0, 0, 2),
 ma = c(0.5, -0.3)),
 n = 500)

We will use the ts_plot function to plot the simulated series:

ts_plot(ma2,
        title = "Simulate MA(2) Series",
        Ytitle = "Value",
        Xtitle = "Index")

We get the following output:
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Modeling the MA process can be done with the arima function from the stats package.
This function, when setting the order of the AR and the differencing components of the
model to 0 with the order argument (that is, p = 0 and d = 0), is modeling only on the MA
component. For instance, let's apply a second-order MA model with the arima function on
the simulated MA(2) series:

md_ma <- arima(ma2, order = c(0,0,2), method = "ML")

Similar to the ar function, you can select the coefficients estimation
approach. In this case, there are three methods: maximum likelihood
(ML), minimize conditional sum-of-squares (CSS), and the combination
of the two, which is known as CSS-ML.

The output of the arima function is more detailed than the ones of the ar function, as it
also provides the level of significance of each coefficient (the s.e.):

md_ma

We get the following output:

##
## Call:
## arima(x = ma2, order = c(0, 0, 2), method = "ML")
##
## Coefficients:
## ma1 ma2 intercept
## 0.530 -0.3454 0.0875
## s.e. 0.041 0.0406 0.0525
##
## sigma^2 estimated as 0.9829: log likelihood = -705.81, aic = 1419.62

Identifying the MA process and its characteristics
Similar to the AR process, we can identify an MA process and its order with the ACF and
PACF functions. If the ACF is cut off at lag q and the PACF function tails off, we can
conclude that the process is an MA(q). Let's repeat the process we applied on the ar2 series
with the ma2 series:

par(mfrow=c(1,2))
acf(ma2)
pacf(ma2)
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We get the following output:

In the case of the ma2 series, the ACF plot is cut off on the second lag (note that lag 0 is the
correlation of the series with itself, and therefore it is equal to 1 and we can ignore it), and
so the PACF tails off. Therefore, we can conclude that the ma2 series is an MA(2) process.

The ARMA model
Up until now, we have seen how the applications of AR and MA are processed separately.
However, in some cases, combining the two allows us to handle more complex time series
data. The ARMA model is a combination of the AR(p) and MA(q) processes and can be
written as follows:
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The following terms are used in the preceding equation:

ARMA(p,q) defines an ARMA process with a p-order AR process and q-order
moving average process
Yt represents the series itself
c represents a constant (or drift)
p defines the number of lags to regress against Yt

 is the coefficient of the i lag of the series
Yt-1 is the i lag of the series
q defines the number of past error terms to be used in the equation

 is the corresponding coefficient of 
 are white noise error terms

 represents the error term, which is white noise

For instance, an ARMA(3,2) model is defined by the following equation:

Let's simulate a time series data with an ARMA(1,2) structure with the arima.sim function
and review the characteristics of the ARMA model. We will set the p and q parameters of
the order argument to 1 and 2, respectively, and set the AR coefficient as , and the
MA coefficients as  and :

set.seed(12345)

arma <- arima.sim(model = list(order(1,0,2),
                               ar = c(0.7),
                               ma = c(0.5,-0.3)),
                  n = 500)

Let's plot and review the series structure with the ts_plot function:

ts_plot(arma,
        title = "Simulate ARMA(1,2) Series",
        Ytitle = "Value",
        Xtitle = "Index")
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We get the following output:

Fitting an ARMA model is straightforward with the arima function. In this case, we have
to set the p and q parameters on the order argument: 

arma_md <- arima(arma, order = c(1,0,2))

You can observe from the following output of the fitted model that the values of the model
coefficients are fairly close to the one we simulated:

arma_md

We get the following output:

##
## Call:
## arima(x = arma, order = c(1, 0, 2))
##
## Coefficients:
##          ar1     ma1      ma2  intercept
##       0.7439  0.4785  -0.3954     0.2853
## s.e.  0.0657  0.0878   0.0849     0.1891
##
## sigma^2 estimated as 1.01:  log likelihood = -713.18,  aic = 1436.36
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Here, as the coefficient's name implies, ar1, ma1, and ma2 represent the estimation of the 
, , and  coefficients, respectively. You can note that the intercept parameter is not

statistically significant, which should make sense as we didn't add an intercept to the
simulated data.

Identifying an ARMA process 
Identifying the ARMA process follows the same approach that we used previously with the
AR and MA processes. An ARMA process exists in time series data if both the ACF and
PACF plots tail off, as we can see in the following example:

par(mfrow=c(1,2))
acf(arma)
pacf(arma)

We get the following output:

On the other hand, unlike the AR and MA processes, we cannot conclude the order of the
ARMA process. There are several approaches for tuning the ARMA p and q parameters:

Manual tuning: By starting with a combination of p and q and using some error
criteria for identifying the model parameters.
Grid search: By trying different combinations of the p and q parameters based on
the grid matrix. Likewise, manual tuning and the selection of a specific
combination of p and q parameters should be based on error criterion.
Algorithm-based search: By using a function or algorithm for tuning the model
parameters.



Forecasting with ARIMA Models Chapter 11

[ 347 ]

Later on in this chapter, we will introduce the auto.arima function from the forecast
package, which is one of the most popular algorithms for the automation of the ARIMA
family of models, including the ARMA model.

Manual tuning of the ARMA model
Manually tuning the ARMA model is mainly based on experimentation, intuition, common
sense, and experience. The tuning process is based on the following steps:

Set some initial values for p and q. Typically, it is recommended to start with the1.
minimum values of p and q (for example, p = 1 and q = 1).
Evaluate the fit of the model based on some error criterion. The most common2.
error criteria are the Akaike Information Criterion (AIC) or Bayesian
information criterion (BIC). 
Adjust the values of either p and q.3.
Evaluate the change in the error metric.4.
Repeat the last two steps until you cannot achieve additional improvements of5.
the error metric.

The main reasons for starting the tuning with minimum values of p and q is related to the
following reasons:

Cost: Since the order of the model is higher, the cost of the model is also higher
and the degree of freedom of the model is reduced 
Complexity: Increases as the order of the model increases, which may result in
overfitting

AIC and BIC are the most appropriate to use in this case since these two methods penalize
models with higher order. This can be seen in the following formulas:

Following are the terms used in the preceding equations:

k represents the model number of parameters, or p+q
 represents the maximum value of the likelihood function

n is the number of input observations
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The lower the AIC or BIC score, the better the model will fit. You can note that penalizing
the BIC metric is higher with respect to AIC whenever . Let's use the
simulated ARMA series we created previously to apply this tuning approach. For
simplicity reasons, we will not include an intercept and restrict the maximum value of k,
that is, the model order (or p+q), to four. We will try the ARMA(1,1) model first:

arima(arma, order = c(1, 0, 1), include.mean = FALSE)

We get the following output:

##
## Call:
## arima(x = arma, order = c(1, 0, 1), include.mean = FALSE)
##
## Coefficients:
##          ar1     ma1
##       0.4144  0.8864
## s.e.  0.0432  0.0248
##
## sigma^2 estimated as 1.051:  log likelihood = -723,  aic = 1452

The AIC score of the initial model is 1452.

By default, the model output returns the AIC score of the model. If you
wish to retrieve the BIC value, you can apply the BIC function, which
returns the BIC value. For example, BIC(arima(arma, order = c(1,
0, 1), include.mean = FALSE)) will return 1441.73, which is the BIC
score of the ARMA model we fit to the simulated data we created in the
preceding example.

We will now start to increase the value of p and q while monitoring the change of the AIC score. The next
model is the ARMA(2,1) model:

arima(arma, order = c(2, 0, 1), include.mean = FALSE)

We get the following output:

##
## Call:
## arima(x = arma, order = c(2, 0, 1), include.mean = FALSE)
##
## Coefficients:
##          ar1     ar2     ma1
##       0.3136  0.1918  0.9227
## s.e.  0.0486  0.0484  0.0183
##
## sigma^2 estimated as 1.019:  log likelihood = -715.26,  aic = 1438.52
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Increasing p from 1 to 2 improves the AIC score, and therefore the ARMA(2,1) model is
superior over the ARMA(1,1) model. Now, we will check ARMA(1,2):

arima(arma, order = c(1, 0, 2), include.mean = FALSE)

We get the following output:

##
## Call:
## arima(x = arma, order = c(1, 0, 2), include.mean = FALSE)
##
## Coefficients:
##          ar1     ma1      ma2
##       0.7602  0.4654  -0.4079
## s.e.  0.0626  0.0858   0.0832
##
## sigma^2 estimated as 1.014:  log likelihood = -714.27,  aic = 1436.54

The AIC score of ARMA(1,2) is even lower than the one of ARMA(2,1), and therefore it is
now the superior model. Now, we will try the last combination of ARMA(2,2) and see if we
can achieve additional improvements:

arima(arma, order = c(2, 0, 2), include.mean = FALSE)

We get the following output:

##
## Call:
## arima(x = arma, order = c(2, 0, 2), include.mean = FALSE)
##
## Coefficients:
##          ar1     ar2     ma1      ma2
##       0.7239  0.0194  0.4997  -0.3783
## s.e.  0.2458  0.1257  0.2427   0.2134
##
## sigma^2 estimated as 1.014:  log likelihood = -714.26,  aic = 1438.51

The AIC score of the ARMA(2,2) model is higher than the one of the ARMA(1,2), and so we
will select the ARMA(1,2) model. The following table summarizes the AIC score of the four
models we tested:

Model AIC Score
ARMA(1,1) 1452.00
ARMA(2,1) 1438.52
ARMA(1,2) 1436.54
ARMA(2,2) 1438.51
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The use of the AIC or BIC score as a model selection criterion does not guarantee that the
selected model (by either AIC or BIC score) does not violate the model assumptions.
Therefore, the next step is to apply a residual analysis in order to verify that, as we saw in
Chapter 8, Forecasting Strategies, the residuals are as follows:

Mean and variance are constant
White noise or not correlated
Normally distributed

For instance, we can use the checkresiduals function from the forecast package in order
to validate those assumptions on the selected model:

library(forecast)

checkresiduals(arima(arma, order = c(1, 0, 2), include.mean = FALSE))

You can observe in the following checkresiduals output plot that the residuals of the
ARMA(1,2) model satisfy the model assumptions that we defined previously:

