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Preface

This book serves two purposes. The first is to succinctly cover the necessary 
mathematical background and wave optics that pertain to Fourier optics and 
holography. The second is to introduce optical scanning holography (OSH) - 
a form of electronic (or digital) holography - to the readers, and to provide 
them with experience in modeling the theory and applications utilizing 
MATLAB®.

Optical Scanning Holography with MATLAB® consists of tutorials (with 
numerous MATLAB examples throughout the text), research material, as 
well as new ideas and insights that are useful for engineering or physics 
students, scientists, and engineers working in the fields of Fourier optics, 
optical scanning imaging and holography. The book is self-contained and 
covers the basic principles of OSH. Thus, this book will be relevant for years 
to come. The writing style of this book is geared towards undergraduate 
seniors or first-year graduate-level students in the fields of engineering and 
physics. The material covered in this book is suitable for a one-semester 
course in Fourier optics, optical scanning imaging and holography.

Optical scanning holography is a highly sophisticated technology that 
consists of numerous facets and applications. It is a real-time (or on-the-fly) 
holographic recording technique that is based on active optical heterodyne 
scanning. It is a relatively new area in electronic holography and will 
potentially lead science and technology to many novel applications such as 
cryptography, 3-D display, scanning holographic microscopy, 3-D pattern 
recognition and 3-D optical remote sensing. The main purpose of this book 
is to introduce optical scanning holography to the readers in a manner that 
will allow them to feel comfortable enough to explore the technology on
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their own - possibly even encourage them to begin implementing their own 
set-ups in order to create novel OSH applications. Optical scanning 
holography is generally a simple yet powerful technique for 3-D imaging, 
and it is my aspiration that this book will stimulate further research of 
optical scanning holography and its various novel applications.

I have incorporated some of the material from this book into my short course 
entitled “Optical Scanning Holography” at SPIE Photonics West, in lectures 
given at the Institute of Optical Sciences (IOS), which is now known as the 
Department of Optics and Photonics, National Central University (NCU), 
Taiwan, and also at the Department of Electronics and Computer Science, 
Nihon University, Japan. The book was finally completed during my time as 
a visiting professor at Nihon University. I want to take this opportunity to 
thank my host, Professor Hiroshi Yoshikawa, for his hospitality and 
arranging a spacious office for me that allowed me to concentrate on the last 
phase of this book. I would also like to thank Professor Hon-Fai Yau of 
NCU for providing me with some early opportunities (when the book was 
still in its infancy) to “rehearse” my optical scanning holography lectures at 
IOS.

I would like to thank my wife, Eliza, and my children, Christina and Justine, 
for their encouragement, patience, and love. This book is dedicated to them. 
In addition, I would also like to thank Christina Poon for reading the 
manuscript and providing comments and suggestions for improvement.



Chapter 1 

Mathematical Background and 
Linear Systems

1.1 Fourier Transformation

In electrical engineering, we are most concerned with a signal as a function 
of time, f( t ) .  The signal in question could be a voltage or a current. The 
forward temporal Fourier transform of f ( t )  is given as

Y { f ( t ) }  = F(=) = (  f ( t )  exp( — j=t) dt, (1. 1 -1 a)
—_

where the transform variables are time, t [second], and temporal radian 
frequency, = [radian/second]. In Eq. (1.1a), j  = y — l . The inverse Fourier 
transform is

Y —l {F(=)} = f ( t )  = [  F(=)exp(j=t) d=. (1.1-1b)
J —_

In optics, we are most interested in dealing with a two-dimensional (2-D) 
signal. Examples include images or the transverse profile of an electro
magnetic or optical field at some plane of spatial variables x  and y. 
Hence, the two-dimensional spatial Fourier transform of a signal f ( x ,  y) is 
given as [Banerjee and Poon (1991), Poon and Banerjee (2001)]

/
OO

I f ( x , y) exp(j5xx  + j5yC) dxdy ,
O —O

(1 .1 -2a)
and the inverse Fourier transform is

Yxy—l {F(kx ,ky)}

= f ( x , y )

= 4n# ( ( F(kx,ky)exp( — jkxx — jkyy) dkxdky, ( 1 .1 -2b)
O —O

where the transform variables are spatial variables, x, y [meter], and spatial 
radian frequencies, kx, ky [radian/meter]. f ( x ,  y) and F( kx,ky) are a Fourier



transform pair and the statement is symbolically represented by

f ( x , y )  &  F(kx,ky).

Note that the definitions for the forward and inverse transforms [see Eqs. 
( 1 .1-2a) and ( 1 .1-2b)] are consistent with the engineering convention for a 
traveling wave, as explained in Principles o f Applied Optics [Banerjee and 
Poon (1991)]. Common properties and examples of 2-D Fourier transform 
appear in the Table below.

Table 1.1 Properties and examples of some two-dimensional Fourier Transforms.
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Function in (x, у)
1  f (x,y)
2 . f ( x - x 0, y - y 0)
3. f(ax, by); a, b complex constants
4. P i x,y)
5.df(x,y)/dx
6. d2f{x,y)/dxdy
7. delta function
$(x,y) = f Z  f Z e ±3kxx±3k'ydkxdky

Fourier transform in (кх,ку)
F(kx,ky')
F(kx ,ky)exp(jkxx0 + jkyy0)
.^Fi^x h)\ab\ ( a 5 b )
F*i -kx,  -ky)

jkxF(kx,ky) 
kxkyF(kx ,ky)

8. 1
9. rectangle function

rect(x , y) = rect(x)rect(y), 
where rect(x) = ( " )

10. Gaussian function
exp [ — a(x2 +y2)]

%n2Sikx,ky)
sinc function

where sinc (x) =
Gaussian functionb.2+k2

! exp[-k# ]

_ sin(ix)
ix

Example 1.1 Fourier Transform of rect(B ,y) plus MATLAB

The one-dimensional (1-D) rectangular function or simply rect function, 
rect(x/a),  is given by

rect(x / a) = ( ) .  a ' -3a)

where a is the width of the function. The function is shown in Fig. 1.1a). The 
two-dimensional version of the rectangular function is given by

rect(x/a,y/b) = rect(x/b)rect(y/b). (1.1-3b)

Figure 1.1b) and 1.1c) show the three-dimensional plot and the gray scale 
plot of the function. In the gray scale plot, we have assumed that an 
amplitude of 1 translates to “white” and an amplitude of zero to “black” 
Therefore, from the definition of Eq. (1.1-3b), the white area is a x b .
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Fig. 1.1 Rect function.

To find the Fourier transform of the 2-D rectangular function, we simply 
evaluate the integral given by Eq. (1.1-2a) by recognizing that f ( x , y )  =
rect(x/a, y /b ) . Therefore, we write

Y xy{f ( x , y)} = Y xyirect(x/a,y /b)}

rect(x/a, y/b)exp(jkxx  + j k yy)dxdy.  (1.1-4)
' - _ J - _

Since rect(x/a,y/b)  is a separable function [see Eq. 1. 1 -3b)], we re-write 
Eq. (1.1-4) as follows:

Y xy{rect(x/a,y /b)}

=  I rect(x/a)exp(jkxx)dx ,  I rect(y/b) exp(jkyy)dy

f*a/2 Г̂ /^
1 exp(jkxx)dx x I 1 exp(jkyy)dy. 

- a/2 J-b/2
(1.1-5)

3
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By writing the last step, Eq. (1.1-5), we have used the definition of the 
rectangular function given by Eq. (1.1-3a). We can now evaluate Eq. (1.1-5) 
by using

exp (cx)dx = — exp (cx). ( 1 .1 -6)

Therefore,

r+/2 akx
1 exp(jkxx)dx = asinc(^B ),

-a/# 2 l
(1.1-7)

where sinc(x) =  sin1x is defined as the sinc function. Table 1.2 shows the 
m-file for plotting the sinc function and its output is shown in Fig. 1.2. Note 
that the sinc function has zeros at x = ± 1 , ± 2 ,  ± 3 ,  ...

Table 1.2 Plot_sinc.m: m-file for plotting the sinc function.

%Plot_sinc.m Plotting of sinc(x) function 
x= -5.5:0.01:5.5; 
sinc=sin(pi*x)./(pi*x); 
plot(x,sinc)
axis([-5.5 5.5 -0.3 1.1]) 
grid on 
xlabel('x') 
ylabel('sinc (x)')

1

0.8 

0.6 

о  0.4
_c"<л

0.2

0

-0 .2

-5  -4  -3  -2  -1 0 1 2 3 4 5 
x

Fig. 1.2 Sinc function.

To complete the original problem of determining the Fourier transform of a 
rect function, we take advantage of the result of Eq. (1.1-7); Eq. (1.1-5)
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becomes

5

akx
Y  {rect(x/a, y/b)} =  absinc( ——)sinc( ——)

2i 2i '

Hence, we may write

akx bky
= absinc(---- , —-).

v 2i  ’ 2i

akx bky
rect(x/a, y/b) ^  absmc( ——, ——).

2i  2i

(1 .1 -8a)

(1 .1 -8b)

Note that when the width of the rect function along x is a, the first zero along 
kx is kxo =  2i / a .  Figure 1.3 shows the transform pair of Eq. (1.1-8b). The 
top figures are 2-D gray-scale plots, and the bottom figures are line traces 
along the horizontal axis through the center of the top figures. These figures 
are generated using the m-file shown in Table 1.3 where M =  11. For this 
value of M, a = 0.0429 units of length and the first zero kx o =  146.23 
radian/(unit of length). Note that the area of display in the x-y plane has been 
scaled to 1 unit o f length by 1 unit o f length.

Fig. 1.3 Rect function and its Fourier transform.

Table 1.3 fft2Drect.m: m-file for 2-D Fourier transform of rect(x/a, y/b). 

%fft2Drect.m %Simulation of Fourier transformation of a 2-D rect function
%
clear
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L=1; %display area is L by L, L has unit of length 
N=256; % number of sampling points 
dx=L/(N-1); % dx : step size

% Create square image, M by M square, rect(x/a,y/a), M=odd number 
M=input ('M (size of rect(x/a,y/a), enter odd numbers from 3-33)='); 
a=M/256; 
kx0=2*pi/a;
sprintf('a = %0.5g[unit of length]',a)
sprintf('kx0 (first zero)= %0.5g[radian/unit of length]',kx0)
R=zeros(256); %assign a matrix (256x256) of zeros 
r=ones(M); % assign a matrix (MxM) of ones 
n=(M-1)/2;
R(128-n:128+n,128-n:128+n)=r;
%End of creating square input image M by M

%Axis Scaling 
for k=1:256 

X(k)=1/255*(k-1)-L/2;
Y(k)=1/255*(k-1)-L/2;
%Kx=(2*pi*k)/((N-1)*dx)

%in our case, N=256, dx=1/255
Kx(k)=(2*pi*(k-1))/((N-1)*dx)-((2*pi*(256-1))/((N-1)*dx))/2;
Ky(k)=(2*pi*(k-1))/((N-1)*dx)-((2*pi*(256-1))/((N-1)*dx))/2;

end

%Image of the rect function 
figure(1)
image(X+dx/2,Y+dx/2,255*R); 
title('rect function: gray-scale plot') 
xlabel('x') 
ylabel('y')
colormap(gray(256)); 
axis square

%Computing Fourier transform 
FR=(1/256)A2*fft2(R);
FR=fftshift(FR);

% plot of cross-section of rect function 
figure(2)
plot(X+dx/2,R(:,127))
title('rect function: cross-section plot')
xlabel('x')
ylabel('rect(x/a)')
grid
axis([-0.5 0.5 -0.1 1.2])

%Centering the axis and plot of cross-section of transform along kx 
figure(3)
plot(Kx-pi/(dx*(N-1)),10*abs(FR(:,127)))
title('Square-absolute value of Fourier transform of rect function: cross-section plot') 
xlabel('kx')
ylabel('|a*b*sinc(a*kx/2pi)|')



axis([-800 800 0 max(max(abs(FR)))*10.1]) 
grid

%Mesh the Fourier transformation 
figure(4);
mesh(Kx,Ky,(abs(FR))A2)
title('Square-absolute value of Fourier transform of rect function: 3-D plot,scale
arbitrary')
xlabel('kx')
ylabel('ky')
axis square

%Image of the Fourier transformation of rectangular function
figure(5);
gain=10000;
image(Kx,Ky,gam*(abs(FR)).A2/max(max(abs(FR)))A2)
title('Square-absolute value of Fourier transform of the rect function: gray-scale plot')
xlabel('kx')
ylabel('ky')
axis square
colormap(gray(256))

Mathematical Background and Linear Systems 7

Example 1.2 MATLAB Example:
Fourier Transform of Bitmap Images

When the 2-D function or image is given with a bitmap file, we can use the 
m-file given in Table 1.4 to find its Fourier transform. Figure 1.4a) is the 
bitmap image used when the image file of the size is 256 by 256. It is easily 
generated with Microsoft® Paint. Figure 1.4b) is the corresponding absolute 
value of the transformed image.

Table 1.4 fft2Dbitmap_image.m: m-file for 2-D Fourier transform of bitmap image. 

%fft2Dbitmap_image.m
%Simulation of Fourier transformation of bitmap images 
clear

I=imread('triangle.bmp','bmp'); %Input bitmap image
I=I(:,:,1);
figure(1) %displaying input
colormap(gray(255));
image(I)
axis off
FI=fft2(I);
FI=fftshift(FI);
max1=max(FI);
max2=max(max1);
scale=1 .0/max2;
FI=FI.*scale;
figure(2) %Gray scale image of the absolute value of transform



colormap(gray(255)); 
image(10*(abs(256*FI))); 
axis off
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Fig. 1.4 Bitmap image and its transform generated using the m-file in Table 1.4.

Example 1.3 Delta Function and its Transform

The delta function, 5 (x), is one of the most important functions in the study 
of systems. We can define the delta function as follows:

5(x) = lin m {1  rect(- )} .a^o a a
(1.1-9)

The situation is shown graphically in Fig. 1.5.

Fig. 1.5 Illustration of the definition of the delta function graphically.

The delta function has three important properties, which are listed as follows: 

Property #1: Unit Area

5(x — xo).x  =  1. ( 1 .1- 10a)
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The delta function has a unit area (or strength), which is denoted by a “(1)” 
beside the arrow, as shown in Fig. 1.5. This unit area property is clearly 
demonstrated by the definition illustrated on the left hand side of Fig. 1.5. 
The area is always a unity regardless of the value of a.

Property #2: Product Property

0 (x)$(x — xo) =  0 (xo)$(x — xo). ( 1 .1 - 10b)

The result of this property can be confirmed graphically by the illustration 
shown in Fig. 1.6 where an arbitrary function, 0(x), is shown to be 
overlapped with the offset delta function, $ (x — xo), located at x =  xo. The 
product of the two functions is clearly equal to 0 (xo) multiplied by 
$(x — xo). Therefore, the result has become an offset delta function with its 
strength given b y /(x o) .

Fig. 1.6 Illustrating the result of the Product Property. 

Property #3: Sampling Property

0 (x)$(x — xo)dx =  0 (xo). ( 1 .1- 10c)

To obtain the result above, we simply use Properties #1 and #2. From Eq. 
(1.1-10c) and by using Property #2, we have

I 0 (x)$(x — xo)dx =  I 0 (xo)$(x — xo)dx

=  0 (xo) I $(x — xo)dx =  0 (xo),
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where we have used Property #1 to obtain the last step of the result. Equation 
( 1 .1 -10c) is known as the sampling property because the delta function 
selects, or samples, a particular value of the function, f  at the location of 
the delta function (i.e., bo) in the integration process.

While a 1-D delta function is called an impulse function in electrical 
engineering, the 2-D version of a delta function, $(в,у) =  $(b)$(c ), repre
sents an idealized point source of light in optics. According to Eq. (1.1-2a), 
the 2-D Fourier transform of $(b , у) is given by

YBy{$(b , C)} = $(b , у) expOifc^B +  45уу) . в .у

$(b) exp(j5BB).B I 6(y)exp(j5yy)dy

=  1 ,

where we have used the sampling property of the delta function to evaluate 
the above integrals. Figure 1.7 shows the 2-D delta function as well as its 
corresponding Fourier transform.

Fig. 1.7 Two-dimensional delta function and its Fourier transform.

1.2 Linear and Invariant Systems

1.2.1 Linearity and Invariance

A system is defined as the mapping of an input or set of inputs into an output 
or set of outputs. A system is linear if superposition applies. For a single
input — single-output system, if an input f"(t) gives an output of i" (t), and if 
another input 02 (t) gives an output of 52 (t), then superposition means if the 
input is given by af" (t) +  bf2 (t), the system’s output is ay" (t) +  by2 (t), 
where a and b are some constants. The situation of a linear system is further 
illustrated in Fig. 1.8.
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Л (О 9Л Ч  h i t )
system system

9 2 ( t )

afi(t) + bf2{t) agi(t) +  bg2(t)

Figure 1.8 Linear system.

Systems with parameters that do not change with time are time-invariant 
systems. Consequently, a time delay in the input results in a corresponding 
time delay in the output. This property of the system is shown graphically in 
Fig. 1.9, where t0 is the time delay.

Fig. 1.9 Time-invariant system.

As it turns out, if a system is linear and time-invariant (LTI) with all initial 
conditions being zero, there is a definite relationship between the input and 
output. The relationship is given by the so-called convolution integral,

l( t)  =  I f  (tw)2 (t — t /)d t/ =  f  (t)*2 (t) , ( 1 .2 -1)

where 2(t) is called the impulse response of the LTI system, and * is a 
symbol denoting the convolution of f  (t) and 2(t). The expression f  *5  reads 
as f  convolves with 5 . To see why 2(t) is called the impulse response, if we 
let the input be a delta function, $(t), then the output, according to Eq. (1.2
1), is

y(t) =  $ (t)*2 (t) =  I $(tw)2 (t — t /)d t/ =  2 (t),



where we use the sampling property of the delta function to obtain the last 
step of the result. Once we know h(t) of the LTI system, which can be 
determined experimentally by simply applying an impulse to the input of the 
system, we can find the response to any arbitrary input, say, f ( t ) ,  to the 
system through the calculation of Eq. (1.2-1).
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f ( x - X Q , y - y o )  g { x - x 0, y - y 0)

Fig. 1.10 Concept of space-invariance.

