
http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo

http://www.allitebooks.org

PROFESSIONAL

HTML5 Mobile Game Development

Pascal Rettig

www.itbookshub.com

http://www.allitebooks.org

Professional HTML5 Mobile Game Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by Pascal Rettig

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-30132-6
ISBN: 978-1-118-30133-3 (ebk)
ISBN: 978-1-118-42144-4 (ebk)
ISBN: 978-1-118-43394-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and speciically disclaim all warranties, including
without limitation warranties of itness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012942105

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its afiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.itbookshub.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://booksupport.wiley.com
http://www.allitebooks.org

This book is dedicated to my wife, business partner,

best friend, and all-around support system, Martha.

Thank You.

www.itbookshub.com

http://www.allitebooks.org

EXECUTIVE EDITOR

Carol Long

PROJECT EDITOR

Jennifer Lynn

TECHNICAL EDITOR

Chris Ullman

PRODUCTION EDITOR

Christine Mugnolo

COPY EDITOR

San Dee Phillips

EDITORIAL MANAGER

Mary Beth Wakeield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

COMPOSITOR

Jef Lytle, Happenstance Type-O-Rama

PROOFREADER

Nancy Carrasco

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Daniel Schweinert / iStockPhoto

CREDITS

www.itbookshub.com

http://www.allitebooks.org

ABOUT THE AUTHOR

PASCAL RETTIG is a lifelong programmer who got his start program-
ming by writing BASIC games on the Apple II at the ripe age of 7. Pascal
has a Bachelor of Science and a Master of Engineering in computer sci-
ence and electrical engineering from the Massachusetts Institute of
Technology ’02 and has been hacking and building stuff on the web since
1995. Pascal built the HTML5 game-based language learning system
GamesForLanguage.com in 2011 and is currently a partner at the interac-
tive web agency Cykod. He organizes one of the country’s oldest monthly

HTML5 Game Development meetups in Boston each month and runs the HTML5 Game
Development news site html5gamedevelopment.org.

ABOUT THE TECHNICAL EDITOR

CHRIS ULLMAN is a senior software developer at MIG, specializing in .NET,
and a technical editor/author, who has spent many years stewing in web-
related technologies, like a teabag left too long in the pot. Coming from a
computer science background, he gravitated toward MS solutions during
the summer of ASP (1997). He cut his teeth on Wrox Press ASP guides,
and since then he has edited or contributed to more than 30 books, most
notably as lead author for Wrox’s bestselling Beginning ASP/ASP.NET

1.x/2 series. These days he lives out on the moors of Cornwall and spends
his non-computing time running, writing music, and attempting with his wife, Kate, to curb the
enthusiasm of three very boisterous children.

www.itbookshub.com

http://html5gamedevelopment.org
http://GamesForLanguage.com
http://www.allitebooks.org

www.itbookshub.com

http://www.allitebooks.org

ACKNOWLEDGMENTS

I’D LIKE TO THANK MY WIFE, Martha, who not only had to put up with me spending every moment
of free time I had writing this book (while working on two startups) but also was gracious enough
to design all the custom game art used in this book, ensuring that readers aren’t stuck with the
dreaded curse of programmer art.

I’d also like to thank my family for supporting me in this endeavor and continuing to accept me as a
family member despite my best efforts to lock myself away for the duration.

I’d like to particularly thank my editors, Carol Long, Jennifer Lynn, and San Dee Phillips, for help-
ing a newbie author through the process of turning some pages of code into a cohesive book; and
technical reviewer Chris Ullman, who did his best to ensure this book made it to print as error-free
as possible.

Lastly, I’d like to thank the Boston HTML5 Game Development community. Boston has an incred-
ible technology community, and being around such motivated, smart people keeps me learning,
energized, and constantly hacking away at new projects.

www.itbookshub.com

http://www.allitebooks.org

www.itbookshub.com

http://www.allitebooks.org

CONTENTS

INTRODUCTION xxiii

PART I: DIVING IN

CHAPTER 1: FLYING BEFORE YOU WALK 3

Introduction 3
Building a Complete Game in 500 Lines 4

Understanding the Game 4

Structuring the Game 4

The Final Game 5

Adding the Boilerplate HTML
and CSS 5
Getting Started with Canvas 6

Accessing the Context 6

Drawing on Canvas 7

Drawing Images 8

Creating Your Game’s Structure 9
Building Object-Oriented JavaScript 10

Taking Advantage of Duck Typing 10

Creating the Three Principle Objects 11

Loading the SpriteSheet 11
Creating the Game Object 13

Implementing the Game Object 13

Refactoring the Game Code 15

Adding a Scrolling Background 16
Putting in a Title Screen 19

Drawing Text on Canvas 19

Adding a Protagonist 21
Creating the PlayerShip Object 22

Handling User Input 22

Summary 23

x

CONTENTS

CHAPTER 2: MAKING IT A GAME 25

Introduction 25
Creating the GameBoard Object 25

Understanding the GameBoard 26

Adding and Removing Objects 26

Iterating over the List of Objects 27

Deining the Board Methods 28

Handling Collisions 29

Adding GameBoard into the Game 30

Firing Missiles 30
Adding a Bullet Sprite 31

Connecting Missiles to the Player 32

Adding Enemies 33
Calculating Enemy Movement 33

Constructing the Enemy Object 34

Stepping and Drawing the Enemy Object 35

Adding Enemies on the Board 36

Refactoring the Sprite Classes 37
Creating a Generic Sprite Class 37

Refactoring PlayerShip 38

Refactoring PlayerMissile 39

Refactoring Enemy 39

Handling Collisions 40
Adding Object Types 40

Colliding Missiles with Enemies 41

Colliding Enemies with the Player 42

Making It Go Boom 43

Representing Levels 44
Setting Up the Enemies 44

Setting Up Level Data 45

Loading and Finishing a Level 46

Implementing the Level Object 47

Summary 49

CHAPTER 3: FINISHING UP AND GOING MOBILE 51

Introduction 51
Adding Touch Controls 51

Drawing Controls 52

Responding to Touch Events 54

Testing on Mobile 56

xi

CONTENTS

Maximizing the Game 57
Setting the Viewport 57

Resizing the Canvas 57

Adding to the iOS Home Screen 60

Adding a Score 60
Making It a Fair Fight 61
Summary 64

PART II: MOBILE HTML5

CHAPTER 4: HTML5 FOR MOBILE 67

Introduction 67
Capturing a Brief History of HTML5 68

Understanding How HTML5 Grew Up “Diferent” 68

Looking Toward HTML6? HTML7? Nope, Just HTML5 68

Going to the Spec 69

Diferentiating the HTML5 Family and HTML5 69

Using HTML5 The Right Way 70
Having Your Cake and Eating It, Too 70

Sniing Browsers 70

Determining Capabilities, Not Browsers 72

Enhancing Progressively 73

Polyilling in the Gaps 74

Considering HTML5 from a Game Perspective 74
Canvas 74

CSS3/DOM 75

SVG 76

Considering HTML5 from a Mobile Perspective 76
Understanding the New APIs 77

What’s Coming: WebAPI 77

Surveying the Mobile Browser Landscape 77
WebKit: The Market Dominator 78

Opera: Still Plugging Along 78

Firefox: Mozilla’s Mobile Ofering 79

WP7 Internet Explorer 9 79

Tablets 79

Summary 79

xii

CONTENTS

CHAPTER 5: LEARNING SOME HELPFUL LIBRARIES 81

Introduction 81
Learning JavaScript Libraries 82
Starting with jQuery 82

Adding jQuery to Your Page 82

Understanding the $ 83

Manipulating the DOM 84

Creating Callbacks 85

Binding Events 87

Making Ajax Calls 90

Calling Remote Servers 90

Using Deferreds 91

Using Underscore.js 92
Accessing Underscore 92

Working with Collections 92

Using Utility Functions 93

Chaining Underscore Method Calls 94

Summary 94

CHAPTER 6: BEING A GOOD MOBILE CITIZEN 95

Introduction 95
Responding to Device Capabilities 96

Maximizing Real Estate 96

Resizing Canvas to Fit 97

Dealing with Browser Resizing, Scrolling, and Zooming 98
Handling Resizing 98

Preventing Scrolling and Zooming 99

Setting the Viewport 100

Removing the Address Bar 101

Coniguring Your App for the iOS Home Screen 103
Making Your Game Web App Capable 103

Adding a Startup Image 103

Coniguring Home Icons 104

Taking Mobile Performance into Consideration 105
Adapting to Limited Bandwidth and Storage 106

Optimizing for Mobile 106

Good for Mobile Is Good for All 106

Minifying Your JavaScript 107

Setting Correct Headers 108

Serving from a CDN 108

xiii

CONTENTS

Going Oline Completely with Application Cache 109
Creating Your Manifest File 109

Checking If the Browser Is Online 111

Listening for More Advanced Behavior 111

 A Final Word of Warning 111

Summary 112

PART III: JAVASCRIPT GAME DEV BASICS

CHAPTER 7: LEARNING ABOUT YOUR
HTML5 GAME DEVELOPMENT ENVIRONMENT 115

Introduction 115
Picking an Editor 116
Exploring the Chrome Developer Tools 116

Activating Developer Tools 116

Inspecting Elements 116

Viewing Page Resources 118

Tracking Network Traic 119

Debugging JavaScript 121
Examining the Console Tab 121

Exercising the Script Tab 123

Proiling and Optimizing Your Code 125
Running Proiles 126

Actually Optimizing Your Game 128

Mobile Debugging 129
Summary 131

CHAPTER 8: RUNNING JAVASCRIPT ON THE COMMAND LINE 133

Introduction 133
Learning About Node.js 134
Installing Node 134

Installing Node on Windows 135

Installing Node on OS X 135

Installing Node on Linux 135

Tracking the Latest Version of Node 136

Installing and Using Node Modules 136
Installing Modules 136

Hinting Your Code 136

Uglifying Your Code 137

xiv

CONTENTS

Creating Your Own Script 137
Creating a package.json File 138

Using Server-Side Canvas 139

Creating a Reusable Script 140

Writing a Sprite-Map Generator 141
Using Futures 141

Working from the Top Down 142

Loading Images 144

Calculating the Size of the Canvas 146

Drawing Images on the Server-Side Canvas 146

Updating and Running the Script 148

Summary 148

CHAPTER 9: BOOTSTRAPPING THE QUINTUS ENGINE: PART I 149

Introduction 149
Creating a Framework for a Reusable HTML5 Engine 150

Designing the Basic Engine API 150

Starting the Engine Code 151

Adding the Game Loop 153
Building a Better Game Loop Timer 153

Adding the Optimized Game Loop to Quintus 154

Testing the Game Loop 155

Adding Inheritance 157
Using Inheritance in Game Engines 157

Adding Classical Inheritance to JavaScript 158

Exercising the Class Functionality 161

Supporting Events 162
Designing the Event API 162

Writing the Evented Class 162

Filling in the Evented Methods 163

Supporting Components 165
Designing the Component API 166

Implementing the Component System 167

Summary 169

CHAPTER 10: BOOTSTRAPPING THE QUINTUS ENGINE: PART II 171

Introduction 171
Accessing a Game Container Element 171
Capturing User Input 174

Creating an Input Subsystem 174

Bootstrapping the Input Module 175

xv

CONTENTS

Handling Keyboard Events 176

Adding Keypad Controls 178

Adding Joypad Controls 181

Drawing the Onscreen Input 184

Finishing and Testing the Input 186

Loading Assets 188
Deining Asset Types 189

Loading Speciic Assets 189

Finishing the Loader 191

Adding Preload Support 194

Summary 195

CHAPTER 11: BOOTSTRAPPING THE QUINTUS ENGINE: PART III 197

Introduction 197
Deining SpriteSheets 198

Creating a SpriteSheet Class 198

Tracking and Loading Sheets 199

Testing the SpriteSheet class 200

Adding Sprites 201
Writing the Sprite Class 201

Referencing Sprites, Properties, and Assets 203

Exercising the Sprite Object 203

Setting the Stage with Scenes 207
Creating the Quintus.Scenes Module 207

Writing the Stage Class 208

Rounding Out the Scene Functionality 212

Finishing Blockbreak 214
Summary 217

PART IV: BUILDING GAMES WITH CSS3 AND SVG

CHAPTER 12: BUILDING GAMES WITH CSS3 221

Introduction 221
Deciding on a Scene Graph 221

Your Target Audience 222

Your Interaction Method 222

Your Performance Requirements 222

Implementing DOM Support 223
Considering DOM Speciics 223

Bootstrapping the Quintus DOM Module 223

xvi

CONTENTS

Creating a Consistent Translation Method 224

Creating a Consistent Transition Method 227

Implementing a DOM Sprite 227

Creating a DOM Stage Class 230

Replacing the Canvas Equivalents 231

Testing the DOM Functionality 232

Summary 233

CHAPTER 13: CRAFTING A CSS3 RPG 235

Introduction 235
Creating a Scrolling Tile Map 235

Understanding the Performance Problem 236

Implementing the DOM Tile Map Class 236

Building the RPG 240
Creating the HTML File 240

Setting Up the Game 241

Adding a Tile Map 242

Creating Some Useful Components 245

Adding in the Player 248

Adding Fog, Enemies, and Loot 249

Extending the Tile Map with Sprites 253

Adding a Health Bar and HUD 255

Summary 260

CHAPTER 14: BUILDING GAMES WITH SVG AND PHYSICS 261

Introduction 261
Understanding SVG Basics 262

Getting SVG on Your Page 262

Getting to Know the Basic SVG Elements 263

Transforming SVG Elements 267

Applying Strokes and Fills 267

Beyond the Basics 270

Working with SVG from JavaScript 271
Creating SVG Elements 271

Setting and Getting SVG Attributes 272

Adding SVG Support to Quintus 272
Creating an SVG Module 273

Adding SVG Sprites 274

Creating an SVG Stage 276

Testing the SVG Class 278

xvii

CONTENTS

Adding Physics with Box2D 280
Understanding Physics Engines 281

Implementing the World Component 281

Implementing the Physics Component 284

Adding Physics to the Example 287

Creating a Cannon Shooter 288
Planning the Game 289

Building the Necessary Sprites 290

Gathering User Input and Finishing the Game 292

Summary 294

PART V: HTML5 CANVAS

CHAPTER 15: LEARNING CANVAS, THE HERO OF HTML5 297

Introduction 297
Getting Started with the Canvas Tag 298

Understanding CSS and Pixel Dimensions 298

Grabbing the Rendering Context 301

Creating an Image from Canvas 301

Drawing on Canvas 302
Setting the Fill and Stroke Styles 303

Setting the Stroke Details 305

Adjusting the Opacity 306

Drawing Rectangles 306

Drawing Images 306

Drawing Paths 307

Rendering Text on Canvas 308

Using the Canvas Transformation Matrix 310
Understanding the Basic Transformations 310

Saving, Restoring, and Resetting the Transformation Matrix 311

Drawing Snowlakes 311

Applying Canvas Efects 313
Adding Shadows 314

Using Composition Efects 314

Summary 316

CHAPTER 16: GETTING ANIMATED 317

Introduction 317
Building Animation Maps 318

Deciding on an Animation API 318

Writing the Animation Module 320

Testing the Animation 323

xviii

CONTENTS

Adding a Canvas Viewport 325
Going Parallax 328
Summary 330

CHAPTER 17: PLAYING WITH PIXELS 331

Introduction 331
Reviewing 2-D Physics 332

Understanding Force, Mass, and Acceleration 332

Modeling a Projectile 333

Switching to an Iterative Solution 334

Extracting a Reusable Class 335

Implementing Lander 336
Bootstrapping the Game 336

Building the Ship 337

Getting Pixel Perfect 339

Playing with ImageData 340

Making It Go Boom 343

Summary 347

CHAPTER 18: CREATING A 2-D PLATFORMER 349

Introduction 349
Creating a Tile Layer 350

Writing the TileLayer Class 350

Exercising the TileLayer Code 352

Optimizing the Drawing 353

Handling Platformer Collisions 355
Adding the 2-D Component 356

Calculating Platformer Collisions 358

Stitching It Together with the PlatformStage 359

Building the Game 361
Boostrapping the Game 361

Creating the Enemy 363

Adding Bullets 364

Creating the Player 365

Summary 369

CHAPTER 19: BUILDING A CANVAS EDITOR 371

Introduction 371
Serving the Game with Node.js 371

Creating the package.json File 372

Setting Up Node to Serve Static Assets 372

www.itbookshub.com

http://www.allitebooks.org

xix

CONTENTS

Creating the Editor 373
Modifying the Platform Game 374

Creating the Editor Module 376

Adding Touch and Mouse Events 379

Selecting Tiles 381

Adding Level-Saving Support 383
Summary 384

PART VI: MULTIPLAYER GAMING

CHAPTER 20: BUILDING FOR ONLINE AND SOCIAL 387

Introduction 387
Understanding HTTP-Based Multiplayer Games 388
Planning a Simple Social Game 388
Integrating with Facebook 389

Generating the Facebook Application 389

Creating the Node.js Server 390

Adding the Login View 393

Testing the Facebook Authentication 395

Connecting to a Database 396
Installing MongoDB on Windows 396

Installing MongoDB on OS X 396

Installing MongoDB on Linux 397

Connecting to MongoDB from the Command Line 397

Integrating MongoDB into the Game 398

Finishing Blob Clicker 401
Pushing to a Hosting Service 403
Summary 405

CHAPTER 21: GOING REAL TIME 407

Introduction 407
Understanding WebSockets 407
Using Native WebSockets in the Browser 408
Using Socket.io: WebSockets with Fallbacks 411

Creating the Scribble Server 411

Adding the Scribble Client 413

Building a Multiplayer Pong Game Using Socket.io 415
Dealing with Latency 415

Combating Cheating 416

Deploying Real-Time Apps 416

xx

CONTENTS

Creating an Auto-Matching Server 417

Building the Pong Front End 419

Summary 425

CHAPTER 22: BUILDING NONTRADITIONAL GAMES 427

Introduction 427
Creating a Twitter Application 427
Connecting a Node App to Twitter 429

Sending Your First Tweet 429

Listening to the User Stream 430

Generating Random Words 431
Creating Twitter Hangman 432
Summary 437

PART VII: MOBILE ENHANCEMENTS

CHAPTER 23: LOCATING VIA GEOLOCATION 441

Introduction 441
Getting Started with Geolocation 441
Getting a One-Time Position 442
Plotting a Location on a Map 444
Watching the Position Change over Time 445
Drawing an Interactive Map 446
Calculating the Position between Two Points 448
Summary 448

CHAPTER 24: QUERYING DEVICE ORIENTATION
AND ACCELERATION 449

Introduction 449
Looking at a Device Orientation 450
Getting Started with Device Orientation Events 450

Detecting and Using the Event 451

Understanding the Event Data 451

Trying Out Device Orientation 451
Creating a Ball Playground 452

Adding Orientation Control 454

Dealing with Browser Rotation 455

Summary 456

xxi

CONTENTS

CHAPTER 25: PLAYING SOUNDS, THE MOBILE ACHILLES HEEL 457

Introduction 457
Working with the Audio Tag 457

Using the Audio Tag for Basic Playback 458

Dealing with Diferent Supported Formats 458

Understanding the Limitations of Mobile Audio 459

Building a Simple Desktop Sound Engine 459
Using Audio Tags for Game Audio 460

Adding a Simple Sound System 460

Adding Sound Efects to Block Break 461

Building a Sound System for Mobile 463
Using Sound Sprites 463

Generating the Sprite File 466

Adding Sound Sprites to the Game 467

Looking to the Future of HTML5 Sound 467
Summary 467

PART VIII: GAME ENGINES AND APP STORES

CHAPTER 26: USING AN HTML5 GAME ENGINE 471

Introduction 471
Looking at the History of HTML5 Engines 471
Using a Commercial Engine 472

Impact.js 473

Spaceport.io 474

IDE Engines 474

Using an Open-Source Engine 475
Crafty.js 475

LimeJS 476

EaselJS 478

Summary 481

CHAPTER 27: TARGETING APP STORES 483

Introduction 483
Packaging Your App for the Google Chrome Web Store 484

Creating a Hosted App 484

Creating a Packaged App 486

Publishing Your App 486

xxii

CONTENTS

Using CocoonJS to Accelerate Your App 487
Getting a Game Ready to Load into CocoonJS 487

Testing CocoonJS on Android 489

Building Your App in the Cloud 489

Building Apps with the AppMobi XDK and DirectCanvas 490
Understanding DirectCanvas 490

Installing the XDK 490

Creating the App 491

Modifying Alien Invasion to Use DirectCanvas 491

Testing Your App on a Device 496

Summary 496

CHAPTER 28: SEEKING OUT WHAT’S NEXT 497

Introduction 497
Going 3-D with WebGL 497
Getting Better Access to Sound with the Web Audio API 498
Making Your Game Bigger with the Full-Screen API 499
Locking Your Device Screen with the Screen Orientation API 499
Adding Real-Time Communications with WebRTC 499
Tracking Other Upcoming Native Features 500
Summary 500

APPENDIX: RESOURCES 501

INDEX 503

INTRODUCTION

THE GAMING WORLD AND THE WEB have been on a collision course with each other since social
games began bringing gaming to the masses and helped make what was once a subculture a main-
stream, mass-market phenomenon. Throw mobile into the mix and suddenly you have a massive
phenomenon that is going to become more important as more devices get into people’s hands.

For example, one story making its way around the web as of this writing is that game developer
Rovio, creator of the Angry Birds franchise, is estimated to be worth approximately 8 billion dol-
lars, almost the same as venerable phone maker Nokia. These days people spend more time on their
phones and tablets than ever before, and games (in addition to social networks) account for a sig-
niicant portion of that time. Smartphones and tablets are signiicantly displacing dedicated mobile
gaming devices from Nintendo and Sony. With HTML5, game developers now have technology that
has the capability to reach more people than ever imaginable from a single codebase.

HTML5 mobile game development is currently a new technology that people aren’t sure what to make
of yet, much like smartphone games were in 2008 when the Apple App Store launched. However, there
are some serious heavyweights pushing for the success of HTML5 gaming. Facebook, which launched
its App Center in May 2012, has made HTML5-based Web Apps irst-class citizens on mobile and is
looking for ways to monetize on mobile and get out from underneath the thumb of the 30% fee Apple
takes for in-app purchases in its app store. Carriers such as AT&T similarly view web apps as a way to
recapture revenue lost to Google and Apple.

All is not rosy in the HTML5 game development picture, however. Different devices have different
capabilities, levels of performance, and screen resolutions, and navigating the dangerous waters of
mobile HTML5 game development requires some careful sailing. That’s where this book comes in.
Its goal is to provide a pragmatic roadmap to build mobile games in HTML5, covering both the
possibilities and limitations of the medium. If HTML5 game development on the desktop is still in
its infancy, mobile HTML5 game development is still embryonic. The possibilities to do great things
are within reach, but the irst smash success in the medium is still to be seen.

Getting into a technology at an early stage can provide signiicant beneits. One of the wonder-
ful things in working in new technologies is that the noise level is minimal, and less is required to
generate a splash than in other established mediums. HTML5 games, especially mobile ones, have
budgets that are tiny fractions of the millions of dollars that standard PC and console games have,
and yet they have the opportunity to create a smash hit in an instant due to the viral nature of the
web. Mobile HTML5 games have even more potential for explosive growth because they can be
shared instantly with a link rather than requiring the recipients to download an app that might not
be available for their device from an app store.

This book is a journey through the world of possibilities that the exciting realm of HTML5 mobile
game development presents and I hope you’ll jump aboard.

xxiv

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for anyone who wants to build interactive games in a browser using standards-based,
plug-in-free technology. It has a focus on mobile game development because this is where HTML5
has an advantage versus competing web technologies such as Flash, but the games you build will be
playable on desktop browsers as well.

Developing games for mobile HTML5 requires cross-disciplinary skills over a range of different
mediums. To do it right you must have a basic grasp of the JavaScript language because you’ll be
pushing JavaScript to its limits to build games in the browser. This book does not try to teach you
JavaScript from the ground up, but instead relies on a basic understanding of the language to cover
ground quickly.

If you don’t use JavaScript on a daily basis, you may ind some spots of code hard to follow. All is
not lost however—if you want to get up to speed on JavaScript quickly, Douglas Crockford’s semi-
nal work on JavaScript called JavaScript: The Good Parts” (O’Reilly, 2008) is only 180 pages and
can familiarize you with the language and can be used as a reference when techniques you might not
be familiar with are mentioned in this book.

If you are a desktop game developer more familiar with C++ than JavaScript, you can follow along
with the text, but again because JavaScript (despite its C-like syntax) has more in common with Lisp
than C++, you may want to review the Crockford book as well. JavaScript's weak typing, mutable
method bindings, and closure support may cause some confusion.

ActionScript developers coming from building games in Flash should feel right at home. The only
major stumbling block is that HTML5 Game development is more disjointed than Flash. Make
sure you pay close attention to Chapter 7, “Learning About Your HTML5 Game Development
Environment,” because that chapter shows you how to inspect and debug JavaScript, so you don’t
feel lost when something goes wrong in your game. Browsers have powerful script-debuggers built
in, so you shouldn’t miss the Flash IDE too much.

WHAT THIS BOOK COVERS

This book covers creating games using HTML5 that run on HTML5-capable smartphones such
as iOS devices and Android. Windows phone 7.5, which supports Canvas, is also targeted in some
instances, but because its Canvas performance is restrictive and doesn’t support the standards-based
multitouch events, support for the Windows phone is limited in some cases.

You can get the most out of this book if you target mobile Safari on iOS 5.0 and up and Chrome
for Android on Android 4.0 and up because these devices both have fast JavaScript engines and
hardware-accelerated Canvas support. Many of the games run on older versions of Android, but
performance will be limited.

xxv

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is comprised of seven sections, each with a special purpose to teach you about mobile
HTML5 game development.

Part I, “Diving In,” teaches you over the course of three chapters how to build a mobile HTML5
game from scratch that runs on any device that supports canvas. It shows the nitty-gritty of what's
required to get a game up and running quickly without pulling in any external libraries.

Part II, “Mobile HTML5,” takes a step back and covers in detail the state of HTML5 on mobile
devices along with a couple of libraries—jQuery and Underscore.js—that you use to build games in
the rest of the book.

Part III, “JavaScript Game Dev Basics,” irst walks you through how to inspect and debug your
game and how to run JavaScript from the command line using Node.js. It then goes through the
process to build a reusable HTML5 game engine from the ground up, showing how you can struc-
ture and organize your code into coherent modules.

Part IV, “Building Games with CSS3 and SVG,” takes a detour from canvas to show you how
to use two other technologies—CSS3 and Scalable Vector Graphics (SVG)—to build games on
mobile devices. Chapter 14, “Building Games with SVG and Physics,” also introduces the popular
JavaScript Physics engine Box2D.

Part V, “HTML5 Canvas,” irst covers the canvas tag in detail and then proceeds to build a touch-
friendly 2-D platformer and a level editor for that platformer to build levels.

Part VI, “Multiplayer Gaming,” shows how you can create games that can provide a meaningful
interaction among players, asynchronously and in real-time using WebSockets.

Part VII, “Mobile Enhancements,” examines how to use some of the additional HTML5-family of
APIs to enhance your game, covering geolocation and device orientation as well as covering the state
of HTML5 sound on mobile devices.

Part VIII, “Game Engines and App Stores,” surveys the landscape of game engines available for
HTML5—both commercial and open-source—and helps you decide which engine is appropriate. It
also covers emerging technologies that enable you to publish hardware-accelerated HTML5 games
into the native mobile App stores.

WHAT YOU NEED TO USE THIS BOOK

The samples in this book run on modern desktop browsers in Windows, OS X, or Linux. The term
modern desktop browsers refers to Internet Explorer versions 9 and up, and up-to-date versions of
Safari, Firefox, or Chrome.

xxvi

INTRODUCTION

If you want to run the samples on a mobile device, for best results you need an iOS device running
iOS 5.0 or greater or an Android device running Android 4.0 or newer. Many of the examples work
on Android 2.2 and above, but performance may be limited.

If you run on a Mac, you can run a number of the examples via the iOS simulator that can be
installed with XCode. Android simulators are unfortunately too slow currently to be a good test bed
for running HTML5 games.

CONVENTIONS

To help you get the most from the text and keep track of what's happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, Tips, hints, and tricks are offest and placed in italics like this.

SIDEBAR

Asides to the current discussion are offset like this.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show ilenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use boldface to emphasize code that is particularly important in the
present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code iles that accompany the book. All the source code used in this book
is available for download at www.wrox.com. At the site, simply locate the book’s title (either by using

http://www.wrox.com

xxvii

INTRODUCTION

the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may ind it easiest to search
by the ISBN; this book’s ISBN is 978-1-118-30132-6.

After you download the code, decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you ind an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you can help us provide even higher quality
information.

To ind the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

NOTE A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, click on the Errata Form link and complete the
form to send us the error you have found. We’ll check the information and, if appropriate, post a mes-
sage to the book’s errata page and ix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/
http://www.wrox.com/misc-pages/booklist.shtml

xxviii

INTRODUCTION

At p2p.wrox.com you can ind a number of different forums to help you not only as you read this
book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, read the P2P FAQs for answers to questions
about how the forum software works as well as many common questions speciic to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

www.itbookshub.com

http://www.allitebooks.org

PART I

Diving In

 ⊲ CHAPTER 1: Flying Before You Walk

 ⊲ CHAPTER 2: Making It a Game

 ⊲ CHAPTER 3: Finishing Up and Going Mobile

Flying Before You Walk

WHAT’S IN THIS CHAPTER?

 ➤ Creating the HTML5 for a game

 ➤ Loading images and drawing on canvas

 ➤ Setting up your game’s structure

 ➤ Creating an animated background

 ➤ Listening for user input

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 01
download and individually named according to the names throughout the chapter.

INTRODUCTION

Games have long been a medium that pushes technology to its limits. This book continues that
proud tradition by taking the core technologies of the web—HTML, CSS, and JavaScript—and
pushing them to the edges of their capabilities and performance. HTML5 as a game medium has
come a long way capability-wise in a short amount of time, and many people believe in-browser
gaming will be one of the primary distribution mechanisms for games in the coming years.

Even though it’s not an environment originally designed for creating games, HTML5 is actually
a nice, high-level environment for doing just that. So, in lieu of trying to abstract away all the
boilerplate by building an engine immediately, you can get right to the good stuff: a one-off game
built from the ground up on HTML5—a top-down 2-D space shooter called Alien Invasion.

1

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

4 ❘ CHAPTER 1 Flying BeFore you Walk

BUILDING A COMPLETE GAME IN 500 LINES

To drive home the point of how easy it is to build games in HTML5, the inal game you build in the
irst three chapters contains fewer than 500 lines of code, all without using any libraries.

Understanding the Game

Alien Invasion is a top-down 2-D shooter game built in the spirit of the game 1942 (but in space) or
a simpliied version of Galaga. The player controls a ship, shown at the bottom of the screen, lying
the ship vertically through an endless space ield while defending Earth against an incoming hoard
of aliens.

When played on a mobile device, control is via left and right arrows shown on the bottom left of the
screen, and a Fire button on the right. When played on the desktop, the user can use the keyboard’s
arrow keys to ly and the spacebar to ire.

To compensate for all the different screen sizes of mobile devices, the game resizes the play area to
always play at the size of the device. On the desktop it plays in a rectangular area in the middle of
the browser page.

Structuring the Game

Nearly every game of this type consists of a few of the same pieces: some asset loading, a title
screen, sprites, user input, collision detection, and a game loop to tie it all together.

The game uses as few formal structures as possible. Instead of building explicit classes, you take
advantage of JavaScript’s dynamic typing (more on this in the section “Building Object-Oriented
JavaScript”). Languages such as C, C++, and Java are called “strongly typed” because you need to
be very explicit about the type of parameters that you pass around to method. This means you need
to explicitly deine base classes and interfaces when you want to pass different types of objects to
the same method. JavaScript is weakly (or dynamically) typed because the language doesn’t enforce
the types of parameters. This means you deine your objects more loosely, adding methods to each
object as needed, without building a bunch of base classes or interfaces.

Image asset handling is dead simple. You load a single image, called a sprite sheet, that contains all
your game’s sprite images in a single PNG and execute a callback after that image loads. The game
also has a single method for drawing a sprite onto your canvas.

The title screen renders a sprite for the main title and shows the same animated starield from the
main game moving in the background.

The game loop is also simple. You have an object that you can treat as the current scene, and you
can tell that scene to update itself and then to draw itself. This is a simple abstraction that works for
both title and end game screens as well as the main part of the game.

User input can use a few event listeners for keyboard input and a few “zones” on your canvas to detect
touch input. You can use the HTML standard method addEventListener to support both of these.

Lastly, for collision detection, you punt the hard stuff and just loop over the bounding boxes of each
of the objects to detect a collision. This is a slow and naive way to implement collision detection,

Adding the Boilerplate HTML and CSS ❘ 5

but it’s simple to implement and works reasonably well as long as the number of sprites you check
against is small.

The Final Game

To get a sense of where the game is headed, check out Figure 1-1,
and visit http://cykod.github.com/AlienInvasion/ on both
a desktop browser and whatever mobile device you have handy.
The game should run on any smartphone that supports HTML5
canvas; however, canvas performance on Android versions
before Ice Cream Sandwich is poor.

Now, it’s time to get started.

ADDING THE BOILERPLATE HTML
AND CSS

The main boilerplate for an HTML5 ile is minimal. You
get a valid HTML ile with a <canvas> element inside of a
container centered on the page, as shown in Listing 1-1.

LISTING 1-1: Boilerplate game HTML

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
<title>Alien Invasion</title>
 <link rel="stylesheet" href="base.css" type="text/css" />
</head>
<body>
 <div id='container'>
 <canvas id='game' width='320' height='480'></canvas>
 </div>
 <script src='game.js'></script>
</body>
</html>

The only external iles so far are the base.css ile, an external style sheet, and a nonexistent
game.js ile that will contain the JavaScript code for the game. Drop the HTML from Listing 1-1
into a new directory, and call it index.html.

In base.css you need two separate sections. The irst is a CSS reset. CSS resets make sure all ele-
ments look the same in all browsers and any per-element styling and padding is removed. To do this,
the reset sets the size of all elements to 100% (16 pixels for fonts) and removes all padding, borders,
and margins. The reset used is the well-known Eric Meyer reset: http://meyerweb.com/eric/
tools/css/reset/.

FIGURE 1-1: The inal game.

http://cykod.github.com/AlienInvasion/
http://meyerweb.com/eric/tools/css/reset/

6 ❘ CHAPTER 1 Flying BeFore you Walk

You can simply copy the CSS code verbatim to the top of base.css.

Next, you need to add two additional styles to the CSS ile, as shown in Listing 1-2.

LISTING 1-2: Base canvas and container styles

/* Center the container */
#container {
 padding-top:50px;
 margin:0 auto;
 width:480px;
}
/* Give canvas a background */
canvas {
 background-color: black;
}

The irst container style gives the container a little padding at the top of the page and centers its con-
tent in the middle of the page. The second style gives the canvas element a black background.

GETTING STARTED WITH CANVAS

You hopefully noticed a canvas tag in the middle of the HTML on the page (as shown in
Listing 1-2):

 <canvas id='game' width='320' height='480'></canvas>

This is where all the action for the game takes place—so much exciting stuff you can do in such an
unassuming tag.

The tag has an id for easy reference along with a width and height. Unlike most HTML elements,
you generally never want to add a CSS width and height onto canvas elements. Those styles visu-
ally resize your canvas but do not affect the pixel dimensions of the canvas, which is controlled by
the width and height on the element. Most of the time you should leave these alone.

Accessing the Context

Before you can do any drawing onto canvas, you need to fetch the context from the canvas element.
The context is the object that you actually make API calls against (not the canvas element itself.)
For 2-D canvas games, you can pull out the 2-D context, as shown in Listing 1-3.

LISTING 1-3: Accessing the rendering context

var canvas = document.getElementById('game');

var ctx = canvas.getContext && canvas.getContext('2d');
if(!ctx) {
 // No 2d context available, let the user know
 alert('Please upgrade your browser');

Getting Started with Canvas ❘ 7

} else {
 startGame();
}
function startGame() {
 // Let's get to work
}

First, grab the element from the document. These initial chapters use built-in browser methods for
all DOM (Document Object Model) interaction; later you are introduced to how to do the same
things more concisely using jQuery.

Next, call getContext on the canvas element. A double-ampersand (&&) short circuit operator pro-
tects you from calling a nonexistent method. This is used in the next if statement in case the visit-
ing browser doesn’t support the canvas element. You always want to “fail loudly” in this case, so
the players correctly blame their browser instead of your code. “Failing loudly” means that instead
of “failing silently” with a white screen and an error hiding on the JavaScript console, the game
explicitly pops up with a message that tells the user that something went wrong.

There is a 3-D WebGL-powered rendering context available on desktop browsers (excluding
Internet Explorer), but it is called glcanval and is available only on mobile Nokia devices at the
time of this writing. WebGL is another standard, separate from HTML5, that allows you to use
hardware-accelerated 3-D graphics in the browser.

Add the code from Listing 1-3 to a ile named game.js. You now can start playing with the canvas
element.

Drawing on Canvas

This initial tutorial doesn’t use any of the vector-based drawing routines, but for the sake of getting
something up on the screen quickly, you can draw a rectangle on the page. Modify the startGame()
method of your game.js ile to read as follows:

function startGame() {
 ctx.fillStyle = "#FFFF00";
 ctx.fillRect(50,100,380,400);
}

To draw a illed rectangle, you use the fillRect method on the ctx object, but irst you need to set
a ill style. You can pass in standard CSS color representations as strings to fillStyle, including
hexadecimal colors, RGB triples, or RGBA quads.

To layer a semitransparent rectangle on top of the existing one, add the following:

function startGame() {
 ctx.fillStyle = "#FFFF00";
 ctx.fillRect(50,100,380,400);
 // Second, semi-transparent blue rectangle
 ctx.fillStyle = "rgba(0,0,128,0.5);";
 ctx.fillRect(0,50,380,400);
}

If you add the preceding code and reload your index.html ile, you see a nice, big blue rectangle
smack dab in the middle of your black canvas.

8 ❘ CHAPTER 1 Flying BeFore you Walk

Drawing Images

Alien Invasion is an old-school, top-down 2-D shooter game with retro-looking bitmap graphics.
Luckily canvas provides an easy method called drawImage that comes in a couple of lavors, depend-
ing upon whether you want to draw an entire image or just a portion of an image.

The only complication is that, to draw those graphics, the game needs to load the image irst. This
isn’t a huge deal because browsers are handy at loading images; however, they load them asynchro-
nously, so you need to wait for a callback to let you know that the image is ready to go.

Make sure you have copied the sprites.png ile over from the book assets for Chapter 1 into an
images/ directory underneath your current game, and then add the code from Listing 1-4 to the
bottom of your startGame function.

LISTING 1-4: Drawing images with canvas (canvas/game.js)

function startGame() {
 ctx.fillStyle = "#FFFF00";
 ctx.fillRect(50,100,380,400);

 // Second, semi-transparent blue rectangle
 ctx.fillStyle = "rgba(0,0,128,0.8);";
 ctx.fillRect(25,50,380,400);

 var img = new Image();
 img.onload = function() {
 ctx.drawImage(img,100,100);
 }
 img.src = 'images/sprites.png';
}

If you reload the page, you should now see the sprite sheet lay-
ered on top of your rectangles. See canvas/game.js in the chap-
ter code for the complete code. You can see the code irst waits
for the onload callback before trying to draw the image onto the
context and then sets the src after setting up the callback. The
order is important because Internet Explorer does not trigger the
onload callback if the image is cached if you reverse the order of
the two lines. You can see the results—admittedly not pretty—in
Figure 1-2.

This irst example uses the simplest drawImage method—one
that takes an image and an x and y coordinate and then draws
the entire image on the canvas.

Modify the drawImage line to read as follows:

var img = new Image();
img.onload = function() {
 ctx.drawImage(img,100,100,200,200);
}
img.src = 'images/sprites.png';

FIGURE 1-2: The spritesheet and

drawn rectangles.

Creating Your Game’s Structure ❘ 9

The image has now shrunk down to the size of the extra parameters that you passed in which are
the destination width and height. This is a second form of drawImage that enables you to scale
images up or down to any dimensions.

The last form of drawImage, however, is the one that you'll use the most often with bitmapped
games. It is also the most complicated and takes a total of nine parameters:

 drawImage(image, sx, sy, sWidth, sHeight, dx, dy, dWidth, dHeight)

This form enables you to specify a source rectangle in the image using parameters sx, sy, sWidth,
and sHeight and a destination rectangle on the canvas using parameters dx, dy, dWidth, and
dHeight. As you’ve probably igured out, to pull out an individual frame from one of the sprites
in the sprite sheet, this is the format you want to use. Now give it a shot by changing the call to
drawImage to:

var img = new Image();
img.onload = function() {
 ctx.drawImage(img,18,0,18,25,100,100,18,25);
}
img.src = 'images/sprites.png';

If you reload the page, you see there’s now a single instance of the player ship on the canvas. So far
so good. In the next section, you start to build out the structure for an actual game.

IMMEDIATE VERSUS RETAINED MODE

Canvas is a tool for creating games in what’s commonly referred to as Immediate

mode. When you use canvas, all you are doing is drawing pixels onto the page.
Canvas doesn’t know anything about your spaceships or missiles that ly around.
All it cares about are pixels, and most canvas games clear the canvas completely
between frames and redraw everything at an updated position.

Contrast this with using the DOM to create a game. Using the DOM would be
equivalent to creating a game in Retained mode, as the browser keeps track of the
“scene graph” for you. This scene graph keeps track of the position and hierarchy
of objects. Instead of starting from scratch in each frame, you need to adjust only
the elements that have changed and the browser takes care of rendering everything
correctly. Which is better? Well, it depends on your game. See the discussion in
Chapter 12, “Building Games in CSS3,” to learn when to use which method.

CREATING YOUR GAME’S STRUCTURE

The code built so far has been a good way to exercise the canvas capabilities you’ll be using, but it
will need to be reorganized to turn it into a useful structure for a game. Now take a step back to
look at some of the patterns you want to use putting together the game.

10 ❘ CHAPTER 1 Flying BeFore you Walk

Building Object-Oriented JavaScript

JavaScript is an object-oriented (OO) language. As such, most elements in JavaScript are objects
including strings, arrays, functions and, well, objects are objects in the OO sense.

But this doesn’t mean that JavaScript has all the trappings of object-oriented programming (OOP)
that you might expect. First, it doesn't have a classical inheritance model. Second, it doesn't have a
standard constructor mechanism, relying instead on either constructor functions or object literals.

Instead of classical inheritance, JavaScript implements prototypical inheritance, meaning you can
create an object that represents the prototype, or blueprint, for a set of descendant objects that all
share the same base functionality

CLASSICAL VERSUS PROTOTYPICAL INHERITANCE

Most popular object-oriented languages used today, including Java and C++,
rely on classical inheritance, which means object behavior is deined by creat-
ing explicit classes and instantiating objects from those classes. JavaScript has a
much more luid method of deining classes based on the idea of prototypes, which
means you create an actual object that behaves the way you want and then create
child objects off of that.

Because methods are just regular JavaScript objects, many times developers also simply copy
attributes from other objects to fake Java-style interfaces or multiple inheritance. This lexibility
shouldn’t necessarily be viewed as a problem; rather, it means that developers have a lot of lexibility
for how to create objects and can pick the best method for the speciic use case.

Alien Invasion uses constructor functions combined with prototypical inheritance where it makes
sense. Using object prototypes can make object creation up to 50 times faster and provides memory
savings, but it is also more restricting because you can’t use closures to access and protect data.
Closures are a feature of JavaScript that allows you to keep variables in a method around for later
use even when a method has inished execution.

Chapter 9, “Bootstrapping the Quintus Engine: Part I,” discusses object-creation patterns in more
detail, but for now just realize that the use of different methods is intentional.

Taking Advantage of Duck Typing

There’s a famous saying that if it walks like a duck and talks like a duck, then it must be a duck.
When programming in strongly-typed languages, there’s no doubt whether it’s a duck—it must be
an instance of the “Duck” class, or if you program in Java, implement the iDuck interface.

In JavaScript, a dynamically-typed language, parameters, and references are not type-checked,
meaning you can pass any type of object as a parameter to any function, and that function happily
treats that object like the type of whatever object it was expecting until something blows up.

This lexibility can be both a good and a bad thing. It’s a bad thing when you end up with cryptic
error messages or errors during run time. It’s a good thing when you use that lexibility to keep a

www.itbookshub.com

http://www.allitebooks.org

Loading the SpriteSheet ❘ 11

shallow inheritance tree but can still share code. The idea of using objects based on their external
interface rather than their type is called duck typing.

Alien Invasion uses this idea in a couple of places: game screens and sprites. The game treats anything
that responds to method calls of step() and draw() as valid game screen objects or valid sprites.
Using duck typing for game screens enables Alien Invasion to treat title screens and in-game screens
as the same type of object, making it easy to switch between levels and title screens. Similarly, using
duck typing for sprites means that the game can be lexible with what can be added to a game board,
including the player, enemies, projectiles, and HUD elements. HUD, which is short for Heads Up
Display, is the term commonly used for elements that sit on top of the game, such as number of lives
left and the player’s score.

Creating the Three Principle Objects

The game needs three principle, mostly persistent objects: a Game object tying everything together; a
SpriteSheet object for loading and drawing sprites; and a GameBoard object for displaying, updat-
ing, and handling the collision of sprite elements. The game also needs a gaggle of different sprites
such as the player, enemies, missiles, and HUD objects, such as the score and number of remaining
lives, but those are introduced individually later.

LOADING THE SPRITESHEET

You have already seen most of the code necessary to load a sprite sheet and display sprites on the page.
All that remains is to extract the functionality into a package. One enhancement puts in a map of
sprite names to their locations to make it easier to draw the sprites on the screen. A second enhance-
ment encapsulates the onload callback functionality to hide the details from any calling classes.

Listing 1-5 shows the entire class.

LISTING 1-5: The SpriteSheet class

var SpriteSheet = new function() {
 this.map = { };
 this.load = function(spriteData,callback) {
 this.map = spriteData;
 this.image = new Image();
 this.image.onload = callback;
 this.image.src = 'images/sprites.png';
 };
 this.draw = function(ctx,sprite,x,y,frame) {
 var s = this.map[sprite];
 if(!frame) frame = 0;
 ctx.drawImage(this.image,
 s.sx + frame * s.w,
 s.sy,
 s.w, s.h,
 x, y,
 s.w, s.h);
 };
}

12 ❘ CHAPTER 1 Flying BeFore you Walk

Although the class is short and has only two methods, it does have a number of things to note. First,
because there can be only one SpriteSheet object, the object is created with

new function() { ... }

This puts the constructor function and the new operator on the same line, ensuring that only one
instance of this class is ever created.

Next, two parameters pass into the constructor. The irst parameter, spriteData, passes in sprite
data linking the rectangles of sprites to names. The second parameter, callback, passes as a call-
back to the image onload method.

The second method, draw, is the main workhorse of the class because it does the actual drawing of
sprites onto a context. It takes as parameters the context, the string specifying the name of a sprite
from the spriteData map, an x and y location to draw the sprite, and an optional frame for sprites
with multiple frames.

The draw method uses those parameters to look up the spriteData in the map to get the source
location of the sprite as well as the width and height. (For this simple SpriteSheet class, every
frame of the sprite is expected to be the same size and on the same line.) It uses that information to
igure out the parameters to the more complicated drawImage method, discussed in the “Drawing
Images” section earlier in this chapter.

Although this code is designed to be a one-off and only useful for this speciic game, you still need
to separate the game data, such as the sprite data and levels, from the game engine to make it easier
to test and build in pieces.

Add in the SpriteSheet to the top of a new ile called engine.js ile and replace the startGame
function in game.js with the following code:

function startGame() {
 SpriteSheet.load({
 ship: { sx: 0, sy: 0, w: 18, h: 35, frames: 3 }
 },function() {
 SpriteSheet.draw(ctx,"ship",0,0);
 SpriteSheet.draw(ctx,"ship",100,50);
 SpriteSheet.draw(ctx,"ship",150,100,1);
 });
}

Here the StartGame function calls SpriteSheet.load and passes in the details for a couple of
sprites. Next, in the callback function (after the images/sprites.png ile loads) to test out the
drawing function, it draws three sprites on the canvas.

Modify the bottom of your index.html ile to load engine.js irst and then game.js:

<body>
 <div id='container'>
 <canvas id='game' width='480' height='600'></canvas>
 </div>
 <script src='engine.js'></script>
 <script src='game.js'></script>
</body>

Check out sprite_sheet/index.html in the chapter code for the preceding example in a
working form.

Creating the Game Object ❘ 13

Now that the game can draw sprites on the page, you can set up the main game object to orchestrate
everything else.

CREATING THE GAME OBJECT

The main game object is a one-off object called, perhaps not surprisingly, Game. Its main purpose is
to initialize the game engine for Alien Invasion and run the game loop as well as provide a mecha-
nism for changing the main scene that displays.

Because Alien Invasion doesn’t have an input subsystem, the Game class is also responsible for set-
ting up listeners for keyboard and touch input. To start, only keyboard input is handled; touch input
is added in the next chapter.

Now that the game starts to take shape, a few additional considerations are necessary. Instead of
just executing code willy-nilly when it is evaluated, it generally makes sense to wait for the page to
inish downloading before initializing the game. The Game class takes this into consideration and
listens for a “load” event from the window before booting up the game.

The code for the Game class will be added at the top of engine.js.

Implementing the Game Object

Now walk through the 40+ lines of code that make up the Game object a section at a time. (See the
full listing at the top of game_class/engine.js in the chapter code.) The class starts off much like
the SpriteSheet, as a one-time class instance:

var Game = new function() {

Next is the initialization routine, called with the ID of the canvas element to ill, the sprite data that
is passed to the SpriteSheet, and the callback when the game is ready to start.

// Game Initialization
 this.initialize = function(canvasElementId,sprite_data,callback) {

 this.canvas = document.getElementById(canvasElementId);
 this.width = this.canvas.width;
 this.height= this.canvas.height;

 // Set up the rendering context
 this.ctx = this.canvas.getContext && this.canvas.getContext('2d');

 if(!this.ctx) { return alert("Please upgrade your browser to play"); }

 // Set up input
 this.setupInput();

 // Start the game loop
 this.loop();

 // Load the sprite sheet and pass forward the callback.
 SpriteSheet.load(sprite_data,callback);
 };

14 ❘ CHAPTER 1 Flying BeFore you Walk

Much of this code should be familiar from earlier in the chapter. The parts where you grab the
canvas element and check for a 2d context are straightforward. Next is a call to setupInput(),
which is discussed next. Finally, the game loop starts, and the data for the sprite sheet passes
through to SpriteSheet.load.

The next section sets up input:

 // Handle Input
 var KEY_CODES = { 37:'left', 39:'right', 32 :'fire' };
 this.keys = {};
 this.setupInput = function() {
 window.addEventListener('keydown',function(e) {
 if(KEY_CODES[event.keyCode]) {
 Game.keys[KEY_CODES[event.keyCode]] = true;
 e.preventDefault();
 }
 },false);
 window.addEventListener('keyup',function(e) {
 if(KEY_CODES[event.keyCode]) {
 Game.keys[KEY_CODES[event.keyCode]] = false;
 e.preventDefault();
 }
 },false);
 }

The main point of this block is to add event listeners for keydown and keyup events for those keys
that you care about: speciically the left arrow, the right arrow, and the spacebar. For those events,
the listeners translate a numeric Keycode to a friendlier identiier and update a hash called Game.keys
to represent the current state of the user input. The player uses the Game.keys hash to control the
ship. For keys used by the game, the event handlers also call e.preventDefault(), which prevents
the browser from performing any default behavior in response to the key presses. (For the arrow keys
and the spacebar, the browser would normally try to scroll the page.)

One more point about the preceding event handler code: It uses the W3C event model
addEventListener method. This code is supported in current versions of the Chrome,
Safari, and Firefox browsers, but only Internet Explorer (IE) versions 9 and above. This is
not a huge deal because canvas isn’t supported pre-IE9 in any case, but if you want to add
compatibility for older browsers, it’s something you need to be careful with. (The engine built
starting in Chapter 9, “Bootstrapping the Quintus Engine Part I,” uses jQuery’s on method to
enable easy browser-independent event attachment.)

The last section of the Game class is relatively short:

 // Game Loop
 var boards = [];
 this.loop = function() {
 var dt = 30/1000;
 for(var i=0, len = boards.length;i<len;i++) {
 if(boards[i]) {
 boards[i].step(dt);
 boards[i] && boards[i].draw(Game.ctx);
 }
 }
 setTimeout(Game.loop,30);

Creating the Game Object ❘ 15

 };

 // Change an active game board
 this.setBoard = function(num,board) { boards[num] = board; };
};

The boards are the pieces of the game updated and drawn onto the canvas. An example of a board
might be a background or a title screen. (In the next chapter, you create a special board for han-
dling sprites.) The Game.loop function loops through all the boards, checks if there is a board at
that index, and if so, calls that board’s step method with the approximate number of seconds that
have passed, followed by calling the board’s draw method, passing in the rendering context. For the
draw call, the step call may have removed the board, so checking again that the board exists with
boards[i] && keeps the code from blowing up. Finally, setTimeout is used in the loop function
to ensure that the loop runs again in 30 milliseconds. Using setTimout instead of setInterval
ensures that timer events don’t back up if the game slows down, which could lead to strange warp-
like behavior. Because setTimeout doesn’t retain the context of the called function, Game.loop
needs to explicitly refer to the Game object instead of using the this keyword.

TIMER METHODS

There’s more to JavaScript timers for game development than just setTimeout
or setInterval. Chapter 9 discusses the requestAnimationFrame method that
enables the browser to sync calls to your game with screen updates. Also, hard
coding the amount of time that has passed to a ixed number is generally a bad
idea as the timer may be called at different intervals depending on browser perfor-
mance, but it should be okay for this simple type of game.

Because boards drop from index 0 to the highest index, background boards (such as the starield in
the next section) should be added to lower indexes, whereas elements added at the end, such as the
score and HUDs, should be drawn last.

Finally, the only method on the Game object that is called regularly during the game, Game.setBoard, is
deined. All this method does is set one of the game boards used in the loop method. It is used to switch
active GameBoards, which are used for title screens as well as the main section of the game.

Refactoring the Game Code

As you build games in the browser, you’ll want to keep attention on the structure of what you’re
building. JavaScript is a very lexible language, and without some discipline in how your game is
structured, things can fall apart quickly. A common pattern in this book will be to show you how
to use an API or technique quickly and simply and then take some time to structure that code into a
library or module.

The initial code for displaying a sprite on the screen in game.js is going to be replaced with code
that does the same but is structured in a way to be usable in a more complicated game.

Update game.js to use the Game class. Remove anything you have in game.js and add the code
shown in Listing 1-6.

16 ❘ CHAPTER 1 Flying BeFore you Walk

LISTING 1-6: A refactored game.js method (game_class/game.js)

var sprites = {
 ship: { sx: 0, sy: 0, w: 18, h: 35, frames: 3 }
};
var startGame = function() {
 SpriteSheet.draw(Game.ctx,"ship",100,100,1);
}
window.addEventListener("load", function() {
 Game.initialize("game",sprites,startGame);
});

All this code does is set up the available sprites, create a dummy startGame function that draws a
ship on the canvas to make sure everything is working correctly, and then listen for the load event
on the window object to call the Game.initialize function with the appropriate arguments.

Reload your index.html ile (or run the code example game_class/index.html) to see a lonesome
ship hanging out near the canvas element.

ADDING A SCROLLING BACKGROUND

Are you crying out for something more interesting than boilerplate setup code? Here’s the good
news: From here on it gets much more interesting. Start by adding an animated starield onto the
page to give the game some space-like qualities.

You can create a scrolling starield in a few ways, but in this case you need to be a little careful with
the number of objects that get drawn on the screen because drawing too many sprites per frame
slows down the game on mobile devices. One way around this is to create an offscreen canvas buf-
fer, draw a bunch of random stars on that buffer, and then simply draw that starield moving slowly
down the canvas. You’ll be limited to a few different layers of moving stars, but this effect should be
good enough for a retro shooter.

THE VAGARIES OF HTML5 PERFORMANCE

The performance question isn’t straightforward. One of the truisms of HTML5 is
that you never know what method has better performance without trying it out.
When deciding which way to implement a feature, your best bet is to go right to
the source: Test it out! You can see the performance for different numbers of stars
and ways to draw starields at http://jsperf.com/prerendered-starfield.
JSPerf.com is a great place to test your intuition. To see the results of the starield
test, scroll down the page and hit “Run Tests” to see the performance of the dif-
ferent runs. In this case, the answer isn't so cut and dry. Most desktops do better
drawing individual stars, whereas iOS mobiles do better drawing the offscreen
buffer, at the time of this writing at least. As canvas will get better hardware
acceleration across the board in the near future, it seems like a safe bet that the
illrate limited offscreen buffer (as described in this section) will be substantially
faster in the months and years to come.

http://jsperf.com/prerendered-starfield.JSPerf.com

Adding a Scrolling Background ❘ 17

Now break down a few of the necessary pieces before looking at the class as a whole. (You can skip
to the end of the section to see the full class if you want to peek ahead.)

The StarField class needs to do three main things. The irst is to create an offscreen canvas. This
is actually quite easy because canvas is just a regular DOM element with two attributes, width and
height, and can be created the same way as any other DOM elements:

var stars = document.createElement("canvas");
stars.width = Game.width;
stars.height = Game.height;
var starCtx = stars.getContext("2d");

Because the stars ield needs to be the same size as the game’s canvas, you can set the size by pulling
out the width and height properties that were set in the Game.initialize method.

After you create the canvas, you can start drawing stars (or rectangles) onto it. The easiest way to
do this is to call fillRect once for each star that needs to be drawn. A for loop combined with
using Math.random() to generate a random x and y location gets the job done:

 starCtx.fillStyle = "#FFF";
 starCtx.globalAlpha = opacity;
 for(var i=0;i<numStars;i++) {
 starCtx.fillRect(Math.floor(Math.random()*stars.width),
 Math.floor(Math.random()*stars.height),
 2,
 2);
 }

The only piece that hasn’t been mentioned is the globalAlpha property. This property sets the
level of opacity for the canvas element. Because there are multiple layers of stars moving at different
speeds, a nice effect is to have the slower stars be slightly less bright than the faster moving ones to
simulate their being farther away.

Next is the draw method. The Starfield needs to draw the entire canvas element containing the
stars onto the game’s canvas; however, because it will scroll constantly, it needs to be drawn twice:
once for the top half and once for the bottom half. The method uses the starield’s offset, a number
between zero and the height of the game to irst draw whatever part of the starield has been shifted
off the bottom of the game back at the top, and then draws the bottom part.

this.draw = function(ctx) {
 var intOffset = Math.floor(offset);
 var remaining = stars.height - intOffset;
 if(intOffset > 0) {
 ctx.drawImage(stars,
 0, remaining,
 stars.width, intOffset,
 0, 0,
 stars.width, intOffset);
 }
 if(remaining > 0) {
 ctx.drawImage(stars,
 0, 0,
 stars.width, remaining,
 0, intOffset,

18 ❘ CHAPTER 1 Flying BeFore you Walk

 stars.width, remaining);
 }
 }

The code looks slightly confusing because it uses the nine-parameter version of drawImage to draw
the slices, but it’s actually just slicing the starield into a top half and a bottom half, and drawing the
top half at the bottom of the game canvas and the bottom half at the top of the canvas.

Listing 1-7 shows the Starield class in its entirety, which should go into the game.js ile.

LISTING 1-7: The Starield (starield/game.js)

var Starfield = function(speed,opacity,numStars,clear) {

 // Set up the offscreen canvas
 var stars = document.createElement("canvas");
 stars.width = Game.width;
 stars.height = Game.height;

 var starCtx = stars.getContext("2d");
 var offset = 0;

 // If the clear option is set,
 // make the background black instead of transparent
 if(clear) {
 starCtx.fillStyle = "#000";
 starCtx.fillRect(0,0,stars.width,stars.height);
 }
 // Now draw a bunch of random 2 pixel
 // rectangles onto the offscreen canvas
 starCtx.fillStyle = "#FFF";
 starCtx.globalAlpha = opacity;
 for(var i=0;i<numStars;i++) {
 starCtx.fillRect(Math.floor(Math.random()*stars.width),
 Math.floor(Math.random()*stars.height),
 2,
 2);
 }
 // This method is called every frame
 // to draw the starfield onto the canvas
 this.draw = function(ctx) {
 var intOffset = Math.floor(offset);
 var remaining = stars.height - intOffset;
 // Draw the top half of the starfield
 if(intOffset > 0) {
 ctx.drawImage(stars,
 0, remaining,
 stars.width, intOffset,
 0, 0,
 stars.width, intOffset);
 }
 // Draw the bottom half of the starfield
 if(remaining > 0) {
 ctx.drawImage(stars,

Putting in a Title Screen ❘ 19

 0, 0,
 stars.width, remaining,
 0, intOffset,
 stars.width, remaining);
 }
 }
 // This method is called to update
 // the starfield
 this.step = function(dt) {
 offset += dt * speed;
 offset = offset % stars.height;
 }
}

Only two parts haven’t been discussed. The step function at the bottom gets called with the frac-
tion of a second that has elapsed since the last call to step. All it needs to do is update the offset
variable based on the elapsed time and the speed, and then use the modulus (%) operator to make
sure the offset is between zero and the height of the Starfield.

There's also a conditional to check if the clear parameter is set. This parameter is used to ill the
irst layer of stars with a black ill. (Later layers need to be transparent so that they overlay over each
other correctly.) This prevents the need to explicitly clear the canvas between frames and saves some
processing time.

To see the starield in action, you need to modify your startGame function in game.js to add some
starields. Modify it to add three starields of varying opacity by setting it to the following:

var startGame = function() {
 Game.setBoard(0,new Starfield(20,0.4,100,true))
 Game.setBoard(1,new Starfield(50,0.6,100))
 Game.setBoard(2,new Starfield(100,1.0,50));
}

Only the irst starield has the clear parameter set to true. Each starield has a higher speed combined
with a higher opacity than the last. This gives an effect of stars at different distances speeding by.

PUTTING IN A TITLE SCREEN

An animated starield, although nice, isn't a game. To start to build out the same elements of the
game, one of the irst requirements for a game is to display a title screen showing the users what
they can play.

The title screen for Alien Invasion isn't going to be anything special—just a text title and a subtitle.
So a generic GameScreen class with a title and subtitle centered on the screen is enough to get the
job done.

Drawing Text on Canvas

Drawing text on the canvas is straightforward and allows you to use any font loaded on the page.
This lexibility means you can use any of the standard web-safe fonts as well as any fonts that have
been loaded via @font-face onto the page.

20 ❘ CHAPTER 1 Flying BeFore you Walk

The declarations for @font-face take some care because depending on the browsers that need to be
supported, four different ile formats need to be available. Luckily, if you aren't going to install the
iles locally, but rather serve them off an online service such as the free Google web fonts, all that's
needed is a single linked style sheet. (You can browse the fonts available for free use at Google web
fonts at (www.google.com/webfonts.)

For Alien Invasion, the font Bangers gives the game a nice retro “Invasion of the Body Snatchers”
feel. Add the following line to your HTML (not your JavaScript) below the base.css link tag:

<head>
 <meta charset="UTF-8"/>
 <title>Alien Invasion</title>
 <link rel="stylesheet" href="base.css" type="text/css" />
 <link href='http://fonts.googleapis.com/css?family=Bangers'
 rel='stylesheet' type='text/css'>
</head>

Next, the game needs a TitleScreen class to display some text centered on the screen. To do this
you must use a new canvas method that hasn’t been discussed yet, fillText, and two new canvas
properties, font and textAlign.

The current font used is set by passing a CSS style to context.font, for example:

ctx.font = "bold 25px Arial";

This declaration would set the current font used by both measureText and fillText to 25 pixels
high, make it bold, and use the Arial font family.

To make sure the text is centered on a speciic location horizontally, you’ll need to set the context
.textAlign property to center.

ctx.textAlign = "center";

After you calculate the location for the text and set the font style appropriately, you can use
fillText to draw solid text onto the canvas:

fillText(string, x, y);

fillText takes the string to draw and an x and y location for the top-left corner.

Armed with these text-drawing methods, you now have the tools to draw a title screen that shows a
title and a subtitle and calls an optional callback when the user presses the ire key.

Listing 1-8 shows the code to get that done. Add the TitleScreen class to the bottom of your
engine.js ile.

LISTING 1-8: The TitleScreen (titlescreen/engine.js)

var TitleScreen = function TitleScreen(title,subtitle,callback) {
 this.step = function(dt) {
 if(Game.keys['fire'] && callback) callback();
 };

www.itbookshub.com

http://www.google.com/webfonts
http://www.allitebooks.org

Adding a Protagonist ❘ 21

 this.draw = function(ctx) {
 ctx.fillStyle = "#FFFFFF";
 ctx.textAlign = "center";

 ctx.font = "bold 40px bangers";
 ctx.fillText(title,Game.width/2,Game.height/2);

 ctx.font = "bold 20px bangers";
 ctx.fillText(subtitle,Game.width/2,Game.height/2 + 40);

};

Similar to the Starfield object, TitleScreen deines a step and a draw method. The step method
has only one task: to check if the ire key is pressed, and if so, call the callback that was passed in.

The draw does the majority of the actual work. First, it sets a fillStyle (white) that will be used
on both the title and subtitle. Next, it sets the font for the title. You can horizontally center the title
on the page by moving x to half the width of the canvas. Next is a call to fillText with this calcu-
lated x location and half the height of the canvas.

To draw the subtitle, the same calculation is repeated with a new font, and then the vertical position
is offset by 40 pixels to place it below the title.

You now need to add the title screen onto the page as a new board above the background starields.
Modify your startGame method as shown, and add in a new callback called playGame:

var startGame = function() {
 Game.setBoard(0,new Starfield(20,0.4,100,true))
 Game.setBoard(1,new Starfield(50,0.6,100))
 Game.setBoard(2,new Starfield(100,1.0,50));
 Game.setBoard(3,new TitleScreen("Alien Invasion",
 "Press space to start playing",
 playGame));
}

var playGame = function() {
 Game.setBoard(3,new TitleScreen("Alien Invasion", "Game Started..."));
}

If you reload the browser, you should see a title screen, and after you press the spacebar, the title
screen should update the subtitle to say “Game Started.” The playGame function will be replaced
with code to actually start to play the game in the next section.

ADDING A PROTAGONIST

The irst step to turn Alien Invasion into an actual, playable game is to add a player-controlled ship.
This is the irst sprite that you add to the game. In the next chapter, you create a GameBoard class
to manage the many sprites that are on the page at once during normal gameplay, but for now a
single sprite is enough to start.

22 ❘ CHAPTER 1 Flying BeFore you Walk

Creating the PlayerShip Object

The irst step is to get a ship created and drawn on the page. Open up game.js and add the player
ship class to the bottom:

var PlayerShip = function() {
 this.w = SpriteSheet.map['ship'].w;
 this.h = SpriteSheet.map['ship'].h;
 this.x = Game.width/2 - this.w / 2;
 this.y = Game.height - 10 - this.h;
 this.vx = 0;
 this.step = function(dt) {
 // TODO – added the next section
}
 this.draw = function(ctx) {
 SpriteSheet.draw(ctx,'ship',this.x,this.y,1);
 }
}

Much like a game screen, a sprite has the same two external methods: step and draw. Keeping the
interface consistent allows sprites and game screens to be mostly interchangeable. In initializing
the sprite, a few more variables are set that give the sprite a position on the page and a height and
a width. (The next chapter uses the position and height and width to do simple bounding box colli-
sion detection.)

The width and height of the sprite are pulled from the sprite sheet. Although you could hard-code
the width and height here, using the dimensions from the sprite sheet mean there is only one loca-
tion that needs to be changed if the dimensions need to be changed.

Next, modify the playGame function to read as follows:

var playGame = function() {
 Game.setBoard(3,new PlayerShip());
}

If you reload the index.html ile and press the spacebar, you can see the player ship hanging out at
the bottom of the page.

Handling User Input

The next task is to accept user input to allow the player to move the ship back and forth across the
game. This is handled in the step function inside of PlayerShip.

The step function has three main parts. The irst is to check for user input to update the ship’s move-
ment direction; the second is to update the x coordinate based on the direction; and inally the func-
tion needs to check that the updated x position is within the bounds of the screen. Replace the TODO
comment in the preceding step method with the following code:

this.step = function(dt) {
 this.maxVel = 200;
 this.step = function(dt) {
 if(Game.keys['left']) { this.vx = -this.maxVel; }
 else if(Game.keys['right']) { this.vx = this.maxVel; }

Summary ❘ 23

 else { this.vx = 0; }

 this.x += this.vx * dt;

 if(this.x < 0) { this.x = 0; }
 else if(this.x > Game.width - this.w) {
 this.x = Game.width - this.w;
 }
 }
 }

The irst part of the method checks the Game.keys map to see if the user is currently pressing the
left or the right arrow keys, and if so sets the velocity to the correct positive or negative value. The
second part of the code simply updates the x position with the current velocity multiplied by the
fraction of a second since the last update. Finally, the method checks to see if the x position is either
off the left side of the screen (less than zero) or off the right side of the screen (greater than the
width of the screen minus the width of the ship). If either of those conditions is true, the value of x
is modiied to be within that range.

SUMMARY

You now know how to get the framework of an HTML5 game up-and-running, including loading a
sprite sheet, drawing on canvas, adding in a parallax background, and taking in user input. At
this point, you can ire up the player/index.html ile and ly your ship left and right using the
arrow keys. Congratulations! You’re well on your way to having your irst HTML5 game up-and-
running. The next chapter builds on these initial pieces of code to add in enemies, levels, and the
rest. Chapter 3, “Enhancing The Game,” inishes this initial game by adding in mobile support.

Making It a Game

WHAT’S IN THIS CHAPTER?

 ➤ Exploring scene management

 ➤ Adding projectiles and enemies

 ➤ Using collision detection

 ➤ Creating explosions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 02
download and individually named according to the names throughout the chapter.

INTRODUCTION

In Chapter 1, “Flying Before You Walk,” you put together the framework of your irst
HTML5 mobile game and got a spaceship lying around the screen. Until this point what's
been built so far is more a toy than a game. To make it a game, you need to add some enemies
and set up the various elements of the game so that they can interact with each other.

CREATING THE GAMEBOARD OBJECT

The irst step to turning Alien Invasion into a game is to add a mechanism that handles a
bunch of sprites on the page at the same time. The current Game object can handle a stack of
boards, but those boards all act independently of each other. Also, although the Game object
provides a mechanism to swap boards in and out, it doesn't make it easy to add an arbitrary
number of sprites onto the page. Enter the GameBoard object.

2

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

26 ❘ CHAPTER 2 Making it a gaMe

Understanding the GameBoard

The purpose of the GameBoard object is much like the game board in a game of checkers. It provides
a spot to drop all the pieces and dictates their movement. In this section you break down some of
the responsibilities of this object. The responsibilities of the GameBoard can be broken down into
four distinct categories:

 ➤ It is responsible for keeping a list of objects and handling adding sprites to and removing
sprites from that list.

 ➤ It also needs to handle looping over that list of objects.

 ➤ It needs to respond the same way as previous boards. It needs to have a step and a draw
function that calls the appropriate functions on each of the objects in the object list.

 ➤ It needs to handle checking of collisions between objects.

The next few sections walk through each of the parts of the GameBoard object, which will behave
like a simple scene graph. Scene graphs are discussed in detail in Chapter 12, “Building Games with
CSS3.” The GameBoard class will be added to the bottom of the engine.js ile.

Adding and Removing Objects

The irst and most important responsibility of the GameBoard class is to keep track of the objects in
play. The easiest way to keep track of a list of objects is simply to use an array, in this case an array
called objects.

The GameBoard class will be described piecemeal, but the whole thing goes at the bottom of the
engine.js ile:

var GameBoard = function() {
 var board = this;
 // The current list of objects
 this.objects = [];
 this.cnt = [];

This array is where objects that show up in the game are added to and removed from.

Next, the class needs the capability to add objects. This is simple enough. Pushing objects onto the
end of the objects’ list gets most of the job done:

 // Add a new object to the object list
 this.add = function(obj) {
 obj.board=this;
 this.objects.push(obj);
 this.cnt[obj.type] = (this.cnt[obj.type] || 0) + 1;
 return obj;
 };

For an object to interact with other objects, however, it needs access to the board it’s a part of. For
this reason when GameBoard.add is called, the board sets a property called board on the object.
The object can now access the board to add additional objects, such as projectiles or explosions, or
remove itself when it dies.

Creating the GameBoard Object ❘ 27

The board also must keep a count of the number of objects of different types that are active at a
given time, so the second-to-last line of the function initializes the count to zero if necessary using a
boolean OR and then increments that count by 1. Objects won’t be assigned types until later in this
chapter, so this is a little bit of forward-looking code.

Next is removal. This process is slightly more complicated than it irst might seem because objects
may want to remove themselves or other objects in the middle of a step while the GameBoard loops
over the list of objects. A naive implementation would try to update GameBoard.objects but
because the GameBoard would be in the middle of looping over all the objects, changing them mid-
loop would cause problems with the looping code.

One option is to make a copy of the list of objects at the beginning of each frame, but this could get
costly to do each frame. The best solution is to irst mark objects for removal in a separate array and
then actually remove them from the object list after every object has had its turn. Following is the
solution GameBoard uses:

// Mark an object for removal
 this.remove = function(obj) {
 var wasStillAlive = this.removed.indexOf(obj) != -1;
 if(wasStillAlive) { this.removed.push(obj); }
 return wasStillAlive;
 };

 // Reset the list of removed objects
 this.resetRemoved = function() { this.removed = []; }

 // Remove objects marked for removal from the list
 this.finalizeRemoved = function() {
 for(var i=0,len=this.removed.length;i<len;i++) {
 var idx = this.objects.indexOf(this.removed[i]);
 if(idx != -1) {
 this.cnt[this.removed[i].type]--;
 this.objects.splice(idx,1);
 }
 }
 }

At the beginning of each step, resetRemoved is called to reset the list of objects to be removed.
The remove method irst checks if an object has already been removed and then adds it to the list of
objects to remove only if it’s not already there. It then returns true if the object was added or false
if the object was already dead. After every object has its turn, finalizeRemoved is called. This
method inds the removed objects in the objects list using Array.indexOf and then uses the Array
.splice method to cut those objects out of the list. When an object is removed from the list, it is
effectively dead because it no longer has its step and draw methods called.

Iterating over the List of Objects

Because much of what GameBoard does is iterate over a list of objects, it stands to reason that
a couple of helper methods to make that easier would come in handy. Two main methods are
needed. First, a simple iterate method that calls the same function on every object in the object list
is useful for the step and draw methods. Second, a detect method that returns the irst object for

28 ❘ CHAPTER 2 Making it a gaMe

which a passed-in function returns true makes collision detection easier. Both of these methods
are listed here:

First up is iterate:

 // Call the same method on all current objects
 this.iterate = function(funcName) {
 var args = Array.prototype.slice.call(arguments,1);
 for(var i=0,len=this.objects.length;i<len;i++) {
 var obj = this.objects[i];
 obj[funcName].apply(obj,args)
 }
 };

Although the meat of the function is just a loop over this.objects, the method does have a couple
of interesting JavaScript features.

The irst line of the method is a well-known JavaScript hack. The arguments object, which is avail-
able in every method call, contains a list of the arguments passed into that method and is used by
methods that accept varying numbers of arguments. arguments acts in many ways like an array, but
it’s not an actual array. This is a shame because in this case you’d like to get all the arguments out
except for the irst, which is the funcName, so that they can be passed on to the function to be called
on every object. arguments doesn’t have the slice method, but because JavaScript enables you to
take methods and apply them to whatever object you like using call or apply, the line

 var args = Array.prototype.slice.call(arguments,1);

can do just that and turn the arguments object into a proper array starting at the second element.
Inside of the loop the code looks up the method in the object’s properties using the square bracket
operator and then calls apply to call that method with whatever the passed in arguments are.

Next is the detect method, which will be used later for collision detection. Its job is to run the same
function on all of a board’s objects and return the irst object that the function returns true for. In
the abstract this doesn’t seem all that useful, but if you need to do collision detection or ind a spe-
ciic object based on certain parameters, the detect method is useful.

// Find the first object for which func is true
 this.detect = function(func) {
 for(var i = 0,val=null, len=this.objects.length; i < len; i++) {
 if(func.call(this.objects[i])) return this.objects[i];
 }
 return false;
 };

detect consists of a loop over the objects and a call to the passed-in function with the object passed
in as the this context. If that function returns true, then the object is returned; otherwise, the
functions returns false after it runs out of objects to compare against.

Deining the Board Methods

Next are the standard board functions, step and draw. Using the methods already deined, these
functions have trivial deinitions:

 // Call step on all objects and then delete
 // any objects that have been marked for removal

Creating the GameBoard Object ❘ 29

 this.step = function(dt) {
 this.resetRemoved();
 this.iterate('step',dt);
 this.finalizeRemoved();
 };

 // Draw all the objects
 this.draw= function(ctx) {
 this.iterate('draw',ctx);
 };

Both step and draw use the iterate method to call a speciically named function on each object in
the list, with step also making sure to reset and inalize the list of removed items.

Handling Collisions

The last bit of functionality in the purview of GameBoard is the handling of collisions. Alien

Invasion uses a simpliied collision model that reduces each of the sprites on the board to a simple
rectangular bounding box. If the bounding boxes of two different objects overlap, then those two
sprites are deemed to be colliding. Because each sprite has an x and a y position in addition to a
width and a height, this box is easy to calculate.

NOTE A bounding box is the smallest rectangle that encompasses the entirety of
an object. Using bounding boxes to do collision detection instead of polygons or
exact pixel data is faster to calculate, but is much less accurate.

GameBoard uses two functions to handle collision detection. The irst, overlap, simply checks for
the overlap between two objects’ bounding boxes and returns true if they intersect. The easiest way
to do this detection is clever. Rather than check whether one object is in the other, you simply need
to check if one object couldn’t be in the other and negate the result.

this.overlap = function(o1,o2) {
 return !((o1.y+o1.h-1<o2.y) || (o1.y>o2.y+o2.h-1) ||
 (o1.x+o1.w-1<o2.x) || (o1.x>o2.x+o2.w-1));
 };

What’s going on here is that the bottom edge of object one is checked against the bottom edge
of object two to see if object one is to the right of object two. Next, the top edge of object one is
checked against the bottom edge of object two and so on through each of the corresponding edges.
If any of these are true, you know object one doesn’t overlap object two. By simply negating the
result of this detection, you can tell if the two objects overlap.

With a function in your pocket to determine overlap, it becomes easy to check one object against all
the other objects in the list.

 this.collide = function(obj,type) {
 return this.detect(function() {
 if(obj != this) {
 var col = (!type || this.type & type) && board.overlap(obj,this)
 return col ? this : false;

30 ❘ CHAPTER 2 Making it a gaMe

 }
 });
 };

Collide uses the detect function to match the passed-in object against all the other objects and
returns the irst object for which overlap returns true. The only complication is the support for an
optional type parameter. The idea behind this is that different types of objects want to collide with
only certain objects. Enemies, for example, don’t want to collide with themselves, but they do want
to collide with the player and the player’s missiles. By doing a bitwise AND operation, collisions
against objects of multiple types can be performed without the loss of speed that an array or hash
lookup would require. One caveat is that each of the different types must be a power of two to pre-
vent overlap of different types.

For example, if types were deined as the following:

var OBJECT_PLAYER = 1,
 OBJECT_PLAYER_PROJECTILE = 2,
 OBJECT_ENEMY = 4,
 OBJECT_ENEMY_PROJECTILE = 8;

an enemy could check if it collides with a player or a player’s missile by doing a bitwise OR of the
two types together:

board.collide(enemy, OBJECT_PLAYER | OBJECT_PLAYER_PROJECTILE)

Objects can also be assigned multiple types, and the collide function would still work as planned.

With that, the GameBoard class is complete. See gameboard/engine.js for the full version of the
object in the code for this chapter.

Adding GameBoard into the Game

With the GameBoard class complete, the next step is to add it into the game. A quick modiication of
the playGame function from game.js does the trick:

var playGame = function() {
 var board = new GameBoard();
 board.add(new PlayerShip());
 Game.setBoard(3,board);
}

Reload the index.html ile, and you should see exactly the same behavior as at the end of Chapter 1.
All that’s been done is to have the GameBoard take over managing the ship sprite. This is less than
impressive because so far the game isn’t putting the GameBoard class to good use because it just has
a single sprite in it. This is remedied in the next section.

FIRING MISSILES

Now it’s time to give the player something to do besides just ly left and right across the screen. You
are going to bind the spacebar to ire off a pair of projectiles.

www.itbookshub.com

http://www.allitebooks.org

Firing Missiles ❘ 31

Adding a Bullet Sprite

The irst step to giving the player some destructive capacity is to create a blueprint for the player
missile object. This object is added to the game at the player’s location whenever the player presses
the ire key.

The PlayerShip object didn’t use the object prototype to create methods because in general there
is only one player in the game at a time so it’s unnecessary to optimize for object creation speed
or memory footprint. To contrast, there are going to be a lot of PlayerMissiles added to the
game over the course of a level, so making sure they are quick to create and small from a memory
usage standpoint is a good idea. (The JavaScript garbage collector can cause noticeable hiccups in
game performance, so making its job easier is in your best interest.) Because of the frequency with
which PlayerMissile objects are going to be created, using object prototypes makes a lot of sense.
Functions created on an object’s prototype need to be created and stored in memory only once.

Add the following highlighted text to the top of game.js to put in the sprite deinition for the
missile (don’t forget the comma on the previous line):

var sprites = {
 ship: { sx: 0, sy: 0, w: 37, h: 42, frames: 1 },
 missile: { sx: 0, sy: 30, w: 2, h: 10, frames: 1 }
};

Next add the full PlayerMissile object (see Listing 2-1) to the bottom of game.js:

LISTING 2-1: The PlayerMissile Object

var PlayerMissile = function(x,y) {
 this.w = SpriteSheet.map['missile'].w;
 this.h = SpriteSheet.map['missile'].h;
 // Center the missile on x
 this.x = x - this.w/2;
 // Use the passed in y as the bottom of the missile
 this.y = y - this.h;
 this.vy = -700;
};

PlayerMissile.prototype.step = function(dt) {
 this.y += this.vy * dt;
 if(this.y < -this.h) { this.board.remove(this); }
};

PlayerMissile.prototype.draw = function(ctx) {
 SpriteSheet.draw(ctx,'missile',this.x,this.y);
};

The initial version of the PlayerMissile class clocks in at a mere 14 lines and much of it is boil-
erplate you’ve seen before. The constructor function simply sets up a number of properties on the
sprite, pulling the width and height from the SpriteSheet. Because the player ires missiles verti-
cally upward from a turret location, the constructor uses the passed-in y location for the location of

32 ❘ CHAPTER 2 Making it a gaMe

the bottom of the missile by subtracting the height of the missile to determine its starting y location.
It also centers the missile on the passed-in x location by subtracting half the width of the sprite.

As discussed previously, the step and draw methods are created on the prototype to be eficient.
Because the player’s missile moves only vertically up the screen, the step function needs to adjust
only the y property and check if the missile has moved completely off the screen in the y direction.
If the missile has moved more than its height off the screen (that is, this.y < -this.h), it removes
itself from the board.

Finally, the draw method just draws the missile sprite at the missile’s x and y locations using the
SpriteSheet object.

Connecting Missiles to the Player

To actually get a missile onto the screen, the PlayerShip needs to be updated to respond to the ire
key and add a pair of missiles onto the screen for each of its two turrets. You also need to add in a
reloading period to limit the speed at which missiles are ired.

To put in this limit, you must add a new property called reload, which represents the remain-
ing time before the next pair of missiles can be ired. You also must add another property called
reloadTime, which represents the full reloading time. Add the following two initialization lines to
the top of the PlayerShip constructor method:

var PlayerShip = function() {
 this.w = SpriteSheet.map['ship'].w;
 this.h = SpriteSheet.map['ship'].h;
 this.x = Game.width / 2 - this.w / 2;
 this.y = Game.height - 10 - this.h;
 this.vx = 0;
 this.reloadTime = 0.25; // Quarter second reload
 this.reload = this.reloadTime;

reload is set to reloadTime to prevent the player from immediately iring a missile when they press
ire to start the game.

Next, modify the step method to read as follows:

 this.step = function(dt) {
 if(Game.keys['left']) { this.vx = -this.maxVel; }
 else if(Game.keys['right']) { this.vx = this.maxVel; }
 else { this.vx = 0; }
 this.x += this.vx * dt;

 if(this.x < 0) { this.x = 0; }
 else if(this.x > Game.width - this.w) {
 this.x = Game.width - this.w
 }

 this.reload-=dt;
 if(Game.keys['fire'] && this.reload < 0) {
 Game.keys['fire'] = false;

Adding Enemies ❘ 33

 this.reload = this.reloadTime;
 this.board.add(new PlayerMissile(this.x,this.y+this.h/2));
 this.board.add(new PlayerMissile(this.x+this.w,this.y+this.h/2));
 }
 }

This code adds two new player missiles on the left and right sides of the ship if the player presses
the ire key and is not in the process of reloading. Firing a missile simply consists of adding it to
the board at the right location. The reload property is also reset to reloadTime to add in a delay
between missiles being ired. To ensure the player needs to press and release the spacebar to ire and
can’t just hold it down, the key is set to false. (This doesn’t quite have the intended effect because
keydown events are ired on repeat.)

Reload the game (or ire up http://mh5gd.com/ch2/missiles/) and test out iring some missiles.
You can adjust reloadTime to see the effect it has on the speed missiles are ired.

ADDING ENEMIES

A space shooter isn’t any fun without enemies, so next you will add some enemies into the game
by creating an Enemy sprite class. Although there will be multiple types of enemies, they are all
represented by the same class and differentiated only by different templates for their image and
movement.

Calculating Enemy Movement

You deine the movement for enemies with an equation that contains a few pluggable parameters
that enable enemies to exhibit relatively complex behavior without a lot of code. The equation sets
the velocity of an enemy at a given time since it was added to the board:

vx = A + B * sin(C * t + D)

vy = E + F * sin(G * t + H)

All the letters A through H represent constant numbers. Don’t let these equations intimidate you.
All they say is that the velocity of an enemy is based on a constant value plus a value that repeats
cyclically. (Using a sine enables the cyclical value.) Using an equation such as this allows the game
to add enemies that twirl around the screen in interesting patterns and adds some dynamism to
the game that a bunch of enemies lying in a straight line wouldn’t. Sines and cosines are used
often in game development for animation because they provide a mechanism for smooth move-
ment transitions. See Table 2.1 for a description of the effect each parameter A–H has on the
movement of an enemy.

NOTE Parabolas created with quadratic equations (a + bx + cx*x) are also use-
ful for this but don't provide periodic behavior, so they aren’t quite as useful in
this situation.

http://mh5gd.com/ch2/missiles/

34 ❘ CHAPTER 2 Making it a gaMe

TABLE 2-1: Parameter Descriptions

PARAMETER DESCRIPTION

A Constant horizontal velocity

B Strength of horizontal sinusoidal velocity

C Period of horizontal sinusoidal velocity

D Time shift of horizontal sinusoidal velocity

E Constant vertical velocity

F Strength of vertical sinusoidal velocity

G Period of vertical sinusoidal velocity

A number of different combinations of values produce different behaviors. If B and F are set to zero,
then the enemy lies straight because the sinusoidal component in both directions is zero. If F and A
are set to zero, then the enemy lies with a constant y velocity but moves back and forth smoothly in
the x direction.

You create a variety of different enemies in the section “Setting Up the Enemies” by setting different
variations of parameters.

In a production game, if you don’t want to worry about handling the math yourself, you could con-
sider using a tweening engine such as TweenJS (www.createjs.com/TweenJS), which can handle
smoothly moving objects from one position to another in a number of interesting manners.

Constructing the Enemy Object

You can create enemies from a blueprint that sets the sprite image used, the initial starting location,
and the values for the movement of constants A–H. The constructor also enables an override object
to be passed in to override the default blueprint settings.

Much like PlayerMissile, the Enemy object adds methods onto the prototype to speed object cre-
ation and reduce the memory footprint.

This initial version of Enemy looks much like the previous two sprite classes that have been built
(PlayerShip and PlayerMissile), with a constructor function shown in in Listing 2-2 that initial-
izes some state; a step method that updates the position and checks if the sprite is out of bounds;
and a draw function that renders the sprite. Because of the need to copy over from the blueprint and
any override parameters and set up the velocity equation parameters, the constructor function is a
little more complicated than previous ones.

JavaScript doesn’t have a built-in method to easily copy attributes over from another object, so you
need to roll your own loop over the attributes to do it. To prevent the need for the blueprint to set
each of the parameters A–H, each of those are also be initialized to zero.

http://www.createjs.com/TweenJS

Adding Enemies ❘ 35

LISTING 2-2: The Enemy Constructor

var Enemy = function(blueprint,override) {
 var baseParameters = { A: 0, B: 0, C: 0, D: 0,
 E: 0, F: 0, G: 0, H: 0 }
 // Set all the base parameters to 0
 for (var prop in baseParameters) {
 this[prop] = baseParameters[prop];
 }
 // Copy of all the attributes from the blueprint
 for (prop in blueprint) {
 this[prop] = blueprint[prop];
 }
 // Copy of all the attributes from the override, if present
 if(override) {
 for (prop in override) {
 this[prop] = override[prop];
 }
 }
 this.w = SpriteSheet.map[this.sprite].w;
 this.h = SpriteSheet.map[this.sprite].h;
 this.t = 0;
}

The constructor irst copies three sets of objects into the this object: the base parameters, the blue-
print, and the override. Because the enemy can have different sprites depending on the blueprint,
the width and the height are set afterward based on the sprite property of the object. Finally, a
t parameter is initialized to 0 to keep track of how long this sprite has been alive.

If the repetition in this code bothers you, don’t worry! You clean it up in the section “Refactoring
the Sprite Classes” later in this chapter.

Stepping and Drawing the Enemy Object

The step function (see Listing 2-3) for the enemy should update the velocity based on the aforemen-
tioned equation. The this.t property needs to be incremented by dt to keep track of how long the
sprite has been alive. Next, the equation from earlier in this chapter can be plugged directly into the
step function to calculate the x and y velocity. From the x and y velocity, the x and y location are
updated. Finally, the sprite needs to check if it’s gone off the board to the right or the left, in which
case the enemy can remove itself from the page.

LISTING 2-3: The Enemy Step and Draw Methods

Enemy.prototype.step = function(dt) {
 this.t += dt;
 this.vx = this.A + this.B * Math.sin(this.C * this.t + this.D);
 this.vy = this.E + this.F * Math.sin(this.G * this.t + this.H);
 this.x += this.vx * dt;
 this.y += this.vy * dt;
 if(this.y > Game.height ||
 this.x < -this.w ||
 this.x > Game.width) {

continues

36 ❘ CHAPTER 2 Making it a gaMe

 this.board.remove(this);
 }
}

Enemy.prototype.draw = function(ctx) {
 SpriteSheet.draw(ctx,this.sprite,this.x,this.y);
}

The draw function is a near duplicate of the PlayerMissile object; the only difference is that it
must look up which sprite to draw in a property called sprite.

Adding Enemies on the Board

Now you add some initial enemy sprites to the top of game.js along with a simple enemy blueprint
for one enemy that can ly down the page:

var sprites = {
 ship: { sx: 0, sy: 0, w: 37, h: 42, frames: 1 },
 missile: { sx: 0, sy: 30, w: 2, h: 10, frames: 1 },
 enemy_purple: { sx: 37, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_bee: { sx: 79, sy: 0, w: 37, h: 43, frames: 1 },
 enemy_ship: { sx: 116, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_circle: { sx: 158, sy: 0, w: 32, h: 33, frames: 1 }
};

var enemies = {
 basic: { x: 100, y: -50, sprite: 'enemy_purple', B: 100, C: 2 , E: 100 }
};

Next, modify playGame to add a pair of enemies to the top of the page:

var playGame = function() {
 var board = new GameBoard();
 board.add(new Enemy(enemies.basic));
 board.add(new Enemy(enemies.basic, { x: 200 }));
 board.add(new PlayerShip());
 Game.setBoard(3,board);
}

Using the enemies object as a blueprint for the enemy makes adding an enemy onto the page as
simple as calling new Enemy() with that blueprint. To make the second enemy appear to the right of
the irst, an override object is passed in setting x to 200.

Reload the ile, and when the game starts, you should have a couple of bad guys snake their way
down the screen and then disappear off the bottom. You can also take a look at http://mh5gd.
com/ch2/enemies to see the effect this code has. These enemies aren’t doing any collision detection,
so they won’t interact with the player.

The basic enemy has only three of the enemy movement parameters deined: B (horizontal sinusoi-
dal movement), C (horizontal sinusoidal period), and E (vertical ixed movement). Play with these
parameters to affect the movement. Increasing C, for example, increases the frequency with which
the enemies bounce back and forth.

LISTING 2-3 (continued)

http://mh5gd.com/ch2/enemies

Refactoring the Sprite Classes ❘ 37

REFACTORING THE SPRITE CLASSES

At this point the game has three different sprite classes that all share a lot of the same boilerplate
code. This means it’s time to apply the Rule of Three.

As described by Wikipedia, the rule is:

Rule of three is a code refactoring rule of thumb to decide when a replicated piece

of code should be replaced by a new procedure. It states that the code can be copied

once, but that when the same code is replicated three times, it should be extracted

into a new procedure. The rule was introduced by Martin Fowler in Refactoring and

attributed to Don Roberts.

http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)

Even though Alien Invasion is a one-off game engine that isn’t intended to be turned into a general-
purpose engine, it still pays to put in a little bit of time to refactor the code when it makes sense to
clean up any rampant duplication and make the game easier to ix and extend.

No one writes perfect code the irst time, especially when prototyping and trying out new features.
When that code works, however, failing to refactor and clean up code during development leads
to technical debt. The more technical debt you have on a project, the more painful it is to make
changes and add new features. Refactoring can clean up technical debt by removing unused code,
reducing code duplication, and cleaning up abstractions, all things that don’t make your game better
necessarily but make your life as a game developer better.

In Alien Invasion, the main culprits of duplication in these three sprite classes are the boilerplate
setup code and the draw method, which is the same across all three methods. It’s time to extract
those into a base object called Sprite, which can handle initialization given a set of setup param-
eters as well as a sprite to use. Inside the Enemy constructor, the three loops to copy one object into
another is also a good opportunity for refactoring.

If you haven’t done a lot of prototypical inheritance in JavaScript, the syntax may look strange.
Because JavaScript doesn’t have the idea of classes, instead of deining a class that represents the
inherited properties, you create a prototype object where JavaScript will look when a parameter isn’t
deined on the actual object.

Creating a Generic Sprite Class

In this section you create the Sprite object that all other sprites inherit from. Open up engine.js
and add the following code shown in Listing 2-4:

LISTING 2-4: A Generic Sprite Object

var Sprite = function() { }

Sprite.prototype.setup = function(sprite,props) {
 this.sprite = sprite;
 this.merge(props);

continues

http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)

38 ❘ CHAPTER 2 Making it a gaMe

 this.frame = this.frame || 0;
 this.w = SpriteSheet.map[sprite].w;
 this.h = SpriteSheet.map[sprite].h;
}

Sprite.prototype.merge = function(props) {
 if(props) {
 for (var prop in props) {
 this[prop] = props[prop];
 }
 }
}
Sprite.prototype.draw = function(ctx) {
 SpriteSheet.draw(ctx,this.sprite,this.x,this.y,this.frame);
}

This code goes into engine.js because it’s generic engine code versus game-speciic code. The con-
structor function is empty because each sprite has its own constructor function, and the Sprite
object is created only once for each of the descendant sprite object deinitions. Constructor func-
tions in JavaScript don’t work the same as constructors in other OO languages such as C++. To get
around this, you need a separate setup function to be called explicitly in the descendant objects.

This setup method takes in the name of the sprite in the SpriteSheet and a properties object. The
sprite is saved in the object, and then properties are copied over into the Sprite. The width and
height are also set here as well.

Because copying over properties into an object is such a common need, Sprite also deines a merge
method that does just that. This method is used in the setup method.

Finally, the draw method, which is nearly identical in every sprite so far, can be deined once here
and then will be available in every other sprite.

Refactoring PlayerShip

Armed with the Sprite class, the PlayerShip object can be refactored to simplify setup. The new
code is marked in bold in Listing 2-5:

LISTING 2-5: A Refactored PlayerShip

var PlayerShip = function() {
 this.setup('ship', { vx: 0, frame: 1, reloadTime: 0.25, maxVel: 200 });

 this.reload = this.reloadTime;
 this.x = Game.width/2 - this.w / 2;
 this.y = Game.height - 10 - this.h;

 this.step = function(dt) {
 if(Game.keys['left']) { this.vx = -this.maxVel; }
 else if(Game.keys['right']) { this.vx = this.maxVel; }
 else { this.vx = 0; }

LISTING 2-4 (continued)

Refactoring the Sprite Classes ❘ 39

 this.x += this.vx * dt;
 if(this.x < 0) { this.x = 0; }
 else if(this.x > Game.width - this.w) {
 this.x = Game.width - this.w
 }
 this.reload-=dt;
 if(Game.keys['fire'] && this.reload < 0) {
 this.reload = this.reloadTime;
 this.board.add(new PlayerMissile(this.x,this.y+this.h/2));
 this.board.add(new PlayerMissile(this.x+this.w,this.y+this.h/2));
 }
 }
}

PlayerShip.prototype = new Sprite();

At the top of the constructor function, the setup method is called, wiping out some boilerplate
code. A few of the properties are set when setup is called, but a few are set afterward because they
depend on the values of the other properties such as the object’s width and height, which isn’t avail-
able until after setup is called. Next, the draw method is removed because it is handled by Sprite.

Finally, the code to actually set up PlayerShip’s prototype comes after the PlayerShip constructor
function is deined.

Refactoring PlayerMissile

The PlayerMissile object was already compact, but refactoring helps make it even shorter. See
Listing 2-6.

LISTING 2-6: Refactored PlayerMissile

var PlayerMissile = function(x,y) {
 this.setup('missile',{ vy: -700 });
 this.x = x - this.w/2;
 this.y = y - this.h;
};

PlayerMissile.prototype = new Sprite();

PlayerMissile.prototype.step = function(dt) {
 this.y += this.vy * dt;
 if(this.y < -this.h) { this.board.remove(this); }
};

The constructor method still needs to explicitly set the x and y location because these are dependent on
the width and height of the sprite (which aren’t available until after setup is called). The step method
is unaffected by the refactoring, and the draw method can be removed as it’s handled by Sprite.

Refactoring Enemy

The Enemy object beneits the most from the refactoring, particularly in the constructor method.
Instead of using a number of loops to copy parameters into the object, a few calls to merge simplify
the method down to three lines. See Listing 2-7.

40 ❘ CHAPTER 2 Making it a gaMe

LISTING 2-7: Refactored Enemy Object (Partial Code)

var Enemy = function(blueprint,override) {
 this.merge(this.baseParameters);
 this.setup(blueprint.sprite,blueprint);
 this.merge(override);
}
Enemy.prototype = new Sprite();
Enemy.prototype.baseParameters = { A: 0, B: 0, C: 0, D: 0,
 E: 0, F: 0, G: 0, H: 0,
 t: 0 };

The step method is unaffected (and so isn't shown in Listing 2-7) and the draw method can be
removed. Notice that merge is called explicitly to merge in the set of baseParameters and the
override parameters. The predeined baseParameters object is also pulled out of the construc-
tor and put into the prototype. Although not a huge optimization, it prevents the need for the static
baseParameters object to be re-created each time a new Enemy is created just for the sake of being
copied over into the object. Because baseParameters isn’t going to be modiied, one copy of the
object will do.

HANDLING COLLISIONS

Alien Invasion is slowly coming together. It now has a player, missiles, and enemies lying around
the screen. Unfortunately, none of these pieces are interacting by blowing each other up as is
expected in a save-the-planet-from-destruction shooter game.

The good news is that the majority of the hard work for handling collisions has already been done.
The GameBoard object already knows how to take two objects and igure out if they are overlapping
as well as determine if one object is colliding with any others of a speciic type. All that’s necessary
now is to add the appropriate calls to those collision functions.

For collisions, Alien Invasion can use two mechanisms. The irst is to do proactive checks in every
object’s step function against any objects it has an interaction with. The second would be to have
a general collision phase where objects trigger collision events when they hit each other. The former
is simpler to implement, whereas the latter offers better overall performance and can be better opti-
mized. Alien Invasion is going to go the simpler route, but the platformer game built in Chapter 18,
“Creating a 2-D Platformer,” uses the more complicated mechanism.

Adding Object Types

To ensure that objects collide only with objects that it makes sense for them to collide with, objects
need to be assigned types. This was discussed at the beginning of the chapter but has not yet been
implemented in the game. The irst step is to determine the different object types the game has and
add some constants to keep from having to use magic numbers in the code.

Add the code from Listing 2-8 to the top of game.js to deine ive different types of objects.

www.itbookshub.com

http://www.allitebooks.org

Handling Collisions ❘ 41

LISTING 2-8: Object Types

var OBJECT_PLAYER = 1,
 OBJECT_PLAYER_PROJECTILE = 2,
 OBJECT_ENEMY = 4,
 OBJECT_ENEMY_PROJECTILE = 8,
 OBJECT_POWERUP = 16;

NOTE Each of these types shown in Listing 2-8 is a power of two, which is an
eficiency optimization to enable the use of bitwise logic as discussed earlier.

Next, add three lines to game.js setting the type of each Sprite at an appropriate spot after each
Sprite’s prototype assignment code:

PlayerShip.prototype = new Sprite();
PlayerShip.prototype.type = OBJECT_PLAYER;

...

PlayerMissile.prototype = new Sprite();
PlayerMissile.prototype.type = OBJECT_PLAYER_PROJECTILE;

...

Enemy.prototype = new Sprite();
Enemy.prototype.type = OBJECT_ENEMY;

Each object now has a type that can be used for collision detection.

Colliding Missiles with Enemies

To prevent duplicated effort, instead of objects checking for collisions with every type of object
they might hit, objects check only against objects that they actually “want” to hit. This means that
PlayerMissile objects check if they are colliding with Enemy objects, but Enemy objects won’t
check if they are colliding with PlayerMissile objects. Doing so keeps the number of calculations
down a little bit.

Now that objects can be hit, they need to have a method to deal with what should happen when
they are hit. To begin with, add a method to Sprite that removes an object whenever it gets hit.
This method can be overridden down the road by the various inherited objects.

Add the following function to the bottom of engine.js below the rest of the Sprite object deinition:

Sprite.prototype.hit = function(damage) {
 this.board.remove(this);
}

This initial version of the hit method just removes the object from the board, regardless of the
amount of damage done.

42 ❘ CHAPTER 2 Making it a gaMe

Add a damage value to the PlayerMissile constructor function:

 var PlayerMissile = function(x,y) {
 this.setup('missile',{ vy: -700, damage: 10 });
 this.x = x - this.w/2;
 this.y = y - this.h;
};

Next, open up game.js, and edit the PlayerMissile step method to check for collisions:

PlayerMissile.prototype.step = function(dt) {
 this.y += this.vy * dt;
 var collision = this.board.collide(this,OBJECT_ENEMY);
 if(collision) {
 collision.hit(this.damage);
 this.board.remove(this);
 } else if(this.y < -this.h) {
 this.board.remove(this);
 }
};

The missile checks to see if it’s colliding with any OBJECT_ENEMY type objects and then calls the
hit method on whatever object it collides with. It then removes itself from the board because its
job is done.

Fire up the game, and you should be able to shoot down the two enemies lying down the screen.

Colliding Enemies with the Player

To make it a fair ight, enemies need to have the ability to take down the player as well when they
make contact.

Adding essentially the same chunk of code to the Enemy step method allows the Enemy to take out
the player. Modify the step method to read as follows:

Enemy.prototype.step = function(dt) {
 this.t += dt;
 this.vx = this.A + this.B * Math.sin(this.C * this.t + this.D);
 this.vy = this.E + this.F * Math.sin(this.G * this.t + this.H);
 this.x += this.vx * dt;
 this.y += this.vy * dt;

 var collision = this.board.collide(this,OBJECT_PLAYER);
 if(collision) {
 collision.hit(this.damage);
 this.board.remove(this);
 }

if(this.y > Game.height ||
 this.x < -this.w ||
 this.x > Game.width) {
 this.board.remove(this);
 }
}

Handling Collisions ❘ 43

This code is identical to the code added to the PlayerMissile object except that it calls collide
with an OBJECT_PLAYER object type.

After making those changes, ire up the game and let your player be taken out by one of the ships.

Making It Go Boom

So far the collisions have the correct effect; however, there’s something to be said for a more dramatic
effect to liven things up. The sprites.png ile has a nice explosion animation in there for just that
reason. The explosion image was generated using the explosion generator on http://www.positech
.co.uk/.

Add the sprite deinition to the top of game.js for the explosion:

var sprites = {
 ship: { sx: 0, sy: 0, w: 37, h: 42, frames: 1 },
 missile: { sx: 0, sy: 30, w: 2, h: 10, frames: 1 },
 enemy_purple: { sx: 37, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_bee: { sx: 79, sy: 0, w: 37, h: 43, frames: 1 },
 enemy_ship: { sx: 116, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_circle: { sx: 158, sy: 0, w: 32, h: 33, frames: 1 },
 explosion: { sx: 0, sy: 64, w: 64, h: 64, frames: 12 }
};

Now add some health to the blueprint for a basic enemy:

var enemies = {
 basic: { x: 100, y: -50, sprite: 'enemy_purple',
 B: 100, C: 4, E: 100, health: 20 }
};

Next, you need to override the default hit method from Sprite for the Enemy object. This method
needs to reduce the health of the Enemy, so check if the Enemy has run out of health; if so add an
explosion to the GameBoard at the center of the Enemy, as shown in Listing 2-9.

LISTING 2-9: Enemy Hit Method

Enemy.prototype.hit = function(damage) {
 this.health -= damage;
 if(this.health <=0) {
 if(this.board.remove(this)) {
 this.board.add(new Explosion(this.x + this.w/2,
 this.y + this.h/2));
 }
 }
}

Finally, the Explosion class needs to be built. The class is a basic sprite that when added onto the
page just lips itself through its frames and then removes itself from the board. See Listing 2-10.

http://www.positech.co.uk/

44 ❘ CHAPTER 2 Making it a gaMe

LISTING 2-10: The Explosion Object

var Explosion = function(centerX,centerY) {
 this.setup('explosion', { frame: 0 });
 this.x = centerX - this.w/2;
 this.y = centerY - this.h/2;
 this.subFrame = 0;
};

Explosion.prototype = new Sprite();

Explosion.prototype.step = function(dt) {
 this.frame = Math.floor(this.subFrame++ / 3);
 if(this.subFrame >= 36) {
 this.board.remove(this);
 }
};

The Explosion constructor method takes the passed in centerX and centerY position and adjusts
the x and y location by moving the sprite half of its width to the left and half the height up. The
step method doesn’t need to worry about moving the explosion each frame; it just needs to update
the subFrame property to cycle through each of the frames of the explosion animation. Each frame
of the explosion animation plays for three game frames to make it last a little bit longer. When all
36 subFrames of the explosion have played through (12 actual frames), the Explosion removes
itself from the board.

Reload the game, and try to take out the enemies lying down the screen. It should take two missiles
to take out an enemy now, but that enemy should explode in a nice iery blast.

REPRESENTING LEVELS

Alien Invasion now has all the mechanics necessary to play the game. The only missing component
is to put together some level data and a mechanism for adding enemy ships onto the screen.

Before getting into the levels, add a few more enemy types to give some variety to the page.

Setting Up the Enemies

You could create an endless number of variations of enemy movement, but for this game you’ll
set up ive different types of enemy behavior using the various enemy sprite types as a start. You
can play with the deinitions and add more if you like. You could make a number of other varia-
tions, but this set of ive is a good start. Replace the enemies deinition at the top of game.js with
Listing 2-11.

LISTING 2-11: Enemy Deinitions

var enemies = {
 straight: { x: 0, y: -50, sprite: 'enemy_ship', health: 10,
 E: 100 },

Representing Levels ❘ 45

 ltr: { x: 0, y: -100, sprite: 'enemy_purple', health: 10,
 B: 200, C: 1, E: 200 },
 circle: { x: 400, y: -50, sprite: 'enemy_circle', health: 10,
 A: 0, B: -200, C: 1, E: 20, F: 200, G: 1, H: Math.PI/2 },
 wiggle: { x: 100, y: -50, sprite: 'enemy_bee', health: 20,
 B: 100, C: 4, E: 100 },
 step: { x: 0, y: -50, sprite: 'enemy_circle', health: 10,
 B: 300, C: 1.5, E: 60 }
};

With just a variation on the movement parameters, the enemies have wildly differing movement
styles. The straight enemy has only vertical velocity parameter E, so it moves downward at a con-
stant rate.

The ltr enemy (short for left-to-right) has a constant vertical velocity, but then a sinusoidal hori-
zontal velocity (parameters B and C) gives it a smooth sweeping motion from left to right.

The circle has primarily sinusoidal motion in both directions, but adds a time shift in the Y direction
with parameter H to give a circular motion to the enemy.

The wiggle and the step enemies have the same parameters set, just to different amounts. With a
smaller B value and larger C and E values, the wiggle enemy just snakes down the screen, while the
step enemy, with a larger B and a smaller C and E, makes its way down the page slowly by sliding
back and forth across the whole screen.

Setting Up Level Data

Knowing that levels in Alien Invasion will be populated with strings of enemies of the same type,
the next step is to igure out a good mechanism for encoding the level data in a compact manner.
When that has been igured out, you can work backward and igure out what the level object needs
to do to spawn those enemies onto the page. Working from how you want to use a piece of code
back to the implementation is a good way to end up with code that is easy to work with. It may take
a little bit more work on the implementation, but you’ll be happier in the long run.

One initial impulse you might have would be to encode the starting location of each enemy and each
enemy type in an array. Because a level might have a hundred or more enemies, this would get labo-
rious quickly. A better option is to encode each string of enemies as a single entry with a start time,
end time, and per-enemy delay. This way each string of enemies is succinctly encoded into the level
data, and you can take one look at the deinition and get a good understanding of what's going on.

Add the level data for level 1 to the top of game.js by inserting Listing 2-12.

LISTING 2-12: Level Data

var level1 = [
 // Start, End, Gap, Type, Override
 [0, 4000, 500, 'step'],
 [6000, 13000, 800, 'ltr'],
 [12000, 16000, 400, 'circle'],
 [18200, 20000, 500, 'straight', { x: 150 }],
 [18200, 20000, 500, 'straight', { x: 100 }],

continues

46 ❘ CHAPTER 2 Making it a gaMe

 [18400, 20000, 500, 'straight', { x: 200 }],
 [22000, 25000, 400, 'wiggle', { x: 300 }],
 [22000, 25000, 400, 'wiggle', { x: 200 }]
];

Each line gives a start time in milliseconds, an end time in milliseconds, and a gap in milliseconds
between each enemy followed by the enemy type and any override parameters.

Loading and Finishing a Level

Deining how the level class is going to consume level data is half the battle; the other half is decid-
ing on how the Level object will be used by the PlayGame method to start the game. The easiest
solution is to simply create another sprite-like object that is added to the game board and spawns
enemies at the correct time intervals. When the Level is out of enemies, it can make a callback to
indicate success.

Again working backward, you write the way the Level object should be used before tackling the
actual implementation. Replace the existing playGame method with the one shown in Listing 2-13,
and add new winGame and loseGame methods as well.

LISTING 2-13: Modiied Game Initialization Methods

var playGame = function() {
 var board = new GameBoard();
 board.add(new PlayerShip());
 board.add(new Level(level1,winGame));
 Game.setBoard(3,board);
}
var winGame = function() {
 Game.setBoard(3,new TitleScreen("You win!",
 "Press fire to play again",
 playGame));
}
var loseGame = function() {
 Game.setBoard(3,new TitleScreen("You lose!",
 "Press fire to play again",
 playGame));
}

Adding the level becomes as trivial as adding a new Level sprite to the board and passing in the
level data level1 and the success callback winGame.

The winGame method just reuses the TitleScreen object to show a success message and a message
letting the player know they can replay the game.

The loseGame method works the same way as the winGame method but with a less congratulatory
message. Lose game so far isn’t called yet anywhere, but this can be remedied by adding a custom

LISTING 2-12 (continued)

Representing Levels ❘ 47

hit method to the PlayShip object. Add the following deinition to game.js under the rest of the
PlayerShip methods (make sure to add it underneath where the prototype is set):

PlayerShip.prototype.hit = function(damage) {
 if(this.board.remove(this)) {
 loseGame();
 }
}

The PlayerShip doesn’t get an explosion when it dies; this is just for simplicity’s sake. However,
you could add one in and add a callback to the end of the explosion step to show the loseGame
screen only after the PlayerShip has inished blowing up.

Implementing the Level Object

All that’s left now is the implementation of the Level object. This object’s duties have already been
deined by how the level data and playGame and winGame methods were set up. The Level object
has only two methods: the constructor function, which makes a copy of the level data for its own
use (and modiication) and the step method, which loops through the level data and adds enemies
onto the board as necessary.

Add the constructor function shown in Listing 2-14 to the bottom of engine.js.

