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Preface

Thought leaders across different companies and industries have been restating Watts
Humphrey’s statement, “Every business will become a software business.” He was spot
on. Software is taking over the world and is challenging the status quo of existing
companies. Netflix has revolutionized how we obtain and consume TV and movies,
Uber has transformed the transportation industry, and Airbnb is challenging the
hotel industry. A couple of years ago that would have been unthinkable, but software
has allowed new companies to venture into all industries and establish new thinking
and business models.

The previously mentioned companies are often referred to as “born-in-the-cloud
companies,” which means that at the basis of their offerings are services running in
the cloud. Those services are built in a way that companies can quickly react to mar‐
ket and customer demands, release updates and fixes in a short period of time, use
the latest technologies, and take advantage of the improved economics provided by
the cloud. Services built in a cloud native way have also allowed companies to rethink
their business models and move to new ones, such as subscription-based models.
Such services are often referred to as cloud native applications.

The success and popularity of cloud native applications have led many enterprises to
adopt cloud native architectures, even bringing many of the concepts to on-premises
applications.

At the heart of cloud native applications are containers, functions, and data. There are
many books out there focusing on each of these specific technologies. Cloud native
applications use all of these technologies and take advantage of and exploit all of the
benefits of the cloud. We, the authors, have seen many customers struggle to piece all
of those technologies together to design and develop cloud native applications, so we
decided to write a book with the goal to provide the foundational knowledge that
enables developers and architects alike to get started with designing cloud native
applications.
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This book starts by laying down the foundation for the reader to understand the basic
principles of distributed computing and how they relate to cloud native applications,
as well as providing a closer look at containers and functions. Further, it covers ser‐
vice communication patterns, resiliency, and data patterns as well as providing guid‐
ance on when to use what. The book concludes by explaining the DevOps approach,
portability considerations, and a collection of best practices that we have seen to be
useful in successful cloud native applications.

The book is not a step-by-step implementation guide for building cloud native appli‐
cations for a specific set of requirements. After reading this book, you should have
the understanding and knowledge to help design, build, and operate successful cloud
native applications. Tutorials are great for working through very specific needs, but a
fundamental understanding of building cloud native applications provides teams
with the necessary skills to ship successful cloud native applications.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.
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This element indicates a warning or caution.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/cloud-native-1e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction to Cloud Native

What are cloud native applications? What makes them so appealing that the cloud
native model is now considered not only for the cloud, but also for the edge? And,
finally, how do you design and develop cloud native applications? These are all ques‐
tions that will be answered throughout this book. But before we dive into the details
on the what, why, and how, we want to provide a brief introduction to the cloud
native world and some of the fundamental concepts and assumptions that are build‐
ing the foundation for modern cloud native applications and environments.

Distributed Systems
One of the biggest hurdles that developers face when they build cloud native applica‐
tions for the first time is that they must deal with services that are not on the same
machine, and they need to deal with patterns that consider a network between the
machines. Without even knowing it, they have entered the world of distributed sys‐
tems. A distributed system is a system in which individual computers are connected
through a network and appear as a single computer. Being able to distribute comput‐
ing power across a bunch of machines is a great way to accomplish scalability, relia‐
bility, and better economics. For example, most cloud providers are using cheaper
commodity hardware and solving common problems such as high availability and
reliability through software-based solutions.

Fallacies of Distributed Systems
There are couple of incorrect or unfounded assumptions most developers and archi‐
tects make when they enter the world of distributed systems. Peter Deutsch, a Fellow
at Sun Microsystems, was identifying fallacies of distributed computing back in 1994,
at a time when nobody thought about cloud computing. Because cloud native appli‐
cations are, at their core, distributed systems, these fallacies still have validity today.
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Following is the list of the fallacies that Deutsch described, with their meanings
applied to cloud native applications:

The network is reliable
Even in the cloud you cannot assume that the network is reliable. Because serv‐
ices are typically placed on different machines, you need to develop your soft‐
ware in a way that it accounts for potential network failures, which we discuss
later in this book.

Latency is zero
Latency and bandwidth are often confused, but it is important to understand the
difference. Latency is how much time goes by until data is received, whereas
bandwidth indicates how much data can be transferred in a given window of
time. Because latency has a big impact on user experience and performance, you
should take care to do the following:

• Avoid frequent network calls and introducing chattiness to the network.
• Design your cloud native application in a way that the data is closest to your

client by using caching, content delivery networks (CDNs), and multiregion
deployments.

• Use publication/subscription (pub/sub) mechanisms to be notified that there
is new data and store it locally to be immediately available. Chapter 3 covers
messaging patterns such as pub/sub in more detail.

There is infinite bandwidth
Nowadays, network bandwidth does not seem to be a big issue, but new technol‐
ogies and areas such as edge computing open up new scenarios that demand far
more bandwidth. For example, it is predicted that a self-driving car will produce
around 50 terabytes (TB) of data per day. This volume of data requires you to
design your cloudnative application with bandwidth usage in mind. Domain-
Driven Design (DDD) and data patterns such as Command Query Responsibility
Segregation (CQRS) are very useful under such bandwidth-demanding circum‐
stances. Chapter 4 and Chapter 6 cover how to work with data in cloud native
applications in more detail.

The network is secure
Two things are often an afterthought for developers: diagnostics and security.
The assumption that networks are secure can be fatal. As a developer or architect,
you need to make security a priority of your design; for example, by embracing a
defense-in-depth approach.

The topology does not change
Pets versus cattle is a meme that gained popularity with the advent of containers.
It means that you do not treat any machine as a known entity (pet) with its own
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set of properties, such as static IPs and so on. Instead, you treat machines as a
member of a herd that has no special attributes. This concept is very important
with cloud native applications. Because cloud environments are meant to provide
elasticity, machines can be added and removed based on criteria such as resource
consumption or requests per second.

There is one administrator
In traditional software development, it was quite common to have one person
responsible for the environment, installing and upgrading the application, and so
forth. Modern cloud architectures and DevOps methods have shifted the way
software is built. A modern cloud native application is a composite of many serv‐
ices that need to work together in concert and that are developed by different
teams. This makes it practically impossible for a single person to know and
understand the application in its entirety, not to mention trying to fix a problem.
Thus, you need to ensure that you have governance in place that makes it easy to
troubleshoot issues. Throughout this book, we introduce you to important con‐
cepts such as release management, decoupling, and logging and monitoring. Chap‐
ter 5 provides a detailed look at common DevOps practices for cloud native
applications.

Transport cost is zero
From a cloud native perspective, there are two ways to look at this one. First,
transport happens over a network and network costs are not free with most cloud
providers. Most cloud providers, for example, do not charge for data ingress, but
do charge for data egress. The second way to look at this fallacy is that the cost
for translating any payload into objects is not free. For example, serialization and
deserialization are usually fairly expensive operations that you need to consider
in addition to the latency of network calls.

The network is homogeneous
This is almost not worth listing given that pretty much every developer and
architect understands that there are different protocols that they must consider
when building their applications.

As mentioned before, although these fallacies were documented a long time ago, they
are still a good reminder of the incorrect assumptions people make when entering the
cloud native world. Throughout this book, we teach you patterns and best practices
that take all of the fallacies of distributed computing into account.

CAP Theorem
The CAP theorem is often mentioned in combination with distributed systems. The
CAP theorem states that any networked shared-data system can have at most two of
the following three desirable properties:
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• Consistency (C) equivalent to having a single up-to-date copy of the data
• High availability (A) of that data (for updates)
• Tolerance to network partitions (P)

The reality is that you will always have network partitions (remember, “the network is
reliable” is one of the fallacies of distributed computing). That leaves you with only
two choices—you can optimize either for consistency or high availability. Many
NoSQL databases such as Cassandra optimize for availability, whereas SQL-based sys‐
tems that adhere to the principles of ACID (atomicity, consistency, isolation, and
durability) optimize for consistency.

The Twelve-Factor App
In the early days of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS),
it quickly became obvious that the cloud required a new way of developing applica‐
tions. For example, on-premises scaling was often done by scaling vertically, meaning
adding more resources to a machine. Scaling in the cloud, on the other hand, is usu‐
ally done horizontally, meaning adding more machines to distribute the load. This
type of scaling requires stateless applications, and this is one of the factors described
by the Twelve-Factor App manifesto. The Twelve-Factor App methodology can be
considered the foundation for cloud native applications and was first introduced by
engineers at Heroku, derived from best practices for application development in the
cloud. Cloud development has evolved since the introduction of the Twelve-Factor
manifesto, but the principles still apply. Following are the 12 factors and their mean‐
ing for cloud native applications:

1. Codebase
One codebase tracked in revision control; many deploys.
There is only one codebase per application, but it can be deployed into many
environments such as Dev, Test, and Prod. In cloud native architecture, this
translates directly into one codebase per service or function, each having its own
Continuous Integration/Continuous Deployment (CI/CD) flow.

2. Dependencies
Explicitly declare and isolate dependencies.
Declaring and isolating dependencies is an important aspect of cloud native
development. Many issues arise due to missing dependencies or version mis‐
match of dependencies, which stem from environmental differences between the
on-premises and cloud environments. In general, you should always use depend‐
ency managers for languages such as Maven or npm. Containers have drastically
reduced dependency-based issues because all dependencies are packaged inside a
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container, and as such should be declared in the Dockerfile. Chef, Puppet, Ansi‐
ble, and Terraform are great tools to manage and install system dependencies.

3. Configuration
Store configuration in the environment.
Configuration should be strictly separated from code. This allows you to easily
apply configurations per environment. For example, you can have a test configu‐
ration file that stores all the connection strings and other information used in a
test environment. If you want to deploy the same application to a production
environment, you need only to replace the configuration. Many modern plat‐
forms support external configuration, whether it is configuration maps with
Kubernetes or managed configuration services in cloud environments.

4. Backing Services
Treat backing services as attached resources.
A backing service is defined as “any service the app consumed over the network
as part of its normal operation.” In the case of cloud native applications, this
might be a managed caching service or a Database as a Service (DbaaS) imple‐
mentation. The recommendation here is to access those services through config‐
uration settings stored in external configuration systems, which allows loose
coupling, one of the principles that is also valid for cloud native applications.

5. Build, Release, Run
Strictly separate build and run stages.
As you will see in Chapter 5 on DevOps, it is recommended to aim for fully auto‐
mated build and release stages using CI/CD practices.

6. Processes
Execute the app in one or more stateless processes.
As mentioned earlier, compute in the cloud should be stateless, meaning that
data should only be saved outside the processes. This enables elasticity, which is
one of the promises of cloud computing.

7. Data Isolation
Each service manages its own data.
This is one of the key tenets of microservices architectures, which is a common
pattern in cloud native applications. Each service manages its own data, which
can be accessed only through APIs, meaning that other services that are part of
the application are not allowed to directly access the data of another service.

8. Concurrency
Scale out via the process model.
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Improved scale and resource usage are two of the key benefits of cloud native
applications, meaning that you can scale each service or function independently
and horizontally; thus, you’ll achieve better resource usage.

9. Disposability
Maximize robustness with fast startup and graceful shutdown.
Containers and functions already satisfy this factor given that both provide fast
startup times. One thing that is often neglected is to design for a crash or scale in
scenario, meaning that the instance count of a function or a container is
decreased, which is also captured in this factor.

10. Dev/Prod Parity
Keep development, staging, and production as similar as possible.
Containers allow you to package all of the dependencies of your service, which
limits the issues with environment inconsistencies. There are scenarios that are a
bit trickier, especially when you use managed services that are not available on-
premises in your Dev environment. Chapter 5 looks at methods and techniques
to keep your environments as consistent as possible.

11. Logs
Treat logs as event streams.
Logging is one of the most important tasks in a distributed system. There are so
many moving parts and without a good logging strategy, you would be “flying
blind” when the application is not behaving as expected. The Twelve-Factor man‐
ifesto states that you should treat logs as streams, routed to external systems.

12. Admin Processes
Run admin and management tasks as one-off processes.
This basically means that you should execute administrative and management
tasks as short-lived processes. Both functions and containers are great tools for
that.

Throughout the book you will recognize many of these factors because they are still
very relevant for cloud native applications.

Availability and Service-Level Agreements
Most of the time, cloud native applications are composite applications that use com‐
pute, such as containers and functions, but also managed cloud services such as
DbaaS, caching services, and/or identity services. What is not obvious is that your
compound Service-Level Agreement (SLA) will never be as high as the highest availa‐
bility of an individual service. SLAs are typically measured in uptime in a year, more
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commonly referred to as “number of nines.” Table 1-1 shows a list of common availa‐
bility percentages for cloud services and their corresponding downtimes.

Table 1-1. Uptime percentages and service downtime

Availability % Downtime per year Downtime per month Downtime per week
99% 3.65 days 7.20 hours 1.68 hours

99.9% 8.76 hours 43.2 minutes 10.1 minutes

99.99% 52.56 minutes 4.32 minutes 1.01 minutes

99.999% 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

Following is an example of a compound SLA:

Service 1 (99.95%) + Service 2 (99.90%): 0.9995 × 0.9990 = 0.9985005

The compound SLA is 99.85%.

Summary
Many developers struggle when starting to develop for the cloud. In a nutshell, devel‐
opers are facing three major challenges: first, they need to understand distributed sys‐
tems; second, they need to understand new technologies such as containers and
functions; and third, they need to understand what patterns to use when building
cloud native applications. Having some familiarity with the fundamentals, such as the
fallacies of distributed systems, the Twelve-Factor manifesto, and compound SLAs,
will make the transition easier. This chapter introduced some of the fundamental
concepts of cloud native, which enables you to better understand some of the archi‐
tectural considerations and patterns discussed throughout the book.
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CHAPTER 2

Fundamentals

As discussed in Chapter 1, cloud native applications are applications that are dis‐
tributed in nature and utilize cloud infrastructure. There are many technologies and
tools that are being used to implement cloud native applications, but from a compute
perspective, it is mainly functions and containers. From an architectural perspective,
microservices architectures have gained a lot of popularity. More often than not, those
terms are mistakenly used, and often believed to be one and the same. In reality, func‐
tions and containers are different technologies, each serving a particular purpose,
whereas microservices describes an architectural style. That said, understanding how
to best use functions and containers, along with eventing or messaging technologies,
allows developers to design, develop, and operate a new generation of cloud native
microservices-based applications in the most efficient and agile way. To make the cor‐
rect architectural decisions to design those types of applications, it is important to
understand the basics of the underlying terms and technologies. This chapter
explains important technologies used with cloud native applications and concludes by
providing an overview of the microservices architectural style.

Containers
Initially, containers were brought into the spotlight by startups and born-in-the-cloud
companies, but over the past couple of years, containers have become synonymous
with application modernization. Today there are very few companies that are not
using containers or at least considering using containers in the future, which means
that architects and developers alike need to understand what containers offer and
what they don’t offer.

When people talk about containers today, they refer to “Docker containers” most of
the time, because it’s Docker that has really made containers popular. However, in the
Linux operating system (OS) world, containers date back more than 10 years. The
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initial idea of containers was to slice up an OS so that you can securely run multiple
applications without them interfering with one another. The required isolation is
accomplished through namespaces and control groups, which are Linux kernel fea‐
tures. Namespaces allow the different components of the OS to be sliced up and thus
create isolated workspaces. Control groups then allow fine-grained control of
resource utilization, effectively stopping one container from consuming all system
resources.

Because the interaction with kernel features was not exactly what we would call devel‐
oper friendly, Linux containers (LXC) were introduced to abstract away some of the
complexity of composing the various technology underpinnings of what is now com‐
monly call a “container.” Eventually it was Docker that made containers mainstream
by introducing a developer-friendly packaging of the kernel features. Docker defines
containers as a “standardized unit of software.” The “unit of software”—or, more
accurately, the service or application running within a container—has full, private
access to their own isolated view of OS constructs. In other words, you can view con‐
tainers as encapsulated, individually deployable components running as isolated
instances on the same kernel with virtualization happening on the OS level.

Figure 2-1. VMs and containers on a single host

In addition, containers use the copy-on-write filesystem strategy, which allows multi‐
ple containers to share the same data, and the OS provides a copy of the data to the
container that needs to modify or write data. This allows containers to be very light‐
weight in terms of memory and disk space usage, resulting in faster startup times,
which is one of the great benefits of using containers. Other benefits are deterministic
deployments, allowing portability between environments, isolation, and higher den‐
sity. For modern cloud native applications, container images have become the unit of
deployment encapsulating the application or service code, its runtime, dependencies,
system libraries, and so on. Due to their fast startup times, containers are an ideal
technology for scale-out scenarios, which are very common in cloud native
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applications. Figure 2-1 shows the difference between virtual machines (VMs) and
containers on a single host.

Container Isolation Levels
Because containers are based on OS virtualization, they share the same kernel when
running on the same host. Although this is sufficient enough isolation for most sce‐
narios, it falls short of the isolation level that hardware-based virtualization options
such as VMs provide. Following are some of the downsides of using VMs as the foun‐
dation of cloud native applications:

• VMs can take a considerable amount of time to start because they boot a full OS.
• The size of the VM can be an issue. A VM contains an entire OS, which can

easily be several gigabytes in size. Copying this image across a network—for
example, if they are kept in a central image repository—will take a lot of time.

• Scaling of VMs has its challenges. Scaling up (adding more resources) requires a
new, larger VM (more CPU, memory, storage, etc.) to be provisioned and booted.
Scaling out might not be fast enough to respond to demand; it takes time for new
instances to start.

• VMs have more overhead and use considerably more resources such as memory,
CPU, and disk. This limits the density, or number of VMs that can run on a sin‐
gle host machine.

The most common scenarios that demand high isolation on a hardware virtualization
level are hostile multitenant scenarios in which you typically need to protect against
malicious escape and breakout attempts into other targets on the same host or on the
shared infrastructure. Cloud providers have been using technologies internally that
provide VM-level isolation while maintaining the expected speed and efficiency of
containers. These technologies are known as Hyper-V containers, sandboxed contain‐
ers, or MicroVMs. Here are the most popular MicroVM technologies (in nonspecific
order):

Nabla containers
These enable better isolation by taking advantage of unikernel techniques, specif‐
ically those from the Solo5 project, to limit system calls from the container to
host kernel. The Nabla container runtime (runc) is an Open Container Initiative
(OCI)-compliant runtime. OCI will be explained in a bit more detail later in this
chapter.

Google’s gVisor
This is a container runtime and user space kernel written in Go. The new kernel
is a “user space” process that addresses the container’s system call needs,
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preventing direct interaction with the host OS. The gVisor runtime (runSC) is an
OCI-compliant runtime, and it supports Kubernetes orchestration as well.

Microsoft’s Hyper-V containers
Microsoft’s Hyper-V containers were introduced a couple of years ago and are
based on VM Worker Process (vmwp.exe). Those containers provide full VM-
level isolation and are OCI compliant. As for running Hyper-V containers in
Kubernetes in production, you will want to wait for general availability of Kuber‐
netes on Windows.

Kata containers
Kata containers are a combination of Hyper.sh and Intel’s clear containers and
provide classic hardware-assisted virtualization. Kata containers are compatible
with the OCI specification for Docker containers and CRI for Kubernetes.

Amazon’s Firecracker
Firecracker is powering Amazon’s Lambda infrastructure and has been open
sourced under the Apache 2.0 license. Firecracker is a user-mode VM solution
that sits on top of the KVM API and is designed to run modern Linux kernels.
The goal of Firecracker is to provide support for running Linux containers in a
hypervisor-isolated fashion similar to other more isolated container technologies
such as Kata containers. Note that, as of this writing, you are not able to use Fire‐
cracker with Kubernetes, Docker, or Kata containers.

Figure 2-2 provides an overview of the isolation levels of the these technologies.

Figure 2-2. Isolation levels for VMs, containers, and processes
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Container Orchestration
To manage the life cycle of containers at scale, you need to use a container orchestra‐
tor. The tasks of a container orchestrator are the following:

• The provisioning and deployment of containers onto the cluster nodes
• Resource management of containers, meaning placing containers on nodes that

provide sufficient resources or moving containers to other nodes if the resource
limits of a node is reached

• Health monitoring of the containers and the nodes to initiaing restarted and
rescheduling in case of failures on a container or node level

• Scaling in or out containers within a cluster
• Providing mappings for containers to connect to networking
• Internal load balancing between containers

There are multiple container orchestrators available, but there is no doubt that
Kubernetes is by far the most popular choice for cluster management and the sched‐
uling of container-centric workloads in a cluster.

Kubernetes Overview
Kubernetes (often abbreviated as k8s) is an open source project for running and man‐
aging containers. Google open sourced the project in 2014, and Kubernetes is often
viewed as a container platform, microservices platform, and/or a cloud portability
layer. All of the major cloud vendors have a managed Kubernetes offering today.

A Kubernetes cluster runs multiple components that can be grouped in one of three
categories: master components, node components, or addons. Master components pro‐
vide the cluster control plane. These components are responsible for making cluster-
wide decisions like scheduling tasks in the cluster or responding to events, such as
starting new tasks if one fails or does not meet the desired number of replicas. The
master components can run on any node in the cluster, but are commonly deployed
to dedicated master nodes. Managed Kubernetes offerings from cloud providers will
handle the management of the control plane, including on-demand upgrades and
patches.

Kubernetes master components include the following:

kube-apiserver
Exposes the Kubernetes API and is the frontend for the Kubernetes control plane

etcd
A key/value store used for all cluster data
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kube-scheduler
Monitors newly created pods (a Kubernetes-specific management wrapper
around containers, which we explain in more detail later in this chapter) that are
not assigned to a node and finds an available node

kube-controller-manager
Manages a number of controllers that are responsible for responding to nodes
that go down or maintaining the correct number of replicas

cloud-controller-manager
Run controllers that interact with the underlying cloud providers

Node components run on every node in the cluster, which is also referred to as the
data plane, and are responsible for maintaining running pods and the environment
for the node to which they are deployed.

Kubernetes node components include the following:

kubelet
An agent that runs on each node in the cluster and is responsible for running
containers in pods based on their pod specification

kube-proxy
Maintains network rules on the nodes and performs connection forwarding

container runtime
The software responsible for running containers (see “Kubernetes and Contain‐
ers” on page 16)

Figure 2-3 shows the Kubernetes master and worker node components.

Figure 2-3. Kubernetes master and worker node components
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Kubernetes is commonly deployed with addons that are managed by the master and
worker node components. These addons will include services like Domain Name Sys‐
tem (DNS) and a management user interface (UI).

A deep dive into Kubernetes is beyond the scope of this book. There are, however,
some fundamental concepts that are important for you to understand:

Pods
A pod is basically a management wrapper around one or multiple containers,
storage resources, or a unique network IP, that governs the container life cycle. 
Although Kubernetes supports multiple containers per pod, most of the time
there is only one application container per pod. That said, the pattern of sidecar
containers, which extends or enhances the functionality of the application con‐
tainer, is very popular. Service meshes like Istio rely heavily on sidecars, as you
can see in Chapter 3.

Services
A Kubernetes service provides a steady endpoint to a grouping of pods that are
running on the cluster. Kubernetes uses label selectors to identify which pods are
targeted by a service.

ReplicaSets
The easiest way to think about ReplicaSets is to think about service instances. 
You basically define how many replicas of a pod you need, and Kubernetes makes
sure that you have that number of replicas running at any given time.

Deployments
The Kubernetes Deployment documentation states that you “describe a desired
state in a Deployment object, and the Deployment controller changes the actual
state to the desired state at a controlled rate.” In other words, you should use
Deployments for rolling out and monitoring ReplicaSets, scaling ReplicaSets,
updating pods, rolling back to earlier Deployments versions, and cleaning up
older ReplicaSets.

Figure 2-4 provides a logical view of the fundamental Kubernetes concepts and how
they interact with one another.
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Figure 2-4. Fundamental Kubernetes concepts

Kubernetes and Containers
Kubernetes is simply the orchestration platform for containers, so it needs a container
runtime to manage the container life cycle. The Docker runtime was supported from
day one in Kubernetes, but it isn’t the only container runtime available on the market.
As a consequence, the Kubernetes community has pushed for a generic way to inte‐
grate container runtimes into Kubernetes. Interfaces have proven to be a good soft‐
ware pattern for providing contracts between two systems, so the community created
the Container Runtime Interface (CRI). The CRI avoids “hardcoding” specific run‐
time requirements into the Kubernetes codebase, with the consequence of always
needing to update the Kubernetes codebase when there are changes to a container
runtime. Instead, the CRI describes the functions that need to be implemented by a
container runtime to be CRI compliant. The functions that the CRI describes handle
the life cycle of container pods (start, stop, pause, kill, delete), container image man‐
agement (e.g., download images from a registry), and some helper functions around
observability, such as log and metric collections and networking. Figure 2-5 shows
high-level CRI example architectures for Docker and Kata containers.
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Figure 2-5. Docker versus Kata container on Kubernetes

The following list provides other container-related technologies that might be useful:

OCI
The OCI is a Linux Foundation project that aims to design open standards for
container images and runtimes. Many container technologies implement an
OCI-compliant runtime and image specification.

containerd
containerd is an industry-standard container runtime used by Docker and
Kubernetes CRI, just to name the most popular ones. It is available as a daemon
for Linux and Windows, which can manage the complete container life cycle of
its host system, including container image management, container execution,
low-level storage, and network attachments.

Moby
Moby is a set of open source tools created by Docker to enable and accelerate
software containerization. The toolkit includes container build tools, a container
registry, orchestration tools, a runtime, and more, and you can use these as build‐
ing blocks in conjunction with other tools and projects. Moby is using containerd
as the default container runtime.

Serverless Computing
Serverless computing means that scale and the underlying infrastructure is managed
by the cloud provider; that is, your application automatically drives the allocation and
deallocation of resources, and you do not need to worry about managing the underly‐
ing infrastructure at all. All management and operations are abstracted away from the
user and managed by cloud providers such as Microsoft Azure, Amazon Web
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Services (AWS), and Google Cloud Platform (GCP). From a developer perspective,
serverless often adds an event-driven programming model, and from an economic
perspective, you pay only per execution (CPU time consumed).

Many people think Function as a Service (FaaS) is serverless. This is technically true,
but FaaS is only one variation of serverless computing. Microsoft Azure’s Container
Instances (ACI) and Azure SF Mesh, as well as AWS Fargate and GCP’s Serverless
Containers on Cloud Functions, are good examples. ACI and AWS Fargate are server‐
less container offerings also known as Container as a Service (CaaS), which allow you
to deploy containerized applications without needing to know about the underlying
infrastructure. Other examples of serverless offerings are API management and
machine learning services—basically, any service that lets you consume functionality
without managing the underlying infrastructure and a pay-only-for-what-you-use
model qualifies as serverless offering.

Functions
When talking about functions, people typically talk about FaaS offerings such as AWS
Lambda, Azure Functions, and Google Cloud Functions, which are implemented on
serverless infrastructure. The advantages of serverless computing—fast startup and
execution time, plus the simplification of their applications—makes FaaS offerings
very compelling to developers because it allows them to focus solely on writing code.

From a development perspective, a function is the unit of work, which means that
your code has a start and a finish. Functions are usually triggered by events that are
emitted by either other functions or platform services. For example, a function can be
triggered by adding an entry to a database service or eventing service. There are quite
a few things to consider when you want to build a large, complex application just
with functions. You will need to manage more independent code, you will need to
ensure state is being taken care of, and you will need to implement patterns if func‐
tions must depend on one another, just to name a few. Containerized microservices
share a lot of the same patterns, so there have been quite a few discussions around
when to use FaaS or a container. Table 2-1 provides some high-level guidance
between FaaS and containers, and Chapter 3 covers the trade-offs in more detail.

Table 2-1. Comparison of FaaS and containerized services

FaaS Containerized service
Does one thing Does more than one thing

Can’t deploy dependencies Can deploy dependencies

Must respond to one kind of event Can respond to more than one kind of event

There are two scenarios in which using FaaS offerings might not be ideal, although it
offers the best economics. First, you want to avoid vendor lock-in. Because you need
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to develop your function specific to the FaaS offering and consume higher-level cloud
services from a provider, your entire application becomes less portable. Second, you
want to run functions on-premises or your own clusters. There are a bunch of FaaS
runtimes that are available as open source runtimes and that you can run on any
Kubernetes cluster. Kubeless, OpenFaaS, Serverless, and Apache OpenWhisk are
among the most popular installable FaaS platforms, with Azure Functions gaining
more popularity since it has been open sourced. Installable FaaS platforms are typi‐
cally deployed through containers and allow the developer to simply deploy small bits
of code (functions) without needing to worry about the underlying infrastructure.
Many installable FaaS frameworks use Kubernetes resources for routing, autoscaling,
and monitoring.

A critical aspect of any FaaS implementation, no matter whether it runs on a cloud
provider’s serverless infrastructure or is installed on your own clusters, is the startup
time. In general, you expect functions to execute very quickly after they have been
triggered, which implies that their underlying technology needs to provide very fast
boot-up times. As previously discussed, containers provide good startup times, but
do not necessarily offer the best isolation.

From VMs to Cloud Native
To understand how we ended up with the next generation of cloud native applica‐
tions, it is worth looking at how applications evolve from running on VMs to func‐
tions. Describing the journey should give you a good idea of how the IT industry is
changing to put developer productivity into focus and how you can take advantage of
all the new technologies. There are really two different paths to the cloud native
world. The first one is mainly used for brownfield scenarios, which means that you
have an existing application, and typically follows a lift-and-shift, application mod‐
ernization, and eventually an application optimization process. The second one is a
greenfield scenario in which you start your application from scratch.

Lift-and-Shift
Installing software directly on machines in the cloud is still the very first step for
many customers to move to the cloud. The benefits are mainly in the capital and
operational expense areas given that customers do not need to operate their own
datacenters or can at least reduce operations and, therefore, the costs. From a techni‐
cal perspective, lift-and-shift into Infrastructure as a Service (IaaS) gives you the most
control over the entire stack. With control comes responsibility, and installing soft‐
ware directly on machines often resulted in errors caused by missing dependencies,
runtime versioning conflicts, resource contention, and isolation. The next logical step
is to move applications into a Platform as a Service (PaaS) environment. PaaS existed
long before containers became popular; for example, Azure Cloud Services dates back
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to 2010. In most past PaaS environments, access to the underlying VMs is restricted
or in some cases prohibited so that moving to the cloud requires some rewriting of
the applications. The benefit for developers is not to worry about the underlying
infrastructure anymore. Operational tasks such as patching the OS were handled by
the cloud providers, but some of the problems, like missing dependencies, remained.
Because many PaaS services were based on VMs, scaling in burst scenarios was still a
challenge due to the downsides of VMs, which we discussed previously, and for eco‐
nomic reasons.

Application Modernization
Besides offering super-fast startup times, containers drastically removed the issues of
missing dependencies, because everything an application needed is packaged inside a
container. It didn’t take long for developers to begin to love the concept of containers
as a packaging format, and now pretty much every new application is using contain‐
ers, and more and more monolithic legacy applications are being containerized.
Many customers see the containerization of an existing application as an opportunity
to also move to a more suitable architecture for cloud native environments. Microser‐
vices is the obvious choice, but as you will see later in the chapter, moving to such an
architecture comes with some disadvantages. There are a few very obvious reasons,
though, why you want to break up your monolith:

• Time to deployment is faster.
• Certain components need to update more frequently than others.
• Certain components need different scale requirements.
• Certain components should be developed in a different technology.
• The codebase has gotten too big and complex.

Although the methodology to break up a monolith goes beyond the scope of this
book, it is worth mentioning the two major patterns to move from a monolithic
application to microservices.

Strangler pattern
With the Strangler pattern, you strangle the monolithic application. New services
or existing components are implemented as microservices. A facade or gateway
routes user requests to the correct application. Over time, more and more fea‐
tures are moved to the new architecture until the monolithic application has been
entirely transformed into a microservices application.

Anticorruption Layer pattern
This is similar to the Strangler pattern but is used when new services need to
access the legacy application. The layer then translates the concepts from existing
app to new, and vice versa.
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We describe both patterns in more detail in Chapter 6.

With applications being packaged in container images, orchestrators began to play a
more important role. Even though there were several choices in the beginning,
Kubernetes has become the most popular choice today; in fact, it is considered the
new cloud OS. Orchestrators, however, added another variable to the equation inso‐
much as development and operations teams needed to understand them. The man‐
agement part of the environment has become better, as pretty much every cloud
vendor now offers “orchestrators” as a service. As with any cloud provider, “man‐
aged” Kubernetes means that the setup and runtime part of the Kubernetes service is
managed. From an economical point of view, users are typically being charged for
compute hours, which means that you pay as long as the nodes of the cluster are up
and running even though the application might be sitting idle or utilizing low resour‐
ces.

From a developer perspective, you still need to understand how Kubernetes works if
you want to build microservices applications on top of it given that Kubernetes does
not offer any PaaS or CaaS features out of the box.

For example, a Kubernetes service does not really represent the service code within a
container, it just provides an endpoint to it, so that the code within the container can
always be accessed through the same endpoint. In addition to needing to understand
Kubernetes, developers are also being introduced to distributed systems patterns to
handle resiliency, diagnostics, and routing, just to name a few.

Service meshes such as Istio or Linkerd are gaining popularity because they are mov‐
ing some of the distributed systems complexity into the platform layer. Chapter 3
covers service meshes in great detail, but for now you can think of a service mesh as
being a dedicated networking infrastructure layer that handles the service-to-service
communication. Among other things, service meshes enable resiliency features such
as retries and circuit breakers, distributed tracing, and routing.

The next step of application evolution is to use serverless infrastructure for container‐
ized workloads, aka CaaS offerings such as Azure Container Instances or AWS Far‐
gate. Microsoft Azure has done a great job to meld the world of its managed
Kubernetes Service (AKS) with its CaaS offering, ACI, by using virtual nodes. Virtual
nodes is based on Microsoft’s open source project called Virtual Kubelet, which
allows any compute resource to act as a Kubernetes node and use the Kubernetes con‐
trol plane. In the case of AKS virtual nodes, you are able to schedule your application
on AKS and burst into ACI without needing to set up additional nodes in case your
cluster cannot offer any more resources in a scale-out scenario. Figure 2-6 shows how
an existing monolithic application (Legacy App) is broken down into smaller micro‐
services (Feature 3). The legacy application and the new microservice (Feature 3) are
on a service mesh on Kubernetes. In this case Feature 3 has independent scale needs
and can be scaled out into a CaaS offering using Virtual Kubelet.
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Figure 2-6. Modernized application with Feature 3 being scaled out into CaaS using Vir‐
tual Kubelet

Application Optimization
The next step is to improve the application in terms not only of further cost optimiza‐
tion, but also of code optimization. Functions really excel in short-lived compute sce‐
narios, such as updating records, sending emails, transforming messages, and so on.
To take advantage of functions, you can identify short-lived compute functionality in
your service codebase and implement it using functions. A good example is an order
service in which the containerized microservice does all the Create, Read, Update,
and Delete (CRUD) operations, and a function sends the notification of a successfully
placed order. To trigger the function, eventing or messaging systems are being used.
Eventually, you could decide to build the entire order service using functions, with
each function executing one of the CRUD operations.

Microservices
Microservices is a term commonly used to refer to a microservices architecture style,
or the individual services in a microservices architecture. A microservices architec‐
ture is a service-oriented architecture in which applications are decomposed into
small, loosely coupled services by area of functionality. It’s important that services
remain relatively small, are loosely coupled, and are decomposed around business
capability.

Microservices architectures are often compared and contrasted with monolithic
architectures. Instead of managing a single codebase, a shared datastore, and data
structure, as in a monolith, in a microservices architecture an application is com‐
posed of smaller codebases, created and managed by independent teams. Each service
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is owned and operated by a small team, with all elements of the service contributing
to a single well-defined task. Services run in separate processes and communicate
through APIs that are either synchronous or asynchronous message based.

Each service can be viewed as its very own application with an independent team,
tests, builds, data, and deployments. Figure 2-7 shows the concept of a microservices
architecture, using the Inventory service as an example.

Figure 2-7. Inventory service in a microservices architecture

Benefits of a Microservices Architecture
A properly implemented microservices architecture will increase the release velocity
of large applications, enabling businesses to deliver value to customers faster and
more reliably.

Agility
Fast, reliable deployments can be challenging with large, monolithic applications. A
deployment of a small change to a module in one feature area can be held up by a
change to another feature. As an application grows, testing of the application will
increase and it can take a considerable amount of time to deliver new value to stake‐
holders. A change to one feature will require the entire application to be redeployed
and rolled forward or back if there is an issue with that change. By decomposing an
application into smaller services, the time needed to verify and release changes can be
reduced and deployed more reliably.

Continuous innovation
Companies need to move increasingly faster in order to remain relevant today. This
requires organizations to be agile and capable of quickly adapting to fast-changing
market conditions. Companies can no longer wait years or months to deliver new
value to customers: they must often deliver new value daily. A microservices architec‐
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ture can make it easier to deliver value to stakeholders in a reliable way. Small inde‐
pendent teams are able to release features and perform A/B testing to improve
conversions or user experience during even the busiest times.

Evolutionary design
With a large monolithic application, it can be very difficult to adopt new technologies
or techniques because this will often require that the entire application be rewritten
or care needs to be taken to ensure that some new dependency can run side-by-side
with a previous one. Loose coupling and high functional cohesion is important to a
system design that is able to evolve through changing technologies. By decomposing
an application by features into small, loosely coupled services, it can be much easier
to change individual services without affecting the entire application. Different lan‐
guages, frameworks, and libraries can be used across the different services if needed
to support the business.

Small, focused teams
Structuring engineering teams at scale and keeping them focused and productive can
be challenging. Making people responsible for designing, running, and operating
what they build can also be challenging if what you are building is heavily intertwined
with what everyone else is building. It can sometimes take new team members days,
weeks, or even months to get up to speed and begin contributing because they are
burdened with understanding aspects of a system that are unrelated to their area of
focus. By decomposing an application into smaller services, small agile teams are able
to focus on a smaller concern and move quickly. It can be much easier for a new
member joining because they need to be concerned with only a smaller service. Team
members can more easily operate and take accountability for the services they build.

Fault isolation
In a monolithic application, a single library or module can cause problems for the
entire application. A memory leak in one module not only can affect the stability and
performance of the entire application, but can often be difficult to isolate and identify.
By decomposing features of the application into independent services, teams can iso‐
late a defect in one service to that service.

Improved scale and resource usage
Applications are generally scaled up or out. They are scaled up by increasing the size
or type of machine, and scaled out by increasing the number of instances deployed
and routing users across these instances. Different features of an application will
sometimes have different resource requirements; for example, memory, CPU, disk,
and so on. Application features will often have different scale requirements. Some fea‐
tures might easily scale out with very few resources required for each instance,
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whereas other features might require large amounts of memory with limited ability to
scale out. By decoupling these features into independent services, teams can config‐
ure the services to run in environments that best meet the services, individual
resource and scale requirements.

Improved observability
In a monolithic application it can be difficult to measure and observe the individual
components of an application without careful and detailed instrumentation through‐
out the application. By decomposing features of an application into separate services,
teams can use tools to gain deeper insights into the behavior of the individual features
and interactions with other features. System metrics such as process utilization and
memory usage can now easily be tied back to the feature team because it’s running in
a separate process or container.

Challenges with a Microservices Architecture
Despite all the benefits of a microservices architecture, there are trade-offs, and a
microservices architecture does have its own set of challenges. Tooling and technolo‐
gies have begun to address some of these challenges, but many of them still remain. A
microservices architecture might not be the best choice for all applications today, but
we can still apply many of the concepts and practices to other architectures. The best
approach often lies somewhere in between.