The checkresiduals function also returns the Ljung-Box test results, which suggests that
the residuals are white noise:

##
##  Ljung-Box test
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##
## data:  Residuals from ARIMA(1,0,2) with zero mean
## Q* = 5.3129, df = 7, p-value = 0.6218
##
## Model df: 3.   Total lags used: 10

Forecasting AR, MA, and ARMA models
Forecasting any of the models we saw until now was straightforward: we used the
forecast function from the forecast package in a similar manner to how we used it in the
previous chapter. For instance, the following code demonstrates the forecast of the next 100
observations of the AR model we trained previously in The AR process section with the ar
function:

ar_fc <- forecast(md_ar, h = 100)

We can use plot_forecast to plot the forecast output:

plot_forecast(ar_fc,
 title = "Forecast AR(2) Model",
 Ytitle = "Value",
 Xtitle = "Year")

We get the following output:
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The ARIMA model
One of the limitations of the AR, MA, and ARMA models is that they cannot handle non-
stationary time series data. Therefore, if the input series is non-stationary, a preprocessing
step is required to transform the series from a non-stationary state into a stationary state.
The ARIMA model provides a solution for this issue by adding the integrated process for
the ARMA model. The Integrated (I) process is simply differencing the series with its lags,
where the degree of the differencing is represented by the d parameter. The differencing
process, as we saw previously, is one of the ways you can transform the methods of a series
from non-stationary to stationary. For instance, Yt - Yt-1 represents the first differencing of
the series, while (Yt - Yt-1) - (Yt-1 - Yt-2) represents the second differencing. We can generalize
the differencing process with the following equation:

Yd is the d differencing of the series. Let's add the differencing component to the ARMA
model and formalize the ARIMA model:

Following are the terms used in the preceding equation:

ARIMA(p,d,q) defines an ARIMA process with a p-order AR process, d-degree of
differencing, and q-order MA process
Yd is the d difference of series Yt

c represents a constant (or drift)
p defines the number of lags to regress against Yt

 is the coefficient of the i lag of the series
Yd-i is the d difference of the i lag of the series
q defines the number of past error terms to be used in the equation

 is the corresponding coefficient of ∈t-i

 are white noise error terms
∈t represents the error term, which is white noise
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As you can see, both the AR and MA models can be represented with the ARMA model,
you can also represent the AR, MA, or ARMA models with the ARIMA model, for example:

The ARIMA(0, 0, 0) model is equivalent to white noise
The ARIMA(0, 1, 0) model is equivalent to a random walk
The ARIMA(1, 0, 0) model is equivalent to an AR(1) process
The ARIMA(0, 0, 1) model is equivalent to an MA(1) process
The ARIMA(1, 0, 1) model is equivalent to an ARMA(1,1) process

Identifying an ARIMA process 
In this section, we will apply an ARIMA model, instead of the ARMA model, whenever the
input series is not stationary. Differencing is required to transfer it into a stationary state.
Identifying and setting the ARIMA model is a two-step process and is based on the
following steps:

Identify the degree of differencing that is required to transfer the series into a1.
stationary state
Identify the ARMA process (or AR and MA processes), as introduced in the2.
previous section

Based on the findings of these steps, we will set the model parameters p, d, and q. 

Identifying the model degree of differencing
Similar to the p and q parameters, setting the d parameter (the degree of differencing of the
series) can be done with the ACF and PACF plots. In the following example, we will use the
monthly prices of Robusta coffee since 2000. This series is part of the Coffee_Prices
multiple time series objects from the TSstudio package. We will start by loading the
Coffee_Prices series and subtracting the Robusta monthly prices since January 2010
using the window function:

data("Coffee_Prices")

robusta_price <- window(Coffee_Prices[,1], start = c(2000, 1))
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Let's plot the robusta_price series and review its structure with the ts_plot function:

ts_plot(robusta_price,
        title = "The Robusta Coffee Monthly Prices",
        Ytitle = "Price in USD",
        Xtitle = "Year")

We get the following output:

As you can see, the Robusta coffee prices over time are trending up, and therefore it is not
in a stationary state. In addition, since this series represents continues prices, it is likely that
the series has a strong correlation relationship with its past lags (as changes in price are
typically close to the previous price). We will use the acf function again to identify the type
of relationship between the series and it lags:

acf(robusta_price)
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We get the following output:

As you can see in the preceding output of the ACF plot, the correlation of the series with its
lags is slowly decaying over time in a linear manner. Removing both the series trend and
correlation between the series and its lags can be done by differencing the series. We will
start with the first differencing using the diff function:

robusta_price_d1 <- diff(robusta_price)

Let's review the first difference of the series with the acf and pacf functions:

par(mfrow=c(1,2))
acf(robusta_price_d1)
pacf(robusta_price_d1)

We get the following output:



Forecasting with ARIMA Models Chapter 11

[ 356 ]

The ACF and PACF plots of the first difference of the series indicate that an AR(1) process
is appropriate to use on the differenced series since the ACF is tailing off and the PACF cuts
on the first lag. Therefore, we will apply an ARIMA(1,1,0) model on the
robusta_price series to includes the first difference:

robusta_md <- arima(robusta_price, order = c(1, 1, 0))

We will use the summary function to review the model details:

summary(robusta_md)

We get the following output:

##
## Call:
## arima(x = robusta_price, order = c(1, 1, 0))
##
## Coefficients:
##          ar1
##       0.2780
## s.e.  0.0647
##
## sigma^2 estimated as 0.007142:  log likelihood = 231.38,  aic = -458.76
##
## Training set error measures:
##                       ME       RMSE        MAE        MPE     MAPE
## Training set 0.002595604 0.08432096 0.06494772 0.08104715 4.254984
##                  MASE        ACF1
## Training set 1.001542 0.001526295

You can see from the model summary output that the ar1 coefficient is statistically
significant. Last but not least, we will check the model residuals:

checkresiduals(robusta_md)
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We get the following output:

The Ljung-Box test suggested that the residuals are white noise:

##
##  Ljung-Box test
##
## data:  Residuals from ARIMA(1,1,0)
## Q* = 26.896, df = 23, p-value = 0.2604
##
## Model df: 1.   Total lags used: 24

Overall, the plot of the model's residuals and the Ljung-Box test indicate that the residuals
are white noise. The ACF plot indicates that there are some correlated lags, but they are
only on the border of being significant and so we can ignore them.
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The seasonal ARIMA model
The Seasonal ARIMA (SARIMA) model, as its name implies, is a designated version of the
ARIMA model for time series with a seasonal component. As we saw in Chapter
6, Seasonality Analysis, and Chapter 7, Correlation Analysis, a time series with a seasonal
component has a strong relationship with its seasonal lags. The SARIMA model is utilizing
the seasonal lags in a similar manner to how the ARIMA model is utilizing the non-
seasonal lags with the AR and MA processes and differencing. It does this by adding the
following three components to the ARIMA model:

SAR(P) process: A seasonal AR process of the series with its past P seasonal
lags. For example, a SAR(2) is an AR process of the series with its past two
seasonal lags, that is, , where Φ represents the
seasonal coefficient of the SAR process, and f represents the series frequency.
SMA(Q) process: A seasonal MA process of the series with its past Q seasonal
error terms. For instance, a SMA(1) is a moving average process of the series with
its past seasonal error term, that is, , where  represents the
seasonal coefficient of the SMA process, and f represents the series frequency.
SI(D) process: A seasonal differencing of the series with its past D seasonal lags.
In a similar manner, we can difference the series with its seasonal lag, that is, 

.

We use the following notation to denote the SARIMA parameters:

Like before, the p and q parameters define the order of the AR and MA processes with its
non-seasonal lags, respectively, and d defines the degree of differencing of the series with
its non-seasonal lags. Likewise, the P and Q parameters represent the corresponding order
of the seasonal AR and MA processes of the series with its seasonal lags, and D defines the
degree of differencing of the series with its non-seasonal lags. For example, a 

 model is a combination of an AR process of one non-seasonal
and one seasonal lag, along with seasonal differencing.
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Tuning the SARIMA model
The tuning process of the SARIMA model follows the same logic as one of the ARIMA
models. However, the complexity of the model increases as there are now six parameters to
tune, that is, p, d, q, P, D, and Q, as opposed to three with the ARIMA model. Luckily, the
tuning of the P, D, and Q seasonal parameters follows the same logic as the ones of p, d, q,
respectively, with the use of the ACF and PACF plots. The main difference between the
tuning of these two groups of parameters (non-seasonal and seasonal) is that the non-
seasonal parameters are tuned with the non-seasonal lags, as we saw previously with the
ARIMA model. On the other hand, the tuning of the seasonal parameters are tuned with
the seasonal lags (for example, for monthly series with lags 12, 24, 36, and so on).

Tuning the non-seasonal parameters
Applying the same logic that we used with the ARIMA model, tuning the non-seasonal
parameters of the SARIMA model is based on the ACF and PACF plots:

An AR(p) process should be used if the non-seasonal lags of the ACF plot are
tailing off, while the corresponding lags of the PACF plots are cutting off on the p
lag
Similarly, an MA(q) process should be used if the non-seasonal lags of the ACF
plot are cutting off on the q lag and the corresponding lags of the PACF plots are
tailing off
When both the ACF and PACF non-seasonal lags are tailing off, an ARMA model
should be used
Differencing the series with the non-seasonal lags should be applied when the
non-seasonal lags of the ACF plot are decaying in a linear manner

Tuning the seasonal parameters 
Tuning the seasonal parameters of the SARIMA model with ACF and PACF follows the
same guidelines as the ones we used for selecting the ARIMA parameters:

We will use a seasonal autoregressive process with an order of P, or SAR(P), if
the seasonal lags of the ACF plot are tailing off and the seasonal lags of the PACF
plot are cutting off by the P seasonal lag
Similarly, we will apply a seasonal moving average process with an order of Q,
or SMA(Q), if the seasonal lags of the ACF plot are cutting off by the Q seasonal
lag and the seasonal lags of the PACF plot are tailing off
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An ARMA model should be used whenever the seasonal lags of both the ACF
and PACF plots are tailing off
Seasonal differencing should be applied if the correlation of the seasonal lags are
decaying in a linear manner