LISTING 2-14: Level Object Constructor

var Level = function(levelData,callback) {
 this.levelData = [];
 for(var i =0; i<levelData.length; i++) {
 this.levelData.push(Object.create(levelData[i]));
 }
 this.t = 0;
 this.callback = callback;
}

The one major responsibility of the constructor function is to make a deep copy of the passed-in
level data. Cloning the data is necessary because the method is going to modify the level data as the
level progresses. Because objects are passed by reference in JavaScript, this would prevent the level
from being reused if the player were to play the level a second time.

The cloning is slightly more complicated than it seems because JavaScript doesn’t have a built-in
mechanism for deep cloning a list of objects inside an Array. To get around this, each entry in the
level data is looped over and the built-in Object.create method is called to create a new object
with the existing data as the prototype. That new object is then pushed onto a new Array.

Next is the meat of the Level object, the step method. Even though Level isn’t a normal Sprite,
it’s going to pretend it is and behave like one by responding to the step and draw methods. The step
method in Listing 2-15 has the responsibility to keep track of the current time and dropping enemies
onto the page in sequence.

48 ❘ CHAPTER 2 Making it a gaMe

LISTING 2-15: Level Step Method

Level.prototype.step = function(dt) {
 var idx = 0, remove = [], curShip = null;

 // Update the current time offset
 this.t += dt * 1000;

 // Example levelData
 // Start, End, Gap, Type, Override
 // [[0, 4000, 500, 'step', { x: 100 }]
 while((curShip = this.levelData[idx]) &&
 (curShip[0] < this.t + 2000)) {
 // Check if past the end time
 if(this.t > curShip[1]) {
 // If so, remove the entry
 remove.push(curShip);
 } else if(curShip[0] < this.t) {
 // Get the enemy definition blueprint
 var enemy = enemies[curShip[3]],
 override = curShip[4];

 // Add a new enemy with the blueprint and override
 this.board.add(new Enemy(enemy,override));

 // Increment the start time by the gap
 curShip[0] += curShip[2];
 }
 idx++;
 }
 // Remove any objects from the levelData that have passed
 for(var i=0,len=remove.length;i<len;i++) {
 var idx = this.levelData.indexOf(remove[i]);
 if(idx != -1) this.levelData.splice(idx,1);
 }

 // If there are no more enemies on the board or in
 // levelData, this level is done
 if(this.levelData.length == 0 && this.board.cnt[OBJECT_ENEMY] == 0) {
 if(this.callback) this.callback();
 }
}

// Dummy method, doesn't draw anything
Level.prototype.draw = function(ctx) { }

This is a complex method. The method is broken into three main sections:

 ➤ The irst section uses a while statement to loop over the beginning of the levelData array
until it gets past any active ships. (This prevents the need to loop over every element in the
array.) For each row in the level data, it checks if it is passed the end value (the second ele-
ment of the array). If so, it adds that element to a list of elements to be removed from the
levelData array. If not, it pulls out the enemy blueprint and the override and adds a new
enemy onto the board. It then increments the start value (the irst element of the array) by

Summary ❘ 49

the length of between-enemy gap. Modifying the start time allows the step method to handle
adding a string of enemies on the page without any additional logic.

 ➤ The second section of the step method should look familiar from the GameBoard object. All
it is does is look at all the entries in levelData that have been added to the remove list and
splices them out of the array, much like the finalizeRemoved method in GameBoard did.

 ➤ The inal section consists of a conditional that checks if there are no more upcoming enemies
in levelData and if the number of enemies on the board is zero. If both of those conditions
are true, then the level is considered over, and the callback, if one is set, is called. This allows
the level to know when it has been completed.

Finally, the Level object needs a draw method so that it can play nicely with GameBoard, but that
method is just a stub that doesn’t actually do anything.

Fire up the game with all the Level pieces in, and you should see the game and enemies in all their
glory.

SUMMARY

Congratulations! You took the stub of a game—a lonely spaceship lying around empty space—and
turned it into a playable game with waves of enemies and win and failure screens.

You may have noticed a slight issue so far, though—it's not mobile. The next chapter remedies this
when you add touch controls and support for resizing. A few inishing touches, such as scoring, can
turn Alien Invasion into a polished, playable mobile game that works on the desktop as well.

Finishing Up and Going Mobile

WHAT’S IN THIS CHAPTER?

 ➤ Exploring scene management

 ➤ Adding projectiles and enemies

 ➤ Using collision detection

 ➤ Creating explosions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 03
download and individually named according to the names throughout the chapter.

INTRODUCTION

One of the much-touted advantages of HTML5 is its support on mobile devices, something
that, despite the name of the book, has been ignored in the game so far. This is remedied in
this chapter. Adding mobile support to Alien Invasion means recognizing when the game is
played on a touch device and responding correctly. In this case it means adding in touch con-
trols and resizing the game to it the device.

ADDING TOUCH CONTROLS

Since the introduction of the iPhone in 2007, the direction of input mobile devices has been
clear: The touchscreen has won. To make Alien Invasion playable on mobile and table devices,
it must be playable with only the screen as an input device.

3

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

52 ❘ CHAPTER 3 Finishing up and going MoBile

Drawing Controls

To make mobile gameplay possible, the common solution is to add visible touch controls to the
screen. These controls can consist of three square buttons at the bottom of the page: a left arrow to
move the ship left, a right arrow to move the ship right, and an "A" button to ire.

To add in the controls, a new game board at a higher position than anything else is added in.
Because it will be rendered after everything else, the controls always sit nicely on top of the page.

The game needs to handle different screen resolutions. To this end, instead of drawing ixed size
input squares (which could end up being too large or too small depending on the device), the game
adjusts the size of the squares based on the width of the game. Based on some informal testing,
dividing the width of the game into ive regions works well enough. Buttons are large enough to be
hit easily but don't take up too much screen real estate.

The irst step is to add the controls onto the page. Open up engine.js and add the following object
(as shown in Listing 3-1) to the bottom.

LISTING 3-1: TouchControls for Alien Invasion

var TouchControls = function() {
 var gutterWidth = 10;
 var unitWidth = Game.width/5;
 var blockWidth = unitWidth-gutterWidth;

 this.drawSquare = function(ctx,x,y,txt,on) {
 ctx.globalAlpha = on ? 0.9 : 0.6;
 ctx.fillStyle = "#CCC";
 ctx.fillRect(x,y,blockWidth,blockWidth);

 ctx.fillStyle = "#FFF";
 ctx.textAlign = "center";
 ctx.globalAlpha = 1.0;
 ctx.font = "bold " + (3*unitWidth/4) + "px arial";

 ctx.fillText(txt,
 x+blockWidth/2,
 y+3*blockWidth/4+5);
 };

 this.draw = function(ctx) {
 ctx.save();
 var yLoc = Game.height - unitWidth;

 this.drawSquare(ctx,gutterWidth,yLoc,
 "\u25C0", Game.keys['left']);

 this.drawSquare(ctx,unitWidth + gutterWidth,yLoc,
 "\u25B6",Game.keys['right']);

 this.drawSquare(ctx,4*unitWidth,yLoc,"A",Game.keys['fire']);
 ctx.restore();

Adding Touch Controls ❘ 53

 };

 this.step = function(dt) { };
};

This object sets up some values based on the width of the game that will be used to draw objects.
Each block is set up to be 1/5th of the width minus a 10-pixel gutter to separate the buttons.

For each frame, the object’s draw method is called. This method calls an internal method, drawSquare,
which draws a single rectangle with some text on it at the speciied location. Instead of drawing tri-
angles, the code uses the Unicode UTF-8 symbols for the left and right arrows. The characters \u25C0
and \u25B6 represent left and right triangles.

NOTE Unicode characters can be expressed in JavaScript by preixing backslash
u (\u) in front of the UTF-8 code for that letter or symbol.

The draw method uses the save and restore methods on the 2-D canvas context to prevent the
changes to opacity and font from affecting any other canvas calls.

The drawSquare method does most of the actual work. It takes in an x and y location, the text
to draw on the button, and determines whether the button is currently held down; then it draws
a illed rectangle and text to create the button. The button state is used to set the opacity using
the globalAlpha property for the background of the button so that players can see when they
press down the button.

To actually have this board appear, it needs to be added to the Game object on initialization. Modify
the Game.initialize in the engine.js method by adding the setBoard call as well as a couple of
properties onto Game that are used by TouchControls:

// Game Initialization
 this.initialize = function(canvasElementId,sprite_data,callback) {
 ...
 this.setupInput();
 this.setBoard(4,new TouchControls());
 this.loop();
 SpriteSheet.load(sprite_data,callback);
 };

 // Game Initialization
 this.initialize = function(canvasElementId,sprite_data,callback) {
 this.canvas = document.getElementById(canvasElementId);
 this.width = this.canvas.width;
 this.height= this.canvas.height;

 this.ctx = this.canvas.getContext && this.canvas.getContext('2d');
 if(!this.ctx) { return alert("Please upgrade your browser to play"); }

 this.setupInput();

 this.loop();

 SpriteSheet.load(sprite_data,callback);
 };

54 ❘ CHAPTER 3 Finishing up and going MoBile

Touch controls aren’t yet enabled to control the player, but if you use the keyboard, you should see
the buttons light up in response to the controls as if they were pressed.

Responding to Touch Events

To make these boxes work with touch events, the game needs to be set up to listen for a new set of
browser events: touchstart, touchmove, and touchend. You’ve most likely come across browser
events before, such as the well-known click event. These new events are available on non-Windows
touch devices only and are special in that they contain not only the details about the event, but also
about any other touches currently on the device. The details for these additional events are held in
three arrays inside of the event object, described in Table 3-1.

TABLE 3-1: Touch Event Properties

EVENT PROPERTY DESCRIPTION

event.touches All the touches currently on the devices

event.targetTouches All the touches on the same DOM object as the event

event.changedTouches All the touches changed in this event

The game uses both the targetTouches array and the changedTouches array to good effect.

The targetTouches is used for the two buttons on the left that control movement. You want the
user to be able to press and hold down either button to move left and right. As such, each time there
is a touch event, the game sees if there are any touches currently hitting either of those two buttons
and marks the button as down if that is the case, even if the touch that triggered the event isn’t on
either button.

For iring, as a design choice, the game requires the player to press the Fire button each time they
want to ire a missile. (Holding down the ire key doesn't count.) For that reason, the game counts
the ire key as down only if the user actually pressed that key in the last step.

Add the code in Listing 3-2 to the TouchControls class before the ending curly brace:

LISTING 3-2: TouchControls touch tracking

var TouchControls = function() {
 ...

 this.step = function(dt) { };

 this.trackTouch = function(e) {
 var touch, x;
 e.preventDefault();
 Game.keys['left'] = false;
 Game.keys['right'] = false;
 for(var i=0;i<e.targetTouches.length;i++) {

Adding Touch Controls ❘ 55

 touch = e.targetTouches[i];
 x = touch.pageX / Game.canvasMultiplier - Game.canvas.offsetLeft;
 if(x < unitWidth) {
 Game.keys['left'] = true;
 }
 if(x > unitWidth && x < 2*unitWidth) {
 Game.keys['right'] = true;
 }
 }
 if(e.type == 'touchstart' || e.type == 'touchend') {
 for(i=0;i<e.changedTouches.length;i++) {
 touch = e.changedTouches[i];
 x = touch.pageX / Game.canvasMultiplier - Game.canvas.offsetLeft;
 if(x > 4 * unitWidth) {
 Game.keys['fire'] = (e.type == 'touchstart');
 }
 }
 }
 };

 Game.canvas.addEventListener('touchstart',this.trackTouch,true);
 Game.canvas.addEventListener('touchmove',this.trackTouch,true);
 Game.canvas.addEventListener('touchend',this.trackTouch,true);
 Game.playerOffset = unitWidth + 20;
};

In the preceding description, the controls have been referred to as “buttons” because that is the way
they are drawn. But if you examine the hit detection code, you notice they are actually targeted as
columns. Only the x location of the hit is used to determine if a user is pressing a button. This is a
behavior used in a number of mobile app store games, and it works well because players can be less
exact when trying to press the buttons and can place their hands vertically on the device where they
feel comfortable.

This code adds in a method called trackTouch to TouchControls that acts as the universal handler
for any touch events. The irst thing trackTouch does is call e.preventDefault(). This gets rid of
any existing behavior that might be associated with that event, including scrolling, clicking, zoom-
ing, and so on. Doing this prevents the page from exhibiting any default behavior when the user
interacts with the canvas element. (At least on iOS it does. As of this writing, on Android you can
still trigger scroll and zoom via multitouch. Hopefully that will be ixed soon.)

Next, the trackTouch method sets both the left and right keys to false. It does this because either
or both of these keys will be set back to true if there is a touch noted on the button. Performing the
detection this way allows users to slide their inger between the two buttons to move back and forth
or swap ingers without the game missing a beat. For any touches, the game sees if they are located
in the irst two units on the left of the canvas and if so maps those to the left and right movement
buttons.

For iring missiles, only the changedTouches are looked at. This is, as mentioned before, because
the player is forced to press the Fire button repeatedly to ire missiles in rapid succession. The game
checks if any of the touches are in the last section on the right and if so sets the ire key to true or
false depending on whether the event is a touchstart or a touchend, respectively.

56 ❘ CHAPTER 3 Finishing up and going MoBile

Finally a variable called playerOffset is set to the unitWidth + 20. The point of this is to have
the player move up on the screen if touch controls are present, but sit on the bottom of the screen if
the game is played on a desktop browser.

For this to have an effect, the PlayerShip needs to be initialized with a new y location. Modify the
bolded line of PlayerShip in game.js:

var PlayerShip = function() {
 this.setup('ship', { vx: 0, reloadTime: 0.25, maxVel: 200 });
 this.reload = this.reloadTime;
 this.x = Game.width/2 - this.w / 2;
 this.y = Game.height - Game.playerOffset - this.h;
 ...

The player will now be set up off the bottom of the screen as is appropriate for the device to prevent
the control buttons from obscuring gameplay.

Testing on Mobile

To test this game on an actual mobile device, you need to run the game on a web server, either by
setting one up on your development machine or by deploying the code to a web host. Both of these
methods are a bit outside the scope of this book.

NOTE You can ind lots of hosting companies on the web of varying quality.
DreamHost (http://dreamhost.com) is usually an acceptable choice if you are
just starting.

In the long run, you need to test your games without having to deploy them. This enables you to
make changes and quickly test them without any intermediate steps to slow down the process. If
you use Windows, you can most likely install IIS, depending on your version of Windows, but IIS
coniguration can be involved and, unless you’re comfortable with window coniguration tasks, you
may want to use one of the following options. If you use a Mac, you can access Web Sharing from
the Sharing section of System Preferences. On Linux you can install Apache.

If getting a fully conigured web server seems daunting, you can check out WAMP at http://www
.wampserver.com/en/. WAMP is a project designed to give you a zero-coniguration Apache server
on Windows. Web sharing on OS X and native packaging of Apache on Linux is usually a better
option for the other platforms. For simple needs you can also try mongoose at http://code.google
.com/p/mongoose/, a web server that you execute from the directory you want to serve.

Assuming you are on a network with Wi-Fi, and your development machine and your mobile device
are on the same network, you should now access your development machines from your mobile
device when you have a web server set up and conigured and your iles are in the proper location.
(This depends on the server and coniguration.)

Look up the IP address for your machine on the local network. This is most likely different from the
Public IP address that machines on the web see because most Wi-Fi networks are behind a router.
To ind your IP address on Windows, the easiest way is to bring up the Command Prompt program
(usually in Accessories) and type ipconig.

http://dreamhost.com
http://www.wampserver.com/en/
http://code.google.com/p/mongoose/

Maximizing the Game ❘ 57

You should see a number that looks like xxx.xxx.xxx.xxx (usually something like 192.168.0.50)
in addition to some other cruft. You may see a couple of other IP addresses that end in 1, such as
192.168.0.1. This is the gateway address and not the address of your computer.

On a Mac or Linux, bring up Terminal and type ifconig.

On Linux you may need to type sudo ifconfig. Again you should see a number that looks like an
IP address among a bunch of other lines of information.

Armed with that IP address and the path underneath the document root (the directory where your
web server serves iles from) of your game, you should now bring up your game on a mobile device
by typing in the IP address followed by the path. You can also run the version of the game to this
point at http://mh5gd.com/ch3/touch/.

If you ire the game up on a mobile device, you immediately notice a problem: While the game is
playable, it’s small by default, and the canvas element is overriding the touch events, which means
zooming in is dificult. (You can zoom by pinching on the whitespace around the canvas.) This is
remedied in the next section.

MAXIMIZING THE GAME

Screen real estate on mobile devices is valuable especially for mobile games. The last thing you want
to do is waste some of that real estate by not having maximized the game.

Setting the Viewport

The irst step is to tell the browser that you don’t want to let users zoom in and out of the page.
This is done by setting a viewport <meta> tag in the HTML. The viewport tag began its life as an
iOS-only feature but has since spread to Android as well. Add the following to the <head> of your
HTML document.

 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>

This tag tells the browser to set the width of the page to the actual device’s pixel width and not to let
the user zoom in and out. Chapter 6, “Being a Good Mobile Citizen,” discusses this tag in depth.

If you reload the page, you notice the game is zoomed in a bit but still doesn’t correctly it on the page.

Resizing the Canvas

To ix the size issue and set the game up on the page so it its as well as possible, there are a few
extra steps that need to be taken. This is more dificult than it may seem due to various mobile
peculiarities. Chapter 6 covers this topic in depth, but following is the basic pseudo-code:

Check if browser has support for touch events

Exit early if screen is larger than a max size or no touch support

Check if the user is in landscape mode,

http://mh5gd.com/ch3/touch/

58 ❘ CHAPTER 3 Finishing up and going MoBile

 if so, ask them to rotate the browser

Resize container to be larger than the page
to allow removal of address bar

Scroll window slightly to force removal of address bar.

Set the container size to match the window size

Check if you're on a larger device (like a tablet)
 if so, set the view size to be twice
 the pixel size for performance
If not,
 set canvas to match the size of the window.

Finally, set the canvas to absolute position
in the top left of the window

Moving on to the actual code, add the method from Listing 3-3 to the bottom of the deinition of
the Game object in engine.js before the return statement:

LISTING 3-3: setupMobile

 this.setupMobile = function() {

 var container = document.getElementById("container"),
 hasTouch = !!('ontouchstart' in window),
 w = window.innerWidth, h = window.innerHeight;

 if(hasTouch) { mobile = true; }

 if(screen.width >= 1280 || !hasTouch) { return false; }

 if(w > h) {
 alert("Please rotate the device and then click OK");
 w = window.innerWidth; h = window.innerHeight;
 }

 container.style.height = h*2 + "px";
 window.scrollTo(0,1);
 h = window.innerHeight + 2;

 container.style.height = h + "px";
 container.style.width = w + "px";
 container.style.padding = 0;

 if(h >= this.canvas.height * 1.75 ||
 swx >= this.canvas.height * 1.75) {
 this.canvasMultiplier = 2;
 this.canvas.width = w / 2;
 this.canvas.height = h / 2;

Maximizing the Game ❘ 59

 this.canvas.style.width = w + "px";
 this.canvas.style.height = h + "px";
 } else {
 this.canvas.width = w;
 this.canvas.height = h;
 }
 this.canvas.style.position='absolute';
 this.canvas.style.left="0px";
 this.canvas.style.top="0px";
 };

The innerWidth and innerHeight need to be checked multiple times. This is because the size of
the window changes over the course of the method call after the user rotates the device and after the
window.scrollTo method is called to remove the address bar.

The other trick is that the CSS size of the canvas element can be set independently from its pixel
size (speciied with the width and height attributes on the tag.) This enables you to scale the visual
size of the element up without having to push lots more pixels. The downside to this is that pixels
will be effectively four times as large, making the game look slightly pixelated. In the case of a
retro-shooter such as Alien Invasion, this isn’t a huge deal, but it’s something to note.

The setupMobile now must be called from Game.initialize. In addition, the game should add
touch controls onto the page if only they are supported by the device. Modify the method to read

 // Game Initialization
 this.initialize = function(canvasElementId,sprite_data,callback) {
 this.canvas = document.getElementById(canvasElementId);

 this.playerOffset = 10;
 this.canvasMultiplier= 1;
 this.setupMobile();

 this.width = this.canvas.width;
 this.height= this.canvas.height;

 this.ctx = this.canvas.getContext &&
 this.canvas.getContext('2d');

 if(!this.ctx) {
 return alert("Please upgrade your browser to play");
 }
 this.setupInput();
 if(this.mobile) {
 this.setBoard(4,new TouchControls());
 }

 this.loop();

SpriteSheet.load(sprite_data,callback);
 };

With a check for this.mobile, the game will add only the visual touch controls and bind to touch
events if the device supports it.

60 ❘ CHAPTER 3 Finishing up and going MoBile

Adding to the iOS Home Screen

There’s a last set of meta tags needed to reach HTML5-gaming nirvana: full-screen play. This code
works only on an iOS device, iPad, iPhone, or iPod Touch.

Add the following two <meta> tags to the <head> below the viewport declaration:

 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style" content=
 "black">

Now reload the game, and then click the button to add it to your home screen. With the excep-
tion of a small sliver of status bar at the top of the page, your game can now run full screen. (See
Chapter 6 for a full explanation of these tags.) You can also run the version of the game to this point
at http://mh5gd.com/ch3/resize.

ADDING A SCORE

There’s still one obvious piece to the game that is clearly missing: a point system for users to brag
about to their friends. This is something that you can remedy quickly by adding a new game board
to the game.

Add the contents of Listing 3-4 to the bottom of engine.js.

LISTING 3-4: GamePoints

var GamePoints = function() {
 Game.points = 0;
 var pointsLength = 8;
 this.draw = function(ctx) {
 ctx.save();

 ctx.font = "bold 18px arial";
 ctx.fillStyle= "#FFFFFF";

 var txt = "" + Game.points;

 var i = pointsLength - txt.length, zeros = "";
 while(i-- > 0) { zeros += "0"; }

 ctx.fillText(zeros + txt,10,20);

 ctx.restore();
 }
 this.step = function(dt) { }
}

This object has one purpose in its life: to draw the score in the top left of the game. The current
score for the game is stored directly on the Game object in a property named points. Every time

http://mh5gd.com/ch3/resize

Making It a Fair Fight ❘ 61

a new GamePoints object is created, the game assumes a new game is beginning and resets the
score to 0.

For every frame, the game grabs the current score and pads it with leading zeros so that it’s always
pointsLength digits long. It then calls fillText to draw the points onto the screen.

To get the points onto the page, a GamePoints object needs to be created. Open up game.js and add
the initializer to the ifth board:

var playGame = function() {
 var board = new GameBoard();
 board.add(new PlayerShip());
 board.add(new Level(level1,winGame));
 Game.setBoard(3,board);
 Game.setBoard(5,new GamePoints(0));
};

Board 5 was chosen because Board 4 was just used by the TouchControls in the last section.

If you were to reload the game, you’d now see the points in the top left of the page, but they are
sadly stuck at zero. Because the player should get points every time an enemy is killed, the easiest
thing to do is add some logic to the Enemy.hit method.

Modify that method in game.js to read:

Enemy.prototype.hit = function(damage) {

 this.health -= damage;

 if(this.health <=0) {
 if(this.board.remove(this)) {
 Game.points += this.points || 100;
 this.board.add(new Explosion(this.x + this.w/2,
 this.y + this.h/2));
 }
 }
};

The points are increased on a per-enemy basis, but if the enemy doesn’t have a point property set, it
defaults to 100. You can modify the enemies blueprint to make the point amounts vary by enemy type.

Reload the game, and you should be able rack up a score. You can also run the version of the game
to this point at http://mh5gd.com/ch3/score.

MAKING IT A FAIR FIGHT

Alien Invasion is now down to its last enhancement, giving the enemies a little bit of ire power to
ight back.

Cribbing from PlayerMissile, the game needs an object, EnemyMissile, to represent the
enemy projectiles being ired. Add the code in Listing 3-5 to the bottom of game.js to create
EnemyMissile.

http://mh5gd.com/ch3/score

62 ❘ CHAPTER 3 Finishing up and going MoBile

LISTING 3-5: The EnemyMissile object

var EnemyMissile = function(x,y) {
 this.setup('enemy_missile',{ vy: 200, damage: 10 });
 this.x = x - this.w/2;
 this.y = y;
};

EnemyMissile.prototype = new Sprite();
EnemyMissile.prototype.type = OBJECT_ENEMY_PROJECTILE;

EnemyMissile.prototype.step = function(dt) {
 this.y += this.vy * dt;
 var collision = this.board.collide(this,OBJECT_PLAYER)
 if(collision) {
 collision.hit(this.damage);
 this.board.remove(this);
 } else if(this.y > Game.height) {
 this.board.remove(this);
 }
};

EnemyMissile is much like the evil twin to PlayerMisisle. It has a different vertical direction, a
different type, a different type to collide against, and a different check for when it’s off the board.
The functionality is all the same; it’s just doing it in reverse.

To get EnemyMissile objects onto the page, the Enemy step function needs to ire some off at some
random interval. As an added complication, some enemies can ire two missiles at a time, much like
the player, and some can ire just one, straight down the center.

The sprite enemy_missile also needs to be deined, so add this entry to the sprites list at the top
of game.js:

var sprites = {
 ship: { sx: 0, sy: 0, w: 37, h: 42, frames: 1 },
 missile: { sx: 0, sy: 30, w: 2, h: 10, frames: 1 },
 enemy_purple: { sx: 37, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_bee: { sx: 79, sy: 0, w: 37, h: 43, frames: 1 },
 enemy_ship: { sx: 116, sy: 0, w: 42, h: 43, frames: 1 },
 enemy_circle: { sx: 158, sy: 0, w: 32, h: 33, frames: 1 },
 explosion: { sx: 0, sy: 64, w: 64, h: 64, frames: 12 },
 enemy_missile: { sx: 9, sy: 42, w: 3, h: 20, frame: 1 }
};

Modify the Enemy object as highlighted here to add in missile iring capabilities:

Enemy.prototype = new Sprite();
Enemy.prototype.type = OBJECT_ENEMY;

Enemy.prototype.baseParameters =
 { A: 0, B: 0, C: 0, D: 0,
 E: 0, F: 0, G: 0, H: 0,
 t: 0, firePercentage: 0.01,

Making It a Fair Fight ❘ 63

 reloadTime: 0.75, reload: 0 };

Enemy.prototype.step = function(dt) {
 this.t += dt;

 this.vx = this.A +
 this.B * Math.sin(this.C * this.t + this.D);
 this.vy = this.E +
 this.F * Math.sin(this.G * this.t + this.H);

 this.x += this.vx * dt;
 this.y += this.vy * dt;

 var collision = this.board.collide(this,OBJECT_PLAYER);
 if(collision) {
 collision.hit(this.damage);
 this.board.remove(this);
 }

 if(this.reload <= 0 &&
 Math.random() < this.firePercentage) {
 this.reload = this.reloadTime;
 if(this.missiles == 2) {
 this.board.add(
 new EnemyMissile(this.x+this.w-2,this.y+this.h/2)
);
 this.board.add(
 new EnemyMissile(this.x+2,this.y+this.h/2)
);
 } else {
 this.board.add(
 new EnemyMissile(this.x+this.w/2,this.y+this.h)
);
 }

 }
 this.reload-=dt;

 if(this.y > Game.height ||
 this.x < -this.w ||
 this.x > Game.width) {
 this.board.remove(this);
 }
};

The irst change affects baseParameters. A couple of additional defaults need to be added to the
enemy to control the likelihood of iring and the speed at which the enemy can ire: firePercent-
age and reloadTime, respectively. firePercentage is a number against which a random number is
checked. If the random number is less than firePercentage, the enemy ires one or more missiles.
Because this method is called each step frame, firePercentage needs to be a relatively small number
to prevent the enemies from iring constantly.

Next is reloadTime and reload, which work exactly like their PlayerShip counterparts, prevent-
ing missiles from being ired in rapid succession.

64 ❘ CHAPTER 3 Finishing up and going MoBile

The code to actually ire missiles also matches the code from the player, except that based on the
number of missiles the Enemy has been conigured with (1 or 2), the code needs to check whether to
send one missile iring from the center of the enemy or two missiles iring from the left and the right
side of the Enemy. Much like PlayerShip, the Enemy needs be prevented from iring missiles in rapid
succession. To prevent this, the reload time is checked, and only after the Enemy reloads its weapons
does it check against a randomly generated number to see if it should fire.

If you load up the game, you should have enemies iring missiles as expected; however, all the ene-
mies will be iring just one missile at the same frequency.

To adjust the frequency of iring, you need to modify the enemy blueprints at the top of game.js.
Modify the enemies array to have the ltr and wiggle enemies each ire two missiles at a time
(matching their sprite image) and reduce the firePercentage of the straight and wiggle enemies
to 0.001 to prevent them from iring too many missiles at once, as shown here:

var enemies = {
 straight: { x: 0, y: -50, sprite: 'enemy_ship', health: 10,
 E: 100, firePercentage: 0.001 },
 ltr: { x: 0, y: -100, sprite: 'enemy_purple', health: 10,
 B: 75, C: 1, E: 100, missiles: 2 },
 circle: { x: 250, y: -50, sprite: 'enemy_circle', health: 10,
 A: 0, B: -100, C: 1, E: 20,
 F: 100, G: 1, H: Math.PI/2 },
 wiggle: { x: 100, y: -50, sprite: 'enemy_bee', health: 20,
 B: 50, C: 4, E: 100, firePercentage: 0.001,
 missiles: 2 },
 step: { x: 0, y: -50, sprite: 'enemy_circle', health: 10,
 B: 150, C: 1.2, E: 75 }
};

With that, reload the game, and you should have a playable game with active enemies. You can also
play the game at http://mh5gd.com/ch3/fair/.

SUMMARY

It’s been a whirlwind in the irst three chapters, having gone from making the irst few marks onto
the canvas to building a fully functional mobile space shooter. As a demo game, Alien Invasion isn’t
bad, but as a full-ledged space shooter there’s still lots that could be done: high scores, ship anima-
tions, sounds, longer and varied levels, new enemies, and boss ights. The good news is that the code
on Github at https://github.com/cykod/AlienInvasion can be forked and enhanced. If you’ve
been following along, you’ve stepped through every line of the game and should know it inside and
out. Check the readme ile for what others have done.

http://mh5gd.com/ch3/fair/
https://github.com/cykod/AlienInvasion

PART II

Mobile HTML5

 ⊲ CHAPTER 4: HTML5 for Mobile

 ⊲ CHAPTER 5: Learning Some Helpful Libraries

 ⊲ CHAPTER 6: Being a Good Mobile Citizen

HTML5 for Mobile

WHAT’S IN THIS CHAPTER?

 ➤ Getting acquainted with the history behind HTML5

 ➤ Understanding feature detection and progressive enhancement

 ➤ Using HTML5 for gaming

 ➤ Using HTML5 for mobile

 ➤ Understanding the state of mobile browsers

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 04
download and individually named according to the names throughout the chapter.

INTRODUCTION

HTML5 is a wonderful technology that, by the time it's fully implemented in all browsers in
2020, is going to pick up your dry cleaning, tidy up your apartment, walk your dog, and bring
about world peace. Actually, it will do none of those things, but from some of the hype lauded
onto the standard, you might think it would. There is one thing HTML5 is guaranteed to do:
make the world a more interesting place.

4

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

68 ❘ CHAPTER 4 htMl5 For MoBile

CAPTURING A BRIEF HISTORY OF HTML5

Technically, HTML5 is the next standard in a long line of standards being worked on and promoted by
the World Wide Web consortium. The World Wide Web Consortium (online at www.w3.org), known as
the W3C, is the primary standards body responsible for standardizing the web so that different content
producers and browsers makers can build technology, including HTML5, that interoperates correctly.

Understanding How HTML5 Grew Up “Diferent”

HTML5 began life a little differently from its predecessors and didn’t start its life as the brainchild
of the W3C. Rather, HTML5 was birthed in many ways as a rebellion to the standard the W3C was
pushing at the time: XHTML 2.0.

XHTML 2.0 had a lot of things going for it and, if it had really taken off, would have made the web
a more consistent place instead of the Wild West of bad markup that exists today. But it suffered
from a fatal law that made it practically a nonstarter: It wasn’t backward compatible. That meant
that if you had a perfectly valid HTML 4 site, you would have to throw that site out and start from
scratch to make it XHTML 2.0-compliant. In addition, jumping back to 2004, the speed at which
the W3C was innovating the web was slow as molasses, with the last update to the HTML 4 stan-
dard, HTML 4.01, having been released four years previously in 2000.

In response to disappointment over the XHTML 2.0 standard, an offshoot known as the
Web Hypertext Application Technology Working Group (WHATWG) formed in 2004. The
WHATWG was made up of members from Apple, Mozilla, and Opera, and it immediately began
to work on a new standard. Fast forward to 2007 and the standard the WHATWG had been
working on over the previous three years and which had been gaining some signiicant momen-
tum is proposed to the W3C as the starting point for a new standard called HTML5, to be devel-
oped concurrently with XHTML 2.

The W3C relented and started working on HTML5, pushing out the irst working draft at the
beginning of 2008. Furthermore, it abandoned XHTML 2.0 in 2009 when it let the charter of the
working group that was developing the spec expire, an acceptance of the reality of the time that
XHTML was a dead standard.

Looking Toward HTML6? HTML7? Nope, Just HTML5

In January 2011, the editor of the HTML5 spec at the WHATWG, Ian Hickson, announced that the
working group was going to treat the HTML5 spec as a “living document” that would continue to be
updated and worked on indeinitely. The W3C was still going to release an oficial snapshot of HTML5,
but the document itself will continue to be updated as new technical recommendations come in.

What does that mean for developers? On the good side, there’s lots of cool stuff coming down the
pipeline that will take it from idea to single browser implementation to being well supported and in
the speciication—in a fraction of the time that it used to take. As a developer you’re going to get
lots of goodies, which makes it a fun time to be building stuff. On the down side, there’s a lot of
stuff coming down the pipeline, such as direct access to video cameras and support for joypads, but
browser fragmentation is again a big issue, as well as just keeping up with everything going on.

http://www.w3.org

Capturing a Brief History of HTML5 ❘ 69

Going to the Spec

One of the great things about the HTML5 spec is that it’s readable. Even though it’s a document
aimed at browser implementers, it’s nonetheless an incredibly useful document for web developers
and worth checking out whenever you need to igure something out authoritatively. A lot of times,
the spec can answer your question more eficiently than the normal practice of Googling for the
answer. If you haven’t been there already, take a quick visit to the permanent home of the HTML
spec, “Living Standard,” which is permanently housed at www.whatwg.org/html.

The next time you look something up, such as the parameters to a variation of drawImage, spend a
bit of time getting comfortable with the format and organization of the spec, because it provides the
easiest way to look up speciic features of HTML5. Only when there’s a nonstandard implementa-
tion or not yet a spec for a feature should you start elsewhere.

Diferentiating the HTML5 Family and HTML5

Since the term HTML5 entered the public’s consciousness, generally agreed to be around April
2010 when Steve Jobs wrote his infamous “Thoughts on Flash” letter (www.apple.com/hotnews/
thoughts-on-flash), “HTML5” has been used as an umbrella term for a number of different stan-
dards. Some of those standards were part of HTML5 at some point and have since been broken out,
whereas others have always been their own standard.

Some of the standards that are often included when someone says “HTML5” are as follows:

 ➤ SVG

 ➤ CSS3

 ➤ WebGL

 ➤ Web Workers

 ➤ Web Storage

 ➤ Web SQL Database

 ➤ Web Sockets

 ➤ Geolocation

 ➤ Microdata

 ➤ Device API

 ➤ File API

The use of the umbrella term HTML5 to include all these is technically wrong, but it’s also rather
convenient. HTML5 is the buzzword people know and understand. To most developers it just means
building something natively in the browser without plug-ins, and I think that’s ok.

This book is clear when referring to a speciic part of the HTML5 speciication or another speci-
ication, but most of the time it refers to the family of technologies that HTML5 has come to
encompass.

http://www.whatwg.org/html
http://www.apple.com/hotnews/thoughts-on-flash
http://www.apple.com/hotnews/thoughts-on-flash

70 ❘ CHAPTER 4 htMl5 For MoBile

USING HTML5 THE RIGHT WAY

As explained in the last section, through a fortuitous conluence of circumstances, for the irst time
in the history of the web, web developers have an oficial W3C-approved speciication (okay, it’s a
“working draft” right now) that syncs up with the realities and desires of day-to-day development.
For web developers that had been starved for so long by the stagnation of the web, the current
renaissance of activity truly feels like being suddenly handed a large piece of cake after having had
to dig around for scraps of bread.

The number of goodies added to the web developer’s toolbox in the past few years is staggering.
Even Microsoft, traditionally mired in a bog in proprietary technology, has jumped in and is making
a serious push toward supporting standards-based web development without proprietary plug-ins.

Having Your Cake and Eating It, Too

HTML5 is truly a browser-driven spec in that the browser makers are the ones who are pushing the
standard forward. This means that a lot of features that start out in one browser or multiple brows-
ers with incompatible implementations are eventually uniied as the browser makers come to an
agreement on details and implementation.

The most obvious example of this evolution from initial implementation to standard is with CSS3
vendor preixes. (As noted earlier, technically CSS3 is not part of HTML5.) When new CSS3 fea-
tures leap onto the scene, you generally must write a number of lines that may differ only slightly by
vendor preix. For example, in 2010, to add a drop shadow onto a container, you would have had to
write the following:

-moz-box-shadow:5px 5px 10px #000;;
-webkit-box-shadow:5px 5px 10px #000;;
-ms-box-shadow:5px 5px 10px #000;;
-o-box-shadow:5px 5px 10px #000;;
 box-shadow:5px 5px 10px #000;;

That includes four vendor-speciic versions and then a forward-looking standards-based version.
Fast forward to 2011, and it becomes possible to simply write this:

box-shadow:5px 5px 10px #000;

Although keeping track of the rate of change is daunting, as a developer you get the best of both
worlds: shiny tools you can use immediately (albeit carefully, especially when standards aren’t yet
inalized) combined with standardization coming over months instead of years.

Sniing Browsers

In the bad old days of web development, you might see the following littered throughout the <head>
of an HTML document:

WARNING The following code is an example of what not to do, so please don't
use either of these examples.

Using HTML5 The Right Way ❘ 71

<!--[if IE 6]>
 <link rel='stylesheet' href='ie6.css' type='text/css'/>
<![endif]-->
<!--[if IE 7]>
 <link rel='stylesheet' href='ie7.css' type='text/css'/>
<![endif]-->

Alternatively, you might also at some point have written this:

function isIE() {
 if(navigator.userAgent.match(/MSIE (\d+\.\d+);/i)) {
 isVersion = new Number(RegExp.$1);
 return true;
 } else {
 return false;
 }
}

if (isIE()) {
 if(ieVersion == 6) { /* IE6 only Code */ }
 else if(ieVersion == 7) { /* IE7 only Code */ }
}

The irst of these snippets is known as conditional comments (an Internet Explorer-only [IE-only]
feature), whereas the second is known as UA snifing because it tries to decipher the browser being
used from the string of information provided by the browser, called the userAgent.

Although using these snippets to determine how your application should act might have been a
workable solution in 2007, when accommodating three browser versions—IE6, IE7, and Firefox 2—
would have accounted for nearly 95% of the market, the current round of browser wars have shaken
things up dramatically, as shown in Figure 4-1, which uses data provided by statcounter.com.

2005

100%

2006 2007 2008 2009 2010 2011

80%

60%

40%

20%

0%

Opera

Safari

Chrome

Firefox

IE

FIGURE 4-1: Desktop browser usage.

As of this writing, IE on the desktop has slipped to just more than 50% of the browser share and
is split between four different versions: IE6, IE7, IE8, and IE9, with IE10’s release just around the
corner. Chrome is on the rise, now in the double digits; and Firefox, although declining a bit, is still
more than 20%. Safari has been slowly and steadily on the rise and may hit double digits in 2012 if

72 ❘ CHAPTER 4 htMl5 For MoBile

Apple continues to roll. With the exception of IE, most users of other browsers are most likely to use
a current version or one of the previous two releases due to the way the browsers are now actively
pushing auto-updates. IE has also rolled out auto-updates, but users of older operating systems
are limited to the browser they can use (IE6 for Windows 2000, IE8 for Windows XP, and IE9 for
Windows Vista).

Auto-update notwithstanding, taking into consideration still-in-use previous versions of all the
browsers, you’re looking at more than 15 combinations of desktop browsers and versions that need
to be supported. To make things worse, this book isn’t talking primarily about desktop browsers,
is it? On mobile devices the dominant browser players in the United States are iOS and Android,
with Firefox, Windows Phone 7 (WP7), Opera, Symbian, and Blackberry also in the running. Add
in a boatload of different devices and screen sizes, the rise of the tablets, and fragmentation across
Android, and your head should start to spin.

You could probably start writing conditional comments and doing browser snifing right now and
never stop because new devices are released all the time.

Determining Capabilities, Not Browsers

It’s not all doom and gloom, however. With the right approach, you can develop for both the now
and the future. The most important aspect of this approach is the idea of testing the capabilities of
browsers rather than trying to identify the browser itself.

An initial naive way to check for support (which was common in pre-HTML5 days) would be to
scour the Internet to igure out which browsers support, for example, the Canvas tag and then
match versions. You might try something like the following code:

WARNING The following code is again an example of what not to do.

var canvasSupported = (isIE() && ieVersion >= 9) ||
 (isFirefox() && ffVersion >= 1.5) ||
 (isOpera() && oVersion >= 9) ||
 ... And so on ..

As you probably igured out, this is a bad idea. It suffers from needing to keep up-to-date on all the
different types of browsers that people use and knowing what’s supported in which. It’s a recipe for
disaster. Life would be good if you could just write

function isCanvasSupported() {
 // Directly check if the browser knows about the canvas element
}

Actually you can do just that, and you can do that for just about every feature you care about in
HTML5.

The most common method is to try to create an element and check if it supports a certain method.
Or if the functionality is not per DOM-element, you can just check if the browser has a necessary
method. Following is an example of each:

function isCanvasSupported(){
 // First create a <canvas> element

Using HTML5 The Right Way ❘ 73

 var elem = document.createElement('canvas');

 // Next make sure it supports getContext and can return a 2D context
 return !!(elem.getContext && elem.getContext('2d'));
}

function isGeolocationSupported() {
 // Check if the geolocation object is defined
 return navigator.geolocation;
}

Now, before you go off and check the spec and write functions for each of the features you want to
support, the good people behind Modernizr (ww.modernizr.com) have done all the hard work for
you, all for the cost of loading one script that is less than 7 kb when served compressed. If you want
to pull the ile size down further, you can add only the checks you need to your custom download.

Modernizr enables you to reduce feature detection checks to the following:

if(Modernizr.canvas) {
 // Do something with canvas
}

Modernizr provides more than 40 checks for support for next-generation features and is adding
checks often, so it should be your go-to resource.

Enhancing Progressively

Now that you have the ability to know exactly what features are supported in the browser your code
runs in, how do you best use that information? The answer is, “It depends.”

In some situations, the lack of support for a speciic feature is a nonstarter. If your game depends on
canvas, for example, lack of canvas support means the game isn’t going to run. In other situations,
lack of a feature might reduce the user’s experience, but it shouldn’t prevent the user from accessing
your game.

PROGRESSIVE ENHANCEMENT IN THE REAL WORLD

My company built a game for GamesForLanguage.com called SpaceWords, which
lets multiple players use their smartphones as controls for the game. If the browser
supports orientation events, the game uses those events as the movement input,
allowing players to control their ship by rotating their phone. If the smartphone
doesn’t support those events, the game uses touch events. Finally, if the phone doesn’t
support touch events, the game uses normal MouseDown events.

In each case, access to more functionality means you could bring a better experience to the player
without leaving those on less-capable devices out of the game entirely. Progressive enhancement is
the buzzword for starting out with a base level of functionality and including additional features for
only those that support it.

74 ❘ CHAPTER 4 htMl5 For MoBile

In the best of situations, you can use the same code for both the minimal support and the enhanced
features, and only include additional code for the enhanced experience. As most developers do their
development and testing on the most capable devices, this means you have a better chance of having
working code on the less-capable devices than if you use completely different codebases for the two.

Polyilling in the Gaps

The last section discussed how the lack of support for a speciic feature can be a nonstarter for some
situations. This isn’t exactly true because sometimes you can ind a polyill to ill in the gaps.

A polyill is a chunk of code that backports features to browsers that don’t support the feature
natively. For mobile, this may not be an issue because the mobile stack is generally good as long as
you are on a recent smartphone.

The support diminishes, however, the minute you step out of the iOS, Android, and WP7 space into
Blackberrys and feature phones. In those situations polyills, such as those for local storage and
CSS3 features, become very useful.

The advantage of detecting features instead of browsers comes to the forefront again because a true
polyill exposes the same interface as the native feature. This means that you can often add a polyill
script to the head of your document and add enhanced functionality to older browsers for free.

CSS3 Pie (http://css3pie.com/), for example, provides a polyill that adds CSS3 decorations like
rounded corners, gradients, and drop shadows to older versions of IE.

Not surprisingly, given its focus, Modernizr provides a great list of the polyills on its wiki:
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills.

CONSIDERING HTML5 FROM A GAME PERSPECTIVE

In this chapter you’ve heard a lot about HTML5 but not much about how HTML5 can help you
build games on mobile devices. This section discusses the main ways to build games with HTML5,
and the next section covers mobile-friendly features that can make your games more interesting.
Now look briely at the three main ways you can build games from an HTML5 perspective. (Each
of these is covered in much more detail in later chapters, and Chapter 12, “Building Games with
CSS3” explains which method to pick for your speciic game.)

Canvas

Canvas, which is discussed in detail in Chapter 15, “Learning Canvas,” and used throughout the
book, is in many ways the most interesting feature game-wise of the actual HTML5 standard. It
gives developers access to a fast frame buffer where you can draw images and graphics.

Most discussions of Canvas in this book mean 2-D canvas because that is the only canvas context
that’s currently well supported on mobile devices. But there will be a discussion about the Webgl
context briely as well as support for 3-D canvas, which is poised to appear on mobile devices (or
may already be there by the time this book gets in your hands). Figure 4-2 shows the canvas plat-
former built in Chapter 18, “Creating a 2D Platformer.”

http://css3pie.com/
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Considering HTML5 from a Game Perspective ❘ 75

FIGURE 4-2: A mobile 2D platformer.

CSS3/DOM

As you see in Chapter 12, “Building Games with CSS3,” CSS3 adds a lot of power to traditional
HTML DOM elements and can deinitely be considered a viable technology to build a game on. For
games with touch interfaces (that is, mobile), it may be quicker to use CSS3 and the DOM because the
browser handles a lot of the hit detection and interaction for you. In addition, support for hardware-
accelerated transforms and animation on mobile WebKit gives a performance boost over canvas in
many situations. Figure 4-3 Shows the CSS3 RPG built in Chapter 13, “Crafting a CSS3 RPG.”

FIGURE 4-3: A CSS3 RPG.

76 ❘ CHAPTER 4 htMl5 For MoBile

SVG

The black sheep of the family, SVG has actually been hanging out doing its thing since 2004.
However, with the release of IE9 in April 2011, as the irst release of IE to support it natively, people
are coming around slowly to its beneits and potential uses.

Scalable Vector Graphics (SVG) provides a way to draw resolution-independent graphics. Much like
Flash, SVG stores the instructions to draw elements rather than the resultant pixels that make up
those elements. This means that, provided it’s used correctly, SVG creates small ile sizes good for
mobile devices. It also generates its own scene graph—much like the standard DOM—and is well
supported on WebKit mobile and useful in touch games.

In many ways SVG combines the best of both worlds between Canvas and CSS3. The major problem
is that performance is lacking, so if you are building an action game, SVG is probably not an option.
Figure 4-4 shows the SVG game built in Chapter 14, “Building Games with SVG and Physics.”

FIGURE 4-4: An SVG cannon game.

CONSIDERING HTML5 FROM A MOBILE PERSPECTIVE

One of the phrases that you hear a lot these days is “mobile irst.” This phrase means considering
mobile devices as your primary target and considering support for additional browsers later on.
This might not seem obvious with mobile browsers, as of 2012, barely in the double digits of overall
usage, but it’s more than just a numbers game. Considering mobile devices irst means you start with
a number of signiicant constraints and work out from there.

Mobile devices have small screens and screens of different sizes and aspect ratios. They have limited
processing power and bandwidth and often have limited storage. All these constraints force you, as
a developer, to optimize your web app—make it more adaptable; make it load faster and be more
performant. Not surprisingly, these are all things that can bring a better experience to users with
desktop browsers as well. Web developers have been a bit lazy, viewing their projects on 30-inch
monitors connected to fat Internet pipes and running on four-core multithreaded processors. Most
likely a good portion of your target demographic for casual web games doesn’t share the same hard-
ware speciications. Considering the mobile usage of your site as a primary consideration can help
you move away from that attitude.

Surveying the Mobile Browser Landscape ❘ 77

Understanding the New APIs

The family of speciications tied together as “HTML5” is a large family, and some pieces you
couldn’t care less about from a game perspective. Are advances in semantic, tags such as the
<aside>, and support for microdata actually going to help you build a great game? Probably not.
But there are a lot of exciting Application Programming Interfaces (APIs) that you should care
about, the most interesting of which from a game perspective are shown in Table 4-1.

TABLE 4-1: New HTML5 APIs

API NAME DESCRIPTION

Touch Most mobile devices support touch events that act much like their mouse

counterparts but with the addition of touch tracking and multitouch, meaning

you can track more than one touch at a time, which is important for action

games where you need to have onscreen controls.

Orientation and

Acceleration

Supports detecting changes to orientation and acceleration events when a

user physically moves their phone around.

Application Cache Allows you to cache the assets needed for your game oline, meaning you

can conigure your game to launch without any Internet access.

Oline Storage Provides ability to store the game state locally. It means you don’t need to

save everything constantly to the server and can let your players pick up

right where they left of, without needing access to a server.

Geolocation Has the ability to detect the physical location of a player in the real world.

What’s Coming: WebAPI

Although the APIs available provide access to a number of the features on mobile devices, some sig-
niicant gaps still exist as of this writing. The Mozilla WebAPI project aims to ill those gaps with
access to hardware and operating system resources that would normally be available for only native
apps. Cool stuff like access to the camera, ile system, and vibrator motor could make for interest-
ing features to build a game around. The progress of WebAPI is documented on the Mozilla wiki at
https://wiki.mozilla.org/WebAPI.

SURVEYING THE MOBILE BROWSER LANDSCAPE

Before the advent of the iPhone and Mobile Safari in 2007, web browsing on your phone was in a
sad state of affairs, with only Opera offering a mobile browsing experience that didn’t view mobile
browsing as a limited, menu-driven experience. In the years since, mobile browsers have become
more capable, and the JavaScript engines on those browsers have become better by leaps and
bounds.

https://wiki.mozilla.org/WebAPI

78 ❘ CHAPTER 4 htMl5 For MoBile

What was unimaginable ive years ago, that you could play the same web games on your phone as
on your desktop browser, is slowly approaching reality with every new HTML5 game that pops
on to the scene. Although the hardware is important, much like the situation on the desktop, the
browser that runs on your target device is the most important arbiter of the features available.

WebKit: The Market Dominator

The good news is that unlike the desktop, the two dominant smartphone platforms—iOS and
Android—have excellent mobile browsers. Even better, they both share the WebKit engine, which
means that you can expect a comparable set of features and rendering engine between the two.
WebKit isn’t the only mobile HTML5 browser in town, but WebKit browsers do make up more than
80% of mobile U.S. trafic as of December 2011, according to www.statcounter.com.

WebKit began its life as the KHTML rendering engine and KDE JavaScript engine (KJS) inside the
open-source Konquerer web browser. Apple adopted (and forked) KHTML and KJS and rebranded
them as WebCore and JavaScriptCore under the umbrella of WebKit.

Since KHTML and KJS (and thus WebCore and JavaScriptCore) were originally released under
GNU’s Lesser General Public License (LGPL), companies releasing products off of them, including
Apple, were required to release the source code of those changes to WebKit back to the open source
community. This means that because the project has remained open source, many mobile device
manufacturers, including Google, Nokia, Blackberry, Amazon, and HP have used it as the basis for
their mobile browsers and have been releasing their changes back to the community, accelerating the
quality of mobile browsing all around.

As mentioned previously, the two dominant smartphone platforms with HTML5 capable brows-
ers—iOS and Android—both use a WebKit-based browser as the default device browser. Android,
however, doesn’t use JavaScriptCore but instead uses Google’s V8 JavaScript engine to execute
JavaScript.

WebKit is also used in Safari, Apple’s default browser, as well as Google Chrome. As such, when
doing mobile development, your best bet is to use Chrome or Safari to get results closer to the
majority of the mobile market than if you were to use Firefox or IE. As the developer tools in
Chrome are best in class, consider using Chrome as your primary development browser.

Although it may seem like having 80% of the market behind a world-class browser engine is a dream
come true for developers, the truth is that not all WebKit browsers are made alike. Quirksmode.org
did a comparison of the differences between the various mobile WebKit versions and declared:

There is no "WebKit on mobile!"

You can view the full report on the Quirksmode.org website at www.quirksmode.org/webkit_
mobile.html.

Opera: Still Plugging Along

Opera was an early entrant to the mobile space with Opera Mobile in 2000. Opera Mini, released in
2005, was one of the irst useful browsers on mobile devices that used an intermediate server to pro-
cess and compress requests to speed up delivery to the low-bandwidth and low-horsepower devices

http://www.statcounter.com
http://www.quirksmode.org/webkit_mobile.html

Summary ❘ 79

of the day. Opera has since lost its dominant market position in the United States. Worldwide,
Opera still holds a 24.5% market share across all its products, making it the world’s most popular
mobile browser. However, that may not last long.

Firefox: Mozilla’s Mobile Ofering

Mozilla’s mobile browser for Android, Fennec (Apple prohibits installing another browser on the
iPhone or iPod), is close to the cutting edge. It supports a good chunk of wanted HTML5 func-
tionality, including some features such as multitouch and orientation support that are missing on
Android and on some default WebKit-based browsers.

However you may feel about Firefox’s development path on the desktop, Mozilla provides a valuable
role in the community as the ombudsperson of the Internet, making sure that the concerns of your
average netizen don’t get drowned out under the cacophony of corporate interests that dominate the
Net. Having a product on mobile devices ensures that next-generation devices aren’t left without
Mozilla representation.

WP7 Internet Explorer 9

Although Windows Phone 7 generally received good reviews when it was released, it has yet to take
signiicant market share. The 7.5 release shares a rendering engine with the desktop IE9, Trident 5.0,
and supports SVG, HTML5, and CSS3 along with JIT compiling to boost JavaScript performance.
Much like the desktop, however, IE sometimes marches to its own drummer, so if you want to sup-
port IE9 (as you should), you should at least bring your app up on an emulator early in the process
and test on the real hardware early and often.

Tablets

With all the discussion of phones, don’t forget about tablets: a rapidly growing market segment sitting
squarely between traditional mobile and the desktop. Tablets have their own issues. They are generally
underpowered compared to desktops but have higher screen resolutions than phones, meaning games
need to push lots of pixels without necessarily having the hardware to back it up. The good news is
that WebKit again dominates the browser space on the most popular iOS and Android tablet devices.
The same rules apply: test support for different capabilities and device screen sizes.

Android provides a particular challenge because the emulator is slow compared to iOS’s emulator;
so effectively testing the incredibly wide range of Android devices is dificult.

SUMMARY

Mobile browsing is still evolving, both from a technology perspective and from a user perspective.
The mobile browser space is still evolving at a speed comparable to (if not faster than) the desktop
space. Any speciics about which HTML5 features are supported on which mobile browsers may be
obsolete by the time this book makes it to the bookshelves. Luckily, you know not to bind yourself
to speciic browsers but rather to the self-proclaimed capabilities of those browsers.

80 ❘ CHAPTER 4 htMl5 For MoBile

Never rely on the information in charts for what features you enable per device for your game;
always go right to the source and check capabilities (either directly or with Modernizr). The only
time you should check grids of browser capabilities is to get a sense of what features you should
spend time adding to your game and what portion of browsers implement those features. For a good
overview, visit sites such as http://mobilehtml5.org, but your best bet is always to try the brows-
ers themselves.

http://mobilehtml5.org

Learning Some Helpful Libraries

WHAT’S IN THIS CHAPTER?

 ➤ Learning jQuery

 ➤ Understanding callbacks and events

 ➤ Using the Underscore.js utility library

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 05
download and individually named according to the names throughout the chapter.

INTRODUCTION

The most signiicant barrier, in the pre-Ajax days, to JavaScript becoming a viable platform
for interactive cross-browser application development was the subtle differences between the
various browsers. Inconsistent implementations of assorted features across the various brows-
ers (with Internet Explorer being particularly guilty) meant that to interact with a web page,
developers needed to know the ins and outs of each browser and modify their code to handle
the different incompatible implementations. Combine this dificulty with the verboseness of
manipulating elements on the page and making asynchronous web calls, and it’s no surprise
people viewed JavaScript as a toy compared to what people were doing in Java and Flash. That
view began to change as libraries, which made the developer experience more consistent and
the JavaScript code more concise, began to gain widespread use.

5

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

82 ❘ CHAPTER 5 learning soMe helpFul liBraries

LEARNING JAVASCRIPT LIBRARIES

jQuery has become the most popular JavaScript library by leaps and bounds, and is used on more
than 40% of all websites in the world (see http://w3techs.com/technologies/overview/
javascript_library/all). It has gained its popularity for two main reasons: It's good at its job
and it's namespace friendly, meaning that you never need to worry about jQuery getting in the way
of your other code. You learn jQuery in this chapter and use it throughout the book.

You also learn another smaller library called Underscore.js. Whereas jQuery is concerned primarily
with the manipulation of DOM elements and making Ajax calls, Underscore.js provides a number
of utility functions that make JavaScript a more developer-friendly language, speciically targeted
at functional programming. A self-proclaimed utility-belt for JavaScript, Underscore calls itself
“ … the tie to go along with jQuery's tux.” It uses many of the same idioms as jQuery and is also
namespace-friendly.

DO YOU EVEN NEED A LIBRARY?

Technically, you could get by without any sort of JavaScript library. None of what
you’re going to use jQuery or Underscore for is impossible to do with JavaScript
directly. It just happens to be a lot less painful. Using JavaScript, you would end
up with longer, less understandable code and need to write a lot more branching
statements to handle different browser implementations.

STARTING WITH JQUERY

If you are already comfortable with jQuery, you may be tempted to skip this section. However, at
least take a quick glance because this section covers jQuery from a game-speciic angle.

Adding jQuery to Your Page

The jQuery library consists of a single JavaScript ile. To load jQuery on your page, you need to load
this ile via a <script> tag. You have two options for doing this. You can download jQuery directly,
or you can load it via a Content Delivery Network (CDN).

Loading jQuery directly means that you have complete control over the ile and the page. This is
both a good and a bad thing. jQuery is a large library, and if it’s not served properly (miniied and
compressed), it can be a beast. jQuery 1.7 clocked in at nearly 250 kb; if served compressed and
miniied, however, jQuery is only 33 kb. If you are serving it directly off your web server you need
to make sure you are serving a miniied version with its cache headers set correctly, so the code isn’t
sent on subsequent reloads. (See the next chapter for more details on cache headers.)

Another advantage of using a CDN is that most CDNs have edge-locations around the world, mean-
ing wherever in the world your game players are located, they will be near a CDN server location
with a fast connection to the Internet. This isn’t something that you can always guarantee when
serving iles off a standard web server.

http://w3techs.com/technologies/overview/javascript_library/all

Starting with jQuery ❘ 83

One last advantage of using a CDN is that, given the ubiquity of jQuery, there’s a good chance that visi-
tors already have a CDN version of jQuery cached in their browser, meaning 0 bytes need to be sent.

To serve jQuery off the Google CDN, all you need is to add a single <script> tag to the page:

<script
src='http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
 jquery.min.js'>
</script>

The jQuery website (http://docs.jquery.com/Downloading_jQuery#CDN_Hosted_jQuery) has a
number of options but the one hosted by Google is by far the most popular. To serve it locally, you
need to download the ile from http://jquery.com and stick it somewhere you can access it:

<script src='js/jquery.min.js'></script>

As for where in your page the <script> tag should be added, it's up to you. The only restriction is
that it should be before the irst reference of the jQuery object. Most websites that use jQuery for
enhancing the page recommend putting it at the bottom of the page before the </body> tag. For
games this is less important because nothing is going to be visible on the page until jQuery and the
rest of the JavaScript is loaded.

Understanding the $

All JavaScript loaded into a page shares a global namespace. This means that if you have a top-level
variable deined in one JavaScript ile, it could be accessed and overwritten in a subsequently loaded
JavaScript ile.

Sometimes this is a good thing. When writing a game, for example, it’s nice to partition your code
into various iles and still have it all work together. When writing a library, however, it would be
nice if you didn’t need to worry about every method in your library conlicting with methods in
your game. You might, for example, want to add a hide() method to your game objects without
having it conlict with the hide() method provided by your DOM manipulation library.

jQuery solves this problem by wrapping everything it does into a single object called the jQuery
object. So if you want to hide an element on the page that has an ID of "my-object-id" (and didn't
know any other jQuery), you could write:

var elem = document.getElementById("my-object-id");
jQuery(elem).hide();

jQuery has a couple of additional tricks up its sleeve. First, you can use the $ object instead of typ-
ing the full word jQuery. The following code is equivalent to what you wrote previously:

var elem = document.getElementById("my-object-id");
$(elem).hide();

You’re still missing the most powerful part of jQuery, though, and that is CSS selectors. As opposed
to passing an actual DOM object to jQuery, you can just pass a string that represents a CSS selector,
and jQuery matches one or more objects that match that selector. So you could get the preceding
code down to one line:

$("#my-object-id").hide();

http://docs.jquery.com/Downloading_jQuery#CDN_Hosted_jQuery
http://jquery.com

84 ❘ CHAPTER 5 learning soMe helpFul liBraries

If you remember your CSS, preixing something with a pound sign (#) means you’re targeting an ID
property.

jQuery also supports more complicated selectors, so you could, for example, write:

$("#my-form > input[type=checkbox]:checked").hide();

This would hide all the currently checked check boxes directly inside of an element with an ID of
my-form.

Manipulating the DOM

Much of what jQuery is good at is “manipulating the DOM.” This phrase means modifying the
structure and content of a web page. The term DOM stands for Document Object Model, which is
the programmatic interface to the web page.

The jQuery hide() method is only one of the many functions jQuery provides for manipulating the
DOM. A few of the methods (attr, css, animate, val, html, and text) have two forms: a “getter”
form and a “setter” form. The getter form often takes no arguments or a single string argument
and returns a value; a setter form usually takes one or two arguments, a property and a value, or an
object literal to set multiple values at once. Following are some examples using the different forms:

// Return the href of the first link on the page
var myHref= $("a").attr('href');

// Set the href for all links on the page
$("a").attr("href","http://www.google.com");

// Set the href and target for all links on the page
$("a").attr({ href: "http://www.google.com",
 target: "_blank" });

// Return the HTML in the first paragraph element
var myHTML = $("p").html();

// Set the HTML on all paragraph elements
var myHTML = $("p").html("Lorem ipsum dolor sic amet");

The getter versions return only the appropriate value of the irst element that matches the set,
whereas the setter value sets all matching elements.

The following list shows some of the most common jQuery methods you can use and their
descriptions.

 ➤ $(selector).show() /$(selector).hide(): Show and hide matched elements on the page.

 ➤ $(selector).addClass(name) /$(selector).removeClass(name): Add or remove a
CSS class from an element.

 ➤ $(selector).empty(): Clear any content in an element.

 ➤ $(selector).val(newValue) /$(selector).val(): Set or return the value of an input
element.

 ➤ $(selector).attr(attributeName) / $(selector).attr(attributeName, value) /

$(selector).attr(attributeHash): Retrieve or set an arbitrary attribute on an object.

Starting with jQuery ❘ 85

 ➤ $(selector).css(propertyName) / $(selector).css(propertyName,value) /

$(selector).css(propertyHash): Retrieve or set an arbitrary CSS style on a DOM object.

 ➤ $(selector).animate(propertyHash): Change a CSS style over time.

 ➤ $(selector).fadeIn() / $(selector).fadeOut(): Fade an element into view or fade it
out of view.

 ➤ $(selector).append(content) / $(content).appendTo(selector): Add some content
to the bottom of a container.

 ➤ $(selector).html() / $(selector).html(newHtml): Get or set the HTML in an ele-
ment directly.

GET COMFORTABLE READING THE DOCUMENTATION

This section has touched on only a few of the methods available. You need to
become comfortable with the jQuery documentation site at http://api.jquery
.com because the easier it is for you to ind your way around the documentation,
the easier of a time you can have building dynamic interfaces on the web.

You revisit a lot of these jQuery methods in Chapter 12, “Building Games with CSS3,” when you
build a role-playing game (RPG) using DOM elements.

USING A JQUERY ALTERNATIVE SUCH AS ZEPTO.JS.

jQuery’s greatest strength is that it uniies the programmer experience across all
different browsers from IE6 forward. Its greatest strength, however, also leads to
two great weaknesses: It's large and can be slow. Zepto.js is a library that was cre-
ated by JavaScript wizard Thomas Fuchs to provide a jQuery-like syntax without
the bloat of jQuery.

For the most part, Zepto.js is a drop-in replacement focused on modern browsers
other than Internet Explorer (IE). Because it has a razor-sharp focus on support-
ing WebKit-based and Firefox browsers, the current miniied JavaScript code is
under 6 kb and works great on almost all mobile devices (WP7 being the excep-
tion). Zepto.js does not work on IE, including IE9, so if you target desktop brows-
ers for your game as well, jQuery is still the better option.

If you want to keep your loading and your ile size down, and still get the conve-
nience of jQuery, look at Zepto.js at http://zeptojs.com/.

Creating Callbacks

One of the most signiicant features of JavaScript that developers from other languages often have
trouble with is the idea of functions as irst-class objects. Although most other languages support

http://api.jquery.com
http://zeptojs.com/

86 ❘ CHAPTER 5 learning soMe helpFul liBraries

callback mechanisms, the ubiquity of callbacks and the passing around of functions as parameters
make JavaScript a bit different.

As you know, functions in JavaScript are created with the function() keyword. Functions can have
names, for example:

function sayPhrase() { ... }

Or they can be anonymous:

function() { ... }

What good are anonymous functions? Well, as mentioned, they can be passed in parameters and
treated like normal objects. If you want to save your anonymous function for later, you could write:

var sayPhrase = function() { ... }

Doing so also drives home the point that functions can be treated like normal objects and can be
assigned to variables like any other value. (This book mostly shows this later form to make it appar-
ent that functions get passed around just like any other object.)

To call sayPhrase you need to append parentheses to the name, but if you don't want to call the
function and instead just want to pass it to another function as a callback, leave the parentheses off.

sayPhrase(); // Call sayPhrase

// Pass sayPhrase as a callback to another function
otherFunction(sayPhrase);

When you understand functions as irst-class objects in jQuery, there’s a second subtlety related to
calling functions. JavaScript, as you know, is an object-oriented (OO) language, albeit not a typical
one. Objects are data structures that combine data with methods for interacting with that data.

A standard, object-based method call in JavaScript looks like the following:

bobObj.sayPhrase();

In the preceding code, bobObj is an object with a method called sayPhrase. Like most OO lan-
guages, you have a special keyword you can use to refer to the current object. Unlike most other
languages, however, the current object (generally called the context) is much more malleable in
JavaScript than in other languages. For example:

var bobObj = {
 phrase: "Yay!",
 sayPhrase: function() { alert(this.phrase); }
 };

// Will pop up an alert with "Yay!"
bobObj.sayPhrase();

// Will pop up an alert with "undefined" after 100ms
setTimeout(bobObj.sayPhrase, 100);

In the irst example, everything works as expected. The this keyword is bound to the object you
expect, bobObj. In the second example, however, the context of the function sayPhrase is lost

Starting with jQuery ❘ 87

because it is used as in a callback. There are a couple of ways around this. This irst is not to use the
this keyword but to refer to the object directly:

bobObj = {
 phrase: "Yay!",
 sayPhrase: function() { alert(bobObj.phrase); }
 };
// Works correctly
setTimeout(bobObj.sayPhrase, 100);

This method is okay for one-off objects, but it is much more common to have many instances of
an object, so referring to the object explicitly isn’t possible. (This issue can also be skirted with a
design-pattern implemented during object creation as discussed in Chapter 9, “Bootstrapping the
Quintus Engine: Part I.”)

A second way around this is to use the jQuery proxy function to permanently bind the context:

bobObj = {
 phrase: "Yay!",
 sayPhrase: function() { alert(this.phrase); }
 };
// Create a proxied function
var proxiedFunc = $.proxy(bobObj.sayPhrase, bobObj);
// Will pop up an alert with "Yay!" after 100ms
setTimeout(proxiedFunc, 100);

Any time proxiedFunc is called from now on, the this keyword will be bound to bobObj.

Underscore.js (discussed later in this chapter) also has a handy method that does the same thing.
Using underscore, the setTimeout could be rewritten as

var proxiedFunc = _.bind(bobObj.sayPhrase, bobObj)
setTimeout(proxiedFunc);

Understanding the subtleties of callbacks is important in HTML5 game development because call-
backs are used frequently. Making certain you know how to pass functions and knowing the con-
text of this at any given time is essential.

Binding Events

One common use for callbacks is for binding event handlers. jQuery, as of version 1.7, provides
a uniied methodology for attaching events in using $(selector).on. Because it does so much,
$(selector).on has a complicated deinition with a number of optional arguments. The most com-
mon form is:

jQuery.on(events [, selector] [, data], handler)

Only two of the parameters are required: events and handler. The events parameter is a string
of comma-separated event names, but most commonly there will be only one name. Following is
the simplest example of calling $(selector).on for binding a click event to a link with an ID of
start-button:

$("a#start-button").on("click",function(event) {
 alert('Starting Game!');
});

88 ❘ CHAPTER 5 learning soMe helpFul liBraries

Notice the standard selector $("a#start-button") followed by the event to be bound, "click",
and then the callback.

THE SPECIAL CASE OF DOCUMENT READY

Ensuring that your code runs at the proper time takes some care. If you try to run
JavaScript that refers to DOM elements that haven’t been loaded yet, you’ll be in
trouble. Often you’ll want to wait to run your JavaScript until the whole page has
loaded. This is before the window.onload event, which triggers after all assets and
images have loaded. You can use the standard event syntax to wait for this event:
$(document).on("ready",function() { ... }); but because it’s so com-
mon, jQuery provides a shortcut of just passing a function to the jQuery operator:
$(function() { ... }).

In some cases you need to prevent the event handler from taking the default action. In the preced-
ing example, you might not want the page to go to the href destination of the link you just clicked
by default. In that case, you need to tell the event that you don’t want the default behavior to take
place. You do this by calling preventDefault on the event object passed in as a parameter:

$("a#start-button").on("click",function(event) {
 event.preventDefault();
 alert('Starting Game!');
});

event.preventDefault is used most often for HTML elements with some default action, such as
links, inputs elements and forms, or with keyboard events where you don’t want the page scrolling
around.

If later you want to turn off any click events that you have bound to start-button, you can call
$(selector).off as shown here:

$("a#start-button").off("click");

This call turns off all click handlers on the button. If you want to turn off a speciic handler, you
need to pass that handler as the second argument.

To follow up on the discussion of context in callbacks from the last section, jQuery intentionally
changes the this object in event callbacks to be the DOM element that triggered the event. This behav-
ior is something you must plan for if you need access to the context from outside of the callback.

If you want to hide the Start button after it is clicked, for example, you could write the following:

$("a#start-button").on("click",function(event) {
 event.preventDefault();
 alert('Starting Game!');
 $(this).hide();
});

You need to wrap the this object in the jQuery object selector using $(this).

JavaScript also has the capability to do event delegation, which means that you can bind an element
to events on its children. This can be useful for mobile game development because mobile games

Starting with jQuery ❘ 89

often contain a multitude of elements that are frequently added and removed from the page that
needs to be interacted with via touch events.

Binding events to each of these elements individually would be both time-consuming and slow.
If instead you were to use event delegation, you could bind only to the container element but still
receive all the events as needed.

To give a concrete example of the usefulness of this, you create a simple game called Block Clicker,
the code for which is shown in Listing 5-1. The goal of the game is to click as many blocks that
appear on the page before time runs out. If the player clicks 15 of the 20 blocks, they win; other-
wise, they lose.

LISTING 5-1: binding.html—A simple shape clicking game

var width=$(window).width(), height=$(window).height(),
 countdown = 20, countup = 0;

var nextElement = function() {
 if(countdown == 0) {
 gameOver();
 return;
 }
 var x=Math.random()*(width - 50),
 y=Math.random()*(height - 50);
 $("<div>").css({
 position:'absolute',
 left: x, top: y,
 width: 50, height: 50,
 backgroundColor: 'red'
 }).appendTo("#container");
 countdown--;
}

var gameOver = function() {
 // Stop additional nextElement calls from firing
 clearInterval(timer);
 if(countup > 15) {
 alert("You won!");
 } else {
 alert("You lost!");
 }
}
var timer = setInterval(nextElement,500);
$("#container").on('mousedown','div',function(e) {
 countup++;
 $(this).fadeOut();
 });

The irst thing this code does is get the dimensions of the window using jQuery; then it deines a
couple of variables to store the number of blocks left to display and the number the user has clicked.

It then deines a nextElement function that is called each time a block is to be added to the page.
This function irst checks if the game is over by looking at the countdown variable and calls the

90 ❘ CHAPTER 5 learning soMe helpFul liBraries

gameOver method if it is. If the game is not over, a random x and y position is generated and a new
50-by-50-pixel red square block is created, styled, and positioned on the screen.

The gameOver function irst clears the interval timer, so that no more elements are added onto the
page, and then pops up an alert message either telling the player that they won or lost.

Next is a call to setInverval to ensure a new block is created every 500 milliseconds.

Finally, with one call to $(selector).on, the game captures all the mousedown events on all the
<div>s inside the #container element, even for elements that have not yet been created. When the
player clicks a <div>, the countup variable is increased, and the element is faded out. In this case
the mousedown event is used instead of a click event because the click event requires the mouse to
be released over the same element as it is clicked on, which slows down the game.

NOTE Users can cheat in the Block Clicker game by clicking the fading element
quickly in succession. Can you think of a way to prevent this?

Making Ajax Calls

So far, only one aspect of jQuery has been discussed in detail, DOM manipulation, but the library
has some more useful tricks. jQuery also provides a simple and consistent interface for making
AJAX call back to a web server. Using AJAX allows your game to push and pull data to and from a
web server without requiring a full page reload. One thing to remember when making Ajax calls is
that they are, by deinition, asynchronous. This means that you can’t be sure when they are going to
be inished.

Calling Remote Servers

jQuery provides one method to rule them all when it comes to making Ajax calls, called $.Ajax.
If you look at the documentation for $.Ajax at http://api.jquery.com/jQuery.ajax/, you can
notice that the method takes more than 30 different options to conigure various parts of the request
being made.

This level of conigurability can be overwhelming when you just want to send or grab some data.
Luckily jQuery provides a few shorthand methods. For example, say you want to load a JSON ile of
level data; you could simply write:

$.getJSON("level1.js",function(levelData) {
 // Do something with your levelData
});

Behind the scenes, jQuery handles creating an XMLHttpRequest object (the browser object that actu-
ally performs the call), registers the onreadystatechange callback, and checks that the appropriate
status is returned before parsing the returned data and calling your callback with the levelData. If
none of that previous sentence made any sense, don’t worry about it; the main point is that the details
of handling AJAX calls directly is fairly involved, so the nice wrapper jQuery provides around those
calls means you can focus on your game instead of the transport mechanism.

http://api.jquery.com/jQuery.ajax/

Starting with jQuery ❘ 91

$.getJSON can also be used to make JSONp requests, which is a workaround for the same domain
limitation that normally hampers AJAX calls. To use JSONp simply add a callback=? parameter to
the requested URL (provided the remote server supports JSONp).

$.getJSON is only one of the helper methods available. Some of the other ones you can use are as
follows. Only the common forms of the methods are shown here:

 ➤ $.get(url,[data,], successCallback(data)): Makes a get request (as you probably
expected) and returns the data. You can use this method when you load HTML or other data
formats (like a text ile) that you want to process before dumping on the page.

 ➤ $(selector).load(url): A convenient method that loads the response of an AJAX get
request into whatever elements were matched by the selector. Use it to quickly load content
from a server (such as a top-ten list or a credits page) directly onto the page.

 ➤ $.getScript(url): Makes a get request but evaluates the response as JavaScript, which is
useful when you want the server to directly generate JavaScript that is executed by the client.
$.getScript is also useful because it can load data from any domain, whereas any other
AJAX call besides getJSON requires that you target the same domain.

 ➤ $.post(url, [data,], success(data)): Makes a post request (with optional data) to a
URL. Posts are generally done to send large amounts of data to the server and are useful for
submitting form data.

For more details on all the Ajax methods available in jQuery, check out the full documentation
online at http://api.jquery.com/category/ajax/.

Using Deferreds

One of the problems with the asynchronous part of AJAX is that when you try to do multiple things
at a time but can’t be sure which one is going to get done irst, the logic required can get a little
hairy, requiring a number of state variables or a bunch of nested callbacks. Luckily, as of jQuery
1.5, all jQuery Ajax methods return an object known as a Deferred that, and when used correctly,
it can greatly simplify your callback code.

Say you want to load three separate JSON data iles and then do something when you are done.
With Deferreds you could write:

$.when($.getJSON('level1.json'),
 $.getJSON('enemies.json'),
 $.getJSON('player.json'))
 .then(function(level,enemies,player) {
 // We know all three files have loaded
 }).fail(function() {
 // One or more files failed to load
 });

You don’t need to worry about success or failure of each individual call or the order they respond in.
You instead get to wrap them up in a nice package and get a callback when all the remote calls are
done. (Deffereds are documented at http://api.jquery.com/category/deferred-object/.)

http://api.jquery.com/category/ajax/
http://api.jquery.com/category/deferred-object/

92 ❘ CHAPTER 5 learning soMe helpFul liBraries

USING UNDERSCORE.JS

Although jQuery provides a number of utility methods that can make your life easier when writing
JavaScript, the main focus of jQuery is to modify the DOM and provide simpliied Ajax support. It
doesn’t provide a lot of utility methods for other purposes. (jQuery does provide some, though; see
http://api.jquery.com/category/utilities/ for some examples.)

Luckily, there’s a library called the Underscore.js that was created for just that purpose. Underscore
is a small library (under 4 kb miniied and gzipped) that provides approximately 60 methods that
can make your JavaScript easier to understand and more compact.

Accessing Underscore

Underscore.js is included in your project as a single JavaScript ile, much like jQuery. Also simi-
lar to jQuery, the author made the decision not to pollute the existing JavaScript namespace
but rather to wrap all the methods inside of a single function identiied, not surprisingly, by the
underscore character, "_".

You can call underscore methods in two ways either in a functional or an object-oriented style.
Following is an example of each:

_.isString(myVar);
_(myVar).isString();

The functional method calls the function directly on the underscore object, whereas the OO method
irst calls the underscore on the target (much like jQuery does with selectors) and then calls the
method on the resulting object.

Working with Collections

The bulk of the methods in Underscore.js are targeted at working with collections, whether they
are arrays or objects. Because much of what you do in game development is the manipulations of
lists of objects such as sprites, these methods come in handy. Say you have an array of objects called
sprites and you want to call the update() method on each of them in turn. You could write a
for loop:

for(var i=0,len=sprites.length;i<len;i++) {
 sprites[i].update();
}

Alternatively with Underscore.js, this becomes

_(sprites).invoke('update');

The latter method is both shorter and clearer about the intention of the code. The only downside is
that there is some overhead involved in calling an Underscore method instead of just writing your
own loop. In most cases, however, this overhead is negligible, and the advantage of smaller, more
compact code is worth the trade-off.

http://api.jquery.com/category/utilities/

Using Underscore.js ❘ 93

Some of the most common and helpful methods are documented in the following list.

 ➤ _.each(list, callback, [context]): Calls back each element of the list as an argument
to the callback. It uses the native forEach in the browsers that support it. Notice _.each
takes an additional “context” object that is bound to this inside the callback.

 ➤ _.map(list, callback, [context]): Similar to _.each, except it takes the return values
from the callback method and returns a new array.

 ➤ _.find(list, callback, [context]): Returns the irst item in the list for which the call-
back function returns true. It’s useful for inding an element in a list based on some arbitrary
criteria function.

 ➤ _.filter(list, callback, [context]): Similar to _.find except that it returns an array
of all the items for which the callback returns true.

 ➤ _.without(array, [*values]): Returns a new array without any instances of values
removed; useful, for example, for removing dead sprites from a list.

 ➤ _.uniq(array, [isSorted], [iterator]): _.uniq returns a copy of an array with
any duplicate elements removed. If the array happens to be in a sorted state, pass true to
isSorted to improve performance.

Taken together, these methods make working with lists of objects much more concise.

Using Utility Functions

Underscore also provides a number of general utility functions that can make your life easier.

 ➤ _.bindAll(object, [*methodNames]): Modiies any calls to methodNames on object so
that the context is always object. This means you can pass methods to jQuery event han-
dlers, for example, without needing to worry about the context of this.

 ➤ _.keys(object) / _.values(object): Returns all of an object’s keys or values.

 ➤ _.extend(destination, *sources): Copies all the properties from a list of source objects
over to the destination, overwriting any existing properties.

 ➤ _.is[ObjectType]: Underscore.js provides a good number of methods of the form
_.is[ObjectType] to check the type of a passed-in object. This is useful because JavaScript
doesn’t provide built-in type checking methods. The methods Underscore provides are
_.isEqual, _.isEmpty, _.isElement, _.isArray, _.isFunction, _.isString, _isNumber,
_.isBoolean, _.isNaN, _.isNull, and _.isUndefined.All the _.is[ObjectType] methods
are relatively self-explanatory: They each check the type of the object passed in and return true
or false. They provide a succinct way to do type checking on JavaScript objects, which is useful
for checking arguments and faking polymorphism by having methods behave differently depend-
ing on what is passed into them.

 ➤ _.uniqueId([prefix]): Generates a globally unique identiier for client-side DOM ele-
ments or models. This is useful because you often want to add unique ID attributes to ele-
ments you add to the page.

94 ❘ CHAPTER 5 learning soMe helpFul liBraries

These utility methods, particularly _.extend are used frequently in the book.

Chaining Underscore Method Calls

Because Underscore does such nice things on collections, it would be nice if the syntax for dealing
with multiple calls to Underscore methods in a row were cleaner.

Following is an example of the problem. If you want to pull out the maximum y value of all the
sprites of the enemy category, you could write

((_(sprites)
 .filter(function(s) { return s.category == "enemy"; }))
 .pluck('y'))
 .max();

If you can follow all those nested _(..) calls, good luck; it’s not something that is particularly read-
able. For just this reason, Underscore provides a mechanism called chaining.

_.chain(sprites)
 .filter(function(s) { return s.category == "enemy"; })
 .pluck('y')
 .max().value();

When you want to chain a number of underscore functions in a row, call _.chain(), and then when
you are done, call .value().

SUMMARY

Two useful JavaScript libraries—jQuery and Underscore—can help you write more compact code,
devoid of per-browser checks and boilerplate code, that is easier to understand and maintain.

Although not using a library is certainly an option (Alien Invasion, after all, was built without
libraries), the cost of adding both jQuery and Underscore is less than 40 kb, or approximately the
size of a small JPG. Take advantage of the hard work that people have put in before you to make
cross-browser development easier.

Being a Good Mobile Citizen

WHAT’S IN THIS CHAPTER?

 ➤ Maximizing game size

 ➤ Taking advantage of iOS features

 ➤ Dealing with limited bandwidth

 ➤ Using the Application Cache

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 06
download and individually named according to the names throughout the chapter.

INTRODUCTION

You can overcome many of the challenges for developing on mobile with a little bit of pre-
planning and knowledge of the limitations of the target platform. Where things get dificult
is when desktop games are shoehorned into mobile devices without a lot of forethought or
respect for the restrictions that mobile brings to the table. This chapter prepares you for
the peculiarities you need to know to successfully develop and release an HTML5 game
on mobile.

6

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

96 ❘ CHAPTER 6 Being a good MoBile Citizen

RESPONDING TO DEVICE CAPABILITIES

One of the major challenges of game development on mobile devices is how to maximize screen real
estate on small devices while supporting the great variety of screen resolutions and aspect ratios of
these devices. Unlike single platform mobile devices such as the Apple App store, the DS, or the PSP,
mobile HTML5 games not only need to deal with a plethora of different devices, each with their
own resolution and aspect ratio, but also with the possibility that the play can be either in landscape
or portrait mode.

Maximizing Real Estate

When a player plays your game on a tiny screen, such as those on mobile devices, one of the best
things you can do is make sure the game takes up the full height and width of the available screen
real estate.

ADDING A LAUNCHER

If the game is supposed to be embedded within other content on the page, you
may want to add a “launcher” step to your game where you wait for an action
from the user before you start loading the game.

Desktops, however, have different considerations. In general, you want to put a limit on the size of
the game versus the size of screen. For example, maxing out the screen on a 24" desktop monitor is
most likely too slow for the current generation of browsers and hardware and will also make your
artwork too pixelated for bitmap-based games. The other alternative is to dramatically increase the
viewable area of the game on the desktop, but this can cause additional problems. You also generally
want your game to play similarly whether it’s played on the desktop or a mobile device.

The solution most engines have come up with is to maximize the game to a certain size when it’s on
a mobile device but leave it in a container of ixed size when users play your game on the desktop.

Ideally, you should develop your game in such a way that the exact dimensions and aspect ratio don’t
matter. This is easier said than done, depending on the genre. For a platformer or a role-playing game
(RPG), you should build your game in such a way that the amount of the level visible on the screen
shifts depending on the screen size and dimensions. Things are more dificult when you have a ixed
play area that needs to be fully onscreen at all times. In this case you need to ensure you maximize
the size of the playable area while keeping the aspect ratio constant.

Using a ixed aspect ratio can lead to some less-than-ideal situations because many devices have
vastly differing aspect ratios for landscape and portrait mode. In general if you need to keep your
game area to a ixed aspect ratio, you can optimize only for one view—either portrait or landscape—
and then either ask the user to rotate the device (you don’t have the ability to lock screen rotation in
HTML5) or accept that your game lives in a smaller box than is ideal.

Responding to Device Capabilities ❘ 97

Resizing Canvas to Fit

In this section, you look at some code that handles the screen adjustment for you. In each case you
start with some boilerplate HTML and a <canvas> element that’s 480 pixels by 480 pixels centered
on the page:

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <title>Page Resize</title>
 <link rel="stylesheet" href="lib/base.css" type="text/css" />
 <script src='lib/jquery.min.js'></script>
</head>
<body>
 <div id='container'>
 <canvas id='game' width='480' height='480'></canvas>
 </div>
</body>
</html>

Other than the library jQuery, the only external resource listed is the style sheet called base.css.
As in the previous chapter, the base.css style sheet consists only of the Meyer reset and a couple
of game-speciic styles. Below the reset, add the following two styles:

#container {
 padding-top:50px;
 margin:0 auto;
 width:480px;
}
canvas {
 background-color:green;
}

If you open this on a desktop browser, you notice a nice green <canvas> element centered on the page.

Next, add the following code before the closing </body> tag:

<script>
// Wait for the document.ready callback
$(function() {
 var maxWidth = 480;
 var maxHeight = 440;
 var handleResize = function() {
 // Get the window width and height
 var w = window.innerWidth ||
 window.document.documentElement.clientWidth ||
 window.document.body.clientWidth;
 var h = window.innerHeight ||
 window.document.documentElement.clientHeight ||
 window.document.body.clientHeight;
 if(w < maxWidth) {
 $("#container").css('width','auto');
 $("#game").css({position: 'absolute',
 top: 0, left: 0, zIndex: 10000 })

98 ❘ CHAPTER 6 Being a good MoBile Citizen

 .attr({width: w, height: Math.min(h,maxHeight) });
 }
 }
 handleResize();
});
</script>

This snippet of code, which runs on document ready, will be based on the width of the window,
either leaving the Canvas sitting in the middle of the page or changing the positioning of the Canvas
to an absolute position at the full size of the browser. You can see the code by running resize.html
in the chapter code.

This is unfortunately one circumstance in which jQuery doesn’t have a solution that works for all
browsers. The code to determine the scrollbar-less height and width of the client window is different
depending on the browser. Internet Explorer (IE) is again the culprit here, so if you want to ignore
versions of IE before version 9, the height and width calculation code can be shortened down to the
following:

// Get the window width and height
var w = window.innerWidth, h = window.innerHeight;

In Canvas-based games this is normally ine; for DOM-based games that might support older ver-
sions of IE, you want the full string. Because this example uses <canvas>, the rest of the examples
in this chapter use the shorter string.

DEALING WITH BROWSER RESIZING, SCROLLING, AND ZOOMING

Just because players bring up your game in a browser at a certain size doesn’t mean it’s going to stay
that way. Users may resize their desktop browser or may rotate their mobile device to get a better
view. Most mobile devices that support HTML5 also enable users to pinch to zoom in and out of
the page. You must consider all these actions when you develop a game on mobile.

Handling Resizing

Even if you don’t intend to resize your game when played on the desktop, you should consider adjusting
the game to it the screen on mobile as the player will most likely rotate the device to get a better view
of the game.

Listing 6-1 shows what code that adjusts the size of the Canvas element each time the browser is
resized would look like. Because there isn’t a game attached to this example, the code that calls
the game code to let it know that it’s been resized has been commented out. This is the // Game
.resize(newDim); line. You can see this example by running resize.html in the chapter code.

LISTING 6-1: resize.html—A self-resizing Canvas

<script>
// Wait for the document.ready callback
$(function() {

Dealing with Browser Resizing, Scrolling, and Zooming ❘ 99

 var maxWidth = 480;
 var maxHeight = 440;
 var initialWidth = $("#game").attr('width');
 var initialHeight = $("#game").attr('height');
 var handleResize = function() {
 // Get the window width and height
 var w = window.innerWidth, h = window.innerHeight,
 newDim;
 if(w <= maxWidth) {
 newDim = { width: Math.min(w,maxWidth),
 height: Math.min(h,maxHeight) };
 $("#game").css({position:'absolute', left:0, top:0 });
 $("#container").css('width','auto');
 } else {
 newDim = { width: initialWidth,
 height: initialHeight };
 $("#game").css('position','relative');
 $("#container").css('width',maxWidth);
 }
 $("#game").attr(newDim)
 // Let the game know the page has resized.
 // Game.resize(newDim);
 }
 $(window).bind('resize',handleResize);
 handleResize();
});
</script>

The updated code now has an else condition to allow it to swap between either the full page or
the centered state. To do this, the code stores the initial width and height of the Canvas and, if the
width is larger than the predetermined max width, changes the element back to relative positioning
and its original size. You can try this out by resizing your browser window up and down.

A binding to the window’s resize event makes sure the handleResize() method is called every time
the browser is resized.

You need to consider one more facet with resizing. Because the game has already been initialized with
a speciic size, it must resize itself mid-game. How easy this is to do depends on the game you create,
but it’s something you need to think about from the start to either make a decision to support or not
support. What resizing involves is very game dependent. A platformer might just show more or less of
the surrounding area while a card game would need to zoom the entire view in and out.

Preventing Scrolling and Zooming

To make up for limited screen sizes, suring the web on a mobile browser involves a lot of scrolling.
For websites that aren’t set up with a mobile version, it also generally involves pinching to zoom in
and out. Allowing either of these actions during normal gameplay would be disastrous.

If you load up resize.html from the previous section on a mobile device and slide your ingers over
the Canvas area, you notice the entire page performs as you might expect a web page to: It scrolls. If
you double-click the green Canvas area, it zooms in.

100 ❘ CHAPTER 6 Being a good MoBile Citizen

The workaround to prevent this from happening is simple: Bind to the touchMove event and call
event.preventDefault(). Add the following to the bottom of the resize code from the last section
(still in the jQuery document.ready section):

 $(document).on("touchmove",function(event) {
 event.preventDefault();
 });

Now reload the page and try again. The page should stop in its tracks if you try to scroll around.
If you don’t want to be quite as greedy (for example, you’ve been tasked with creating one of
those interactive ads polluting sidebars everywhere), you could limit the handler to only your
Canvas object:

 $("#game").on("touchmove",function(event) {
 event.preventDefault();
 });

This code enables the player to manipulate the rest of the page, zoom in on your game, and then
play it without fear of scrolling or zooming.

IN-GAME SCROLLING AND ZOOMING

What if you want players to scroll, pinch, and zoom? In most situations you
want to re-create that behavior in-game instead of using the browser’s built-in
behavior. Touch events, described in detail in Chapter 10, “Bootstrapping the
Quintus Engine: Part II,” provide a mechanism for tracking multitouch that
enables you to track higher-level behaviors such as pinching to zoom.

Setting the Viewport

Preventing zooming and scrolling is good, but if you load the device on an iPhone, one of the
irst things you notice is that none of the browser resizing seems to work. The green Canvas stays
zoomed out.

The reason for this is that unless you tell the browser explicitly how big to make the page, it starts
zoomed out as if you were viewing a normal web page. To ix this you need to add a special meta
tag to the head to set the viewport (the visible area of the page). In games, the most common view-
port setting is to set the viewport to 100% device resolution and prevent the user from scaling at all.
Add the following meta tag to the head of your document:

 <meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no">

Reload the page on your mobile device to see the green Canvas zoomed in to take up the full page.
Although the viewport began as an iOS-only feature, it is now supported on Android and Mozilla’s
Fennec mobile browser as well.

Dealing with Browser Resizing, Scrolling, and Zooming ❘ 101

LIES, DAMN LIES, AND PIXELS

In the good old days, pre-iPhone4, a web developer could count on a pixel being a
pixel. With the introduction of the iPhone 4’s Retina display, suddenly that was no
longer true. Because thousands of websites were developed to the exact width of
320 pixels of the iPhone in portrait mode and would look foolish if shrunk down to
a quarter of their normal size, Apple introduced the idea of CSS pixels. The iPhone
4 and later still pretend to have resolutions of 320 n 480, but they actually have
double that resolution. To take advantage of that resolution, you can jump through
some hoops that will be discussed in Chapter 15, “Learning Canvas, the Hero of
HTML5,” during the in-depth discussion of Canvas. For now, most devices have
trouble pushing pixels at a speed to make game developers happy at 320 n 480, so
this isn’t necessarily something that you need to take advantage of immediately.

Removing the Address Bar

You can use one more trick to get a bit more real estate on the page, and that’s to remove the
address bar on iOS devices. Do this using the trick of scrolling the page slightly after it is loaded:

window.scrollTo(0,1);

This works only if the content of the page is longer than the full size of the page. To make things
more dificult, removing the address bar also affects the reported innerHeight of the page.

This presents a little bit of a problem because you want to resize the Canvas to the full size of the
page, but the size of the page may change after you’ve done the full resize. To get around this, you
can simply set the height of the container element to a value known to be larger than the inal height
without the address bar. Then scroll the window and recalculate the innerHeight. Change the top
of the handleResize method to read as follows:

var touchDevice = !!('ontouchstart' in document);

 var handleResize = function() {
 var w = window.innerWidth, h = window.innerHeight, newDim;

 // Make sure the content is bigger than the page.
 if(w <= maxWidth && touchDevice) {
 $("#container").css({height: h * 2});
 }
 window.scrollTo(0,1);

 // Get the height again, scrollTo may have changed the innerHeight
 h = window.innerHeight;

You want to do this container resize trick only on browsers that support touch events because
other ones (such as normal desktop browsers) scroll normally. Adding a bunch of additional
empty space just adds unnecessary scrollbars that make the page scroll around. For this reason,
the variable touchDevice is set to either true or false depending on whether the document
object supports the ontouchstart event.

102 ❘ CHAPTER 6 Being a good MoBile Citizen

Finally there’s one more subtlety to deal with regarding resizing. iOS doesn’t currently ire a resize
event when the device changes orientation from vertical to horizontal (portrait to landscape), so to
handle the resize in that situation, you need a different event to bind to: orientationchange. You
can use the touchDevice check from earlier to decide which event to listen to. Replace the preced-
ing resize event above handleResize with the following:

 var resizeEvent = touchDevice ? 'orientationchange' : 'resize';
 $(window).on(resizeEvent,handleResize);

The code now determines whether to listen to resize or to orientationchange events.

Listing 6-2 shows the full code with all the mobile-speciic adjustments described earlier for reference:

LISTING 6-2: addressbar.html—A resizing Canvas with mobile adjustments

<script>
// Wait for document ready callback
$(function() {
 var maxWidth = 480;
 var maxHeight = 480;
var initialWidth = $("#game").attr('width');
 var initialHeight = $("#game").attr('height');
 var touchDevice = 'ontouchstart' in document;
 var handleResize = function() {
 var w = window.innerWidth, h = window.innerHeight, newDim;
 // Make sure the content is bigger than the page.
 if(w <= maxWidth && touchDevice) {
 $("#container").css({height: h * 2});
 }
 window.scrollTo(0,1);
 // Get the height again, scrollTo may have changed the innerHeight
 h = window.innerHeight;
 if(w <= maxWidth) {
 newDim = { width: Math.min(w,maxWidth),
 height: Math.min(h,maxHeight) };
 $("#game").css({position:'absolute', left:0, top:0 });
 $("#container").css("width","auto");
 } else {
 newDim = { width: initialWidth,
 height: initialHeight };
 $("#game").css('position','relative');
 $("#container").css('width', maxWidth);
 }
 $("#game").attr(newDim)
 // Let the game know the page has resized.
 // Game.resize(newDim);
};
 var resizeEvent = touchDevice ? 'orientationchange' : 'resize';
 $(window).on(resizeEvent,handleResize);

 $(document).on("touchmove",function(event) {
 event.preventDefault();
 });

Coniguring Your App for the iOS Home Screen ❘ 103

 handleResize();
});
</script>

Leaving this code sitting bare on document ready isn’t going to be a viable solution for long.
The preceding code will be incorporated into the mobile engine Quintus built in Chapter 9,
“Bootstrapping the Quintus Engine: Part I.”

CONFIGURING YOUR APP FOR THE IOS HOME SCREEN

You need to add a few more pieces to your game to let people save it to their home screen. The irst
is to add a meta tag indicating your game is “web-app-capable.” Users can save your game to the
home screen regardless of whether your app marks itself as web-app-capable, but if you explicitly
mark it as such, your app automatically loads in full-screen mode without the address bar or the
button bar at the bottom of the page.

Making Your Game Web App Capable

To make your game web-app-capable, you need to add the following meta tag to the <head> of
your document:

<meta name="apple-mobile-web-app-capable" content="yes">

A second meta tag can make your app look more like a regular app when it launches. Mobile Safari
uses a light gray status bar by default, but you can switch it to the standard black status bar by adding
another meta tag:

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

Your options for the content of this meta tag are "default" that means to leave it gray; "black" that
as described previously makes it the standard black status bar used by apps that leave the status bar
on; and "black-translucent" that pushes your content up to the top of the page but leaves the status
bar as semi-transparent over your content. For most cases, "black" is the best option unless you want
a full 480 n 320 pixel area to play with, in which case you can use "black-translucent".

Adding a Startup Image

Apple gives you an additional option to improve the launch experience when your app is on the
home screen. This is the startup image that displays while the device gets your app up and running.
You can add a <link> tag to your <head> to specify this. First, create a 320 n 460 pixel image in
portrait orientation, and then add a meta tag linking to that image:

<link rel="apple-touch-startup-image" href="/path/to/320x460-startup-image.png">

If you want to support more than just than a low-res iPhone version, you can add a complete set of
startup images for the iPhone and iPhone 4+ Retina display along with the iPad in portrait and land-
scape mode by adding the appropriate media query to each of the links:

<!-- 320x460 for iPhone before iPhone 4 and iPod Touch -->
<link rel="apple-touch-startup-image" media="(max-device-width: 480px) and
 not (-webkit-min-device-pixel-ratio: 2)" href="/path/to/320x460-startup-

104 ❘ CHAPTER 6 Being a good MoBile Citizen

image.png" />

<!-- 640x920 for Retina display on iPhone 4 and above-->
<link rel="apple-touch-startup-image" media="(max-device-width: 480px) and
 (-webkit-min-device-pixel-ratio: 2)" href="/path/to/640x920-startup-
image.png" />

<!-- 768x1004 for iPad in Portrait mode -->
<link rel="apple-touch-startup-image" media="(max-device-width: 1024px) and
 (orientation: portrait)" href="/path/to/768x1004-startup-image.png" />

<!-- 1024x748 for iPad in Landscape mode. Image should be rotated 90
degrees clockwise. -->
<link rel="apple-touch-startup-image" media="(max-device-width: 1024px) and
(orientation: landscape)" href="/path/to/1024x748-startup-image.png" />

WARNING Make sure you use the exact image sizes and rotations as described in
the preceding comments.

If you don’t specify a startup image, by default, the user sees an image of the last state that your
game was in when it was last closed.

Coniguring Home Icons

The devil, as some say, is in the details. The last touch you can add to your game to make it appear
just like a real native app is to add a <link> tag specifying a custom home screen icon. At its simplest,
you can add this icon by specifying a <link> tag with an "apple-touch-icon" relation that points to
a 57 n 57 pixel PNG image:

<link rel="apple-touch-icon" href="/path/to/57x57-icon-image.png" />

This image shouldn’t have any of the standard iOS icon embellishments, but rather should just be
a square icon image. iOS can add the rounded corners and the gloss inish if you use this version of
the meta tag.

Using this version, though, can leave Android users with a subpar experience, however, because
Android won’t add the additional enhancements to the image. To ix this, you can use a “precom-
posed” icon that has already been tricked-out in glossy style by specifying:

<link rel="apple-touch-icon-precomposed" href="/path/to/57x57-precomposed-
icon-image.png" />

To accommodate the iPad and the iPhones with a Retina display, adding a triumvirate of icons with
the sizes set explicitly does the trick:

<!-- 72x72 for iPad -->
<link rel="apple-touch-icon-precomposed" sizes="72x72"
href="/path/to/72x72-icon-image.png" />

<!-- 114x114 for Retina Display on iPhone 4 and up -->
<link rel="apple-touch-icon-precomposed" sizes="114x114"

Taking Mobile Performance into Consideration ❘ 105

href="/path/to/114x114-icon-image.png" />

<!-- 57x57 for iPhone pre iPhone 4 and iPod Touch, Android 2.1+ -->
<link rel="apple-touch-icon-precomposed" sizes="57x57"
href="/path/to/57x57-icon-image.png" />

Much like the favicon.ico ile, iOS can search for a iles with some variation of "apple-touch-icon.
png" in the root of your site and use those automatically, but you should explicitly let the device know
what icons are available.

TAKING MOBILE PERFORMANCE INTO CONSIDERATION

Desktop browsers have reached the point in which building any type of simple game using HTML5
is an achievable objective. You don’t need to jump through many hoops to get a 2-D platformer or
top-down shooter game running smoothly.

On mobile, performance is a different story. You need to consider performance from the beginning
if you want to give users a smooth experience. To get a sense of the performance limitations of
desktop, now look at the comparison between MacBook pro, iPhone, and iPad for various simple
rendering tests (see Figure 6-1).

iPhone

JQuery IMG

JQuery CSS

Canvas

Canvas no Clear

Rendering Nothing

iPad

JQuery IMG

JQuery CSS

Canvas

Canvas no Clear

Rendering Nothing

Macbook Pro

JQuery IMG

JQuery CSS

Canvas

Canvas no Clear

Rendering Nothing

0 17.5 35.0 52.5 70.0

62.2

60.4

60.4

60.7

60.7

56.7

51.6

51.7

42.4

41.5

56.1

48.5

49.3

29.9

29.1

Frames per Second Rendering 50 Sprites

FIGURE 6-1: Comparison of HTML5 rendering methods on mobile.

106 ❘ CHAPTER 6 Being a good MoBile Citizen

You can run the tests by going to http://cykod.github.com/mobile-html5-tests. The tests consist
of creating various numbers of image sprites and moving them vertically down a 320 n 320 board. The
graph in Figure 6-1 shows the results for rendering 50 sprites. The tests run through ive ways to do
the rendering. The irst uses tag-based sprites. The second uses CSS background-image-based
sprites. The third uses CSS sprites but uses -webkit-transform instead of just setting the left and top.
The fourth and ifth ways both use Canvas, with the ifth foregoing the full-Canvas clear.

On the desktop, it doesn’t matter how you render the sprites or how many you render; the frame
rate hovers around 60 frames per second. On mobile it’s a different story. The frame rate drops
immediately on both the iPad2 and the iPhone4 using IMG or CSS sprites. The iPad2, with it’s
more powerful processor, can hang on to its frame rate for a bit longer using Canvas sprites, but
in both cases the frames-per-second decreases noticeably when rendering 100 image-based,
moving sprites.

Although 100 sprites might seem like a lot, if you consider projectiles, particle effects, background
tiles, and other animations, it’s not an unreasonable number for a simple game. What these results
mean is that at the moment, decisions about your game need to be made with an understanding of
the mobile platform. That’s the bad news. The good news is that performance improves all the time,
and other options exist for deploying onto mobile devices than just using Mobile Safari.

ADAPTING TO LIMITED BANDWIDTH AND STORAGE

Given the predominance of Wi-Fi in the United States, designing for mobile doesn’t necessarily mean
your players will be on 3G when they play your game, but it does make it a possibility that you need
to take into consideration.

If you create an RPG with hundreds of megabytes of assets, you need an incremental loading system
that doesn’t try to download everything at once. Even if the user is on 4G or Wi-Fi, the mobile browser
won’t have the cache space or the memory to handle all those assets eficiently.

Optimizing for Mobile

What does optimizing for mobile mean? It means packaging and delivering your game in such a way
as to let the player into the game as quickly as possible. This means limiting the libraries you use,
minifying your JavaScript and CSS assets, and using spritesheets to limit the number of separate
requests the device must make to download images. It also means setting up your web server to serve
assets compressed to reduce the bandwidth costs. Finally, it means coniguring your server to serve the
proper cache headers to ensure assets can be cached on the device and don’t need to be downloaded
every time the player plays the game.

Good for Mobile Is Good for All

The good news is that optimizing your game for mobile doesn’t only affect mobile devices. Making
your game load faster and play smooth can result in a better all-around experience on desktop as
well as mobile.

http://cykod.github.com/mobile-html5-tests

Adapting to Limited Bandwidth and Storage ❘ 107

Many times, given the speed of desktop browsers these days, it doesn’t seem worth following best
practices because the beneit seems incremental. This is a stance that is actually more damaging to
your game than might irst appear. Chances are, as a game and web developer, you have a relatively
new machine connected to the Internet via a fast connection. Potential players of your game around
the country and around the world are unlikely to all be that lucky.

Some players may be on a dial-up service (which supports speeds a good deal slower than 3G) and
looking to play on computers that should have been retired ages ago. Because the web is a casual
gaming space, you must accommodate a much wider range of hardware. Using mobile as a baseline
is a good start to ensure you make the necessary optimizations.

Minifying Your JavaScript

The majority of the size of your HTML5 games will most likely consist of JavaScript and image
iles. The JavaScript iles should be written with plenty of helpful comments to go along with nice
indenting, descriptive variable and function names, and generous spacing.

Just because you write your iles that way, though, doesn’t mean you need to serve them to your
player that way. A number of compressors are available that can take your JavaScript, strip out
the comments and whitespace, and then transform the parts down to greatly reduce the resulting
size of the ile. jQuery 1.7.1, for example, runs almost 250 K in size before being miniied down
to approximately 93 K.

To aid in minifying down your code, you can do a couple of things. The irst is to wrap your code in an
anonymous function to get it out of the global scope. You often see code written something like this:

(function(window) {
 // Bunch of stuff defined.
 window.exportedFunction = function() { .. }
})(window);

Here, all the code is wrapped up in an anonymous function and explicitly sets any of its exports on
the passed-in window class. This makes it explicit as to which variables are global. There are varia-
tions on this pattern, but the crux of it is that the global namespace isn’t illed with lots of junk.

The second thing you can do to minify your code is to make sure to use the "var" keyword to create
local variables that don’t need to be available outside of the wrapping function. Using local variables
this way allows the miniiers to automatically rename these variables down to short names such as
a and b, which allows for even better compression of the iles.

A number of JavaScript miniiers are available. Three of the most popular are Yahoo’s YUI
compressor (http://developer.yahoo.com/yui/compressor/), Google’s Closure compiler
(http://code.google.com/closure/compiler/), and Uglify.js (https://github.com/mishoo/
UglifyJS). This book uses Uglify.js because it’s popular and written in JavaScript.

To run Uglify.js, you need some sort of command-line JavaScript environment. Chapter 9 discusses
getting Node.js, a command-line and server-side framework for running JavaScript, up and running.
In the meantime you can play with the output of Uglify.js by passing some code through the online
version at http://marijnhaverbeke.nl/uglifyjs.

http://developer.yahoo.com/yui/compressor/
http://code.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS
https://github.com/mishoo/UglifyJS
http://marijnhaverbeke.nl/uglifyjs

108 ❘ CHAPTER 6 Being a good MoBile Citizen

Setting Correct Headers

One of the worst things you can do is force a player to redownload large asset iles that haven’t
changed when they visit your game the second time. Setting expiration headers far into the future
means you tell the browser it can cache whatever assets it likes.

What iles does it make sense to allow the browser to cache? Almost any asset ile, including images,
audio, level data, and so on should be cacheable if it’s not generated dynamically on the server.

At its simplest, if you use Apache, you can add a directive to set expiration way out in the future:

<Directory /path/to/asset/files>
 ExpiresDefault "access plus 10 years"
</Director>

This directive requires that you have the mod_expires Apache module installed.

You need to ensure that you can update your game assets if you make changes to your game, however.
One way to ensure that you are always serving up-to-date assets when caching is turned on is to append
the last modiied time in seconds (known as the mtime) of the ile to the URL, as follows:

<script src='js/game.js?1326075236'></script>

If your HTML ile is served dynamically, this is easy to do. If it’s served via a static ile, you can
hard code a modiied date using a build script.

For assets loaded dynamically, use a similar method. In general, keeping a global version number
that gets automatically appended to any loaded assets is the simplest method for small games.

Lastly, make sure you turn caching off during development. There is nothing more infuriating than
trying to hunt down a bug that you have already ixed but the browser is serving an old version of
your code.

Making sure that your assets serve the right cache headers is only half the battle. The second half
is to ensure that assets that beneit from compression are served gzipped to browsers that support it
(which, at this time, is every browser you should be concerned about playing an HTML5 game on,
even including the venerable IE6).

If you use Apache, this is handled by the mod_deflate module. Ensure mod_deflate is enabled, and
then add the following to your virtual host or to an .htaccess ile:

AddOutputFilterByType DEFLATE application/javascript application/
x-javascript text/html text/plain text/xml text/css

Your JavaScript, HTML, CSS, plain text, and XML iles can now be served compressed over the wire.

Serving from a CDN

To really make your assets ly, your best bet is to actually forgo serving them yourself and serve
them directly from a content delivery network, also known as a CDN. CDNs are designed to serve
iles fast from edge-locations spread throughout the country and the globe. Serving iles from a
nearby location means that requests will be answered faster (there’s less round-trip time for packets
getting passed back and forth,) but the biggest advantage is usually simply that CDNs are optimized
for serving iles quickly, so they have the infrastructure and fat Internet pipes to do so.

Going Oline Completely with Application Cache ❘ 109

Amazon.com’s Cloudfront is one of the most popular CDNs and is relatively easy to get started with
and inexpensive until you rack up signiicant bandwidth. Cloudfront works with Amazon.com’s S3,
a cloud storage service. You need to conigure Cloudfront to pull from a speciic S3 bucket, but from
then on, any ile you upload to S3 will be available via Cloudfront.

To sign up for S3 and Cloudfront, you need to sign up for an account at http://aws.amazon.com/.
From there you can launch the AWS Management console. From the console, go to the S3 tab (it may
prompt you to sign up for the service irst) and click Create Bucket. Enter a unique bucket name. The
bucket name needs to be unique across all S3 buckets, so it may take a little bit of creativity to come
up with a name.

Next you need to click the Cloudfront tab and create a new distribution. Click the Create Distribution
button, and select the bucket you just created. You can press Continue through the remaining screens
until your distribution is ready to go. After you create the distribution, it can take up to ive minutes to
set up, but you can see the domain name for your distribution in the properties. Any ile you upload
to your bucket is available under that domain name and served up lightning quick.

You can copy iles up manually to S3 using the management console, but there are numerous tools
and libraries that can help do this for you as well, such as s3sync: https://github.com/ms4720/
s3sync.

Nonimage and script resources (meaning data resources such as .json level data and CSVs) are
generally loaded via Ajax, which has a same origin policy. The same origin policy requires that
you load assets from the same domain/subdomain, protocol, and port as your main HTML script
was loaded from. This isn’t a deal-breaker for most assets because images, audio, video, and
JavaScript iles can load without issue, but it’s something to keep in mind.

GOING OFFLINE COMPLETELY WITH APPLICATION CACHE

With everything that’s been discussed in this chapter on being a good mobile citizen, there’s still one
piece that’s missing, the Holy Grail of web page apps: allowing users to play your game without any
Internet access. Conigured correctly, users with your game saved to their home screen can ire up
your game while riding on the subway and kill aliens to their heart’s content. The secret to adding this
capability to your game resides in coniguring your game to correctly use the Application Cache, an
HTML5 standard deined under Ofline Web Applications.