Complexity
Distributed systems are inherently complex. As we decompose the application into
individual services, network calls are necessary for the individual services to commu‐
nicate. Networks calls add latency and experience transient failures, and the opera‐
tions can run on different machines with a different clock, each having a slightly
different sense of the current time. We cannot assume that the network is reliable,
latency is zero, bandwidth is infinite, the network is secure, the topology will not
change, there is one administrator, transport costs are zero, and that the network is
homogenous. Many developers are not familiar with distributed systems and often
make false assumptions when entering that world. The Fallacies of Distributed Com‐
puting, as discussed in Chapter 1, is a set of assertions describing those false assump‐
tions commonly made by developers. They were first documented by L. Peter
Deutsch and other Sun Microsystems engineers and are covered in numerous blog
articles. Chapter 6 provides more information about best practices, tools, and techni‐
ques for dealing with the complexities of distributed systems.

Data integrity and consistency
Decentralized data means that data will often exist in multiple places with relation‐
ships spanning different systems. Performing transactions across these systems can
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be difficult, and we need to employ a different approach to data management. One
service might have a relationship to data in another service; for example, an order
service might have a reference to a customer in an account service. Data might have
been copied from the account service in order to satisfy some performance require‐
ments. If the customer is removed or disabled, it can be important that the order ser‐
vice is updated to indicate this status. Dealing with data will require a different
approach. Chapter 4 covers patterns for dealing with this.

Performance
Networking requests and data serialization add overhead. In a microservices-based
architecture the number of network requests will increase. Remember, components
are libraries that are no longer making direct calls; this is happening over a network.
A call to one service can result in a call to another dependent service. It might take a
number of requests to multiple services in order to satisfy the original request. We
can implement some patterns and best practices to mitigate potential performance
overhead in a microservices architecture, which we look at in Chapter 6.

Development and testing
Development can be a bit more challenging because the tools and practices used
today don’t work with a microservices architecture. Given the velocity of change and
the fact that there are many more external dependencies, it can be challenging to run
a complete test suite on versions of the dependent services that will be running in
production. We can implement a different approach to testing to address these chal‐
lenges, and a proper Continuous Integration/Continuous Deployment (CI/CD) pipe‐
line will be necessary. Development tooling and test strategies have evolved over the
years to better accommodate a microservices architecture. Chapter 5 covers many of
the tools, techniques, and best practices.

Versioning and integration
Changing an interface in a monolithic application can require some refactoring, but
the changes are often built, tested, and deployed as a single cohesive unit. In a micro‐
services architecture service, dependencies are changing and evolving independently
of the consumers. Careful attention to forward and backward compatibility is neces‐
sary when dealing with service versioning. In addition to maintaining forward and
backward compatibility with service changes, it might be possible to deploy an
entirely new version of the service, running it side-by-side with the previous version
for some period of time. Chapter 5 explores service versioning and integration
strategies.
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Monitoring and logging
Many organizations struggle with monitoring and logging of monolithic applications,
even when they are using a common shared logging library. Inconsistencies in nam‐
ing, data types, and values make it difficult to correlate relevant log events. In a
microservices architecture, when relevant events span multiple services—all poten‐
tially using different logging implementations—correlating these events can be even
more challenging. Planning and early attention to the importance of logging and
monitoring can help address much of this, which we examine in Chapter 5.

Service dependency management
With a monolithic application, dependencies on libraries are generally compiled into
a single package and tested. In a microservices architecture, service dependencies are
managed differently, requiring environment-specific routing and discovery. Service
discovery and routing tools and technologies have come a long way in addressing
these challenges. Chapter 3 looks at these in depth.

Availability
Although a microservices architecture can help isolate faults to individual services, if
other services or the application as a whole is unable to function without that service,
the application will be unavailable. As the number of services increases, the chance
that one of those services experiences a failure also increases. Services will need to
implement resilient design patterns, or some functionality downgraded in the event
of a service outage. Chapter 6 covers patterns and best practices for building highly
available applications and provides more detail on the specific challenges.

Summary
Every application, whether cloud native or traditional, needs infrastructure on which
to be hosted, technology that addresses pain points with development and deploy‐
ment, and an architectural style that helps with achieving the business objectives,
such as time to market. The goal of this chapter was to provide the basic knowledge
for cloud native applications. By now you should understand that there are various
container technologies with different isolation levels, how functions relate to contain‐
ers, and that serverless infrastructure does not always need to be FaaS. Further, you
should have a basic understanding of microservices architectures and of how you can
migrate and modernize an existing application to be a cloud native application.

The upcoming chapters build on this knowledge and go deep into how to design,
develop, and operate cloud native applications.
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CHAPTER 3

Designing Cloud Native Applications

Application architectures are a result of unique business requirements, which makes
it difficult to come up with an architectural blueprint that is generally applicable.
Cloud native applications are no exception to that. A good way to approach designing
cloud native applications is to consider five key areas when starting with the initial
design: operational excellence, security, reliability, scalability, and cost. From an
actual implementation perspective there are certain building blocks, patterns, and
technologies that are proven to be very useful in solving specific problems. Besides
discussing these five key areas, this chapter also covers the most common architec‐
tural building blocks.

The goal of this chapter is to equip you with the knowledge necessary to design and
build cloud native architectures effectively.

Fundamentals of Cloud Native Applications
All the major cloud providers offer guidance on how to build applications targeting
their respective cloud environments. Microsoft Azure has its cloud application archi‐
tecture and cloud patterns guide, Amazon Web Services (AWS) has its well-
architected framework, and Google offers various guides on how to build cloud
native applications. Although those guides are more specific to their services offered
in each environment, you can identify five generally applicable pillars that you should
keep in mind regardless of the cloud provider you are choosing.

Operational Excellence
Operational excellence means that you need to factor in how to run your application,
monitor it, and improve it over time when you are starting to design. Build, measure,
and learn are verbs often used to describe the process, and DevOps is the way to
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implement it. Chapter 5 covers many of the operational excellence principles in
detail, but it is still worthwhile to provide a high-level overview of the pillars as part
of this chapter because they play a fundamental role in designing a cloud native
application:

Automate everything
Cloud automation goes hand in hand with Infrastructure as Code (IaC). This
enables you to minimize errors during environment provisioning and application
deployment because the entire environment management is being defined using
code artifacts. Azure Resource Manager and AWS CloudFormation are good
examples. Chapter 7 also briefly discusses HashiCorp’s Terraform, which enables
you to use the same IaC approach across multiple cloud vendors. Besides mini‐
mizing errors, automation also enables you to track changes to your environment
through source code control systems as well as quickly spinning up new environ‐
ments in a consistent way. Besides automating how to provision the environ‐
ments, you also need to automate the entire deployment process of your
application.

Monitor everything
Monitoring allows you to learn not only about your application and environment
behavior, but also how your application is being used. Based on the monitoring
data you can take action to improve operational costs, performance, and the
functionality of an application. From an architectural point of view you need to
ensure that you have consistent monitoring across the entire stack, starting from
the infrastructure hosting the services you use all the way to the features and
functionality of your application. As mentioned previously, Chapter 5 provides
details on how to accomplish consistent monitoring for the entire stack, includ‐
ing the application.

Document everything
It is very common that cloud native applications are being built by many teams.
As you have seen in previous chapters, microservices architectures are promot‐
ing the idea of small independent teams building individual services. Although
documentation is important in any software development project, it is crucial in
cloud native applications. Every team member needs to be able to understand
how they can consume services built by other teams, or everyone should be able
to understand how the environment is defined and provisioned. Documentation
should be done automatically and not manually. A good example is using an
OpenAPI specification for your service APIs. This allows you to automatically
generate documentation for your service API through check-ins given that you
can use the Swagger tools as part of a Continuous Integration (CI) step.
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Make incremental changes
When making changes to both the environment as well as the application, you
need to ensure that those changes are incremental and reversible. This leads back
to one of the advantages of using IaC. Because your environment description and
definition should reside in a source control repository, you can easily reverse any
change.

Design for failure
Failures in the cloud will happen—period. You need to think not only about how
to design your application to survive failures, but also about about the processes
that need to kick in when something goes wrong. There are many testing frame‐
works available that help you to simulate failures, helping you to learn what the
impact is and to plan to mitigate those failures.

Security
All the major cloud providers employ an army of security experts who ensure that
their environments are super secure. By now it has become an accepted fact that
cloud environments are safer than most on-premises environments. Just because the
cloud environments are relatively safe does not mean that you can and should ignore
the security of your applications. Because cloud native architectures typically consist
of many components, the defense-in-depth concept has been proven to be best suited
for securing your applications. Defense-in-depth means that security controls are
implemented throughout your architecture. Although security for cloud native appli‐
cations is beyond the scope of this book, it’s important to take a brief moment to
understand what defense-in-depth means for your cloud native application. Let’s
begin by looking at a simple cloud native application, as shown in Figure 3-1.

The functionality of this application is explained later in this chapter. For the defense-
in-depth discussions, it is enough to understand that the voting application uses con‐
tainerized services running on an orchestrator, an eventing system, Function as a
Service (FaaS), and a Datastore as a Service (DaaS).
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Figure 3-1. A simple application

The following is a defense-in-depth list of containerized services, assuming you are
using Kubernetes as the orchestrator:

Source code
Ensure that you are using a secure code repository and that you track and audit
access to it. As part of your CI step, you can check your code for vulnerabilities,
especially kernel exploits if you use Linux containers.

Container image
Ensure that you always add only what is necessary to the base image and that you
expose only the ports that are absolutely needed.

Container registry
You should use a private registry with which you can track and audit who has
access to the registry using Role-Based Access Control (RBAC) polices. You
should also scan your images for vulnerabilities using tools like Twistlock.

Pod
Ensure that container images can be pulled only from approved registries. In
Kubernetes, you can use policy controllers to implement such policies. Make sure
your pod has an identity so that the code within it can access other services in a
secure manner. You should also think about whether you need to secure the
service-to-service communication within your cluster. As you will see later, ser‐
vice meshes are great solutions for that.
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Cluster and orchestrator
You need to determine whether your cluster that is hosting the orchestrator
needs to be accessed over the internet or whether a VPN is sufficient. You also
need to secure access to the control plane of the orchestrator and enable audit
logs. You can use network policies to secure the communication paths between
nodes and namespaces. Finally, make sure Kubernetes has RBAC enabled.

For the service-to-service communication within the application—for example, the
voting service accessing the messaging service—you need to ensure that the data in
transit is protected and that only authenticated services are granted access. In the
example of the voting service, only the voting app pod’s identity should be allowed to
access the messaging service. The same principles—protect the data and secure the
communication between services—apply to the other services in the voting
application.

This is by no means a complete list, but it should give you a sense of how to think
about a defense-in-depth approach.

Reliability and Availability
Reliability and availability are discussed throughout this book, but it might still be
useful to understand how they relate to each other.

Reliability means that the application will still work in an acceptable way even in the
presence of failure, whereas availability means that your application is available for a
certain amount of time.

From a reliability perspective, you need to ensure that your application is designed in
a way that it can recover from failure. As you have seen, microservices architectures
help in a way that each service is independent and does not take down the entire
application in case of a failure. For the service itself, you should think about scaling
horizontally to increase the aggregated system availability. For example, if you run
two instances of any service, you improve its reliability in case one instance fails for
any reason. We have already touched on the fact that the network is not reliable, so
you should also consider retries and circuit breakers as part of your design. Both are
discussed in detail as part of “Service Mesh” on page 59.

In summary, to design for reliability and availability you should have testing in place
that informs you of how your system is behaving and how your recovery mechanisms
work. And, of course, the application needs to recover automatically by taking advan‐
tage of the scaling capabilities.
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Scalability and Cost
Scalability and cost go hand in hand. When designing a cloud native application, you
need to think about not only how to scale the application, but also how to do it in a
very cost-efficient way. Let’s think about the voting application again. One way to
implement it is to deploy the voting app and the result app to a managed Kubernetes
cluster. Pretty much all managed Kubernetes services require you to define the num‐
ber of nodes you need at the outset, so you need to determine what your maximal
load will be and how many nodes you need to handle the maximal anticipated traffic.
This decision has a direct impact on your cost given that you need to size your cluster
in a way that it can host all of the instances of the voting and results application under
load. This is not very cost effective, because most of the time the application might
not utilize all of the nodes.

One solution could be to go with fewer nodes and rely on horizontal node autoscalers
if the existing number of nodes cannot provide sufficient resources for all instances
anymore. The problem with that design is that spinning up new nodes usually takes
longer than just spinning up new containers, so it is not super useful in unpredictable
burst scenarios. There are a couple of options for how to implement the solution; for
example, burst into Container as a Service (CaaS) offerings such as Azure Kubernetes
Service virtual node or AWS Fargate. A good way to design your solution in a scalable
and cost-efficient way is to experiment during development and even in production.
Chapter 5 provides a detailed overview of testing cloud native applications.

Cloud Native versus Traditional Architectures
Chapter 2 examined cloud native and microservices architectures and their pros and
cons, but it is also useful to point out some differences from traditional architectures.

One of the fundamental differences between cloud native applications and traditional
monolithic applications is how state—that is, session state, application and configura‐
tion data, and so on—is handled. Traditional applications are often stateful in nature,
which means that the application state was commonly stored with the compute
instance. For that very reason, load balancers were using sticky sessions to make sure
that a user request always ended up on the same server instance. A good example for
statefulness is session state. With traditional applications, it was quite common to
retrieve user-specific data, such as user profile information, from an external data‐
store and store it in session variables. The load balancer ensured that all of the traffic
from the user ended up on the same instance. Figure 3-2 shows a request (1) coming
from a client to the load balancer. The load balancer establishes a session with the
first virtual machine (VM). Application Instance 0 now loads the state and serves the
request.
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In case of a failure, such as VM reboot, network connection loss, or application
instance crash, the load balancer detects that the first VM is no longer reachable and
establishes a new session on the second VM for the user (2). Application Instance 1
has no state information because the state was stored on the first VM. This can lead
not only to user dissatisfaction, but also to inconsistencies in state.

Cloud native applications, on the other hand, are stateless by nature. Stateless does not
mean that they do not deal with data, but it means that they need to be designed in a
way that the number of compute instances is highly dynamic without affecting user
experiences that rely on data. In cloud native architectures, state is usually external‐
ized, meaning that the data is stored in state stores such as storage services. Chapter 4
provides a deep dive into working with data.

Figure 3-2. Traditional application

Figure 3-3 shows a request to an application with externalized state.
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Figure 3-3. Cloud native application with externalized state

Here’s what’s happening in this application:

1. The client sends a request to the application.
2. The load balancer randomly routes the request to Application Instance 0, which

reads and writes the state to an external state store.
3. In case of a failure of Application Instance 0, the load balancer sends the requests

from the client to Application Instance 2.
4. Application Instance 2 reads the state for the initial request from the external

state store and the client is not affected by the failure at all.

You also can see how keeping your services stateless helps with dynamic scaling in
and out. The system can just add and remove instances, scaling out and in, without
affecting the user experience (UX).
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One word of caution for scaling-in scenarios: most of the time you
are responsible for ensuring that all connections are drained of the
instance before scaling in.

In addition, monolithic applications often use service orchestration as the most com‐
mon integration technique between different components. Service orchestration, not
to be confused with container orchestration on Kubernetes, is a technique whereby
multiple components or services are orchestrated to work as one. The services typi‐
cally use synchronous communication. (Synchronous communication and request/
response patterns are explained later in this chapter.) Figure 3-4 shows an application
using service orchestration.

Figure 3-4. Service orchestration

Let’s take a closer look at this application:

1. The client sends a request to the application. The request is routed through the
load balancer to Service A (SvcA).

2. SvcA sends a request to both Service B (SvcB) and Service C (SvcC) and waits for
their response.

3. After SvcB and SvcC send their responses back, Svc A will respond to the client.

Cloud native applications often use event-driven patterns for communication. Organ‐
izing requests across loosely coupled services is called service choreography. With ser‐
vice choreography, each service is isolated, autonomous, and responsible for
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managing its own state, which are some of the characteristics of microservices-based
applications. Figure 3-5 demonstrates service choreography.

Again, let’s see how this application works:

1. The client sends a request to the application. The request is routed through the
load balancer to SvcA, and SvcA requests data for the user request from the mes‐
saging system.

2. SvcB acts independently and sends its data to an eventing system.
3. SvcC acts independently and sends its data to an eventing system.
4. SvcA picks up the data from the eventing system and sends it back to the client.

Figure 3-5. Service choreography

The communication for service orchestration and service choreography are described
in more detail in the sections “Request/Response” on page 49 and “Publisher/
Subscriber” on page 51.

Finally, there is a big difference in how cloud native architectures deal with failures as
opposed to how traditional applications cope with them. As mentioned earlier, cloud
native architectures expect failures and implement mechanisms to deal with them,
whereas traditional architectures try to minimize failures; for example, through data‐
base clustering and so on.
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Functions versus Services
One of the very first decisions that you must make when building a new application,
or even when moving an existing application to a cloud native application, is whether
you should use a containerized service (for the remainder of the chapter, we refer to it
simply as a service) or move straight to FaaS. Chapter 2 provided some high-level
guidance on when to use functions versus services. In a nutshell, you should consider
using FaaS for simple, short-lived, and independent tasks, but many FaaS offerings
have matured in a way that you can implement entire applications using FaaS. One
limiting factor is that most FaaS offerings still impose a timeout on the execution
time of a function.

Function Scenarios
The following is a list of scenarios for which functions are a good fit:

• Simple parallel execution scenarios in which functions do not need to communi‐
cate with one another. Sample scenarios include generation of artifacts, updating
records, map-reduce functions, and batch processing.

• Many Internet of Things (IoT) scenarios use functions for orchestration tasks. 
For example, messages are sent to an IoT hub, which triggers functions to per‐
form some computing and routing tasks on a message.

• Some applications are entirely built using FaaS offerings, meaning that the com‐
plete application is built using functions. Azure Durable Functions or AWS Step
Functions are function types that enable you to build an entire application using
function primitives. Those function types also help with orchestrating longer-
running tasks in an application.

Considerations for Using Functions
There are several considerations that you need to keep in mind when building an
entire application using functions:

Challenges when moving from a monolith to microservices
Because functions are typically broken down into even smaller “services,” you
generally need to deal with a multiplier of those challenges, such as network
communication complexity.

Limited lifetime of a function
As mentioned previously, most FaaS offerings limit the execution time of a func‐
tion, which means that they are not suited for long-running tasks.

Functions versus Services | 39



No usage of specialized hardware
As of this writing, there is no cloud offering for a function to take advantage of
specialized hardware such as graphics processing units (GPUs), which are supe‐
rior to standard CPUs for training models for machine learning applications.

Functions are stateless and not directly network addressable
For that reason, FaaS encourages an event-driven distributed programming
model or the use of API management solutions to front functions. Typically,
functions work together by passing data through eventing or messaging systems.
The state is stored in cloud services, which means event handling requires mov‐
ing pieces of the state from storage into and out of stateless functions. This incurs
networking latency with every hop. Overall, you can see how a large application
built solely by functions can suffer a performance loss as a result of all of the
communication and data being processed over the network.

Local development and debugging
Local development and debugging is not available for all the FaaS offerings,
because some of the FaaS runtimes are not portable.

Economics
Although you save on compute costs, FaaS offerings typically charge for execu‐
tion time; thus, you need to factor in increased costs for networking and other
cloud services such as storage and eventing. There are scenarios for which appli‐
cations implemented entirely on FaaS are more expensive; unfortunately, plan‐
ning and predicting the costs of FaaS remain very challenging.

Composite of Functions and Services
Services packaged in containers, on the other hand, do not have a limit on the execu‐
tion time. Besides, you can use specialized hardware; for instance, many managed
Kubernetes services allow you to build clusters with specialized hardware such as
GPUs. You can also create services using local persistent storage, which limits the net‐
work hops your application needs to make.

Most of the time a combination of functions and services is a great solution allowing
you to take advantage of the simplicity of FaaS while benefitting from the flexibility of
containerized services. Figure 3-6 shows the previously introduced voting application
using this hybrid approach.
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Figure 3-6. Simple voting application using a combination of functions and services

The voting app is a containerized service that allows users to submit votes. After a
vote is submitted, the message is placed into an eventing system. The eventing system
triggers functions that add the data to a datastore based on some header information,
such as device type. The results application reads the data from the datastore and dis‐
plays the voting results. The pattern implemented here is also known as an Event
Sourcing pattern.

Implementing the logic to add data to the datastore as a function allows the applica‐
tion to easily scale when needed and also to run in the most economical way.

Serverless cloud native applications are very dynamic, meaning new pods or func‐
tions can spin up and down based on demand or failures. The scale out and scale in,
meaning adding more service instances (pods) or functions or decreasing the num‐
ber, is usually provided by the cloud provider. Your responsibility is to design your
application in a way that it can handle those scenarios. For instance, if your applica‐
tion stores its state locally, it will lose the state when the pod is moved or new func‐
tions are spun up due to the statefulness nature, as mentioned at the beginning of this
chapter.

The recommended best practice for this case is to push that data into highly available
managed services, such as a Relational Database Management System (RDBMS) or
caching services. You also can deploy stateful applications on Kubernetes by using
Stateful Sets, which use persistent volumes. (Chapter 4 covers Kubernetes Stateful
Sets in more detail.)

You also need to understand how your application scales. Cloud providers make it
very easy to scale your cloud native applications, but you are still responsible for
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thinking about what happens when the application scales. For example, if you use
large container images and you expect your application to quickly scale in burst sce‐
narios, you are setting yourself up for failure. Pulling the image onto another node
can take some time because a large package needs to be downloaded over the wire.
The download can take a considerable amount of time, even if this happens within a
cloud provider network from a private container registry to a cluster or CaaS
offering.

Even though cold-start behavior, which is the time it takes to launch a function or a
container, is usually not so much a problem for FaaS offerings, you might still need to
understand the scale behavior. In a burst scenario, many functions will run concur‐
rently, and if you have dependencies on other services such as RDBMS, you might
max out your connections, which will ultimately result in a slowdown of your
application.

The bottom line is that even with the cloud provider’s autoscaling capabilities, you are
not off the hook, and you still need to understand how your application scales.

API Design and Versioning
Because the API is the interface other services use to communicate with your service,
it is important to properly document and version your APIs. The reality is that API
versioning is difficult, especially given that there are different approaches that you
can take. Based on the research done by Jean-Jacques Dubray, the cost of developing
your API depends on the strategy you take. He classified three different strategies:

The knot
Consumers of your API are tied to a single version of the API. When the API
changes, all consumers need to change as well. This is the most expensive
approach for the consumers because they are forced to upgrade each time a new
API version is released.

Point-to-point
All API versions are kept running and each consumer uses the version they need
to. Consumers can migrate to the new versions when they decide to. Compared
to the knot, this is a bit better strategy for the consumers, but it is costly for the
API developer to maintain older API versions.

Compatible versioning
All consumers talk to the same API version. Old versions are deprecated and no
longer exist because the latest version is backward compatible.

The results from the research have shown that the compatible versioning strategy
offers the best efficiency. It does introduce more work for the API developer in order
to maintain backward compatibility.
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REST doesn’t provide any specific versioning, but there are three approaches that deal
with versioning: global versioning, resource versioning, and mime-based approach.
Each one of these approaches has its pros and cons, and there is no clear and best
approach here.

With global versioning, you version the entire API and the version is part of the path
(e.g., /api/v1/users) or a subdomain (e.g., api-v1.example.com/users). If the represen‐
tation of the user changes, you create a new version of the full API, even though other
resources might not have changed at all. Creating a new version of the API with every
breaking change gives you, the developer, a clearer and easier way to get rid of the old
API versions. However, there are downsides to this approach. The API consumers are
constantly pushed to move to the newer versions as they are released, and there’s a
significant cost in testing and maintaining multiple versions, and this takes a lot of
time.

An approach that gives you a more granular versioning story is to use resource ver‐
sioning. Very similar to the global version, but in this case, you are versioning specific
resources. That way, if the user’s resource changes, you can create a new version of
that specific resource (e.g., /api/v2/users); however, the other resources would remain
unchanged (e.g., /api/v1/tasks).

Both of these approaches have the API versions either in the URL path or the
domain. With the mime-based approach, you are still versioning on the resource
level; however, you are not including the version number in the URL but in the head‐
ers instead. For example, you use the Accept and Content-Type headers to describe
the resource version and its type (e.g., Accept: application/vnd.exam‐
ple.users.v2+json), whereas the URL stays versionless (e.g., /api/users). This means
that your API endpoints stay clean, but it could make using the API more
complicated.

Regardless of the aforementioned REST versioning approaches, a bigger challenge to
the API versioning is the way you are managing your code that can support different
multiple resource versions. You don’t want your versioning to be so strict that it pre‐
vents you from making changes to the API. On the other hand, you also need to
maintain the stable contract. As a part of your strategy, you should understand how
to manage changes to the API while still providing a stable contract to the clients.

Using the compatible versioning strategy, your APIs are backward compatible and
different clients can all talk to one version of the API. Because different clients can
talk to the same API version, there’s no need to maintain a separate API version for
each client.

In addition to the client and the server (the API implementation) version, you also
need to version the message formats as well as the API documentation. Note that you
don’t version the resources, relations between the resources, or the API itself.
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When introducing changes to the API you need to consider the backward and poten‐
tially forward compatibility of the API. For example, if you are changing the URI
(e.g., query parameters) or modifying the headers or body of the message and these
changes violate or break the backward compatibility, you need to either create a new
resource or use content negotiation if the message format changed.

Regardless of the approach you take, it is important that you are able to monitor the
API and versions of the API used by the consumers. Having good monitoring in
place helps you decide how and when to deprecate the APIs.

API Backward and Forward Compatibility
Before going into the service communication options, let’s go over a quick refresher
on API compatibility. Because you will be deploying services autonomously and inde‐
pendently from one another, you need to ensure that updates to your service don’t
break existing services with which you are communicating. If you are applying the
compatible versioning strategy explained earlier, your services need to be backward
and forward compatible. Figure 3-7 shows Service A v1.0 working together with Ser‐
vice B v1.0.

Figure 3-7. Backward compatibility

Now you deploy Service B v2.0, which adds some new functionality. Backward com‐
patibility means that the Service B v2.0 can still work together with Service A v1.0,
and it won’t break its functionality. The following are some best practices for main‐
taining backward compatibility:

• Provide sensible defaults or optional values for new APIs. If that’s not possible,
create a new resource.

• Never rename existing fields or remove them.
• Never make optional things required.
• Mark old API endpoints as obsolete if not used anymore.
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• Test the combination of new and existing service versions by passing old mes‐
sages between them.

If you intend to support rollback functionality with your services, you will need to
think about forward compatibility as well. Forward compatibility means that your
service can accept and gracefully handle requests for a later version of itself. The
main guideline for ensuring forward compatibility is to ignore any additional fields
and don’t throw errors.

Semantic Versioning
Using semantic versioning is almost a standard by this point. The semantic versioning
(major.minor.patch) gives guidelines on when to increase which part of the version
number:

• Major version is increased when you make API-incompatible changes.
• Minor version is increased when you add backward-compatible features.
• Patch version is increase when you make backward-compatible bug fixes.

You can apply this type of versioning at the API level to communicate to your con‐
sumers about the types of changes that were made.

Service Communication
Networking and service communication are essential topics in distributed systems
because they can have a significant impact on the overall performance of an applica‐
tion. Therefore, it is beneficial to understand the various service communication
options when you are designing and implementing cloud native applications. At a
high level, you can differentiate between external service communication and internal
service communication. Whereas internal refers to communication within a cluster
(i.e., service-to-service communication in the same Kubernetes cluster), external
communication refers to communication from or to external services such as Data‐
base as a Service (DBaaS) offerings. External service communication from a client
into a cluster is often referred to as North-South traffic, and internal service commu‐
nication is often referred to as East-West traffic. In the context of Kubernetes, ingress
controllers are used for North-South and egress controllers can be used to access
external services. Kubernetes provides load balancing East-West traffic out of the box
by using kube-proxy, but service meshes provide some richer capabilities. Service
meshes, ingress, and egress are addressed later in this chapter in “Gateways” on page
55 and “Service Mesh” on page 59.

Service Communication | 45



Protocols
Most of the time, HTTP is used as the protocol for the communication between cli‐
ents and cloud native applications; however, it is not the most performant of proto‐
cols. Large microservices applications can have hundreds or even thousands of
services, and the more services you have, the more communication and data
exchange need to happen. As a result, the protocol selected becomes an essential fac‐
tor that can affect performance, and changing communication protocols for produc‐
tions services can be reasonably expensive. Even though HTTP is a natural choice for
communication from a client to your service over the internet, you should consider
other protocols for communication between internal services to improve perfor‐
mance. Figure 3-8 shows how you can use a proxy to carry out a protocol transform.
We cover this in more detail later in the chapter when we discuss ingress controllers
and gateways.

Figure 3-8. Proxy for protocol translation

Next we’ll discuss several popular protocols that are proven to provide better perfor‐
mance in cloud native applications.

WebSockets
WebSockets were standardized in 2013 and represent a standard for bidirectional
real-time communication between servers and clients. They allow a long-held single
TCP socket connection to be established between the client and server, which pro‐
vides for bidirectional, full-duplex messages to be instantly distributed with little
overhead. The WebSockets handshake process starts with the client sending a regular
HTTP request to the server. An Upgrade header is included in this request, which
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informs the server that the client wants to establish a WebSocket connection. When
the handshake is complete, the initial HTTP connection is replaced by a WebSocket
connection that uses the same underlying TCP/IP connection. WebSockets allow for
transferring large data volumes without incurring the overhead associated with tradi‐
tional HTTP requests. The result is a very low-latency connection.

HTTP/2
HTTP/2 does not entirely replace HTTP. The present verbs, status codes, and most of
the headers will remain the same as today. HTTP/2 is primarily designed for low
latency, and multiplexing requests over a single TCP connection using streams,
improving the efficiency in the way in which data is transferred on the wire. HTTP/2
is a binary protocol, whereas HTTP 1.x is textual. Binary protocols are more efficient
to parse because there is only one code path, which makes them very efficient on the
wire.

gRPC
gRPC is a fairly new protocol that is quickly gaining in popularity in the microservi‐
ces community due to its performance and developer friendliness. gRPC is a high-
performance, lightweight communication framework using HTTP/2 as the transport
protocol, providing features such as authentication, bidirectional streaming and flow
control, blocking or nonblocking bindings, and cancellation and timeouts. gRPC uses
protocol buffers, aka protobufs, which provide a way of defining and serializing
structured data into an efficient binary format. Due to their binary format, they are
also small payloads that are quick to send over the wire.

Messaging Protocols
As mentioned earlier, cloud native applications embrace event-driven and message-
based approaches, so it is worth mentioning messaging protocols. There are many
messaging protocols out there: STOMP, WAMP, AMQP, and MQTT, to name a few.
Although describing each protocol is beyond the scope of this book, let’s nonetheless
take a quick look at the two most popular messaging protocols.

Message Queue Telemetry Transport
The Message Queue Telemetry Transport (MQTT) is a binary protocol that is mainly
associated with IoT and machine-to-machine scenarios. It was designed for low-
bandwidth environments with unpredictable network connectivity. For instance,
MQTT is often used for communication between sensors and gateways. It is a very
lightweight protocol that focuses on publisher/subscriber messaging with some addi‐
tional features such as delivery guarantees. MQTT’s strengths are simplicity and a
compact binary packet payload.
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Advanced Message Queuing Protocol
The Advanced Message Queuing Protocol (AMQP) is a binary protocol that is
mainly designed around messaging with a rich feature set, including reliable queuing,
topic-based publisher/subscriber, routing, security, and transactions. The rich feature
set does not make it a particularly lightweight or fast protocol. That said, AMQP has
been battle-tested by various vendors and has been proven to be very reliable. One of
the main reasons to use AMQP is its interoperability between different vendors.

Both protocols are used with WebSockets over TCP, which makes them suitable for
environments that restrict traffic over port 443 (HTTPS).

A general rule of thumb is to use MQTT if you need simple, reliable messaging, and
AMQP if you need to focus on interoperability and functionality that goes beyond
simple messaging.

Serialization Considerations
Besides protocols, data serialization and deserialization can affect the overall perfor‐
mance and, in the worst case, become a bottleneck.

JSON is probably the most widely used format right now. JSON is readable, self-
contained, and easily extensible, but it has a reasonably large memory footprint, and
the serialization and deserialization can be expensive in high data volumes.

Protobuf uses a binary format, and as a result you need a generator for every lan‐
guage, as opposed to JSON, which is just a string format and understood in every
modern language. The good news is that there are generators available for pretty
much any modern language. With protobufs, the schema is declared in a proto file
beforehand, instead of passing the schema with every message like in JSON. The
proto file is added to every service that needs to serialize and deserialize the data, and
the generator generates an object representing the data; no serialization code is
required.

Even though protobufs are probably the way to go when performance matters and
you need to deal with a high volume of data, you also can do a couple of things to
improve JSON serialization and deserialization:

• Choose a good JSON serializer.
• Consider whether you need to reserialize the object if a downstream service

works with the same object. Instead, you can augment the deserialized object and
pass it on to another service in a form.
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Idempotency
No matter whether you are using synchronous or asynchronous communication, you
need to ensure that if the same operation is executed multiple times, the target system
remains unchanged. Being able to run an operation multiple times without changing
the result is called idempotency. As you will see later in the chapter, messages can be
received and processed more than once based on failed receivers, retry policies, and
so on. Ideally, the receiver should handle the message in an idempotent way so that
the repeated call produces the same result.

Let’s assume that a wearable device adds some health data to a queue, and a service
picks it up to add it to a personal health scorecard. The following message could look
similar to the one submitted by the device:

{
    "heartrate" : {
    "time" : "20200203073000",
    "bpm" : "89"
  }
}

Let’s assume further that the operation fails due to some network issues and the
receiver cannot pick up the message, so the service sends the message again due to
some retry policies. Now you end up with the same message twice. If the receiver now
picks up the messages and process them both, the heart rate will be shown as 178
bpm, which probably causes some concern for most people. To avoid this, you need
to make the operation idempotent. A common way of ensuring that an operation is
idempotent is by adding a unique identifier to the message and making sure that the
service processes the message only if the identifiers do not match. The following is an
example of the same message, but with an identifier added:

{
  "heartrate" : {
  "heartrateID" : "124e456-e89b-12d3-a456-426655440000"
  "time" : "20200203073000",
  "bpm" : "89"
  }
}

Now, the receiver can check whether the message has already been processed before
processing it. This is also commonly referred to as de-duping. The same principle
applies to data updates. The bottom line is that you should design operations to be
idempotent so that each step can be repeated without affecting the system.

Request/Response
Request/response, also known as request/reply, is a very straightforward message
exchange pattern that can be implemented synchronously and asynchronously. The
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concept is straightforward, as shown in Figure 3-9. Service A requests data from Ser‐
vice B (1), and Service B processes the request and sends the data back to Service A
(2).

Figure 3-9. Simple request/response

If you use an asynchronous communication pattern you will be facing the issue that
both Service A and Service B can engage in multiple communications, so you need to
make sure that Service A receives the appropriate response for the request. One way
to solve this is by introducing a request and a response queue and using correlation
IDs (CIDs), as shown in Figure 3-10.

Figure 3-10. Request/response with correlation ID
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At a high level, request/response with a CID implements the following steps:

1. Service A creates a request for a record such as a username with an ID, in this
case 12, and waits for a message with CID 12 to be returned.

2. Service B picks the message from the queue, retrieves the data for that user, and
assigns a CID based on the ID.

3. Service B adds the CID 12 to the response along with the user data and sends the
response back. The response queue can have many more responses with CIDs
3,5,21.

4. Service A picks the response with the CID that relates to the request ID.

Publisher/Subscriber
Publisher/subscriber (sub/sub) is one of the most common patterns to facilitate asyn‐
chronous communication within a cloud native application. The publisher publishes
a message to a topic, which will immediately be picked up by all the subscribers that
have subscribed to the topic. Pub/sub serves two main scenarios:

• Enable loose coupling between services and functions because it decouples pub‐
lishers from subscribers.

• Enable event-driven design, which is a wildly popular design approach for cloud
native applications.

At a high level, pub/sub uses the following steps, which are illustrated in Figure 3-11:

1. Service A published a message to a topic.
2. A messaging broker notifies all of the subscribers that are subscribed to that

topic.
3. The subscribers consume the message.
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Figure 3-11. Pub/sub architecture

There are a few things you need to keep in mind when using this pattern for dealing 
with the state:

• By default, the order of messages is not guaranteed, so you need to design for
idempotent operations to avoid issues when a message is processed twice.

• Stateful applications, on the other hand, do care about message ordering, so you
need to plan for this by taking advantage of the messaging system’s built-in
ordering functionality or by applying a priority queue pattern.

• If message processing results in an error or even crash of the consumer—for
example, due to a faulty format—make sure you do not return the message and
instead put it into a poison message queue.

Queues are an essential part of pub/sub messaging; the question, then, is what is the
difference between pub/sub and message queues? The key difference is that with mes‐
sage queues each message is processed only once, by a single consumer, as opposed to
pub/sub messaging in which multiple receivers subscribed to a topic can consume a
message. That said, message queues can support high rates of consumption by adding
multiple consumers for each topic, but only one consumer will receive each message
on the topic.
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Choosing Between Pub/Sub and Request Response
In a cloud native architecture, choosing between pub/sub and request/response really
depends on the use case. Figure 3-12 shows the same cloud native application using
request/response and pub/sub to highlight some of the differences in a practical
example:

1. In the request/response architecture, S1 receives an asynchronous request from a
client. After it has processed the request and saved the data, S1 sends a request to
S2 and S3.

2. After S3 has processed the request and saved the data, it sends a request to S4 and
S5.

3. Now S3 must wait for a response from S4 and S5. If either service fails for some
reason S3 waits for it and after a timeout, it will send a timeout to S1, and S1 will
send a timeout to the client. For the client, it can be a very long time until it is
notified that the request failed. To make matters worse, if the client makes the
same request again you can end up with inconsistent data, except that you have
made the operation idempotent, as S1 and S3 have already processed the request.

Overall, request/response is making your services tightly coupled, which has all the
disadvantages mentioned previously. If you use a pub/sub pattern, on the other hand,
you decoupled all of the services, and the communication between the services is
handled by passing messages into a pub/sub system such as Redis, RabbitMQ, or
Apache Kafka.

1. In the pub/sub architecture, a client sends an asynchronous request to S1. S1 pro‐
cesses the request, saves the data, and places a message into the pub/sub system,
and S1 can report back to the client.

2. S2 and S3 have subscribed to the topic in the message broker and can pick up the
message.

3. S3 can then process the message and save it and then report back to S2 that the
operation was successful. S4 and S5 have subscribed and can pick up the message
when ready. The pub system ensures that the message is delivered at some point
in time, which means that your data will be eventually consistent.

Service Communication | 53



Figure 3-12. Request/response versus pub/sub

Synchronous versus Asynchronous
In a microservices application, each service instance is typically a process. The same
is true for using containers with functions. As a result, services and functions must
interact using an interprocess communication (IPC) mechanism. You can implement
IPC synchronously and asynchronously. Synchronous means that the client waits
until a response is available. Synchronous calls are straightforward to understand and
to use, so why not implement the entire interservice communication in a synchro‐
nous way? There are a few things that you should keep in mind when going down the
synchronous path:

Exhaustion of resources
Synchronous means that a thread is blocked while it is waiting for a response.
This behavior easily can lead to depletion of resources in a scale scenario.