Forecasting US monthly natural gas consumption
with the SARIMA model – a case study
In this section, we will apply what we learned throughout this chapter and forecast the
monthly consumption of natural gas in the US using the SARIMA model. Let's load the
USgas series from the TSstudio package:

data(USgas)

Let's plot the series with the ts_plot function and review the main characteristics of the
series:

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year")

We get the following output:
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As we saw in the previous chapters, the USgas series has a strong seasonal pattern, and
therefore among the ARIMA family of models, the SARIMA model is the most appropriate
model to use. In addition, since the series is trending up, we can already conclude that the
series is not stationary and some differencing of the series is required. We will start by
setting the training and testing partitions with the ts_split functions, leaving the last 12
months of the series as the testing partition:

USgas_split <- ts_split(USgas, sample.out = 12)

train <- USgas_split$train
test <- USgas_split$test

Before we start the training process of the SARIMA model, we will conduct diagnostics in
regards to the series correlation with the ACF and PACF functions. Since we are interested
in viewing the relationship of the series with its seasonal lags, we will increase the number
of lags to calculate and display by setting the lag.max argument to 60 lags:

par(mfrow=c(1,2))

acf(train, lag.max = 60)

pacf(train, lag.max = 60)

We get the following output: 
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The preceding ACF plot indicates that the series has a strong correlation with both the
seasonal and non-seasonal lags. Furthermore, the linear decay of the seasonal lags indicates
that the series is not stationary and that seasonal differencing is required. We will start with
a seasonal differencing of the series and plot the output to identify whether the series is in a
stationary state:

USgas_d12 <- diff(train, 12)

ts_plot(USgas_d12,
        title = "US Monthly Natural Gas consumption - First Seasonal
Difference",
        Ytitle = "Billion Cubic Feet (First Difference)",
        Xtitle = "Year")

We get the following output:

While we removed the series trend, the variation of the series is not stable yet. Therefore,
we will also try to take the first difference of the series:

USgas_d12_1 <- diff(diff(USgas_d12, 1))

ts_plot(USgas_d12_1,
        title = "US Monthly Natural Gas consumption - First Seasonal and
Non-Seasonal Differencing",
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        Ytitle = "Billion Cubic Feet (Difference)",
        Xtitle = "Year")

We get the following output:

After taking the first order differencing, along with the first order seasonal differencing, the
series seems to stabilize around the zero x axis line (or fairly close to being stable). After
transforming the series into a stationary state, we can review the ACF and PACF functions
again to identify the required process:

par(mfrow=c(1,2))

acf(USgas_d12_1, lag.max = 60)

pacf(USgas_d12_1, lag.max = 60)
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We get the following output:

The main observation from the preceding ACF and PACF plots is that both the non-
seasonal and seasonal lags (in both plots) are tailing off. Hence, we can conclude that after
we difference the series and transform them into a stationary state, we should apply an
ARMA process for both the seasonal and non-seasonal components of the SARIMA model.

The tuning process of the SARIMA model parameters follow the same steps that we
applied previously with the ARMA model:

We set the model maximum order (that is, the sum of the six parameters of the
model)
We set a range of a possible combination of the parameters' values under the
model's maximum order constraint
We test and score each model, that is, a typical score methodology with the AIC
(which we used previously) or BIC 
We select a set of parameter combinations that give the best results



Forecasting with ARIMA Models Chapter 11

[ 365 ]

Now, we will start the tuning process for the USgas series by setting the model order to
seven and setting the values of the model parameters to be in the range of 0 and 2. Given
that we already identified the values of d and D (for example, d = 1 and D = 1), which are
the differencing parameters of the SARIMA model, we now can focus on tuning the
remaining four parameters of the model, that is, p, q, P, and Q. Let's define those parameters
and assign the search values:

p <- q <- P <- Q <- 0:2

Under the model's order constraint and the possible range of values of the model
parameters, there are 66 possible combinations. Therefore, it will make sense, in this case, to
automate the search process and build a grid search function to identify the values of the
parameters that minimize the AIC score. We will utilize the expand.grid function in order
to create a data.frame with all the possible search combinations:

arima_grid <- expand.grid(p,q,P,Q)

names(arima_grid) <- c("p", "q", "P", "Q")

arima_grid$d <- 1

arima_grid$D <- 1

Next, we will trim the grid search table by using combinations that exceed the order
constraint of the model (for example, k ≤ 7). We will calculate and assign this to the
k variable with the rowSums function:

arima_grid$k <- rowSums(arima_grid)

We will utilize the filter function from the dplyr package to remove combinations where
the k value is greater than 7:

library(dplyr)

arima_grid <- arima_grid %>% filter(k <= 7)
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Now that the grid search table is ready, we can start the search process. We will use the
lapply function to iterate over the grid search table. This function will train the SARIMA
model and score its AIC for each set of parameters in the grid search table. The arima
function can train the SARIMA model by setting the seasonal argument of the model with
the values of P, D, and Q:

arima_search <- lapply(1:nrow(arima_grid), function(i){
   md <- NULL
   md <- arima(train, order = c(arima_grid$p[i], 1, arima_grid$q[i]),
seasonal = list(order = c(arima_grid$P[i], 1, arima_grid$Q[i])))
   results <- data.frame(p = arima_grid$p[i], d = 1, q = arima_grid$q[i],
                         P = arima_grid$P[i], D = 1, Q = arima_grid$Q[i],
                         AIC = md$aic)
 }) %>% bind_rows() %>% arrange(AIC)

We used the bind_rows and arrange functions to append the search results and arranged
the table for the dplyr functions. Let's review the top results of the search table:

head(arima_search)

We get the following output:

##   p d q P D Q      AIC
## 1 1 1 1 2 1 1 2459.807
## 2 0 1 2 2 1 1 2461.229
## 3 1 1 1 0 1 1 2463.866
## 4 1 1 1 1 1 2 2464.550
## 5 1 1 1 0 1 2 2464.873
## 6 1 1 1 1 1 1 2465.310

The leading model based on the preceding search table is the 
model. Before we finalize the forecast, let's evaluate the selected model's performance on
the testing set. We will retrain the model using the settings of the selected model:

USgas_best_md <- arima(train, order = c(1,1,1), seasonal = list(order =
c(2,1,1)))

The model coefficients, as we can see in the following model summary, are all statistically
significant at a level of 0.1:

USgas_best_md
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We get the following output:

##
## Call:
## arima(x = train, order = c(1, 1, 1), seasonal = list(order = c(2, 1,
1)))
##
## Coefficients:
##          ar1      ma1     sar1    sar2     sma1
##       0.4143  -0.9244  -0.0216  -0.256  -0.7565
## s.e.  0.0733   0.0291   0.0956   0.088   0.0803
##
## sigma^2 estimated as 9837:  log likelihood = -1223.9,  aic = 2459.81

Let's use the USgas_best_md trained model to forecast the corresponding observations of
the testing set:

USgas_test_fc <- forecast(USgas_best_md, h = 12)

Like we did previously, we will assess the model's performance with the accuracy function:

accuracy(USgas_test_fc, test)

We get the following output:

## ME RMSE MAE MPE MAPE MASE
## Training set 3.486041 96.13846 70.81773 0.03448147 3.445378 0.6600763
## Test set 173.187631 190.79318 180.62400 7.05220971 7.327692 1.6835560
## ACF1 Theil's U
## Training set 0.008556121 NA
## Test set -0.056179946 0.730488

We can use the performance of the seasonal naive model we used in Chapter 8, Forecasting
Strategies (using the same training and testing set), as a benchmark for the SARIMA model's
performance. Recall that the seasonal naive model's MAPE score was 5.2% on the training
set and 9.7% on the testing set. Therefore, the SARIMA provides us with a lift in accuracy
with a MAPE score of 3.4% and 7.3% on the training and testing partitions, respectively.

Now, we will use the test_forecast function to get a more intuitive view of the model's
performance on the training and testing partitions:

test_forecast(USgas,
              forecast.obj = USgas_test_fc,
              test = test)
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We get the following output:

As you can see, the SARIMA model successfully captures the seasonal and trend pattern of
the series. On the other hand, the model finds it challenging to capture the seasonal peaks
(month of January) on the training partition and has 6.7% absolute error for the month of
January (yearly peak) in the testing partition. This is the result of high fluctuation during
the winter time. We can handle this uncertainty of the model during peak times with the
model confidence intervals or path simulations the we looked at in Chapter 8, Forecasting
Strategies.

At this point, you should pause and evaluate the general performance of the model thus far
on the major metrics:

AIC score on the training set
The model coefficients significant
MAPE score on both the training and testing set
Benchmark the performance against other models (for example, a naive model)
Fitted and forecasted plot

If you are satisfied with the results of the model on the different
performance metrics, you should move forward and retrain the model
with all the series and generate the final forecast. Otherwise, you should
return the model parameters and repeat the evaluation process.
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Now that we've satisfied the preceding conditions, we can move on to the last step of the
forecasting process and generate the final forecast with the selected model. We will start by
retraining the selected model on all the series:

final_md <- arima(USgas, order = c(1,1,1), seasonal = list(order =
c(2,1,1)))

Before we forecast the next 12 months, let's verify that the residuals of the model satisfy the
model condition:

checkresiduals(final_md)

We get the following output:

The output of the Ljung-Box test suggested that the residuals of the model are white noise:

## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)(2,1,1)[12]
## Q* = 26.254, df = 19, p-value = 0.1233
##
## Model df: 5. Total lags used: 24
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By looking at the preceding residuals plot, you can see that the residuals are white noise
and normally distributed. Furthermore, the Ljung-Box test confirms that there is no auto-
correlation left on the residuals—with a p-value of 0.12, we cannot reject the null hypothesis
that the residuals are white noise. We are good to go! Let's use the forecast function to
forecast the next 12 months of the USgas series:

USgas_fc <- forecast(final_md, h = 12)

We can plot the forecast with the plot_forecast function:

plot_forecast(USgas_fc,
              title = "US Natural Gas Consumption - Forecast",
              Ytitle = "Billion Cubic Feet",
              Xtitle = "Year")

We get the following output:
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The auto.arima function
One of the main challenges of forecasting with the ARIMA family of models is the
cumbersome tuning process of the models. As we saw in this chapter, this process includes
many manual steps that are required for verifying the structure of the series (stationary or
non-stationary), data transformations, descriptive analysis with the ACF and PACF plots to
identify the type of process, and eventually tune the model parameters. While it might take
a few minutes to train an ARIMA model for a single series, it may not scale up if you have
dozens of series to forecast.