Creating Your Manifest File

The main crux of what’s necessary to make your app available ofline consists of linking your
HTML page to a manifest ile by modifying the <html> tag at the beginning of your page as such:

<html lang="en" manifest="/manifest.appcache">
 .. Rest of your HTML ..
</html>

The name of the manifest ile is actually up to you; however, the agreed-upon ile sufix is
.appcache and the ile needs to be served with the mime-type of text/cache-manifest that is

http://aws.amazon.com/
https://github.com/ms4720/s3sync

110 ❘ CHAPTER 6 Being a good MoBile Citizen

generally not preconigured by Apache. You can add the following to your Apache conig or to an
.htaccess ile to ensure the ile is served correctly:

AddType text/cache-manifest .appcache

You generally want to explicitly override the expired header for the manifest.appcache ile to pre-
vent it from being cached. With mod_expires enabled in Apache, you can do this with the following
declaration in either a conig ile or an .htaccess ile:

ExpiresByType text/cache-manifest "access plus 0 minutes"

Next, you need to actually write the cache manifest ile. This is actually a fairly simple text document
that starts with the uppercase words "CACHE MANIFEST" and follows with up to three different sections:

 ➤ CACHE: For iles that should be cached.

 ➤ NETWORK: For resources that should be available only when online.

 ➤ FALLBACK: For resources that should have a fallback version used when the device is ofline.
FALLBACK resources are speciied by an online version followed by an ofline version.

 ➤ CACHE and NETWORK each consist of a list of iles or paths. (Wildcards are also permitted.)

If you load a page that has been cached while the device is online, the browser makes a request for
the manifest ile. If the ile has changed, all the iles download again. If the ile hasn’t changed (or
has been cached normally in the browser), then none of the cached iles reload. Because you may
often update assets without changing which assets are in your manifest, the most common way to
change the manifest ile is with a version number in a comment.

Say you have a game that loads from an index.html inside the /myGame directory and that has
static assets in /myGame/images and /myGame/js. Then say it has a high-score list that loads from
/myGame/high-scores.php and an advertisement that loads from /myGame/ads.php. You might
set up a cache manifest ile like the following:

CACHE MANIFEST
Version: 1
Remember to update the version whenever you change a file

CACHE
Cache the game index.html file and all assets
/myGame/index.html
/myGame/js/*
/myGame/images/*

NETWORK
Always try to pull the high scores from the network
/myGame/high-scores.php

FALLBACK
Fallback to a static ad if user is not connected
/myGame/ads.php /myGame/static-ad.html

Going Oline Completely with Application Cache ❘ 111

NOTE The HTML ile with the manifest declaration is automatically cached by
default and doesn’t need to be in the manifest ile, but there’s no harm in being
explicit that it is going to be cached.

After your players have played your game, the next time they bring up the game, it pulls all the assets
from the Application Cache. If the players are online, pressing /myGame/ads.php downloads your real
ads (or whatever is in that ile,) while pressing the ile while ofline loads a /myGame/static-ad.html
from the Application Cache. If you try to press the high score list at /myGame/high-scores.php, the
browser attempts to make the request regardless of whether the device is online.

Checking If the Browser Is Online

You may want your game to behave differently depending on whether you are online. Mobile Safari
and the Android browser can use the navigator.onLine lag to check whether the browser thinks
it’s online, as follows:

if(navigator.onLine) {
 // do something when online
} else {
 // Fallback
}

This is a little bit of a crutch, though, and life isn’t quite that simple. Just because navigator.onLine
returns true doesn’t mean that you can actually access data over the web. The browser may be on
Wi-Fi without an Internet connection or may have such a poor connection that it can’t actually down-
load any data. The rule is to always catch any network errors even if the device is under the false
impression that it is online.

On desktop, navigator.onLine is broken for this same reason, with the Chrome developers going
as far as to mark the bug as "WONT FIX."

Listening for More Advanced Behavior

This section has scratched only the surface of the Application Cache. There are eight different events
deined in the HTML5 spec for the Application Cache. A full robust implementation with on-the-ly
updating of the cache would need to do a good deal more work to handle all the different situations.
The good news is that most of the time all you care about is caching your iles for ofline use.

 A Final Word of Warning

Testing and debugging Application Cache can be a pain, especially when you already have cache
headers turned on as suggested. The easiest way to test is to turn off your cache headers, verify
the browser is hitting the server for each of the iles, add in your manifest, and disable Wi-Fi or
Ethernet. You can quickly determine how your game behaves under ofline conditions. After you
have it worked out in a desktop browser, give reloading the game a shot on a mobile device in
Airplane mode to see how you did.

112 ❘ CHAPTER 6 Being a good MoBile Citizen

As a secondary word of caution—stay away from enabled cache headers and Application Cache
while in development. You can quickly lose your sanity trying to constantly igure out whether
your browser uses new or cached resources.

SUMMARY

Whew! Being a good mobile citizen takes a lot of work! Luckily a good deal of the hard work is
boilerplate that is set and forgotten about. That statement applies to mobile meta tags, cache head-
ers, and application cache. What the statement doesn’t apply to is making sure your game can work
within the constraints of the mobile devices you target. That takes some care and planning, and
most likely some prototyping to determine how far you can push the current generation hardware.

PART III

JavaScript Game Dev Basics

 ⊲ CHAPTER 7: Learning about Your HTML5 Game

Development Environment

 ⊲ CHAPTER 8: Running JavaScript on the Command Line

 ⊲ CHAPTER 9: Bootstrapping the Quintus Engine: Part I

 ⊲ CHAPTER 10: Bootstrapping the Quintus Engine: Part II

 ⊲ CHAPTER 11: Bootstrapping the Quintus Engine: Part III

Learning about Your HTML5
Game Development Environment

WHAT’S IN THIS CHAPTER?

 ➤ Choosing a development environment

 ➤ Exploring the Chrome Developer tools

 ➤ Debugging your JavaScript

 ➤ Improving and optimizing your game

 ➤ Debugging for mobile

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 07
download and individually named according to the names throughout the chapter.

INTRODUCTION

When paired with a good text editor, over the past decade, browsers have developed into remark-
able development environments for building, debugging, and optimizing web games. To ind an
HTML5 IDE, you need to look no further than the browser you use every day to surf the web.

Although nearly all browsers have decent debugging environments, this book speciically cov-
ers the Chrome Developer tools. Chrome is available on all platforms (Windows, OS X, and
Linux) and provides an up-to-date WebKit browser, matching in many ways with the WebKit
browser on most mobile devices.

7

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

116 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

PICKING AN EDITOR

Before you can get your code up and running in a browser, you need to write some code in some sort
of an editor. Which text editor or development environment you use is up to you. You can go the IDE-
like route and use a full-ledged development environment such as WebStorm, Aptana, Netbeans, or
even Visual Studio. Alternatively, many developers get by with just a good text editor. On the PC,
Notepad++ is a popular choice. On the Mac, TextMate or MacVim (if you’re the adventurous type) are
good choices. On Linux, Emacs or gVIM can get the job done. Stay away from Dreamweaver because
its job is more focused on writing HTML than JavaScript and can do more harm than good.

EXPLORING THE CHROME DEVELOPER TOOLS

Chrome is available on all platforms, and its developer tools are top-notch. Almost any piece of infor-
mation you want to view about your page is available as it’s running, and you can execute arbitrary
JavaScript from the console. Safari has tools that are nearly identical (they share the same codebase);
however, Safari isn’t available for Linux and isn’t nearly as popular as Chrome among developers.

Activating Developer Tools

Unlike Firebug, Chrome developer tools come pre-installed with Chrome and just need to be
opened. To access the tools, you can go to the Wrench menu in top-right corner of the browser,
select Tools, and then select Developer Tools. On a PC or Linux, you can also press Ctrl+Shift+I to
open them. On a Mac, Command+Option+I works.

Inspecting Elements

The irst tab on developer tools is Elements (see Figure 7-1) and it enables you to view the current state of
the Document Object Model (DOM). This is different from the HTML you see in View Source, which
shows you the HTML loaded from the server because JavaScript may have modiied the DOM. On the
left pane, you can browse around the DOM, opening and closing individual block elements as wanted
and modifying attributes by double-clicking them. You can also right-click (Ctrl-click on a Mac) to make
further modiications, such as editing the Node as HTML or adding or removing elements.

If you want to inspect a speciic DOM element on the page, you can also right-click (Ctrl-click on a
Mac) on any DOM element on the page and select Inspect Element. On the left, this shows you the
location in the page’s HTML of the element you clicked. On the right, it shows all the properties for
the element. The most prominent details are the CSS styles, which display from the least speciic at
the bottom up to the most speciic at the top. Styles that have been overridden by more speciic styles
are crossed out.

You can enable and disable speciic styles by clicking the check box to the right of that style. You
can also edit an existing style by clicking either the property or the value, or add a new style by
clicking the closing curly bracket below the style. Deleting the property name also removes the prop-
erty from the style entirely.

To view the end result of the application of all the styles, open the Computed Style tab above the
Styles tab. This is useful, for example, when you want to igure out pixel-based values, such as the
width of an element in pixels when elements are sized in percentages.

Exploring the Chrome Developer Tools ❘ 117

Below the Styles is the Metrics tab (see Figure 7-2) that shows the box model representation of the
current element.

FIGURE 7-1: Inspecting an element.

FIGURE 7-2: An element’s box model in the Metrics tab.

Beneath the Metrics tab is the Properties tab (refer to the bottom of Figure 7-2), which, if you open
it up shows any of the properties that element has as well as the properties that object inherits. You
can modify these properties in the same way as CSS styles, by double-clicking the value and editing
it. You can also remove a property by removing the property name. Some required properties can’t
be removed or changed.

Below the Properties tab is the DOM Breakpoints tab. If you have trouble tracking elements added
or removed from the page, you can add breakpoints on DOM modiication (see Figure 7-3) that
pauses JavaScript execution at the appropriate time.

118 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

The inal tab on the right, Event Listeners, shows the events applied to that DOM element.

Inspecting and modifying elements and viewing styles are less important in Canvas-based games
than in normal applications, but if you build games with CSS3 or SVG, you’ll appreciate seeing the
speciic styles applied to each DOM element as well as the hierarchy of styles. You might often run
into a situation in which you have trouble applying a style to an object, and seeing which speciic
selector is overriding it can be useful.

Viewing Page Resources

The second tab, Resources (see Figure 7-4), is used to view all the resources that the page and any
embedded frames use. Resources include any HTML, Scripts, Stylesheets, and art assets, but also
things, such as Indexed DB usage, Local Storage, Session Storage, Cookies, and Application Cache.

FIGURE 7-3: Adding a DOM breakpoint.

FIGURE 7-4: The Resources tab.

Exploring the Chrome Developer Tools ❘ 119

This tab is invaluable, particularly in games when you need to see the current state of Local Storage
or Application Cache. You can add, edit, and remove keys and values from Local Storage. Much like
the Elements tab, in many of the locations of the Resources tab, you can add, edit, and modify the
various entries. Editing is normally done with a double-click, whereas adding is done by pressing the
plus at the bottom of the screen or by clicking an empty row. You can remove elements by highlight-
ing them and pressing the X at the bottom of the screen or by right-clicking (Ctrl-clicking on a Mac)
and clicking Delete. You cannot modify page assets and application cache using developer tools, but
you can easily change everything else for the interface.

The most common use of the tab is to check on Cookies, Local Store, and Application Cache because
these elements can be tricky to debug. Viewing the application cache (see Figure 7-5) in particular can
help you understand whether your game caches as expected.

FIGURE 7-5: Viewing the Application cache.

Tracking Network Traic

Next is the Network tab (see Figure 7-6). This tab, as you most likely expect, tracks all network
requests your game makes, which includes downloading HTML, JavaScript, and Assets along with
making Ajax requests or setting up WebSockets.

FIGURE 7-6: The Network tab.

120 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

Problems with your game can generally be traced to either JavaScript errors or resource loading
problems. Resource loading problems, such as putting the wrong path in to a JavaScript ile or asset,
strike far more often than you might guess and cause headaches because they aren’t the irst thing
you’ll try to debug.

Taking a quick peak at the Network tab can help you solve many resource loading problems. It
shows you the actual response status of each of the resources you want to load and highlights any
problems with the ile you load. The tab needs to be open to capture resource usage, so you may
need to reload the page to view the requests made.

One common problem is the issue of capitalization. When you test a game locally using a file://
URL, the capitalization of ilenames doesn’t matter. If you have a ile called engine.js and you try
to load it in a script ile as Engine.js, the browser happily loads the ile and pretends that nothing
is wrong. After you deploy your game on a website, unless your web server is a Windows machine,
capitalization matters, and the asset won’t load.

Imagine you load your game that works perfectly locally but sits there blankly after you put it on the
web. Before trying to track down imaginary browser bugs, open the Network tab. If you see some-
thing such as Figure 7-7, you can pinpoint the issue right away.

FIGURE 7-7: A resource that failed to download.

The request for the mistakenly capitalized Engine.js is invalid. Although this would probably
be something you would eventually igure out with other methods, when you get deep into asset
requests, taking a quick peek at the Network tab to check on invalid paths can save you a lot of time
and frustration when suddenly some sprite isn’t showing up on the screen.

A second major use of the Network tab is tracking down slow requests. Getting your game loaded
and playable as quickly as possible should always be a goal. Pulling assets from a slow server can
cause a marked slowdown in your game. If you refer to Figure 7-6, you can see exactly how long
each of the assets loaded by Chapter 3’s Alien Invasion takes to load. In this case the sprites.png

Debugging JavaScript ❘ 121

ile takes the most time. Moving the ile to a CDN might help, but because the entire game loads
in less than 1 second, there’s probably not that much optimization left to do here. In a larger game
with lots of assets loading from different servers, you’ll have more to optimize.

Clicking an individual request shows you all the details of the request and the server’s response. If
your code talks back to the server via Ajax calls, the tab becomes even more invaluable because you
can trace the parameters and response of the server. Websockets, as of this writing, aren’t supported
by developer tools to the extent that you can see the data passed back and forth, so you need to log
any data you need to see.

DEBUGGING JAVASCRIPT

Because HTML5 games are heavy on JavaScript, you’ll often want to inspect your running game
when stuff goes wrong or behaves unexpectedly. Luckily, Developer Tools provides a debugging
environment that is second to none, allowing you to look at the objects, functions, and values as
well as stop your game’s execution at a speciic point and look at the exact state of the game.

Examining the Console Tab

Your irst stop when something goes wrong should be the Console tab. It alerts you to any
JavaScript errors that have occurred while running your game. Errors are highlighted in red,
and you get a ilename and line number where the error occurred (see Figure 7-8).

FIGURE 7-8: A JavaScript error in the console.

Clicking the ilename on the right takes you to the ile where the problem occurred and with the
offending line highlighted (see Figure 7-9). You can click the little arrow to the left of the error to
open the callback, which shows you all the nested function calls needed to get to the current line.

122 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

FIGURE 7-9: A JavaScript error at the spot of the error.

In addition to highlighting errors, you can also use the console.log method to log messages and
data to the console. If you log a string it shows up as a string in the console with a matching line
number called console.log. If you log something more complex than a string, the full object
appears in the console and can be inspected by clicking the arrow next to the entry.

For example, you can add the following to the playGame method from Chapter 3, “Finishing Up
and Going Mobile,” in game.js:

var playGame = function() {
 var board = new GameBoard();
 board.add(new PlayerShip());
 board.add(new Level(level1,winGame));
 console.log("Logging board");
 console.log(board);
 Game.setBoard(3,board);
 Game.setBoard(5,new GamePoints(0));
};

Your console would look like Figure 7-10 when you start the game. In Figure 7-10, the second entry,
the board, has been opened by clicking the arrow, enabling you to see all the properties it contains.

NOTE console.log isn’t supported on all browsers, and on some older browsers it’s
available only when developer tools are enabled. It can slow down your game if you
call it frequently, so make sure you remove any calls before publishing your game.

Lastly, and perhaps most important, you can use the console to execute arbitrary JavaScript and
examine objects while your game runs.

Anything you type into the console executes when you press Enter/Return, meaning if you add a
JavaScript function to your game, you can use it from the console. This is useful for things such
as turning on a developer mode, adding health to make your game easier to test, and jumping to

Debugging JavaScript ❘ 123

arbitrary points in your game. Using Alien Invasion as an example, you can test starting the game
or showing the “you lose” screen which normally plays after you get hit by an enemy by executing
the appropriate method from the console (see Figure 7-11).

FIGURE 7-10: Logging an object to the console.

FIGURE 7-11: Running commands on the console.

Any global variables or objects you enter on the console can turn into clickable objects as if you
called console.log on them from somewhere in your game. So if you need to look at the state of an
object, just enter it on the console, open it, and then click down to the wanted property to see what
is occurring.

Exercising the Script Tab

When you want to see the JavaScript that is loaded for your game or you need to dig deeper by run-
ning the step debugger on your code, it’s time to open the Script tab.

124 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

By default, the Script tab shows you the irst ile with JavaScript in it, but you can open up any ile
with JavaScript in it by clicking the ilename (see Figure 7-12) in the top left of the tab.

FIGURE 7-12: Selecting a diferent ile from the Script tab.

Debugging is generally done by adding a breakpoint to your code at the spot you are interested
in. Breakpoints tell the browser to pause the execution of your game and hand control over to the
debugger. You can add breakpoints to a script ile by clicking the gutter on the left of the ile on the
appropriate line. This adds a lag to that line, and the next time that the game hits that line of code,
all execution stops (see Figure 7-13).

FIGURE 7-13: A breakpoint in the Script tab.

At this point, the tabs on the right ill up with lots of useful information. The irst three—Watch
Expressions, Call Stack, and Scope Variables—are generally used the most.

Proiling and Optimizing Your Code ❘ 125

Watch Expressions, which are empty by default, is the spot where you can add expressions to be evalu-
ated in the current scope where the browser is stopped. If the value of a speciic variable is important to
iguring what’s happening, you can add it here for easy viewing. You can also add arbitrary expressions,
such as calculations. Click the little plus button on the tab header, and enter the expression. Because the
expression is evaluated in the current context, you can use the local variable and the this object in the
expression. Mousing over a watch and pressing the minus sign removes it. For complex values, such as
objects and arrays, you can click the little arrow to open the details of the watched element.

The second tab, Call Stack, shows where in the chain of function calls you are currently. Often the
problem you debug isn’t related to the code that causes the error but rather to the code that called it
with invalid parameters. Clicking any of the other methods in the call stack shifts the code view to
the spot of the method call.

If, by some misfortune you debug code that has been minimized, you can click the helpful
Prettyprint button on the bottom of the window. It’s represented by a pair of curly braces. This
can format any code in the code window in a sensible way, making it easier to igure out what’s
occurring.

The last tab, Scope Variables, is like an automatic set of watch variables that shows you all the vari-
ables deined in the current scope. Because many times you’ll be concerned with the values of vari-
ables local to the current method, it saves you the step to add a watch. Unlike watched expressions,
however, you can actually change the value of variables by clicking their values, which is handy if
you need to change any values to try different values out.

Just looking at your code at one speciic line won’t generally give you
the information you need to debug your game. You most likely want
to step through your program in small controlled steps to track down
exactly where things are going afoul. To do this, you can use the small
row of controls above the tabs on the right (see Figure 7-14).

The irst button either pauses the script execution or restarts it if it is paused. If you’ve hit a breakpoint
script, execution will already be paused and clicking this button restarts it until the next breakpoint is
hit. The next button, Step Over the Next Function Call, is used to step line-by-line over your code. The
debugger won’t jump any deeper into the stack but just executes all the code on a single line and then
goes to the next one. The next two buttons, Step into the Next Function Call and Step out of Current
Function Call, enable you greater control over how you progress through the code. If you want to step
further down the stack, press the irst one; if you want to execute code until the current method returns,
press the second. Finally, after you igure out what’s happening, you can press the last button to toggle
enabling and disabling all break points. Turning off breakpoints is useful when you need to play your
game for a moment to achieve certain conditions. You can then press this button to toggle breakpoints
back on to stop your code exactly where you need to be.

PROFILING AND OPTIMIZING YOUR CODE

HTML5 Canvas performance on the desktop has reached a point on most browsers in which you
don’t need to pay too much attention to performance when you create a simple 2-D game. (This was
not the case in 2010, when Canvas implementations were much slower.) On mobile it’s a different

FIGURE 7-14: The script

debugging controls.

126 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

story. Anything you can do to optimize your game will most likely pay dividends with a smoother
game experience and a wider range of devices with an acceptable frame rate.

Developer tools comes with three different tools to help you eke out those last few bits of perfor-
mance of your game. Start with the most important one irst.

Running Proiles

Proiling your code means tracking the time taken to execute every function call in your game.
There are ways to do this in the code by logging the start and end time around each function call,
but luckily Developer Tools comes with a dead-simple way to do this at the click of the button with-
out changing your code.

To create a proile of your game’s execution, open the Proiles tab in Developer Tools; make sure the
Collect JavaScript CPU proile is selected; and then click Start. Play your game for a bit, and then
click Stop. You can also click the small Record button (the gray circle).

You get a result that looks something like Figure 7-15, showing a breakdown of each method call
in your game, how long the game spent in the method (the self column), and how long the entire
method took, including calls to any other methods (the total column.) The majority of the time
appears to be spent in a mysterious item called “(program).” This row actually represents the
browser and in the case of Canvas games usually represents extra processor cycles not used by your
game. If you develop a CSS3 or SVG game, however, you may not actually have that many free
cycles (look at the Timelines feature to optimize this) because the browser may do a lot of work
 handling animations and transitions.

FIGURE 7-15: A proile of Alien Invasion in Chrome.

Figure 7-15 shows the breakdown for Alien Invasion; you can see the various draw methods take a
good deal of the time. Unfortunately this isn’t a great spot to optimize because these draw methods
are simple and just call the Canvas draw method. What this does mean, however, is that iguring a
way to reduce the number of draw calls might be a way to optimize the game.

Proiling and Optimizing Your Code ❘ 127

One area in which you might originally have supposed there would be a good chance to improve
performance was the collision method because it’s quite basic, but before you spend hours optimiz-
ing a routine, make sure it would actually make a difference. The total percentage of time spent in
the game is 100%–92.35% [the percentage spent in the “(program)” chunk], which equals 7.65%.
The total time spent in collide is only 0.10%. This means that the collide method represents only
0.10%/7.65%, or 1.3% (0.013), of total game execution time. You can optimize that method by
reducing its execution by 50% (a big optimization), which would result in only a .65% increase in
execution speed. This is not something that would necessarily be noticeable to the user and is prob-
ably not worth your time to optimize.

When optimizing, you need to recognize where it’s worth spending your time optimizing. In this
case even though the collide method uses a native algorithm and could be optimized easily, it’s
probably not worth the time. In other situations in which many different objects collide on the
screen, it would be a better target.

The other factor is that although most mobile browsers share WebKit roots; Android and iOS have
different JavaScript engines. This means that whereas Chrome developer tools may be a good indi-
cation of where there are performance problems on Android, it isn’t quite as good an indicator for
iOS. In this case you may want to ire up Safari on the desktop, launch the developer tools (which
are nearly identical to Chrome’s because they share the same codebase) and proile there. Figure 7-16
shows the result of running a similar proile benchmark on Safari.

FIGURE 7-16: A proile of Alien Invasion in Safari.

The JavaScript engine used in Safari doesn’t do as good a job with anonymous functions as Chrome’s
V8 JavaScript engine, but it does give an added advantage of enabling you to drill down into the time
spent in native method calls. If you have trouble with iOS and need to optimize, give your anonymous
methods names (function collideCallback() { .. } instead of function() { .. }) even if
you don’t need them for later reference.

In Chrome, the Proiles tab also has two other proile snapshots: CSS selector proile and Heap pro-
ile. The former isn’t likely going to be that useful in HTML5 game development because most look-
ups are generally by IDs, but the heap snapshot can be useful. If you run into memory problems,

128 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

you most likely have a memory leak caused by not removing all the references to objects that are no
longer used. Taking a heap snapshot shows you the memory size of DOM and JavaScript objects at a
speciic time.

Play your game for a bit and then take a heap snapshot, and you should detect any anomalies. For
example, if you play your game for a while, take a snapshot, and then sort by the number of objects
in descending order by clicking the pound sign (#) and notice that you have 2,000 sprite objects
hanging around; you most likely aren’t getting rid of sprites correctly when they die. Also keep a
lookout for objects that balloon to sizes larger than expected because this most likely means they
keep more data around than they probably intend.

Two of the other tabs, Timelines and Auditing, can be useful for debugging web-page performance
problems, but they don’t help terribly much in game optimization, so they aren’t covered here.

Actually Optimizing Your Game

With all these tools at your disposal, the next question on your mind is most likely “How do I
actually optimize my game?” The answer, as you might expect, is “It depends.” It depends on the
browser you use and what you want to do.

The irst step is to igure out where you might beneit from some optimization. Proiling, as dis-
cussed earlier, is a good place to start. Both CPU proile and heap snapshots can help you pinpoint
where you might want to target your efforts—the former because it can tell you spots in the code
that take a lot of time and the latter because it can give you an idea of what types of objects you cre-
ate a lot of. Optimizing objects of which there are thousands is a good place to start.

Next, with the code that could use some help, take a look to see if there are either algorithmic
changes that could help or syntax changes that might improve performance. JavaScript is a lex-
ible language, and sometimes that lexibility is used to the detriment of performance. Sometimes
things that seem like they might be performant actually end up costing CPU cycles. Unlike other
languages, such as C, where you can examine the resultant Assembly code to see how the compiler
thinks the code should be run, the only way to igure this out in JavaScript is to write a test and test
that code across different browsers.

Now take a simple example of three different ways to create objects (see Listing 7-1):

LISTING 7-1: Object creation methods

var Obj1 = function() {}
Obj1.prototype.yay = function(x) {};
Obj1.prototype.boo = function(y) {};

var Obj2 = function() {
 this.yay = function(x) {};
 this.boo = function(y) {};

Mobile Debugging ❘ 129

}

var Obj3 = function() {
 function yay(x) {};
 function boo(y) {};
 return {
 yay: yay,
 boo: boo
 }
}

Each of these three patterns of object creation yield an object that behaves exactly the same, yet the
fastest method (Obj1, which uses prototypes) is more than 25 times faster than the slowest method
(Obj2, using anonymous methods assigned to this) in Chrome 18. To run the test, go to http://
jsperf.com/object-creation-tests.

Now, on a circa 2010 MacBook Pro, the second method still clocks in at 1.7 million objects per sec-
ond; so unless you create lots and lots of objects, the difference isn’t going to be particularly notice-
able in your typical game. This speaks to the heart of the problem: Make sure you spend your time
optimizing eficiently by irst proiling and then testing your intuition.

Sites such as http://jsperf.com make it easy to set up a test of whatever it is you want to optimize
and enable you to quickly determine if your intuition is correct and if the potential increase in speed
is worth the effort.

MOBILE DEBUGGING

Debugging on the desktop is okay, but because this book is about mobile games, there’s no substi-
tution for debugging on real hardware. Unfortunately, with the exception of Chrome for Android,
there’s no built-in way to debug your page.

If you are on Android with version 4.0 (Ice Cream Sandwich) or newer and have Chrome installed
on your device and the Android SDK installed on your desktop, you can enable Remote Debugging
as described in the Google documentation at http://code.google.com/chrome/mobile/docs/
debugging.html.

For iOS, things aren’t quite as convenient. For simply watching for JavaScript errors, you can turn
on the debug console. This is switched on by going to Settings d Safari d Advanced. Any page you
load now shows the Safari Debug console at the top. If there are errors, they will be noted, and you
can click the tab to see some more details. This is most likely not quite enough when you want to
track down some hard-to-debug, platform-speciic issue. The good news is there is a tool called
Weinre, which is part of Apache’s cordova project that adds basic remote-debugging capability:
https://github.com/apache/incubator-cordova-weinre.

The way Weinre works is by running a Java-based server on a computer that a mobile device can
connect to by including the appropriate script tag. When connected, you can access a limited subset
of tabs that behave similarly to Developer Tools (see Figure 7-17).

http://jsperf.com/object-creation-tests
http://jsperf.com/object-creation-tests
http://jsperf.com
http://code.google.com/chrome/mobile/docs/debugging.html
https://github.com/apache/incubator-cordova-weinre

130 ❘ CHAPTER 7 learning aBout your htMl5 gaMe developMent environMent

FIGURE 7-17: The Weinre remote inspector.

Because Weinre is just a script you load on the mobile device, you don’t have access to a script
debugger or the Proiles tab, but you can inspect elements and execute code in a JavaScript console.
To start with Weinre, you need to either download the straight Java JAR ile, or, if you are on a
Mac, you can download the Mac package.

If you have downloaded the JAR ile, run it by executing the following command in the directory
you have extracted Weinre to:

java -jar weinre.jar ~DHboundHost -all-

If you have downloaded the OS X package, you need to create a directory called .weinre (the leading
period is important; don’t forget it) in your home directory and open a ile called server.properties
with the following contents:

boundHost: -all-

Next, double-click the Weinre app to start it.

In both cases, the boundHost option is necessary so your mobile device can access the Weinre server.

WARNING Running Weinre with boundHost set to -all- is a potential security
risk; you should do this only when you are on a local, trusted network.

The normal setup for using Weinre is to set up your development machine as a web server and run
the Weinre Java server on it as well. Grab the IP address of your machine on the local network
(described in Chapter 6, “Being a Good Mobile Citizen”) and then hard code the script tag to your
machine into the HTML of your game. For example, if your development machine is set to the IP

Summary ❘ 131

address 192.168.1.20, and you run Weinre on port 8080 (which is the default), add the following to
your game's HTML ile:

 <script src="http://192.168.1.20:8080/target/
target-script-min.js#anonymous"></script>

Load your game by selecting the proper location on your machine. Next select the Weinre server
location in another browser (in the previous example, this would be http://192.168.1.20:8080); or if
you run the Mac application, just click one of the other tabs.

Although Weinre is no substitute for the full debugging environment you have on the desktop, it pro-
vides an invaluable tool when you run into problems you need to debug directly on a mobile device.

SUMMARY

Developer tools built into Chrome are useful for debugging and optimizing your game. Knowing
how to use the tools in your browser to hone in on exactly where you are running into a problem
can make you a productive developer because you’ll never be sitting at a blank screen wondering
why nothing works. A basic rule of thumb when things aren’t working is to start with a look at
the Network tab, add the console.log statement, and then move onto full step-debugging. On a
mobile device your options are more limited, but using tools such as Weinre means you’ll have some
more information to debug your game.

Running JavaScript on
the Command Line

WHAT’S IN THIS CHAPTER?

 ➤ Installing a server JavaScript environment

 ➤ Understanding Node.js

 ➤ Installing and using Node modules

 ➤ Writing your own Node command-line module

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 08
download and individually named according to the names throughout the chapter.

INTRODUCTION

JavaScript has always been predominantly used as a browser-based language throughout its his-
tory. Although it has had forays into the server side dating back to Netscape’s LiveWire in 1996,
JavaScript on the server never seemed to gain much traction. This started to change in 2010 fol-
lowing a November 2009 JSConf presentation on Node.js. Suddenly—and almost inexplicably—
people were interested in running JavaScript separate from the browser. In the intervening years
JavaScript has turned into a perfectly acceptable language to use on the server and the command
line. This chapter will show you how to install, run, and write JavaScript from the command
line to support your game.

8

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

134 ❘ CHAPTER 8 running JavasCript on the CoMMand line

LEARNING ABOUT NODE.JS

Other server-side JavaScript environments are available; however, Node.js (commonly now
just referred to as Node) is by far the most popular and has the best cross-platform support
(Windows, OS X, and Linux). Because of this popularity, Node is the JavaScript environment
discussed in this book.

One of the core ideas of Node is that all I/O should be nonblocking. This means any time the
server waits on some data or some input, it shouldn’t prevent the execution of other code. The way
that Node handles this is through the use of callbacks, which are executed automatically when the
resource that was blocking becomes available. This is often referred to as evented programming.
It’s something that JavaScript programmers are familiar with because it’s the way that most user
interfaces (including web pages) are programmed: You add an event listener with a callback that
gets called when that event is triggered.

The reason it’s essential to write nonblocking code in Node is that Node is single-threaded, meaning
that there is only a single thread of execution at a given time. If the code stalls for any reason, the
entire server stops taking requests. This might seem like a disadvantage, but by being single-threaded,
Node can handle a huge number of concurrent requests without massive amounts of memory usage.
Being single-threaded also means that Node doesn’t need to switch contexts between threads, which
provides a performance boost. Combine this with the speed of the underlying JavaScript engine V8
(the engine that powers Chrome), and you can see why people are excited. A language that people
decried as a kiddie scripting language for years suddenly is beating server-side language stalwarts
such as Python, PHP, and Ruby in benchmarks.

Server-side JavaScript runs outside of the browser. You might want to do this for two primary reasons.
The irst is to write a server that can handle web requests. The second is to write command-line scripts
that can automate certain tasks. This book discusses both uses.

This chapter discusses using Node to write command-line scripts in JavaScript that do stuff such
as lint your code and package and minify your JavaScript. Chapter 18, “Creating a 2-D Platformer,”
and Chapter 19, “Building a Canvas Editor,” discuss building game servers using Node, something
that an evented single-threaded server does well.

INSTALLING NODE

With the release of Node 0.6, easy installation on Windows became a reality. Previously you needed
to install a UNIX-style POSIX environment such as Cygwin to get Node to run. Since 0.6, Node
comes with installer packages for Windows and OS X available at http://nodejs.org.

You can run the installer package and follow the prompts to get Node up and running, unless you
use Windows, in which case you have no other option. The installer isn’t the ideal method to install
node, as it won’t set up a development environment alongside it. Without this development environ-
ment, you won’t be able to install modules with native C and C++ code. For this reason, you should
follow these instructions for your speciic platform.

http://nodejs.org

Installing Node ❘ 135

Installing Node on Windows

On Windows, the only current option is to install Node from a package or compile with Visual
Studio. You will, unfortunately, have dificulty installing modules that have native source code that
needs to be compiled (such as the node-canvas module used in a later section).

As of this writing, there isn’t an up-to-date, prebuilt node-canvas Windows library, so to follow
along with the tutorial in the next section that uses node-canvas, you can download VMWare’s
VMPlayer software at www.vmware.com/products/player. VMPlayer is a free piece of software
that enables you to run a virtual Linux computer from inside of Windows. You can download a
Linux image from www.thoughtpolice.co.uk/vmware.

Find the Ubuntu Desktop image (not the server image) with the largest number (11.10 as of this
writing), download it, and run it from VMPlayer. When that machine is up and running inside of
VMPlayer, you can launch the command line from Applications d Accessories d Terminal. From
there follow the Linux installation instructions. To copy a ile into the Linux virtual machine, you
can just drag it from your desktop onto the machine and it will add it to the desktop.

Installing Node on OS X

On OS X, you need a build environment to install native modules as well. This means either installing
XCode or installing the command-line tools for XCode. If you aren’t going to use the XCode IDE, you
can get away with just installing the free command-line tools, which are available at no charge from
https://developer.apple.com/downloads.

You need to create a free developer ID account if you don’t already have one to access the page. After
you set up your build environment (either XCode or the preceding download), install Homebrew if
you don’t already have it installed. Homebrew provides an isolated environment for installing a large
variety of packages. You can download Homebrew by following the instructions at http://mxcl
.github.com/homebrew.

After you install Homebrew, you can run the following command from Terminal:

brew install node

This code installs an up-to-date version of Node so you are up and running with npm, the node
package manager.

Installing Node on Linux

On Linux, life is generally simpler and you can use the pre-installed package manager to get up and
running if it’s provided. On Ubuntu you should run the following:

sudo apt-get install node

If your package manager doesn’t have an up-to-date version, you can download the source package
from http://nodejs.org, untar it, and then run the standard build and install commands to begin:

./configure
make
make install

You may need to run the last command as root to install Node globally.

http://www.vmware.com/products/player
http://www.thoughtpolice.co.uk/vmware
https://developer.apple.com/downloads
http://mxcl.github.com/homebrew
http://nodejs.org

136 ❘ CHAPTER 8 running JavasCript on the CoMMand line

Tracking the Latest Version of Node

Node is a fast-moving project, and if you want to stay on the bleeding edge, you can download the
latest version, commonly referred to as HEAD, from the github repository at https://github.com/
joyent/node.git.

As is usually the case with open-source software, you should be careful using the latest version of
Node in a production project. It’s generally much safer to stick with a numbered release unless you
desperately need a feature or bug ix in the latest version and are working on a larger project that
won’t release for a while.

INSTALLING AND USING NODE MODULES

After you install Node, you can use any of the hundreds of modules that people have packaged and
made available. To do this use npm, the node package manager, which provides an automated way
to download and install libraries and utilities. Previously, npm was installed separately from Node,
but they are now packaged together. If you don’t have npm installed, make sure you run a newer
version of Node.

If npm isn’t installed, you can still install it by following the instructions at http://npmjs.org/.
But irst check that your Node install is up-to-date.

Installing Modules

By default, npm installs packages locally into a directory called node_modules under your current
directory. When you build a server-side app, this makes a lot of sense so you can control exactly
which versions of libraries are used. When you use Node from the command line, however, you
often want to install certain modules globally, so the binaries are available wherever you are.

To install a module globally, use the --global option. One module particularly useful is the jshint
module. This module, a slightly less opinionated derivative of Douglas Crockford’s JSLint tool, parses
your JavaScript code and gives you feedback about what parts need to be tuned up.

To install this module, run the following command from the command line:

npm install --global jshint

This installs the jshint module and makes the binary accessible from the command line.

Hinting Your Code

With the jshint node module installed, you can now run jshint from the command line to run a
quick syntax check on your code. JSHint can discover errors such as missing semi-colons or odd
structures that wouldn’t necessarily prevent your code from running, but might lead to tough-to-
ind bugs down the road.

To run jshint on a ile, run the command at the command line followed by the name of the ile.
For example:

jshint engine.js

https://github.com/joyent/node.git
http://npmjs.org/

Creating Your Own Script ❘ 137

JSHint generates a list of descriptive warnings, including line and column numbers, which can help
you improve the JavaScript you write.

Uglifying Your Code

When you deploy your game for players to play, you want it to load as quickly as possible. One
way to cut down on the load time is to keep the size of what you transfer over the wire as small as
possible. Run your JavaScript code through one of the many JavaScript miniiers that have been
written to reduce ile size.

JavaScript miniiers take your JavaScript, remove the whitespace, and then rewrite and shorten local
variables and parameters to signiicantly reduce the size of the code. Using the Alien Invasion game
from Chapter 3, “Finishing Up and Going Mobile,” running engine.js and game.js through the
uglify-js miniier reduces the size of the code from almost 19 K to just more than 11 K, a compression
of more than 40%.

To install uglify-js, install the module via npm globally:

npm install --global uglify-js

The uglify-js binary takes only one ile, so if you want to merge multiple iles into one (as you should),
you’ll need to concatenate them separately. On Windows you can run the following:

type file1.js file2.js > all.js
uglify-js all.js > all.min.js

On OS X and Linux, run the following:

cat file1.js file2.js | uglify-js > all.min.js

You now have one ile—all.min.js—that contains all the code from any iles you pass in miniied
down into a single, easy-to-serve ile.

Reducing the number of iles you serve can also speed up game load because each separate web
request the browser needs to make takes some additional time, especially on mobile devices. For
a production game, write a shell script you can run to do this in an automated fashion before
you deploy.

CREATING YOUR OWN SCRIPT

Although there have been hundreds of useful node modules written, you’ll have speciic needs when
you build your game in which some simple server-side scripting is useful. There are plenty of options
for scripting languages you could use, including Bash, Windows Script, Python, Ruby, or PHP, but
because your game is going to be JavaScript and your game libraries are going to be in JavaScript, it
make some sense to write command-line scripts in JavaScript as well.

To gain some experience building a node module, this section walks you through building a script
for generating spritesheets and some corresponding JSON from a directory of image iles. Figure 8-1
shows a sample output image with sprites lined up in a row.

138 ❘ CHAPTER 8 running JavasCript on the CoMMand line

FIGURE 8-1: A generated spritesheet.

The only hiccup in this process is that the module used in this section, node-canvas, doesn’t compile
easily on Windows because of its native-C dependencies. (To get around this, see the earlier section
on getting a virtual Linux machine up and running on Windows.)

Creating a package.json File

To start, create a new directory called spriter for the script you want to write; then open a
package.json ile in that directory. The package.json is a ile npm uses to get information
about your module and its dependencies. Fill in the contents of your package.json ile to
match Listing 8-1, replacing your name and e-mail address where appropriate.

LISTING 8-1: Package.json ile

{
 "name": "Spriter",
 "description": "A Sprite Map generator",
 "author": "Your Name <youremail@domain.com>",
 "version": "0.0.1",
 "dependencies": {
 "canvas" : "0.10.2",
 "futures": "2.3.1"
 },
 "bin": "./bin/spriter",
 "main": "./spriter.js"
}

The name, description, author, and version ields should be relatively self-explanatory. If you
plan to publish your module to npm, the version ield is important as you update you module.
The dependencies ield is a hash of other modules this module depends on and the versions that
should be installed. The bin ield will be used later when the module is linked to allow you to call
this script from anywhere at the command line. Finally the main parameter indicates which ile
holds the main script ile that handles exports. bin and main aren’t needed now, but they will be
needed in subsequent sections.

This code uses a neat server-side Canvas module that gives you a Canvas 2-D API you can use from
server-side node code. It has a dependency on a pair of graphics libraries called cairo and pixman
that you need to install. It also uses the futures module, which provides Promises and Deferreds
functionality. If you aren’t familiar with Promises or Deferreds, don’t worry; they will be touched
on later in this chapter.

Creating Your Own Script ❘ 139

On Linux you can install either the libcairo2-dev (Debian and Ubuntu) or the cairo-devel (Fedora and
openSUSE) package. On Ubuntu—or if you run the Ubuntu virtual machine—this means running the
following from the command line:

sudo apt-get install libcairo2-dev

On OS X install cairo via Homebrew with the following:

brew install cairo pixman

After you install the cairo library, run the following command from your spriter directory to
install any dependencies:

npm install

This downloads and installs the Canvas dependency into the node_modules subdirectory, and you
should start building this node script.

Using Server-Side Canvas

The irst thing you need to do is test the server-side Canvas functionality to ensure it’s usable. Draw
the standard canvas example of two overlapping rectangles.

File I/O is generally done in an asynchronous manner in Node when writing web servers. However,
when writing command-line scripts, you can relax the callback pattern some and use the Sync versions
of methods that do their jobs synchronously.

Node provides a method called fs.writeFilSync that takes a ilename and a buffer and writes
the contents of that buffer to the ile. node-canvas has a method called canvas.toBuffer() that
can generate the buffer from the canvas. You can use canvas.toBuffer()asynchronously with a
callback, but in this case you can use the synchronous version.

Open the spriter.js ile in your spriter directory, and enter the code from Listing 8-2 into it.

LISTING 8-2: Spriter.js boilerplate

var fs = require('fs'),
 Canvas = require('canvas'),
 canvas = new Canvas(200,200),
 ctx = canvas.getContext('2d');
ctx.fillStyle = "#CCC";
ctx.fillRect(0,0,100,100);
ctx.fillStyle = "#C00";
ctx.fillRect(50,50,100,100);
fs.writeFileSync("./sprites.png",canvas.toBuffer());

The vast majority of this code is standard Canvas code similar to what you would write in the
browser. The only parts that are different are the initial require statements and the call to write
the ile out.

Modules that you install via npm are loaded by calling require("..") and then assigning the
returned value to a variable for use. The fs module is a built-in library that provides basic ile sys-
tem access in Node.

140 ❘ CHAPTER 8 running JavasCript on the CoMMand line

The canvas module, which you installed in the last section, provides functionality that mimics the
client-side Canvas object. You can create new Canvas objects by calling the following:

new Canvas(width,height)

In Listing 8.2 you created a canvas that was 200 pixels by 200 pixels and then retrieved the context
object the same way you would on the client.

Finally, after a few simple drawing calls, the one-line command to write the canvas out to a .png ile
is called:

fs.writeFileSync("./sprites.png",canvas.toBuffer());

This creates a buffer object and then writes the buffer to the ile speciied in the irst parameter.

To test this, you can run the following:

node ./spriter.js

This should generate a ile in the same directory called sprites.png with the two overlapping
rectangles. If you run into any errors, double-check that you installed the canvas module correctly.

Creating a Reusable Script

To make the spriter script usable both by other modules and from the command line, you need to
make a few changes to the spriter.js ile and add the necessary spriter script to the bin directory.

Node provides an object called exports that is returned whenever you require() a ile. If you
aren’t returning an object, you can also override what’s returned by setting module.exports to
whatever you want to return. In the case of spriter, you need to expose only a single function
that creates sprites in a sprite ile.

Rewrite the spriter.js file to what’s contained in Listing 8-3.

LISTING 8-3: An exported spriter.js ile

var fs = require('fs'),
 Canvas = require('canvas');

function spriter() {
 var canvas = new Canvas(200,200),
 ctx = canvas.getContext('2d');
 ctx.fillStyle = "#CCC";
 ctx.fillRect(0,0,100,100);
 ctx.fillStyle = "#C00";
 ctx.fillRect(50,50,100,100);
 fs.writeFileSync("./sprites.png",canvas.toBuffer());
}

// Make the spriter method available
module.exports = spriter;

The functionality is now wrapped up in a function that can be called externally.

Next, open a ile called spriter (no extension) in a bin subdirectory of your module, and add the
code in Listing 8-4.

Writing a Sprite-Map Generator ❘ 141

LISTING 8-4: bin/spriter command-line script

#!/usr/bin/env node
var spriter = require('../spriter');
spriter();

The only purpose of this script is to load the module you just wrote and then call the spriter
function.

You need to make the ile executable by lipping on the executable bit. Run the following from the
command line in your spriter directory:

chmod a+x bin/spriter

Next, you can use the npm link command to make the bin ile available throughout the system
while still letting you modify the code. From the spriter directory, run the following:

npm link

You can now run the spriter command from the command line anywhere in the system and have
the (admittedly useless) sprites.png ile created. In the next section, you turn spriter into a useful
sprite map generator.

WRITING A SPRITE-MAP GENERATOR

With the logistics of putting together a Node module out of the way, next up is actually making that
module useful. The purpose of the module is to generate a sprite map PNG and corresponding JSON
given a directory of image iles. Sprite maps are useful in HTML5 game development because you
don’t want to load hundreds of separate image iles to handle animations, but rather, as you’ve seen,
load one or a small number of spritesheet iles that have multiple images on them.

Follow these steps to achieve the goal of the script:

 1. Take a directory of image iles in numbered sequences (that is, ship01.png, ship02.png, ...,
enemy01.png, enemy02.png, ...).

 2. Output a sprite map where each row of images corresponds to a numbered list of iles.

 3. Output a JSON ile detailing the pixel locations and number of frames of each sprite that can
be loaded into the game engine that will be built in the next few chapters.

The next sections will put together the pieces for this script.

Using Futures

The way to load images with node-canvas is the same as you might load them on the client side:
Set the src property and then wait for an onload event. Because this is an asynchronous event, in
theory, images may load out of order (or not load at all) and keeping track of all this requires a bit of
housekeeping or a vast amount of nested callbacks.

142 ❘ CHAPTER 8 running JavasCript on the CoMMand line

Luckily, there’s the Promise pattern, which encapsulates the idea of handling future events in a sequen-
tial manner. You saw an example of this in Chapter 5 during the discussion of Deferreds. Node has a
number of different modules that provide Promise and Deferred objects (similar to those in jQuery.)
One of the best ones is the Futures module, which provides a bunch of types of objects to make your
life easier. Because it’s usable on both Node and the browser, it’s deinitely a module worth getting
familiar with.

The spriter script uses the Join module from Futures, which provides a way to easily load a
bunch of asynchronous events and then trigger only when all have completed.

To create a new Join you simply call the following:

var join = Join();

You can add a new Promise to the object by calling the following:

var promiseFunction = join.add();

After you add all the promises to the join, you can call the following:

join.when(function(args) {
 /* Triggered when all promises have been called */
}

For example, the code in Listing 8-5 shows how you could use the Futures module to load two images:

LISTING 8-5: An example using join

var join = Join(),
 img1 = new Image(),
 img2 = new Image();
img1.onload = join.add();
img1.src = "images/image1.png";
img2.onload = join.add();
img2.src = "images/image2/png";
join.when(function() {
 // Both images have been loaded
});

Little bookkeeping needs to be done to track the potentially out-of-order loading of both images.
The only important part is that join.when is called after all the images have been added. Listing 8-5
is essentially the code, scaled-up to however many images are in the passed-in directory that the
spriter script will use.

Working from the Top Down

Now it’s time to replace the basic Canvas demo in spriter.js with the actual code to generate a
sprite map. In this case it’s probably easiest to work from the top down, starting with the highest-level
method for generating the sprite map and then writing the helper methods necessary to make it work.

From a high-level perspective, the spriter needs to load a directory full of images and sort the
images into rows by the ilenames. Then spriter needs to calculate the size of the Canvas it needs
to create based on the width of each sprite and the number of images per row and the height of each

Writing a Sprite-Map Generator ❘ 143

row. The spriter assumes that each image in each row will be the same size. (This is a requirement
of the game engine, so it’s not an unreasonable assumption.) You then need to actually draw each of
the images to canvas and generate the JSON. Finally the sprites.png and sprites.json iles need
to be generated.

To start, rewrite the spriter method. Open spriter.js and replace all the code there with the
code in Listing 8-6.

LISTING 8-6: Rewritten spriter method

function spriter(directory) {
 var files = fs.readdirSync(directory),
 rowData = {},
 // Load all the images
 join = loadImages(directory,files,rowData);

 // Wait for the all images to load
 join.when(function() {
 // Get the dimensions of the output sprite map
 var dimensions = calculateSize(rowData),
 canvas = new Canvas(dimensions.width, dimensions.height);

 // Draw the images to the canvas and return the JSON data
 var jsonOutput = drawImages(rowData,canvas);

 // Write out both the sprites.png and sprites.json files
 fs.writeFileSync("./sprites.png",canvas.toBuffer());
 fs.writeFileSync("./sprites.json",JSON.stringify(jsonOutput));
 util.print("Wrote sprites.png and sprites.json\n");
 });

 // Make the spriter method available
 module.exports = spriter;

Now break down the preceding code. The top of the ile now contains a few more Node modules
that need to get pulled in, including the aforementioned futures module. The code also pulls out
some objects to top-level variables (Canvas.Image and Futures.join) from existing modules for
easier access.

Next the spriter function takes a directory name that will be passed in from the bin/spriter script.
It loads all the iles in that directory with a quick call to fs.readdirSync. Those iles are then passed
to the as-of-yet-unwritten loadImages method, which returns a join that triggers when all the images
have loaded. loadImages also ills in the rows object, which is an object that matches sprite names to
the list of sprite images that make up that row.

Next, after the join.when callback is triggered, the total dimensions of the Canvas are calculated
from the rows of images and a canvas object of that size is created by calling an also yet-to-be-written
method called calculateSize. Finally, the actual drawing to the Canvas is done by the last method
that you need to write: drawImages.

144 ❘ CHAPTER 8 running JavasCript on the CoMMand line

canvas now contains the rendered sprite map, and the jsonOutput variable has the sprite data
indicating the position of each sprite, so all that’s needed is to write out both iles to disk. To con-
vert the jsonOutput (which is a JavaScript object) into a string, you can call the built-in JSON
.stringify method.

If you were writing client-side code, you would need to be careful to wrap all this in closure to pre-
vent namespace pollution, but because Node gives each ile its own scope, this isn’t necessary.

Loading Images

Now you can attack the loadImages method. It takes in the directory, list of iles, and a rows data
structure that it needs to populate with lists of images.

Its job is to go over each ile in the list, add it to the appropriate row, create an Image object, and
then start the loading of the image, binding the onload method to the Join object to handle the
asynchronous loading as described previously.

The loadImages method uses a regular expression to pull out the name and ile number from the
ilename to allow for indexing by row and sorting. Add Listing 8-7 to the bottom of spriter.js.

LISTING 8-7: The loadImages method

function loadImages(directory,files,rowData) {
 var fileRegex = /^(.*?)([0-9]+)\.[a-zA-Z]{3}$/,
 join = Join();

 for(var i=0;i<files.length;i++) {
 (function(file) {
 var results = file.match(fileRegex),
 img = new Image();

 if(results) {
 var rowName = results[1],
 fileNum = parseInt(results[2],10);

 img.onload = join.add();
 img.onerror = function() {
 util.print("Error loading: " + file + "\n"); process.exit(1);
 }

 img.src = directory.replace(/\/$/,"") + "/" + file;

 rowData[rowName] = rowData[rowName] || [];
 rowData[rowName].push([fileNum,img]);
 }
 })(files[i]);
 }

 return join;

}

Writing a Sprite-Map Generator ❘ 145

loadImages has a few interesting parts. The irst is the regular expression stored in fileRegex. This
has two capturing groups used to grab the row name and the ile number. spriter assumes that each
ile is in the format of filename0000.ext where the inal 0000 represents the sprite number of the
row. This is a common way iles are output when generating a list of images.

The irst capturing group of the regular expression (capturing groups are saved values created by
surrounding a portion of the regular expression with parentheses) is as follows:

(.*?)

.* means match any character, but adding a question mark ? to the end means make the matcher
nongreedy. This means it can match any character up until the matching part.

The second capturing group—([0-9]+)—matches any group of numbers, including 1, 001, and 9999.

Calling String.match(regexp) either returns null if the string doesn’t match, or any array of
matches if the regular expression matches. The code in Listing 8.7 stores the result of the regular
expression match in the results variable and pulls the rowName and fileNum values out of the
capturing groups.

The second interesting part of the code is the anonymous function inside of the for loop. This
pattern, which you have probably come across before, is known as immediately invoked function
expression (IIFE). It’s useful in JavaScript because it creates its own scope that enables you to save
a variable for later use in a callback. In this case, it’s used because the onerror callback needs to
alert the user to which ile was a problem.

Without an IIFE, the following onerror callback

 img.onerror = function() {
 util.print("Error loading: " + file + "\n"); process.exit(1);
 }

would just print out the last value assigned to the file variable, which can lead to massive amounts
of confusion. By using an IIFE, the anonymous function creates a closure, which means the file
variable is saved.

The onload method is replaced with the aforementioned call to join.add(). The variable join is
returned from the method because is it used by spriter to indicate when all the images are loaded.

The main data structure created by loadImages is rows. This is passed in as a parameter, but because
objects in JavaScript are passed by reference, any changes you make to the rows object are available in
the calling method. In this case, the rows object is populated by a data structure that looks something
like the following:

{
 'sprite_one': [[2, Image],
 [1, Image],
 ...],
 'sprite_two': [[1, Image],
 [2, Image],
 ...]
}

146 ❘ CHAPTER 8 running JavasCript on the CoMMand line

Each key of the object matches an array of entries that links a sprite number to the actual Image
object. These images may or may not be ordered correctly, depending on how the operating system
returns the list of iles. (These are not guaranteed to be ordered.)

Calculating the Size of the Canvas

Next is the method to calculate the size of the Canvas. This method’s job is to add the height of each
row of images, ind the size of the largest row, and use that as the width of the resultant sprite map
image. The largest row is used because images need to be square in size. Add the code in Listing 8-8
to the bottom of spriter.js.

LISTING 8-8: Calculating the image size in calculateSize

var maxSpriteWidth = 1024;

function calculateSize(rowData) {
 var maxWidth = 0,
 totalHeight = 0;

 for(var spriteName in rowData) {
 // Order by ascending number
 var row = rowData[spriteName],
 firstImage = row[0][1],
 width = firstImage.width * row.length,
 rows = 1;

 if(width > maxSpriteWidth) {
 rows = Math.ceil(width / maxSpriteWidth);
 width = maxSpriteWidth;
 }

 maxWidth = Math.max(width,maxWidth);
 totalHeight += firstImage.height * rows;
 }

 return { width: maxWidth, height: totalHeight };
}

This fairly simple method loops over the rows, grabs the irst image from each row (remember each
image in a row is expected to be the same size), and then uses that image’s height as the height of
the row and the width of the image multiplied by the number of images as the width of the row. It
also uses the Math.max to pull out the maximum row width as the inal width of the image. Next,
it checks if the resultant image is wider than the maximum sprite width; if so it calculates the num-
ber of rows for the sprite and sets the width of the inal sprite to the maximum width. Finally, it
returns an object with the calculated width and height.

Drawing Images on the Server-Side Canvas

All that’s left to do, referring back to Listing 8.6, is to write the drawImages method, which takes in
the rows data and the created Canvas, draws the images in rows, and then returns the jsonOutput
that will be used by your game engine to output.

Writing a Sprite-Map Generator ❘ 147

This is actually simpler than it might seem because drawing an image to Canvas is a single call to
drawImage. The only thing you need to be careful about is to sort each row of data by its image
index to prevent sprites from showing up in the wrong order. Add the code in Listing 8-9 to the
bottom of spriter.js.

LISTING 8-9: Creating drawImages

function drawImages(rowData,canvas) {
 var ctx = canvas.getContext('2d'),
 curY = 0,
 jsonOutput = {};

 for(var spriteName in rowData) {
 // Order by ascending number
 var row = rowData[spriteName].sort(function(a,b) {
 return a[0] - b[0];
 }),
 firstImage = row[0][1],
 imageWidth = firstImage.width,
 rowHeight = firstImage.height,
 rowWidth = Math.min(imageWidth * row.length, maxSpriteWidth),
 cols = Math.floor(rowWidth / imageWidth),
 rows = Math.ceil(row.length / cols);

 jsonOutput[spriteName] = { sx: 0, sy: curY, cols: cols,
 tilew: imageWidth, tileh: rowHeight,
 frames: row.length };

 for(var i =0;i<rows;i++) {
 for(var k=0;k<cols;k++) {
 if(row[k+i*cols]) {
 ctx.drawImage(row[k + i*cols][1],k*imageWidth,curY);
 }
 }
 curY += rowHeight;
 }
 }

 return jsonOutput;

}

The drawImages method takes in the rows’ data and the Canvas and then loops over each row. For
each row, it calls the JavaScript sort method with a method that sorts images by the irst element
of the array. It then grabs the irst image from each row to calculate the height of the row and the
width of each row.

Armed with this information, it can create the jsonOutput entry for this row based on the width
and height of each frame and the current y location on the Canvas (stored in curY).

The code then loops over each image in the row, based on the number of rows and columns for that
sprite, and draws it at the correct x and y location, updating curY to keep each row of the sprite and
each sprite at the correct y location.

148 ❘ CHAPTER 8 running JavasCript on the CoMMand line

Updating and Running the Script

With drawImages written, spriter.js is now complete; however, the script ile in bin/spriter
needs to be updated to pass in the directory passed to it. Modify bin/spriter to match the code in
Listing 8-10.

LISTING 8-10: An updated script

#!/usr/bin/env node
var spriter = require('../spriter');
spriter(process.argv[2]);

The only change is the addition of the process.argv[2], which passes in the irst argument after
the script name to the script.

You can now run the spriter command from the command line; passing the name of a directory of
images and the script should output two iles in the directory you run the script from: sprites.json
and sprites.png.

If this were to be a production-ready script to be made available via npm, you would most likely
want to allow more options to be passed in to the script to control the outputted iles and regular
expression used to match iles. All that code is relatively boilerplate code that you can work out
yourself from existing modules. Most of the time the scripts you write for yourself are going to be
razor-focused on helping you automate your build and deployment process, so handling a hundred
and one different options is left as an exercise for you.

After you have your module working, you can create a tarball of that directory and use npm install,
passing in the name of the tarball to install that module on different computers. See the instructions
on npmjs.org for more details at http://npmjs.org/doc/install.html.

If you want to publish your module to npm’s list of packages so that it can be installed directly by
name via npm install, look at the documentation for the npm publish command at http://
npmjs.org/doc/publish.html. (You need to create a user account using npm adduser irst.)

SUMMARY

Now you have Node.js up and running; you’ve installed a few modules and used the scripts therein to
lint and minify your code. You also wrote your own module and script to generate a sprite map and
corresponding JSON ile that you can use in later chapters to prevent the need to create sprite maps
by hand and calculate positions of individual sprites and frames. You revisit Node in Chapter 19,
“Building a Canvas Editor,” and Chapter 21, “Going Real Time,” when you use it as a web server for
writing multiplayer games, which is a use case Node excels at.

http://npmjs.org/doc/install.html
http://npmjs.org/doc/publish.html
http://npmjs.org/doc/publish.html

Bootstrapping the Quintus
Engine: Part I

WHAT’S IN THIS CHAPTER?

 ➤ Designing and creating the Quintus API

 ➤ Creating an eicient game loop

 ➤ Adding classical inheritance to JavaScript

 ➤ Building an event system

 ➤ Creating a component system

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 09
download and individually named according to the names throughout the chapter.

INTRODUCTION

This chapter covers the initial bootstrapping of the Quintus HTML5 Mobile-friendly Game
Engine, the reusable, developer-friendly engine used in the rest of the book. This chapter dis-
cusses the basic connective tissue of the engine, whereas the next chapter talks about loading
and rendering assets and handling user input.

JavaScript is not a language originally intended for game development, but it has come a long
way since being primarily used as a language for dynamically checking and unchecking check
boxes. JavaScript now its well as a language for interactive game development.

9

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

150 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

CREATING A FRAMEWORK FOR A REUSABLE HTML5 ENGINE

Although the game built in Chapters 1 through 3 is perfectly acceptable for a one-off game, the code
is fairly brittle and speciic to the game itself. In the next few chapters, you put together a more gen-
eral engine that allows for better code reuse from game to game.

This engine is going to be called Quintus. Quintus means “ifth” in Latin (which seemed appropriate)
and will be used for the rest of the games built in this book. As mentioned in Chapter 6, “Being a Good
Mobile Citizen,” the engine has two dependencies: jQuery and Underscore.js. You’ve seen that you can
build a game in HTML5 without any dependencies; doing so, however, means that this book would
contain more nongame-related code and spend less time on actual game development.

When building a game in JavaScript, you don’t need to reinvent the wheel for traditional patterns
used in game development. Although JavaScript has its quirks as a language, it’s extremely mal-
leable and can be molded to it most programming styles you like. This doesn’t mean that you can
build a performant game any way you want; certain styles of development lend themselves well to
JavaScript’s asynchronous, single-threaded nature better than others.

Designing the Basic Engine API

The primary guts of the engine are housed in a single ile called quintus.js. To make the engine do
anything useful, additional modules need to be pulled in for functions such as rendering and input.
The Quintus engine has a few speciic requirements:

 1. You need to have multiple instances of the engine running on the same page. This require-
ment ensures that the engine acts as a self-contained unit and doesn’t interfere with itself or
other parts of the page.

 2. Where possible, the engine should provide sensible defaults for options to prevent the need
for a lot of coniguration to get something up and running.

 3. The engine should be lexible enough to be usable for both simple examples and more complex
games as well as allow support for different rendering engines (for example Canvas, CSS, SVG,
and potentially WebGL).

Working backward from these requirements, Listing 9-1 shows a simple API for how a basic animated
example could be written.

LISTING 9.1: A simple Quintus API example

var MyExample = Quintus();
MyExample.load('assetName.png',function() {
 var object = new MyExample.CanvasSprite({
 asset: 'assetName.png', x: 0, y: 0
 });

 object.update = function(dt) {
 // Code to update the object
 };

Creating a Framework for a Reusable HTML5 Engine ❘ 151

 MyExample.gameLoop(function(dt) {
 this.clear();

 object.update(dt);
 object.render(this.ctx);
 });

});

This simple example loads a single asset and creates a single object that is updated and drawn on
the screen.

Although this might sufice for a limited example, a more full-featured use case would require the
addition of stage and scene functionality that automatically handles the updating and rendering of a
number of objects. In this case the engine would take over the handling of the game loop. A slightly
more full-featured game might look like listing 9.2.

LISTING 9.2: A more complicated API example

var MyGame = Quintus()
 .include("Input,Sprites,Scenes")
 .setup();

var spriteType1 = MyGame.CanvasSprite.extend({
 // Overrides for this type of object
});

var spriteType2 = MyGame.CanvasSprite.extend({
 // Overrides for this type of object
});

MyGame.load(['asset1.png', 'asset2.png', 'sprites.json'],function() {

 var scene1 = new MyGame.Scene(function(stage) {
 stage.add(new MyGame.SpriteType1({ ... Options .. });
 stage.add(new MyGame.SpriteType2({ ... Options .. });
 });

 MyGame.stageScene(scene1);
});

Here the game extends the base Quintus functionality with the Quintus.Input, the Quintus.Sprites,
and the Quintus.Scenes extensions and then creates a couple of reusable sprite types. The game loads
multiple assets, including a spritesheet, and then when those are loaded it creates a new scene object.
Finally, it stages the scene, which starts the scene-based game loop (if it hasn't already been started) and
handles the updating and rendering of the scene.

Starting the Engine Code

With a developer-friendly API for the engine deined, open up quintus.js and start writing the initial
code that acts as a base for all the engine code to follow. Quintus takes a page from jQuery’s playbook
and uses a single method as a factory method and a container object for extensions to the engine.

152 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

To create a new game with Quintus, just call the Quintus method and then use and extend that
individual object with additional functionality. Because multiple instances of Quintus might exist
on a single page, you need to load any extensions to the engine in an individual instance.

To achieve this, you can create a function called Quintus that creates, augments, and inally returns
a new object. Listing 9.3 shows the initial structure of the engine.

LISTING 9.3: The basic engine structure

var Quintus = function(opts) {
 var Q = {};

// Some base options to be filled in later
 Q.options = {
 // TODO: set some sensible defaults
 };
 if(opts) { _(Q.options).extend(opts); }

 Q._normalizeArg = function(arg) {
 if(_.isString(arg)) {
 arg = arg.replace(/\s+/g,'').split(",");
 }
 if(!_.isArray(arg)) {
 arg = [arg];
 }
 return arg;
 };

 // Shortcut to extend Quintus with new functionality
 // binding the methods to Q
 Q.extend = function(obj) {
 _(Q).extend(obj);
 return Q;
 };

 // Syntax for including other modules into quintus
 Q.include = function(mod) {
 _.each(Q._normalizeArg(mod),function(m) {
 m = Quintus[m] || m;
 m(Q);
 });
 return Q;
 };

 // TODO: Additional Quintus Code goes here

 return Q;
}

This initial code provides the base for the modular architecture that the rest of the engine will be
built on. The main thing the code does is create an options object and extend that object with any
additional passed-in options in opts.

Adding the Game Loop ❘ 153

Continuing through the code, you can use the _normalizeArg method to take a string of
passed-in, comma-separated names and turn them into an array of names with any whitespace
stripped out. This convenience method enables you to write, for example, "sword, shield,
health" instead of ["sword", "shield", "health"]. If you pass in an array then, that array
of elements is used without transformation. _normalizeArg is used in case a list of includes are
passed in.

The Q.include and Q.extend methods are used to extend Quintus functionality with additional
modules like Sprites and Scenes. To aid in chaining, they also return the Q variable.

Quintus is a method that takes an optional options hash and returns an instance of the engine with
a base level of functionality.

ADDING THE GAME LOOP

As you already know, the actual execution of your game from frame to frame is orchestrated by the
game loop, which is responsible for updating the game state and then rendering the current frame of
the game on the screen. The main rendering and JavaScript engine in your browser both run together
in a single thread, which means that you can’t use a single tight loop for the game loop as you might
in an environment with true multithreading. Instead, as you saw in the irst chapter, your game loop
must be run with a timer that cedes control from your JavaScript code back to the browser, so it can
update the page and handle input events.

Building a Better Game Loop Timer

For a long time building a game loop timer was done with the timer functions that have always
existed in the browser: setTimeout and setInterval. Although this worked acceptably to a cer-
tain degree, it suffered from a few drawbacks.

The irst drawback was that, especially on slower computers and browsers, the game might try to
update the game more often than the browser could handle, resulting in a visual slow-down. The
second drawback was that even when the browser had a different tab active, the game would con-
tinue running at full speed, slowing down the computer and giving JavaScript games a bad name.

Starting in 2011, browsers began adding support for the requestAnimationFrame API, which
allowed the browser to control the rate at which the game loop was called based on how fast the
browser can actually update the screen. Since it irst appeared, the requestAnimationFrame speci-
ication has settled out and is now consistent across the browsers that support it. For browsers that
don’t support it, Paul Irish (with the help of a number of other folks on the Internet) developed a
polyill that backports requestAnimationFrame support to all browsers using setTimeout where
necessary. You can see Paul’s post on the subject on his blog from 2011 at http://paulirish.com/
2011/requestanimationframe-for-smart-animating/.

Adding the code from Listing 9-4 to the top of your quintus.js ile (outside of the deinition for
Quintus at the top of the ile) can expose a consistent requestAnimationFrame method on the win-
dow object to all browsers.

http://paulirish.com/2011/requestanimationframe-for-smart-animating/

154 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

LISTING 9-4: requestAnimationFrame polyill

(function() {
 var lastTime = 0;
 var vendors = ['ms', 'moz', 'webkit', 'o'];
 for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) {
 window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame'];
 window.cancelAnimationFrame =
 window[vendors[x]+'CancelAnimationFrame'] ||
window[vendors[x]+'CancelRequestAnimationFrame'];
 }

 if (!window.requestAnimationFrame)
 window.requestAnimationFrame = function(callback, element) {
 var currTime = new Date().getTime();
 var timeToCall = Math.max(0, 16 - (currTime - lastTime));
 var id = window.setTimeout(function() { callback(currTime +
timeToCall); },
 timeToCall);
 lastTime = currTime + timeToCall;
 return id;
 };

 if (!window.cancelAnimationFrame)
 window.cancelAnimationFrame = function(id) {
 clearTimeout(id);
 };
}());

As you can see, if the nonvendor-preixed version of requestAnimationFrame isn’t available, the code
loops through each of the potential vendor-speciic preixes and uses that preix as the nonpreixed ver-
sion. If that fails, the code approximates requestAnimationFrame and cancelAnimationFrame using
setTimeout and cancelTimeout. These polyilled methods, because they don’t have native browser
support, do suffer from the drawbacks previously mentioned, but they are the best you can use.

Adding the Optimized Game Loop to Quintus

Having created a consistent polyill to an optimized timer method, up next is creating the game
loop itself. The traditional game loop has two main pieces that execute each frame: update and
render. The update piece is responsible for stepping the game logic through a small chunk of time,
handling any user input, motion, and collisions between objects and updating each game object to
a consistent state.

Next, the game needs to render itself onto the screen. How the rendering step is done depends on
how your game is built. For Canvas-based games, you usually want to clear the entire Canvas and
then redraw all the necessary sprites on to the page, for CSS and SVG games. Provided you updated
the properties of the objects on the page correctly, your job is actually done—the browser takes care
of moving and updating the objects.

Adding the Game Loop ❘ 155

Armed with this knowledge, you can add a game loop method to Quintus and pause and unpause
methods. Open up quintus.js and add the code from Listing 9-5 before the inal return
statement.

LISTING 9-5: Adding a game loop

 Q.gameLoop = function(callback) {
 Q.lastGameLoopFrame = new Date().getTime();

 Q.gameLoopCallbackWrapper = function(now) {
 Q.loop = requestAnimationFrame(Q.gameLoopCallbackWrapper);
 var dt = now - Q.lastGameLoopFrame;
 if(dt > 100) { dt = 100; }
 callback.apply(Q,[dt / 1000]);
 Q.lastGameLoopFrame = now;
 };

 requestAnimationFrame(Q.gameLoopCallbackWrapper);
 };

 Q.pauseGame = function() {
 if(Q.loop) {
 cancelAnimationFrame(Q.loop);
 }
 Q.loop = null;
 };

 Q.unpauseGame = function() {
 if(!Q.loop) {
 Q.lastGameLoopFrame = new Date().getTime();
 Q.loop = requestAnimationFrame(Q.gameLoopCallbackWrapper);
 }
 }

The Q.gameLoop method takes in a callback that expects a dt parameter representing the
difference in seconds from the last frame (this is a small fraction close to 1/60th of a second)
and wraps that callback in a method that calculates this difference from the current time
that is passed into the requestAnimationFrame callback. This wrapped callback is saved in
Q. gameLoopCallbackWrapper and used in Q.pauseGame and Q.unpauseGame to start and stop
the game timer.

Testing the Game Loop

Quintus now has enough functionality to at least drop it on the page and try out the game loop and
the pause and unpause code.

Open a new HTML ile called gameloop_test.html and put in the HTML in Listing 9-6 into the ile.
Make sure the dependencies of jquery and underscore.js are in the directory as well as your quintus.js
code to this point.

156 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

LISTING 9-6: Game loop test gameloop_test.html

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title></title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 </head>
 <body>
 <div id='timer'>0</div>
 <div id='fps'>0</div>
 <button id='pause'>Pause</button>
 <button id='unpause'>Unpause</button>
 <script>
 var TimerTest = Quintus();

 var totalFrames = 0,
 totalTime = 0;

 TimerTest.gameLoop(function(dt) {
 totalTime += dt;
 totalFrames += 1;
 $("#timer").text(Math.round(totalTime * 1000) + " MS");
 $("#fps").text(Math.round(totalFrames / totalTime) + " FPS");
 });

 $("#pause").on('click',TimerTest.pauseGame);
 $("#unpause").on('click',TimerTest.unpauseGame);
 </script>
 </body>
</html>

Loading this page should execute the game loop function and enable you to pause and unpause the
game using the two buttons.

All the game loop in this exercise does is keep track of the total time and the total number of frames
that have run in two global variables and then update two <divs> using jQuery to display the time
the loop has already run in milliseconds and the frames per second that the animation runs.

It uses the jQuery.fn.on method to bind the Q.pauseGame and Q.unpauseGame methods to button
clicks. One nice side effect of the way the Quintus code is built is that nowhere in quintus.js have
you referred to the this object. The Quintus object is always referred to by the local variable Q,
which is bound in a closure. This means that one of the trickiest parts of JavaScript, knowing what
object this refers to at any given time won’t affect the main Quintus code. As such, you can pass
Quintus methods such as Q.pauseGame and Q.unpauseGame into callbacks without worrying about
binding them to their object.

This type of binding won’t be possible to do when sprites are introduced because in that case you’ll
want to use the prototype property to save memory and creation time as discussed in Chapter 2, but

Adding Inheritance ❘ 157

since very few instances of the Quintus engine will ever be created (generally only one per page) this
method of object creation makes life easier.

ADDING INHERITANCE

In the past, most game engines used the idea of object inheritance ubiquitously. For example, animated
sprites are built up from moving sprites that are built up from Base Objects. Part of this inheritance
hierarchy developed because of the static nature of languages such as C++, which lend themselves to
using inherited classes and virtual functions to treat different types of objects uniformly.

Using Inheritance in Game Engines

As game engines grew in size, people realized that a static hierarchy of classes quickly became
unwieldy. Even though you might want some shallow hierarchy in your classes for where objects share
the same base functionality, artiicially creating a single deep hierarchy doesn’t usually make sense.

Take the example of a shooter game with a number of different weapons the player can pick up. Say
you have the following three weapons:

 ➤ A crowbar, which can be used only to hit people and doesn’t have ammunition

 ➤ A pistol, which can be used as a projectile weapon or can be used to hit people as a mêlée
weapon and has a limited amount of ammunition for shooting

 ➤ A grenade, which can be used only as a projectile weapon but also has a ranged damage effect

Even in this simple case, coming up with a single hierarchy that allows for code reuse, while at the
same time preventing weapons from being burdened with functionality they don’t need, is dificult.
You might be tempted to create the following set of base classes:

Weapon
 MeleeWeapon
 RangedWeapon
 AreaDamageWeapon

Although this isn’t perfect—a grenade, for example, would subclass AreaDamageWeapon but would
need to override any mêlée weapon functionality and disable it—at irst glance it at least seems like
a workable base. Adding new types of weapons, however, quickly becomes clunky and redundant.
Imagine how to handle a rile with an attached grenade launcher, which would be a weapon with
ranged, mêlée, and area damage. Something such as a landmine that is set somewhere and causes
area damage when stepped on (much like a mêlée weapon) would also be a challenge. When you
start jumping through hoops to make a class hierarchy work correctly, it becomes clear it’s time to
move on to something else.

That something else is known as the component/entity model. The idea is that you don’t deine a linear
class hierarchy to build up to your wanted level of functionality; rather, you deine a number of loosely
coupled components that know nothing about each other and just go about their own business. For
example, in the case of the weapons deined previously, you could deine separate components for Melee
Attacks, Ranged Attacks, and Area Damage Attacks and bind the triggering of those components to

158 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

the different iring inputs. (For example, when the weapon is equipped and ire1 is pressed, do a mêlée
attack; when ire2 is pressed do a ranged attack.)

The only downside to components is that there tends to be a lot of them, and adding a long string
of components on object creation and dealing with not knowing what base level of functionality all
objects support can be challenging. Components also tend to be self-contained, which means that
when you do want them to interact, you have additional problems.

To this end Quintus uses a compromise between inheritance and components by supporting both,
enabling you to use inheritance where it makes sense and components when you need more lexibility.
To support the former, the engine needs to add a classical inheritance model to JavaScript. To support
the latter, it needs to add a component system and have low-level support for events to allow for as
much decoupling between components as possible.

Adding Classical Inheritance to JavaScript

JavaScript doesn’t suffer from the limitation of statically typed interfaces and instead usually
takes advantage of the concept of duck typing. duck typing, which has been mentioned previously,
revolves around the idea that the type of an object doesn’t matter; all that matters are the properties
and methods that an object responds to.

JavaScript does support a prototypical inheritance model that enables a more traditional type of
inheritance. The three main issues with using prototypical inheritance out-of-the-box are that it
doesn’t support calling inherited functionality via a super-type method; creating descendant objects
feels slightly kludgey; and there’s no way to inherit constructors.

You can solve this in a number of ways and add a more traditional class hierarchy to JavaScript.
One of the most popular is jQuery creator John Resig’s Simple JavaScript inheritance, which takes
its cues from base2 and another JavaScript library called Prototype.js. It’s a piece of open-source
code released under the MIT license originally described on John’s website: http://ejohn.org/
blog/simple-javascript-inheritance/.

Add the code from Listing 9-7 somewhere to the top of quintus.js, outside of the Quintus con-
structor method. (Near the top of the ile, after the requestAnimationFrame code outside of any
curly braces, is ine.)

LISTING 9-7: Simple JavaScript inheritance

/* Simple JavaScript Inheritance
 * By John Resig http://ejohn.org/
 * MIT Licensed.
 */
// Inspired by base2 and Prototype
(function(){
 var initializing = false,
 fnTest = /xyz/.test(function(){xyz;}) ? /\b_super\b/ : /.*/;
 // The base Class implementation (does nothing)
 this.Class = function(){};

http://ejohn.org/blog/simple-javascript-inheritance/

Adding Inheritance ❘ 159

 // Create a new Class that inherits from this class
 Class.extend = function(prop) {
 var _super = this.prototype;

 // Instantiate a base class (but only create the instance,
 // don't run the init constructor)
 initializing = true;
 var prototype = new this();
 initializing = false;

 // Copy the properties over onto the new prototype
 for (var name in prop) {
 // Check if we're overwriting an existing function
 prototype[name] = typeof prop[name] == "function" &&
 typeof _super[name] == "function" &&
 fnTest.test(prop[name]) ?
 (function(name, fn){
 return function() {
 var tmp = this._super;

 // Add a new ._super() method that is the same method
 // but on the super-class
 this._super = _super[name];

 // The method only need to be bound temporarily, so we
 // remove it when we're done executing
 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, prop[name]) :
 prop[name];
 }

 // The dummy class constructor
 function Class() {
 // All construction is actually done in the init method
 if (!initializing && this.init)
 this.init.apply(this, arguments);
 }

 // Populate our constructed prototype object
 Class.prototype = prototype;

 // Enforce the constructor to be what we expect
 Class.prototype.constructor = Class;
 // And make this class extendable
 Class.extend = arguments.callee;

 return Class;
 };
})();

160 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

The main gist of this code is to allow new classes to be extended from existing ones using the
extend method. Inherited objects can share the same instance methods as the parent objects and
call parent methods using this._super() from the child method. This special case is handled by
the loop in the middle, which, instead of just copying the entire method over blindly, checks for
an existing method on the parent and then creates a wrapper function that temporarily sets the
this._super method to the parent’s deinition during the call:

 // Copy the properties over onto the new prototype
 for (var name in prop) {

 // Check if we're overwriting an existing function
 prototype[name] = typeof prop[name] == "function" &&
 typeof _super[name] == "function" && fnTest.test(prop[name]) ?
 (function(name, fn){
 return function() {
 var tmp = this._super;

 // Add a new ._super() method that is the same method
 // but on the super-class
 this._super = _super[name];

 // The method only need to be bound temporarily, so we
 // remove it when we're done executing
 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, prop[name]) :
 prop[name];
 }

The preceding code checks if the property already exists on the superclass; if it does, it creates a
function that does the temporary this._super reassignment before calling the new method again.
If the method doesn’t exist, the code simply assigns the property, preventing adding in any addi-
tional overhead.

The Class code also adds in a constructor function that automatically calls the init() method of
the object, allowing for the chaining of initializers as well:

 // The dummy class constructor
 function Class() {
 // All construction is actually done in the init method
 if (!initializing && this.init)
 this.init.apply(this, arguments);
 }

Finally, it adds the extend method to the class so that it can further be subclassed:

 // And make this class extendable
 Class.extend = arguments.callee;

Calling arguments.callee returns the method that was called (in this case extend) and that
method is then assigned to the property extend of the returned Class object, allowing further
subclassing down the line.

Adding Inheritance ❘ 161

Exercising the Class Functionality

To get a sense of how to use this code, try exercising this functionality in the console of the browser
as follows:

var Person = Class.extend({
 init: function() { console.log('Created Person'); },
 speak: function() { console.log('Person Speaking:'); }
});

var p = new Person();
// Logs: Created Person

p.speak();
// Logs: Person Speaking:

var Guy = Person.extend({
 init: function() { this._super(); console.log('Created Guy'); },
 speak: function() { this._super(); console.log("I'm a Guy!"); }
});

var bob = new Guy();
// Logs: Created Person
// Created Guy

bob.speak();
// Logs: Person Speaking
// I'm a Guy!

// Girl doesn't call the super method
var Girl = Person.extend({
 init: function() { console.log('Created Girl'); },
 speak: function() { console.log("I'm a Girl!"); }
});

var jill = new Girl();
// Logs: Created Girl

jill.speak();
// Logs: I'm a Girl!

As you can see, the class functionality makes it possible to cleanly create and extend classes that
ensure that methods of the super class are called when appropriate.

bob instanceof Person; // true
bob instanceof Guy; // true
bob instanceof Girl; // false
jill instanceof Person; // true
jill instanceof Guy; // false
jill instanceof Girl; // true

This functionality also makes it easy to use the type of an object where necessary. Notice that bob
and jill respond as expected to the instanceof operator.

162 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

SUPPORTING EVENTS

Adding support for events in a game engine makes it easier to keep different parts of the engine from
becoming too tightly coupled. It means one part of the game can communicate events and actions to
other parts of the game without needing to know anything about the objects it’s communicating with.

When you add components into the mix, it even allows a sprite to communicate with itself without
needing to know all the components that make it up. A Physics component on a sprite might trigger
a collision event, and two components listening for the event could separately handle triggering the
appropriate sound effect and animation effect.

Designing the Event API

Quintus uses a base class called Evented that is the jumping-off point for any object that needs to
subscribe to and trigger events. As usual, you must think about the API irst and then build the code
around that API afterward.

Given a player sprite and a scene object, now walk through an example event functionality:

// Play the intro animation on the player
// when the scene starts
scene.bind('start',player,function() {
 this.showIntro();
});

// Bind a method on player using the method name
scene.bind('finish',player,'showFinal');

// Trigger the start event on the scene
scene.trigger('start');

// Unbind the player from the start event
scene.unbind('start',player);

// Release the player from listening
// to all events (such as if it's blown up)
player.debind();

This API provides a way to bind, trigger, and unbind events as well as release an object from any
events (such as when it is removed from the game) so that sprites that have been destroyed don’t
continue to respond to events.

Writing the Evented Class

As you’ve seen, the base Evented class needs to support four methods: bind, unbind, trigger, and
debind. Open up quintus.js and add in a deinition for Q.Evented from Listing 9-8 below the
gameLoop code (but before the inal return). You ill in each of the method calls in turn in the sub-
sequent sections.

Supporting Events ❘ 163

LISTING 9-8: Evented outline code

Q.Evented = Class.extend({
 bind: function(event,target,callback) {
 // TODO: Fill in bind code
 },

 trigger: function(event,data) {
 // TODO: Fill in trigger code
 },

 unbind: function(event,target,callback) {
 // TODO: Fill in unbind code
 },

 debind: function() {
 // TODO Fill in the debind code
 }
});

To keep subclassing the Evented class simple, the class doesn’t use the init constructor method but
will initialize any objects on-the-ly as necessary.

Filling in the Evented Methods

First, consider the bind method. Its job is to bind a listener to a speciic event and trigger the call-
back on the target. The target is an optional argument that provides a context for the callback and
allows the callback to be removed with a call to debind on the target to prevent stale events from
hanging around. Fill in the code in Listing 9-9 into the bind method:

LISTING 9-9: The event bind method

 bind: function(event,target,callback) {
 // Handle the case where there is no target provided
 if(!callback) {
 callback = target;
 target = null;
 }
 // Handle case for callback that is a string
 if(_.isString(callback)) {
 callback = target[callback];
 }

 this.listeners = this.listeners || {};
 this.listeners[event] = this.listeners[event] || [];
 this.listeners[event].push([target || this, callback]);
 if(target) {
 if(!target.binds) { target.binds = []; }
 target.binds.push([this,event,callback]);
 }
 },

164 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

At its base, the bind method is relatively straightforward: The only pieces of essential code are the
three lines in the center that add a listener to an object, called this.listeners, keyed by the name
of the event. Each listener consists of a two-element array made up of a context object and the call-
back itself. The code irst needs to check that the this.listeners array exists because Evented
doesn’t have an init constructor method.

The rest of the code is in line with Quintus’s goal of being friendly to developers by enabling a few
different input formats. The bind method can be called three different ways:

 scene.bind('start',function() { ... });
 scene.bind('start',player,function() { ... });
 scene.bind('start',player,'methodName');

The irst signature is useful when you don’t need to worry about context or objects unbinding them-
selves when they are removed from the game. The latter two both provide the same result, but one
takes a string for the name of the method property on the target object, and the other takes the
method itself.

Next consider the trigger method, the simplest method of the four. Fill the method in with the code
from Listing 9-10. (Don’t forget to separate each of the four method deinitions with a comma.)

LISTING 9-10: Evented trigger method

 trigger: function(event,data) {
 if(this.listeners && this.listeners[event]) {
 for(var i=0,len = this.listeners[event].length;i<len;i++) {
 var listener = this.listeners[event][i];
 listener[1].call(listener[0],data);
 }
 }
 },

trigger just checks to see if there are any listeners listening to that speciic event. If so, each of the lis-
teners is looped over, and the callback is called with the provided context. Because each listener is made
up of an array with the context and callback, the code for actually making the call looks like this:

 listener[1].call(listener[0],data);

Given the lexibile notion of context and the this object in JavaScript, you should always be explicit
with what the context of a method call is.

With events bound and triggerable, you can unbind them when an object is destroyed or no longer
needs to be triggered on speciic events. Fill in the code for unbind from Listing 9-11.

LISTING 9-11: Evented unbind method

 unbind: function(event,target,callback) {
 if(!target) {
 if(this.listeners[event]) {
 delete this.listeners[event];
 }
 } else {

Supporting Components ❘ 165

 var l = this.listeners && this.listeners[event];
 if(l) {
 for(var i = l.length-1;i>=0;i--) {
 if(l[i][0] == target) {
 if(!callback || callback == l[i][1]) {
 this.listeners[event].splice(i,1);
 }
 }
 }
 }
 }
 },

The unbind method can take one, two, or three parameters, each providing more speciicity for
the exact event to be removed. In the irst case, where no target is provided, the object removes the
entire list of listeners for that event by simply removing the key from the object.

In the second and third cases, where you are unbinding only one or a few of all the possible listeners
to that event, the method needs to actually loop through each of the listeners and remove the ones that
are being unbound using the built-in Array.splice method. Looping over an array and removing
elements from it at the same time is a somewhat tricky proposition because if you loop over the array
normally and then change its length, you can end up with a problem. One way around this is to loop
from the end of the array on down to the beginning. If an element needs to be removed, it won’t affect
the index of elements previous to it in the array.

The last method on Evented is the debind method, which removes an object from any listeners
it’s registered with. unbind is used to remove listeners from an object, while debind is used when
an object is being destroyed to remove all of its listeners to prevent memory leaks and unexpected
behavior. Fill in the code for debind from Listing 9-12.

LISTING 9-12: Evented debind method

 debind: function() {
 if(this.binds) {
 for(var i=0,len=this.binds.length;i<len;i++) {
 var boundEvent = this.binds[i],
 source = boundEvent[0],
 event = boundEvent[1];
 source.unbind(event,this);
 }
 }
 }

This code loops over each of the elements in the this.binds array and calls unbind to remove them.

SUPPORTING COMPONENTS

The last core piece of functionality necessary to bootstrap Quintus is adding in component support.
As described earlier in the section “Using Inheritance in Game Engines,” components make it simpler
to create small pieces of reusable functionality that can be mixed and matched among the various
sprites and objects that need it.

166 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

Crafty.js a popular, mature HTML5 Game engine based entirely around a component-entity
architecture, as discussed in Chapter 26, “Using an HTML5 Game Engine,” and was the inspira-
tion for the Quintus component methods.

Designing the Component API

As usual, think about the API irst and how you want to use components in the game. Components
need to be added and removed from sprites quickly and concisely. They should be accessible from
the objects but also not overly pollute the object’s namespace. Listing 9-13 shows and example of
how you could deine and use components.

LISTING 9-13: Imagining a component system

var exGame = Quintus();
var player = new exGame.GameObject();
exGame.register('sword',{
 added: function() {
 // When whatever we are registered with triggers
 // a fire event, call the attack method
 this.entity.bind('fire',this,'attack');
 },
 attack: function() {
 // Code to attack
 },
 // Methods copied directly over to the entity
 extend: {
 attack: function() {
 this.sword.attack();
 }
 }

});
// Add the sword component
player.add('sword');

// Calls attack via event
player.trigger('fire');

// Call attack directly from extended event
player.attack();

// Remove the sword component
player.del('sword');

// Should cause an error
player.attack();

The component system in Quintus needs to register components, add components, remove compo-
nents, and let the base sprite be extended with additional methods.

Supporting Components ❘ 167

Implementing the Component System

The actual implementation for the component system has three separate parts. The irst is the regis-
ter method to register components. The register functionality is handled by the Q.register method,
and under the hood it creates a new class for the component and stores it in Q.components, indexed
by name.

Add the code in Listing 9-14 in the usual spot to the bottom of quintus.js, before the inal return
statement.

LISTING 9-14: The base Quintus components functionality

 Q.components = {};

 Q.register = function(name,methods) {
 methods.name = name;
 Q.components[name] = Q.Component.extend(methods);
 };

All this code does is register the component into a Q.components object and extend the Q.Component
class with the passed-in method. Next is the creation of the Q.Component class that handles the heavy
lifting of adding itself and removing itself from an object.

Add the code in Listing 9-15 below the code you just added in to create the Q.Component class.

LISTING 9-15: The Q.Component class

 Q.Component = Q.Evented.extend({
 init: function(entity) {
 this.entity = entity;
 if(this.extend) _.extend(entity,this.extend);
 entity[this.name] = this;
 entity.activeComponents.push(this.name);
 if(this.added) this.added();
 },

 destroy: function() {
 if(this.extend) {
 var extensions = _.keys(this.extend);
 for(var i=0,len=extensions.length;i<len;i++) {
 delete this.entity[extensions[i]];
 }
 }
 delete this.entity[this.name];
 var idx = this.entity.activeComponents.indexOf(this.name);
 if(idx != -1) {
 this.entity.activeComponents.splice(idx,1);
 }
 this.debind();
 if(this.destroyed) this.destroyed();
 }
 });

168 ❘ CHAPTER 9 Bootstrapping the Quintus engine: part i

The base component class has only two main responsibilities: to handle being added to an entity and
to handle being removed from that entity. When the component is added to an entity (which is done
in the init constructor) the component does ive things:

 1. It sets a property so that it can refer back to the entity.

 2. It extends the entity with new properties from its extend attribute.

 3. It adds itself to the entity as a property under its name. (So, for example, the sword compo-
nent would be accessible via entity.sword.)

 4. It also adds itself to the entity’s list of active components.

 5. It calls the added method on the component to set up any post-initialization requirements
like listeners.

The Q.Component class extends from the Q.Evented object, so it can bind and be bound to.

When a component is destroyed, it needs to do the reverse, which amounts to removing any exten-
sions by removing properties that match the keys of the extend object from the entity. Next, it needs
to destroy the property named after the component from the entity and remove the entry from the
active components list. Finally, it calls debind to remove any event handlers it has bound and calls
the custom destroyed() handler if one is deined.

The last piece for the component system is the Q.GameObject class, which inherits from Q.Evented
and is responsible for adding and removing components. The Q.GameObject class is the base class
from which all active game objects, such as sprites, inherit from.

Add the deinition of Q.GameObject in Listing 9-16 to the spot at the bottom of quintus.js before
the inal return.

LISTING 9-16: Q.GameObject deinition

 Q.GameObject = Q.Evented.extend({
 has: function(component) {
 return this[component] ? true : false;
 },
 add: function(components) {
 components = Q._normalizeArg(components);
 if(!this.activeComponents) { this.activeComponents = []; }
 for(var i=0,len=components.length;i<len;i++) {
 var name = components[i],
 comp = Q.components[name];
 if(!this.has(name) && comp) {
 var c = new comp(this);
 this.trigger('addComponent',c);
 }
 }
 return this;
 },
 del: function(components) {
 components = Q._normalizeArg(components);

Summary ❘ 169

 for(var i=0,len=components.length;i<len;i++) {
 var name = components[i];
 if(name && this.has(name)) {
 this.trigger('delComponent',this[name]);
 this[name].destroy();
 }
 }
 return this;
 },

 destroy: function() {
 if(this.destroyed) { return; }
 this.debind();
 if(this.parent && this.parent.remove) {
 this.parent.remove(this);
 }
 this.trigger('removed');
 this.destroyed = true;
 }
 });

The base Q.GameObject class again inherits from Q.Evented, allowing it to listen for and trigger
events. The code has four main methods: add, has, del, and destroy. The irst three are used to
add, check for, and remove components from an object respectively. The last method, destroy, is
used to destroy the object itself.

First is the has method, which checks if a Q.GameObject already has a certain component by
checking if the object has a property by the same name. This is a little risky because it relies on
the developer to be careful about component names and extended properties, but if there’s a
name conlict, other issues can result regardless.

Next the add and del methods add and remove components from a Q.GameObject, and they are
almost mirror images of each other. The add method loops over all the components to be added, looks
them up in Q.components, and then creates the new component object. The del method does the
reverse, looping over the components to remove and calling the component’s remove method for each.

Both methods have some additional logic in them to prevent the developer from adding or removing
a component more than once. Each also triggers an event with the component instance itself passed
as the data argument.

The destroy method calls debind on the object, tries to remove it from its parent if it has one, and
triggers a removed event to allow any components to clean up if necessary. It also adds a destroyed
property to prevent the destroy method from being called more than once.

SUMMARY

You now have the building blocks to create a reusable HTML5 game engine. You created the initial
game container object, the game loop, and some base classes for working with events and components.
Having a solid base on which to build the rest of the engine in a modular way is going to help a lot
down the line. The next chapter covers loading some game elements onto the page and building a reus-
able user input handling system.

Bootstrapping the Quintus
Engine: Part II

WHAT’S IN THIS CHAPTER?

 ➤ Capturing input

 ➤ Drawing onscreen controls

 ➤ Loading assets

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 10
download and individually named according to the names throughout the chapter.

INTRODUCTION

In the last chapter the seeds of a reusable engine were planted. This chapter ills out that base
with classes to get something onto the screen, accept user input, and load assets.

ACCESSING A GAME CONTAINER ELEMENT

For the game to render anything on the screen, it must have an object to draw on. For Canvas
games this is a Canvas element. For other types of games, it will be either a regular <div> or
an SVG element. To this end you’ll create a lexible setup method on Quintus that grabs a con-
tainer from a passed-in ID or creates an element from scratch if necessary. The setup method
also grabs the context from the element if it’s supported.

10

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

172 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

Add the code in Listing 10-1 to the bottom of quintus.js from Chapter 9 above the inal return Q
statement.

LISTING 10-1: The Quintus setup and clear methods

 Q.setup = function(id, options) {
 var touchDevice = 'ontouchstart' in document;
 options = options || {};
 id = id || "quintus";
 Q.el = $(_.isString(id) ? "#" + id : id);

 if(Q.el.length === 0) {
 Q.el = $("<canvas width='320' height='420'></canvas>")
 .attr('id',id).appendTo("body");
 }

 var maxWidth = options.maxWidth || 5000,
 maxHeight = options.maxHeight || 5000,
 resampleWidth = options.resampleWidth,
 resampleHeight = options.resampleHeight;

 if(options.maximize) {
 $("html, body").css({ padding:0, margin: 0 });
 var w = Math.min(window.innerWidth,maxWidth);
 var h = Math.min(window.innerHeight - 5,maxHeight)

 if(touchDevice) {
 Q.el.css({height: h * 2});
 window.scrollTo(0,1);

 w = Math.min(window.innerWidth,maxWidth);
 h = Math.min(window.innerHeight - 5,maxHeight);
 }

 if(((resampleWidth && w > resampleWidth) ||
 (resampleHeight && h > resampleHeight)) &&
 touchDevice) {
 Q.el.css({ width:w, height:h })
 .attr({ width:w/2, height:h/2 });
 } else {
 Q.el.css({ width:w, height:h })
 .attr({ width:w, height:h });
 }

 }

 Q.wrapper = Q.el
 .wrap("<div id='" + id + "_container'/>")
 .parent()
 .css({ width: Q.el.width(),

Accessing a Game Container Element ❘ 173

 margin: '0 auto' });

 Q.el.css('position','relative');

 Q.ctx = Q.el[0].getContext &&
 Q.el[0].getContext("2d");

 Q.width = paraseInt(Q.el.attr(‘width’),10);
 Q.height = parseInt(Q.el.attr(‘height’),10);

 $(window).bind('orientationchange',function() {
 setTimeout(function() { window.scrollTo(0,1); }, 0);
 });

 return Q;
 };

 Q.clear = function() {
 Q.ctx.clearRect(0,0,Q.el[0].width,Q.el[0].height);
 };

This setup code performs a simple task but has some complications because it tries to accommodate
different usage patterns: setup can be called with no parameters, with an id of an element, or with
the element itself. If no id is passed in, the engine defaults to using an id of quintus. If it can’t ind
an element, it creates a new <canvas> element. It then creates a wrapper element used to center the
element on the page by default with a size of 320 x 420, enough to ill up an iPhone screen. Finally,
it checks for a getContext method on the object, and if it inds one, it grabs the 2d context and
stores it in Q.ctx for later use.

The method also accepts an options hash with an optional maximize option that resizes the
main element to match the screen. The screen maximization techniques to remove the address
bar from Chapter 6 are added for touch devices. When maximizing, the method also accepts
optional maxWidth, maxHeight, resampleWidth, and resampleHeight parameters. The irst
two set a maximum width and height for the game and the second two set an optional width
and height at which to resample down by half on mobile devices.

The method also returns the Q object, allowing to be chained with further calls on Quintus if necessary.

The clear method is much simpler and just clears the entirety of the Canvas.

To try this simple functionality out, open an HTML ile called canvas_test.html and put in the
HTML in Listing 10-2:

LISTING 10-2: Canvas test example

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <title>Canvas Test</title>
 <meta charset="UTF-8">
 <script src='jquery.min.js'></script>

continues

174 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 </head>
 <body>
 <script>
 var Q = Quintus().setup();
 Q.el.css('backgroundColor','red');
 </script>
 </body>
</html>

This example just creates a new Quintus instance and then turns the background color of the created
Canvas element red to give an indication of where the element is on the page. If you load it in a browser,
you should see a slender red Canvas element running down the center of your browser. If you modify
the setup line to read

 var q = Quintus().setup("quintus", { maximize: true });

you should be able to maximize the red area on both desktop and mobile devices.

CAPTURING USER INPUT

You can’t actually make a game without giving the player some way to interact with your game.
Following the same pattern as Alien Invasion built in Chapters 1 through 3, Quintus handles user
input from both the keyboard and via a touch interface. Supporting the keyboard is useful in devel-
opment as well as when players play your game via the desktop.

Creating an Input Subsystem

The simplest way to do input is to directly bind some action (for example, pressing the right arrow
key) to an action in the game, like moving the player to the right. The problem with this mechanism
becomes obvious after you add additional input options to your game.

In the case of a game that needs to work on both mobile and desktop, you have at least two input
mechanisms: keyboard or mouse and touch. Abstracting your game logic away from what’s actually
generating the input and providing a consistent interface to the engine can make developing games
much easier.

Quintus uses a module called Quintus.Input to handle input. Keeping the input code separate from
the rest of the Quintus engine helps keep the dependencies in check and makes it easier to swap out
a different input engine if necessary.

The input module will eventually support ive different input mechanisms:

 ➤ Keyboard (desktop input)

 ➤ Mouse (desktop input)

 ➤ Direct manipulation (touch input)

LISTING 10-2 (continued)

Capturing User Input ❘ 175

 ➤ Keypad (touch input)

 ➤ Joypad (touch input)

Keyboard and mouse hopefully need no extra description. Direct manipulation refers to the capabil-
ity to move stuff on the screen directly. (Think iring the Angry Birds slingshot.) Keypad input is the
use of onscreen buttons as used in Alien Invasion. Joypad input refers to the small, analog-style touch
pad that works like a four-way control pad. It can be used as an analog control (providing a strength
and an angle) or as a digital control (providing movement in four discrete directions).

In this chapter the keyboard, keypad, and joystick inputs will be built; Chapter 14, “Building Games
with SVG and Physics,” covers direct manipulation and mouse input.

Bootstrapping the Input Module

The main goal of the input module is to bind some sort of input action, whether a keypress, an
onscreen keypad press, or a joypad movement to a speciic action, such as left or right. It shouldn’t
matter how the action gets triggered; the game should see the same stream of input coming in.

The game receives input in two ways. The irst is by looking at the Q.inputs object:

 Q.inputs['fire'] // true if fire is being held down

Each bound action has an object key set to true if that key is currently held down. This is useful for
movement in which you want to check each frame to see if the user is moving and, if so, update their
position appropriately.

For actions triggered on a speciic press rather than just holding down the button, the input module
inherits from Evented to allow the binding of listeners. For example:

 Q.input.bind('fire',function() {
 console.log("Fire pressed");
 });

 Q.input.bind('fireUp',function() {
 console.log("Fire released");
 });

Supporting both methods can help keep your game step code from needing to poll every input each
frame to check for changes.

Each of the input methods will be conigurable with what events are triggered, but some defaults
can handle the most common cases to prevent the need for too much coniguration.

To start with the module, open a new ile called quintus_input.js in the same directory as quintus.js
and add the code in Listing 10-3.

LISTING 10-3: The base Quintus.Input module

Quintus.Input = function(Q) {
 var KEY_NAMES = { LEFT: 37, RIGHT: 39, SPACE: 32,
 UP: 38, DOWN: 40,

continues

176 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 Z: 90, X: 88
 };

 var DEFAULT_KEYS = { LEFT: 'left', RIGHT: 'right',
 UP: 'up', DOWN: 'down',
 SPACE: 'fire',
 Z: 'fire',
 X: 'action' };

 var DEFAULT_TOUCH_CONTROLS = [['left','<'],
 ['right','>'],
 [],
 ['action','b'],
 ['fire', 'a']];

 // Clockwise from midnight (a la CSS)
 var DEFAULT_JOYPAD_INPUTS = ['up','right','down','left'];

 Q.inputs = {};
 Q.joypad = {};

 var hasTouch = !!('ontouchstart' in window);

 Q.InputSystem = Q.Evented.extend({
 // TODO: Fill in Input System code
 });

 Q.input = new Q.InputSystem();

};

As you can see, this code sets up four constant-style variables used in the input module. The irst,
KEY_NAMES, is a convenience array that matches input keycodes with more developer friendly names.
Listing 10-3 deines codes for only the arrow keys, the spacebar, and the Z and X keys because that
is what this book uses, but you can add additional keycodes if needed.

The remaining three arrays deine the default input action bindings for the keyboard, keypad touch
controls, and the joypad.

Next up are the Q.inputs and Q.joypad objects, which hold the current state of the action inputs.
These are initialized to empty objects, and a boolean variable, hasTouch, is deined to check if sup-
port for the touch events is available in the browser.

Finally, a stub for the InputSystem class is added, which inherits from Evented so that, as shown in
the listing, objects can bind to input events.

Handling Keyboard Events

Keyboard events are the easiest to handle, and the code bears a striking similarity to the code
from Chapter 1, “Flying Before You Walk.” You can ill in the TODO in Q.InputSystem from
Listing 10-3 with the code in Listing 10-4.

LISTING 10-3 (continued)

Capturing User Input ❘ 177

LISTING 10-4: Keyboard events

 Q.InputSystem = Q.Evented.extend({
 keys: {},
 keypad: {},
 keyboardEnabled: false,
 touchEnabled: false,
 joypadEnabled: false,

 bindKey: function(key,name) {
 Q.input.keys[KEY_NAMES[key] || key] = name;
 },

 keyboardControls: function(keys) {
 keys = keys || DEFAULT_KEYS;
 _(keys).each(function(name,key) {
 this.bindKey(key,name);
 },Q.input);
 this.enableKeyboard();
 },

 enableKeyboard: function() {
 if(this.keyboardEnabled) return false;

 // Make selectable and remove an :focus outline
 Q.el.attr('tabindex',0).css('outline',0);

 Q.el.keydown(function(e) {
 if(Q.input.keys[e.keyCode]) {
 var actionName = Q.input.keys[e.keyCode];
 Q.inputs[actionName] = true;
 Q.input.trigger(actionName);
 Q.input.trigger('keydown',e.keyCode);
 }
 e.preventDefault();
 });

 Q.el.keyup(function(e) {
 if(Q.input.keys[e.keyCode]) {
 var actionName = Q.input.keys[e.keyCode];
 Q.inputs[actionName] = false;
 Q.input.trigger(actionName + "Up");
 Q.input.trigger('keyup',e.keyCode);
 }
 e.preventDefault();
 });
 this.keyboardEnabled = true;
 },

The keyboard controls consist of three methods:

 ➤ bindKey is responsible for binding a key code (the numeric identiier of the key pressed,
not the ASCII representation) to a speciic action by setting a value on the Q.input.keys
object. It accepts either a key name from the KEY_NAMES array (such as "LEFT") or a straight
keycode.

178 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 ➤ keyboardControls is used to actually enable keyboard controls on the game. It binds any
passed-in keys (or uses the DEFAULT_KEYS deined in Listing 10-4) by calling bindKey on
each and then calls enableKeyboard, which does the browser event binding.

 ➤ enableKeyboard deines both a keydown and a keyup event on the element. To make the
<canvas> element selectable but disable any outline focus, you irst need to add the tabindex
property and then set the outline style to 0.

Next, the keydown event looks up the action associated with that keycode, if any, and then sets
that input to true. It also triggers an event with the same name as the input and then prevents any
default browser actions from taking place by calling e.preventDefault().

The keyup event does the exact opposite, setting the action to false and triggering an action
matching the event name with "Up" appended.

Adding Keypad Controls

Next are the keypad controls, a version of which was also built in Chapter 3, “Finishing Up and
Going Mobile.” The goal of these controls is to add a number of different buttons to bottom of the
screen. What makes these slightly more dificult than the keyboard events is that you can’t match
touchstart and touchend events directly to keypad presses. If you did, users couldn’t slide their
ingers around the screen as they are apt to do.

Instead, Quintus takes advantage that every touch event includes with it all the touches currently
on the screen along with any touches that have changed. It loops over these touch events each time
there is any event and updates the actions pressed regardless of what event occurs.

Using this mechanism requires a little more housekeeping to trigger events when a key is pressed or
released, but you’ll end up with a behavior that mimics keypresses while still allowing users to slide
their hands around.

The engine assumes that the controls are to be drawn across the bottom of the screen and should
stretch the entirety of the device. As such, the size of the controls is calculated by the number of
entries in the controls array. Five entries in the array mean that each control can take up one-ifth
of the screen, minus the size of the gutter between the controls. The controls array also allows
blank entries that represent empty spots that shouldn’t trigger.

Add the code in Listing 10-5 below the key functions inside the deinition of Q.InputSystem below
the code you added in Listing 10-4.

LISTING 10-5: Touch controls

 touchLocation: function(touch) {
 var el = Q.el,
 pageX = touch.pageX,
 pageY = touch.pageY,
 pos = el.offset(),
 touchX = (el.attr('width') || Q.width) *
 (pageX - pos.left) / el.width(),

Capturing User Input ❘ 179

 touchY = (el.attr('height')||Q.height) *
 (pageY - pos.top) / el.height();
 return { x: touchX, y: touchY };
 },

 touchControls: function(opts) {
 if(this.touchEnabled) return false;
 if(!hasTouch) return false;

 Q.input.keypad = opts = _({
 left: 0,
 gutter:10,
 controls: DEFAULT_TOUCH_CONTROLS,
 width: Q.el.attr('width') || Q.width,
 bottom: Q.el.attr('height') || Q.height
 }).extend(opts||{});

 opts.unit = (opts.width / opts.controls.length);
 opts.size = opts.unit - 2 * opts.gutter;

 function getKey(touch) {
 var pos = Q.input.touchLocation(touch);
 for(var i=0,len=opts.controls.length;i<len;i++) {
 if(pos.x < opts.unit * (i+1)) {
 return opts.controls[i][0];
 }
 }
 }

 function touchDispatch(event) {
 var elemPos = Q.el.position(),
 wasOn = {},
 i, len, tch, key, actionName;

 // Reset all the actions bound to controls
 // but keep track of all the actions that were on
 for(i=0,len = opts.controls.length;i<len;i++) {
 actionName = opts.controls[i][0];
 if(Q.inputs[actionName]) { wasOn[actionName] = true; }
 Q.inputs[actionName] = false;
 }

 for(i=0,len=event.touches.length;i<len;i++) {
 tch = event.touches[i];
 key = getKey(tch);

 if(key) {
 // Mark this input as on
 Q.inputs[key] = true;

 // Either trigger a new action
 // or remove from wasOn list
 if(!wasOn[key]) {
 Q.input.trigger(key);

continues

180 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 } else {
 delete wasOn[key];
 }
 }
 }

 // Any remaining were on the last frame
 // and need to trigger an up action
 for(actionName in wasOn) {
 Q.input.trigger(actionName + "Up");
 }

 return null;
 }

 Q.el.on('touchstart touchend touchmove touchcancel',function(e) {
 touchDispatch(e.originalEvent);
 e.preventDefault();
 });

 this.touchEnabled = true;
 },

 disableTouchControls: function() {
 Q.el.off('touchstart touchend touchmove touchcancel');
 this.touchEnabled = false;
 },

The code in Listing 10-5 deines three top-level methods: touchLocation, touchControls, and
disableTouchControls. Touch location is used to ind the correct pixel location on the <canvas>
element (or non-<canvas> element) even if the Canvas has been rescaled to different dimensions
from its pixel dimensions (which can be done via CSS styling). To allow the touch code to work
with DOM-based games, the code uses the Q.width variable if the main Q.el doesn’t have a width
attribute (as it won’t in the event of a DOM-based game). From a performance perspective, this code
could be improved by caching the jQuery calls instead of calculating them each call, but to keep the
code straightforward and resilient to change events, this is left as an exercise for you.

The primary setup method, touchControls, further deines two additional methods inside of it that
do most of the actual work for handling keypad events.

 1. getKey calls touchLocation to get the pixel location on the Canvas and then returns the
keypad button (if any) that corresponds to that element.

 2. touchDispatch is called each time a touch event occurs. touchDispatch consists primarily
of three loops:

 ➤ The irst loop sets the Q.inputs array to false for all entries to turn all the keypad
bound inputs off and takes note of any inputs that are on in the wasOn object.

 ➤ The second loop loops over all the current touches on the device and maps them to
keypad presses, setting the appropriate input. If the input isn’t already on, the loop

LISTING 10-5 (continued)

Capturing User Input ❘ 181

triggers an event on Q.input; otherwise, the action is removed from the wasOn
array.

 ➤ The last loop loops over whatever inputs were on before touchDispatch was called
and triggers the appropriate up event.

The last part of touchControls binds any of the touch events—touchstart, touchend, touchmove,
and touchcancel—to call touchDispatch.

The last method, disableTouchControls, simply removes the event handlers from the element, dis-
abling the onscreen keypad. It also marks the joypad as disabled if that happened to be set up.

Adding Joypad Controls

The last supported input mechanism, the joypad, is also the most complicated, primarily because it
needs to work as both an analog and a digital keypad that maps keypad locations to actions to make
it compatible with the keyboard and keypad input.

The idea behind the joypad is that the user can initiate a touch anywhere in the joypad area to center
the control, and then the joypad should detect movement relative to that location. Again, the joypad
is conigurable in size, colors, and alpha, as well as the actions it triggers. To make the most common
use case simple to initialize, however, defaults are set for most of the options. The joypad also trig-
gers the same default actions as the keyboard and keypad: up, right, left, and down.

Unlike the keypad, the joypad needs to treat each of the touch events differently. The touchstart
event is used to start and center the joypad, capturing the identiier of the touch so that only that
touch adjusts the joypad from then on. touchmove events are used to actually move the center of the
joypad around. Finally, the touchend event removes the joypad.