Response latency
For example, if a user-facing service calls Service A, Service A calls Service B, and
so on, the total response time is the sum of the individual service responses. If
one service is slow to respond, it holds up the entire response and the application
latency increases, which usually results in miserable users.

Cascading failures
Similar to response latencies, a failure in one of the services can lead to a cascad‐
ing failure that could ultimately lead to a complete breakdown of the application.
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Instead of implementing solutions to solve the potential problems that you run into
by using synchronous communication, you should consider using asynchronous
communication between services. With asynchronous communication between serv‐
ices, the client makes a call but does not block until it gets a response; instead, it can
use the freed-up resources to do other things. In a cloud native world, event and
queue-based asynchronous messaging are the most popular patterns for IPC.

Gateways
In the world of microservices and functions, the functionality clients require usually
spreads across multiple services and functions. How do clients know what endpoints
to call? Also, what happens if you redeploy existing services to different endpoints or
introduce new services?

At a higher level, you can differentiate between two types of gateways: API gateways
and application gateways. The latter doesn’t necessarily have anything to do with the
APIs, and they are typically used for Secure Sockets Layer (SSL) offloading and rout‐
ing for static resources (HTML, CSS files, etc.) or routing to object storage.

The API gateways can help to solve the problems we mentioned earlier. One or more
API gateways can sit between the clients and services. Their responsibility can vary—
from routing incoming requests to underlying services to exposing business APIs
through a common endpoint, and performing tasks such as SSL termination or
authentication. Additionality, gateways can be layered: you can have one gateway
responsible for offloading SSL, the next one will do the authentication and authoriza‐
tion, and then the last one might do the actual routing to the underlying services.

Routing
Routing is one of the most common functions of a gateway. In this scenario, a gate‐
way acts as a reverse proxy and routes incoming requests to backend services, as
shown in Figure 3-13. A reverse proxy typically sits inside a private network and
manages incoming client requests to the appropriate backend services.

The pattern is useful when clients need to communicate with one endpoint. The gate‐
way is then responsible for routing the request to the various services based on IP,
port, headers, or the URL. This simplifies the logic that clients need to implement
because only single endpoints need to be used.

When making decisions on whether to use this pattern, you need to take into account
the operating costs and maintaining the gateway. Because you are abstracting multi‐
ple services behind one endpoint, the gateway might also become a severe bottleneck;
you need to ensure that the gateway can handle the load and scale it appropriately.
Alternatively, you can use one of the cloud-provider–managed gateway services and
have it take care of operating and maintaining the gateway for you.
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Figure 3-13. Gateway used for routing

Aggregation
A gateway can also act as an aggregator: it takes one request from the client and
makes multiple requests to the underlying services. It then aggregates the service
responses and returns the single response back to the client, as shown in Figure 3-14.

Figure 3-14. Aggregating multiple requests into a single one

When a client makes a request (1), the gateway makes multiple requests to underlying
services or functions (2), the services respond (3), and the gateway aggregates the
results and returns it to the client (4). The main benefit of this approach is to reduce
the traffic between clients and services; instead of a client making multiple requests to
different endpoints it creates a single request to the gateway. One thing to note with
gateway aggregations is to ensure that you are not introducing any coupling between
the gateway and services. If you are doing aggregation in the gateway, be cognizant of
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the additional load that’s being introduced. Also, be careful with adding to the gate‐
way that might cause it to become a monolith. If your aggregation logic is becoming
too much for the gateway or if the gateway is breaking down from the load, it might
work better if you introduce a separate aggregation or batch service, as shown in
Figure 3-15.

Figure 3-15. Gateway with dedicated aggregation service

Moving the aggregation logic out of the gateway lessens the load on the gateway. It
also gives you the ability to separately update the aggregation/batching service,
without affecting the gateway.

Offloading
One of the most common uses for gateways is to offload different functionality from
individual services and do them at the gateway level. For example, instead of having
each service be responsible for SSL termination, you can offload this functionality to
the gateway instead. Using SSL termination also separates security assets like
certificates.

If you decide to use the offloading, make sure that you are offloading only functional‐
ity that’s used by all services, often referred to as cross-cutting concerns, and never off‐
load any business logic to the gateway. Here are some examples of functionality that
can be offloaded from the individual services and used at the gateway level:

• Authentication and authorization
• Rate limiting, retry policies, circuit breaking
• Caching
• Compression
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• SSL offloading
• Logging and monitoring

You need to keep in mind that the performance can decrease as you offload more
functionality into the gateway. Therefore, just as it is essential to monitor your ser‐
vice, it is essential to monitor the gateways as well.

Implementing Gateways
There are multiple technologies available for implementing gateways. The most pop‐
ular proxies that are used for gateways are NGINX, HAProxy, and Envoy. All of these
are reverse proxies that offer load balancing, SSL, and routing. All these proxies are
battle-tested in many production scenarios

In addition to implementing your gateway, you could decide to go the managed route
and use one of the cloud providers’ offerings, such as Azure Application Gateway,
Azure Frontdoor, or Amazon API Gateway.

Egress
The previous section examined ingress gateways that deal with traffic entering your
system and can do various tasks such as routing or offloading functionality. Similarly,
an egress gateway running inside your private network can help direct and control all
traffic exiting the private network. This enables your services to access any external
services in a controlled way. For example, you can use an egress gateway to block all
outbound connections from your private network. This is crucial for security in case
your services are compromised. Blocking all outbound connections prevents poten‐
tial attackers from making outbound calls and perform further attacks.

Using an egress gateway as part of a service mesh such as Istio offers even more gran‐
ular control over outgoing traffic and provides additional features such as Transport
Layer Security (TLS) origination. For example, you can configure Istio to perform
TLS origination for traffic to external services where the egress gateway accepts unen‐
crypted internal HTTP connections, encrypt the requests, and forward them to exter‐
nal services. Additionally, you can control the use of wildcard hosts to direct traffic to
a set of hosts within a common domain; for example, allowing access to *.exam‐
ple.com, or limit egress traffic to a set of IP addresses.

You should consider using an egress gateway if you need to monitor or control access
to external services.
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Service Mesh
In the cloud native world, each service is built and deployed independently, and each
service potentially communicates with other microservices. As your solution grows,
you develop more and more microservices, which also means the communication
between services increases and also becomes more complicated. With communica‐
tion being important, your services need to be resilient and almost immune to any
network issues. You need to have a way to implement request retries and define time‐
outs, circuit breakers, and similar. Having a single library with communication-
specific functionality that does all this is one way to go, but it might not help you
much if your services are implemented using different programming languages. You
could decide to rewrite it for each language separately, but you end up with services
using the same functionality but implemented in a different language, as shown in
Figure 3-16.

Figure 3-16. Service using separate libraries with the same functionality

Managing libraries can quickly become a nightmare because you need to ensure that
each language-specific implementation of the library is up-to-date with the others.
Any changes made to one version of the library need to be made to all different ver‐
sions, and so on.

One of the ideas behind the service mesh is to increase developer productivity by
moving common functionality out of each service and into the service mesh. This
also allows for the separation of concerns between the service features and service
mesh common functionality. If you move the functionality to the mesh, you no
longer need to maintain different libraries, and you end up with the state shown in
Figure 3-17.
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Figure 3-17. Common functionality living inside the proxy

The main building block of any service mesh is a proxy that runs next to each service
instance. In the case of Kubernetes, the proxy runs as a sidecar in the same pod as
your service, and they share the same network. The proxy’s job is to intercept all
requests entering or exiting the service. Each proxy has its configuration that defines
how the incoming or outgoing traffic is handled. In addition to dealing with the traf‐
fic and requests, the proxy also emits metrics that can be collected by the service
mesh control plane. As an alternative to the sidecar proxy, you can run one proxy per
host instead—in Kubernetes you can use a DaemonSet to achieve this.

Using the sidecar proxy is simple and doesn’t require a lot of configuration; however,
there is an additional resource cost because you are running an extra container within
each pod. This can become problematic if you run many instances of your services.
You could reduce the costs by running a proxy on each host instead; however, the
configuration to set this up might not be straightforward as compared to the sidecar
proxy. When deciding whether you should go with the sidecar approach or a per-host
approach, consider the following:

• The number of services and sidecar proxies: resource consumption grows as the
number of service replicas grows. If you have more than one sidecar proxy per
service, the resource consumption increases even faster.

• A language sidecar in which proxies are implemented can add to more resource
utilization (e.g., if you are using Java).

• Not all services require a dedicated proxy: consider moving from the sidecar pat‐
tern to the per-host pattern and reusing proxy functionality (for example, metrics
and log aggregation can be done per-host instead of a per-service with a sidecar
proxy).
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• The number of requests between service and proxy: requests sent to the sidecar
proxy go through fewer steps than requests if you’re using a per-host proxy.

The Istio service mesh runs the Envoy proxy next to each instance of the service,
whereas the other popular service mesh solution, Linkerd2, uses its ultralight trans‐
parent proxy written in Rust, and it allows for running the proxy either as a sidecar or
one per host. Consul Connect from HashiCorp also supports Envoy. Table 3-1 com‐
pares the different service mesh solutions.

Table 3-1. Comparing service mesh solutions

Istio Linkerd2 Consul Connect
Proxy pattern Sidecar Sidecar Sidecar

Supported protocols HTTP 1.1/HTTP2/gRPC/TCP HTTP 1.1/HTTP2/gRPC/TCP TCP

Proxy Envoy Native Pluggable (native or Envoy,
NGINX, HAProxy)

Encryption Yes Yes (experimental) Yes

Automatic proxy injection Yes Yes Yes

Traffic control Yes (label based) Not yet (Linkerd v1.0 supports it) Yes (pluggable)

Resiliency (timeouts,
retries)

Yes Yes Pluggable

Tracing Jaeger Not yet Pluggable

Metrics Prometheus Prometheus Prometheus

To clarify how proxies and different service mesh parts work together, let’s take an
example of a request retry policy that we want to apply to the services running in the
mesh. YAML is usually used to define different rules, such as the request retry poli‐
cies, of the service mesh. After a rule is applied, the proxies in the service mesh are
reconfigured using this rule. The collection of all proxies in the service mesh is usu‐
ally referred to as the data plane. The part of the service mesh that controls the data
plane is called a control plane. A typical service mesh architecture would look some‐
thing like the one depicted in Figure 3-18.
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Figure 3-18. Service mesh architecture

As a service mesh user, you don’t want to be responsible for managing the proxies in
the data plane. One of the control plane’s responsibilities is to ensure that the data
plane is correctly reconfigured. For example, you want to set the HTTP timeout
across your mesh to be 60 seconds. You send a request to the control plane, and the
control plane ensures each proxy in the data plane receives a new configuration and
reconfigures itself.

The control plane usually exposes an API that is used for configuring the service
mesh. In addition to the API, there are generally other services running as part of the
control plane; for example, services that handle the policy and telemetry for services
running inside the service mesh.

We can group the main features of a service mesh as follows:

• Traffic management
• Failure handling
• Security
• Tracing and monitoring

Traffic management
As the name suggests, the purpose of the traffic management features in the service
mesh is to manage traffic between services within the mesh as well as for external
services that are being accessed by the in-mesh services.
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Each service within a mesh can have multiple endpoint instances. These instances
could be VMs, containers, or pods running in Kubernetes. If you are not doing any
traffic management, all traffic destined for a service eventually reaches one of the
endpoint instances. To manage traffic to the endpoints, you need to define subsets in
the pool of all service instances. For example, these instances could be different ver‐
sions of your service using different Docker images, same-service versions but
deployed in different environments, and so on. Figure 3-19 shows an example of dif‐
ferent subsets of the same service.

Figure 3-19. Different service subsets

You can use various criteria, such as request headers, URL, or weights associated with
specific subsets, to decide which instances receive the incoming traffic. These criteria
are usually defined in terms of rules that are sent to the service mesh control plane.
The following are some of the most common criteria for traffic routing:
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Request headers
You use HTTP headers, URIs scheme, or HTTP methods on the incoming
requests to determine whether you want to apply the routing rules. For example,
you could route a portion of the traffic to specific subsets only if the request
includes a custom header called x-beta-version with a value of 1.

URI
This option uses the request URI to do the matching. You could match parts or
full URI to make a decision about where to route the traffic.

Sources
You could route traffic only if it’s coming from a specific source. For example,
you want to apply rules only if traffic is coming from Service A. If traffic comes
from Service B, a different set of routing rules is used.

These rules are applied to the control plane, and the control plane ensures each side‐
car proxy gets them. Finally, proxies get reconfigured based on these rules and route
the traffic accordingly.

Failure handling
In a distributed system you should always assume service communication will fail
due to different faults. These faults are not necessarily just because of bugs introduced
in the service code. For example, failures can occur due to network or infrastructure
issues. There are two types of failures: transient and nontransient. Transient failures
can happen anytime, and most of the time the operation will succeed after a couple of
retries. Nontransient failures are more permanent; for example, accessing a file that
was deleted. All of this means that you need to write your code in a way that accounts
for these types of failures and ensures that your service continues to respond and run
correctly.

In addition to the traffic management features, a service mesh should also support
how the request failures are handled by defining request timeouts, retries, and circuit
breakers. The defaults for timeouts and retries are set per each service and the service
version. A service mesh should also have an option of overwriting these settings on a
per-request basis, ideally by providing special HTTP headers (Istio, for example, has
x-envoy-upstream-rq-timeout-ms and x-envoy-max-retries headers). Keep this in
mind when deciding to use these features, because some of the libraries you use could
have this functionality included.

Circuit breakers are another feature that you can use to make your services more
resilient. The Circuit Breaker pattern is used to prevent additional failures and strain
on the entire system, by managing access to the failing services. If a circuit breaker
trips, it will prevent further access to the failing service.
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As part of the Circuit Breaker pattern, you define the conditions or threshold that
makes the circuit breaker trip, and you “wrap” your services within the circuit
breaker. If the circuit breaker trips based on the set conditions (for example, 10 fail‐
ures within a 5-second period), the tripped circuit breaker will prevent additional
access to the failing service by excluding it.

Circuit breakers need to be defined per each destination that receives the traffic. The
implementation of the circuit breaker in the Envoy proxy tracks the status of each
host, and if any of the hosts reaches the predefined threshold, it will eject it from the
pool of available hosts. If you have 10 instances of your pod running, the circuit
breaker will remove any instances that misbehave, so none of the requests can reach
them anymore.

In addition to the threshold, you can also define for how long to eject misbehaving
hosts (baseEjectionTime) as well as the size of the connection pool and the maxi‐
mum number of requests for each connection.

The other part of failure features is the ability to inject failures into your services. 
This can significantly help you with testing how the services behave if something goes
wrong. There are two ways to inject faults into the services:

HTTP aborts
This option allows you to abort an incoming request with a specific code. For
example, if you ever wondered how your system would behave if a downstream
service starts responding with an HTTP 404 error code, you can do this now.

HTTP delays
In addition to the aborts, you can also test how your service behaves if you inject
latency into the request.

Security
At a high level, the security in the service mesh can be broken down to authentication,
or who you are and what’s your identity, and authorization, or what can you do or
access within the system. The requirements for services security involve traffic
encryption for preventing man-in-the-middle attacks and mutual TLS and configura‐
ble access policy.

In the Istio service mesh, for example, there are multiple components that work
together to deliver the security features for the services running inside the service
mesh:

• Citadel provides key and certificate management.
• Envoy proxies running as service sidecars and ingress/egress proxies are respon‐

sible for implementing secure communication between services.
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• Pilot distributes auth policies and secure naming information to Envoy proxies.
• Mixer manages authorization and auditing.

The relationship between components working together to enable security features is
visualized in Figure 3-20.

Figure 3-20. Components involved in Istio security

Identity is a fundamental part of any security infrastructure. When two services try to
communicate with each other, they need to exchange credentials for mutual authenti‐
cation purposes. Istio uses the platforms’ identity to determine the service identity—
for example, for Kubernetes, Istio uses the Kubernetes service accounts. As the next
step in the communication between services, the client side checks the servers’ iden‐
tity against the secure naming. The secure naming information is generated automat‐
ically and pushed to the sidecar proxies, and it maps the identity to the service name
and tells the proxies whether the identity is allowed and authorized to run a service.
On the server side, authorization policies are used to determine what information the
client can access.

Authentication, mutual TLS, and JWT tokens.    We can differentiate between two types of
authentication: service-to-service authentication and end-user authentication.

You can implement and enable service-to-service or transport authentication by
using mutual TLS for each service without making any changes to your services
source code. Any requests that service receives will have the authentication policy
applied. In Istio, the Citadel is a component that issues the certificates that the proxies
use to communicate with one another. The end-user or origin authentication uses
JSON web tokens (JWT) to enable request-level authentication.
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Any authentication policies defined on the service mesh need to be able to be applied
on multiple scopes. With Istio, the policies can be stored in namespace-scope or mesh-
scope storage. The difference between the two is that the policies in the namespace-
scope storage affect only services in the same namespaces, and the policies in the
mesh-scope affect all services in the mesh. In addition to the scope, each policy needs
to specify the services to which the policy applies.

Authorization.    You need to define authorization in the service mesh on different lev‐
els. Istio, for example, provides the following access control levels:

• Namespace-level access control
• Service-level access control
• Method-level access control

Similarly, as with the authentication policies, Istio stores authorization policies in the
config store, and pilot watches for any changes in the policy and updates the proxies.
Envoy proxies then evaluate requests against the policies and return the result, ALLOW
or DENY.

Authorization can be enabled or disabled with a mesh-wide setting. You can turn the
policy on or off for all services, or use inclusion or exclusion settings to either apply
the policy to service or except the services from the policy.

Using a separate set of resources, you can define the individual authorization policies
for users, groups, or services. The combination of these two resources determines
who is allowed to do what under which conditions. For example, you can create an
“admin” service role that has access to all services, all methods (GET, POST, PUT, HEAD,
etc.), and all paths in the default namespace. Access to services, methods, and paths
should also support matching (e.g., apply the role only to paths starting with /api/v1)
because this gives you better control and the ability to come up with more fine-
grained rules. For example, you could allow only GET methods on paths that start with
API. Additionally, you should also be able to add constraints, which you can use to
further constrain the rules based on the destination data (e.g., IP, port, labels, and
name) or request headers.

Tracing and monitoring.    The fact that all traffic to and from your services in the mesh
goes through the proxy allows the service mesh to automatically collect metrics such
as the number of requests, their duration, size, response codes, and so on. Collected
metrics then are forwarded to another component (Mixer in the case of Istio) where
the aggregation happens.

The Mixer component is installed with a built-in Prometheus adapter that exposes an
endpoint. Prometheus can then scrape the metrics endpoint on the Mixer to collect

Service Mesh | 67



the metrics sent from the proxies. Finally, you can visualize the collected metrics by
using Grafana, which we explain in more detail in Chapter 5.

Envoy proxies are also configured to send tracing information that can be viewed
with Jaeger automatically. As a service developer, you need to ensure that you are
attaching trace and span headers to any downstream service requests—this gives
Jaeger additional tips on how to tie the traces together.

Each time a request enters the system, the request ID header value is set. This value,
(sometimes also referred to as the aforementioned CID) can be used to trace the
requests as they make their way through your system. In case of any errors, you could
return this ID to the client so that it can be used to trace the failed request and deter‐
mine what went wrong. Figure 3-21 shows how the request ID is generated and flows
through the system.

Figure 3-21. Requests with x-request-id header

Example Architecture
An example can go a long way in providing an understanding of concepts such as
designing for the cloud. The following example architecture does not cover every sce‐
nario, but it does demonstrate how to apply the various concepts. All good architec‐
tures are based on business requirements, and the architecturally significant
requirements will often be the driving factors in selecting an architectural approach.
The architecturally significant requirements will include nonfunctional requirements,
which are those that define the quality attributes of the system, like security, scale,
performance, availability, and more.

In this example scenario, users are able to manage and view information for multiple
types of devices in their home. The service must also be able to support a large and
growing number of homes, users, and devices. The device types will continue to grow
and the devices within a home will change as users add and change smart devices. 
The user will be able to manage devices using a mobile application and a single-page
application (SPA) from anywhere they can get an internet connection. The user can
also receive alerts generated in the device itself or identified in the cloud services.
They will also opt in to an agreement allowing the anonymized data from the devices
to be analyzed. The service also needs to be able to cater to a growing developer com‐
munity and home automation hobbyists interested in integrating applications with
the cloud services.
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The high-level architecture overview presented in Figure 3-22 shows devices connec‐
ted to a service in the cloud. Devices will be sending large amounts of telemetry data
to a service in the cloud at a defined interval and they will receive commands from
the cloud that can be generated by users or other events. Users also connect to serv‐
ices in the cloud through a mobile application or a web browser so that they can man‐
age and view information about the devices in their home. Data is analyzed as it’s sent
to the cloud and is stored for batch analysis. You can read more about data in the
cloud in Chapter 4.

Figure 3-22. High-level example architecture overview

A closer look at the services for storing and analyzing the device telemetry data, as
shown in Figure 3-23, shows the data moving through different paths for processing.
This split processing of streaming data through hot, warm, and cold paths is also
referred to as a lambda architecture. You can find more information on storing and
analyzing data in Chapter 4. A cloud provider device management service is being
used to connect the devices to the cloud. This service could be Azure IoT Hub, AWS
IoT Core, or Google Cloud IoT Core.

Alternatively, devices could connect to a cloud backend through a
web API, but this would result in a less optimal service that would
then need to be built and operated. This would increase the overall
cost of the service and potentially delay the time to market. A cloud
native approach uses as much of the cloud.

Devices send their telemetry data through the cloud provider’s device management
service. The telemetry data is written to a data stream where it can be consumed by
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multiple different subscribers. Each subscriber is able to work with its own view of
the stream processing data at different rates, independent of one another.

As illustrated in Figure 3-23, a cloud provider service is configured to process data
from the stream into object storage, which is sometimes referred to as the cold path. 
Object storage is inexpensive, and data for a large number of devices and users can be
retained for long periods with minimal infrastructure and operating costs. This data
then can be analyzed at a later time, and trends over large periods of time or across a
large number of devices can be identified.

Another subscriber processes data into a time-series service, which could be some‐
thing like Azure Time Series Insights, Amazon Timestream, or even Google BigTable.
This data is used for more near-real-time batch analytics and display of device tele‐
metry data over the last hour or days. The data in this service then is automatically
moved to slower and cheaper data storage as it ages, and the data is down-sampled
because the fidelity of the data over time is less important in this datastore. At some
point, the data will expire and is no longer retained in this datastore. Systems needing
historical information beyond the defined timeframe will need to load it from cold
storage. A process to rehydrate a time-series store from cold storage can be put in
place to simplify applications that consume the data.

Another subscriber is processing data from the stream, either performing complex
event processing or streaming analytics. This hot path is used to detect conditions in
a small period of time from receiving the data. The time can often vary from milli‐
seconds to minutes. This can be used to generate an alert that’s sent to the user when
temperatures are close to freezing point.

Figure 3-23. Telemetry data ingestion and analytics
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The smart home device management service includes a backend API that’s used by
developers who are interested in integrating with the service, and is used by the cli‐
ents—both the mobile and the SPA. Figure 3-24 illustrates how the API is composed
of multiple services, some of which are containers running in a Kubernetes cluster,
and some of which are functions running on the cloud provider’s FaaS platform. The
team’s preferred compute model is FaaS, but some of the workloads are long running
or have complex environment requirements, and some teams prefer containers. The
various teams are encouraged to use a compute model best suited for their imple‐
mentation needs. Some of the services use a CaaS compute model through Kuber‐
netes virtual kublet for running some Kubernetes jobs.

An API gateway is used to offload some API management requirements. The API
gateway is responsible for authenticating requests and throttling users that are send‐
ing an excessive number of requests to maintain quality of service for all users con‐
suming the service.

Figure 3-24. Backend device management API

Example Architecture | 71



Figure 3-25 shows an SPA being served to a user through a content delivery network
(CDN) with a block storage service as the origin. An SPA generally consists of static
resources. These static resources can be stored and served to users from block stor‐
age. The CDN enables fast loading of these static resources because they are cached at
an edge closer to the client. The SPA must make use of cache-busting techniques like
putting a hash on resources that have changed, or invalidating specific items in the
CDN cache when updates are pushed to storage. The tasks are implemented in the
Continuous Delivery pipeline.

Figure 3-25. Serverless SPA

Summary
As mentioned at the beginning of this chapter, each architecture is different, and
there is no one-size-fits-all architecture. Nonetheless, there are specific components
and building blocks in a cloud native application architecture that, if designed the
wrong way, can cause many problems down the road. By understanding the technolo‐
gies and patterns described in this chapter, you should be well prepared for designing
a cloud native application from the compute side. Chapter 4 covers the other impor‐
tant part of cloud native applications: working with data.
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CHAPTER 4

Working with Data

Cloud computing has made a big impact on how we build and operate software
today, including how we work with the data. The cost of storing data has significantly
decreased, making it cheaper and more feasible for companies to keep vastly larger
amounts of data. The operational overhead of database systems is considerably less
with the advent of managed and serverless data storage services. This has made it eas‐
ier to spread data across different data storage types, placing data into the systems
better suited to manage the classification of data stored. A trend in microservices
architectures encourages the decentralization of data, spreading the data for an appli‐
cation across multiple services, each with its own datastores. It’s also common that
data is replicated and partitioned in order to scale a system. Figure 4-1 shows how a
typical architecture will consist of multiple data storage systems with data spread
across them. It’s not uncommon that data in one datastore is a copy derived from data
in another store, or has some other relationship to data in another store.

Cloud native applications take advantage of managed and serverless data storage and
processing services. All of the major public cloud providers offer a number of differ‐
ent managed services to store, process, and analyze data. In addition to cloud pro‐
vider–managed database offerings, some companies provide managed databases on
the cloud provider of your choice. MongoDB, for example, offers a cloud-managed
database service called MongoDB Atlas that is available on Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP). By using a managed
database, the team can focus on building applications that use the database instead of
spending time provisioning and managing the underlying data systems.
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Figure 4-1. Data is often spread across multiple data systems

Serverless database is a term that has been used to refer to a type of
managed database with usage-based billing in which customers are
charged based on the amount of data stored and processed. This
means that if a database is not being accessed, the user is billed only
for the amount of data stored. When there is an operation on the
database, either the user is charged for the specific operation or the
database is scaled from zero and back during the processing of the
operation.

Cloud native applications take full advantage of the cloud, including data systems
used. The following is a list of cloud native application characteristics for data:

• Prefer managed data storage and analytics services.
• Use polyglot persistence, data partitioning, and caching.
• Embrace eventual consistency and use strong consistency when necessary.
• Prefer cloud native databases that scale out, tolerate faults, and are optimized for

cloud storage.
• Deal with data distributed across multiple datastores.

Cloud native applications often need to deal with silos of data, which require a differ‐
ent approach to working with data. There are a number of benefits to polyglot persis‐
tence, decentralized data, and data partitioning, but there are also trade-offs and
considerations.
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Data Storage Systems
There are a growing number of options for storing and processing data. It can be dif‐
ficult to determine which products to use when building an application. Teams will
sometimes engage in a number of iterations evaluating languages, frameworks, and
the data storage systems that will be used in the application. Many are still not con‐
vinced they made the correct decision, and it’s common for those storage systems to
be replaced or new ones added as the application evolves anyway.

It can be helpful to understand the various types of datastores and the workloads they
are optimized for when deciding which products to use. Many products are, however,
multimodel and are designed to support multiple data models, falling into multiple
data storage classifications. Applications will often take advantage of multiple data
storage systems, storing files in an object store, writing data to a relational database,
and caching with an in-memory key/value store.

Objects, Files, and Disks
Every public cloud provider offers an inexpensive object storage service. Object stor‐
age services manage data as objects. Objects are usually stored with metadata for the
object and a key that’s used as a reference for the object. File storage services generally
provide shared access to files through a traditional file sharing model with a hierarch‐
ical directory structure. Disks or block storage provides storage of disk volumes used
by computing instances. Determining where to store files such as images, documents,
content, and genomics data files will largely depend on the systems that access them.
Each of the following storage types is better suited for different types of files:

You should prefer object storage for storing file data. Object storage
is relatively inexpensive, extremely durable, and highly available.
All of the major cloud providers offer different storage tiers ena‐
bling cost saving based on data access requirements.

Object/blob storage
• Use it with files when the applications accessing the data support the cloud pro‐

vider API.
• It is inexpensive and can store large amounts of data.
• Applications need to implement a cloud provider API. If application portability is

a requirement, see Chapter 7.
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File storage
• Use it with applications designed to support Network Attached Storage (NAS).
• Use it when using a library or service that requires shared access to files.
• It is more expensive than object storage.

Disk (block) storage
• Use it for applications that assume persistent local storage disks, like MongoDB

or a MySQL database.

In addition to the various cloud provider–managed storage options for files and
objects, you can provision a distributed filesystem. The Hadoop Distributed File Sys‐
tem (HDFS) is popular for big data analytics. The distributed filesystem can use the
cloud provider disk or block storage services. Many of the cloud providers have man‐
aged services for popular distributed filesystems that include the analytics tools used.
You should consider these filesystems when using the analytics tools that work with
them.

Databases
Databases are generally used for storing more structured data with well-defined for‐
mats. A number of databases have been released over the past few years, and the
number of databases available for us to choose from continues to grow every year.
Many of these databases have been designed for specific types of data models and
workloads. Some of them support multiple models and are often labeled as multimo‐
del databases. It helps to organize databases into a group or classification when con‐
sidering which database to use where in an application.

Key/value
Often, application data needs to be retrieved using only the primary key, or maybe
even part of the key. A key/value store can be viewed as simply a very large hash table
that stores some value under a unique key. The value can be retrieved very efficiently
using the key or, in some cases, part of the key. Because the value is opaque to the
database, a consumer would need to scan record-by-record in order to find an item
based on the value. The keys in a key/value database can comprise multiple elements
and even can be ordered for efficient lookup. Some of the key/value databases allow
for the lookup using the key prefix, making it possible to use compound keys. If the
data can be queried based on some simple nesting of keys, this might be a suitable
option. If we’re storing orders for customer xyz in a key/value store, we might store
them using the customer ID as a key prefix followed by the order number, “xyz-1001.”
A specific order can be retrieved using the entire key, and orders for customer xyz
could be retrieved using the “xyz” prefix.
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Key/value databases are generally inexpensive and very scalable
datastores. Key/value data storage services are capable of partition‐
ing and even repartitioning data based on the key. Selecting a key is
important when using these datastores because it will have a signif‐
icant impact on the scale and the performance of data storage reads
and writes.

Document
A document database is similar to a key/value database in that it stores a document
(value) by a primary key. Unlike a key/value database, which can store just about any
value, the documents in a document database need to conform to some defined struc‐
ture. This enables features like the maintenance of secondary indexes and the ability
to query data based on the document. The values commonly stored in a document
database are a composition of hashmaps (JSON objects) and lists (JSON arrays).
JSON is a popular format used in document databases, although many database
engines use a more efficient internal storage format like MongoDB’s BSON.

You will need to think differently about how you organize data in a
document-oriented database when coming from relational data‐
bases. It takes time for many to make the transition to this different
approach to data modeling.

You can use these databases for much of what was traditionally stored in a relational
database like PostgreSQL. They have been growing in popularity and unlike wwith
relational databases, the documents map nicely to objects in programming languages
and don’t require object relational mapping (ORM) tools. These databases generally
don’t enforce a schema, which has some advantages with regard to Continuous Deliv‐
ery (CD) of software changes requiring data schema changes.

Databases that do not enforce a schema are often referred to
“schema on read” because although the database does not enforce
the schema, an inherent schema exists in the applications consum‐
ing the data and will need to know how to work with the data
returned.

Relational
Relational databases organize data into two-dimensional structures called tables, con‐
sisting of columns and rows. Data in one table can have a relationship to data in
another table, which the database system can enforce. Relational databases generally
enforce a strict schema, also referred to schema on write, in which a consumer writing
data to a database must conform to a schema defined in the database.
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Relational databases have been around for a long time and a lot of developers have
experience working with them. The most popular and commonly used databases, as
of today, are still relational databases. These databases are very mature, they’re good
with data that contains a large number of relationships, and there’s a large ecosystem
of tools and applications that know how to work with them. Many-to-many relation‐
ships can be difficult to work with in document databases, but in relational database
they are very simple. If the application data has a lot of relationships, especially those
that require transactions, these databases might be a good fit.

Graph
A graph database stores two types of information: edges and nodes. Edges define the
relationships between nodes, and you can think of a node as the entity. Both nodes
and edges can have properties providing information about that specific edge or
node. An edge will often define the direction or nature of a relationship. Graph data‐
bases work well at analyzing the relationships between entities. Graph data can be
stored in any of the other databases, but when graph traversal becomes increasingly
complex, it can be challenging to meet the performance and scale requirements of
graph data in the other storage types.

Column family
A column-family database organizes data into rows and columns, and can initially
appear very similar to a relational database. You can think of a column-family data‐
base as holding tabular data with rows and columns, but the columns are divided into
groups known as column families. Each column family holds a set of columns that
are logically related together and are typically retrieved or manipulated as a unit.
Other data that is accessed separately can be stored in separate column families.
Within a column family, new columns can be added dynamically, and rows can be
sparse (that is, a row doesn’t need to have a value for every column).

Time-series
Time-series data is a database that’s optimized for time, storing values based on time.
These databases generally need to support a very high number of writes. They are
commonly used to collect large amounts of data in real time from a large number of
sources. Updates to the data are rare and deletes are often completed in bulk. The
records written to a time-series database are usually very small, but there are often a
large number of records. Time-series databases are good for storing telemetry data.
Popular uses include Internet of Things (IoT) sensors or application/system counters.
Time-series databases will often include features for data retention, down-sampling,
and storing data in different mediums depending on configuration data usage
patterns.
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Search
Search engine databases are often used to search for information held in other data‐
stores and services. A search engine database can index large volumes of data with
near-real-time access to the indexes. In addition to searching across unstructured
data like that in a web page, many applications use them to provide structured and ad
hoc search features on top of data in another database. Some databases have full-text
indexing features, but search databases are also capable of reducing words to their
root forms through stemming and normalization.

Streams and Queues
Streams and queues are data storage systems that store events and messages.
Although they are sometimes used for the same purpose, they are very different types
of systems. In an event stream, data is stored as an immutable stream of events. A
consumer is able to read events in the stream at a specific location but is unable to
modify the events or the stream. You cannot remove or delete individual events from
the stream. Messaging queues or topics will store messages that can be changed
(mutated), and it’s possible to remove an individual message from a queue. Streams
are great at recording a series of events, and streaming systems are generally able to
store and process very large amounts of data. Queues or topics are great for messag‐
ing between different services, and these systems are generally designed for the short-
term storage of messages that can be changed and randomly deleted. This chapter
focuses more on streams because they are more commonly used with data systems,
and queues more commonly used for service communications. For more information
on queues, see Chapter 3.

A topic is a concept used in a publish-subscribe messaging model.
The only difference between a topic and a queue is that a message
on a queue goes to one subscriber, whereas a message to a topic will
go to multiple subscribers. You can think of a queue as a topic with
one, and only one, subscriber.

Blockchain
Records on a blockchain are stored in a way that they are immutable. Records are
grouped in a block, each of which contains some number of records in the database.
Every time new records are created, they are grouped into a single block and added to
the chain. Blocks are chained together using hashing to ensure that they are not tam‐
pered with. The slightest change to the data in a block will change the hash. The hash
from each block is stored at the beginning of the next block, ensuring that nobody
can change or remove a block from the chain. Although a blockchain could be used
like any other centralized database, it’s commonly decentralized, removing power
from a central organization.

Data Storage Systems | 79



Selecting a Datastore
When selecting a datastore, you need to consider a number of requirements. Select‐
ing data storage technologies and services can be quite challenging, especially given
the cool new databases constantly becoming available and changes in how we build
software. Start with the architecturally significant requirements—also known as non‐
functional requirements—for a system and then move to the functional requirements.

Selecting the appropriate datastore for your requirements can be an important design
decision. There are literally hundreds of implementations to choose from among SQL
and NoSQL databases. Datastores are often categorized by how they structure data
and the types of operations they support. A good place to begin is by considering
which storage model is best suited for the requirements. Then, consider a particular
datastore within that category, based on factors such as feature set, cost, and ease of
management.

Gather as much of the following information as you can about your data
requirements.

Functional requirements

Data format
What type of data do you need to store?

Read and write
How will the data need to be consumed and written?

Data size
How large are the items that will be placed in the datastore?

Scale and structure
How much storage capacity do you need, and do you anticipate needing to parti‐
tion your data?

Data relationships
Will your data need to support complex relationships?

Consistency model
Will you require strong consistency or is eventual consistency acceptable?

Schema flexibility
What kind of schemas will you apply to your data? Is a fixed or strongly enforced
schema important?

Concurrency
Will the application benefit from multiversion concurrency control? Do you
require pessimistic and/or optimistic concurrency control?
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Data movement
Will your application need to move data to other stores or data warehouses?

Data life cycle
Is the data write-once, read-many? Can it be archived over time or can the fidel‐
ity of the data be reduced through down-sampling?

Change streams
Do you need to support change data capture (CDC) and fire events when data
changes?

Other supported features
Do you need any other specific features, full-text search, indexing, and so on?

Nonfunctional requirements

Team experience
Probably one of the biggest reasons teams select a specific database solution is
because of experience.

Support
Sometimes the database system that’s the best technical fit for an application is
not the best fit for a project because of the support options available. Consider
whether or not available support options meet the organizations needs.

Performance and scalability
What are your performance requirements? Is the workload heavy on ingestion?
Query and analytics?

Reliability
What are the availability requirements? What backup and restore features are
necessary?

Replication
Will data need to be replicated across multiple regions or zones?

Limits
Are there any hard limits on size and scale?

Portability
Do you need to deploy on-premises or to multiple cloud providers?

Management and cost

Managed service
When possible, use a managed data service. There are, however, situations for
which a feature is not available and needed.
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Region or cloud provider availability
Is there a managed data storage solution available?

Licensing
Are there any restrictions on licensing types in the organization? Do you have a
preference of a proprietary versus open source software (OSS) license?

Overall cost
What is the overall cost of using the service within your solution? A good reason
to prefer managed services is for the reduced operational cost.

Selecting a database can be a bit daunting when you’re looking across the vast number
of databases available today and the new ones constantly introduced in the market. A
site that tracks database popularity, db-engines (https://db-engines.com), lists 329 dif‐
ferent databases as of this writing. In many cases the skillset of the team is a major
driving factor when selecting a database. Managing data systems can add significant
operational overhead and burden to the team and managed data systems are often
preferred for cloud-native applications, so the availability of managed data systems
will quite often narrow down the options. Deploying a simple database can be easy,
but consider that the patching, upgrades, performance tuning, backups, and highly
available database configurations increase operations burden. Yet there are situations
in which managing a database is necessary, and you might prefer some of the new
databases built for the cloud, like CockroachDB or YugaByte. Also consider available
tooling: it might make sense to deploy and manage a certain database if this avoids
the need to build software to consume the data, like a dashboard or reporting sys‐
tems.