The auto.arima function from the forecast package provides a solution to this issue. This
algorithm automates the tuning process of the ARIMA model with the use of statistical
methods to identify both the structure of the series (stationary or not) and type (seasonal or
not), and sets the model's parameters accordingly. For example, we can utilize the function
to forecast USgas:

USgas_auto_md1 <- auto.arima(train)

Using the default arguments of the auto.arima function returns the ARIMA model that
minimizes the AIC score. In this case, a  model was selected with an
AIC score of 2480.57:

USgas_auto_md1

We get the following output:

## Series: train
## ARIMA(1,0,4)(1,1,2)[12] with drift
##
## Coefficients:
##          ar1     ma1     ma2     ma3     ma4     sar1     sma1     sma2
##       0.3405  0.1773  0.0473  0.1731  0.1617  -0.3743  -0.3040  -0.4527
## s.e.  0.2970  0.2984  0.1429  0.0854  0.1015   0.2831   0.2672   0.2022
##        drift
##       2.3219
## s.e.  0.3678
##
## sigma^2 estimated as 10537:  log likelihood=-1230.28
## AIC=2480.57   AICc=2481.71   BIC=2513.7
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By default, the auto.arima function applies a shorter model search by using a step-wise
approach for reducing the search time. The trade-off of this approach is that the model may
miss some models that may achieve better results. This can be seen in the results of
USgas_auto_md1, which achieved a higher AIC score than the model we tuned with the
grid search we used previously (2480.57 versus 2459.81 in the previous model).

We can improvise with the auto.arima results by setting the search argument of the
model. The step-wise argument, when set to FALSE, allows you to set a more robust and
thorough search, with the cost of higher search time. This trade-off between performance
and compute time can be balanced whenever you have prior knowledge about the series'
structure and characteristics. For example, let's retrain the training set of the USgas series
again, this time using the following settings:

Set the differencing parameters d and D to 1.
Limit the order of the model to seven by using the max.order argument. The
max.order argument defines the maximum values of p+q+P+Q, hence we should
set it to five (given that d and D are set to 1).
Under these constraints, search all possible combinations by setting the
stepwise argument to FALSE.
Set the approximation argument to FALSE for more accurate calculations of the
information criteria:

USgas_auto_md2 <- auto.arima(train,
                             max.order = 5,
                             D = 1,
                             d = 1,
                             stepwise = FALSE,
                             approximation = FALSE)

You can see from the following results that with the robust search, the auto.arima
algorithm returns the same model that was identified with the grid search we used in the
Seasonal ARIMA model section:

USgas_auto_md2
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We get the following output:

## Series: train
## ARIMA(1,1,1)(2,1,1)[12]
##
## Coefficients:
## ar1 ma1 sar1 sar2 sma1
## 0.4143 -0.9244 -0.0216 -0.256 -0.7565
## s.e. 0.0733 0.0291 0.0956 0.088 0.0803
##
## sigma^2 estimated as 10087: log likelihood=-1223.9
## AIC=2459.81 AICc=2460.24 BIC=2479.66

Linear regression with ARIMA errors
In Chapter 9, Forecasting with Linear Regression, we saw that with some simple steps, we can
utilize a linear regression model as a time series forecasting model. Recall that a general
form of the linear regression model can be represented by the following equation:

One of the main assumptions of the linear regression model is that the error term of the
series, , is the white noise series (for example, there is no correlation between the residuals
and their lags). However, when working with time series data, this assumption is eased as,
typically, the model predictors do not explain all the variations of the series, and some
patterns are left on the model residuals. An example of the failure of this assumption can be
seen while fitting a linear regression model to forecast the AirPassenger series. 

Violation of white noise assumption
To illustrate this point, we will utilize the tslm function to regress the AirPassenger
series with its trend, seasonal component, and seasonal lag (lag 12), and then evaluate the
model residuals with the checkresiduals function. Before we start with the training
process, let's prepare the data and create new features to represent the series trend and
seasonal (using the month function from the lubridate package) components, as well as the
seasonal lag:

df <- ts_to_prophet(AirPassengers)

names(df) <- c("date", "y")
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df$lag12 <- dplyr::lag(df$y, n = 12)

library(lubridate)

df$month <- factor(month(df$date, label = TRUE), ordered = FALSE)

df$trend <- 1:nrow(df)

Here, the three variables represent the following:

lag12: A numeric variable that represents the seasonal lag of the series (that is,
lag 12)
month: A categorical variable (12 categories, one for each month of the year) that
represents the seasonal component of the series
trend: A numeric variable that represents the marginal effect of moving in time
by one index unit, which in this case is the marginal change of the series by
moving in time by one month

Now, we will split the series into training and testing partitions, leaving the last 12 months
for testing using the ts_split function:

par <- ts_split(ts.obj = AirPassengers, sample.out = 12)

train <- par$train

test <- par$test

For the regression of the time series object with an external data.frame object (df), we will
apply the same split for training and testing partitions on the predictor's
data.frame object: 

train_df <- df[1:(nrow(df) - 12), ]
test_df <- df[(nrow(df) - 12 + 1):nrow(df), ]

Now, we can start to train the model with the tslm function:

md1 <- tslm(train ~ season + trend + lag12, data = train_df)

Let's use the checkresiduals function to review the model's residuals:

checkresiduals(md1)
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We get the following output:

In the preceding ACF plot, the residuals series has a strong correlation with its past lags,
and therefore the series is not white noise. We can conclude from the residuals plot that the
regression model could not capture all the series patterns. Generally, this should not come
as a surprise since the variation of the series could be affected by other variables, such as
the ticket and oil prices, the unemployment rate, and other external factors.

A simple solution to this problem is to model the error terms with the ARIMA model and
add it to the regression.
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Modeling the residuals with the ARIMA model
As we saw in the preceding ACF plot, the AirPassengers residuals indicate that the
model was unable to capture all the patterns of the series. Another way to think about this
is that the modeling of the series is not complete yet, and additional modeling can be
applied on the model residuals to reveal the true error term of the model. For instance, the
following expression describes the linear relationship between the AirPassengers series
and the trend, month, and lag12 variables:

Then, the correlated error term, , could be described by the following expression:

The following terms are used in the preceding equation:

 are the additional variables that are required to explain the variation
of the series that is not explained by the trend, month, and lag12 variables

 are the corresponding coefficients of the  variables
 is white noise and the true error term of the model

In reality, finding additional predictors that can explain the remaining variation of the
series is costly and time-consuming. Moreover, if variables such as ticket prices, economical
indicators, and other factors are available, it is not easy to predict them (as they will be
needed as inputs for the actual forecast). A simple solution is to utilize the auto-correlation
relationship of the model residuals and model them with the ARIMA model. In other
words, we can modify the AirPassengers linear regression and add AR(p) and MA(p)
processes to the model:

The following terms are used in the preceding equation:

 expresses an AR process with p-order

 expresses an MA process with q-order
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The modified equation of the preceding AirPassengers model is a
simplistic representation of the linear regression model with ARIMA
errors (which in this case are ARMA errors). However, any of the ARIMA
models we have looked at in this chapter, including the SARIMA model,
can be used to model the residuals of the model. 

Let's remodel the AirPassengers series, but this time with a linear regression model with
ARIMA errors. While modeling the model's error term with an ARIMA model, we should
treat the residuals as a series by itself and set the model components p, d, and q (and P, D,
and Q if the residuals series has seasonal component) using any of the approaches we
introduced in this chapter (for example, manual tuning, grid search, or automating the
search process with the auto.arima process). For simplicity, we will utilize the
auto.arima function.

The auto.arima function can be used to model a linear regression model with ARIMA
errors via the use of the xreg argument:

md2 <- auto.arima(train,
                  xreg = cbind(model.matrix(~ month,train_df)[,-1],
                               train_df$trend,
                               train_df$lag12),
                  seasonal = TRUE,
                  stepwise = FALSE,
                  approximation = FALSE)

Note that the auto.arima and arima functions do not support
categorical variables (that is, the factor class) with the xreg argument.
Capturing the seasonal effect will require one-hot encoding (transforming
each category into multiple binary variables) of the categorical variable.
Therefore, we used the model.matrix function from the stats package on
the xreg argument of the auto.arima function to transfer the month
variable from a categorical variable into a binary variable. In addition, we
dropped the first column, which represents the first category (in this case,
the month of January), to avoid the dummy variable trap.
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We set the seasonal argument to TRUE to include a search of both non-seasonal and
seasonal models. The auto.arima function will conduct a full search when the step-wise
and approximation arguments are set to FALSE. Let's use the summary function to review
the model summary:

summary(md2)

We get the following output:

## Series: train
## Regression with ARIMA(2,0,0)(2,0,0)[12] errors
##
## Coefficients:
##          ar1     ar2     sar1     sar2  monthFeb  monthMar  monthApr
##       0.5849  0.3056  -0.4421  -0.2063   -2.7523    0.8231    0.2066
## s.e.  0.0897  0.0903   0.1050   0.1060    1.8417    2.3248    2.4162
##       monthMay  monthJun  monthJul  monthAug  monthSep  monthOct
monthNov
##         2.8279    6.6057   11.2337   12.1909    3.8269    0.6350
-2.2723
## s.e.    2.5560    3.2916    4.2324    4.1198    2.9243    2.3405
2.4211
##       monthDec
##        -0.9918  0.2726  1.0244
## s.e.    1.9172  0.1367  0.0426
##
## sigma^2 estimated as 72.82:  log likelihood=-426.93
## AIC=889.86   AICc=896.63   BIC=940.04
##
## Training set error measures:
##                     ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 0.4117147 8.353629 6.397538 0.2571543 2.549682 0.2100998
##                     ACF1
## Training set 0.005966714

The auto.arima function regresses the series with the trend, month, and lag12 variables.
In addition, the model used the AR(2) and SAR(2) processes for modeling the error term.
We can now review the residuals of the modified md2 model with the checkresiduals
functions:

checkresiduals(md2)
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We get the following output:

You can see the change in the ACF plot after applying the linear regression model with
ARIMA errors as the majority of the lags are not statistically significant, as opposed to the
preceding linear regression model (md1). Let's evaluate the performance of both models
(md1 and md2) on the testing set:

fc1 <- forecast(md1, newdata = test_df)

fc2 <- forecast(md2, xreg = cbind(model.matrix(~ month,test_df)[,-1],
                                  test_df$trend,
                                  test_df$lag12))

When using the xreg argument with one of the forecast package
functions, the corresponding inputs for the forecasting model should be
fed to the xreg argument of the forecast function. Note that you have to
execute the input variables in the same order that was used in the training
model with the xreg argument of the forecast package!
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Now, let's use the accuracy function to review the two model's performance on both the
testing and training partitions:

accuracy(fc1, test)

We get the following output:

##                                    ME     RMSE      MAE        MPE
## Training set -0.000000000000001658222 13.99206 11.47136 -0.1200023
## Test set     10.796107235775016519597 20.82782 18.57391  1.9530865
##                  MAPE      MASE      ACF1 Theil's U
## Training set 4.472154 0.3541758 0.7502578        NA
## Test set     3.828115 0.5734654 0.1653119 0.4052175

Let's test the accuracy of the second model:

accuracy(fc2, test)

We get the following output:

##                      ME      RMSE       MAE        MPE     MAPE
MASE
## Training set   0.4117147  8.353629  6.397538  0.2571543 2.549682
0.2100998
## Test set     -11.2123707 17.928195 13.353910 -2.4898843 2.924174
0.4385521
##                      ACF1 Theil's U
## Training set  0.005966714        NA
## Test set     -0.325044930 0.3923795

You can see from the output of the accuracy function that the linear regression with the
ARIMA model provides a significant improvement in the model's accuracy with a lift of
43% on the MAPE score on the training set (from 4.5% to 2.5%) and 31% on the testing set
(from 3.8% to 2.9%).
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Summary
In this chapter, we introduced the ARIMA family of models, one of the core approaches for
forecasting time series data. The main advantages of the ARIMA family of models is their
flexibility and modularity, as they can handle both seasonal and non-seasonal time series
data by adding or modifying the model components. In addition, we saw the applications
of the ACF and PACF plots for identifying the type of process (for example, AR, MA,
ARMA, and so on) and its order. 

While it is essential to be familiar with the tuning process of ARIMA models, in practice, as
the number series to be forecast increase, you may want to automate this process. The
auto.arima function is one of the most common approaches in R to forecast with ARIMA
models as it can scale up when dozens of series need to be forecast.

Last but not least, we saw applications of linear regression with the ARIMA errors model in
order to extract lost information from the model residuals.

In the next chapter, we will look at an advanced application of the regression models with
machine learning models for forecasting time series data.



12
Forecasting with Machine

Learning Models
In Chapter 9, Forecasting with Linear Regression, we saw how a basic regression model could
utilize some simple steps to create a robust time series forecast. The use of a linear
regression model for time series forecasting can be easily generalized to other regression
approaches, in particular, machine learning-based regressions. In this chapter, we will focus
on the use of machine learning models for time series forecasting using the h2o package.
This chapter requires some basic knowledge of the training and tuning process of machine
learning models.

In this chapter, we will cover the following topics:

Introduction to the h2o package and its functionality
Feature engineering of time series data
Forecasting with the Random Forest model
Forecasting with the gradient boosting machine learning model
Forecasting with the automate machine learning model

Technical requirement
The following packages will be used in this chapter:

h2o: Version 3.22.1.1 and above and Java version 7 and above
TSstudio: Version 0.1.4 and above
plotly: Version 4.8 and above
lubridate: Version 1.7.4 and above
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You can access the codes for this chapter from the following link:

https://github.com/ PacktPublishing/ Hands- On- Time- Series- Analysis- with- R/ tree/
master/Chapter12

Why and when should we use machine
learning?
In recent years, the use of machine learning (ML) models has become popular and
accessible due to significant improvement in standard computation power. This led to a
new world of methods and approaches for regression and classifications models. The 
process of creating time series forecasting with ML models follows the same process we
used in Chapter 9, Forecasting with Linear Regression, with the linear regression model.

Before we start diving into the details, it is important to caveat the use of ML models in the
context of time series forecasting:

Cost: The use of ML models is typically more expensive than typical regression
models, both in computing power and time.
 Accuracy: The ML model's performance is highly dependent on the quality (that
is, strong casualty relationship with the dependent variable) of the predictors. It
is likely that the ML models will over-perform, with respect to traditional
methods such as linear regression when strong predictors are available.
Tuning: Processing typical ML models is more complex than with common
regression models, as those models have more tuning parameters and therefore,
require some expertise.
Black-box: Most of the ML models are considered black boxes, as it is hard to
interrupt their output.
Uncertainty: Generally, there is no straightforward method to quantify the
forecasting uncertainty with confidence intervals like the traditional time series
model does.

On the other hand, the main advantage of the ML models is their predictive power (when
quality inputs are available), which, in many cases, is worth the effort and time involved in
the process.
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In the context of time series forecasting, it will be beneficial to forecast with ML models in
the following cases:

Structural patterns: Exits in the series, as those can produce new, predictive
features
Multiple seasonality: As a special case for structural patterns since, typically, the
traditional time series models are struggling to capture those patterns when they
exist

In this chapter, we will focus on the forecast of the US monthly vehicle sales using the
following models:

Random Forest
Gradient boosting machine
Auto ML model

Note that the goals of this chapter are not to teach you the principles of
ML (as it is a topic by itself and outside the scope of this book), but the
principles of building forecasting models with the use of ML methods.
Some basic background in training and tuning ML models is
recommended for this chapter.

Why h2o?
In this chapter, we will use the h2o package to build and train forecasting models with the
use of ML models. H2O is an open source, distributed, and Java-based library for machine
learning applications. It has APIs for both R (the h2o package) and Python, and includes
applications for both supervised and unsupervised learning models. This includes
algorithms such as deep learning (DL), gradient boosting machine (GBM), XGBoost,
Distributed Random Forest (RF), and the Generalized Linear Model (GLM).

The main advantage of the h2o package is that it is based on distributed processing and,
therefore, it can be either used in memory or scaled up with the use of external computing
power. Furthermore, the h2o package algorithms provide several methods so that we can
train and tune machine learning models, such as the cross-validation method and the built-
in grid search function. 
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Since the h2o package is using the Java language on the backhand, it is
required that you install Java on your machine before loading the
package. Additional information about the installation process of h2o is
available in the platform documentation (http:/ /docs. h2o. ai/ h2o/
latest- stable/ h2o- docs/ downloading. html).

Forecasting monthly vehicle sales in the
US – a case study
In this chapter, we will focus on forecasting the total monthly vehicle sales in the US in the
next 12 months with ML methods. The total monthly vehicle sales in the US series is 
available in the TSstudio package:

library(TSstudio)

data(USVSales)

Before we start preparing the series and create new features, we will conduct a short
exploratory analysis of the series in order to identify the main characteristics of the series.

Exploratory analysis of the USVSales series
In this section, we will focus on exploring and learning about the main characteristics of the
series. These insights will be used to build new features as inputs for the ML model. The
exploratory analysis of the USVSales series will focus on the following topics:

View the time series structure (frequency, start and end of the series, and so on)
Explore the series components (seasonal, cycle, trend, and random components)
Seasonality analysis
Correlation analysis

The series structure
Let's start with ts_info and review the structure of the USVSales series:

ts_info(USVSales)
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We get the following output:

##  The USVSales series is a ts object with 1 variable and 517 observations
##  Frequency: 12
##  Start time: 1976 1
##  End time: 2019 1

The USVSales series is a monthly ts object which represents the total vehicle sales in the
US between 1976 and 2018 in thousands of units. Let's plot the series and review its
structure with the ts_plot function:

ts_plot(USVSales,
        title = "US Total Monthly Vehicle Sales",
        Ytitle = "Thousands of Units",
        Xtitle = "Year")

We get the following output:

As you can see in the preceding plot, the series has cycle patterns, which is common for a
macro economy indicator. In this case, it is a macro indicator of the US economy.
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The series components
We can get a deeper view of the series components by decomposing the series into its
components and plotting them with the ts_decompose function:

ts_decompose(USVSales)

We get the following output:

Beside the cycle-trend component, we can observe that the plot has a strong seasonal
pattern, which we will explore next.
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Seasonal analysis
To get a closer look at the seasonal component of the series, we will subtract from the series,
decompose the trend we discussed previously, and use the ts_seasonal function to plot
the box plot of the seasonal component of the detrend series:

USVSales_detrend <- USVSales - decompose(USVSales)$trend

ts_seasonal(USVSales_detrend, type = "box")

We get the following output:

We can see from the preceding seasonal plot that, typically, the peak of the year occurred
during the months of March, May, and June. In addition, you can see that the sales decay
from the summer months and peak again in December during the holiday seasons. On the
other hand, the month of January is typically the lowest month of the year in terms of sales.
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Correlation analysis
As we saw in Chapter 7, Correlation Analysis, the USVSales series has a high correlation
with its first seasonal lag. We can review this assessment with the use of the ts_acf
function from the TSstudio package for reviewing the autocorrelation of the series:

ts_acf(USVSales)

We get the following output:

We can zoom in on the relationship of the series with the last three seasonal lags using the
ts_lags function:

ts_lags(USVSales, lags = c(12, 24, 36))
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We get the following output:

The relationship of the series with the first and also second seasonal lags has a strong linear
relationship, as shown in the preceding lags plot.