In optics, when we are dealing with signals of spatial coordinates, we 
can extend the concept of LTI systems to the so-called linear space-invariant 
(LSI) system. Hence we can extend the 1-D convolution integral to two 
dimensions as follows:

g(x,y) = I I f ( x ' , y ' ) h ( x  -  x ' , y  -  y' )dx'dy1
J — OCiJ —OCi

= f ( x ,У)*h ( x ,У), (1.2-2)

where f ( x ,  y) is the 2-D input to the LSI system. h(x,  y) and g(x, y) are the 
corresponding impulse response and output of the system, respectively. 
While the concept of time-invariance is clearly delineated by Fig. 1.9 for 
electrical signals, the concept of space-invariance for optical signals is not 
immediately clear. In Fig. 1.10, we can clarify this concept. We see that as 
the input image, f ( x ,  y), is shifted or translated to a new origin, (xo, yo), its 
output, g(x,y),  is shifted accordingly on the x-y plane. Hence, we see that 
the delay of an input signal in electrical systems corresponds to the 
translation of an output image over the output plane.

Figure 1.11 shows the block diagrams of a LSI optical system both in 
spatial and frequency domain. To analyze the LSI system in frequency 
domain, we simply take the Fourier transform of Eq. (1.2-2) to obtain

Y xy{g(x , y ) }  = Y xy{f ( x , y )*h ( x , y )} , (1.2-3a)
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which is shown to be

G (kx ,5 y) — F (kx,ky)H (kx ,kyX (1.2-3b)

where G(kx,ky) and H ( k x,ky) are the Fourier transform of g(x,y)  and 
h(x,  y), respectively. While h(x,  y) is called the spatial impulse response or 
point spread function (PSF) of the LSI system, its Fourier transform, 
H( k x ,ky),is called the spatial frequency response or the system’s frequency 
transfer function. The proof of Eq. (1.2-3b) is demonstrated in Example 1.4.

Block diagram of LSI optical system in spatial domain

h(x,y) 9&,y)

g{x,y) =  f ( x , y )*h(x ,  y) 

h ( x , y ): spatial impulse response or point spread function 

Block diagram o f LSI optical system in frequency domain

F { k x ,ky ) H ( k x,ky) G ( k x ,ky)

Y xy{g{x,  y) } =  F x y i f i x ,  y )*h ( x , у )} 
or G(kx,ky) =  F(kx,ky)H(kx,ky)

H{kx,ky): spatial frequency response or frequency transfer function

Fig. 1.11 Block diagrams of LSI system.

Example 1.4 Fourier Transform of the Convolution 
of Two Functions

From Eq. (1.2-3a), we have

Y xy{g(x , y ) } — Y xy{ f ( x , y )*h ( x , y )}

/oo
I [f(x, y)*h(x,  y)} exp(jkxx + j k yy) dxdy

o —o
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/»_

—_

r»_ /»_
f (x ' ,  y' )h(x — x ' , y  — y')dx'dy'

x exp(j5xx +  jkyy) dxdy,

where we have utilized the definition of convolution. After grouping the x  
and y variables together, the above equation can be written as

Y xy{f ( x , y)*h ( x , y)}

f(x>,y)
- _ J —_

h(x — x ' , y  — y' )exp(jkxx + j k yy)dxdy
• —_J —_

dx dy .

The inner integral is the Fourier transform of h(x — x ' , y  — y'). Using Table
1.1 (item #2), the transform is given by H ( k x,ky)exp(jkxx'  + j k yy' ) . Hence

Y xy{ f ( x , y)*h ( x , y)}

• —_ J —_
f (x ' ,  y )  H(kx ,ky)exp(jkxx' +  jkyy') dx dy

= H(kx,ky) I I f (x' , y ' )exp( jkxx'  + j k yy')dx'dy'
J — _ J  — _

-- F (kx ,ky)H ( k x ,ky) .

1.2.2 Convolution and Correlation Concept

In the last section, we have demonstrated that in the LSI system, the 
convolution integral is involved. In this section we will first explain the 
concept of convolution, and then, we will discuss another important opera
tion called correlation. Finally we will make distinction between the two 
processes.

In Fig. 1.12, we illustrate the convolution of two images, f ( x ,  y) and 
h(x,  y ) . According to the definition in Eq. (1.2-2), the convolution of the two 
images involves the calculation of the area under the product of two 
functions, f (x ' ,  y') and h(x — x ' , y  — y'), for different shifts, (x, y ) .
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fm гею
g(x, y) =  / f i x ’ , y ’ )h(x — x', y — y')dx'dy'

J —Ю J —Ю

© ©I© ©|©Ю
f (x, y) h (x, y) f (x’, y ’) h (x’, y ’)h( — x ’, y’) h( — x ’, — y ’)

centered _ y

x
h(x — x ’, y — y’)

Fig. 1.12 Concept of 2-D convolution.

Fig. 1.13 Concept of 2-D correlation (assuming f  is real).
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The first row of figures in Fig. 1.12 shows the construction of f (x ' , y ' )  and 
h( — x', — y') from the original images f ( x , y )  and h(x,y) .  We then 
construct h(x — x ' , y  — y') as shown in Fig. 1.12 by translating 
h( — x ' , —y') to a center at (x, y) to form h(x — x ' , y  — y'). Once we have 
f (x ' ,  y') and h(x — x ' , y  — y'), we superimpose them on the x ' - y 'plane as 
illustrated in Fig. 1.12. Finally, we need to calculate the area of the product 
of f (x ' , y ' )  and h(x — x ' , y  — y') for different shifts (x,y)  to obtain a 2-D 
gray-scale plot of g(x,y).

Another important integral is called the correlation integral. The 
correlation, Gfh(x, y), of two functions f ( x , y )  and h(x,y) ,  is defined as

/
OO

I f*(x ' , y ' )h(x  + x ' , y  + y')dx'dy'
O —O

= f ( x , y )  ® h(x,y) .  (1.2-4)

This integral is useful when comparing the similarity of two functions, and it 
has been knowingly used for applications in pattern recognition. For 
simplicity, if we assume in Fig. 1.13 that f ( x ,  y) is real, we can illustrate the 
correlation of the two images, f ( x , y )  and h(x,y) .  Similar to the convolution 
of the two images, the correlation involves the calculation of the area under 
the product of two functions, f (x ' , y ' )  and h(x + x ' , y  + y'), for different 
shifts, (x,y).  The first row of images in Fig. 1.13 shows the construction of 
f (x ' , y ' )  and h(x' ,y' )  from the original images, f ( x , y )  and h(x,y) .  Unlike 
convolution, to calculate he area of the product of f (x ' , y ' )  and 
h(x + x' , y  + y') for different shifts ,(x, y), there is no need to flip the image, 
h(x' , y'), upon the x ' - axis and the y '-axis to obtain the 2-D plot of Gfh(x, y ) .

Example 1.5 Relationship between Convolution and Correlation

In this example, we will show that correlation can be expressed in terms of 
convolution through the following relationship:

f ( x , y) ® h ( x , y) = f *( — X, —y)*h ( x , y). (1.2-5)

According to the definition of convolution [see Eq. (1.2-2)], we write

f *( — x , — y)*h ( x , y)

/ oo
I f*( — x', —y' )h(x — x'  ,y — y')dx'  dy'

O —O
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= I I f \ x "  — x , y"  — y)h{x" ,y”){ — dx"){ — dy"),
J oo J oo

where we have made the substitutions x  — x w = x" and y — yw = y" to obtain 
the last step of the equation. By re-arranging the last step and substituting the 
equivalents for x" — x  = x  and y" — y = y , we obtain

f*( — x , —y )*h (x , y )

/OO noI x x x x x x

I f*{x ,y)h{x  +  x , y  +  y)dxdy ,
o —o

=  f ix , y) ® 4 x , y)

by the definition of correlation. Therefore, we have proven Eq. (1.2-5).

With reference to Eq. (1.2-4), when f  ф h, the result is known as cross
correlation, Gfh-When f  = h, the result is known as auto-correlation, Gff,  
of the function f .  As it turns out, we can show that

lGf f (0 ,0) l>lGf f (x , y ) l ,  ( 1 .2 -6)

i.e., autocorrelation always has a central maximum. The use of this fact has 
been employed by pattern recognition. Pioneering schemes of optical pattern 
recognition, implementing Eq. (1.2-5), are due to Vander Lugt [1964], and 
Weaver and Goodman [1966]. The book, Optical Pattern Recognition, 
provides a comprehensive review of optical pattern recognition, covering 
theoretical aspects and details of some practical implementations [Yu and 
Jutamulia (1998)]. For some of the most novel approaches to optical pattern 
recognition, the reader is encouraged to refer to the article by Poon and Qi 
[2003].

Example 1.6 MATLAB Example: Pattern Recognition

For pattern recognition applications, one implements correlation given by Eq. 
(1.2-4). In this example, we implement the equation in the frequency domain. 
To do this, we realize that

Y xy{f (.x , y) ® h (x , y)} = F*(kx,ky)H(kx ,ky), (1.2-7)

which can be shown using the procedure similar to Example 1.4. For the 
given images f  and h, we first find their corresponding 2-D Fourier
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transforms, and then the correlation is evident when we take the inverse 
transform of Eq. (1.2-7):

f {x ,  y) <g> h{x, y) = Yxy—1{F*(kx,ky)H{kx,ky)}.  ( 1 .2 -8)

Figure 1.14 shows the result of auto-correlation for two identical images, 
while Fig. 1.15 shows the cross-correlation result for two different images. 
These figures are generated using the m-file shown in Table 1.5. Two 256 by 
256 smiley.bmp files have been used for the auto-correlation calculation. 
Note that in auto-correlation, shown in Fig. 1.14, a bright spot in the center 
of the correlation output represents the “match” of the two patterns, as 
suggested by Eq. (1.2-6), whereas in Fig. 1.15, there is no discernible bright 
spot in the center.

Fig. 1.14 Auto-correlation.

Fig. 1.15 Cross-correlation.

Table 1.5 correlation.m: m-file for performing 2-D correlation.

%correlation.m
clear

I1=imread('smiley.bmp','bmp'); %Input image 1 (reference image)
I1=I1(:,:,1);
figure(1) %displaying input image 1
colormap(gray(255));
image(I1)
axis off

FI1=fft2(I1);
max1=max(FI1);
max2=max(max1);
scale=1 .0/max2;
FI1=FI1.*scale;

I2=imread('smiley.bmp','bmp'); %Input image 2 (image to be recognized)



Mathematical Background and Linear Systems 19

I2=I2(:,:,1);
figure(2) %displaying input image 2
colormap(gray(255));
image(I2)
axis off

FI2=fft2(I2);
max1=max(FI2);
max2=max(max1);
scale=1 .0/max2;
FI2=FI2.*scale;

FPR=FI1.*conj(FI2);%calculating correlation 
PR=ifft2(FPR);
PR=fftshift(PR);

max1=max(PR);
max2=max(max1);
scale=1 .0/max2;
PR=PR.*scale;

figure(3)%display of correlation in spatial domain
colormap(gray(255));
image(abs(256*PR));
axis off
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Chapter 2

Wave Optics and Holography

In Chapter 1, we presented some mathematical background of Fourier optics 
as well as some important systems properties including linearity and space 
invariance. In this chapter, we present some fundamentals of wave optics by 
starting from Maxwell’s equations and deriving the vector wave equation. We 
will then discuss some simple solutions of the scalar wave equation. Next, 
we will develop diffraction theory by using the Fresnel diffraction for
mula, which is uniquely derived by using Fourier transforms. In the process, 
we will define the spatial frequency transfer function and the spatial impulse 
response in Fourier optics. In the context of diffraction, we will also develop 
wavefront transformation by using a lens, show the Fourier transforming 
properties of the lens, and discuss how spatial filtering is obtained by using a 
standard two-lens system, leading to the distinction between coherent and 
incoherent image processing. In the last section of this chapter, we will 
discuss the basics of holography and show that a Fresnel zone plate is the 
hologram of a point source object, leading to the concept that the hologram 
of an arbitrary 3-D object can be considered as a collection of Fresnel zone 
plates. Finally, we will discuss electronic holography (often called digital 
holography in literature). This will culminate with the next chapter, which we 
will discuss a unique holographic recording technique called optical scanning 
holography.

2.1 Maxwell’s Equations and Homogenous Vector Wave Equation

Generally, in the study of optics, we are concerned with four vector 
quantities called electromagnetic (EM) fields: the electric field strength X 
(V/m), the electric flux density W (C/m#), the magnetic field strength [  
(A/m), and the magnetic flux density U (Wb/m#). The fundamental theory of 
electromagnetic fields is based on Maxwell’s Equations. In differential form, 
these equations are expressed as

v - w  =  , (2 .1 -1)

v - U  =  0 , (2 .1 -2 )



dB
V x  X = ------- , (2.1-3)

dt

V x  [  =  ]  =  ]  +  ^  , (2.1-4)
dt

where ] c is the current density [A/m# ] and p@ denotes the electric charge 
density [C/m3]. ] c and p@ are the sources generating the electromagnetic 
fields. Maxwell’s equations express the physical laws governing the electric 
fields X and W, magnetic fields [  and B, and the sources J7C and pv. From 
Eqs. (2.1-3) and (2.1-4), we see that a time-varying magnetic field produces a 
time-varying electric field. Conversely, a time-varying electric field produces 
a time-varying magnetic field. It is precisely this coupling between the 
electric and magnetic fields that generate electromagnetic waves capable of 
propagating through a medium or even in free space.

For any given current and charge density distribution, we can solve 
Maxwell’s equations. However, we need to note that Eq. (2.1-1) is not 
independent of Eq. (2.1-4). Similarly, Eq. (2.1-2) is a consequence of Eq. 
(2.1-3). By taking the divergence on both sides of Eqs. (2.1-3) and (2.1-4) 
and using the continuity equation:

V - ]C + ^  =  0, (2.1-5)dt

which is the principle o f conservation o f charge, we can show that 
V - W =  . Similarly, Eq. (2.1-2) is a consequence of Eq. (2.1-3). Hence, 
from Eqs. (2.1-1) to (2.1-4), we really have six independent scalar equations 
(three scalar equations for each curl equation) and twelve unknowns. The 
unknowns are the x, y, and d components of X, W, [ ,  and B. The six more 
scalar equations required are provided by the constitutive relations:

W =  %X, (2.1-6a)
and

B =  . [ ,  (2.1-6b)

where % denotes the permittivity [F/m] and .  denotes the permeability [H/m] 
of the medium. In this book, we take % and .  to be scalar constants. Indeed, 
this is true for a linear, homogeneous, and isotropic medium. A medium is 
linear if its properties do not depend on the amplitude of the fields in the 
medium. It is homogeneous if its properties are not functions of space. And 
the medium is isotropic if its properties are the same in all direction from any 
given point.

Returning our focus to linear, homogeneous, and isotropic media, 
constants worth remembering are the values of % and .  for free space (or 
vacuum): %o =  (1/36i) x 10~9F/m and .o  =  4 i  x 10~7H/m.

22 Optical Scanning Holography with MATLAB



Wave Optics and Holography 23

Using Maxwell’s equations and the constitutive relations, we can 
derive the wave equation, which describes the propagation of the electric and 
magnetic fields. Example 2.1 shows the derivation of the wave equation for 
X.

Example 2.1 Derivation of Vector Wave Equation 
in a Linear, Homogenous, and Isotropic Medium

By taking the curl of both sides of Eq. (2.1-3), we have

-U
V  x V  x X =  — V  x —

- t

= — - ( V  ,  U ) =  — . - ( V  ,  [  ), (2.1-7)
- t  - t

where we have used the second of the constitutive relations [Eq. (2.1-6b)] 
and assumed .  to be space- and time-independent. Now, by employing Eq. 
(2.1-4), Eq. (2.1-7) becomes

V  ,  V  ,  X =  — . 6 0  — . - W ., (2 .1 -8)

where we have used the first of the constitutive relations [Eq. (2.1-6a)] and 
assumed e to be time-independent. Then, by using the following vector 
identity ( T  is some arbitrary vector)

V  x V  x T  =  V (V  • A) — V #T , V# =  V  • V , (2.1-9)

in Eq. (2.1-8), we get

V#X -  . e 2 # ! =  . - W .  + V (V  • X). (2.1-10)

If we also assume the permittivity, e, to be space-independent, then we can 
now recast the first of Maxwell’s equations [Eq. (2.1-1)] in the form of

V -  X =  ^  , (2.1-11)
e

by using the first of the constitutive relations [Eq. (2.1-6a)]. Incorporating 
Eq. (2.1-11) into Eq. (2.1-10), we can finally obtain

# 2 #X 2 J C 1
V #X -  . % w  = . - W  + -% V 3- • (21 -12)
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which is a vector wave equation having source terms on the right-hand side. 
This is the wave equation for X in a linear, homogeneous, and isotropic 
medium characterized by .  and e.

For the given ] C and p@ in a localized region characterized by .  and e, say, 
V', we can solve for the electric field, X, in the region according to Eq. (2.1
12). Once the generated field reaches the source-free region V ( ] C =  0, 

=  0), the field must then satisfy the homogenous vector wave equation,

# -#X 
V #X -  ' " * = < > • (2.1-13)

The situation is delineated in Fig. 2.1. Note that the quantity, .%, has the unit 
value of (1/velocity)#. We call this velocity @ and define it as

@# =
.e

(2.1-14)

For free space, .  =  . o, % =  %o, and @ =  c. We can calculate the value of c 
from the values of eo and . o. This works out to be about 3 x 108 m/s. This 
theoretical value, which was first calculated by Maxwell, was in remarkable 
agreement with Fizeau’s previously measured speed of light (315,300 km/s). 
This led Maxwell to the conclusion that light is an electromagnetic distur
bance in the form of waves propagated through the electromagnetic field 
based on electromagnetic laws.

Fig. 2.1 Vector wave equations in a linear, homogeneous, and isotropic medium.



2.2 Three-Dimensional Scalar Wave Equation

Equation (2.1-13) is equivalent to three scalar equations - one for every 
component of X. We shall let the field X to be of the form

X =  Xx ax + Xy ay +  Xz az , (2.2-1)

where ax, ay, and az denote the unit vectors in the x, y, and z directions, 
respectively. Now, the expression for the Laplacian (V#) operator in 
Cartesian (x, y, z) coordinates is given by

# d# d# d#
V  =  dx# + dy# + dZ#. (2.2-2)

Wave Optics and Holography 25

Using the above equation, Equation (2.1-13) becomes

, d# + d# + d# s 
'dx# dy# dz#'

d#
-- .%dt#(Xxax + Xyay ^  XZaz) . (2.2-3)

Comparing the ax-component on both sides of the equation, we have

d# Xx + d#Xx + d#Xx =  d#Xx 
dx# dy# dz# .  dt#

Similarly, we end up with the same type of equation shown above for the Xy 
and Xz component by comparing the other components in Eq. (2.2-3). 
Therefore, we can write

# l d#<
V #<=@ # i ; !  • (22-4)

where < may represent a component, Xx, Xy or Xz, of the electric field X, and 
where @ is the velocity of the wave in the medium by using Eq. (2.1-14). 
Equation (2.2-4) is called the 3-D scalar wave equation. We shall look at 
some of its simplest solutions in the next section.