Data in Multiple Datastores
Whether you’re working with data across partitions, databases, or services, data in
multiple datastores can introduce some data management challenges. Traditional
transaction management might not be possible and distributed transactions will
adversely affect the performance and scale of a system. The following are some of the
challenges of distributing data:

• Data consistency across the datastores
• Analysis of data in multiple datastores
• Backup and restore of the datastores

The consistency and integrity of the data can be challenging when spread across mul‐
tiple datastores. How do you ensure a related record in one system is updated to
reflect a change in another system? How do you manage copies of data, whether they
are cached in memory, a materialized view, or stored in the systems of another service
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team? How do you effectively analyze data that’s stored across multiple silos? Much of
this is addressed through data movement, and a growing number of technologies and
services are showing up in the market to handle this.

Change Data Capture
Many of the database options available today offer a stream of data change events
(change log) and expose this through an easy-to-consume API. This can make it pos‐
sible to perform some actions on the events, like triggering a function when a docu‐
ment changes or updating a materialized view. For example, successfully adding a
document that contains an order could trigger an event to update reporting totals and
notify an accounting service that an order for the customer has been created. Given a
move to polyglot persistence and decentralized datastores, these event streams are
incredibly helpful in maintaining consistency across these silos of data. Some com‐
mon use cases for CDC include:

Notifications
In a microservices architecture, it’s not uncommon that another service will want
to be notified of changes to data in a service. For this, you can use a webhook or
subscription to publish events for other services.

Materialized views
Materialized views make for efficient and simplified queries on a system. The
change events can be used to update these views.

Cache invalidation
Caches are great for improving the scale and performance of a system, but inva‐
lidating the cache when the backing data has changed is a challenge. Instead of
using a time-to-live (TTL), you can use change events to either remove the
cached item or update it.

Auditing
Many systems need to maintain a record of changes to data. You can use this log
of changes to track what was changed and when. The user that made the change
is often needed, so it might be necessary to ensure that this information is also
captured.

Search
Many databases are not very good at handling search, and the search datastores
do not provide all of the features needed in other databases. You can use change
streams to maintain a search index.
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Analytics
The data analytics requirements of an organization often require a view across
many different databases. Moving the data to a central data lake, warehouse, or
database can enable richer reporting and analytics requirements.

Change analytics
Near-real-time analysis of data changes can be separated from the data access
concerns and performed on the data changes.

Archive
In some applications, it is necessary to maintain an archive of state. This archive
is rarely accessed, and it’s often better to store this in a less expensive storage sys‐
tem.

Legacy systems
Replacing a legacy system will sometimes require data to be maintained in multi‐
ple locations. These change streams can be used to update data in a legacy sys‐
tem.

In Figure 4-2, we see an app writing to a database that logs a change. That change is
then written to a stream of change logs and processed by multiple consumers. Many
database systems maintain an internal log of changes that can be subscribed to with
checkpoints to resume at a specific location. MongoDB, for example, allows you to
subscribe to events on a deployment, data, or collection, and provide a token to
resume at a specific location. Many of the cloud provider databases handle the watch
process and will invoke a serverless function for every change.

Figure 4-2. CDC used to synchronize data changes

The application could have written the change to the stream and the database, but
this presents some problems if one of the two operations fails and it potentially cre‐
ates a race condition. For example, if the application were updating some data in the
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database, like an account shipping preference, and then failed to write to an event
stream, the data in the database would have changed, but the other systems would not
have been notified or updated, like a shipping service. The other concern is that if two
processes made a change to the same record at close to the same time, the order to
events can be a problem. Depending on the change and how it’s processed, this might
not be an issue, but it’s something to consider. The concern is that we either record
the event that something changed when it didn’t, or change something and don’t
record the event.

By using the databases change stream, we can write the change or mutation of the
document and the log of that change as a transaction. Even though data systems con‐
suming the event stream are eventually consistent after some period of time, it’s
important that they become consistent. Figure 4-3 shows a document that has been
updated and the change recorded as part of a transaction. This ensures that the
change event and the actual change itself are consistent, so now we just need to con‐
sume and process that event into other systems.

Figure 4-3. Changes to a record and operation log in a transaction scope
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Many of the managed data services make this really easy to implement and can be
quickly configured to invoke a serverless function when a change happens in the
datastore. You can configure MongoDB Atlas to invoke a function in the MongoDB
Stitch service. A change in Amazon DynamoDB or Amazon Simple Storage Service
(Amazon S3) can trigger a lambda function. Microsoft Azure Functions can be
invoked when a change happens in Azure Cosmos DB or Azure Blob Storage. A
change in Google Cloud Firestore or object storage service can trigger a Cloud Func‐
tion. Implementation with popular managed data storage services can be fairly
straightforward. This is becoming a popular and necessary feature with most
datastores.

Write Changes as an Event to a Change Log
As we just saw an application failure during an operation that affects multiple data‐
stores can result in data consistency issues. Another approach that you can use when
an operation spans multiple databases is to write the set of changes to a change log
and then apply those changes. A group of changes can be written to a stream main‐
taining order, and if a failure occurs while the changes are being applied, it can be
easy to retry or resume the operation, as shown in Figure 4-4.

Figure 4-4. Saving a set of changes before writing each change

Transaction Supervisor
You can use a supervisor service to ensure that a transaction is successfully completed
or is compensated. This can be especially useful when you’re performing transactions
involving external services—for example, writing an order to the system and process‐
ing a credit card, in which credit card processing can fail, or saving the results of the
processing. As Figure 4-5 illustrates, a checkout service receives an order, processes a
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credit card payment, and then fails to save the order to the order database. Most cus‐
tomers would be upset to know that their credit card was processed but there was no
record of their order. This is a fairly common implementation.

Figure 4-5. Failing to save order details after processing an order

Another approach might be to save the order or cart with a status of processing, then
make the call to the payment gateway to process the credit card payment, and finally,
update the status of the order. Figure 4-6 demonstrates how if we fail to update the
order status, at least we have the record of an order submitted and the intention to
process it. If the payment gateway service offered a notification service like a web‐
hook callback, we could configure that to ensure that the status was accurate.

Figure 4-6. Failing to update order status

In Figure 4-7, a supervisor is added to monitor the order database for processing
transactions that have not completed and reconciles the state. The supervisor could
be a simple function that’s triggered at a specific interval.
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Figure 4-7. A supervisor service monitors transactions for errors

You can use this approach—using a supervisor and setting status—in many different
ways to monitor systems and databases for consistency and take action to correct
them or generate a notification of the issue.

Compensating Transactions
Traditional distributed transactions are not commonly used in today’s cloud native
applications, and not always available. There are situations for which transactions are
necessary to maintain consistency across services or datastores. For example, a con‐
sumer posts some data with a file to an API requiring the application to write the file
to object storage and some data to a document database. If we write the file to object
storage and then fail when writing to the database, for any reason, we have a poten‐
tially orphaned file in object storage if the only way to find it is through a query on
the database and reference. This is a situation in which we want to treat writing the
file and the database record as a transaction; if one fails, both should fail. The file
then should be removed to compensate for the failed database write. This is essen‐
tially what a compensating transaction does. A logical set of operations need to com‐
plete; if one of the operations fails, we might need to compensate the ones that
succeeded.

You should avoid service coordination. In many cases, you can
avoid complex transaction coordination by designing for eventual
consistency and using techniques like CDC.
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Extract, Transform, and Load
The need to move and transform data for business intelligence (BI) is quite common.
Businesses have been using Extract, Transform, and Load (ETL) platforms for a long
time to move data from one system to another. Data analytics is becoming an impor‐
tant part of every business, large and small, so it should be no surprise that ETL plat‐
forms have become increasingly important. Data has become spread out across more
systems and analytics tools have become much more accessible. Everyone can take
advantage of data analytics, and there’s a growing need to move the data into a loca‐
tion for performing data analysis, like a data lake or date warehouse. You can use ETL
to get the data from these operational data systems into a system to be analyzed. ETL
is a process that comprises the following three different stages:

Extract
Data is extracted or exported from business systems and data storage systems,
legacy systems, operational databases, external services, and event Enterprise
Resource Planning (ERP) or Customer Relationship Management (CRM) sys‐
tems. When extracting data from the various sources, it’s important to determine
the velocity, how often the data is extracted from each source, and the priority
across the various sources.

Transform
Next, the extracted data is transformed; this would typically involve a number of
data cleansing, transformation, and enrichment tasks. The data can be processed
off a stream and is often stored in an interim staging store for batch processing.

Load
The transformed data then is loaded into the destination and can be analyzed for
BI.

All of the major cloud providers offer managed ETL services, like AWS Glue, Azure
Data Factory, and Google Cloud DataFlow. Moving and processing data from one
source to another is increasingly important and common in today’s cloud native
applications.

Microservices and Data Lakes
One challenge of dealing with decentralized data in a microservices architecture is the
need to perform reporting or analysis across data in multiple services. Some report‐
ing and analytics requirements will need the data from the services to be in a com‐
mon datastore.
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It might not be necessary to move the data in order to perform the
required analysis and reporting across all of the data. Some or all of
the analysis can be performed on each of the individual datastores
in conjunction with some centralized analysis tasks on the results.

Having each service work from a shared or common database will, however, violate
one of the microservices principles and potentially introduce coupling between the
services. A common way to approach this is through data movement and aggregating
the data into a location for a reporting or analytics team. In Figure 4-8, data from
multiple microservices datastores is aggregated into a centralized database in order to
deliver the necessary reporting and analytics requirements.

Figure 4-8. Data from multiple microservices aggregated in a centralized datastore

The data analytics or reporting team will need to determine how to get the data from
the various service teams that it requires for the purpose of reporting without intro‐
ducing coupling. There are a number of ways to approach this, and it will be impor‐
tant to ensure loose coupling is maintained, allowing the teams to remain agile and
deliver value quickly.

The individual services team could give the data analytics teams read access to the
database and allow them to replicate the data, as depicted in Figure 4-9. This would
be a very quick and easy approach, but the service team does not control when or
how much load the data extraction will put on the store, causing potential perfor‐
mance issues. This also introduces coupling, and it’s likely that the service teams then
will need to coordinate with the data analytics team when making internal schema
changes. The ETL load on the database adversely affecting service performance can
be addressed by giving the data analytics team access to a read replica instead of the
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primary data. It might also be possible to give the data analytics team access to a view
on the data instead of the raw documents or tables. This would help to mitigate some
of the coupling concerns.

Figure 4-9. The data analytics team consumes data directly from the service team’s data‐
base

This approach can work in the early phases of the application with a handful of serv‐
ices, but it will be challenging as the application and teams grow. Another approach is
to use an integration datastore. The service team provisions and maintains a datastore
for internal integrations, as shown in Figure 4-10. This allows the service team to
control what data and the shape of the data in the integration repository. This integra‐
tion repository should be managed like an API, documented and versioned. The ser‐
vice team could run ETL jobs to maintain the database or use CDC and treat it like a
materialized view. The service team could make changes to its operational store
without affecting the other teams. The service team would be responsible for the inte‐
gration store.

Figure 4-10. Database as an API

This could be turned around such that a service consumer, like the data analytics
team, asks a service team to export or write data to the data lake, as illustrated in
Figure 4-11, or to a staging store, as in Figure 4-12. The service teams support repli‐
cation or data, logs, or data exports to a client-provided location as part of the service
features and API. The data analytics team would provision a store or location in a
datastore for each service team. The data analytics team then subscribes to data
needed for aggregated analytics.
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Figure 4-11. Service team data export service API

Figure 4-12. Service teams write to a staging store

It’s not uncommon for services to support data exports. The service implementation
would define what export format and protocols are part of its API. This, for example,
would be a configuration for an object storage location and credentials to which to
send nightly exports, or maybe a webhook to which to send batches of changes. A ser‐
vice consumer such as the data analytics team would have access to the service API,
allowing it to subscribe to data changes or exports. The team could send locations
and credentials to which to either dump export files or send events.

Client Access to Data
Clients applications generally do not have direct access to the datastores in most
applications built today. Data is commonly accessed through a service that’s responsi‐
ble for performing authorizations, auditing, validation, and transformation of the
data. The service is usually responsible for carrying out other functions, although in
many data-centric applications, a large part of the service implementation simply
handles data read and write operations.

A simple data-centric application would generally require you to build and operate a
service that performs authentication, authorization, logging, transformations, and
validation of data. It does, however, need to control who can access what within the
datastore and validate what’s being written. Figure 4-13 shows a typical frontend
application calling a backend service that reads and writes to a single database. This is
a common architecture for many applications today.
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Figure 4-13. Client application with a backend service and database

Restricted Client Tokens (Valet-Key)
A service can create and return a token to a consumer that has limited use. This can
actually be implemented using OAuth or even a custom cryptographically signed pol‐
icy. The valet key is commonly used as a metaphor to explain how OAuth works and
is a commonly used cloud design pattern. The token returned might be able to access
only a specific data item for a limited period of time or upload a file to a specific loca‐
tion in a datastore. This can be a convenient way to offload processing from a service,
reducing the cost and scale of the service and delivering better performance. In
Figure 4-14, a file is uploaded to a service that writes the file to storage.

Figure 4-14. Client uploading a file that’s passed through the service

Instead of streaming a file through the service, it can be much more efficient to
return a token to the client with a location to access the file if it were reading or
uploading the file to a specific location. In Figure 4-15, the client requests a token and
a location from the service, which then generates a token with some policies. The
token policy can restrict the location to which the file can be uploaded, and it’s a best
practice to set an expiration so that the token cannot be used anytime later on. The
token should follow the principle of least privilege, granting the minimum permis‐
sions necessary to complete the task. In Microsoft Azure Blob Storage, the token is
also referred to as a shared-access signature, and in Amazon S3, this would be a pre‐
signed URL. After the file is uploaded, an object storage function could be used to
update the application state.
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Figure 4-15. The client gets a token and path from a service to upload directly to storage

Database Services with Fine-Grained Access Control
Some databases provide fine-grained access control to data in the database. These 
database services are sometimes called a Backend as a Service (BaaS) or Mobile Back‐
end as a Service (MBaaS). A full-featured MBaaS will generally offer more than just
data storage, given that mobile applications often need identity management and
notification services as well. This almost feels like we have circled back to the days of
the old thick-client applications. Thankfully, data storage services have evolved so
that it’s not exactly the same. Figure 4-16 presents a mobile client connecting to a
database service without having to deploy and manage an additional API. If there’s no
need to ship a customer API, this can be a great way to quickly get an application out
with low operational overhead. Careful attention is needed with releasing updates
and testing the security rules to ensure that only the appropriate people are able to
access the data.

Figure 4-16. A mobile application connecting to a database

Databases such as Google’s Cloud FireStore allow you to apply security rules that pro‐
vide access control and data validation. Instead of building a service to control access
and validate requests, you write security rules and validation. A user is required to
authenticate to Google Firebase Authentication service, which can federate to other
identity providers, like Microsoft’s Azure Active Directory services. After a user is
authenticated, the client application can connect directly to the database service and
read or write data, provided the operations satisfy the defined security rules.

94 | Chapter 4: Working with Data



GraphQL Data Service
Instead of building and operating a custom service to manage client access to data,
you can deploy and configure a GraphQL server to provide clients access to data. In
Figure 4-17, a GraphQL service is deployed and configured to handle authorization,
validation, caching, and pagination of data. Fully managed GraphQL services, like
AWS AppSync, make it extremely easy to deploy a GraphQL-based backend for your
client services.

GraphQL is neither a database query language nor storage model;
it’s an API that returns application data based on a schema that’s
completely independent of how the data is stored.

Figure 4-17. GraphQL data access service

GraphQL is flexible and configurable through a GraphQL specification. You can con‐
figure it with multiple providers, and even configure it to execute services either run‐
ning in a container or deployed as functions that are invoked on request, as shown in
Figure 4-18. GraphQL is a great fit for data-centric backends with the occasional ser‐
vice method that needs to be invoked. Services like GitHub are actually moving their
entire API over to GraphQL because this provides more flexibility to the consumers
of the API. GraphQL can be helpful in addressing the over-fetching and chattiness
that’s sometimes common with REST-based APIs.

GraphQL uses a schema-first approach, defining nodes (objects) and edges (relation‐
ships) as part of a schema definition for the graph structure. Consumers can query
the schema for details about the types and relationships across the objects. One bene‐
fit of GraphQL is that it makes it easy to define the data you want, and only the data
you want, without having to make multiple calls or fetch data that’s not needed. The
specification supports authorizations, pagination, caching, and more. This can make
it quick and easy to create a backend that handles most of the features needed in a
data-centric application. For more information, visit the GraphQL website.
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Figure 4-18. GraphQL service with multiple providers and execution

Fast Scalable Data
A large majority of application scaling and performance problems can be attributed
to the databases. This is a common point of contention that can be challenging to
scale out while meeting an application’s data-quality requirements. In the past, it was
too easy to put logic into a database in the form of stored procedures and triggers,
increasing compute requirements on a system that was notoriously expensive to scale.
We learned to do more in the application and rely less on the database for something
other than focusing on storing data.

There are very few reasons to put logic in a database. Don’t do it. If
you go there, make sure that you understand the trade-offs. It
might make sense in a few cases and it might improve perfor‐
mance, but likely at the cost of scalability.

Scaling anything and everything can be achieved through replication and partition‐
ing. Replicating the data to a cache, materialized view, or read-replica can help
increase the scalability, availability, and performance of data systems. Partitioning
data either horizontally through sharding, vertically based on data model, or func‐
tionally based on features will help improve scalability by distributing the load across
systems.

Sharding Data
Sharding data is about dividing the datastore into horizontal partitions, known as
shards. Each shard contains the same schema, but holds a subset of the data. Sharding
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often is used to scale a system by distributing the load across multiple data storage
systems.

When sharding data, it’s important to determine how many shards to use and how to
distribute the data across the shards. Deciding how to distribute the data across
shards heavily depends on the application’s data. It’s important to distribute the data
in such a way that one single shard does not become overloaded and receive all or
most of the load. Because the data for each shard or partition is commonly in a sepa‐
rate datastore, it’s important that the application can connect to the appropriate shard
(partition or database).

Caching Data
Data caching is important to scaling applications and improving performance. Cach‐
ing is really just about copying the data to a faster storage medium like memory, and
generally closer to the consumer. There might even be varying layers of cache; for
example, data can be cached in the memory of the client application and in a shared
distributed cache on the backend.

When working with a cache, one of the biggest challenges is keeping the cached data
synchronized with the source. When the source data changes, it is often necessary to
either invalidate or update the cached copy of the data. Sometimes, the data rarely
changes; in fact, in some cases the data will not change through the lifetime of the
application process, making it possible to load this static data into a cache when the
application starts and then not need to worry about invalidation. Here are some com‐
mon approaches for cache invalidation and updates:

• Rely on TTL configurations by setting a value that removes a cached item after a
configurable expiration time. The application or a service layer then would be
responsible for reloading the data when it does not find an item in the cache.

• Use CDC to update or invalidate a cache. A process subscribes to a datastore
change stream and is responsible for updating the cache.

• Application logic is responsible for invalidating or updating the cache when it
makes changes to the source data.

• Use a passthrough caching layer that’s responsible for managing cached data.
This can remove the concern of the data caching implementation from the
application.

• Run a background service at a configuration interval to update a cache.
• Use the data replication features of the database or another service to replicate

the data to a cache.
• Caching layer renews cached items based on access and available cache resources.
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Content Delivery Networks
A content delivery network (CDN) is a group of geographically distributed datacen‐
ters, also known as points of presence (POP). A CDN often is used to cache static
content closer to consumers. This reduces the latency between the consumer and the
content or data needed. Following are some common CDN use cases:

• Improve website loading times by placing content closer to the consumer.
• Improve application performance of an API by terminating traffic closer to the

consumer.
• Speed up software downloads and updates.
• Increase content availability and redundancy.
• Accelerate file upload through CDN services like Amazon CloudFront.

The content is cached, so a copy of it is stored at the edge locations and will be used
instead of the source content. In Figure 4-19, a client is fetching a file from a nearby
CDN with a much lower latency of 15 ms as opposed to the 82 ms latency between
the client and the source location of the file, also known as the origin. Caching and
CDN technologies enable faster retrieval of the content, and scale by removing load
from the origin as well.

Figure 4-19. A client accesses content cached in a CDN closer to the client

The content cached in a CDN is usually configured with an expiration date-time, also
known as TTL properties. When the expiration date-time is exceeded, the CDN
reloads the content from the origin, or source. Many CDN services allow you to
explicitly invalidate content based on a path; for example, /img/*. Another common
technique is to change the name of the content by adding a small hash to it and
updating the reference for consumers. This technique is commonly used for web
application bundles like the JavaScript and CSS files used in a web application.

Here are some considerations regarding CDN cache management:
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• Use content expiration to refresh content at specific intervals.
• Change the name of the resource by appending a hash or version to the content.
• Explicitly expire the cache either through management console or API.

CDN vendors continue adding more features, making it possible to push more and
more content, data, and services closer to the consumers, improving performance,
scale, security, and availability. Figure 4-20 demonstrates a client calling a backend
API with the request being routed through the CDN and over the cloud provider’s
backbone connection between datacenters. This is a much faster route to the API
with lower latency, improving the Secure Sockets Layer (SSL) handshake between the
client and the CDN as well as the API request.

Figure 4-20. Accelerated access to a backend API

Here are a few additional features to consider when using CDN technologies:

Rules or behaviors
It can be necessary to configure routing, adding response headers, or enable redi‐
rects based on request properties like SSL.

Application logic
Some CDN vendors like Amazon CloudFront allow you to run application logic
at the edge, making it possible to personalize content for a consumer.

Custom name
It’s often necessary to use a custom name with SSL, especially when serving a
website through a CDN.

File upload acceleration
Some CDN technologies are able to accelerate file upload by reducing the latency
to the consumer.
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API acceleration
As with file upload, it’s possible to accelerate APIs through a CDN by reducing
the latency to the consumer.

Use a CDN as much as possible, pushing as much as you can over
the CDN.

Analyzing Data
The data created and stored continues to grow at exponential rates. The tools and
technologies used to extract information from data continues to evolve to support the
growing demand to derive insights from the data, making business insights through
complex analytics available to even the smallest businesses.

Streams
Businesses need to reduce their time to insights in order to gain an edge in today’s
competitive fast-moving markets. Analyzing the data streams in real time is a great
way to reduce this latency. Streaming data-processing engines are designed for
unbounded datasets. Unlike data in a traditional data storage system in which you
have a holistic view of the data at a specific point in time, streams have an entity-by-
entity view of the data over time. Some data, like stock market trades, click streams,
or sensor data from devices, comes in as a stream of events that never end. Stream
processing can be used to detect patterns, identify sequences, and look at results.
Some events, like a sudden transition in a sensor, might be more valuable when they
happen and diminish over time or enable a business to react more quickly and imme‐
diately to these important changes. Detecting a sudden drop in inventory, for exam‐
ple, allows a company to order more stock and avoid some missed sales
opportunities.

Batch
Unlike stream processing, which is done in real time as the data arrives, batch pro‐
cessing is generally performed on very large bounded sets of data as part of exploring
a data science hypothesis, or at specific intervals to derive business insights. Batch
processing is able to process all or most of the data and can take minutes or hours to
complete, whereas stream processing is completed in a matter of seconds or less.
Batch processing works well with very large volumes of data, which might have been
stored over a long period of time. This could be data from legacy systems or simply
data for which you’re looking for patterns over many months or years.
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Data analytics systems typically use a combination of batch and stream processing.
The approaches to processing streams and batches have been captured as some well-
known architecture patterns. The Lambda architecture is an approach in which appli‐
cations write data to an immutable stream. Multiple consumers read data from the
stream independent of one another. One consumer is concerned with processing data
very quickly, in near real time, whereas the other consumer is concerned with pro‐
cessing in batch and a lower velocity across a larger set of data or archiving the data
to object storage.

Data Lakes on Object Storage
Data lakes are large, scalable, and generally centralized datastores that allow you to
store structured and unstructured data. They are commonly used to run map-and-
reduce jobs for analyzing vast amounts of data. The analytics jobs are highly paralle‐
lizable so the analysis of the data can easily be distributed across the store. Hadoop
has become the popular tool for data lakes and big data analysis. Data is commonly
stored on a cluster of computers in the Hadoop Distributed File System (HDFS), and
various tools in the Hadoop ecosystem are used to analyze the data. All of the major
public cloud vendors provide managed Hadoop clusters for storing and analyzing the
data. The clusters can become expensive, requiring a large number of very big
machines. These machines might be running even when there are no jobs to run on
the cluster. It is possible to shut down these clusters and maintain state for cost sav‐
ings when they are not in use and resume the clusters during periods of data loading
or analysis.

It’s becoming increasingly common to use fully managed services that allow you to
pay for the data loaded in the service and pay-per-job execution. These services not
only can reduce operational costs related to managing these services, but also can
result in big savings when running the occasional analytics jobs. Cloud vendors have
started providing services that align with a serverless cost model for provisioning
data lakes. Azure Data Lake and Amazon S3–based AWS Lake Formation are some
examples of this.

Data Lakes and Data Warehouses
Data lakes are often compared and contrasted with data warehouses because they are
similar, although in large organizations it’s not uncommon to see both used. Data
lakes are generally used to store raw and unstructured data, whereas the data in a data
warehouse has been processed and organized into a well-defined schema. It’s com‐
mon to write data into a data lake and then process it from the data lake into a data
warehouse. Data scientists are able to explore and analyze the data to discover trends
that can help define what is processed into a data warehouse for business
professionals.
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Distributed Query Engines
Distributed query engines are becoming increasingly popular, supporting the need to
quickly analyze data stored across multiple data systems. Distributed query engines
separate the query engine from the storage engine and use techniques to distribute
the query across a pool of workers. A number of open source query engines have
become popular in the market: Presto, Spark SQL, Drill, and Impala, to name a few.
These query engines utilize a provider model to access various data storage systems
and partitions.

Hadoop jobs were designed for processing large amounts of data through jobs that
would run for minutes or even hours crunching through the vast amounts of data.
Although a structured query language (SQL)–like interface exists in tools such as
HIVE, the queries are translated to jobs submitted to a job queue and scheduled. A
client would not expect that the results from a job would return in minutes or sec‐
onds. It is, however, expected that distributed query engines like Facebook’s Presto
would return results from a query in the matter of minutes or even seconds.

At a high level, a client submits a query to the distributed query engine. A coordina‐
tor is responsible for parsing the query and scheduling work to a pool of workers.
The pool of workers then connects to the datastores needed to satisfy the query,
fetches the results, and merges the results from each to the workers. The query can
run against a combination of datastores: relational, document, object, file, and so on.
Figure 4-21 depicts a query that fetches information from a MongoDB database and
some comma-separated values (CSV) files stored in an object store like Amazon S3,
Azure Blob Storage, or Google Object Storage.

The cloud makes it possible to quickly and easily scale workers, allowing the dis‐
tributed query engine to handle query demands.
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Figure 4-21. Overview of a distributed query engine

Databases on Kubernetes
Kubernetes dynamic environment can make it challenging to run data storage sys‐
tems in a Kubernetes cluster. Kubernetes pods are created and destroyed, and cluster
nodes can be added or removed, forcing pods to move to new nodes. Running a state‐
ful workload like a database is much different than stateless services. Kubernetes has
features like stateful sets and support for persistent volumes to help with deploying
and operating databases in a Kubernetes cluster. Most of the durable data storage sys‐
tems require a disk volume as the underlying persistent storage mechanism, so
understanding how to attach storage to pods and how volumes work is important
when deploying databases on Kubernetes.

In addition to providing the underlying storage volumes, data storage systems have
different routing and connectivity needs as well as hardware, scheduling, and opera‐
tional requirements. Some of the newer cloud native databases have been built for
these more dynamic environments and can take advantage of the environments to
scale out and tolerate transient errors.

There are a growing number of operators available to help simplify
the deployment and management of data systems on Kubernetes.
Operator Hub is a directory listing of operators (https://www.opera
torhub.io).
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Storage Volumes
A database system like MongoDB runs in a container on Kubernetes and often needs
a durable volume with a life cycle different from the container. Managing storage is
much different than managing compute. Kubernetes volumes are mounted into pods
using persistent volumes, persistent volume claims, and underlying storage providers.
Following are some fundamental storage volume terms and concepts:

Persistent volume
A persistent volume is the Kubernetes resource that represents the actual physical
storage service, like a cloud provider storage disk.

Persistent volume claim
A persistent volume storage claim is a storage request, and Kubernetes will assign
and associate a persistent volume to it.

Storage class
A storage class defines storage properties for the dynamic provisioning of a per‐
sistent volume.

A cluster administrator will provision persistent volumes that capture the underlying
implementation of the storage. This could be a persistent volume to a network-
attached file share or cloud provider durable disks. When using cloud provider disks,
it’s more likely one or more storage classes will be defined and dynamic provisioning
will be used. The storage class will be created with a name that can be used to refer‐
ence the resource, and the storage class will define a provisioner as well as the param‐
eters to pass to the provisioner. Cloud providers offer multiple disk options with
different price and performance characteristics. Different storage classes are often
created with the different options that should be available in the cluster.

A pod is going to be created that requires a persistent storage volume so that data is
still there when the pod is removed and comes back up on another node. Before cre‐
ating the pod, a persistent volume claim is created, specifying the storage require‐
ments for the workload. When a persistent volume claim is created, and references a
specific storage class, the provisioner and parameters defined in that storage class will
be used to create a persistent volume that satisfies the persistent volume claims
request. The pod that references the persistent volume claim is created and the vol‐
ume is mounted at the path specified by the pod. Figure 4-22 shows a pod with a ref‐
erence to a persistent volume claim that references a persistent volume. The
persistent volume resource and plug-in contains the configuration and implementa‐
tion necessary to attach the underlying storage implementation.
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Figure 4-22. A Kubernetes pod persistent volume relationship

Some data systems might be deployed in a cluster using ephemeral
storage. Do not configure these systems to store data in the con‐
tainer; instead, use a persistent volume mapped to a node’s ephem‐
eral disks.

StatefulSets
StatefulSets were designed to address the problem of running stateful services like
data storage systems on Kubernetes. StatefulSets manage the deployment and scaling
of a set of pods based on a container specification. StatefulSets provide a guarantee
about the order and uniqueness of the pods. The pods created from the specification
each have a persistent identifier that is maintained across any rescheduling. The
unique pod identity comprises the StatefulSet name and an ordinal starting with zero.
So, a StatefulSet named “mongo” and a replica setting of “3” would create three pods
named “mongo-0,” “mongo-1,” and “mongo-2,” each of which could be addressed
using this stable pod name. This is important because clients often need to be able to
address a specific replica in a storage system and the replicas often need to communi‐
cate between one another. StatefulSets also create a persistent volume and persistent
volume claim for each individual pod, and they are configured such that the disk cre‐
ated for the “mongo-0” pod is bound to the “mongo-0” pod when it’s rescheduled.

StatefulSets currently require a headless service, which is responsi‐
ble for the network identity of the pods and must be created in
addition to the StatefulSet.

Affinity and anti-affinity is a feature of Kubernetes that allows you to constrain which
nodes pods will run on. Pod anti-affinity can be used to improve the availability of a
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data storage system running on Kubernetes by ensuring replicas are not running on
the same node. If a primary and secondary were running on the same node and that
node happened to go down, the database would be unavailable until the pods were
rescheduled and started on another node.

Cloud providers offer many different types of compute instance types that are better
suited for different types of workloads. Data storage systems will often run better on
compute instances that are optimized for disk access, although some might require
higher memory instances. The stateless services running the cluster, however, do not
require these specialized instances that will often cost more and are fine running on
general commodity instances. You can add a pool of storage-optimized nodes to a
Kubernetes cluster to run the storage workloads that can benefit from these resour‐
ces. You can use Kubernetes node selection along with taints and tolerations to ensure
the data storage systems are scheduled on the pool of storage optimized nodes and
that other services are not.

Given most data storage systems are not Kubernetes aware, it’s often necessary to cre‐
ate an adapter service that runs with the data storage system pod. These services are
often responsible for injecting configuration or cluster environment settings into the
data storage system. For example, if we deployed a MongoDB cluster and need to
scale the cluster with another node, the MongoDB sidecar service would be responsi‐
ble for adding the new MongoDB pod to the MongoDB cluster.

DaemonSets
A DaemonSet ensures that a group of nodes runs a single copy of a pod. This can be a
useful approach to running data storage systems when the system needs to be part of
the cluster and use nodes dedicated to storage system. A pool of nodes would be cre‐
ated in the cluster for the purpose of running the data storage system. A node selector
would be used to ensure the data storage system was only scheduled to these dedica‐
ted nodes. Taints and tolerations would be used to ensure other processes were not
scheduled on these nodes. Here are some trade-offs and considerations when decid‐
ing between daemon and stateful sets:

• Kubernetes StatefulSets work like any other Kubernetes pods, allowing them to
be scheduled in the cluster as needed with available cluster resources.

• StatefulSets generally rely on remote network attached storage devices.
• DaemonSets offer a more natural abstraction for running on a database on a pool

of dedicated nodes.
• Discovery and communications will add some challenges that need to be

addressed.

106 | Chapter 4: Working with Data



Summary
Migrating and building applications in the cloud requires a different approach to the
architecture and design of applications’ data-related requirements. Cloud providers
offer a rich set of managed data storage and analytics services, reducing the operating
costs for data systems. This makes it much easier to consider running multiple and
different types of data systems, using storage technologies that might be better suited
for the task. This cost and scale of the datastores has changed, making it easier to
store large amounts of data at a price point that keeps going down as cloud providers
continue to innovate and compete in these areas.
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CHAPTER 5

DevOps

Developing, testing, and deploying cloud native applications differs significantly from
traditional development and operations practices. In this chapter, you learn the fun‐
damentals of DevOps along with the proven practices, including all of the benefits
and challenges of developing, testing, and operating cloud native applications. Addi‐
tionally, we cover designing cloud native applications with operations and rapid, reli‐
able development processes in mind. Most concepts and patterns explained in this
chapter are applicable to both containerized services and functions. When this is not
the case, we explicitly call out the differences.

What Is DevOps?
DevOps is a broad concept that encompasses multiple aspects of collaboration and
communication between software developers and other IT professionals. The easiest
way to define DevOps is to talk about its goals. DevOps is intended to improve col‐
laboration between development and operations teams throughout the entire process
of software development, from planning to delivery, to improve deployment fre‐
quency, achieve faster time to market, lower the failure rate of new releases, shorten
lead time between fixes, and improve mean time to recovery.

One of the models you can use when talking about DevOps is called CALMS, which
stands for Collaboration, Automation, Lean, Measurement, and Sharing. The CALMS
model is a method that we can use to assess, analyze, and compare the maturity of the
DevOps team.

Collaboration
The collaboration in the CALMS model tells us to focus on people over processes. As
an organization, you value healthy people instead of processes that can make people
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burn out and eventually make them quit their jobs. As part of the culture, you also
embrace failure—you give people the freedom to fail and, even more important, you
learn from those failures. In this culture, ideas from everyone are appreciated; you
don’t prefer those of only certain individuals. Hierarchy and titles do not matter, and
everyone participates in the design of the system.

Automation
Automating the software cycle is crucial to be able to achieve higher deployment
velocity and deployment consistency. To be able to go from an implemented feature
or code change to a deployed feature in production in a matter of minutes takes a lot
of reliable automation. Key elements that need to be automated are the infrastructure,
Continuous Integration (CI) process, testing after you’ve built the code, Continuous
Delivery (CD), and testing along deployment paths. Ideally, and if possible, the plat‐
form and tools you’re using have the automation already built in.

Historically, setting up infrastructure was a manual process. It required people to set
up the servers, configure them, deploy the applications on them, and so on. There are
many drawbacks to doing things manually: the process of obtaining the hardware,
setting it up, and managing it costs money; it’s slow; and it has a huge impact on the
ability to handle traffic spikes, for example, and launch new services or applications
quickly.

One of the key benefits of the cloud is that infrastructure can be automated. Infra‐
structure as Code (IaC) is a method of provisioning and managing infrastructure
using code rather than through manual processes. All infrastructure, such as servers,
networks, and databases, is treated as code. Using code, you can create a process for
configuring and deploying infrastructure components in a repeatable, consistent
manner. For example, you can create scripts that you can use to deploy the servers
and preconfigure different components, networks, load balancers, and any other
cloud services. Simply by running this script, you consistently provision your entire
infrastructure stack in a completely different region, for example. Something that
would usually take weeks can be done in a matter of hours.

Lean Principles and Processes
The focus of Lean principles and processes comes from manufacturing (specifically
from Toyota Production Systems). The gist with Lean is to remove any waste from
your processes. An example of how to achieve this is to begin by drawing and docu‐
menting the current state of your processes. Think about what happens when you
check in your code, or, what happens when you’re building your servers or environ‐
ments, perhaps creating a new region. How do you get from having nothing in pro‐
duction to having a production server/environment with your applications running?
After you map all of this out, you can estimate how long each portion takes and easily
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spot bottlenecks, unnecessary processes, or manual processes. With these identified,
you can either remove them or automate them to make the process faster. After
you’ve repeated this a couple of times, you can come up with your desired, Lean state
of processes.

Measurement
Determining whether deployments and releases are successful requires us to have
specific metrics in place. The purpose of having measurements is to quickly discover
any potential issues with your code or the process so that you can go back and fix it if
needed. As an example, Prometheus gives you a common instrumentation point and
allows developers to easily instrument code. You don’t need to worry about how data
is collected because there’s one endpoint that polls for all data from your service. Your
only worry is instrumenting and emitting metrics from within your services and
functions. As you can imagine, the volume of metrics in a distributed system can be
extremely high, so you also need distributed tracing tools like Jaeger or OpenTracing
that allow you to correlate metrics and events throughout your services. Using these
tools, you can break down calls between services and get a better view of your system,
which allows you to quickly spot any bottlenecks, sources of failures, or potential
optimization points.

We mentioned only the system and application measurements, but you can’t forget
about people metrics and the cultural aspects. Measurements inform us whether peo‐
ple are healthy or how investments are influencing and affecting things in the busi‐
ness, the amount of money it’s making, or how you can innovate faster.

Additional third-party tools that can help in the area of measurements are New Relic,
Splunk, and Sumo Logic. Certain cloud platforms also provide built-in metrics and
tracing capabilities, such as Amazon CloudWatch and AWS X-Ray, as well as Micro‐
soft Azure Monitor for activity logs, diagnostic logs, and metrics.

Sharing
Sharing learnings and best practices is also important, both within your organization,
and between organizations in a company, as well as among your competitors and the
rest of the industry with the purpose of improving the industry for everyone.

With all CALMS principles in mind, one thing they have in common is people. You
can’t be successful with DevOps if you’re not focusing on people and ensuring that
they work well together.
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What About SRE?
Site Reliability Engineering (SRE) emerged from Google in the early 2000s. The idea
behind an SRE position is to bridge the gap between the traditional research and
development team, which writes code and deploys to production, and the operations
team, which tries to keep the production environment up and running.

The SRE values and principles are very much in line with that of DevOps, even
though DevOps can be considered a superset of SRE. It offers more generalized sug‐
gestions on a higher and broader level, whereas SRE is specific and more service ori‐
ented.

You can read more about SRE and how it relates to DevOps from the aptly named
book How SRE Relates to DevOps (O’Reilly) by Betsy Beyer et al.

Testing
It probably goes without saying that any piece of code that is deployed and released
into production needs to be thoroughly tested. With the velocity of deployments and
releases that are commonplace for cloud native solutions, you can’t survive any longer
by doing manual testing. You need to automate any tests that you’re planning to run
because only reliable and automated tests allow you to achieve that release velocity
and have confidence in your deployments and releases.