Exploratory analysis – key findings
We can conclude our short exploratory analysis of the USVSales series with the following
observations:

The USVSales series is a monthly series with a clear monthly seasonality
The series trend has a cyclic shape, and so the series has a cycle component
embedded in the trend
The series' most recent cycle starts right after the end of the 2008 economic crisis,
between 2009 and 2010
It seems that the current cycle reached its peak as the trend starts to flatten out
The series has a strong correlation with its first seasonal lag
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Moreover, as we intend to have a short-term forecast (of 12 months), there is no point in
using the full series, as it may enter some noise into the model due to the change of the
trend direction every couple of years. (If you were trying to create a long-term forecast,
then it may be a good idea to use all or most of the series.) Therefore, we will use the model
training observations from 2010 and onward. We will use the ts_to_prophet function
from the TSstudio package to transform the series from a ts object into a data.frame, and
the window function to subset the series observations since January 2010:

df <- ts_to_prophet(window(USVSales, start = c(2010,1)))

names(df) <-  c("date", "y")

head(df)

We get the following output:

##         date        y
## 1 2010-01-01  712.469
## 2 2010-02-01  793.362
## 3 2010-03-01 1083.953
## 4 2010-04-01  997.334
## 5 2010-05-01 1117.570
## 6 2010-06-01 1000.455

Before we move forward and start with the feature engineering stage, let's plot and review
the subset series of USVSales with the ts_plot function:

ts_plot(df,
        title = "US Total Monthly Vehicle Sales (Subset)",
        Ytitle = "Thousands of Units",
        Xtitle = "Year")
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We get the following output:

Feature engineering 
Feature engineering plays a pivotal role when modeling with ML algorithms. Our next
step, based on the preceding observations, is to create new features that can be used as
informative input for the model. In the context of time series forecasting, here are some
examples of possible new features that can be created from the series itself:

The series trend: This uses a numeric index. In addition, as the series trend isn't
linear, we will use a second polynomial of the index to capture the overall
curvature of the series trend.
Seasonal component: This creates a categorical variable for the month of the year
to capture the series' seasonality.
Series correlation: This utilizes the strong correlation of the series with its
seasonal lag and uses the seasonal lag (lag12) as an input to the model.
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We will use the dplyr and lubridate packages to create those features, as we can see in the
following code:

library(dplyr)

library(lubridate)

df <- df %>% mutate(month = factor(month(date, label = TRUE), ordered =
FALSE),
                    lag12 = lag(y, n = 12)) %>%
             filter(!is.na(lag12))

We will then add the trend component and its second polynomial (trend squared):

df$trend <- 1:nrow(df)

df$trend_sqr <- df$trend ^ 2

Let's view the structure of the df object after adding the new features:

str(df)

We get the following output:

## 'data.frame':    97 obs. of  6 variables:
##  $ date     : Date, format: "2011-01-01" "2011-02-01" ...
##  $ y        : num  836 1007 1277 1174 1081 ...
##  $ month    : Factor w/ 12 levels "Jan","Feb","Mar",..: 1 2 3 4 5 6 7 8
9 10 ...
##  $ lag12    : num  712 793 1084 997 1118 ...
##  $ trend    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ trend_sqr: num  1 4 9 16 25 36 49 64 81 100 ...

There are additional feature engineering steps, which in the case of the USVSales series are
not required, but may be required in other cases:

Scaling: This may be required when the numeric inputs of the regression (either
the series itself or at least one of the regression numeric predictors) are on a
different numeric scale, for instance, regress revenue in billions of USD with a
binary flag (for example, 0 or 1). Some models may fail to find coefficients or
won't identify the true relationship between the variable. Some common scaling
methods are as follows:

Log transformation
Normalize the series with Z-score
Scale the input between 0 and 1
Subtract the mean from the input
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Hot encoding: Categorical variables may be required when the algorithm does
not support the use of factors (categorical variables) as input. In this case, for a
variable with N categories, we will create new N+1 variables—one variable for
capturing the slope and N binary variables and one for each category.

Since the values of the input series are ranging between 800 to 1,700, there is no need to
scale the series and its inputs. In addition, since the h2o package supports the inputs as R
factors, there is no need to apply hot encoding.

Training, testing, and model evaluation
In order to compare the different models that we will be testing in this chapter, we will use
the same inputs that we used previously. This includes executing same training and testing
partitions throughout this chapter.

Since our forecast horizon is for 12 months, we will leave the last 12 months of the series as
testing partitions and use the rest of the series as a training partition:

h <- 12

train_df <- df[1:(nrow(df) - h), ]

test_df <- df[(nrow(df) - h + 1):nrow(df), ]

Previously, the h variable represented the forecast horizon, which, in this case, is also equal
to the length of the testing partition. We will evaluate the model's performance based on
the MAPE score on the testing partition.

One of the main characteristics of ML models is the tendency to overfit on
the training set. Therefore, you should expect that the ratio between the
error score on the testing and training partition will be relatively larger
than the corresponding results of traditional time series models, such as
ARIMA, Holt-Winters, and time series linear regression.

In addition to the training and testing partitions, we need to create the inputs for the
forecast itself. We will create a data.frame with the dates of the following 12 months and
build the rest of the features:

forecast_df <- data.frame(date = seq.Date(from = max(df$date) + month(1),
length.out = h, by = "month"),
                          trend = seq(from = max(df$trend) + 1, length.out
= h, by = 1))

forecast_df$trend_sqr <- forecast_df$trend ^ 2
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forecast_df$month <- factor(month(forecast_df$date, label = TRUE), ordered
= FALSE)

Last but not least, we will extract the last 12 observations of the series from the df object
and assign them as the future lags of the series:

forecast_df$lag12 <- tail(df$y, 12)

Model benchmark
Introduced in Chapter 8, Forecasting Strategies, the performance of a forecasting model
should be measured by the error rate, mainly on the testing partition, but also on the
training partition. You should evaluate the performance of the model with respect to some
baseline model. In the previous chapters, we benchmarked the forecast of the USgas series
with the use of the seasonal naive model.

In this chapter, since we are using a family of ML regression models, it makes more sense to
use a regression model as a benchmark for the ML models. Therefore, we will train a time
series linear regression model, which we introduced in Chapter 9, Forecasting with Linear
Regression. Using the training and testing partitions we created previously, let's train the
linear regression model and evaluate its performance with the testing partitions:

lr <- lm(y ~ month + lag12 + trend + trend_sqr, data = train_df)

We will use the summary function to review the model details:

summary(lr)

We get the following output:

##
## Call:
## lm(formula = y ~ month + lag12 + trend + trend_sqr, data = train_df)
##
## Residuals:
##      Min       1Q   Median       3Q      Max
## -152.238  -38.412    1.175   34.471  119.947
##
## Coefficients:
##              Estimate Std. Error t value      Pr(>|t|)
## (Intercept) 533.54515   80.45593   6.632 0.00000000583 ***
## monthFeb    115.10262   36.87217   3.122      0.002614 **
## monthMar    287.20432   60.75992   4.727 0.00001142840 ***
## monthApr    189.81240   47.11880   4.028      0.000141 ***
## monthMay    258.85449   57.40489   4.509 0.00002550309 ***
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## monthJun    212.14346   48.68294   4.358 0.00004414785 ***
## monthJul    181.74136   46.72620   3.889      0.000226 ***
## monthAug    239.95562   52.11112   4.605 0.00001797442 ***
## monthSep    148.28026   38.56246   3.845      0.000263 ***
## monthOct    118.08867   37.55868   3.144      0.002444 **
## monthNov    120.73354   36.01454   3.352      0.001295 **
## monthDec    267.91309   55.47217   4.830 0.00000777550 ***
## lag12         0.34120    0.11972   2.850      0.005740 **
## trend         8.68109    1.88781   4.598 0.00001838988 ***
## trend_sqr    -0.06869    0.01450  -4.738 0.00001096631 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 60.15 on 70 degrees of freedom
## Multiple R-squared:  0.9213, Adjusted R-squared:  0.9056
## F-statistic: 58.54 on 14 and 70 DF,  p-value: < 0.00000000000000022

Next, we will predict the corresponding values of the series on the testing partition with the
predict function by using test_df as input:

test_df$yhat <- predict(lr, newdata = test_df)

Now, we can evaluate the model's performance on the testing partition:

mape_lr <- mean(abs(test_df$y - test_df$yhat) / test_df$y)

mape_lr

We get the following output:

## [1] 0.04041179

Hence, the MAPE score of the linear regression forecasting model is 4.04%. We will use this
to benchmark the performance of the ML models.

Starting a h2o cluster
The h2o package is based on the use of distributed and parallel computing in order to
speed up the compute time and be able to scale up for big data. All of this is done on either
in-memory (based on the computer's internal RAM) or parallel distributed processing (for
example, AWS, Google Cloud, and so on) clusters. Therefore, we will load the package and
then set the in-memory cluster with the h2o.init function:

library(h2o)

h2o.init(max_mem_size = "16G")
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We get the following output:

##
##
## Starting H2O JVM and connecting: ..... Connection successful!
##
## R is connected to the H2O cluster:
##     H2O cluster uptime:         5 seconds 370 milliseconds
##     H2O cluster timezone:       America/Los_Angeles
##     H2O data parsing timezone:  UTC
##     H2O cluster version:        3.22.1.1
##     H2O cluster version age:    4 months and 7 days !!!
##     H2O cluster name:           H2O_started_from_R_rami_izi146
##     H2O cluster total nodes:    1
##     H2O cluster total memory:   14.22 GB
##     H2O cluster total cores:    8
##     H2O cluster allowed cores:  8
##     H2O cluster healthy:        TRUE
##     H2O Connection ip:          localhost
##     H2O Connection port:        54321
##     H2O Connection proxy:       NA
##     H2O Internal Security:      FALSE
##     H2O API Extensions:         XGBoost, Algos, AutoML, Core V3, Core V4
##     R Version:                  R version 3.4.4 Patched (2018-03-19
r74624)

h2o.init allows you to set the memory size of the cluster with the max_mem_size
argument. The output of the function, as shown in the preceding code, provides
information about the cluster's setup.

Any data that is used throughout the training and testing process of the models by the h2o
package must load to the cluster itself. The as.h2o function allows us to transform any
data.frame object into a h2o cluster:

train_h <- as.h2o(train_df)

test_h <- as.h2o(test_df)

In addition, we will transform the forecast_df object (the future values of the series
inputs) into an h2o object, which will be used to generate, later on in this chapter, the final
forecast:

forecast_h <- as.h2o(forecast_df)
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For our convenience, we will label the names of the dependent and independent variables:

x <- c("month", "lag12", "trend", "trend_sqr")

y <- "y"

Now that the data has been loaded into the working cluster, we can start the training
process.