2.2.1 Plane Wave Solution

For waves oscillating at the angular frequency, =o (rad/s), one of the 
simplest solutions to Eq. (2.2-4) is

<(x, y, z, t) =  exp[4(=ot -  5o -V )]
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=  exp[j'(=ot -  koxx  -  kocC -  ko*z)], (2.2-5)

where R  =  xax + yay + z az is the position vector, 5o =  kox ax + koy ay + 
kozaz is the propagation vector, and |5o| =  ko is called the propagation 
constant [rad/m]. With the condition that

------- =2-------  =  =2  =  @# (2.2-6)
k2 + k2 + k2 k2 ?^ox oy od ô

Eq. (2.2-5) is called a plane-wave solution and the wave is called a plane 
wave of unit amplitude. Figure 2.2 shows the direction of propagation of the 
plane wave, which is determined from the three components kox, koy, and
koD.

Fig. 2.2 Plane wave propagating along the fco direction.

Since the electromagnetic fields are real functions of space and time, 
we can define, for example, the electric field by taking the real part of < to 
obtain a real quantity,

Re[<(x, y, d, t) ] =  cos(=ot -  koxx -  koyy -  kozz). (2.2-7)

Let us now consider a plane wave propagating along the z-direction. In one 
spatial dimension, i.e., <(z, >), the wave equation [Eq. (2.2-4)] reads

d# < 1 d# <
=  @2 "ot# (2.2-8)

and its plane wave solution then becomes

<(z, t) =  exp[4(=ot -  koz)] =  exp[4(=ot)]exp[ -  j')(z)], (2.2-9)

where )(z) =  koz =  -^z is called the phase of the wave with - o indicating 
the wavelength of the wave. Let us take the origin of the coordinates as a
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zero-phase position, i.e., )(z  =  o) =  o. In fact, over the whole plane z =  o, 
the phase is zero. At z =  - o, we have )(z  =  - o) =  - o =  2i .  So for every 
distance of propagation of a wavelength, the phase of the wave gains #i. 
Therefore, we have what is known as the planar wavefronts along the 
z-direction. The situation is demonstrated in Fig. 2.3.

Fig. 2.3 Plane wave propagating along the z-direction exhibiting planar wavefronts. 

2.2.2 Spherical Wave Solution

Consider now the spherical coordinates shown in Fig. 2.4.

Fig. 2.4 Spherical coordinate system.

The expression for the Laplacian (V#) operator is

V #
dR#

2
R dR

l d# cot) d
R#sin#)d0# R# d)# R# d ) '

(2 .2 - 10)

One of the simplest cases is called spherical symmetry, which requires that 
<(R, ), 9, >) =  <(R, t). Therefore, for spherical symmetry (d/d0 = 0 = d/d)), 
the wave equation, Eq. (2.2-4), combined with Eq. (2.2-10) assumes the form

/  d2 < 2 d<  \  1 d2<
V dR2  + r  ; r  J  =  @2 'dt^- (2 .2 - 1 1 )
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/ o2< + 2 У =  ° 2(R< ) 
v OR2 R OR у OR2 :

we can re-write Eq. (2.2-11) to become

O2(R<) 1 O2(R<)
OR2 Ot2

(2 .2 -12 )

Now, the above equation is of the same form as that of Eq. (2.2-8). Since Eq. 
(2.2-9) is the solution to Eq. (2.2-8), we can therefore construct a simple 
solution to Eq. (2.2-12) as

<(R, t) =  vexp[4(=ot -  koR)] , (2.2-13)

which is called a spherical wave. Again, we can write

1 1 
<(R, t) =  vexp[4(=ot -  koR)] =  vexp(4=ot)exp[ -  j')(R)],

where )(R) =  koR =  #1R. We then take the origin of the coordinates as a 
zero-phase position, i.e., )(R =  o) =  o and )(R =  - o) =  #1 - o =  2i. So, for 
every distance of propagation of a wavelength, the phase of the wave gains 
#i. We, therefore, have the so-called spherical wavefronts moving along the 
R-direction. The situation is shown in Fig. 2.5.

Fig. 2.5 Spherical wavefronts.

While we have previously seen that plane waves and spherical waves 
are some of the simplest solutions of the 3-D scalar wave equation, we can 
effectively generate these useful waves in the laboratory. The situation is
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shown in Fig. 2.6, where the distance between the two lenses are separated 
by the sum of their focal lengths, /" +  / 2, and we have assumed that the rays 
emitting from the laser are parallel, i.e., the wave fronts are planar. Note that 
the parallel rays emerging from the lens of focal length /2 have a separation 
of an expansion factor, M  =  / 2/ / ь  larger than the separation of the rays 
originally emerging from the laser.

expansion factor, M  =  /2//1

Fig. 2.6 Practical implementation of spherical waves and plane waves.

2.3 Scalar Diffraction Theory

Figure 2.7 shows a simple example of diffraction geometry where a plane 
wave oscillating at =0 is incident on an aperture or a diffracting screen, 
located on the plane z =  0. The problem is to determine the diffracted field 
distribution after the aperture. To tackle the problem, we will need to solve 
the 3-D scalar wave equation, which is subject to an initial condition. Let us 
now formulate the problem mathematically.

Since a plane wave of amplitude E  propagating along the z-direction 
is given by < (z, t) =  Eexp[4(=01 — k0z)} with the wave’s zero-phase position 
defined at z =  0, we can then model the field immediately in front of the 
aperture as <(z =  0, t) =  Eexp(4=0t). The field immediately after the 
aperture is then given by <(b, y, z =  0, t) =  <: (b ,c ;z  =  0) exp(4=01). 
<: (b, y; z =  0) is called the initial condition under consideration. For 
example, if the aperture has a rectangular opening of width b0 by y0, we can 
then write <: (b, y; z =  0) =  Erect(^/B0, y /y 0) .
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It is necessary to find the field distribution at z, and to do so, we can 
model the solution as

<(b , y, Z, t) =  <p(b , y; z)exp(4=ot), (2.3-1)

where <: (b, y; z) is the unknown to be found. In optics, < ( b ,  y; z) is called 
a complex amplitude <: (b, y, z) and we see that it is riding on a carrier of 
frequency =o (<:  is known as a phasor in electrical engineering).

Since the light field must satisfy the wave equation, we therefore 
substitute this into the 3-D scalar wave equation [Eq. (2.2-4)] to find 
<: (b , y; z) under the given initial condition, <: (b , y; z =  o).

0̂ Aperture {diffracting screen)

Fig. 2.7 Diffraction geometry.

After substituting Eq. (2.3-1) into Eq. (2.2-4), we get the Helmholtz equation 
for < ,

d# <  + dV p + + 5# < =  =  =o 
+ *_.# + ^~# + 5o =  o, 5o =  @ .dB# dy# dz#

(2.3-2)

By taking the 2-D Fourier transform, i.e., YBy, of Eq. (2.3-2) and after further 
manipulations, we obtain

- f )  =  o  .Z 5o 5o
(2.3-3)

where Фр (5B , 5y;z) is the Fourier transform of <: (b , y;z). We can now 
readily solve the above equation to get

G (5b, 5y; z) =  ФР0(5 в ,5 у) exp[ — 450^ l  - 5 B / - ^ A q Z ], (2.3-4) 

where ФР0(5 в ,5у) =  Gp(&B,5y;z =  0)

=  Y ву« р(в , y; z =  o)} =  YBy«po(B,y)}.
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We can interpret Eq. (2.3-4) by considering a linear system with Фр0(5в, 5y) 
as its input spectrum (i.e., at z =  0) and where the output spectrum is 
®p(5B,5y;z). Conclusively, the spatial frequency response of the system is 
given by

Gp(5 a;, 5 y;Z) 
ФрО^^ 5 y)

=  exp [ — i 5 0 ^ 1 — 5B/ 5 0 —5 C/ 5 0 z ] . (2.3-5)

We call [  (5B,5y;z) the spatial frequency transfer function o f propagation 
of light through a distance z in the medium. Figure 2.8 shows the 
relationship between the input spectrum and the output spectrum.

ky) H ( k x, k y; z ) Фp(fci, ky, z )

Fig. 2.8 Spatial frequency transfer function of propagation 
relating input spectrum to output spectrum.

Example 2.2 Derivation of the Helmholtz Equation

When we substitute <(b, y, z, t) =  <: (b, y; z)exp(4=01) into the 3-D scalar 
wave equation given by Eq. (2.2-4), we have

° 2<p ° 2<p ° 2<p (j'=0)2 , ,  ̂ л 
exp(j=01) =  ----<p(B,y;z)exp(j=0t)Ob2 0y2 0z2 @2 p

or

[ Э2̂  + Э2̂  + O2̂  =  < — <
[ Ob# + V  + 0z # } =  @2 <p(B ,y;Z)=  50<p

which is the Helmholtz equation [Eq. (2.3-2)], where we have incorporated 
the fact that 50 =  =0/@. Note that the Helmholtz equation contains no time 
variable.

Example 2.3 Derivation of Eq. (2.3-3) and its Solution

By taking the 2-D Fourier transform, i.e., YBy, of Eq. (2.3-2) and by using 
item #5 of Table 1.1, we can obtain
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or

— (5 i#+ 5 ;#)GP(5 B, 5 y;z) н— ^ Z # y; ) + 5 #G: (5 B, 5 y;z) = o,

which can then be re-arranged to become

.# G 5# 5#
— #£ +  *##(1 —- f  —-#) Gp =  o. (2.3-6)
az# *o 5#

This equation is of the form

a#y #
5Z# +  o y = o-

which has the solution y(z) =  yoexp( — j'az) where yo =  y(z =  o) is given 
as the initial condition. Using this result, the solution to Eq. (2.3-6) becomes

GP(5B,5y;z) =  G(5B,5y;z =  o)exp[ — i 5 o / l  — 5B/5o — 5y/5oZ]

=  #p0(5 B, 5y)exp [ — J5 o — 5#/5 o ' , (2.3-7)

which is Eq. (2.3-4).

To find the field distribution at z in the spatial domain, we take the inverse 
Fourier transform of Eq. (2.3-7):

< : ( f , y ;z) =  Y —y1 { G: (5 B, 5 y;z )}

=  41#( ( G:0(5B,5y)exp [ — 45o/ 1 — 5 B/52 — 52/52  z]

x exp( —j'5bB — j'5yy) d5fa5y . (2.3-8)

Now, by substituting Фро(5в, 5y) = YBy{<£o(b , y) > into Eq. (2.3-8), we can
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express <: (b , y; z) as

<p(b , y; z) =  I I < p o ( f /,y /)G(B — Bw,y  — y/;z)dB /dy/

=  <£o(f  y) * K (f , y; z )  (2.3-9)
where

K ( f -y ;z) =  41# I  ( exp [ — 45o / l  — 5 B/5 o — 52/ 5 0 z]

x exp( — j'5bB — j'5yy) d5fa5y .

The result of Eq. (2.3-9) indicates that G(b , y; z) can be considered as the
spatial impulse response o f propagation of light, which can be evaluated to 
become [Poon and Banerjee (2001)]

45oexp( — j'5o V b# +  y# +  z# )K(b , y; z) =  -
b# +  y# +  Z#

(2.3-10)
д/ b# +  y# +  z# j'5o л/ f  +  У  +  z

2.5./ Fresnel Diffraction

Equation (2.3-10) is complicated to use as is, and we shall need to make the 
following approximations to obtain the well-known Fresnel diffraction 
formula commonly used in Fourier optics:

(1) For z >  - o =  #1 / 5o, i.e., we observe the field distribution many 
wavelengths away from the diffracting aperture, and we have

( j'5o ̂  b# +  y# +  z#)

(2) Using the binomial expansion, the factor

„# _̂ „ ,#, B + уY b# +  y# +  z# ^  z +  — #----

provided that b# +  y#<<z#. This condition is called the paraxial 
approximation. If this approximation is used in the more sensitive phase term 
and only used the first expansion term in the less sensitive denominators of
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the first and second terms of Eq. (2.3-10), then G (b ,c ;z) becomes the so- 
called spatial impulse response in Fourier optics, 2(b, y;z) [Poon and 
Banerjee (2001), Goodman (2005)]:

2 (b, y; z) =  exp( — j'50z) exp
2i z

45 0 (b# +  C2)
2z

(2.3-11)

If Eq. (2.3-11) is now used in Eq. (2.3-9), we obtain

<p(b ,c ;z) =  <p0(B,y )* 2 (B,y ;z)

=  exp( — A z) <p0(b /,CW)

X exp^—2z5°[(b — bW)2+(c — C/)2}}.B/dy/. (2.3-12)

Equation (2.3-12) is called the Fresnel diffraction formula and describes the 
Fresnel diffraction of a beam during propagation and having an arbitrary 
initial complex profile, <p0(B,y). To obtain the output field distribution 
<p(b, y; z) at a distance z away from the input (the location of the diffracting 
screen), we would simply convolve the input field distribution, <p0(b, y), 
with the spatial impulse response, 2 (b, y; z ) .

By taking the 2-D Fourier transform of 2 (b , y; z), we obtain

l ( 5 b, 5 c ;z) =  YBy { 2 (b ,c ; z )}

=  exp( — j '50 z) exp Г 4(5B +  fc#)z ' 
2 5

(2.3-13)

H (5B,5 y;z) is known as the spatial frequency transfer function in Fourier 
optics. Indeed, we can derive Eq. (2.3-13) directly if we assume that 
5B +  52 ¥  52, meaning that the в and y components of the propagation 
vector of a wave are relatively small, from Eq. (2.3-5), we have

Gp(5b  5 y; z)
Gp0(5ж, 5 y)

— [  (5b  5 y; z)

=  exp [ — i 5 0 ^ 1 — (5B +  5 C) / 5 0 z ] 

r i (5B +  5 C)z~  exp (—j'50z) exp

-- H  (5 B,5y ;Z)

#5



Wave Optics and Holography 

or

G: (5 B,5 y;Z) -- Gp0(5 B)5 y) L ( 5 B,5 y;Z) .
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(2.3-14)

Figure 2.9 summarizes the results of Fresnel diffraction in terms of block 
diagrams in the spatial domain as well as in the spatial frequency domain.

Block diagram representation in spatial domain

Фро(х , у ) ----- * h ( x , y ; z )  —  фр{ х , у \ г )

фр( х , у ; х )  = - tppo(x,y)*h(x,y,z)

h(x,  y, z) =  exp( -  j k 0z) exp
Attz

-  j k 0 (x2 +  r ) 
2^

Block diagram representation in spatial frequency domain

^y) Фp(kx,ky] z )

^p{kx7 ky\ z ) — ky) H ( k x , ky] z  j

fcy; 2) =  y: z ) } =  exp( -  j k 0z) exp
r jf (^  +

2fcn

Fig. 2.9 Block diagrams to summarize Fresnel diffraction.

Example 2.4 Diffraction of a Point Source

A point source is represented by <po(f, y) =  $ (f,y ). From Eq. (2.3-12), the 
complex field at a distance z away is given by

<р(в,У, z) =  $(в,у)*2 (в, y;z)

, -7 ч 45 o r i 5 o( f # +  y#) 1 
=  exp( — jfco z )# ^  exp[----------#^------ ]. (2.3-15)

This expression is the paraxial approximation to a diverging spherical wave. 
The variable z in the argument of the exponential function is called the 
radius o f curvature of the spherical wave. The wavefronts are divergent



when z > 0 and convergent when z < 0. We can re-write Eq. (2.3-15) as

<p(B, y, z) =  2 1 Zexp[ — 450( z +  B 2+z y )}.

Now, by considering the argument of the exponential function, we see that 
by using the binomial expansion / b 2 +  y2 +  z2 ^  z +  ^2 ^ ,  we can write

<p(b , y , z) — ^ exp[ — 450(b2 +  y2 +  z2)2]

-  2iV ex p ( — 450V), (2.3-16)

where we have used z — V in the less sensitive denominator. Eq. (2.3-16) 
corresponds to Eq. (2.2-13) for a diverging spherical wave.
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Example 2.5 Diffraction of a Plane Wave

For a plane wave, we can write <p0(b ,y) =  1. Then
Gp0(5B , 5y) =  4 i 25(5b)5(5c). Using Eq. (2.3-14), we have

4(52 +  52)z
Gp(5b, 5y;z) =  4tt25(5b)<5(5y)exp( — 450-)exp [— ^ —— }

250

=  4 i 2 5(5B)5(5y)exp( — 450-).

Its inverse transform gives the expression of a plane wave [see Eq. (2.2-9)],

<p(b , y , z) =  exp( — 450-).

As the plane wave travels, it only acquires phase shift and, as expected, is 
undiffracted.

2.3.2 Diffraction o f a Square Aperture

In general, when a light field illuminates a transparency of transmission 
function given by >(b , y), and if the complex amplitude of the light just in 
front of the transparency is ,p(b ,y), then the complex field immediately 
after the transparency is given by ,p(b , c)>(b ,y). In writing this product 
result, we assume that the transparency is infinitely thin.
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Now, let us consider a simple situation where a plane wave of unit 
amplitude is incident normally on the transparency >(b , y), and the field 
emerging from the transparency is then 1 x>(b , y) as ?:(b , y) =  1 in the 
present case. We want to find the field distribution, which is a distance d 
away from the transparency. This corresponds to the Fresnel diffraction of an 
arbitrary beam profile as the transparency modifies the incident plane wave. 
The situation is demonstrated in Fig. 2.10.

t{x iV) t (x , y)* h(x ,y)

Fig. 2.10 Fresnel diffraction of an arbitrary beam profile >(b , y).

Let us further consider a specific case where >(b , y) =  rect(x/a , y /a), a 
square aperture, is used for MATLAB simulations. We then implement 
<: (b , y; d) =  <:0(b , c) * 2 ( b , y; d) in the spatial frequency domain, i.e., 
using Eq. (2.3-14), where <:0(b , y) is >(b , y) and is given by rect(x/a , y /a) 
with a =  0.4336cm. The m-file, Fresnel_diffraction.m shown in Table 2.1, 
generates the three figures shown below. Figure 2.11a) shows the square 
aperture, rect(x/a ,y /a ), which is illuminated by a plane wave of red 
wavelength (A0 =  0.6328 x 10-4cm). Figure 2.11b) and c) show the central 
cross-section of the square aperture, i.e., |<: (b ,0 ;0)|, and the Fresnel 
diffracted magnitude, i.e., |<: (b , 0; d)|, at d =  5cm, respectively.

-0 .5  0 0.5
cm

a)
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Fig. 2.11 a) Square aperture, b) Central cross-section of a), 
c) Central cross-section of diffracted amplitude at d = 5cm.