As mentioned in the previous section, CD is a DevOps practice whereby you can
automatically ensure that a piece of code is production ready any time. Testing is part
of the CD pipeline in which you automatically test the code, deploy it into the envi‐
ronment, and then release it.

To be able to do proper testing of cloud native solutions, you need to have good test
automation in place. Without test automation, you can’t do DevOps—automation is
critical. Just as there are things you need to keep in mind when developing microser‐
vices, there are considerations around writing tests for those microservices.

How about functions? The principles for testing functions and the processes involved
are similar. However, your test setup is different when testing functions.

For testing functions that are HTTP triggered and return a value, the solution is rela‐
tively simple: you trigger the function via HTTP by creating a request, invoking it,
and then validating the function’s response. However, you could have functions that
are triggered by other events (e.g., storage queue, database operations), which don’t
have return values or can interact with an external system or another function.
Depending on how complex the functions and your system are, you could use
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dependency injections or environment variables to define the endpoints, but most
often you would utilize one or more test doubles.

Test Doubles
In most of your testing, you use either one or all of the test doubles. A test double is
an object that you can use instead of a real object. For example, you could use a test
double for the payment or authorization service so that you don’t need to rack up
charges on your credit card while testing. The three most common types of test dou‐
bles are mocks, fakes, and stubs.

With mocks, you can define certain expectations about how functions are called.
Mocks are used for testing interactions between objects; for example, if your code
uses a database, you could use a mock database instead of a real database. To test that
your function writes or reads to and from the database, you set up the mock, call the
function you are testing, and then verify on the mock that write or read calls were
made to the database.

A fake is a lightweight implementation of your API that behaves like the real thing,
but it isn’t. You can use fakes when you can’t use a real implementation or if using a
real implementation is slow or cumbersome to set up and maintain. An example of a
fake would be a fake payment or authorization service that you use in your tests.

Finally, a stub contains zero logic, and it returns only what you tell it to return. Stubs
are useful if you need certain objects to return specific values and be in a particular
state.

Test Automation Pyramid
Regardless of the testing context in what context, be it in cloud native architectures or
monolithic architectures, you can’t avoid mentioning the test automation pyramid
that Mike Cohn wrote about in his blog post back in 2009.

The test automation pyramid, as shown in Figure 5-1, groups tests based on their
granularity. In addition, it gives us rough guidance on the number of tests in each
group.

Figure 5-1. The test automation pyramid
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Unit tests
The most substantial part of the pyramid, the bottom, is represented by the unit tests.
Unit tests should be the basis of your testing and, compared to the other types of
tests, you should have the most of them. If you take an example of an ecommerce
website that has a login service, shipping-cost service, payment service, shopping-cart
service, product catalog service, and so on, each of these services is built from multi‐
ple different modules or units that need to be covered by unit tests. With unit tests,
more often than not you need to mock and fake any dependencies to be able to create
different conditions under which the tested functionality runs. If you’re writing unit
tests for your login service, you don’t want to use the actual authorization service. You
also want to test the scenarios in which the authorization service is unavailable. Or,
you want to test scenarios in which login didn’t work, or the user doesn’t exist, and so
forth.

All of these scenarios become much easier to test if you use a mock service in place of
the real authorization service. For each test, you can define how the mock should
behave and then test your login service using that mock. When you run into issues
either with writing mocks or unit tests, go back to the code and think about refactor‐
ing it to make it testable. The testable code makes your life easier in the long run. It
helps you to write better unit tests and mocks that cover multiple conditions. Having
a set of useful unit tests gives you confidence when making changes to that part of the
code as well as when you’re deploying and releasing your code to production.

Service tests
Service-level tests—which you could also call component-level tests—occupy the mid‐
dle of the pyramid. With service-level tests, you are trying to test the service or a
component as a whole, separately from the user interface (UI). For example, you
would have tests that cover shipping-service functionality; the shipping service takes
some inputs (an address, for example) and returns an output (shipping costs, dura‐
tion, etc.).

UI tests
Finally, at the top of the pyramid are the UI tests. UI tests should represent the fewest
number of tests of all the pyramid tests. These tests are usually costly to write and
maintain; however, they are useful when testing for usability and accessibility. Let’s
take the ecommerce website as an example again. UI tests for the ecommerce website
would include starting a browser, navigating to the website, clicking the login link,
logging in, browsing through the catalog by clicking links and typing in text, and per‐
haps making a purchase. As you begin thinking about these tests more, you can see
how complex they can become—which browsers do you use for testing? How can you
reliably wait for the pages to complete loading or know when a specific action has
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completed? How do you make your automated UI tests resilient enough, so that they
don’t break if the website design or layout changes?

In addition to the aforementioned three groups of tests in the test automation pyra‐
mid, other types of tests can either fall under the service-level test group or have their
dedicated slice of your test pyramid. These are the tests that you either run as part of
the CD stage and each time you deploy to production, or run continuously; for exam‐
ple, you could have a canary test that runs continuously and exercises your applica‐
tion functionality in production. That way you know when something goes wrong
immediately. Other types of tests (load or performance tests) can be run only on spe‐
cific schedules or on demand, but not necessarily with every release.

Jepsen tests
A tool that we need to mention whenever we talk about cloud native and distributed
systems is the Jepsen library. The Jepsen library sets up a distributed system and runs
a set of operations against it to verify that the history of operations makes sense. You
can use Jepsen to analyze databases, coordination services, and queues, and it’s able to
find a plethora of issues, including data loss, stale reads, lock conflicts, and more.

Performance tests
These tests are meant to give you an idea of how your application or services are per‐
forming by measuring, for example, how long specific scenarios took. You can write
performance tests on the function or unit level to measure how long a single function
or request takes. In addition to lower-level performance tests, you should also con‐
sider writing a scenario or feature-level performance test that measures how long spe‐
cific actions take; for example, you could measure how long the login process takes,
from the time a user clicks the login button to the time they are presented with their
profile or dashboard page. Almost every time you do a feature-level performance test,
you need to dig deeper and have metrics and numbers on specific functions as well.
This will help you to pinpoint bottlenecks and allow you to investigate why a function
is taking a certain amount of time to execute. An excellent way to track performance
is to establish a baseline to which you can compare all your numbers. For your base‐
line, you can either use the measurements obtained with the first release of your code
to production or define goals that you can try to meet (e.g., “User login should not
take more than X seconds for mobile users using LTE connections”). Depending on
how critical performance is to your system, you can use dedicated environments and
conditions within which your tests are executed and you measure your system.

Load tests
Load tests are a type of performance test that that you use to determine your system’s
performance under certain conditions. These conditions could be, for example, a
typical load you are expecting your system to be under most of the time, or extreme
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or peak loads that aren’t typical or expected. With load testing, you can determine the
maximum load on your system and where the breaking point is. The results from the
load testing can help you to plan as well as define alerting in your monitoring sys‐
tems.

Security/penetration tests
The purpose of security and penetration tests is to determine whether your system is
potentially vulnerable to different types of attacks and, if so, in what ways it is vulner‐
able. This type of testing also involves doing security reviews of system architecture
to determine the possible entry points and security-critical sections. The review
should also ensure services don’t have unnecessary permissions and access to resour‐
ces, as that can increase the fallout in case of a security breach. For example, if your
service reads only from the database but never writes to it, it should have read-only
access to the database and nothing more.

A/B tests
A/B tests usually are executed against services that are already running in the produc‐
tion environment. The purpose of an A/B test is to determine whether one version of
the service (A) performs better in comparison to another service (B). If you plan to
do any A/B tests, make sure that you have a well-defined goal as well as all metrics in
place that allow you to measure the results. For example, you could create an A/B test
to determine whether using green buttons in your call to action increases your sales
(i.e., users clicking it) versus having a yellow button. As an example, you can deploy
both versions of your service and equally split traffic between them. Note that equally
splitting traffic is not required, and you could also pick something else as a basis for a
decision to redirect someone to version A versus version B.

Acceptance tests
You can use acceptance tests to determine whether your services are ready to be
moved to a different environment, for example. You could define a different set of
acceptance tests before you promote the code between environments. These tests
should become stricter as you move closer to the production environment.

Usability tests
Usability tests are conducted with real users of your product to discover how easy it is
to use your product. Traditionally, you would come up with specific scenarios or
tasks and ask your users to try to accomplish these tasks using your product. While
the users are working through the tasks, you would observe them as well as have
them take a survey or ask them questions after they’ve gone through the tasks.
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Configuration tests
As the name suggests, these tests are used to validate that the configuration that is
going to be applied to your services and code is correct and all in place for the service
to run. For example, you want to ensure that all connection strings are defined and
correct for the environment in which the service runs. You don’t want to use produc‐
tion database connection strings for services that run in your testing or staging envi‐
ronment. Also, if you’re doing testing in production, you need to ensure that services
and functions are configured correctly so that none of the live traffic is sent to your
services.

Smoke tests
Smoke tests represent a set of tests that you use to quickly determine whether a ser‐
vice, component, or application seems reliable enough to begin doing more thorough
testing. For example, testing whether the service can successfully start and cleanly
shut down is a form of a smoke test. If a service doesn’t even start, there’s not much
other testing you can do.

Integration tests
Integration tests usually involve testing multiple different services and the interac‐
tions between them. In the test pyramid, these would be placed above service tests
but under UI tests. You execute these tests in their dedicated integration environ‐
ments (for example, you can have a testing environment in which all different serv‐
ices come together and are tested).

Chaos tests
As the name suggests, the purpose of chaos tests is to wreak havoc and introduce
chaos to your system randomly. You would run a set of so-called chaos monkeys as a
separate service within your environment to test how your system behaves when
things become chaotic and services are randomly disabled, become unavailable, the
network slows down, and so on. There is an entire engineering practice called chaos
engineering that deals with identifying failures before they become outages. The idea
behind chaos testing is to proactively test how your system responds to failure condi‐
tions so that you can identify and fix any issues before they become actual outages
and have an impact on your customers.

Fuzz tests
Fuzz testing involves feeding a random, invalid, or unexpected set of data to your ser‐
vice or component in an attempt to make it fail. For example, if your service takes a
JSON input, you could use existing tools to generate fuzzed JSON data or use prefuz‐
zed data, send it to your service, and observe how it behaves.
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This list of different test types is nowhere near complete; there are many other types
of testing that organizations and teams do. With the sheer number of different test
types, it can be tricky to know which ones to run. You could run all of them, but that
wouldn’t make much sense, and it would be extremely time and resource consuming.
So, how do you decide which tests to run and when? With the assumption that you
eventually automate all of your tests, a general guideline is to always run all unit tests
on any component change and with every build. Developers should also execute unit
tests as part of the pre-check-in process. After you run the unit tests, the next step
would be to run acceptance, smoke, and integration tests that are affected by the
changed component. These tests should be able to give you enough confidence to
move the code and artifacts along to the next stage.

When to Run Which Types of Tests
Depending on the CI/CD stage your code is in, you should run different types of
tests. The first tests that are usually executed are unit and service/serverless app tests.
Unit tests specifically need to be small and execute in a short amount of time. Because
they are run before the code merges, they serve as a first level of defense. In case of
serverless functions, these are the tests you would run to validate each function sepa‐
rately.

At the next stage, the tests that can be executed either before or after code merge,
depending on the complexity and how long it takes to run them, are the service-level
tests. The purpose of these tests is to verify the service or the serverless application as
a whole. In these tests, you will probably be using mocks instead of real service or
serverless app dependencies.

After your code is merged, it is time to run integration tests. These tests verify the
integration points between your services and serverless apps. To run these tests, you
would deploy the services and serverless applications to their dedicated test environ‐
ments and run tests between the integration points. Depending on the complexity
and number of dependencies, you might want to use mocks for these tests as well. If
you don’t have a lot of dependencies, you could provision them in your test environ‐
ment and use them only for integration tests.

Canary testing is another effective way to continuously evaluate your services and
functions. You can run canary tests continuously in each environment. They should
mimic the user scenarios as closely as possible and can serve as a warning system for
potential issues.

The other types of tests are usually run on their own schedules or as one-offs, and
they depend on the type of the services and functions you are developing. For exam‐
ple, it doesn’t make sense to run in-person usability tests every week. These tests
would be run as a one-off, probably to validate the ideas and features before releasing
them or for getting feedback on features you are planning to work on.
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Testing Cadence
You should execute security, fuzz, load, and performance tests at a regular interval,
but it probably does not make sense to run them with each build or code change,
unless the changes affect the security or performance of your system.

Before each deployment you should be running configuration tests (if any) to ensure
that the service configuration is correct—you could also selectively run these tests
based on whether the configuration has changed.

Chaos testing is something you do in the production environment, and you should
do this at regular intervals as well. Some teams decide to do surprise chaos testing as a
drill to ensure that they can handle outage situations well. The first time you run a
chaos test, it’s highly likely that everything will go wrong, but any subsequent runs
should become easier, and there should be fewer and fewer issues discovered during
this type of testing.

The usability and A/B tests fall into a category of tests that you execute when the need
arises. The usability tests can be valuable each time there’s a significant change to the
way your product works—you want to get feedback to ensure the product is usable by
your actual users. Finally, you should run A/B tests only when or if there is a need for
them.

Table 5-1. Run frequency for various test types

Test type Cadence Notes
Unit tests Before every code merge/

check-in
Automated and fast and easy to run.

Service tests Before (or after) every code
merge/check-in

Automated and fast and easy to run, uses mocks.

Integration tests Before deployment to
staging/test environment

Automated, takes longer to run, can use mocks or real dependencies.

Canary tests Continuously in all
environments

Automated, can be costly to maintain, runs continuously.

UI tests On UI changes Manual; consider automating if your solution is UI heavy.

Performance tests One-off at first, weekly later Initial performance test might be manual and stopwatch to get a baseline.
Consider automating if you can create repeatable numbers; run weekly or
on bigger changes. Alert if different from baseline.

Security tests Daily Automated; if possible, have these tests as part of integration/canary tests.
Penetration testing is usually manual and one-off. Enable vulnerability/
exploit testing on the container registry.

A/B tests As needed Make sure you are changing one variable between A and B versions of the
application to see which one is performing better.

Chaos tests As needed Use an automated chaos monkey tool; rerun as needed.
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Testing in Production
Whenever someone mentions testing in production, it always feels like they are try‐
ing to make a joke instead of talking about it for real. However, thinking about how
much investment is needed to keep multiple environments up and running—we are
assuming here that you have at least a staging or testing environment—the invest‐
ment for doing actual testing in production will not seem so big anymore. In our
experience, the biggest problem when using separate environments for testing is
merely keeping them up to date and synchronized with the actual production envi‐
ronment. Remember that for testing in separate environments to make sense, you
need to mimic your production environment as closely as possible. This includes
running pretty much everything you run in production—any databases, queues,
external dependencies, and so on—and keeping all of these synchronized. For exam‐
ple, if you update your database version or you change the database schema, you are
doing these changes twice, or rather in two environments. Besides, your testing envi‐
ronment is probably smaller than your production; you won’t run it in each region
and you won’t be using the same size of compute or databases because you don’t want
to keep all that running, maintain it, and pay for it either.

To put it differently, your testing environment is a smaller version of your production
environment—a mini-me of your production environment. This, however, can affect
the way you run your services, so your per-service configuration will differ from the
production service. At this point, are you testing your services in the same environ‐
ment as your production services? Probably not.

Because your environment is a scaled-down version of the production, how could
you even know whether that new feature or bug fix actually works the way you
intended it to work? You need some monitoring in place as well, but you are effec‐
tively monitoring a completely different system, and that doesn’t make much sense.

Another benefit of testing in production is that in addition to the synthetic traffic that
is generated by your tests, you are also using actual customer use cases and produc‐
tion traffic.

It’s quite clear that keeping everything running within one environment is a full-time
job, let alone doing the same in two or more environments. At this point, the ques‐
tion about testing in production no longer sounds like a joke, and it is actually a via‐
ble solution. To be clear, we’re not suggesting that testing in production is easy, not at
all. There are risks, and getting to a point in your organization at which you can do
this effectively involves much technical investment and possibly cultural changes as
well. You should always evaluate whether making this investment is justifiable for
your team or organization.

We’re not saying testing environments are not valuable; they are valuable, and it is
better than not having any testing at all. However, if you’re noticing you’re spending
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far too much time maintaining this special environment, making investments that
apply only to a testing environment, or getting false positives in your tests, it makes
sense for you to consider testing in production.

There are a couple of things that need to be in place before you should even consider
doing testing in production. Looking at the DevOps maturity model, you should be
in a place where the process of moving your code from the check-in to an environ‐
ment is fully automated. That means that you are effectively doing CI and CD.

Let’s break down the entire testing process into multiple stages, as shown in
Figure 5-2.

Figure 5-2. Stages of testing in production process

Let’s look at each stage in more detail.

Predeployment
The services are considered in the predeployment stage after the code is built, pack‐
aged, and tagged and lives in a container image repository (such as Docker registry).

This applies similarly to your serverless applications. At this stage your functions that
make up the serverless application are compiled and tests are executed. The output of
this stage is an artifact, such as a ZIP package that contains the built serverless
application.

Before the packaged code moves to the deployment stage, you need to run the tests
mentioned earlier—unit tests, integration tests, acceptance tests, and so on—to
ensure that the code meets the specific criterion and can move on to the next stage.

Deployment
Deployment is the process of taking the built, packaged, and tested code and moving
it into the production environment. Practically, this means that you have generated
any deployment files and other configurations that allow you to deploy the package to
the platform. For serverless applications, this might involve using a declarative appli‐
cation model such as the AWS Serverless Application Model (AWS SAM). Your AWS
SAM template defines your functions, it has a link to the built code package from the
previous stage, and it can also contain any dependent services and permissions that
need to be applied. One crucial difference between deploying serverless applications
versus containerized services is that if you use, for example, AWS SAM templates that
define everything your serverless app needs, you can quickly create multiple different
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environments, if needed, to test your function. Because you can create an exact rep‐
lica of your production environment with low cost and you can tear it down right
after you’re done with it, it might be easier and less complex to do that than it would
be to implement traffic routing on the function level.

One important thing to note here for containerized services is that even though your
code is now in the production environment, none of the traffic is reaching it yet.
Before you enable traffic to the service, you run various configuration, integration,
and, possibly, load tests. After the tests pass your defined bar, you can begin releasing
the service.

Release
Releasing the service involves gradually increasing the amount of real traffic you want
to direct to your deployed service. If you are using containerized applications, you
can quickly carry out this process by using a service mesh, such as Istio. Along with
your service, you deploy a VirtualService resource and a DestinationRule. With a
DestinationRule you define a new subset that represents the new version of your
service, and in the VirtualService you assign the percentage of traffic that you want
to run to the existing service version and the new service version. For serverless apps,
you can utilize a combination of an API gateway and load balancers to achieve similar
functionality. Alternatively, due to low cost and quick deployments, you can decide to
create separate environments (staging, testing) for your serverless applications. If you
decide to do that, make sure to define and understand which services should use
which serverless applications.

For example, after deployment, you’d begin by redirecting 10% of the incoming traffic
to the new version of your service. At the same time, you need to continually monitor
the new service to ensure that there are no issues. In addition to monitoring, you can
run additional tests that target this new service. When the test results give you
enough confidence, you can increase the traffic to 20%, 50%, and, finally, to 100%.
The process after increasing the traffic is the same: monitor and observe the new ser‐
vice and if all looks good, increase the percentage. If you discover any issues, you can
decide to roll back the new release (i.e., switch traffic back to 0%), fix the issue, and
then repeat the entire process. Alternatively, you can also decide to continue despite
the discovered issues (provided the issues are a low priority and don’t affect your ser‐
vice too much).

Post-release
After your service is fully released and 100% of the traffic is routed to it, you can con‐
tinue doing additional tests, such as chaos tests, various A/B tests, and monitoring
logs for exceptions. The post-release stage could also be called the stage at which you
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are operating your services. In addition to testing, this also involves responding to
any exceptions and outages by having your team be on-call.

Development Environments and Tools
Development environments have traditionally been set up and configured on local
development machines or virtual machines (VMs) running locally. Local develop‐
ment environments have enabled quick development workflows, allowing developers
to quickly iterate, test, and debug code changes. Many of the tools available today
have supported this approach for a long time.

The move to microservices architectures and serverless compute can make it difficult,
if not impossible, to run the entire application on a local development machine.
Pushing changes from local to a remote environment increases the development
cycle, reducing developer productivity. It’s generally been easier to quickly iterate and
validate code changes locally, but new tooling is now making it increasingly easy to
begin doing more of this in the cloud, or at least integrating with the cloud. There are
other benefits to cloud-based development environments; they support collaboration
as well as improved parity across test and production environments.

Often what’s best for a team and project is some combination of local and cloud
development environments and tooling. For example, some teams edit code locally,
run some unit tests, and then push the changes into a cloud-based development envi‐
ronment. When developing a service, there are sometimes dependencies that need to
run in the cloud.

Following are some development environment considerations:

• Does the code being developed need to run in the cluster?
• Where do you want to run your cluster? Locally or in the cloud?
• Where do you edit and commit changes from? Locally or in the cloud?
• Are there dependencies that need to run in the cloud?
• Is the team heavily distributed and would it benefit from collaborative develop‐

ment environments?

For example, a feature using serverless compute is implemented and debugged locally
using unit and integration tests. Test doubles can be used to avoid having to bring up
other service dependencies in the local environment. After the unit integration tests
and linting are successful, the code is deployed into a dev/test environment and tested
in an actual cloud environment. The changes can now be submitted in a pull request,
reviewed, and moved through the CI pipeline. As Figure 5-3 demonstrates, much of
the feature development is completed locally; it’s the final set of verification tests in an
actual cloud environment before a pull request and code review starts.
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Figure 5-3. Connection between local development environment and cloud environment

Development Tools
Many useful development tools and services are now available that make it much eas‐
ier to build applications with remote clusters or stand up local environments that are
more similar to test and production environments. There are so many tools out there,
and more showing up, that it would be difficult to cover them all.

If you are considering a local development environment, there are a couple of tools
available that allow you to run Kubernetes in your local development environment:

• Minikube runs a single-node Kubernetes cluster in a VM and is commonly used
for local development environments. Minikube can be useful for experimenting
with Kubernetes in a local environment or setting up local development environ‐
ments that are closer to test and production environments.

• Similar to Minikube, Docker for Mac and Windows is another extremely popular
and easy-to-run tool that allows you to run Kubernetes locally. If you are using
Docker, you probably already have this installed, and enabling Kubernetes sup‐
port is as simple as selecting a checkbox in the Docker for Mac or Windows set‐
tings.

Both of these tools are useful; however, there might be features that are either not
fully supported or missing in the local development scenario—for example, using the
LoadBalancer type in Kubernetes services. These tools are also rapidly evolving and
new features and bug fixes are added frequently, so the way Kubernetes is run locally
is becoming very similar to how it is run in the production environment. Note that
the local development environment is never a replacement for a real, cloud-based
environment. Even though these tools will let you run the minimal Kubernetes envi‐
ronment on one node, you need to ensure that you have enough resources available
for it to run smoothly.
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In addition to the aforementioned local Kubernetes development tools, there are
other useful tools available today to make local and remote development easier:

• Docker Compose is a tool for defining and running multiple containers. A YAML
file is used to define the containers that you can manage, start, stop, and delete as
a group. The grouping makes it easy to bring up more complex local develop‐
ment environments. Local container-based development environments can help
isolate and avoid dependency version conflicts. The environment handles build‐
ing and running the software, and the tools needed to build and run the software
can be part of the image. There’s no longer a need to get the right version of a
runtime installed or switch between them. Dependencies on products like Redis
or MongoDB can be easy to quickly bring up and down.

• KSync updates containers running on a cluster by replicating local files to the
containers running in a remote cluster. A developer can use their favorite local
editors and source control management tools while building, running, and test‐
ing the application in a remote cluster. Changes are replicated to a container in
the cluster where they are built and run. This can sometimes make it quick to
iterate on changes without the overhead of building an image, pushing it, and
updating the running container.

• Skaffold is a command-line tool that you can use to continually deploy code
changes to a local or remote Kubernetes cluster. It automates the development
workflow by building an image and pushing it to a cluster when code changes.
Skaffold can push file changes into a container if there are files that can be
synchronized, or it optionally creates an image and deploys a new container
instance.

• Draft is an open source tool that automates the deployment of application
changes to either a remote or local Kubernetes cluster. You can use Draft to gen‐
erate simple Dockerfiles and Helm charts. The tool detects the application lan‐
guage used when generating the files. You can customize it to streamline the
development of any application or service that can run on Kubernetes. Draft
makes it easy to edit locally and develop remotely.

• Telepresence is an open source tool that you can use to wire containers running
locally into a remote Kubernetes cluster. This can be useful when developing
multiservice applications like those used in a microservices-based architecture.
You can develop a service locally, enabling fast iterations and rich debugging
while transparently interacting with other services in the cluster. This works
almost as if your local machine were part of the cluster.

• For Azure-specific Kubernetes development, Azure Dev Spaces is a great devel‐
opment tool. It allows you to develop and run containerized services in isolation
directly on Azure Kubernetes Service. This isolation enables a team of developers
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to develop an entire application on the same development cluster collaboratively
and, as a result, drastically reduces the need for mocks and stubs.

Many of the cloud vendors offering Function as a Service (FaaS) also provide local
development tools, making it possible to run and debug functions locally. Amazon
Web Services (AWS), for example, ships AWS Serverless Application Model (AWS
SAM) Local. Microsoft’s Azure Functions Core Tools includes a version of the same
runtime that powers Azure Functions, which can run on a local development envi‐
ronment. All of these options typically use container images, so you can use Mini‐
kube or Docker for Mac/Windows to run them locally.

Development Environments
Using the tools discussed in the previous section, you can use a few different
approaches to configure productive development environments that meet the needs
of different teams.

Local Development Environments
Local development and debugging are still currently faster than remote, and develop‐
ers are accustomed to the tools and flows of local development environments. When
using one of the cloud providers’ serverless compute FaaS services, you can use the
cloud vendors’ tools to run a local environment and/or complete the final tests in the
cloud.

Docker Compose is a useful tool for setting up container-based development envi‐
ronments. Docker Compose can spin up the containers necessary to build and run
the application as well as any dependencies such as databases. Files can be mapped to
the host environment, enabling developers to use editors and source control manage‐
ment tools on the host system.

The following example shows a Docker Compose file that brings up a node develop‐
ment environment with MongoDB. The container /app directory is mapped to the
current project direction and the container has access to the project source code
through a volume mount. Developers will use build tools and run the application
within the container but edit code files from the host system as usual:

version: '3'
services:
  app:
    hostname: vegeta-dev
    image: node:10.15.0
    working_dir: /app
    volumes:
      - ./:/app
    ports:
      - "3001:80"
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    tty: true
    stdin_open: true
    working_dir: /app
    command: bash
    environment:
      - IP=localhost
      - PORT=8080
      - CONFIG=/app/server/config.json
    networks:
      threadsoft:
        aliases:
          - vegeta
  db:
    hostname: db
    image: mongo:4.1.6
    volumes:
      - "/data"
    networks:
      threadsoft:
        aliases:
          - db
networks:
  threadsoft:
    external:
      name: threadsoft

Local Development with a Remote Cluster
When using a development workflow that runs compute on a remote cluster, one of
the challenges is to minimize the time it takes to push changes to the remote environ‐
ment. Tools such as Skaffold, Draft, and KSync save time automating this workflow
with remote Kubernetes clusters. Scripts or cloud provider frameworks might be nec‐
essary when you are developing against serverless compute FaaS. With the cloud pro‐
vider FaaS, given the service deployment and code start times, it’s likely faster to
develop locally and run some final tests in the cloud environment.

Here are some things that you need to consider with this approach:

• Does the tool work well with an interpreted language like JavaScript or compiled
languages like Go?

• Does the tool push code changes to the cloud and/or rebuild, push, and deploy?
• How long does it take to deploy and run a change? Consider experimentation

before mass adoption.
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Skaffold Development Workflow
You can start a Skaffold development workflow by running skaffold dev, which
starts a deployment, and Skaffold begins watching for file changes, as seen in
Figure 5-4. You can configure Skaffold to synchronize files into the running develop‐
ment container, like static files or the code files used in an interpreted language. If a
change triggers a new build, you can configure Skaffold to build the image locally, in
the cluster, or in a build service. After you execute container tests, the image is tag‐
ged, pushed to an image repository, and then deployed into the cluster. A developer
can iterate on code and quickly see changes pushed to the cluster. The synchronize
feature in Scaffold can save a considerable amount of time by avoiding the entire
image build-push-deploy process and quickly pushing changes into the running con‐
tainer.

Figure 5-4. The Skaffold development workflow

By convention, Skaffold looks for a configuration file named skaffold.yaml in the cur‐
rent directory, which you can explicitly pass in by using the --filenam flag. A sample
Skaffold file is presented in the following example, which configures Skaffold to syn‐
chronize .js files into the running container and deploy using kubectl with the k8s-
pod.yaml Kubernetes pod specification:

apiVersion: skaffold/v1beta4
kind: Config
build:
  artifacts:
  - image: gcr.io/my-project/node-example
    context: .
    sync:
      '*.js': .
deploy:
  kubectl:
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    manifests:
    - "k8s-pod.yaml"

When deploying into Kubernetes, this flow also works against local
development clusters, like a Minikube cluster.

Remote Cluster Routed to Local Development
In this development flow, a service is developed locally just like the local development
flow. The Telepresence tool runs a proxy in the remote cluster and is an ambassador
for the local service, proxying requests through to the local service and back out to
other services in the cloud.

Figure 5-5 depicts a request from one service routed to the Telepresence proxy as
though it were the actual service. The Telepresence proxy sends the request to the ser‐
vice running in the local development environment. A request is made from the ser‐
vice being developed in the local development environment to another in the cluster,
and Telepresence handles proxying this request to the actual service in the cluster.
Telepresence also replicates cluster environment settings like configurations to the
service running in the local development environment. This replication can be useful
when you need to develop and debug a service locally while other service dependen‐
cies run in the remote cloud environment.
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Figure 5-5. Developing locally against a remote cloud cluster

Cloud Development Environments
With the cloud development environments, developers connect to development
machines running in the cloud. Integrated development environments (IDEs) are
either browser based or accessed through a remote virtual desktop–type environ‐
ment. Tools like Eclipse Che are able to provision developer workspaces in a cluster.
This helps ensure consistency across developer workspace environments and makes
it easy to bring up new developer environments.

CI/CD
CI is a practice of automated building, testing, and integrating newly developed code
with the existing code for the purpose of releasing it. In practical terms, this means
building the code in your feature branch, running unit tests, merging the code if it
passes, and, finally, creating an artifact, such as a binary, a container image, or a com‐
pressed file, depending on your type of service. CI ensures that any code that you are
trying to merge to the master or release branch has passed a series of tests—it gives
you a certain degree of confidence and allows you to catch any issues early on. As
part of the CI process, your code is packaged, tagged, and pushed to a container reg‐
istry (like Docker Registry), and instead of moving the code between different stages,
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you are moving only the container image information (e.g., container image registry
and container image name with corresponding tags), which significantly speeds up
the entire process.

You can think of the next phase, CD, as an addition to the CI. In this phase, you are
running additional tests with the goal of having your code always ready to be
deployed to production. In practical terms, after your code passes through this stage,
there shouldn’t be any questions about its stability or quality, and any engineer could
easily deploy code to production.

By the time your code reaches the final phase, called Continuous Deployment, it is
thoroughly tested and it can be automatically deployed to your production environ‐
ment. Compared to CD, this phase is all about automated deployment without any
manual intervention. Some teams stop at the CD phase and decide to do manual
deployments to production.

As an engineer, having all three phases in place gives you peace of mind that if your
code is merged and it passes the tests and the delivery phase, it is automatically
deployed to production. Assuming that you have this in place for your entire system
and its components, it enables you to independently deploy any parts of the system
multiple times with high confidence.

Regardless of whether you’re working with services or serverless applications and
functions, you would be using the same CI/CD process. The fact that a function is
usually smaller than a service doesn’t change the way they are treated when they are
built or deployed.

Figure 5-6 shows a couple of different stages that are part of your CI/CD process.

Figure 5-6. Stages of the CI/CD process

Source Code Control
Source control is where everything begins in the CI/CD flow. It is the repository in
which your code resides. There are multiple ways in which your source code control
could be set up, but you should have at least a main branch called “master” and prob‐
ably multiple other branches where you do your feature work and bug fixes. Your
source code control is the source of truth for your code and, if you desire, configura‐
tion as well.
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How About Mono-Repo and Multi-Repo?
The idea behind the mono-repo is to store all of your code (all services, tools, applica‐
tion, etc.) in a single source code repository. The alternative to the mono-repo is a
multi or poly-repo in which your code is in multiple repositories; for example, each
service or function resides in its repository, tools in a separate repository, and so on. It
is difficult to give a final suggestion on which option is better, because regardless of
which way you go, you need to solve similar problems. On top of that, the choice
depends on multiple other factors, such as the number of services you have.

One of the benefits of having all your code in one repository is that it enables better
and easier collaboration and sharing of code. As a developer, you won’t need to chase
different repositories and try to correlate changes across multiple repositories because
everything is in one place. On the other hand, why would you need to clone one, huge
mono-repo if you are working on or interested in only a small piece of it or a single
service? As you can see, it can be difficult to make a recommendation on which way
to go. If the number of services and code is relatively small, it makes more sense to
keep it in a single repository, in which case, it does make collaboration easier, and you
have everything in one place. However, as soon as the size of the repository and num‐
ber of services exceed a certain number, it makes more sense to split the mono-repo
into multi-repos.

Another thing to consider is how your services are built and how you are going to
manage service dependencies. Having everything in one repository can push you
toward more code reuse and, potentially, tight coupling as well as dependency shar‐
ing. It can quickly get out of hand, so if you’re considering a mono-repo, carefully
consider how dependency management works and make sure you are correctly isolat‐
ing services and avoiding tight coupling. Also, think about what happens if there’s a
build break that’s not necessarily in the portion of the mono-repo you own. Is the
entire build broken or just that one part? You can solve all of this with tools; however,
you get this guarantee for free when using multi-repos.

With regard to building the mono-repo and producing build artifacts/container
images, you can get a single version/tag that is used for all of your services, and this
can make your testing easier because you are using a single name to refer to the col‐
lection of services and state of the world. Using multi-repos, you end up with differ‐
ent tags for each artifact, and your “state of the world” becomes a collection of
different services, tags, and versions. Having a mono-repo can also help if you’re
deploying all services at the same time. However, this is probably not the result you
want. With cloud native, you should be striving to get to a place where you can inde‐
pendently deploy each service. Keeping this goal in mind, having all of your services
in a mono-repo doesn’t give you any apparent benefits.
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In terms of code ownership, a mono-repo makes it difficult to define where the
boundaries are. With multi-repos, it is much clearer which teams own what and who’s
responsible for which part of the code.

Build Stage (CI)
Regardless of how your repositories are structured and how many of them you have,
the purpose of the build stage is to take all of the changes you committed to your
repository and build the code to ensure that there are no errors in it. If the build suc‐
ceeds, you move to the next stage where your code is tested. If a build fails, the entire
process stops, code changes are rejected, and the developer is notified.

Test Stage (CI)
In this stage of the pipeline, you know the code was successfully built, but now it’s
time to run the range of tests, including unit tests, functional tests, acceptance tests,
static analysis, linting, acceptance tests, and so forth. This part of the CI process falls
under the predeployment stage of testing in the production process.

After you execute the tests and they pass, the code is packaged and tagged with a ver‐
sion number or commit ID and pushed to a container image repository or, in the case
of a serverless application, packaged and uploaded to storage. If tests failed, the code
check-in is rejected, and the developer is notified. This stage concludes the CI
process.

Because you are testing and building your code often, it makes sense to ensure that
both build and test stages are fast and the generated artifact is as small as possible to
make it easier to move around. In addition, the artifact should also be reusable so that
you don’t need to rebuild the same container image multiple times. If you’re using
Docker, you should take advantage of the multistage build process in which you build
your code using a container image that has everything that’s needed for the build to
happen. In the second stage of your build, you copy only the built artifact to the
release container image. Ideally, the release container image includes your built ser‐
vice and nothing else, which makes the resulting container image smaller.

Here’s is a basic example of how a Dockerfile with multistage build would look if you
were using Golang:

FROM golang:1.11.5
WORKDIR /go/src/github.com/peterj/simplego
COPY main.go .
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app .
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=0 /go/src/github.com/peterj/simplego/app . CMD ["./app"]
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The previous Dockerfile uses the golang:1.11.5 container image and copies the
source file to the container first, then uses go build to build a binary called app. In
the bottom part of the code, you define a second container image based on the Alpine
container image, install the ca-certificates, and copy the built binary from the first
stage of the build (--from=0). Finally, you run the binary using the CMD command.

If you build this, you end up with a final container image with a size around 8 MB,
whereas the container image in the first stage of the build is more than 800 MB. The
100-fold size difference is significant, and you can imagine the difference in speed
when this container image is moved around between registries or is pulled to differ‐
ent hosts. The majority of popular Docker images on the Docker Hub image registry
have a full-sized image available in addition to the smaller or trimmed-down ver‐
sions, usually tagged with the word slim.

From the security standpoint, smaller images also mean a smaller attack surface given
that the only thing your image contains is your binary and nothing else. If you’re
using a full-sized operating system image (e.g., Ubuntu) to install your binaries on
top of it, the potential attackers gain access to your binary as well as the whole assort‐
ment of tools that come with the Ubuntu operating system.

One of the best practices for tagging the container image is to use an abbreviation of
the Git commit checksum hash and a build number. Following this naming practice,
a sample container image name looks like this: myimage: ed3ee93-1.0.0. Using this
naming format, you can quickly discover which changes the image contains. After
you decide to make the container images public and available for others, you can
remove the hash and use only the version number, like this: myimage:1.0.0. Whenever
you push a new version of the image to a public container image registry, make sure
that you also create the latest tag, which references the latest version of the image.

Testing serverless applications involves running a similar set of tests as for container‐
ized applications—unit tests, integration tests, acceptance tests, and so on. For unit
tests, you should mock any dependencies your functions have; however, to run inte‐
gration tests, you can create a test environment in which you trigger test events that
will in turn execute and exercise your functions. The important thing to have set up
for your serverless applications is a template that describes the environment and any
dependencies your functions have. Using this template, you can quickly create and
tear down an environment. Because this is a short-lived environment meant for test‐
ing only, the cost will be significantly lower than constantly maintaining a test or
staging environment. For serverless applications, the output of this stage would be a
tested and packaged artifact that contains your serverless application.

Deploy Stage (CD)
The deploy stage of the process can be automatically triggered by the successful com‐
pletion of the CI stage or, in the case of a containerized application, an event that is
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triggered when a new container image is pushed to the container image repository.
An important thing to note is that after you reach the deploy stage, you are no longer
dealing with source code, but container images, packaged artifacts, and configuration
and deployment templates.

The purpose of the deploy stage is to take the built and tested artifact and deploy it to
the desired environment (production, for example, or the staging environment). If
you take Kubernetes as your deployment platform, this stage would involve creating
all deployment and configuration files that are needed to deploy the artifact into
Kubernetes. At this stage, you can use Helm and templatized deployment files with a
custom set of configuration and values to deploy the artifact. If you’re deploying to
production, your configuration also includes a service mesh or other configuration
needed to ensure that no traffic or requests are sent to the deployed container image.
The configuration depends on what type of tests are you going to run: if you’re plan‐
ning to run load tests or additional integration tests, you need a set of configuration
files that allow only testing traffic to pass to the deployed container image.