Add the code in Listing 10-6 below the keypad functions inside the deinition of Q.InputSystem
after the code from Listing 10-5.

LISTING 10-6: Joypad controls

 joypadControls: function(opts) {
 if(this.joypadEnabled) return false;
 if(!hasTouch) return false;
 var joypad = Q.joypad = _.defaults(opts || {},{
 size: 50,
 trigger: 20,
 center: 25,
 color: "#CCC",
 background: "#000",
 alpha: 0.5,
 zone: (Q.el.attr('width')||Q.width) / 2,
 joypadTouch: null,
 inputs: DEFAULT_JOYPAD_INPUTS,
 triggers: []
 });

 Q.el.on('touchstart',function(e) {
continues

182 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 if(joypad.joypadTouch === null) {
 var evt = e.originalEvent,
 touch = evt.changedTouches[0],
 loc = Q.input.touchLocation(touch);

 if(loc.x < joypad.zone) {
 joypad.joypadTouch = touch.identifier;
 joypad.centerX = loc.x;
 joypad.centerY = loc.y;
 joypad.x = null;
 joypad.y = null;
 }
 }
 });

 Q.el.on('touchmove',function(e) {
 if(joypad.joypadTouch !== null) {
 var evt = e.originalEvent;

 for(var i=0,len=evt.changedTouches.length;i<len;i++) {
 var touch = evt.changedTouches[i];

 if(touch.identifier === joypad.joypadTouch) {
 var loc = Q.input.touchLocation(touch),
 dx = loc.x - joypad.centerX,
 dy = loc.y - joypad.centerY,
 dist = Math.sqrt(dx * dx + dy * dy),
 overage = Math.max(1,dist / joypad.size),
 ang = Math.atan2(dx,dy);

 if(overage > 1) {
 dx /= overage;
 dy /= overage;
 dist /= overage;
 }

 var triggers = [
 dy < -joypad.trigger,
 dx > joypad.trigger,
 dy > joypad.trigger,
 dx < -joypad.trigger
];

 for(var k=0;k<triggers.length;k++) {
 var actionName = joypad.inputs[k];
 if(triggers[k]) {
 Q.inputs[actionName] = true;

 if(!joypad.triggers[k]) {
 Q.input.trigger(actionName);
 }

LISTING 10-6 (continued)

Capturing User Input ❘ 183

 } else {
 Q.inputs[actionName] = false;
 if(joypad.triggers[k]) {
 Q.input.trigger(actionName + "Up");
 }
 }
 }

 _.extend(joypad, {
 dx: dx, dy: dy,
 x: joypad.centerX + dx,
 y: joypad.centerY + dy,
 dist: dist,
 ang: ang,
 triggers: triggers
 });

 break;
 }
 }
 }
 e.preventDefault();

 });

 Q.el.on('touchend touchcancel',function(e) {
 var evt = e.originalEvent;

 if(joypad.joypadTouch !== null) {
 for(var i=0,len=evt.changedTouches.length;i<len;i++) {
 var touch = evt.changedTouches[i];
 if(touch.identifier === joypad.joypadTouch) {
 for(var k=0;k<joypad.triggers.length;k++) {
 var actionName = joypad.inputs[k];
 Q.inputs[actionName] = false;
 }
 joypad.joypadTouch = null;
 break;
 }
 }
 }
 e.preventDefault();
 });

 this.joypadEnabled = true;
 },

Much like the keypad, the primary method joypadControls sets up the coniguration and then a
number of event handlers for the joypad. Because the game may need access to the joypad analog
information such as the strength and angle of the movement, the joypad information is stored in
Q.joypad instead of Q.input.joypad for easier access.

The irst handler, touchstart, is responsible for identifying a touch to activate the joypad. This is
done by irst checking that the joypad isn’t already activated by ensuring joypad.joypadTouch is set

184 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

to null. (Notice the three equal signs: ===. This is necessary because the touch identiier might be 0,
which would be true when compared with null if type-coercion is allowed.) Next the method checks
if the touch is within the joypad zone, which defaults to the left side of the play area, and if so it cap-
tures the identiier and center of the touch and sets the inner circle position to null to prevent any
initial movement.

The bulk of the work for the joypad calculations is done in the touchmove handler. This handler
irst checks that the joypad is activated by making sure joypad.joypadTouch isn’t null; then it
checks any changed touches for one that matches the identiier stored in joypad.joypadTouch.
When this is found, the location of the center is calculated. To prevent the center from reaching out-
side the bounds of the joypad, the location of the center is limited to the size of the joypad. The total
distance and angle of the joypad are also calculated to allow the game to pull the analog informa-
tion about the joypad direction and strength.

Next, the touchmove handler checks against each of the four action triggers to see if the joypad has
moved far enough to count as a triggered movement. If there is a new trigger that is activated or an
old trigger that is no longer activated, the handler ires the appropriate event. Then the current state
of the joypad updates.

Finally, the touchend handler checks if one of the changed touches matches the identiier of the
joypad, and if so disables the joypad.

Drawing the Onscreen Input

To this point, the Quintus.Input module has everything it needs to capture user input. What it
doesn’t have is any way to draw those controls on the screen. The keypad buttons are drawn as a
series of boxes with text in them (refer to Chapter 3), and the joypad is drawn as a pair of concentric
circles. Add the four methods in Listing 10-7 below the joypadControls method.

LISTING 10-7: Drawing the onscreen input

 drawButtons: function() {
 var keypad = Q.input.keypad,
 ctx = Q.ctx;

 ctx.save();
 ctx.textAlign = "center";
 ctx.textBaseline = "middle";

 for(var i=0;i<keypad.controls.length;i++) {
 var control = keypad.controls[i];

 if(control[0]) {
 ctx.font = "bold " + (keypad.size/2) + "px arial";
 var x = i * keypad.unit + keypad.gutter,
 y = keypad.bottom - keypad.unit,
 key = Q.inputs[control[0]]

 ctx.fillStyle = keypad.color || "#FFFFFF";
 ctx.globalAlpha = key ? 1.0 : 0.5;

Capturing User Input ❘ 185

 ctx.fillRect(x,y,keypad.size,keypad.size);

 ctx.fillStyle = keypad.text || "#000000";
 ctx.fillText(control[1],
 x+keypad.size/2,
 y+keypad.size/2);
 }
 }

 ctx.restore();
 },

 drawCircle: function(x,y,color,size) {
 var ctx = Q.ctx,
 joypad = Q.joypad;

 ctx.save();
 ctx.beginPath();
 ctx.globalAlpha=joypad.alpha;
 ctx.fillStyle = color;
 ctx.arc(x, y, size, 0, Math.PI*2, true);
 ctx.closePath();
 ctx.fill();
 ctx.restore();
 },

 drawJoypad: function() {
 var joypad = Q.joypad;
 if(joypad.joypadTouch !== null) {
 Q.input.drawCircle(joypad.centerX,
 joypad.centerY,
 joypad.background,
 joypad.size);

 if(joypad.x !== null) {
 Q.input.drawCircle(joypad.x,
 joypad.y,
 joypad.color,
 joypad.center);
 }
 }

 },

 drawCanvas: function() {
 if(this.touchEnabled) {
 this.drawButtons();
 }

 if(this.joypadEnabled) {
 this.drawJoypad();
 }
 }

186 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

The drawCanvas method is the primary method that needs to be called each frame to draw the
controls. This method works only for Canvas-based games. This method calls two helper methods:
drawButtons and drawJoypad. drawJoypad further calls a helper method called drawCircle to
draw the outer and inner joypad circles.

drawButtons loops over each of the controls and draws a square with a text character on top of it to
identify the button. It also checks the state of each keypad button so that buttons currently depressed
are drawn highlighted. The method uses the textAlign and textBaseline attributes of the Canvas
to center the text in the buttons. These are discussed in detail in Chapter 15, “Learning Canvas, the
Hero of HTML5.” The fillText method can be slow, so in production you’ll most likely want to
replace the text buttons with images.

drawCircle uses the arc command with a ill to draw a circle. drawJoypad calls this twice: once for
the outer larger circle and once for the center circle. See Chapter 15 for a description of the Canvas
API in depth.

Finishing and Testing the Input

The Quintus.Input module is now feature complete. The only thing that could still be added is a
little bit of helper glue code—to help users get up and running quickly—and an HTML ile to test
the whole thing.

Based on the assumption that the most common usage for the input system is either a two-way keypad
with a and b buttons or a four-way joypad with a and b buttons, you can add a simple helper method
to the top-level Quintus module to set up just that, along with the desktop fallback keyboard controls.
Add the code in Listing 10-8 below the deinition for Q.input.

LISTING 10-8: The controls helper method

 Q.input = new Q.InputSystem();

 Q.controls = function(joypad) {
 Q.input.keyboardControls();

 if(joypad) {
 Q.input.touchControls({
 controls: [[],[],[],['action','b'],['fire','a']]
 });
 Q.input.joypadControls();
 } else {
 Q.input.touchControls();
 }

 return Q;
 };
};

This code takes only one parameter, a boolean option about whether to turn on the joypad or just
use the keypad.

Capturing User Input ❘ 187

Next, this code needs to be tested. Create a ile called input_test.html and ill in the code from
Listing 10-9.

LISTING 10-9: input_test.html input test

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Input Test</title>
 <meta name='viewport' content='width=device-width, user-scalable=no'>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 </head>
 <body>
 <script>
 var Q = Quintus()
 .include("Input")
 .setup("quintus",{ "maximize": true })
 .controls(true);
 Q.input.bind('fire',function() {
 console.log('fire!');
 });
 Q.input.bind('fireUp',function() {
 console.log('fire up');
 });
 Q.gameLoop(function() {
 Q.clear();
 Q.input.drawCanvas();
 });
 Q.el.css('backgroundColor','#666');
 </script>
 </body>
</html>

You’ll see this code walks through the steps of setting up Quintus, including the Quintus.Input
module you just wrote, and then turning on the controls with the joypad. It also binds a couple of
event handlers to test that events are triggered. You can try binding some additional inputs, including
the movement inputs left, right, up, and down. On a mobile device you should see the console logs if
you turn the console on.

On desktop and WP7, you won’t see any controls as touch events aren’t supported, but the ire key
triggers will work on the desktop.

You should use the left side of the screen as a joypad and the right side to press the buttons, as
shown in Figure 10-1.

188 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

FIGURE 10-1: The joypad and button inputs.

LOADING ASSETS

Unless you’re building a game entirely out of squares, at some point you need to load some assets
into the game. Assets include images, audio, sprite and level data, and anything else that your game
needs to run stored in a separate ile.

In one sense HTML5 handles asset loading for you automatically. If you create an Image object, set
the source, and then draw it, the browser can happily comply without throwing an error message. It
won’t, however, actually draw the image on the screen until it’s been fully downloaded. This means
that you'll have game elements that just “pop” into the page. A better strategy is to preload any assets
during a loading screen and wait to start the game until everything is ready to go. The following code
is an example of how the asset loading functionality should work:

 var Q = Quintus().setup();
 Q.load(['sprites.png','correct.ogg'],function() {
 alert('Everything loaded!');
 });

Loading Assets ❘ 189

To make the loading method more lexible, Q.load will be designed to be lexible in what it accepts
for arguments, accepting either a single asset name string, an array of assets, or an object that maps
asset names to ilenames to load.

This book has dealt with image loading a of couple times, irst in Chapter 1 and then in Chapter 8,
“Running JavaScript on the Command Line.” This will be the last time. You’ll build a general-purpose
asset loader into Quintus, which will be reused in the rest of the book.

Deining Asset Types

To know how to load a speciic ile, the engine needs to have a list of ile extensions it can convert
into speciic asset types. This is actually a small list because the engine cares only about images and
audio iles at this point. Quintus should also return the asset type given a ilename, which means the
engine needs a method to pull off the extension and look up the type in the asset type list.

Open up quintus.js again, and add the code in Listing 10-10 just before the inal return to do
just that.

 LISTING 10-10: Asset type functionality

 // Augmentable list of asset types
 Q.assetTypes = {
 // Image Assets
 png: 'Image', jpg: 'Image', gif: 'Image', jpeg: 'Image',
 // Audio Assets
 ogg: 'Audio', wav: 'Audio', m4a: 'Audio', mp3: 'Audio'
 };

 // Determine the type of an asset with a lookup table
 Q.assetType = function(asset) {
 // Determine the lowercase extension of the file
 var fileExt = _(asset.split(".")).last().toLowerCase();

 // Lookup the asset in the assetTypes hash, or return other
 return Q.assetTypes[fileExt] || 'Other';
 };

The irst piece of code deines an object that maps a lowercase ile extension to an uppercase asset
type. Because this object is deined as a public object on Q, it can be easily extended to handle addi-
tional asset types.

The method Q.assetType does the job of transforming a ilename into a lowercase extension and
then looks up the asset type in the Q.assetTypes object. The one-liner to take a ilename and get
the extension splits the ilename by periods into an array and then grabs the last element of that
array as the extensions and converts it to lowercase. Finally, the method returns the looked-up
value or a special type of 'Other' for other types of iles.

Loading Speciic Assets

The next task is to write methods to the different asset types. Image and Audio assets are loaded
by creating an object of the appropriate type. Other assets are just loaded via an AJAX get request

190 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

using jQuery. The assumption is that if developers want to load a random ile type, they can igure
out what to do with it if you give them the data.

Add the three loading methods in Listing 10-11 to the bottom of quintus.js in the usual spot
before the inal return.

LISTING 10-11: Asset loading methods

 // Loader for Images
 Q.loadAssetImage = function(key,src,callback,errorCallback) {
 var img = new Image();
 $(img).on('load',function() { callback(key,img); });
 $(img).on('error',errorCallback);
 img.src = Q.options.imagePath + src;
 };

 Q.audioMimeTypes = { mp3: 'audio/mpeg',
 ogg: 'audio/ogg; codecs="vorbis"',
 m4a: 'audio/m4a',
 wav: 'audio/wav' };

 // Loader for Audio
 Q.loadAssetAudio = function(key,src,callback,errorCallback) {
 if(!document.createElement("audio").play || !Q.options.sound) {
 callback(key,null);
 return;
 }

 var snd = new Audio(),
 baseName = Q._removeExtension(src),
 extension = null,
 filename = null;

 // Find a supported type
 extension =
 _(Q.options.audioSupported)
 .detect(function(extension) {
 return snd.canPlayType(Q.audioMimeTypes[extension]) ?
 extension : null;
 });

 // No supported audio = trigger ok callback anyway
 if(!extension) {
 callback(key,null);
 return;
 }

 // If sound is turned off,
 // call the callback immediately
 $(snd).on('error',errorCallback);
 $(snd).on('canplaythrough',function() {
 callback(key,snd);
 });

Loading Assets ❘ 191

 snd.src = Q.options.audioPath + baseName + "." + extension;
 snd.load();
 return snd;
 };

 // Loader for other file types, just store the data
 // returned from an ajax call
 Q.loadAssetOther = function(key,src,callback,errorCallback) {
 $.get(Q.options.dataPath + src,function(data) {
 callback(key,data);
 }).fail(errorCallback);
 };

Each of the three loader methods performs the same task with a different asset type, which amounts to
providing a consistent call to a callback containing the passed in key and the loaded object in question.
A helper method to remove the extension from a ilename is also deined.

Q.loadAssetImage creates an Image object and links the callback to the load event
method. Q.loadAssetOther just uses the jQuery get method to load data into a buffer
and trigger the callback when it’s loaded.

Finally, the Q.loadAssetAudio creates an Audio element and then determines if the Audio tag is
available or whether sound is turned on normally. In cases in which the sound tag isn’t supported,
or the sound is turned off, the method calls the callback immediately and returns.

The Audio loader also needs to do some extra work to ensure the audio ile loaded is supported by
the browser. To do this it keeps a hash called Q.audioMimeTypes that maps ile extensions to audio
mime types. Armed with the mime type of an extension, it can check if a ile of the supported type
is playable by calling Audio.canPlayType with the mime type.

The reason for all these ile-type gymnastics is that there isn’t a single audio format supported across
all browsers. As such, it falls onto the developers to make sure they provide audio iles in as many
formats as are necessary for the supported browsers. In general this means making audio assets avail-
able in .mp3 and .ogg format. To make the developer’s life easier, the code in the preceding listing
strips off the extension of any audio ile and tries to ind a ile in one of formats the developers have
indicated support for in Q.options.audioSupported that is also supported by the browser.

If no supported audio is available, the engine just acts like everything is still okay and lets the user
play the game without audio. This means that if developers want to support only one audio format
such as .mp3, they can do so and still have the game play, albeit without sound.

Each of the preceding methods also takes an errorCallback that is triggered if something were to
go wrong with the loading of the asset.

Finishing the Loader

To round out the basic loader functionality, the engine needs a spot to keep track of assets along
with a method to do the dirty work of synchronizing the loading of assets.

Before getting to this, though, you need to add some defaults to the engine to make loading assets
more succinct and provide a list of supported audio formats for your game. Near the top of the
Quintus deinition, you deined an options hash that can hold any defaults for the engine. Update
the hash to match the code in Listing 10-12.

192 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

LISTING 10-12: Default options for Quintus

var Quintus = function(opts) {
 var Q = {};
 Q.options = {
 imagePath: "images/",
 audioPath: "audio/",
 dataPath: "data/",
 audioSupported: ['mp3','ogg'],
 sound: true
 };
 if(opts) { _(Q.options).extend(opts); }

Assets are held in the system in a simple object and indexed by name. To look up a hash, you just need
to call Q.asset(name). The actual dirty work for loading a list of assets is handled by the Q.load
method. Its duty is to take whatever the programmer passed in for assets to load (it could be a string,
an array, or an object), turn it into a consistent data structure, and then loop over each of the objects,
calling the appropriate loader method (as deined in Listing 10-12).

Add the code in Listing 10-13 to the usual spot in quintus.js before the inal return.

LISTING 10-13: Asset loading

 // Return a name without an extension
 Q._removeExtension = function(filename) {
 return filename.replace(/\.(\w{3,4})$/,"");
 };

 // Asset hash storing any loaded assets
 Q.assets = {};

 // Getter method to return an asset
 Q.asset = function(name) {
 return Q.assets[name];
 };

 // Load assets, and call our callback when done
 Q.load = function(assets,callback,options) {
 var assetObj = {};

 // Make sure we have an options hash to work with
 if(!options) { options = {}; }

 // Get our progressCallback if we have one
 var progressCallback = options.progressCallback;

 var errors = false,
 errorCallback = function(itm) {
 errors = true;
 (options.errorCallback ||
 function(itm) { alert("Error Loading: " + itm); })(itm);

Loading Assets ❘ 193

 };

 // If the user passed in an array, convert it
 // to a hash with lookups by filename
 if(_.isArray(assets)) {
 _.each(assets,function(itm) {
 if(_.isObject(itm)) {
 _.extend(assetObj,itm);
 } else {
 assetObj[itm] = itm;
 }
 });
 } else if(_.isString(assets)) {
 // Turn assets into an object if it's a string
 assetObj[assets] = assets;
 } else {
 // Otherwise just use the assets as is
 assetObj = assets;
 }

 // Find the # of assets we're loading
 var assetsTotal = _(assetObj).keys().length,
 assetsRemaining = assetsTotal;

 // Closure'd per-asset callback gets called
 // each time an asset is successfully loadded
 var loadedCallback = function(key,obj) {
 if(errors) return;

 // Add the object to our asset list
 Q.assets[key] = obj;

 // We've got one less asset to load
 assetsRemaining--;

 // Update our progress if we have it
 if(progressCallback) {
 progressCallback(assetsTotal - assetsRemaining,assetsTotal);
 }

 // If we're out of assets, call our full callback
 // if there is one
 if(assetsRemaining === 0 && callback) {
 // if we haven't set up our canvas element yet,
 // assume we're using a canvas with id 'quintus'
 callback.apply(Q);
 }
 };

 // Now actually load each asset
 _.each(assetObj,function(itm,key) {

 // Determine the type of the asset
 var assetType = Q.assetType(itm);

 // If we already have the asset loaded,
continues

194 ❘ CHAPTER 10 Bootstrapping the Quintus engine: part ii

 // don't load it again
 if(Q.assets[key]) {
 loadedCallback(key,Q.assets[key]);
 } else {
 // Call the appropriate loader function
 // passing in our per-asset callback
 // Dropping our asset by name into Q.assets
 Q["loadAsset" + assetType](key,itm,
 loadedCallback,
 function() { errorCallback(itm); });
 }
 });

 };

The irst deinition is the assets hash, deined as an empty object on Q and the simple Q.asset getter
method that just looks up a key in the assets hash. Deining a getter method instead of just exposing
the Q.assets hash directly allows someone to override the method to create, for example, dynami-
cally generated assets.

The load method is the main method for loading the assets. Its functionality can be broken down
into three sections:

 ➤ The irst section converts whatever assets the developer wants to load into a consistent format
that looks like the following:

 { "assetname.ext": "assetname.ext",
 "assetname2.ext": "assetname2.ext" }

 ➤ Next, a loadedCallback is deined. This method is passed as the callback method to each
of the asset-type-speciic loading methods. It keeps track of the number of remaining assets
and inally triggers the inal callback when everything has loaded correctly. If any errors have
been noted, the callback returns early to prevent the game from trying to start with invalid
assets. If a progress callback has been provided (such as to show a loading screen with a
progress bar), the callback calls it each time a new asset loads.

 ➤ The last section loops over each element in the assets hash, determines the correct type of the
asset, and then dispatches to the appropriate loader function.

This method of asset loading allows developers to create new asset types based on ile extensions
and add new loader methods if necessary.

Adding Preload Support

Although the Q.load method does most of the heavy lifting, the engine could make the developer’s life
easier by providing preloading support to allow the developer to mark assets for preloading prior to
making the actual call to load. This is useful when putting together scenes or when different modules
are responsible for determining what assets need to be loaded.

LISTING 10-13 (continued)

Summary ❘ 195

Add the code in Listing 10-14 to the regular spot in the bottom of quintus.js before the inal return.

LISTING 10-14: Preload support

// Array to store any assets that need to be
 // preloaded
 Q.preloads = [];

 // Let us gather assets to load
 // and then preload them all at the same time
 Q.preload = function(arg,options) {
 if(_(arg).isFunction()) {
 Q.load(_(Q.preloads).uniq(),arg,options);
 Q.preloads = [];
 } else {
 Q.preloads = Q.preloads.concat(arg);
 }
 };

The preloading code provides a simple interface consisting of a single method called Q.preload
that either takes a callback method or one or more assets to load. It looks at the argument and
decides whether to add more items to the preload list or to actually perform the loading by calling
Q.load. Items are added to the preload list by simply calling Array.concat, which either add an
element to the end of the array, or if the passed in argument is also an array, concatenate the two
arrays into a single array.

Here’s how the preload code might be used:

 var Q = Quintus({ audioSupported: ['wav','ogg']}).setup();

 Q.preload('sprites.png');
 Q.preload(['fire.mp3','explosion.mp3']);
 Q.preload(function() {
 alert("All loaded!");
 });

Separating calls to generate a list of resources to load from the loading call allows more lexibility in
which components are responsible for tracking the resources they require. You can take a look at the
ile asset_test.html in the chapter code for a working example of loading a couple of iles.

SUMMARY

You now have some of the additional pieces of glue necessary for an HTML5 game engine: setup,
input, and assets. Setting up the visual container for the game is important to get anything on the
screen at all. Input on mobile devices is a little trickier than on a desktop because any type of input
requires a visual element to display to the user, such as buttons or a joypad. Asset loading, although
not a sexy topic, is an important one to get right. Nothing destroys the professionalism of a game
more than a bunch of elements popping onto the screen while you play.

Bootstrapping the Quintus
Engine: Part III

WHAT’S IN THIS CHAPTER?

 ➤ Creating sprite sheets

 ➤ Adding sprites

 ➤ Building a Stage class

 ➤ Using Quintus to build a simple game

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 11
download and individually named according to the names throughout the chapter.

INTRODUCTION

The irst two chapters on building the Quintus engine laid the groundwork for building a
game. This chapter rounds out the engine by adding support for sprites and stages. Sprites
are the primary visual GameObject used in the engine to display graphics and elements on
the screen. Sprites use either basic assets or SpriteSheets to draw themselves onto the
game. Scenes provide a way to package up a discrete piece of your game, such as a level,
into a nice reusable package. Lastly, Stages are the primary containers for the state of your
game and are responsible for tracking lists of GameObjects and ensuring they are updated
and drawn on each frame.

11

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

198 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

DEFINING SPRITESHEETS

Before tackling sprites, the engine is going to add support for sprite sheets. Sprite Sheets, as you’ve seen
in previous chapters, allow any number of images to be stored in a single image, making your game
quicker to load and animations easier to work with. The sprite sheet functionality ties into the code
from Chapter 8, “Running JavaScript on the Command Line,” that generated spritesheets from the
command line so you don’t need to spend your time multiplying sprite x and y positions in your head.

Creating a SpriteSheet Class

In this case, a single Sprite Sheet object refers only to a single set of like-sized frames of the same
sprite. A single-loaded image asset might be compiled into a number of SpriteSheet objects.

The sprite functionality in Quintus is going to go into its own module. Open up a new ile called
quintus_sprites.js and place the code from Listing 11-1 into it to deine the SpriteSheet class
functionality.

LISTING 11-1: The Q.SpriteSheet class

Quintus.Sprites = function(Q) {

 // Create a new sprite sheet
 // Options:
 // tilew - tile width
 // tileh - tile height
 // w - width of the sprite block
 // h - height of the sprite block
 // sx - start x
 // sy - start y
 // cols - number of columns per row
 Q.SpriteSheet = Class.extend({
 init: function(name, asset,options) {
 _.extend(this,{
 name: name,
 asset: asset,
 w: Q.asset(asset).width,
 h: Q.asset(asset).height,
 tilew: 64,
 tileh: 64,
 sx: 0,
 sy: 0
 },options);
 this.cols = this.cols ||
 Math.floor(this.w / this.tilew);
 },

 fx: function(frame) {
 return (frame % this.cols) * this.tilew + this.sx;
 },

 fy: function(frame) {

Deining SpriteSheets ❘ 199

 return Math.floor(frame / this.cols) * this.tileh + this.sy;
 },

 draw: function(ctx, x, y, frame) {
 if(!ctx) { ctx = Q.ctx; }
 ctx.drawImage(Q.asset(this.asset),
 this.fx(frame),this.fy(frame),
 this.tilew, this.tileh,
 Math.floor(x),Math.floor(y),
 this.tilew, this.tileh);

 }

 });

 return Q;
};

The SpiteSheet class is relatively short, clocking in at fewer than 40 lines of code. The init construc-
tor does nothing but set up the initial values in the object given an asset object and a set of options. It
has only three methods other than its constructor: the fx and fy methods which calculate the frame x
and y position in the sheet; and the draw method, which draws a speciic frame of the SpriteSheet at
an x and y location on the passed-in context.

fy (short for frame y) is calculated by using Math.floor to get the row that a speciic frame is in.
The row number is then multiplied by the height of each tile. fx is calculated by using the modulus
operator to ind how many tiles to index horizontally into each row. The resulting number is then
multiplied by the width of each tile to get the inal result. Because of poor support for subpixel ren-
dering (especially on mobile devices), the draw method also turns whatever x and y values that are
passed in into integers using Math.floor.

The end result is that given a SpriteSheet object, you can quickly draw a speciic frame at an x and
y location on the canvas.

Tracking and Loading Sheets

Creating sprite sheets that can draw individual frames gets you a good portion of the way to
engine support for sprite sheets, but Quintus needs a central mechanism for compiling and track-
ing sheets to make them easy to reference and look up. Add the code from Listing 11-2 to the
bottom of quintus_sprites.js before the inal closing curly brace.

LISTING 11-2: Loading and tracking sheets

 Q.sheets = {};
 Q.sheet = function(name,asset,options) {
 if(asset) {
 Q.sheets[name] = new Q.SpriteSheet(name,asset,options);
 } else {
 return Q.sheets[name];
 }

continues

200 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

 };

 Q.compileSheets = function(imageAsset,spriteDataAsset) {
 var data = Q.asset(spriteDataAsset);
 _(data).each(function(spriteData,name) {
 Q.sheet(name,imageAsset,spriteData);
 });
 };

The Q.sheets object provides a central location to store sheets.

The Q.sheet method works double duty as both a setter and a getter method to either return a sheet
by name or create a new SpriteSheet. Using one method for multiple purposes (called method

overloading when done in languages that have native support) helps keep the number of method names
a developer needs to remember at a more manageable number. You can see that Q.sheet checks if the
user has passed in an asset, and if so the method creates a new SpriteSheet object, looking up the
asset in the Quintus engine by calling Q.asset(asset) and passing along any additional options. If no
asset is passed in, then the method just looks for a sheet by that name and returns it.

The last method shown in Listing 11-2, Q.compileSheets, combines an asset name with a JSON
sprite data asset to generate one or more sprite sheets automatically from the data generated by the
spriter generator from Chapter 8.

Testing the SpriteSheet class

To test the sprite sheet functionality, load up a page with some sprites and play back an animation
or two. Fire up a new HTML document called spritesheet_test.html and ill in the code from
Listing 11-3.

LISTING 11-3: Testing the SpriteSheet class

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Sprite Test</title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_sprites.js'></script>
 </head>
 <body>
 <script>
 var Q = Quintus().include('Sprites').setup();
 Q.load(['sprites.png','sprites.json'],function() {
 Q.compileSheets('sprites.png','sprites.json');

 var slowDown = 4,

LISTING 11-2 (continued)

Adding Sprites ❘ 201

 frame1 = 0,
 frame2 = 0;

 Q.gameLoop(function() {
 Q.clear();

 var sheet1 = Q.sheet('man');
 sheet1.draw(Q.ctx,50,50,Math.floor(frame1/slowDown));
 frame1 = (frame1+1) % (sheet1.frames * slowDown);

 var sheet2 = Q.sheet('blob');
 sheet2.draw(Q.ctx,150,50,Math.floor(frame2/slowDown));
 frame2 = (frame2+1) % (sheet2.frames * slowDown);
 });
 });
 </script>
 </body>
</html>

To run the example, ensure that you have an images/ directory with sprites.png and a data/
directory containing sprites.json. You may also need to run the code from a server (or off
localhost) to prevent the browser’s security protections against loading local iles via AJAX (the
sprites.json in this case).

Dissecting the preceding code, you can see it starts off by loading and compiling the sprite sheet.
After that it runs a simple game loop that draws a frame of two different named sprites, looping two
counters—frame1 and frame2—over each of the frames, slowing the code down by a slowDown fac-
tor to keep the animations from playing too fast.

The end result is two animations playing back on the page on the Canvas element.

ADDING SPRITES

With sprite sheets deined, the next task is to create the sprite object. Because sprites are important
to Quintus and games in general, the actual sprite class is most likely going to come as a bit of a sur-
prise: It clocks in at fewer than 40 lines and doesn’t have a lot of built-in functionality. The reason it
doesn’t have all that much going on is that most of the important functionality has already been built
and resides elsewhere: Events are handled by Evented, components are handled by GameObject, and
graphics are handled by assets and SpriteSheet.

This means that all that’s left for the sprite class to do is tie all these pieces together into a single pack-
age. The sprite class built in this chapter will be called Sprite. Chapter 13, “Crafting a CSS3 RPG,”
discusses a DomSprite class which inherits from Sprite that you’ll use when you build a game with
HTML and CSS3.

Writing the Sprite Class

Add the sprite code from Listing 11-4 into the quintus_sprites.js ile before the inal closing
curly brace.

202 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

LISTING 11-4: The Sprite class

 // Properties:
 // x
 // y
 // z - sort order
 // sheet or asset
 // frame
 Q.Sprite = Q.GameObject.extend({
 init: function(props) {
 this.p = _({
 x: 0,
 y: 0,
 z: 0,
 frame: 0,
 type: 0
 }).extend(props||{});
 if((!this.p.w || !this.p.h)) {
 if(this.asset()) {
 this.p.w = this.p.w || this.asset().width;
 this.p.h = this.p.h || this.asset().height;
 } else if(this.sheet()) {
 this.p.w = this.p.w || this.sheet().tilew;
 this.p.h = this.p.h || this.sheet().tileh;
 }
 }
 this.p.id = this.p.id || _.uniqueId();
 },

 asset: function() {
 return Q.asset(this.p.asset);
 },

 sheet: function() {
 return Q.sheet(this.p.sheet);
 },

 draw: function(ctx) {
 if(!ctx) { ctx = Q.ctx; }
 var p = this.p;
 if(p.sheet) {
 this.sheet().draw(ctx, p.x, p.y, p.frame);
 } else if(p.asset) {
 ctx.drawImage(Q.asset(p.asset),
 Math.floor(p.x),
 Math.floor(p.y));
 }
 this.trigger('draw',ctx);
 },

 step: function(dt) {
 this.trigger('step',dt);
 }
 });

Adding Sprites ❘ 203

As you can see, there’s not a whole lot to the base sprite code. This is intentional. The basic sprite
is designed to be as lightweight and minimal as possible, relying on descendant classes and compo-
nents for any speciic functionality.

The longest method is the constructor init method, which ensures that the object has a valid prop-
erties object—p—and grabs the width and height of the object from the asset or SpriteSheet
assigned to the object. It also grabs a globally unique ID from underscore.js to give each sprite
its own unique identiier.

The Sprite class next deines two getter methods—asset and sheet—to pull out an assigned asset
or SpriteSheet if applicable. Again, using a getter method means that descendant classes (or even
components) could override the method.

The draw method is responsible for actually drawing the sprite’s asset onto the Canvas. It has some
conditional code to check for either a single asset or a SpriteSheet and can handle both. The draw
method is a candidate for being overridden by descendant classes that have more complicated or nested
drawing functionality. The method also triggers a draw event in case components need to do any addi-
tional drawing. As with the SpriteSheet, because of different support for subpixel rendering, the draw
method also turns whatever x and y values that are passed in into integers using Math.floor.

The step method is just a stub that triggers a step event for any listening components.

Referencing Sprites, Properties, and Assets

As you saw in Chapter 10, “Bootstrapping the Quintus Engine: Part II,” the engine keeps a hash of
all loaded assets to make them easily and quickly referenced by name. SpriteSheets are similarly
referenced, as you just saw, in the Q.sheets object.

This is done intentionally because the goal is to have sprites refer to the assets and sheets by name
instead of passing around instances of the sheet itself. The reason for this is that it’s a major goal of
Quintus to make sprites serializable, meaning that their current state can be written out to disk and
local storage, or sent over the network to be reconstituted intact on the other end of the network pipe.

For this to work, the engine must make sure that only simple types, such as strings and numbers,
are used as properties and that serializable properties are kept separate from other properties and
methods. You can see that the sprite class keeps a separate properties hash under the property p.
This makes accessing object properties a little more verbose, but it has the added advantage that
any pieces of state are segregated from all the object’s other properties.

Because giving each sprite its own name would get tedious, every sprite is identiied by a unique identi-
ier stored in p.id. This allows other objects to store and pass around objects by their identiiers instead
of by actual references to the objects, making garbage collection and network syncing simpler.

Exercising the Sprite Object

With a Canvas Sprite object in place, it’s time to start a quick sample game to show how the Sprite
class could be used. This chapter builds a simple breakout-style game. You start by adding a paddle
at the bottom of the game that the user can control. Figure 11-1 shows how the game will look at the
end of the chapter.

204 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

FIGURE 11-1: The inal game.

Open the ile called blockbreak.html and put in the boilerplate HTML code in Listing 11-5 to get
a page started. You’ll also need to include the quintus.js and quintus_input.js iles from the
last chapter and the jquery.min.js and underscore.js dependencies.

LISTING 11-5: blockbreak.html boilerplate

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Block Break</title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>
 <script src='blockbreak.js'></script>
 <style>
 body { padding:0px; margin:0px; }
 canvas { background-color:black; }
 </style>
 </head>
 <body>
 </body>
</html>

Next, create the blockbreak.js ile referenced in Listing 11-5 and enter the code in Listing 11-6 to
get a simple paddle up and running. To run the game, you need to run it from a server on localhost
because of the loaded sprite ile. You also need to copy in the blockbreak.png ile from the game

Adding Sprites ❘ 205

assets into images/ and the blockbreak.json ile into data/ subdirectories under the game to
make the assets available.

LISTING 11-6: blockbreak.js

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites')
 .setup();

 Q.input.keyboardControls();
 Q.input.touchControls({
 controls: [['left','<'],[],[],[],['right','>']]
 });

 Q.Paddle = Q.Sprite.extend({
 init: function() {
 this._super({
 sheet: 'paddle',
 speed: 200,
 x: 0
 });
 this.p.x = Q.width/2 - this.p.w/2;
 this.p.y = Q.height - this.p.h;
 if(Q.input.keypad.size) {
 this.p.y -= Q.input.keypad.size + this.p.h;
 }
 },

 step: function(dt) {
 if(Q.inputs['left']) {
 this.p.x -= dt * this.p.speed;
 } else if(Q.inputs['right']) {
 this.p.x += dt * this.p.speed;
 }
 if(this.p.x < 0) {
 this.p.x = 0;
 } else if(this.p.x > Q.width - this.p.w) {
 this.p.x = Q.width - this.p.w;
 }
 this._super(dt);
 }
 });

 Q.Ball = Q.Sprite.extend({
 init: function() {
 this._super({
 sheet: 'ball',
 speed: 200,
 dx: 1,
 dy: -1,
 });
 this.p.y = Q.height / 2 - this.p.h;

continues

206 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

 this.p.x = Q.width / 2 + this.p.w / 2;
 },

 step: function(dt) {
 var p = this.p;

 p.x += p.dx * p.speed * dt;
 p.y += p.dy * p.speed * dt;

 if(p.x < 0) {
 p.x = 0;
 p.dx = 1;
 } else if(p.x > Q.width - p.w) {
 p.dx = -1;
 p.x = Q.width - p.w;
 }

 if(p.y < 0) {
 p.y = 0;
 p.dy = 1;
 } else if(p.y > Q.height - p.h) {
 p.dy = -1;
 p.y = Q.height- p.h;
 }
 this._super(dt);

 }

 });

 Q.load(['blockbreak.png','blockbreak.json'], function() {
 Q.compileSheets('blockbreak.png','blockbreak.json');

 var paddle = new Q.Paddle();
 var ball = new Q.Ball();

 Q.gameLoop(function(dt) {
 Q.clear();

 paddle.step(dt);
 paddle.draw();

 ball.step(dt);
 ball.draw();

 Q.input.drawCanvas();
 });

 });

});

LISTING 11-6 (continued)

Setting the Stage with Scenes ❘ 207

The setup portion and the loading portion of the code should be familiar. Because the game is now
loaded via a separate JavaScript ile and not inline with the document, the entire ile is a wrapper in
a jQuery document-ready callback: $(function() { .. });. Next the game object Q is created and
set up. Because the code is wrapped in a closure, the variable Q is also added to the window object so
that it can be accessible via the console via window.Q in case you want to play around with the game’s
API directly. The game also sets up the default keyboard controls and some custom touchControls
to remove the a and b buttons that aren’t needed in this game.

Next up is the Q.Paddle sprite, which inherits from Sprite. The init method for the sprite calls
the Sprite constructor init with the initial properties of the object, including the name of the
SpriteSheet that will be used to draw the object. The init method does a little bit of calculation
on the x position to center the paddle and the y position of the object because on a desktop com-
puter the paddle can be on the bottom of the page, whereas on a touch device, it should be moved
up to leave room for the keypad controls.

The paddle step method then overrides the default step method inherited from Sprite and uses
the Q.inputs object to determine if the paddle should be moving left or right.

The Q.Ball sprite is also added in. This sprite simply bounces around the game, reversing direction
when it runs into a wall. Currently it doesn’t interact with the paddle. The step method uses the
speed and direction of the ball to update its position each frame.

Finally the game runs the gameLoop, which clears the Canvas, steps, draws the paddle, and then
draws the input elements.

Fire up the example, and you should be able to move the paddle left and right.

SETTING THE STAGE WITH SCENES

Looking at the gameLoop in the example from the last section, it’s easy to see how unwieldy the
code for an actual game could become if each object needed to be individually updated and drawn
on each step. Add in collision detection and suddenly things could get complicated quickly. The
solution, as you saw in the GameBoard object in Chapter 2, “Making It a Game,” is the idea of
an object that manages the updating and drawing of many sprites. Quintus will call this object
a Stage. Quintus will add the additional concept of a Scene object that will be used to set up a
stage object into a particular stage. One use of a Scene would be to make it easy to set up levels
and then switch between levels.

Creating the Quintus.Scenes Module

To start with the scene functionality, Quintus adds a new module called Quintus.Scenes to encom-
pass the Q.Stage and Q.Scene classes. The Q.Scene object is actually going to be incredibly simple.
Its only purpose is to wrap a function that sets up a passed-in stage object.

Q.Stage will be a bit more complicated, but it will look similar to the GameBoard from Chapter 2
with some extra functionality for events.

Create a new JavaScript ile called quintus_scenes.js and put the code from Listing 11-7 in it.

208 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

LISTING 11-7: Scenes functionality

Quintus.Scenes = function(Q) {

 Q.scenes = {};
 Q.stages = [];

 Q.Scene = Class.extend({
 init: function(sceneFunc,opts) {
 this.opts = opts || {};
 this.sceneFunc = sceneFunc;
 }
 });

 // Set up or return a new scene
 Q.scene = function(name,sceneObj) {
 if(!sceneObj) {
 return Q.scenes[name];
 } else {
 Q.scenes[name] = sceneObj;
 return sceneObj;
 }
 };
};

The scene functionality is concise. It consists of a class called Q.Scene that has a simple purpose:
Capture a callback method and an optional options hash. Next it has a Q.scene method that acts as
both a getter (when passed one argument) and setter method (when passed two arguments).

The idea behind the scene functionality is that you want a self-contained way to set up a level or section
of your game, and putting in a self-contained method makes it easy to swap between different scenes.

Writing the Stage Class

The Q.Stage class is responsible for keeping track of a list of sprites and letting them update and
render themselves. It’s a good bit beeier than the Q.Scene class but does a lot more as well. Much
of the code should look familiar to the class from Chapter 2.

Add the deinition of the Stage class from Listing 11-8 to the bottom of the Quintus.Scenes module
before the inal closing curly braces.

LISTING 11-8: The Overlap method and Stage class

 Q.overlap = function(o1,o2) {
 return !((o1.p.y+o1.p.h-1<o2.p.y) || (o1.p.y>o2.p.y+o2.p.h-1) ||
 (o1.p.x+o1.p.w-1<o2.p.x) || (o1.p.x>o2.p.x+o2.p.w-1));
 };

 Q.Stage = Q.GameObject.extend({
 // Should know whether or not the stage is paused
 defaults: {

Setting the Stage with Scenes ❘ 209

 sort: false
 },

 init: function(scene) {
 this.scene = scene;
 this.items = [];
 this.index = {};
 this.removeList = [];
 if(scene) {
 this.options = _(this.defaults).clone();
 _(this.options).extend(scene.opts);
 scene.sceneFunc(this);
 }
 if(this.options.sort && !_.isFunction(this.options.sort)) {
 this.options.sort = function(a,b) { return a.p.z - b.p.z; };
 }
 },

 each: function(callback) {
 for(var i=0,len=this.items.length;i<len;i++) {
 callback.call(this.items[i],arguments[1],arguments[2]);
 }
 },

 eachInvoke: function(funcName) {
 for(var i=0,len=this.items.length;i<len;i++) {
 this.items[i][funcName].call(
 this.items[i],arguments[1],arguments[2]
);
 }
 },

 detect: function(func) {
 for(var i = 0,val=null, len=this.items.length; i < len; i++) {
 if(func.call(this.items[i],arguments[1],arguments[2])) {
 return this.items[i];
 }
 }
 return false;
 },

 insert: function(itm) {
 this.items.push(itm);
 itm.parent = this;
 if(itm.p) {
 this.index[itm.p.id] = itm;
 }
 this.trigger('inserted',itm);
 itm.trigger('inserted',this);
 return itm;
 },

 remove: function(itm) {
 this.removeList.push(itm);

continues

210 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

 },

 forceRemove: function(itm) {
 var idx = _(this.items).indexOf(itm);
 if(idx != -1) {
 this.items.splice(idx,1);
 if(itm.destroy) itm.destroy();
 if(itm.p.id) {
 delete this.index[itm.p.id];
 }
 this.trigger('removed',itm);
 }
 },

 pause: function() {
 this.paused = true;
 },

 unpause: function() {
 this.paused = false;
 },

 _hitTest: function(obj,type) {
 if(obj != this) {
 var col = (!type || this.p.type & type) && Q.overlap(obj,this);
 return col ? this : false;
 }
 },

 collide: function(obj,type) {
 return this.detect(this._hitTest,obj,type);
 },

 step:function(dt) {
 if(this.paused) { return false; }

 this.trigger("prestep",dt);
 this.eachInvoke("step",dt);
 this.trigger("step",dt);

 if(this.removeList.length > 0) {
 for(var i=0,len=this.removeList.length;i<len;i++) {
 this.forceRemove(this.removeList[i]);
 }
 this.removeList.length = 0;
 }
 },

 draw: function(ctx) {
 if(this.options.sort) {
 this.items.sort(this.options.sort);
 }
 this.trigger("predraw",ctx);

LISTING 11-8 (continued)

Setting the Stage with Scenes ❘ 211

 this.eachInvoke("draw",ctx);
 this.trigger("draw",ctx);
 }
 });

The Q.Stage object inherits from the Q.GameObject, as you might expect, allowing it to bind and
trigger events as well as add additional behaviors via components. The init method sets up the initial
properties on the object and executes the scene method if a scene object were passed in. The Quintus
stage object also supports the idea of z order, allowing objects to be sorted prior to rendering.

The three following methods—each, eachInvoke, and detect—are the same as the ones described
in Chapter 2. They exist as helper methods to make it easier to perform operations on the items list.
The difference between each and eachInvoke is that the former takes an actual callback method,
whereas the latter calls a method stored as a property on the object. You’ll notice each of these
methods calls the Function.call method with exactly two parameters instead of Function.apply,
which could support any number of parameters passed as an array. The reason for this is that to call
Function.apply a new array object needs to be created, which is something that any good HTML5
Engine should try to avoid wherever possible for methods that are called frequently to limit the stut-
ters caused by the garbage collector.

NOTE As an HTML5 game programmer, you have only one real enemy: the
garbage collector. JavaScript is a garbage-collected language, which means that
the developer doesn’t need to worry about allocating and freeing memory. The
downside to this, however, is that at certain intervals JavaScript needs to clean up
no-longer-used pieces of memory itself by running a garbage collector. The collector
can take some time to run, sometimes more than 100ms, leading to a notice-
able stutter in gameplay. The goal of any JavaScript engine should be to create as
few objects as possible over the course of a normal frame and save the creation of
objects for situations where real game objects like sprites need to be created.

The functionality for adding and removing objects also works the same as in Chapter 2, with the add,
remove, and forceRemove methods performing the same tasks as before with only the addition of a call
to the object’s destroy method and some triggered events. There is also an additional index on the id
of the object. If you remember the Q.GameObject code from Chapter 10, the destroy method also calls
remove, which could lead to an ininite recursive loop. This is the reason you added the GameObject
.destroyed property, which allows you to remove an object by calling GameObject.destroy() or
Stage.remove(object) and have the engine behave correctly either way.

To make it easier to look up objects on the stage by their id, the stage object keeps both the sorted
items’ array as well as an object that is used as a hash to key objects to their ids.

The collision methods are also similar to what you saw in Chapter 2. The overlap method has been
pulled out and is placed as a method directly on Q primarily to make it easier to reach for scoping
reasons. The primary method for doing bounding box collisions—Stage.collide—calls a helper
method called _hitTest that uses the Q.collide method. The deinition for _hitTest could have
been embedded as an anonymous function directly inside of Q.collide, but this would have led to
the function deinition being parsed on every call, slowing down the engine slightly and adding to
the garbage that needs to be collected.

212 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

Finally, the step and draw methods loop over each of the objects in the list and call the appropriate
method on each as well as trigger events before and after. The draw method also calls the optional
sort function to make sure objects are drawn in the correct z order.

Rounding Out the Scene Functionality

The last bit of code needed for scenes are some helper methods for staging, clearing, pausing, unpaus-
ing, and looping the game. These utility methods are added directly onto the Q object instance.

Add the code in Listing 11-9 to the bottom of the Quintus.Scenes module before the inal closing
curly brace.

LISTING 11-9: Scene and stage utility methods

 Q.activeStage = 0;

 Q.stage = function(num) {
 // Use activeStage is num is undefined
 num = (num === void 0) ? Q.activeStage : num;
 return Q.stages[num];
 };

 Q.stageScene = function(scene,num,stageClass) {
 stageClass = stageClass || Q.Stage;
 if(_(scene).isString()) {
 scene = Q.scene(scene);
 }

 num = num || 0;

 if(Q.stages[num]) {
 Q.stages[num].destroy();
 }

 Q.stages[num] = new stageClass(scene);

 if(!Q.loop) {
 Q.gameLoop(Q.stageGameLoop);
 }
 };

 Q.stageGameLoop = function(dt) {
 if(Q.ctx) { Q.clear(); }

 for(var i =0,len=Q.stages.length;i<len;i++) {
 Q.activeStage = i;
 var stage = Q.stage();
 if(stage) {
 stage.step(dt);
 stage.draw(Q.ctx);
 }

Setting the Stage with Scenes ❘ 213

 }

 Q.activeStage = 0;

 if(Q.input && Q.ctx) { Q.input.drawCanvas(Q.ctx); }
 };

 Q.clearStage = function(num) {
 if(Q.stages[num]) {
 Q.stages[num].destroy();
 Q.stages[num] = null;
 }
 };

 Q.clearStages = function() {
 for(var i=0,len=Q.stages.length;i<len;i++) {
 if(Q.stages[i]) { Q.stages[i].destroy(); }
 }
 Q.stages.length = 0;
 };

Much like Q.scene, the Q.stage helper method returns a speciic stage. It has a little bit of added
complication in that the engine keeps track of an activeStage, which represents the stage currently
stepped and drawn so that it can be referenced more easily by sprites and other parts of the engine.

Unlike Q.scene, which worked as both a getter and a setter, to add a new stage to the game, the
engine provides a different method, called Q.stageScene, to take a scene and present it on a stage.
This method can be called with anywhere from 0 to 3 parameters. In the irst case, when no param-
eters are passed, the method creates a new, empty stage on at the irst slot. When passed all three
parameters, the developer has control over the scene to be staged: the stage slot used and the stage
class. Because Q.Stage is a normal, extensible class, it stands to reason the module that would want
to extend the default stage functionality (such as adding in more advanced collision detection algo-
rithms) can do so and call Q.stageScene with that stage class.

The actual code of Q.stageScene is straightforward. It looks up a scene object if a string is passed
in, destroys the existing stage at that slot if there is one, and then creates a new stage object at the
proper slot. Finally, it checks to see if the game loop has already been started; if not, it runs the loop
with a special Q.stageGameLoop method (deined next) that ensures all the active steps are updated
and rendered for each scene. This means the irst time you call Q.stageScene the engine takes care
of starting the appropriate game loop automatically.

The Q.stageGameLoop method, which is passed to Q.gameLoop as just described, clears the context,
if there is one, and then loops over each of the stages in the Q.stages array (which may not have
values at each index, so care is needed to ensure there is a valid stage object at any index). It then
calls the step and draw methods of each stage, setting the Q.activeStage property so that any
sprites on that stage can call Q.stage() to get the currently active stage object because they will
need to for collision detection, for example.

214 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

NOTE You might be wondering why the engine spends extra effort on supporting
multiple stages active at a time when one stage can happily support as many objects
as necessary. Although there are other reasons, the primary reason is to make it easy
to add layered game interface screens on top of the current game. If you were devel-
oping an RPG, for example, you would want to easily pop up an inventory screen
on top of the game screen and pause the game. By adding a little bit of engine sup-
port for both of these features, the engine makes life much easier down the road for
this sort of functionality without adding too much complexity to the engine.

FINISHING BLOCKBREAK

With the rest of the scene functionality hammered out, you can inish up the Blockbreak game.
First, you need to open the blockbreak.html ile and add in the quintus_scenes.js ile you just
created to the initial script tags:

 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>
 <script src='quintus_scenes.js'></script>
 <script src='blockbreak.js'></script>

Next the initial setup code must pull in the Scenes module. Update the include call at the top of
blockbreak.js to read:

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes')
 .setup();
 Q.input.keyboardControls()
 Q.input.touchControls({
 controls: [['left','<'],[],[],[],['right','>']]
 });

Next modify the code inside of the Q.load callback at the bottom of the ile that starts the game to
use the scene and stage functionality:

 Q.load(['blockbreak.png','blockbreak.json'], function() {
 Q.compileSheets('blockbreak.png','blockbreak.json');
 Q.scene('game',new Q.Scene(function(stage) {
 stage.insert(new Q.Paddle());
 stage.insert(new Q.Ball());
 }));
 Q.stageScene('game');
 });

You can see the actual code is shortened to a scene deinition and the staging of that scene. Resetting
the game is now as simple as calling Q.stageScene('game'). Reload the game page and make sure
everything still works exactly as before.

Finishing Blockbreak ❘ 215

With the boilerplate changes out of the way, the irst thing to do is add in support for collisions
between the ball and anything else it might come into contact with. In the deinition of the Q.Ball
in blockbreak.js, add some collision detection code to the top and some code to reset the game if
the ball goes below the bottom of the screen. To keep the code simple, Blockbreak will have only
one level and you get only one life.

 step: function(dt) {
 var p = this.p;
 var hit = Q.stage().collide(this);
 if(hit) {
 if(hit instanceof Q.Paddle) {
 p.dy = -1;
 } else {
 hit.trigger('collision',this);
 }
 }

 p.x += p.dx * p.speed * dt;
 p.y += p.dy * p.speed * dt;

 if(p.x < 0) {
 p.x = 0;
 p.dx = 1;
 } else if(p.x > Q.width - p.w) {
 p.dx = -1;
 p.x = Q.width - p.w;
 }
 if(p.y < 0) {
 p.y = 0;
 p.dy = 1;
 } else if(p.y > Q.height) {
 Q.stageScene('game');
 }
 }

This makes it so that the paddle interacts with the ball. The game starts over if you miss the ball and let
it go off the bottom of the screen. Although chasing a ball around an empty screen is probably more fun
than you can handle, now add to the excitement some actual blocks.

The block class isn’t going to be anything special. The only explicit functionality it’s going to have is
some extra code when the ball triggers a collision. Add the code in Listing 11-10 to blockbreak.js
above the Q.load statement:

LISTING 11-10: The Blockbreak Q.Block class

 Q.Block = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).extend({ sheet: 'block'}));
 this.bind('collision',function(ball) {
 this.destroy();
 ball.p.dy *= -1;

continues

216 ❘ CHAPTER 11 Bootstrapping the Quintus engine: part iii

 Q.stage().trigger('removeBlock');
 });
 }
 });

If you look at the changes made to the Q.Ball class a couple of snippets ago, you can notice the ball
is already triggering a collision callback when it hits anything that’s not the paddle. The block
object listens for that collision callback, removes itself, and lips the direction the ball was heading
vertically. It also triggers an event called removeBlock on the stage.

Next you need to modify the actual loading code at the bottom of blockbreak.js to add some
blocks onto the screen and do something when all the blocks have been destroyed. That something
is going to be the simple act of resetting the game back to start. Modify the following highlighted
code to inish up Blockbreak:

Q.load(['blockbreak.png','blockbreak.json'], function() {
 Q.compileSheets('blockbreak.png','blockbreak.json');
 Q.scene('game',new Q.Scene(function(stage) {
 stage.add(new Q.Paddle());
 stage.add(new Q.Ball());

 var blockCount=0;
 for(var x=0;x<6;x++) {
 for(var y=0;y<5;y++) {
 stage.insert(new Q.Block({ x: x*50+10, y: y*30+10 }));
 blockCount++;
 }
 }
 stage.bind('removeBlock',function() {
 blockCount--;
 if(blockCount == 0) {
 Q.stageScene('game');
 }
 });
 }));

 Q.stageScene('game');
 });

Notice the use of the variable blockCount to keep track of the number of blocks still left to destroy.
To set up the blocks, the scene method loops over the x and y dimensions with some hardcoded val-
ues and adds those elements onto the page. When it receives a removeBlock event, it counts down
until there are no more blocks left and then unceremoniously restarts the game.

That’s about as far as this book is going to take the Blockbreak game because its primary purpose
was to be an example of how to build a game with the scene and sprite functionality—and clocking
in at just under 100 lines of code, the game does its job. To be a complete game, it still would have a
while to go: The collision detection doesn’t take into consideration side impacts; the paddle position

LISTING 11-10 (continued)

Summary ❘ 217

doesn’t control the bounce; and the game has no lives, no points, and no welcome or game-over
screens. Some power-ups wouldn’t hurt either, but all that is left as an exercise for you.

SUMMARY

You have now completed the initial Quintus functionality, adding in sprites, sprite maps, scenes,
and the stage. The engine is now complete enough to be used to build a Canvas game, as was shown
in the simple Blockbreak game built at the end of the chapter. As you’ll see in the next few chapters,
with a few more extensions, the engine will be capable of building CSS3 and SVG games.

PART IV

Building Games with CSS3 and SVG

 ⊲ CHAPTER 12: Building Games with CSS3

 ⊲ CHAPTER 13: Crafting a CSS3 RPG

 ⊲ CHAPTER 14: Building Games with SVG and Physics

Building Games with CSS3

WHAT’S IN THIS CHAPTER?

 ➤ Deciding on using a scene graph

 ➤ Adding DOM functionality to Quintus

 ➤ Running a DOM-based version of the sample game

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 12
download and individually named according to the names throughout the chapter.

INTRODUCTION

This chapter takes a detour from the use of Canvas to build games to show how to create
games with CSS3 using DOM elements and still get good performance on mobile. This chapter
adds DOM support to the Quintus engine. The next chapter builds on the functionality from
this chapter to build the beginnings of a simple nethack-style dungeon crawler.

DECIDING ON A SCENE GRAPH

Before delving into how to build games with CSS3, this question should be answered irst:
When does it make sense to build a game with each of the three available HTML5-family
technologies—Canvas, CSS3, and SVG? The answer is that the technology to use depends
heavily on three factors: your target audience and devices, your interaction method, and your
performance requirements.

12

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

222 ❘ CHAPTER 12 Building gaMes With Css3

Your Target Audience

For the irst factor, target audience, you should be aware that Canvas and SVG are natively sup-
ported only on IE9 and above on the desktop, meaning that if you want to target older IE brows-
ers, those technologies are both out. Conversely, the Canvas element is hardware-accelerated on
mobile only in iOS 5 and up, Chrome for Android, and WP7.5. Older smartphones cannot push a
lot of pixels (full-screen redraws are probably out at any reasonable Canvas resolutions) so if you
target those devices, you need to consider your choice of technology carefully.

Your Interaction Method

The type of game and the interaction method required should drive your decision on technology. The
<canvas> tag, in all its glory, does not natively provide a scene graph. A scene graph is a hierarchical
representation of the state of each element in the current scene. For CSS3 (DOM) and SVG, you have
nested sets of elements that have discrete representations that you can modify (by changing the left or
top position of a DOM element, for example). For Canvas, all you have is a bunch of pixels on the page.

Say you draw a car and you want to move the car. With CSS3 or SVG, you could pick up the car
object as represented in the scene graph and move it by changing its transform, or left and top,
CSS property. Wherever you move it to, it will stay until you move it again. If the car had child
objects that were wheels, those would automatically move along with the car.

For the Canvas you have only a representation of the car as drawn on the Canvas as a bunch of pixels.
If you tried to move it, you’d just end up moving some pixels from one spot to another on the Canvas.
To move the car, you need to either clear the Canvas and redraw everything in its proper new position,
or erase the car by drawing the background and then drawing the car in a different spot. If your car has
wheels that move, you need to draw the car and then its wheels each time the wheels rotate. Although
the Canvas gives you control over every last pixel you draw in your game, it requires more work by the
developer or game engine.

Scene graphs have another advantage. Because the scene graph knows about the positions of elements,
the browser can handle touch and mouse events and route the event to the correct object. With Canvas
games you need to write the logic to do picking and target speciic objects.

All this discussion of scene graphs means is that if you have a game that’s going to work via
direct interaction—in other words by having the user interact directly with elements on the
screen—using a technology that has a scene graph can make your life easier. For example, a
poker game where the user clicks and possibly drags cards would beneit from a scene graph. An
action game where the controls are just a left and right arrow and a jump button would not.

Your Performance Requirements

The last consideration is performance. As mentioned previously, the type of game you build and its
performance needs inluence your technology decision. CSS3 and SVG tend to perform better on more
devices providing you aren’t moving too many individual elements at a time. If you are moving only a
few elements at any given time, CSS3 in particular has hardware-accelerated support for transitions.

Implementing DOM Support ❘ 223

With hardware acceleration, objects will move smoothly at a high frame rate without your needing to
worry about animating them yourself.

On the lip side, for a fast-scrolling platformer, hardware-accelerated Canvas generally performs
better on the browsers that support it than using CSS3.

IMPLEMENTING DOM SUPPORT

Quintus can add DOM support to the engine via a module called Quintus.DOM. This module creates
DOM-based equivalents of the Sprite and Stage classes called, perhaps not surprisingly, DOMSprite
and DOMStage. The setup method can also have a DOM-based equivalent called setupDOM.

Considering DOM Speciics

At an API level, the Quintus DOM classes behave much like their Canvas counterparts. On the
inside, however, because the DOM provides a persistent scene graph, the classes behave quite differ-
ently. The step method of DOMStage still steps though each sprite, but the DOMSprite step method
has the additional duty to update the element that represents the sprite on the document. Because
the browser takes care of actually drawing the element, the draw method consists of nothing but a
trigger call.

Sprites will be added to the page as <div> elements of set width and height with a background
image adjusted using an offset position calculated by the element’s sprite map. Changing the frame
consists of moving the background position around.

Next the sprites need to be positioned. Although this might at irst glance seem to be as easy as using
the traditional left and top CSS properties along with absolute positioning, to get the best perfor-
mance you must use the new CSS3 transform property, which beneits from hardware-accelerated
rendering.

Because the transform property comes with the usual host of vendor-speciic preixes, the engine
looks at what’s supported in the browser and generates a single method for positioning that falls
back to left and top support if necessary.

Finally there’s the issue of animation. Manually animating a bunch of DOM elements every frame
can certainly be done, but at a large scale it gets quite taxing on the browser, especially on mobile.
Luckily CSS3 has support for animation baked in via transitions and key frame animations. In this
case using transitions makes a lot of sense because the game can update an object’s state once and
count on the browser to transition the property from one spot to another.

CSS3 transitions are unfortunately in the same vendor-preix quagmire as transforms, so you need
a method to detect the best way to add support to all browsers as well.

Bootstrapping the Quintus DOM Module

Start the Quintus.DOM module by opening a new ile called quintus_dom.js and entering the code
from Listing 12.1 into it.

224 ❘ CHAPTER 12 Building gaMes With Css3

LISTING 12.1: Bootstrapped Quintus DOM module

Quintus.DOM = function(Q) {
 Q.setupDOM = function(id,options) {
 options = options || {};
 id = id || "quintus";
 Q.el = $(_.isString(id) ? "#" + id : id);
 if(Q.el.length === 0) {
 Q.el = $("<div>")
 .attr('id',id)
 .css({width: 320, height:420 })
 .appendTo("body");
 }
 if(options.maximize) {
 var w = $(window).width();
 var h = $(window).height();
 Q.el.css({width:w,height:h});
 }
 Q.wrapper = Q.el
 .wrap("<div id='" + id + "_container'/>")
 .parent()
 .css({ width: Q.el.width(),
 height: Q.el.height(),
 margin: '0 auto' });
 Q.el.css({ position:'relative', overflow: 'hidden' });
 Q.width = Q.el.width();
 Q.height = Q.el.height();
 setTimeout(function() { window.scrollTo(0,1); }, 0);
 $(window).bind('orientationchange',function() {
 setTimeout(function() { window.scrollTo(0,1); }, 0);
 });
 return Q;
 };
};

This code creates the initial module wrapper method and also creates the setupDOM method. This
is the counterpart to Q.setup() for Canvas-based games. It either uses an existing DOM element
or creates a new one to be a wrapper for the game. If the maximize option is passed in, the method
resizes the container to it the screen. Next, it creates a wrapper container around that element to cen-
ter it on the page. It also sets the element to be positioned to allow elements inside it to be positioned
absolutely as necessary, and it sets the overlow property to hidden to prevent any elements in the
game from appearing outside of the game container.

Creating a Consistent Translation Method

Before adding in the DOMSprite and DOMStage classes to actually get something onto the screen, the
issue to get a consistent positioning method needs to be solved.

The idea is to ind the best-performing method the browser in question supports and then bind that
to a consistent method name so that the rest of the DOM support doesn’t need to know how exactly
elements are positioned. CSS3 deines support for the transform property, which depending on the
browser supports translate(..) and translate3d(..) values that can move elements around

Implementing DOM Support ❘ 225

more eficiently than using the traditional left and top properties. translate3d in particular
results in hardware-accelerated transforms being applied to DOM elements.

NOTE The downside to using transforms is that none of the transform properties
are guaranteed to be vendor-preix free, so each of the vendor preixes needs to be
considered when trying to ind support for the best positioning method available.
If translate3d isn’t supported, translate will be used; otherwise plain old top
and left positioning will be done.

The code is irst going to check if CSS3 transform support is available, and if it is, check if
translate3d (which triggers hardware-accelerated support in WebKit) is available. If so, a
method called translate3DBuilder is called that returns another method that is customized
to the proper preix. JavaScript makes it easy to create methods that return methods through the
power of closures. The translate3d isn’t supported; translateBuilder is called to return a
method that does non-3d transforms.

Add the code in Listing 12-2 to the bottom of quintus_dom.js before the inal closing curly brace.

LISTING 12-2: Checking for translation support

 (function() {
 function translateBuilder(attribute) {
 return function(dom,x,y) {
 dom.style[attribute] =
 "translate(" + Math.floor(x) + "px," +
 Math.floor(y) + "px)";
 };
 }
 function translate3DBuilder(attribute) {
 return function(dom,x,y) {
 dom.style[attribute] =
 "translate3d(" + Math.floor(x) + "px," +
 Math.floor(y) + "px,0px)";
 };
 }
 function scaleBuilder(attribute) {
 return function(dom,scale) {
 dom.style[attribute + 'Origin'] = "0% 0%";
 dom.style[attribute] = "scale(" + scale + ")";
 };
 }
 function fallbackTranslate(dom,x,y) {
 dom.style.left = x + "px";
 dom.style.top = y + "px";
 }
 var has3d = ('WebKitCSSMatrix' in window &&
 'm11' in new WebKitCSSMatrix());
 var dummyStyle = $("<div>")[0].style;
 var transformMethods = ['transform',

continues

226 ❘ CHAPTER 12 Building gaMes With Css3

 'webkitTransform',
 'MozTransform',
 'msTransform'];
 for(var i=0;i<transformMethods.length;i++) {
 var transformName = transformMethods[i];
 if(!_.isUndefined(dummyStyle[transformName])) {
 if(has3d) {
 Q.positionDOM = translate3DBuilder(transformName);
 } else {
 Q.positionDOM = translateBuilder(transformName);
 }
 Q.scaleDOM = scaleBuilder(transformName);
 break;
 }
 }
 Q.positionDOM = Q.positionDOM || fallbackTranslate;
 Q.scaleDOM = Q.scaleDOM || function(scale) {};
 })();

To keep the functions from polluting the main Quintus.DOM namespace, notice the entire expression
is wrapped in an immediately invoked functional expression (IIFE). This enables the entire bit of
code to result in only two deinitions being added to Q: Q.positionDOM and Q.scaleDOM.

The irst part of the listing consists of three methods that return methods. This is a relatively tricky
concept to understand if you haven’t seen it a lot before, so take a deeper look at one of those methods:

 function translateBuilder(attribute) {
 return function(dom,x,y) {
 dom.style[attribute] =
 "translate(" + Math.floor(x) + "px," +
 Math.floor(y) + "px)";
 };
 }

Notice that the entirety of translateBuilder consists of a return statement that returns a
function. The function returned uses the attribute parameter passed into the original method.
This is allowed in JavaScript because the language supports closures, which bind the deinition
of function to the scope in which they were originally deined. The returned method can be used
anywhere in the code base at a later point and can keep track of the previously bound value of
the attribute when it is called.

After the deinition of the various binding methods, the code creates a <div> element and checks
the style attributes of that element for preixed transform support of each of the different vendor
preixes.

It also does a WebKit-speciic check for 3-D support. If you want a more general check for
translate3d, take a look at Modernizr. Because most mobile browsers are WebKit-based, the
WebKit-speciic check gets you a signiicant amount of mileage.

The code also creates a Q.scaleDOM method, which is used to perform a scale transform. Because
there isn’t a 3-D equivalent necessary for this, the creation of the scale method is simpler.

LISTING 12-2 (continued)

Implementing DOM Support ❘ 227

Creating a Consistent Transition Method

Having created a consistent way to translate DOM elements as eficiently as possible for performance,
you need to do the whole thing over again to create an easy way to add transition support for browsers
that support it.

Add the code in Listing 12-3 at the bottom of quintus_dom.js above the inal closing curly brace.

LISTING 12-3: Checking for transition support

 (function() {
 function transitionBuilder(attribute,prefix){
 return function(dom,property,sec,easing) {
 easing = easing || "";
 if(property == 'transform') {
 property = prefix + property;
 }
 sec = sec || "1s";
 dom.style[attribute] = property + " " + sec + " " + easing;
 };
 }
 // Dummy method
 function fallbackTransition() { }
 var dummyStyle = $("<div>")[0].style;
 var transitionMethods = ['transition',
 'webkitTransition',
 'MozTransition',
 'msTransition'];
 var prefixNames = ['', '-webkit-', '-moz-', '-ms-'];
 for(var i=0;i<transitionMethods.length;i++) {
 var transitionName = transitionMethods[i];
 var prefixName = prefixNames[i];
 if(!_.isUndefined(dummyStyle[transitionName])) {
 Q.transitionDOM = transitionBuilder(transitionName,prefixName);
 break;
 }
 }
 Q.transitionDOM = Q.transitionDOM || fallbackTransition;
 })();

This block follows the same pattern as the code in the previous section except its goal is to create a
method that lets the developer add a transition on a property in a consistent manner. In this case, if
there isn’t built-in support, the fallback is to just do nothing. The game still runs as expected, but all
transitions are instant instead of animated.

Implementing a DOM Sprite

Next up is the DOM equivalent of the Canvas Sprite class. This class actually extends the base
Q.Sprite class. (So the Quintus.DOM module must be loaded after the Quintus.Sprites module.)

228 ❘ CHAPTER 12 Building gaMes With Css3

As mentioned previously, the primary difference between a DOM and Canvas sprite is that a DOM
sprite doesn’t need to worry about drawing itself, but it does need to make sure it keeps the proper-
ties of the DOM element in sync with itself.

Add the code in Listing 12-4 to the bottom of quintus_dom.js before the inal closing curly-brace.

LISTING 12-4: The DOMSprite class

 Q.DOMSprite = Q.Sprite.extend({
 init: function(props) {
 this._super(props);
 this.el = $("<div>").css({
 width: this.p.w,
 height: this.p.h,
 zIndex: this.p.z || 0,
 position: 'absolute'
 });
 this.dom = this.el[0];
 this.rp = {};
 this.setImage();
 this.setTransform();
 },

 setImage: function() {
 var asset;
 if(this.sheet()) {
 asset = Q.asset(this.sheet().asset);
 } else {
 asset = this.asset();
 }
 if(asset) {
 this.dom.style.backgroundImage = "url(" + asset.src + ")";
 }
 },

 setTransform: function() {
 var p = this.p;
 var rp = this.rp;
 if(rp.frame !== p.frame) {
 if(p.sheet) {
 this.dom.style.backgroundPosition =
 (-this.sheet().fx(p.frame)) + "px " +
 (-this.sheet().fy(p.frame)) + "px";
 } else {
 this.dom.style.backgroundPosition = "0px 0px";
 }
 rp.frame = p.frame;
 }
 if(rp.x !== p.x || rp.y !== p.y) {
 Q.positionDOM(this.dom,p.x,p.y);
 rp.x = p.x;
 rp.y = p.y;
 }

Implementing DOM Support ❘ 229

 },

 hide: function() {
 this.dom.style.display = 'none';
 },

 show: function() {
 this.dom.style.display = 'block';
 },

 draw: function(ctx) {
 this.trigger('draw');
 },

 step: function(dt) {
 this.trigger('step',dt);
 this.setTransform();
 },

 destroy: function() {
 if(this.destroyed) return false;
 this._super();
 this.el.remove();
 }
 });

The init method has the responsibility to create the actual DOM <div> that contains the back-
ground image. It uses jQuery to create the <div> and sets the dimensions and zIndex on the object.
Using jQuery adds a little bit of overhead to any DOM operation, so for operations that will poten-
tially be done each frame, the method also grabs the actual DOM object and stores it in this.dom.

Next, it creates an object called rp, which stores the real properties of the DOM as they have been
set. Making changes to DOM objects is relatively expensive performance-wise, so in lieu of updat-
ing those properties in each frame, the sprite’s step method compares its properties hash p against
the values in rp and only updates the DOM object when there is a discrepancy. Finally, the init
method calls this.setImage(), which sets the backgroundImage on the div, and setTransform(),
which sets the element’s position in the container as well as the background image position (which
corresponds to the frame of the sprite map).

The setImage method is straightforward because all it does is set the backgroundImage property
by grabbing it from the spritesheet or from the asset.

setTransform is more complicated. You can see it checks for a difference in the frame, and x and y
properties between the p and rp objects as described. If the frame needs to be updated, it calculates
the position using either the spritesheet helper methods fx and fy or just sets the position to 0 if
there isn’t a spritesheet attached to the Sprite.

For the position, the Q.positionDOM method created earlier is used to set the position in whatever
best way is supported by the browser.

Because the rp object is initialized to the empty object, the irst time setTransform is run. The frame
and position are guaranteed to be set.

230 ❘ CHAPTER 12 Building gaMes With Css3

The show and hide methods adjust the display property of the element to either none or block,
which results in the element either being hidden or visible on the page, respectively.

The draw method is just a stub that triggers a draw event because the browser takes care of actually
drawing the object. The step similarly triggers the step event, but it also calls setTransform after-
ward in case any of the positioned attributes are modiied.

Lastly, the destroy method needs to clean up the DOM object and its internal record keeping, so
it calls the jQuery remove() method to remove the element from the page after letting the inherited
method do its work.

The Q.DOMSprite class now has a compatible interface to Q.Sprite. However, if you try to use
the standard Q.Stage object to keep track of DOMSprites, you’ll be seriously disappointed because
nothing actually appears on the screen.

Creating a DOM Stage Class

For DOMSprite objects to work correctly, they need to be added to a stage object that has its own
container DOM element and knows how to add DOM elements on to the page. Because the CSS scal-
ing tricks that were possible using the <canvas> tag aren’t possible with DOM elements, the engine
must use a different mechanism for scaling up content when necessary. Luckily, the same transform
CSS3 style used to translate content also supports the scale value. To make it easier to keep scaling
and translating separated on the stage object (the stage follows the player in the example in the next
chapter), the DOMStage class creates a separate wrapper element used for scaling the view.

Because the Sprite and Stage functionality are stored in different modules, the DOMStage class puts
in a check in case someone tries to build a game with DOMSprites but does not use the scene and
stage module.

Add the code from Listing 12-5 to the bottom of the quintus_dom.js ile in the usual spot before
the inal closing curly-brace. This rounds out the basic DOM sprite functionality.

LISTING 12-5: DOMStage class

 if(Q.Stage) {
 Q.DOMStage = Q.Stage.extend({
 init: function(scene) {
 this.el = $("<div>").css({
 top:0,
 position:'relative'
 }).appendTo(Q.el);
 this.dom = this.el[0];
 this.wrapper = this.el.wrap('<div>').parent().css({
 position:'absolute',
 left:0,
 top:0
 });
 this.scale = 1;
 this.wrapper_dom = this.wrapper[0];
 this._super(scene);

Implementing DOM Support ❘ 231

 },

 insert: function(itm) {
 if(itm.dom) { this.dom.appendChild(itm.dom); };
 return this._super(itm);
 },

 destroy: function() {
 this.wrapper.remove();
 this._super();
 },

 rescale: function(scale) {
 this.scale = scale;
 Q.scaleDOM(this.wrapper_dom,scale);
 },

 centerOn: function(x,y) {
 this.x = Q.width/2/this.scale - x;
 this.y = Q.height/2/this.scale - y;
 Q.positionDOM(this.dom,this.x,this.y);
 }
 });
 }

The Q.DOMStage class extends the basic Canvas stage class, so all the methods in the normal
Q.Stage class, including pausing and unpausing are available. The init method has the task to
create the DOM element that acts as a container and the wrapper element that will be used for
scaling the container up and down. After that it just calls the init method of the inherited class
to take care of the rest.

The insert and destroy methods similarly call the corresponding method of the super class. In
addition, insert appends the DOM element of the Sprite being added to the container element of
the stage. The destroy method also makes sure the wrapper element is removed from the page,
which removes all the child elements with it.

The rescale method is new. It uses the Q.scaleDOM method created earlier in the chapter to rescale
the wrapper. This will be used the same way the Canvas was scaled with CSS in earlier chapters to
ill the screen on larger devices such as tablets. The centerOn method repositions the stage, taking
into consideration the current scale and will be used as a camera to follow the player around.

Replacing the Canvas Equivalents

With Q.setupDOM and the Q.DOMSprite and Q.DOMStage classes written, the basic functionality is
done. However, using the DOM equivalents is a little cumbersome. For example, to stage a scene
using the Q.DOMStage class, you need to override the stageClass and write

 Q.stageScene(sceneObj,0,Q.DOMStage)

instead of simply

 Q.stageScene(sceneObj);

232 ❘ CHAPTER 12 Building gaMes With Css3

If you write a DOM-based game, this adds some unnecessary noise to the code, so to keep the code
simpler, add a method that replaces Canvas-based methods and classes with their DOM-based
equivalents. You can call this method before setup to make it easier to work with DOM games.

Add the code in Listing 12-6 to the usual spot at the bottom of quintus_dom.js.

LISTING 12-6: The Q.domOnly method

 Q.domOnly = function() {
 Q.Stage = Q.DOMStage;
 Q.setup = Q.setupDOM;
 Q.Sprite = Q.DOMSprite;
 return Q;
 };

Chaining in this call to the beginning of a game’s setup makes it easier to convert a game from
Canvas to DOM.

Testing the DOM Functionality

Before delving into building a CSS3 nethack-style game, try out the DOM functionality by converting
the simple Blockbreak game from the previous chapter into a DOM-based one.

Open up your blockbreak.html from the previous chapter (or copy the code over to a new directory)
and add a <script> tag to load the quintus_dom.js ile you just wrote. You’ll also need to change
the style tag to reference #quintus instead of just the canvas element:

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Block Break</title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>
 <script src='quintus_scenes.js'></script>
 <script src='quintus_dom.js'></script>
 <script src='blockbreak.js'></script>
 <style>
 body { padding:0px; margin:0px; }
 #quintus { background-color:black; }
 </style>
 </head>
 <body>
 </body>
</html>

Summary ❘ 233

Next, open up the blockbreak.js ile and modify the initial setup calls to include the DOM module
and chain in a call to domOnly().

 $(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,DOM')
 .domOnly()
 .setup();
 Q.input.keyboardControls()

Because the domOnly() method replaces all the Canvas classes with their DOM-based equivalents,
no other changes to the code need to be made.

Fire up the game in a browser. You’ll need to run it off of localhost as usual, as it loads JSON data.

You should see the same game as in the previous chapter, with the exception of the movement controls
on the bottom of the screen on mobile. The hotspots for controlling the paddle still work but because
no code has been written to display the buttons, nothing appears on the screen on mobile.

If you inspect the page in Chrome, you can notice that all the blocks along with the paddle and ball
are actual DOM elements. You now have an HTML5 game that runs in IE6!

SUMMARY

In this chapter you learned how to build games using DOM elements by using performance-optimized
transforms and transitions. You also added DOM element support to the Quintus engine and con-
verted the Blockbreak example to a DOM-based game with just a few lines of code.

Crafting a CSS3 RPG

WHAT’S IN THIS CHAPTER?

 ➤ Creating a scrolling tilemap

 ➤ Building an RPG

 ➤ Adding enemies and power-ups

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 13
download and individually named according to the names throughout the chapter.

INTRODUCTION

This chapter exercises the DOM-based code from Chapter 12 to build a simple a nethack-style
RPG. This game requires tiled background support, so the engine also adds a class in the next
section called DOMTileMap, which is designed just for that purpose.

CREATING A SCROLLING TILE MAP

To build a nethack-style game, the engine needs to add a 2-D tile map to the game in an efi-
cient manner. One naive way to do this would be to just add an absolutely positioned sprite at
each position. This does work; however, as the map gets larger, it slows the browser down to a
crawl. Instead, you want to create a single large sprite that can be moved around as a unit and
treated like a single element.

13

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

236 ❘ CHAPTER 13 CraFting a Css3 rpg

Understanding the Performance Problem

If you take a medium-sized map that might be 50 tiles tall by 50 tiles wide, this would result in 2,500
sprites, each of which needs to be stepped every frame. In addition, every time you make a modiica-
tion to an element, the browser needs to repaint the container, resulting in a signiicant slowdown
in frame rate from constantly updating. If you don’t create a more eficient mechanism of collision
detection than looping over every potential object, then every moving sprite would need to be tested
in each iteration. All this would lead to exceedingly small map sizes or horrible performance.

A better plan of attack would be to create a single tile map sprite that contains all the tiles and that
can be stepped and moved around as a single entity. Because the individual tiles aren’t moving, col-
lision detection is as simple as dividing a position by the size of each tile to get a tile position and
checking that one location.

Implementing the DOM Tile Map Class

For all these reasons the engine adds in a class called Q.DOMTileMap, which encapsulates all
this functionality. The individual levels of the RPG extend this class to add additional game-
specific functionality.

Each tile in the tile map is added as a loated DOM element to increase browser performance.
Provided the width and height of the containing <div> is set correctly, all the loated elements will
end up in the right spot visually.

To prevent the user from seeing the entire dungeon at once, the tile map also supports showing and
hiding individual tiles. (The player reveals the tiles of the level as they move.) Because setting the
display method to none would result in all the loated tiles shifting, the class instead just toggles
the visibility property of the element. As every time the browser reaches in and affects the DOM
there is a performance penalty, the tile map class keeps track of which tiles are shown and hidden
in a data structure and changes only the DOM element when absolutely necessary.

Listing 13-1 shows the code for the Q.DOMTileMap class. Add it to the bottom of quintus_dom.js
in the usual spot before the inal closing curly-brace.

LISTING 13-1: The DOMTileMap class

 Q.DOMTileMap = Q.DOMSprite.extend({
 // Expects a sprite sheet, along with cols and rows properties
 init:function(props) {
 var sheet = Q.sheet(props.sheet);
 this._super(_(props).extend({
 w: props.cols * sheet.tilew,
 h: props.rows * sheet.tileh,
 tilew: sheet.tilew,
 tileh: sheet.tileh
 }));
 this.shown = [];
 this.domTiles = [];

Creating a Scrolling Tile Map ❘ 237

 },

 setImage: function() { },

 setup: function(tiles,hide) {
 this.tiles = tiles;
 for(var y=0,height=tiles.length;y<height;y++) {
 this.domTiles.push([]);
 this.shown.push([]);
 for(var x=0,width=tiles[0].length;x<width;x++) {
 var domTile = this._addTile(tiles[y][x]);
 if(hide) { domTile.style.visibility = 'hidden'; }
 this.shown.push(hide ? false : true);
 this.domTiles[y].push(domTile);
 }
 }
 },

 _addTile: function(frame) {
 var p = this.p;
 var div = document.createElement('div');
 div.style.width = p.tilew + "px";
 div.style.height = p.tileh + "px";
 div.style.styleFloat = div.style.cssFloat = 'left';
 this._setTile(div,frame);
 this.dom.appendChild(div);
 return div;
 },

 _setTile: function(dom,frame) {
 var asset = Q.asset(this.sheet().asset);
 dom.style.backgroundImage = "url(" + asset.src + ")";
 dom.style.backgroundPosition = (-this.sheet().fx(frame)) +"px "
 + (-this.sheet().fy(frame)) + "px";
 },

 validTile: function(x,y) {
 return (y >= 0 && y < this.p.rows) &&
 (x >= 0 && x < this.p.cols);
 },

 get: function(x,y) { return this.validTile(x,y) ?
 this.tiles[y][x] : null; },

 getDom: function(x,y) { return this.validTile(x,y) ?
 this.domTiles[y][x] : null; },
 set: function(x,y,frame) {
 if(!this.validTile(x,y)) return;
 this.tiles[y][x] = frame;
 var domTile = this.getDom(x,y);
 this._setFile(domTile,frame);
 },

 show: function(x,y) {
 if(!this.validTile(x,y)) return;

continues

238 ❘ CHAPTER 13 CraFting a Css3 rpg

 if(this.shown[y][x]) return;
 this.getDom(x,y).style.visibility = 'visible';
 this.shown[y][x] = true;
 },

 hide: function(x,y) {
 if(!this.validTile(x,y)) return;
 if(!this.shown[y][x]) return;
 this.getDom(x,y).style.visibility = 'hidden';
 this.shown[y][x] = false;
 }
 });

This class is a little complicated so break it down into three chunks. The irst part, the init method,
sets up the tile map's properties:

 Q.DOMTileMap = Q.DOMSprite.extend({
 init:function(props) {
 var sheet = Q.sheet(props.sheet);
 this._super(_(props).extend({
 w: props.cols * sheet.tilew,
 h: props.rows * sheet.tileh,
 tilew: sheet.tilew,
 tileh: sheet.tileh
 }));
 this.shown = [];
 this.domTiles = [];
 },
 setImage: function() { },

init pulls out the spritesheet and the number of rows, columns, and tiles from the passed-in prop-
erties and uses that to calculate the width and height of the sprite. It calls the this._super()
method to let the DOMSprite class inish the initialization and creation of the actual DOM element.
The init method of DOMSprite also calls setImage to set a background image on the sprite, but
because the DOMTileMap element doesn’t need a background image, this method is overridden to be
an empty stub method.

Next are the three methods used to take a 2-D array of tile frames and create the tile map:

 setup: function(tiles,hide) {
 this.tiles = tiles;
 for(var y=0,height=tiles.length;y<height;y++) {
 this.domTiles.push([]);
 this.shown.push([]);
 for(var x=0,width=tiles[0].length;x<width;x++) {
 var domTile = this._addTile(tiles[y][x]);
 if(hide) { domTile.style.visibility = 'hidden'; }
 this.shown.push(hide ? false : true);
 this.domTiles[y].push(domTile);
 }
 }

LISTING 13-1 (continued)

Creating a Scrolling Tile Map ❘ 239

 },

 _addTile: function(frame) {
 var p = this.p;
 var div = document.createElement('div');
 div.style.width = p.tilew + "px";
 div.style.height = p.tileh + "px";
 div.style.styleFloat = div.style.cssFloat = 'left';
 this._setTile(div,frame);
 this.dom.appendChild(div);
 return div;
 },

 _setTile: function(dom,frame) {
 var asset = Q.asset(this.sheet().asset);
 dom.style.backgroundImage = "url(" + asset.src + ")";
 dom.style.backgroundPosition = (-this.sheet().fx(frame)) +"px " +
 (-this.sheet().fy(frame)) + "px";
 },

The setup method takes in the 2-D array, creates the DOM element by calling the internal helper
method _addTile, and updates the domTiles and shown arrays with the appropriate values. The
domTiles array contains a 2-D array that matches the tiles array, except it points to the actual
DOM elements so that they can be manipulated. The shown array is a 2-D array of booleans that
keeps track of which tiles are visible and which are hidden.

The _addTile method takes in a frame and returns the DOM element set to that frame. Because lots of
DOM elements are going to be created, the engine uses the native document.createElement method
as opposed to the usual jQuery method to get a little speed advantage where possible. Setting the float
property is also a little tricky because different browsers refer to it differently when it’s accessed via
JavaScript. Rather than try to determine which way is correct, the method takes the shortcut of just
setting both options. It also calls _setTile as a shortcut to set the background image and background
image position correctly based on the frame.

The last section of the class retrieves and updates the tiles in the tile map:

 validTile: function(x,y) {
 return (y >= 0 && y < this.p.rows) &&
 (x >= 0 && x < this.p.cols);
 },
 get: function(x,y) { return this.validTile(x,y) ?
 this.tiles[y][x] : null; },
 getDom: function(x,y) { return this.validTile(x,y) ?
 this.domTiles[y][x] : null; },
 set: function(x,y,frame) {
 var domTile = this.getDom(x,y);
 if(!domTile) return;
 this.tiles[y][x] = frame;
 this._setFile(domTile,frame);
 },

 show: function(x,y) {
 var domTile = this.getDom(x,y);
 if(!domTile) return;
 if(this.shown[y][x]) return;

240 ❘ CHAPTER 13 CraFting a Css3 rpg

 domTile.style.visibility = 'visible';
 this.shown[y][x] = true;
 },

 hide: function(x,y) {
 var domTile = this.getDom(x,y);
 if(!domTile) return;
 if(!this.shown[y][x]) return;
 domTile.style.visibility = 'hidden';
 this.shown[y][x] = false;
 }

To keep the individual game code simpler, when a game calls any of the preceding tile manipulation
routines, the engine should fail silently if an invalid tile location is passed in. This allows the game
to try to hide or show tiles outside of the map without needing to do bounds checking. To facilitate
this, the validTile checks a passed in x and y location against the range of rows and columns
passed in and returns false if the elements are out of bounds.

This method is used by the get and getDOM methods to prevent indexing incorrectly into the tiles
or domTiles array and causing an exception. The set method lets the game update the frame at a
speciic tile. This can be used to do animation or change the state of the tile map (for example, when
a door opens). The show and hide methods toggle the visibility of an individual square.

BUILDING THE RPG

With all the pieces in place, it’s time to turn your attention to actually building the RPG that graces
the title of the chapter. The basic game plan is to load a text ile that contains an ASCII map of a
level, with monsters and loot strewn about in various places, and turn that into a tile map and a set
of sprites for the player to interact with.

Creating the HTML File

The irst step, as usual, is to create the necessary HTML wrapper ile to hold the game. Create a
new ile called rpg.html and enter the code from Listing 13-2 into it.

LISTING 13-2: The RPG wrapper ile

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>
 <title>RPG</title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>

Building the RPG ❘ 241

 <script src='quintus_scenes.js'></script>
 <script src='quintus_dom.js'></script>
 <script src='rpg.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 #quintus { background-color:black; }
 </style>
 </head>
 <body>
 </body>
</html>

As before, this ile is almost completely empty except for a few reset styles and the script tags to load
the game.

Setting Up the Game

To start the game, set up a basic structure for the game that sets up the window and loads some art
assets.

Rather than reinvent the wheel for a nethack (also known as rogue-like) tileset, some friendly folks
on the Internet have released public domain tilesets that you can use to build the game: http://
rltiles.sourceforge.net/.

The RPG in this chapter uses three of the iles from RLTiles to get up and running. These tiles need
a little bit of background removal work to it nicely into the game, but otherwise they should work
well. The images/ directory of this chapter’s iles have the images set up as needed. Each of the
images has a large set of 32-pixel by 32-pixel images. This game isn’t going to put much of the tile
set to good use, but rather is just going to pull random enemy and item images for visual effect.

With these three iles in hand, it’s time to bootstrap the game. Create the rpg.js ile that was men-
tioned in the preceding HTML wrapper ile and put in the boilerplate code in Listing 13-3. You also
need a level data text ile called level1.txt in a data/ subfolder of your game to run. Right now it
doesn’t matter what is in the ile: You can copy the one from the chapter assets or just create your
own and save an empty ile.

LISTING 13-3: Bootstrapping the RPG

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,DOM')
 .domOnly()
 .setup('quintus',{ maximize: true });
 var tileSize = 32;
 var TILE = {
 WALL: 10,
 FLOOR: 30,
 STAIRS: 45
 };
 var impassableTiles = {
 10: true

continues

http://rltiles.sourceforge.net/
http://rltiles.sourceforge.net/

242 ❘ CHAPTER 13 CraFting a Css3 rpg

 };
 Q.input.keyboardControls();
 Q.input.joypadControls({zone: Q.width});
 Q.load(['characters.png',
 'dungeon.png',
 'items.png',
 'level1.txt'], function() {

 Q.sheet('characters', 'characters.png',
 { tilew: tileSize, tileh: tileSize });

 Q.sheet('tiles', 'dungeon.png',
 { tilew: tileSize, tileh: tileSize });

 Q.sheet('items', 'items.png',
 { tilew: tileSize, tileh: tileSize });

 Q.scene('level1',new Q.Scene(function(stage) {
 if(Q.width > 600 || Q.height > 600) {
 stage.rescale(2);
 }
 alert("Loaded!");

 }));
 Q.stageScene('level1');
 });
});

The code sets up the Q object, sets a couple of global variables you’ll use later, and then sets up the
default keyboard controls and a full-width joypad.

Next, the code loads four assets—three images and a level data text ile—and sets up three
spritesheets after those are loaded.

Next, it creates a new scene called level1. Right now that scene doesn’t do much except rescale
the game if the width or height of the browser is greater than 600. This allows the iPad and desktop
browser to get a zoomed-in view of the game. (For browsers that support transforms, older browsers
see everything smaller.)

Finally, the game calls Q.stageScene("level1") to load that irst scene into the game. If everything
goes according to plan, you should get an alert on the page that says “Loaded.”

Adding a Tile Map

It’s time to get tiles onto the board. To do this the game subclasses the DOMTileMap class to create
a class that can take in the level data text ile asset and turn it into something the DOMTileMap class
can use.

To make it easy to create levels, the level format will be an ASCII ile where Xs represent walls and
periods (.) represent corridors and rooms. Additional sprites such as monsters and treasures will be

LISTING 13-3 (continued)

Building the RPG ❘ 243

demarked by other letters. The game can igure out the width and height of the map from the data.
See Figure 13-1 for an example of what a level might look like.

FIGURE 13-1: Level text ile.

Open up rpg.js again, and add the Q.Level class deined in Listing 13-14 to the ile above the
Q.load method.

LISTING 13-4: The Q.Level class

 Q.Level = Q.DOMTileMap.extend({
 legend: {
 "X": "wall",
 ".": "floor"
 },

 init:function(asset,stage) {
 this.stage = stage;
 this.level = [];
 this.sprites = [];
 var data = Q.asset(asset);
 this.extra = [];
 _.each(data.split("\n"),function(row) {
 var columns = row.split("");
 if(columns.length > 1) {
 this.level.push(columns);
 this.sprites.push([]);
 }
 },this);

 this._super({
 cols:this.level[0].length,
 rows:this.level.length,
 sheet: 'tiles'

continues

244 ❘ CHAPTER 13 CraFting a Css3 rpg

 });

 var tiles =[];
 for(var y=0;y<this.level.length;y++) {
 tiles[y] = [];
 for(var x =0;x<this.level[0].length;x++) {
 var square = this.level[y][x],
 frame = null,
 method = this.legend[square] || "wall";

 frame = this[method](x*tileSize,y*tileSize);
 tiles[y].push(frame);
 }
 }
 this.setup(tiles,false);
 },

 insert: function(sprite) {
 this.stage.insert(sprite);
 this.sprites[sprite.p.tileY][sprite.p.tileX] = sprite;
 return sprite;
 },

 wall: function(x,y) { return TILE.WALL; },
 floor: function(x,y) { return TILE.FLOOR; }
 });

Now the class primarily modiies the init method to take in an asset and a stage and set up the
tile map by looking up what it should do with each tile in the legend property. Currently, only
two tile types are supported, floor and wall; each just controls the look of the tile. You’ll add
functionality to keep track of the sprites at each tile location, so in anticipation of that functional-
ity the this.sprites array is created with the same number of rows as the main tile data. It also
has a helper method for inserting sprites into the stage that adds them to the this.sprites array.

To test this out, remove the alert and modify the code inside of the Q.scene deinition for the
level1 scene to read:

Q.scene('level1',new Q.Scene(function(stage) {
 if(Q.width > 600 || Q.height > 600) {
 stage.rescale(2);
 }
 stage.level = stage.insert(
 new Q.Level("level1.txt",stage)
);
 }));
 Q.stageScene('level1');

If you load up the game, you should see your level rendered onto the screen. Because the level1.txt
ile loads via AJAX, you must ensure you load the page via localhost, not using a ile:// URL.

LISTING 13-4 (continued)

Building the RPG ❘ 245

Creating Some Useful Components

Sprites in a tiled environment need to behave differently than sprites in a 2-D platformer might.
They should move in tileSize increments around the board, avoid running over walls and each
other, and keep the level sprites array up-to-date as they wander around the dungeon.

It would be nice to encapsulate this functionality in a reusable way. One way would be to create a
TileSprite base class from which all sprites would inherit, but this might prove cumbersome if you
want to reuse sprites from other places. Another way to handle this is to create a component that
adds tile-aware positioning and movement to any sprite. You’ll take the latter option.

This component hooks into the step event and looks at a sprite’s dx and dy properties (short for
direction x and direction y) to see if the sprite tries to move in any direction. If it does, it checks to
make sure that there aren’t any other tiles or sprites in the way; if not it moves the sprite. If there is
another sprite in the way, it can let the sprite know it ran into something by triggering an event and
passing the sprite with which it collided.

Open up rpg.js again and add the tiled component as deined in Listing 13-5 above the deinition
for Q.Level.

LISTING 13-5: The tiled component

 Q.register('tiled', {
 added:function() {
 var p = this.entity.p;
 _(p).extend({
 wait: 0,
 delay: 0.15,
 tileX: Math.floor(p.x / tileSize),
 tileY: Math.floor(p.y / tileSize),
 dx: 0,
 dy: 0
 });
 this.direction = {};
 this.entity.bind('step',this,'move');
 this.entity.bind('removed',this,'removed');
 },

 move: function(dt) {
 var p =this.entity.p,
 stage = this.entity.parent;

 if(p.wait <= 0) {
 var destX = p.tileX, destY = p.tileY;

 if(p.attacking) {
 this.entity.trigger('attack',this.direction);
 } else if(p.dx || p.dy) {
 if(p.dx > 0) { destX += 1; }
 else if(p.dx < 0) { destX -= 1 };

continues

246 ❘ CHAPTER 13 CraFting a Css3 rpg

 if(p.dy > 0) { destY += 1; }
 else if(p.dy < 0) { destY -= 1; }

 if(!impassableTiles[stage.level.get(destX,destY)]) {
 var sprite = stage.level.sprites[destY][destX];
 this.direction.dx = destX - p.tileX;
 this.direction.dy = destY - p.tileY;
 this.direction.sprite = sprite;
 if(!sprite) {
 this.moved(destX,destY);
 this.setPosition();
 p.wait = p.delay;
 } else {
 p.wait = p.delay * 2;
 }
 this.entity.trigger(sprite ? 'hit' : 'moved',
 this.direction);
 }
 }
 } else {
 p.wait -= dt;
 }
 },
 setPosition: function() {
 var p =this.entity.p;
 p.x = p.tileX * tileSize;
 p.y = p.tileY * tileSize;
 },
 moved: function(destX,destY) {
 var stage = this.entity.parent;
 var p =this.entity.p;
 stage.level.sprites[p.tileY][p.tileX] = null;
 p.tileX = destX;
 p.tileY = destY;
 stage.level.sprites[p.tileY][p.tileX] = this.entity;
 },
 removed: function() {
 var stage = this.entity.parent;
 var p =this.entity.p;
 stage.level.sprites[p.tileY][p.tileX] = null;
 }
 });

This is one of the irst signiicant components for Quintus that has been used in the book, so it’s
worth taking an in-depth look at what this component does.

The initial added() method, if you remember, is called when the component is initially added to
a game object. As is often the case, this method does two main things: extend the properties hash
of the game object and bind to some object events. Here the component adds in some properties to
get the current tile location, movement delay, and movement direction. Next, it binds to the step
and removed events.

LISTING 13-5 (continued)

Building the RPG ❘ 247

The step event handler, which corresponds to the move method is the most complicated one. It has the
responsibility to move the object if it’s not waiting between steps. (This is tracked in the wait property.) It
also checks for an attacking property that is used for timing when attacking another object.

Finally, the main check determines a destination x and y location, checks if there are any impassable tiles
in the way, and then checks if there is a sprite in the way. If there is no sprite, the object is moved using
two helper methods—moved and setPosition—and the delay is reset to prevent the object from moving
too quickly. If not, the delay is reset and the sprite is added to the direction object. Finally, either a hit or
a moved event is triggered, passing in the data in the direction object.

The direction object is the event object passed with every triggered event. It is reused from call to
call to save on memory.

The helper method setPosition is used to update the x and y location of the object based in the
tile location. The method moved keeps the level’s sprites array in sync to make it easy to check for
collisions at the tile level.

While you’re in the component creation mood, you need to add another quick component called
transition to the codebase. Add the code in Listing 13-6 below the deinition of the tiled
component.

LISTING 13-6: The transition component

 Q.register('transition', {
 added: function() {
 Q.transitionDOM(this.entity.dom,'transform','0.25s');
 }
 });

This simple component just adds transition support on the transform to allow smooth movement
when objects are moved an entire tile.

The next component, which you should add directly below the transition component, is a camera
component to track the user around the level. This is done simply by binding to the player’s moved
event and telling the stage to center on the player when it moves, as shown in Listing 13-7.

LISTING 13-7: The camera component

 Q.register('camera', {
 added: function() {
 this.entity.bind('moved',this,'track');
 },
 track: function() {
 var p = this.entity.p,
 stage = this.entity.parent;
 stage.centerOn(p.x, p.y);
 }
 });

248 ❘ CHAPTER 13 CraFting a Css3 rpg

The component can grab the stage from the entity, which has it as a parent, and then simply call the
centerOn method to adjust the view.

Finally, the last component needs to grab user input. You can add this below the camera component
deinition. This component, called player_input, simply looks at the inputs and sets the p.dx and
p.dy variables (used previously in the tiled component) to indicate the direction the player is trying
to move. This component is listed in Listing 13-8.

LISTING 13-8: The player input component

 Q.register('player_input', {
 added: function() {
 this.entity.bind('step',this,'input');
 },
 input: function() {
 var p = this.entity.p;
 if(Q.inputs['left']) { p.dx = -1 }
 else if(Q.inputs['right']) { p.dx = 1;}
 else { p.dx = 0;}
 if(Q.inputs['up']) { p.dy = -1 }
 else if(Q.inputs['down']) { p.dy = 1;}
 else { p.dy = 0;}
 }
 });

Because the input system is abstracted away, the player_input component doesn’t need to worry
about where the input is coming from, whether it is the joypad or keyboard.

Adding in the Player

With all these components in place, up next is adding in a player class. This player class will represent
the player as they move around the game and encapsulate all their functionality. All you need to do
is subclass the Q.Sprite class, set some basic properties in the constructor, and add the components
that were built in the last section.

Add the Q.Player class, as shown in Listing 13-9, below the components deined previously.

LISTING 13-9: The Player class

 Q.Player = Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 sheet: 'characters',
 frame: 65,
 wait: 0,
 z: 10,
 attack: 5,
 health: 40,
 maxHealth: 40,
 gold: 0,

Building the RPG ❘ 249

 xp: 0
 }).extend(props));
 this.add('player_input, tiled, camera, transition');
 }
 });

The player deines a number of initial properties that won’t be used immediately, such as health,
maxHealth, gold, and xp, but these will be used later in the chapter. As you can see, however, using
components makes it easy to add reusable chunks of functionality to sprites without creating a deep
class hierarchy.

To get a player on the screen, add the player to the stage in the level1 scene at the bottom of the ile,
and while you’re there, add the transition component to the stage as well, so the stage can track the
player smoothly.

 Q.scene('level1',new Q.Scene(function(stage) {
 if(Q.width > 600 || Q.height > 600) {
 stage.rescale(2);
 }
 stage.level = stage.insert(
 new Q.Level("level1.txt",stage)
);
 stage.add('transition');
 var player = stage.insert(new Q.Player({ x: 1 * tileSize,
 y: 1 * tileSize }));
 player.camera.track();
 player.bind('removed',stage,function() {
 Q.stageScene('level1');
 });
 }));
 Q.stageScene('level1');

With these pieces in place, you should load the rpg.html ile and have the player move around the
stage in response to the keyboard arrow keys or the joypad. (The joypad won’t actually be visible,
but the player character will respond if you drag your inger around.)

Adding Fog, Enemies, and Loot

Wandering around an empty dungeon isn’t a lot of fun for anyone but the most risk adverse adven-
turer. To make things more interesting, it’s time to add in some enemies to battle with and some loot
to pick up.

The irst step is to add a sprite class for each of the different types of objects that are needed. In this
case three different types of objects are created:

 ➤ Enemies for the player to attack

 ➤ Loot for the player to pick up

 ➤ A health fountain for the player to replenish their health

Each of these is a short sprite class that has an interact method that can dictate how the object
interacts with the player.

250 ❘ CHAPTER 13 CraFting a Css3 rpg

Add the three sprite types to rpg.js below the Q.Player class, as shown in Listing 13-10.

LISTING 13-10: The Enemy, Fountain and Loot classes

 Q.Enemy = Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 sheet: 'characters',
 z: 10,
 health: 10,
 maxHealth: 10,
 damage: 5,
 xp: 100
 }).extend(props));
 this.add('tiled, transition');
 this.bind('interact',this,'interact');
 this.hide();
 },

 interact: function(data) {
 this.p.health -= data.damage;
 if(this.p.health <= 0) {
 this.destroy();
 data.source.trigger('xp',this.p.xp);
 } else {
 var damage = Math.round(Math.random() * this.p.damage);
 data.source.trigger('interact',
 { source: this, damage: damage });
 }
 this.trigger('health',this);
 }
 });

 Q.Fountain= Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 sheet: 'tiles',
 frame: 71,
 z: 10,
 power: 10
 }).extend(props));
 this.add('tiled');
 this.bind('interact',this,'interact');
 this.hide();
 },

 interact: function(data) {
 data.source.trigger('heal',{ amount: this.p.power });
 }
 });

 Q.Loot = Q.Sprite.extend({
 init: function(props) {

Building the RPG ❘ 251

 this._super(_({
 sheet: 'items',
 frame: Math.floor(Math.random() * 30 * 9) + 150,
 z: 10,
 gold: Math.floor(Math.random() * 100)
 }).extend(props));
 this.add('tiled');
 this.bind('interact',this,'interact');
 this.hide();
 },
 interact: function(data) {
 data.source.trigger('gold',this.p.gold);
 this.destroy();
 }
 });

In each case the sprite consists of an init constructor function that sets up the object’s properties
and binds to the aforementioned interact method. Because each of the sprites are also selectively
unhidden when the player is near, each is also hidden at the start.

The interact method for each of the elements is where the interesting behavior occurs. In the case of
the Q.Enemy class, the user is viewed to be attacking the enemy when they interact. (This seems rea-
sonable. Do you normally ask enemies for directions?) The method reduces the enemy’s health by the
passed-in amount and either dies a quick death or attacks the player. If the enemy dies, it triggers an
xp (experience point) event on the player, which could be used to level-up the player. The attack also
triggers a health event on the enemy, which is used in the next section to update a health bar.

The interact method for the Q.Fountain class calls a heal method on the player to restore some
amount of health to the player. Finally, the Q.Loot class triggers a gold event on the player.

By binding to an event in each case rather than calling a speciic method on the destination, the source
and recipient are uncoupled, meaning that one doesn’t need to know anything about the other and that
interdependencies are reduced. It also means that components can easily hook into the system to add
additional functionality to the core sprite behaviors.

For the player to interact with other elements, the class needs to be extended to handle collision and
attack events. It also needs an interact method to handle when it is attacked by an enemy.

Modify the Q.Player class to match the code in Listing 13-11.

LISTING 13-11: The modiied player sprite

 Q.Player = Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 sheet: 'characters',
 frame: 65,
 wait: 0,
 z: 10,
 attack: 5,
 health: 40,
 maxHealth: 40,

continues

252 ❘ CHAPTER 13 CraFting a Css3 rpg

 gold: 0,
 xp: 0
 }).extend(props));
 this.add('player_input, tiled, camera, transition');
 this.bind('hit',this,'collision');
 this.bind('attack',this,'attack');
 this.bind('interact',this,'interact');
 this.bind('heal',this,'heal');
 },

 collision: function(data) {
 this.p.x += data.dx * tileSize/2;
 this.p.y += data.dy * tileSize/2;
 this.p.attacking = true;
 },

 attack: function(data) {
 var damage = Math.round(Math.random() * this.p.attack);
 data.sprite.trigger('interact',
 { source: this, damage: damage });
 this.p.attacking = false;
 this.tiled.setPosition();
 },

 interact: function(data) {
 this.p.health -= data.damage;
 if(this.p.health <= 0) {
 this.destroy();
 }
 this.trigger('health');
 },

 heal: function(data) {
 this.p.health += data.amount;
 if(this.p.health > this.p.maxHealth) {
 this.p.health = this.p.maxHealth;
 }
 this.trigger('health');
 }
 });

The Player is sent an initial collision event when it runs into a sprite. (This is handled by the tiled
component earlier.) It reacts to that event by moving half the distance into the square in question
and setting the attacking property to true. The tiled component then sends an attack event a
short time later. Receiving this, the Player calculates a random amount of damage based on their
attack property and sends the interact event to whatever it ran into. If it’s an enemy, that enemy
absorbs the damage and either dies or returns the attack, triggering an interact event on the player.

The heal method does the reverse and increases the players’ health by a set amount. In the case of
both heal and interact, a health event ires off for later to use to indicate that the player’s health
has been changed.

LISTING 13-11 (continued)

Building the RPG ❘ 253

Extending the Tile Map with Sprites

With the player class updated and the additional sprite classes created, all that’s left is to update the
Q.Level class to add sprites onto the board where necessary. In addition, the viewport for large
browsers is currently too large and allows the player to see too much of the dungeon. A better option
would be to narrow down the viewport so that map tiles are exposed only when the player is near
them. If you remember, the Q.DOMTileMap class had an option to turn on and off the visibility of indi-
vidual tiles, and that can now be used to slowly expose the dungeon as the player goes through it.

To get the additional sprites into the tile map, the legend Q.Level class needs to be extended to
point to the new creator methods for the different types of tiles. These new methods, in addition
to returning the appropriate tile, each insert an object into the stage. Add the code highlighted in
Listing 13-12 to the Q.Level class.

LISTING 13-12: The inal Level class

 Q.Level = Q.DOMTileMap.extend({
 legend: {
 "X": "wall",
 ".": "floor",
 "m": "monster",
 "f": "fountain",
 "d": "door",
 "g": "gold",
 "s": "stairs"
 },
 init:function(asset,stage) {
 this.stage = stage;
 this.level = [];
 this.sprites = [];
 var data = Q.asset(asset);
 this.extra = [];
 _.each(data.split("\n"),function(row) {
 var columns = row.split("");
 if(columns.length > 1) {
 this.level.push(columns);
 this.sprites.push([]);
 }
 },this);

 this._super({
 cols:this.level[0].length,
 rows:this.level.length,
 sheet: 'tiles'
 })

 var tiles =[];
 for(var y=0;y<this.level.length;y++) {
 tiles[y] = [];
 for(var x =0;x<this.level[0].length;x++) {
 var square = this.level[y][x],

continues

254 ❘ CHAPTER 13 CraFting a Css3 rpg

 frame = null,
 method = this.legend[square] || "wall";

 frame = this[method](x*tileSize,y*tileSize);
 tiles[y].push(frame);
 }
 }
 this.setup(tiles,true);
 },

 insert: function(sprite) {
 this.stage.insert(sprite);
 this.sprites[sprite.p.tileY][sprite.p.tileX] = sprite;
 return sprite;
 },

 unfog: function(x,y) {
 for(var sx=x-2,ex=x+2;sx<=ex;sx++) {
 for(var sy=y-2,ey=y+2;sy<=ey;sy++) {
 this.show(sx,sy);
 if(this.validTile(sx,sy) && this.sprites[sy][sx]) {
 this.sprites[sy][sx].show();
 }
 }
 }
 },
 wall: function(x,y) { return TILE.WALL; },

 floor: function(x,y) { return TILE.FLOOR; },

 stairs: function(x,y) {
 this.startX = x;
 this.startY = y;
 return TILE.STAIRS;
 },

 gold: function(x,y) {
 this.insert(new Q.Loot({ x:x, y:y }));
 return TILE.FLOOR;
 },

 fountain: function(x,y) {
 this.insert(new Q.Fountain({ x:x, y:y }));
 return TILE.FLOOR;
 },

 monster: function(x,y) {
 var frame = Math.floor(Math.random()*64);
 this.insert(new Q.Enemy({ x:x, y:y, frame:frame }));
 return TILE.FLOOR;
 }

 });

LISTING 13-12 (continued)

Building the RPG ❘ 255

Although the code is long, each of the sprite methods is the same. It just creates a sprite of the wanted
type, adds it to the stage, and then returns the loor tile that should be underneath the sprite. The
stairs sprite is special because it marks the place where the player should start the level, and that
starting position is stored in the startX and startY properties.