Table 2.1 Fresnel_diffraction.m: 
m-file for calculating the Fresnel diffraction of a square aperture.

%Fresnel_diffraction.m
%Simulation of Fresnel diffraction of a square aperture
%Adapted from "Contemporary optical image processing with MATLAB®,"
%by T.-C. Poon and P. P. Banerjee, Elsevier 2001, pp. 64-65.
clear

L=1; %L : length of display area 
N=256; %N : number of sampling points 
dx=L/(N-1); % dx : step size

%Create square image, M by M square, rect(x/a), M=odd number
M=111;
a=M/256
R=zeros(256); %assign a matrix (256x256) of zeros 
r=ones(M); %assign a matrix (MxM) of ones 
n=(M-1)/2;
R(128-n:128+n,128-n:128+n)=r;
%End of creating input image

%Axis Scaling

1 1 1 1 ii 11 1 1 1 11 1 it J 1 11 1 1 1 г 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1
: \J VJ :



for k=1:256 
X(k)=1/255*(k-1)-L/2;
Y(k)=1/255*(k-1)-L/2;

%Kx=(2*pi*k)/((N-1)*dx)
%in our case, N=256, dx=1/255

Kx(k)=(2*pi*(k-1))/((N-1)*dx)-((2*pi*(256-1))/((N-1)*dx))/2;
Ky(k)=(2*pi*(k-1))/((N-1)*dx)-((2*pi*(256-1))/((N-1)*dx))/2;

end

%Fourier transformation of R

FR=(1/256)A2*fft2(R);
FR=fftshift(FR);

%Free space impulse response function
% The constant factor exp(-jk0*z) is not calculated
%sigma=ko/(2*z)=pi/(wavelength*z)
%z=5cm,red light=0.6328*10A-4(cm) 
sigma=pi/((0.6328*10A-4)*5);

for r=1:256, 
for c=1:256,

%compute free-space impulse response with Gaussian apodization against aliasing 
h(r,c)=j*(sigma/pi)*exp(-4*200*(X(r)A2+Y(c)A2))*exp(-j*sigma*(X(r).A2+Y(c)A2)); 
end 

end

H=(1/256)A2*fft2(h);
H=fftshift(H);
HR=FR.*H;
H=(1/256)A2*fft2(h);
H=fftshift(H);
HR=FR.*H;

hr=ifft2(HR);
hr=(256A2)*hr;
hr=fftshift(hr);

%Image of the rectangle object 
figure(1)
image(X,Y,255*R); 
colormap(gray(256)); 
axis square 
xlabel('cm') 
ylabel('cm')

% plot of cross section of square 
figure(2)
plot(X+dx/2,R(:,127))
grid
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axis([-0.5 0.5 -0.1 1.2]) 
xlabel('cm')

figure(3)
plot(X+dx/2,abs(hr(:,127)))
grid
axis([-0.5 0.5 0 max(max(abs(hr)))*1.1]) 
xlabel('cm')
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2.4 Ideal Lens, Imaging Systems, Pupil Functions 
and Transfer Functions

2.4.1 Ideal Lens and Optical Fourier Transformation

In the previous section, we have discussed light diffraction by apertures. In 
this section, we will discuss the passage of light through an ideal lens. An 
ideal lens is a phase object. When an ideal focusing (or convex) lens has 
focal length f , its phase transformation function, tf (b , y), is given by

>f(B,y) =  exp [j— (в2 +  у2)], (2.4-1)

where we have assumed that the ideal lens is infinitely thin. For a uniform 
plane wave incident upon the lens, the wavefront behind the lens is a 
converging spherical wave (for f  > 0) that converges ideally to a point source 
( a distance of d =  f  ) behind the lens. We can see that this is the case when 
we apply the Fresnel diffraction formula [see Eq. (2.3-12)] :

< : (b , У , D =  f )  =  < :0(b , y ) * 2(B, y; D =  f )  (2.4-2)

where <:0(b ,y) is now given by 1 x tf(B ,y). The constant, 1, in front of 
tf (b, y) signifies that we have a plane wave (of unit amplitude) incident. For 
example, if we have an incident Gaussian beam of the profile given by 
exp[ — a(B2 +  y2)], then <:0(в,у) will be given by exp[ — а(в 2 +  y2)] x 
tf(B ,y). Let us now return to Eq. (2.4-2) where <р0(в,у) =  tf(B ,y), and by 
using Eq. (2.3-12) we have

< : (B,y ;f ) =  exp( — j 5 of)  ^  ( (  >0(в /,У7)

X exp{ ^ 20-О[(в — Bw) 2 +  (y — yw)2]|  . в ' . у 7

Я-i г j 5 0 / /2 | /2ч-I
1 exp [^ ^ (b +У  )]
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exp 4 o (bw# +  yw# — #вв7 — #yyw) d f /dy/

1 exp 45o / w . /\ - 0-  (bb +  yy ) dBWdyw,

which is recognized to be proportional to a 2-D Fourier transform of 1, i.e.,
$( f ,y ) .

Let us now investigate the effect of placing a transparency, t( f ,y ) , 
against the ideal lens, which is shown in Fig. 2.12. In general, >(f,y) is a 
complex function such that if a complex field, < 3,: (f ,y ) , is incident on it, 
then the field immediately behind the transparency-lens combination is

5o
<3,p(B,y ) t (B,y )t / ( f ,y ) =  ^ ( в у Ж в у ) ^ . ? — (b# +  y#)].

Fig. 2.12 A transparency immediately before an ideal lens 
under complex field illumination.

Again, for brevity, when illuminated by a unit-amplitude plane wave, the 
field immediately behind the combination is given by 1 x t(f ,y )e x p  
[ ^ ( b #  +  y#)]. We can then find the field distribution at a distance z =  f  by 
using the Fresnel diffraction formula, Eq. (2.3-12), as

<p(b , у; Z =  f )  =  exp( -  45of) exp[ (b#
# f У#)]
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exp( — j5 of )  ^ exp[ 2^5° (b2 +  y2)]

x Y 5b=5-b//
5У=50У//

(2.4-3)

where в and у denote the transverse coordinates at d =  f . Hence, the 
complex field on the focal plane (d =  f ) is proportional to the Fourier

that if >(b , y) =  1, i.e., the transparency is completely clear, then we have 
<: (b , у , d =  f ) °  $(b , y), which corresponds to the focusing of a plane 
wave by a lens, as discussed earlier.

Example 2.5 Transparency in front of a Lens

Suppose that a transparency, >(b , y), is located at a distance, . 0, in front of an 
ideal convex lens and is illuminated by a plane wave with a unit strength 
shown in Fig. 2.13. The physical situation is shown in Fig. 2.13a), which can 
be represented by a block diagram given by Fig. 2.13b). According to the 
block diagram, we write

As in Eq. (2.4-3), note that a phase curvature factor as a function of в and у 
again precedes the Fourier transform, which represents the phase error if one 
wishes to compute the optical Fourier transformation. However, the phase 
curvature vanishes for the special case of . 0 =  f . That is, from Eq. (2.4-5) 
and by disregarding some inessential constant, we now have

transform of >(b , y), but has phase curvature term exp[-2j°( в 2 +  у2)]. Note

< :(b , y ;f )  =  {[t(B , y)*2(B , y; .o )]tf (B , y)}*2(B , y; f )  (2.4-4)

which, apart from some constant, can be evaluated to obtain

< :(b  ,y ;f )  =  2 ^  exp[ — 45о(.0  +  f ) ]exp[ — — .f0 )(в 2 +  у2)]2 /  f

x Y ту{>(в, y)} 5b=5-b//
5У=5-У/0

(2.4-5)
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< :( f , y ;f)  =  YBy{t( f , y)} 5f=5of/f
5y=5oy/f

=  X (5oB /f,5oy/f). (2.4-6)

Therefore, when the transparency is placed in the front focal plane of the 
convex lens, the phase curvature disappears and we recover the exact Fourier 
transform on the back focal plane. Fourier-plane processing of an “input” 
transparency located on the front focal plane can now be performed on the 
back focal plane. This is the essence of Fourier optics to perform coherent 
image processing.

Fig. 2.13 Plane-wave illumination of a transparency >( b , y) located a distance do in front 
of a convex lens of focal length f : a) Physical situation, b) Block diagram.

2.4.2 Coherent Image Processing

The two-lens system is traditionally attractive for coherent image processing 
because, in the configuration shown in the Fig. 2.14, the Fourier transform of 
the input transparency, >(f,y), appears on the common focal plane, or 
Fourier plane. In order to perform Fourier-plane processing of the input
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transparency, we can insert a transparency on the Fourier plane that will 
suitably modify the Fourier transform of the input transparency.

Object (input) 
plane

t(x,y)

Fourier
plane

p (x , y)

Image (output) 
plane

Ф А х >у )

L l

■\

L

1
J2

‘ / 1

J
"  fi

\
— h - “ /2 —

Fig. 2.14 Standard two-lens imaging processing system.

The Fourier plane transparency is commonly called a spatial filter, 
: ( b , y). According to Eq. (2.4-6), when a transparency >(b , y) is placed on 
the front focal plane of lens P" as shown in Fig. 2.14, the field distribution 
on the common focal plane is given by Т(50в /Л  , 50y /f"), where we assume 
that the transparency is illuminated by a plane wave. After this field 
distribution is modified by the spatial filter, we can finally find the field 
distribution on the back focal plane of lens P 2, , by again using Eq. (2.4
6) and neglecting some constant, as

<:3(b , У) =  YBy{ х ( 5 ов / Л, 5oy/ f i ): (B ,y ) ) |  ,\ J |5b=50b//2
5У=5ОУ/02

which can be evaluated, in terms of convolution, to give

<p*(b , y) =  >(b/ Q  , y /Q )  * Ybc { : (b .у Ж  (2.4-7)К > I 5b=50b//2
5У=5ОУ/02

=  > (в /М ,у /М ) * T ^ M ) ,  
f 2 f 2

where Q  =  — f 2/f"  is the magnification factor and T  is the Fourier 
transform of p. By comparing Eq. (2.4-7) with Eq. (1.2-2), we can describe 
the impulse response of the two-lens system, or the coherent point spread 
function (CPSF), as
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(в ’У) =  YBy { : (в ’У) } ^b^o  ̂f2

: ( f ’ y) is often called the pupil function of the system. We can see that the 
coherent PSF is given by the Fourier transform of the pupil function as 
shown in Eq. (2.4-8). By definition, the corresponding coherent transfer 
function is the Fourier transform of the coherent PSF:

We observe that spatial filtering is directly proportional to the functional 
form of the pupil function in coherent image processing.

The complex field on the image plane can then be written as

2.4.3 Incoherent Image Processing

So far, we have discussed that the illumination of an object is spatially 
coherent - an example being the use of a laser. This means that the complex 
amplitudes of light falling on all parts of an object vary in unison, meaning 
that any two points on an object receive light that has a fixed relative phase 
and does not vary with time. On the other hand, an object may be illuminated 
with light having the property that the complex amplitudes on all parts of the 
object vary randomly, so that any two points on the object receive light of 
illumination is termed spatially incoherent. Light from extended sources, 
such as fluorescent tube lights, is incoherent. As it turns out, a coherent 
system is linear with respect to the complex fields and hence Eqs. (2.4-10) 
and (2.4-11) hold for coherent optical systems. On the other hand, an 
incoherent optical system is linear with respect to the intensities. To find the 
image intensity, we perform convolution with the given intensity quantities 
as follows:

(b’ y) °  t(B /M ’y /M )* 2 c(B’y), (2.4-10)

and hence the corresponding image intensity is

Мз(В’у) =  |<:з(В’ y)|2 °  |> (в /М ’У/М) * 2-(В’у)|2. (2.4-11)

Мз(В’у) °  |> (в /М ’У/М ) |2 * |2 -(В’ у) |2. (2.4-12)
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This equation is the basis for incoherent image processing. 12 с(в,у) | 2 is 
the impulse response of the incoherent optical system and is often called 
the intensity point spread function (IPSF) of the optical system. Note that the 
IPSF is real and non-negative, which particularly means that it is not possi
ble to directly implement even the simplest enhancement and restoration 
algorithms (e.g., highpass, derivative, etc.), which requires a bipolar PSF  
[Lohmann and Rhodes (1978)].

As usual, the Fourier transform of an impulse response will give a 
transfer function known as the optical transfer function (OTF) of the 
incoherent imaging system. For this case, it is given by

O T J(5b, 5y) =  Ybc{ |2c(b, у) |2} =  Я с(5в,5у) 0  Я с(5в,5у), (2.4-13) 

which can be explicitly written in terms of the coherent transfer function H c:

O T J(5 b, 5y) =  ( (  Hc*(5B, 5У) Hc(5B +  5b, 5У +  5y) < 5 У .

(2.4-14)
Note that one of the most important properties of the OX J , which follows a 
property of correlation, is that

|O X J(5 b, 5y)| < |0 X J(0 , 0)|. (2.4-15)

This property states that the OTF always has a central maximum, which 
always signifies lowpass filtering  disregardless of the pupil function used in 
the system [Lukosz (1962)].

Example 2.6 Coherent Transfer Functions and OTFs

Consider a two-lens system as shown in Fig. 2.14 with f 1 =  f 2 =  f  
and р(в, y) =  rect(B/X), i.e., a slit of width X  along the у-direction. Using 
Eq. (2.4-9), the coherent transfer function becomes

Hc(5b, 5y) =  rect(x )
b=—/5b/5o

= rect( X 5-T 7)
(2.4-16)

which is plotted in Fig. 2.15a). Now, the OTF is the autocorrelation of Hc as 
calculated by Eq. (2.4-13) and is plotted in Fig. 2.15b). Observe that both
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situation perform lowpass filtering  of spatial frequencies on an input image. 
Under incoherent illumination, it is possible to transmit twice the range of 
spatial frequency of an image as compared to the use of coherent illumi
nation. However, the spectrum of an image transmitted through the pass- 
band is modified by the shape of the OTF.

kx

Xko
2 f

0

a)

Xk0
2f

f f
b)

Fig. 2.15 a) The coherent transfer function, and b) the OTF 
for the pupil function : ( b , у) =  rect(B/X ) .

Now, let us consider

: (b , y) = rect
V B - B 0

V \
rect B0> y ,



48 Optical Scanning Holography with MATLAB

which is a two-slit object aligned along the y-direction. The coherent transfer 
function is

L - (5B’ 5y) -- rect
B — Bo

X
(  В +  Bo 

rect( — f=—f 5f/5o

- 5 b - bo5o/ ^ \  / - f c B  +  Bofco/f\
recti ------———-----  I +  recti 1

\ 5 o / f  у \ 5 o / f  7J

x0k0
f a)

x0k0
f

f f f f
b)

Fig. 2.16 a) The coherent transfer function, and b) the OTF 
for the pupil function : ( f ’ y) = rect[(f — Bo)/\]+  rect[(f +  b o)/\] .

We plot L c(fcB’fcy) in Fig. 2.16a) along with the OTF in Fig. 2.16b). Note 
that even though it may be possible to achieve band-pass filtering  with
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coherent illumination, incoherent processing always gives rise to inherently 
low-pass characteristics because its point spread function is real and positive 
[see Eq. (2.4-13)]. A large amount of attention has been focused on devising 
methods to realize band-pass characteristics by using novel incoherent image 
processing techniques [see, e.g., Lohmann and Rhodes (1978), Stoner (1978), 
Poon and Korpel (1979), Mait (1987)], where the synthesis of bipolar or even 
complex point spread functions (PSFs) in incoherent optical systems is 
possible. Such techniques are called bipolar incoherent image processing. 
The article by Indebetouw and Poon [1992] provides a comprehensive 
review of bipolar incoherent image processing.

2.5 Holography

2.5.1 Fresnel Zone Plate as a Point-Source Hologram

A photograph is a 2-D recording of a 3-D scene. What is actually recorded is 
the light intensity at the plane of the photographic recording film - the film 
being light sensitive only to the intensity variations. Hence, the developed 
film’s amplitude transparency is >(в,у) °  М(в,у) =  |<р|2, where is the 
complex field on the film. As a result of this intensity recording, all the 
information on the relative phases of light waves from the original 3-D scene 
is lost. This loss of phase information on the light field destroys the 3-D 
character of the scene, i.e., we cannot change the perspective of the image in 
the photograph by viewing it from a different angle (i.e., parallax) and we 
cannot interpret the depth of the original 3-D scene.

As an example, let us take the photographic recording of a point 
source located at the origin, but with a distance of d0 away from the film. The 
situation is shown in Fig. 2.17a). Now, according to Eq. (2.3-15), the 
complex field just before the film is given by

<p(b, у; do) =  $(в, у)*2 (в, у; do)

f X 450 г 450(в2 +  у2)!
=  exp( -  Jfco^ob---- exp [ --------- ----------].

#1 D0 #D0

Hence, the developed film’s amplitude transparency is

>(в , у̂ ) °  m(b , у) =  КрОву; ^ ) ! 2 =  (# ido )2 . (2.5-1)

Note that the phase information of <р(в , у; d0) is completely lost. Now, for a 
point source located at (в0, у0), as shown in Fig. 2.17b), the complex field 
just before the film is given by
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a)

b)

Fig. 2.17 Photographic recording of a point source: a) located at the origin (o’ o), and 
b) located at (bo’ yo), both d0 away from the film.

< : ( f ’ y; fo ’Co, Do) =  5 (B — Bo’y — yo)*2(B’y;zo)

=  exp( — ^toDo)#!?^ exp[ — 45ol(B - B # ^ (y —yo)#l;

and what is recorded is

to
>(в ’У) °  m(b’C) =  |<p(в ’У;в 0’У0, Do) 1 =  (2iDo) , (2.5-2)

which is identical to the result given by Eq. (2.5-1). Again the phase 
information of <Р(В’У;В0’У0 ,D0) is lost, and we also notice that the 3-D 
location of the point source, i.e., b0’ y0, and d0 , is mostly lost.
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Holography is an extraordinary technique that was invented by 
Gabor [1948], where not only the amplitude, but also the phase of a light 
field can be recorded. The word “holography” combines parts of two Greek 
words: holos, meaning “complete,” and graphein, meaning “to record.” Thus, 
holography means the recording of complete information. Hence, in the 
holographic process, the film records both the amplitude and phase of a light 
field. The resulting recorded film is called a “hologram.” When a hologram is 
properly illuminated, an exact replica of the original 3-D wave field is 
reconstructed. We shall discuss the holographic recording of a point object 
as an example. Once we know how a single point is recorded, the recording 
of a complicated object can be regarded as the recording of a collection of 
points.

Object wave

Fig. 2.18 Holographic recording of a point source object.