For serverless applications, assuming that you are using AWS Lambda, you can use
AWS SAM to define your application, point to the packaged artifact, and include any
additional infrastructure (API gateways) and permissions. Creating a test or staging
environment for serverless applications is trivial if you’re using one of the templating
solutions that are available from cloud providers.

Another pattern and type of testing that’s popular is called traffic mirroring, shadow‐
ing, or dark traffic. What this allows you to do is to mirror or shadow all real and
production-level traffic and send it to the deployed service. Note that you are not
routing the production traffic through the newly deployed service; the real traffic still
goes through your released service, and in addition to that, it also is mirrored to the
deployed service.

If you’re using Istio as your service mesh, you can enable traffic mirroring by adding
the mirror key to your Istio virtual service resource. Here’s an example of a virtual
service that sends all traffic to the released (v1) service but also mirrors all requests to
the deployed (v2) service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: recommendation-service
spec:
  hosts:
    - recommendation-service
  http:
  - route:
    - destination:
      host: recommendation-service
      subset: v1
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      weight: 100
    mirror:
      host: recommendation-service
      subset: v2

With the mirroring in place, you can run additional tests, or instead use the produc‐
tion traffic and monitor the deployed service. You can achieve similar functionality
for your serverless applications with AWS CodeDeploy, for example, or Azure Traffic
Manager. These solutions can help you to gradually shift traffic from one version to
another and do blue/green deployments.

If you are not doing testing in production, your deployment at this stage would have
been into a dedicated staging or testing environment. Because of that, you could auto‐
matically begin redirecting 100% of the traffic to the new service and release it as
soon as it is deployed, effectively combining the deploy and release stages. As your
final step in the process, you would be carefully monitoring the service as well as the
entire environment as you’re running the tests. Upon successful completion of the
test, you would start a separate CD process that would take the container image from
the staging or test environment and deploy and release it into the production envi‐
ronment.

Release Stage (CD)
To get started with this stage, you should have gathered enough data from testing the
deployed service to feel comfortable with beginning to release the service to produc‐
tion.

As mentioned previously, the process of releasing involves slowly redirecting a por‐
tion of the production traffic to the service or swapping a staging deployment slot
with a production deployment slot. Redirecting production traffic could be easily
achieved using a service mesh such as Istio for containerized services or using AWS
CodeDeploy or Azure Traffic Manager for doing the same with serverless applica‐
tions. In both cases, you can gradually increase traffic to the new service or serverless
application until you are directing 100% of the traffic to the new version. You have
multiple options of picking and choosing the production traffic that you redirect.
Usually, you would take a percentage of all production traffic and redirect it. How‐
ever, in some cases, you could be more selective and smartly pick the traffic, based on
the features in your new service. For example, if your service contains a fix for an
issue that occurs only in a certain web browser, you could decide to redirect only traf‐
fic coming from the affected web browsers to your service. That way you can verify
that the issue is fixed with the real users. Note that you probably want to test with
other traffic as well, because you don’t want to introduce issues for other browsers.

Similarly, you could get even fancier and more advanced and route traffic based on
specific HTTP headers. For example, you could introduce a unique header name and
value that gives users access to beta features of your product. Then, with the beta
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releases, you can route only the users who have opted into the newly released service.
This could also be done for serverless applications at the API gateway level.

Regardless of how you decide to pick the production traffic, you need to carefully
monitor and observe released services and functions each time you increase the per‐
centage of the production traffic to the new version. If you discover any issues, you
can change the production traffic split and restore the previous state for which all
traffic was going to the previously released version. Alternatively, you can also decide
to remove the new version from production by doing the reverse process of deploy‐
ment. If you observe that the new version is behaving well and there are no new
issues introduced, you can keep increasing the traffic, and when you reach 100%, you
have successfully released a new version.

In the perfect, ideal world, the decision to increase the traffic to the new version is
made automatically for you. There would be systems in place that could intelligently
decide to move forward with the release, based on the data received from the service.
A fully automated workflow like this is a part of the mature DevOps stage in which
you’re doing CI, CD, and Continuous Deployment. However, the reality is that this is
a manual process, and user intervention is required to make a decision as to whether
to move to the new version.

When you reach 100% of traffic to the new service, you can remove the previously
released (now deployed) service from the environment and enter the final stage of the
process, called post-release.

Post-Release Stage
In some sense, this stage doesn’t fall under CD; however, it is a part of testing in pro‐
duction or operating any application in production. The post-release stage is a stage
in which all of your released applications are in, and it involves continuous service
monitoring, investigating incident and error reports received from the users directly
or through your alerting and monitoring system, as well as doing additional testing
such as chaos tests.

Here are some of the key items to keep in mind when building out your own CI/CD
pipeline:

• Builds should be fast (mono-repo or poly-repo)
• Tests should be reliable
• Container images should be as small as possible
• Decide on the production traffic selection strategy (all traffic, portion of the traf‐

fic, based on specific criteria, etc.)
• Observable services are essential to a successful CI/CD pipeline
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Monitoring
We have mentioned the importance of having proper monitoring and observable
services throughout this chapter. Without monitoring you are effectively flying blind,
not knowing what your service is doing or how is it behaving. Monitoring is essential
during all stages of the CI/CD process; however, it’s especially important during the
release stage.

Monitoring is traditionally used to assess and report on the overall health of a system
or services. Let’s take a look at some of the primary metrics in monitoring:

Error rate
This metric should tell you the rate of requests that are failing (e.g., number of
HTTP 500).

Incoming request rate
Usually measured in HTTP requests per second (or reads/writes/transactions per
time unit if this is a database), it indicates how much traffic is coming into your
system.

Latency
Latency is the time it took for your service to process a request. The latency is
usually broken down to successful and unsuccessful requests.

Utilization
Utilization gives you information about the usage of different pieces of your sys‐
tem. For example, you would monitor utilization of the nodes in the Kubernetes
cluster—making sure memory, disk, and CPU usage are in normal ranges.

During a release, if you observe any negative impact on the listed metrics, for exam‐
ple, error rate increases, it should be a clear sign that something is not right, and you
would need to stop and roll back the release. Your monitoring should give you infor‐
mation and data that allows you to understand what or which part of your system is
broken and why is it broken.

It is best to come up with a set of metrics (basic listed metrics and any additional met‐
rics that you deem necessary for your service) before you do your first release. With
this set in place, you can monitor your releases and don’t need to guess or scramble if
anything goes wrong. You should also probably define what changes in the metrics
would warrant a rollback and, similarly, how long to monitor these metrics and how
to decide when to continue with the release process. For example, you could decide
that if there’s more than a 1% change in a negative direction (or even a slight change
in negative direction) in any of the listed metrics, you’ll stop and roll back the release.
Similarly, you can define that if there are no adverse changes in the listed metrics in
the next 24 hours, you will continue with the release process and route even more
production traffic to it.
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In most of the cases, only a couple of metrics are enough to decide to continue or roll
back the release. If you’re doing A/B testing, for example, the basic set of health met‐
rics is usually not enough, and you need to rely on more data from the services or the
whole system.

One of the favorite tools for monitoring is Grafana, described as “the open platform
for beautiful analytics and monitoring.” It can use different data sources and visualize
them with appealing graphs, tables, heat maps, and other visual elements. It also fea‐
tures a powerful query language that you can use to create advanced and customized
graphs, as demonstrated in Figure 5-7.

Figure 5-7. A sample dashboard in Grafana

Grafana can connect to different data sources and databases and allows you to create
dashboards and graphs based on that data. One of the quite popular and built-in data
source plug-ins in Grafana is for Prometheus.

Collecting Metrics
A Cloud Native Computing Foundation (CNCF)–graduated project, Prometheus is a
popular option used for scraping and collecting metrics from your services. Prome‐
theus is containerized, so you can quickly run it as a container in your Kubernetes
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platform. Note that for Prometheus to work, you need to define a data volume where
scraped metrics are stored as well as create a configuration file that defines things like
scraping intervals, timeouts, and different rules and alerts. Of course, you also need to
add instrumentation code to your services; otherwise, there’s nothing for Prometheus
to do.

There are client libraries available for most of the popular languages, and these libra‐
ries allow you to define and expose metrics via an HTTP endpoint. Prometheus then
calls this HTTP endpoint, and your service sends the tracked metrics to Prometheus
for storage. There’s also support for a so-called push gateway—if your components
cannot be scraped, you can use the push gateway to push the data to a component
that Prometheus can scrape. Alternatively, you could look for an exporter—this is a
component that helps with exporting metrics from third-party systems as Prome‐
theus metrics. For example, there are exporters available for databases (MongoDB,
MySQL, Redis), messaging systems (Kafka, RabbitMQ), APIs (GitHub, Docker Hub),
logging components (Fluentd), as well as software, such as Kubernetes, etcd, Grafana,
and more.

Let’s look at an example of how easy it is to create and emit a simple metric using
Golang. In this example, you define a /hello HTTP endpoint that displays a message
and a metric that tracks how often the endpoint is called. Here are the contents of the
main.go file:

package main
import (
    "fmt"
    "github.com/prometheus/client_golang/prometheus"
    "github.com/prometheus/client_golang/prometheus/promauto"
    "github.com/prometheus/client_golang/prometheus/promhttp"

    "log"
    "net/http"
)

var helloCounter = promauto.NewCounter(prometheus.CounterOpts{
    Name: "hello_endpoint_total_calls",
    Help: "The total number of calls to the /hello endpoint",
})

func main() {
    http.Handle("/metrics", promhttp.Handler())
    http.HandleFunc("/hello", func(w http.ResponseWriter, r *http.Request) {
        fmt.Fprintf(w, "Hello")
        helloCounter.Inc()
    })
    log.Fatal(http.ListenAndServe(":8080", nil))
}
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Let’s walk through the source and explain what’s happening. At the beginning of the
file, the Prometheus Golang client library is imported. Next, you create a variable
called helloCounter—this is one of the Prometheus metric types—which has a name
and a help text that explains what this metric represents. Prometheus also supports
other types of metrics:

Counter
This metric type represents an increasing counter that starts at zero. You should
use it only for values that increase. You can use this metric to count the number
of requests, errors, restarts, and more.

Gauge
Similar to counter, but the value in this metric can be increased or decreased. You
can use this metric to represent memory, CPU usage, process count, and more.

Histogram
You use the histogram metric type for sampling observations (request/response
sizes, durations, etc.) that are then counted and placed in multiple configurable
buckets. When scraped, a histogram provides cumulative counters for each
bucket, information about the total sum of all observed values, and a count of
events.

Summary
The summary is similar to the histogram. In addition to what the histogram pro‐
vides, the summary also calculates configurable quantiles over a sliding time win‐
dow.

Let’s continue by looking at the main function where two endpoints are defined:
the /metrics endpoint and /hello endpoint. The /metrics endpoint is what the
Prometheus scraper calls to get the state of the metrics from the application, and the /
hello endpoint is where the hello_endpoint_total_calls counter is increased.

After you build and run the application, you can call the /metrics endpoint. Apart
from numerous other metrics and values, the one metric you added is also in the
response:

...
# HELP go_threads Number of OS threads created.
# TYPE go_threads gauge
go_threads 7
# HELP hello_endpoint_total_calls The total number of calls to the /hello endpoint
# TYPE hello_endpoint_total_calls counter
hello_endpoint_total_calls 0
...

Notice the hello_endpoint_total_calls metric shows up in the list when
the /metrics endpoint is called, and the value set in the counter is 0 because there
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were no calls made to the /hello endpoint yet. After you make a couple of calls to
the /hello endpoint and access the /metric endpoint again, the value changes, for
example:

hello_endpoint_total_calls 5

Now that the service is emitting metrics, how can you configure a Prometheus scra‐
per that automatically scrapes the data from the endpoint? As with almost everything
in cloud native, there is a Prometheus Docker image available that you can use for
this. Prometheus is configured using a prometheus.yml configuration file. Here’s a
minimal configuration file that defines the scrape configuration:

global:
scrape_interval: 5s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['hello-svc:8080']

The most crucial part in the previous configuration is the scrape_configs section—
this is what tells Prometheus where to look for the /metrics endpoint. Under the
scrape_config, a single static config is defined, and it contains the service DNS
name (the assumption being that this is deployed to Kubernetes). The configuration
file can be stored within the ConfigMap Kubernetes resource and then deployed:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prom-config
  labels:
    name: prom-config
data:
  prometheus.yml: |-
    global:
      scrape_interval: 5s
      scrape_configs:
        - job_name: 'prometheus'
          static_configs:
            - targets: ['hello-svc:8080']

Similarly, you create a Kubernetes service and deployment for both the application
and Prometheus. Here’s an example of a deployment resource that pulls in the Prom‐
etheus ConfigMap created earlier:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
    name: prometheus
spec:
    replicas: 1
    template:
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        metadata:
            labels:
                app: prometheus
        spec:
            containers:
                - image: prom/prometheus
                  args:
                    - "--config.file=/etc/prometheus/prometheus.yml"
                    - "--storage.tsdb.path=/prometheus/"
                  imagePullPolicy: Always
                  name: prometheus
                  ports:
                      - containerPort: 9090
                  volumeMounts:
                    - name: prom-config-volume
                      mountPath: /etc/prometheus
                    - name: prom-storage-volume
                      mountPath: /prometheus/
            volumes:
                - name: prom-config-volume
                  configMap:
                    defaultMode: 420
                    name: prom-config
                - name: prom-storage-volume
                  emptyDir: {}

In addition to the deployment, you could also create a Kubernetes service to access
the Prometheus instance or use the port-forward command in the Kubernetes CLI
to get access to one of the Prometheus pods. To get the pod name, run the following
command, which saves the name of the Prometheus pod in the PROMPOD variable:

export PROMPOD=$(kubectl get po --selector=app=prometheus -o
custom-columns=:metadata.name --no-headers=true)

With the pod name in PROMPOD, run the following command to forward the local port
9090 to the port 9090 on the container:

kubectl port-forward pod/$PROMPOD 9090

To validate that Prometheus is scraping the defined target, open your browser and
navigate to http://localhost:9090. You should see a page similar to the one depicted in
Figure 5-8.

If all is set up correctly, the state of the http://hello-svc:8080/metrics endpoint should
read UP.

Finally, let’s check whether the metrics are being scraped. To do that, navigate to
http://localhost:9090 and then, from the drop-down menu next to the Execute button,
select the metric name, hello_endpoint_total_calls, and click the Execute button.
This runs the query and shows the value of the selected metric.
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Figure 5-8. Status page for Prometheus scraping targets

Alerting
Prometheus also supports defining alerts using a separate component called Alert‐
manager. Any alerts defined in Prometheus are sent to the Alertmanager, and they are
managed by it. Alertmanager then takes care of silencing, aggregating, and sending
notifications through email or other services (e.g., Slack, PagerDuty).

In the Alertmanager configuration, you can define different routes with receivers and
matches. You can get granular with alerting rules and define them based on specific
services. For example, you could configure alerts in such a way that anytime an alert
occurs for your frontend services, a PagerDuty account is notified and a person is
paged with high urgency. Similarly, you could decide to send only a Slack message if
an alert occurs for services running in your development environment.

As a basic guideline, all of your alerts should be simple: you want them to be easily
understandable so that when an alert fires at 3 AM, the engineer that needs to handle
it can quickly determine what the alert is about. Similarly, don’t set up page alerts for
everything—no one wants to be woken up in the middle of the night for an issue that
easily could wait until the morning when most of the team is awake.

When defining your alert, don’t forget to include a link to the web page or a docu‐
ment that explains and details what triggered the alert and how to resolve it.

Observable Services
Observability captures everything that monitoring doesn’t—if metrics were the gist of
the talk in the monitoring context, traces are what are talked about in the observabil‐
ity context. Monitoring is used to report the overall system’s health and is, in general,
more high level. On the other hand, observability gives you more granular details and
insights into your services and systems along with any details and additional data
(logs, exceptions, error messages) that can help you debug the service more effec‐
tively. Practically speaking, monitoring informs you that something is wrong with
your service (e.g., success rate dropped, error rate increased), and observability helps
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you dig deeper, provide traces, and investigate why monitoring giving you those
results. One of the reasons why you want to make your services observable is to be
able to get data that helps you understand them better.

Logging
Logging is a crucial part that can help make your service and functions more observ‐
able. Here are some general considerations to keep in mind when developing services
and functions:

• Use structured logging so that tools and automation can parse it.
• Log entries should be easy to read, and clear, concise, and provide value.
• Use the same time zone and time format for all timestamps.
• Categorize log entries: debug, info, and error are good ones to start with.
• Never log any private or sensitive information (passwords, connection strings). If

you can’t avoid logging it, ensure that you scrub it.

When thinking and talking about logging in the cloud native world, the first thing
that should come to your mind is the sheer volume of the log messages that are gen‐
erated. With cloud storage, you can store all of this data in a cost-effective way and
even use automatic data archiving and long-term backups for your logs, such as
Amazon Simple Storage Service (Amazon S3) Glacier. Even though storage can be
cheap, having clean, parsable, and easily understandable logs should still be your pri‐
ority. Getting to that place requires you to understand your services well. In any case,
all logs that are generated need to be collected and stored in a central place where you
can use different monitoring tools (Grafana, Kibana) or log analysis and management
tools such as Loggly, Sumo Logic or Splunk to make use of that vast amount of data.
If you don’t do this, you quickly realize that you’re not getting much value from your
logs at all, especially if you need to collect them separately from each service and then
try to correlate them.

After all your logs flow into a central system, you need to ensure that every log entry
contains a unique identifier (request ID, correlation ID [CID]) that you can use to
trace the requests and calls across services. Ideally, this unique ID is something you
would also report to the users in case they run into issues. That way, you can go to
your log aggregator, type in that unique ID, and be presented with all of the relevant
log entries from across your entire system. Similarly, distributed tracing tools can use
the identifiers to stitch together different requests that happen between services in the
system.
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Distributed tracing
Distributed tracing is a way to profile and monitor services, and it can help you
uncover failures and poor performance as well as help you debug your services.

OpenTracing strives to create standardized APIs and instrumentation for distributed
tracing. It is a collection of frameworks and libraries that implement the specification,
and it allows you to add instrumentation to your code using APIs that don’t lock you
into a specific product or vendor. The OpenTracing specification is open sourced, and
anyone can contribute or implement it within their tools.

Any distributed trace contains one or more spans that represent a single unit of work
happening within a distributed system. Each span contains a name, a start and finish
timestamp, tags, logs, and a context, as well as references to other spans. These values
are used to stitch the spans together into a complete trace that shows how a request
travels through the distributed system.

One of the popular distributed tracing tools that can visualize collection traces and
spans is Jaeger. In addition to stitching traces together, Jaeger also shows you all serv‐
ices involved in the call as well as how long each portion of the request took, as
shown in Figure 5-9.

Figure 5-9. A sample trace in the Jaeger distributed tracing tool

If you’re using the Istio service mesh, you can get Jaeger and install and configure it as
part of Istio. With Jaeger installed, you can very quickly get started with distributed
tracing. Istio Envoy proxies send all traces automatically, but you still need to provide
some hints in your service calls so that Jaeger can correlate all calls correctly. If you
decide to use Jaeger and distributed tracing in your services, make sure that you add
and forward these headers on to any downstream service you’re calling from your
service:

• x-request-id
• x-b3-traceid
• x-b3-spanid
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• x-b3-parentspanid
• x-b3-sampled
• x-b3-flags
• x-ot-span-context

You should also come up with a standard format for each log entry so that you can
always get the necessary information from any entry. For example, in addition to the
unique ID, you could also include things like timestamp and the name of the compo‐
nent, service, or function that created the log entry. A simple example of a single log
entry with some standard information would look like this:

{
"id": "45b2659d-e039-49c6-9052-d6d0f79bb03a",
"timestamp": "2019-02-07T18:51:12.013594455Z",
"logLevel": "info",
"serviceId": "hello-svc",
"msg": "sample log message here"
}

You could also decide to create a common structure of log entries based on different
types of log messages. For example, if your system is handling events, you could cre‐
ate an entry type called Event, and that log entry includes any event-specific informa‐
tion, such as eventName and eventType, as well as the standard fields mentioned
earlier. Similarly, your log entries for errors should have common fields like error
Code, errorName, and stacktrace.

There are unique challenges for serverless apps regarding tracing. The resources typi‐
cally exist only during execution, and compared to microservices, there are no hosts
in serverless where you can install agents for monitoring or tracing. Another chal‐
lenge associated with collecting metrics in real time is the latency overhead as well as
correlating everything across all services and functions.

For tracing of serverless apps, you can use one of the cloud providers’ managed solu‐
tions such as AWS X-Ray or Azure Application Insights. These solutions collect traces
from each service the request passes through. The tracers are recorded and correlated
to give you a map of calls including the trace data such as latency, HTTP status, and
other request metadata. With all of this information in one place, you can drill into
the specific requests to analyze and identify root causes for any issues. For example, if
you are using Lambda, the X-Ray agent is natively built in to it, meaning that you
don’t need to do anything other than enable tracing in configuration. This will allow
you to identify function initialization and cold starts as well as pinpoint any issues in
downstream services your function is calling. Even if you’re not using Lambda, there
are X-Ray SDKs available and you can use them to instrument your own services and
functions.
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Service health, liveness, and readiness
Your service should also include so-called health or liveness endpoints. This endpoint,
when called, should respond with a value (usually HTTP 200) that indicates whether
the service considers itself healthy. The endpoint name should be unique across all of
your services (/health or /healthz) and when invoked should return the same
structured response that quickly can be used to determine whether the service is
healthy.

This health check can then be utilized by the platform to assert whether the service is
healthy; if it isn’t, the platform can decide to mark the service as unhealthy. Here’s a
snippet of how you can define the liveness probe on your service when running in
Kubernetes:

livenessProbe:
  httpGet:
    path: /healthz
    port: 8080
  initialDelaySeconds: 5
  periodSeconds: 3

With the snippet, you are instructing the Kubernetes platform to wait for 5 seconds
before doing the first check, and then to repeat that check every 3 seconds. If the
++$$/$$healthz++ endpoint returns a success code (HTTP 200), the service is con‐
sidered alive and healthy. If the endpoint returns a non-200 code, the service is killed
and restarted.

In addition to the health check endpoint, you can also include a readiness endpoint.
The purpose of this endpoint is to determine whether the service is ready to start
receiving requests from other services. When this endpoint is invoked, you could do
certain checks to ensure that all service dependencies are up and accessible and ascer‐
tain whether the service can start receiving requests. Similar to the health check,
some platforms support a readiness check and only start routing requests to your ser‐
vice after it’s ready. If the readiness check fails, your service is marked as not ready.
Note that your service can be healthy, but not necessarily ready to receive requests. A
readiness check looks similar to the liveness probe:

readinessProbe:
  httpGet:
    path: /alive
    port: 8080
  initialDelaySeconds: 5
  timeoutSeconds: 1
  periodSeconds: 15

Just like with the liveness probe, you define the endpoint and the port to which the
platform can make requests. With the previous snippet, the platform waits for 5 sec‐
onds before calling the endpoint and then repeats the call every 15 seconds. In addi‐
tion, you also defined a timeout, so if the service doesn’t respond in 1 second, it’s
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deemed as not ready. If the service is not ready, Kubernetes marks it as such, and
none of the requests through the Kubernetes service will be routed to the unready
pod.

Configuration Management
Most services and functions don’t live in isolation, and they always need to be able to
communicate with other services and systems. One of the factors from the Twelve-
Factor manifesto talks about configuration and specifies storing configuration in the
environment.

Service or function configuration contains everything your service or function needs
to be able to start up and run. Some of the common configuration settings the app
needs are:

• Database/queue/messaging connection strings
• Credentials (usernames, passwords, API keys, certificates)
• Timeouts, ports, dependent service names

The Twelve-Factor manifesto mentions that code and configuration should be strictly
separated, which makes your service easily configurable for different environments. If
you are unsure what should be part of the configuration, a good guideline is to make
something configurable only if it can change between deployments. With this guide‐
line in mind, settings like timeouts are considered service settings and are not part of
the service configuration. When developing your services, design them in such a way
that you can easily add new configuration settings or remove them without breaking
things.

Sometimes, handling environment variables and knowing which variables are
required for each service can become difficult. You can decide to group your environ‐
ment variables per environment (staging, testing, production) or even per deploy‐
ment (if they change) and store them in separate configuration files. For example, you
can create a configuration file called production.yaml and staging.yaml—both files
would contain the same setting and environment variables names, but the values
would be specific to that environment only. If you decide to go this way, design your
service so that it can read configuration from an external file. It’s also recommended
that you come up with a strict configuration schema that all configuration files need
to follow. With a strict schema in place, the configuration testing becomes much eas‐
ier.

A common way to store configuration settings in Kuberentes is using a resource
called ConfigMap. The ConfigMap allows for great separation of configuration from
the services, which makes your service more portable.
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Each ConfigMap has a unique name and a data source. The data source can be one of
these three things:

• Directory
• File
• Literal value

To create a ConfigMap from a directory, you can use the Kuberetes CLI:

kubectl create configmap my-svc-config --from-file=my-service/config-files/

This command takes all files in the /my-service/config-files/ folder and combines them
into a single ConfigMap resource. You can use the same Kubernetes CLI command to
create a ConfigMap from a single file, but instead of pointing to a folder, you would
point the --from-file argument to a single file.

Another common way of describing and storing environment variables is by using an
environment file. In the environment file, you define the environment variable names
in the format `"NAME=VALUE"` and store it in a file:

username=user
password=mypassword

With the --from-env-file option in the Kuberentes CLI, you can use your existing
environment files and generate Kuberentes ConfigMaps like this:

kubectl create configmap my-env-file --from-env-file=production.env

This command takes the production.env environment file and creates a ConfigMap
named my-env-file that looks like this:

apiVersion: v1
data:
  password: pwd
  username: user
kind: ConfigMap
metadata:
  creationTimestamp: 2019-02-08T18:57:29Z
  name: my-env-file
  namespace: default
  resourceVersion: "284220"
  selfLink: /api/v1/namespaces/default/configmaps/my-env-file
  uid: 623618bd-2bd3-11e9-b554-025000000001

However, if you want to create a ConfigMap from a single value only, you can use the
--from-literal setting. The created ConfigMap would look very similar to the one
shown.
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Now that you have the ConfigMaps defined, you can use them within your pods in
multiple different ways.

Single-Environment Variable
You can mount the values stored in a ConfigMap as environment variables in your
pods using a snippet where you define an environment variable name (MY_USERNAME),
the ConfigMap name (my-env-file), and the key within the ConfigMap (username)
that contains the value you want to assign to the environment variable. This option is
useful if you are using one-off environment variables:

env:
  - name: MY_USERNAME
    valueFrom:
     configMapKeyRef:
       name: my-env-file
       key: username

Multiple-Environment Variables
When you have a ConfigMap with multiple values defined, you can use a key named
envFrom to declare all values from the ConfigMap as environment variables within
your pod:

envFrom:
  -configMapKeyRef:
    name: my-env-file

Using the ConfigMap with username and password we deployed earlier, this snippet
would create two environment variables called username and password within your
pod.

Adding ConfigMap Data to a Volume
If you created a ConfigMap from a file or directory, you use a volume that will add all
data in the ConfigMap to the directory of your choosing within the pod:

volumeMounts:
  - name: config-volume
    mountPath: /etc/config
...
volumes:
  - name:   config-volume
    configMap:
      name: my-config-files

In your pod definition, you are declaring a volume called config-volume that con‐
tains all files from the my-config-files ConfigMap. In the container definition, you
are mounting that volume by referring to it by name and specifying the mount
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path /etc/config. With this definition, you can access the /etc/config folder within your
service to read any of the configuration files defined in the ConfigMap.

A nice thing about using ConfigMaps and mounting them within pods is that they
also are refreshed and updated automatically. If you need to update only your config‐
uration, you can, and Kubernetes ensures that the values are updated within your
pods as well.

Storing Secrets
Not all configuration settings are equal. The values such as port numbers and service
names usually don’t require any special treatment in terms of securing them or mak‐
ing sure that they don’t leak or are logged anywhere. However, passwords, API keys,
and certificates can be a bit more delicate.

The Kubernetes platform has a dedicated resource called Secret that you can use to
deal with these types of configuration values. Instead of taking a password and
putting it directly into the pod definition, you store it in a separate secret resource
and then you mount that resource to your pod. These secret resources then can be
managed entirely separately from other resources. By default, secrets in Kubernetes
are stored in the etcd instance. When running your services in production, consider
using one of the secret management solutions, such as Vault by HashiCorp.

Within each secret, you could store multiple secret values that are base64-encoded
and create a YAML file that contains the secret:

apiVersion: v1
kind: Secret
metadata:
  name: mongodb
  type: Opaque
  data:
    username: dXNlcm5hbWUK
    password: SUxvdmVQaXp6YQo=

Alternatively, you could use Kubernetes CLI to create the secret resource like this:

kubectl create secret generic mongodb \
        --from-literal=username=user \
        --from-literal=password=pwd

Instead of declaring each value separately, you can also use a file and then store the
entire file in a secret. With secrets in place, you can mount them as environment vari‐
ables within your pods this way:

  env:
  - name: USERNAME
    valueFrom:
      secretKeyRef:
        name: mongodb-secrets
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        key: username
  - name: PASSWORD
    valueFrom:
      secretKeyRef:
        name: mongodb-secrets
        key: password

When the pod starts, Kubernetes ensures that the secret is read and environment
variable values are created based on the values stored in the secret resource. One
thing to keep in mind when consuming secrets as environment variables is to ensure
that you are not logging the environment variables as part of the service startup: in
the event that the service fails, you might expose secrets. If possible, try to consume
secrets from files instead.

A simplest way for storing secrets and configuration settings for functions is to add
them to the function configuration/environment. However, this is not necessarily the
best practice. A better approach is to use one of the managed solutions from the
cloud provider where your functions are running. Both AWS Lambda and Azure
Functions are integrated with their respective configuration management solutions.
In AWS, you can use the systems manager parameter store, and in Azure you can use
Key Vault. Both managed services provide a secure storage for configuration data
management and secret management. You can store passwords, connection strings,
certificates, and other configuration settings in a central place. Instead of storing
secrets as settings for each function, you have the ability to programmatically retrieve
the values from the managed services.

Deployment Configuration
Until now, we’ve talked about service and application configuration management.
Let’s try to see how you can manage the configuration of your deployments.

One of the popular tools with the Kubernetes platform, Helm, is used to define so-
called charts (a collection of templatized Kubernetes resource files) that you can
install and upgrade. Charts allow you to package multiple Kubernetes resource files
together and then manage, install, and upgrade them as a single unit. The resource
files can be templatized and include template values that are defined in a separate file
(usually called values.yaml).

Take, for example, this snippet from a Kubernetes deployment resource:

containers:
- image: serviceregistry/hellosvc:1.0.0
  imagePullPolicy: Always
  name: web
  ports:
  - containerPort: 8080
  env:
  - name: PORT
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    value: "8080"
  - name: METRICS_PORT
    value: "9090"
   - name: DB_CONN_STRING
    value: "mongodb://user:pwd@mongo.com:27017/admin"

Here, we are declaring three environment variables in the previous snippet: two ports
and the database connection string. Ports will likely not change if you are doing
deployments to different environments; however, the possibility of database connec‐
tion string being different is much higher. There’s also the image name that changes
with every deployment. With the help of Helm, you could templatize those values,
and the snippet would like something like this:

containers:
- image: "{{ .Values.hellosvc.imageName }}"
  imagePullPolicy: Always
  name: web
  ports:
  - containerPort: "{{ .Values.hellosvc.port}}"
  env:
  - name: PORT
    value: "{{ .Values.hellosvc.port}}"
   - name: METRICS_PORT
     value: "{{ .Values.hellosvc.metricsPort }}"
   - name: DB_CONN_STRING
     value: "{{ .Values.hellosvc.dbConnString }}"

We are using curly braces to define a template that is replaced with an actual value
after you use Helm to install or upgrade the chart. This is how the values.yaml file
would look with the templatized variables defined:

hellosvc:
  imageName: serviceregistry/hellosvc:1.0.0
  port: 8080
  metricsPort: 9090
  dbConnString: "mongodb://user:pwd@mongo.com:27017/admin"

Similarly, you could create a separate file that holds different values and then use the
Helm CLI to install the chart like this:

helm install –f my-values.yaml ./myChart

By default, Helm uses the values.yaml file, and you can overwrite certain variables
with the following syntax:

helm install –set PORT=1234 ./myChart

You can probably already see the flexibility of using templatized deployment files.
Tools like Helm can also help you to automate deployment file creation within your
Continuous Deployment process easily. Another useful command in the Helm CLI is
the one that allows you to apply values to the template files and generate the output
files without actually deploying them. In addition to the built-in Helm command for
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validating the charts, the outputted template files then can be fed as an input to con‐
figuration testing if needed.

For packaging a composite cloud native application using multiple config-as-code
tools and configuration scripts for the app itself, you can use the cloud native applica‐
tion bundle (CNAB). You can compose the bundle to use any infrastructure or serv‐
ices your application needs, without locking you into any specific cloud vendor.
Additionally, the bundles are signed and verified. This is a way that you can get a
cloud native application into an air-gapped environment.

Sample CI/CD Flows
Considering all of the approaches and techniques described in this chapter, you could
come up with a more detailed code flow for containerized applications that would be
similar to the one in Figure 5-10.

Note that Figure 5-10 is just a guideline, representing one way you could do your
deployments and releases. There is an infinite number of different requirements that
could significantly change how your actual process looks and works. Here are all the
steps in the flow with corresponding descriptions:

1. Code complete: the code was written.
2. Push to Git: code is committed and pushed to the code repository.
3. Pull code: the build system pulls the latest pushed code.
4. Source code analysis: static code analysis is run on the source code.
5. Build container: source code is built, copied, and packaged into a container.
6. Unit/service tests: unit and service tests are run. If the tests fail, the CI fails and

flow is stopped.
7. Push to private registry: built and tested image is tagged and pushed to the pri‐

vate registry.
8. Image security scanning: any image that’s pushed to the registry is scanned for

potential vulnerabilities and exploits.
9. Test configuration: before deploying containers to an environment, the configu‐

ration tests are run. On failure, the flow stops.
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Figure 5-10. Sample CI/CD flow

If deploying to staging:

1. Deploy to k8s: published container is deployed to Kubernetes.
2. Integration tests: integration tests are executed.
3. Rollback: if integration tests fail, deployment is rolled back and the flow stops.
4. Release: if integration tests pass, deployment gets released and is available in the

staging environment.
5. Promotion to Prod: when ready, the changes are promoted to the production

environment using gradual rollout.
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If deploying to production:

1. Deploy to k8s: published container is deployed to Kubernetes.
2. Continuous canary tests: a set of tests continuously run to catch potential issues

as soon as possible.
3. Gradual rollout: amount of traffic is being gradually increased (i.e., more and

more traffic is sent to the deployed version).
4. Telemetry: continuously monitor telemetry to ensure gradual rollout is working

correctly and no issues are introduced with the deployment. If we see failures
through telemetry, the changes are rolled back; otherwise, more traffic is routed
to the deployed version.

5. Release: as soon as 100% of the traffic is flowing to the deployed version, the
release is completed.

Similarly, Figure 5-11 shows how a sample CI/CD flow for serverless applications
would look.

Figure 5-11. Sample CI/CD flow for serverless applications

1. Code complete: the code was written.
2. Push to Git: code is committed and pushed to the code repository.
3. Pull code: the build system pulls the latest pushed code.
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4. Source code analysis: static code analysis is run on the source code.
5. Build: functions source code gets built.
6. Unit (functions) tests: unit and functions tests are run. If the tests fail, the CI fails

and flow is stopped.
7. Package: code gets packaged (as a ZIP file, for example).
8. Create test environment: test environment is created using a template such as

AWS SAM.
9. Deploy to test: packaged serverless application and any dependencies are

deployed to the test environment.
10. Integration tests: integration tests are executed.
11. Clean-up environment: test environment is torn down and deleted if integration

tests fail.
12. Deploy to Production: if integration tests pass, serverless application is deployed

to production. Any test environments and other dependencies created by the
flow are removed. This concludes the flow.

Summary
In this chapter, we looked at the fundamentals of DevOps, its values, and practical
examples on how to measure the organization’s maturity. We gave a broad overview
of what it means to do testing in the cloud native world. We explained various types
of tests that you should consider and when you should execute those tests. The test‐
ing in the production section took you through the process of getting to a point in
your organization at which you could begin doing your testing in production.

To help you get to that point, we described multiple different tools that you could use,
how to set up your development environment (be it a local development environment
or cloud environment), and how to get started with monitoring, tracing, and dealing
with service and deployment configuration. Finally, we described example CI/CD
flows for containerized services and serverless applications.
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CHAPTER 6

Best Practices

Throughout this book, you have learned about the fundamentals of cloud native
applications—how to design, develop, and operate them as well as how to deal with
data. To conclude, this chapter aims to provide a laundry list covering tips, proven
techniques, and proven best practices to build and manage reactive cloud native
applications.

Moving to Cloud Native
In Chapter 2, you learned about the process that many customers follow when mov‐
ing traditional applications to the cloud. There are many best practices and lessons
learned that you should consider when moving an existing application into the cloud.

Breaking Up the Monolith for the Right Reasons
“Never change a running system” is a widely used statement in software development,
and it is also applicable when you consider moving your application to the cloud. If
your sole requirement is to move your application to the cloud, you can always con‐
sider moving it on Infrastructure as a Service (IaaS)—in fact, that should be your very
first step. That said, there are benefits of redesigning your application to be cloud
native, but you need to weigh the pros and cons. Following are some guidelines indi‐
cating that a redesign makes sense:

• Your codebase has grown to a point that it takes very long to release an updated
version and thus you cannot react to new market or customer requirements
quickly.

• Components of your applications have different scale requirements. A good
example is a traditional three-tier application consisting of a frontend, business,
and data tier. Only the frontend tier might experience heavy load in user

159



requests, whereas the business and data tier are still comfortably handling the
load. As mentioned in Chapter 2 and Chapter 3, cloud native applications allow
you to scale services independently.

• Better technology choices have emerged. There is constant innovation in the
technology sector, and some new technologies might be better suited for parts of
your application.

After you have decided that you want to redesign your application, you need to con‐
sider many things. In the following sections, we provide a comprehensive look at
these considerations.

Decouple Simple Services First
Start by breaking off components that provide simpler functionality because they
usually do not have a lot of dependencies and, thus, are not deeply integrated within
the monolith.

Learn to Operate on a Small Scale
Use the first service as a learning path for how to operate in a cloud native world. 
Starting with a simple service, you can focus on setting up automation to provision
the infrastructure and the CI/CD pipeline so that you become familiar with the pro‐
cess of developing, deploying, and operating a cloud native service. Having a simple
service and minimal infrastructure will allow you to learn, exercise, and improve
your new process ahead of time, without substantial impact on the monolith and
your end users.

Use an Anticorruption Layer Pattern
Nothing is perfect, especially in the software development world, so you will eventu‐
ally end up with a new service that makes calls back to the monolith. In this case, you
might want to use the Anticorruption Layer pattern. This pattern is used to implement
a facade or adapter between components that don’t share the same semantics. The
purpose of the anticorruption layer is to translate the request from one component to
another; for example, implementing protocol or schema translations.