Training an ML model 
The h2o package provides a set of tools for training and testing ML models. The most
common model training approaches are as follows:

Training/testing: This is based on splitting the input data into training and
testing partitions by allocating most of the input data to the training partition
and leaving the rest to the testing partition. As the names of the partitions imply,
the training set is used to train the model, while the testing partition is used to
test its performance on new data. Typical allocations are 70/30 (that is, 70% of the
data to the training partition and 30% to the testing partition), or roughly close to
that ratio, where the data allocation between the two partitions must be random.
Training/testing/validation: This is relatively similar to the previous approach,
except with added validation partitions. The validation partition is used during
the training process to evaluate the tuning of the model parameters. The tuned
models are then tested on the testing partition.
Cross-validation: This is one of the most popular training methods for ML
models as it reduces the chance of overfitting of the model. This method is based
on the following steps:

Splitting the training set, randomly, into K folders1.
Training the model K times, each time leaving a different folder out as2.
a testing partition, and training the model with the remaining K-1
folders
Throughout the training process, the model tunes the model's3.
parameters
The final model is tested on the testing partition4.

Throughout this chapter, we will use the cross-validation (CV) approach to train these
models.
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Forecasting with the Random Forest model
Now that we have prepared the data, created new features, and launched a h2o cluster, we
are ready to build our first forecasting model with the Random Forest (RF) algorithm. The
RF algorithm is one of the most popular ML models, and it can be used for both 
classification and regression problems. In a nutshell, the RF algorithm is based on an
ensemble of multiple tree models.

As its name implies, it has two main components:

Random: The input for each tree model is based on a random sample, along with
the replacement of both the columns and rows of the input data. This method is
also known as bagging.
Forest: The collection of tree-based models, which eventually creates the forest.

After the forest is built, the algorithm ensembles the prediction of all the trees in the forest
into one output. This combination of randomizing the input for each tree model and then
averaging their results reduces the likelihood of overfitting the model.

RF has several tuning parameters that allow you to control the level of randomization of the
sampling process and how deep the forest is. The h2o.randomForest function from the
h2o package provides the framework for training and tuning the RF model. The following
are the main parameters of the h2o.randomForest function:

x: A vector of characters with independent variable names
y: A string, which is the name of the dependent variable
training_frame: The input data must be a data.frame of h20 package
validation_frame: Optional; should be used when applying a training
approach with the validation set
nfolds: The number of K-folds for the CV process
ntrees: Number of trees to be created
sample_rate: Defines the number of rows to sample per tree
max_depth: Sets the maximum tree depth (number of nodes); as the trees grow
deeper, the complexity of the mode increases, as well as the risk for overfitting
seed: Sets the seed value of the random numbers generator
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In addition, this function has several control arguments, which allows you to control the
running time of the model. Furthermore, they allow you to set a stop criteria for the model
if adding additional trees doesn't improve the model's performance. These arguments are
as follows:

stopping_metric: Defines the type of error metric to be used for evaluating
whether the model should stop and build new trees as there is no additional
improvement
stopping_tolerance: Sets the minimal improvement that is required to
continue the training process
stopping_rounds: Sets the number of rounds that should be used before
stopping the training

We will start with a simplistic RF model by using 500 trees and 5 folder CV training. In
addition, we will add a stop criteria to prevent the model from fitting the model while there
is no significant change in the model's performance. In this case, we will set the stopping
metric as RMSE, the stopping tolerance as 0.0001, and the stopping rounds to 10:

rf_md <- h2o.randomForest(training_frame = train_h,
                          nfolds = 5,
                          x = x,
                          y = y,
                          ntrees = 500,
                          stopping_rounds = 10,
                          stopping_metric = "RMSE",
                          score_each_iteration = TRUE,
                          stopping_tolerance = 0.0001,
                          seed = 1234)

The h2o.randomForest function returns an object with information about the parameter
settings of the model and its performance on the training set (and validation, if used). We
can view the contribution of the model inputs with the h2o.varimp_plot function. This
function returns a plot with the ranking of the input variables' contribution to the model
performance using a scale between 0 and 1, as shown in the following code:

h2o.varimp_plot(rf_md)
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We get the following output:

As we can see from the preceding variable importance plot, the lag variable, lag12, is the
most important to the model. This shouldn't be a surprise as we saw the strong relationship
between the series and its seasonal lag in the correlation analysis. Right after this, the most
important variables are trend_sqr, month, and trend.

The output of the model contains (besides the model itself) information about the model's
performance and parameters. Let's review the model summary:

rf_md@model$model_summary

We get the following output:

## Model Summary:
##   number_of_trees number_of_internal_trees model_size_in_bytes min_depth
## 1              42                       42               29398         7
##   max_depth mean_depth min_leaves max_leaves mean_leaves
## 1        13    9.80952         43         61    51.11905

We can see that we utilized only 42 trees out of the 500 that were set by the ntrees
argument. This is as a result of the stopping parameters that were used on the model. The
following plot demonstrates the learning process of the model as a function of the number
of trees:

library(plotly)

tree_score <- rf_md@model$scoring_history$training_rmse
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plot_ly(x = seq_along(tree_score), y = tree_score,
        type = "scatter", mode = "line") %>%
   layout(title = "The Trained Model Score History",
          yaxis = list(title = "RMSE"),
          xaxis = list(title = "Num. of Trees"))

We get the following output:

Last but not least, let's measure the model's performance on the testing partition. We will
use the h2o.predict function to predict the corresponding values of the series on the
testing partition:

test_h$pred_rf <- h2o.predict(rf_md, test_h)

Next, we will transfer the h2o data frame to a data.frame object with the as.data.frame
function:

test_1 <- as.data.frame(test_h)
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Now, we can calculate the MAPE score of the RF model on the test partition:

mape_rf <- mean(abs(test_1$y - test_1$pred_rf) / test_1$y)

mape_rf

We get the following output:

## [1] 0.03749611

As you can see from the model error score, the RF model with its default settings was able
to achieve a lower error rate than our benchmark model, that is, the linear regression
model, with a MAPE score of 3.7% as opposed to 4%.

Generally, when using the default option for the model's parameters, the model may
perform well, but there might be some room left for additional optimization and
improvement in regards to the performance of the model. There are a variety of techniques
for model optimization and tuning parameters, such as manual tuning, grid search, and
algorithm-based tuning. In the previous chapters, we looked at examples of these three
approaches—we manually tuned the ARMA model in Chapter 11, Forecasting with ARIMA
Models, we used the ts_grid function in Chapter 10, Forecasting with Exponential Smoothing
Models, for tuning the Holt-Winters parameters with grid search, and automated the tuning
of ARIMA model (again in Chapter 11, Forecasting with ARIMA Models) with the
auto.arima algorithm.

We will demonstrate a grid search approach for tuning an ML model with the h2o.grid
function. Later on in this chapter, we will look at an algorithm-based approach to tuning
aN ML model with the h2o.automl function.

The h2o.grid function allows you to set a set of values for some selected parameters and
test their performance on the model in order to identify the tuning parameters that
optimize the model's performance. The main arguments of this function are as follows:

algorithm: Defines the type of algorithm to use in the grid search
hyper_params: Sets the search parameter's values
search_criteria: Sets roles for the search, such as the stopping metric of the
model, number of models, and runtime

Any of the training approaches of the h2o package (such as CV, training with validation)
can be applied with the h2o.grid function.

https://cdp.packtpub.com/hands_on_time_series_analysis_with_r/wp-admin/post.php?post=790&action=edit#post_788
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We will start by setting the search parameters:

hyper_params_rf <-  list(mtries = c(2, 3, 4),
                         sample_rate = c(0.632, 0.8, 0.95),
                         col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
                         max_depth = c(seq(1, 30, 3)),
                         min_rows = c(1, 2, 5, 10))

Here, the parameters we selected are as follows:

mtries: Defines the columns to randomly select on each node of the tree
sample_rate: Sets the row sampling for each tree
col_sample_rate_per_tree: Defines the column sample rate per tree
max_depth: Specifies the maximum tree depth
min_rows: Sets the minimum number of observations for a leaf

The more parameters you add or define for a wide range of values, the larger the possible
search combination. This could easily get to hundreds of combinations, which may run for
a couple of hours (based on the available compute power). Therefore, setting the
search_criteria argument is very important for efficiency reasons. The strategy
argument of the search_criteria argument allows you to set either Cartesian
(Cartesian) search or random (RandomDiscrete) search. The Cartesian search iterates
and computes the models for all the possible search options in chronological order. On the
other hand, the random search randomly selects a search combination from the grid search
table.

It would make sense to use the Cartesian method when the number of search combinations
is fairly small, or when you aren't limited in search time. On the other hand, for a large
amount of search combinations, or when we have a time constraint, it is recommended to
use random search. For efficiency reasons, we will set a random search and restrict the
search time to 20 minutes with max_runtime_sec. We will use the same stopping metric
that we used previously:

search_criteria_rf <- list(strategy = "RandomDiscrete",
                           stopping_metric = "rmse",
                           stopping_tolerance = 0.0001,
                           stopping_rounds = 10,
                           max_runtime_secs = 60 * 20)

After we set the search arguments for the h2o.grid function, we can start the search:

rf2 <- h2o.grid(algorithm = "randomForest",
                search_criteria = search_criteria_rf,
                hyper_params = hyper_params_rf,
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                x = x,
                y = y,
                training_frame = train_h,
                ntrees = 5000,
                nfolds = 5,
                grid_id = "rf_grid",
                seed = 1234)

You will notice that we kept the same training approach, that is, 5 folders CV and the
number of trees as 5000.

Setting a large number of trees with a tree-based model such as RF or
GBM, along with a stopping metric, will ensure that the model will keep
building additional trees until it meets the stopping criteria. Therefore,
setting the stopping criteria plays a critical roll in both the efficiency of the
model and its results. 

We will now extract the grid results, sort the models by their RMSE score, and pull the lead
model:

rf2_grid_search <- h2o.getGrid(grid_id = "rf_grid",
                               sort_by = "rmse",
                               decreasing = FALSE)

rf_grid_model <- h2o.getModel(rf2_grid_search@model_ids[[1]])

Let's test the model on the testing partition and evaluate its performance:

test_h$rf_grid  <- h2o.predict(rf_grid_model, test_h)

mape_rf2 <- mean(abs(test_1$y - test_1$rf_grid) / test_1$y)

mape_rf2

We get the following output:

## [1] 0.03414109

The additional optimization step contributed to the lift in the model's accuracy, with a
MAPE score of 3.33% compared to 3.7% and 4% for the first RF model we trained, and the
linear regression model, respectively. The following plot provides an additional view of the
model's performance:

plot_ly(data = test_1) %>%
  add_lines(x = ~ date, y = ~y, name = "Actual") %>%
  add_lines(x = ~ date, y = ~ yhat, name = "Linear Regression", line =
list(dash = "dot")) %>%
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  add_lines(x = ~ date, y = ~ pred_rf, name = "Random Forest", line =
list(dash = "dash")) %>%
  add_lines(x = ~ date, y = ~ rf_grid, name = "Random Forest (grid)", line
= list(dash = "dash")) %>%
  layout(title = "Total Vehicle Sales - Actual vs. Prediction (Random
Forest)",
         yaxis = list(title = "Thousands of Units"),
         xaxis = list(title = "Month"))

We get the following output:

Now, let's look at the GBM model.