Figure 2.18 shows a collimated laser which is split into two plane waves and 
then recombined by using two mirrors (M) and two beam splitters (BS). One 
plane wave is used to illuminate the pinhole aperture (our point object), and 
the other is used to illuminate directly the recording film. The plane wave 
that is diffracted by the pinhole aperture generates a diverging spherical 
wave. In holography, this diverging wave is known as an object wave. The 
plane wave that directly illuminates the photographic plate is known as a 
reference wave. Let <o represent the field distribution of the object wave on 
the plane of the recording film, and similarly, let <r represent the field 
distribution of the reference wave on the plane of the recording film. The 
film now records the interference of the reference wave and the object wave, 
i.e., what is recorded is given by |<r +  <o|#, provided that the reference 
wave and the object wave are mutually coherent over the film. The



52 Optical Scanning Holography with MATLAB

coherency of the light waves is guaranteed by the use of a laser source and 
ensures that the difference between the two paths is less than the coherent 
length of the laser. This kind of recording is known as holographic 
recording, and is distinct from a photographic recording where the reference 
wave does not exist and, therefore, only the object wave is recorded.

Let us now consider the recording of an off-axis point object at a 
distance of Do from the recording film. The pinhole aperture is then modeled 
as 5(b — b0’ y — y0). According to Fresnel diffraction, the object wave arises 
from the point object on the film and is given by

<o =  5(в — B0’ y — yo) * 2 ( f ’ y; Do)

=  exp(-j'fcoDo) exp{ — j5o[(b — Bo)2 +  (y — yo)2]/2Do}.
2lDo

This object wave is a spherical wave.
For the reference plane wave, we assume that the plane wave has the 

same initial phase as the point object at a distance of Do away from the film. 
Therefore, its field distribution on the film is <r =  aexp( — j'fc0D0), where a 
is the amplitude of the plane wave. Hence, the intensity distribution that is 
being recorded on the film, or the transmittance of the hologram, is given by

t ( f ’C) °  |<  +  <o|#

=  l + +  exp{ — j5o[(b — Bo)2 +  (y — Co)2]/ 2do} |2
2lDo

=  Л + Б  sin{ | 4 (b —Bo)2 +  (y — yo)2]}

=  J Z T ( b — Bo’C — yo;Do) (2.5-3)

where E  =  a2 +  ( ^  )2, F  =  and to =  2 i/-o .

The expression in Eq. (2.5-3) is called the sinusoidal Fresnel zone 
plate (FZP), which is a hologram of the point source object. Note that the 
center of the zone plate specifies the location, b0 and y0, of the point object, 
and the spatial variation of the zone plate is governed by a sine function with 
a quadratic spatial dependence. For an on-axis point source, i.e., b0 =  y0 =  0 
in Eq. (2.5-3), located a distance of d0 away from the film, we have an 
on-axis Fresnel zone plate as
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t(x ,y) °  |<r +  <o|#

I 4'50 Г j 50 / 2 2\ll2
=  |o  + 2 1D! exp| ~ 2 z ~ J x  + y ) l 1

=  A +  F  sinl;5—(x2 +  y2)|

= F Z P ( x , y ; z 0). (2.5-4)

Let us now investigate the quadratic spatial dependence of 
F Z P ( x , y ; z o). The spatial rate of change of the phase on the zone plate 
along the x -direction is

- _ ± ± ( h _ x # )  =  ^ .  (2.5-5)
2i  dx  2zo -ozo

This is a local fringe frequency that increases linearly with the spatial 
coordinate, x. The farther it is away from the origin of the zone, the higher 
the frequency will be. So, for a fixed point (local) on the hologram, we can 
deduce the depth information, zo, by finding the local fringe frequency for a 
given wavelength of light, - o. Therefore, we see that the depth information is 
encoded within the phase of the FZP. Figure 2.19 shows the dependence of 
the Fresnel zone plate characteristic as a function of the depth parameter z 
(for z =  zo and 2zo). As the point source becomes further away from the 
recording film, the recorded FZP has a lower local fringe frequency.

Figure 2.20 shows us that as the point source moves to a new 
location xo, yo, the center of the zone plate translates accordingly. Hence, we 
see that the zone contains the complete 3-D information of the point source. 
The center of the zone, xo and yo, defines the transverse location of the point 
object, and the fringe variation defines the depth location, zo. Table 2.2 
shows the MATLAB code used to generate Fresnel zone plates that are 
presented in Figs. 2.19 and 2.20. For an arbitrary 3-D object, we can think of 
the object as a collection of points, and therefore, we can envision that we 
have a collection of zones on the hologram, where each zone carries the 
transverse location as well as the depth information of each individual point. 
In fact, a hologram has been considered as a type of Fresnel zone plate, and 
the holographic imaging process has been discussed previously in terms of 
zone plates [Rogers (1950), Siemens-Wapniarski and Parker Givens (1968)].
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@  z =  z0 Fresnel Zone Plates @ 2 =  2z0

1 -D plots o f Fresnel zone plate through center

Fig. 2.19 On-axis Fresnel zone plate as a function of depth, D.

Hologram due to Hologram due to 
an on-axis source: an off-axis source
S(x,y) 6 ( x - x 0, y - y  0)

Fig. 2.20 Fresnel zone plate due to point sources at different transverse locations 
but otherwise located at the same depth D!.
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Table 2.2 Fresnel_zone_plate.m: 
m-file for calculating FZPs illustrated in Figs. 2.19 and 2.20.

%Fresnel_zone_plate.m
%Adapted from "Contemporary optical image processing with MATLAB®,"
%by T.-C. Poon and P. P. Banerjee, Elsevier 2001, pp.177-178.
%
%display function is 1+sin(sigma*((x-x0)A2+(y-y0)A2)). All scales are arbitrary.
%sigma=pi/(wavelength*z)
clear;

z0=input ('z0, distance from the point object to film, enter z0 (from 2 to 10)='); 
x0=input ('Inputting the location of the center of the FZP x0=y0,enter x0 (from -8 to 8) =');

ROWS=256;
COLS=256;
colormap(gray(255))
sigma=1/z0;
y0=-x0;
y=-12.8;

for r=1:COLS, 
x=-12.8;
for c=1:ROWS, %compute Fresnel zone plate 

fFZP(r,c)=exp(j*sigma*(x-x0)*(x-x0)+j*sigma*(y-y0)*(y-y0)); 
x=x+.1; 
end

y=y+.1;
end

%normalization
max1=max(fFZP);
max2=max(max1);
scale=1.0/max2;
fFZP=fFZP.*scale;
R=127*(1+imag(fFZP));
figure(1)
image(R);
axis square on
axis off

So far, we have discussed the transformation of a point object to a 
zone plate on the hologram, which corresponds to a recording or coding 
process. In order to retrieve the point object from the hologram, we need a 
reconstruction or decoding process. This can be done by simply illuminating 
the hologram with a reconstruction wave. Figure 2.21 corresponds to the 
reconstruction of a hologram of the point object located on-axis, i.e., the 
reconstruction of the hologram given by Eq. (2.5-4).
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reco ns tru c tion  w ave

v irtua l im age

FZP  holog

o b se rve r

Fig. 2.21 Holographic reconstruction of a point source object.

Note that in practice as is shown in Fig. 2.21, the reconstruction 
wave is usually identical to the reference wave. Therefore, we take the 
reconstruction wave to have a field distribution on the plane of the hologram 
given by <rc(x,y) = a. Hence, the field distribution of the transmitted wave 
immediately after the hologram is <rct(x ,y) =  at(x ,y ) and the field at 
arbitrary distance of z away, according to Fresnel diffraction, is given by the 
evaluation of

For the point-object hologram given by (2.5-4), after we expand the sine term 
of the hologram > (x , y), we obtain

Therefore, as a result of the illumination of the hologram by the 
reconstruction wave, we have three waves. These waves, according to the 
convolution operation, at(x , y) * 2 (x , y; z), are as follows:

Zero-order beam:

a>(x , y) *2(x  , y; z).

exp [ - i | L (x2 +  y2)]}

aE  * 2(x , y; z =  zQ) =  a E  . 

Real image (or the twin image):

(2.5-6a)

(2.5-6b)



Virtual image:

5o~  exp[ - j - — (x2 + y # ) \ *h ( x , y ; z =  - 20) ~  $(x, y). (2.5-6c)
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By writing Eq. (2.5-6c), we have back-propagated the field immediately 
behind the hologram by a distance of zo to demonstrate that a virtual image 
will form behind the hologram. As illustrated in Fig. 2.21, optical fields from 
this virtual image correspond to a diverging wave behind the hologram. We 
notice that the zero-order beam is caused by the bias in the hologram and the 
virtual image is the reconstructed original point object. The real image is 
located at a distance of z0 in front of the hologram, which is known as the 
twin image.

Fig. 2.22 Holographic recording and reconstruction of a three-point object.

Figure 2.22 shows the holographic recording of a 3-point object and 
its reconstruction. Note that the virtual image appears at the correct 3-D 
location as the original object, while the real image (the twin image) is the 
mirror-image of the original object, with the axis of reflection on the plane of 
the hologram.

2.5.2 Off-Axis Holography

In the last section, we discussed the so-called on-axis holography. The term 
“on-axis” refers to the use of a reference wave that is coaxially illuminating 
the hologram with the object wave. Although this technique can record 3-D



information of an object, it also create an annoying effect when we view the 
reconstructed virtual image. The real image (or the twin image) will also be 
reconstructed along the viewing direction [see Figs. 2.21 and 2.22]. In 
holography, this is infamously known as the “twin-image problem. ”

Off-axis holography is a method that was devised by Leith and 
Upatnieks [1964] to separate the twin-image and the zero-order beam from 
the desired image. To achieve off-axis recording, the reference plane wave 
will need to be incident on the recording film off-axis. Referring back to Fig. 
2.18, this can be done by simply, for example, rotating the beamsplitter (BS) 
between the pinhole aperture and the film in a clockwise direction so that the 
reference plane wave is incident on the film at an angle. The situation is 
shown in Fig. 2.23, where the plane reference wave is incident at an angle, ). 
)  is called the recording angle in off-axis holographic recording.
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Fig. 2.23 Recording with off-axis reference plane wave.
The point object is d0 away from the film.

For off-axis recording, we have >(b , y) =  |<r +  <o|2, where the 
reference plane wave, <r, is now an off-axis plane wave given by 
aexp(j'fc0Bsin)). The object wave, <o, is the spherical wave generated by the 
on-axis point source. Similar to Eq. (2.5-3), where b 0 =  y0 =  0 for an 
on-axis point object, we now have

>(b , y) =  | aexp(j'fcoBsin0) +  exp[ -  j'5o(b2 +  y2)/ 2zo]|2
2ido

5o
=  E + F  sin[----(b2 +  y2) + 5 0Bsin)], (2.5-7)

2do

where E  =  a2 +  (21D0)2 and F  =  . >(в , y) given by Eq. (2.5-7) is called
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an off-axis hologram. Eq. (2.5-7) can be expanded into three terms as

By illuminating the hologram with a reconstruction wave identical to the 
reference wave, we have <rct(x, y) immediately after the hologram, where 
<rc =  a exp(j50xsin)) =  <r. As in the case of on-axis holography, by 
performing Fresnel diffraction, we have <rct(x ,y) * h (x ,y ;z ), thereby 
creating three waves as follows:

Zero-order beam:

Eaexp(jfc0xsin0)* h (x , y; z = zo)

reconstruction

Fig. 2.24 Holographic reconstruction of off-axis hologram.
The twin image (or the real image) is not observed if ) is large enough.

exp(j50xsin)). (2.5-8a)
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Real image (or the twin image):

aexp(f5oBsin)) e x p |j '[ ^ ( b 2 +  y2) +  5oBsin)] |*  2(b ,y; d = do)

— 5(b +  2z0sin), y) . (2.5-8b) 

Virtual image:

aexp(j'5o Bsin)) expj - f [  2oo(b2 +  y2) +  5oBsin)] |*  2(b , y; d = -d o )

-  5(b, y) . (2 .5-8c) 

The situation is depicted in Fig. 2.24.

2.5.3 Digital Holography

As discussed in the last section, in regards to off-axis holographic 
reconstruction, the three reconstructed beams propagate along different 
directions, and if the recording angle is sufficiently large, the virtual image 
can be viewed without any disturbances from the zero-order beam and the 
real image. This technique of off-axis recording is also known as carrier- 
frequency holography. We can re-write Eq. (2.5-7) as

50
>(b ,y) =  E  +  F  sin[-— (b2 +  y2) +  2 i / cb], (2.5-9)

2zo

where / c =  50sin )/2 i =  s in )/-0 is the spatial carrier. For realistic parameter 
values, )  =  45° and - 0 =  О.б.ш for red laser light, we have 
sin )/-0 — 1 ,000 cycle/mm. This technique translates to a film resolution of 
at least 1000 lp/mm [or line-pair/mm] in order to employ this technique for 
holographic recording. Common holographic films have a resolution of about 
5000 lp/mm. For comparison, standard black and white film resolution is 
about 80-100 lp/mm and color film is about 40-60 lp/mm. But can we use 
electronic devices such as CCD cameras for holographic recording? If we 
can do it, we can bypass the darkroom preparation of films and, therefore, we 
can perform real-time or electronic recording of holographic information. 
Some of the best CCD camera in the market, such as Canon D60 (3072x2048 
pixels, 67.7 lp/mm, 7.4.m  pixel size), could not record off-axis holograms 
efficiently because its resolution is about a couple of orders of magnitude 
worse than the resolution of holographic films. We can see that off-axis 
recording places a stringent resolution requirement on electronic recording
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media. We can relax the resolution requirement by making the recording 
angle smaller, but this approach requires a very small recording angle that 
often makes it impractical. Because of this reason, on-axis holography seems 
to be prevalent in digital holography [Piestun, Shamir, Wekamp, and 
Bryngdahl (1997)]. On the other hand, twin-image problems need to be 
tackled when on-axis holography is employed. Indeed twin-image 
elimination is an important research topic [Poon et al. (2000)].

While we have discussed holographic recording electronically or 
digitally, for reconstruction, we can also perform it digitally. Once the 
holographic information is in the electronic or the digital domain, we can 
digitally evaluate Fresnel diffraction by performing the convolution, which is 
at (x , y)  *h( x ,  y;z) ,  where a is some constant amplitude of the 
reconstruction beam, >(x, y) is the recorded hologram, and h(x , y; z) is the 
spatial impulse response in Fourier optics. For various values of z =  z i , z2, 
etc., we can reconstruct different planes normal to the hologram. The whole 
3-D volume of the object is then constructed plane by plane. The situation is 
shown in Fig. 2.25.

An alternative way to utilize electronically or digitally recorded hologram is 
to have it displayed on some sort of spatial light modulator (SLM) for real
time coherent reconstruction. A 2-D spatial light modulator is a device with 
which one can imprint a 2-D pattern on a laser beam by passing the laser 
beam through it (or by reflecting the laser beam off the device). A liquid

Reconstructed 3-D object

Fig. 2.25 Digital holographic reconstruction.
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crystal television (LCTV) (upon suitably modification) is a good example of 
spatial light modulators. In fact, we can think of a spatial light modulator as a 
real-time transparency because one can update 2-D images or holograms 
upon the spatial light modulator in real time without developing films into 
transparencies. Again, off-axis holographic recording places stringent reso
lution requirement on SLMs and we will come back to this later when dis
cussing 3-D display applications in Chapter 4.

All in all, in this section we mention electronic or digital recording 
and manipulation of holographic information. This type of research is 
commonly known as digital (or electronic) holography. The reader may find 
a pioneering contribution in the work of Goodman and Lawrence [1967]. 
Ever since, digital holography has become a practical tool with an increasing 
number of applications [Schnars and Juptner (2002)]. Most recently, an 
edited book on the subject organizes a collection of key chapters that covers 
digital holography and 3-D display techniques so as to provide the reader 
with the state-of-the-art developments in these important areas around the 
world [Poon (2006)]. Starting in the next chapter, we will discuss a unique 
electronic holographic recording technique called optical scanning 
holography.
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Chapter 3

Optical Scanning Holography: Principles

Optical scanning holography (OSH) is a form of electronic (or digital) 
holography. It is a unique, real-time technique where holographic infor
mation of a three-dimensional (3-D) object can be acquired by using a 
single 2-D optical scan. OSH was first implicated by Poon and Korpel when 
they investigated bipolar incoherent image processing on their acousto-optic 
heterodyning image processor [1979]. The original idea is later formulated 
and becomes known as scanning holography [Poon (1985)]. The first 
experimental results were then demonstrated and the technique was 
eventually called optical scanning holography in order to emphasize the 
novel fact that holographic recording can be achieved by active optical 
scanning [Duncan and Poon (1992)]. Thus far, applications of OSH include 
scanning holographic microscopy [(Poon, Doh, Schilling, Wu, Shinoda, and 
Suzuki (1995)], 3-D image recognition [(Poon and Kim (1999)], 3-D optical 
remote sensing [Kim and Poon (1999)], 3-D TV and display [Poon (2002a)], 
and 3-D cryptography [Poon, Kim, and Doh (2003)]. Scanning holographic 
microscopy is, by far, the most developed technique that utilizes OSH. 
Unlike any other holographic microscopes, scanning holographic microscope 
has a unique property that allows it to take the holographic information of 
fluorescent specimens in three dimensions. Recently, scientists have been 
able to achieve better than one-micron resolution in holographic fluorescence 
microscopy [Indebetouw and Zhong (2006)]. While in chapters 1 and 2, we 
have covered the necessary backgrounds in mathematics and optics to better 
understand OSH, in this chapter, we discuss the basic principles of OSH. In 
chapter 4, we will then discuss some of the previously mentioned 
applications of OSH in detail. Finally in chapter 5, we will discuss some 
recent advances in OSH.

3.1 Principle of Optical Scanning

Optical scanning holography involves active optical scanning and optical 
heterodyning. In this section, we will discuss the basics of optical scanning. 
An optical scanner or optical processor scans out a transparency, i.e., 
information, with an optical beam by moving either the beam or the 
transparency. A photodetector accepts all light and gives an electrical output
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that can either be stored or displayed by some means or another. Hence, 
optical information will have been converted into electrical information.

Figure 3.1 shows a standard, active optical scanning image 
processing system. A plane wave (such as the use of a laser in practice) of 
frequency =0, illuminates a pupil function, p(x,y). The complex field 
emerging from the pupil is then projected through the x-y optical scanner in 
order to scan over the input object specified by a transparency of r 0(x, y). 
The photodetector (PD) then accepts all the light to give out an electrical 
signal, which contains the processed information for the scanned object. If 
the scanned electrical signal is digitally stored (i.e., in a computer) in 
synchronization with the 2-D scan signals of the scanning mechanism (such 
as the x-y scanning mirrors), what is stored as a 2-D record is then a 
processed image of the scanned object.