The unfog method also deserves a mention. Its job is to take a square of tiles and sprites around
the player and make them visible by unhiding them as the play approaches. This allows the level
to be slowly exposed as the player moves around. This method needs to be triggered in the camera
component for it to work, so add the highlighted line to that component:

Q.register('camera', {
 added: function() {
 this.entity.bind('moved',this,'track');
 },
 track: function() {
 var p = this.entity.p,
 stage = this.entity.parent;
 stage.centerOn(p.x, p.y);
 stage.level.unfog(p.tileX,p.tileY);
 }
 });

Next, the spot where the player is created needs to be updated to use the level’s startX and startY
position. Modify the level1 scene creation method to read

 Q.scene('level1',new Q.Scene(function(stage) {
 if(Q.width > 600 || Q.height > 600) {
 stage.rescale(2);
 }
 stage.level = stage.insert(new Q.Level("level1.txt",stage));
 stage.add('transition');
 var player = stage.insert(new Q.Player({ x: stage.level.startX ,
 y: stage.level.startY }));
 player.camera.track();
 player.bind('removed',stage,function() {
 Q.stageScene('level1');
 });
 }));

With those two changes, you can now wander around the dungeon attacking random monsters and
picking up loot. Although this works, there’s a major problem because you cannot tell how much
health each of the enemies has left or how much gold and experience points (xp) you picked up. The
next section remedies this issue as the game wraps up.

Adding a Health Bar and HUD

To wrap up the simple RPG, add in some visual feedback for how much health enemies have left and
how the player is doing in terms of health, gold, and xp.

One of the nice things about building a DOM game is that it’s easy to add new persistent elements
onto the game. For the case of the health bar that you are about to add, a simple set of CSS rectangles
should do the trick.

256 ❘ CHAPTER 13 CraFting a Css3 rpg

To make the health bar reusable, it’s going to be created as a component that can be added to sprites
and updated by listening to the health events that the sprites have strewn about.

Add the healthbar component in Listing 13-13 to the spot in rpg.js where the rest of the compo-
nents are located, below the deinition for the player_input component.

LISTING 13-13: The healthbar component

 Q.register('healthbar', {
 added: function() {
 this.entity.bind('health',this,'update');

 this.bg = $("<div>").appendTo(this.entity.dom).css({
 width: "100%",
 height: 5,
 position: 'absolute',
 bottom: -6,
 left: 0,
 backgroundColor: "#000",
 border: "1px solid #999"
 }).hide();

 this.bar = $("<div>").appendTo(this.entity.dom).css({
 width: "100%",
 height: 5,
 position: 'absolute',
 bottom: -5,
 left: 1,
 backgroundColor: "#F00"
 }).hide();

 Q.transitionDOM(this.bar[0],'width');

 },

 large: function() {
 this.bg.css({ height: 20, bottom: -1 }).show();
 this.bar.css({ height: 20, bottom: 0 }).show();
 return this;
 },

 update: function(sprite) {
 this.bar.show();
 this.bg.show();
 var p = sprite.p;
 var width = Math.round(p.health / p.maxHealth * 100);
 this.bar.css('width',width + "%");
 }
 });

You can see this component creates two <div>s and then an update method that sets the width of
the inner <div> based on the health that the sprite in question has left. Both <div>s are hidden in the
beginning because it’s usual not to show a health bar unless the sprite has less than full health to keep

Building the RPG ❘ 257

the screen uncluttered. To add an animated effect to the bar decreasing, the Q.transitionDOM method
is called on the bar to add a transition to its width.

To see the bar in action, add the health bar component to the Q.Enemy sprite as highlighted here:

 Q.Enemy = Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 sheet: 'characters',
 z: 10,
 health: 10,
 maxHealth: 10,
 damage: 5,
 xp: 100
 }).extend(props));
 this.add('tiled, transition, healthbar');
 this.bind('interact',this,'interact');
 this.hide();
 },

If you now go around the dungeon attacking enemies, you should see the health of enemies decrease
as you attack them before they die.

The last bit of functionality needed is a HUD to display the player’s health with the gold and xp
that they picked up along the way. To achieve this the game reuses the health bar you just created
(in a larger form, if you picked up on the previous large method) and adds in a new sprite to dis-
play stats on the screen called Q.Stat.

The game also launches an additional stage to be used as a container for the HUD elements so that
the irst stage is moved around to follow the player as needed.

Again, because this game uses DOM elements, it’s easy to add text sprites into the game by just
setting the content of the sprite’s <div>. For the player health bar, the engine cheats by creating a
dummy sprite of a set size and calls the large method on the healthbar component to size it up.

Add the deinition for the two sprites, as shown in Listing 13-14, to rpg.js above the Q.load call.

LISTING 13-14: The Stat sprite

 Q.Stat = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).extend({
 w: 100, h: 20, z: 100
 }));

 this.el.css({color: 'white', fontFamily: 'arial' })
 .text(this.p.text + ": 0");
 },

 update: function(data) {
 this.el.text(this.p.text + ": " + data.amount);
 }

continues

258 ❘ CHAPTER 13 CraFting a Css3 rpg

 });

 Q.PlayerHealth = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).extend({
 w: Q.width / 4, h: 20, z: 100
 }));
 this.add('healthbar');
 this.healthbar.large();
 },
 update: function(sprite) {
 this.trigger('health',sprite);
 }
 });

As you can see these two sprites are simple. The irst sets some CSS on its element and then uses the
jQuery text method to set the content of the div. The second Q.PlayerHealth sprite cheats a little
bit by reusing the healthbar component from the last section but calls the helper method large to
resize the bar larger. It then passes any update events it receives through to the health bar by trigger-
ing a health event.

Now for the grand inale: A new scene called hud must be set up that creates the HUD elements and
binds the update methods so that they are updated. Next, the level1 scene needs to launch the HUD
scene when it is created and bind the appropriate events on the player to events ired on the HUD stage.

This all sounds more complicated than it actually is. Modify the code at the bottom of rpg.js to
match the highlighted code, as shown in Listing 13-15, and you should get the wanted effect.

LISTING 13-15: The HUD scene

 Q.scene('hud',new Q.Scene(function(stage) {
 var health, gold, xp;
 health = stage.insert(new Q.PlayerHealth({ x: 0, y: 10 }));
 stage.bind('health',health,'update');
 gold = stage.insert(new Q.Stat({
 text: "gold", x: Q.width-100, y: 10
 }));

 stage.bind('gold',gold,'update');
 xp = stage.insert(new Q.Stat({ text: "xp", x: Q.width-200, y: 10 }));
 stage.bind('xp',xp,'update');
 }));

 Q.scene('level1',new Q.Scene(function(stage) {
 Q.stageScene('hud',1);
 if(Q.width > 600 || Q.height > 600) {
 stage.rescale(2);
 }
 stage.level = stage.insert(new Q.Level("level1.txt",stage));
 stage.add('transition');
 var player = stage.insert(new Q.Player({ x: stage.level.startX ,
 y: stage.level.startY }));

LISTING 13-14 (continued)

Building the RPG ❘ 259

 player.camera.track();
 player.bind('removed',stage,function() {
 Q.stageScene('level1');
 });

 player.bind('health',stage,function() {
 Q.stage(1).trigger('health',player);
 });

 Q.stage(1).trigger('health',player);
 player.bind('gold',stage,function(amount) {
 player.p.gold += amount;
 Q.stage(1).trigger('gold',{ amount: player.p.gold });
 });

 player.bind('xp',stage,function(amount) {
 player.p.xp += amount;
 Q.stage(1).trigger('xp',{ amount: player.p.xp });
 });

 }));

The level1 scene triggers events on the hud scene by calling the Q.stage(1) method to trigger the
call. In the hud each of the three interface elements are created and then their update methods are
bound to events on the stage.

Keeping the hud stage and the main level stage separate from each other makes it easy to reuse the
hud for multiple levels and keeps each of the individual pieces smaller.

If you reload the game, you should now accumulate gold and attack random (although all equally
dificult) enemy sprites. See Figure 13-2.

FIGURE 13-2: The inal game (shown on an iPad).

260 ❘ CHAPTER 13 CraFting a Css3 rpg

With a few hundred lines of code, you’ve now built the backbone of a nethack-style CSS3-based
RPG, as shown in Figure 13-2. There are a lot of features that can still be added to ill out the func-
tionality, including enemy movement, different strengths and rewards from enemies, random levels
and pathinding, inventory, and all the other trappings of a good nethack-style RPG. If you want to
keep hacking on it, the code is open source under the MIT license and on GitHub.

SUMMARY

In this chapter you built a game using CSS and DOM elements. There are more CSS3 features such
as animations and 3-D transforms that haven’t been covered that could ill another book. If you are
looking for more things that you can do in CSS3, check out some of the resources in the bibliography.
Although the new CSS3 features are neat, with hardware-accelerated canvas appearing on more and
more devices and browsers, one of the primary advantages of CSS is its backward compatibility, so
building a game from the ground up that relies on cutting-edge CSS features might not be the best
idea. This chapter showed you how to build a game that works all the way back to IE6 on the desktop,
whereas still providing a nice smooth-animated experience for newer desktop and mobile browsers.

Building Games with SVG
and Physics

WHAT’S IN THIS CHAPTER?

 ➤ Understanding scalable vector graphics (SVG)

 ➤ Manipulating SVG from JavaScript

 ➤ Creating SVG sprites

 ➤ Implementing a physics engine

 ➤ Adding enemies and power-ups

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 14
download and individually named according to the names throughout the chapter.

INTRODUCTION

SVG (scalable vector graphics) is the closest thing that HTML5 has to a direct competitor to
Flash. SVG provides the capability to draw vector graphics that can be scaled, rotated, and
transformed to your heart’s content while still providing a scene graph to interact with, meaning
SVG elements can receive mouse and touch events. This chapter uses SVG with a 2-D physics
engine, called Box2d, which has been ported from C++ to JavaScript (by way of ActionScript) to
create a physics playground and cannon game.

14

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

262 ❘ CHAPTER 14 Building gaMes With svg and physiCs

UNDERSTANDING SVG BASICS

SVG is an odd bird. It’s been around since time eternal (1999), but it never caught on. One reason
for this is that previously, Internet Explorer didn’t support the standard, opting for its own propri-
etary Vector Markup Language (VML) for the same task. Until IE9 was released, using SVG meant
cutting out IE users completely or using a library such as Raphael.js that supported both SVG and
VML.

With the release of IE9, the future started looking up for SVG with the capability to build vector
graphics in an HTML5-approved way. Mobile Safari along with Android 3.0 and up as well as the
newest version of all the desktop browsers have excellent SVG support, so building a game that
relies on SVG is a viable option provided you are okay with leaving out users of older versions of
Internet Explorer and Android. Performance still leaves a little bit to be desired, however; so run
some tests on your target platforms before committing to SVG as a game technology.

Getting SVG on Your Page

SVG is an XML-based markup language that provides support for a number of vector primitives,
including text, rectangles, circles, ellipses, and arbitrary paths. These primitives can use different
strokes and ills, including pattern and gradient ills. SVG also supports advanced features such as
clipping, masking, compositing, and animation.

Browsers provide an overabundance of ways to place SVG on the page, including as the source in
an tag, linked from an <embed> tag, linked from an <object> tag, and embedded using an
<iframe>, or dropped directly onto the page in an <svg> tag. Having all those options is a little
confusing, but you don’t actually need to know all of them. There are three separate use cases, each
with a preferred embedding mechanism:

 ➤ First, if you just want a simple way to get an external SVG document on the page, use an
 tag. You can’t script the tag, and users of Firefox pre 4.0 will be out of luck (this is
currently approximately 4% of Firefox users and getting smaller all the time), but it’s the
easiest way to put an SVG document onto the page that you just need to work as an image.

 ➤ Second, if you have an external SVG document that you want to script and interact with,
use the <embed> tag, which enables you to reach into the document and add event handlers
and the like:

<embed src="mydocument.svg" type="image/svg+xml" />

 ➤ Finally, the last and most common usage from a game development perspective is to embed
your SVG document directly into the page:

<svg id="mysvg" xmlns="http://www.w3.org/2000/svg" version="1.1">
 <rect x="20" y="20" width="50" height="50" fill="black" />
</svg>

Often you want to start with an empty <svg> tag (much like the <canvas> tag) and add all your
objects dynamically. This is how the Quintus engine will be extended in this chapter to support
SVG. One thing you’ll notice is the inclusion of the version attribute and the xmlns (short for XML
namespace) attribute.

Understanding SVG Basics ❘ 263

The namespace is important because you’re embedding a different type of document into your
HTML and need to tell the browser how to handle it. In this case the browser is clever enough to
render the document without the namespace, but trying to create elements via JavaScript without
the namespace won't work.

Getting to Know the Basic SVG Elements

As you saw briely, SVG documents are simple XML documents that can be embedded directly into
the page. You can also load an SVG document directly into the browser by loading it from a URL or
your local machine.

Listing 14-1 shows a simple, hand-written SVG ile embedded in an HTML5 document. You’ll need
the penguin.png ile in your images/ directory to make it work yourself. The output of the ile is
shown in Figure 14-1.

LISTING 14-1: A simple SVG ile

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>A Birdhouse</title>
</head>
<body>
<svg id="mysvg" xmlns="http://www.w3.org/2000/svg" version="1.1"
 width="400" height="400"
 viewBox="0 0 150 150" >
 <g transform="rotate(-5,75,75)">
 <rect id="rect" x="50" y="50" rx="5" ry="5"
 width="50" height="50" fill="black" />
 <circle id="circle" cx="75" cy="75" r="10" fill="#CCC"/>
 <path d="M 50 50 L 75 50 L 75 0 z"
 fill="black" stroke="#CCC" stroke-width="2"/>
 <polygon points="75,50 100,50 75,0"
 fill="#CCC" stroke="black" stroke-width="2"/>
 </g>

 <image xlink:href='images/penguin.png'
 width='32' height='32'
 transform="translate(75,75)"
 onclick="alert('Penguin Click');"Click
 ontouchstart="alert('Penguin Touch');" />
 <text x="75" y="125" text-anchor="middle"
 font-family="Verdana" font-size="10" fill="black" >
 A tilted birdhouse
 </text>
</svg>

</body>
</html>

264 ❘ CHAPTER 14 Building gaMes With svg and physiCs

As mentioned, SVG provides a number of different primitives for
drawing. Unlike Canvas, after you create an element, it sticks around
in the scene graph the same way that DOM elements do. You can
move the element around by modifying its x and y properties or by
adding a transform property. SVG elements can also have event han-
dlers attached. If you click the image of the penguin on the desktop,
you can trigger the onclick handler. If you touch it on a WebKit
device, you'll trigger a “Penguin Touch” alert.

Each primitive element also has a set of properties speciic to the ele-
ment in question. Although a full overview of all the details of the
SVG spec is out of scope for a single chapter, the following sections
discuss some of the details of a few of the primitive elements used
previously. If you want to learn more about SVG, check out the speci-
ication at www.w3.org/TR/SVG/.

NOTE Android devices, as of this writing, don't support the ontouchstart event
handler being added as an attribute, but they do work when added manually via
addEventListener.

<svg>

The base <svg> container element has already been briely described, but a couple of additional attri-
butes will be important later in the chapter. (Attributes in SVG are case-sensitive, so make sure you
match the case shown in the text.) The width and height attributes are self-explanatory because
they deine the width and height of the element inside of the HTML document. The viewBox attri-
bute (the “B” in box is capitalized) is interesting. It deines the portion of the SVG document that is
visible inside of the SVG container. viewBox takes four integer parameters (separated by spaces, not
commas):

<svg width='WIDTH' height='HEIGHT' viewBox="X Y WIDTH HEIGHT"> ... </svg>

As you may have igured out, from a game perspective you can use the viewBox as a camera into
your game. If you set a WIDTH and HEIGHT in the viewBox that is smaller than the WIDTH and HEIGHT
on the <svg> element, objects in the SVG container appear zoomed in. If you set the WIDTH and
HEIGHT to be larger than the container, elements zoom out. Setting the X and Y parameters essen-
tially pans the camera around the page.

If the aspect ratio of the <svg> element and the viewBox don’t line up, how the content displays inside
of the container depends on the value of the preserveAspectRatio attribute. The default options
ensure that the content is scaled down, so the entire viewBox is visible inside of the container, with con-
tent centered in the x and y direction. preserveAspectRatio has a lot of conigurable values, so if you
need control over how elements display, you can see the full description of the available options on the
w3.org website: www.w3.org/TR/SVG/coords.html#PreserveAspectRatioAttribute.

In most cases your game sets a viewport that matches the aspect ratio of the element, so you won’t
need to reconigure preserveAspectRatio often.

FIGURE 14-1: An example

SVG page.

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/coords.html#PreserveAspectRatioAttribute

Understanding SVG Basics ❘ 265

Your SVG document must have a top-level <svg> tag, but it can also have child <svg> tags that can
be transformed and moved independently.

<rect>

The <rect> tag deines a rectangle or a square. It takes a width and height parameter to deine the
size of the rectangle along with optional rx and ry parameters to add a border radius to the rectangle.
The x and y locations indicate the top-left corner of the rectangle.

<circle> and <ellipse>

The <circle> tag deines a circle. It takes a cx and cy parameter, which deines the center of the
circle, and then an r parameter that deines the radius. If you don’t want a symmetric circle, you can
also use the <ellipse> and deine different x and y radii using rx and ry in addition to the center
parameters.

<path>

The <path> tag is an extremely useful tag, which is the Swiss-army-knife of SVG that can be used
to draw arbitrary paths and shapes. The d attribute sets the path data used to draw the object. The
path data is a string in the form of commands followed by arguments. The example shown earlier to
draw a triangle was as follows:

<path d="M 50 50 L 75 50 L 75 0 Z" fill="black"
 stroke="#CCC" stroke-width="2"/>

The <path> tag uses three commands:

 ➤ M: For absolute move to

 ➤ L: For absolute line to

 ➤ Z: To close the path

Using a lowercase m or l means the points provided after would be relative to the previous command
instead of absolute positions (except in the case of an initial m, which would be interpreted as an abso-
lute position regardless). These commands draw straight lines, but you can also draw cubic Bézier
curves and quadratic Bézier curves using C and S or Q and T commands, respectively. Drawing Bézier
curves by hand, however, is no fun, so you’ll most likely want to generate your path using a program
such as Adobe Illustrator or the open-source Inkscape, both of which export to SVG.

Again, for more details the w3.org speciication documentation provides a comprehensive resource:
www.w3.org/TR/SVG/paths.html#DAttribute.

<polygon> and <polyline>

The <polygon> and <polyline> elements are much like a version of the <path> element limited to
straight lines. Each takes a points attribute that deines the set of points that makes up the shape.
<polygon> elements are closed shapes where the last point is automatically connected back to the
irst while <polyline> elements have only strokes and aren’t illed.

 <polygon points="75,50 100,50 75,0"
 fill="#CCC" stroke="black" stroke-width="2"/>

http://www.w3.org/TR/SVG/paths.html#DAttribute

266 ❘ CHAPTER 14 Building gaMes With svg and physiCs

As you can see, each point is deined as a comma-separated x and y value, and the points are sepa-
rated by spaces.

 <image>

You can also embed images in your SVG, but be aware that your bitmap-based images won’t magi-
cally become vector-based and will show their roots if scaled too large. As shown in the previous
example, <image> tags are written as follows:

 <image xlink:href='images/penguin.png' width='32' height='32' />

<image> tags require an xlink:href attribute to deine the equivalent of the DOM tag src
and then an explicit width and height. If you don’t provide a width and height, the element defaults
to 0 by 0.

<text>

As you might expect, you can also draw text inside of SVG. You can set the font and size using the
same names as CSS—font-family and font-size—as well as position the text with x and y or
transforms. The actual text goes inside the text tag, as shown in the following example:

 <text x="75" y="125" text-anchor="middle"
 font-family="Verdana" font-size="10" fill="black" >
 A tilted birdhouse
 </text>

You can control the position of the text relative to the x and y location provided by using the
text-anchor attribute with possible values of start, middle, or end. This corresponds to left-
aligned, centered-aligned or right-aligned text.

Inside of the <text> element, you can use the <tspan> tag to mark up various pieces of text with
different styles and positions, for example:

<text x="75" y="125" font-family="Verdana" font-size="10" fill="black" >
 A tilted <tspan fill="red">birdhouse</tspan>
 </text>

This would result in the word birdhouse being colored red.

If you want dynamic multiline text, SVG is not the place to do it. You need to explicitly break up
your text using <tspan> elements with modiied x and y locations or use multiple <text> elements.
Consider placing DOM elements over the SVG and using zIndex to control the layering order.

<g>

The inal tag this section covers, <g>, is used to group elements together so that they can be styled
and transformed as a unit. From the preceding example:

 <g transform="rotate(-5,75,75)">
 <rect id="rect" x="50" y="50" rx="5" ry="5"
 width="50" height="50" fill="black" />
 <circle id="circle" cx="75" cy="75" r="10" fill="#CCC"/>
 <path d="M 50 50 L 75 50 L 75 0 z"
 fill="black" stroke="#CCC" stroke-width="2"/>

Understanding SVG Basics ❘ 267

 <polygon points="75,50 100,50 75,0"
 fill="#CCC" stroke="black" stroke-width="2"/>
 </g>

All the elements inside of the <g> tag are rotated by -5 degrees around a center of 75, 75. Using
groups allows you to deine complicated subshapes that can be easily animated.

Transforming SVG Elements

All the elements discussed share an attribute called transform that enables SVG elements to be
arbitrarily positioned, rotated, and scaled, much like the transform property available in CSS3.

The transform property takes a list of transforms to apply in sequence, one after the other. The
available transforms are shown in Table 14-1:

TABLE 14-1: Transform Properties

TRANSFORM DESCRIPTION

translate(tx,ty) Move the element tx and ty units to the right and down. If ty is

left out, it is assumed to be 0.

scale(sx, sy) Scale the element sx times in the horizontal direction and sy

times in the vertical direction. If sy is left out, it is assumed to be

the same as sx. The number can be greater than 1 to make the

element larger and less than 1 to make it smaller.

rotate(angle)

rotate(angle, cx, cy)

Rotate the element by angle degrees. If cx and cy are provided,

the element is rotated around that point; if not it is rotated

around 0,0. Supplying a cx and cy is a shortcut to calling

translate(cx,cy) rotate(angle) translate(-cx,-y).

skewX(angle)

skewY(angle)

Less useful for games, this does either a horizontal or

vertical skew.

matrix(a,b,c,d,e,f) This enables you to perform an arbitrary 2-D transformation

using a 3 n 3 matrix. In 2-D, the row of the matrix is always 0,0,1

so only 6 values a–f need to be speciied. Each of the preced-

ing transforms can be expressed in matrix form, so setting

the matrix explicitly provides a shortcut for applying arbitrary

transforms.

Applying Strokes and Fills

All the vector elements shown previously can be given a stroke, which deines how the outline of the
element is drawn, and a ill, which deines what the interior of the object looks like. (<polyline>s
don’t have interiors, so the ill doesn’t apply.)

There are many stroke and ill properties available, but the most common ones are shown in
Table 14-2.

268 ❘ CHAPTER 14 Building gaMes With svg and physiCs

TABLE 14-2: Stroke and Fill Properties

PROPERTY DESCRIPTION

stroke A color or reference to a gradient or pattern used to draw the

outline.

stroke-width The size of the outline.

stroke-linejoin Set to one of miter, round, bevel or inherit, which deines

how diferent line segments are connected. miter is the

default, which deines a sharp angle.

stroke-opacity A number between 0 and 1 deining the opacity of the outline.

fill A color or reference to a gradient or pattern used to draw the

ill.

fill-opacity A number between 0 and 1 deining the opacity of the ill.

NOTE There are additional properties for creating dashed lines, ine-tuning the
line joins, and controlling the ill algorithm that you probably won’t use often,
but you can check out the spec for all the available options at www.w3.org/TR/
SVG/painting.html.

The stroke and fill properties can be deined using simple CSS colors, but they can also use gra-
dients. SVG supports two types of gradients: linear and radial. Linear gradients deine x1,y1 and
x2,y2 properties that represent the start and end of the gradient. Radial gradients deine cx,cy and
fx,fy properties along with an r radius that represents the center of the outer circle and the focal
point of the gradient. Both types of gradients then use color <stop> tags to represent the color at
speciic percentages from the start to inish.

Gradients are created inside of a <defs> section and identiied with id attributes. They are then
referenced using the id preceded by a pound sign inside of the URL value.

All this makes more sense with an example. Listing 14-2 deines two gradients, a linear and a radial
one, and uses them on two equal size squares. The result is shown in Figure 14-2.

LISTING 14-2: SVG gradients

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>SVG Gradients</title>
</head>
<body>
<svg id="mysvg" xmlns="http://www.w3.org/2000/svg"

http://www.w3.org/TR/SVG/painting.html

Understanding SVG Basics ❘ 269

 version="1.1" width="800" height="800" >
 <defs>
 <linearGradient id="linear-test"
 x1="1" y1="0" x2="0" y2="0">
 <stop offset="5%" stop-color="black" />
 <stop offset="55%" stop-color="white" />
 <stop offset="95%" stop-color="black" />
 </linearGradient>
 <radialGradient id="radial-test"
 cx="0" cy="0" r="1" fx="0" fy="0">
 <stop offset="5%" stop-color="black" />
 <stop offset="55%" stop-color="white" />
 <stop offset="95%" stop-color="black" />
 </radialGradient>
 </defs>
 <rect x="0" y="50" width="375" height="375" fill="url(#linear-test)" />
 <rect x="400" y="50" width="375" height="375" fill="url(#radial-test)" />
 </svg>
</body>
</html>

FIGURE 14-2: SVG gradients.

Both types of gradients also support a gradientUnits attribute, which determines what the units
the x1,y1,x2,y2 and cx,cy,r,fx,fy attributes use. By default the objectBoundingBox value is
used, which means that all values are expected to be in the range of 0 to 1. If the alternative option
userSpaceOnUse is applied, the values would be set in the same range as the element on the Canvas.

SVG also supports pattern ills, which enable you to deine a set of SVG elements to be used as a
repeated ill pattern. The pattern is deined by a <pattern> element with an id that can take a width
and height along with a viewBox that works the same way as described in the <svg> element. Inside
the <pattern> element, you can draw the SVG element that makes up the pattern. The ill then needs
to reference the id in the ill attribute the same way as with gradients. Again, an example makes this
easier to understand. Listing 14-3 shows a pattern created with a circle and a diagonal polyline,
which when applied to an ellipse results in what is shown in Figure 14-3.

270 ❘ CHAPTER 14 Building gaMes With svg and physiCs

LISTING 14-3: An example SVG pattern

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>SVG Patterns</title>
</head>
<body>
<svg id="mysvg" xmlns="http://www.w3.org/2000/svg" version="1.1"
width="800" height="800" >
 <defs>
 <pattern id="pattern-test" patternUnits="userSpaceOnUse"
 x="0" y="0" width="50" height="50"
 viewBox="0 0 10 10" >
 <circle cx="5" cy="5" r="5" fill="black" />
 <polyline points="0,0 10,10" stroke="white" stroke-width="2"/>
 </pattern>
 </defs>
 <ellipse fill="url(#pattern-test)" stroke="black" stroke-width="5"
 cx="400" cy="200" rx="350" ry="150" />
</svg>
</body>
</html>

FIGURE 14-3: SVG patterns.

Again the full speciication has some less-used options you can take a look at that this book doesn't
have space to cover.

Beyond the Basics

SVG is a large speciication that includes a large number of additional pieces including Animation,
Filters, Clipping, Masking, and Compositing that aren’t going to be used in this chapter. However,
there are a number of cases in which these features might be useful in game development, so take
a moment to look through the full SVG speciication if you are interested in learning more: www
.w3.org/TR/SVG.

Working with SVG from JavaScript ❘ 271

If you haven't taken a look at the speciication yet, you should become familiar with it because
going straight to the source is usually the best way to get answers quickly (often quicker than
searching Google).

WORKING WITH SVG FROM JAVASCRIPT

As you might expect, SVG elements have an interface exposed via JavaScript that enables you to
manipulate any SVG properties. Unfortunately, the method to do this is different than normal DOM
elements, so jQuery can’t do its normal thing. There are jQuery plug-ins for extending jQuery with
SVG support, such as Keith Wood's jQuery SVG: http://keith-wood.name/svg.html.

However, rather than introduce another dependency, this section examines how to add and
manipulate SVG documents directly. Doing so ensures that when SVG support is added to the
Quintus engine in the next section that the engine doesn’t get bogged down performance-wise
with too many layers of abstraction. (The CSS3 RPG from the last chapter similarly used DOM
methods directly when there was a performance advantage to do so.)

Creating SVG Elements

The general mechanism to create a new DOM node without using jQuery is to use the document
.createElement method. Using this method to create an <svg> element on the page unfortunately
won’t quite do the trick. It will add an element called <svg> to the page, but that element will act
just like a normal DOM element and won't have any SVG-like properties.

To create an SVG element dynamically, you need to use the less well-known document
.createElementNS, which creates an element within the speciied name space.

In the case of SVG, the namespace is deined as:

http://www.w3.org/2000/svg

To create an SVG element, you need to call createElementNS and pass in the SVG namespace:

 var SVGNS = "http://www.w3.org/2000/svg";
 var svg = document.createElementNS(SVGNS,"svg");

This element is now a normal SVG element that will render elements inside of it as proper SVG
elements.

This pattern continues if you need to create other SVG elements. For example, to create a <rect>
element, you would need to use createElementNS as well:

 var SVGNS = "http://www.w3.org/2000/svg";
 var rect = document.createElementNS(SVGNS,"rect");

Adding that <rect> to the <svg> element can be done using the standard appendChild()
command:

 svg.appendChild(rect);

http://keith-wood.name/svg.html

272 ❘ CHAPTER 14 Building gaMes With svg and physiCs

This adds the child (<rect> in this case) to the end of the SVG container. Because SVG doesn’t have
the idea of a zIndex, the order of SVG elements in the container is actually quite important as later
elements are drawn over previous elements.

Setting and Getting SVG Attributes

Armed with an <svg> container and the ability to create elements inside of that container, you
might think that setting properties on those elements is as easy as setting the attribute the way
you would on a DOM element:

 // This won't work
 rect.width = 500;

Unfortunately, that’s not the case. Trying to set attributes on SVG elements directly isn't going to
work. To set attributes you need to use the setAttribute or setAttributeNS methods, which
set a named property either without a namespace or in a speciic provided namespace.

Most svg element properties aren’t in a namespace, so using the setAttribute method works for
properties like width, height, and the like. For example, to set the width on a rect object, you
could write:

 // This will work
 rect.setAttribute('width',500);

Some elements, however, do have properties in a namespace. One example is the xlink:href prop-
erty from the <image> tag discussed earlier:

<image xlink:href='images/penguin.png' width='32' height='32' />

To set this property, you need to use setAttributeNS and provide the correct namespace:

image.setAttributeNS("http://www.w3.org/1999/xlink","href","image.png");

There is an equivalent set of methods—getAttribute and getAttributeNS—that act as getters of
speciic attributes. To retrieve the width of a rect object, for example, you could write:

 var width = rect.getAttribute('width');

Armed with the ability to create and manipulate SVG elements, it’s now time to use an extension to
the Quintus engine that adds support for SVG elements.

ADDING SVG SUPPORT TO QUINTUS

SVG elements are going to be added to the engine in much the same way that DOM elements were:
by adding in a custom Q.setupSVG method to set up an <svg> element and then creating a custom
Q.SVGSprite class that knows to create a corresponding SVG element.

The major complication to creating a game with SVG elements is that the collision detection
becomes tricky if you allow elements made up of arbitrary polygons that can be rotated at random
angles. Luckily, this isn’t a problem that the engine must solve because the 2-D physics engine,
Box2dweb that is going to be added in the next section is responsible for the details of handling
collisions.

Adding SVG Support to Quintus ❘ 273

Creating an SVG Module

Armed with the knowledge of how to interact with SVG via JavaScript, it’s time to create the Quintus
SVG module. Open up a new ile called quintus_svg.js, and enter the code from Listing 14-4.

LISTING 14-4: The base Quintus.SVG module

Quintus.SVG = function(Q) {
 var SVG_NS ="http://www.w3.org/2000/svg";
 Q.setupSVG = function(id,options) {
 options = options || {};
 id = id || "quintus";
 Q.svg = $(_.isString(id) ? "#" + id : id)[0];
 if(!Q.svg) {
 Q.svg = document.createElementNS(SVG_NS,'svg');
 Q.svg.setAttribute('width',320);
 Q.svg.setAttribute('height',420);
 document.body.appendChild(Q.svg);
 }

 if(options.maximize) {
 var w = $(window).width()-1;
 var h = $(window).height()-10;
 Q.svg.setAttribute('width',w);
 Q.svg.setAttribute('height',h);
 }

 Q.width = Q.svg.getAttribute('width');
 Q.height = Q.svg.getAttribute('height');
 Q.wrapper = $(Q.svg)
 .wrap("<div id='" + id + "_container'/>")
 .parent()
 .css({ width: Q.width,
 height: Q.height,
 margin: '0 auto' });

 setTimeout(function() { window.scrollTo(0,1); }, 0);
 $(window).bind('orientationchange',function() {
 setTimeout(function() { window.scrollTo(0,1); }, 0);
 });
 return Q;
 };
};

The Q.setupSVG method follows a lot of the same patterns as the Q.setup and Q.setupDOM meth-
ods before it. The major difference is that this method needs to use the document.createElementNS
method and setAttribute to create and modify elements instead of trusty old jQuery or setting
object properties directly.

The SVG namespace is set at the top of the page for later reuse. After you create an SVG element, it
still behaves like a normal DOM element, so the Q.wrapper element can be created the same way
it is normally created.

274 ❘ CHAPTER 14 Building gaMes With svg and physiCs

Adding SVG Sprites

Up next is the SVG sprite class, which shares a lot of the same ideas as the DOMSprite: It must actually
create a browser element and set properties on that element to move it around. The difference here is
that the type of element created is dependent on the shape that the SVGSprite is set to.

Open up quintus_svg.js again, and add the code from Listing 14-5 to the bottom of the ile before
the inal closing curly brace.

LISTING 14-5: The Q.SVGSprite class

Q.SVGSprite = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).defaults({
 shape: 'block',
 color: 'black',
 angle: 0,
 active: true,
 cx: 0,
 cy: 0
 }));
 this.createShape();
 this.svg.sprite = this;
 this.rp = {};
 this.setTransform();
 },

 set: function(attr) {
 _.each(attr,function(value,key) {
 this.svg.setAttribute(key,value);
 },this);
 },

 createShape: function() {
 var p = this.p;
 switch(p.shape) {
 case 'block':
 this.svg = document.createElementNS(SVG_NS,'rect');
 _.extend(p,{ cx: p.w/2, cy: p.h/2 });
 this.set({ width: p.w, height: p.h });
 break;
 case 'circle':
 this.svg = document.createElementNS(SVG_NS,'circle');
 this.set({ r: p.r, cx: 0, cy: 0 });
 break;
 case 'polygon':
 this.svg = document.createElementNS(SVG_NS,'polygon');
 var pts = _.map(p.points,
 function(pt) {
 return pt[0] + "," + pt[1];
 }).join(" ");
 this.set({ points: pts });

Adding SVG Support to Quintus ❘ 275

 break;

 }
 this.set({ fill: p.color });
 if(p.outline) {
 this.set({
 stroke: p.outline,
 "stroke-width": p.outlineWidth || 1
 });
 }
 },

 setTransform: function() {
 var p = this.p;
 var rp = this.rp;
 if(rp.x !== p.x ||
 rp.y !== p.y ||
 rp.angle !== p.angle) {
 var transform = "translate(" + (p.x - p.cx) + "," +
 + (p.y - p.cy) + ") " +
 "rotate(" + p.angle +
 "," + p.cx +
 "," + p.cy +
 ")";
 this.svg.setAttribute('transform',transform);
 rp.angle = p.angle;
 rp.x = p.x;
 rp.y = p.y;
 }
 },

 draw: function(ctx) {
 this.trigger('draw');
 },

 step: function(dt) {
 this.trigger('step',dt);
 this.setTransform();
 },

 destroy: function() {
 if(this.destroyed) return false;
 this._super();
 this.parent.svg.removeChild(this.svg);
 }
 });

The init method of Q.SVGSprite doesn’t do anything particularly special except set some defaults on
the shape and color of the default object. It then calls createShape to create the element. Finally, it
calls setTransform to set the transform property on the SVG element.

The set method is a helper method that accepts hash properties and uses setAttribute to set each of
them. Although there is some overhead with this and it probably shouldn’t be used during each step, it
does provide a convenient way to set multiple properties at once in a jQuery-like fashion.

276 ❘ CHAPTER 14 Building gaMes With svg and physiCs

The createShape method is perhaps the most interesting. The meat of the method is a switch
statement that looks at the p.shape property and creates the appropriate type of SVG element.

For a block shape, it creates a <rect> element and sets the width and height properties on it. For
a circle shape, it creates a <circle> element and sets the radius. It sets the center x and y location
to 0 as the element will be moved with the transform property. Finally, for the polygon shape, it
needs to create a string of points to pass in to the points attribute.

After createShape has created the element, the createShape method looks at the fill and outline
properties to set the ill and the stroke.

The setTransform method again looks a good deal like the method of the same name from
Q.DOMSprite. Its main job is to see if any of the property attributes have changed since the
last frame and update the transform of the SVG element appropriately. To do this it irst crafts
a translate transform followed by a rotate transform set to rotate around the center of the
object. The order here is important because changing the order of the two would result in a
rotation around the point 0,0, which would lead to all sorts of problems down the road.

Creating an SVG Stage

The last bit of SVG functionality needed for the engine is to create an SVG-aware stage class that
can act as a container for Q.SVGSprite.

To keep different stages separate, the SVGStage class creates its own child <svg> element that sits
inside of the primary SVG element. The class also exposes methods to move the viewport around.
The code for Q.SVGStage is shown in Listing 14-6 and should be added before the inal closing
curly brace at the end of quintus_svg.js.

LISTING 14-6: Q.SVGStage

 Q.SVGStage = Q.Stage.extend({
 init: function(scene) {
 this.svg = document.createElementNS(SVG_NS,'svg');
 this.svg.setAttribute('width',Q.width);
 this.svg.setAttribute('height',Q.height);
 Q.svg.appendChild(this.svg);

 this.viewBox = { x: 0, y: 0, w: Q.width, h: Q.height };
 this._super(scene);
 },

 insert: function(itm) {
 if(itm.svg) { this.svg.appendChild(itm.svg); }
 return this._super(itm);
 },

 destroy: function() {
 Q.svg.removeChild(this.svg);
 this._super();
 },

 viewport: function(w,h) {

Adding SVG Support to Quintus ❘ 277

 this.viewBox.w = w;
 this.viewBox.h = h;
 if(this.viewBox.cx || this.viewBox.cy) {
 this.centerOn(this.viewBox.cx,
 this.viewBox.cy);
 } else {
 this.setViewBox();
 }
 },

 centerOn: function(x,y) {
 this.viewBox.cx = x;
 this.viewBox.cy = y;
 this.viewBox.x = x - this.viewBox.w/2;
 this.viewBox.y = y - this.viewBox.h/2;
 this.setViewBox();
 },

 setViewBox: function() {
 this.svg.setAttribute('viewBox',
 this.viewBox.x + " " + this.viewBox.y + " " +
 this.viewBox.w + " " + this.viewBox.h);
 },

 browserToWorld: function(x,y) {
 var m = this.svg.getScreenCTM();
 var p = this.svg.createSVGPoint();
 p.x = x; p.y = y;
 return p.matrixTransform(m.inverse());
 }
 });

 Q.svgOnly = function() {
 Q.Stage = Q.SVGStage;
 Q.setup = Q.setupSVG;
 Q.Sprite = Q.SVGSprite;
 return Q;
 };

Listing 14-6 also includes the Q.svgOnly method that, much like the Q.domOnly method from the
last chapter, replaces the non-SVG classes with their SVG counterparts for easier access.

The init, insert, and destroy methods should look similar to those from Q.DOMStage. The init
method is responsible for creating the <svg> child element and adding it to the primary Q.svg object.
The insert method augments the inherited method by calling appendChild to add the element to
the stage’s <svg> tag. Finally, destroy ensures the stage’s <svg> tag is cleaned up when the stage is
removed.

More interesting are the viewport, centerOn, and setViewBox methods. These allow you to use the
stage’s <svg> element’s viewBox like a camera, panning by calling centerOn and zooming in and out
by setting the width and height of the viewBox by calling viewport. The viewport method is also
smart enough to check if the user has called centerOn previously; if so it uses the stored cx and cy
coordinates to re-center the screen after it has reset the viewBox.

278 ❘ CHAPTER 14 Building gaMes With svg and physiCs

Finally, the browserToWorld method deserves some explanation. To determine where in the SVG
world the user has touched or clicked, you need to transform that event’s pixel position to the cor-
responding position inside of the world. This is made more dificult because the viewBox has been set
and so the SVG element may only be partially zoomed in depending on the aspect ratio of the view-
Box compared to the aspect ratio of the screen (imagine a portrait shaped viewBox on a landscape
turned device—iguring out the pixel size of viewBox will take some doing).

All these complications mean that iguring out a priori of the SVG location of an event given the
event’s pixel location on the screen is a huge hassle. Luckily, the SVG spec provides a method that
gets you halfway there. getScreenCTM returns the transformation matrix that goes the other way:
from SVG units to screen units. However, with a little bit of matrix math, you can use the inverse
of that matrix by calling m.inverse() to go the other way: from screen to SVG units.

Testing the SVG Class

With all this SVG engine code written, it’s time to render something on the screen using SVG. The
irst step, as usual, is to create a template HTML ile that loads the necessary JavaScript iles. Create
a ile called cannon.html, and add the code in Listing 14-7.

LISTING 14-7: cannon.html

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport"
 content="width=device-width, user-scalable=0,
 minimum-scale=1.0, maximum-scale=1.0"/>
 <title>SVG Test</title>
 <script src='jquery.min.js'></script>
 <script src='underscore.js'></script>
 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>
 <script src='quintus_scenes.js'></script>
 <script src='quintus_svg.js'></script>
 <script src='cannon.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

Next create a ile called cannon.js referenced in the preceding ile. It eventually holds the
Box2D-powered cannon game built later in this chapter, but for now, it just holds some basic
SVG testing code.

Adding SVG Support to Quintus ❘ 279

Add the code in Listing 14-8 to cannon.js to the new ile. Its goal is to test out the three different sup-
ported shapes—blocks, circles, and polygons—and test out the browserToWorld method to ensure
you can add objects at points where the user touches the screen.

LISTING 14-8: Initial cannon.js ile

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,SVG')
 .svgOnly()
 .setup('quintus',{ maximize: true });

 Q.scene('level',new Q.Scene(function(stage) {

 stage.insert(new Q.Sprite({
 x: 100, y: 250, w: 500, h: 50
 }));

 stage.insert(new Q.Sprite({
 w: 30, h:20, x: 0, y: 100
 }));

 stage.insert(new Q.Sprite({
 r: 30, x: 50, y: 100, shape:'circle'
 }));

 stage.insert(new Q.Sprite({
 x: 120, y: 100, shape: 'polygon', color: "red",
 points: [[0, 0], [100, 0],[120, 25],[50, 50]]
 }));

 stage.viewport(400,400);
 stage.centerOn(100,200);

 $(Q.wrapper).on('touchstart',function(e) {
 var touch = e.originalEvent.changedTouches[0];
 if(touch.target.sprite) {
 touch.target.sprite.destroy();
 } else {
 var point = stage.browserToWorld(touch.pageX,touch.pageY);
 var box = stage.insert(new Q.Sprite({
 x: point.x, y: point.y, w: 20, h: 20
 }));
 }
 e.preventDefault();
 });
 }));
 Q.stageScene("level");
});

280 ❘ CHAPTER 14 Building gaMes With svg and physiCs

Much of this code should start to look familiar. The initial call to Quintus() chains in some includes
and then calls svgOnly to replace the Canvas sprites. Finally, setup is called with options passed in
to maximize the SVG element to the size of the page.

The scene method sets up a scene called level that adds a number of sprites onto the page. These
sprites, however, don’t have assets or spritesheets as usual, rather they have a shape property deined
(or use the default block shape) along with either a width and height or a radius (for circles). For the
polygon sprite a set of points that deine the points that make up the shape are needed.

The stage is set to a smaller viewport and is centered on the irst larger block. If you want to see the
effect this has, you can comment out those lines and reload the page.

Finally, the last bit of code checks for a new touch anywhere on the page. If it gets one, it irst checks if
the target element has a sprite property. If it does it destroys the sprite; if the target element doesn’t
have a sprite property, it uses the stage.browserToWorld method to convert the irst changed touch
to a point inside of the SVG element and then adds a new box sprite at that location.

The end result is that if you touch an existing object on the page, it removes it; whereas if you touch
an empty spot on the page, it adds in a new block.

Now, open the page on a supported mobile browser (iOS or Android 3+) and give it a try. You
should see one each of the three different types of sprites: blocks, circles, and polygon. You should
also remove existing sprites by clicking them and add a new sprite by clicking a white spot.

The hit boxes for the SVG elements are precise: Unless you touch directly in the element, it won’t
disappear. (No square hit boxes here.)

ADDING PHYSICS WITH BOX2D

A bunch of static elements hanging out in space isn’t a whole lot of fun. To make things more
interactive and save the hassle of trying to igure out collisions on arbitrary convex polygons,
Quintus adds support for a JavaScript port of a well-known 2-D physics engine called Box2D,
which is available at: http://box2d.org/.

Box2D, created by Erin Catto, is written in C++, but a few adventurous souls manually created an
ActionScript 3.0 port called Box2DFlash (available at http://box2dflash.sourceforge.net/) to
allow Flash developers to use Box2D. A few other adventurous folks, taking advantage of the simi-
larities between ActionScript and JavaScript, created an ActionScript to JavaScript converter that
could convert the ActionScript code to JavaScript. Got all that?

The easiest to use and most up-to-date JavaScript port is currently box2dweb, available on Google
Code: http://code.google.com/p/box2dweb/.

Although it’s not a perfect it for the JavaScript environment because Box2web creates a lot of
objects each frame and so can challenge the JavaScript garbage collector, it works surprisingly well,
and integrating it with the SVG code already written is straightforward.

There is no full documentation for Box2Dweb, but that’s because it shares the same deinitions as
box2dlash, which has good API documentation: www.box2dflash.org/docs/2.1a/reference/.

http://box2d.org/
http://box2dflash.sourceforge.net/
http://code.google.com/p/box2dweb/
http://www.box2dflash.org/docs/2.1a/reference/

Adding Physics with Box2D ❘ 281

The SVG code in this chapter was implemented speciically with the idea to add in a physics engine,
but it stands to reason that a Canvas game might also want to do the same. For that reason, the
physics functionality of Quintus is created as a set of components rather than as classes extending
SVGSprite and SVGStage. The basic Canvas Sprite class and default Stage wouldn’t use the physics
components without adding in support for rotated sprites, but that’s something that could be added to
the base class easily.

Understanding Physics Engines

Before getting into the details of integrating a physics engine, you need to understand what a physics
engine actually does.

The reason for integrating a physics engine into the system is that the way objects interact in the
real world is quite involved. If you want to accurately simulate the behavior of a ball lying into
a stack of blocks in 2-D space, which results in the tower tumbling over and blocks spinning and
careening off each other, you’d be in for some work.

The irst challenge would be to calculate pixel-perfect collisions between the various boxes and the
ball. With boxes rotated at various angles, the simple box collision detection from earlier chapters
would fall far short.

The next challenge would be to accurately simulate the behavior after a collision happens: Do the
two boxes bounce off each other? Does a box slide on the ground or stick because of friction? How
should an arbitrary polygon rotate when it’s hit?

Physics engines handle both of these challenges for you. Your job is to deine the shape and physical
properties of the bodies that make up the simulation. From that point you can hand those details
off to the physics, and tell it to advance the simulation by 1/60th of a second and give you the new
angles and positions of objects. The physics engine can take care of updating objects according to
their velocities and any forces (including gravity) acting on them and take care of properly resolving
any collisions and interactions.

Implementing the World Component

Box2D, like many other physics engines, relies on a central world object to act as a container for
any physical bodies that will be added to the game. Because this is fairly analogous to the stage
object in Quintus, it makes sense for the world to be a component added onto the stage.

The method calls to set up and simulate a Box2D world are actually simple. All you need to do
is create a new Box2D.Dynamics.b2World object, passing in the world’s gravity. Then, for every
frame, you need to call the world’s step method with the time elapsed since the last time step
and the number of velocity and position iterations. Running more iterations means that each
simulation step is smaller, and the results of the simulation will be better and more stable (that
is, objects won’t go lying off or fall through other objects) at the cost of more rendering time.

Box2D provides an extensive API, which this book doesn’t cover in depth, so instead the engine
is just going to cherry-pick a limited subset of features to get some objects joyously lying around
the screen.

282 ❘ CHAPTER 14 Building gaMes With svg and physiCs

The world component needs to make only few calls to get a Box2D world set up and running. To let
objects and collisions reach back out into the engine, it’s also going to need to add in a listener that
has its callbacks triggered whenever there is a collision.

To start implementing the Quintus.Physics module, create a new ile called quintus_physics.js,
and add the code in Listing 14-9.

LISTING 14-9: The Quintus.Physics bootstrap

Quintus.Physics = function(Q) {
 var B2d = Q.B2d = {
 World: Box2D.Dynamics.b2World,
 Vec: Box2D.Common.Math.b2Vec2,
 BodyDef: Box2D.Dynamics.b2BodyDef,
 Body: Box2D.Dynamics.b2Body,
 FixtureDef: Box2D.Dynamics.b2FixtureDef,
 Fixture: Box2D.Dynamics.b2Fixture,
 PolygonShape: Box2D.Collision.Shapes.b2PolygonShape,
 CircleShape: Box2D.Collision.Shapes.b2CircleShape,
 Listener: Box2D.Dynamics.b2ContactListener
 };

 var defOpts = Q.PhysicsDefaults = {
 gravityX: 0,
 gravityY: 9.8,
 scale: 30,
 velocityIterations: 8,
 positionIterations: 3
 };

 Q.register('world',{
 added: function() {
 this.opts = _(defOpts).clone();
 this._gravity = new B2d.Vec(this.opts.gravityX,
 this.opts.gravityY);
 this._world = new B2d.World(this._gravity, true);
 _.bindAll(this,"beginContact","endContact","postSolve");

 this._listener = new B2d.Listener();
 this._listener.BeginContact = this.beginContact;
 this._listener.EndContact = this.endContact;
 this._listener.PostSolve = this.postSolve;
 this._world.SetContactListener(this._listener);

 this.col = {};
 this.scale = this.opts.scale;
 this.entity.bind('step',this,'boxStep');
 },

 setCollisionData: function(contact,impulse) {
 var spriteA = contact.GetFixtureA().GetBody().GetUserData(),

Adding Physics with Box2D ❘ 283

 spriteB = contact.GetFixtureB().GetBody().GetUserData();

 this.col["a"] = spriteA;
 this.col["b"] = spriteB;
 this.col["impulse"] = impulse;
 this.col["sprite"] = null;
 },

 beginContact: function(contact) {
 this.setCollisionData(contact,null);
 this.col.a.trigger("contact",this.col.b);
 this.col.b.trigger("contact",this.col.a);
 this.entity.trigger("contact",this.col);
 },

 endContact: function(contact) {
 this.setCollisionData(contact,null);
 this.col.a.trigger("endContact",this.col.b);
 this.col.b.trigger("endContact",this.col.a);
 this.entity.trigger("endContact",this.col);
 },

 postSolve: function(contact, impulse) {
 this.setCollisionData(contact,impulse);
 this.col["sprite"] = this.col.b;
 this.col.a.trigger("impulse",this.col);
 this.col["sprite"] = this.col.a;
 this.col.b.trigger("impulse",this.col);
 this.entity.trigger("impulse",this.col);
 },

 createBody: function(def) {
 return this._world.CreateBody(def);
 },

 destroyBody: function(body) {
 return this._world.DestroyBody(body);
 },

 boxStep: function(dt) {
 if(dt > 1/20) { dt = 1/20; }
 this._world.Step(dt,
 this.opts.velocityIterations,
 this.opts.positionIterations);
 }
 });
};

Box2D.Dynamics.b2World is an example of one of the nicely namespaced objects that Box2D deines.
The only problem with this namespacing is that it is a little burdensome to type. For this reason it’s
common to create a scoped set of shortened class names; Quintus follows this pattern as well by adding
elements to a B2d object.

284 ❘ CHAPTER 14 Building gaMes With svg and physiCs

Next, the module deines a number of defaults that you can use to create and run the world. These
include the x and y components of gravity, a scale multiplier, and counters for the number of velocity
and position iterations to run.

The scale option is an interesting one. Although you might think that it shouldn’t matter what size
objects are, Box2D works better when objects are measured on a smaller scale, such as in the range
of 1–10, as opposed to, say 100–1000. This means that the normal scale of pixels doesn’t match well
with Box2D’s preferred object scale. That’s the reason for the scale option in the defaults. It’s a
divisor used to scale down objects from a pixel-size scale to a smaller range. If you think of a single
unit as a meter, and work with objects in the range of one to a few meters, you can hit the sweet
spot for Box2D’s calculations.

Next, the added method does the primary work to create the world. This is actually easier than it
sounds. All that’s needed is to create a gravity vector from the options hash and then create a new
B2d.World object. With that, you could start adding entities to Box2D and simulate the world.

The only problem would be that you’d have no information about when an object collided with
another object. Objects would still not overlap, as Box2D handles that part, but you’d lack any mean-
ingful information about interactions that is necessary to build a game. (Do you want that bullet just
bouncing off the enemy?) To get around this, Box2D provides the ability to set a contact listener. The
world component ties into this and then passes forward any collisions it receives to the sprites that
received the collision by triggering contact, endContact, and impulse events that correspond to
Box2D’s BeginContact, EndContact, and PostSolve callbacks. The irst two—BeginContact and
EndContact—are called when two entities start touching and stop touching, respectively.

The last, PostSolve, is called every time there is an impulse caused by another body. This can be
quite often (imagine a ball rolling down a hill), so you must to be careful to keep the impulse event
handlers quick. To keep the memory usage down, all the collision handlers also reuse the same col
object among all the events and use the helper method setCollisionData to populate the data for
the callbacks.

Each callback triggers three events, one on each object and then one on the stage. This allows you to
centralize collision detection in the stage in lieu of on each object if necessary.

With the contact listener set, the added method binds itself to the stage’s step method to trigger
the boxStep callback. boxStep is responsible for stepping the world at the correct rate using the dt
passed into the callback along with the number of velocity and position iterations.

The only other methods—createBody and destroyBody—act as proxies for the Box2D world’s
methods of the same name.

Implementing the Physics Component

With the world component built, up next is a component to add physics support to the sprites. This
component will be called, not surprisingly, physics. Its job is to create a Box2d body that matches
the sprite’s size and shape when added, update the sprite’s position based on Box2D’s simulation,
and remove the body when the sprite is removed.

Box2D supports two types of objects: static and dynamic. Static objects don’t do anything but wait
for dynamic objects to collide into them. They are also much lighter on the processor because they

Adding Physics with Box2D ❘ 285

don’t need to be actively updated each step. The component enables the creation of either type based
on a type property, with the default being dynamic objects.

The main complexity of the component resides in the insert method, which is called after the sprite
has been added to the stage. This method is responsible to create the body object that will be added
into the Box2D world. Bodies have a number of properties, including a position and whether the
body is static or dynamic. These properties need to be set to initial values before the body is created.

None of those properties, however, tell Box2D anything about the shape. That job is the responsi-
bility of one or more ixtures added to the body. Each ixture must be a convex shape (meaning it
has no dents), and although multiple ixtures are supported in Box2D, the physics component will
just support one. The ixtures also have details like the object’s density, friction, and restitution
(bounciness).

To get the physics component into the engine, add the code in Listing 14-10 to the bottom of
quintus_physics.js, before the inal closing curly brace.

LISTING 14-10: The physics component

 var entityDefaults = Q.PhysicsEntityDefaults = {
 density: 1,
 friction: 1,
 restitution: .1
 };

 Q.register('physics',{
 added: function() {
 if(this.entity.parent) {
 this.inserted();
 } else {
 this.entity.bind('inserted',this,'inserted');
 }
 this.entity.bind('step',this,'step');
 this.entity.bind('removed',this,'removed');
 },

 position: function(x,y) {
 var stage = this.entity.parent;
 this._body.SetAwake(true);
 this._body.SetPosition(new B2d.Vec(x / stage.world.scale,
 y / stage.world.scale));
 },

 angle: function(angle) {
 this._body.SetAngle(angle / 180 * Math.PI);
 },

 velocity: function(x,y) {
 var stage = this.entity.parent;
 this._body.SetAwake(true);
 this._body.SetLinearVelocity(new B2d.Vec(x / stage.world.scale,
 y / stage.world.scale));

continues

286 ❘ CHAPTER 14 Building gaMes With svg and physiCs

 },

 inserted: function() {
 var entity = this.entity,
 stage = entity.parent,
 scale = stage.world.scale,
 p = entity.p,
 ops = entityDefaults,
 def = this._def = new B2d.BodyDef,
 fixtureDef = this._fixture = new B2d.FixtureDef;

 def.position.x = p.x / scale;
 def.position.y = p.y / scale;
 def.type = p.type == 'static' ?
 B2d.Body.b2_staticBody :
 B2d.Body.b2_dynamicBody;
 def.active = true;

 this._body = stage.world.createBody(def);
 this._body.SetUserData(entity);
 fixtureDef.density = p.density || ops.density;
 fixtureDef.friction = p.friction || ops.friction;
 fixtureDef.restitution = p.restitution || ops.restitution;

 switch(p.shape) {
 case "block":
 fixtureDef.shape = new B2d.PolygonShape;
 fixtureDef.shape.SetAsBox(p.w/2/scale, p.h/2/scale);
 break;
 case "circle":
 fixtureDef.shape = new B2d.CircleShape(p.r/scale);
 break;
 case "polygon":
 fixtureDef.shape = new B2d.PolygonShape;
 var pointsObj = _.map(p.points,function(pt) {
 return { x: pt[0] / scale, y: pt[1] / scale };
 });
 fixtureDef.shape.SetAsArray(pointsObj, p.points.length);
 break;
 }

 this._body.CreateFixture(fixtureDef);
 this._body._bbid = p.id;
 },
 removed: function() {
 var entity = this.entity,
 stage = entity.parent;
 stage.world.destroyBody(this._body);
 },
 step: function() {
 var p = this.entity.p,
 stage = this.entity.parent,
 pos = this._body.GetPosition(),

LISTING 14-10 (continued)

Adding Physics with Box2D ❘ 287

 angle = this._body.GetAngle();
 p.x = pos.x * stage.world.scale;
 p.y = pos.y * stage.world.scale;
 p.angle = angle / Math.PI * 180;
 }
 });

When this component is added to a sprite, it irst checks if the sprite has already been added to a
stage. If so it calls inserted immediately; otherwise, it waits until the inserted event is triggered.

The bulk of the code for the physics component, as you can see, is in the inserted method. This
method creates the Box2D body, sets up the ixture deinition based on the shape of the object, and
creates the ixture on the body.

Two helper methods—position and velocity—let you set those properties onto the sprite’s body.
Both of those methods also call SetAwake(true) on the body. Box2D puts objects that aren’t moving
and causing collisions “asleep” after a period of time to save on CPU cycles. To ensure that the object
“wakes up” and starts responding to forces again when it is artiicially moved, SetAwake needs to be
called manually. (Normally, box 2D handles this for you anytime an object is involved in a collision.)

The removed method simply ensures that the body is destroyed from the Box2D world, in addition
to the sprite being removed from the screen.

Finally the step method, which is called after every step, has the responsibility to translate the
position and angle of the body in the Box2D back into the position of the sprite, taking into con-
sideration the scale property discussed earlier.

Adding Physics to the Example

With the physics component wrapped up, it’s time to see the Box2D in action. This can be done
fairly simply by adding the world component to the stage and the physics component to each of
the sprites. First, open cannon.html and add Box2dWeb and the quintus_physics.js ile to the
HTML ile as shown here (you’ll need to grab a copy of Box2dWeb-2.1.a.3.js from the chapter code
or download your own version):

 <script src='quintus_sprites.js'></script>
 <script src='quintus_scenes.js'></script>
 <script src='quintus_svg.js'></script>
 <script src='Box2dWeb-2.1.a.3.js'></script>
 <script src='quintus_physics.js'></script>
 <script src='cannon.js'></script>

Update the highlighted code in cannon.js, as shown in Listing 14-11, to add physics support to
the SVG example.

LISTING 14-11: Adding physics to the SVG example

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,SVG,Physics')
 .svgOnly()

continues

288 ❘ CHAPTER 14 Building gaMes With svg and physiCs

 .setup('quintus',{ maximize: true });

 Q.scene('level',new Q.Scene(function(stage) {

 stage.insert(new Q.Sprite({
 x: 100, y: 250, w: 500, h: 50, type:"static"
 }));
 stage.insert(new Q.Sprite({
 w: 30, h:20, x: 0, y: 100
 }));
 stage.insert(new Q.Sprite({
 r: 30, x: 50, y: 100, shape:'circle'
 }));

 stage.insert(new Q.Sprite({
 x: 120, y: 100, shape: 'polygon', color: "red",
 points: [[0, 0], [100, 0],[120, 25],[50, 50]]
 }));

 stage.add("world");
 stage.each(function() { this.add("physics"); });

 stage.viewport(400,400);
 stage.centerOn(100,200);
 $(Q.wrapper).on('touchstart',function(e) {
 var touch = e.originalEvent.changedTouches[0];
 if(touch.target.sprite) {
 touch.target.sprite.destroy();
 } else {
 var point = stage.browserToWorld(touch.pageX,touch.pageY);
 var box = stage.insert(new Q.Sprite({
 x: point.x, y: point.y, w: 20, h: 20
 }));
 box.add("physics");
 box.bind("contact",function(sprite) {
 sprite.set({fill:"blue"});
 });
 }
 e.preventDefault();
 });

The irst block also needs to be updated to type static so that it can act as a platform for the other
objects. Finally, the box elements added when you touch on an empty part of the screen add in a lis-
tener to the contact event to turn any object they touch blue. The result is shown in Figure 14-4.

CREATING A CANNON SHOOTER

With physics and SVG in Quintus, you now have all the pieces you need to build a simple physics-based,
knock-things-down game. (Box2D, after all, is the 2-D physics engine that powered Angry Birds.)

LISTING 14-11 (continued)

Creating a Cannon Shooter ❘ 289

FIGURE 14-4: Box2D Physics applied to SVG.

The fun part of physics-based gameplay is that as a developer you don’t need to do much to get the
basic functionality working: The physics engine handles a lot of it for you. The lip side of this, how-
ever, is that the physics-based games require a lot of parameter tweaking to be fun and work well.

Planning the Game

Using the physics components built in this chapter, the idea behind the cannon game is quite simple:
Throw some round objects around the page trying to hit some small round targets.

The game uses the location of a touch to control the angle of the cannon and release a cannon ball
whenever the touch is released. (On a desktop mousemove and mouseup events are used.)

The cannon is a polygon sprite that won’t have the physics component enabled, so it can move and
adjust as necessary. It ires Q.CannonBall sprites that have physics enabled, so they can collide with
everything else.

Finally, the Q.Target object is just a small, pink ball that has physics turned on. It listens to its
contact event and checks if the object it is in contact with is a Q.CannonBall. If it is, it can destroy
itself and update the counter of the number of targets left on the page. When that number reaches 0,
it restarts the level. In a real game it would be time to move to the next level. Check out Figure 14-5
for an in-game screen shot.

FIGURE 14-5: The inal SVG Cannon shooter.

290 ❘ CHAPTER 14 Building gaMes With svg and physiCs

Building the Necessary Sprites

It’s time to create the inal game code. Open cannon.js and rip out all the existing code. The irst
pieces of code needed are the three sprite classes described in the last section: the Q.CannonBall, the
Q.Cannon, and the Q.Target. Add the code in Listing 14-12 to the top of the cannon.js ile, below
the initial Quintus setup code.

LISTING 14-12: Cannon sprites

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,SVG,Physics')
 .svgOnly()
 .setup('quintus',{ maximize: true });

 Q.CannonBall = Q.Sprite.extend({
 init: function(props) {
 this._super({
 shape: 'circle',
 color: 'red',
 r: 8,
 restitution: 0.5,
 density: 4,
 x: props.dx * 50 + 10,
 y: props.dy * 50 + 210,
 seconds: 5
 });
 this.add('physics');
 this.bind('step',this,'countdown');
 },

 countdown: function(dt) {
 this.p.seconds -= dt;
 if(this.p.seconds < 0) {
 this.destroy();
 } else if(this.p.seconds < 1) {
 this.set({ "fill-opacity": this.p.seconds });
 }
 }
 });

 Q.Cannon = Q.Sprite.extend({
 init: function(props) {
 this._super({
 shape:'polygon',
 color: 'black',
 points: [[0,0], [0,-5], [5,-10], [8, -11], [40, -11],
 [40, 11], [8, 11], [5, 10], [0, 5]],
 x: 10,
 y: 210
 });

Creating a Cannon Shooter ❘ 291

 },

 fire: function() {
 var dx = Math.cos(this.p.angle / 180 * Math.PI),
 dy = Math.sin(this.p.angle / 180 * Math.PI),
 ball = new Q.CannonBall({ dx: dx, dy: dy, angle: this.p.angle });
 Q.stage().insert(ball);
 ball.physics.velocity(dx*400,dy*400);
 }
 });

 var targetCount = 0;
 Q.Target = Q.Sprite.extend({
 init: function(props) {
 this._super(_.extend(props,{
 shape: 'circle',
 color: 'pink',
 r: 8
 }));
 targetCount++;
 this.add('physics');
 this.bind('contact',this,'checkHit');
 },

 checkHit: function(sprite) {
 if(sprite instanceof Q.CannonBall) {
 targetCount--;
 this.parent.remove(this);
 if(targetCount == 0) { Q.stageScene('level'); }
 }
 }
 });
});

As expected, the code for each of the three sprites is quite short, consisting of mostly property
setup code.

The Q.CannonBall class, which represents the ball ired from the cannon, has only one additional
method, countdown, which ensures that the ball is removed from the page after ive seconds. It also
makes the ball fade out when there is less than 1 second left in its lifetime. The initial position x and
y are set by taking the base position of the cannon and using the passed-in dx and dy values calcu-
lated from the angle of the cannon when it is ired.

The Q.Cannon class is deined as a cannon-like polygon. As mentioned, it doesn’t need the physics
component added because it won’t be partaking in any collisions but will be controlled by having
its angle set. As such the points passed in are set in such a way that rotating the polygon rotates it
around the base of the cannon because the base is set to the point 0,0. The only additional method
on the cannon is the fire method, which calculates the position of the tip of the cannon using the
angle and the sin and cos methods.

If you remember your high-school geometry, cos returns a number from 0 to 1 that represents the
horizontal components of a right triangle with a hypotenuse of length 1. sin can do the same thing
for the vertical component. This means the tip of the cannon, so the starting point for the cannonball

292 ❘ CHAPTER 14 Building gaMes With svg and physiCs

can be calculated by multiplying dx and dy by the length of the cannon plus some space for the radius
of the cannonball, which is exactly what the Q.CannonBall class does.

The fire method then inserts the newly-created cannon ball into the stage and then assigns it a
velocity using the calculated dx and dy values so that the ball lies in the correct direction based on
the angle of the cannon.

Finally, the Q.Target object just creates a small, pink ball that listens for a contact event and
checks if the thing hitting it is a cannon ball. If so, it removes itself from its parent and checks if
there are any targets left. If not the level is restarted. Because the contact event happens during
the world step loop, the sprite needs to be careful not to destroy itself immediately (which is what
would happen if it called this.destroy()). Instead it calls remove on the parent, which cues the
sprite up to be removed at the end of the step.

Gathering User Input and Finishing the Game

The last bit of the game is simply to grab the user’s input to control the angle of the cannon and set
up some blocks and targets in an interesting formation on the page.

The code uses a single listener to move the cannon angle that runs on touchstart and touchmove
on a mobile and mousemove on a desktop. Then the user lifts up their inger or releases the mouse,
and the game ires the cannon at the previously-calculated angle.

Next, the scene is set up with a number of different blocks for the user to knock down and a
couple of targets to aim at. Add the code in Listing 14-13 to the bottom of cannon.js before the
inal curly brace.

LISTING 14-13: The rest of the cannon code

 $(Q.wrapper).on('touchstart touchmove mousemove',function(e) {
 var stage = Q.stage(0),
 cannon = stage.cannon,
 touch = e.originalEvent.changedTouches ?
 e.originalEvent.changedTouches[0] : e,
 point = stage.browserToWorld(touch.pageX,touch.pageY);

 var angle = Math.atan2(point.y - cannon.p.y,
 point.x - cannon.p.x);
 cannon.p.angle = angle * 180 / Math.PI;
 e.preventDefault();
 });

 $(Q.wrapper).on('touchend mouseup',function(e) {
 Q.stage(0).cannon.fire();
 e.preventDefault();
 });

 Q.scene('level',new Q.Scene(function(stage) {

Creating a Cannon Shooter ❘ 293

 targetCount = 0;
 stage.add("world");
 stage.insert(new Q.Sprite({
 x: 250, y: 250, w: 700, h: 50, type:"static"
 }))

 stage.insert(new Q.Sprite({ w: 10, h:50, x: 500, y: 200 }));
 stage.insert(new Q.Sprite({ w: 10, h:50, x: 550, y: 200 }));
 stage.insert(new Q.Sprite({ w: 70, h:10, x: 525, y: 170 }));
 stage.insert(new Q.Sprite({ w: 10, h:50, x: 500, y: 130 }));
 stage.insert(new Q.Sprite({ w: 10, h:50, x: 550, y: 130 }));
 stage.insert(new Q.Sprite({ w: 70, h:10, x: 525, y: 110 }));

 stage.insert(new Q.Sprite({
 points: [[0,0], [50, -50],[150, -50],[200,0]],
 x: 200,
 y: 225,
 type:'static',
 shape: 'polygon'
 }));

 stage.insert(new Q.Sprite({ w: 50, h:50, x: 300, y: 150 }));
 stage.insert(new Q.Sprite({ w: 25, h:25, x: 300, y: 115 }));

 stage.each(function() { this.add("physics"); });

 stage.insert(new Q.Target({ x: 525, y: 90 }));
 stage.insert(new Q.Target({ x: 300, y: 90 }));
 stage.insert(new Q.Sprite({ w: 30, h:30, x: 10, y: 210,
 color: 'blue' }));

 stage.cannon = stage.insert(new Q.Cannon());
 stage.viewport(600,400);
 stage.centerOn(300,100);

 }));
 Q.stageScene("level");

As you can see there’s not much new here from the previous examples. The touchstart handler has a
little bit of math to calculate the angle of the cannon using atan2 (this was discussed when calculating
the angle of the joypad), but other than that, the event handlers don’t have any tricks up their sleeves.
They are positioned outside of the level deinition, as the level may be reset (or you might want to
deine multiple levels), and in lieu of unbinding the handlers and rebinding, the same handler can be
used over and over again provided it doesn’t need any local variables from the scene deinition method.
To get around this the cannon object is stored as a property of the stage.

If you have the desire, there’s plenty left that could be added to the game, including multiple levels,
points, and a limit on the number of cannonballs the user can ire. You can also use the impulse han-
dler to track the force of the contact with the targets and remove them only when they are impacted
with enough force to prevent a slowly rolling cannonball from doing damage.

294 ❘ CHAPTER 14 Building gaMes With svg and physiCs

SUMMARY

You covered a lot of ground, learning how to use SVG to create a game with arbitrary shapes and
how to wire those shapes to a 2-D physics engine. There’s still lots of details in Box2D, including
joints and impulses, that this chapter didn’t cover, but the basics should be enough to build a simple
game (or maybe the next Angry Birds!). SVG is still a spec that’s lying a little bit under the radar
from a game development perspective. As soon as performance reaches an acceptable level across
devices, you’ll likely see a lot more games make use of SVG given the lexibility it provides to draw
arbitrary vector elements with a browser-provided scene graph. Advanced features like ilters and
animations are also becoming better supported, so expect to see lots more cool SVG demos coming
in the near future.

PART V

HTML5 Canvas

 ⊲ CHAPTER 15: Learning Canvas, the Hero of HTML

 ⊲ CHAPTER 16: Getting Animated

 ⊲ CHAPTER 17: Playing with Pixels

 ⊲ CHAPTER 18: Creating a 2-D Platformer

 ⊲ CHAPTER 19: Building a Canvas Editor

Learning Canvas, the
Hero of HTML5

WHAT’S IN THIS CHAPTER?

 ➤ Adding and sizing the canvas element

 ➤ Creating images from Canvas

 ➤ Drawing images, text, and paths

 ➤ Creating gradients and patterns

 ➤ Using transforms

 ➤ Learning additional Canvas efects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle.
cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 15
download and individually named according to the names throughout the chapter.

INTRODUCTION

This chapter examines the Canvas API in depth. Although you’ve seen in the past two chapters
that you can build HTML5 games using technologies besides Canvas, from a game perspective
Canvas still remains the most lexible technology to build a game with. Previous chapters have
shown how you can use Canvas to make games using bitmapped spritesheets. Canvas, however,
offers more than just a way to draw some images. It has a full repertoire of vector drawing
methods for drawing shapes and curves along with support for text, transforms, and a variety of
composition modes.

15

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

298 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

GETTING STARTED WITH THE CANVAS TAG

You’ve already seen that getting a <canvas> element onto your page is as easy as adding the element
into your HTML document with the width and height attributes:

<canvas id="mycanvas" width='640' height='480'></canvas>

This creates an element 640 pixels wide by 480 pixels tall on the page, and by default the CSS width
and height of the <canvas> element are set up to match the pixel width and height.

Understanding CSS and Pixel Dimensions

The CSS dimensions and pixel dimensions of the page don’t have to be the same, however. You can
set the CSS width and height (which determines the size of the element on the page) completely inde-
pendent of the pixel width and height. To make this clear, Listing 15-1 shows some code that puts a
random colored, 1-pixel rectangle at every pixel position of each of four different pixel-sized Canvas
elements. All canvas elements are set—via a CSS <style> tag—to 200 pixels wide by 200 pixels tall.

LISTING 15-1: Examining CSS size versus pixel size

 <script src='jquery.min.js'></script>
 <style>
 canvas { width: 200px; height: 200px; }
 </style>

 <canvas width="2" height="2"></canvas>
 <canvas width="10" height="10"></canvas>
 <canvas width="50" height="50"></canvas>
 <canvas width="10" height="100"></canvas>

 <script>
 $("canvas").each(function() {
 var ctx = this.getContext("2d");
 for(var y=0,h=this.height;y<h;y++) {
 for(var x=0,w=this.width;x<w;x++) {
 var r = Math.floor(Math.random()*255),
 g = Math.floor(Math.random()*255),
 b = Math.floor(Math.random()*255);
 ctx.fillStyle = "rgb(" + r + "," + g + "," + b + ")";
 ctx.fillRect(x,y,1,1);
 }
 }
 });
 </script>

Figure 15-1 shows the result of running this code. Notice that although all canvas elements are set
to the same size on the page, they each have different pixel densities.

You can also notice on the irst two elements that when the canvas element is scaled up, the browser
attempts to smooth the generated image between pixels. By default all modern browsers apply
either bicubic (IE) or bilinear (everyone else) upsampling algorithms to images to make them look

Getting Started with the Canvas Tag ❘ 299

smoother when shown at a size larger than their pixel dimensions. This upsampling rule also applies
to canvas tags, so if you set the width and height of the element to be larger than the pixel dimen-
sions, some upsampling occurs.

NOTE Bicubic and bilinear upsampling are two algorithms for taking an image
of a certain size and making it look better when scaled up. Without any upsam-
pling the larger image would have a “jagged” look made up of larger pixels. Both
algorithms use a method of interpolating colors so that the larger image appears
smooth and not jagged, at a cost of some processing time and a loss of detail in
the inal image. Bicubic tends to do a better job at preserving detail than bilinear
but can cause strange “halo” effects on occasion.

This is usually okay, but if you create an 8-bit retro
game, you may prefer to have a crisper pixelated
look. To support this, some browsers have support
for a CSS property called image-rendering that
gives a small modicum of control over the resam-
pling algorithm. As of this writing this is possible
only in Firefox and Internet Explorer, but WebKit
has merged a patch into its nightly builds, so support
in Safari, iOS, Chrome, and Chrome for Android
should be available by the time you read this. The
goal is to force the browser to use the faster nearest-
neighbor algorithm, which doesn’t do any interpola-
tion between pixels. Only Microsoft enables you to
explicitly set the algorithm to use, whereas the other
browsers give this style different names.

To make this work, you must be in vendor preix land
for a while, and Microsoft is still going its own way with a -ms-interpolation-mode property, but
the following CSS style should future-proof you for when WebKit adds support:

 canvas {
 image-rendering: -moz-crisp-edges; /* Firefox 6.0+ */
 image-rendering: -webkit-optimize-contrast;/* Webkit */
 image-rendering: optimize-contrast; /* Standards compliant */
 -ms-interpolation-mode: nearest-neighbor; /* MS Specific extension*/
 }

Figure 15-2 shows how this looks in Firefox 11; the edges are crisper.

As discussed in Chapter 6, “Being a Good Mobile Citizen,” CSS pixels don’t correspond to display
pixels on high-resolution devices such as the iPhone 4, iPad 3, and Galaxy Nexus. This means that
if you leave the canvas element at its default resolution without setting a CSS width, you wouldn’t
be using the display to its best capability. This means that text drawn on the canvas element, for
example, won’t be crisp.

FIGURE 15-1: Canvas CSS versus pixel size.

300 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

FIGURE 15-2: Resized Canvas with crisp edges.

To get around this, you can check for a property on the window variable called window
.devicePixelRatio, which can give you the multiplier of the ratio of a device to CSS pixels. Using
that multiplier you can scale up the canvas element’s pixel size while keeping the CSS size ixed. By add-
ing in a scale onto the context, your game won’t need to know that the <canvas> element has been
rescaled, and you can continue to use CSS pixels to position elements in the game. Listing 15-2 shows
how to do this.

LISTING 15-2: Rescaling for high-resolution devices

 var $canvas = $("#mycanvas"),
 Canvas = $canvas[0],
 ctx = canvas.getContext("2d");

 if (window.devicePixelRatio) {
 var pixelWidth = canvas.width,
 pixelHeight = canvas.height;

 canvas.width = pixelWidth * window.devicePixelRatio;
 canvas.height = pixelHeight * window.devicePixelRatio;

 $canvas.css({ width: pixelWidth, height: pixelHeight });
 ctx.scale(window.devicePixelRatio, window.devicePixelRatio);
 }

The code grabs the original width and height properties on the <canvas> element and then rescales
the pixel width and height up by the devicePixelRatio. It then sets the CSS width and height to
their original size, so the canvas element isn’t resized. Finally, it uses the scale method (more on
transforms later in this chapter) to scale up all calls on the context.

Getting Started with the Canvas Tag ❘ 301

Grabbing the Rendering Context

The majority of the interesting stuff you might do with the <canvas> tag is done using the
element’s context, which as you’ve seen in a lot of places throughout this book is retrieved
by calling:

 var ctx = canvas.getContext("2d");

2-D is the only context currently supported across all modern browsers. All drawing calls are
always performed on the context and not the canvas element.

If Canvas isn’t supported by the browser, the getContext method won’t be present on the canvas
element. As you’ve also seen earlier in this book, you can determine whether a browser supports the
tag by checking for the presence of the getContext method on a newly created <canvas> element:

var hasCanvas = document.createElement("canvas").getContext ? true : false;

You can also check for the presence of the method on an existing <canvas> element on the page.

The variable ctx refers to an arbitrary 2-D rendering context throughout this chapter, but you can
of course stick the context in any variable, and you might have multiple contexts for multiple canvas
elements on the page.

NOTE There is also a webgl context (sometimes available as experimental-
webgl depending on the browser) that exposes the WebGL rendering API, but
because most mobile devices don’t have WebGL enabled, this isn’t covered in this
book.

Creating an Image from Canvas

The only other method with good cross-browser support is the canvas.toDataURL method, which
returns a data URL that represents a snapshot image of the current state of the Canvas. This image
can generate an tag or save the image to a server. The method accepts an optional parameter
indicating the ile type to save, either "image/png" or "image/jpeg" (Chrome also supports a new
image type called "image/webp"). If this parameter isn’t passed, the method defaults to generating a
png. For JPEGs and webp you can also pass a second optional quality parameter.

To generate images from a canvas tag you could write:

// Generate a PNG image
png = canvas.toDataURL();
png = canvas.toDataURL("image/png");
// Generate a JPG with quality 0.8
jpg = canvas.toDataURL("image/jpeg", 0,8);

You can test the toDataURL method by running the code in Listing 15-3, which grabs a snapshot
every time you click or touch the Canvas.

302 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

LISTING 15-3: to-data-url.html

 <script src='jquery.min.js'></script>
 <canvas id="mycanvas", width="400" height="400"></canvas>
 <div id='snapshots'></div>

 <script>
 var canvas = $("#mycanvas")[0],
 ctx = canvas.getContext("2d");
 function randInt(max) {
 return Math.floor(Math.random() * max);
 }
 function drawRandomRectangle() {
 var r = randInt(255), g = randInt(255), b = randInt(255),
 s = randInt(100), x = randInt(400), y = randInt(400);
 ctx.fillStyle = "rgb(" + r + "," + g + "," + b + ")";
 ctx.fillRect(x,y,s,s);
 }
 setInterval(drawRandomRectangle,50);
 $(canvas).on("click touchstart",function(e) {
 var url = canvas.toDataURL("image/png");
 $("").({ src: url, width: 100, height:100 }).prependTo("#snapshots");
 e.preventDefault();
 });
 </script>

This code creates a canvas element and adds a randomly colored and sized square onto the page every
50 milliseconds. Clicking or touching the canvas element calls the toDataURL method, creates a new
 tag, sets the src attribute to that URL, and then prepends that tag to a snapshots <div>.
Each click generates a new image, and because the width of the is set to 100, you can see a time
lapse of how the Canvas changes with each click you make.

The W3C speciication also deines a toBlob method that outputs a File object, which saves on
memory because the ile may be written to disk and is easier to work with. Unfortunately, as of this
writing that method is not implemented in any browser, so it should be avoided. (Firefox deines a
mozGetAsFile method, but this is nonstandard and uses a different syntax.)

DRAWING ON CANVAS

The Canvas context provides a number of different ways to draw onto the <canvas> element. The four
primary methods are drawing rectangles, paths, text, and images. (The context also has methods to
modify pixel data directly that are discussed in Chapter 17, “Playing with Pixels.”) With the excep-
tion of the images, the other drawing methods can be drawn as a stroke, meaning only the outline
is drawn, or as a fill, meaning the interior is drawn. Much like SVG, Canvas also has support for a
number of different line join styles and end caps. Also like SVG, Canvas can do strokes and ills using
gradients and patterns.

Drawing on Canvas ❘ 303

Setting the Fill and Stroke Styles

The Canvas context keeps the state of the current stroke and ill styles in the strokeStyle and
fillStyle properties, respectively. These properties can be both read and written to. The simplest
values you can set for stroke and ill are CSS color values. These color values can be in the form of
a normal pound-sign-preixed hexadecimal color string such as"#F00" or "#FF0000", as an RGB
triplet string in the form "rgb(255,0,255)", or as a named color such as "red".

For example:

ctx.fillStyle = "teal";

ctx.strokeStyle = "rgb(128,64,64)";

ctx.fillStyle = "#FF0000";

console.log(ctx.fillStyle);
// Logs the last value "#FF0000"

console.log(ctx.strokeStyle);
// Logs the strokeStyle converted hexadecimal as "#804040"

Both fillStyle and strokeStyle can also be set to gradients or patterns. Canvas supports two types
of gradients: linear and radial. These types are created by calling the chosen method on the context:

 var linearGradient = ctx.createLinearGradient(x0, y0, x1, y1);
 var radialGradient = ctx.createRadialGradient(x0, y0, r0, x1, y1, r1);

Linear gradients start at x0, y0 and go until x1, y1. They are drawn as an ininitely-wide band that
is perpendicular to the line created by the passed-in points.

Radial gradients are generated as a cone created between the two circles deined by the passed-in
parameters. Areas outside of both circles are transparent. If you just want to create a single circular
gradient, you can set the irst radius to 0 and both points x0, y0 and x1, y1 to be the same point.

After you create a gradient, you need to add color stops to it. These deine the color at a speciic
percentage of the way from the start to the end of the gradient. To add a stop, you need to call
addColorStop on the gradient and pass a number from 0 to 1 that represents the position of the
stop and the color:

 gradient.addColorStop(position, color);

For example, to create a gradient that goes from black to white at the midpoint and then back to
black, you could write

 linearGradient.addColorStop(0,"#000");
 linearGradient.addColorStop(0.5,"#FFF");
 linearGradient.addColorStop(1,"#000");

You can use any valid CSS color deinition to pass in as the second parameter to addColorStop.

The last stroke or ill style you can create is a pattern. A pattern is an image repeated over the area
of the ill and is created by calling

 var pattern = ctx.createPattern(sourceImage,repeatString);

304 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

sourceImage can be an element; this includes objects created with new Image(), a <video>
element, or a <canvas> element. repeatString is one of the following values: "repeat", "repeat-x",
"repeat-y", or "no-repeat". You should recognize these strings as the repeat values you can set on a
backgroundImage in CSS. They map to the pattern repeated in both directions, repeated horizontally
only, repeated vertically only, and not repeated at all.

Listing 15-4 shows an example of both types of gradients created along with a simple pattern generated
from an offscreen <canvas> element. The result is shown in Figure 15-3.

LISTING 15-4: Creating canvas gradients

 <script src='jquery.min.js'></script>
 <style> canvas { background-color:black; } </style>

 <canvas id="mycanvas", width="600" height="400"></canvas>
 <script>
 var canvas = $("#mycanvas")[0],
 ctx = canvas.getContext("2d"),
 width = canvas.width,
 height = canvas.height;
 var linearGradient = ctx.createLinearGradient(0,0,100,300),
 radialGradient = ctx.createRadialGradient(300,200,0,
 300,300,200);
 linearGradient.addColorStop(0,"#000");
 linearGradient.addColorStop(0.5,"#FFF");
 linearGradient.addColorStop(1,"#000");

 radialGradient.addColorStop(0,"#000");
 radialGradient.addColorStop(0.5,"#FFF");
 radialGradient.addColorStop(1,"#000");

 ctx.fillStyle = linearGradient;
 ctx.fillRect(0,0,200,400);
 ctx.fillStyle = radialGradient;
 ctx.fillRect(200,0,200,400);

 var patternCanvas = $("<canvas width='20' height='20'>")[0],
 patternCtx = patternCanvas.getContext("2d")

 patternCtx.fillStyle = "#777";
 patternCtx.fillRect(0,0,10,10);

 patternCtx.fillStyle = "#FFF";
 patternCtx.fillRect(10,10,10,10);

 ctx.fillStyle = ctx.createPattern(patternCanvas,"repeat");
 ctx.fillRect(400,0,200,400);
 </script>

Drawing on Canvas ❘ 305

FIGURE 15-3: Canvas gradients.

The code creates a Canvas that is 600 pixels wide and 400 pixels tall and draws three rectangles
each with a different ill. The irst contains a linear gradient, the second a radial gradient, and the
third a simple pattern ill created from an offscreen 20 x 20 canvas element.

The gradients are created with positions relative to the entire canvas and not the individual rectangle.
This means that moving the fillRect results in a shifting of the gradient on the rectangle. If you
need to use a gradient on a sprite, you need to use the translate, rotate, and scale methods described
in “Using the Canvas Transformation Matrix” to move elements around that contain gradients rather
than drawing them at particular canvas positions.

Setting the Stroke Details

Although gradients and patterns work on both strokes and ills, a number of stroke-speciic settings
enable you to control how the line that deines the stroke is drawn. These properties are:

 // Sets the line width in current units (default 1)
 ctx.lineWidth = width;

 // Sets the cap style on the end of lines
 // possible values are "butt", "round", "square" (default "butt")
 ctx.lineCap = "butt";

 // Sets the style at corners between two lines
 // possible values are "round", "bevel", "miter" (default "miter")
 ctx.lineJoin = "miter";

 // Sets the max size of a miter join in current units
 // Prevents mitered corners from getting too large at small angles.
 ctx.miterLimit = 10;

306 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

There’s not much more to say about stroke details other than the lineWidth and miterLimit prop-
erties are affected by the current transform state, so if you do a scale on the context, your line width
increases as well.

Adjusting the Opacity

The rendering context also provides a globalAlpha property that enables you to control the opacity of
whatever is rendered. This can be set to a number between 0 (fully transparent) and 1 (fully opaque).

 // Fully opaque
 ctx.globalAlpha = 1;

 // 50% transparent
 ctx.globalAlpha = 0.5;

This property persists between paths and rendering calls, so if you change it somewhere you must
make sure to change it back afterward or adjust your code to set it to 1 before each rendering call.

Drawing Rectangles

The simplest drawing method that Canvas supports is the drawing of arbitrarily-sized rectangles.
It has three methods supported: clearing the rectangle, creating a illed-in rectangle, and creating
a rectangle outline:

// Clear the specified rectangle,
 // setting each pixel to black and transparent
 ctx.clearRect(x, y, w, h)

 // Create a filled-in rectangle using the current fillStyle
 ctx.fillRect(x, y, w, h)

 // Create a rectangle outline using the current strokeStyle
 ctx.strokeRect(x, y, w, h)

These methods tend to execute quickly (except when using a gradient or pattern ill) and clearRect
is often used to clear the canvas between frames.

Drawing Images

You’ve already seen the three drawImage methods in Chapter 1, “Flying Before You Walk.” They
are repeated here for reference:

// Draw an image at x,y at its full size
 ctx.drawImage(image, x, y)

 // Draw an image at x,y rescaled to width w and height h
 ctx.drawImage(image, x, y, w, h)

 // Draw the portion of the image defined by the rectangle sx,sy and sw,sh
 // at x,y with width w and height h
 ctx.drawImage(image, sx, sy, sw, sh, x, y, w, h)

The irst version draws a full image at its full size at a location on the canvas.

Drawing on Canvas ❘ 307

The second version draws a full image that has been resized to w by h. If the Canvas has been rescaled
using CSS or a transform has been applied, this may not mean w pixels by h pixels. For example, if
you scale the Canvas down by half as shown earlier for retina iOS devices, you might want to load
images that have twice the resolution and draw them at half width and half height to get the best
visual results.

The third version is the one used throughout the Quintus code to pull a portion of an image from a
spritesheet and draw it onto the canvas.

The image argument in each case can be an Image object (which is equivalent to an DOM
element), another <canvas> element, or a <video> element.

Drawing Paths

Paths are the most complicated drawing tool available for use in Canvas, but they are also the most
powerful. They enable you to draw arbitrary shapes and curves onto the Canvas. When a path is
completed, you can either call stroke to draw the path as an outline or fill to draw the path as a
illed-in shape. If the path hasn’t been closed, the path will be implicitly closed when you call fill.

Instead of calling stroke or fill, you can also deine a clipping region using the existing path by
calling clip. This can limit future drawing commands to the previously drawn path until you call
restore. The HTML5 speciication deines a method called resetClip, but as of this writing it’s
not well implemented in any browsers.

Paths are deined by points and the connecting segments between them. Those segments can be
straight lines, arcs, or curves. Each path consists of one or more subpaths, which can be closed
(meaning the last point connects to the irst) or open.

To create a path call ctx.beginPath(); followed by any number of path commands, and then
call ctx.fill() or ctx.stroke(). If you want to create multiple subpaths, you can also call ctx
.closePath() to close the subpath and implicitly create a new one starting at the last point of the
previous path. You can also call ctx.moveTo(x,y) to move the starting point for the next com-
mand and implicitly create the new subpath if the previous path had more than 1 point. Calling
moveTo does not, however, implicitly close the previous subpath. When you call stroke or fill,
all the subpaths in the current path are affected.

Canvas provides seven different commands for drawing the various segments of a path that can be
mixed and matched. The details for each command are shown here:

 ➤ ctx.lineTo(x, y): Adds a new point at x,y and connects the previous point with a
straight line.

 ➤ ctx.quadraticCurveTo(cpx, cpy, x, y): Adds a new point at x,y and connects the previ-
ous point with a quadratic Bézier curve with the control point cpx, cpy.

 ➤ ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y): Adds a new point x,y to the sub-
path and connects the previous point with a cubic Bézier curve deined by the control points
cp1x, cp1y and cp2x, cp2y.

 ➤ ctx.arcTo(x1, y1, x2, y2, radiusX, [,radiusY, rotation]): Adds an arc between
x1,y1 and x2,y2 with the radius deined. It also connects the previous point on the subpath

308 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

with a straight line to x1,y1. If radiusY and rotation are provided, arcTo draws a portion of
an ellipse that has been rotated rotation radians counterclockwise from the positive x axis.

 ➤ ctx.arc(x, y, radius, startAngle, endAngle [, anticlockwise]): This draws
an arc starting at x,y of the passed in radius between startAngle and endAngle (deined in
radians). If anticlockwise is set to true, the arc will be drawn counterclockwise.

 ➤ ctx.ellipse(x, y, radiusX, radiusY, rotation, startAngle, endAngle,

anticlockwise): This draws the portion of an ellipse between startAngle and endAngle
starting at x and y with the given radii whose semi-major axis is rotated rotation radians
counterclockwise from the positive x-axis. It connects any previous point on the subpath to
the start of the drawn ellipse arc.

 ➤ ctx.rect(x, y, w, h): This draws a new subpath rectangle consisting of four points
deined as the corners of the rectangle and closes that subpath. Similar to fillRect or
strokeRect but it generates a subpath instead.

As you can see, there are lots of ways to draw vector paths. After a path is drawn on the canvas, how-
ever, it is converted into pixel data, and the details of the path are lost. The spec has been updated to
create a new Path object that can be reused by calling ctx.stroke(path) or ctx.fill(path), but as
of this writing that element hasn’t made it into any browsers.

NOTE Bézier curves are parametric curves commonly used in computer graph-
ics. They are deined by a start and end point and either one (in quadratic curves)
or two control points (in cubic curves). These control points deine the size and
shape of the curve between the start and end points.

The equation for a point on a Quadric Bézier curve at a given time t is between 0
and 1 and can be written as a quadratic vector equation:

P(t) = (1-t)2P
0
 + 2t(1 - t)P

c
 + t2P

1

or in JavaScript as

var x = (1-t)*(1-t)*p0.x + 2*t*(1-t)*pc.x + t*t*p1.x

var y = (1-t)*(1-t)*p0.y + 2*t*(1-t)*pc.y + t*t*p1.y

Given start and end points are p0 and p1 and the control point is pc. The Cubic
Bézier equation is even more involved; luckily the browser handles drawing the
curves for you. To get a sense of how the control point affects the arc, check out
the ile bezier.html in the included code.

Rendering Text on Canvas

As you saw in the title screen in Chapter 1, “Flying Before You Walk,” Canvas also has the capa-
bility to render text onto the canvas element. Much like a rectangle drawing, Canvas provides two
methods to render text:

ctx.fillText(str, x, y);
 ctx.strokeText(str, x, y);

Drawing on Canvas ❘ 309

The irst method, fillText, draws a string of text with the characters ill-in (as text normally is)
at the location x, y whereas the second, strokeText, draws only the outline. By default the text is
aligned to the left (in left-to-right languages at least), but you can change this by using the ctx
.textAlign property for any of the following values:

ctx.textAlign = "left"; // Left aligned from x,y
 ctx.textAlign = "right"; // Right aligned from x,y
 ctx.textAlign = "center"; // Centered on x,y
 ctx.textAlign = "start"; // Same as "left" in left-to-right languages
 ctx.textAlign = "end"; // Same as "right" in left-to-right languages

The default is "start", but to center text horizontally on a speciic point, you can use "center".

Vertical alignment is controlled via the ctx.textBaseline property. By setting this property to
different values, you can control where text is positioned relative to the passed in y value:

 ctx.textBaseline = "top"; // text baseline is top of the em square
 ctx.textBaseline = "middle"; // text baseline is middle of the em square
 ctx.textBaseline = "alphabetic"; // text is on normal alphabetic baseline
 ctx.textBaseline = "bottom"; // text baseline is bottom of the em square

A couple of additional options are currently unsupported ("ideographic" and "hanging") as of
this writing. The default textBaseline value is "alphabetic". This value can sometimes be dif-
icult to work with when positioning text; setting the textBaseline to "top" or "bottom" may
be easier to get text exactly where you want it.

The inal property, ctx.font, enables you to set the font using a CSS-style font string. This string
can contain anything from just a size and font-family declaration up to a full style, variant, weight,
size, and family declaration. If you pass an invalid font declaration, the assignment fails silently.

 ctx.font = "20px Arial"; // Set the font to 20px

 // Font set to italic, bold 40px Lobster, line height isn’t actually used
 ctx.font = "italic normal bold 40px/20px Lobster";

 // Setting just the size or family isn't valid and is ignored
 ctx.font = "40px"; // INVALID
 ctx.font = "Arial"; // INVALID

 // Still returns "italic normal bold 40px/20px Lobster"
 console.log(ctx.font);

Any font available on the page is available in canvas. This means any fonts you load via @font-face
are fair game.

You can also measure the width of a string of text using the ctx.measureText method. It returns a
TextMetrics object which, from the HTML5 speciication, looks like it should have lots of interest-
ing properties such as horizontal and vertical bounding boxes and em height information. In practice,
browsers have only implemented the width property of the text that you render.

var m = ctx.measureText("This is some text");
 // Width of "This is some text" with the current font
 console.log(m.width);

More properties may appear at some point, but the primary use case now is to precalculate the
width of a piece of text for positioning or hit-testing.

310 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

USING THE CANVAS TRANSFORMATION MATRIX

Although it’s been referenced previously, this book hasn’t yet described in detail the transformation
matrix that Canvas provides. This matrix enables you to translate, rotate, and scale any element you
draw in Canvas, including images and paths.

This matrix works much the same way as the transforms in SVG from Chapter 14 (“Building Games
with SVG and Physics”) do, but in addition canvas provides a way to easily save and restore the matrix
state to enable easy nesting of drawing commands. (SVG didn’t have this problem because elements
were nested under each other in the DOM.)

Understanding the Basic Transformations

Similar to SVG and CSS3, Canvas provides the standard basic 2-D transformations: translate, scale,
and rotate. After you apply a transform, it applies to everything you draw until you change it.

 ctx.translate(x,y);

 ctx.scale(sx,sy);

 // Rotate takes an angle in radians
 ctx.rotate(angle * Math.PI / 180);

If you need to apply a custom transform (such as a skew) that is not handled by the built-in translate,
scale, or rotate, you can also call ctx.transform directly with the matrix values:

 ctx.transform(a, b, c, d, e, f);

When you call any of the preceding methods, internally the browser creates a transform matrix that
performs the wanted transform and multiplies the current transformation matrix by it. This means
that the order of operations is important—and is something that people often have trouble with.

The best practice is to apply transforms from global to local. This means that if you want to move
an object to some spot on the canvas and have it appear rotated to a certain angle, you would irst
apply the more global transform (the translation) and then apply the more local transform (the rota-
tion). If you apply it the other way around, you imply that the rotation is the global transform, so
the element should be rotated around its translation.

If the element needs to be rotated around its center and was not centered at 0,0, you also need to wrap
translations to center and then uncenter them around the rotation.

For example, to rotate a square around its own center and then translate it somewhere on the
canvas, apply those transforms in the reverse order. (It’s easier if you read the following code from
bottom to top.)

 // Move the object to the correct spot
 ctx.translate(250,200);

 // Uncenter the element back to its original spot
 ctx.translate(50,50);

 // Rotate it

Using the Canvas Transformation Matrix ❘ 311

 ctx.rotate(45 * Math.PI / 180);

 // Center it
 ctx.translate(-50,-50);

 // Draw it
 ctx.fillRect(0,0,100,100);

If you change the order of any of these (with the exception of the irst two translations, which are
commutative), you end up with a rectangle that changes position as you try to change the angle of
rotation.

Saving, Restoring, and Resetting the Transformation Matrix

Because you often want to nest transforms, the Canvas context provides a couple of handy methods
to save and restore the state of the transformation matrix:

ctx.save(); // Save the state
 ctx.translate(...);
 ctx.scale(...);
 ctx.rotate(...);
 ...
ctx.restore(); // Restore the matrix

Using save and restore enables you to apply any number of child transforms and then restore the
state back without affecting any other code that might rely on the state of the transformation matrix.

You can also reset the transformation matrix back to a known state with setTransform:

 ctx.setTransform(a, b, c, d, e, f)

If you need to reset the matrix to the identity matrix (which doesn’t do any transforms), you can run

 ctx.setTransform(1,0,0,1,0,0);

You must be careful with resetting the transform completely because this may cause unexpected
results if you adjust the canvas size for retina graphics, for example, as shown earlier.

Drawing Snowlakes

To drive home the power of transforms, build a recursive random “snowlake generator” that
generates interesting recursive fractal-like patterns.

The idea is that each snowlake can be deined as a number of branches that spread out in a different
direction. Each branch then has a set number of smaller child branches spread out over some range
of angles and so on to a set limit. Because each step of the recursion is the same, a single method can
be used that calls itself. The only difference with the nested calls is that the state of the transforma-
tion matrix is set up so that the child branches are drawn underneath the parent branches.

Figure 15-4 shows one of the more interesting outputs of the nearly ininite number of possible
snowlakes. The code for the snowlake generator is shown in Listing 15-5.

312 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

FIGURE 15-4: Snowlake output.

LISTING 15-5: Generating random snowlakes

 <script src='jquery.min.js'></script>
 <style> canvas { background-color:white; } </style>

 <canvas id="mycanvas", width="600" height="400"></canvas>

 <script>
 var canvas = $("#mycanvas")[0],
 ctx = canvas.getContext("2d");

 function randInt(max) {
 return Math.floor(Math.random() * max);
 }
 function randomSnowflake() {
 var rootBranches = randInt(8)+1,
 childBranches = randInt(8)+2,
 childSpread = Math.random()*0.5 + 0.5,
 size = 50 + randInt(50),
 level = randInt(4)+1,
 distance = Math.random()*0.5 + 0.5;

 function drawSnowflake(branches,spread,level) {
 var angle;
 for(var i=0;i<branches;i++) {
 if(spread == 1) {
 // Don't overlap branches of we are rotating fully
 angle = Math.PI * 2 * spread * (-0.5 + i/branches);
 } else {
 angle = Math.PI * 2 * spread * (-0.5 + i/(branches-1));
 }

 ctx.save();

 // Rotate to point straight up for this branch

Applying Canvas Efects ❘ 313

 ctx.rotate(angle);

 // Draw this branch
 ctx.beginPath();
 ctx.moveTo(0,0);
 ctx.lineTo(0,size*distance);
 ctx.stroke();

 // Draw child branches if necessary
 if(level > 0) {
 // Move to the end of the branch and scale down
 ctx.translate(0,size*distance);
 ctx.scale(distance,distance);
 drawSnowflake(childBranches,childSpread,level-1);
 }
 ctx.restore();
 }
 }

 ctx.clearRect(0,0,600,400);
 ctx.save();

 // Generate a random color
 var r = randInt(255), g = randInt(255), b = randInt(255);
 ctx.strokeStyle = "rgb(" + r + "," + g + "," + b + ")";
 ctx.lineWidth = 2;

 // Center the initial branches
 ctx.translate(300,200);

 drawSnowflake(rootBranches,1,level);
 ctx.restore();
 }
 randomSnowflake();
 $(canvas).on('click',randomSnowflake);
 </script>

The exterior method randomSnowflake generates a number of random property values setting the
number of branches, spread angle, size, level of recursion, and a random color for the snowlake. It
then calls the recursive method drawSnowflake, which draws a single line for each branch rotated
to the correct angle and then sets up the transformation matrix for the child branches. It then checks
if there are more levels to draw, and if so, calls itself again with some updated parameters.

Because all drawing calls are wrapped in ctx.save() and ctx.restore() calls, each branch can
pass along its transformation matrix to its child branches without affecting any of the other ones.

Each time you click the Canvas, a new snowlake generates. The variety of possibilities by just draw-
ing some lines and varying a few parameters shows the power of nested transforms.

APPLYING CANVAS EFFECTS

As this chapter wraps up, there are a couple additional effects worth covering that Canvas provides:
shadows and composition effects.

314 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

Adding Shadows

The Canvas context provides a way to add drop shadows to any drawn element, including text, rect-
angles, paths, and images. This is controlled via a set of four properties on the context:

 // CSS color shadow, accepts RGBA, RGB, hexadecimal
 ctx.shadowColor = "rgba(255,255,255,0.5)";

 ctx.shadowOffsetX = 4; // horizontal shadow offset
 ctx.shadowOffsetY = 4; // vertical shadow offset
 ctx.shadowBlur = 10; // distance for shadow to fade out

You can use shadows to generate normal drop-shadow effects by using darker shadowColor values
or give a subtle glow effect by setting the shadow offset values to zero and using a lighter color.

WARNING Elements with shadows are signiicantly more processor-intensive to
draw than elements without, so use shadows sparingly and consider prerendering
effects to an offscreen canvas buffer.

Using Composition Efects

The Canvas context also provides a property called globalCompositeOperation, which controls
how Canvas combines existing content with new elements drawn on canvas. The speciication
deines 11 different possible values for this property, with the default value source-over placing
newly drawn elements over the existing content as you would expect.

Unfortunately as of this writing, consistent cross-browser support for the interesting composite oper-
ations is poor, so this property is something to keep track of as it evolves rather than using it now.

The intended results of each operation, as pulled directly from the speciication, are listed in Table 15-1.

TABLE 15-1: Composite Operations

OPERATION DESCRIPTION

source-atop A atop B. Display the source image wherever both images are opaque.

Display the destination image wherever the destination image is opaque

but the source image is transparent. Display transparency elsewhere.

source-in A in B. Display the source image wherever both the source image and

destination image are opaque. Display transparency elsewhere.

source-out A out B. Display the source image wherever the source image is opaque

and the destination image is transparent. Display transparency elsewhere.

source-over (default) A over B. Display the source image wherever the source image is

opaque. Display the destination image elsewhere.

destination-atop B atop A. Same as source-atop but using the destination image

instead of the source image and vice versa.

destination-in B in A. Same as source-in but using the destination image instead of

the source image and vice versa.

Applying Canvas Efects ❘ 315

OPERATION DESCRIPTION

destination-out B out A. Same as source-out but using the destination image instead

of the source image and vice versa.

destination-over B over A. Same as source-over but using the destination image

instead of the source image and vice versa.

lighter A plus B. Display the sum of the source image and destination image,

with color values approaching 255 (100%) as a limit.

copy A (B is ignored). Display the source image instead of the destination image.

xor A xor B. Exclusive OR of the source image and destination image.

Safari is unfortunately one of the browsers that doesn’t handle a few of these operations correctly,
including incorrect rendering of "source-in", "source-out", "destination-in",
"destination-atop", and "copy".

Firefox doesn't handle "copy" correctly. The latest version of Chrome for the desktop and Chrome for
Android do apply all the operations correctly. You can see how each operation looks in Figure 15-5 or
try it out by running the composition.html ile from this chapter’s code.

source-over source-in source-out source-atop

destination-over destination-in destination-out destination-atop

lighter copy xor

FIGURE 15-5: Results of composite operations.

316 ❘ CHAPTER 15 learning Canvas, the hero oF htMl5

The only operations, as of this writing, supported well by all browsers are the "source-over" (the
default), "source-atop", "destination-over", "destination-out", and "lighter".

SUMMARY

You now know more about using the API for the canvas element, including how to use 2-D canvas
to the full extent of its capabilities, including the peculiarities of the pixel dimensions along with the
different rendering capabilities of the 2-D context. You also saw the variety of vector drawing capa-
bilities of canvas along with how to set up gradient and patterns ills. Finally, you learned how to
use canvas effects such as shadow and composition effects.

Getting Animated

WHAT’S IN THIS CHAPTER?

 ➤ Deining an animation API

 ➤ Building an animation system

 ➤ Creating a Canvas-based viewport

 ➤ Creating parallax backgrounds

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 16
download and individually named according to the names throughout the chapter.

INTRODUCTION

The spritesheet support from Chapter 11, “Bootstrapping the Quintus Engine: Part III,”
allowed Sprites with spritesheets to play back animations by modifying the frame property of
a sprite. Although this approach works for simple games with single animations, more compli-
cated games such as the platformer built in Chapter 18, “Creating a 2-D Platformer,” require a
more robust system to handle animation. This chapter builds an animation system that enables
more complex behaviors. This chapter also examines what you need to build and animate
Canvas-based parallax scrolling backgrounds.

16

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

318 ❘ CHAPTER 16 getting aniMated

BUILDING ANIMATION MAPS

A robust animation system for Quintus should have two main goals. The irst goal is to make it easy
to trigger animations by name and not have to worry about the speed or the frame that the anima-
tion is playing at. The second goal is to have the animation system hook into the entity’s events so
that animations can trigger events to make it easier to time actions and behaviors.

Deciding on an Animation API

To begin, think about what a good API for an animation system might look like. There are two
main pieces to consider. The irst is the method to deine animation. The second is the way anima-
tions are played. The irst is straightforward: You need a way to set the frames that make up the ani-
mation as well as any additional details about the animation. Listing 16-1 shows how this can work.

LISTING 16-1: The animation api

 Q.animations('player', {
 run_right: { frames: _.range(0,10) },
 run_left: { frames: _.range(10,20) },
 stand: { frames: _.range(30,25), rate: 1/5 },
 fire: { frames: _.range(25,30), loop: false, rate: 1/30 },
 die: { frames: _.range(30,45), rate: 1/5, next: 'dead' },
 dead: { frames: [45] }
 });

In the preceding code, Q.animations creates a sprite animation map called player and passes in
a hash deining the frames and any additional details about the animation, including whether it
shouldn’t loop, whether it has a rate override, and whether another animation should play after it is
done.

As a shortcut to pass in a long array of frames, such as [0, 1, 2, 3, 4, 5, 6], you can use the
underscore shortcut method _.range to do the same by calling _.range(0,7). (Notice that _.range
goes up, too, but does not include the second number.)

In the preceding case, the player has left and right running animation that loops as well as a loop-
ing standing animation that plays at a slower rate. A ire animation runs at a faster rate and doesn’t
loop. Next is a die animation that automatically plays a 1-frame dead animation when it’s done.

With the animations deined, it’s now time to igure out how they should be played. Because play is
the term often associated with animation, a simple play method takes the name of the animation to
play along with an optional priority value. Adding in a priority to play allows animations that are
higher priority (such as an attack) to override lower priority animations (such as a run or walk).

Listing 16-2 shows what a player sprite might look like powered by animations.

Building Animation Maps ❘ 319

LISTING 16-2: An animated player sprite

 Q.sheet('player_animations', 'dummy.png',{ tilew: 96, tileh: 96});

 Q.Player = Q.Sprite.extend({
 init:function(props) {
 this._super(_(props).extend({
 sprite: 'player',
 sheet: 'player_animations',
 rate: 1/15
 }));

 this.add('animation');
 this.bind('animEnd.fire',this,function() { console.log("Fired!"); });
 this.bind('animLoop.run_right',this,function() {
 console.log("run right");
 });

 this.bind('animLoop.run_left',this,function() {
 console.log("run left"); }
);
 Q.input.bind('fire',this,"fire");
 },

 fire: function() {
 this.play('fire',1);
 },

 step: function(dt) {
 if(Q.inputs['right']) {
 this.play('run_right');
 } else if(Q.inputs['left']) {
 this.play('run_left');
 } else {
 this.play('stand');
 }
 this._super(dt);
 }
 });

The player init method deines a rate property that sets the default speed with which animations
on the sprite play as well as a sprite property that deines the controlling animation sprite and the
standard sheet property that ties the player to a spritesheet. Next it adds the animation compo-
nent that adds the play method into the object. Then it deines a number of callbacks to play when
speciic animations are either inished or have gone through a single loop of frames. The former can
be useful to trigger other actions, whereas the latter can be used to trigger periodic behavior, like a
player running out of breath while running or running out of oxygen slowly while underwater.

Separating out sprite animation maps from spritesheets makes it easy to swap one or the other. You
could, for example, have a number of spritesheets that match animation frames but have different
characters.

320 ❘ CHAPTER 16 getting aniMated

The step method is set to play a speciic animation at the lowest default priority level depending
on the user’s movement actions. The fire method, on the other hand, plays the ire animation at a
higher priority level (1) so that it takes precedence over the movement animations. Because ire was
set to be a nonlooping animation, when it inishes the movement animation takes over.

Writing the Animation Module

With the API for animations deined, you can implement the module. The module will be called
Quintus.Anim and will consist of little more than some helper methods to deine and retrieve ani-
mations and an animation component that can be added to Sprite objects (or actually anything
with a frame property and a step method).

The animation component extends the Sprite with a play method that calls animation.play and
sets up the animation. It also ties in to the step event to update the current frame and trigger events
as necessary.

The code for the module is shown in Listing 16-3. It should be added to a new ile called quintus_

anim.js.