To implement this, you design and create a new API in the monolith that makes calls
through the anticorruption layer in the new service, as shown in Figure 6-1.
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Figure 6-1. Anticorruption Layer pattern

There are a couple of considerations when you are using this approach. As Figure 6-1
illustrates, the anticorruption layer is a service on its own, so you need to think about
how to scale and operate the layer. Also, you need to think about whether you want to
retire the anticorruption layer after the monolithic application has been fully moved
into a cloud native application.

Use a Strangler Pattern
When you are decomposing your monolith to move to microservices and functions,
you can use a gateway and a pattern such as a Strangler pattern. The idea behind the
Strangler pattern is to use the gateway as a facade while you gradually move the back‐
end monolith to a new architecture—either services, functions, or a combination of
both. As you’re making progress breaking up the monolith and implementing those
pieces of functionality as services or functions, you update the gateway to redirect
requests to the new functionality, instead as shown in Figure 6-2.
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Figure 6-2. Migrating from monolith using the Strangler pattern

Note that the Strangler pattern might not be suitable for the instance in which you
can’t intercept the requests going to the backing monolith. The pattern also might not
make sense if you have a smaller system, for which it’s easier and faster to replace the
entire system, instead of gradually moving it.

The Anticorruption Layer and Strangler patterns have been proven many times as
good approaches to move a monolithic legacy application to a cloud native applica‐
tion because both promote a gradual approach.

Come Up with a Data Migration Strategy
In a monolith, you are usually working with a centrally shared datastore where data is
read from and written to by multiple places and services. To truly move to the cloud
native architecture, you need to decouple data as well. Your data migration strategy
might consist of multiple phases, especially if you can’t migrate everything at the
same time. However, in most cases, you will need to do an incremental migration
while keeping the entire system running. A gradual migration will probably involve
writing data twice (to the new and old datastore) for a while. After you have data in
both places and synchronized, you will need to modify where the data is being read
from and then read everything from the new store. Finally, you should be able to stop
writing data to the old store completely.

Rewrite Any Boilerplate Code
Monoliths will usually have large amounts of code that deals with the configuration,
data caching, datastore access, and so on and is probably using older libraries and
frameworks. When moving capabilities to a new service, you should rewrite this
code. The best option is to throw away the old code and rewrite it from scratch
instead of modifying the existing code and molding it so it fits the new service.

162 | Chapter 6: Best Practices



Reconsider Frameworks, Languages, Data Structures, and Datastores
Moving to microservices gives you an option to rethink the existing implementation.
Are there new frameworks or languages that you could use to rewrite the current
code that provide better features and functionalities for your scenarios? If it makes
sense to rewrite the code, do it! Also, reconsider any data structures in the current
code. Would they still make sense when moved to a service? You should also evaluate
whether you want to use different datastores. Chapter 4 outlines what datastores are
best suited for certain data structures and query patterns.

Retire Code
After you’ve created a new service and all the traffic is redirected to that service, you
need to retire and remove the old code that resides in the monolith. Using this
approach, you are shrinking the monolith and expanding your services.

Ensuring Resiliency
Resiliency is the ability of a system to recover from failures and continue to function
and serve requests. Resiliency is not about avoiding failures; instead, it is all about
responding to failures in such a manner that avoids significant downtime or data loss.

Handle Transient Failures with Retries
Requests can fail due to multiple reasons such as network latency, dropped connec‐
tions, or timeouts if downstream services are busy. You can avoid most of these fail‐
ures if you retry the request. Retrying can also improve the stability of your
application. However, before blindly retrying all requests, you need to implement a
bit of logic that determines whether the request should be retried. If the failure is not
transient or there is a likelihood that a retry won’t be successful, it is better for the
component to cancel the request and respond with an appropriate error message. For
example, retrying a failed login because of an incorrect password is futile and retries
won’t help. If failure is due to a rare network issue, you can retry the request right
away given that the same issue probably won’t persist. Finally, if the failure happens
because the downstream service is busy or you are being rate limited, for example,
you should retry after a delay. Here are some common strategies for delaying between
retry operations:

Constant
Wait for the same time between each attempt.

Linear
Incrementally increase the time between each retry. For example, you can start
with one second, then three seconds, five seconds, and so on.
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Exponential back-off
Exponentially increase time between each retry. For example, start with 3 sec‐
onds, 12 seconds, 30 seconds, and so on.

Depending on what type of failure you are dealing with, you can also immediately
retry the operation once and then use one of the delay strategies mentioned in the
preceding list. You can handle retries in the component’s source code by using the
retry and transient failure logic provided by many of the service SDKs, or at the infra‐
structure layer if you are using a service mesh, such as Istio.

Use a Finite Number of Retries
Regardless of which retry strategy you’re using, always make sure to use a finite num‐
ber of retries. Having an infinite number of retries will cause an unnecessary strain on
the system.

Use Circuit Breakers for Nontransient Failures
The purpose of a circuit breaker is to prevent components from doing operations that
will likely fail and are not transient. Circuit breakers monitor the number of faults,
and based on that information decide whether the request should continue or an
error should be returned without even invoking the downstream service. If a circuit
breaker trips, the number of failures has exceeded a predefined value, and the circuit
breaker will automatically return errors for a preset time. After the preset time elap‐
ses, it will reset the failure count and allow requests to go through to the downstream
service again. A well-known library that implements the circuit breaker pattern is
Hystrix from Netflix. If you are using a service mesh like Istio or Envoy proxies, you
can take advantage of the circuit breaker implementation in those solutions.

Graceful Degradation
Services should degrade gracefully, so even if they fail, they still provide an acceptable
user experience if it makes sense. For example, if you can’t retrieve the data, you could
display a cached version of the data, and as soon as the data source recovers, you
show the latest data.

Use a Bulkhead Pattern
The Bulkhead pattern refers to isolating different parts of your system into groups in
such a way that if one fails, the others will continue running unaffected. Grouping
your services this way allows you isolate failures and continue serving requests even
when there’s a failure.

164 | Chapter 6: Best Practices



Implement Health Checks and Readiness Checks
Implement a health check and a readiness check for every service you deploy. The
platform can use these to determine whether the service is healthy and performing
correctly as well as when the service is ready to start accepting requests. In Kuber‐
netes, health checks are called probes. The liveness probe is used to determine when a
container should be restarted, whereas the readiness probe determines whether a pod
should start receiving traffic.

The initial delay defines the number of seconds after the container has started before
liveness or readiness probes are active, whereas the period defines how often the
probe is performed. There are also additional settings such as success/failure thres‐
hold and timeouts that you can use to fine-tune the probes.

Define CPU and Memory Limits for Your Containers
You should define CPU and memory limits to isolate resources and prevent certain
services instances from consuming too many resources. In Kubernetes, you can ach‐
ieve this by defining the memory and CPU limits within the pod definition.

Implement Rate Limiting and Throttling
You use rate limiting and throttling to limit the number of incoming or outgoing
requests for a service. Implementing those can help you to keep your service respon‐
sive even in the case of a sudden spike in requests. Throttling, on the other hand, is
often used for outgoing requests. Think about using it when you want to control the
number of requests sent to an external service to minimize the costs or to make sure
that your service does not look like the origin of a Denial-of-Service attack.

Ensuring Security
Security in the cloud native world is based on the shared responsibility model. The
cloud providers are not solely responsible for the security of their customers’ solu‐
tions; instead, they share that responsibility with the customers. From an application
perspective you should consider adopting the defense-in-depth concept, which is dis‐
cussed in Chapter 3. The best practices listed in this section will help you to ensure
security.

Treat Security Requirements the Same as Any Other Requirements
Having fully automated processes is in spirit of the cloud native development. To ach‐
ieve this, all security requirements must be treated as any other requirement and be
pushed through your development pipeline.
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Incorporate Security in Your Designs
As you’re planning and designing your cloud native solutions, you need to think
about security and incorporate the security features in your design. As part of your
design, you also should call out any additional security concerns that need to be
addressed during component development.

Grant Least-Privileged Access
If your services or functions need access to any resources, they should be granted spe‐
cific permissions that have the least amount of access set to them. For example, if
your service is reading only from the database, it does not need to use an account that
has write permissions.

Use Separate Accounts/Subscriptions/Tenants
Depending on the terminology of your cloud provider, your cloud native system
should use separate accounts, subscriptions, and/or tenants. At the very least, you will
need a separate account for every environment you will be using; that way, you can
ensure proper isolation between environments.

Securely Store All Secrets
Any secrets within your system, used either by your components or Continuous Inte‐
gration/Continuous Development (CI/CD) pipeline, need to be encrypted and
securely stored. It might sound like a no-brainer, but never store any secrets in plain
text: always encrypt them. It’s always best to use existing and proven secret manage‐
ment systems that take care of these things for you. The simplest option is to use
Kubernetes Secrets to store the secrets used by services within the cluster. Secrets are
stored in etcd, a distributed key/value store. However, managed and centralized solu‐
tions have multiple advantages over Kubernetes secrets: everything is stored in a cen‐
tralized location, you can define access control policies, secrets are encrypted,
auditing support is provided, and more. Some examples of managed solutions are
Microsoft Azure Key Vault, Amazon Secrets Manager, and HashiCorp Vault.

Obfuscate Data
Any data your component uses needs to be properly obfuscated. For example, you
never want to log any data classified as Personally Identifiable Information (PII) in
plain text; if you need to log or store it, ensure that it’s either obfuscated (if logging it)
or encrypted (if storing it).
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Encrypt Data in Transit
Encrypting data in transit protects your data if communications are intercepted while
the data moves between components. To achieve this protection, you need to encrypt
the data before transmitting it, authenticate the endpoints, and finally decrypt and
verify the data after it reaches the endpoint. Transport Layer Security (TLS) is used to
encrypt data in transit for transport security. If you are using a service mesh, TLS
might already be implemented between the proxies in the mesh.

Use Federated Identity Management
Using an existing federated identity management service (Auth0, for example) to
handle how users sign up, sign in, and sign out allows you to redirect users to a third-
party page for authentication. Your component should delegate authentication and
authorization whenever possible.

Use Role-Based Access Control
Role-Based Access Control (RBAC) has been around for a long time. RBAC is a con‐
trol access mechanism around roles and privileges, and as you have learned, it can be
a great asset to your defense-in-depth strategy because it allows you to provide fine-
grained access to users to only the resources they need. Kubernetes RBAC, for exam‐
ple, controls permissions to the Kubernetes API. Using RBAC, you can allow or deny
specific users from creating deployments or listing pods, and more. It’s a good prac‐
tice to scope Kubernetes RBAC permissions by namespaces rather than cluster roles.

Isolate Kubernetes Pods
Any pods running in a Kubernetes cluster are not isolated and can accept requests
from any source. Defining a network policy on pods allows you to isolate pods and
make them reject any connections that are not allowed by the policy. For example, if a
component in your system is compromised, a network policy will prevent the mali‐
cious actor from communicating with services with which you don’t want them to
communicate. Using a NetworkPolicy resource in Kubernetes, you can define a pod
selector and detailed ingress and egress policies.

Working with Data
Most modern applications have some need to store and work with data. A growing
number of data storage and analytics services are available as cloud provider–man‐
aged services. Cloud native applications are designed to take full advantage of cloud
provider–managed data systems and are designed to evolve to take advantage of a
growing number of features. When working with data in the cloud, many of the stan‐
dard data best practices still apply: have a disaster recovery plan, keep business logic
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out of the database, avoid overfetching or excessively chatty I/O, use data access
implementations that prevent SQL injections attacks, and so on.

Use Managed Databases and Analytics Services
Whenever possible use a managed database. Provisioning a database on virtual
machines (VMs) or in a Kubernetes cluster can often be a quick and easy task. Pro‐
duction databases that require backups and replicas can quickly increase the time and
burden of operating data storage systems. By offloading the operational burden of
deploying and managing a database, teams are able to focus more on development.

In some cases, a data storage technology might not be available as a managed service
or it might be necessary to have access to some configurations that are not available
in a managed version of the system.

Use a Datastore That Best Fits Data Requirements
When designing on-premises applications, architects would often try to avoid using
multiple databases. Each database technology used would require database adminis‐
trators with the skillset to deploy and manage the database, significantly increasing
the operational costs of the application. The reduced operational costs of cloud-
managed databases make it possible to use multiple different types of datastores to
put data in a system best suited for the data type, read, and write requirements. Cloud
native applications take full advantage of this, using multiple data storage technolo‐
gies.

Keep Data in Multiple Regions or Zones
Store production data for applications across multiple regions or zones. How the data
is stored across the zones or regions will depend on the application’s availability
requirements; for example, the data might be backups or a replicated database. If a
cloud provider experiences a failure of a zone or region, the data can be available to
be used for recovery or failover.

Use Data Partitioning and Replication for Scale
Cloud native applications are designed to scale out as opposed to scale up. Scaling a
database up is achieved by increasing the resources available to a database instance;
for example, adding more cores or memory. This ultimately encounters a hard limit
and can be costly. Scaling databases out is achieved through distributing the data
across multiple instances of a database. The database is partitioned, or broken up, and
stored in multiple databases.
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Avoid Overfetching and Chatty I/O
Overfetching is when an application requests data from a database but needs only a
fraction of the data for the operation. For example, an application might display a list
of orders with a simple summary but request the entire order and order details
without needing it. A chatty application, on the other hand, makes a lot of small calls
to complete an operation when a single request can be made to the database.

Don’t Put Business Logic in the Database
Too many application scaling issues are the result of putting too much logic in the
database. Databases made it easy to put business logic inside the database by support‐
ing standard development languages, and it became convenient to perform these
tasks in the database. This often introduces scaling issues because a database is com‐
monly an expensive shared resource.

Test with Production-like Data
Create automation to anonymize production data that can be updated with new rules
as the data changes. Applications should be tested with production-like data. Data is
sometimes pulled from production systems, scrubbed, and loaded into test systems to
provide production-like data. You should automate this process so that it is easy to
update as the data changes.

Handle Transient Failures
As mentioned in the resiliency section of this chapter, failures will happen. Expect
failures when making calls to a database and be prepared to handle them. Many of the
database client libraries support transient fault handling already. It’s important to
understand whether they do and how it’s supported.

Performance and Scalability
Performance indicates how well a system can execute an operation within a certain
time frame, whereas scalability refers to how a system can handle load increase
without impact on the performance. Predicting periods of increased activity to a sys‐
tem can be tough, so the components need to be able to scale out as needed to meet
the increased demand and then scale down, after the demand decreases. The subsec‐
tions that follow present some best practices to help you achieve optimal perfor‐
mance and scalability.
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Design Stateless Services That Scale Out
Services should be designed to scale out. Scaling out is an approach to increasing the
scale of a service by adding more instances of a service. Scaling up is an approach to
scaling a service by adding more resources like memory or cores, but this method
generally has a hard limit. By designing a service to scale out and back in, you can
scale the service to handle variations in the load without impacting the availability of
the service.

Stateful applications are inherently difficult to scale and should be avoided. If stateful
services are necessary, it’s generally best to separate the functionality from the appli‐
cation and use a partitioning strategy and managed services if they are available.

Use Platform Autoscaling Features
When possible, use any autoscaling features that are built into the platform before
implementing your own. Kubernetes offers Horizontal Pod Autoscaler (HPA). HPA
scales the pods based on the CPU, memory, or custom metrics. You specify the metric
(e.g., 85% of CPU or 16 GB of memory) and the minimum and maximum number of
pod replicas. After the target metric is reached, Kubernetes automatically scales the
pods. Similarly, cluster autoscaling scales the number of cluster nodes if pods can’t be
scheduled. Cluster autoscaling uses the requested resources in the pod specification
to determine whether nodes should be added.

Use Caching
Caching is a technique that can help improve the performance of your component by
temporarily storing frequently used data in storage that’s close to the component.
This improves the response time because the component does not need to go to the
original source. The most basic type of cache is an in-memory store that is being used
by a single process. If you have multiple instances of your component, each instance
will have its own independent copy of the in-memory cache. This can cause consis‐
tency problems if data is not static because the different instances will have different
versions of cached data. To solve this problem, you can use shared caching, which
ensures that different component instances use the same cached data. In this case,
cache is stored separately, usually in front of the database.

Use Partitioning to Scale Beyond Service Limits
Cloud services will often have some defined scale limits. It’s important to understand
the scalability limits of each of the services used and how much they can be scaled up. 
If a single service is unable to scale to meet the application’s requirements, create mul‐
tiple service instances and partition work across the instances. For example, if a man‐
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aged gateway was capable of handling 80% of the application’s intended load, create
another gateway and split the services across the gateway.

Functions
Much of the software development life cycle (SDLC) and general server architecture
best practices are the same for serverless architectures. Given serverless is a different
operating model, there are, however, some best practices specific to functions.

Write Single-Purpose Functions
Follow the single-responsibility principle and only write functions that have a single
responsibility. This will make your functions easier to reason about, test, and, when
the time comes, debug.

Don’t Chain Functions
In general, functions should push messages/data to a queue or a datastore to trigger
any other functions if needed. Having one or more functions call other functions is
often considered an antipattern that additionally increases your cost and makes the
debugging more difficult. If your application requires the daisy-chaining of functions,
you should consider using function offerings such as Azure Durable Functions or
AWS Step Functions.

Keep Functions Light and Simple
Each function should do just one thing and rely on only a minimal number of exter‐
nal libraries. Any extra and unnecessary code in the function makes the function big‐
ger in size, and that affects the start time.

Make Functions Stateless
Don’t save any data in your functions because new function instances usually run in
their own isolated environment and don’t share anything with other functions or
invocations of the same function.

Separate Function Entry Point from the Function Logic
Functions will have an entry point invoked by the function framework. Framework-
specific context is generally passed to the function entry point, along with invocation
context. For example, if the function is invoked through an HTTP request like an API
gateway, the context will contain HTTP-specific details. The entry-point method
should separate these entry-point details from the rest of the code. This will improve
manageability, testability, and portability of the functions.
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Avoid Long-Running Functions
Most Function as a Service (FaaS) offerings have an upper limit for execution time
per function. As a result, long-running functions can cause issues such as increased
load times and timeouts. Whenever possible, refactor large functions into smaller
ones that work together.

Use Queues for Cross-Function Communication
Instead of passing information among one another, functions should use a queue to
which to post the messages. Other functions can be triggered and executed based off
the events that happen on that queue (item added, removed, updated, etc.).

Operations
A DevOps practice provides the foundation necessary for organizations to make the
best use of cloud technologies. Cloud native applications utilize DevOps principles
and best practices that are detailed in Chapter 5.

Deployments and Releases Are Separate Activities
It is important to make a distinction between deployment and release. Deployment is
the act of taking the built component and placing it within an environment—the
component is fully configured and ready to go; however, there is no traffic being sent
to it. As part of the component release, we begin to allow traffic to the deployed com‐
ponent. This separation allows you to do gradual releases, A/B testing, and canary
deployments in a controlled manner.

Keep Deployments Small
Each component deployment should be a small event that can be performed by a sin‐
gle team in a short time. There is no general rule about how small a deployment
should be and how much time it should take to deploy a component, because this is
highly dependent on the component, your process, and the change to the component.
A good approach is to be able to roll out a critical fix within a day.

CI/CD Definition Lives with the Component
You need to store and version any CI/CD configuration and dependencies alongside
the component. Each push to the component’s branch triggers the pipeline and exe‐
cutes jobs defined in the CI/CD configuration. To control component deployments to
different environments (development, staging, production), you can use the Git
branch names and configure your pipeline to deploy the master branch only to a pro‐
duction environment, for example.
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Consistent Application Deployment
With a consistently reliable and repeatable deployment process, you can minimize
errors. Automate as many processes as possible and ensure that you have a rollback
plan defined in case deployment fails.

Use Zero-Downtime Releases
To maximize the availability of your system during releases, consider using zero-
downtime releases such as blue/green or canary. Using one of these approaches also
allows you to quickly roll back the update in case of failures.

Don’t Modify Deployed Infrastructure
Infrastructure should be immutable. Modifying deployed infrastructure can quickly
get out of hand, and keeping track of what changed can be complicated. If you need
to update the infrastructure, redeploy it instead.

Use Containerized Build
To avoid configuring build environments, package your build process into Docker
containers. Consider using multiple images and containers for builds instead of creat‐
ing a single, monolithic build image.

Describe Infrastructure Using Code
Infrastructure should be described using either cloud provider’s declarative templates
or a programming language or scripts that provision the infrastructure.

Use Namespaces to Organize Services in Kubernetes
Every resource in a Kubernetes cluster belongs to a namespace. By default, newly cre‐
ated resources go into a namespace called default. For better organization of services,
it is a good practice to use descriptive names and group services into bounded
contexts.

Isolate the Environments
Use a dedicated production cluster and physically separate the production cluster for
your development, staging, or testing environments.

Separate Function Source Code
Each function must be independently versioned and have its own dependencies. If
that’s not the case, you will end up with a monolith and a tightly coupled codebase.
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Correlate Deployments with Commits
Pick a branching strategy that allows you to correlate the deployments to specific
commits in your branch and that also allows you to identify which version of the
source code is deployed.

Logging, Monitoring, and Alerting
Application and infrastructure logging can provide much more value than just root-
cause analysis. A proper logging solution will provide valuable insights into applica‐
tions and systems, and it’s often necessary for monitoring the health of an application
and alerting operations of important events. As cloud applications become more dis‐
tributed, logging and instrumentation become increasingly challenging and impor‐
tant.

Use a Unified Logging System
Use a unified logging system capable of capturing log messages across all services and
levels of a system and store them in a centralized store. Whether you move all logs to
a centralized store for analysis and search, or you leave them on the machine with the
necessary tools in place to run a distributed query, it’s important that an engineer can
find and analyze logs without having to go from one system to the next.

Use Correlation IDs
Include a unique correlation ID (CID) that is passed through all services. If one of the
services fails, the correlation ID is used to trace the request through the system and
pinpoint where the failure occurred.

Include Context with Log Entries
Each log entry should contain additional context that can help when you are investi‐
gating issues. For example, include all exception handling, retry attempts, service
name or ID, image version, binary version, and so on.

Common and Structured Logging Format
Decide on a common and structured logging format that all components will use.
This will allow you to quickly search and parse the logs later on. Also, make sure you
are using the same time zone information in all your components. In general, it is
best to adhere to a common time format such as Coordinated Universal Time (UTC).
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Tag Your Metrics Appropriately
In addition to using clear and unique metric names, make sure that you are storing
any additional information, such as component name, environment, function name,
region, and so forth, in the metric tags. With tags in place, you can create queries,
dashboards, and reports using multiple dimensions (e.g., average latency across a spe‐
cific region or across regions for a specific function).

Avoid Alert Fatigue
The sheer number of metrics makes it difficult to determine how to set up the alert‐
ing and what to alert on. If you are firing off too many alerts, eventually people will
stop paying attention to them and no longer take them seriously. Also, investigating a
bunch of alerts can become overwhelming and it could be the only thing your team is
doing. It is important to classify alerts by severity: low, moderate, and high. The pur‐
pose of low-severity alerts is to potentially use them later, when doing root-cause
analysis of a high-severity alert. You can use them to uncover certain patterns, but
they do not require any immediate action when fired. A moderate-severity alert
should either create a notification or open a ticket. These are the alerts you want to
look at, but are not high priority and don’t need immediate action. They could repre‐
sent a temporary condition (increase demand, for example) that eventually goes away.
They also give you an early warning of a possible high-severity alert. Finally, high-
severity alerts are the ones that will wake people up in the middle of the night and
require immediate action. Recently, machine learning–based approaches to automati‐
cally triage issues and raise alerts are gaining in popularity, and the term AIOps has
even been introduced.

Define and Alert on Key Performance Indicators
Cloud native systems will have a plethora of signals that are being emitted and moni‐
tored. You need to filter down those signals and determine which ones are the most
important and valuable. These Key Performance Indicators (KPIs) give you insight
into the health of your system. For example, one KPI is latency, which measures the
time it takes to service a request. If you begin seeing latency increase or deviate from
an acceptable range, it is probably time to issue an alert and have someone take a look
at it. In addition to KPIs, you can use other signals and metrics to determine why
something is failing.

Continuous Testing in Production
Using continuous testing you can generate requests that are sent throughout the sys‐
tem and simulate real users. You can utilize this traffic to get test coverage for the
components, discover potential issues, and test your monitoring and alerting. Follow‐
ing are some common continuous testing practices:
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• Blue/green deployments
• Canary testing
• A/B testing

These practices are discussed in Chapter 5.

Start with Basic Metrics
Ensure that you are always collecting traffic (how much demand is placed on the
component), latency (the time it takes to service a request), and errors (rate of
requests that fail) for each component in your system.

Service Communication
Service communication is an important part of cloud native applications. Whether it’s
a client communicating with a backend, a service communicating with a database, or
the individual services in a distributed architecture communicating with one another,
these interactions are an important part of cloud native applications. Many different
forms of communication are used depending on the requirements. The following
subsections offer some best practices for service communication.

Design for Backward and Forward Compatibility
With backward compatibility, you ensure that new functionality added to a service or
component does not break any existing service. For example, in Figure 6-3, Service A
v1.0 works with Service B v1.0. Backward compatibility means that the release of Ser‐
vice B v1.1 will not break the functionality of Service A.

Figure 6-3. Backward compatibility

To ensure backward compatibility, any new fields added to the API should be
optional or have sensible defaults. Any existing fields should never be renamed,
because that will break the backward compatibility.
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Parallel change, also known as the Expand and Contract pattern,
can be used to safely introduce backward-incompatible changes. As
an example, say a service owner would like to change a property or
resource on an interface. The service owner will expand the inter‐
face with a new property or resource, and then after all consumers
have had a chance to move the service interface, the previous prop‐
erty is removed.

If your system or components need to ensure rollback functionality, you will need to
think about the forward compatibility as you’re making changes to your service. For‐
ward compatibility means that your components are compatible with future versions.
Your service should be able to accept “future” data and messaging formats and handle
them appropriately. A good example of forward compatibility is HTML: when it
encounters an unknown tag or attribute, it’s not going to fail; it will just skip it.

Define Service Contracts That Do Not Leak Internal Details
A service that exposes an API should define contracts and test against the contracts
when releasing updates. For example, a REST-based service would generally define a
contract in the OpenAPI format or as documentation, and consumers of the service
would build to this contract. Updates to the service can be pushed, and as long as it
doesn’t introduce any breaking changes to the API contract, these releases would not
affect the consumer. Leaking internal implementations of a service can make it diffi‐
cult to make changes and introduces coupling. Don’t assume a consumer is not using
some piece of data exposed through the API.

Services that publish messages to a queue or a stream should also
define a contract in the same way. The service publishing the events
will generally own the contract.

Prefer Asynchronous Communication
Use asynchronous communication whenever possible. It works well with distributed
systems and decouples the execution of two or more services. A message bus or a
stream is often used when implementing this approach, but you could use direct calls
through something like gRPC as well. Both use a message bus as a channel.

Use Efficient Serialization Techniques
Distributed applications like those built using a microservices architecture rely more
heavily on communications and messaging between services. The data serialization
and deserialization can add a lot of overhead in service communication.
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In one case, serialization and deserialization were found to account
for nearly 40% of the CPU utilization across all the services.
Replacing the standard JSON serialization library with a custom
one reduced this overhead to roughly 15% of overall CPU utiliza‐
tion.

Use efficient serialization formats like protocol buffers, commonly used in gRPC.
Understand the trade-offs with the different serialization formats, because tooling
and consumer requirements might not make this a feasible option. You can also use
other techniques to reduce the need for serialization in some services by placing some
of the data into headers. For example, if a service receives a request and operates on
only a handful of fields in a large message payload before passing it to a downstream
service, by putting these fields into headers the service does not need to deserialize or
reserialize the payload. The service reads and writes headers and then simply passes
the entire payload through to the downstream services.

Use Queues or Streams to Handle Heavy Loads and Traffic Spikes
A queue or a stream between components acts as a buffer and stores the message
until it is retrieved. Using a queue allows the components to process the messages at
their own pace, regardless of the incoming volume or load. Consequently, this helps
maximize the availability and scalability of your services.

Batch Requests for Efficiency
Queues can be used for batching multiple requests and performing an action only
once. For example, it is more efficient to write 1,000 batched entries into the database
instead of one entry at a time 1,000 times.

Split Up Large Messages
Sending, receiving, and manipulating large messages requires more resources and can
slow down your entire system. The Claim-Check pattern talks about splitting a large
message into two parts. You store the entire message in an external service (database,
for example) and send only the reference to the message. Any interested message
receivers can use the reference to obtain the full message from the database.

Containers
It’s possible to run most applications in a Docker container without very much effort.
However, there are some potential pitfalls when running containers in production
and streamlining the build, deployment, and monitoring. A number of best practices
have been identified to help avoid the pitfalls and improve the results.
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Store Images in a Trusted Registry
Any images running on the platform should come from the trusted container image
registry. Kubernetes exposes a webhook (validating admission) that can be used to
ensure pods can use images only from a trusted registry. If you’re using Google
Cloud, you can take advantage of the binary authorization security measure that
ensures only trusted images are deployed on your cluster.

Utilize the Docker Build Cache
Using the build cache when building Docker images can speed up the build process.
All images are built up from layers, and each line in the Dockerfile contributes a layer
to the final image. During the build, Docker will try to reuse a layer from a previous
build instead of building it again. However, it can reuse only the cached layers if all
previous build steps used it as well. To get the most out of the Docker build cache, put
the commands that change more often (e.g., adding the source code to the image,
building the source code) at the end of the Dockerfile. That way, any preceding steps
will be reused.

Don’t Run Containers in Privileged Mode
Running containers in privileged mode allows access to everything on the host. Use
the security policy on the pod to prevent containers from running in privileged
mode. If a container does for some reason require privileged mode to make changes
to the host environment, consider separating that functionality from the container
and into the infrastructure provisioning.

Use Explicit Container Image Tags
Always tag your container images with specific tags that tightly link the container
image to the code that is packaged in the image. To tag the images properly, you can
either use a Git commit hash that uniquely identifies the version of the code (e.g.,
1f7a7a472) or use a semantic version (e.g., 1.0.1). The tag latest is used as a default
value if no tag is provided; however, because it’s not tightly linked to the specific ver‐
sion of the code, you should avoid using it. The latest tag should never be used in a
production environment because it can cause inconsistent behavior that can be diffi‐
cult to troubleshoot.

Keep Container Images Small
In addition to taking up less space in a container registry or the host system using the
image to run a container, smaller images improve image push and pull performance.
This in turn improves the performance when you start containers as part of deploy‐
ing or scaling a service. The application and its dependencies will have some impact
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on the size of the image, but you can reduce most of the image size by using lean base
images and ensuring that unnecessary files are not included in the image. For exam‐
ple, the alpine 3.9.4 image is only 3 MB, with the Debian stretch image at 45 MB, and
the CentOS 7.6.1810 at 75 MB. The distributions generally offer a slim version that
removes more from the base image that might not be needed by the application. Gen‐
erally, there are two things to keep in mind for keeping images lean:

• Start with a lean base image
• Include only the files needed for the operation of the application

You can use the Container Builder pattern to create lean images by separating the
images used to build the artifacts from the base image used to run the application.
Docker’s multistage build is often used to implement this. You can create Docker
build files that can start from different images used for executing the commands to
build and test artifacts, and then define another base image as part of creating the
image to run the application.

Using a .dockerignore file can improve build speed by excluding
files that are not needed in the Docker build.

Run One Application per Container
Always run a single application within a container. Containers were designed to run a
single application, with the container having the same life cycle as the application
running in the container. Running multiple applications within the same container
makes it difficult to manage, and you might end up with a container in which one of
the processes has crashed or is unresponsive.

Use Verified Images from Trusted Repositories
There’s a large and growing number of publicly available images that are helpful when
working with containers. Docker repository tags are mutable, so it’s important to
understand that the images can change. When using images in an external repository
it’s best to copy or re-create them from the external repository into one managed by
the organization. The organization’s repository is usually closer to the CI services, and
this approach removes another service dependency that could impact build.

Use Vulnerability Scanning Tools on Images
You need to be aware of any vulnerabilities that affect your images because this can
compromise the security of your system. If a vulnerability is discovered, you need to
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rebuild the image with the patches and fixes included and then redeploy it. Some
cloud providers offer vulnerability scanning with their image registry solutions, so
make sure you are taking advantage of those features.

Scan an image as often as possible because new cybersecurity vul‐
nerabilities and exposures (CVE) are released daily.

Don’t Store Data in Containers
Containers are ephemeral—they can be stopped, destroyed, or replaced without any
loss of data. If the service running in a container needs to store data, use a volume
mount to save the data. The contents in a volume exist outside the life cycle of a con‐
tainer and a volume does not increase the size of a container. If the container requires
temporary nonpersistent writes, use a tmpfs mount, which will improve performance
by avoiding writes to a container’s writable layer.

Never Store Secrets or Configuration Inside an Image
Hardcoding any type of secrets within an image is something you want to avoid. If
your container requires any secrets, define them within environment variables or as
files, mounted to the container through a volume.

Summary
We could easily fill an entire book covering best practices for cloud native applica‐
tions given the number of technologies involved. However, there are certain areas
that have been coming up repeatedly in customer conversations, and this chapter has
covered a collection of best practices, tips, and proven patterns for cloud native appli‐
cations for those areas. You should have a better understanding of the factors you
may want to consider.
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CHAPTER 7

Portability

Portability is sometimes a concern when building cloud native applications. The
application might have a requirement to be deployed across multiple cloud providers
or even on-premises. These requirements are generally driven by stakeholders,
whether they are customers using the application or the business building the appli‐
cation. It might be the case that the application is deployed by the customer, either on
their own hardware or in their own account on the cloud provider of their choice.
Regardless of the reasons, the requirement for portability should be treated like any
other architecturally significant requirement. It should be driven by the business with
careful consideration to the costs and trade-offs.

Why Make Applications Portable?
There are many good reasons to make applications portable. Portability should be a
requirement, and the trade-offs and costs associated with the feature should be con‐
sidered. Following are some of the reasons why software vendors make applications
portable:

• Building an application that’s deployed into a customer’s environment and there’s
a requirement to offer deployment into the customer’s choice of cloud provider
or on-premises.

• Building a hybrid application that runs in the cloud and on-premises, where
some of the services in the application run in both environments.

• Services need to be near a customer’s application in order to minimize latency.
These could be services that store or analyze data, for example.

• Some aspect of an application will benefit from a service offered by another cloud
provider. A feature of the application would be deployed into another cloud ven‐
dor, different from the primary application features.
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• Disaster recovery and backup for services requiring extremely high levels of
availability.

• Leverage with the cloud provider account management team to negotiate better
pricing.

• Agility to move workloads for cost savings or to take advantage of some new
functionality in another cloud provider.

Some applications are made to be portable only out of fear of vendor lock-in. Vendor
lock-in happens when an application has dependencies on services or APIs that are
only available from a specific cloud provider. This can make it difficult to move the
application without refactoring and potentially rewriting parts of the application
and/or tooling used to manage the application. Some teams will invest a lot of resour‐
ces making an application portable without considering these costs. It’s important to
understand the trade-offs when portability is a requirement. Stakeholders will some‐
times request that an application is portable without understanding that there are in
fact trade-offs potentially affecting time to market, features, engineering costs, and,
quite often, increased operational costs.

Sometimes, engineering teams will needlessly make an application portable, even
though there is no requirement for it. This often happens out of a fear of making a
decision to commit to a cloud provider. What happens if the other cloud providers
services become less expensive, a feature is added, or one becomes more popular?
This fear of being locked in can even delay a project start date because the team
spends time evaluating platforms and techniques.

The Costs of Portability
Application portability generally comes with a price tag, and with larger applications
this cost can be significant. Making an application portable—one that can be
deployed on multiple cloud providers or on-premises—might be a requirement. If so,
it’s important to understand the associated costs and potential trade-offs. The busi‐
ness needs to consider these trade-offs so it can prioritize portability against other
features, and determine whether it’s even worth the additional cost. If, for example,
the business is considering portability as a requirement, it would be important to
know how this might affect operational costs or time to market. It might be the case
that portability is not worth the increased costs.

Here are some potential costs to consider when evaluating portability requirements:

• Increased operational costs as a result of not using vendor-specific managed
services

• Increased infrastructure costs as a result of not using cloud provider products
and services not available on all cloud providers
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• Increased engineering costs as a result of implementing features that might only
be available from one of the target cloud providers

• Increased engineering costs as a result of using technologies outside the team’s
skillset

• Reduced performance as a result of placing layers between services
• Increased testing costs necessary to verify the application’s function on supported

providers
• Lost revenue as a result of delayed value delivery to customers

The operational costs need to be carefully considered, as they can
increase significantly. Most will only consider portability of com‐
pute, but managing dependent services, like queues, streams, data
storage, and analytics services, can add a lot of operational burden.

Data Gravity and Portability
Data gravity is a term coined by Dave McCrory. The concept is fairly simple: data
wants to be near the applications using it. As the data grows, its gravitational force
increases, pulling applications and additional data to it. The larger the data, the more
gravitational pull. Every major cloud provider understands the importance of data
gravity as well as the challenges inherent in moving the data to another cloud vendor.

Indeed, moving data from one cloud provider to another is often the most challeng‐
ing aspect of moving an application. Some businesses invest a lot of resources making
the application portable without understanding the inherent challenges. The cost of
moving the data along with the potential for incurring downtime are often not worth
it; thus, the investments in making an application portable are wasted.

Most of the major cloud vendors provide data migration services that can make it
easier to move data around, but with large amounts of data, this can still be a large
effort. Moving data without taking an application offline can be challenging and
expensive. You can use techniques like moving data that is no longer changing before
a migration to minimize this downtime. You also can use live replication of the data
during the transition.

When and How to Implement Portability
Some or all of an application’s portability requirements can be addressed at the start
of an application or later in its lifetime. If portability is going to be a future require‐
ment, some things can be done at the start to make it easier to add this requirement.
You can use good coding practices that organize the code into separate concerns and
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layers. You can take advantage of technologies available across cloud providers and
that don’t involve a significant trade-off. Something as simple as using MongoDB or
PostgreSQL can go a long way toward enabling application portability. These data
storage technologies are available as managed services and can be deployed on-
premises. Also, consider the trade-offs when choosing not to use a vendor’s product
that might be well integrated with other products. For example, data storage services
offered by cloud providers will integrate security or event handling with other serv‐
ices in the platform.

Standardized Interfaces
Standardization can make it easier to build portable applications, but the standardiza‐
tion process can move slowly, often requiring teams across different organizations to
agree on the standards. Given the pace at which technology and the cloud moves, this
can be a challenge. This is not the case with all standards, and using popular stand‐
ards should be something to consider when you’re building portable applications.

OpenAPI, for example, is a standard that API management products use when defin‐
ing REST-based gateway services. Developers are able to create an API definition with
OpenAPI and use much of it across the various cloud vendor gateways. There can be
some vendor-specific settings that will need to be added to the definition, but these
can be minimized. The open service broker API is another example of a standard
interface that platforms can use to provision and manage cloud vendor resources
through a platform like Kubernetes.

Service Mesh Interface (SMI) defines an interface that you can use to provide intero‐
perability across different service mesh technologies like Istio, Consul, and Linkerd.
There are a growing number of service mesh technologies available today, without a
standard interface, and developers adopting these technologies need to commit to
one and implement features directly against the API. Standardized interfaces like SMI
enable portability and flexibility, allowing applications to easily and quickly adapt to
fast-changing requirements, environments, and a growing ecosystem of technologies.