Fig. 3.1 An active optical scanning image processing system.

Let us now discuss photodetection and see how light information can 
be converted into electrical information. Assume that the photodetector’s 
surface is on the z  = 0 plane and that the incident complex field on the 
detector’s surface is given by <p(x, y)exp(j=0>) as shown in Fig. 3.2. Since 
the photodetector only responds to intensity, i.e., |<p exp(j=0t)|2, it gives the 
current, 3, as an output by spatially integrating the intensity over the active 
area, D, of the detector:

3 °  I l<pexp(j=ot)\#dxdy = I |<p|#dxdy. (3.1-1)
D D
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For example, if the incident field is a plane wave of amplitude E, i.e., 
<p = E, the current output is given by

which is a constant. However, take for instance that if the light has been 
intensity-modulated, i.e., |<p|# =  m(>), where m(>) is the modulating signal, 
the current will then give an output that varies with the modulation. This is 
useful for laser communications systems [Pratt (1969)].

Note that since <p(x,y)  = |<p(x,y)|exp[j'0(x,y)], the output 
current can only contain the magnitude information, i.e., |<p|, and the phase 
information is completely lost. This type of photodetection is known as 
optical direct detection (or optical incoherent detection).

Once we comprehend photodetection, we can return to Fig. 3.1 to calculate 
the current output given after scanning the transparency, Го(х, y). Instead of 
modeling the transparency that is being scanned by an optical beam, as 
shown by Fig. 3.3, we assume that the transparency, Го, is moving through 
the optical beam. In Fig. 3.3, the plane of the photodetector is on the X  — y w 
plane and the optical scanning beam specified by a complex field, b(x', yw), is 
stationary at the origin of the X  — yw plane. By scanning or sampling we 
mean that successive points (x, y, in transparency coordinates) of Го are 
brought into coincidence with the center (xw, yw =  0) of the optical beam in 
the X  — yw plane.

i/jp(x,y)exp( ju}0t)

I фр(х> у ) =  \фр(х , y)|exp[#(® , у)]
D

z = 0

Figure 3.2 Optical direct detection.

У  Г 0 ( х ' +  x , y ' +  у)

X 1 —  у ' : plane of photodetector

Fig. 3.3 Scanning situation.
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In Fig. 3.3, the arguments, x and y, of Г0 signify that the transparency is 
moving or translating with respect to the optical beam. Therefore, the total 
complex field reaching the photodetector is b(x', y' )>0(x'  + x , y '  + y). The 
photodetector collects all the transmitted light and delivers a current, 3. 
According to Eq. (3.1-1), 3 is given by

3(x,y) °  f  lb(x' ,y') Г0(xw+  x ,y w+  y)|2dx/dy/, (3.1-3)
D

where x  = x(t )  and y = y(t) represent the instantaneous position of the 
transparency. Alternatively, scanning imaging can be modeled by moving the 
optical beam across the transparency, which results in the following 
equation:

3(x,y) °  I  | r 0(xw, y ' ) b ( x ' - x , y ' - y ) l 2dx'dy' .
D

If we let x'  — x  = x'' and y' —y = y'' and then substitute them into the 
above equation, we have

3(x,y) °  (  \ r 0 (x" + x,  y '  + y)b(x' ' ,y' ' )l2dx' 'dy' ' ,
D

which is identical to Eq. (3.1-3). We shall use the formulation shown in 
Eq. (3.1-3) to represent optical scanning throughout the book. Note that 
for uniform scan speed V, we have x(t )  = V t  and y(t) = Vt .  When we 
rearrange Eq. (3.1-3), we have

3(x,y) °  (  \b(x' ,y' )l2 \ r 0 ( x ' + x , y ' + y)l2dx'dy'
D

= lb(x, y )l2 ® lr0( x , y )l2. (3 .1-4)

Note that this result is interesting because it is an incoherent optical system 
where only the intensities are processed, i.e., l r 0(x ,y)|2is processed by 
lb(x,y) l2 even though the object, r 0(x,y), originally may be complex in 
nature. Since the beam complex field, b(x,y) ,  and the pupil, p(x , y ) ,  are in 
the back and the front focal plane of lens L 1, respectively, as shown in Fig. 
3.1, they are related by a Fourier transformation where [see Eq. (2.4-6)]

l ( x , y ) = Y xy{P( x , y )}
kx=k0x/ f
ky=k0y/f

(3.1-5)

Figure 3.4 shows a commercially available x-y scanning system from 
General Scanning™. The mirrors are driven by galvanometers. The figure on
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the right is a close-up of the x-y scanning mirrors positioned orthogonally to 
each other (one direction for the x-scanning and the other for the y- 
scanning).

3.2 Optical Heterodyning

In the last section, we have shown that a simple optical scanning system that 
employs optical direct detection cannot extract any phase information of the 
incident complex field. While holography requires the preservation of the 
phase information, we, therefore, need to find a way to preserve the phase 
information during photodetection if we are expected to use optical scanning 
to record holographic information. The solution to this problem is optical 
heterodyning.

Figure 3.5 shows an optical heterodyne detection. The half-silvered 
mirror combines two mutually coherent laser beams; the information optical 
signal beam and the reference optical signal beam, having temporal 
frequencies of =0 and =0 + H, respectively [in the next section, we will show 
how laser beams of different temporal frequencies can be achieved by using 
acousto-optics]. For simplicity, we will consider the information signal and 
the reference signal, both as plane waves expressed by <Pexp(j=0t) and 
Bexp[j(=0 + H)t] on the surface of the photodetector, respectively. Hence, 
the total field on the surface of the photodetector is = <pexp(j=0t) + 
Bexp[j(=0 +  H)t]. Since the photodetector only detects intensity, the current 
output is then given by

Fig. 3.4 x-y optical scanning system.
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=  I \<pexp(j=0 t)
D

B  exp [j(=0 + H) t ] f dxdy

= D[A# + B# + 2 A B  cos(Ht — ф)], (3.2-1)

where we assume that the information signal is <p = Ae jф, which has an 
amplitude of A  and phase information, ф. Also, for simplicity, we assume 
that B  is real in the above equation. The term, A# + B #, is the DC current (or 
the baseband current), whereas the term ABcos(Ht — ф) is the AC current 
(or the heterodyne current) due to the mixing or heterodyning of the two 
optical signals at different frequencies [Poon (2002b), Poon and Kim 
(2006)]. Also note that the amplitude and the phase of the information signal 
both have been preserved in the current as it is clearly indicated in the last 
term of Eq. (3.2-1). Hence, optical heterodyning can preserve the amplitude 
and phase of the information signal. This type of photodetection is known as 
optical heterodyne detection (or optical coherent detection).

Fig. 3.5 Optical heterodyne detection.

Now that we have shown how the current, 3, contains the amplitude and 
phase information through heterodyning, we will discuss how to extract this 
information electronically. Figure 3.6 shows an electronic multiplexing 
detection.

The current, 3, first passes through a bandpass filter that is tuned to 
the heterodyne frequency, H, in order to reject the baseband current and to 
extract the heterodyne current, 3H °  Acos(Ht — ф) . The heterodyne current 
splits into two channels to obtain two outputs, 3C and 3S, as shown in Fig. 3.6. 
Each channel actually performs lock-in detection, which consists of 
electronically multiplying the incoming signal with the cosine or sine of the 
heterodyne frequency, and then using lowpass filtering to extract the phase of 
the heterodyne current. Let us now see how it is mathematically performed.
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First, consider the upper channel where the electronic multiplier gives 

3H x cos(fit) =  Ecos(H> — 9)cos(H>)

=  -E cos( — 
2 v

#Ecos(2fit — 9) (3.2-2)

as output, and where we have used the following trigonometric identity:

1 1 
cosacos" =  # cos(a — ") +  # cos(a +  ").

Half-silvered

muTor V

■£?exp[j(ti;o +  J2) ]̂ 

\ l ,

ippe x p ( j u j 0t )

J- filter tuned at f!

| PD

cosfIt

О О

i c t . 
4----|l  I'l |- ( x ) -----  *

» — tLPF Н Л>----

® sPC/Monitor " О
s i n Q t

Fig. 3.6 Electronic multiplexing detection.

By using a lowpass filter on the output of the multiplier (which means we are 
rejecting the frequency of 2H), we can obtain the in-phase component of the 
heterodyne current, , which is given by

3C =  Ecos(9). (3.2-3a)

Apart from some constant, Eq. (3.2-3a) is really the first term of Eq. (3.2-2). 
Similarly, the lower channel of Fig. 3.6 gives the quadrature component of 
the heterodyne current, 3H, which is given by

3S =  Esin(9), (3.2-3b)

where we can use the identity,

1 1 
cosasin" =  # sin(a +  ") — # sin(a — "),
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to obtain this result. Now, once 3C and 3s have been extracted and stored in a 
computer, we can perform the following complex addition:

3 c  + j  3s =  Acos(9) + jAsin(9)  = Ae x p ( j 9 ) . (3.2-4)

Note that this result is the full recovery of the information signal, <p = Ae jф, 
from the photodetector’s current given by Eq. (3.2-1). In fact, we will take 
advantage of optical heterodyning and electronic multiplexing detection by 
obtaining holographic information without the twin-image noise. We will 
return to this topic later.

3.3 Acousto-Optic Frequency Shifting

When we employ optical heterodyning as shown in Fig. 3.5, we need to 
create two laser beams of different temporal frequencies. In this section, we 
will discuss a common device used for shifting light frequency known as the 
acousto-optic frequency shifter (AOFS) or acousto-optic modulator (AOM) 
[Korpel (1981)].

Fig. 3.7 Acousto-optic modulator.

An acousto-optic modulator is a spatial light modulator that consists of an 
acoustic medium, such as glass, that is bonded to a piezoelectric transducer. 
When an electrical signal is applied to the transducer, a sound wave 
propagates through the acoustic medium causing perturbations in the index 
of refraction, which is proportional to the electrical excitation. This in turn 
modulates the laser beam that traverses the acoustic medium. Thus, the
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acousto-optic modulator, as shown in Figure 3.7, may be thought to act 
similar to phase grating with an effective grating line separation equal to the 
wavelength, A, of the sound in the acoustic medium. As it turns out, for a 
very specific incident angle, ф™, the sound grating splits incident light into 
two diffracted beams, namely the 1-st order diffracted beam and the 0-th 
order diffracted beam at angles ф" and фо, respectively. This is shown in 
Fig. 3.7. We shall identify these angles next.

One of the simplest explanations used to describe the interaction 
between sound and a laser is to treat the interaction as a collision of particles, 
namely photons and phonons. In order for these particles to have well- 
defined momenta and energies, we must assume that we have an interaction 
of plane waves of light and sound. In other words, we assume that the width 
of the transducer is sufficiently wide enough to produce plane wave fronts at 
a single frequency.

We will now consider two conservation laws that exist during the 
collison: the conservation o f  energy and the conservation o f  momentum. The 
condition for conservation of momentum is

hk+1 = h k 0 + h K  , (3.3-1)

where h k 0 and h K  are the momenta of the incident photon and phonon, 
respectively, and hk+1 is the momentum of the scattered photon. k+1, k0, 
and K  are the corresponding wavevectors of the particles, and h = h l2 i  
where h is Planck’s constant. Now, from the conservation of energy, we have

h=+1 =  h=o +  h H, (3.3-2)

where h=+1, h=0, and h H are the energies of the scattered photon, incident 
photon, and phonon, respectively. =+1, =0, and H are the corresponding 
radian frequencies of the particles.

After dividing Eq. (3.3-1) by h, we have

k+1 = k 0 + K  . (3.3-3)

Also, from Eq. (3.3-2), the corresponding conservation of energy takes the 
form

=+1 =  =o + H. (3.3-4)

Figure 3.8a) shows the wave-vector interaction diagram and is constructed 
based on Eq. (3.3-3). For all practical cases, |K| ¥  | k 01, the magnitude of 
k+1 is essentially equal to that of k0, and the wave-vector triangle shown in 
Fig. 3.8a) is, therefore, nearly isosceles. Note that the closed triangle in 
Figure 3.8a) stipulates that there are certain critical angles of incidence for 
the interaction of plane waves of light and sound. The stipulated incident 
angle, ф™, is called the Bragg angle, which is given by
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sin(9 B )= 2 ° 0 = 2A , (33-5)

where k0 =  | 5o| =  2i / - o is the wavenumber of light inside the acoustic 
medium and - o is the wavelength of light. К  = | K \ = 2^ /A is the 
wavenumber of sound and A is the wavelength of sound. Note that the 
diffracted beams differ in direction by an angle equal to 20B as shown in Fig. 
3.8a). 9 1and ф0 in Fig. 3.7 must then be equal to 9B.

Figure 3.8b) shows that the 1-st diffracted beam is being up-shifted 
in frequency as is required by Eq. (3.3-4). The interaction described by 
Eq. (3.3-4) is called an upshifted interaction because the frequency of the 
diffracted beam, = +1, has been upshifted by the amount of the sound 
frequency, H. It is also clear that since we really do have a traveling sound 
wave, the frequency of the diffracted light is Doppler shifted.

Fig. 3.8 Acousto-optic interaction: 
a) wave-vector diagram, b) experimental configuration.

The frequencies of sound waves produced in laboratories range from 
about 100 KHz to 3 GHz. Figure 3.9 shows a commercially available 
acousto-optic modulator, Model AOM-40, from IntraAction Corporation. It 
uses dense flint glass as an acoustic medium (refractive index n o ~  1.65) 
and operates at a sound center frequency of f s = 40 MHz. Therefore, in Fig. 
3.9, the sound wave travels in the glass from the left to the right at a velocity 
of Vs~4000m/s with a sound wavelength of A = Vs/ f s ~ 0.l mm. If a He-Ne 
laser is used (its wavelength is about 0 .6328 .7  in air), its wavelength inside 
the glass is - o~ 0.6328.rn/no ^  0 .3743. 7 . Hence, according to Eq. (3.3
5), the Bragg angle, inside the acoustic medium is ~ 1.9 x 10~3radian or 
about 0.1 degrees. In Fig. 3.9, we have identified the two diffracted laser 
spots at the far background. The incident laser beam (not visible to the eye as 
it traverses across a transparent medium of glass) is traveling through the 
glass along the long dimension of the piezoelectric transducer.
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T w o diffracted beams 
Piezoelectric transducer at the far background

Fig. 3.9 Typical acousto-optic modulator operating at 40 MHz 
[Adapted from Poon (2002b)].

3.4 Two-Pupil Optical Heterodyne Scanning Image Processor

We have previously discussed optical scanning and optical heterodyning in 
prior sections. We have also discussed pupil function in an optical system, 
and we have shown that the pupil function can modify the characteristics of 
spatial filtering in an optical system [see Fig. 2.14]. In this section, we are in 
a position to discuss optical heterodyne scanning from which optical 
scanning holography is based. Since optical heterodyne scanning requires 
two optical beams to mix or heterodyne, we must, therefore, have two pupils 
in the optical system. One can envision that an optical system that has two 
pupils will have greater processing power because spatial filtering will now 
be controlled not only by a single pupil, as in conventional optical systems, 
but by two pupils. These systems are called two-pupil systems [Lohmann and 
Rhodes (1978), Poon and Korpel (1979)]. The article by Indebetouw and 
Poon provides a review of two-pupil approaches on incoherent image 
processing [1992].

Figure 3.10 shows a typical two-pupil optical heterodyne scanning 
image processor, which was originally developed and analyzed by Poon 
[1985]. We shall develop some mathematical descriptions of this system, 
which will eventually lead to the concept of optical scanning holography.

Beamsplitters BS and BS", and mirrors M and M" form the Mach- 
Zehnder interferometer. The pupil, p i(x ,y), is illuminated by a collimated 
laser at temporal frequency =0. The other pupil, p2(x,y), is illuminated by 
the laser of temporal frequency = 0 +  H. The laser’s temporal frequency offset 
by H is introduced by an acousto-optic frequency shifter (AOFS) as shown in



the figure. Note that the figure shown in Fig. 3.10 is highly schematic 
because the details on selecting the first-order diffracted beam, which is the 
frequency-shifted beam at frequency =o +  H, emerging from the AOFS are 
not shown. The two pupils are located at the front focal planes of lens L" and 
L2, both with a focal length of f . The two pupils are then combined by the 
beamsplitter, BS", in order to focus the light onto the 2-D, x — y scanning 
mirrors, which are located on the back focal plane of lenses L" and L2. The 
combined optical beams are then used to 2-D raster scan over an object of 
amplitude distribution, Го(х, y; z), which is located at a distance of z away 
from the focal plane of the two lenses. Lens L3 is used to collect all the 
transmitted light (or scattered light if the object is diffusely reflecting) onto 
the photodetector (PD), which gives 3(x, y) as its current output. An 
electronic bandpass filter (BPF) tuned at the heterodyne frequency of H 
provides an output of a scanned and processed current 3H(x,y). We shall 
further develop the mathematical expression of 3H (x, y ).
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Fig. 3.10 A typical two-pupil optical heterodyne scanning system.