Forecasting with the GBM model
The GBM algorithm is another ensemble and tree-based model. It uses the boosting
approach in order to train different subsets of the data, and repeats the training of subsets
that the model had with a high error rate. This allows the model to learn from past mistakes
and improve the predictive power of the model.
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The main arguments of the GBM model are as follows

x: A vector of characters with the independent variables names.
y: A string, which is the name of the dependent variable.
training_frame: The input data must be a data.frame of h20 package.
validation_frame: Optional; this should be used when we're applying a
training approach with the validation set.
nfolds: The number of K-fold for the CV process.
ntrees: Number of trees to be created.
sample_rate: Defines the number of rows to sample per tree.
max_depth: Sets the maximum tree depth (number of nodes). As the trees grow
deeper, the complexity of the mode increases, as well as the risk of overfitting.
learn_rate: Defines the learning rate of the model with values between 0 and 1.
The default rate is 0.1. As the learning rate comes closer to 0, the better the
learning of the model will be, with the cost of longer compute time, along with a
higher number of trees.
seed: Sets the seed value of the random numbers generator.

The following example demonstrates the use of the h2o.gbm function for training the GBM
model with the same input data we used previously:

gbm_md <- h2o.gbm(
   training_frame = train_h,
   nfolds = 5,
   x = x,
   y = y,
   max_depth = 20,
   distribution = "gaussian",
   ntrees = 500,
   learn_rate = 0.1,
   score_each_iteration = TRUE
 )

Similar to the RF model, we can review the rank of the importance of the model's variables
with the h2o.varimp_plot function:

h2o.varimp_plot(gbm_md)
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We get the following output:

For RF, the GBM model ranks the lag12 variable as the most important to the model. Let's
test the model's performance on the testing set:

test_h$pred_gbm  <- h2o.predict(gbm_md, test_h)

test_1 <- as.data.frame(test_h)

mape_gbm <- mean(abs(test_1$y - test_1$pred_gbm) / test_1$y)

mape_gbm

We get the following output:

## [1] 0.02735553

The GBM model scored the lowest MAPE among the models we've tested so far with a
2.7% error rate, compared to 3.3% and 4% with the RF model (with grid search) and linear
regression model, respectively. It would be a great exercise to apply a grid search on the
GBM model and test whether any additional improvements can be achieved.

Let's visualize the results and compare the prediction with the actual and baseline
prediction:

plot_ly(data = test_1) %>%
  add_lines(x = ~ date, y = ~y, name = "Actual") %>%
  add_lines(x = ~ date, y = ~ yhat, name = "Linear Regression", line =
list(dash = "dot")) %>%
  add_lines(x = ~ date, y = ~ pred_gbm, name = "Gradient Boosting Machine",
line = list(dash = "dash")) %>%
  layout(title = "Total Vehicle Sales - Actual vs. Prediction (Gradient
Boosting Machine)",
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         yaxis = list(title = "Thousands of Units"),
         xaxis = list(title = "Month"))

We get the following output:

Forecasting with the AutoML model
So far, in this chapter, we have looked at two modeling approaches—the first using the
algorithm's default setting with the RF and GBM models, and the second by applying a grid
search with the RF model. Let's take a look at a third approach to tuning ML models. Here,
we will use the h2o.automl function. The h2o.automl function provides an automated
approach to training, tuning, and testing multiple ML algorithms before selecting the
model that performed best based on the model's evaluation. It utilizes algorithms such as
RF, GBM, DL, and others using different tuning approaches.

Similarly, the h2o.grid function can apply any of the training approaches (CV, training
with validation, and so on) during the training process of the models. Let's use the same
input as before, and train the forecasting model:

autoML1 <- h2o.automl(training_frame = train_h,
                       x = x,
                       y = y,
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                       nfolds = 5,
                       max_runtime_secs = 60*20,
                       seed = 1234)

We can set the runtime of the function. A longer running time could
potentially yield better results.

In the preceding example, the function's running time was set to 20 minutes. The function
returns a list with the leaderboard of all the tested models:

autoML1@leaderboard

We get the following output:

##                                              model_id
## 1  DeepLearning_grid_1_AutoML_20190507_162701_model_1
## 2  DeepLearning_grid_1_AutoML_20190507_162701_model_12
## 3  DeepLearning_grid_1_AutoML_20190507_162701_model_9
## 4  DeepLearning_grid_1_AutoML_20190507_162701_model_2
## 5  DeepLearning_grid_1_AutoML_20190507_162701_model_5
## 6  DeepLearning_grid_1_AutoML_20190507_162701_model_4
##   mean_residual_deviance     rmse      mse      mae      rmsle
## 1               3977.890 63.07052 3977.890 49.20507 0.04897362
## 2               3986.516 63.13887 3986.516 48.95475 0.04908595
## 3               4121.476 64.19872 4121.476 50.80116 0.04983452
## 4               4289.938 65.49762 4289.938 51.64339 0.05128537
## 5               4440.572 66.63762 4440.572 50.27883 0.05153639
## 6               4441.784 66.64671 4441.784 52.11865 0.05229755
##
## [139 rows x 6 columns]

You can see that in this case, the top models are DL models with different tuning settings.
We will select the leader model and test its performance on the testing set:

test_h$pred_autoML  <- h2o.predict(autoML1@leader, test_h)

test_1 <- as.data.frame(test_h)

mape_autoML <- mean(abs(test_1$y - test_1$pred_autoML) / test_1$y)

mape_autoML

We get the following output:

## [1] 0.03481595
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The leader model of the output of h2o.automl achieved a MAPE score of 3.48%. Although
the previous models achieved a higher score, it still provides a significant lift with respect
to the baseline model. Let's visualize the prediction of the model on the testing partitions
with respect to the actual and baseline prediction:

plot_ly(data = test_1) %>%
  add_lines(x = ~ date, y = ~y, name = "Actual") %>%
  add_lines(x = ~ date, y = ~ yhat, name = "Linear Regression", line =
list(dash = "dot")) %>%
  add_lines(x = ~ date, y = ~ pred_autoML, name = "autoML", line =
list(dash = "dash")) %>%
  layout(title = "Total Vehicle Sales - Actual vs. Prediction (Auto ML
Model)",
         yaxis = list(title = "Thousands of Units"),
         xaxis = list(title = "Month"))

We get the following output:

The main advantage of the h2o.automl function is that it can scale up while having
multiple series to forecast with minimal intervention from the user. This, of course, comes 
with additional compute power and time cost.
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Selecting the final model
Now that we've finished the training and testing process of the models, it's time to finalize
the process and choose the model to forecast with the series. We trained the following
models:

Baseline model: Linear regression model with 4% MAPE score on the testing
partition
RF: Using default tuning parameters with 3.74% MAPE score on the testing
partition
RF: Using grid search for tuning the model parameters with 3.33% MAPE score
on the testing partition
GBM: Using the default tuning parameters with 2.75% MAPE score on the
testing partition
AutoML: Selecting a deep learning model with 3.48% MAPE score on the testing
partition

Since all of these models achieved better results than the baseline, we can drop the baseline
model. Also, since the second RF model (with grid search) achieved better results than the
first, there is no point in keeping the first model. This leaves us with three forecasting
models, that is, RF (with grid search), GBM, and AutoML. Generally, since the GBM model
achieved the best MAPE results, we will select it. However, it is always nice to plot the
actual forecast and check what the actual forecast looks like. Before we plot the results, let's
use these three models to forecast the next 12 months using the data.frame forecast we
created in the Forecasting with the Random Forest model and Forecasting with the GBM model
sections:

forecast_h$pred_gbm <- h2o.predict(gbm_md, forecast_h)
forecast_h$pred_rf <- h2o.predict(rf_grid_model, forecast_h)
forecast_h$pred_automl <- h2o.predict(autoML1@leader, forecast_h)

We will transform the object back into a data.frame object with the as.data.frame
function:

final_forecast <- as.data.frame(forecast_h)

Now, we can plot the final forecast with the plotly package:

plot_ly(x = df$date, y = df$y,
        type = "scatter",
        mode = "line",
        name = "Actual") %>%
  add_lines(x = final_forecast$date, y = final_forecast$pred_rf, name =
"Random Forest") %>%
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  add_lines(x = final_forecast$date, y = final_forecast$pred_gbm, name =
"GBM") %>%
  add_lines(x = final_forecast$date, y = final_forecast$pred_automl, name =
"Auto ML") %>%
  layout(title = "Total Vehicle Sales - Final Forecast",
         yaxis = list(title = "Thousands of Units", range = c(1100, 1750)),
         xaxis = list(title = "Month", range = c(as.Date("2016-01-01"),
as.Date("2020-01-01"))))

We get the following output:

It seems that all three models capture the seasonality component of the vehicle sales series.
However, it seems that the oscillation of AutoML is higher with respect to one of the RF
and GBM models. Therefore, it would make sense to select either the GBM or RF models as
the final forecast. A more conservative approach would be to create and ensemble the three
forecasts by either weighted on regular average. For instance, you can use a simple function
for testing the different average of different models and select the combination that
minimizes the forecast error rate on the testing set. 
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Summary
In this chapter, we introduced the applications of ML models for forecasting time series
data. Before we jumped into the modeling part, we looked at the usage of the major
concepts we've learned about throughout this book. We started with an exploratory
analysis of the US vehicle sales series using seasonality and correlation analysis. The
insights from this process allowed us to build new features, which we then used as inputs
for the ML models. Furthermore, we looked at the advantages of the grid search for tuning
and optimizing ML models. Last but not least, we introduced the AutoML model from the
h2o package in order to complete the automation, tuning, and optimization processes for
ML models.

With that, I hope you have enjoyed the learning journey that we have been on throughout
this book!
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