Many of the “standards” that can be used in an application to address portability are
interfaces created and used in popular products that others have adopted. MongoDB
is the most popular NoSQL document-oriented database today. Cloud vendors like
Microsoft and Amazon have, for example, created databases that look like a Mon‐
goDB database by implementing the MongoDB API. Applications that target Mon‐
goDB might be able to be moved to one of these databases that look like MongoDB.
The entire set of features, however, might not be implemented in these services. This
can mean implementing additional functionality in the application because it might
not be possible to take full advantage of the features available in MongoDB.
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Containers
No section on portability would be complete without covering containers. Contain‐
ers , a standard packaging format that encapsulates code and dependencies, can make
it very easy to move application code. By packaging the application and dependencies
into containers, you can use one of the many cloud provider services to run the appli‐
cation in the container. The widespread adoption of the Docker container format has
helped to make containers very portable.

Placing an application into a container might not necessarily make it portable. If the
application connects to a cloud vendor–specific service, like some logging service,
that will need to be changed to run the application on-premises or in another cloud
vendor. Consider external dependencies when building applications and use Twelve-
Factor application methodologies. For example, one of the Twelve-Factor methodolo‐
gies is to treat logs as event streams. The application should be not concerned with
the routing or storage of this stream. By logging to standard out, the execution envi‐
ronment can be configured to send logs to a location best suited for the environment
in which it’s running.

Common Services and Features
Using the lowest common set of technologies and features available from the cloud
providers can help meet portability requirements. However, doing so can also
increase costs or potentially reduce application functionality. For example, an applica‐
tion that requires a relational database might use PostgreSQL instead of Oracle. All of
the major cloud vendors offer PostgreSQL and MySQL as fully managed services.
Although the engineering team might be more comfortable with a Microsoft SQL
Server database, it might be worth training developers and/or bringing in a consul‐
tant with the experience to ensure portability without increased operational costs.
Many of the more popular open source technologies are available as managed serv‐
ices. For example, Redis, PostgreSQL, MySQL, and Kubernetes are available as man‐
aged services on Amazon Web Services (AWS), Google Cloud Platform, and
Microsoft Azure.

Abstractions and Layers
A common approach to portability is to use abstractions and layers. These abstrac‐
tions can be configurable libraries in the application, generic representations that are
transformed, or service facades that sit between the application and the cloud provid‐
er’s services. The cloud provider–specific layers can be replaced using either compo‐
nent substitution techniques in the application code or connecting to services
through platform-specific facades. An additional benefit provided by these service
abstractions is testing. The providers can be tested independent of the application
and can be substituted with mocks to improve local development.
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Component substitution
Applications can be built so that their components can be substituted through envi‐
ronment configurations. The providers could be created as libraries and shared across
multiple teams. Figure 7-1 depicts how a provider was created for each of the sup‐
ported data storage services and can be configured based on the environment in
which the application is deployed. This approach will increase engineering costs
because the components need to be developed and tested. Other challenges often
arise when dealing with some feature that’s not available in all of the services. This
means that the application would then need to use the lowest common denominator
and would be unable to take advantage of some feature of the service. Missing fea‐
tures for cloud vendors can be implemented in this layer, or the application can be
developed to enable or disable application features when running on different cloud
providers.

Figure 7-1. Application built with multiple storage providers

Service facade
A service can be placed between the application and the cloud provider services. The
application is built against a facade that can be used to interact with the cloud pro‐
vider services. This basically moves the abstraction out of the process, making it so
the application developer does not need to be concerned with these details. Figure 7-2
illustrates how you can deploy the facade as a service with a load balancer to ensure
availability, or you can deploy it with the application as a sidecar helper.
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Figure 7-2. Application putting a message on a topic through a facade

There will be increased engineering costs for creating and managing this service. You
must also consider that the application developer might not be able to use some
potentially useful cloud provider client libraries. This approach will also need to con‐
sider how to deal with features that are only available in a single cloud provider.
MinIO, discussed later in this chapter, is a good example of a service that not only
provides object storage on-premises, but can also be used as a storage adapter.

Transforms
Transforming resources managed in a common format to cloud provider–specific
formats is another technique that you can use to target multiple cloud vendors. You
can define resources in a generic format and then transform them into cloud pro‐
vider–specific representations. The serverless framework allows for the definition of
serverless configurations in a standard format, which are used to generate cloud
vendor–specific configurations.

Managed Services from Other Vendors
Cloud native applications that require portability can also consider using managed
services provided by companies independent of the target cloud providers. These
services are likewise independent of the cloud provider, and some can even be provi‐
sioned in your cloud provider of choice and offer on-premises versions of the serv‐
ices. For example, by using MongoDB as the database in the application, you can use
a managed service like MongoDB Atlas when deploying in the cloud. The MongoDB-
provided managed service can help eliminate the need to manage the database and
reduce operational costs.
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Following are some example services:

• Auth0
• MongoDB Atlas
• Elasticsearch Cloud
• Sendgrid
• Cloudflare LB

The billing of these services might not be integrated with the cloud provider’s billing,
so you’ll need to have multiple billing accounts for an application. The other consid‐
eration is that these services might not be fully integrated with other services offered
by the cloud provider. For example, identity and access services for managing security
or triggering a cloud provider function when an event happens might not be possible.
These are some things that you will need to consider when you’re selecting these
types of services.

Portability Tooling
A growing number of portability tools are available, enabling developers to work with
cloud services in a provider-agnostic way. These tools create their own layers of
abstraction and will use those abstractions to either apply transforms or process the
configurations using cloud provider–specific plug-ins. This can make it easy for
developers who need to work across multiple cloud providers and possibly make it
simplify managing resources that are common across the target cloud providers.
There is, however, generally some work for you to do up front understanding the
transforms and the provider-specific settings.

Serverless framework
The portability of applications that use Function as a Service (FaaS) is a concern for
many software developers with portability requirements because it can be difficult to
deal with. Where portability is a requirement, many teams will avoid serverless alto‐
gether. This unfortunately means the team cannot take advantage of an extremely
powerful set of services. Every cloud provider’s serverless products offer a very differ‐
ent set of capabilities that use different configurations and code. For example, the
Serverless Framework provides an abstraction over popular FaaS technologies. A
developer can build to this framework and target any of the platforms supported by
the framework. You can extend the framework to support new platforms as well.
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When building functions using the Serverless Framework, or even
the cloud provider’s SDK, it’s good practice to separate the event
handler from the logic in the function. This makes the code in the
function cleaner, easier to test, and much easier to move to another
cloud provider if that becomes necessary.

Infrastructure
Each cloud provider exposes a different API for managing the infrastructure. Soft‐
ware developers who need to support multiple cloud provider platforms will gener‐
ally create abstractions and work against those abstractions for managing cloud
infrastructure. Terraform, for example, is a product available from HashiCorp for
managing infrastructure across multiple cloud vendors. The tool is useful for sup‐
porting an Infrastructure as Code (IaC) approach for managing cloud infrastructure.
You can use Terraform to define, change, and version infrastructure in a safe and
consistent way. With Terraform, an infrastructure engineer can create a single config‐
uration that can be used to manage multiple cloud providers. In practice, a small per‐
centage of the configuration will be cloud provider specific, although a majority of
the configuration can be the same and in a format that’s consistent across cloud pro‐
viders. Figure 7-3 presents an infrastructure engineer creating and maintaining Terra‐
form files and scripts in a source control repository that is capable of targeting
multiple cloud vendors. Terraform comes with provisioners for many of the popular
cloud providers; the provisioners use the Terraform configurations to provision
resources against the cloud provider’s specific APIs. The cloud provider–specific pro‐
visioner is built to work with the vendor’s API and can translate the cloud-agnostic
configurations to create and manage resources.

Figure 7-3. Terraform deployment configuration to Azure or AWS

In practice, the Terraform files will likely end up containing some cloud vendor–spe‐
cific configuration, but you can keep this to a minimum to simplify the management.
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Storage abstractions
Applications often need to support different data stores, and patterns like the Reposi‐
tory pattern were often used to accomplish this. You can use a similar approach with
cloud applications, but another approach would be to externalize the abstraction
from the application through a gateway that can function as the store when on-
premises. MinIO is a great example of this. MinIO is an open source object store like
the Amazon Simple Storage Service (Amazon S3). The MinIO storage implements
the Amazon S3 API, and in addition to storing data on a filesystem volume, you can
configure it to work as a gateway. Figure 7-4 depicts an application built to work with
data in the MinIO service, which can be configured to act as a gateway to other stor‐
age providers. You can even configure the MinIO service to write to the local filesys‐
tem when running in a development environment, for example.

Figure 7-4. MinIO object storage service can be deployed as a gateway

You can deploy the MinIO service as a sidecar container, simplifying the deployment
and management of the service. You can deploy multiple instances of the service
behind a load balancer in order to make it highly available.

Although the application is more portable, there will be some overhead in the gate‐
way. You will need to evaluate and consider potential performance trade-offs when
placing an additional gateway service between the application and storage. The more
important thing to consider is that some of the storage features might not be available
through the MinIO API, making it necessary to add some vendor-specific implemen‐
tation that bypasses the MinIO gateway.
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Kubernetes as a Portability Layer
You can use Kubernetes to provide an abstraction over the cloud provider infrastruc‐
ture. You can deploy and manage applications on Kubernetes in a similar manner,
regardless of the underlying cloud provider. Kubernetes continues to evolve, provid‐
ing access to more and more features of the cloud provider’s infrastructure through
the Kubernetes API.

Every major cloud vendor has a managed Kubernetes service today. The cloud pro‐
vider–managed Kubernetes service makes it extremely simple to spin up a new
Kubernetes cluster. The cloud provider is responsible for the Kubernetes manage‐
ment plane and the cluster is provisioned with the cloud provider–specific plug-ins
that are integrated with the underlying infrastructure.

Cloud Controller Manager
Kubernetes has created a pluggable platform enabling cloud provider infrastructure
integrations with the platform. This makes it possible to provision cloud provider–
specific resources that are used by applications running on Kubernetes, like load bal‐
ancers and storage volumes, through the Kubernetes interfaces. Figure 7-5 shows the
Kubernetes Cloud Controller Manager (CCM) configured with adapters, called cloud
connectors, that are used to interact with the cloud infrastructure. As a user of a cloud
vendor–managed Kubernetes service, it’s not likely that you will need to be concerned
with these details.

Figure 7-5. Kubernetes Cloud Controller Manager

When and How to Implement Portability | 193



Service catalog
The Kubernetes service catalog is an extension API that you can use for provisioning
managed services from Kubernetes. The service catalog uses the Open Service Broker
API to list, provision, and bind to cloud provider–managed services. Figure 7-6 dem‐
onstrates how a Kubernetes cluster user can browse through a list of managed serv‐
ices offered through the service broker, provision an instance, and make it available
to an application in the cluster. Application developers and operators could, for
example, use the Kubernetes API to create a cloud provider–managed PostgreSQL
database. Scripts and infrastructure definitions for provisioning application resources
would not need to be created for each cloud provider and could simply use Kuber‐
netes regardless of the cloud provider to which the cluster was deployed. This
assumes that all of the cloud providers offer a managed PostgreSQL database that is
available in the service catalog.

Figure 7-6. Kubernetes service catalog overview

Virtual Kubelet
Virtual Kubelet is an open source project that you can use to make an API look like a
kubelet, a node in a Kubernetes cluster. This makes it possible to use a cloud vendor’s
Container as a Service (CaaS) products through Kubernetes. Developers and admin‐
istrators can continue using the Kubernetes interface to run their workloads and still
benefit from the compute services available from the cloud providers. In Figure 7-7
one node in the Kubernetes cluster is virtual, and work scheduled on that node will
instead run in another compute service like Azure Container Instances or AWS Far‐
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gate. This provides a best-of-breed approach, enabling portability while still provid‐
ing cloud vendor services without having to build any layers.

Figure 7-7. Virtual kubelet

Summary
Portability is a feature that a cloud native application must consider. Make sure that
you treat it as a requirement and understand the potential trade-offs and costs. In
addition to engineering costs, for example, you’ll need to consider operational and
infrastructure costs. Some planning and good development practices can make it
much easier to make an application portable. 
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problems with in-memory caches, 170

consistency, availability, partitions (see CAP
theorem)

Consul Connect, Envoy proxy support, 61
Container as a Service (CaaS), 18

using via Kubernetes Virtual Kubelet, 194
Virtual Kubelet project, 21

container builder pattern, 180
container images

defense-in-depth example for containerized
services, 32

Golang, in Dockerfile, 134
container registries (see registries)
container runtime (Kubernetes), 14, 16
container runtime interface (CRI), 16
containerd, 17

containers
about, 9
application modernization to, 20
application portability and, 187
best practices, 178-181

keeping container images small, 179
never storing secrets or configuration in

an image, 181
not running containers in privileged

mode, 179
not storing data in containers, 181
one application per container, 180
storing images in trusted registry, 179
using Docker build cache, 179
using explicit container image tags, 179
using verified images from trusted repo‐

sitories, 180
using vulnerability scanning tools on

images, 180
container-based development environ‐

ments, 126
containerized microservices vs. Function as

a Service, 18
defining CPU and memory limits for, 165
isolation levels, 11
Kubernetes and, 16-17
orchestration, 13
using containerized build, 173
versus VMs on a signle host, 11

content delivery networks (CDNs), 2
cache management, considerations in, 98
SPA served to user through, 72
using for fast, scalable data, 98

continuous delivery (CD), 110, 131
(see also CI/CD)
testing in, 112

continuous innovation (with microservices), 23
continuous integration (CI), 110, 130

(see also CI/CD)
continuous integration/continuous deployment

(CI/CD) pipeline, 26
control groups (Linux), 10
control plane

in Kubernetes, 13
in service meshes, 61

correlation IDs (CIDs), 50, 174
costs

and scalability in cloud native design, 34
economics of FaaS offerings, 40
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of portability, 184
data gravity and portability, 185

credentials, 149

D
DaemonSets (Kubernetes), 106
data

encrypting in transit, 167
not storing in containers, 181
obfuscating, 166

data analytics, 100
(see also analyzing data)
ETL platforms and, 89
using analytics services, 168

data gravity, 185
data integrity and consistency, challenges of, in

microservices, 25
data isolation, 5
data lakes

and data warehouses, 101
microservices and, 89-92
use in data analytics, 101

data partitioning, 74
data plane

in Kubernetes clusters, 14
in service meshes, 61

data, working with, 73-107
analyzing data, 100-102

batch processing, 100
data lakes, 101
data lakes and data warehouses, 101
distributed query engines, 102
streams, 100

best practices, 167-169
avoiding overfetching and chatty I/O,

169
handling transient failures, 169
keeping data in multiple regions or

zones, 168
leaving business logic out of databases,

169
testing with production-like data, 169
using data partitioning and replication

for scale, 168
using datastore best fitting requirements,

168
using managed databases and analytics

services, 168

characteristics of cloud native applications
for data, 74

client access to data, 92-96
database services with fine-grained

access control, 94
GraphQL data service, 95
restricted client tokens (valet key), 93

data in multiple datastores, 82-92
change data capture, 83-86
compensating transactions, 88
extract, transform, and load, 89
microservices and data lakes, 89-92
transaction supervisor, 86
writing changes as events to change log,

86
data storage systems, 75-82

blockchains, 79
databases, 76-79
objects, files, and disks, 75
selecting a datastore, 80-82
streams and queues, 79

databases on Kubernetes, 103-106
DaemonSets, 106
StatefulSets, 105
storage volumes, 104

fast, scalable data, 96-100
caching data, 97
sharding data, 96
using CDNs, 98

migration of data to cloud native, 162
databases, 76-79

as APIs, 91
cloud provider-managed database services,

73
column family, 78
connection strings for, 154
database services with fine-grained access

control, 94
document, 77
exporters for Prometheus metrics, 140
graph, 78
key/value, 76
leaving business logic out of, 169
relational, 77
running on Kubernetes, 103-106
running queries against with distributed

query engines, 102
search, 79
selecting, 82

202 | Index



serverless, 74
time series, 78
using datastore best fitting requirements,

168
using managed databases, 168

de-duping, 49
debugging

for FaaS offerings, 40
local development and, 126

defense-in-depth, 31
example in containerized services, 32

degradation, graceful, 164
dependencies

containers and, 20
dependent service names, 149
in microservice architectures, 26
service dependency management for micro‐

services, 27
storing with components, 172
in Twelve-Factor apps, 4

deployments
consistent application deployments, 173
continuous, 131
correlating with commits, 174
deploy stage in CD, 135
Deployment objects in Kubernetes, 15
grouping environment variables per deploy‐

ment, 149
keeping small, 172
managing configuration of, 153
separation from releases, 172
testing, 121

DestinationRule, 122
deterministic deployments with containers, 10
dev/prod parity, 6
development

challenges in microservice architectures, 26
local development and FaaS offerings, 40

development environments, 123, 126-130
cloud, 130
considerations, 123
local, 126
local development with remote cluster, 127
remote cluster routed to local development,

129
Skaffold development workflow, 128

development tools, 124-126
DevOps, 3, 109-158

about, 109

CALMS model, 109
automation, 110
collaboration, 109
lean principles and processes, 110
measurement, 111
sharing, 111

CI/CD, 130-137
build stage (CI), 133
deploy stage (CD), 135
post-release stage, 137
release stage (CD), 136
sample flows, 155-158

configuration management, 149-155
adding ConfigMap data to a volume, 151
deployment configuration, 153
multiple environment variables, 151
single environment variable, 151
storing secrets, 152

development environments and tools,
123-130
development environments, 126-130
development tools, 124-126

monitoring, 138-149
collecting metrics, 139-144

operations best practices, 172-174
SRE and, 112
testing, 112-123

A/B tests, 116
acceptance tests, 116
chaos tests, 117
configuration tests, 117
fuzz tests, 117
in production, 120-123
integration tests, 117
Jepsen tests, 115
load tests, 115
performance tests, 115
security/penetration tests, 116
service-level tests, 114
smoke tests, 117
test automation pyramid, 113
test doubles, 113
testing cadence, 119
UI tests, 114
unit tests, 114
usability tests, 116
when to run different types of tests, 118

disk (block) storage, 75
use cases, 76
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disposability, 6
distributed query engines, 102
distributed systems, 1

fallacies of, 1, 25
distributed tracing, 146
Docker

build cache, 179
container runtime interface, 16
containers, 9
multistage builds, 180

Docker Compose, 125
setting up container-based development

environments, 126
Docker for Mac and Windows, 124
Dockerfiles

generating with Draft, 125
with multistage build using Golang, 133

document databases, 77
documentation, importance of, in cloud native

applications, 30
domain driven design (DDD), 2
Draft tool, 125

E
East-West traffic, 45
edges (in graph databases), 78, 95
egress gateways, 58
ejection time for misbehaving hosts, 65
encrypting data in transit, 167
end-user authentication, 66
entry-point for functions, 171
environment variables

handling and managing for each service,
149

mounting values stored in ConfigMaps, 151
multiple, in ConfigMap, 151
storing in environment file, 150

environments
controlling component deployments to, 172
development, staging, and testing, isolating,

173
keeping similar as possible, 6
testing, 120

Envoy proxy, 61
error rate, 138, 176
etcd, 13
event streams, 79
events

event sourcing pattern, 41

event-driven distributed programming for
FaaS offerings, 40

functions triggered by, 18
logs as event streams, 6
writing datastore changes as events to

change log, 86
eventual consistency, 53
evolutionary design (microservices), 24
expand and contract pattern, 177
extract, transform, and load (ETL), 89

F
FaaS (see Function as a Service)
failures

cascading failures in synchronous commu‐
nication, 54

dealing with, in cloud native vs. traditional
architectures, 38

designing for, in cloud native applications,
31

handling in service meshes, 64
handling transient failures, 169
nontransient, handling with circuit break‐

ers, 164
transient, handling with retries, 163

fakes, 113
fault isolation (in microservices), 24
federated identity management, 167
file storage, 75

benefits and use cases, 76
filesystems, distributed, 76
Firecracker (Amazon), 12
forward compatibility (see backward and for‐

ward compatibility)
Function as a Service (FaaS), 18

containerized microservices vs., 18
local development and testing in cloud envi‐

ronment, 127
local development tools for, 126
open source FaaS runtimes, 19
portability of applications using, 190

functions, 9, 18
application optimization with, 22
best practices, 171-172

avoiding long-running functions, 172
keeping them light and simple, 171
making functions stateless, 171
not chaining functions, 171
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separating entry-point from function
logic, 171

using queues for cross-function commu‐
nication, 172

writing single-purpose functions, 171
building applications with, considerations,

18
building using serverless framework, 191
separate function source code, 173
serverless

invoked on changes to datastores, 86
testing, 118

versus services, 39-42
composite of functions and services, 40
considerations in using functions, 39
scenarios for using functions, 39

storing secrets and configuration settings
for, 153

testing, 112
fuzz tests, 117

G
gateways, 55-58, 170

aggregation in, 56
API versus application, 55
implementing, 58
ingress and egress, 58
MinIO object storage service deployed as,

192
offloading service functionality into, 57
routing, 55

Git commit checksum hash, 134
global versioning, 43
Google Cloud Platform

Google Cloud Functions, 18
graceful degradation, 164
Grafana, 139
graph databases, 78
GraphQL data service, 95
greenfield scenarios, 19
gRPC protocol, 47
gVisor, 12

H
Hadoop, 101
Hadoop Distributed File System (HDFS), 76
health checks

for services, 148
implementing, 165

Helm tool, 153
homogeneous networks in distributed systems,

fallacy of, 3
HTTP

aborts, 65
delays, 65
in service communications, 46

HTTP/2, 47
Hyper-V containers, 11, 12

I
I/O, chatty, avoiding, 169
idempotency, 49
identity

service identity, 66
using correlation IDs, 174
using federated identity management, 167

IDEs (integrated development environments),
130

incoming request rate, 138
incremental changes in cloud native applica‐

tions, 31
indexes, search engine databases, 79
infrastructure

application portability and, 191
deployed, not modifying, 173
describing using code, 173

Infrastructure as a Service (IaaS), 4
lift-and-shift into, 19
moving applications on, 159

Infrastructure as Code (IaC), 110
ingress gateways, 58
integrated development environments (IDEs),

130
integration

continuous, 110, 131
(see also CI/CD; continuous integration)

in microservice architectures, 26
testing, 117, 119

integration datastores, 91
interfaces, standardized, 186
Internet of Things (IoT)

smart home device management service
example, 68-72

use of functions for orchestration tasks, 39
isolation

container isolation levels, 11
of data, 5
of dependencies, 4
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Istio, 21
egress gateway in, 58
Envoy proxy, 61
security features, components involved in,

65
traffic mirroring, 135

J
Jaeger distributed tracing tool, 146
Jepsen tests, 115
JSON, 48

in document databases, 77
improving serialization/deserialization, 48
serialization library, 178

K
k8s (see Kubernetes)
Kata containers, 12

container runtime interface, 16
key performance indicators (KPIs), 175
key/value stores, 76
knot, 42
Ksync, 125
kube-apiserver, 13
kube-controller-manager, 14
kube-proxy, 14
kube-scheduler, 14
kubelet, 14
Kubernetes

and containers, 16-17
as portability layer, 193

Cloud Controller Manager, 193
service catalog, 194
Virtual Kubelet, 194

building microservices on top of, 21
ConfigMaps, 149-152
creating service and deployment for appli‐

cation and Prometheus, 142
databases on, 103-106

DaemonSets, 106
StatefulSets, 105
storage volumes, 104

deploying into, using Skaffold development
workflow, 128

development tools for local environment,
124

development tools for remote environ‐
ments, 125

Helm tool, using for deployment configura‐
tion, 153

Horizontal Pod Autoscaler (HPA), 170
internal and external service communica‐

tions, 45
isolating pods, 167
local development with remote cluster, 127
overview, 13
probes, 165
role-based access control, 167
Secrets, 152, 166
sidecar proxies, 60
using as deployment platform, deploy stage

in CD, 135
using namespaces to organize services, 173
virtual nodes and, 21

L
latency, 138, 176

in distributed systems, 2
reducing for data retrieval, 96-100
response latency in synchronous communi‐

cation, 54
layers, 187
lean principles and processes, 110
Linkerd, 21

proxy, 61
Linux

containers, 9
containers, running with Amazon Fire‐

cracker, 12
liveness, monitoring for services, 148
load balancers

in cloud native applications, 36
in stateful, traditional applications, 34

load tests, 115
loading data, 89

(see also extract, transform, and load)
local development environments, 123, 126

connection with cloud environment, 123
container-based, 125
remote cluster routed to, 129
tools for running Kubernetes in, 124
with remote cluster, 127

logging
in microservice architectures, 27
including context with log entries, 174
logs, treating as event streams, 6
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making services and functions more observ‐
able, 145

using a unified logging system, 174
using common and structured logging for‐

mat, 174
writing datastore changes as events to

change log, 86

M
many-to-many relationships, 78
master components (Kubernetes), 13
measurements, 111

metrics collection in monitoring, 139-144
primary monitoring metrics, 138
starting with basic metrics, 176
tagging metrics appropriately, 175

mesh-scope, storage of authentication policies,
67

Message Queue Telemetry Transport (MQTT),
47

messaging
exporters for Prometheus metrics, 140
message bus, 177
protocols, 47

Advanced Message Queuing Protocol
(AMQP), 48

Message Queue Telemetry Transport
(MQTT), 47

queues, 79
splitting up large messages, 178

method-level access control, 67
metrics (see measurements)
microservices, 22-27

benefits of breaking monolithic applications
into, 20

benefits of microservice architecture, 23
agility, 23
continuous innovation, 23
evolutionary design, 24
fault isolation, 24
improved observability, 25
improved scale and resource usage, 24
small, focused teams, 24

challenges of microservice architecture, 25
availability, 27
complexity, 25
data integrity and consistency, 25
development and testing, 26
monitoring and logging, 27

performance, 26
service dependency management, 27
versioning and integraton, 26

containerized, 18
data isolation in, 5
and data lakes, 89-92
service choreography, 38

Microsoft Azure
Azure Application Gateway and Azure

Frontdoor, 58
Azure Durable Functions, 39
Azure Functions, 18
container instances (ACI) and Azure SF

Mesh, 18
development tools for Kubernetes, 125
melding of managed Kubernetes service

with CaaS offering, ACI, 21
Microsoft, Hyper-V containers, 12
MicroVMs, 11
mime-based approach (API versioning), 43
Minikube, 124
MinIO, 192
Mobile Backend as a Service (MBaaS), 94
Moby, 17
mocks, fakes, and stubs, 113
MongoDB

API implementations, 186
node development environment with, 126

MongoDB Atlas, 73, 189
monitoring, 138-149

collecting metrics, 139-144
in microservice architectures, 27
monitoring everything in cloud native

applications, 30
observable services, 144-149

distributed tracing, 146
logging, 145
service health, liveness, and readiness,

148
primary metrics in, 138
requests in service meshes, 67
tagging metrics appropriately, 175
testing in production, 175

mono-repo, 132
monolithic applications

breaking up for right reasons, 159
cloud native architectures vs., 34

MQTT (Message Queue Telemetry Transport),
47
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multimodel databases, 76
mutiregion deployments, 2

N
Nabla containers, 11
namespace-level access control, 67
namespace-scope, storage of authentication

policies, 67
namespaces

in Linux, 10
using to organize services in Kubernetes,

173
Network Attached Storage (NAS), 76
networks

fallacies of, in distributed systems, 2
in distributed systems, fallacies of, 25
networking requests for microservices, 26
reliability in distributed systems, 2

nodes
in graph databases, 78, 95
node components (Kubernetes), 13
placing containers on, 13

nontransient and transient failures, 64
North-South traffic, 45

O
object storage, 70

benefits of, 75
cloud provider services, 75
MinIO, 192

observability
improved, with microservices, 25
observable services, 138, 144-149

offloading into gateways, 57
open container initiative (OCI), 17

container runtimes, 11
Open Service Broker API, 194
OpenAPI, 177, 186
OpenTracing, 146
operational excellence, 29
operations

best practices, 172-174
CI/CD definition, storing with the com‐

ponent, 172
consistent application deployment, 173
correlating deployments with commits,

174
deployments and releases are separate,

172

describing infrastructure with code, 173
isolating enironments, 173
keeping deployments small, 172
not modifying deployed infrastructure,

173
separate function source code, 173
using containerized build, 173
using namespaces to organize services in

Kubernetes, 173
zero-downtime releases, 173

increased operational costs for portable
applications, 184

operators (Kubernetes), 103
orchestrators (container), 13

(see also Kubernetes)
defense-in-depth example for containerized

services, 33
tasks of, 13

overfetching, avoiding, 169

P
parallel change, 177
partitioning

data, 74
key/value data storage services, 77

using data partitioning and replication for
scale, 168

using to scale beyond service limits, 170
partitions (network), tolerance for, in CAP the‐

orem, 4
penetration tests, 116, 119
performance

defining alerts on key performance indica‐
tors, 175

in microservice architectures, 26
and scalability

best practices for, 169
using caching to improve performance,

170
performance tests, 115, 119
persistent volume claims (Kubernetes), 104
persistent volumes (Kubernetes), 104
pets versus cattle, 2
Platform as a Service (PaaS), 4

moving applications into, 19
platforms, autoscaling features, 170
pods (Kubernetes), 15

defense-in-depth example for containerized
services, 32
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isolating, 167
persistent volumes and, 104

point-to-point versioning, 42
poison messages, 52
poly-repo, 132
polyglot persistence, 74
port-forward command (kubectl), 143
portability, 183-195

costs of, 184
data gravity and portability, 185

between environments, 10
reasons for making applications portable,

183
when and how to implement, 185

abstractions and layers, 187
common services and features, 187
component substitution, 188
containers, 187
infrastructure, 191
Kubernetes as a portability layer,

193-195
managed services from other vendors,

189
portability tooling, 190
serverless framework, 190
service facade, 188
standardized interfaces, 186
storage abstractions, 192
transforms, 189

ports, 149, 154
post-release stage, 137
post-release testing, 122
predeployment testing, 121
privileged mode (containers), 179
processes (in Twelve-Factor apps), 5
production

continuous testing in, 175
deploying to, 157
dev/prod parity, 6
testing in, 120-123
testing with production-like data, 169

Prometheus
collecting metrics with, 139-144

defining alerts with AlertManager, 144
using Golang client library, 140

creating Kubernetes service and deployment
for, 142

Grafana plug-in for, 139
protocol buffers (protobufs), 47, 48, 178

protocols in client/cloud native service commu‐
nications, 46
gRPC, 47
HTTP/2, 47
messaging protocols, 47

Advanced Message Queuing Protocol
(AMQP), 48

Message Queue Telemetry Transport
(MQTT), 47

proxy for protocol translation, 46
WebSockets, 46

protocols, translations of, 160
proxies

in service meshes, 60
comparing service mesh solutions, 61
how they work with other parts, 61

used for gateways, 58
publish/subscribe (pub/sub), 2, 51

choosing between request/response and, 53
using separate subscriptions, 166

Q
query engines, distributed, 102
queues, 79

services publishing messages to, 177
topics vs., 79
using for cross-function communication,

172
using to batch requests, 178
using to handle heavy loads and traffic

spikes, 178

R
rate limiting, 165
readiness checks, 148

implementing, 165
registries (container), 179

defense-in-depth example for containerized
services, 32

relational databases, 77
cloud provider-managed database services,

187
releases

difficulties posed by large codebase, 159
post-release stage, 137
release stage in CD, 136
separation from deployments, 172
testing during, 122
using zero-downtime releases, 173
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reliability
designing for, in cloud native applications,

33
network, fallacy of in distributed systems, 2

ReplicaSets, 15
repositories

mono-repo vs. poly-repo for source code,
132

repository patterns, 192
verified images from trusted repositories,

180
request headers in service mesh traffic manage‐

ment, 64
request ID headers, 68
request/response, 49

choosing between pub/sub and, 53
incoming request rate, 138
rate limiting and throttling for requests, 165

resiliency
ensuring, 163-165

defining CPU and memory limits for
containers, 165

graceful degradation, 164
handling transient failures with retries,

163
implementing health checks and readi‐

ness checks, 165
implementing rate limiting and throt‐

tling, 165
using bulkhead pattern, 164
using circuit breakers for nontransient

failures, 164
using finite number of retries, 164

resource versioning, 43
resources

exhaustion of, in synchronous communica‐
tions, 54

improved usage with microservices, 24
limiting consumption of CPU and memory,

165
transforming into cloud provider-specific

formats, 189
REST APIs

service contracts, defining, 177
versioning, 43

retries
handling transient failures with, 163
in service meshes, 64
using finite number of, 164

role-based access control (RBAC), 32, 167
rollback functionality, APIs, 45
rollbacks, 177
routing

AMQP protocol, 48
by gateways, 55

S
sandboxed containers, 11
scalability, 1

and cost in cloud native design, 34
dynamic scaling in and out in cloud native

architectures, 36
fast, scalable data, 96-100
in combined functions and services, 41
performance and, 169

designing stateless services that scale out,
170

using caching, 170
using partitioning to scale beyond ser‐

vice limits, 170
using platform autoscaling, 170

scaling
application components having different

scale requirements, 159
functions as a service, 42
improved scale with microservices, 24
using data partitioning and replication for

scale, 168
schema on read databases, 77
schema on write databases, 77
schema-first approach (GraphQL), 95
schemas, implementing translations of, 160
search databases, 79
secrets

never storing in container images, 181
storing, 152
storing securely, 166

security
considerations in cloud native applications,

31
database services, 94
ensuring, 165-167

encrypting data in transit, 167
granting least-privileged access, 166
incorporating security into designs, 166
isolating Kubernetes pods, 167
obfuscating data, 166
securely storing secrets, 166
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treating security requirements like any
other requirement, 165

using federated identity management,
167

using role-based access control, 167
using separate accounts, subscriptions,

and tenants, 166
security/penetration tests, 116, 119
in service meshes, 65-68
smaller container images, 134
trusted container images, 179
using vulnerability scanning tools on con‐

tainer images, 180
semantic versioning, 45
serialization

considerations in cloud native service com‐
munications, 48

efficient techniques, using in service com‐
munications, 177

serverless applications
deployment testing, 121
testing, 134
tracing, unique challenges with, 147

serverless computing, 17
serverless databases, 74
serverless framework, 190
serverless functions, testing, 118
service catalog (Kubernetes), 194
service choreography, 37
service meshes, 21, 59-68

architecture, 61
egress gateway in, 58
failure handling, 64
main features in, 62
proxies, 60

comparing service mesh solutions, 61
security, 65-68
Service Mesh Interface (SMI), 186
traffic management, 62
traffic mirroring in Istio, 135

service orchestration, 37
service-level access control, 67
service-level agreements (SLAs), availability

and, 6
service-level tests, 114, 119
service-to-service authentication, 66
services

common services and features for portabil‐
ity, 187

communication (see communication)
containerized

testing, 122
decoupling simple services from monolithic

code base, 160
facades, 188
functions versus, 39-42

composite of functions and services, 40
considerations in using functions, 39
scenarios for using functions, 39

Kubernetes, 15
managed services from vendors other than

target cloud provider, 189
observable, 138, 144-149

sharding data, 96
sharing (in DevOps), 111
sidecar containers, 15
single-page applications (SPAs), 68

in smart home device management service,
72

single-responsibility principle, 171
site reliability engineering (SRE), 112
Skaffold, 125

development workflow, 128
SLAs (service-level agreements), availability

and, 6
smoke tests, 117
source code

commits, correlating with deployments, 174
defense-in-depth example for containerized

services, 32
separate, for functions, 173

source code control, 131
sources of traffic, routing traffic by, 64
SRE (site reliability engineering), 112
SSL termination, offloading to gateways, 57
staging, deploying to, 156
standardized interfaces, 186
state

cloud native applications with externalized
state, 35

designing stateless services that scale out,
170

making functions stateless, 171
publish/subscribe communications and, 52
stateful traditional applications, 34
stateless processes in Twelve-Factor apps, 5

StatefulSets (Kubernetes), 105
DaemonSets versus, 106
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storage, 73
(see also data, working with)
data storage in combined functions and

services, 41
storage class (Kubernetes), 104
storage volumes (Kubernetes), 104
strangler pattern, 20, 161
streams, 79, 177

analyzing data streams, 100
services publishing messages to, 177
using to handle heavy loads and traffic

spikes, 178
stubs, 113
synchronous communication, 37

asynchronous versus, 54

T
tagging

container images, 134
Docker repository tags, 180
of monitoring metrics, 175
using explicit container image tags, 179

teams, small and focused, with microservices,
24

Telepresence, 125
tenants, separate, 166
Terraform, 191
testing, 112-123

cadence of, 119
challenges in microservice architectures, 26
continuous, in production, 175
deploy stage in CD, 135
in production, 120-123

deployment, 121
post-release, 122
predeployment, 121
release, 122

injecting failures into services, 65
post-release stage, 137
test automation pyramid, 113-118

A/B tests, 116
acceptance tests, 116
chaos tests, 117
configuration tests, 117
fuzz tests, 117
integration tests, 117
Jepsen tests, 115
load tests, 115
performance tests, 115

security/penetration tests, 116
service tests, 114
smoke tests, 117
UI tests, 114
unit tests, 114
usability tests, 116

test doubles, 113, 123
test stage (CI), 133
using production-like data, 169
when to run different types of tests, 118

throttling, 165
time series data, 78
timeouts, 149
timeouts (request) in service meshes, 64
tools for portability, 190
topics, 79
topology (network) in distributed systems, 2
tracing

distributed, 146
requests in service meshes, 67
using correlation IDs for, 174

traditional applications vs. cloud native archi‐
tectures, 34

traffic
internal and external service communica‐

tions, 45
redirecting production traffic to new service

in release stage, 136
traffic management in service meshes, 62

traffic mirroring, shadowing, or dark traffic,
135

transactions
changes to record and operation log written

as, 85
compensating, 88
and data in multiple datastores, 82
supervisor for, 86

transformations, 89
(see also extract, transform, and load)
transforming resources to cloud provider-

specific formats, 189
transient and nontransient failures, 64
transport costs in distributed systems, 3
Twelve-Factor App methodology, 4, 149

U
UI tests, 114
unit tests, 114, 119
URIs in service mesh traffic management, 64
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usability tests, 116, 118, 119
utilization, 138

V
valet key, 93
versioning

cloud native APIs, 42-45
compatible versioning, 44
semantic versioning, 45

in microservice architectures, 26
Virtual Kubelet, 21, 194
virtual machines (VMs)

Amazon Firecracker, 12
containers vs., on a single host, 11
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have the northernmost winter range of any shorebird.



Adults are mostly gray with a slight purplish gloss. They have short, yellow legs and a
medium-sized, slightly downcurved bill. On average, they are 9 inches long and
weigh 2.5 ounces. Males and females are similar in appearance.

The male purple sandpiper shares responsibility for incubation and then assumes
parental care of the hatchlings, which is unusual among monogamous shorebirds.
The precocious hatchlings are capable of walking and pecking at the ground for food
within a few hours of hatching. Purple sandpipers eat mostly insects, mollusks, spi‐
ders, and seeds.

A common behavior of the purple sandpiper and other wading birds is the rodent
run, which is a distraction display used to protect the nest from predators. The bird
ruffles its feathers, crouches, and runs away from the predator while making a squeal‐
ing noise that sounds like a mouse. The action resembles the flight response of a
small rodent and lures the predator away from the nest.
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the world.
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