The combined optical scanning complex field, S(x ,  y; z), located at a 
distance of z away from the focal plane of the two lenses, is given by

S(x, y; z) =  P"z( - f x ,5f y ) exp(j'=o>) + P#z(~f x ,5 f y )exp[j'(=o+H)t] ,

(3.4-1)
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where T3D(50x, -^p) is the field distribution d away from the scanning mirrors 
and through Fresnel diffraction, is given by

5ox 5оУ S „ , 5ox 5оУ s , ,  ч • O / , , 1 ^
Piz^ ~ f  ,— ) =  р з(“  ,— ^  2(x  y ; 3 =  1 , 2 . (3.4-2)

In Eq. (3.4-2), T3(50x, 50y) is the field distribution in the back focal plane of
lenses L1 and L2, and apart from some inessential constant and a constant 
phase factor, is given by [see Eq. (2.4-6)]

. (3.4-3)ix=iox//
5у=5оу//

Now, as previously mentioned, the combined optical field or the scanning 
pattern, given by Eq. (3.4-1), is used to two-dimensionally scan an object 
with an amplitude transparency of r 0(x, y;z) located at a distance d from the 
scanning mirrors. According to the principle established by Eq. (3.1-3) for 
optical scanning, the photodetector, which responds to the incident intensity 
of the optical transmitted field or scattered field, generates a current given by

3(x, y; d) °  I |W(x-, y-; z)ro (x- +  x, y- +  y; z)|2dx-dy- 
J d

i d

, ̂ ^ )  exp(4=o>) + T2d ( ^ ^  , -°y- ) exp [j'(=o+H)t]
/  ’ / /  ’ /

^ ( x  +  x^y  +  y-;,?) dx-dy-. (3.4-4)

After a bandpass filter (BPF) is tuned to a frequency of H, the heterodyne 
current from Eq. (3.4-4) becomes

• /  ̂ n  Г /  n* 5оУ-ч „  , 5ox ' 5оУ- ч
3H(x ,y ;D) =  Re ( d t 1d( /  ,— ) t 2d(— ,— )

x |> o (x +  x-,y +  y-;d)| dx dy exp(jHt) (3.4-5)

2

where we have adopted the convention for the phasor as <(x,y,>) =  
Re[<:  (x, y, t)exp(j'Ht)], where Re[.] denotes the real part of the content 
inside the bracket. Equation (3.4-5) can be written as
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3h(x, y; z) = Re[iHp(x,y;z)exp(j'Ht)], (3.4-6a)

where

• f  ̂ (  (  d* / kox' ko y \ D / kox' koyw ч 
3H:(x ,y ;z) =  J  J D P"z( ~ f ~ , f  )P#z( f  , — ) (3.4-6b)

x |r o ( x +  xw,y +  yw ;z)|2dx'dy'

is the output phasor containing the amplitude and the phase information of 
the heterodyne current. The amplitude and the phase information of the 
current constitute the scanned and the processed version of the object 
| r o|#and from Eq. (3.4-6), we can write

3h Ob y ;z) =  |3Hp(x  y; z) |cos[(H> +  y; z)],

where iHp =  |iHp |exp(j'0: ). Note that we can re-write Eq. (3.4-6b) in terms of 
the following correlation:

4 ( x ,y ; z )  =  P"z(kf x ,kf y ) P#*z(kf x ,kf y ) ® |ro(x,y;z)|#. (3.4-7)

Similar to conventional optical scanning systems (or incoherent optical 
systems), only the intensity distribution, i.e., | r o |# will be processed and the 
optical system is therefore incoherent. However, | r o |# is not strictly 
processed by an intensity quantity, and as indicated by Eq. (3.4-7) the 
processing element, P"zP2*z , can be bipolar or even complex, thereby leading 
to the concept of complex incoherent image processing.

Equation (3.4-7) relates the input quantity to the output quantity and 
from this we can now define the optical transfer function (OTF) of the 
system to be

OTJH(kx,ky;z) =  Y { ^ ( x ,  y; z)}/Y {|r>(x , y;z)|#}. (3.4-8)

By taking the Fourier transform of Eq. (3.4-7) and combining its result with 
Eq. (3.4-8), we obtain the equivalent,

/̂ г-ртр (7 7 \ i:* г d ( kox koy , j-j* / kox koy s 
O TJ H(kx,ky;z) =  Y  { P "z(— ^ ) P2z(y ^ ^ )} . (3.4-9)

In terms of the pupils :  and : 2, we substitute Eqs. (3.4-2) and (3.4-3) into 
Eq. (3.4-9) to get
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O T P h ^  ky;z) =  exp[i # ^ (kx + k#)]
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f  zkx, yw +  -7 - ky )exp[^ (xwkx +  y/ky)]dx/dy/.
ko f

(3.4-10)
This equation was first derived by Poon [1985], and it states that the optical 
transfer function of the system, O X JH, can be modified based on the 
selection of the two pupils. Now, by using Eq. (3.4-8) and by re-writing 
Eq. (3.4-6a) in terms of OX J H, we obtain

3h(x, y; z) =  Re[iHp(x,y; z)exp(j'Ht)]

=  Re[Y—"{Y { |ro (x ,y ;z)|2}OTJn(kx,ky; z)}exp(j'H>)].

(3.4-11)
By defining the spatial impulse response (or the point spread function) of the 
optical heterodyne scanning system as

2h(x, y; z) =  Y  —"{OXJh}, (3.4-12)

we can now re-write Eq. (3.4-11) in the spatial domain as

3h(x , y; z) =  Re j[|To(x, y; z)|#*2h(x , y; z)] exp(j'Ht) >. (3.4-13)

Equation (3.4-11) or (3.4-13) represents the scanned and processed output 
current, which is modulated by a temporal carrier at a frequency of H. By 
mixing 3H with cos( H >) or sin( H t ), we can demodulate and extract the 
in-phase component or the quadrature component, respectively. The demo
dulation system is shown in Fig. 3.6, and the two outputs are given by

3c(x, y; z) =  Re[Y—"{Y {|ro |2}OTJh}] (frequency domain)

=  Re[|To|2*2H(x, y; z)] (spatial domain) (3.4-14a)
and

is(x, y; z) =  Im[Y—"{Y { |ro|2}O T JH}] (frequency domain)

=  Im [|ro|#*2H(x, y; z ) ,  (spatial domain) (3.4-14b)

where Im[.] denotes the imaginary part of the quantity within the bracket. 
The subscripts “c” and “s” represent the use of cos(H>) and sin(Ht) 
respectively, to extract the information from 3H.

x J  / : * (x/, yw):2 (x/ +  k̂ o
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In Eqs. (3.4-14), we have assumed that the input object, 
| r o(x, y; z)|2, is an infinitely thin 2-D object located at a distance of z away 
from the 2-D scanning mirrors shown in Fig. 3.10. To generalize Eqs. (3.4
14) for 3-D objects, we need to integrate the equations over the depth, i.e., 
over z, of the 3-D objects. Eqs. (3.4-14) then become [Poon and Kim (1999)]

3c(x,y) =  R e [ J  Y —1{Y { |ro (x ,y ;z ) |2}O T Jfi}dz] (3.4-15a)

=  Re[(  |ro (x ,y ;z ) |2*2fi(x,y;z)dz] (3.4-15b)

and

3=(x,y) =  Im[ ( Y —1{Y {|ro(x,y;D )|#}O TJfi}dD] (3.4-15c)

=  Im[( |To(x, y; z) |#*2fi(x, y; z)dz]. (3.4-15d)

Note that we have left the z-dependence out on the left-hand side of Eqs. 
(3.4-15) to emphasize that the recorded information is strictly 2-D even for 3
D objects. 3c(x,y) and 3s(x,y) represent the scanned and processed current 
(or information) of | r o|2and can be stored as 2-D records if these currents are 
stored in synchronization with the signals used to drive the x — y scanning 
mirrors. Equations (3.4-15) represent the major results of the two-pupil 
optical heterodyne scanning of a 3-D object. Figure 3.11 shows the overall 
two-pupil optical heterodyne image processor. The 3-D object is 
| r o(x ,y ;z)|2, and the final outputs given by Eqs. (3.4-15) are 3c(x,y) and 
3s(x,y). Note that while the input object is given by the amplitude 
distribution, r o(x, y; z), the information that can be processed is the intensity 
distribution given by | r o(x, y; z )|2. As it turns out, this is the incoherent 
mode of operation for the processor, which has so far been inclusively used 
for various applications such as 3-D fluorescence holographic microscopy, 
3-D pattern recognition, optical remote sensing, and 3-D cryptography. In 
chapter 4, we will further elaborate on some of these applications. In chapter 
5, when we consider the advancements towards optical scanning holography, 
we will describe a coherent mode where the complex distribution of the 
object can be processed [Indebetouw, Klysubun, Kim, and Poon (2000)]. 
This can be important when we deal with the phase specimens in biological 
applications.
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Fig. 3.11 The complete two-pupil optical scanning image processor.

3.5 Scanning Holography

In this section, we will discuss how holographic recording can be 
accomplished by using the two-pupil optical heterodyne scanning image 
processor discussed in the last section. The idea was first implicated by Poon 
and Korpel [1979]. They realized that interesting OTF’s can be obtained by 
drastically modifying one of the pupils in relation to the other. In this 
context, it is intriguing to realize that there exists a possibility of creating a 
Fresnel-zone-plate-type impulse response (i.e., its phase is a quadratic 
function of x and y) in an out-of-focus plane near the focal plane of lenses 
L1 and L2, i.e., d away from the scanning mirrors shown in Fig. 3.11, by 
making pi(x ,y) uniform and p#{x,y)  a delta function. When investigating 
the chirp property, we can determine how far d is from the scanning mirrors, 
and thus, it carries obvious implication to holographic recording. The 
original idea, which was later analyzed and called scanning holography 
[Poon (1985)], is to scan the 3-D object in a 2-D raster with a complex
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Fresnel-zone-plate-type impulse response created by the interference of a 
point source and a plane wave emerging from each pupil. A temporal 
frequency offset is introduced between the two pupils, and the desired signal 
from a spatially integrating detector is obtained using a heterodyne detection.

Hence, for scanning holography we mathematically let pi(x ,y) =  1 
and p2(x,y) =  $(x,y), which are both clearly pictured in Fig. 3.11. With this 
choice of pupils, according to Eq. (3.4-10), the OTF of the heterodyne 
scanning system becomes

=  OTFoSh(kx,ky;z) ,  (3.5-1a)

and according to Eq. (3.4-12), the corresponding spatial impulse response is

, / 4 ~ J k0 ri 50(x2 +  y2)1(x,y;z)l =  —-----exp[---------------- ]. (3.5-1b)osh 2lZ 2z

Apart from the constant phase factor, it is interesting to point out that by 
comparing the spatial frequency transfer function in Fourier optics [see Eq. 
(2.3-13)] to Eq. (3.5-1a), we have

OT FoSh (kx,ky;z)  = H * ( k x , k y;z),  (3.5-2a)

and similarly in reference to Eq. (2.3-11), we have

hQ(x ,y ;z)| =  h *(x,y;z). (3.5-2b)
losh

From the result of Eq. (3.5-1b) for scanning holography, apart from some 
constant, the spatial domain equations, Eqs. (3.4-15b)and (3.4-15d), become

3c(x,y) =  ( {  |ro (x ,y ;z ) |2*#kj0zsin[#k0(x2 +  y2)]Jdz

Hsin(x> y) (3.5-3a)

and

3=(x,y) =  ( {  |To(x, y; z) |2*2"10zcos[2k0 (x2 +  y2)]} .z  (3.5-3b)

H cos (x? y),
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respectively. What is being two-dimensionally recorded is a hologram. 
L sin(x, y) is called the sine-FZP hologram, and L cos(x, y) is the cosine-FZP 
hologram of |To(x, y; z)|2.

To see why Eqs. (3.5-3) correspond to holographic recordings, we 
will let | r o(x, y; z) |2 =  $(x, y)5(z — zo), which is a point source located zo 
away from the scanning mirrors. Then Eq. (3.5-3a) becomes

L sin(x, y) =  (  { $(x,y)$(z — Do)*2“ D s i ^ ^ x 2 +  y2)] >dz

=  / { « D — Do)5 i :  sin[: | ( x2 +  y2)]}d :

after the 2-D convolution involving x and y. And finally, after the integration 
along D, the above equation becomes

Lsin(x,y) =  sin^ ^ 2 +  y2)]. (3.5-4a)
2izo 2zo

Note that this is basically the hologram of a point source without the constant 
bias of E, which appears in Eq. (2.5-4). The constant bias simply gives a 
zero-order beam upon optical reconstruction. Similarly, Eq. (3.5-3b) gives

Lcos(x,y) =  cos[;5 ^ (x 2 +  y2)]. (3.5-4b)
2izo 2zo

In summary, in scanning holography for a single 2-D raster-scan we have 
two records of the holograms, due to electronic multiplexing detection. Both 
of the holograms given by Eq. (3.5-3) contain holographic information, but 
they are not redundant as we will later see that with the two holograms, we 
can obtain a twin-image-free hologram even the recording is made on-axis.

Figure 3.12 shows the very first hologram using scanning 
holography [Duncan and Poon (1992)]. The hologram is a slit with the size 
of 50 .m . The term “optical scanning holography" was first coined in this 
article to emphasize that this was the first electronic hologram created by 
using the active optical scanning technique. To put optical scanning 
holography into perspective, holograms obtained by scanning techniques at 
long wavelengths have long been achieved. This has been possible because 
there is no need to supply a physical reference beam in order to extract 
holographic information because detectors that are capable of measuring the 
oscillation of low-frequency radiation (such as acoustic waves or micro
waves) are commonly available, permitting amplitude and phase informa
tion to be directly extracted from long wavelength signals.

In general, optical scanning holography (OSH) can be applied to 
other shorter and longer wavelength systems as long as we can find devices
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of that particular wavelength that can generate a collimated beam and a 
focused beam so that the two beams interfere on the object. In addition, a 
frequency shifter for that wavelength must be available. In a more futuristic 
vision, CO2 scanning holography for active optical remote sensing can be 
possible as 10.6 .m  can penetrate the atmosphere with little absorption. At 
the other end of the light spectrum, X-ray scanning holography is becoming a 
reality because of the increasing existence of X-ray lasers, which should be 
important if atomic resolution for 3-D specimens is required. In the remain
der of the book, we shall use the term optical scanning holography or OSH 
instead of scanning holography.
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Fig. 3.12 The first hologram obtained using optical scanning holography: solid line: 
theoretical results; dotted line: experimental results. The object is a 50.m-slit. Reprinted from 

Duncan and Poon, JOSA A 9, 229 (1992), with permission. © OSA.

The extension of the capabilities of one-dimensional to two
dimensional imaging by using optical scanning holography was subsequently 
demonstrated by Poon, Doh, Schilling, Wu, Shinoda, and Suzuki [1995]. Fig. 
3.13 shows a hologram of a pinhole object. A sine-hologram of the pinhole is 
shown (this is the well-known FZP). The pinhole is about 50 .m  in diameter 
and approximately 10 cm away from the 2-D scanning mirrors. The plane 
wave on the pinhole is about 10mm, and comes from a collimated HeNe 
laser. The spherical wave on the pinhole comes from a focused laser beam of 
a size of about 3.5 .m . The temporal frequency difference between the plane 
wave and the spherical wave is 40 MHz. In the same paper mentioned, the 
authors reported the first 3-D imaging capability using optical scanning 
holography. Three-dimensional imaging was demonstrated by digitally 
reconstructing an acquired hologram to show various depths of an image.
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Fig. 3.13 Sine-hologram of a pinhole. The first 3-D imaging capability using OSH is also 
reported in the paper. Reprinted from T.-C. Poon at al., Optical Engineering 34, 1338, 

with permission. © 1995 SPIE.

We have discussed the twin-image problem in on-axis holography. 
And off-axis (or carrier-frequency) holography has been employed to avoid 
the annoying effect of the twin-image. One of the most popular electronic 
holographic techniques used to obtain reconstruction free of the twin image 
is called phase-shifting holography [Yamaguchi and Zhang (1997)]. This 
technique employs phase-shifting on the reference beam to obtain four 
on-axis holograms in order to calculate the phase of the complex object wave. 
Using optical scanning holography, we only need to perform a single 2-D 
scan in order to simultaneously obtain two on-axis holograms - namely the 
sine-hologram and the cosine-hologram. Since the two holograms can be 
stored digitally, we can perform a complex addition or subtraction as 
follows:

L c±(Bi y) — L coS(B,y) „  JL sin(B, y)

=  ( |  |Г0(в, y; d) |2*2~Dexp[±i25!(B2 +  C2) ] } .d, (3.5-5)

where we have used Eqs. (3.5-3a) and (3.5-3b). Я с±(в,у) is called a 
complex Fresnel zone plate hologram, which contains no twin-image 
information [Doh, Poon, Wu, Shinoda, and Suzuki (1996)]. To better 
understand this, we will construct a complex hologram for a point object. 
Substituting Eqs. (3.5-4a) and (3.5-4b) into Eq. (3.5-5), and apart from some 
constant, we have

Я с±(я,у) — exp[± 45o(b2 +  y2)]. (3.5-6)
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According to Eqs. (2.5-6b) and (2.5-6c), this hologram can construct either a 
real point source or a virtual point source, depending on the sign of the 
argument being chosen in Eq. (3.5-6). For the positive sign in the argument, 
we will have a real image reconstruction, and for the negative sign, we will 
have a virtual image reconstruction. In either case, there is no twin-image 
formation within the complex hologram.

Fig. 3.14 Twin-image elimination with two holograms: a) Cosine-hologram. b) Sine- 
hologram. c) Reconstruction of a), the cosine-hologram, focused on the square (twin-image 
noise noticeable). d) Reconstruction of the complex hologram, focused on the square (no 

twin-image noise). e) Reconstruction of a), focused on the triangle (twin-image noise 
noticeable). f) Reconstruction of the complex hologram, focused on the triangle (no twin- 

image noise). Reprinted from Poon et al., Optics Letters 5, 215, (2000), 
with permission. © OSA.

Figure 3.14 shows the experimental results of eliminating the twin image for 
three-dimensional images in optical scanning holography. In the experiment, 
the 3D object consisted of two 35-mm slides that were set up side-by-side 
and at different distances from the scanning beam. One slide is a square, and 
the other is a triangle. The depth difference between the two slides is 15-cm. 
Figure 3.14a) and b) show the cosine- and sine-holograms, respectively. 
Figure 3.14c) shows the reconstruction of the cosine-hologram. This



reconstruction is focused on the square object but is spoiled by twin-image 
noise. In Fig. 3.14d), where the complex hologram is used to reconstruct and 
focus on the square object, twin-image noise is not present. In Fig. 3.14e), 
the cosine hologram reconstructs an image that is focused on the triangle but 
spoiled by twin-image noise. In fig. 3.14f), the complex hologram gives a 
reconstruction without twin-image noise. Thus, the elimination of twin- 
image in optical scanning holography has been demonstrated using only two 
holograms. In the demonstration, the use of digital reconstruction has been 
employed. By using two SLM’s (one for the display of a sine-hologram and 
the other for a cosine-hologram), we can achieve all-optical reconstruction. 
However, this has yet to be demonstrated optically [Poon (2006)].