LISTING 16-3: The Quintus.Anim module

Quintus.Anim = function(Q) {
 Q._animations = {};
 Q.animations = function(sprite,animations) {
 if(!Q._animations[sprite]) Q._animations[sprite] = {};
 _.extend(Q._animations[sprite],animations);
 };

 Q.animation = function(sprite,name) {
 return Q._animations[sprite] && Q._animations[sprite][name];
 };

 Q.register('animation',{
 added: function() {
 var p = this.entity.p;
 p.animation = null;
 p.animationPriority = -1;
 p.animationFrame = 0;
 p.animationTime = 0;
 this.entity.bind("step",this,"step");
 },
 extend: {
 play: function(name,priority) {
 this.animation.play(name,priority);
 }
 },
 step: function(dt) {
 var entity = this.entity,
 p = entity.p;
 if(p.animation) {
 var anim = Q.animation(p.sprite,p.animation),
 rate = anim.rate || p.rate,

Building Animation Maps ❘ 321

 stepped = 0;
 p.animationTime += dt;
 if(p.animationChanged) {
 p.animationChanged = false;
 } else {
 p.animationTime += dt;
 if(p.animationTime > rate) {
 stepped = Math.floor(p.animationTime / rate);
 p.animationTime -= stepped * rate;
 p.animationFrame += stepped;
 }
 }
 if(stepped > 0) {
 if(p.animationFrame >= anim.frames.length) {
 if(anim.loop === false || anim.next) {
 p.animationFrame = anim.frames.length - 1;
 entity.trigger('animEnd');
 entity.trigger('animEnd.' + p.animation);
 p.animation = null;
 p.animationPriority = -1;
 if(anim.trigger) {
 entity.trigger(anim.trigger,anim.triggerData)
 }
 if(anim.next) { this.play(anim.next,anim.nextPriority); }
 return;
 } else {
 entity.trigger('animLoop');
 entity.trigger('animLoop.' + p.animation);
 p.animationFrame = p.animationFrame % anim.frames.length;
 }
 }
 entity.trigger("animFrame");
 }
 p.sheet = anim.sheet || p.sheet;
 p.frame = anim.frames[p.animationFrame];
 }
 },

 play: function(name,priority) {
 var entity = this.entity,
 p = entity.p;
 priority = priority || 0;
 if(name != p.animation && priority >= p.animationPriority) {
 p.animation = name;
 p.animationChanged = true;
 p.animationTime = 0;
 p.animationFrame = 0;
 p.animationPriority = priority;
 entity.trigger('anim');
 entity.trigger('anim.' + p.animation);
 }
 }

 });
};

322 ❘ CHAPTER 16 getting aniMated

As you can see, the meat of the component is the step method, which is responsible for updating the
frame if enough time has passed and then triggering events. But before getting to that, it’s time to
walk through the code a piece at a time.

The irst three declarations are the connective tissue that enables you to set and retrieve animations.
Animations are stored in a nested hash in the property Q._animations. Calling Q.animations
with a name and a set of animations adds those to the animations available for that sheet. Calling
Q.animation with a name and an animation name returns the details for that animation.

Each animation is required to have an array of frames, but for additional lexibility you need to sup-
port a number of other properties to make it easier to customize individual animations and chain
animations together:

 {
 frames: [0,1,2,3], /* An array of frames in the sheet */
 /* can be created with _.range(0,3) */
 /* Optional Parameters */
 sheet: 'sheetName', /* An override for the sheet, if used,
 must be on all animations */
 loop: false, /* Loop animation (default: true) */
 rate: 1/30, /* Frame rate override for this animation */
 next: 'animName', /* Animation to auto-play after this one */
 trigger: 'event', /* Custom event to trigger when done */
 trigerData: { .. } /* Optional custom trigger data */
 }

The animation component adds only a single exposed method to the entity’s interface: play, which
as already described, takes an animation name and an optional priority.

The play method extended onto the entity is just a proxy for the method directly on the component
(listed at the bottom). That method irst checks that you’re actually trying to change the anima-
tion, as a call to play with the same animation that is already playing just continues to play that
animation. Next if the animation has changed and the priority passed in is higher than the currently
running animation, the animation properties are updated, and two anim events are triggered: one
general one and one that’s speciic to the animation being played.

The step method does the most work. It irst checks if there is an animation being played, and if so
it takes over control of the sprite’s frame property.

It then checks if this is the irst frame of a new animation. If not it updates the animation time based
on the rate (either from the sprite or the per-animation rate override) and advances the animation by
the required number of frames depending on the time step.

Next it checks if the animation has updated itself this frame. If so, it needs to do some more work.
First, the code checks if the current frame has reached the end of the animation. If so it checks if this
is a single-loop animation or if there is an animation to play next. If either of those conditions are
true, the method sets the frame to the last frame of the animation to be safe and then triggers two
animEnd events. It then resets the animation and animationPriority to default values. Finally it
triggers a custom event or plays the next animation if either of those properties is set.

Building Animation Maps ❘ 323

If it’s a looping animation, the method triggers animLoop events to signal an individual loop has
played through and then uses the modulus operator to ensure the animationFrame is within the
range of frames.

Finally, when everything else is done, the method sets the sprite’s frame property and optionally the
animation sheet if the animation has that property set.

Testing the Animation

To test the animation functionality, create a simple animated sprite that can meander around the
stage. To start, create a new HTML ile called animation.html, and enter the code in Listing 16-4:

LISTING 16-4: The animation bootstrap html

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
user-scalable=0, minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Animation</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>
 <script src='js/quintus_scenes.js'></script>
 <script src='js/quintus_anim.js'></script>
 <script src='animation.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

This is just the basic Quintus bootstrap code with the new quintus_anim.js module added in. To
start keeping the jQuery and underscore dependencies along with the slowly building Quintus code
separated from per-example code, the engine code has been relegated to a separate js/ directory.

Next, create the animation.js ile mentioned earlier and put the code from Listing 16-5 into it.
This code deines a slimmed-down version of the user-controlled player character from the begin-
ning of the chapter that walks around and can trigger a ire animation. To run the code, you need
the images from the chapter code and the sprites.json iles in the images/ and data/ subfold-
ers respectively. You also need to launch the example from localhost because of the AJAX-loaded
sprites.json ile.

324 ❘ CHAPTER 16 getting aniMated

LISTING 16-5: A basic walking demo

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,Anim')
 .setup('quintus', { maximize: true })
 .controls()
 Q.Player = Q.Sprite.extend({
 init:function(props) {
 this._super(_(props).extend({
 sheet: 'man',
 sprite: 'player',
 rate: 1/15,
 speed: 700
 }));
 this.add('animation');
 this.bind('animEnd.fire',this,function() {
 console.log("Fired!");
 });
 this.bind('animLoop.run_right',this,function() {
 console.log("right");
 });
 this.bind('animLoop.run_left',this,function() {
 console.log("left");
 });
 Q.input.bind('fire',this,"fire");
 },
 fire: function() {
 this.play('fire',1);
 },
 step: function(dt) {
 var p = this.p;
 if(p.animation != 'fire') {
 if(Q.inputs['right']) {
 this.play('run_right');
 p.x += p.speed * dt;
 } else if(Q.inputs['left']) {
 this.play('run_left');
 p.x -= p.speed * dt;
 } else {
 this.play('stand');
 }
 }
 this._super(dt);
 }
 });

 Q.Block = Q.Sprite.extend({
 init:function(props) {
 this._super(_(props).extend({ sheet: 'woodbox' }));
 }
 });

 Q.scene('level',new Q.Scene(function(stage) {

Adding a Canvas Viewport ❘ 325

 stage.insert(new Q.Player({ x:100, y:50, z:2 }));
 stage.insert(new Q.Block({ x:800, y:160, z:1 }));
 stage.insert(new Q.Block({ x:550, y:160, z:1 }));
 }, { sort: true }));

 Q.load(['sprites.png','sprites.json',,'background-floor.png',
 'background-wall.png'],function() {
 Q.compileSheets('sprites.png','sprites.json');
 Q.animations('player', {
 run_right: { frames: _.range(7,-1,-1), rate: 1/10},
 run_left: { frames: _.range(0,8), rate:1/10 },
 fire: { frames: [8,9,10,8], next: 'stand', rate: 1/30 },
 stand: { frames: [8], rate: 1/5 }
 });
 Q.stageScene("level");
 });
});

The player class matches the one from the beginning of the chapter in most ways. It deines a
Q.Player sprite controlled by the player and animated based on the actions the player takes. It also
logs a few events when animations inish. In a real game these events could be used to actually trig-
ger a bullet iring or deplete a user’s stamina.

The block class grabs an item from the spritesheet to display a crate. Next, the scene “level” is
deined to set up a Player object and a couple of blocks for reference. Because the player should be
in front of everything else, you also need to add a sort option onto the stage.

Finally, the Q.load method loads the assets, compiles the spritesheets and then creates the anima-
tions. The animations could easily be loaded via a .json ile if you want to separate them from
the game logic or generate them automatically. (The background images will be used later in this
chapter.)

If you ire up this example in a browser or mobile device, you can walk the man around a static,
white-background area relative to a couple of blocks, as shown in Figure 16-1.

FIGURE 16-1: The walking man.

ADDING A CANVAS VIEWPORT

SVG made the engine’s life easy to add in a camera; the built-in viewport attribute enables you to
control the viewport of the SVG element and act as a camera on the action.

326 ❘ CHAPTER 16 getting aniMated

With the Canvas tag’s transforms, however, this functionality can easily be added to a stage using
a component you can call viewport. The viewport component can have a few methods to allow a
game to adjust the center of the viewport as well as add a sprite to follow, which means to center on
the screen at all times.

This component ties into the step event to update the viewport position and then the predraw and
draw events to wrap all the rendering calls in the appropriate saves, transforms, and restores based
on the state of the viewport.

Add the code for the viewport from Listing 16-6 to the bottom of the quintus_anim.js ile before
the inal closing curly brace.

LISTING 16-6: The viewport component

 Q.register('viewport',{
 added: function() {
 this.entity.bind('predraw',this,'predraw');
 this.entity.bind('draw',this,'postdraw');
 this.x = 0,
 this.y = 0;
 this.centerX = Q.width/2;
 this.centerY = Q.height/2;
 this.scale = 1;
 },

 extend: {
 follow: function(sprite) {
 this.unbind('step',this.viewport);
 this.viewport.following = sprite;
 this.bind('step',this.viewport,'follow');
 this.viewport.follow();
 },

 unfollow: function() {
 this.unbind('step',this.viewport);
 },

 centerOn: function(x,y) {
 this.viewport.centerOn(x,y);
 }
 },

 follow: function() {
 this.centerOn(this.following.p.x + this.following.p.w/2,
 this.following.p.y + this.following.p.h/2);
 },

 centerOn: function(x,y) {
 this.centerX = x;
 this.centerY = y;

Adding a Canvas Viewport ❘ 327

 this.x = this.centerX - Q.width / 2 / this.scale;
 this.y = this.centerY - Q.height / 2 / this.scale;
 },

 predraw: function() {
 Q.ctx.save();
 Q.ctx.translate(Q.width/2,Q.height/2);
 Q.ctx.scale(this.scale,this.scale);
 Q.ctx.translate(-this.centerX, -this.centerY);
 },

 postdraw: function() {
 Q.ctx.restore();
 }
 });

The initial added method doesn’t do much except set up the viewport parameters as necessary. This
sets up the initial centerX and centerY positions; a scale mulitiplier to control how large the game
should rescale the sprites and events; and the x and y to determine the position of the top left of the
window.

Next, the stage is extended with three methods: follow, unfollow, and centerOn. These enable the
developer to tell the view to follow the position of a speciic sprite, unfollow that sprite, and manu-
ally center the viewport on a speciic pixel location. follow and unfollow simply bind and unbind
an event handler that calls the component’s centerOn each step. The entity’s centerOn method also
is just a proxy for the component’s method.

Next, the component’s centerOn method sets the centerX and centerY and then calculates the x
and y locations from the center, width of the Canvas, and the scale.

The predraw method does all the work to set up the viewport transform. It saves the current trans-
form, centers the context in the window, does any necessary rescaling, and then moves the top left
of the window by the wanted center values.

The postdraw method undoes all the transforms by simply calling restore on the context.

To test this method, modify the Q.scene code in animation.js as highlighted in the following code:

Q.scene('level',new Q.Scene(function(stage) {
 var player = stage.insert(new Q.Player({ x:100, y:50, z:2 }));
 stage.insert(new Q.Block({ x:800, y:160, z:1 }));
 stage.insert(new Q.Block({ x:550, y:160, z:1 }));

 stage.add('viewport');
 stage.follow(player);
 Q.input.bind('action',stage,function() {
 stage.viewport.scale = stage.viewport.scale == 1 ? 0.5 : 1;
 });
 }, { sort: true }));

This adds a viewport onto the stage, sets it to follow the player, and then adds a handler to allow
the user to play with the scale amount by pressing the action key (the b button on mobile devices).

328 ❘ CHAPTER 16 getting aniMated

GOING PARALLAX

Parallax scrolling is a technique used to give the appearance of depth in a 2-D scrolling game by
having different background layers scrolling at different speeds. For example, if you have a sky layer
scrolling at a slower speed than a mountain layer, it can give the appearance, at a simplistic level,
that the sky is farther away than the mountains.

To put this into the engine, a new sprite called the Repeater must be added. This sprite works hand-
in-hand with the just-deined viewport component to allow some extra background elements. It
works by repeating itself in either the x and y direction or in one individual direction, and stays in a
consistent spot on the screen. Repeating in one direction is useful for side-scrolling or top-scrolling
games that have a background that repeats only in a single direction.

Add the Repeater sprite in Listing 16-7 to the bottom of quintus_anim.js.

LISTING 16-7: The repeater sprite

 Q.Repeater = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).defaults({
 speedX: 1,
 speedY: 1,
 repeatY: true,
 repeatX: true
 }));
 this.p.repeatW = this.p.repeatW || this.p.w;
 this.p.repeatH = this.p.repeatH || this.p.h;
 },

 draw: function(ctx) {
 var p = this.p,
 asset = this.asset(),
 sheet = this.sheet(),
 scale = this.parent.viewport.scale,
 viewX = this.parent.viewport.x,
 viewY = this.parent.viewport.y,
 offsetX = p.x + viewX * this.p.speedX,
 offsetY = p.y + viewY * this.p.speedY,
 curX, curY, startX;
 if(p.repeatX) {
 curX = Math.floor(-offsetX % p.repeatW);
 if(curX > 0) { curX -= p.repeatW; }
 } else {
 curX = p.x - viewX;
 }
 if(p.repeatY) {
 curY = Math.floor(-offsetY % p.repeatH);
 if(curY > 0) { curY -= p.repeatH; }
 } else {
 curY = p.y - viewY;
 }
 startX = curX;

Going Parallax ❘ 329

 while(curY < Q.height / scale) {
 curX = startX;
 while(curX < Q.width / scale) {
 if(sheet) {
 sheet.draw(ctx,curX + viewX, curY + viewY,p.frame);
 } else {
 ctx.drawImage(asset,curX + viewX, curY + viewY);
 }
 curX += p.repeatW;
 if(!p.repeatX) { break; }
 }
 curY += p.repeatH;
 if(!p.repeatY) { break; }
 }
 }
 });

The init method, per usual, just sets up some initial defaults. It also defaults to the repeat width
and height to match the size of the image or asset so that tiles repeat perfectly by default.

The draw method is more complex; it needs to calculate the offset of each repeated tile. The preced-
ing code takes the easy way out. Instead of calculating the exact partial image to draw each of the
corners, the class overdraws tiles as necessary. Optimized code that handles the edge cases of ren-
dering partial tiles at the edges and corners is left as an exercise for you.

Some complication is added because the background might repeat only in the vertical or the hori-
zontal direction. If the element isn’t set to repeat in a direction, instead of calculating an offset using
the modulus, the position of the tile is set to the x or y position of the sprite minus the view.

On the other hand, if a tile repeats in a direction, irst, the offset is calculated by using the sprite’s
position, and the view’s position is multiplied by the scrolling speed.

Finally, the drawing loop goes over each direction and starts from before the left side of the Canvas
until after the right side of the Canvas and from before the top side of the Canvas until after the bot-
tom of the Canvas. If the repeater is turned off in either direction, the loop just breaks out after the
irst cycle.

To try out the repeater, add a couple of scrolling backgrounds to the level:

 Q.scene('level',new Q.Scene(function(stage) {
 stage.insert(new Q.Repeater({ asset: 'background-wall.png',
 speedX: 0.50, repeatY: false, y:-225 }));
 stage.insert(new Q.Repeater({ asset: 'background-floor.png',
 speedX: 1.0, repeatY: false, y:260}));
 var player = stage.insert(new Q.Player({ x:100, y:50, z:2 }));
 stage.insert(new Q.Block({ x:800, y:160, z:1 }));
 stage.insert(new Q.Block({ x:550, y:160, z:1 }));
 stage.add('viewport');
 stage.follow(player);
 Q.input.bind('action',stage,function() {
 stage.viewport.scale = stage.viewport.scale == 1 ? 0.25 : 1;
 });
 }, { sort: true }));

330 ❘ CHAPTER 16 getting aniMated

The inal result should look like Figure 16-2 depending on the device or size of the browser.

FIGURE 16-2: The inal result.

SUMMARY

You built a simple animation system that allows the use of named, timed animation to control
character animation. Abstracting away the details of which frame is playing on a character at any
given time makes it easier to add more complicated behaviors to your characters. In preparation for
Chapter 18’s platform game, this chapter also covered adding in an animated camera that follows
the player along with support for scrolling parallax backgrounds.

Playing with Pixels

WHAT’S IN THIS CHAPTER?

 ➤ Reviewing 2-D Physics

 ➤ Reading pixel data from an image and from Canvas

 ➤ Writing pixels back to Canvas

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the chapter 17
download and individually named according to the names throughout the chapter.

INTRODUCTION

One of the much-heralded features of the
new HTML5 Canvas tag is the capabil-
ity to access pixel data directly. So far
you haven’t played around with pixels,
but in this chapter you see what it takes
to inspect and manipulate pixels directly.
As a practical application to use pixel
data, you build a Lander-style game that
involves lying a ship around a map using
small bursts of thruster (see Figure 17-1).
But irst, this chapter takes a brief diver-
sion into 2-D physics to get the basis to
build Lander. FIGURE 17-1: The inal Lander game.

17

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

332 ❘ CHAPTER 17 playing With pixels

REVIEWING 2-D PHYSICS

You played with physics in Chapter 14, “Building Games with SVG and Physics,” when you used
the JavaScript port of Box2D for physics and collision detection, but the Physics library handled the
details of what you were doing without really diving into exactly what was going on. This is okay
when you want a full-blown physics simulation without worrying about the nitty-gritty details, but
often you just need some basic 2-D motion, so a full physics library would be overkill. For Lander,
you want pixel-perfect collision detection, which would put a lot of strain on a traditional physics
engine where theoretically each pixel must be modeled as a simulation object.

HIGH-LEVEL MATH

Warning: This section discusses some high school level algebra and basic calculus.
If it’s been a while, this should be a good refresher. If this seems a little dificult,
ight through it. Game programming tends to involve a fair amount of math, with
more advanced techniques requiring progressively more complicated stuff. It will
be worth it in the long run to get comfortable reading the occasional equation.

Understanding Force, Mass, and Acceleration

For those of you who took high school physics, the following equations should look familiar:

Equation 1: f = m n a or a = f / m

Equation 2: v = v
0
 + a n dt

Equation 3: p = p
0
 + v n dt

These are the basic 2-D dynamics equations that deine the acceleration on a body as a function of
its mass and the forces acting on it, and the position of a rigid body in relation to a combination of
its starting position, its velocity, and its acceleration.

Equation 1 spells out that the acceleration on an object is equal to the force being applied to it
divided by the object’s mass. Equation 2 calculates the current velocity v if you know the initial
velocity v

0
 and the acceleration from Equation 1. The symbol dt represents an instantaneous delta of

time. Finally, Equation 3 calculates the position of the object given the initial position and the cur-
rent velocity from Equation 2.

Assuming that force and thus acceleration is a constant, with a little bit of calculus, you can unify
the last two equations down to a single equation:

Equation 4: p = p
0
 + v

0
 n t + 2 n a n t2

This equation tells you that the position of an object with constant acceleration can be determined as
a function of its initial position p

0
, initial velocity v

0
, and constant acceleration a. For any number of t

seconds that you plug into the equation, you can calculate the position. What’s a good example of con-
stant acceleration? Well, gravity, for one, can be modeled as a constant force of 9.8 m/s2.

Reviewing 2-D Physics ❘ 333

Modeling a Projectile

Given the preceding equation, you can easily model a projectile launched into the air because its
vertical acceleration will just be governed by gravity (a constant), and its horizontal acceleration will
be 0 (which also happens to be a constant). Because you haven’t created any sort of vector classes,
the easiest way to handle a 2-D position is to evaluate the equation twice each frame, once for the x
direction and once for the y direction.

For the x direction, you can simplify the equation further by completely dropping the x acceleration
component, but leave it in for completeness.

Listing 17-1 takes the preceding equation and uses Quintus to run a simple simulation of a projectile
launched into the air. You can modify any of the initial values to see how they affect behavior.

LISTING 17-1: Modeling a projectile with a closed form solution

 var Q = Quintus().include("Sprites").setup()

 Q.load(['cannonball.png','cannonball2.png'],function() {

 var ball1 = new Q.Sprite({
 asset: 'cannonball.png',
 x0: 0, // Initial X position
 vx0: 20, // X velocity
 ax: 0, // X acceleration
 y0: 380, // Initial Y position
 vy0:-100, // Y Velocity
 ay: 20, // Constant Y acceleration
 t: 0 // Starting time
 });

 ball1.step = function(dt) {
 var p = this.p;
 p.t += dt;

 p.x = p.x0 + p.vx0 * p.t + 0.5 * p.ax * (p.t * p.t);
 p.y = p.y0 + p.vy0 * p.t + 0.5 * p.ay * (p.t * p.t);
 }

 Q.gameLoop(function(dt) {
 Q.clear();

 ball1.step(dt);
 ball1.draw(Q.ctx);
 });

 });

Much of the code consists of setting up the initial values for the ball’s position and velocity, and the
actual position is calculated using just the two lines at the bottom of the update function. These two
lines mirror Equation 4 exactly, once for the x direction and once for the y direction. Finally, the

334 ❘ CHAPTER 17 playing With pixels

gameLoop function is written explicitly; it clears the Canvas before updating the ball’s position and
calling the draw method. If you want to follow the path of the ball explicitly, you can remove the
call to this.clear() and the ball leaves a trail.

Switching to an Iterative Solution

Equation 4 is a closed form solution in that you can express the exact position of the cannonball at
any point in time just by plugging t into the one equation. You can do this because you are model-
ing such a simple object. The minute you get something more complex, such as an object involving
interactions with other objects or input from the user, you won’t come up with a closed form solu-
tion without hiring some mathematicians from MIT.

Instead, you need to go back to your irst set of differential equations (Equations 1 through 3) and
turn them into something more computer-friendly. The easiest way to do this is to use a discrete

integration technique. Discrete integration means instead of using calculus to determine an exact
solution, you can use an actual, albeit small value for dt to ind an approximate solution. The most
commonly used method for discrete integration also happens to be the simplest and is known as
Forward Euler, named after the famous Swiss mathematician Leonhard Euler. This method trans-
lates well to computer simulation. This means you can assume that over any small chunk of time,
any of your potentially changing values, such as acceleration or velocity, are constant. The velocity
and position equations now become the following:

Equation 5: v = v
t-1

 + a
t
 n dt

Equation 6: p = p
t-1

 + v
t
 n dt

In the preceding equations, dt is no longer an instantaneous delta but rather is a small but measur-
able amount of time. In the game, it will be approximately 1/30th of a second, or one frame of
animation.

These equations aren’t written in terms of v
0
 and p

0
 (velocity and position at time zero) but rather in

terms of v
t-1

 and p
t-1

 (velocity and position at the last simulation step). This means that you can’t say
exactly where the ball is at any given point just by plugging in a value of t; rather you can incremen-
tally calculate only the position based on the previous position.

This limitation is ine for most cases, because you usually just care about what the current state of
the game is, but you’re going to keep track of what happened previously for the purposes of replay
or time travel (like in a game such as Braid); you must put in some extra work and keep track of
your history somewhere.

Now it’s time to compare your closed form solution with your iterative solution by running both
at the same time. Create a second CanvasSprite called ball2 and update its position using the
Forward Euler method described previously. Add in the code for ball2, as shown in Listing 17-2,
below the ball1 step method:

LISTING 17-2: Modeling a projectile with an iterative solution

 var ball2 = new Q.Sprite({
 asset: 'cannonball2.png',
 x: 0,

Reviewing 2-D Physics ❘ 335

 vx: 20,
 ax: 0,
 y: 380,
 vy: -100,
 ay: 20
 });

 ball2.step = function(dt) {
 var p = this.p;

 p.vy += p.ay * dt;

 p.x += p.vx * dt;
 p.y += p.vy * dt;
 }

To get the second ball to appear, you need to update the gameLoop to update both balls as
shown here:

Q.gameLoop(function(dt) {
 this.clear();

 ball1.step(dt);
 ball1.draw(this.ctx);

 ball2.step(dt);
 ball2.draw(this.ctx);
 });

Because the second simulation uses an approximation of the solution to the movement equation,
you would expect to see some error slowly creeping in that is in the form of a divergence of the
two ships; the actual result isn’t visibly different from the closed form solution. This is a good sign
because it means that the approximation that is used doesn’t change the behavior much from the
actual solution.

Extracting a Reusable Class

Now it’s time to take your existing Quintus Sprite object from Chapter 11, “Bootstrapping the
Quintus Engine: Part III,” and extend it with a modiied step method to abstract away your move-
ment methods. The only changes you need to make are to update the init method to initialize the
velocity and acceleration to zero, and then copy over your updated code to the new object to the
update for the new object (see Listing 17-3). Add the MovingSprite class to the bottom of quintus_
sprites.js before the inal closing brace.

LISTING 17-3: The Quintus MovingSprite class

 Q.MovingSprite = Q.Sprite.extend({
 init: function(props) {
 this._super(_({
 vx: 0,
 vy: 0,

continues

336 ❘ CHAPTER 17 playing With pixels

 ax: 0,
 ay: 0
 }).extend(props));
 },

 step: function(dt) {
 var p = this.p;

 p.vx += p.ax * dt;
 p.vy += p.ay * dt;

 p.x += p.vx * dt;
 p.y += p.vy * dt;

 this._super(dt);
 }
 });

The MovingSprite class adds in the initial velocity and acceleration to the base properties and then
modiies the step method to run an iterative solution.

IMPLEMENTING LANDER

Now put your newfound Forward-Euler sprite class to good use and build a simple physics-based
game where you spelunk around in a moon lander. Why is this a good use of your physics details?
Well, unlike other games, where you generally get to control the velocity of your protagonist
directly, in Lander-style games, you control only acceleration, meaning that movements need to be
planned out in advance. You have three controls: thrust left, thrust right, and thrust up. You need
to carefully plan your ascent because if you use too much upward thrust, you’ll watch helplessly as
your lander crashes into the ceiling.

Bootstrapping the Game

Create a new ile called lander.html and add the code in Listing 17-4 to create the basic outline and
setup for your game.

LISTING 17-4: lander.html

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Simple Cannon example</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>

LISTING 17-3 (continued)

Implementing Lander ❘ 337

 <script src='js/quintus_scenes.js'></script>

 <meta name="viewport" content="width=device-width,user-scalable=no">
 <style>
 body { padding:0px; margin:0px; }
 #quintus { background-color:#CCC; }
 </style>
 </head>
 <body>
 <canvas id='quintus' width='480' height='320'></canvas>

 <script>
 var Q = Quintus().include("Input,Sprites,Scenes")
 .setup()
 .controls();

 </script>
 </body>
</html>

Because the lander game isn’t going to have all that much code, the entire game will be built within
the single lander.html ile.

Building the Ship

Now create a basic ship sprite controlled by the keyboard using only force. You extend
MovingSprite and add in a new update method that takes in user input to calculate the new
position.

To give the game a small bit of dynamism, set up the ship to show a thruster image when the vertical
thrust is on (see Listing 17-5). Also add in some constraints to prevent the lander from lying off the
screen by just stopping the ship if it lies outside of the Canvas bounds.

This code goes in lander.html before the closing </script> tag.

LISTING 17-5: A basic ship class

 Q.Ship = Q.MovingSprite.extend({
 step: function(dt) {
 var p = this.p;

 // Set our horizontal force
 p.fx = 0;
 if(Q.inputs['left']) { p.fx -= p.thrustX; }
 if(Q.inputs['right']) { p.fx += p.thrustX; }

 // Set our vertical force
 if(Q.inputs['fire']) {
 p.fy = -p.thrustY;
 p.asset = "lander_thrust.png";
 } else {

continues

338 ❘ CHAPTER 17 playing With pixels

 p.fy = 0;
 p.asset = "lander.png";
 }

 // Calculate our y and x acceleration
 p.ay = p.gravity + p.fy / p.m;
 p.ax = p.fx / p.m;

 // Let our super-class update our x and y
 this._super(dt);

 // Force our lander to stay in our box
 // and zero out our velocity when we hit a wall
 if(p.y < 0) { p.y = 0; p.vy = 0; }
 if(p.y > Q.height- p.h) { p.y = Q.height - p.h; p.vy = 0; }
 if(p.x < 0) { p.x = 0; p.vx = 0; }
 if(p.x > Q.width - p.w) { p.x = Q.width - p.w; p.vx = 0; }
 }
 });

The Ship class extends the MovingSprite class from the last section and overrides the step method
to enable player input and some extra behavior. The update method includes a few different sec-
tions. The irst section calculates the forces acting on the ship by looking at the player input.
Pressing the right or left keys adds a horizontal force, whereas pressing the spacebar adds a vertical
force. The class also swaps the asset for the sprite to show the lander_thrust.png graphic when
the ship accelerates upward. Next, the current acceleration is calculated from those forces, a gravity
constant and the ship’s mass property. With the acceleration updated, the parent’s method to update
the velocity and position is called. Finally, a bounds check to make sure the ship stays on the screen
is needed.

Next the Ship needs to actually be put into the game. After the standard perfunctory loading and
stage setup details, you create a background sprite and a new ship object with an initial x and y
location, along with an initial mass and gravity. Add the code from Listing 17-6 to the bottom of
lander.html before the closing </script> tag.

LISTING 17-6: The basic Lander game code

 Q.load(['lander.png','background.png',
 'lander_thrust.png','map.png'], function() {

 Q.scene("level",new Q.Scene(function(stage) {
 stage.insert(new Q.Sprite({ asset: "background.png" }));
 stage.insert(new Q.Sprite({ asset: "map.png" }));

 var ship = stage.insert(new Q.Ship({
 asset: 'lander.png',
 x: 10, // X Position
 y: 170, // Y Position
 gravity: 20, // Gravity

LISTING 17-5 (continued)

Implementing Lander ❘ 339

 m: 1, // Ship’s Mass
 thrustX: 40, // Horizontal Thrust
 thrustY: 80, // Vertical Thrust
 }));

 }));

 Q.stageScene("level");
 });

Fire up your code or run the lander_basic.html example from the chapter code and use the left
arrow, right arrow, and spacebar keys to move the ship. You can play with the mass and gravity
options in the simple blank loader to get a sense of how adjusting those variables affect the move-
ment of the ship.

Even though the background is loaded in, the ship doesn’t interact with it yet but just lies over it.
This will be remedied in the next section.

Getting Pixel Perfect

Armed with your simple ship loating around the screen, now you can start working on the biggest
missing element: the cave walls.

Although you could build your game as you did in the previous SVG exercise in Chapter 14 and do
only object-to-object collision detection, it makes much more sense to take advantage of the Canvas
tag’s capability to access pixel data of bitmaps to do pixel-to-pixel collision detection between the
lander bitmap and level map.

You could look directly at the canvas tag used to draw the whole game, but as you will be drawing
a couple of layers and the ship, you’d have to be clever to igure out which parts are your wall and
which are your ship (such as by looking for a speciic color.) To make the game more lexible you
can redraw the background to an off-screen Canvas and pull the pixel data from there. To facili-
tate this lexibility, you can add a new method into the core of Quintus to return pixel data from a
loaded image.

Use the getImageData method (see the W3C speciication at www.w3.org/TR/2dcontext/
#pixel-manipulation), which returns the image data from a Canvas object.

TROUBLE RUNNING THE EXAMPLES

Different browsers have different restrictions for accessing pixel data from the local
ilesystem (in other words, from URLs that begin with ile://). If you have trouble
running the examples (check your JavaScript console to look for errors), run them
off a local server as you have previously for examples that loaded JSON data.

If you have an image instead of a Canvas object, as with the background image, you can use jQuery
to create a new Canvas element and then draw the background image onto that Canvas element. As
shown in Listing 17-7, you can then return the pixel’s image data from the Canvas context by calling
getImageData and passing in the coordinates of the image you want (such as the whole Canvas).

http://www.w3.org/TR/2dcontext/#pixel-manipulation

340 ❘ CHAPTER 17 playing With pixels

LISTING 17-7: Returning pixel data from an image

Q.imageData = function(img) {
 var canvas = $("<canvas>").attr({
 width: img.width,
 height: img.height })[0];

 var ctx = canvas.getContext("2d");
 ctx.drawImage(img,0,0);

 return ctx.getImageData(0,0,img.width,img.height);
}

Retrieving the image data is a somewhat expensive operation, so unless you are updating the image
it’s best to do this once and cache the result.

Add the code in Listing 17-7 to the bottom of quintus.js before the inal return Q statement.

Playing with ImageData

Now that you have an ImageData object, how can you determine whether there is a “collidable”
pixel at a speciic x and y location? Well, this task is equivalent to inding the color value at a spe-
ciic pixel, and to do this you need to do a little bit of simple math. ImageData objects have width
and height attributes, but the main meat of the information is in ImageData.data. This is a one-
dimensional array of the actual pixel data, in 4-byte RGBA (red, green, blue, and alpha) chunks.
This means all four elements of the array constitute 1 pixel from the Canvas. Within those four ele-
ments, each of which represents a number from 0–255, you can examine the red, green, blue, and
alpha values that make up the pixel.

As Figure 17-2 shows, the alpha value determines how
opaque the pixel is, with a value of 0 meaning the pixel is
completely transparent, whereas a value of 255 means it is
completely opaque. You can use the alpha value to determine
if there is anything at that particular pixel in the image.

To get to the data for a speciic pixel in an image, you
need to determine the number of elements that pixel is
in from the start of the array. Because each pixel con-
sists of four elements, the length of each row of data is
therefore four times the pixel width of the image. To get
the row offset, you need to multiply that number by the
y position. To index into the row the correct number
of elements, take the x value and multiply by 4. Next,
because you want the alpha value of that pixel, add 3 to
the result, which results in the following code:

 alpha = imageData.data[y*4*imageData.width + x*4 + 3];

Got that? Good because you actually need to do it twice over each iteration of a two-dimensional
loop. You’re going to loop over all the pixels of your little lander, and for every pixel on the ship that
is not transparent, compare it with the matching pixel of the background.

R

X

Y
0

0 G B A R

1

G B A . . .

R1 G B A R G B A . . .

R2 G B A R G B A . . .

R3 G B A R G B A . . .

R4 G B A R G B A . . .

R5 G B A R G B A . . .

R6 G B A R G B A . . .

R7 G B A R G B A . . .

FIGURE 17-2: Alpha values and transparency.

Implementing Lander ❘ 341

To keep the inner loop a little simpler, you can precalculate the starting location of the Ship in rela-
tion to the background pixel data. You do this, as shown in Listing 17-8, and stick it in the variable
bgOffset. Add the following checkCollision method to the Ship class.

LISTING 17-8: Checking collision between ship and background

 checkCollision: function() {
 var bgData = Q.backgroundPixels;

 // Get a integer based position from our
 // x and y values
 var bgx = Math.floor(this.p.x);
 var bgy = Math.floor(this.p.y);

 // Calculate the initial offset into our background
 var bgOffset = bgx * 4 + bgy * bgData.width * 4 + 3;

 // Pull out our data easy access
 var pixels = this.imageData.data;
 var bgPixels = bgData.data;

 for(var sy=0;sy < this.imageData.height;sy++) {
 for(var sx=0;sx < this.imageData.width;sx++) {
 // Check for an existing pixel on our ship
 if(pixels[sx*4 + sy * this.imageData.width * 4 + 3]) {

 // Then check for a matching existing pixel
 // on the background starting from our bgOffest
 // and then indexing in from there
 if(bgPixels[bgOffset + sx*4 + sy * bgData.width * 4]) {

 // Next check if we are at the bottom of the lander
 // if so return 1, to indicate that we might be landing
 // instead of crashing
 if(sy > this.imageData.height - 2) {
 return 1;
 } else {
 // Otherwise return 2 and...Boom!
 return 2;
 }
 }
 }
 }
 }
 return 0;
 }

The collision code attempts to differentiate between a “landing” and a “crash” by checking if the
collision is on the bottom of the ship object. If so, the method returns 1; otherwise, if the collision
takes place anywhere else on the object, it returns 2 to indicate that it’s time to blow the ship up.

342 ❘ CHAPTER 17 playing With pixels

Now you need to update the Ship class to check for collisions during the step function. Add the fol-
lowing to the top of the step method to stop the Ship in its tracks when it’s dead:

 step: function(dt) {
 if(this.dead) return;

Next, at the bottom of that same function, add in a call to the checkCollision method and handle
the response appropriately:

 this._super(dt);

 var col;
 if(col = this.checkCollision()) {
 if(col == 1 && Math.abs(p.vy) < 30) {
 if(p.vy > 0) {
 p.vy = 0;
 }
 } else {
 this.dead=true;
 }
 }

You need to verify the return value of checkCollision. If it returns a 1, you collided with the bot-
tom of the lander, and if you go slowly, you can land. Otherwise, you mark the Ship as dead.

Next you’ll need to modify the game code itself to grab the backgroundPixels for the ship to com-
pare against. Add the highlighted lines to scene deinition in lander.html to read:

 Q.load(['lander.png','background.png',
 'lander_thrust.png','map.png'], function() {

 Q.scene("level",new Q.Scene(function(stage) {
 stage.insert(new Q.Sprite({ asset: "background.png" }));
 stage.insert(new Q.Sprite({ asset: "map.png" }));

 var ship = stage.insert(new Q.Ship({
 asset: 'lander.png',
 x: 10, // X Position
 y: 230, // Y Position
 gravity: 20, // Gravity
 m: 1, // Ship’s Mass
 thrustX: 40, // Horizontal Thrust
 thrustY: 80, // Vertical Thrust
 }));

 Q.backgroundPixels = Q.imageData(Q.asset('map.png'));
 ship.imageData = Q.imageData(Q.asset('lander.png'));

 }));

 Q.stageScene("level");
 });

Implementing Lander ❘ 343

Congratulations! You now have pixel-perfect collisions between your background and your ship, so
creating a new level is as easy as creating a new level image. If you want to see the results, you can
run lander_collision.html from the chapter code. When you crash, you need to press the Reload
button on your browser to restart the game.

Although the code in Listing 17-7 works, it’s ripe for some optimization. If this were a production
game, you’d take a deep look at the best way to optimize the inner loop of the checkCollision
code. One quick optimization would be to modify the loop variables to increment by a number
other than 1 to prevent the need for multiplications in the pixel data lookups. (Multiplications take
more time for CPUs to perform than additions.) This optimization is left as an exercise to try on
your own.

RESTRICTIONS WITH getImageData

Using Canvas with getImageData has a few restrictions associated with it that
you should be aware of. If you pull an image into your Canvas from a different
domain, that Canvas becomes “tainted,” so you can’t use getImageData on that
Canvas. This was a restriction that was put in place to prevent access to images
that might contain personal information from other websites because images are
loaded with full cookies sent to that domain.

Making It Go Boom

Right now in the current version of Lander, you don’t get a dramatic ship death—the ship just stops.
You can ix that with the help of some exploding pixels. You create a new class that takes the pixels
of the lander and explodes them when you die. This amounts to a simpliied pixel-based particle
engine.

Adding an Explosion Class

To start, you need to create a new class called Explosion. Although it’s going to act like the sprites
you are familiar with, in that it’ll have an update and a draw method, you can inherit it straight
from the base class because you don’t need any existing functionality.

The init method is going to take in some information about the about-to-be-particlized lander—
speciically its location, velocity, and image data—and create a series of particles, each with their
own location and velocity representing one pixel from the input lander image. For performance
reasons you won’t turn every pixel of the lander into a particle; rather you just sample every fourth
pixel and create particles of 3 pixels by 3 pixels in size. This is an arbitrary decision—play with the
init code to generate different-sized particles to get a sense of performance. Listing 17-9 shows the
commented init code.

344 ❘ CHAPTER 17 playing With pixels

LISTING 17-9: Explosion init method

 Q.Explosion = Q.GameObject.extend({
 init: function(x,y,vx,vy,imgData) {

 // Set up a container for our pixels
 this.particles = []

 // Grab the lander's image data
 var landerData = imgData.data;

 // Create a 3x3 pixel-data
 // image data container to use for blitting down the road
 this.pixelData = Q.ctx.createImageData(3,3);
 this.drawPixel = this.pixelData.data;

 // Pixels are going to be exploding out from
 // the center of the lander
 var centerX = imgData.width / 2;
 var centerY = imgData.height / 2;

 // Loop over each fourth pixel of the lander image
 for(var sy=0;sy < imgData.height;sy+=4) {
 for(var sx=0;sx < imgData.width;sx+=4) {

 // Offset into the 1 dimension pixel data array
 var loc = sx*4 + sy * imgData.width * 4;

 // If there's a lander pixel here
 if(landerData[loc + 3]) {

 // Get the direction of the pixel from center
 var distX = sx - centerX;
 var distY = sy - centerY;

 // Add a new particle
 this.particles.push({
 x: x + sx, // starting position x
 y: y + sy, // starting position y
 lifetime: 5, // remaining lifetime
 r: landerData[loc] + 20, // make it a little redder
 g: landerData[loc+1],
 b: landerData[loc+2],
 a: landerData[loc+3],
 // For particle velocity, use the ship's
 // velocity, plus a random direction emanating
 // from the center of the ship
 vx: vx/6 + distX * 5 *(Math.random()+0.5),
 vy: vy/6 + distY * 5 * (Math.random()+0.5)
 });
 }
 }
 }
 },

Implementing Lander ❘ 345

After the init method has run, the Explosion will have a set of pixels that match the original color
of the pixels from the ship that can spread out and move independently.

Drawing Pixels

With the particles created, you need to take care of the two remaining sprite functions to inish off
the Q.Explosion class: update and draw (see Listing 17-10.) For update, the function needs to add
in the effects of gravity on the exploding particles and then step each particle using forward Euler.
The draw function does something a little more interesting. In the preceding initialization function,
you created a 3-pixel by 3-pixel imageData object for use by the draw function. You need to ill
up that 9-pixel imageData object with the color of each particle and then draw it to the Canvas by
using the Canvas putImageData method (see www.w3.org/TR/2dcontext/#pixel-manipulation).

LISTING 17-10: Updating and drawing the explosion particles

step: function(dt) {
 for(var i =0,len=this.particles.length;i<len;i++) {
 var v = this.particles[i];
 if(v.lifetime > 0) {
 v.vy += 20 * dt;
 v.x += dt * v.vx;
 v.y += dt * v.vy;
 v.lifetime -= dt
 }
 if(v.lifetime <= 0) { Q.stageScene('level'); return; }

 }

},
draw: function(ctx) {
 for(var i=0,len=this.particles.length;i<len;i++) {
 var v = this.particles[i];

 if(v.lifetime > 0) {
 for(var l=0;l<36;l+=4) {
 this.drawPixel[l+0] = v.r;
 this.drawPixel[l+1] = v.g;
 this.drawPixel[l+2] = v.b;
 this.drawPixel[l+3] = v.a;
 }

 ctx.putImageData(this.pixelData,v.x,v.y);
 }
 }

}
});

To ill in the 9-pixel imageData object, you need to loop over each of the 9 pixels. Because
imageData.data is a one-dimensional array, you can use a single loop to copy the data in. You

http://www.w3.org/TR/2dcontext/#pixel-manipulation

346 ❘ CHAPTER 17 playing With pixels

can optimize the loop in the draw function by incrementing i by 4 instead of by 1 for each 4
elements of pixel data to prevent the need for multiplications in the loop.

putImageData is an interesting method because it literally does a blit from the image data onto the
Canvas—in other words each pixel is copied bit-for-bit ignoring any transparencies. This means
it’s not generally a great tool for composition, but in this case because you’re just drawing opaque
squares, it serves its purpose quite nicely, with the added advantage of being fast. If you want to use
multiple layers of straight pixel data, you need to use putImageData to place the data onto an off-
screen canvas and use drawImage to draw the image onto the active buffer with globalAlpha set to
a number less than 1.

Calling createImageData is actually a (relatively) slow process, so reusing the 3-by-3 square for
each of the particles results in a performance boost.

Is this the only way to do it? Deinitely not; there are at least a couple of other methods you could
use. One option is to simply draw a 3-pixel rectangle of the correct color on the page. Another is to
use the original image and draw individual pixel squares of the image instead. This method is just
shown as an example of how you could use putImageData.

To get the particles working, you’ll need to modify Ship to create a new explosion object when the it
blows up. Modify the highlighted code below, inside of the ship’s step method:

var col;
if(col = this.checkCollision()) {
 if(col == 1 && Math.abs(p.vy) < 30) {
 if(p.vy > 0) {
 p.vy = 0;
 }
 } else {
 this.parent.insert(
 new Q.Explosion(p.x,p.y,p.vx,p.vy,this.imageData)
);
 this.parent.remove(this);
 this.dead=true;
 }
}

Adding Particle Wall Collisions

For your purposes this Lander game is almost done, with one missing enhancement to the explo-
sions. Although the explosions give you the wanted effect, they aren’t interacting with the back-
ground. Because you already have access to the pixel data, there’s no reason you can’t do a quick
per-pixel check to get pixel-perfect particle collisions. Using a simpler version than what you did
checking the lander for collisions, as shown in Listing 17-11, you can update the Explosion.update
method to take those walls into consideration. Pretend each of the particles is only 1-pixel large to
simplify the collision detection because moving all these particles at once can cause a slowdown,
especially on mobile browsers.

Summary ❘ 347

LISTING 17-11: Letting the particles interact with the walls

step: function(dt) {

 var bgData = Q.backgroundPixels;
 var pixels = bgData.data;

 for(var i =0,len=this.particles.length;i<len;i++) {
 var v = this.particles[i];
 if(v.lifetime > 0) {

 var oldx = v.x, oldy = v.y;
 v.vy += 20 * dt;
 v.x += dt * v.vx;
 v.y += dt * v.vy;
 var loc = Math.floor(v.x)*4 + Math.floor(v.y) * bgData.width * 4;
 if(pixels[loc + 3]) {
 v.x = oldx;
 v.y = oldy;
 v.vy *= -0.2;
 v.vx *= -0.2;
 }
 v.lifetime-=dt;
 }
 if(v.lifetime <= 0) { Q.stageScene('level'); return; }

 }

},

To determine the offset location (stored in the loc variable) into the pixels array, you need to use
the Math.floor method. The reason for this is that the particle’s position is represented by loating
point numbers that won’t fall on integer boundaries. To index into the array, those numbers need
to be converted to integers. Math.floor does that by taking an arbitrary loating-point number and
chopping off any decimals to return an integer.

If you run the game, or run lander_explosion.html from the chapter code, you should now have a
ship that blows up into a number of different particles when it dies.

SUMMARY

Canvas makes it possible to play around with pixel data directly. Although this is a feature that isn’t
used often, it can be useful for a number of different circumstances in which you need pixel-perfect
collisions or Canvas post-processing. However, be careful with how much per-pixel processing you
use because many mobile devices are lighter on CPU horsepower than their desktop cousins, and
you must be careful not to overload them.

Creating a 2-D Platformer

WHAT’S IN THIS CHAPTER?

 ➤ Creating a tile layer

 ➤ Optimizing tile rendering

 ➤ Adding 2-D platformer collision detection

 ➤ Building a platformer game

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 18
download and individually named according to the names throughout the chapter.

INTRODUCTION

The 2-D platformer will always have a special place in the hearts of developers who grew up
in the era of the Nintendo Entertainment system (and who, like me, can and often do hum the
opening 8-bit chords of Super Mario Brothers in their heads). The 2-D platformer remains
a popular genre for mobile games because it has simple controls that match nicely to an
onscreen keypad and is easy to pick up. This chapter builds the basic elements of a simple 2-D
platformer, using the animation tools from Chapter 16, “Getting Animated,” and adding some
platformer-speciic tiles and collisions.

18

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

350 ❘ CHAPTER 18 Creating a 2-d platForMer

CREATING A TILE LAYER

The naive collision detection scheme used so far suffers from one major law: The collisions don’t
scale as the number of items to collide with grows. If you remember the way collisions have been
done to this point in Quintus (except the use of Box2D), it’s been to compare each sprite against
every other sprite on the stage.

Although this is ine for stages in which there are a limited number of sprites and potential colli-
sions, for a platformer—where there might be sprawling levels with potentially thousands of tiles
in the level for sprites to collide with—this would get quickly out of hand. To get around this, the
engine needs to support the idea of a collision layer. Determining which tile a sprite interacts with at
any given point is simple, given that tiles don’t move between frames and are located at ixed points.

Because levels can get big, you also need to draw only the pieces of the level visible on the page, so
optimizing what’s drawn will be another duty of the tile layer.

Writing the TileLayer Class

To add platformer support to the engine, add in another Quintus module: Quintus.Platformer.
This module adds in the Q.TileLayer class with a 2d component and a special stage optimized to
work the Q.TileLayer. The initial unoptimized TileLayer is straightforward. Its job is to load the
tiles and draw all the tiles on each frame.

Create a new JavaScript ile called quintus_platformer.js, and add the code from Listing 18-1.

LISTING 18-1: The basic TileLayer class

Quintus.Platformer = function(Q) {

 Q.TileLayer = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).defaults({
 tileW: 32,
 tileH: 32,
 blockTileW: 10,
 blockTileH: 10,
 type: 1
 }));
 if(this.p.dataAsset) {
 this.load(this.p.dataAsset);
 }
 this.blocks = [];
 this.p.blockW = this.p.tileW * this.p.blockTileW;
 this.p.blockH = this.p.tileH * this.p.blockTileH;
 this.colBounds = {};
 this.directions = ['top','left','right','bottom'];
 },

 load: function(dataAsset) {
 var data = _.isString(dataAsset) ? Q.asset(dataAsset) : dataAsset;

Creating a Tile Layer ❘ 351

 this.p.tiles = data;
 this.p.rows = data.length;
 this.p.cols = data[0].length;
 this.p.w = this.p.rows * this.p.tileH;
 this.p.h = this.p.cols * this.p.tileW;
 },

 setTile: function(x,y,tile) {
 var p = this.p,
 blockX = Math.floor(x/p.blockTileW),
 blockY = Math.floor(y/p.blockTileH);

 if(blockX >= 0 && blockY >= 0 &&
 blockX < this.p.cols &&
 blockY < this.p.cols) {
 this.p.tiles[y][x] = tile;
 if(this.blocks[blockY]) {
 this.blocks[blockY][blockX] = null;
 }
 }
 },

 draw: function(ctx) {
 var p = this.p,
 tiles = p.tiles,
 sheet = this.sheet();
 for(var y=0;y < p.rows;y++) {
 if(tiles[y]) {
 for(var x =0;x < p.cols;x++) {
 if(tiles[y][x]) {
 sheet.draw(ctx,
 x*p.tileW + p.x,
 y*p.tileH + p.y,
 tiles[y][x]);
 }
 }
 }
 }
 }
 });
};

The TileLayer sprite doesn’t do much yet. The init method sets up a couple of properties as usual
and calls the load method if a dataAsset is passed in. It also sets up some properties that will be
used in the next section.

The setTile method will be used to modify the tile at a certain location on the map after the fact.
It has code that will clear out prerendered blocks; this code will make sense after the next section
adds in prerendering.

To limit the number of tiles that the game has to draw each frame, the TileLayer is optimized to
prerender blocks of tiles to off-screen Canvas elements. The additional initialization code at the top
of the init method sets that up for the code you add later in this chapter in the section “Optimizing
the Drawing,” precalculating the size (in pixels) of each block.

352 ❘ CHAPTER 18 Creating a 2-d platForMer

The load method just loads in an array of arrays that deines the frame of the spritesheet for the
tiles at each position and calculates the size of the TileLayer from that.

Finally, the draw method overloads the default Sprite draw method and loops over each row of tiles
and draws those tiles that have a nonzero value at that position.

Exercising the TileLayer Code

To test out this code, you need the standard HTML bootstrap ile. Create a new ile called
platform.html and enter in the code in Listing 18-2.

LISTING 18-2: The platform.html bootstrap

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, s
 user-scalable=0, minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Platformer</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>
 <script src='js/quintus_scenes.js'></script>
 <script src='js/quintus_anim.js'></script>
 <script src='js/quintus_platformer.js'></script>
 <script src='platform.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

This is the standard Quintus code, pulling in the required dependencies and previously written mod-
ules along with the new quintus_platformer.js module you started to write.

Next, create the platform.js ile mentioned in the preceding ile, and enter the start of the plat-
former that will be built in the rest of this chapter. Note that it contains some additional loading
and animation code that won’t be used right away. The initial code for platform.js is shown in
Listing 18-3.

LISTING 18-3: The initial platformer code

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,Anim,Platformer')
 .setup('quintus', { maximize: true })

Creating a Tile Layer ❘ 353

 .controls();

 Q.scene('level',new Q.Scene(function(stage) {

 Q.compileSheets('sprites.png','sprites.json');

 stage.insert(new Q.Repeater({ asset: 'background-wall.png',
 speedX: 0.50, y:-225, z:0 }));
 var tiles = stage.insert(new Q.TileLayer({ sheet: 'block',
 x: -100, y: -100,
 tileW: 32,
 tileH: 32,
 blockTileW: 10,
 blockTileH: 10,
 dataAsset: 'level.json',
 z:1 }));
 stage.add('viewport');
 stage.centerOn(0,0);
 Q.input.bind('right',function() {
 stage.viewport.centerOn(stage.viewport.centerX + 64,
 stage.viewport.centerY)
 });
 Q.input.bind('left',function() {
 stage.viewport.centerOn(stage.viewport.centerX - 64,
 stage.viewport.centerY)
 });
 }, { sort: true }));

 Q.load(['background-wall.png','sprites.png',
 'sprites.json','level.json'],function() {

 Q.stageScene("level");
 });
});

This code should look similar to the code from Chapter 15, but with some additional animations
and loaded assets. You need to grab the assets from the chapter code for the example to work, mak-
ing sure to put the image iles in the images/ directory and the .json iles in the data/ directory.

In this code, the stage binds the left and right actions to allow you to move the viewport around, so
you should scroll the background around on your desktop browser with the arrow keys or with the
keypad on a mobile device.

Optimizing the Drawing

With small tiles and large levels, the number of tiles that need to be drawn for each frame would
quickly bog down performance. One quick optimization would be to draw only the tiles that are
actually on the screen, but even then the 150 32 n 32 tiles that would be needed to ill up an iPhone’s
480 n 320 screen is still too many to draw for each frame. A better solution is to prerender blocks of
tiles (the tiles aren’t changing each frame after all) and then draw a smaller number of blocks at the
correct position.

354 ❘ CHAPTER 18 Creating a 2-d platForMer

To add this code into the TileLayer class, replace the draw method in that class with the code from
Listing 18-4.

LISTING 18-4: Tile prerendering

 prerenderBlock: function(blockX,blockY) {
 var p = this.p,
 tiles = p.tiles,
 sheet = this.sheet(),
 blockOffsetX = blockX*p.blockTileW,
 blockOffsetY = blockY*p.blockTileH;

 if(blockOffsetX < 0 || blockOffsetX >= this.p.cols ||
 blockOffsetY < 0 || blockOffsetY >= this.p.rows) {
 return;
 }

 var canvas = document.createElement('canvas'),
 ctx = canvas.getContext('2d');

 canvas.width = p.blockW;
 canvas.height= p.blockH;
 this.blocks[blockY] = this.blocks[blockY] || {};
 this.blocks[blockY][blockX] = canvas;

 for(var y=0;y<p.blockTileH;y++) {
 if(tiles[y+blockOffsetY]) {
 for(var x=0;x<p.blockTileW;x++) {
 if(tiles[y+blockOffsetY][x+blockOffsetX]) {
 sheet.draw(ctx,
 x*p.tileW,
 y*p.tileH,
 tiles[y+blockOffsetY][x+blockOffsetX]);
 }
 }
 }
 }
 },

 drawBlock: function(ctx, blockX, blockY) {
 var p = this.p,
 startX = Math.floor(blockX * p.blockW + p.x),
 startY = Math.floor(blockY * p.blockH + p.y);

 if(!this.blocks[blockY] || !this.blocks[blockY][blockX]) {
 this.prerenderBlock(blockX,blockY);
 }

 if(this.blocks[blockY] && this.blocks[blockY][blockX]) {
 ctx.drawImage(this.blocks[blockY][blockX],startX,startY);
 }
 },

 draw: function(ctx) {

Handling Platformer Collisions ❘ 355

 var p = this.p,
 viewport = this.parent.viewport,
 viewW = Q.width / viewport.scale,
 viewH = Q.height / viewport.scale,
 startBlockX = Math.floor((viewport.x - p.x) / p.blockW),
 startBlockY = Math.floor((viewport.y - p.y) / p.blockH),
 endBlockX = Math.floor((viewport.x + viewW - p.x) / p.blockW),
 endBlockY = Math.floor((viewport.y + viewH - p.y) / p.blockH);

 for(var y=startBlockY;y<=endBlockY;y++) {
 for(var x=startBlockX;x<=endBlockX;x++) {
 this.drawBlock(ctx,x,y);
 }
 }
 }

The rendering code has been broken down into three separate methods. The draw method from the
irst version is replaced with one that calculates the starting and ending block in each direction and
then calls the drawBlock helper method for each block.

The drawBlock method takes in the block position and converts it into a pixel position to calculate
the startX and startY variables. It then checks if an off-screen Canvas has already been created;
if not, it calls the prerenderBlock method to create it. The drawBlock method then draws the
off-screen Canvas onto the screen using the standard Canvas drawImage method, which accepts a
Canvas element as a irst parameter (in addition to the standard image object).

Finally, the prerenderBlock method creates an off-screen Canvas sized to the dimensions of the
block and then draws each of the tiles in the block. It then saves the Canvas in the this.blocks
property for later reuse.

HANDLING PLATFORMER COLLISIONS

As mentioned earlier, collision detection in a platformer needs some special attention. The irst issue, as
described already, is that, given the size of levels, collisions between sprites and tiles need to be highly
optimized. A second requirement is that the collision detection should be stable and reasonably accu-
rate. Because sprites spend most of their time hanging out on, well, platforms, the engine should be
optimized for this case. Sprites will also be running around jumping and generally causing a ruckus. As
the sprites run into things, they need to get feedback based on the direction of the impact.

Building a physics engine that does realistic collision calculations and responses to collisions is both
dificult and processor-intensive. A simpler solution is to build a simpliied model of how a sprite
should react to collisions that is easier to implement and less work on the processor.

Taking a hint from the old-school platformers of yesteryear, sprites can be treated as a rigid collec-
tion of points that represent the extents of the object. If each point is also given a position label like
top, left, right, or bottom, and if that point collides with something, it’s easy to determine the
reaction the sprite should have. If the top of the sprite collides with an object, the engine can just
move the sprite down until it’s no longer in contact. The same applies for each of the other direc-
tions. See Figure 18-1.

356 ❘ CHAPTER 18 Creating a 2-d platForMer

Using this algorithm, collision detection between
arbitrarily shaped sprites and the world’s tiles
has been reduced to checking points against
squares, an extremely inexpensive calculation.

Adding the 2-D Component

The irst step to add in platformer collisions is to
create a component that sprites can add to imple-
ment 2-D collision detection as described earlier.
This component will be called, not surprisingly
“2d.” Its job is to allow the setting of collision
points. It can also steal the basic physics code
from the last chapter to allow the sprite to react
to gravity and velocity.

Add the code for the 2-D component in Listing 18-5 to the bottom of quintus_platformer.js
before the inal closing brace.

LISTING 18-5: The 2-D component

 Q.gravityY = 9.8*100;
 Q.gravityX = 0;
 Q.dx = 0.05;

 Q.register('2d',{
 added: function() {
 var entity = this.entity;
 _(entity.p).defaults({
 vx: 0,
 vy: 0,
 ax: 0,
 ay: 0,
 gravity: 1,
 collisionMask: 1
 });
 entity.bind('step',this,"step");
 if(Q.debug) {
 entity.bind('draw',this,'debugDraw');
 }
 },

 extend: {
 collisionPoints: function(points) {
 var p = this.p, w = p.w, h = p.h;
 if(!points) {
 p.col = {
 top: [[w/2, 0]],
 left: [[0, h/3], [0, 2*h/3]],

FIGURE 18-1: Collision detection.

Handling Platformer Collisions ❘ 357

 bottom:[[w/2, h]],
 right: [[w, h/3], [w, 2*h/3]]
 }
 } else {
 p.col = points;
 }
 }
 },

 step: function(dt) {
 var p = this.entity.p,
 dtStep = dt;

 while(dtStep > 0) {
 dt = Math.min(1/30,dtStep);
 // Updated based on the velocity and acceleration
 p.vx += p.ax * dt + Q.gravityX * dt * p.gravity;
 p.vy += p.ay * dt + Q.gravityY * dt * p.gravity;
 p.x += p.vx * dt;
 p.y += p.vy * dt;
 this.entity.parent.collide(this.entity);
 dtStep -= 1/30;
 }
 },
 debugDraw: function(ctx) {
 var p = this.entity.p;
 ctx.save();
 ctx.fillStyle = "black";
 if(p.col) {
 _.each(p.col,function(points,dir) {
 for(var i=0;i<points.length;i++) {
 ctx.fillRect(p.x + points[i][0] - 2,
 p.y + points[i][1] - 2,
 4,4);
 }
 });
 }
 ctx.restore();
 }
 });

The added method of the component adds on some velocity and acceleration properties and a multi-
plier to indicate how strongly the sprite reacts to gravity. It also sets a collision mask that can deter-
mine which objects the sprite should actively collide with. It then binds to the step event to update
the sprite on each step. As a convenience it adds an optional binding to the draw event if a Q.debug
property is turned on.

The 2d component adds the collisionPoints method directly onto the sprite to let it set the colli-
sion points as a hash of arrays of points. If no points are passed in, the method creates some default
ones that size to the bounding box of sprite.

The step method uses the familiar equations from the last chapter for updating the position of the
sprite based on the acceleration and velocity. It then calls the collide method of the parent stage,

358 ❘ CHAPTER 18 Creating a 2-d platForMer

which is responsible for keeping the sprite out of tile objects and sending callbacks whenever it col-
lides with something.

One thing that’s different about this step method, though, is that it puts an upper bound of 1/30th
of a second on the dt so that it moves each call and loops over these smaller steps to prevent any
sprite from moving too far. The reason for this is that the collision mechanism relies on sprites not
being embedded too far into objects because that would trigger the wrong collision point—because
HTML5 games can still suffer from the occasional stutter due to garbage collection.

Lastly, the debugDraw method, if turned on in added, draws a small rectangle at the position of each
collision point for debugging after each frame.

Calculating Platformer Collisions

The job to calculate collisions with a sprite’s collision points falls upon the TileLayer class from the
last section. Its duty is to check each of the sprite’s points against potential tile collisions and return
the information about the collision and how to correct.

How it calculates collisions is simple: Divide the position of each point by the size of each tile; look
at the array of tiles to see if a tile is present; and if it is, use the type of the point to igure out which
way to push the sprite to keep it from continuing to collide.

Add the three methods in Listing 18-6 to the Q.TileLayer class in quintus_platformer.js. You
can put it before the prerenderBlock method, making sure you have your method-ending commas
lined up correctly.

LISTING 18-6: Collision points checking in TileLayer

 checkBounds: function(pos,col,start) {
 start = start || 0;
 for(var i=0;i<4;i++) {
 var dir = this.directions[(i+start)%4];
 var result = this.checkPoints(pos,col[dir],dir);
 if(result) {
 result.start = i+1;
 return result;
 }
 }
 return false;
 },

 checkPoints: function(pos,pts,which) {
 for(var i=0,len=pts.length;i<len;i++) {
 var result = this.checkPoint(pos.x+pts[i][0],
 pos.y+pts[i][1],which);
 if(result) {
 result.point = pts[i];
 return result;
 }
 }
 return false;

Handling Platformer Collisions ❘ 359

 },

 checkPoint: function(x,y,which) {
 var p = this.p,
 tileX = Math.floor((x - p.x) / p.tileW),
 tileY = Math.floor((y - p.y) / p.tileH);

 if(p.tiles[tileY] && p.tiles[tileY][tileX] > 0) {
 this.colBounds.tile = p.tiles[tileY][tileX];
 this.colBounds.direction = which;
 switch(which) {
 case 'top':
 this.colBounds.destX = x;
 this.colBounds.destY = (tileY+1)*p.tileH + p.y + Q.dx;
 break;
 case 'bottom':
 this.colBounds.destX = x;
 this.colBounds.destY = tileY*p.tileH + p.y - Q.dx;
 break;
 case 'left':
 this.colBounds.destX = (tileX+1)*p.tileW + p.x + Q.dx;
 this.colBounds.destY = y;
 break;
 case 'right':
 this.colBounds.destX = tileX*p.tileW + p.x - Q.dx;
 this.colBounds.destY = y;
 break;
 }
 return this.colBounds;
 }
 return false;
 },

The primary method, checkBounds, takes in a position object and a collision point’s object and
checks each of the points against its tiles by calling checkPoints, returning the irst collision it
inds, otherwise returning false. To prevent a situation in which a sprite gets caught in a corner
and keeps inching through a wall, the start parameter cycles through the starting edge to check.

The checkPoints method checks one array of points. It does this by looping over the array and call-
ing checkPoint (singular) and again returning the irst result that causes a collision.

Finally, the workhorse checkPoint calculates the tile position of the point, and if a tile is at that
position, it ills in the colBound object, which is an object reused from collision to collision to save
garbage collection time. That method, because it knows the type of point that caused the collision,
can move that point to the top, bottom, or sides of the tile as necessary to resolve the collision.

Stitching It Together with the PlatformStage

To connect the 2d component and the TileLayer, a specialized stage object needs to be created. Its
job is to check the object for collisions against the TileLayer along with a more basic bounding box
to check any other sprites, adjust the position of the sprite if it collides, and then call events on the
objects as necessary based on the collision detected.

360 ❘ CHAPTER 18 Creating a 2-d platForMer

This Q.PlatformStage class has the task to handle these different pieces. This stage class,
although it might have multiple tile layers on the screen, is allowed to have only a single tile layer
used for collisions, called the collisionLayer. Sprites that have a matching collisionMask
with the collisionLayer go through the tile collision process.

The stage also performs the normal bounding box check between sprites.

Add the code for Q.PlatformStage from Listing 18-7 to the bottom of quintus_platformer.js to
inish that ile’s functionality.

LISTING 18-7: The PlatformStage Class

 Q.PlatformStage = Q.Stage.extend({
 collisionLayer: function(layer) {
 this.collision = this.insert(layer);
 },

 _tileCollision: function(obj,start) {
 if(obj.p.col) {
 var result = this.collision.checkBounds(obj.p,obj.p.col,start);
 if(result) {
 return result;
 }
 }
 return false;
 },

 _hitTest: function(obj,collision) {
 if(obj != this && this != collision &&
 this.p.type && (this.p.type & obj.p.collisionMask)) {
 var col = Q.overlap(obj,this);
 return col ? this : false;
 }
 return false;
 },

 collide: function(obj) {
 var col;
 if(obj.p.collisionMask & this.collision.p.type) {
 while(col = this._tileCollision(obj,col ? col.start : 0)) {
 if(col) {
 var destX = col.destX - col.point[0],
 destY = col.destY - col.point[1];
 obj.p.x = destX;
 obj.p.y = destY;
 if(col.direction == 'top' || col.direction == 'bottom') {
 obj.p.vy = 0;
 } else {
 obj.p.vx = 0;
 }
 obj.trigger('hit',this.collision);
 obj.trigger('hit.tile',col);
 }
 }
 }

Building the Game ❘ 361

 col = this.detect(this._hitTest,obj,this.collision);
 if(col) {
 obj.trigger('hit',col);
 obj.trigger('hit.sprite',col);
 }
 }
 });

The collisionLayer setter method sets the TileLayer that should handle collisions.

Two helper methods—_tileCollision and _hitTest—check an object against the tile layer and
against other sprites. _tileCollision calls the checkBounds method from the last section if the
object in question has a collision point’s property or just returns false if not. The _hitTest is only
a slightly modiied version of the standard stage method. The only addition is the collision parame-
ter, which checks if the opposing sprite is the collision sprite, and if so, ignores it as the tile collisions
are handled separately.

Finally, the collide method, which is called by each 2d sprite in each step, does the bulk of the
work. First, it checks if this sprite collides with the collision layer using a bitwise AND. If so, it loops
over any potential tile collisions and adjusts the position of the sprite based on how the collision
tells it to resolve based on the collision’s returned destX and destY parameters (returned by the
checkPoint method from TileLayer). The sprite also gets its velocity reset in whatever direction it
collided (vertical or horizontal). Each collision also triggers a hit event on the sprite that passes the
collision object (the TileLayer) along with a more speciic hit.tile event that passes the collision
information itself, which allows the sprite to react to the direction of its collision.

When the tile collisions are done, the sprite loops over any other sprites by calling detect with the
aforementioned _hitTest method, triggering hit events if a collision arrives.

BUILDING THE GAME

With all the pieces in place, it’s time to attack the game. The simple platformer built in this section
uses a shrunken-down version of the man from Chapter 16 along with some blobs as enemies. The
game will have only three sprites, the player, bullets, and blobs.

Boostrapping the Game

Start from the outside in and create the outline of the game before illing in the necessary sprite
class. Open up platform.js and replace it with the code from Listing 18-8.

LISTING 18-8: The platformer code

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,Anim,Platformer')
 .setup('quintus', { maximize: true })
 .controls();

 Q.Enemy = Q.Sprite.extend({
continues

362 ❘ CHAPTER 18 Creating a 2-d platForMer

 // TODO
 });
 Q.Player = Q.Sprite.extend({
 // TODO
 });
 Q.Bullet = Q.Sprite.extend({
 // TODO
 });

 Q.scene('level',new Q.Scene(function(stage) {
 stage.insert(new Q.Repeater({ asset: 'background-wall.png',
 speedX: 0.50, y:-225, z:0 }));
 var tiles = stage.insert(new Q.TileLayer({ sheet: 'block',
 x: -100, y: -100,
 tileW: 32,
 tileH: 32,
 dataAsset: 'level.json',
 z:1 }));
 stage.collisionLayer(tiles);
 var player = stage.insert(new Q.Player({ x:100, y:0,
 z:3, sheet: 'man }));

 stage.insert(new Q.Enemy({ x:400, y:0, z:3 }));
 stage.insert(new Q.Enemy({ x:600, y:0, z:3 }));
 stage.insert(new Q.Enemy({ x:1200, y:100, z:3 }));
 stage.insert(new Q.Enemy({ x:1600, y:0, z:3 }));

 stage.add('viewport');
 stage.follow(player);
 }, { sort: true }));

 Q.load(['sprites.png','sprites.json',
 'background-wall.png','level.json'],function() {
 Q.compileSheets('sprites.png','sprites.json');

 Q.animations('player', {
 run_right: { frames: _.range(7,-1,-1), rate: 1/15},
 run_left: { frames: _.range(19,11,-1), rate:1/15 },
 fire_right: { frames: [9,10,10], next: 'stand_right', rate: 1/30 },
 fire_left: { frames: [20,21,21], next: 'stand_left', rate: 1/30 },
 stand_right: { frames: [8], rate: 1/5 },
 stand_left: { frames: [20], rate: 1/5 },
 fall_right: { frames: [2], loop: false },
 fall_left: { frames: [14], loop: false }
 });

 Q.animations('blob', {
 run_right: { frames: _.range(0,2), rate: 1/5 },
 run_left: { frames: _.range(2,4), rate: 1/5 }
 });
 Q.stageScene("level",0,Q.PlatformStage);
 });
});

LISTING 18-8 (continued)

Building the Game ❘ 363

This code sets up the engine and the scene, and then it loads some assets and sets up some anima-
tions. All these setup pieces should look familiar from previous chapters and the example earlier in
this chapter.

This time the player has a number of animations for each direction, and a second set of simple ani-
mations for the nefarious blob character are added as well.

The three sprites will be added in each of the following sections.

Creating the Enemy

The enemy sprite (aka “the blob”) is just a sprite that moves back and forth on a platform and
changes direction when it runs into a wall. To do this it needs to listen for hit.tile events and lip
direction when it encounters that event. It also needs to damage the player whenever it runs into
him, which it can do by listening for the hit.sprite event.

Replace the stub for the Q.Enemy class with the code in Listing 18-9.

LISTING 18-9: The Q.Enemy class

 Q.Enemy = Q.Sprite.extend({
 init:function(props) {
 this._super(_(props).extend({
 sheet: 'blob',
 sprite: 'blob',
 rate: 1/15,
 type: 2,
 collisionMask: 5,
 health: 50,
 speed: 100,
 direction: 'left'
 }));
 this.bind('damage',this,'damage');
 this.bind('hit.tile',this,'changeDirection');
 this.bind('hit.sprite',this,'hurtPlayer');
 this.add('animation, 2d')
 .collisionPoints()
 },

 changeDirection: function(col) {
 if(col.direction == 'left') {
 this.p.direction = 'right';
 } else if(col.direction == 'right') {
 this.p.direction = 'left';
 }
 },

 hurtPlayer: function(col) {
 if(col.p.x < this.p.x) {
 col.p.x -= 10;
 col.damage(5);
 } else {

continues

364 ❘ CHAPTER 18 Creating a 2-d platForMer

 col.p.x += 10;
 col.damage(5);
 }
 },

 damage: function(amount) {
 this.p.health -= amount;
 if(this.p.health <= 0) {
 this.destroy();
 }
 },

 step: function(dt) {
 var p = this.p;
 if(p.direction == 'right') {
 this.play('run_right');
 p.vx = p.speed;
 } else {
 this.play('run_left');
 p.vx = -p.speed;
 }
 this._super(dt);
 }
 });

As usual the init method sets up properties and binds to events. It also adds the animation and
2d components to the sprite and uses the default collision points for the sprite. In this case the
type and collisionMask are important because the type is set to 2—so bullets can differentiate
it from the player—and the collisionMask is set to 5—so it can run into the player (type of 4)
and tiles (type of 1).

The changeDirection method is called in response to the hit.tile event. The event is passed
the details of the collision, which includes where the collision happened. The blob will move in the
opposite direction from the collision.

hurtPlayer is called every time the blob runs into another sprite. Because the only other sprite
around that matches the blob’s collisionMask is the player, the blob knows to damage them. The
reverse is true when a bullet runs into a blob, in which case it calls damage on the blob, and the blob
reduces its health until it’s less than 0 and then destroys itself.

Because the blob can move only left and right, the step method is simple. It checks the direction it’s
currently moving in, sets the velocity to the correct direction, and plays the proper animation.

Adding Bullets

To take down the blob, the player needs some irepower. Bullets are a simple sprite that doesn’t even
use a spritesheet to draw itself, but instead just draws a small rectangle.

Replace the stub for the bullet with the code from Listing 18-10.

LISTING 18-9 (continued)

Building the Game ❘ 365

LISTING 18-10: The bullet sprite

 Q.Bullet = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).extend({ w:4, h:2,
 gravity:0, collisionMask:3 }));
 this.add('2d')
 this.collisionPoints();
 this.bind('hit.tile',this,'remove');
 this.bind('hit.sprite',this,'damage');
 },

 remove: function() {
 this.destroy();
 },

 damage: function(obj) {
 obj.trigger('damage',10);
 this.destroy();
 },

 draw: function(ctx) {
 var p = this.p;
 ctx.fillStyle = "#000";
 ctx.fillRect(p.x,p.y,p.w,p.h);
 }
 });

There isn’t much to the bullet class. It sets the gravity property to 0 to prevent gravity from affect-
ing the bullet. It also destroys itself when it runs into a tile and damages any sprite it runs into.
Finally, it overrides the draw method to just draw a small black rectangle to represent the bullet.

Again the type and collisionMask come into play so that the bullet collides only with sprites and
enemies.

Creating the Player

Last up is the player. He has some added complexity because he needs to move, jump, and ire
bullets.

One issue that always needs some attention is the issue of jumping. Characters should jump only
when they are standing on solid ground, so the player needs to keep track of where that is. One way
to do this is track the last time that a collision with the bottom point occurred and allow jumps only
when the last bottom collision was in the past few frames. This is the technique used here.

To sync up the bullet iring animation with when a bullet is actually launched, the player can lis-
ten for events indicating that the bullet animation has inished before actually adding the bullet
sprite on the stage.

Add the code from Listing 18-11 to inish the platformer and add in the player sprite.

366 ❘ CHAPTER 18 Creating a 2-d platForMer

LISTING 18-11: The player

 Q.Player = Q.Sprite.extend({
 init:function(props) {
 this._super(_(props).extend({
 sheet: 'man',
 sprite: 'player',
 rate: 1/15,
 speed: 250,
 standing: 3,
 type: 4,
 health: 100,
 collisionMask: 1,
 direction: 'right'
 }));

 this.add('animation, 2d')
 .collisionPoints({
 top: [[20, 3]],
 left: [[5,15], [5,40]],
 bottom: [[20,51]],
 right: [[30,15], [30,40]]
 });

 this.bind('animEnd.fire_right',this,"launchBullet");
 this.bind('animEnd.fire_left',this,"launchBullet");
 this.bind('hit.tile',this,'tile');
 Q.input.bind('fire',this,"fire");
 Q.input.bind('action',this,"jump");
 },

 fire: function() {
 this.play('fire_' + this.p.direction,2);
 },

 damage: function(amount) {
 this.p.health -= amount;
 if(this.p.health < 0) {
 Q.stageScene("level",0,Q.PlatformStage);
 }
 },
 launchBullet: function() {
 var p = this.p,
 vx = p.direction == 'right' ? 500 : -500,
 x = p.direction == 'right' ? (p.x + p.w) : p.x;
 this.parent.insert(new Q.Bullet({ x: x, y: p.y + p.h/2, vx: vx }));
 },

 jump: function() {
 if(this.p.standing >= 0) {
 this.p.vy = -this.p.speed * 1.4;
 this.p.standing = -1;
 }

Building the Game ❘ 367

 },

 tile: function(collision) {
 if(collision.direction == 'bottom') {
 this.p.standing = 5;
 }
 },

 step: function(dt) {
 var p = this.p;
 if(p.animation == 'fire_right' || p.animation == 'fire_left') {
 if(this.p.standing > 0) {
 this.p.vx = 0;
 }
 } else {
 if(this.p.standing < 0) {
 if(p.vx) {
 p.direction = p.vx > 0 ? 'right' : 'left';
 }
 this.play('fall_' + p.direction,1);
 }
 if(Q.inputs['right']) {
 this.play('run_right');
 p.vx = p.speed;
 p.direction = 'right';
 } else if(Q.inputs['left']) {
 this.play('run_left');
 p.vx = -p.speed;
 p.direction = 'left';
 } else {
 p.vx = 0;
 this.play('stand_' + p.direction);
 }
 this.p.standing~DH;
 }
 this._super(dt);
 }
 });

The Player sprite has a lot more going on than the Bullet or the Enemy. The init method sets up
a custom set of collisionPoints to allow better interaction with tiles. It also binds to events for
collisions, jumping, and iring bullets.

The fire method, called when the player ires a bullet, plays the fire_right or fire_left animation
at a higher priority level to prevent any other animation from overriding it. The damage callback is
called whenever the blob hits the player. After the full ire animation plays, the animation engine trig-
gers an event that lets the player know it’s time to actually drop the Bullet sprite onto the Canvas.

The tile method is used to track collisions with tiles with the sole purpose to track whether the
player is standing on a tile. The standing property it calculates is used with the jump method to
launch the player into the air but only if he is currently standing on solid ground.

Finally, the most complicated method, step, has the responsibility to play the right animation and
update the player’s speed as he runs around the screen.

368 ❘ CHAPTER 18 Creating a 2-d platForMer

It has a few different states to consider: iring bullets, falling, running, or standing. The irst is con-
sidered the most important and overrides the other animations. The falling animation is the second
most important state because if the player is jumping, his feet shouldn’t be walking on air. Next,
the running animations in each direction are played if the player holds down right or left. If none of
those conditions are true, the player stands stifly, pointed in whatever direction the player left him.

You should now be able to walk, jump, and shoot bullets around the short level deined in level.json.
You can see the inal game running on an iPhone in Figure 18-2.

FIGURE 18-2: The inal game.

The next chapter shows you how to build a more entertaining playground for the player using a level
editor to edit the unruly .json iles needed for creating levels.

Summary ❘ 369

SUMMARY

You have now tied together the Canvas and animation code along with some new tile and collision
detection to build a simple platformer game. In a production game there are a number of places
where you could continue to optimize and enhance the engine, including adding in polygon-to-
polygon collisions to get more accurate sprite collisions and using a quadtree or a tile-based system
to keep the calculations for sprite collisions to a minimum.

Building a Canvas Editor

WHAT’S IN THIS CHAPTER?

 ➤ Serving a game with Node.js

 ➤ Creating a touch-friendly editor

 ➤ Saving level data

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 19
download and individually named according to the names throughout the chapter.

INTRODUCTION

Building off the last chapter, where you built a 2-D platformer, this chapter builds an editor
that enables you to edit the level to modify the tile data that makes up the level and save those
changed levels. To allow the level data to be saved, you need to wrap the game inside of a
Node.js application that can handle writing out the saved game data.

SERVING THE GAME WITH NODE.JS

Before your app can handle requests to save level data, the game needs to be served from
something besides a static web server. One solution for this would be to write a simple PHP
script that takes in the data and saves the ile to disk. Because this is a book about JavaScript,
however, and you’ll be using Node.js to build a multiplayer game in the next couple of chap-
ters, it makes more sense to build the editor using Node to get more experience with it.

19

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

372 ❘ CHAPTER 19 Building a Canvas editor

Creating the package.json File

Just like the spritesheet creator application from Chapter 8, “Running JavaScript on the Command
Line,” the editor needs a package.json ile to let Node know some details about the application,
including dependencies.

Create a new directory called editor for the editor, and create a ile called package.js with the con-
tents in Listing 19-1.

LISTING 19-1: The package.json ile

{
 "name": "platformer-editor"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.8"
 , "jade": ">= 0.0.1"
 , "underscore": "1.3.3"
 }
}

This application has three dependencies, your good friend underscore.js; a Node.js application
framework called Express; and its dependency, jade.

Setting Up Node to Serve Static Assets

Node.js provides a minimal baseline of functionality for processing web requests. To get it to do
something such as serve static iles, you need to pull in a module. There are a number of different
modules you could use whose only purpose is to serve static iles, including node-static and
node-paperboy, but because this app is going to do more than just serve iles, it makes sense to
pull in a more full-featured framework that can handle static iles in addition to other tasks. The
framework you use for this is a Node module called Express: http://expressjs.com/.

Express provides a number of different features, including views, caching, routing, sessions, and
static iles. This chapter uses only a small subset of Express’s features, but it still makes your life eas-
ier than trying to use Node.js without support. You’ll install Express via npm, so don’t worry about
downloading it.

Create a ile called app.js in the editor directory for your app that you just created and ill it with
the contents of Listing 19-2, which is a basic boilerplate Express application.

LISTING 19-2: Express boilerplate application

var express = require('express'),
 fs = require('fs'),

http://expressjs.com/

Creating the Editor ❘ 373

 _ = require('underscore');

var app = module.exports = express.createServer();

// Configuration
app.configure(function(){
 app.use(express.bodyParser());
 app.use(express.static(__dirname + '/public'));
});
app.configure('development', function(){
 app.use(express.errorHandler({ dumpExceptions: true, showStack: true }));
});
app.configure('production', function(){
 app.use(express.errorHandler());
});

// Start the server on port 3000
app.listen(3000, function(){
 console.log("Express server listening on port %d in %s mode",
app.address().port, app.settings.env);
});

This application loads a few dependencies at the start, sets up the server to parse incoming POST
messages using express.bodyParser, and sets up the public directory as the location to serve static
assets using express.static. Next it sets up a couple of error handlers depending on whether the
server is run in Development or Production mode. (The default is Development.) Finally, the app
server is started on port 3000.

To try this, copy all the code and image, js, and data directories from the last chapter into a new
subdirectory called public underneath the app.js ile. Rename the ile from platform.html to
index.html.

You then need to run npm to install the necessary modules. From the command prompt in the same
directory as your package.json and app.js ile, run:

npm install

This creates the necessary node_modules directory and installs the dependencies.

You should run the application by running the following:

node app.js

This starts the server on port 3000 and allows you to play the platformer game from the last chapter
by visiting http://localhost:3000/ in a browser. If you determine your IP address, you can play
the game from a mobile device on the same Wii network as your computer as well.

CREATING THE EDITOR

The editor consists of a layer of editing tools that sits on top of the existing platformer code. By
making use of as much of the existing platformer code as possible, the editor needs to add only the
ability to move the view around and changes tiles.

374 ❘ CHAPTER 19 Building a Canvas editor

Modifying the Platform Game

The changes needed to get the editor code into the existing platform.js ile are minimal. Open up
the index.html ile in the public/ directory and add the soon-to-be-created quintus_editor.js
ile, as shown in Listing 19-3.

LISTING 19-3: Modiied index.html ile

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Platformer</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>
 <script src='js/quintus_scenes.js'></script>
 <script src='js/quintus_anim.js'></script>
 <script src='js/quintus_platformer.js'></script>
 <script src='js/quintus_editor.js'></script>
 <script src='platform.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

Next open up the platform.js ile in the same directory; at the top of the ile, add the Editor mod-
ule and remove the controls call. (Controls will be enabled later by the editor.)

$(function() {
 var Q = window.Q
 = Quintus()
 .include('Input,Sprites,Scenes,Anim,Platformer,Editor')
 .setup('quintus', { maximize: true });

Next, to support loading the editor and different levels, the bottom of the same ile needs to be
modiied with a regular expression to optionally load a different level ile into the game and set up
the editor into the game.

The lines of code that need to be changed are shown here (the irst block should be added above the
Q.scene call, and the remaining changes are inside the Q.scene callback):

 var match = window.location.search.match(/level=([^\&]+)/),
 levelFile = 'level.json';
 if(match) {
 levelFile = match[1] + '.json';

Creating the Editor ❘ 375

 }

 Q.scene('level',new Q.Scene(function(stage) {
 stage.insert(new Q.Repeater({ asset: 'background-wall.png',
 speedX: 0.50, y:-225, z:0 }));
 var tiles = stage.insert(new Q.TileLayer({ sheet: 'block',
 x: -100, y: -100,
 tileW: 32,
 tileH: 32,
 dataAsset: levelFile,
 z:1 }));
 stage.collisionLayer(tiles);
 var player = stage.insert(new Q.Player({ x:100, y:0, z:3 }));
 stage.insert(new Q.Enemy({ x:400, y:0, z:3 }));
 stage.insert(new Q.Enemy({ x:600, y:0, z:3 }));
 stage.insert(new Q.Enemy({ x:1200, y:100, z:3 }));
 stage.insert(new Q.Enemy({ x:1600, y:0, z:3 }));
 stage.add('viewport');
 stage.follow(player);

 stage.add('editor');
 stage.editor.setFile(levelFile);
 stage.bind('reset',function() {
 Q.stageScene("level",0,Q.PlatformStage);
 });

 }, { sort: true }));
 Q.load(['sprites.png','sprites.json',
 'background-wall.png',levelFile],function() {

 Q.compileSheets('sprites.png','sprites.json');
 Q.animations('player', {
 run_right: { frames: _.range(7,-1,-1), rate: 1/15},
 run_left: { frames: _.range(19,11,-1), rate:1/15 },
 fire_right: { frames: [9,10,10], next: 'stand_right', rate: 1/30 },
 fire_left: { frames: [20,21,21], next: 'stand_left', rate: 1/30 },
 stand_right: { frames: [8], rate: 1/5 },
 stand_left: { frames: [20], rate: 1/5 },
 fall_right: { frames: [2], loop: false },
 fall_left: { frames: [14], loop: false }
 });
 Q.animations('blob', {
 run_right: { frames: _.range(0,2), rate: 1/5 },
 run_left: { frames: _.range(2,4), rate: 1/5 }
 });
 Q.stageScene("level",0,Q.PlatformStage);

});

The primary change is the addition of the levelFile variable, which stores the name of the level
ile loaded into the editor. This can be changed by adding a parameter called level to the end of the
URL, for example:

http://localhost:3000/?level=level2

376 ❘ CHAPTER 19 Building a Canvas editor

This would attempt to load data/level2.json instead of the default ile data/level.json.

The second change marked here is adding the editor component to the stage. This component
isn’t written yet, so running the code currently results in an error, but it will be written in the next
section.

The code also binds to a new event on the stage called reset, which is used by the editor to tell the
game to reset itself (which the game does by just reloading the required scene).

Creating the Editor Module

The Quintus.Editor module consists of just a single component, editor, which can be added to
a Stage object. It creates a number of tool buttons to let the user move the game around, paint and
erase tiles, select tiles, zoom in and out, and inally save the level back to the server.

The irst version of the editor adds some buttons onto the screen and enables you to select between
the various tools.

Create a js/quintus_editor.js and add the code in Listing 19-4 to get the editor up-and-running.

LISTING 19-4: The basic editor module

Quintus.Editor = function(Q) {

 Q.register('editor',{

 added: function() {
 var stage = this.entity;
 stage.pause();
 $("#quintus-editor").remove();
 this.controls = $("<div id='quintus-editor'>")
 .appendTo(Q.wrapper)
 .css({position:"absolute",top:0, zIndex: 100});
 _.bindAll(this);

 this.buttons = {
 move: this.button("move",this.move),
 paint: this.button("paint",this.paint),
 erase: this.button("erase",this.erase),
 select: this.button("tile",this.tile),
 play: this.button("play",this.play),
 out: this.button("-",this.out),
 in: this.button("+",this.in),
 save: this.button("save",this.save)
 };

 this.select('move');
 this.activeTile = 1;

 Q.el.on('touchstart mousedown',this.touch);
 Q.el.on('touchmove mousemove',this.drag);
 Q.el.on('touchend mouseup',this.release);

Creating the Editor ❘ 377

 },

 setFile: function(levelFile) {
 this.levelFile = levelFile;
 },

 button: function(text,callback) {
 var elem = $("<div>")
 .text(text)
 .css({float:'left',
 margin: "10px 5px",
 padding:"15px 5px",
 backgroundColor:'#DDD',
 width:35,
 textAlign:'center',
 fontSize: "14px",
 cursor:'pointer',
 fontFamily: 'Arial',
 fontWeight:'bold',
 boxShadow: "2px 2px 5px #999",
 borderRadius: "5px",
 color:"black"})
 .appendTo(this.controls);

 elem.on('mousedown touchstart',callback);
 return elem;
 },

 select: function(button) {
 if(this.selected) {
 this.buttons[this.selected].css('backgroundColor','#DDD');
 }
 this.selected = button;
 if(this.buttons[this.selected]) {
 this.buttons[this.selected].css('backgroundColor','#FFF');
 }
 },

 move: function() {
 this.select('move');
 },

 paint: function() {
 this.select('paint');
 },

 erase: function() {
 this.select('erase');
 },

 play: function(e) {
 if(this.playing) {
 this.buttons['play'].text('Play');
 Q.input.disableTouchControls();

continues

378 ❘ CHAPTER 19 Building a Canvas editor

 this.entity.trigger('reset');
 this.select();
 } else {
 Q.el.off('touchstart mousedown',this.touch);
 Q.el.off('touchmove mousemove',this.drag);
 Q.el.off('touchend mouseup',this.release);
 this.select('play');
 this.buttons['play'].text('reset');
 this.playing = true;
 this.entity.unpause();
 Q.controls();
 }
 e.preventDefault();
 },

 out: function() {
 this.entity.viewport.scale /= 1.5;
 this.entity.viewport.recenter();
 },

 in: function() {
 this.entity.viewport.scale *= 1.5;
 this.entity.viewport.recenter();
 },
 });
};

The added method, as you know, gets called immediately after a component is added to an object.
The irst thing the method does is pause the stage so that the step method is no longer called, freez-
ing all sprites in place. Next, it sets up a container for the editor. It also removes any elements of the
same ID, which is useful when the editor is reset. Then the editor calls the _.bindAll method. This
binds every method in the object to the object itself, which prevents any confusion during jQuery
event callbacks with the state of the this object. The method sets up a number of buttons, which
are added onto the top of the screen. These all use the button method, which is deined a few meth-
ods down. Next, it preselects the move tool, sets the activeTile (the tile used to paint) to the irst
sprite, and binds some event handlers on touch events and their mouse equivalents.

The touch, drag, and release methods aren’t added until the next section. jQuery won’t cause an
exception if you pass null into the on method as you do here.

The setFile method simply saves the name of the level ile for later use.

The button method creates a rectangular DOM element with some styling to make it look like a
button. It then appends that element to the container created in added. These buttons are used to
control the editor and select the currently active tool.

The select button is used to highlight the currently active tool. Although some of the buttons just
take an action when you click them, the irst three buttons—move, paint, and erase—are used as
tools to control what happens when the user clicks or touches the canvas. Each of the callback meth-
ods for those three buttons just has the job to call the select method to set the current tool.

LISTING 19-4 (continued)

Creating the Editor ❘ 379

You can use the play button to toggle between Editing mode and activating the game so that you
can try out the level. The irst time you press the button, the editor turns off all the bound events,
selects the play button, and then unpauses the stage. The second time you press, it triggers the reset
method, which the stage uses to reset the scene.

The last two methods—out and in—modify the viewport to zoom out and in.

If you have this code running correctly and pull the editor up in the browser, you should select
between the irst three tools and use the + and – buttons to zoom in and out and press Play to start
the game. None of the tools do anything yet, but the next section remedies this.

Adding Touch and Mouse Events

To turn this into an editor, the three missing event methods—touch, drag, and release—need
to be written to look at the current tool and take the appropriate action. The code for these
three methods along with the code for two supporting methods, tilePos and tool, is shown in
Listing 19-5 and should be added to the bottom of quintus_editor.js inside of the editor com-
ponent deinition.

LISTING 19-5: The Canvas event methods

 touch: function(e) {
 var touch = e.originalEvent.changedTouches ?
 e.originalEvent.changedTouches[0] : e,
 stage = this.entity;
 this.start = { pageX: touch.pageX, pageY: touch.pageY };
 this.viewportX = stage.viewport.centerX;
 this.viewportY = stage.viewport.centerY;
 this.tool(touch);
 e.preventDefault();
 },

 drag: function(e) {
 var touch = e.originalEvent.changedTouches ?
 e.originalEvent.changedTouches[0] : e,
 stage = this.entity;
 if(this.start) {
 this.tool(touch);
 }
 e.preventDefault();
 },

 release: function(e) {
 this.start= null;
 },

 tilePos: function(x,y) {
 var canvasPos = $(Q.el).offset(),
 canvasX = (x - canvasPos.left) / Q.el.width() * Q.width,
 canvasY = (y - canvasPos.top) / Q.el.height() * Q.height,
 viewport = this.entity.viewport,

continues

380 ❘ CHAPTER 19 Building a Canvas editor

 tileLayer = this.entity.collision,
 tileX = Math.floor((canvasX / viewport.scale +
 viewport.x - tileLayer.p.x)
 / tileLayer.p.tileW),
 tileY = Math.floor((canvasY / viewport.scale +
 viewport.y - tileLayer.p.y)
 / tileLayer.p.tileH);
 return { x: tileX, y: tileY };
 },

 tool: function(touch) {
 var stage = this.entity,
 viewport = stage.viewport;
 switch(this.selected) {
 case 'move':
 stage.centerOn(this.viewportX +
 (this.start.pageX - touch.pageX)
 / viewport.scale,
 this.viewportY +
 (this.start.pageY - touch.pageY)
 / viewport.scale);
 break;
 case 'paint':
 var tile = this.tilePos(touch.pageX, touch.pageY);
 stage.collision.setTile(tile.x,tile.y,this.activeTile);
 break;
 case 'erase':
 var tile = this.tilePos(touch.pageX, touch.pageY);
 stage.collision.setTile(tile.x,tile.y,0);
 break;
 }
 },

The touch method, called on touchstart or mousedown, grabs either the mouse event data or the
data for the irst changed touch and stores the start position of the event as well as the original
viewport center location. It then calls the tool method, which does the actual work based on the
currently-selected tool.

The drag method, called on touchmove or mousemove, irst checks that there is a current action that
the editor is tracking, and if so it just calls the tool method to take whatever action is necessary.

Finally, the release method just sets the start property to null. Because that property is used by
drag to determine if it should be doing something, it effectively stops the tool.

The tilePos method has the somewhat involved task to igure out the exact tile location based on
an x and y location on the page. It determines this by irst determining the pixel position on the
Canvas element (stored in canvasX and canvasY) and then calculates the tile position (in tileX and
tileY) by determining an accurate offset position for the viewport scale, the viewport location, and
the tile layer offset and divides all those by the size of each tile.

The tool method looks at the currently active tool. If move is selected, the stage is recentered based
on how far the user has dragged his inger or moved the mouse. If paint is selected, it sets the tile at
that location to the active tile. If erase is selected, that tile is cleared.

LISTING 19-5 (continued)

Creating the Editor ❘ 381

If you load the editor in your browser or on a mobile device, you should move around and paint and
erase tiles. Figure 19-1 shows how the editor looks on an iPhone in Landscape mode.

FIGURE 19-1: The editor on an iPhone.

Selecting Tiles

Only two pieces of functionality remain: the ability to select which tile to paint and the code to
save levels back to the server. This section adds the irst piece: the tile selection. The mechanism for
selecting tiles enables the tile button to pop up an image of all the tiles in the spritesheet and lets
the user select the tile to draw. To do this a Canvas element is created to hold the images, and then
the events on that Canvas are converted to a tile selection.

To add the tile functionality, add in the code in Listing 19-6 to the bottom of the component deini-
tion in quintus_editor.js.

LISTING 19-6: The tile functionality

 tile: function() {
 if(!this.tiles) this.setupTiles();
 $(this.tiles).show();
 },

 setupTiles: function() {
 var sheet = this.entity.collision.sheet();
 this.tiles = document.createElement("canvas");
 this.tiles.width = Q.el.width();

continues

382 ❘ CHAPTER 19 Building a Canvas editor

 this.tiles.height = Q.el.height();
 var x = 0, y = 0, ctx = this.tiles.getContext('2d');
 for(var i=0;i<sheet.frames;i++) {
 sheet.draw(ctx, x, y, i);
 x += sheet.tilew;
 if(x >= this.tiles.width) {
 x = 0;
 y += sheet.tileh;
 }
 }
 $(this.tiles)
 .prependTo(Q.wrapper)
 .css({position:'absolute',
 top:60,
 zIndex: 200,
 backgroundColor:'white',
 width: Q.el.width(),
 height: Q.el.height()
 })
 .on('touchstart mousedown',this.selectTile);
 },

 selectTile: function(e) {
 var touch = e.originalEvent.changedTouches ?
 e.originalEvent.changedTouches[0] : e,
 canvasPos = $(this.tiles).offset(),
 canvasX = (touch.pageX - canvasPos.left),
 canvasY = (touch.pageY - canvasPos.top),
 tileLayer = this.entity.collision,
 sheet = tileLayer.sheet(),
 tileX = Math.floor(canvasX / sheet.tilew),
 tileY = Math.floor(canvasY / sheet.tileh),
 frame = tileX + tileY *
 Math.floor(this.tiles.width / sheet.tilew);
 $(this.tiles).hide();
 if(frame <= sheet.frames) {
 this.activeTile = frame;
 }
 e.preventDefault();
 },

The primary tool method, tile, has the job to irst check if the tile Canvas has been set up, and if
not, calls the setupTiles method to generate it. It then just shows that element, which blocks the
rest of the screen and waits for an event on the element to select a tile.

The setupTiles method creates a Canvas element, draws each tile in the tile map’s spritesheet, and
then adds that element into the editor controls DOM element. It then adds an event handler to let
the user select a tile by clicking or touching it.

Finally, the selectTile method grabs the wanted tile frame by doing a little bit of math to calculate
the frame based on the size of the tiles and the size of the Canvas. It then checks that the frame is a
valid frame and if so sets the activeTile.

LISTING 19-6 (continued)

Adding Level-Saving Support ❘ 383

Running the editor in the browser should now allow you to choose different tiles that make up ele-
ments on the page.

ADDING LEVEL-SAVING SUPPORT

The last task of the editor is to support the ability to save the level you’ve modiied back to the
server. On the client side, the code for doing this, as shown in Listing 19-7, is straightforward. This
code should go in the same spot as usual at the bottom of the component deinition in quintus_
editor.js.

LISTING 19-7: The editor save method

 save: function() {
 var levelName = prompt("Level Name?",this.levelFile);
 if(levelName) {
 $.post('/save',{ tiles: this.entity.collision.p.tiles,
 level: levelName });
 }
 }

This code pops up the browser prompt dialog to ask the user for a ilename and then posts that ile-
name back to the server using $.post to send along the tiles data directly from the collision layer
tile property.

On the server side, things are almost as easy. Using Express’s syntax for adding routes to the server,
add the code in Listing 19-8 to the bottom of app.js.

LISTING 19-8: The server save method

app.post('/save', function(req, res){
 var data = _(req.body.tiles).map(function(row) {
 return _(row).map(function(tile) { return Number(tile); });
 });
 fs.writeFile("public/data/" + req.body.level,
 JSON.stringify(data));
 res.send(201);
});

This code simply deines a route at /save that grabs the data that was posted in, transforms the
tiles data into numbers, and then writes out a ile. By default the posted tile data comes in cor-
rectly as an array of arrays, but each element in the array is a string, so it needs to be converted into
a number.

Writing the ile is as simple as calling fs.writeFile and passing the ilename and the level data
converted to a JSON string using JSON.stringify.

384 ❘ CHAPTER 19 Building a Canvas editor

SECURITY WARNING

This code is not something you would want to deploy to a public web server but
would be something you might use internally to develop levels. Because the code
lets the user write to an arbitrarily-named ile, it could be used to overwrite data
iles or operating system iles. A production end-user-friendly editor would check
the validity of the passed in ilename or save the data to a database instead of the
ilesystem.

If you restart the server and reload the editor, you should now have a working editor that you can
use to create and edit level tile data. This chapter doesn’t cover the details to add and manipulate
sprites, such as the location of the player and the blobs, in addition to the tile data. This is some-
thing that would be game-dependent, but the basic idea is the same: Add an interface to add and
manipulate elements, and then provide a serialization method to save that data back to the server.

SUMMARY

This chapter went through the steps to add an interactive game tile editor to the platformer game
from the last chapter. The chapter showed you how to add a tool system and let the user select,
paint, and erase tiles. It also added support for saving the level data back to the server, which makes
it easier to create and edit levels than trying to edit JSON data iles by hand. You’ll continue with
Node.js in the next chapters to build some more complicated functionality for multiplayer gaming.

PART VI

Multiplayer Gaming

 ⊲ CHAPTER 20: Building for Online and Social

 ⊲ CHAPTER 21: Going Real Time

 ⊲ CHAPTER 22: Building Nontraditional Games

Building for Online and Social

WHAT’S IN THIS CHAPTER?

 ➤ Understanding HTTP-base multiplayer

 ➤ Building a simple social game with Node.js

 ➤ Integrating with Facebook

 ➤ Connecting to a NoSQL database

 ➤ Deploying your game

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 20
download and individually named according to the names throughout the chapter.

INTRODUCTION

The games built so far in this book have been single-player experiences, but it doesn’t need to
be that way: With the Internet easily accessible from any HTML5-powered device at almost
any time, you can connect your game to a central database and make it playable from within
Facebook on both desktop and mobile. This chapter creates a simple game playable from
within Facebook.

20

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

388 ❘ CHAPTER 20 Building For online and soCial

UNDERSTANDING HTTP-BASED MULTIPLAYER GAMES

The most basic type of a multiplayer game you can build is the one in which the client does full-page
or AJAX requests to update itself. This type of game relies on the client sending information to and
requesting information from the server. If this sounds like a typical web page, you’re correct. The
downside is that the server has no capability to reverse the equation and instantly notify the client
when something happens. The upside is that you can use a standard web architecture and server to
build and scale your game.

Most small-scale websites share a similar architecture: server code written in a scripting language
(be it PHP, Ruby, Python, or JavaScript) that writes and reads data to and from a persistence layer,
such as a database. No information is shared between requests except a small amount of session
data; instead everything is stored in the database (or other persistence layer such as a key-value store
such as Redis). Keeping the architecture simple means that you can continue to add web servers
to handle an increased load, and the only area in which you need to worry about having a scaling
problem is at the database layer.

This type of architecture has served the web well for the past couple of decades and can be a suitable
architecture for building multiplayer games provided it’s used appropriately. It’s not a great archi-
tecture for games that need to have a lot of direct interactions between different players because the
server can’t immediately notify one player of something another player does.

This act of periodically requesting information from the server is called polling because the cli-
ent periodically polls the server for new information. Doing AJAX polling frequently can give the
appearance of a pseudo-real-time multiplayer in which things happen even when the player isn’t
explicitly taking an action.

The best types of multiplayer games for polling are ones in which the actions of each player are
mostly autonomous and the multiplayer aspect of the game doesn’t involve players interacting too
much with each other. These include games where players play primarily by themselves, but a cen-
tral server keeps players honest by running a lot of the game logic on the server. Games in the older
generation of social games, such as Mob Wars, are a good it for this.

The other option, discussed in Chapter 21, “Going Real Time,” is to use a socket-based technology,
such as Websockets, Flash sockets, or a pseudo-socket workaround such as long-polling to allow the
server to initiate requests. Chapter 21 explains these terms and concepts in depth.

PLANNING A SIMPLE SOCIAL GAME

The best way to understand how to create an HTTP-based multiplayer game is to build one. You
could build lots of complicated social games, but building a simple game that serves as an example
of how the various pieces of a multiplayer game connect should be enough to get you started on
something more involved.

The game that you build is a simple game based on Ian Bogost’s social game parody Cow Clicker.
The point of Cow Clicker is, as you may have guessed, to click your cow at regular intervals and get

Integrating with Facebook ❘ 389

points for doing so. The game built in this chapter builds a similar game but with an exciting twist:
You click a blob instead of a cow. The blob in question is the enemy blob from the platformer game
built in Chapter 18, “Creating a 2-D Platformer.”

Although the game is quite simple, it requires all the pieces of a typical HTTP-based multiplayer
game: a server to run the game, an authentication system to log in users, a database to store the
user’s progress, and game logic that resides on the server to control the actions a player can take.

The server used is a simple Node.js application running the Express framework. Being a social
game, it uses Facebook as an authentication system to allow users to log in without entering their
e-mail address or creating a password. To store progress, the game connects to a NoSQL database
named MongoDB. The server will be set up to allow only the players to click on their blob at some
speciied interval to prevent them from accumulating points too quickly.

INTEGRATING WITH FACEBOOK

To create a game that uses Facebook for authentication, you need to create a Facebook application
to generate an Application ID and App secret.

Generating the Facebook Application

To create the application, make sure you are logged in to Facebook, and then go to https://
developers.facebook.com. Click the Apps button on the top of the page, and then the + Create
New App button. Enter the name Blob Clicker as the name of the Application, as shown in
Figure 20-1, leaving the app namespace blank.

FIGURE 20-1: Creating a new app.

If you haven’t yet veriied your account, you’ll need to go through a security check as well.

Next, you are presented with your App ID, App Secret, and a screen of options to conigure the
Application. To start, the Application runs off of localhost for testing purposes. To set this up, ill
in the domain name localhost in the App Domains ield. Next, further down the page, click the sec-
tion Website with Facebook Login, and type the URL http://localhost:3000/ (don’t forget the inal
forward slash “/”) into the Site URL ield. Figure 20-2 shows how this screen should look.

https://developers.facebook.com
https://developers.facebook.com

390 ❘ CHAPTER 20 Building For online and soCial

FIGURE 20-2: Basic app information.

At the bottom of the page, click the Save Changes button. Don’t share your App Secret with anyone
else. (The secret in Figure 20-2 has been reset.) The App ID is public information used to identify
your application.

Creating the Node.js Server

To create a Node.js server that can integrate with Facebook, you’ll use a node module called Faceplate,
created by the web hosting company Heroku. This module will allow you to let users login with
Facebook and read and write Facebook data via the Facebook API. Later in the section “Pushing to a
Hosting Service,” you will generate a hosting URL on Heroku to allow others to play the game.

As usual, the irst step to create a Node.js application is to create a package.json ile that describes
the dependencies of the application. Because this application is hosted on Heroku, you also need to
add an “engines” section that indicates the version of Node.js that is required.

Create a new directory called blob_clicker and in that directory create a new package.json ile with
the contents of Listing 20-1.

LISTING 20-1: Blob Clicker package.json

{
 "name": "blob-clicker",
 "version": "0.0.1",

Integrating with Facebook ❘ 391

 "private": true,
 "engines": {
 "node": "0.6.11",
 "npm": "1.1.1"
 },
 "dependencies": {
 "express": "2.5.8",
 "ejs": "0.4.3",
 "faceplate": "0.0.4",
 "mongodb": "1.0.2"
 }
}

The dependencies for this game are Express, the aforementioned Faceplate, and a module called ejs
(embedded JavaScript), which is a simple templating system that enables you to create views with
server-side JavaScript embedded directly in them. Finally, mongodb is a module that connects to the
MongoDB database later in this chapter.

Next, create a web.js ile that can hold the basic stub of the server and enter the code in
Listing 20-2.

LISTING 20-2: web.js application stub

var express = require('express');

var fbId = process.env.FACEBOOK_APP_ID || "YOUR FACEBOOK APP ID",
 fbSecret = process.env.FACEBOOK_SECRET || "YOUR FACEBOOK SECRET",
 sessionSecret = process.env.SESSION_SECRET || "A RANDOM STRING",
 port = process.env.PORT || 3000;

var app = express.createServer(
 express.logger(),
 express.static(__dirname + '/public'),
 express.bodyParser(),
 express.cookieParser(),
 express.session({ secret: sessionSecret }),
 require('faceplate').middleware({
 app_id: fbId,
 secret: fbSecret,
 scope: 'email'
 })
);

app.listen(port);

function login_page(req,res) {
 if(req.facebook.token) {
 req.facebook.me(function(user) {
 req.session.user_id = user.id;
 req.session.user_name = user.name;
 res.redirect('/game');
 });

continues

392 ❘ CHAPTER 20 Building For online and soCial

 } else {
 req.facebook.app(function(app) {
 res.render('login.ejs', {
 layout: false,
 req: req,
 app: app
 });
 });
 }
}

app.get('/',login_page);
app.post('/',login_page);

function authenticated(method) {
 return function(req,res) {
 if (req.session.user_id) {
 method(req,res);
 } else {
 res.redirect('/');
 }
 }
}
app.get('/game',authenticated(function(req,res) {
 res.end("You are: " + req.session.user_name);
}));

The server has three main parts. The irst part sets up defaults along with app as an express-pow-
ered server. The second part deals with the home page, which allows Facebook login. Lastly, the
authenticated method and the /game page is used by the game to verify you are logged in to actu-
ally play the game.

The top of the ile needs to be modiied with your Facebook App ID, your Facebook App Secret, and a
random string used to encode the session. You should change the random string to prevent users from
modifying their session data, but you can also leave it as is until you deploy. The boolean OR || is used
to check environment variables for a corresponding value irst. Heroku uses environment variables to
store coniguration data to make it easier to use different values for development and production.

The express app is created. It sets up the various pieces of the server needed, including logging, a
public directory for serving iles, the body and cookie parsers, a session for tracking who is logged
in, and the faceplate middleware used for Facebook authentication using OAuth2. The app is told
to listen on the speciied port, which either defaults to 3000 or the port set up by the hosting server.

The login_page method is used as the homepage of the application. Its job is to check if the user
has a valid session token from Facebook and if so save the user’s Facebook ID and name in the ses-
sion and redirect to the /game page. If not it renders the login.ejs page, which shows the login
button to allow players to log in.

login_page is bound to both GET and POST methods. The GET method is used by default when
you hit the page, but the POST method is used to send the data about the user back to the server.

LISTING 20-2 (continued)

Integrating with Facebook ❘ 393

In canvas applications, Facebook connects directly to the canvas URL of the application with the
signed request if the user is already logged in.

The authenticated method is a meta-method that takes in a method and wraps it in a check to see
if the user is logged in. If not, the user is redirected back to the home page to log in.

Finally, the /game path, which uses the authenticated method, displays a message to the users
with their name. It’s just a stub to verify that authentication works correctly and is illed out with
the game logic in the section “Finishing Blob Clicker.”

Adding the Login View

The basic Facebook integration is almost done; all that's still needed is to add the login.ejs view
ile and a special ile called channel.html, which helps Facebook deal with cross-domain issues in
Internet Explorer.

Create a new directory inside of your blob_clicker directory called views, and add the code in
Listing 20-3 to a ile in that directory called login.ejs.

LISTING 20-3: The login.ejs view ile

<!DOCTYPE html>
<html>
 <head>
 <title>Login to Blob Clicker</title>
 <script src="//code.jquery.com/jquery-1.7.2.min.js"></script>
 <meta name="viewport" content="width=device-width,s
user-scalable=0, minimum-scale=1.0, maximum-scale=1.0"/>
 <link href='/style.css' rel='stylesheet' type='text/css' />
 </head>
 <body>
 <div id="fb-root"></div>
 <script type="text/javascript">
 window.fbAsyncInit = function() {
 FB.init({
 appId : '<%= app.id %>',
 channelUrl : '//<%= req.headers['host'] %>/channel.html',
 status : true,
 xfbml : true
 });

 FB.Event.subscribe('auth.login', function(response) {
 $("#login").hide();
 $("#signed_request").val(response.authResponse.signedRequest);
 $("#signed_form").submit();
 });
 FB.Canvas.setAutoGrow();
 };

 $(function() {
 window.scrollTo(0,10);

continues

394 ❘ CHAPTER 20 Building For online and soCial

 $("html").on("touchmove",function(e) { e.preventDefault(); });
 });

 // Load the SDK Asynchronously
 (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/all.js";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 </script>

 <form action='/' id='signed_form' method='post'>
 <input type='hidden' name='signed_request'
 id='signed_request' value=''/>
 </form>
 <div id='title-screen'>
 <div id='login'>
 <div class="fb-login-button" data-scope="email"></div>
 </div>
 </div>
 </body>
</html>

This view ile consists of nothing more than a little bit of JavaScript to set up the Facebook
JavaScript SDK, display a login button, and submit the signed_request to the page when the
user is logged in.

The ile references a style.css ile that you can ind in the code
for the chapter along with three images: blog.png, title.png,
and interior.png. Place the style.css ile into a new public/
directory underneath the blob_clicker directory, and place the
images into public/images/. If you don’t use the iles, the app is
still playable; however, it appears just as unstyled text. The login
screen with the images and styles loaded is shown in Figure 20-3.

Facebook calls a method called fbAsyncInit when it has in-
ished loading and initializing its JavaScript. This means that
after you’re inside of fbAsyncInit, you know that the Facebook
SDK is available to use. To get the SDK set up, irst you need to
call FB.init with the App ID you created, which is passed auto-
matically using the ejs tag <%= app.id %>. Then FB.init also
needs to be passed the URL of a special channel.html ile. This
is complicated by the fact that this needs to be an absolute URL,
which is generated using the host header.

Next, the application subscribes to the auth.login event
on the Facebook SDK. This event is triggered when the user logs in or is logged in. To pass the

FIGURE 20-3: Blob Clicker login

screen.

LISTING 20-3 (continued)

Integrating with Facebook ❘ 395

signed-request to the server, the code uses a form with a hidden ield that it POSTs to. The server
picks up the parameter signed_request and performs the necessary logic to log the user in.

The FB.init method also accepts a cookie option, which sets a session cookie with the signed
request. This cookie would automatically pass the signed request data to the server. Unfortunately,
the faceplate middleware parses this signed request on each HTTP request, which results in a
separate server-side HTTP request to the Facebook API that slows down your game. By setting the
signed request only on login, the game can be much snappier.

Next, the code that Facebook provides to load the Facebook JavaScript SDK asynchronously is
included.

Finally, a Facebook login button is added onto the page by including a <div> tag with the correct class:

 <div class="fb-login-button" data-scope="email"></div>

The last piece needed is to create the channel.html for browsers that don’t support cross-domain
communication. Create a directory under your application called public/ and enter the code in
Listing 20-4 into a ile called channel.html in that public directory.

LISTING 20-4: channel.html

<script src="http://connect.facebook.net/en_US/all.js"></script>

As mentioned, this ile is required for Internet Explorer and some older browsers, so if it’s not set up
correctly, you may not notice until the bug reports start coming in.

Testing the Facebook Authentication

With all the pieces in place, you should now test the Facebook authentication. You can run your
Node.js application by typing node web.js. This starts the server on port 3000. You should now visit
the server in your desktop browser by visiting http://localhost:3000.

If everything runs correctly, you should see the title screen and a small Facebook login button that
you can click. Clicking the button pops up an OAuth login screen, as shown in Figure 20-4.

FIGURE 20-4: Blob Clicker OAuth login.

396 ❘ CHAPTER 20 Building For online and soCial

Clicking on the Log in with Facebook button takes you back to your application, which redirects to
the /game screen and displays the name from your Facebook account.

CONNECTING TO A DATABASE

To track how many times the users click their blob and prevent them from clicking too frequently,
you need a storage mechanism. As mentioned earlier, the mechanism used is the popular NoSQL
database MongoDB.

Installing MongoDB on Windows

To install MongoDB you can download a recent version from its website at www.mongodb.org/
downloads.

This is the recommended installation method for Windows. You need to download the correct
version for the version of Windows you run, either 32 bit or 64 bit. After you have the ile down-
loaded, unzip the folder to some location. (C:\Program Files\ is a good spot.) You probably want
to rename the resulting folder from mongo-xxxxxxx (where xxxxxxx is the version number you
downloaded) to just mongo.

When you have the folder downloaded, you need to create a data directory. Mongo uses the direc-
tory C:\data\db by default, but it won’t create those directories for you. Create the directories in
Explorer or by launching the CMD terminal window and running the following:

C:\> mkdir \data
C:\> mkdir \data\db

After you create that folder, you can CD to the mongo\bin directory:

C:\> cd \Program Files\mongo\bin

From there you can run the mongod command to start the database server:

C:\Program Files\mongo> mongod

This launches the server. (You need to keep the window open.) For up-to-date installation instruc-
tions, see the Windows Quickstart tutorial on the Mongodb website at www.mongodb.org/
display/DOCS/Quickstart+Windows.

You’ll probably get tired of running Mongo from the command line, so to set it up to run as a ser-
vice, you can see further instructions at www.mongodb.org/display/DOCS/Windows+Service.

Installing MongoDB on OS X

On OS X, if you followed the instructions in Chapter 8, “Running JavaScript on the Command
Line,” you can use Homebrew to install MongoDB:

$ brew install mongo

This should install MongoDB and start the server for you. If you don’t have Homebrew installed,
you need to download the software and follow the Quickstart instructions on the website.

http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/display/DOCS/Windows+Service

Connecting to a Database ❘ 397

Installing MongoDB on Linux

On Linux, you can use your package manager to install a recent version. On Ubuntu or Debian this
means running the following:

$ apt-get install mongodb

This should install MongoDB and start the server for you as well.

Connecting to MongoDB from the Command Line

If everything goes according to plan, you can load the interactive shell by running mongo from any
directory on OS X and Linux. On Windows, you need to run the command mongo.exe from the
bin/ directory inside of the directory where you unzipped it.

You should be presented with the interactive shell, which should enable you to type mongo com-
mands at the > prompt. The MongoDB shell is a JavaScript-based shell, which makes it a good it for
everything you’ve been doing in this book so far. (MongoDB also supports a JavaScript-based map-
reduce query language for complicated queries, but that’s more complicated than what is covered in
this chapter.)

MongoDB is a document-oriented storage database. What this means is that you can store arbitrary
documents and data in it without needing to explicitly craft a database schema, as you would with a
traditional relational database system (RDBMS) such as MySQL, PostgreSQL, or SQL Server.

A sample session with the interactive shell is shown following this paragraph; you can follow along
by entering the commands after the prompt (>). The session shows how to switch databases, and
insert and query data. Like an RDBMS, MongoDB supports having multiple different databases on
a single installation. Instead of tables, however, MongoDB calls its equivalent structure collections.
The following session switches to a database called blob and then inserts a couple of records into
a collection called clicks and queries those records back out. At no point do you need to actually
deine the database blob or the collection clicks; you can start using them, and MongoDB creates
them if necessary.

> use blob
switched to db blob
> db.clicks.save({ user: "Tester", clicks: 5 })
> db.clicks.save({ user: "Tester 2", clicks: 15 })
> db.clicks.save({ user: "Tester 3", clicks: 10 })
> db.clicks.find()
{ "_id" : ObjectId("4fb945ec8137643c2ae4085e"), s
"user" : "Tester", "clicks" : 5 }
{ "_id" : ObjectId("4fb945f28137643c2ae4085f"), s
"user" : "Tester 2", "clicks" : 15 }
{ "_id" : ObjectId("4fb946508137643c2ae40860"), s
"user" : "Tester 3", "clicks" : 10 }
>
> db.clicks.find({user:"Tester"})
{ "_id" : ObjectId("4fb945ec8137643c2ae4085e"), s
"user" : "Tester", "clicks" : 5 }
>
> db.clicks.findOne({user:"Tester 2"})

398 ❘ CHAPTER 20 Building For online and soCial

{
 "_id" : ObjectId("4fb945f28137643c2ae4085f"),
 "user" : "Tester 2",
 "clicks" : 15
}
>
> db.clicks.find().sort({ clicks: -1 }).limit(2)
{ "_id" : ObjectId("4fb945f28137643c2ae4085f"), s
"user" : "Tester 2", "clicks" : 15 }
{ "_id" : ObjectId("4fb946508137643c2ae40860"), s
"user" : "Tester 3", "clicks" : 10 }
> db.clicks.drop();
true
> exit
bye

Creating records in MongoDB is as easy as calling db.collectionName.save({..}) with the
model data in a JavaScript object.

Querying the collection is done by calling db.collectionName.find() either by itself to return all
the objects or with the properties that you want to match in a JavaScript object. For example, to ind
all users with the user property set to "Tester," the command used earlier is

db.clicks.find({user:"Tester"})

If you are looking for a single object, you can use db.collectionName.findOne({..}). As you
might expect, you can also order and limit the results by calling sort and limit. Finally db
.collectionName.drop()can destroy the entire collection.

NOTE This scratches only the surface of what you can do with MongoDB. You
can ind more information about MongoDB in the oficial MongoDB manual at
http://docs.mongodb.org/manual/.

MongoDB provides a rich interface to query documents (including querying deep into nested docu-
ments), but the basics shown here are all that you need for the Blob Clicker game in this chapter.

Integrating MongoDB into the Game

Because Node.js works in an asynchronous manner, interacting with any external resources such as
a database tends to be callback-heavy and results in heavy nesting that can make it hard to follow
the application logic.

In a larger app, the solution to this would be to use something such as the promise pattern, which
was discussed in Chapter 8. In the case of Blob Clicker, another solution is to separate the database
code from the rest of the code so that it’s easier to follow the low of the actual pages.

To add database support into the game, replace the dummy app.get("/game"...) command at the
end of the web.js ile with the code in Listing 20-5. This code sets up three database methods—
fetchUser, clickUser, and topTen—that are then used by the application’s routes.

http://docs.mongodb.org/manual/

Connecting to a Database ❘ 399

LISTING 20-5: Blob Clicker DB and Routes code

var clickTime = 5000,
 dbMethods = {};

require("mongodb").connect(process.env.MONGOHQ_URL ||
 "mongodb://localhost/blob_clicker",
 {}, function(error,db) {
 db.collection('users', function(err, collection){
 dbMethods.fetchUser = function(session,callback) {
 collection.findOne({ user_id: session.user_id },
 function(error,user) {
 if(!user) {
 user = {
 user_id: session.user_id,
 name: session.user_name,
 clicks: 0,
 next_click: new Date().getTime()
 }
 }
 callback(user);
 });
 };

 dbMethods.clickUser = function(user, callback) {
 var now = new Date().getTime();
 if(user.next_click <= now) {
 user.clicks += 1;
 user.next_click = now + clickTime;
 collection.save(user, function() { callback(user); });
 } else {
 callback(false);
 }
 };

 dbMethods.topTen = function(callback) {
 collection.find().sort({ clicks: -1 })
 .limit(10)
 .toArray(function(error,results) {
 var output = [];
 for(var i in results) {
 output.push([results[i].name, results[i].clicks]);
 }
 callback(output);
 });
 };
 });
});

app.get('/game',authenticated(function(req,res) {
 dbMethods.fetchUser(req.session,function(user) {

continues

400 ❘ CHAPTER 20 Building For online and soCial

 var now = new Date().getTime(),
 nextClick = (user.next_click - now)/1000;
 res.render('game.ejs', {
 layout: false,
 req: req,
 user: user,
 nextClick: nextClick
 });
});
}));

app.post("/click",authenticated(function(req,res) {
 dbMethods.fetchUser(req.session,function(user) {
 dbMethods.clickUser(user,function(clicked) {
 if(clicked) {
 var now = new Date().getTime(),
 nextClick = (user.next_click - now)/1000;
 res.json({ clicked: true, user: clicked, nextClick: nextClick });
 } else {
 res.json({ clicked: false })
 }
 });
 });
}));

app.get('/top-ten',authenticated(function(req,res) {
 dbMethods.topTen(function(results) {
 res.json({ users: results });
 });
}));

The top var declaration sets up the clickTime variable, which controls how long a player needs to
wait to click, and a dbMethods object, which will be illed with the database methods.

Next, the application pulls in the mongodb driver and connects to the database. Again, an environ-
ment variable is used if it exists; otherwise, the local database blob_clicker is used.

Next, the system connects to the users collection and deines the three database methods: fetchUser,
clickUser, and topTen. The irst uses collection.findOne to look up a user by her Facebook ID,
and if one is found it returns that. Otherwise it sets up a new object that can be used instead. The user
object is then passed to the callback. The system relies on the user’s Facebook ID as the unique identiier
by which to look up users.

The second method, clickUser, takes in the user object and sees if that object is ready to be clicked
again. If so, it updates the click count and the next click and saves the object, returning true to the
callback after the object is saved. If not, it calls the callback with false.

The third method, topTen, uses the find, sort, and limit methods to return a list of the top-ten
clickers, sorted by the clicks ield in descending order. The MongoDB collection method supports
chaining multiple query methods together, with a inal call to toArray returning the array of results.

LISTING 20-5 (continued)

Finishing Blob Clicker ❘ 401

DON’T FORGET YOUR INDEXES

The code presented earlier doesn’t create any structures known as indexes on the
collection. Although this works passably well when you have a small number of
users, it means that MongoDB needs to look through every document of the col-
lection to ind users by their ID. To speed up this and other queries, you need to
tell MongoDB how to create indexes for its collections much in the same way you
would in an RDBMS. From the mongo shell, you can run the following:

db.users.ensureIndex({user_id:1});

This ensures there is an index on the user_id ield in the users collection. See
www.mongodb.org/display/DOCS/Indexes for more details.

After the database methods, the three routes for the game are deined. The irst route, /game,
ensures that the user is authenticated by wrapping the response in the aforementioned authenti-
cated call. It then grabs the user’s object from the database, calculates the time to the next click,
and renders the game.ejs view.

The click method, which is where the application POSTs clicks by the user, irst grabs the user object
from the database and then tries to click the user. If the click succeeds, it returns clicked:true, the
updated user object (which contains the click count), and the newly calculated next click time; other-
wise, it returns clicked:false. The method uses Express’s res.json method to return JSON back to
the client, which can be easily parsed and processed by jQuery.

Finally, the top-ten method simply returns the JSON for the top 10 clickers as JSON.

FINISHING BLOB CLICKER

To inish the Blob Clicker game, the last piece needed is the game.ejs ile, which contains the code
for the game. Because the game in this case is extremely simple, rather than pull in the Quintus
engine, the code just uses a few jQuery calls to update the page.

Add the code in Listing 20-6 to a new ile in the views/ directory called game.ejs.

LISTING 20-6: The view/games.ejs ile

<!DOCTYPE html>
<html>
 <head>
 <title>Blob Clicker</title>
 <script src="//code.jquery.com/jquery-1.7.2.min.js"></script>
 <link href='/style.css' rel='stylesheet' type='text/css' />
 <meta name="viewport" content="width=device-width, s
user-scalable=0, minimum-scale=1.0, maximum-scale=1.0"/>

continues

http://www.mongodb.org/display/DOCS/Indexes

402 ❘ CHAPTER 20 Building For online and soCial

 </head>
 <body>
 <div id="fb-root"></div>
 <div id="main-screen">
 <h1><%= user.name %></h1>
 <div id='blob'>Click Me</div>
 <div id='clicks'><%= user.clicks %></div>
 <div id='show-top-ten'>See Top Ten</div>
 <div id='hide-top-ten'>Back to game</div>
 <ol id='top-ten'>
 </div>
 <script>
 $(function() {
 var nextClick = <%= nextClick %>,
 clickTimer = null;

 function updateNextClick() {
 $("#blob").text(nextClick >= 0 ?
 Math.ceil(nextClick) + " seconds" :
 "Click Now");
 }

 function setClickTimer() {
 clearInterval(clickTimer);
 clickTimer = setInterval(function() {
 nextClick--;
 updateNextClick();
 },1000);
 }

 updateNextClick();
 setClickTimer();

 $("#blob").on("click",function() {
$.post("/click",function(data) {
 if(data.clicked) {
 $("#clicks").text(data.user.clicks);
 nextClick = data.nextClick;
 updateNextClick();
 setClickTimer();
 }
 });
 });

 $("#show-top-ten").on("click",function() {
 $("#show-top-ten,#blob").hide();
 $.get("/top-ten",function(data) {
 $("#hide-top-ten,#top-ten").show();
 $("#top-ten").empty();
 $(data.users).each(function(idx) {
 $("#top-ten").append(" " + this[0] + ": " + this[1]);
 });

LISTING 20-6 (continued)

Pushing to a Hosting Service ❘ 403

 });
 });

 $("#hide-top-ten").on("click",function() {
 $("#show-top-ten, #blob").show();
 $("#hide-top-ten, #top-ten").hide();
 });

 window.scrollTo(0,10);
 $("html").on("touchmove",function(e) { e.preventDefault(); });
 });

</script>
</body>
</html>

For conciseness, this 80-line ile contains all the pieces of the client side of the game (except the
styles). A larger game would be broken into multiple separate JS iles, as you’ve seen previously.

The ile irst sets up a number of HTML elements that contain the
visual pieces of the game. Again, if you have the styles and images
loaded in, you get something nicer looking; otherwise, you just see
text. Figure 20-5 shows the inal game in action.

The irst portion of the game deines the methods for updating the
countdown timer to let the users know when they can make the next
click on the blob. It uses setInterval, which, although bad for ani-
mation, is great for a countdown timer because it triggers automati-
cally each second.

Next, the click handler for the actual blob click sends off a POST
to /click, which either responds with a { clicked: false } JSON
object if the user were clicking preemptively or with the details about
the total clicks and the next click if the user clicks appropriately.

Clicking the top-ten link in the bottom of the page pulls the JSON for
the top-ten list of users and creates a number of list items to display in the list.

Finally, hiding the top-ten list swaps what’s visible on the page between the blob and the fetched
top-ten list.

With game.ejs built, you can run the application locally, log in, and click the blob.

PUSHING TO A HOSTING SERVICE

Playing a Facebook game by yourself isn’t much fun, so to let other players use the game, you want
to push to a hosting service. Luckily, Facebook makes it extremely simple to deploy your game to a
hosted service.

To start, go to the Basic settings page of your Facebook Application, and click the Get One link in
the Hosting URL line, as shown in Figure 20-6.

FIGURE 20-5: The inal Blob

Clicker game.

404 ❘ CHAPTER 20 Building For online and soCial

FIGURE 20-6: Setting a hosting URL.

Clicking this enables you to create an app on the Heroku hosting service. Click Next; then choose
Node.js for the environment, and click Create. If you don’t have a Heroku hosting account, you
need to follow the prompts to set one up.

To tell Heroku what to run, you need to create a ile called Procfile that tells the platform what to
run to start your web server. Create the Procile ile in your main game directory, and put the fol-
lowing single line into it:

web: node web.js

This tells Heroku to run the command node web.js to run your web server when it deploys.

To use Heroku, install the Heroku Toolbelt, which is a command-line interface that enables you to
push your app to Heroku using Git (which is also installed with the toolbelt). To install the toolbelt,
go to https://toolbelt.herokuapp.com/. Download the package appropriate for your platform
(which should be preselected) and install it.

After you have the toolbelt installed, you need to log in to Heroku. Open up a shell prompt and run
the following:

heroku login

Enter the Heroku login e-mail and password. You may also be prompted to create a new SSH key if
you don’t have one. (If you don’t know what an SSH key is, don’t worry about it and just follow the
prompts.)

After you log in, you need to create a new Git repository, commit your app, add a remote repository,
add support for MongoDB, and then push to that repository. Although this sounds complicated, it is
accomplished quickly with a single command for each step.

The only information you need to do this is the name of the application you just created, which
will be something that resembles severe-mountain-1301 (Heroku creates names in the form of
adjective-noun-number).

Replacing the severe-mountain-1301 with the name of the application Heroku created for you
(which is in your Heroku account), enter the commands at the following command line from your
game’s directory:

git init
git commit . -m "Initial Commit"
git remote add heroku git@heroku.com:severe-mountain-1301.git
heroku addons:add mongohq:free
git push -f heroku master

https://toolbelt.herokuapp.com/

Summary ❘ 405

The inal command takes a few moments because it sends your game up into the cloud for deploy-
ment. The -f lag, which stands for force, is used because Facebook creates a default application
that you want to overwrite; in most cases you never want to use the -f lag from this point forward.

ABOUT GIT VERSION CONTROL

Git is an extremely popular open-source version control system. If you haven’t used
Git yet, the best place to start is at http://git-scm.com/book. You have probably
come across http//github.com, which is a Git hosting service that is free for open-
source projects. Heroku uses Git to handle deployment, which can make it easy to
integrate into your worklow but can be confusing for newcomers to Git.

Next, you must update the details of your Facebook application to match the URL of your Hosted
app. Return to your Facebook application Basic settings to modify the App Domains and Site URL
to match your application. Click to turn on App on Facebook and Mobile Web, which should have
the hosting UR: preilled in, as shown in Figure 20-7.

FIGURE 20-7: Hosting URLs set up in the Facebook application.

With the application deployed and the Facebook application updated, you can now play Blob

Clicker in all its glory directly on the Site URL and inside of a Facebook canvas. To ind the
Facebook canvas URL, click the Apps link on the top of the page to return to your Applications
summary page and locate the Canvas Page URL to play inside of Facebook.

SUMMARY

This chapter showed you how to create a simple social game and deploy it to the web. Although
the game—Blob Clicker—isn’t revolutionary, you can use the pieces needed to implement it, using
Facebook Authentication, connecting to a database, and deploying to the web, to build a full-featured
social game.

http://git-scm.com/book

Going Real Time

WHAT’S IN THIS CHAPTER?

 ➤ Understanding WebSockets

 ➤ Creating a WebSocket-enabled server with Socket.io

 ➤ Building a real-time multiplayer game

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 21
download and individually named according to the names throughout the chapter.

INTRODUCTION

As shown in the preceding chapter, you can use a standard HTTP architecture to build multi-
player social games. There are some limits, however, to what type of game you can build without
resorting to various hacks if you want the server to push data to the client. WebSockets provides a
solution to this problem by bringing a socket-based, real-time, two-way conversation mechanism
natively to the browser. This chapter examines building real-time games using a Node.js library
named Socket.io, which supports WebSockets and a number of fallback mechanisms.

UNDERSTANDING WEBSOCKETS

WebSockets provide a browser-native API that enables the creation of a socket connection to
a server that provides a real-time, bidirectional channel with which to pass messages in both
directions: client to server and server to client.

21

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

408 ❘ CHAPTER 21 going real tiMe

TCP sockets are a familiar concept in network programming; all HTTP trafic over the web is trans-
ported via sockets. The problem from an HTML5 gaming perspective is that the browser opens a
socket to the server, makes an HTTP request for a resource, waits for it to inish downloading, and
then closes the socket. After the socket closes, sending any additional data requires opening a new
socket. Furthermore, if the server has something to tell the client, it needs to wait until the client
requests a new resource before it can send data.

Prior to WebSockets, one solution that saw a fair amount of usage is long polling. Long polling
means that the client opens a request to the server that the server cannot write data to and instead
remains open until it has something to tell the client. After it has data for the client, it writes data
to the socket and then closes it, treating it like a normal request. The client processes the data sent
from the server and then opens a new request immediately to wait for more data. This mechanism
enables the server to send data to the client; however, the overhead associated with creating a new
socket for each piece of data pushed in either direction means that performance suffers.

Flash had socket support for a long time, so another workaround was to use a Flash socket via a
loaded SWF that has an interface exposed over a Flash-to-JavaScript. One problem with Flash sock-
ets, however, is that to also serve normal HTTP requests on the same server, they need to exist on
other ports than the normal HTTP port 80 and HTTPS port 443; so the Internet infrastructure that
was built up around those speciic ports (irewalls, proxies, and so on) needed updating to allow all
web browsers and servers, many of which might be behind a household or corporate irewall that
limits access to nonstandard ports.

In 2009, the WebSocket speciication (www.w3.org/TR/websockets) was proposed as a solution to
the lack of permanent sockets in the browser and the port problem. The idea behind WebSockets is
to upgrade a standard HTTP socket into a WebSocket using a handshake technique that both the
server and client need to understand. That socket is then kept open and allows bidirectional, full-
duplex communication between the client and server.

The capability to use WebSockets in HTML5 applications was a bit slow in coming. The primary
reason for this is that there has been an evolution of the speciication, which means that different
browsers support different versions of the spec, and some security issues related to cache positioning
of proxies caused WebSocket support to be removed from Firefox until the issue was ixed.

The good news is that the issue has now been ixed, and all current-generation browsers except IE9
have some version of WebSockets turned on. The bad news is that because of proxies, caches, and
IE9, you can’t use standard WebSockets without support for some fallback. For this reason, in lieu
of using straight WebSockets, this chapter spends the most time covering a Node.js library called
Socket.io that provides a consistent client and server API regardless of whether native WebSockets
or one of the supported fallback mechanisms are supported.

USING NATIVE WEBSOCKETS IN THE BROWSER

The native WebSocket API available in supported browsers is quite small and clean, but it doesn’t do
a lot other than send text to and from the server, so the addition of compatibility and fallback issues
make it a chore to work with directly.

http://www.w3.org/TR/websockets

Using Native WebSockets in the Browser ❘ 409

Assuming you have a server that supports WebSockets, you can open a connection using a new
WebSocket object from the browser with the following:

 var socket = new WebSocket("ws://servername.com/socket-resource");

The WebSocket equivalent of the http:// URL preix is ws://. Secure WebSockets, the equivalent
of https://, has a wss:// preix.

That socket object has four callbacks used to listen for events on the socket:

socket.onopen = function(){
 // Socket has been opened
};
socket.onmessage = function(event) {
 // Message data in event.data
};
socket.onclose = function() {
 // WebSocket has been closed
};
socket.onerror = function(event) {
 // Error triggered
};

To send data on the socket, call socket.send:

socket.send(message);

This sends the message string to the server. One thing to remember with WebSockets is that all
the data sent back and forth is in the form of a string, so it’s up to you to encode and decode those
strings with some mechanism. (JSON is an obvious and popular choice.)

Rather than set up a server simply to test out native WebSockets, the websocket.org website pro-
vides an echo server you can use to test writing the client-side WebSocket code.

Create a new ile called echo.html and add the code in Listing 21-1 to it.

LISTING 21-1: A simple echo-server client

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <script src="http://ajax.googleapis.com/s
ajax/libs/jquery/1.7.2/jquery.min.js" ></script>
 <title>WebSocket Test</title>
</head>
<body>
<script>
 var echoURI = "ws://echo.websocket.org/";
 var socket;

 $(function() {
 socket = new WebSocket(echoURI);

continues

410 ❘ CHAPTER 21 going real tiMe

 socket.onopen = function() {
 $("#output").append("<div>WebSocket Opened</div>");
 };

 socket.onclose = function() {
 $("#output").append("<div>WebSocket Opened</div>");
 };

 socket.onmessage = function(event) {
 $("#output").append("<div>WebSocket Message:" +
 event.data + "</div>");
 };

 socket.onerror = function() {
 $("#output").append("<div>WebSocket Error</div>");
 }
 $("#send").on("click",function() {
 var value = $("#message").val();
 $("#output").append("<div>Sending: " + value + "</div>");
 socket.send(value);
 $("#message").val("");
 });
 });

</script>
<input type='text' id='message'/>
<button id='send'>Send</button>
<div id="output"></div>
</body>
</html>

Load up this ile in a WebSocket-enabled browser, and you can send messages to the server, which it
will promptly echo back to you.

This code sets up a basic socket with the URI of the echo server and then adds callbacks that simply
add a message to a <div> with an ID of output whenever one of the four basic events is triggered.

It also adds a click handler to the Send button to send whatever message is typed. Because the server
it connects to is an echo server, any message sent should trigger a return message.

The preceding code covers using WebSockets on the client; on the server side you need a library
that can handle long-lived requests. This means that using a standard PHP or Ruby on Rails frame-
work won’t work. Luckily your good friend Node works well with handling lots of concurrent
connections.

As mentioned in the introduction, this chapter covers an abstraction on top of WebSockets called
Socket.io on the server side. If you want to use straight WebSockets, you can take a look at the
Node ws module, available on Github at https://github.com/einaros/ws.

LISTING 21-1 (continued)

https://github.com/einaros/ws

Using Socket.io: WebSockets with Fallbacks ❘ 411

This module enables you to create a WebSocket server in Node.js in a few lines of code and has syn-
tax similar to the browser WebSocket API.

USING SOCKET.IO: WEBSOCKETS WITH FALLBACKS

If you want to create a real-time game without the hassles of worrying about browser compatibility
and fallbacks, a number of libraries are available that can help, but one of the most popular and
simplest to use is Socket.io, available at http://socket.io.

Socket.io is a Node library that abstracts WebSockets and multiple supported fallbacks on both the
client and the server side. It also provides the capability to transparently send JSON data over sock-
ets and adds support for any number of custom events. Socket.io also integrates nicely into Express,
which means you can use a single app to serve your HTTP methods, your WebSockets, and your
static iles. Add in support for heartbeats, timeouts, and disconnection support, and you see why
using a library over straight WebSockets makes your life easier.

To become familiar with Socket.io before building a game using the library, you’ll build a simple
multiuser scribble application that enables people to scribble over each other’s drawings in real time.

Creating the Scribble Server

On the server side, Socket.io works by listening for connection events. These events trigger a call-
back with a socket object. You can then attach additional listeners for both standard events, such
as disconnect and custom named events.

To send data you can call socket.emit with a name for the event and any data that needs to
be passed along. You can send events to all sockets except the socket itself by calling socket
.broadcast.emit.

To create the scribbler, irst create a package.json ile for the dependencies. Create a new project
directory called scribble, and add the package.json ile in Listing 21-2 to it.

LISTING 21-2: Scribbler package.json

{
 "name": "scribbler"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.8",
 "socket.io": "0.9.6"
 }
}

Now run npm install from the command line in that directory to grab the dependencies—Socket.io
has a few.

http://socket.io

412 ❘ CHAPTER 21 going real tiMe

Next, create your app.js ile, and add the code from Listing 21-3 to it.

LISTING 21-3: The Scribbler app.js

var express = require('express'),
 app = express.createServer(),
 io = require('socket.io').listen(app);

app.configure(function(){
 app.use(express.static(__dirname + '/public'));
});

app.listen(3000);

// Clear the board every 60 seconds
setInterval(function() {
 io.sockets.emit('clear');
},60000);

io.sockets.on('connection', function (socket) {
 socket.on('paint',function(data) {
 socket.broadcast.emit('paint', data);
 });
 socket.on('disconnect', function () {
 console.log("Someone disconnected");
 });
});

As Listing 20-3 shows, the code necessary to get the Socket.io server up and running is minimal.
After creating an express server, to attach Socket.io to it, you simply call listen:

 io = require('socket.io').listen(app);

The remaining code to set up Express, conigure a static directory, and bind to a port is the same as
you’ve seen previously.

Because the scribbles of a bunch of random users can most likely get messy, the server unceremoni-
ously clears the board every 60 seconds by sending a clear message that tells the clients to clear
their scribble areas. To target all sockets, you can call io.sockets.emit, which takes an event
name and an optional data object.

To respond when a new socket connects, you need to bind to the connection event on the list
of sockets, io.sockets. It triggers its callback with the socket object for the individual client
connection.

You can store that socket object for later reference and bind additional events onto it. In this
case, a paint event bound to the client triggers whenever it draws a line. The server responds by
calling socket.broadcast.emit, which works like io.sockets.emit except it skips that socket
it is called on.

Using Socket.io: WebSockets with Fallbacks ❘ 413

Adding the Scribble Client

To round out the scribble app, add the client side of the app. This app uses Quintus primarily to save
the steps of setting up and maximizing the Canvas. Create a public/ subfolder underneath your app,
and create an index.html with the content of Listing 21-4.

LISTING 21-4: The scribble index.html ile

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0, s
 minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Scribble</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='scribble.js'></script>
 <script src="/socket.io/socket.io.js"></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

You need to create a public/js/ subdirectory underneath public/ that contains the three depen-
dencies listed earlier: jquery.min.js, underscore.js, and quintus.js. You can pull these from
the chapter code.

Notice one special script tag at the end:

 <script src="/socket.io/socket.io.js"></script>

This is a path created by Socket.io that provides a number of conveniences. First, it sets the default
WebSocket path and server to match the requested ile to make connecting easier and prevent any
issues determining the correct address between development and production environments. It also
automatically determines which transport mechanism to use: straight WebSockets or one of the
fallbacks.

Next, create the scribble.js ile mentioned in Listing 21-4 in the public/ directory. Add the code in
Listing 21-5.

LISTING 21-5: scribble.js

$(function() {
 var Q = Quintus().setup('quintus', { maximize: true }),

continues

414 ❘ CHAPTER 21 going real tiMe

 socket = io.connect(),
 start = {},
 move = {};
 function getTouch(e) {
 var touch = e.originalEvent.changedTouches ?
 e.originalEvent.changedTouches[0] : e,
 canvasPos = Q.el.offset(),
 canvasX = (touch.pageX - canvasPos.left) / Q.el.width() * Q.width,
 canvasY = (touch.pageY - canvasPos.top) / Q.el.height() * Q.height;
 e.preventDefault();
 return { x: canvasX, y: canvasY };
 }

 function drawLine(from,to) {
 Q.ctx.strokeStyle= "#000";
 Q.ctx.beginPath();
 Q.ctx.moveTo(from.x,from.y);
 Q.ctx.lineTo(to.x,to.y);
 Q.ctx.stroke();
 }

 Q.el.on('touchstart mousedown',function(e) {
 start = getTouch(e);
 });

 Q.el.on('touchmove mousemove',function(e) {
 if(!start.x) return;
 move = getTouch(e);
 drawLine(start,move);
 socket.emit("paint",{ start: start, move: move });
 start = move;
 });

 Q.el.on('touchend mouseup mouseleave',function(e) {
 start.x = null;
 });

 socket.on("connect",function() {
 console.log("Connected");
 });

 socket.on("paint",function(data) {
 drawLine(data.start,data.move);
 });

 socket.on("clear",function(data) {
 Q.ctx.clearRect(0,0,Q.width,Q.height);
 });

});

LISTING 21-5 (continued)

Building a Multiplayer Pong Game Using Socket.io ❘ 415

As you can see, this code uses Quintus, but to set up only the Canvas, resize it, and make it available
in the Q.ctx property.

Creating the socket connection to the server is as easy as calling

 socket = io.connect();

Because the socket.io.js ile was pulled to the same server as the socket is being connected to, you
don’t need to provide a URI or port to connect to. (You can provide these if necessary to connect to
a different server.)

Next are two helper methods, getTouch and drawLine. getTouch grabs a Canvas pixel position
from an event location. drawLine draws a new line on the Canvas between two points.

Scribbler next deines three event handlers that track touches, moves, and releases. On a touch or
a mouse click, the app marks the start of the line. When you move your mouse or move your inger
after that initial touch, the app simply draws a straight line from the start to the current location.

To let other users of the app see the line you have drawn, in addition to drawing the line, it also calls
socket.emit to send a paint event back to the server. As you can see, the client API is similar to
the one on the server.

Finally, if you release your inger or the mouse, the application stops drawing. The last three listen-
ers bind to the socket. The irst, connect, simply logs that the socket is connected to the console. It’s
there to show you that built-in events and custom events are treated the same way.

The irst custom event paint draws a line based on data passed from the server. If you remember,
the server simply repeats any paint events it receives and sends them to all the other clients.

The clear event, which is sent every 60 seconds by the server, tells the app to clear its entire Canvas.

This introduction should be enough to get you started with Socket.io, but the next section shows
you how to build a simple pong game where two players can bounce a ball back and forth between
each other.

BUILDING A MULTIPLAYER PONG GAME USING SOCKET.IO

Using a WebSocket-based technology opens up a lot of different possibilities for multiplayer game
play, including real-time action games. To see this in action, you build a two-player pong game
where players bat a ball back and forth across the screen.

In the game, both players simulate the entire game on each device; however, one player acts as the
“master,” and one acts as the “slave.” The master controls the true location of the ball and sends
updates periodically to the slave, who updates the location of the ball to relect the true game state.

Dealing with Latency

One of the problems with multiplayer, real-time gaming is the issue of latency. Depending on the
speed of the network and the distance between the server and players, latencies of more than 100ms
and dropped packets are common on mobile. This means that to keep the action going you need to
do some predictive modeling that takes latency into account.

416 ❘ CHAPTER 21 going real tiMe

Your pong game deals with this by calculating a “delay,” which is the time it takes to get a packet
from one player to another. It uses that delay to calculate how much farther the ball or other player
should have moved from the time the data left one player to the time it arrived at another.

Because both games simulate the path of the ball, each player should see the ball updating smoothly
while the slave player occasionally sees a blip course correction if the ball on one device is out of
sync with the other device.

As you can see when playing the game, this works to varying levels of success depending on the
browser and connection. As of this writing, mobile devices still have a way to go with WebSocket
support, so a semi-real-time game might be a better option than a multiplayer action game.

Combating Cheating

There’s only one way to combat cheating in a multiplayer HTML5 game: Never trust anything the
client tells you except for user input. This means that the server needs to simulate the entire game
and take user input only to update the state of the game.

Rather than, for example, a client saying, “My paddle is at x location 200,” the client tells the
server, “I want to move my paddle to the right,” and the server updates the position of the paddle
appropriately, responding to all the clients with the updated paddle position. Doing this means that
the client can never tell the server to do something that’s not physically possible in the game because
the server is going to calculate the only game simulation that matters.

For example, in a game of pong, the player can’t suddenly move from the left side of the screen to
the right side of the screen. If the server just accepts the player’s paddle position as fact, though, this
could happen.

The downside to processing on the server is that it means you have a lot more processor load than
you would if the clients handled all the simulation responsibilities.

The pong game in this chapter will not simulate everything on the server to keeps things simple, but
because it’s JavaScript all the way down, there’s no reason you couldn’t have the same game code
run on the clients and authoritatively on the server.

Deploying Real-Time Apps

The hosting server used in the last chapter, Heroku, unfortunately doesn’t support WebSockets
because they don’t make it through Heroku’s various caching and proxying layers. Because
WebSockets are only slowly starting to ilter out into the web at large, you’ll come across the same
problem in some of the other managed hosting platforms. Nodejitsu is a Node.js hosting platform
that supports native WebSockets.

If you want to work around this and force the use of long polling instead of WebSockets (at a hit to
performance), you can modify your server code to force long polling and limit the transports used
with (a max duration of 10 seconds is also required to prevent Heroku from timing out) the follow-
ing code:

io.configure(function () {
 io.set("transports", ["xhr-polling"]);
 io.set("polling duration", 10);
});

Building a Multiplayer Pong Game Using Socket.io ❘ 417

Your other option is to deploy Node.js on your server or VPS. Although going through the steps to
do this is outside of the scope of this book, with Amazon micro-instances running $14 month, it’s
not out of reach from a budget perspective.

Creating an Auto-Matching Server

One big part of a two-player multiplayer game is that you need two players to play the game. This
provides a matching challenge: How do you pair players?

As you may have experienced, player matching in multiplayer games can become involved, with
lobbies that show stats and images from games in progress and ones that match players up by skill
level or other characteristics. Instead of building a lobby that requires a front end and UI, your pong
game tries to create as many games with two players as possible. This means that the irst player to
hit the site will wait until the second one arrives. If a player leaves, the next player to join will rejoin
the game with one player.

The other main task of the server is simply to pass messages back and forth between the players to
keep the game in sync. In addition the server bounces a delay message from one client to the other
client and back again to try to track the timing delay between clients.

Create a new directory called pong, and start with a package.json ile similar to the one from the
Scribble example in that directory, as shown in Listing 21-6.

LISTING 21-6: Pong package.json ile

{
 "name": "multi-player-pong"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.8"
 , "socket.io": "0.9.6"
 }
}

Next, create the app.js ile in the same directory with the contents of Listing 21-7. Per usual, the
code sets up an Express server. As in the paint example, it connects Socket.io to the app to listen for
socket connections.

LISTING 21-7: Pong app.js server code

var express = require('express'),
 app = module.exports = express.createServer(),
 io = require('socket.io').listen(app);
app.configure(function(){
 app.use(express.bodyParser());
 app.use(express.static(__dirname + '/public'));

continues

418 ❘ CHAPTER 21 going real tiMe

});

app.listen(3000);

var games = [];

io.sockets.on('connection',function(socket) {
 var game = null;
 for(var i=0;i<games.length;i++) {
 if(games[i].length < 2) {
 game = i;
 }
 }
 if(game === null) {
 games.push([])
 game = games.length-1;
 }
 games[game].push(socket);
 socket.set('game',game);
 if(games[game].length == 2) {
 games[game][0].set('partner',socket);
 games[game][1].set('partner',games[game][0]);
 games[game][0].emit('master');
 games[game][1].emit('slave');
 }

 socket.on('delay',function(data) {
 socket.get('partner',function(err,partner) {
 if(partner) {
 data.steps += 1;
 partner.emit('delay',data);
 }
 });
 });

 socket.on('move',function(data) {
 socket.get('partner',function(err,partner) {
 if(partner) {
 partner.volatile.emit('move',data);
 }
 });
 });

 socket.on('ball',function(data) {
 socket.get('partner',function(err,partner) {
 if(partner) {
 partner.volatile.emit('ball',data);
 }
 });
 });

 socket.on('disconnect',function() {

 socket.get('partner',function(err,partner) {

LISTING 21-7 (continued)

Building a Multiplayer Pong Game Using Socket.io ❘ 419

 if(partner) {
 partner.emit('end');
 partner.set("partner",null);
 }
 });

 socket.get('game',function(err,game) {
 var idx = games[game].indexOf(socket);
 if(idx!=-1) games[game].splice(idx, 1);
 });
 });
});

Now run npm install from the command line in that directory to grab the dependencies.

On new connections the server inds the irst entry in the games array that has less than two entries.
This array keeps sets of players who are playing together paired. If it can’t ind an entry that has
fewer than two players, it adds a new entry to the array for the new game. In both cases it keeps the
index in the games array to keep track of the game a socket is associated with.

The game uses Socket.io’s capability to associate extra data with a socket via socket.set and
socket.get.

If after adding the socket to the current game there are two players for the current game, the server
sets one to be the master (the client that controls the canonical simulation of the ball) and one to be
the slave. It also adds an item of data called partner to each socket that maps to its paired socket.

If you were to take this example to a more complete lobby-style game, you could create an object for
each game that keeps a list of players in that game and makes it easy to send messages to all players
in that game.

When the server receives a delay event, which is used to time the round-trip time for a packet, it
passes it to the partner of the socket, incrementing the number of steps. When a socket receives a
delay event with 3 hops, it knows that that packet has made a full round-trip, so an estimation of
the time from one client to the other is one half the total delay time.

The primary data events, move and ball, simply pass data from one socket to the partner. Both are
emitted as volatile, which means that the data is time dependent and in the case of a client doing
long-polling, they may be skipped if the client is between requests. This is done as the data is passed
along often enough; it’s better to drop packets than to have the ball “fast-forward” when a player
receives a bunch of packets in a row.

Finally, when a socket disconnects, it emits an event to its partner and removes itself from the game
list. This means the next player to join will get matched if the player is still hanging around.

Building the Pong Front End

The front end to two-player pong consists of the basic HTML ile in the public/ directory that
loads all the necessary dependencies, a js/ directory with the dependencies and the Quintus engine,
and a pong.js ile for the game.

The basic HTML ile is shown in Listing 21-8; it doesn’t hold many surprises other than the addi-
tion of a black border to mark the Canvas on the desktop.

420 ❘ CHAPTER 21 going real tiMe

LISTING 21-8: pong index.html

<!DOCTYPE HTML>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0, s
minimum-scale=1.0, maximum-scale=1.0"/>
 <title>Pong</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>
 <script src='js/quintus_scenes.js'></script>
 <script src='pong.js'></script>
 <script src="/socket.io/socket.io.js"></script>
 <style>
 * { padding:0px; margin:0px; }
 canvas { border:1px solid black; }
 </style>
 </head>
 <body>
 </body>
</html>

Make sure you have jQuery, underscore, and all the necessary quintus*.js iles in the public/js ile;
otherwise, the game won’t run.

Next is the game in the pong.js ile, as shown in Listing 21-9. Much of this should look familiar from
the Block Break game from Chapter 10, “Bootstrapping the Quintus Engine, Part II.” The pieces of
the code that deal with Socket.io are highlighted as follows (the rest of the code is substantially differ-
ent than blockbreak.js, however, so don’t just add the highlighted pieces to the previous ile):

LISTING 21-9: pong.js

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes')
 .setup('quintus');
 var socket = io.connect();
 Q.input.keyboardControls()
 Q.input.touchControls({
 controls: [['left','<'],[],[],[],['right','>']]
 });
 var gameType = null, delay = 0;
 Q.Paddle = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).defaults({
 w: 60, h: 20,
 speed: 200,
 direction: null

Building a Multiplayer Pong Game Using Socket.io ❘ 421

 }));
 },
 step: function(dt) {
 dt += this.p.paddleDelay / 1000;
 this.p.paddleDelay = 0;
 if(this.p.direction == 'left') {
 this.p.x -= this.p.speed * dt;
 } else if(this.p.direction == 'right') {
 this.p.x += this.p.speed * dt;
 }
 if(this.p.x < 0) { this.p.x = 0; }
 if(this.p.x > Q.width - this.p.w) { this.p.x = Q.width - this.p.w; }
 },
 draw: function(ctx) {
 ctx.fillStyle = "black";
 ctx.fillRect(Math.floor(this.p.x),
 Math.floor(this.p.y),
 this.p.w,this.p.h);
 }
 });

 Q.PlayerPaddle = Q.Paddle.extend({
 step: function(dt) {
 var lastDirection = this.p.direction;
 this.p.direction = null;
 if(Q.inputs['left']) {
 this.p.direction = 'left';
 } else if(Q.inputs['right']) {
 this.p.direction = 'right';
 }
 this._super(dt);
 if(lastDirection != this.p.direction) {
 socket.emit("move",[this.p.direction,this.p.x]);
 }
 }
 });

 Q.EnemyPaddle = Q.Paddle.extend({
 init: function(props) {
 this._super(props);
 var self = this, p = this.p;
 socket.on("move",function(data) {
 p.direction = data[0];
 p.x = data[1];
 self.step(delay/1000);
 });
 }
 });

 Q.Ball = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props||{}).defaults({
 x: 200, y: 100,
 w: 10, h: 10,

continues

422 ❘ CHAPTER 21 going real tiMe

 dx: -1, dy: -1,
 speed: 100,
 ballRate: 0.5,
 ballSend: 0.5
 }));
 var self = this, p = this.p;
 if(gameType == 'slave') {
 socket.on("ball",function(pos) {
 p.x = pos.x;
 p.y = pos.y;
 p.dx = pos.dx;
 p.dy = pos.dy;
 self.step(delay/1000);
 });
 }
 },
 step: function(dt) {
 var p = this.p;
 var hit = Q.stage().collide(this);
 if(hit) {
 p.dy = hit.p.y < 100 ? 1 : -1;
 }
 p.x += p.dx * p.speed * dt;
 p.y += p.dy * p.speed * dt;
 var maxX = Q.width - p.w;
 if(p.x < 0) { p.x = 0; p.dx = 1; }
 else if(p.x > maxX) { p.dx = -1; p.x = maxX; }

 if(p.y < 0 || p.y > Q.height) {
 p.x = 200; p.y = 100;
 p.dy *= -1;
 }
 if(gameType == 'master') {
 p.ballSend -= dt;
 if(p.ballSend < 0) {
 socket.emit("ball", { x: p.x, y: p.y, dx: p.dx, dy: p.dy });
 p.ballSend += p.ballRate;
 }
 }
 },
 draw: function(ctx) {
 ctx.fillStyle = "black";
 ctx.beginPath();
 ctx.arc(this.p.x + this.p.w/2,
 this.p.y + this.p.h/2,
 this.p.w/2,0,Math.PI*2);
 ctx.fill();
 }
 });

 Q.scene('game',new Q.Scene(function(stage) {
 if(gameType == 'master') {

LISTING 21-9 (continued)

Building a Multiplayer Pong Game Using Socket.io ❘ 423

 stage.insert(new Q.PlayerPaddle({ x:0, y: 40}));
 stage.insert(new Q.EnemyPaddle({ x:0, y: Q.height - 100}));
 } else if(gameType == 'slave') {
 stage.insert(new Q.EnemyPaddle({ x:0, y: 40}));
 stage.insert(new Q.PlayerPaddle({ x:0, y: Q.height - 100}));
 }
 stage.insert(new Q.Ball());
 }));

 socket.on("master",function() {
 gameType = 'master';
 Q.stageScene("game");
 });

 socket.on("slave",function() {
 gameType = 'slave';
 Q.stageScene("game");
 });

 socket.on("end",function() {
 Q.clearStage(0);
 });

 socket.on('delay',function(data) {
 if(data.steps == 3) {
 // delay 1/2 of the round trip time
 delay = (new Date().getTime() - data.timer)/2;
 if(delay > 50) {
 delay = 50;
 }
 } else {
 data.steps += 1;
 socket.emit('delay',data);
 }
 });

 setInterval(function() {
 socket.emit('delay',{ steps: 0, timer: new Date().getTime() });
 },2000);
});

Figure 21-1 shows the inal game played on two adjacent desktop browsers.

As mentioned, although this is a lot of code to look at in one pass, the majority of it should look
familiar from Block Break. After the initial engine set-up code, the game deines three paddle
classes.

The irst, Q.Paddle, simply deines a paddle that moves left or right depending on its direction attri-
bute. The draw method is also overridden to draw a simple black rectangle.

The second paddle class inherits from Q.Paddle and deines the player’s paddle: Q.PlayerPaddle.
Its only job is to override the step method to control the direction property based on player input.
It also emits a move event to the server that includes its direction and current x position every time
its direction changes.

424 ❘ CHAPTER 21 going real tiMe

FIGURE 21-1: A game of pong between Safari and Firefox.

The third paddle class, Q.EnemyPaddle, represents the opposing paddle when the player is playing.
Its only override from the base Q.Paddle class is to bind to the socket to set the paddle’s direction
and position. This is the move message passed from the Q.PlayerPaddle passed through by the app
server.

The Q.Ball class used to represent the ball bears a lot of similarities to the ball from Block Break.
The primary difference is that properties of the ball here either are updated occasionally by the
server or periodically sent to the server to pass to the other player.

Even though both games are simulating the game at theoretically the same speed, differences in
clocks, network delays, and graphics capabilities mean that the two clients would slowly fall out of
sync with each other. To combat this, the full position and direction of the ball is passed from client
to the server at a rate of ballRate, which is set to half of a second in the example.

When the slave receives the ball message indicating an updated ball position, callback updates the
position and direction of the ball and then manually calls the step method to advance the ball by
whatever the length of the network delay is between the two clients.

With the sprites deined, there is the additional complexity of setting up the scene according to
whether the player is the master of the slave. It does this by looking at the gameType global variable
to put the player on top and the enemy on the bottom if this client is the master or vice versa if it’s
the slave. Then it just inserts a ball and lets it ly.

The last chunks of code are the socket events. The slave and master events, if you remember how
the server was set up, kick off the game by indicating the player is either the master or the slave

Summary ❘ 425

and then stage the game scene. The end event, called when the other player disconnects, simply stops
the game by clearing the stage.

More complicated is the delay event. This event is sent every two seconds via the inal setInterval
call at the end of the code, which sends a message with a steps variable and the current time in milli-
seconds. As you saw in the server code, this message is bounced from one client back to the originating
client as a way to measure the delay in sending packets end to end. The client looks at the step variable
and if it’s equal to 3, it knows the message has made a complete trip.

When the originating server receives the message back, it grabs the updated time in milliseconds
and calculates the round-trip delay by subtracting the current time from the time it sent the message
originally. Dividing that number in half gets the time it takes to send a message from one client to
another via the server.

Pulling it all together, you now have a game where two players can play directly against each other
using a simple form of client-side prediction to try to keep the players in sync with each other.

SUMMARY

This chapter examined how to use WebSockets and a library called Socket.io to build real-time games
where multiple players can interact directly with each other. It showed how to take code that is simi-
lar to a single-player game from earlier in the book and change it into a multiplayer game that passes
messages through a central server. Using the code presented here you should be able to build both real-
time and semi-real-time games that have near-instant interaction between multiple players.

Building Nontraditional Games

WHAT’S IN THIS CHAPTER?

 ➤ Creating a Twitter application

 ➤ Connecting to the Twitter API

 ➤ Building a game on the Twitter API

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 22
download and individually named according to the names throughout the chapter.

INTRODUCTION

HTML5 game developers have the opportunity to take web games out of their customary
conines in hard-edged Adobe Flash boxes and open them up to the rest of the page and the
rest of the web. Beyond simple gamiication, HTML5 games have the opportunity to diverge
from the standard game genres into other areas and mediums. One way you can do this is by
using other services and websites as the medium on which to play your game. This chapter
uses Twitter, which has a mobile-friendly website and client, as a medium for a collaborative
version of the word-guessing game Hangman.

CREATING A TWITTER APPLICATION

To interact with Twitter, you need to create a Twitter application. In this case you most likely
also want to create a new Twitter account if you already have one to prevent testing the
Twitter API and annoying your followers.

22

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

428 ❘ CHAPTER 22 Building nontraditional gaMes

You can sign up for a Twitter account and pick a new, unique name at https://twitter.com/
signup. The game you build in this chapter is a simple Hangman game. After you complete the
signup and conirm your account, go to: https://dev.twitter.com. This is the Twitter developer
site where you can ind documentation and create Twitter applications. You need to log in again
with the account that you just created.

When logged in, mouse over your account name in the top right and click My Applications. On the
applications page, click Create New Application (see Figure 22-1).

FIGURE 22-1: The Application setup screen.

Fill in the irst three required ields: Name, Description, and WebSite. (You may need to get a little
creative to come up with a unique name.) Accept the terms of use, ill in the captcha, and submit the
form. Your application’s settings screen displays.

Because the game is going to tweet, you need to change the permissions for the app. Click the
Settings tab and then scroll down the page to Application Type. Change the type from Read Only to
Read and Write and click Update.

To make it easier to start with the API without going through the normal OAuth process (which you
saw in Chapter 21, “Going Real Time”), Twitter provides a mechanism to grab an access token. To
get the access token, click the Details tab, scroll down to the bottom, and click Create My Access
Token. This generates an access token you can use directly. (You may need to reload the page
because Twitter can be a little slow occasionally to update the information on the page.)

Keep this page open because you need the following four pieces of information from it in the next
section: Consumer Key, Consumer Secret, Access Token Key, and Access Token Secret.

https://twitter.com/signup
https://dev.twitter.com

Connecting a Node App to Twitter ❘ 429

CONNECTING A NODE APP TO TWITTER

To connect to Twitter from Node, use the wonderful module called ntwitter (which was forked
from node-twitter, which was inspired by twitter-node). The ntwitter module makes it easy to
interact with Twitter but, more importantly, it has support for Twitter’s stream API, which means
that you can get tweets sent to you in real time as opposed to polling Twitter on a regular basis.

Sending Your First Tweet

While you install the module via NPM, for reference the source code for the ntwitter module is up
on GitHub at https://github.com/AvianFlu/ntwitter.

To start, create a new directory called hangman for the application and put the customary package
.json ile in it to pull in ntwitter as a dependency (see Listing 22-1).

LISTING 22-1: Package.json

{
 "name": "twitter-hangman"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "ntwitter": "0.3.0"
 }
}

Run npm install to install the ntwitter dependency.

Next, try out tweeting via the API; open a new app.js ile and ill in the code from Listing 22-2. You
need to replace the coniguration values for the keys and secrets in uppercase with the values from
the previous section. Run the code by running node app.js from the command line.

LISTING 22-2: App.js sending your irst tweet

var twitter = require("ntwitter");
var client = new twitter({
 consumer_key: "YOUR_CONSUMER_KEY",
 consumer_secret: "YOUR_CONSUMER_SECRET",
 access_token_key: "YOUR_ACCESS_TOKEN_KEY",
 access_token_secret: "YOUR_ACCESS_TOKEN_SECRET"
});

client.verifyCredentials(function (err, data) {
 if(err) {
 console.log("Unable to connect to twitter, please verify config");
 } else {
 client.updateStatus("Hello Twitter!", function (err, data) {
 if(!err) {
 console.log(data);

continues

https://github.com/AvianFlu/ntwitter

430 ❘ CHAPTER 22 Building nontraditional gaMes

 } else {
 console.log(err);
 }
 });
 }
});

This code requires the ntwitter module and then creates a new client with the credentials you
created when you set up the app. If this were an app that could connect to multiple users, you would
need to go through the OAuth authentication process to get the Access Token information for the
user, but in this case Twitter enables you to generate those from the web interface.

Next it calls verifyCredentials to make sure you entered the coniguration variables correctly.
This check isn’t necessary but can help you debug problems or invalid keys.

Finally, it calls updateStatus to send a tweet. Twitter responds with the full data details of the
tweet.

If everything goes according to plan, you should see your tweet in the Timeline. If you click the
expand link, you see the source is your app, as shown in Figure 22-2.

FIGURE 22-2: Your irst tweet.

If you try to run the program again, Twitter returns an error message as it prevents the exact same
tweet from being sent more than once.

Listening to the User Stream

Sending tweets is only half of the job. To respond to people playing the game, you need to listen for
incoming messages.

Twitter provides two APIs for listening to incoming messages: a REST API that relies on polling and
a stream API that pushes messages in real time. For a game such as Hangman where users might be
tweeting at the user to play the game, better performance can be achieved via the stream API.

The documentation for the Twitter stream API is available at https://dev.twitter.com/docs/
streaming-apis/streams/user.

LISTING 22-2 (continued)

https://dev.twitter.com/docs/streaming-apis/streams/user

Generating Random Words ❘ 431

To listen to tweets associated with a speciic username via the stream API, you can use the client
.stream method in ntwitter. Because the Hangman game will be playing with people it may not
be following, it needs to also listen to the replies from people it is not following. To achieve this, the
replies:all option must be passed as an option.

Replace the bottom of your app.js ile with the highlighted content in Listing 22-3 to listen for
tweets directed at your account. You need to replace the value of the accountName property with
the name of the account you created.

LISTING 22-3: Reading from the user stream

var twitter = require("ntwitter");
var client = new twitter({
 consumer_key: "YOUR_CONSUMER_KEY",
 consumer_secret: "YOUR_CONSUMER_SECRET",
 access_token_key: "YOUR_ACCESS_TOKEN_KEY",
 access_token_secret: "YOUR_ACCESS_TOKEN_SECRET"
});

var accountName = 'hangmangame';
client.stream('user', { track:accountName ,replies:'all' }, function(stream) {
 stream.on('data', function (data) {
 console.log("****************");
 console.log(data);
 console.log("****************");
 });
 stream.on('end', function (response) {
 // Need to reconnect
 });
 stream.on('destroy', function (response) {
 // Need to reconnect
 });
});

If you run this ile via node app.js, you should irst see a list of friend account IDs for the account
populated, and then the interface should sit and wait for activity on the user (your development
account may not have anyone followed or following yet).

If you tweet at the account (@hangmangame in the example) or from the account itself, those tweets
log to the console.

GENERATING RANDOM WORDS

To play a game of Hangman, the app needs access to a list of words to play. Luckily lists of words
are available in a number of places on the web. One of the best spots to grab a list is at http://
wordlist.sourceforge.net/. Of the myriad lists available there, the best list for the purposes of
Hangman is the 12dicts list, which contains a list approximating the common core of the vocabu-
lary of American English.

http://wordlist.sourceforge.net/
http://wordlist.sourceforge.net/

432 ❘ CHAPTER 22 Building nontraditional gaMes

You can download the original 12dicts source iles from http://downloads.sourceforge.net/
wordlist/12dicts-5.0.zip, but the chapter code has a ile called words.txt that is a single list of
the most common words, which has been slightly modiied to adjust the line endings. The 12dicts
ile uses the Automatically Generated Inlection Database (AGID) list as a source, so the license for
the AGID is included in the chapter download. It can be used freely but must include the copyright
notice if distributed.

To indicate words that are somehow peculiar, the words.txt has some iles marked with punctua-
tion at the end; the code to generate a random word will be set up to ignore these words.

The basic mechanism to generate a random word is to load the words.txt ile into a large array
and then pick a random item out of the array until one is found that consists only of alphabetical
characters.

This code will be incorporated into the main game later in this chapter, but to play around with
generating random words, you can create a ile called word.js using the code in Listing 22-4, which
logs 10 random words to the console.

LISTING 22-4: Generating 10 random words

var fs = require('fs'),
 words = fs.readFileSync('words.txt').toString().split("\n");

function randomWord() {
 var word;
 do {
 word = words[Math.floor(Math.random()*words.length)];
 } while(!word.match(/^\w+$/) || word.length < 5)
 return word;
}

for(var i=0;i<10;i++) {
 console.log(randomWord());
}

You can see the irst thing the code does is load up the words.txt ile and split it by new lines. The
randomWord method then just picks a random word out of the list of words and checks using a regu-
lar expression that it contains only word characters (\w) and has at least ive letters.

Running this ile with node word.js should log 10 random words to the console every time it is
run. The words.txt ile has more than 32,000 words in it, so there should be plenty of variety.

CREATING TWITTER HANGMAN

With the libraries in place to create the game, it’s time to dig in to the actual code for the game. The
main idea is to post a tweet with the blanks for a game of Hangman and respond to tweets from
users guessing the missing letters. The application responds to any user that sends tweets at it with
the number of times that letter appears and tweets the updated board state.

http://downloads.sourceforge.net/wordlist/12dicts-5.0.zip

Creating Twitter Hangman ❘ 433

The complete code for the game appears in Listing 22-5. Replace any code you have in app.js with
the code in Listing 22-5. You need to replace the accountName and Twitter coniguration variables
as you did earlier.

LISTING 22-5: Twitter Hangman

var twitter = require("ntwitter"),
 fs = require('fs'),
 words = fs.readFileSync('words.txt').toString().split("\n");

var client = new twitter({
 consumer_key: "YOUR_CONSUMER_KEY",
 consumer_secret: "YOUR_CONSUMER_SECRET",
 access_token_key: "YOUR_ACCESS_TOKEN_KEY",
 access_token_secret: "YOUR_ACCESS_TOKEN_SECRET"
});
var accountName = "hangmanword";
function randomWord() {
 var word;
 do {
 word = words[Math.floor(Math.random()*words.length)];
 } while(!word.match(/^\w+$/) || word.length < 5)
 return word;
}
var Hangman = function(accountName,client) {
 var self = this;
 this.gameNumber = 0;
 var hangman = "__O-[-<";
 this.newWord = function() {
 this.word = randomWord();
 this.currentWord = this.word.split("");
 this.currentGuesses = [];
 this.guesses = [];
 this.lettersRemaining = this.currentWord.length;
 this.guessesRemaining = 5;
 this.gameNumber++;
 this.sendGameUpdate();
 console.log("\n");
 console.log("New Word:" + this.word);
 };
 this.sendTweet = function(status) {
 client.updateStatus(status,function(err,data) {
 if(!err) {
 console.log("Sent Tweet:" + status);
 } else {
 console.log("Error Sending Tweet:" + status +
 "\nError:" + err);
 }
 });
 };
 this.sendGameUpdate = function() {
 var status = "Game " + this.gameNumber + ": " +

continues

434 ❘ CHAPTER 22 Building nontraditional gaMes

 hangman.substring(0,hangman.length - this.guessesRemaining) +
 " Word:";
 for(var i=0;i<this.currentWord.length;i++) {
 if(this.currentGuesses[i]) {
 status += " " + this.currentWord[i];
 } else {
 status += " _"
 }
 }
 this.sendTweet(status);
 };
 this.sendExistingGuess = function(tweeter,guess) {
 this.sendTweet("@" + tweeter + ' Sorry someone has already guessed "' +
 guess + '"');
 };
 this.sendIncorrect = function(tweeter,guess) {
 var extra = this.guessesRemaining <= 0 ?
 " - Game Over (Word was " + this.word + ")" : ""
 this.sendTweet("@" + tweeter + ' sorry there are no ' +
 guess + "'s in game " + this.gameNumber + extra);
 };
 this.sendCorrect = function(tweeter,guess,correct) {
 var extra = this.lettersRemaining == 0 ?
 “ - Congratulations you win!” : ""
 this.sendTweet("@" + tweeter + ' yes, ' + guess + " appears " +
 correct + (correct > 1 ? " times" : " time") +
 " in game " + this.gameNumber + extra);
 };
 this.handleGuess = function(tweet) {
 if(!tweet.text) return;
 var guess = tweet.text.replace(/[^a-z]/gi,""),
 tweeter = tweet.user.screen_name,
 correct = 0;
 try {
 if(tweet.text.indexOf("@" + accountName) === 0) {
 guess = guess[guess.length-1].toLowerCase();
 if(this.guesses.indexOf(guess) != -1) {
 return this.sendExistingGuess(tweeter,guess);
 }
 this.guesses.push(guess);
 for(var letter=0;letter < this.currentWord.length;letter++) {
 if(this.currentWord[letter].toLowerCase() == guess) {
 correct++;
 this.lettersRemaining~DH;
 this.currentGuesses[letter] = true;
 }
 }
 if(correct > 0) {
 this.sendCorrect(tweeter,guess,correct);
 if(this.lettersRemaining == 0) {
 this.newWord();
 } else {

LISTING 22-5 (continued)

Creating Twitter Hangman ❘ 435

 this.sendGameUpdate();
 }
 } else {
 this.guessesRemaining~DH;
 this.sendIncorrect(tweeter,guess);
 if(this.guessesRemaining > 0) {
 this.sendGameUpdate();
 } else {
 setTimeout(function() { self.newWord(); }, 2000);
 }
 }
 }
 } catch(e) {
 console.log("Error:" + e.toString());
 }
 };

 this.connect = function() {
 client.stream('user',
 { track:accountName ,replies:'all' },
 function(stream) {
 stream.on('data', function (data) {
 setTimeout(function() {
 self.handleGuess(data);
 },1);
 });

 stream.on('end', function (response) {
 self.connect();
 });

 stream.on('error', function (response) {
 console.log("Error");
 });

 stream.on('destroy', function (response) {
 self.connect();
 });
 });
 };
 this.newWord();
 this.connect();
};
var hangman = new Hangman(accountName,client);

The main game is contained in the Hangman object, which keeps track of the state of the current game.
To start a new game, the newWord method is called, which grabs a random word and then initializes the
guesses and posts the game to Twitter. Next, the sendTweet method simply calls updateStatus on the
client to send a tweet, capturing the tweet sent or any errors to the console.

The sendGameUpdate method outputs a tweet of the form:

Game 1: __O-[- Word: _ _ _ m _ _ _

436 ❘ CHAPTER 22 Building nontraditional gaMes

This shows the current game number, how far along the man is from being hanged (in a poor ASCII
rendering), and the letters that have been found.

The next three methods are used to respond to the person who was trying to play with a message
directed at him letting him know how his last guess did.

The main meat of the game is in the handleGuess method, which takes in a tweet, checks to make
sure it’s a tweet directed at the account name, and then grabs the last alphabetic character of the
tweet and uses that as the guess character.

This allows users to tweet messages such as the following:

@hangmangame is there an a?
@hangmangame how about a b?
@hangmangame c

All the preceding examples should work. Allowing a little creativity in messaging is necessary
because Twitter won’t let you post the same tweet in succession.

After it extracts the guess, the game checks if the guess has already been tried. If so, it lets the player
know. If it’s not a repeat guess, the game then checks for the number of occurrences and the number
of letters remaining and then sends a tweet to the user based on whether the user correctly guessed
the word.

If the player guessed the word or has run out of guesses, the game lets him know and then sends out
a new word. Figure 22-3 shows a sample game.

FIGURE 22-3: A sample game.

Summary ❘ 437

SUMMARY

This chapter showed you how to build a game on top of the Twitter API. Combined with the push
notiications Twitter provides, you have an asynchronous game of Hangman that players can play
from their mobile phone. Rather than just build games on top of Twitter, you can instead expand
your horizons on what pieces of the web you can use to build games. There is a tremendous number
of web and mobile-accessible interaction media available, including SMS, Photo APIs, search APIs,
and more, all of which you can creatively combine and remix to create innovative games.

PART VII

Mobile Enhancements

 ⊲ CHAPTER 23: Locating via Geolocation

 ⊲ CHAPTER 24: Querying Device Orientation and Acceleration

 ⊲ CHAPTER 25: Playing Sounds, the Mobile Achilles Heel

Locating via Geolocation

WHAT’S IN THIS CHAPTER?

 ➤ Locating users with geolocation

 ➤ Drawing static maps

 ➤ Drawing interactive maps

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 23
download and individually named according to the names throughout the chapter.

INTRODUCTION

Up to this point this book has treated the word mobile as referring primarily to a form factor
(small screen) and an input mechanism (touchscreen). A third major aspect to mobile devices
is that they are portable, and thus the user’s location can be made into an interesting aspect
of game play. This chapter examines the support to determine a device’s location, known as
 geolocation, which is available in one of the HTML5 families of speciications, and discusses
how you can use it in games.

GETTING STARTED WITH GEOLOCATION

Geolocation support is technically not part of HTML5 but resides in a separate geolocation
API speciication. The latest published version of the speciication lives on the W3 website at
www.w3.org/TR/geolocation-API/.

23

http://www.w3.org/TR/geolocation-API/
http://www.wrox.com/remtitle.cgi?isbn=9781118301326

442 ❘ CHAPTER 23 loCating via geoloCation

Although this book discusses geolocation from the perspective of mobile devices, the API is also
available in desktop browsers. Desktop browsers that support the API (IE9+ and recent versions of
all other browsers) use a less-accurate IP-address reverse lookup mechanism.

The API deines two mechanisms for grabbing the position: one time and watches. The irst type is
used when you just need the position once. The second works like setInterval in that it calls the
callback repeatedly as the device moves.

Because getting the user’s position via a web page involves privacy concerns, both mechanisms pro-
vide a notiication to users giving them the power to allow or deny the request to grab the location.

GETTING A ONE-TIME POSITION

Getting the position of the user is simple enough; just call navigator.geolocation
.getCurrentPosition with a callback. This triggers a notiication at the top of the browser, as shown
in Figure 23-1, giving the user the power to allow or deny the request. If you supply a second callback,
that callback is called if the browser couldn’t get the location due to a denied request or other error.

FIGURE 23-1 The geolocation permission dialog.

To see the data in the console that’s returned from a request, you can enter the code in Listing 23-1 into
a ile called position.html, load the page in a desktop browser, and open up the JavaScript console.

LISTING 23-1: Getting a one-time position

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Grabbing the position</title>
</head>
<body>
 <script>
 function logPosition(position) {
 console.log(position);
 }
 function positionError(error) {
 console.log(error);
 }
 navigator.geolocation.getCurrentPosition(logPosition,positionError);
 </script>
</body>
</html>

Getting a One-Time Position ❘ 443

Examining the console shows you the result of the request. If you denied the request or the system
couldn’t look up your location, the positionError method is called with a PositionError object.
If you run this from a file:// URL, Chrome will give you an error by default so you’ll want to run
it from localhost.

If the geolocation was successful, the logPosition callback is called with a Position object, which
is logged to the console, as shown in Figure 23-2.

FIGURE 23-2 A sample returned position.

Most of the details are in a coords subobject that contains at minimum the latitude, longitude, and
accuracy in meters. It might also contain additional data.

The full ields available in the position object follow:

 ➤ Latitude: The best guess latitude as a number

 ➤ Longitude: The best guess longitude as a number

 ➤ Altitude: An altitude estimate or null if there is no estimate

 ➤ Accuracy: The accuracy of latitude and longitude in meters

 ➤ altitudeAccuracy: The accuracy of the altitude in meters or null

 ➤ heading: If speed is greater than zero, the direction in degrees, otherwise NaN

 ➤ speed: The speed in meters per second

As mentioned, only the longitude, latitude, and accuracy are guaranteed to be present.

getCurrentPosition also accepts a third parameter that is an options object. The three options
available as of this writing follow:

 ➤ enableHighAccuracy: Provides a hint that accuracy is important. This may require longer
to generate a position and uses more battery, but the results will be more accurate if possible.

 ➤ Timeout: How long in milliseconds to wait for a position before timing out.

 ➤ maximumAge: The maximum age in milliseconds of the position. If greater than zero the
method may return a cached position.

444 ❘ CHAPTER 23 loCating via geoloCation

By default enableHighAccuracy is set to false; timeout is set to 0, which means never to time-
out; and maximumAge is set to 0 as well, which means don’t use cached data. If you want a position
quickly, set maximumAge to a number greater than zero.

PLOTTING A LOCATION ON A MAP

The latitude and longitude don’t tell you a whole lot, so one of the irst things you must do is plot
the location on a map. To do this you need access to a map API. Google Maps is one of the most
popular map APIs and provides two different APIs: a static map API and the traditional interactive
map you are probably familiar with.

Generating static maps is easy. All it involves is sending a properly formed request in the form of
an tag src to Google, which returns an image to you. The API for static maps is available at
https://developers.google.com/maps/documentation/staticmaps/.

If you want a map with a marker at a speciic location, you need to generate a URL with the size of
the output image, the marker, and a value for the sensor option, which lets Google know whether
this application uses a sensor to determine the position. (This ield is required.) You also need to
pass a zoom value to control how zoomed in the resultant image is.

Markers are deined by a number of attributes separated by pipe characters (|), for example:

markers=color:red||label:A|lat,long

Because this needs to be encoded into a URL, the pipe character is URL encoded into the string %7C.

Listing 23-2 shows the irst example modiied to output a static map at your location. Desktop
browsers have wildly varying levels of accuracy, so it may show a location that’s only a rough
approximation of your actual location.

LISTING 23-2: Static map

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Grabbing the position</title>
 <script src='js/jquery.min.js'></script>
</head>
<body>
 <script>
 function logPosition(position) {
 var url = "http://maps.googleapis.com/maps/api/staticmap?" +
 "zoom=13&size=320x420&" +
 "markers=color:blue%7Clabel:S%7C" +
 position.coords.latitude + "," +
 position.coords.longitude + "&sensor=true";
 $("").attr("src",url)
 .appendTo("body");
 }

https://developers.google.com/maps/documentation/staticmaps/

Watching the Position Change over Time ❘ 445

 function positionError(error) {
 console.log(error);
 }
 navigator.geolocation.getCurrentPosition(logPosition,positionError,{
 enableHighAccuracy: true
 });
 </script>
</body>
</html>

This example uses jQuery for DOM manipulation, and enableHighAccuracy is set to true to get as
accurate a position as possible.

WATCHING THE POSITION CHANGE OVER TIME

The geolocation API provides a second method called watchPosition that takes in the same param-
eters as getCurrentPosition. It works like setInterval in that it returns an ID that can be used
to clear the watch at a later time with clearWatch.

If you want to walk around a bit, run the code in Listing 23-3, which uses watchPosition to log
the latitude and longitude to a <div> on a mobile browser and see how the numbers change.

LISTING 23-3: Watching the position change

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Watching the position</title>
 <script src='js/jquery.min.js'></script>
</head>
<body>
 <script>
 function logPosition(position) {
 $("#logs").prepend(position.coords.latitude + "," +
 position.coords.latitude + "
");
 }
 function positionError(error) {
 console.log(error);
 }
 var watchID = navigator.geolocation.watchPosition(
 logPosition,positionError,{
 enableHighAccuracy: true
 });
 setTimeout(function() {
 navigator.geolocation.clearWatch(watchID);
 },30000);
 </script>
 <div id='logs'></div>
</body>
</html>

446 ❘ CHAPTER 23 loCating via geoloCation

You can see that after 30 seconds the watch is cleared to prevent the system from continuing to
update the position.

NOTE Activating the GPS on a mobile device (which is what you are effectively
requesting by turning on enableHighAccuracy) drains the battery, so be courte-
ous to your users and use watches only when you must update the position.

DRAWING AN INTERACTIVE MAP

To draw an interactive map, you need to use the interactive Google Maps API. Previous versions
required an API key, but the current version, v3, doesn’t require one. If you want to make money
from the API or track your usage, however, you must get one from https://code.google.com/
apis/console.

The full Maps v3 API documentation is available on the Google website at https://developers
.google.com/maps/documentation/javascript/reference.

Although the API is extensive, it’s well documented and you use only a small subset of the objects
available: Map, Marker, and LatLng. The Map object represents the entire map. The Marker object
is a marker that you can drop on the page as you did in the static map. Use LatLng to store a single
position.

To create a map, you need to create a new map object and pass it a DOM element to ill, and the
three required options are the center, the initial zoom level, and the mapTypeId.

The center is a LatLng object, which you can create by passing in two loats to represent a latitude
and longitude. Zoom level is a number between 1 and 18 and controls how zoomed in the map is.
Some areas don’t go up to 18. (This is usually rural areas in the United States and other parts of the
world.) The mapTypeId object is one of four constants on the google.maps.MapTypeId class, each
representing a different type of map supported by Google Maps: HYBRID, ROADMAP, SATELLITE, and
TERRAIN.

If you are still up for walking around, run the code in Listing 23-4 to create an interactive map that
can follow you with a pin that updates itself as you move.

LISTING 23-4: An auto-updating interactive map

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Interactive Map</title>
 <script src='js/jquery.min.js'></script>
 <meta name="viewport" content="width=device-width, user-scalable=0,
minimum-scale=1.0, maximum-scale=1.0"/>

https://code.google.com/apis/console
https://developers.google.com/maps/documentation/javascript/reference

Drawing an Interactive Map ❘ 447

 <script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?sensor=true"></script>
 <style> body { padding:0px; margin:0px; } </style>
</head>
<body>
 <script>
 $(function() {
 var map = null,
 marker = null;
 function createMap(latlng) {
 var mapOptions = {
 zoom: 18,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.TERRAIN
 };
 var div = $("<div>").css({ width: "100%",
 height:"100%",
 position:"absolute"})
 .appendTo("body")[0];

 map = new google.maps.Map(div, mapOptions);
 marker = new google.maps.Marker({
 position: latlng,
 map: map,
 title: "Me"
 });
 }
 function updateMap(pos) {
 var latlng = new google.maps.LatLng(pos.coords.latitude,
 pos.coords.longitude);
 if(!map) {
 createMap(latlng);
 } else {
 marker.setPosition(latlng);
 }
 }
 function positionError(error) {
 alert("Error tracking your position");
 navigator.geolocation.clearWatch(watchID);
 }
 var watchID = navigator.geolocation.watchPosition(
 updateMap,positionError,{
 enableHighAccuracy: true
 });
 });
 </script>
</body>
</html>

The event loop starts by calling watchPosition to trigger a call to updateMap every time the posi-
tion changes. updateMap creates a new LatLng object and then determines if the map has been
drawn before. If not it calls createMap to generate the initial map. If the map has already been
drawn, it calls the marker’s setPosition command to update the marker to the new position.

448 ❘ CHAPTER 23 loCating via geoloCation

CALCULATING THE POSITION BETWEEN TWO POINTS

When you start building games with geolocation, one of the irst dificulties you’ll face is the prob-
lem to calculate the distance between two latitudes and longitudes. Whether this is to detect the
proximity between players or distance to a goal, this is something that you deinitely must do.

On the client side, Google’s Map v3 API provides a static method under google.maps.geometry
.spherical called computeDistanceBetween, which takes two LatLng objects and returns the
distance in meters.

If you don’t have an API readily handy to do the calculation for you, your can use the Haversine dis-
tance formula (http://en.wikipedia.org/wiki/Haversine_formula) to calculate the distance on
a sphere between two points.

There are a number of resources for this formula in JavaScript, but one of the best available on the
web is at www.movable-type.co.uk/scripts/latlong.html. It provides a succinct Haversine for-
mula in JavaScript that takes in lat1, lon1 lat2, and lon2 and outputs the distance between the
two in kilometers:

var R = 6371; // km
var dLat = (lat2-lat1).toRad();
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();

var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;

You can plug this formula directly into a method in your code to calculate the distance between two
points.

SUMMARY

This chapter showed you how to use geolocation in the browser to generate a position that can be
used to display an interactive map. With the ability to track a position and display and update inter-
active maps, a number of augmented-reality games can be built in the browser. This includes scav-
enger hunts, geocaching, proximity-based games, and more. The hope is that putting geolocation
tools in your arsenal can open up a new world of HTML5 games that breaks gaming outside of its
normal conines.

http://en.wikipedia.org/wiki/Haversine_formula
http://www.movable-type.co.uk/scripts/latlong.html

Querying Device Orientation and
Acceleration

WHAT’S IN THIS CHAPTER?

 ➤ Learning about screen orientation

 ➤ Understanding the device orientation API

 ➤ Playing with device orientation

 ➤ Combatting device rotation

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 24
download and individually named according to the names throughout the chapter.

INTRODUCTION

Using the orientation of your mobile device to control a game was one of the irst “wow”
moments of the smartphone gaming era. With the support for device orientation and accelera-
tion in the browser, that capability is now within your reach as an HTML5 game developer.
This chapter examines the DeviceOrientation event API, which has two useful events: device
orientation and device motion. A third event, compass, is also available, but unless you have a
long-running application that needs precise direction details, you can safely ignore this event.

24

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

450 ❘ CHAPTER 24 Querying deviCe orientation and aCCeleration

LOOKING AT A DEVICE ORIENTATION

Before examining the DeviceOrientation Event API, it’s worth a brief look at the window
.orientation property. This property won’t tell you the exact angle you hold your device at, but
it can tell you an angle that indicates which way—portrait or landscape—your device’s screen is
oriented.

You can also listen for orientationchange events to detect when the device is rotated to a different
coniguration. To try this, add the following to any page that has jQuery loaded on it:

 $(window).on("orientationchange",function(e) {
 alert(window.orientation);
 });

Depending on your device, as you rotate your device every time the screen rotates, you should see
values in increments of 90 that tell you what angle the device is at. Although it seems like it should
be easy to decode this value, it’s not that simple.

Phones, speciically the iPhone and the Galaxy Nexus, treat the normal portrait position as a
 window.orientation value of 0. Neither supports an upside-down portrait, so there is no 180
value. The iPhone has two landscape orientations: 90 and –90, whereas the Galaxy Nexus treats
landscape direction as having a window.orientation of 90.

For tablets it’s more confusing. The Kindle Fire and iPad both treat normal portrait mode as having
an orientation of 0, but they also support an inverted portrait mode with an orientation of 180 that
is not supported on phones. Other tablets, such as the Android ASUS Transformer, treat landscape
mode as an orientation of 0, and everything else is rotated off this.

These different values are not, however, out of line with the speciication; for the ASUS tablet, an
orientation of 0 is given to landscape mode because landscape is deined as the tablet’s “standard
orientation.”

The idea of a “standard orientation” is an important concept for a device because the
deviceorientation events are also all relative to the standard orientation and assume that
standard orientation is always portrait mode.

GETTING STARTED WITH DEVICE ORIENTATION EVENTS

When you want more information than just the screen portrait or landscape orientation, it’s time to
dive into the deviceorientation event, which gives you three angular values indicating precisely
how the device is held in 3-D space and is triggered at a high rate as the device is adjusted.

The speciication associated with device orientation is the DeviceOrientation Event Speciication; the
latest version is available at: www.w3.org/TR/orientation-event/. The most important event is
deviceorientation, which you can use to determine the angle at which you are holding your device.

Although this event is useful in mobile devices, desktop browsers have also started supporting
the event (MacBooks started including an accelerometer a couple of years ago), and it’s available
in Chrome. Firefox also has support for it, but at least in OS X, Firefox doesn’t trigger the event.
Desktop IE, Safari, and Opera don’t have support as of this writing.

http://www.w3.org/TR/orientation-event/

Trying Out Device Orientation ❘ 451

Detecting and Using the Event

To see if your browser supports the event, you can check for the existence of the event object on the
window:

 if (window.DeviceOrientationEvent) {
 // Device orientation supported
 }

Firefox pre-version 6 had support for a nonstandard OrientationEvent, but since version 6 it has
supported the standard event.

Next, to listen for the event, as usual you can either use addEventListener or jQuery. The
only caveat is that if you use jQuery you need to pull out the original event object to access
the event properties you care about because jQuery doesn’t copy over the properties of the
deviceorientation event into its universal event object.

// Use either method
window.addEventListener("deviceorientation",function(eventData) {
 // Handle event
});

$(window).on("deviceorientation",function(e) {
 var eventData = e.originalEvent;
 // Handle event
});

In both cases the eventData object holds the properties you care about.

Understanding the Event Data

The deviceorientation event triggers its callback with an object containing three different proper-
ties; each property has a different axis of rotation: alpha, beta, and gamma.

 ➤ alpha - [0–360]: The heading of the device (think North, South, East, West). You can deter-
mine the compass heading by subtracting alpha from 360.

 ➤ beta - [–180–180]: The amount you tilt the device front to back. A beta of 0 means the
device is lying lat. A beta of 90 means it is held vertically, straight up.

 ➤ gamma - [–90–90]: The amount you tilt the device left to right. A gamma of 0 means the
device is lying lat. A beta of –90 means the device is tilted vertically to the left.

Because alpha is dependent on the direction the user faces, you generally use only beta and gamma
in your games because those can be used no matter what direction players are sitting in.

alpha is primarily useful in augmented reality-type settings, such as on Android devices. (However,
the alpha value is not particularly accurate in the author’s experience, so your mileage may vary.)

TRYING OUT DEVICE ORIENTATION

To try out the device orientation events, you can build a quick demonstration using the SVG and phys-
ics code from Chapter 14, “Building Games with SVG and Physics.” Figure 24-1 shows the end result.

452 ❘ CHAPTER 24 Querying deviCe orientation and aCCeleration

FIGURE 24-1: The inal device orientation example.

The demonstration consists of a set of static walls enclosing a set of balls that can react to gravity.
Gravity always stays consistent with reality, but as you rotate the device, gravity changes relative to
it, which will cause the balls to ly around the screen.

Creating a Ball Playground

To start, create a new HTML ile called orient.html with the contents of Listing 24-1. You need
a number of quintus iles and the engine’s dependencies along with Box2dWeb-2.1.a.3.js from
Chapter 14.

LISTING 24-1: The orientation example HTML ile

<!DOCTYPE HTML>
<html lang="en">
 <head>

Trying Out Device Orientation ❘ 453

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, user-scalable=0,
 minimum-scale=1.0, maximum-scale=1.0"/>
 <title>DeviceOrientation</title>
 <script src='js/jquery.min.js'></script>
 <script src='js/underscore.js'></script>
 <script src='js/Box2dWeb-2.1.a.3.js'></script>
 <script src='js/quintus.js'></script>
 <script src='js/quintus_input.js'></script>
 <script src='js/quintus_sprites.js'></script>
 <script src='js/quintus_scenes.js'></script>
 <script src='js/quintus_physics.js'></script>
 <script src='js/quintus_svg.js'></script>
 <script src='orient.js'></script>
 <style>
 * { padding:0px; margin:0px; }
 </style>
 </head>
 <body>
 </body>
</html>

Next, create the orient.js ile referenced in Listing 24-1 and ill it with the contents of Listing 24-2.

LISTING 24-2: orient.js

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,SVG,Physics')
 .svgOnly()
 .setup('quintus',{ maximize: true });
 Q.Ball = Q.Sprite.extend({
 init: function(props) {
 this._super(_(props).defaults({
 shape: 'circle',
 color: 'red',
 r: 25,
 restitution: 0.9,
 density: 4,
 seconds: 5
 }));
 this.add('physics');
 }
 });

 Q.scene('level',new Q.Scene(function(stage) {

 stage.add("world");

 // Create the walls
 stage.insert(new Q.Sprite({ x: 5, y: 300, w: 10, h: 600 }));
 stage.insert(new Q.Sprite({ x: 395, y: 300, w: 10, h: 600 }));
 stage.insert(new Q.Sprite({ x: 200, y: 5, w: 400, h: 10 }));

continues

454 ❘ CHAPTER 24 Querying deviCe orientation and aCCeleration

 stage.insert(new Q.Sprite({ x: 200, y: 595, w: 400, h: 10 }));

 // Add the center object
 var center = stage.insert(new Q.Sprite({
 x: 200, y: 300, w: 100, h: 200
 }));

 stage.each(function() {
 this.p.type = 'static';
 this.add("physics");
 });

 // Add the balls
 stage.insert(new Q.Ball({ x: 100, y: 50, color:"blue" }));
 stage.insert(new Q.Ball({ x: 200, y: 50, color:"pink" }));
 stage.insert(new Q.Ball({ x: 300, y: 50, color:"black" }));
 stage.insert(new Q.Ball({ x: 100, y: 150, color:"green" }));
 stage.insert(new Q.Ball({ x: 200, y: 150, color:"teal" }));
 stage.insert(new Q.Ball({ x: 300, y: 150, color:"orange" }));
 stage.viewport(400,600);
 stage.centerOn(200,300);

 }));

 Q.stageScene("level");
});

At this point in the book, the code in Listing 24-2 should look familiar.

The code deines only a single reusable sprite: Q.Ball. This deines the shape, size, and physical prop-
erties of the ball and adds the physics component to make the balls react to gravity and other objects.

The wall sprites are created as normal Q.Sprite objects. (Remember these are Q.SVGSprite
objects, but calling svgOnly() during setup copies them to Q.Sprite.) Then their type is set to
static to make them nonmoving objects, and the physics component is added to them.

Next, six balls of different colors are added to the stage.

If you load this code in the browser, you should see six balls that fall vertically straight down.

Adding Orientation Control

To add in support for adjusting gravity relative to the device, add a deviceorientation event han-
dler that grabs the rotation data and adjusts the gravity vector in the Box2D world as necessary.

Because a beta and a gamma of 0 means that the device is laid lat and thus the ball shouldn’t be
moving, the easiest way to adjust gravity is to multiply some constant by the sine of beta to get the y
component of gravity and by the sine of alpha to get the x component of gravity (from the perspec-
tive of the balls).

To add more excitement to the experience, the center block, stored in the center variable, is also
rotated to always face north (or alpha 0).

LISTING 24-2 (continued)

Trying Out Device Orientation ❘ 455

To try this, add the highlighted code in Listing 24-3, as shown near the bottom of the orient.js ile.

LISTING 24-3: The orientation event handler

 stage.viewport(400,600);
 stage.centerOn(200,300);

 if (window.DeviceOrientationEvent) {
 $(window).on("deviceorientation",function(e) {
 var eventData = e.originalEvent
 tiltLR = eventData.gamma,
 tiltFB = eventData.beta,
 direction = eventData.alpha;

 center.physics._body.SetAngle(direction * Math.PI / 180);

 var leanAngle = tiltLR * Math.PI / 180,
 tiltAngle = tiltFB * Math.PI /180,
 gravityX = 20 * Math.sin(leanAngle),
 gravityY = 20 * Math.sin(tiltAngle);
 stage.world._world.m_gravity.x = gravityX;
 stage.world._world.m_gravity.y = gravityY;
 });
 }

 }));

If you run the example again in your browser on a supported mobile device or on Chrome in a recent
MacBook, you can play with the balls and adjust their movement by slightly rotating the device. (Up
to the point where the orientation lips, then all bets are off; the balls no longer follow gravity.)

Dealing with Browser Rotation

Turning your device past the point where it changes orientation brings to the forefront a major prob-
lem with device orientation in HTML5 games: As a web developer you currently have no way to
lock the display to prevent rotation. If the users angle their phones too much, they end up swapping
between landscape and portrait mode or vice versa. There is no complete way around this except to
build your game in such a way as to discourage the users from turning the device too much.

The good news is that there is a speciication for a Screen Orientation API that includes the capability
to lock the screen: www.w3.org/TR/screen-orientation/. The bad news is this speciication has
been implemented only in Firefox Mobile, as of this writing.

Until the Screen Orientation API becomes more commonplace, a partial solution is to examine the
window.orientation value whenever there is an orientationchange event. window.orientation
contains the value in degrees of the orientation from the default position that the device is held.
This is actually a little more complicated than you might think because the window.orientation
value is not consistent across devices or platforms as you saw in the section “Looking at a Device
Orientation.”

http://www.w3.org/TR/screen-orientation/

456 ❘ CHAPTER 24 Querying deviCe orientation and aCCeleration

For handling devices other than Android phones, which currently appear to, unfortunately, treat
landscape mode in either direction as having a window.orientation of 90, you can add the code in
Listing 24-4 before the Q.Scene code in orient.js to transform the container based on the value of
window.orientation.

LISTING 24-4: Handling window rotation

 function rotateContainer() {
 $("#quintus_container")[0].style.webkitTransform =
 "rotate(" + -1*window.orientation + "deg)";
 }
 rotateContainer();
 $(window).on("orientationchange",rotateContainer);

 Q.scene('level',new Q.Scene(function(stage) {

The rotateContainer method is WebKit vendor preix speciic, but it can be extended to other
browsers by handling the various preixes for rotation. It gives a value for window.orientation and
rotates the container element back in the other direction so that the container’s angle is unchanged.

As mentioned earlier, because Android phones, as of this writing, give only an orientation value of
90 (never –90), this ix won’t work for those phones when the device is rotated –90 degrees.

NEED MORE CONTROL?

The DeviceOrientation event speciication provides a more complex event called
devicemotion that gives even iner-grain control over device motion. It provides
an acceleration and an accelerationIncludingGravity child object that
have raw x, y, and z acceleration values. It also has a rotationRate object that
provides alpha, beta, and gamma values for the rotation of the device over a given
period of time. devicemotion is a little more dificult to work with and in most
situations doesn’t provide a lot of additional value, but if you need iner-grained
control, check out the details in the speciication linked earlier.

SUMMARY

This chapter provided an introduction to the window.orientation value along with the details of
using the deviceorientation event to enable the addition of accelerometer-based gameplay into
your HTML5 games. This capability, however, comes with the caveat that rotations that cause the
device screen orientation to change don’t play nice with HTML5 gaming. By opening up the device
orientation to the browser, HTML5 game developers now have more tools in their tool belt to build
games that use creative input mechanisms.

Playing Sounds, the Mobile
Achilles Heel

WHAT’S IN THIS CHAPTER?

 ➤ Learning the <audio> tag

 ➤ Creating a desktop sound engine

 ➤ Creating a mobile sound engine

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 25
download and individually named according to the names throughout the chapter.

INTRODUCTION

Along with its many other enhancements to browser capabilities, HTML5 inally brought with it
the promise of sound as a irst-class citizen. Despite its limitations, the basic <audio> tag can be
used in desktop HTML5 games for music and sound effects with a little coaxing. Unfortunately,
HTML5 audio on mobile has been somewhat neglected. This chapter examines the current limi-
tations of HTML5 audio on mobile and some possible workarounds for those limitations.

WORKING WITH THE AUDIO TAG

As mentioned, HTML5 deines an <audio> tag as part of the core HTML5 speciication. It’s
designed primarily for in-page sound playback, but the lexibility of the tag means that game
developers have repurposed it for game audio as well.

25

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

458 ❘ CHAPTER 25 playing sounds, the MoBile aChilles heel

Using the Audio Tag for Basic Playback

The <audio> tag can be used to create an on-page audio player with a single tag:

<audio src="music.mp3" controls/>

More interesting from a game development perspective, however, is that the <audio> tag can also
be created entirely separate from a visual component using the Audio object as you saw briely in
Chapter 10, “Bootstrapping the Quintus Engine: Part II.”

var snd = new Audio();
snd.src = "music.mp3";
snd.addEventListener("canplaythrough",function() {
 snd.play();
});
snd.load();

The preceding example creates a new audio object, sets the source to the ile music.mp3, and then
starts the music playing as soon as the canplaythrough event triggers. canplaythrough means that
the audio ile has loaded enough that it can start playing, and if it keeps loading at the current rate,
it will inish loading before the playback reaches the end of the ile.

Dealing with Diferent Supported Formats

Also as mentioned in Chapter 10, different browsers support different audio formats, with no single
format supported by all browsers currently. To cover the widest range of browsers, you need to sup-
port at least two formats: either .mp3 and .ogg or .mp3 and .wav. Because .ogg is lossy compressed
comparable to .mp3’s small ile size, it’s a better choice than .wav.

If you want to support this from a markup perspective, you can use separate source tags and count
on browsers to pick the irst one that they support:

<audio controls>
 <source src="music.mp3" type="audio/mp3" />
 <source src="music.ogg" type="audio/ogg" />
</audio>

If you use JavaScript to load the ile, you can use the canPlayType method on the Audio object to
check for support to decide which element to load:

var snd = new Audio();

if(snd.canPlayType('audio/mpeg')) {
 snd.src = "music.mp3";
} else if(snd.canPlayType('audio/ogg; codecs="vorbis"') {
 snd.src = "music.ogg";
}

// ... load and play the sound

Because the audio/ogg mime type is a container that can support multiple different codecs, you
need to check for the speciic code (generally “vorbis” for audio) to use.

Building a Simple Desktop Sound Engine ❘ 459

WHY NOT SUPPORT A SINGLE FORMAT?

As a web developer, it’s unimaginably frustrating that no single audio (or video
for that matter) format is supported in all browsers. The primary reason for this is
patents. Encoding and decoding audio data to and from the MP3 audio format, by
far the most popular format, is a process protected by patented technology owned
by the Fraunhofer Institute. For this reason the open-source Firefox browser has
chosen not to support the MP3 ile format in its browser, but instead support the
open OGG ile format for audio.

Other browsers such as Internet Explorer and Safari unfortunately don’t support
OGG. The reason for this is fuzzy; some people guess it’s because Microsoft and
Apple don’t want the open-source format, which some claim is less performant
from a technical perspective, to “win.” The assumption on everyone’s part is that
the irst ile format supported in all browsers will win the format battle because
developers will be happy to have only one format to support.

Understanding the Limitations of Mobile Audio

With the basics of the HTML5 audio tag covered, there’s good news and there’s bad news. The good
news is that the <audio> tag is supported by current versions of iOS and Android. The bad news is
that support is severely crippled in several instances.

The irst issue is that iOS has the limitation to require sounds to be loaded and played only from a
user-initiated action. Furthermore iOS plays only a single channel of HTML5 audio at a time. On
Androids newer versions than 2.3, the limitations aren’t as severe, but the latency associated with
loading and swapping audio iles means effectively the same limitations as iOS applies.

As you can imagine, this severely limits the sound capabilities of mobile devices for games: You must
play sound effects whenever they are appropriate (such as when a missile hits an enemy) and not just
in response to a user action.

The workarounds to still allow some audio playback are quite limited, but you can get some amount
of audio playback on mobile from a game perspective using the concept of audio sprites, as shown in
the section “Using Sound Sprites.”

All this changes in iOS 6, which will have support for some implementation of Audio Data API.
Android will also support the Audio Data API at some point in the future, but currently sound
sprites are the best you can use as of this writing.

BUILDING A SIMPLE DESKTOP SOUND ENGINE

Before delving into the contortions necessary to get audio playing on a mobile device, it’s worth tak-
ing a look at what’s involved in playing sound effects via the <audio> tag on the desktop.

460 ❘ CHAPTER 25 playing sounds, the MoBile aChilles heel

Using Audio Tags for Game Audio

One of the problems with Audio objects from a game perspective is that each object can play only one
sound at a time. This means that if you want to play the same sound effect twice at almost the exact
same time (because, for example, two missiles just blew up) you can’t if you use a single audio element.

As a workaround to this limitation, HTML5 game developers quickly discovered that after a sound
had been loaded, if you assigned its source to another, different audio element, the sound effect
wouldn’t be downloaded again but would start playing almost immediately. This led to a design of
game audio systems that had a number of pre-created Audio objects that were used as channels to
play sound effects.

To make this work, it would be the audio system’s job to keep track of which of the channels were still
playing audio and add any new sound effects only to channels that weren’t in the middle of playing.

Adding a Simple Sound System

In Chapter 10 the asset loader code has some functionality for loading sound iles based on sup-
ported formats. This means that the loading side of things is already built. The only piece of code
needed is setting up the channels and playing back audio where appropriate.

This example adds sound to the Block Break example from Chapter 11, “Bootstrapping the
Quintus Engine: Part III.” To start, create a new ile called quintus_audio.js in the same direc-
tory as blockbreak.html and add the code from Listing 25-1.

LISTING 25-1: The desktop quintus audio system

Quintus.Audio = function(Q) {
 Q.audio = {
 channels: [],
 channelMax: Q.options.channelMax || 10,
 active: {}
 };
 // Dummy methods
 Q.play = function() {};
 Q.audioSprites = function() {};

 Q.enableSound = function() {
 var hasTouch = !!('ontouchstart' in window);
 if(!hasTouch) {
 Q.audio.enableDesktopSound();
 } else {
 Q.audio.enableMobileSound();
 }
 return Q;
 };

 Q.audio.enableDesktopSound = function() {
 for (var i=0;i<Q.audio.channelMax;i++) {
Q.audio.channels[i] = {};
 Q.audio.channels[i]['channel'] = new Audio();

Building a Simple Desktop Sound Engine ❘ 461

 Q.audio.channels[i]['finished'] = -1;
}
 Q.play = function(s,debounce) {
 if(Q.audio.active[s]) return;
 if(debounce) {
 Q.audio.active[s] = true
 setTimeout(function() {
 delete Q.audio.active[s];
 },debounce);
 };

 for (var i=0;i<Q.audio.channels.length;i++) {
 var now = new Date();
 if (Q.audio.channels[i]['finished'] < now.getTime()) {
Q.audio.channels[i]['finished'] = now.getTime() +
 Q.asset(s).duration*1000;
 Q.audio.channels[i]['channel'].src = Q.asset(s).src;
 Q.audio.channels[i]['channel'].load();
 Q.audio.channels[i]['channel'].play();
 break;
 }
 }
 }
 }

 Q.audio.enableMobileSound = function() {
 // TODO: Add mobile support
 }
};

As you can see, the audio system code, at least for the desktop is fairly short and consists primarily
of a few coniguration variables and dummy methods followed by the enableSound method, which
checks if this is a touch device and determines which sound system to load. If it’s a desktop browser,
the code calls enableDesktopSound, which sets up the audio channels and adds the real play
method (one that actually plays sounds) onto Q. The dummy play and audioSprites methods are
present so that games can still call those methods even if the audio system isn’t enabled.

Setting up the audio channels consists of creating an array of sound objects paired with a finished
property that indicates the time that the sound will inish playing. Because no sounds are playing to
start with, the property is initialized to –1 for all channels.

Next up is the real play method, which has the main job to ind an open channel; in other words,
one that has a inished time less than the current time, grabbing the src for a preloaded audio ile
from Q.asset, loading, and playing it. To make it slightly more useful, the method takes a second
parameter that is a debounce time, which prevents the same sound from being played for approxi-
mately that number of milliseconds. This is useful for situations in which play might be called
repeatedly in a short period of time, but it should trigger only a single sound effect.

Adding Sound Efects to Block Break

To add the sound effects to Block Break, you need to add the quintus_audio.js ile to
blockbreak.html and make three small changes to blockbreak.js.

462 ❘ CHAPTER 25 playing sounds, the MoBile aChilles heel

First, open blockbreak.html and add the required <script> tag:

 <script src='quintus.js'></script>
 <script src='quintus_input.js'></script>
 <script src='quintus_sprites.js'></script>
 <script src='quintus_scenes.js'></script>
 <script src='quintus_audio.js'></script>
 <script src='blockbreak.js'></script>

Next, open blockbreak.js and add the Audio module to the top of the ile and call enableSound()
to enable the sound system.

$(function() {
 var Q = window.Q = Quintus()
 .include('Input,Sprites,Scenes,Audio')
 .setup()
 .enableSound();

Next, modify the step method in Q.Ball to play paddle.mp3 when the ball hits a paddle and
block.mp3 when the ball hits a block.

Q.Ball = Q.Sprite.extend({
 init: function() {
 this._super({
 sheet: 'ball',
 speed: 200,
 dx: 1,
 dy: -1,
 });
 this.p.y = Q.height / 2 - this.p.h;
 this.p.x = Q.width / 2 + this.p.w / 2;
 },
 step: function(dt) {
 var p = this.p;
 var hit = Q.stage().collide(this);
 if(hit) {
 if(hit instanceof Q.Paddle) {
 Q.play('paddle.mp3',500);
 p.dy = -1;
 } else {
 Q.play('block.mp3');
 hit.trigger('collision',this);
 }
 }

The paddle.mp3 playback is debounced to occur only every 500 milliseconds. This is because the
ball may overlap the paddle for multiple frames, so the sound playback needs to be debounced to
prevent the game from trying to play a new sound every frame. The block.mp3 ile, on the other
hand, doesn’t need to be debounced because the block is removed after a collision.

Finally, modify the Q.load call to load paddle.mp3 and block.mp3:

 Q.load(['blockbreak.png','blockbreak.json',
 'paddle.mp3','block.mp3'], function() {
 Q.compileSheets('blockbreak.png','blockbreak.json');

Building a Sound System for Mobile ❘ 463

 Q.scene('game',new Q.Scene(function(stage) {
 stage.insert(new Q.Paddle());
 stage.insert(new Q.Ball());

Next, make sure you have the necessary iles: .mp3 and .ogg iles in audio/. Although the load
method mentions iles ending in .mp3, the engine will automatically substitute the extension based
on what’s supported on the platform you are on.

If you ire up the game in a desktop browser, you should now have basic sound effects for when the
ball hits blocks and the paddle.

As mentioned in the last section, for mobile devices, this simple, straightforward mechanism isn’t
going to work. You’ll add sound for mobile in the next section.

BUILDING A SOUND SYSTEM FOR MOBILE

I would like nothing better than for the code in this section to become obsolete; it’s hackish and
does things no game should have to do just to play some simple sound effects. Unfortunately, it’s
also the only option that’s currently available to HTML5 game developers building mobile games.
It’s not a great solution: Sound effects on iOS aren’t synced-up well on iOS, and preloading sounds
isn’t allowed. Android has similar restrictions. Until the Web Audio API is available for mobile
devices, sound support on mobile will be limited.

Using Sound Sprites

So what’s the solution? Sound sprites. Much like image spritesheets, audio sprites work by putting
multiple sounds into a single audio ile, separated by gaps of silence.

If you want a standalone library for doing this, there is the Zynga jukebox library, on GitHub at
https://github.com/zynga/jukebox. It is a library for playing sounds on mobile devices and works
in the same way as the code you add to Quintus does. Jukebox is designed to play on the widest range
of devices possible, has been tested all the way back to Android 1.6, and includes a Flash fallback for
older Android devices. The code in Listing 25-2 is targeted only at recent iOS and Android devices.

To make audio sprites work, on the irst user interaction with the game (such as a touch of the title
screen) the sound system starts preloading a single sound. When the sound is playable, the engine
starts playing the sound at an initial position in the sound ile, which contains only silence. The sys-
tem then sets a timer to keep looping over the initial silence portion of the sound.

The reason it keeps looping over the sound is that iOS enables automated chaining of sounds: When
one sound ends, you can start the next one without user interaction. However, it doesn’t enable you
to arbitrarily start playing a sound when there are no other sounds playing.

This means the single audio sprite sound ile needs to always be playing, even if what it’s playing is
just silence.

To actually trigger a sound effect, the system fast forwards to the spot in the audio ile where the
effect is positioned and then sets a timer to go back to playing silence as soon as that sound has in-
ished playing. Because this is not an exact science, it’s important that there are delays of at least 1
second between effects to ensure one effect doesn’t accidentally start playing the sound after it.

https://github.com/zynga/jukebox

464 ❘ CHAPTER 25 playing sounds, the MoBile aChilles heel

To see how the code that does this looks, ill in the stub of the enableMobileSound method in
quintus_audio.js with the code in Listing 25-2.

LISTING 25-2: The enableMobileSound method

 Q.audio.enableMobileSound = function() {

 var isiOS = navigator.userAgent.match(/iPad|iPod|iPhone/i) != null;

 Q.audioSprites = function(asset) {
 if(_.isString(asset)) asset = Q.asset(asset);
 Q.audio.spriteFile = asset['resources'][0].replace(/\.[a-z]+$/,"");
 Q.audio.sprites = asset['spritemap'];
 Q.el.on("touchstart",Q.audio.start);
 }

 // Turn off normal sound loading and processing
 Q.options.sound = false;

 Q.audio.timer = function() {
 Q.audio.sheet.currentTime = 0;
 Q.audio.sheet.play();
 Q.audio.silenceTimer = setTimeout(Q.audio.timer,500);
 };

 Q.audio.start = function() {
 Q.audio.sheet = new Audio();
 Q.audio.sheet.preload = true;
 Q.audio.sheet.addEventListener("canplaythrough", function() {
 Q.audio.sheet.play();
 Q.audio.silenceTimer = setTimeout(Q.audio.timer,500);
 });

 var spriteFilename = Q.options.audioPath + Q.audio.spriteFile;
 if(isiOS) {
 Q.audio.sheet.src = spriteFilename + ".caf";
 } else {
 Q.audio.sheet.src = spriteFilename + ".mp3";
 }

 Q.audio.sheet.load();
 Q.el.off("touchstart",Q.audio.start);
 };

 Q.play = function(sound,debounce) {
 if(!Q.audio.sheet || !Q.audio.silenceTimer) return;
 if(Q.audio.activeSound) return;
 if(debounce) {
 Q.activeSound = true
 setTimeout(function() {
 Q.audio.activeSound = null;
 },debounce);

Building a Sound System for Mobile ❘ 465

 }

 sound = sound.replace(/\.[a-z0-9]+$/,"");
 if(Q.audio.sprites && Q.audio.sprites[sound]) {
 var startTime = Q.audio.sprites[sound].start – 0.05,
 endDelay = Q.audio.sprites[sound].end - startTime;
 Q.audio.sheet.currentTime = startTime;
 Q.audio.sheet.play();
 clearTimeout(Q.audio.silenceTimer);
 Q.audio.silenceTimer = setTimeout(Q.audio.timer,
 endDelay*1000 + 500);
 }
 };
 };

This method irst checks if the device is an iOS device using userAgent matching. This is not an
ideal method (user agent matching never is) but it’s the only way to put in a speciic ile-type work-
around for iOS.

Next is the Q.audioSprites method, which is used to pass in the JSON data asset that provides
position and length information about the sprites. It stores the ilename to load and the sprites inside
of the Q.audio object. It also binds to the irst touch event on Q.el (the Canvas element) to start the
audio system. This is the trick that allows the system to start playing the sprite sound.

Next, it sets Q.options.sound to false, which has the effect of telling the loading system in
Quintus not to try to load any sound iles in the normal Q.load process. This needs to be done
to prevent the engine from trying to load sound iles because these iles will never trigger their
canplaythrough callbacks due to mobile preloading restrictions.

The Q.audio.timer method is the default callback that ensures that when no other sounds are
playing, the audio element continues to loop over the irst 500 milliseconds of the sprite, which are
known to be silent.

The Q.audio.start method is called on the irst touch event. Because it’s triggered by a user event,
it can set up and load a sound ile. When the canplaythrough event triggers, it calls play and starts
the silence timer.

Next, the system loads the sound ile into the audio spritesheet at Q.audio.sheet. On iOS devices,
although mobile Safari has support for a number of different sound formats, only the .caf ile format
(when encoded with the IMA-ADPCM codec) can be played natively without using iTunes to do the
actual playing. Using iTunes to play sounds causes a noticeable delay and stutter inside of mobile Safari.

Finally, Q.audio.start turns off the touchstart callback to prevent it from being called twice.

After handling debouncing much in the same way as on the desktop, the Q.play method itself has
the job to ind the sprite in the Q.audio.sprites object. It irst removes any ile extensions off the
sound name (the sprite names don’t include the ilenames in them, compared to the assets, which
generally do); it then checks that the sound is present.

With the sound found, the game can calculate the start time for the sound and how long it should
play for. It then simply scrubs the audio sheet to the point in the ile where the sound starts and
calls play on the audio ile again to force it to continue playing. The start time is set back slightly
by 0.05 seconds because otherwise short effects or effects that start right away can be skipped by

466 ❘ CHAPTER 25 playing sounds, the MoBile aChilles heel

both Android and iOS. Finally, it clears out the silence timer timeout and resets it to trigger after the
sound has inished playing.

Generating the Sprite File

In order to generate the combined sound ile necessary for the game and the accompanying JSON
data ile, you could open an audio editing program and manually place the sound effects with the
proper silence gaps and then manually create a JSON ile. As things progress, however, this could
become a maintenance nightmare.

Luckily, there is a tool that has been written to generate the combined iles and output JSON for
Zynga’s jukebox. Because the Quintus code you added earlier uses a subset of the features in juke-
box, you can use that tool, available at https://github.com/tonistiigi/audiosprite.

The library relies on the ffmpeg tool, which you need to install separately. It is available via the ffmpeg
website at http://ffmpeg.org/ or can be installed via Homebrew on OS X (brew install ffmpeg)
or via your package manager on Linux. Windows users need to download and run the installer.

After you have ffmpeg installed, to install audiosprite, use NPM and install it globally via the
following:

npm installl -g audiosprite

This installs a command called audiosprite that generates the combined audio sprite iles. To com-
bine the block.wav and paddle.wav iles into the output ile called audiosprites, you can run

 audiosprite --silence 1 ~DHoutput audiosprites block.wav paddle.wav

This generates audiosprites.caf, audiosprites.mp3, and audiosprites.json (along with .ogg
and.m4a iles). The audiosprites.json ile looks something like Listing 25-3.

LISTING 25-3: The audiosprites.json ile

{
 "resources": [
 "audiosprites.caf",
 "audiosprites.ac3",
 "audiosprites.mp3",
 "audiosprites.m4a",
 "audiosprites.ogg"
],
 "spritemap": {
 "silence": {
 "start": 0,
 "end": 1,
 "loop": true
 },
 "block": {
 "start": 2,
 "end": 2.03,
 "loop": false
 },
 "paddle": {
 "start": 4,

https://github.com/tonistiigi/audiosprite
http://ffmpeg.org/

Summary ❘ 467

 "end": 4.04,
 "loop": false
 }
 },
 "autoplay": "silence"
}

Because the audiosprite tool just takes a list of iles and generates both the combined ile and the
JSON, it’s an easy tool to include in your build process to make generating sound sprite iles slightly
less painful.

Adding Sound Sprites to the Game

To get sound sprites into the Block Break game, you need to make only a couple of minor changes to
the loading code to load the audiosprites.json ile and tell the engine to use that JSON ile as the
audio sprites. Modify the highlighted code in the Q.load callback in blockbreak.js to read:

Q.load(['blockbreak.png','blockbreak.json','audiosprites.json',
 'paddle.mp3','block.mp3'], function() {
 Q.compileSheets('blockbreak.png','blockbreak.json');
 Q.audioSprites("audiosprites.json");

 Q.scene('game',new Q.Scene(function(stage) {

If you run this game on a mobile iOS or Android device, you should now have sound. On iOS the
sound will be a little choppy and not particularly well synced, but it’s unfortunately the best that
can be done within the limitations of the medium.

LOOKING TO THE FUTURE OF HTML5 SOUND

Although HTML5 audio on mobile devices is in a particularly bad state, the situation on the desk-
top isn’t that much better. Of the current generation browsers, IE9 actually has the best performing
<audio> tag support. Other browsers (Chrome in particular) actually regressed during 2011 and
added new issues with <audio> tag playback. These are slowly being ixed, and the long-term out-
look for game audio on HTML5 is bright.

In particular, the Web Audio API is particularly impressive. (See the spec at www.w3.org/TR/
webaudio/ for more details.) However, because the Web Audio API is only available in Chrome
and Safari on the desktop at this time, it will be a while before there is a performant, low-level
sound API that is cross-browser supported, so it may still be for a while yet that the <audio> tag
is the game engine building block of choice.

SUMMARY

This chapter looked at one of the few less-than-bright spots in mobile HTML5 gaming: audio.
It looked at some of the basics of using the HTML5 <audio> tag and then jumped into adding a
simple sound engine for both desktop and mobile into the Quintus engine. While sound in mobile
browsers is limited, you make use of it provided you are aware of the limitations and use it to aug-
ment the game experience rather than rely on it as a core feature of your mobile game.

http://www.w3.org/TR/webaudio/

PART VIII

Game Engines and App Stores

 ⊲ CHAPTER 26: Using an HTML5 Game Engine

 ⊲ CHAPTER 27: Targeting App Stores

 ⊲ CHAPTER 28: Seeking Out What’s Next

Using an HTML5 Game Engine

WHAT’S IN THIS CHAPTER?

 ➤ Reviewing the history of HTML5 game engines

 ➤ Learning about commercial HTML5 engines

 ➤ Understanding open-source HTML5 engines

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 26
download and individually named according to the names throughout the chapter.

INTRODUCTION

The ease to start with HTML5 game development combined with the growing popularity of
HTML5 as a medium to build games quickly has led to a proliferation of game engines, both
open-source and commercial. This chapter examines some of the most popular engines available.

LOOKING AT THE HISTORY OF HTML5 ENGINES

Although the canvas element has been around in some form since it was introduced by Apple
to power OS X Dashboard components in 2004, it has been only in the past few years that
people began to take HTML5 seriously as a platform for game development. There are a
myriad of reasons for this, but the performance limitations of JavaScript and the lack of high-
performance rendering kept JavaScript from being considered for serious game development by
most sane individuals.

26

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

472 ❘ CHAPTER 26 using an htMl5 gaMe engine

That began to change in 2008. In response to the processing requirements of the increasingly
massive amounts of JavaScript that were beginning to appear in Ajax-heavy applications, such as
Google’s GMail JavaScript, performance began to be taken seriously by browser makers.

To help speed up its own applications, Google released the Chrome browser powered by the V8
JavaScript engine, and Safari and Firefox both launched new JavaScript engines that boosted per-
formance immensely. The JavaScript arms race was on in full force, and people slowly began to
look at JavaScript more and more like a real language that could be used for larger-scale application
development.

Developers have an uncontrollable impulse to program games in whatever medium they work in,
and JavaScript was no different. Simple games in JavaScript have been around since its inception,
but in 2008 things began to change as some brave souls, such as the developers behind GameQuery
(http://gamequeryjs.com/) began putting together larger, more sophisticated game frameworks.

As the canvas element started to appear in more and more browsers, developers turned their atten-
tion to it as a potential game development tool. Early tools such as gameJS (http://gamejs.org/),
based on the popular Python PyGame library, tended to provide a thin wrapper on top of canvas.

Into this mix a game engine called Akihabara (www.kesiev.com/akihabara/) appeared in early
2010. More a loose collection of tools than a full game engine, the magic of Akihabara was that it
ran on just about anything that supported the canvas tag. This included the iPhone, iPad, Android,
and newer desktop browsers as well as the Internet Channel inside of the Nintendo Wii.

As the Italian creator of Akihabara wrote:

The Akihabara which you can download here is my personal dream too. It is a

set of libraries, tools and presets to create pixelated indie-style 8/16-bit era games

in JavaScript that runs in your browser without any Flash plugin, making use of

a small small small subset of the HTML5 features, that are actually available on

many modern browsers.

By targeting classic pixelated indie-style games at lower resolutions, Akihabara hit a performance
sweet spot but also provided a glimmer of what could be when browsers and devices caught up with
the needs of HTML5 game developers and provided a speedy, stable platform for games.

Since then a large number of engines have appeared on the scene, both commercial and open-source,
each with its own philosophy and supported platforms and technologies (Canvas, DOM, and WebGL).

The JavaScript Wiki has a page dedicated to HTML5 game engines that is updated on a regular
basis: http://jswiki.org/game-engines.html.

Every engine has a target market and target developer demographic, so picking an engine that
matches your requirements and needs is important.

USING A COMMERCIAL ENGINE

Although there might seem to be a little incongruity to the idea of using a commercial engine on
a platform all about standards and openness, there are signiicant beneits to using a commercial
engine over an open-source one: a dedicated team working on the engine and better and more up-to-
date documentation and tutorials (in general).

http://gamequeryjs.com/
http://gamejs.org/
http://www.kesiev.com/akihabara/
http://jswiki.org/game-engines.html

Using a Commercial Engine ❘ 473

The most obvious downside to commercial engines is that they cost money; however, the currently
popular HTML5 engines are relatively inexpensive (the cost of 1–2 console games if you want to
put it in perspective) or will take a percentage of revenue once your game is making money, so cost
shouldn’t be the largest concern you have.

The primary downsides of commercial engines revolve around the restrictions placed on development
and distribution. Most of the HTML5 engines are licensed per developer, which means that anyone
who helps you on your game needs to have a license as well. Second, although the nature of HTML5
means that you always have some sort of source code for the engine you could theoretically modify,
for engines that rely on an IDE to build and export games, you may not have code that can easily be
modiied. Instead you need to work within the limits of the functionality baked into the engine.

Impact.js

One of the most popular commercial HTML5 engines out there, Impact is the product of a single
developer, Dominic Szablewski, and was one of the earliest commercial HTML5 game engines to
gain wide appeal. The engine is $99 per developer and is available at http://impactjs.com.

Impact comes with a powerful level editor called Weltmeister that enables you to easily create lay-
ered, parallax scrolling tile maps and place and edit entities (game objects). Figure 26-1 shows the
Weltmeister in action with the jumpnrun demo provided with the engine.

FIGURE 26-1: The Impact.js Weltmeister.

Impact is a programmer game engine, and although the Weltmeister is a great tool to create levels,
most of your game will be built in your code editor writing code and creating entities. Impact is

http://impactjs.com

474 ❘ CHAPTER 26 using an htMl5 gaMe engine

designed around a classical inheritance model and a module system that makes it easy to manage
dependency loading among objects. When you are ready to release your game, Impact provides a sys-
tem for packaging your game into a single JavaScript ile for release, a process Impact calls baking.

As you would expect from an HTML5 game engine, Impact is designed to play on mobile devices.
Szablewski even went so far as creating a way to build and package your game in iOS and have
the graphics run using hardware-accelerated OpenGL instead of the mobile Safari canvas. This
is called iOSImpact and enables you to publish Impact games in the Apple App Store written
entirely in HTML5. The mobile HTML5 company AppMobi has used this technology to build
its DirectCanvas open-source project, which is discussed in the next chapter, to allow other game
engines to publish natively on iOS.

As a game engine, Impact is optimized primarily for 2-D scrolling platformers, but any type of
game can theoretically be built with the engine. Using it for other genres simply means that you end
up writing more code. As long as you keep within the conines of image-based sprites, Impact can
nicely abstract away from the details of HTML5 speciic rendering issues provided you keep to the
basic image sprites and tile maps it supports.

Spaceport.io

Spaceport.io (http://spaceport.io) is a hybrid engine that supports vector graphics running on
HTML5 (as well as Flash and native iOS and Android apps). It’s JavaScript-based but has a Flash-
inspired API and loads vector assets from .SWF iles that are run through a converter.

If you have existing ActionScript 3.0 games, you can run them through a converter to get you most
of the way into JavaScript, but some additional manual changes are required.

The big selling point for Spaceport.io is its similarity to Flash’s API, which can help a lot of Flash-
based game developers make the leap, and its support for Flash and vector graphics in its asset devel-
opment pipeline. One of the major drawbacks for HTML5 game development in its current state is
that animations are generally handled by spritesheets of bitmapped graphics, leading to single-layer,
canned animations.

From a licensing standpoint, Spaceport.io is free to start developing in, but after you publish your
game commercially, the engine requires a 10% revenue share.

IDE Engines

In addition to the two commercial engines previously described, there are also two IDE-based engines
(GameMaker HTML5 and Scirra’s Construct 2) that can output mobile-playable HTML5 games.
These are both applications that you need to download and install and then build your game inside of.

GameMaker has a custom scripting language called GameMaker Language (GML) used for script-
ing elements, whereas Construct 2 prides itself on enabling users to build games without program-
ming using mostly drag-and-drop. Both engines support 2-D scrolling action games best, but again,
they can be used to build just about any type of game you like.

http://spaceport.io

Using an Open-Source Engine ❘ 475

USING AN OPEN-SOURCE ENGINE

On the open-source side of things, HTML5 engines have proliferated as well. Although there are
too many to cover in a single book (let alone in a single chapter), there are a few worth mentioning
because of their popularity and their support for mobile HTML5 gaming.

Crafty.js

Crafty.js (http://craftyjs.com) is a lightweight HTML5 engine based entirely around the idea of
components and entities. At under 90k Miniied and Gzipped with no dependencies, it has a small
footprint.

Instead of deining classes, you simply create entities and add components onto them. Components,
as you’ve seen in Quintus, can add additional functionality as well as trigger and respond to events.

The main Crafty object also acts like the jQuery object in that it can be used to query for objects
that have a speciic component or combination of components:

Crafty("Enemy");
// will return all entities with the Enemy component

Crafty ships with a number of useful components, including basic physics; polygon-based collision
detection; two-way (platformer), four-way (top-down) and touch controls; and sound support.

You can create new components by calling Crafty.c and passing in an init method and any addi-
tional methods that should be added onto the entity.

A separate site for components has been set up: http://craftycomponents.com. This site enables
users to submit components and makes it easy to load components directly from the web.

To get a sense of what working with Crafty looks like, look at the code in Listing 26-1. It creates a
white box for the play area and adds in gravity and two-way controls that enable you to run around
and jump. Below the player a blue loor object is created that enables the player to run around on
top of it.

LISTING 26-1: A simple example in Crafty

<html>
<head>
 <script src="jquery.min.js"></script><script src="crafty-min.js"></script>
</head>
<body>
<script type="text/javascript">
$(function() {

 Crafty.init(640,480).canvas.init();
 Crafty.background("black");

 // Create the player object with some initial components

continues

http://craftyjs.com
http://craftycomponents.com

476 ❘ CHAPTER 26 using an htMl5 gaMe engine

 var player = Crafty.e("2D, Canvas, Color, Player, Physics")
 .color("white")
 .attr({w:50, h:50, x:126, y:0});

 // You can also add additional components after the fact
 player.addComponent('Gravity').gravity("Floor");
 player.addComponent("Twoway").twoway(5,50);
 player.addComponent("Collision");

 var floor = Crafty.e("2D, Canvas, Color, Collision, Floor")
 .color("blue")
 .attr({h:30, w:400, x:0, y:380 })
});
</script>

</body>
</html>

As you can see, Crafty gets its work done without needing to create a complicated class hierarchy. To
run the example you just need to place it inside of an HTML ile that has the crafy.js library loaded.

Because of the lexibility of using a component-entity system, Crafty is a versatile engine that can
be adapted to most genres. Using the built-in components, it works best for anything except 2-D
platformers, for which it needs some additional code to handle correct interaction with platforms.
Because it provides an advanced collision-detection system based on convex polygons, it works well
with top-down games such as 2-D RPGs that need more than just simple tile-based gameplay.

For more on Crafty, visit the website at http://craftyjs.com/. Crafty is dual-licensed under the
MIT and GPL licenses, which means you can build any type of both commercial or open-source
game using the engine.

LimeJS

LimeJS is an engine that explicitly describes itself as an “HTML5 game framework for building
fast, native-experience games for all modern touchscreens and desktop browsers.” LimeJS is a more
full-featured framework than Crafty (this is both a good and a bad thing) that uses Google’s closure
library (http://closure-library.googlecode.com/) for dependency resolution and its event
system. It also comes with Google’s closure compiler, a Closure-optimized version of Box2d JS and
Closure Templates.

As you would expect from a framework of this size, using LimeJS is a little more involved to start
with than Crafty, which involves only a single ile.

LimeJS has a main object called a Director that acts as the main coordinating object and runs
the main timing loop. Each separate level or screen of your game is called a Scene, and a Scene
can have many Layer objects, each of which can contain any number of Node objects. Classes that
inherit from Node, such as Sprite, Circle, Label, and Polygon, are the actual objects you place on
the screen.

LISTING 26-1 (continued)

http://craftyjs.com/
http://closure-library.googlecode.com/

Using an Open-Source Engine ❘ 477

Although a four-level hierarchy to get an object displayed on the screen might seem complex, each
of these layers provides a useful abstraction as you build a game.

To get a sense of what a simple example in LimeJS might look like, look at Listing 26-2. This
example drops a circle on the screen wherever you touch, has that circle follow your touch or mouse
around, and then fades in and gets larger when you release.

LimeJS handles multitouch just ine without any extra code, so you can touch and drag with mul-
tiple ingers at a time.

LISTING 26-2: A Lime.js example

goog.provide('movingballs');

goog.require('lime.Director');
goog.require('lime.Scene');
goog.require('lime.Circle');
goog.require('lime.animation.Spawn');
goog.require('lime.animation.FadeTo');
goog.require('lime.animation.ScaleTo');
goog.require('lime.animation.MoveTo');

movingballs.start = function(){
 var director = new lime.Director(document.body,1024,768),
 scene = new lime.Scene();
 director.makeMobileWebAppCapable();
 goog.events.listen(scene,['mousedown','touchstart'],function(e){
 var circle = new lime.Circle()
 .setSize(50,50)
 .setFill(Math.floor(Math.random()*255),
 Math.floor(Math.random()*255),
 Math.floor(Math.random()*255));
 scene.appendChild(circle);
 circle.setPosition(e.position.x,e.position.y)
 .setOpacity(0.5);

 e.swallow(['mousemove','touchmove'],function(e) {
 circle.runAction(
 new lime.animation.MoveTo(e.position)
 .setEasing(lime.animation.Easing.LINEAR)
);
 });

 e.swallow(['mouseup','touchend'],function(e){
 circle.runAction(new lime.animation.Spawn(
 new lime.animation.FadeTo(1),
 new lime.animation.ScaleTo(1.5)
));
 });
 });
 director.replaceScene(scene);
};

478 ❘ CHAPTER 26 using an htMl5 gaMe engine

This example is a modiied version of the helloworld example you can generate from the command
line with bin/lime.py create helloworld. Getting the example up and running is more involved
than using Crafty because you need to download LimeJS, run the bin/lime.py init command to
download the dependencies, and then create the project directory.

As you can see, everything is a little more verbose because of the heavy namespacing that the
Google Closure library uses, but because of the power of the library, the code still manages to stay
fairly compact.

A couple of nice things that LimeJS does are worth mentioning. The irst is the mechanism it uses to
track touches. The e.swallow code intelligently applies only to the same touch that initiated the origi-
nal event. It can track the touch identiier for you internally, so you don’t need to worry about it.

The animation system that LimeJS provides makes it easy to set up ire-and-forget animations
(much like jQuery). It also enables you to combine those animations to run concurrently via
lime.animations.Spawn.

LimeJS is licensed under the Apache License, which enables you to use it for any purpose personal
or commercial, as long as proper attribution is provided. To learn more about LimeJS and download
the engine, visit www.limejs.com.

EaselJS

EaselJS is a framework created during building of the Microsoft-sponsored game Pirates Love
Daises (www.pirateslovedaisies.com). EaselJS is an interesting position because it’s not actually a
game engine, but rather a framework to make canvas easier to work with. It provides a scene graph,
some base classes, and a number of utility methods that make working with canvas simpler and
more productive.

If you think the goal of EaselJS is to create a similar scripting environment as Flash, you wouldn’t be
far off from the mark. It provides a Stage object that acts much like the Flash stage, a Shape object
that behaves a lot like a Flash graphic, and a MovieClip that keeps track of animation frames much
like the Flash equivalent.

Just like Flash, EaselJS doesn’t come with a lot of game-speciic functionality, so things such as tile
maps, object physics, and the like all need to be added by you. But because the framework has such
a small, focused API, EaselJS is easy to start with and to use.

Because it’s packaged into a single JavaScript library and CDN-hosted, you can easily pull EaselJS
into your project simply by adding a <script> tag to your HTML:

<script src="http://code.createjs.com/easeljs-0.4.1.min.js"></script>

To get a sense of what some EaselJS code looks like, see Listing 26-3. This example adds a rotating,
bouncing ball that scales up and down on the screen. When you click or touch that ball, it will be
lung in a new, random direction.

Although it might not seem like EaselJS provides that much functionality in this example, it’s actu-
ally doing a fair amount. It handles pixel-perfect hit-detection on the ball shape, which was drawn
with an arbitrary Graphics object. It handles scaling and rotation of the object. It also handles run-
ning the main loop at a speciic wanted FPS using the Ticker object.

http://www.limejs.com
http://www.pirateslovedaisies.com

Using an Open-Source Engine ❘ 479

LISTING 26-3: EaselJS example

<!DOCTYPE HTML>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title></title>
 <script src="http://code.createjs.com/easeljs-0.4.1.min.js"></script>
 <meta name='viewport' content='width=device-width, user-scalable=no'>
</head>
<body>
 <canvas id='canvas' width='320' height='480'></canvas>
 <script>
 var canvas, stage, graphic, ball;

 canvas = document.getElementById("canvas");
 stage = new Stage(canvas);
 Touch.enable(stage);

 graphic = new Graphics();
 graphic.setStrokeStyle(1);
 graphic.beginStroke(Graphics.getRGB(0,0,0));
 graphic.beginFill(Graphics.getRGB(255,0,0));
 graphic.drawCircle(0,0,25);
 graphic.lineTo(0,0,0,25);

 ball = new Shape(graphic);
 ball.x = 50;
 ball.y = 50;
 ball.vx = 100;
 ball.vy = 1000;
 ball.pulse = 0;

 ball.onPress = function() {
 var direction = Math.random()*Math.PI*2;
 ball.vx = Math.cos(direction) * 200;
 ball.vy = Math.sin(direction) * 200;
 }

 stage.addChild(ball);
 window.tick = function(dt) {
 var seconds = dt / 1000;

 ball.vy += 50 * seconds; // Add some gravity
 ball.x += ball.vx * seconds;
 ball.y += ball.vy * seconds;
 ball.pulse += seconds;
 ball.scaleX = 1 + Math.sin(ball.pulse)/2;
 ball.scaleY = 1 + Math.sin(ball.pulse)/2;
 ball.rotation += ball.vx * seconds;

 if(ball.x + 25 > canvas.width) {
 ball.vx = -Math.abs(ball.vx);

continues

480 ❘ CHAPTER 26 using an htMl5 gaMe engine

 } else if(ball.x - 25 < 0) {
 ball.vx = Math.abs(ball.vx);
 }

 if(ball.y + 25 > canvas.height) {
 ball.vy = -Math.abs(ball.vy);
 } else if(ball.y - 25 < 0) {
 ball.vy = Math.abs(ball.vy);
 }

 stage.update();
 }
 Ticker.setFPS(60)
 Ticker.addListener(window);
 </script>
</body>
</html>

Because the library can be loaded via a CDN, the entire example is shown in the listing.

You can set up the stage object by passing in a canvas element and then calling Touch.enable on
the stage to let it handle touch events.

The Graphics object, which enables you to create objects that have arbitrary vector artwork, is cre-
ated irst. Next, that graphic is added to a Shape called ball.

Because ball is a JavaScript object, you can add additional properties on to the object. In this case
the x and y properties are built into EaselJS, whereas the vx, vy, and pulse properties are custom.

The ball can have event handlers such as onPress, which is called whenever the object is clicked
or touched. In this case the onPress method just generates a random direction and adjusts the ball’s
velocity to point in that direction.

The actual logic for the ball bouncing around is in a tick method on the window object. You can
add arbitrary listeners to the Ticker object, which is the object EaselJS uses for the game loop. The
object must just respond to the tick method, which is called each frame with the number of milli-
seconds that have elapsed since the last call.

The tick method moves the ball using the simple Newtonian physics you saw in Chapter 17,
“Playing with Pixels,” but also pulses the size of the ball up and down.

EaselJS is released under the MIT license and can be used for any commercial or open-source project
without restriction. It’s part of a suite of JavaScript libraries available at http://createjs.com that
provides additional functionality that is useful in games: TweenJS, which provides tweening and ani-
mation support; SoundJS, which simpliies working with sounds from JavaScript; PreloadJS, which
makes it easy to load and play sounds; and Zoe, a tool that exports spritesheets from Flash SWF iles.

LISTING 26-3 (continued)

http://createjs.com

Summary ❘ 481

SUMMARY

This chapter introduced some of the most popular commercial and open-source HTML5 game
engines that support mobile. The goal of the chapter was to give you a taste of what developing in a
few of the popular open-source libraries looks like from a philosophy and coding standpoint. There
are many more engines and libraries to choose from, each with their own philosophy and game tar-
get. The HTML5 game framework space is still in its early days, and there are lots of exciting devel-
opments in the space happening daily.

Targeting App Stores

WHAT’S IN THIS CHAPTER?

 ➤ Creating apps for the Chrome Web Store

 ➤ Going native with CocoonJS

 ➤ Building games with AppMobi’s DirectCanvas

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can ind the wrox.com code downloads for this chapter at www.wrox.com/remtitle
.cgi?isbn=9781118301326 on the Download Code tab. The code is in the Chapter 27
download and individually named according to the names throughout the chapter.

INTRODUCTION

Just because your game is developed for the web using HTML5 doesn’t mean that’s where it
has to stay. There are a number of ways you can package your game so that it’s playable in
the various app stores. For the desktop version of your game, this chapter shows you how to
publish your game in the Chrome Web Store. For packaging mobile versions of your app, you
examine two technologies: Ludei’s CocoonJS and AppMobi’s DirectCanvas. Both of these
technologies enable you to take a Canvas HTML5 game and package it into a native app
that replaces the normal Canvas rendering calls with hardware-accelerated OpenGL ES calls,
greatly boosting the graphical performance of your HTML5 games with only a few code
changes. The generated apps can then be distributed in the various mobile app stores, includ-
ing the Apple App Store and Google Play.

27

http://www.wrox.com/remtitle.cgi?isbn=9781118301326

484 ❘ CHAPTER 27 targeting app stores

PACKAGING YOUR APP FOR THE GOOGLE CHROME WEB STORE

The Google Chrome Web Store is an online marketplace for both free and paid web applications
and is available at https://chrome.google.com/webstore/.

The applications in the Google Chrome Web Store are what Google calls “installable web apps.”
Put simply, they are just normal web apps that have been conigured to work as Chrome extensions
and that can be installed via the Chrome Web Store.

The Web Store supports two different types of apps: hosted apps and packaged apps. Hosted apps
are just normal web apps that have been submitted to the Web Store with a little bit of additional
meta data. Packaged apps, on the other hand, are downloaded to the user’s computer and can be
used ofline without any additional work. Hosted apps can also be used ofline if they are conig-
ured to properly use an application cache manifest.

Creating a Hosted App

Creating a hosted app for the Chrome browser for testing purposes is as simple as creating a direc-
tory with the required manifest and icon and then loading it as an unpackaged extension from
within Chrome.

To walk through the required steps, you turn the Alien Invasion game, hosted on github pages at
http://cykod.github.com/AlienInvasion/, into a hosted app.

First, create a new folder called invasion-app. Next, create a manifest.json ile in that directory with
the contents of Listing 27-1.

LISTING 27-1: Invasion app manifest.json

{
 "name": "Alien Invasion",
 "description": "Save the world, you know the drill...",
 "version": "1.0.0",
 "app": {
 "urls": [
 "*://cykod.github.com/AlienInvasion/"
],
 "launch": {
 "web_url": "http://cykod.github.com/AlienInvasion/"
 }
 },
 "icons": {
 "128": "invasion_128.png"
 },
 "offline_enabled": true,
 "permissions": [
]
}

https://chrome.google.com/webstore/
http://cykod.github.com/AlienInvasion/

Packaging Your App for the Google Chrome Web Store ❘ 485

This manifest ile has a few important parts. The irst are the basic information ields: name,
description, and version. These all appear in the extensions screen and provide information to the
user. Next is the app information that lets Chrome know what urls should be allowed in the per-
missions listed at the bottom of the manifest. (In this case, no additional permissions are needed.)
The app information also includes the launch information. Because this is a hosted app, you need to
include a web_url from where to launch the app.

For icons, you need to specify only a 128 x 128 pixel icon. To match the size of other icons, it
should ill up only approximately a 96-pixel box and have a 16-pixel transparent border on each
side (see Google’s image guidelines for more details: https://developers.google.com/chrome/
web-store/docs/images.

Next, if your app supports application cache, you can set the offline_enabled key to true, and
the icon for your game won’t be grayed-out in the launch screen when the browser is ofline.

Finally, there are additional permissions you can request that your app receives by default without
needing to ask the user each time your app loads. The available permissions are background,
clipboardRead, clipboardWrite, geolocation, notifications, and unlimitedStorage.
With the exception of background, these should be self-explanatory.

The background permission is something special that enables you to continue to run code in the
background even if the app isn’t active or hasn’t even been launched. This might be useful for mul-
tiplayer games to notify users of actions occurring in the game world even if the user isn’t actively
playing the game. You can read more in-depth documentation on the background feature at
https://developers.google.com/chrome/apps/docs/background.

Now copy the icon invasion_128.png into the same directory as the manifest ile and you’re done!

You can test out the hosted app by loading it as an unpackaged extension. Click the Chrome Wrench
menu; then select the Tools menu and click Extensions.

If you’re not already in Developer Mode, click the Developer Mode check box in the top right of the
page. Next, click the Load Unpacked Extension button and ind the folder you just created. Click
Select. (You are selecting a folder, not a ile, so just single-click the folder and click Select.)

If everything went according to plan, you should see the Alien Invasion extension at the top of the
extensions page with its icon, as shown in Figure 27-1.

FIGURE 27-1: The Alien Invasion extension.

https://developers.google.com/chrome/
https://developers.google.com/chrome/apps/docs/background

486 ❘ CHAPTER 27 targeting app stores

If you create a new tab, you should see the Alien Invasion icon in your app screen and you can jump
right to the game by clicking it.

Creating a Packaged App

The difference between a hosted app and a packaged app is simply that the packaged app includes
all the iles necessary to run the game in the app directory and points to a local ile rather than a
web_url.

To create a packaged app from Alien Invasion, you need to create a new directory and copy all the
iles for Alien Invasion inside of it.

Next, create a manifest.json ile, as shown in Listing 27-2, and copy the same invasion_128.png
icon into the directory along with an invasion_16.png that serves as the favicon for the app.

LISTING 27-2: manifest.json for a packaged app

{
 "name": "Alien Invasion Packaged",
 "description": "Save the world, you know the drill...",
 "version": "1.0.0",
 "app": {
 "launch": {
 "local_path": "index.html"
 }
 },
 "icons": {
 "128": "invasion_128.png",
 "16" : "invasion_16.png"
 }
}

As you can see, this ile looks similar to the one for the hosted app, with the primary difference in
the launch section, which has a local_path instead of a web_url. The only other difference is the
16 n 16 pixel icon used for the app tabs that serves as a favicon. (Hosted apps used the website’s
favicon, so this image wasn’t necessary.)

You can load the app the same way by clicking Load Unpacked Extension from the Chrome exten-
sions page and can play it from the launch screen when you create a new tab.

Publishing Your App

To publish your app, you need to log in to a Google account and go to the Chrome Web Store devel-
oper dashboard: https://chrome.google.com/webstore/developer/dashboard.

Then click the Add New Item link and upload a .zip ile of the extension directory. You can upload
both hosted and packaged apps, but for hosted apps you need to verify you are the owner of any
domains listed in the URLs section of your manifest by using Google Webmaster tools.

After you upload the zip ile, you have the opportunity to enter a detailed description, upload an
icon and promotional image, and select categories and regions and hook in Google Analytics.

https://chrome.google.com/webstore/developer/dashboard

Using CocoonJS to Accelerate Your App ❘ 487

To publish your irst app, you also need to pay a $5.00 one-time fee that Google uses to prevent
SPAM accounts. After that your app will be published in the Chrome store and easily available to
the millions of Chrome users around the world.

USING COCOONJS TO ACCELERATE YOUR APP

CocoonJS is a native wrapper created by Ludei that enables you to create native iOS and Android
apps from your HTML5 games. Its claimed value proposition is particularly attractive: Without
making any changes to your game, you can package it into a native app and get performance
increases of several orders of magnitude.

The ine print is that Cocoon supports a limited subset of HTML and primarily works by exposing
an API in JavaScript that mimics the Canvas API. The full list of features that CocoonJS supports is
available on the Wiki at http://wiki.ludei.com/cocoonjs:featurelist.

As of this writing, the DOM support is limited to elements that are useful for games: Canvas, image,
and sound elements.

Getting a Game Ready to Load into CocoonJS

Despite Ludei’s claim, depending on how your HTML5 game is written, you may need to make
some modiications for the game to load in CocoonJS. The primary consideration is how you put a
Canvas onto the page. CocoonJS parses your index.html ile, but only to load the JavaScript iles
mentioned therein. This means that you need to make sure you generate your <canvas> element via
JavaScript and not via a <canvas> tag in your HTML.

The CocoonJS <canvas> tag also supports a special option you can apply to make the <canvas> ele-
ment scale up to ill the size of the screen while still maintaining its aspect ratio.

To modify the Alien Invasion game from Chapter 3, “Finishing Up and Going Mobile,” to
work with CocoonJS, modify the Game.initialize method in engine.js to read as shown in
Listing 27-3.

LISTING 27-3: A modiied Game.initialize method

 // Game Initialization
 this.initialize = function(canvasElementId,sprite_data,callback) {

 this.canvas= document.createElement("canvas");
 // CocoonJS extension
 this.canvas.style.cssText="idtkscale:ScaleAspectFit;";
 this.canvas.width = 320;
 this.canvas.height = 480;
 document.body.appendChild(this.canvas);

 this.playerOffset = 10;
 this.canvasMultiplier= 1;

continues

http://wiki.ludei.com/cocoonjs:featurelist

488 ❘ CHAPTER 27 targeting app stores

 this.mobile = true;

 this.width = this.canvas.width;
 this.height= this.canvas.height;

 this.loop();
 if(this.mobile) {
 this.setBoard(4,new TouchControls());
 }
 SpriteSheet.load(sprite_data,callback);
 };

The method ignores the passed-in canvasElementId and just creates a new Canvas element that it
calls appendChild on to make visible.

It also sets the special idtkscale property to ScaleAspectFit to make sure the Canvas element
scales up as wanted.

Next, the mobile setup method is removed and just replaced with a this.mobile = true statement
because the Canvas element doesn’t need to get resized anymore. Other than that Alien Invasion is
ready to be wrapped inside of CocoonJS.

The other thing you want to check is to make sure you use requestAnimationFrame to handle the
animation, speciically the webkitRequestAnimationFrame vendor-preixed version because that’s
the one supported by CocoonJS.

To add this to Alien Invasion, modify the Game.loop method in engine.js to read as shown in
Listing 27-4.

LISTING 27-4: A modiied Game.loop

 var lastTime = new Date().getTime();
 var maxTime = 1/30;

 // Game Loop
 this.loop = function() {

 var curTime = new Date().getTime();
 webkitRequestAnimationFrame(Game.loop);
 var dt = (curTime - lastTime)/1000;
 if(dt > maxTime) { dt = maxTime; }

 for(var i=0,len = boards.length;i<len;i++) {
 if(boards[i]) {
 boards[i].step(dt);
 boards[i].draw(Game.ctx);
 }
 }

 lastTime = curTime;
 };

LISTING 27-3 (continued)

Using CocoonJS to Accelerate Your App ❘ 489

Doing so ensures that your app refreshes at the maximum rate the device can support to give you the
smoothest animation.

Testing CocoonJS on Android

CocoonJS has an application in the Google Play marketplace called the CocoonJS Launcher.

If you open this app, you are presented with two options: The irst is to view some of the pre-created
demos, and the second is to launch your own app. To launch your app, you need to irst get a reg-
istration code. You can get that code by clicking the Register button, illing out the form, and con-
irming your e-mail.

Next, you need to package the iles for the game into a .zip ile. In creating the .zip ile, make sure
you don’t zip the directory but instead just zip up all the iles because CocoonJS needs to ind an
index.html ile in the top level of your zip.

Now place that .zip ile somewhere where you can access it from a URL on your device. If you run
a web server on your development machine, that works just ine as long as the Android device is on
the same Wi-Fi network; otherwise, just upload the ile to a web host.

From the Android Launcher app, enter the URL for the .zip ile in the Zip URL ield and click
Launch Current. After a few moments to download the ile and boot it up, you should have Alien

Invasion running at an elevated frame rate on your phone. In addition, Ludei supports Android all
the way back to 2.2, so phones that might not run your HTML5 game can still be targeted.

In the case of the Galaxy Nexus, the frame rate on the game rose from the mid-teens to approxi-
mately 200 FPS using CocoonJS, so there are signiicant performance beneits.

To restart your app or load a new version, you need to explicitly restart the app by removing it from
the running app list and then run it again.

TESTING COCOONJS IN IPHONE

As of this writing, Ludei had just released its iOS SDK, and the Launcher App was
not yet approved in the Apple App Store. To test your app on iOS, you need to
run through an involved process that requires you to modify the downloaded ile’s
Bundle ID, generate an add-hoc provisioning proile on developer.apple.com,
and use XCode to create an .ipa ile. Rather than detail a process that will hope-
fully be obsolete by the time this goes to print, you should check the latest details
on the Ludei wiki at http://wiki.ludei.com/cocoonjs:launcherios for how
to get the launcher up and running for iOS.

Building Your App in the Cloud

As of this writing, Ludei has not yet opened up its cloud service for building apps in the cloud for
public consumption. When it does, you can build native apps without having to download XCode or
have the Android SDK installed on your machine.

http://wiki.ludei.com/cocoonjs:launcherios

490 ❘ CHAPTER 27 targeting app stores

For iOS development, you still need to create an account on developer.apple.com and join the
$99-per-year iOS Developer Program at https://developer.apple.com/programs/ios/. This
enables you to create and distribute apps in the Apple App Store.

BUILDING APPS WITH THE APPMOBI XDK AND DIRECTCANVAS

AppMobi is an alternative to CocoonJS for packaging up HTML5 apps as native apps on iOS and
Android. AppMobi built its technology on top of the open-source PhoneGap project, which uses a
native web-browser component augmented with native device APIs, such as audio and video record-
ing and access to contacts stored on the device.

As mentioned in the last chapter, work done during Impact.js development to create iOSImpact
was used to develop the initial version of AppMobi’s DirectCanvas, which replaces the standard
<canvas> object with a custom, OpenGL ES accelerated implementation.

Understanding DirectCanvas

DirectCanvas works a little differently from CocoonJS in that it requires that you split your game
into two parts. The irst part is an initial HTML ile that connects to the primary PhoneGap web
view, which has a normal DOM and can accept user input. The second component is JavaScript only
and consists of the main portion of your game that draws to the hardware-accelerated Canvas. This
second component cannot bind any listeners to get touch input however, so you need to pass that
information manually from the irst piece to the second using a bridge that DirectCanvas provides.

Installing the XDK

The AppMobi XDK is a powerful Java application and Chrome browser extension that enables you
to build and test your application in an emulator and then send it to be built in the cloud, all with-
out requiring you to install local copies of development tools to build iOS and Android Apps. You
can learn more from the AppMobi website at www.appmobi.com/?q=node/154.

To install the XDK, go to the Chrome Web Store at https://chrome.google.com/webstore and
search for AppMobi XDK. Ignore the other results and install the AppMobi HTML5 XDK. Follow
the prompts to complete adding the extension to Chrome.

Launching the XDK requires you to log in with an AppMobi account or create a new account by
following the onscreen instructions.

After you make it into the main XDK, you should see a screen that looks something like
Figure 27-2, depending on the example running and the device selected.

The XDK enables you to test the form factors of different devices in both Portrait and Landscape
mode as well as test geolocation and device acceleration. A word of warning, however: The browser
engine used to run all the examples is still the Chrome JavaScript engine and WebKit renderer, so
the emulation is more for general behavior and form factor rather than actually emulating device
characteristics or performance.

https://developer.apple.com/programs/ios/
http://www.appmobi.com/?q=node/154
https://chrome.google.com/webstore

Building Apps with the AppMobi XDK and DirectCanvas ❘ 491

You can try the various demos that ship with the XDK by clicking the green drop-down arrow to
pick a different demo.

FIGURE 27-2: The AppMobi XDK.

Creating the App

To create a new app, click the big Plus button to the left of the project selector drop-down. At the next
screen, choose Client-Side as the project type and click Next. Give the project a name like alieninvasion
and click Next. Click Next again to skip the API injection screen because you won’t need any of those
services for this app. Finally, click Finish to complete the app and load it in the XDK.

Next, click the open project folder icon at the top of the page to open the location where AppMobi
wants you to put your game’s iles. Copy the inal Alien Invasion code from Chapter 3 into the new
folder for your project and then click the Reload App button near the top left of the XDK. (It looks
like a recycle symbol.) The App pops up a warning because you removed the code that loads the
XDK, but if you click OK, the game should still load.

Modifying Alien Invasion to Use DirectCanvas

For Alien Invasion to use DirectCanvas, you need to separate the user input from the main game.

To start this process, replace the index.html ile for the game with the code in Listing 27-5, which
is a modiied version of the boilerplate index.html AppMobi provides.

492 ❘ CHAPTER 27 targeting app stores

LISTING 27-5: The DirectCanvas index.html

<!DOCTYPE html>
<html>
<head>
<title>Alien Invasion</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<style type="text/css">
 /* Prevent copy paste for all elements except text fields */
 * { -webkit-user-select:none;
 -webkit-tap-highlight-color:rgba(255, 255, 255, 0); }
 input, textarea { -webkit-user-select:text; }

 /* Set up the page with a default background image */
 body {
 background-color:#fff;
 color:#000;
 font-family:Arial;
 font-size:48pt;
 margin:0px;padding:0px;
 background-image:url('images/background.jpg');
 }
</style>
<script type="text/javascript" charset="utf-8" s
src="http://localhost:58888/_appMobi/appmobi.js"></script>
<script type="text/javascript" charset="utf-8" s
src="http://localhost:58888/_appMobi/xhr.js"></script>
<script type="text/javascript">

/* This code is used to run as soon as appMobi activates */
var onDeviceReady=function(){

 // Size the display to 320px by 480px
 AppMobi.display.useViewport(320,480)

 // hide splash screen
 AppMobi.device.hideSplashScreen();

 // Load files for Direct Canvas
 AppMobi.canvas.load("index.js");

 var keys = {}
 var trackTouch = function(e) {
 var touch, x;
 var gutterWidth = 10;
 var unitWidth = 320/5;
 var blockWidth = unitWidth-gutterWidth;
 e.preventDefault();
 keys['left'] = false;
 keys['right'] = false;
 for(var i=0;i<e.touches.length;i++) {
 touch = e.touches[i];
 x = touch.pageX;
 if(x < unitWidth) {

Building Apps with the AppMobi XDK and DirectCanvas ❘ 493

 keys['left'] = true;
 }
 if(x > unitWidth && x < 2*unitWidth) {
 keys['right'] = true;
 }
 }
 if(e.type == 'touchstart' || e.type == 'touchend') {
 for(i=0;i<e.changedTouches.length;i++) {
 touch = e.changedTouches[i];
 x = touch.pageX;
 if(x > 4 * unitWidth) {
 keys['fire'] = (e.type == 'touchstart');
 }
 }
 }
 AppMobi.canvas.execute('Game.setKeys('+ keys["left"] + ","
 + keys["right"] + ","
 + keys["fire"] + ")");
 };
 document.addEventListener('touchstart',trackTouch,false);
 document.addEventListener('touchmove',trackTouch,false);
 document.addEventListener('touchend',trackTouch,false);
 document.addEventListener('touchcancel',trackTouch,false);
};

document.addEventListener("appMobi.device.ready",onDeviceReady,false);

</script>
</head>
<body>
</body>
</html>

All the code before the onDeviceReady method is the standard AppMobi boilerplate that sets up
some default styles and loads the AppMobi JavaScript.

The application sets up a proper-sized viewport, hides the splash screen, and loads the index.js ile
into DirectCanvas. Because DirectCanvas is a completely different execution environment than the
index.html, no variables or methods leak across, so you need to explicitly execute code to run in
the other context to shuttle information back and forth.

The touch method from the main game has been moved into index.html from engine.js. This is
because all the input needs to be gathered in the index.html ile because the DirectCanvas context
can’t receive any user input.

At the end of the touch method, you can see the call used to transfer data to the Canvas context:

 AppMobi.canvas.execute('Game.setKeys(' + keys["left"] + ","
 + keys["right"] + ","
 + keys["fire"] + ")");

The setKeys method is new and needs to be added to engine.js.

Next, create the index.js ile referenced in the Listing 27-5. This ile just has two lines, shown in
Listing 27-6, that tell it to load the engine.js and game.js iles into the context.

494 ❘ CHAPTER 27 targeting app stores

LISTING 27-6: The index.js ile

AppMobi.context.include('engine.js');
AppMobi.context.include('game.js');

All that’s left is to modify the engine.js to use the AppMobi DirectCanvas and pull input values
from the setKeys method rather than from bound events. You also want to modify the loop method
to again use requestAnimationFrame. Finally, after everything has been drawn, you need to explic-
itly call context.present() to draw it on the screen.

Modify the top of engine.js as shown in the highlighted code in Listing 27-7, adding in the
requestAnimationFrame shim along with changes to the initialize method and the new setKeys
method.

LISTING 27-7: Changes to engine.js for DirectCanvas

(function() {
 var lastTime = 0;
 var vendors = ['ms', 'moz', 'webkit', 'o'];
 for(var x = 0;
 x < vendors.length && !window.requestAnimationFrame;
 ++x) {
 window.requestAnimationFrame =
 window[vendors[x]+'RequestAnimationFrame'];
 window.cancelAnimationFrame =
 window[vendors[x]+'CancelAnimationFrame'] ||
 window[vendors[x]+'CancelRequestAnimationFrame'];
 }

 if (!window.requestAnimationFrame)
 window.requestAnimationFrame = function(callback, element) {
 var currTime = new Date().getTime();
 var timeToCall = Math.max(0, 16 - (currTime - lastTime));
 var id = window.setTimeout(function() {
 callback(currTime + timeToCall);
 }, timeToCall);
 lastTime = currTime + timeToCall;
 return id;
 };

 if (!window.cancelAnimationFrame)
 window.cancelAnimationFrame = function(id) {
 clearTimeout(id);
 };
}());

var Game = new function() {
 var boards = [];
 // Game Initialization

Building Apps with the AppMobi XDK and DirectCanvas ❘ 495

 this.initialize = function(canvasElementId,sprite_data,callback) {

 var ctx = this.ctx = AppMobi.canvas.getContext("2d");

 this.ctx.width = 320;
 this.ctx.height = 480;

 this.playerOffset = 10;
 this.canvasMultiplier= 1;
 this.mobile = true;

 this.width = 320;
 this.height = 480;
 this.loop();
 this.setBoard(4,new TouchControls());

 SpriteSheet.load(sprite_data,callback);
 };

 this.keys = {};
 this.setKeys = function(l,r,fire) {
 Game.keys['left'] = l;
 Game.keys['right'] = r;
 Game.keys['fire'] = fire;
 };

 var lastTime = new Date().getTime();
 var maxTime = 1/30;
 // Game Loop
 this.loop = function() {
 var curTime = new Date().getTime();
 requestAnimationFrame(Game.loop);
 var dt = (curTime - lastTime)/1000;
 if(dt > maxTime) { dt = maxTime; }

 for(var i=0,len = boards.length;i<len;i++) {
 if(boards[i]) {
 boards[i].step(dt);
 boards[i].draw(Game.ctx);
 }
 }
 Game.ctx.present();
 lastTime = curTime;
 };

The requestAnimationFrame shim is the same as what you saw in Chapter 9, “Bootstrapping the
Quintus Engine: Part I.”

In the Game.initialize method, in lieu of creating a Canvas element, with DirectCanvas you need
to grab the context from the AppMobi.canvas element. The context can also be resized directly—
something you normally can do only to the canvas element. The remainder of the initialize method
just defaults to mobile and hardcodes a width and height into the game.

496 ❘ CHAPTER 27 targeting app stores

The setKeys method replaces the input handlers that were there before and explicitly sets the keys
that are active based on what index.html is sending over.

The last important change is that the loop explicitly calls Game.ctx.present() to render to the screen.

Testing Your App on a Device

AppMobi makes it easy to test your game live on a device. It provides the AppLab app for both iOS
and Android that you can download from the respective app stores for each. After you install this
on your device, start it up. AppLab enables you to run your apps (click the small My Apps button in
the top right) that have been synced to the cloud.

To sync an app to the cloud, click the Test Anywhere button in the top bar of the XDK. After the
app syncs, you should run the active version on your device. (Be careful because as of this writing
the Android version of DirectCanvas is still in beta and has a number of visual defects. These will
hopefully be ixed by the time this book is in print.)

BUILDING YOUR APP IN THE CLOUD

When you have your app running properly in the AppLab, it’s time to push it out
to production. To do this you can click the Build for App Store button on the top
of the XDK bar. The process to build your app for either iOS or Android involves
a number of steps that AppMobi guides you through quite nicely.

Building for iOS in particular is a painful process that involves creating and
downloading certiicates and provisioning proiles from the app developer portal
developer.apple.com. You need a $99/year membership to join the iOS devel-
oper program at https://developer.apple.com/programs/ios/ to complete
the process. When you’re done, you have either an .ipa ile for iOS or an .apk ile
for Android that you can install on your device to test the inal app.

SUMMARY

This chapter showed you how to package your HTML5 game in different ways to get it deployed
in the various app stores. It discussed creating both Hosted and Packaged Chrome Web Store apps
and looked at two platforms to create native mobile games out of your HTML5 app: CocoonJS and
AppMobi. Mobile HTML5 games are no longer just for the browser but can be deployed natively
to almost any iOS or Android device. As you’ll see in the next chapter, there are a lot of cool new
things coming down the pipeline, but native performance and features will always be at least slightly
ahead of what’s in the browser, so packaging HTML5 games into app stores is something that will
only become more prevalent.

https://developer.apple.com/programs/ios/

Seeking Out What’s Next

WHAT’S IN THIS CHAPTER?

 ➤ Looking at 3-D in the browser with WebGL

 ➤ Previewing upcoming APIs

 ➤ Looking to the future of native support with WebAPI

INTRODUCTION

This book has covered a lot of ground, but the HTML5 space moves quickly, and a number of
cutting-edge speciications for technologies that are not yet available for general use in mobile
browsers are worth considering because they will expand the type of mobile HTML5 games
you can develop. This includes direct access to hardware-accelerated 3-D in the browser via
OpenGL ES, access to better sound support via Web Audio API, and access to additional
native hardware features. This chapter describes these cutting-edge speciications.

GOING 3-D WITH WEBGL

One of the biggest drawbacks to canvas-based gaming is that it’s stuck in two-dimensional
latland. Sure, you could build your own 3-D rendering and rasterization engine in JavaScript
on top of 2-D canvas, but the performance would not be suitable.

Luckily there is help coming down the pipeline. WebGL, which is a web-based version
of OpenGL ES, is a speciication that enables hardware-accelerated 3-D in the browser.
OpenGL ES, which is short for OpenGL for Embedded System, is the smaller, more
power-consumption-friendly cousin of the desktop OpenGL standard that has powered
various types of 3-D software (including games) for the past two decades.

28

498 ❘ CHAPTER 28 seeking out What’s next

OpenGL ES has been available via native APIs on iOS and Android and powers the 3-D games you
see in the app stores. Exposing a JavaScript-based API via WebGL means that HTML5 apps can
create detailed 3-D scenes and games in the browser without plug-ins. To access a WebGL canvas in
a supported browser, you simply need to create a standard canvas element and then request a webgl
context instead of the standard 2-D context.

NOTE WebGL is a standard proposed by the Khronos group, and you can ind
up-to-date details on the Khronos.org website: www.khronos.org/webgl/.

WebGL provides a low-level API for generating 3-D scenes, relying on shader programs written in a
specialized shader language called WebGL Shader Language (GLSL) that is based on C. Unless you
have experience writing GPU shaders, working with WebGL can be a little daunting to get started.

Luckily, a popular library called Three.js provides a high-level abstraction that enables you to start
building 3-D in the browser without needing to worry about shaders. You can get Three.js and view
a large number of examples at http://mrdoob.github.com/three.js/.

Although Three.js makes working with WebGL easier, 3-D programming can still be fairly com-
plex. Some projects exist to make developing with Three.js even easier. One of the most popular is
tQuery: http://jeromeetienne.github.com/tquery/.

tQuery aims to provide a jQuery-like interface on top of Three.js to make it easier to start and work
with 3-D in the browser. Three.js also supports 3-D renderers other than WebGL, so some simple
examples may run on mobile devices, but more complicated examples require the WebGL renderer
be used.

The main sticking point from a mobile standpoint is that only one mobile browser, Opera 12, has
WebGL enabled for general use. On the desktop every current-version browser except Internet
Explorer has WebGL support, including Firefox, Chrome, Safari, and Opera. Microsoft has unfor-
tunately not committed to providing support for WebGL at any point in the future, but given
WebGL’s popularity with developers, it seems a little like browser-suicide for Microsoft to continue
that position.

Although WebGL is not yet available in mobile Safari, it is already turned on in iAds, so support is
built in but disabled. If you have a jail-broken iPad, you can ind resources to turn WebGL support
back on. On Android, WebGL pops up on various places, such as the Xperia smartphone and demos
of the Xoom tablet, but there’s currently no timeline for support in Chrome for Android.

GETTING BETTER ACCESS TO SOUND WITH THE WEB AUDIO API

As you saw in Chapter 25, “Playing Sounds, the Mobile Achilles’ Heel,” sound in HTML5 on
mobile devices is not well supported. The good news is that an extremely rich Audio API called
the Web Audio API has made its way into the desktop versions of Chrome and Safari. The API
can be a little daunting because it’s low level but feature rich and is something a game developer
would be used to rather than a web developer. The most recent published speciication is avail-
able at www.w3.org/TR/webaudio.

http://www.khronos.org/webgl/
http://mrdoob.github.com/three.js/
http://jeromeetienne.github.com/tquery/
http://www.w3.org/TR/webaudio

Adding Real-Time Communications with WebRTC ❘ 499

If it gains wider browser support, the Web Audio API can provide a powerful audio layer for
HTML5 games, enabling real-time creation and mixing of effects and music via JavaScript.

As of this writing Apple has announced that iOS 6 will have support for the audio API, but what
level of support this will be and what restrictions will be placed on playing audio are yet to be deter-
mined. Because the Web Audio API is a project that Google irst implemented in Chrome, it appears
likely that the API will make its way into Chrome for Android in the near future.

As of this writing neither Microsoft, Mozilla, or Opera have announced any intention to support
the API.

MAKING YOUR GAME BIGGER WITH THE FULL-SCREEN API

With the smaller screens available on mobile devices, anything you can do to maximize the screen
real estate available to your game can beneit playability.

On the desktop, Firefox, Chrome, and Safari have added support for a full-screen API that enables
you to indicate a single DOM element that should be shown full screen. The speciication for this
API is still in lux. A working draft is available at http://dvcs.w3.org/hg/fullscreen/raw-file/
tip/Overview.html.

The API is currently available only with vendor preixes in desktop browsers. No announcement of
support has been made for mobile browsers, although Apple has announced that iOS 6 will have a
full-screen landscape mode. This mode is different from a full-screen API but should still provide
game developers with some extra screen space.

LOCKING YOUR DEVICE SCREEN WITH THE SCREEN
ORIENTATION API

Some of the fun that game developers could have with the Device Orientation API, which you saw
in Chapter 24, “Querying Device Orientation and Acceleration,” was mitigated because the screen
would rotate when you got past a certain point.

The good news is that there is a W3C speciication that can enable web developers to both
more accurately capture the current state of the screen orientation and lock the screen to a
speciic orientation. The working draft of this speciication is available at www.w3.org/TR/
screen-orientation/.

The only implementation available on devices as of this writing is in the Mozilla Android browser
Fennec, but hopefully Chrome for Android and Mobile Safari will get this API in the future.

ADDING REAL-TIME COMMUNICATIONS WITH WEBRTC

The WebRTC project is an open project that aims to add real-time communications capabili-
ties to web browsers via a JavaScript API. This includes the ability to make voice and video calls
through both a centralized server and via peer-to-peer. This technology would be a great addition

http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html
http://www.w3.org/TR/screen-orientation/

500 ❘ CHAPTER 28 seeking out What’s next

to two-player games to allow players to play against each other while staying in communication
(among a myriad of other users).

The project has a website located at www.webrtc.org to go along with a draft speciication available
at www.w3.org/TR/webrtc/.

No current desktop browsers have support for WebRTC, but you can try out a version by using the
Chrome development channel. See the WebRTC website for more details.

TRACKING OTHER UPCOMING NATIVE FEATURES

The Mozilla WebAPI project, on the web at https://wiki.mozilla.org/WebAPI, has links to
other device-native features that are slowly being exposed via JavaScript APIs. Although the major-
ity of these are only tangentially interesting to game developers, some, such as the Vibration API
(www.w3.org/TR/vibration/), could be used for interesting game feedback.

Mozilla also has a project called AreWeFunYet (on the web at www.arewefunyet.com) that is set up
to track how the Gecko is doing as a platform for gaming. Although a lot of the details are Mozilla-
speciic, the project is worth looking at.

The W3C also has a Games Community Group, on the web at www.w3.org/community/games/,
dedicated to “improve the quality of open web standards that game developers rely on to create
games.” If you are interested in the future of HTML5 game development, this is a group worth
joining.

SUMMARY

This chapter took a look at exciting APIs that, although currently out of reach for mobile HTML5
game developers, should be coming down the pipeline and into mobile browsers sometime in the
near future. These APIs will give HTML5 game developers some of the same tools native app devel-
opers have to craft engaging experiences, in a cross-browser, multiplatform way.

With a look at what features are on the horizon, this book’s journey through the world of HTML5
Mobile game development has come to an end. This book took you from the basics of putting
together a simple Canvas-based game to building a full mobile-centric HTML5 game engine from
the ground up. That engine was used to build a number of different games and demos using CSS,
SVG, and, most importantly, Canvas. Along the way you were introduced to using libraries like
Underscore.js and jQuery for game development and running JavaScript on the server with Node.js.
You saw how to make your game available ofline, connect it up to a NoSQL database, let players
play against each other using Socket.io, and push it to the Internet at large using a hosting platform.

HTML5 is the technology that will give you access to an unprecedented number of potential play-
ers, any of which can access your game at any time from a supported mobile device or desktop
browser. Now it’s time to take what you’ve learned and build the next great game—one that will
engage and entertain people around the globe and one that can spread as quickly as a link can travel
across the data pipes of the Internet.

http://www.webrtc.org
http://www.w3.org/TR/webrtc/
https://wiki.mozilla.org/WebAPI
http://www.w3.org/TR/vibration/
http://www.arewefunyet.com
http://www.w3.org/community/games/

Resources
This appendix contains a variety of highly recommended resources for further exploration of
HTML5 and JavaScript.

BOOKS ON HTML5 AND JAVASCRIPT

For more information on HTML5 and JavaScript, the following books are recommended:

 ➤ JavaScript: The Good Parts by Douglas Crockford (O’Reilly, 2008): The seminal work
that helped put JavaScript on the map as a “real language” and pushed a set of best
practices for developers. Required reading for JavaScript developers.

 ➤ JavaScript Patterns by Stoyan Stefanov (O’Reilly, 2010): A great second book on
JavaScript that pushes the language further and provides a number of different ways to
bend JavaScript to your will.

 ➤ Introducing HTML5 Game Development by Jesse Freeman (O’Reilly, 2012): One of
the irst books on a single HTML5 game engine. An in-depth (but compact) guide to
Impact.js.

 ➤ Foundation HTML5 Canvas: For Games and Entertainment by Robert Hawkes
(friendsofED, 2011): A gentler yet thorough introduction to HTML5 canvas suitable
for less experienced developers.

 ➤ Foundation HTML5 Animation with JavaScript by Billy Lamberta and Keith Peters
(friendsofED, 2011): A book making things move in an interesting way using HTML5
Canvas.

 ➤ HTML5 Games Most Wanted: Build the Best HTML5 Games by Egor Kuryanovich, et al
(friendsofED, 2012): An HTML5 cookbook including articles from a number of different
authors on different HTML5 game development techniques.

 ➤ Making Isometric Social Real-Time Games with HTML5, CSS3, and JavaScript by
Mario Andres Pagella (O’Reilly, 2011): A short book that focuses on a single genre of
games and covers it quite well, providing the code needed to build the generation of
social Facebook games.

APPENDIX

502 ❘ APPENDIX resourCes

WEB RESOURCES

For more information on HTML5 and JavaScript, the following web resources are recommended:

 ➤ www.html5gamedevelopment.org: A website run by the author tracking the latest trends in
HTML5 game development.

 ➤ www.html5gamedevs.com: An active aggregator site that posts on the newest HTML5 games
and game development news.

 ➤ www.badassjs.com: In-depth irst-party posts on cutting edge JavaScript.

 ➤ www.creativejs.com: In-depth irst-party posts on cool new stuff in JavaScript.

 ➤ buildnewgames.com: A Microsoft sponsored site with in-depth articles on various HTML5
game development topics.

 ➤ javascriptweekly.com: Not a website but a once-weekly newsletter that rounds up what’s
new in JavaScript that week. A must read for JavaScript developers.

 ➤ www.html5rocks.com: One of the most authoritative resources on HTML5 on the web. When
a new API comes out, HTML5 Rocks usually is the irst to post an in-depth article on it.

 ➤ developer.mozilla.org: In competition with the html5rocks site as the best resource for
learning the newest HTML5 techniques.

 ➤ www.lostdecadegames.com/lostcast: A bi-weekly podcast by HTML5 game development
company Lost Decade Games, often with special guests active in the HTML5 game develop-
ment community.

 ➤ www.chromeexperiments.com: If it’s cool and it’s in JavaScript, you’ll probably ind it as a
Chrome experiment. Visit here if you want to see how far you can push the browser.

http://www.html5gamedevelopment.org
http://www.html5gamedevs.com
http://www.badassjs.com
http://www.creativejs.com
http://www.html5rocks.com
http://www.lostdecadegames.com/lostcast
http://www.chromeexperiments.com
http://buildnewgames.com
http://javascriptweekly.com
http://developer.mozilla.org

503

INDEX

Numbers & Symbols

$ object, 83–84

2-D platformer, 349

bootstrapping, 361–363

bullets, 364–365

collisions, 355–361

drawBlock method, 355

enemies, 363–364

platform.html, 352

PlatformStage class, 360–361

player, 365–368

Player sprite, 366–368

prerenderBlock method, 355

Q.Enemy class, 363–364

tile prerendering, 354–355

TileLayer class, 350–352

3-D, WebGL, 497–498

A

acceleration, 332, 487–490

added method, 284, 378

addEventListener method, 4, 14

address bar, removing, 101–103

addressbar.html, 102–103

_addTile method, 239

AGID (Automatically Generated Inlection

Database), 432

AJAX, 90–91

Alien Invasion game, 3

DirectCanvas and, 491–496

overview, 4

Angry Birds, 288

animation, 318–325

anonymous functions, compression and, 107

APIs (application programming interfaces)

Application Cache, 77

component API (Quintus), 166–167

Device API, 69

Device Orientation, 499

DeviceOrientation Event, 449–456

File API, 69

full-screen, 499

Geolocation, 77, 442

Mozilla, 500

Ofline Storage, 77

Orientation and Acceleration, 77

requestAnimationFrame, 153–154

Screen Orientation, 455–456

Touch, 77

Vibration, 500

Web Audio API, 498–499

WebAPI, 77, 500

WebSocket, 408–411

app.js, 372–373

Application Cache, 109–112

Developer Tools, 119

AppMobi, 490

testing apps, 496

XDK, 490–491

apps

accelerating, 487–490

AppMobi, 490

Chrome Web Store, 484–487

cloud, 489–490, 496

DirectCanvas, 490

AreWeFunYet, 500

arguments object, 28

assets

loading, 4

Quintus, 188–195

referencing, 203

static, Node.js, 372–373

504

attack event – Canvas element

attack event, 252

audience, technology choices and, 222

Audio loader, 191

Audio object

canPlayType method, 458

game audio tags, 460

<audio> tag, 457–459

audiosprites.json, 466–467

authentication, Facebook, 395–396

auto-matching servers, 417–419

B

background, scrolling, 16–19

bandwith, mobile devices, 106–109

base.css ile, 5

Bézier curves, 308

bicubic upsampling, 299

bilinear upsampling, 299

bind method, 163–165

_.bindAll method, 378

binding event handlers, 87–90

bindKey, 177

Blob Clicker

Facebook

application generation, 389–390

authentication, 395–396

game.ejs ile, 401–403

login, 393–395

MongoDB integration, 398–401

Node.js server, 390–393

blob_clicker, 390–391

Blockbreak game, 203–207

Q.Block class, 215–216

Quintus.DOM module, 232–233

quintus_scenes.js, 214–215

Scenes module, 214

sound effects, 461–463

sound sprites, 467

blockbreak.html, 204

blockbreak.js ile, 204–206

boards, 15

boilerplate HTML, 5

books on HTML and JavaScript, 501

Box2D physics engine, 280–288

Box2D.Dynamics.b2World object, 281–287

Box2dweb, 280–281

breakpoints in debugging, 124

browsers

checking for online, 111

resizing, iPhone, 100

rotation, 455–456

snifing, 70–71

support, 72–73

bullet sprites, 31–32, 364–365

button method, 378

C

CACHE MANIFEST, 110

caching

Application Cache, 109–112

bandwidth optimization and, 108

manifest ile, 110–111

cairo-devel package, 139

calculateSize method, 146

callbacks

Box2D, 284

callback parameter, 12

JavaScript, 85–86

join.when, 143

Node, 134

camera component, 247–248

cannon shooter, 278–279, 288–293

canPlayType method, 458

canvas

drawing on, 7

height, 6

mobile screens, 57–58

resizing, 97–98

text, drawing, 19–21

width, 6

zones, 4

Canvas, HTML5 and, 74–75

Canvas 2-D API, 138

Canvas element, 171, 298. See also DirectCanvas

client-side, 140

context, 301

ctx.arc(), 308

ctx.arcTo(), 307

ctx.beginPath(), 307–308

ctx.bezierCurveTo(), 307

ctx.ellipse(), 308

ctx.ill(), 307

ctx.lineTo(), 307

ctx.measureText, 309

505

<canvas> tag – collide function

ctx.moveTo(), 307

ctx.quadraticCurveTo(), 307

ctx.rect(), 308

ctx.stroke(), 307

ctx.textBaseline, 309

drag method, 380

drawing

fillStyle property, 302–303

images, 306–307

paths, 307–308

rectangles, 306

strokeStyle property, 303–305

effects, 313

composition, 314–316

shadows, 314

event methods, 379–381

fillText method, 309

getContext method, 301

getImageData method, 343

gradients, 303–304

strokes, 305–306

image creation, 301–302

images, opacity, 306

 tag, 301–302

pixels, 331

Quintus.DOM module, 231–232

release method, 380

server-side, 139–140

drawing images, 146–147

setupTiles method, 382

size, calculating, 146

strokeText method, 309

SVG viewport, 325–327

text, 308–309

tile functionality, 381–383

tilePos method, 380

tool method, 380

touch method, 380

transformations, 310–313

<canvas> tag, 5, 298

context, 301

mobile screen, 97–98

screen resize and, 98–99

canvas_test.html ile, 173–174

canvas.toBuffer() method, 139

capitalization in ile names, 120

CDN (Content Delivery Network), 82–83

bandwidth optimization and, 108–109

centerOn method, 248

changeDirection method, 364

changedTouches array, 54

changedTouches method, 55

channel.html ile, 395

cheating, 416

checkCollision method, 341–343

Chrome Developer Tools. See Developer Tools

Chrome Web Store, 483–487

<circle> tag, 265

circles, 265

Class method, 160

classes

DOMSprite, 228–230, 238

DOMStage, 230–231

DOMTileMap, 236–240, 242–244

Evented, 162–165, 163–165

Explosion, 343–345

functionality, 161

GameBoard, 30

adding enemies, 36

objects, 26–27

GameScreen, 19–21

level, 44–47

PlatformStage, 360–361

Player, 248–249

Q.Cannon, 291

Q.Component, 167–168

Q.Enemy, 363–364

Q.Fountain, 250–251

Q.Level, 243–244, 253–255

Q.Loot, 250–251

Q.SVGSprite, 274–275

Q.SVGStage, 276–277

reusable, extracting, 335–336

Ship, 337–338

Sprite, 201–203

SpriteSheet, 11–12, 198–199

StarField, 17, 18–19

TileLayer, 350–352

TileSprite, 245–248

TitleScreen class, 20–21

clear method, Quintus, 172–173

cloud, apps, 489–490, 496

Cloudfront, 109

CocoonJS, 487–489

code

optimization, 125–126

polyill, 74

collide function, 30

506

collisions – Deferred

collisions

2-D platformer, 355–361

checkCollision method, 341–343

detecting, 4–5

enemies with player, 42–43

handling, 29–30

Lander-style game, 346–347

missiles with enemies, 41–42

object types and, 40–41

Quintus, 211–212

command line, MongoDB connection, 397–398

comments, conditional comments, 71

commercial engines, 472–474

communication, real-time, 499–500

component/entity model of inheritance, 157–158

components, Quintus, 165–169

composition effects, 314–316

compressing JavaScript, 107

computeDistanceBetween method, 448

conditional comments, 71

Console tab (Chrome developer tools), 121–123

Construct 2 engine, 474

contact listeners, Box2D, 284

container elements, 171–174

Cow Clicker, 388–389

Crafty.js engine, 475–476

createImageData method, 346

createShape method, 275–276

CSS (cascading style sheets)

base.css ile, 5

image-rendering property, 299

pixel size and, 298–300

reset, Eric Meyer reset, 5

style.css ile, 394

window.devicePixelRatio property, 300

CSS3, 69

DOM and, 75

Quintus.DOM module

Blockbreak test, 232–233

Canvas equivalents, 231–232

DOMSprite class, 228–230

DOMStage class, 230–231

implementing sprites, 227–230

setupDOM method, 224

starting, 223–224

transition support, 227

RPG

2-D tile frames, 238–239

bootstrapping, 241–242

camera component, 247–248

DOMTileMap class, 236–240, 242–244

game setup, 241–242

health bar, 255–260

HTML wrapper ile, 240–241

hud stage, 258–259

interact method, 249

Player class, 248–249

player_input component, 248

Q.Level class, 243–244, 253–255

Q.PlayerHealth sprite, 258–259

Q.Stat sprite, 257–258

Q.transitionDOM method, 257

step event handler, 247

tiled component, 245–248

transition component, 247

tile map, scrolling, 235–240

transform property, 223

translate() method, 224–226

translate3d() method, 224–226

translateBuilder method, 226

translation method, 224–226

vendor preixes, 70

ctx.arc(), 308

ctx.arcTo(), 307

ctx.beginPath(), 307–308

ctx.bezierCurveTo(), 307

ctx.ellipse(), 308

ctx.ill(), 307

ctx.lineTo(), 307

ctx.measureText, 309

ctx.moveTo(), 307

ctx.quadraticCurveTo(), 307

ctx.rect(), 308

ctx.stroke(), 307

ctx.textBaseline, 309

ctx.transform, 310

curves, Bézier, 308

D

databases, MongoDB, 396–398

debind method, 165

debugging

Chrome developer tools, Console tab, 121–125

mobile devices, 129–131

Remote Debugging, 129

Weinre, 129–131

Deferred, 138

507

Deferred object – elements

Deferred object, 91

detect method, 27–28, 30

Quintus, 211

Developer Tools (Chrome), 115

activating, 116

Application Cache, 119

Console tab, debugging and, 121–123

Elements tab, 116–118

Local Storage, 119

Network tab, 119–121

Proiles tab, 126–128

Resources tab, 118–119

Script tab, 123–125

Development mode, 373

Device API, 69

Device Orientation API, 499

DeviceOrientation Event API, 449

ball playground, 452–454

browser rotation, 455–456

deviceorientation event handler, 454–455

deviceorientation events, 450–451

orientationchange events, 450

OrientationEvent, 451

testing, 451–456

window.orientation property, 450

deviceorientation event handler, 454–455

deviceorientation events, 450–451

direct manipulation input, 175

DirectCanvas, 490

Alien Invasion and, 491–496

disableTouchControls method, 180–181

discrete integration, 334–335

<div> element, 171

documentation, jQuery, 85

DOM (Document Object Model)

CSS3 and, 75

DOMSprite class, 228–230, 238

DOMSprite method, 223

DOMStage class, 230–231

DOMStage method, 223

DOMTileMap class, 236–240, 242–244

Elements tab (Chrome developer tools), 116

jQuery, 84–85

Quintus, 223–226

sprites, implementing, 227–230

drag method, 380

draw() method, 11

TouchControls object, 53

draw function, Enemy object, 35–36

draw method, 12

drawBlock method, 355

drawImage method, 8–9

nine-parameter version, 18

drawImages method, 147–148

drawing

on canvas, 7

Canvas element

fillStyle property, 302–303

images, 306–307

paths, 307–308

rectangles, 306

strokeStyle property, 302–303

images, 8–9

server-side Canvas, 146–147

onscreen input (Quintus), 184–186

pixels, Lander-style game, 345–346

SVG, primitives, 264

text, on canvas, 19–21

touch controls, 52–54

drawLine method, 415

drawSquare method, TouchControls object, 53

Dreamweaver, 116

Duck class, 10–11

E

each method, Quintus, 211

eachInvoke method, Quintus, 211

EaselJS engine, 478–480

echo.html ile, 409–410

editor directory, app.js ile, 372–373

editors

js/quintus_editor.js, 376–378

Node.js, 371

package.json and, 372

platform.js, 374–376

Quintus.Editor module, 376–379

quintus_editor.js ile, 374

save method, 383–384

text editors, 116

effects, Canvas element, 313–316

elements

Canvas (See Canvas element)

<canvas>, 5

mobile screen, 97–98

screen resize and, 98–99

container elements, 171–174

<div>, 171

508

elements (continued) – fs module

elements (continued)

grouping, 266–267

SVG, 171

SVG from JavaScript, 271–272

Elements tab (Chrome Developer Tools), 116–118

<ellipse> tag, 265

else condition, 99

Emacs, 116

<embed> tag, SVG, 262

embedding, images, 266

enableKeyboard, 178

enableMobileSound method, 464–466

enemies

ltr, 45

step, 45

wiggle, 45

enemies deinition, levels, 44–45

enemies object, 36

Enemy object, 34–35

draw function, 35–36

refactoring, 39–40

step function, 35–36

Enemy sprite class, movement, 33–34

Enemy step method, 42–43

EnemyMissile object, 61–64

engine API. See Quintus

engines

commercial, 472–474

history, 471–472

open source, 475–480

enhancement, progressive enhancement, 73–74

e.preventDefault() event handler, 14

Eric Meyer CSS reset, 5

Euler, Leonard, 334

event handlers

binding, jQuery library, 87–90

deviceorientation, 454–455

e.preventDefault(), 14

step, 247

event listeners, 4

Evented class, 162–165

evented programming, 134

events

attack, 252

deviceorientation, 450–451

health, 252

interact, 252

keyboard, 176–178

keydown, 14

keyup, 14

methods, 379–381

orientationchange, 102–103, 450

Quintus, 162–165

touch, responding to, 54–56

touchend, 54

touchmove, 54

touchstart, 54

Explosion class, 343–345

Explosion object, 43

explosions, 43

exports object, 140

Express, 372–373

Facebook app, 390–391

express.bodyParser, 373

expressions, debugging and, 125

express.static, 373

extend method, 160

F

Facebook

application, generating, 389–390

authentication testing, 395–396

channel.html ile, 395

fbAsyncInit method, 394

FB.init method, 395

login.ejs view ile, 393–395

Node.js server, 390–393

web.js application stub, 391–392

failing loudly/silently, 7

FB.init method, 395

File API, 69

ill properties (SVG), 267–270

fill property, 268

fill-opacity property, 268

fillRect method, 17

fillStyle property, 302–303

fillText method, 309

fire method, 292

Firefox, mobile, 79

irePercentage method, 62

iring missiles, 30–33

ixed aspect ratio of screen, mobile devices, 96

fonts, 20–21

force, 332

Forward Euler method, 334–335

frames per second rendering, mobile devices, 105

fs module, 139

509

fs.WriteFilSync method – hit method

fs.WriteFilSync method, 139

full-screen APIs, 499

function() keyword, 86

Function.call method, 211

functions

anonymous, compression and, 107

JavaScript, calling, 86

jQuery, proxy, 87

Underscore.js, 93–94

Futures module, 141–142

G

<g> tag, 266

Game class, game.js and, 15–16

game loop (Quintus), 153–157

Game object, 11

implementing, 13–15

GameBoard class

adding to game, 30

enemies, adding, 36

objects, adding/removing, 26–27

GameBoard object, 11

loops, 26–27

methods, 28–29

overlap method, 29

purpose, 26

GameBoard.add, 26–27

game.ejs ile, 401–403

Game.initialize method, 17

game.js, Game class and, 15–16

Game.keys hash, 14

Game.keys map, 23

Game.loop function, 15

GameMaker HTML5 engine, 474

GameMaker Language (GML), 474

GamePoints object, 60–61

games

audio tags, 460

Hangman, 427

multiplayer, HTTP-based, 388

social games

Blob Clicker, 395–403

blob_clicker, 390–391

Cow Clicker, 388–389

Facebook application generation, 389–390

Facebook authentication, 389

hosting service, 403–405

login.ejs view, 393–395

Node.js server, 390–393

planning, 388–389

Games Community Group, 500

GameScreen class, 19–21

GamesForLanguage.com, 73

geolocation, 69, 441–448

geolocation API, 442–446

getContext method, 7, 301

getCurrentPosition method, 443–444

getImageData method, 339

Canvas element, 343

getter methods, 84

getTouch method, 415

GitHub, 463

global option, 136

globalAlpha property, 17, 306

GML (GameMaker Language), 474

Google Chrome Web Store. See Chrome Web Store

Google Maps, 444–448

gradients

Canvas element

linear, 303

radial, 303

strokes, 305–306

SVG, 268–269

gVIM, 116

H

handleGuess method, 436

handleResize() method, 99

Hangman game, 427

12dicts, 431–432

code, 433–435

handleGuess method, 436

newWord method, 435

random word generation, 431–432

sendGameUpdate method, 435–436

word.js, 432

hashes, Game.keys, 14

headers, bandwidth optimization and, 108

heal method, 252

health bar, 255–260

health event, 252

healthbar component, 256–257

height, 6

hide() method, 84

hinting code, jshint, 136–137

hit method, 41–42, 43

510

home icons – iPhone

home icons, iOS devices, 104–105

Homebrew, 135

hosted apps, 484

creating, 484–486

hosting service, social games, 403–405

HTML, wrapper iles, CSS3 RPG, 240–241

HTML5

best uses, 70–74

boilerplate, 5

browser support, 72

Canvas, 74–75

engine history, 471–472

future, 68

history, 68

mobile devices and, 76

performance vagaries, 16

snifing browsers, 70–71

standards, 69

HTTP-based multiplayer games, 388

Cow Clicker, 388–389

hud stage, 258–259

I

IDE engines, 474

<iframe> tag, SVG, 262

IIFE (immediately invoked function expression), 145

Image object, 188

<image> tag, 266

ImageData object, 340–343

createImageData method, 346

getImageData method, 343

putImageData method, 346

image-rendering property (CSS), 299

images

Canvas element, 301–302

drawing, 8–9

Canvas element, 306–307

server-side Canvas, 146–147

embedding, 266

opacity, 306

patterns, 303–304

retro games, 299

sprite sheets, 4

startup, iOS devices, 103–104

upsampling, 299

 tag

Canvas element, 301–302

SVG, 262

Immediate mode, 9

Impact engine, 473–474

implementation, Game object, 13–15

indexes, MongoDB, 401

in-game scrolling, 100

in-game zooming, 100

inheritance

Class method, 160

component/entity model, 157–158

JavaScript, 10, 158–160

class functionality, 161

prototypical, 10

Quintus, 157–158

this._super() method, 160

innerHeight parameter, 59

innerWidth parameter, 59

input, 4

cannon shooter game, 292–293

handling, 22–23

Quintus, 174–175

joypad controls, 181–184

keyboard events, 176–178

keypad controls, 178–181

onscreen, 184–186

testing, 186–188

touch controls, 178–181

input_test.html ile, 187

installable web apps, 484

installation

MongoDB, 396–397

Node, 134

Linux, 135

modules, 136

OS X, 135

Windows, 135

XDK (AppMobi), 490–491

interact event, 252

interact method, 249

interactive maps, 446–447

I/O, nonblocking, 134

iOS devices, 60

debugging, 129

home icons, 104–105

home screen coniguration, 103–105

startup images, 103–104

web-app-capable, 103

iPhone

browser resizing, 100

pixels, 101

viewport, 100–101

511

iterate method – LimeJS engine

iterate method, 28

iteration

object list, 27–28

projectiles, 334–335

J

JavaScript, 10

callbacks, 85–86

compressing, 107

debugging, Chrome developer tools, 121–125

function() keyword, 86

functions, calling, 86

hinting code, jshint, 136–137

inheritance

class functionality, 161

classical, 158–160

prototypical, 10

libraries, 82

scripts, creating, 137–141

SVG and, element creation, 271–272

this keyword, 86

uglify-js, 137

Join module, 142

join.when callback, 143

joypad input, 175

Quintus, 181–184

joypadControls method, 183

joypadTouch method, 183

jQuery library, 82

$ object, 83–84

AJAX, calls, 90–91

CDN (Content Delivery Network), 82–83

documentation, 85

DOM (Document Object Model), manipulating,

84–85

event handlers, binding, 87–90

hide() method, 84

loading on page, 82–83

methods, 84–85

getters, 84

setters, 84

proxy function, 87

remote servers, 90–91

Underscore.js

accessing, 92

collections, 92–93

utility functions, 93–94

Zepto.js, 85

jshint, 136–137

js/quintus_editor.js, 376–378

K

keyboard events, 176–178

keyboardControls, 178

keydown event, 14

keypad controls, Quintus, 178–181

keyup event, 14

keywords

function(), 86

this, 86

var, 107

KHTML, 78

KJS (KDE JavaScript engine), 78

L

Lander game, 331

bootstrapping, 336–337

cave walls, 339–340

collisions, particle wall, 346–347

Explosion class, 343–345

physics engines, 332

pixels, 339–340

drawing, 345–346

projectiles, 333–334

iteration, 334–335

ship, building, 337–339

Ship class, 337–338

lander.html, 336–337

latency, 415–416

legend property, 244

level class, 44–47

Level object

implementation, 47–49

step method, 47–48

level saving, 383–384

levels

data, 45–46

enemies deinition, 44–45

libcairo2-dev package, 139

libraries

JavaScript, 82

jQuery, 82

Underscore.js, 82

LimeJS engine, 476–478

512

linear gradients – methods

linear gradients, 303

lineWidth property, 306

Linux

Node installation, 135

VMPlayer, 135

listeners, 4

addEventListener method, 4

loadedCallback, 194

loadImages method, 143, 144–146

loading, resource loading problems, 120

Local Storage, Developer Tools, 119

location plotting, geolocation, 444–445

locking device screen, 499

login, Blob Clicker, 393–395

login.ejs view ile, 393–395

long polling server, 408

loops, 4

GameBoard object, 26–27

ltr enemy, 45

M

MacVim, 116

manifest ile, ofline play, 109–111

mass, 332

math, 332

matrix property, 267

methods

added, 378

added method, 284

addEventListener, 4, 14

_addTile, 239

asset loading, 190–191

bind, 163–165

button, 378

calculateSize, 146

canPlayType, 458

canvas.toBuffer(), 139

centerOn, 248

changeDirection, 364

changedTouches, 55

checkCollision, 341–343

Class, 160

clickUser, 400

collection.indOne, 400

collide, 30

computeDistanceBetween, 448

createImageData, 346

createShape, 275–276

debind, 165

detect, 27–28, 30

disableTouchControls, 180–181

DOMSprite, 223

DOMStage, 223

drag, 380

draw, 12

draw(), 11

drawBlock, 355

drawImage, 8–9

nine-parameter version, 18

drawImages, 147–148

drawLine, 415

enableMobileSound, 464–466

Enemy step, 42–43

events, 379–381

extend, 160

fbAsyncInit, 394

illRect, 17

illText, 309

ire, 292

irePercentage, 62

fs.WriteFilSync, 139

Function.call, 211

GameBoard object, 28–29

Game.loop, 15

getContext, 7, 301

getCurrentPosition, 443–444

getImageData, 339

getTouch, 415

handleGuess, 436

handleResize(), 99

heal, 252

hide(), 84

hit, 41–42, 43

interact, 249

iterate, 28

joypadControls, 183

joypadTouch, 183

jQuery, 84–85

getters, 84

setters, 84

loadImages, 143, 144–146

newWord, 435

_normalizeArg, 153

Object.create, 47

onload, 145

Overlap, 208–209

overlap, 29

513

Microdata – mobile devices

pause, 155

playGame, 30

positionError, 443

prerenderBlock, 355

putImageData, 346

Q.assetType, 189

Q.audioSprites, 465

Q.audio.start, 465

Q.audio.timer, 465

Q.gameLoop method, 155

Q.loadAssetImage, 191

Q.loadAssetOther, 191

Q.pauseGame, 156

Q.stageGameLoop, 213

Q.svgOnly, 277

Q.transitionDOM, 257

Quintus, 152

Quintus(), 280

Q.unpauseGame, 156

randomSnowlake, 313

release, 380

reload, 62

reloadTime, 62

requestAnimationFrame, 15

resetRemoved, 27

sendGameUpdate, 435–436

setAttribute, 272

setAttributeNS, 272

setBoard, 53

setImage, 229

setTile, 351

_setTile, 239

setTimeout, 15

setTransform, 229, 275–276

setupDOM, 224

setupIntent(), 14

setupMobile, 58–59

setupTiles, 382

socket.send, 409

spriter, 140–141, 143

StartGame, 12

startGame, 16

startGame(), 7

step, 19, 378

Level object, 47–48

step(), 11

strokeText, 309

this._super(), 160

tilePOS, 380

tilePos, 379–381

timer methods, 15

tool, 379–381, 380

topTen, 400

touch, 380

touchControls, 180–181

touchDispatch, 180

touchLocation, 180–181

trackTouch, 55

translate3d(), 224–226

translateBuilder, 226

trigger, 164

unbind, 164–165

unfog, 255

unpause, 155

validTile, 240

watchPosition, 445–446

Microdata, 69

missiles

colliding with enemies, 41–42

iring, 30

bullet sprite, 31–32

connecting to PlayerShip, 32–33

miterLimit property, 306

mobile audio, limitations, 459

mobile browsing, 77

Firefox, 79

Opera, 78–79

tablets, 79

WebKit, 78

WP7 Internet Explorer 9, 79

mobile devices

Canvas, HTML5 and, 74–75

canvas, resizing, 97–98

CSS3, DOM and, 75

debugging, 129–131

DOM, CSS3 and, 75

frames per second rendering, 105

HTML5 and, 76

APIs, new, 77

WebAPI, 77

iPhone, browser resizing, 100

performance, 105

bandwidth optimization, 106–109

screen

address bar removal, 101–103

ixed aspect ratio, 96

maximizing real estate, 96–103

SVG (Scalable Vector Graphics), 76

514

mobile support – objects

mobile support, 51

iOS devices, 60

points, 60–61

score, 60–61

screen size and, 57–60

testing on devices, 56–57

Modernizr, 73

modules

Express, 372–373

Futures, 141–142

Join, 142

Node, installation, 136

node-paperboy, 372–373

node-static, 372–373

Quintus.Editor, 376–379

Quintus.Input, 174–175

MongoDB

Blob Clicker integration, 398–401

clickUser method, 400

collection.indOne method, 400

connecting to, command line, 397–398

indexes, 401

installation, 396–397

record creation, 398

topTen method, 400

moving enemies, 33–34

MovingSprite class, 335–336

Mozilla APIs, 500

AreWeFunYet, 500

multiplayer games

HTTP-based, 388

Cow Clicker, 388–389

pong, Socket.io, 415–425

N

navigator.geolocation.getCurrentPosition, 442–443

Network tab (Chrome developer tools), 119

resource loading problems, 120

slow requests, 120–121

new operator, 12

newWord method, 435

Node

callbacks, 134

exports object, 140

fs.WriteFilSync method, 139

installation, 134

Linux, 135

OS X, 135

Windows, 135

modules, installation, 136

overview, 134

versions, 136

node-canvas, 135

canvas.toBuffer() method, 139

Node.js

Development mode, 373

editors, 371

Express module, 372–373

node_modules directory, 373

Production mode, 373

server, 390–393

blob_clicker, 390–391

static assets and, 372–373

Twitter, connection, 429–431

node_modules directory, 136, 373

node-paperboy module, 372–373

node-static module, 372–373

nonblocking I/O, 134

_normalizeArg method, 153

Notepad++, 116

ntime, 108

ntwitter module, 429–430

client.stream method, 431

O

<object> tag, SVG, 262

object types, collisions and, 40–41

Object.create method, 47

objects

$, 83–84

adding/removing, Quintus, 211

arguments, 28

Audio, game audio tags, 460

Box2D.Dynamics.b2World, implementing,

281–284

Deferred, 91

Enemy, 34–35

draw function, 35–36

refactoring, 39–40

step function, 35–36

EnemyMissile, 61–64

Explosion, 43

exports, 140

Game, 11

implementing, 13–15

GameBoard, 11

purpose, 26

GamePoints, 60–61

515

oline play – PositionError object

Image, 188

ImageData, 340–343

iteration over, 27–28

Level, implementation, 47–49

PlayerMissiles, 31–32

refactoring, 39

PlayerShip, 22

connecting missiles, 32–33

refactoring, 38–39

PositionError, 443

Q.assetTypes, 189

socket, 411

Sprite, 37–38

SpriteSheet, 11

TouchControls, 52–53

ofline play

checking for browser online, 111

manifest ile, 109–111

offset variable, 19

onload method, 145

onscreen input, Quintus, 184–186

OOP (object-oriented programming), 10

opacity of images, 306

open source engines

Crafty.js, 475–476

EaselJS, 478–480

LimeJS, 476–478

OpenGL ES, 497–498

Opera, 78–79

operators, new, 12

optimizing code, 125–126

object creation, 128–129

orientation of devices, 449

orientationchange event, 102, 450

OrientationEvent, 451

OS X, Node installation, 135

Overlap method, 208–209

overlap method, 29

P

packaged apps, 484, 486

package.json ile, 138

editor and, 372

parallax scrolling, 328–330

<path> tag, 265

paths, 265

drawing, 307–308

patterns, images, 303–304

pause method, 155

performance requirements, technology choices and,

222–223

performancing on mobile devices, 105

bandwidth optimization, 106–109

physics engines

Box2D, 280–287

cannon shooter, 288–289

fire method, 292

Q.Cannon class, 291

Q.CannonBall sprite, 289

sprites, 290–292

user input, 292–293

description, 281

Lander-style game, 332

pixels

Canvas element, 331

image upsampling, 299

ImageData object, 340–343

iPhone, 101

Lander-style game, 339–340

drawing, 345–346

size, CSS and, 298–300

platform.html, 352

platform.js ile, 374–376

PlatformStage class, 360–361

Player class, 248–249

Player sprite, 366–368

player sprite, animated, 319

player_input component, 248

PlayerMissiles object, 31–32

refactoring, 39

PlayerShip object, 22

connecting missiles, 32–33

refactoring, 38–39

step function, 22–23

playGame function, 30

playing ofline, manifest ile, 109–111

points, 60–61

polling server, 388

long polling, 408

polyill, 74

polygons, 265–266

polylines, 265–266

pong multiplayer game, Socket.io, 415–425

pong.js ile, 420–421

positionError method, 443

PositionError object, 443

516

prerenderBlock method – Quintus

prerenderBlock method, 355

primitives, SVG, 264

Production mode, 373

proiles, code optimization, 126–128

Proiles tab (Chrome Developer Tools), 126–128

programming, evented, 134

progressive enhancement, 73–74

projectiles, 333–334

iteration, 334–335

Promises, 138

sprite map generator, 142

properties

illStyle, 302–303

globalAlpha, 17, 306

image-rendering, 299

legend, 244

lineWidth, 306

miterLimit, 306

Q._animations, 322

referencing, 203

reload, 32–33

reloadTime, 32–33

strokeStyle, 302–303

touch events, 54

transform, 223, 264, 267

window.devicePixelRatio, 300

window.orientation, 450

protagonist, adding, 21

PlayerShip object, 22

proxy function, 87

publishing apps, 486–487

putImageData method, 346

Q

Q.animations, 318

Q.audioSprites method, 465

Q.audio.start method, 465

Q.audio.timer method, 465

Q.CannonBall sprite, 289

Q.Component class, 167–168

Q.Enemy class, 363–364

Q.EnemyPaddle, 424

Q.Fountain class, 250–251

Q.gameLoop method, 155

Q.GameObject, 168–169

Q.Level class, 243–244, 253–255

Q.Loot class, 250–251

Q.options.sound, 465

Q.Paddle, 423

Q.PlayerHealth sprite, 258–259

Q.scene, 374

Q.Stat sprites, 257–258

Q.SVGStage class, 276–277

Q.Target object, 289

Q.transitionDOM method, 257

Quintus, 150

animation module, 320–323

play method, 322

quintus_anim.js, 323

step method, 322

testing, 323–325

asset loading, 188–189

Audio asset, 189–190

Image asset, 189–190

methods, 190–191

Other asset, 189–190

preload support, 194–195

speciic assets, 189–191

type deining, 189

assets, referencing, 203

Audio loader, 191

audio system, 460–461

basic API, 150–151

bindKey, 177

Blockbreak, 203–207

Q.Block class, 215–216

quintus_scenes.js, 214–215

Scenes module, 214

canvas_test.html ile, 173–174

clear method, 172–173

collision methods, 211–212

components, 165

API design, 166–167

implementing system, 167–169

defaults, 192

detect method, 211

disableTouchControls method, 180–181

DOM, 223

module bootstrapping, 223–224

each method, 211

eachInvoke method, 211

enableKeyboard, 178

engine structure, 152

Evented class, 162–165

Function.call method, 211

517

Quintus – Quintus.Sprites extension

game loop

testing, 155–157

timer, 153–154

adding, 154–155

inheritance, 157–158

input

joypad controls, 181–184

keyboard events, 176–178

keypad controls, 178–181

onscreen, 184–186

subsystem, 174–175

testing, 186–188

touch controls, 178–181

joypadControls method, 183

joypadTouch method, 183

keyboardControls, 178

loadedCallback, 194

MovingSprite class, 335–336

_normalizeArg method, 153

objects, adding/removing, 211

Overlap method, 208–209

pause method, 155

properties, referencing, 203

Q._animations property, 322

Q.assetType method, 189

Q.assetTypes object, 189

Q.audioMimeTypes, 191

Q.collide method, 211

Q.gameLoop method, 155

Q.GameObject, 168–169

Q.InputSystem, 176–178

Q.load, 189

Q.loadAssetImage, 191

Q.loadAssetOther, 191

Q.Paddle sprite, 207

Q.pauseGame method, 156

Q.preload, 195

Q.scaleDOM method, 226

Q.sheets object, 198–200

Q.SVGSprite class, 274–275

Q.SVGStage class, 276–277

Quintus.DOM module

Blockbreak test, 232–233

Canvas equivalents, 231–232

DOMSprite class, 228–230

DOMStage class, 230–231

DOMTileMap class, 236–240

implementing sprites, 227–230

starting, 223–224

transition support, 227

Quintus.Input module, 174–175

bootstrapping, 175–176

Q.unpauseGame method, 156

requirements, 150–151

Scenes module, 212

Blockbreak, 214

creating, 207–208

Q.scene helper method, 213

Q.Scene object, 207

Q.Stage class, 208–212

Q.Stage object, 207

Q.stageGameLoop method, 213

quintus_scenes.js ile, 207–208

setup method, 172–173

setupDOM method, 224

Sprite class, writing, 201–203

sprite sheets

loading, 199–200

SpriteSheet class, 198–199

tracking, 199–200

sprites, referencing, 203

SpriteSheet class, testing, 200–201

SVG module

creating, 273

Q.svgOnly method, 277

sprites, 274–276

stage creation, 276–278

testing SVG class, 278–280

SVG support, 272

touchControls method, 180–181

touchDispatch method, 180

touchLocation method, 180–181

touchmove handler, 184

unpause method, 155

Quintus() method, 280

Quintus method, 152

Quintus.Editor module, 376–379

added method, 378

_bind.All method, 378

button method, 378

select method, 378

setFile method, 378

step method, 378

quintus_editor.js, 374, 379–381

Quintus.Input extension, 151

Quintus.Physics bootstrap, 282

Quintus.Scenes extension, 151

Quintus.Sprites extension, 151

518

radial gradients – scripts

R

radial gradients, 303

randomSnowlake method, 313

real-time apps, 416–417

real-time communications, 499–500

records, creating, MongoDB, 398

<rect> tag, 265

rectangles, 265, 306

refactoring

Enemy object, 39–40

PlayerMissile object, 39

PlayerShip object, 38–39

sprite classes, 37–40

release method, 380

reload method, 62

reload property, 32–33

reloadTime method, 62

reloadTime property, 32–33

Remote Debugging, 129

remote servers, calling, 90–91

rendering, sprites, frames per second,

mobile devices, 105

Repeater sprite, 328–339

requestAnimationFrame API, 153–154

requestAnimationFrame method, 15

resetRemoved method, 27

resize.html, 98–99

resizing screen, 98–99

iPhone, 100

resource loading problems, 120

resources

books, 501

web, 502

Resources tab (Chrome developer tools), 118–119

Retained mode, 9

retro games, 299

reusable classes, extracting, 335–336

reusable script, 140–141

RLTiles, 241–242

rotate property, 267

RPG, CSS3

2-D tile frames, 238–239

bootstrapping, 241–242

camera component, 247–248

DOMTileMap class, 242–244

game setup, 241–242

health bar, 255–260

HTML wrapper ile, 240–241

hud stage, 258–259

interact method, 249

Player class, 248–249

player_input component, 248

Q.Fountain class, 250–251

Q.Level class, 243–244, 253–255

Q.Loot class, 250–251

Q.PlayerHealth sprite, 258–259

Q.Stat sprite, 257–258

Q.transitionDOM method, 257

scrolling tile maps, 235–240

step event handler, 247

tiled component, 245–248

transition component, 247

S

save method, 383–384

scale, Box2D, 284

scale property, 267

scene graphs, selecting, 221–223

Scenes module (Quintus), 212

Blockbreak game, 214

creating, 207–208

Q.scene helper method, 213

Q.Stage class, 208–212

Q.stageGameLoop method, 213

score, 60–61

screen

address bar, 101–103

full-screen APIs, 499

iOS devices, coniguration, 103–105

locking, 499

mobile devices, 57–60

ixed aspect ratio, 96

maximizing real estate, 96–103

resizing, 98–99

scrolling, preventing, 99–100

title screen, 4

zooming, preventing, 99–100

Screen Orientation API, 455–456

scribble client (Socket.io), 413–415

scribble server (Socket.io), 411–412

script, reusable, 140–141

Script tab (Chrome developer tools), 123–125

scripts

creating, 137–141

package.json iles, 138

running, 148

updating, 148

519

scrolling – spriter method

scrolling

background, 16–19

in-game, 100

parallax, 328–330

preventing, 99–100

tile maps, CSS3, 235–240

Secure WebSockets, 409

select method, 378

sendGameUpdate method, 435–436

servers

auto-matching, 417–419

Node.js, 390–393

blob_clicker, 390–391

polling, 388

remote, calling, 90–91

scribble server (Socket.io), 411–412

server-side Canvas, 139–140

images, drawing, 146–147

setAttribute method, 272

setAttributeNS method, 272

setBoard method, 53

setFile method, 378

setImage method, 229

setInterval function, 153–154

setter methods, 84

setTile method, 351

_setTile method, 239

setTimeout method, 15, 153–154

setTransform method, 229, 275–276

setup method, Quintus, 172–173

setupDOM method, 224

setupIntent() method, 14

setupMobile function, 58–59

setupTiles method, 382

shadows, 314

Ship class, Lander-style game, 337–338

size, Canvas, calculating, 146

skewX property, 267

skewY property, 267

smartphones, Alien Invasion, 5

snifing, 70–71

snowlake generator, 311–313

social games

Blob Clicker

Facebook application generation, 389–390

Facebook authentication, 395–396

game.ejs ile, 401–403

login, 393–395

MongoDB integration, 398–401

Node.js server, 390–393

Facebook

authentication, 389

authentication testing, 395–396

blob_clicker, 390–391

channel.html ile, 395

fbAsyncInit method, 394

FB.init method, 395

generating application, 389–390

login.ejs view, 393–395

Node.js server, 390–393

hosting service, 403–405

planning, 388–389

socket object, 411

Socket.io, 411

connection events, 411

pong multiplayer game, 415–425

scribble client, 413–415

scribble server, 411–412

socket object, 411

socket.emit, 411

socket.send method, 409

sound

<audio> tag, 457, 458

Blockbreak game, 461–463

desktop sound engine, 459–463

formats supported, 458–459

mobile audio, limitations, 459

playback, basic, 458

Quintus audio system, 460–461

sprites, 463–466

audiosprites.json, 466–467

ile generation, 466–468

Web Audio API, 498–499

Spaceport.io engine, 474

SpaceWords, 73

Sprite class, writing, 201–203

sprite classes

Enemy, movement, 33–34

refactoring, 37–40

sprite map generator

Futures module, 141–142

top down, 142–143

Sprite object, 37–38

Blockbreak, 203–207

spriteData parameter, 12

spriter method, 140–141

rewriting, 143

520

spriter.js ile – SVG (Scalable Vector Graphics)

spriter.js ile, 139

exported, 140

sprites

animation, 319

bullets, 31–32

DOM, implementing, 227–230

enemy_missile, 62

Player, 366–368

Q.CannonBall, 289

Q.PlayerHealth, 258–259

Q.Stat, 257–258

referencing, 203

Repeater, 328–339

sound sprites, 463–466

audiosprites.json, 466–467

ile generation, 466–467

sprite sheets, 4

loading, 11–13

Quintus, 198–200

SVG module (Quintus), adding, 274–276

tile map, extending, 253–255

tiled environment, 245–248

SpriteSheet class, 11–12, 198–199

testing, 200–201

SpriteSheet object, 11

sprite_sheet/index.html, 12

SpriteSheet.load, 12

spritesheet_test.html, 200–201

squares, 265

StarField class, 17, 18–19

starields, drawing, 16

startGame() method, 7

startGame function, 12

dummy, 16

startup images, iOS devices, 103–104

static assets, Node.js and, 372–373

step() method, 11

step enemy, 45

step event handler, 247

step function, 19, 378

Enemy object, 35–36

Level object, 47–48

PlayerShip object, 22–23

stroke properties (SVG), 267–270

stroke property, 268

stroke-linejoin property, 268

stroke-opacity property, 268

strokes

Canvas element, 305–306

lineWidth property, 306

miterLimit property, 306

strokeStyle property, 302–303

strokeText method, 309

stroke-width property, 268

style.css ile, 394

SVG (Scalable Vector Graphics), 69, 76, 261

attributes, 272

Canvas element, viewport, 325–327

<circle> tag, 265

circles, 265

element, 171

elements, grouping, 266–267

<ellipse> tag, 265

<embed> tag, 262

ile example, 263

ill properties, 267–270

<g> tag, 266

gradients, 268–269

<iframe> tag, 262

<image> tag, 266

images, embedding, 266

 tag, 262

JavaScript, element creation, 271–272

<object> tag, 262

<path> tag, 265

paths, 265

physics and, 287–288

polygons, 265–266

polylines, 265–266

primitives, 264

Quintus, 272

<rect> tag, 265

rectangles, 265

setAttribute method, 272

setAttributesNS method, 272

squares, 265

stroke properties, 267–270

SVG module (Quintus)

creating, 273

Q.svgOnly method, 277

sprites, adding, 274–276

stage, creating, 276–278

testing SVG class, 278–280

521

<svg> tag – transition support

<svg> tag, 262

text, 266

<text> tag, 266

transform property, 264, 267

viewBox, 264

<svg> tag, SVG, 262, 264–265

T

tablets, mobile browsing and, 79

tags, , Canvas element, 301–302

targetTouches array, 54

TCP sockets, 408

technical debt, 37

technology choices, 221–223

testing

CocoonJS on Android, 489

game loop (Quintus), 155–157

input, Quintus, 186–188

mobile devices, 56–57

SpriteSheet class, 200–201

text

on canvas, drawing, 19–21

Canvas element, 308–309

fonts, 20–21

SVG, 266

text editors, 116

<text> tag, 266

TextMate, 116

this keyword, JavaScript, 86

this._super() method, 160

tile frames

2-D, 238–239

_addTile method, 239

_setTile, 239

validTile, 240

tile maps

extending, sprites and, 253–255

scrolling, 235–240

tiled component, 245–248

TileLayer class, 350–352

tilePos method, 379–381, 380

tiles

2-D platformer, TileLayer class, 350–352

functionality, 381–383

legend property, 244

prerendering, 354–355

sprites and, 245–248

TileSprite class, 245–248

timer methods, 15

timers

loop timer, 153–154

Quintus, 154–155

setInterval function, 153–154

setTimeout function, 153–154

title screen, 4

text on canvas, drawing, 19–21

TitleScreen class, 20–21

to-data-url.html, 301–302

tool method, 379–381, 380

touch controls

changedTouches array, 54

drawing controls, 52–54

Quintus, 178–181

responding to events, 54–56

targetTouches array, 54

trackTouch method, 55

touch method, 380

TouchControls class

touch tracking, 54–55

trackTouch method, 55

touchControls method, 180–181

TouchControls object, 52–53

draw method, 53

drawSquare method, 53

touchDispatch method, 180

touchend event, 54

touchLocation method, 180–181

touchmove event, 54

touchscreens, 51

touchstart event, 54

trackTouch method, 55

transform property, 223, 264, 267

transformation, Canvas element, 310–311

ctx.transform, 310

randomSnowlake method, 313

reset, 311

restore, 311

save, 311

snowlake generator, 311–313

transition component, 247

transition support, CSS3, Quintus, 227

522

translate () method – wrapper iles

translate() method, 224–226

translate property, 267

translate3d() method, 224–226

translateBuilder method, 226

trigger method, 164

Twitter

application creation, 427–428

Hangman game, 427–429

12dicts, 431–432

code, 433–435

handleGuess method, 436

newWord method, 435

random word generation, 431–432

sendGameUpdate method, 435–436

word.js, 432

incoming messages, 430–431

Node app connection, 429–431

ntwitter module, 429–430

client.stream method, 431

updateStatus, 430

user stream, 430–431

verifyCredentials, 430

typing, 4

Duck, 10–11

U

uglify-js, 137

unbind method, 164–165

Underscore.js

accessing, 92

collections, 92–93

library, 82

utility functions, 93–94

unfog method, 255

unpause method, 155

updateStatus, 430

upsampling images, 299

US snifing, 70–71

user stream, Twitter, 430–431

users, input, handling, 22–23

V

validTile method, 240

var keyword, 107

variables, offset, 19

verifyCredentials, 430

versions, Node, 136

Vibration API, 500

viewBox, 264

viewport

browser resizing, iPhone, 100–101

mobile devices, 57

viewport component, 325–327

VMPlayer, 135

VMWare, 135

W

WAMP, testing and, mobile devices, 56–57

watchPosition method, 445–446

Web Audio API, 498–499

web resources, 502

Web SQL Database, 69

Web Storage, 69

Web Workers, 69

WebAPI, 77

web-app-capability for iOS devices, 103

WebGL, 7, 69, 497–498

web.js application stub, 391–392

WebKit, 78, 115

WebRTC, 499–500

WebSocket API, 408–411

echo.html ile, 409–410

socket.send method, 409

websocket.org, 409

WebSockets, 69, 407–408

Flash and, 408

Secure WebSockets, 409

Socket.io, 411

Weinre, 129–131

WHATWG (Web Hypertext Application Technology

Working Group), 68

width, 6

wiggle enemy, 45

window.devicePixelRatio property, 300

window.orientation property, 450

Windows, Node installation, 135

wrapper iles, CSS3 RPG, 240–241

523

XDK (AppMobi) – zooming

X–Y–Z

XDK (AppMobi)

app creation, 491

installation, 490–491

XHTML 2.0, 68

Zepto.js, 85

zones, 4

zooming

in-game, 100

preventing, 99–100

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit my.safaribooksonline.com/wrox53 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

•Accesstohundredsofexpert-ledinstructional
videos on today’s hottest topics.

•Samplecodetohelpaccelerateawidevariety
of software projects

•Robustorganizingfeaturesincludingfavorites,
highlights,tags,notes,mash-upsandmore

•Mobileaccessusinganydevicewithabrowser

•RoughCutspre-publishedmanuscripts

Read this book for free online—along with thousands of others—
withthis15-daytrialoffer.

*Available to new subscribers only. Discount applies to the

Safari Library and is valid for first 12 consecutive monthly

billing cycles. Safari Library is not available in all countries.

	Professional HTML5 Mobile Game Development
	About the Author
	Acknowledgments
	Contents
	Introduction
	Part I: Diving In
	Chapter 1: Flying Before You Walk
	Introduction
	Building a Complete Game in 500 Lines
	Adding the Boilerplate HTML
and CSS
	Getting Started with Canvas
	Creating Your Game’s Structure
	Loading the SpriteSheet
	Creating the Game Object
	Adding a Scrolling Background
	Putting in a Title Screen
	Adding a Protagonist
	Summary

	Chapter 2: Making It a Game
	Introduction
	Creating the GameBoard Object
	Firing Missiles
	Adding Enemies
	Refactoring the Sprite Classes
	Handling Collisions
	Representing Levels
	Summary

	Chapter 3: Finishing Up and Going Mobile
	Introduction
	Adding Touch Controls
	Maximizing the Game
	Adding a Score
	Making It a Fair Fight
	Summary

	Part II: Mobile HTML5
	Chapter 4: HTML5 for Mobile
	Introduction
	Capturing a Brief History of HTML5
	Using HTML5 The Right Way
	Considering HTML5 from a Game Perspective
	Considering HTML5 from a Mobile Perspective
	Surveying the Mobile Browser Landscape
	Summary

	Chapter 5: Learning Some Helpful Libraries
	Introduction
	Learning JavaScript Libraries
	Starting with jQuery
	Using Underscore.js
	Summary

	Chapter 6: Being a Good Mobile Citizen
	Introduction
	Responding to Device Capabilities
	Dealing with Browser Resizing, Scrolling, and Zooming
	Configuring Your App for the iOS Home Screen
	Taking Mobile Performance into Consideration
	Adapting to Limited Bandwidth and Storage
	Going Offline Completely with Application Cache
	Summary

	Part III: JavaScript Game Dev Basics
	Chapter 7: Learning about Your HTML5 Game Development Environment
	Introduction
	Picking an Editor
	Exploring the Chrome Developer Tools
	Debugging JavaScript
	Profiling and Optimizing Your Code
	Mobile Debugging
	Summary

	Chapter 8: Running JavaScript on the Command Line
	Introduction
	Learning About Node.js
	Installing Node
	Installing and Using Node Modules
	Creating Your Own Script
	Writing a Sprite-Map Generator
	Summary

	Chapter 9: Bootstrapping the Quintus Engine: Part I
	Introduction
	Creating a Framework for a Reusable HTML5 Engine
	Adding the Game Loop
	Adding Inheritance
	Supporting Events
	Supporting Components
	Summary

	Chapter 10: Bootstrapping the Quintus Engine: Part II
	Introduction
	Accessing a Game Container Element
	Capturing User Input
	Loading Assets
	Summary

	Chapter 11: Bootstrapping the Quintus Engine: Part III
	Introduction
	Defining SpriteSheets
	Adding Sprites
	Setting the Stage with Scenes
	Finishing Blockbreak
	Summary

	Part IV: Building Games with CSS3 and SVG
	Chapter 12: Building Games with CSS3
	Introduction
	Deciding on a Scene Graph
	Implementing DOM Support
	Summary

	Chapter 13: Crafting a CSS3 RPG
	Introduction
	Creating a Scrolling Tile Map
	Building the RPG
	Summary

	Chapter 14: Building Games with SVG and Physics
	Introduction
	Understanding SVG Basics
	Working with SVG from JavaScript
	Adding SVG Support to Quintus
	Adding Physics with Box2D
	Creating a Cannon Shooter
	Summary

	Part V: HTML5 Canvas
	Chapter 15: Learning Canvas, the Hero of HTML5
	Introduction
	Getting Started with the Canvas Tag
	Drawing on Canvas
	Using the Canvas Transformation Matrix
	Applying Canvas Effects
	Summary

	Chapter 16: Getting Animated
	Introduction
	Building Animation Maps
	Adding a Canvas Viewport
	Going Parallax
	Summary

	Chapter 17: Playing with Pixels
	Introduction
	Reviewing 2-D Physics
	Implementing Lander
	Summary

	Chapter 18: Creating a 2-D Platformer
	Introduction
	Creating a Tile Layer
	Handling Platformer Collisions
	Building the Game
	Summary

	Chapter 19: Building a Canvas Editor
	Introduction
	Serving the Game with Node.js
	Creating the Editor
	Adding Level-Saving Support
	Summary

	Part VI: Multiplayer Gaming
	Chapter 20: Building for Online and Social
	Introduction
	Understanding HTTP-Based Multiplayer Games
	Planning a Simple Social Game
	Integrating with Facebook
	Connecting to a Database
	Finishing Blob Clicker
	Pushing to a Hosting Service
	Summary

	Chapter 21: Going Real Time
	Introduction
	Understanding WebSockets
	Using Native WebSockets in the Browser
	Using Socket.io: WebSockets with Fallbacks
	Building a Multiplayer Pong Game Using Socket.io
	Summary

	Chapter 22: Building Nontraditional Games
	Introduction
	Creating a Twitter Application
	Connecting a Node App to Twitter
	Generating Random Words
	Creating Twitter Hangman
	Summary

	Part VII: Mobile Enhancements
	Chapter 23: Locating via Geolocation
	Introduction
	Getting Started with Geolocation
	Getting a One-Time Position
	Plotting a Location on a Map
	Watching the Position Change over Time
	Drawing an Interactive Map
	Calculating the Position between Two Points
	Summary

	Chapter 24: Querying Device Orientation and Acceleration
	Introduction
	Looking at a Device Orientation
	Getting Started with Device Orientation Events
	Trying Out Device Orientation
	Summary

	Chapter 25: Playing Sounds, the Mobile Achilles Heel
	Introduction
	Working with the Audio Tag
	Building a Simple Desktop Sound Engine
	Building a Sound System for Mobile
	Looking to the Future of HTML5 Sound
	Summary

	Part VIII: Game Engines and App Stores
	Chapter 26: Using an HTML5 Game Engine
	Introduction
	Looking at the History of HTML5 Engines
	Using a Commercial Engine
	Using an Open-Source Engine
	Summary

	Chapter 27: Targeting App Stores
	Introduction
	Packaging Your App for the Google Chrome Web Store
	Using CocoonJS to Accelerate Your App
	Building Apps with the AppMobi XDK and DirectCanvas
	Summary

	Chapter 28: Seeking Out What’s Next
	Introduction
	Going 3-D with WebGL
	Getting Better Access to Sound with the Web Audio API
	Making Your Game Bigger with the Full-Screen API
	Locking Your Device Screen with the Screen Orientation API
	Adding Real-Time Communications with WebRTC
	Tracking Other Upcoming Native Features
	Summary

	Appendix: Resources
	Books on HTML5 and JavaScript
	Web Resources

	Index