Example 3.1 MATLAB Example: Optical Scanning Holography

By substituting the OTF of optical scanning holography, given by Eq. (3.5- 
1a), into Eqs. (3.4-15a) and (3.4-15c), the sine-hologram and the cosine- 
hologram will be expressed in terms of spatial frequencies. Therefore, we 
have

3с(в,у) — Re[( Y —1{Y {|Го(я, у; D)|2}OTJosh(5;r, 5y; d)}.d]

— L sin(B,y) (3.5-7a)

and

3S (b,c) — Im[ (  Y  —1{Y {|ro(B,y;D)|2}OXJosh(5B,5y;D )}.d]

— Lcos(B,y), (3.5-7b)

where O T Josh(fca;,fcy;D) — exp[ — 4250(5j# + 5##)]. For this example, we are 
assuming a planar object to be at a distance of d0 away from the x-y scanning 
mirrors, i.e., |Г0(b, y; d) |2 — M(b, y)5(z — d0), where M(b, y) is the planar 
intensity distribution shown in Fig. 3.15a). For the planar intensity object, 
after integrating over d , Eqs. (3.5-7a) and (3.5-7b) become

Lsin(B,y) — Re[Y —1{Y{/(£,y)}OTJosh(5;r, 5y; Do)}] (3.5-8a)
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and

Lcos (B,y) — Im[Y—1{Y {/(B,y)}OTJosh(5B,5y;Do)}], (3.5-8b)
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respectively. The above holograms are simulated and shown in Fig. 3.15b) 
and Fig. 3.15c), respectively where sigma =  z0/2k0 =  2.0 in OSH.m listed 
in Table 3.1. We can also construct a complex FZP hologram by using Eq. 
(3.5-5):

H c+ (x, y) Hcos(x , y) +  JL sin(B, y)

=  Y - "{Y{I(x, y)}OTFosh(kx,  ky; zo)}. (3.5-9)

For digital reconstruction, we will simply convolve the above holograms 
with the spatial impulse response in order to simulate Fresnel diffraction for a 
distance of z0. To obtain real image reconstruction formed in front of the 
hologram, we will use the following equation:

Hany(x, y)*h(x,  y; zo),

where Hany(x,y) represents any one of the above holograms, i.e., the sine- 
hologram, the cosine-hologram or the complex hologram. In OSH.m, the 
above equation is implemented in the Fourier domain using the following 
equation [see Eqs. (1.2-3a) and (1.2-3b)]:

Reconstructed real image

°  Y - "{Y{Hany(x , y)}H (kx > ky';Z0)}

=  Y - "{Y{Hany(x, y)}OTFoSh*(kx , ky; zo)}, (3.5-10)

where we have used Eq. (3.5-2a) to relate O TFosh with the spatial frequency 
response, H (kx , ky; z0), to obtain the last step. Figures 3.15d), e) and f) show 
the reconstruction of the sine-hologram, the cosine-hologram, and the 
complex hologram, respectively.

Note that if the complex hologram is constructed as

H c - (x 5 y) Hcos(x 5 y) JH sin(x 5 y),

then it will have a reconstructed virtual image that is located at a distance of 
z0 behind the hologram. However, if we perform

H c-(x , y)*h(x , y;zo)

for reconstruction, we will see a severely out-of-focus image formed at 
z =  z0 as shown in Fig. (3.15g), which is equivalent to the Fresnel 
diffraction pattern of the original object at a distance of z =  2z0.
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Table 3.1 OSH.m : m-file for illustrating optical scanning holography.
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% OSH.m
% Adapted from "Contemporary Optical Image Processing with MATLAB," 
% by Ting-Chung Poon and Partha Banerjee, Table 7.2,
% Pages 222-223, Elsevier (2001).

clear all,
%%Reading input bitmap file 
I=imread('vatech.bmp','bmp');
I=I(:,:,1);
figure(1)%displaying input
colormap(gray(255));
image(I)
title('Original image')
axis off
pause

%%Creating OTFosh with SIGMA=z/2*k0 (Eq.(3.5-1a))
ROWS=256;
COLS=256;
sigma=2.0; %not necessary to scale 
%kx,ky are spatial frequencies 
ky=-12.8; 
for r=1:COLS,

kx=-12.8;
for c=1:ROWS,

OTFosh(r,c)=exp(-j*sigma*kx*kx-j*sigma*ky*ky);
kx=kx+.1;
end

ky=ky+.1;
end
max1=max(OTFosh);
max2=max(max1);
scale=1.0/max2;
OTFosh=OTFosh.*scale;

%Recording hologram 
% Taking Fourier transform of I 
FI=fft2(I);
FI=fftshift(FI);
max1=max(FI);
max2=max(max1);
scale=1.0/max2;
FI=FI.*scale;
% FH is the recorded hologram in Fourier domain 
FH=FI.*OTFosh;
H=ifft2(FH);
max1=max(H);
max2=max(max1);
scale=1.0/max2;



H=H.*scale;
figure(1)
colormap(gray(255));
%Displaying the real part becomes sine-FZP hologram
% Eq. (3.5-8a)
image(2.5*real(256*H));
title('Sine-FZP hologram')
axis off
figure(2)
colormap(gray(255));
%Displaying the imaginary part becomes cosine-FZP hologram
% Eq. (3.5-8b)
image(2.5*imag(256*H));
title('Cosine-FZP hologram')
axis off
%Reconstructing holograms
%Reconstruction of sine-hologram,twin-image noise exists 
figure(3)
colormap(gray(255))
H=ifft2(FH);
FRSINEH=fft2(real(H)).*conj(OTFosh); %Eq. (2.5-10)
RSINEH=ifft2(FRSINEH);
image(256*abs(RSINEH)/max(max(abs(RSINEH)))) 
title('Reconstruction of sine-FZP hologram') 
axis off 
%FH=FHI;
%Reconstruction with cosine-hologram, twin-image noise exists 
figure(4)
colormap(gray(255))
FRCOSINEH=fft2(imag(H)).*conj(OTFosh);
RCOSINEH=ifft2(FRCOSINEH); %Eq. (3.5-10) 
image(256*abs(RCOSINEH)/max(max(abs(RCOSINEH)))) 
title('Reconstruction of cosine-FZP hologram') 
axis off

figure(5)
colormap(gray(255))
FRCOMPLEXH=fft2(real(H)+j*imag(H)).*conj(OTFosh);
RCOMPLEX=ifft2(FRCOMPLEXH);
image(1.4*256*abs(RCOMPLEX)/max(max(abs(RCOMPLEX)))) 
title('Real image reconstruction of complex FZP hologram,Hc+') 
axis off

figure(6)
colormap(gray(255))
FRCOMPLEXH2=fft2(real(H)-j*imag(H)).*conj(OTFosh);
RCOMPLEX2=ifft2(FRCOMPLEXH2);
image(1.4*256*abs(RCOMPLEX2)/max(max(abs(RCOMPLEX2)))) 
title('Reconstruction of complex FZP hologram, Hc-') 
axis off
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3.6 Physical Intuition to Optical Scanning Holography
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While we have devoted the last section to developing optical scanning 
holography from a mathematical point of view, in this section we will be 
describing optical scanning holography from a physical point of view. Again, 
to accomplish optical scanning holography, we select :i(x ,y )  =  l  and 
^ ( x ,  y) =  $(x, y) in the two-pupil heterodyne image processor (the situation 
is shown in Fig. 3.10 clearly) where lens L1 forms a point source and lens L2 
forms a plane wave on the scanning mirrors. At a distance of z =  z0 away 
from the scanning mirrors, where the object, | r 0(x,y; z ) |2 =  I(x , y) 
$(z -  z0), is located, we have an interference between a plane wave and a 
spherical wave of different temporal frequencies. Hence, the scanning beam 
intensity is

Mscan(x5 y; >)

=  | aexp[j(=o+H)t] +  exp[ -  4ko(x +  y ) ]exp(j= 0>)|2 
2izo 2zo

k
=  E  +  F  sin[---- (x2 +  y2) +  H>]

2zo

=  TDFZP (x, y; zo, >), (3.6-1)

where we have assumed that the plane wave is of amplitude a, and E  and F  
have been defined in Eq. (2.5-3). Note that this equation is basically the same 
form as that of Eq. (2.5-4) for the recording of an on-axis point source except 
for the time variable, >. We shall call this a time-dependent Fresnel zone 
plate (TDFZP), which is used to scan over the object in a raster fashion. For 
a pinhole object, i.e., I(x ,y ) =  $(x, y), the photodetector’s current, 3(x,y), 
is clearly given by TDFZP(x, y; z0,>) as the pinhole samples the intensity 
pattern, which then gives the intensity pattern as output. We can also see 
mathematically that if we make use of Eq. (3.1-4), we can obtain

3(x, y) ^  TDFZP(x, y; zo, >) 0  $(x, y)

=  TDFZP(x, y; zo, >) 

k
=  E + F  sin[----(x2 +  y2) +  Ш].

2zo

After bandpass filtering at H, the heterodyne current becomes
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in(x,y) -  sin[-— (x2 + у 2) + Ш], (3.6-2)

and after electronic detection, i.e., multiplying with, say cos(Ht), and 
lowpass filtering, we obtain

which is again Eq. (3.5-4a). So we can see that optical scanning holography 
is simply accomplished by raster-scanning a TDFZP over a 3-D object in 
order to obtain two holograms. The physical situation is shown in Fig. 3.16, 
where in the pupil plane, we have a point source and a plane wave. In the 
figure, we show the pattern of the scanning beam on the object slice for a 
fixed time, say, at t  = tn = Q, which becomes a “static” Fresnel zone plate 
(FZP). If we let the time run in Eq. (3.6-1), we will physically have running 
fringes that will be moving toward the center of the zone pattern. Hence, the 
basic principle of OSH is to simply use the TDFZP to 2-D scan a 3-D object 
to obtain holographic information for the scanned object. The m-file 
presented in Table 3.2 will allow us to generate a TDFZP and illustrate the 
running of fringes.

(3.6-3)

TDFZP(x,y\z$,t) =  A  +  В  s in [ - ^ - ( a ; 2 +  у2) +  Ш ]

Lens L 1
A

с

Z  о B\
Pupil plane Object slide

Fig. 3.16 Principle of OSH: use of time-dependent Fresnel zone plate to scan over an object. 
Adapted from T. -C. Poon, Journal of Holography and Speckle 1, 6-25, (2004).
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We can also select the pupils differently to achieve optical scanning 
holography as long as we can create a time-dependent FZP to scan the 3-D 
object. For example, we can select p1(x,y)  = 5(x,y)  and p2(x,y)  = 1 
instead of p i(x,y) =  1 and p2(x,y)  = 5(x,y)  as we had previously 
discussed in the two-pupil heterodyne image processor. Then, the scanning 
intensity become

Mscan(x? y  t)

I с  4-\ , j k o г jk o(x2 +  y2) 2=  | aexp(j=o>) +  ----- exp[---------- ----------]exp[j(=o +H)t] |
2ido 2do

=  A +  F  sin[;k^ ( x 2 +  y2) — Ht]
2do

=  TDFZP(x,y, zo,  — t). (3.6-4)

This will give fringes running away from the center of the zone, and this can 
be verified by changing the sign in front of B in the expression of 
FZP(ii,jj,kk) in the TDFZP.m file. As it turns out, this scanning beam gives 
the same expression for the sine-hologram given by Eq. (3.5-3a). However, 
the expression for the cosine-hologram is different with a “negative” sign in 
front of it. Note that the errors and sensitivities produced by the heterodyne 
method, as well as the impact created by these errors, will not be discussed in 
this book. Readers should refer to Section 5.4 of the Handbook o f  
Holographic Interferometry [Kreis, 2005], which will provide insight into the 
practical limitations of heterodyning holographic interferometry.

When П is set to zero, we have homodyning and the time-dependent 
Fresnel zone plate becomes static. Now by introducing phase shifts between 
the two interfering waves that are used to generate the Fresnel zone plate, 
one can obtain three holograms (as a result of three different phase shifts) to 
alternatively solve the twin-image problem in optical scanning holography 
[Rosen, Indebetouw and Brooker (2006)].

Table 3.2 TDFZP.m : m-file for illustrating running fringes in TDFZP.

% TDFZP.m
% Illustration of running fringes in TDFZP 
% The author thanks Kelly Dobson for her initial programming

clear;
Б=10.01*10л6; %temporal frequency, arbitrary 
D=6; %Scale arbitrary

t=linspace(0,1,35);
x=linspace(-2.5,2.5,256);
y=linspace(-2.5,2.5,256);
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for ii=1:length(x) 
for jj=1:length(y) 
for kk=1:length(t)
FZP(ii,jj,kk)=(1+sin(D*(x(ii)A2+y(jj)A2)+B*t(kk))); %TDFZP 
end 

end 
end

for ll=1:length(t)
max1=max(FZP(:,:,ll));
max2=max(max1);
scale=1/max2;
FZP(:,:,ll)=FZP(:,:,ll).*scale;

figure(ll);
colormap(gray(256)); 
image(256*FZP(:,:,ll)); 
axis off 
F(ll)=getframe; 
end

movie(F,10)
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Chapter 4 

Optical Scanning Holography: Applications

So far, the applications of optical scanning holography span over five diverse 
areas: scanning holographic microscopy [(Poon, Doh, Schilling, Wu, 
Shinoda, and Suzuki (1995)], 3-D image recognition [(Poon and Kim 
(1999)], 3-D optical remote sensing [Kim and Poon (1999)], 3-D holographic 
TV and 3-D display [Poon (2002a)], and 3-D cryptography [Poon, Kim, and 
Doh (2003)]. In this chapter, we will only cover three areas of the applica
tions mentioned above. We will focus on scanning holographic microscopy, 
3-D holographic TV and 3-D display, and 3-D cryptography in that order, 
as the other areas have been recently reviewed in the book chapters [Poon 
(2002b), Poon (2005)].

4.1 Scanning Holographic Microscopy

Three-dimensional (3-D) imaging is a formidable task for optical microscopy 
as it is well known that the greater the lateral resolution A r  is, the shorter 
the depth o f  focus A z  will be. In other words, if we want to create a higher 
lateral resolution in the microscopic imaging system, say by using a high 
numerical aperture (NA) lens, we will have to compromise the system with a 
shorter depth of focus where only a thin section of the specimen can be 
imaged. To demonstrate this fact, a simple quantum mechanical argument is 
convenient to use here.

Г
t

,  I

Fig. 4.1 Uncertainty principle used to find resolution and depth of focus.
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Let us first find the lateral resolution, Ar. Quantum mechanics relates the 
minimum uncertainty in a position of quantum, Ar, to the uncertainty of its 
momentum, A p r, according to the relationship

A r A p r > h, (4.1-1)

where Apr is the momentum difference between rays CA and CCw along the 
r-direction, i.e., the transverse direction as shown in Fig. 4.1, where parallel 
rays are focused by a lens. Now the momentum of the CA ray and the CCw 
ray is p0s in ()/2) and zero along the r-direction, respectively, where 
p 0 = h / X 0 is the momentum of the quantum. Hence, A pr =  p0sin(0/2). By 
substituting this into Eq. (4.1-1), we obtain

h h h A0
A r > 0

A pr p0 sin()/2) (h/A0)sin()/2) sin()/2)"

If the object space or the specimen space has a refractive index of n 0, we 
must use the fact that the wavelength in the medium is equal to A/n0, where
-  is the wavelength in air or in vacuum. The above equation, therefore, 
becomes

A r > ------=  — , (4.1-2)
n0sin()/2) R E

where R E  =  n 0sin()/2) is called the numerical aperture. Similarly, to find 
the depth of focus, Ad, we have

A dApD > h, (4.1-3)

where ApD is the momentum difference between rays CAw and CCw along the 
D-direction as shown in Fig. 4.1, which is given by

Apd =  p 0 - p 0co s()/2).

By substituting this expression into Eq. (4.1-3), we have

h h -0
A d >

Apd p 0[1 -  co s()/2)] [1 -  co s()/2)] ’ 

which can be written as

- 0AD
[1 -  V " -  sin2( ) / 2)]
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2Ло 2 п оЛ

sin2()/2 )  N A 2 '-
(4.1-4)

where we have used / l  — sin2()/2 )  й 1 -  " sin#()/2) by assuming 
sin#()/2) ¥ l  in order to obtain the last expression. Now, by combining 
Eqs. (4.1-2) and (4.1-4), we have

(A r)2
Az

> Ao 
2 '

(4.1-5)

This “uncertainty rela tionship” tells us that, for example, by increasing the 
lateral resolution by a factor o f two, the depth o f focus must then be 
decreased by a factor o f four. Hence, we see that the higher the lateral 
resolution is, the shorter the depth o f focus will be. Three-dimensional 
imaging in microscopy therefore aims to develop techniques that can provide 
high lateral resolution, and at the same time maintain a large depth o f focus 
in order to observe a thick specimen without any difficulty.

In the past decade, we have witnessed an impressive emergence of 
three-dimensional (3-D) imaging techniques for microscopy. O ptica l section
ing m icroscopy  and scanning confocal m icroscopy  are the two most common 
techniques currently available in practice.

Fig. 4.2 Optical sectioning microscope (OSM).

An optical sectioning microscope (OSM), shown in Fig. 4.2, uses 
a wide-field microscope to sequentially record a series o f images focused 
at different depths [Agard (1984)]. Since each 2-D image contains the in
focus as well as the out-of-focus information, reconstruction o f the 3-D
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information, i.e., extraction of the in-focus information from these 2-D 
images, is required. Many reconstruction algorithms have been developed for 
this purpose. However, the difficulty o f optical sectioning lies in the fact that 
during the recording stage it is important that exact longitudinal spacing 
between adjacent 2-D images must be accurately controlled. Also, precise 
registration o f the 2-D images is critical even before any computer 
processing can be performed.

By recognizing these problems, a radically new microscope design 
known as the scanning confocal microscope (SCM) has emerged [Wilson and 
Sheppard (1984)]. The confocal principle was first described by Minsky 
[Minsky, US Patent (1961)]. In scanning confocal microscopy, a doubly 
focused objective lens system and a pin-hole aperture in front o f a 
photodetector are used to image only a single point within the 3-D specimen, 
as shown in Fig. 4.3. All the light from the point on the plane o f focus (solid 
rays) is focused at the pin-hole aperture and passed into the photodetector. 
The light from the out-of-focus plane (dashed rays) is rejected by the pin
hole. Three-dimensional information is gathered by scanning the specimen in 
three dimensions while collecting the light transmitted through the specimen 
with the photodetector.

Out-of-focus Plane of focus 
plane

Fig. 4.3 Scanning confocal microscope (SCM).

Theoretically, SCMs provide a slightly better lateral resolution than 
that o f OSMs. If the lateral resolution in optical sectioning microscopy is 
A r =  A /N A , the lateral resolution o f the scanning confocal microscope is
0.73Ar [Corle and Kino (1996)]. In other words, one can achieve better 
resolution through confocal imaging. However, such a theoretical limit has 
never been achieved in practice. One o f the main problems associated with 
SCMs is that the scanning instrumental tolerances required to achieve high 
resolution imaging and a long working depth o f  f ie ld  are very difficult to 
obtain in practice. The term depth o f field, A6, here refers to the range of
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object (or specimen) distances that are imaged within a distance, A d, i.e., the 
depth o f focus in the image space. In fact, if  M  is the lateral magnification of 
the imaging system, then A6 =  A d/M 2 [see Example 4.1, page 112].

In essence, both methods (OSM and SCM) require precise 3-D 
positioning devices. This is particularly critical for the confocal methods 
whose technologically sophisticated and expensive equipment need special 
technical training to ensure proper use. However, for certain applications in 
biology, the main drawback o f these instruments is that the data is 
sequentially acquired by a slow 3-D scan. This tedious data acquisition time 
is a serious drawback for in vivo  studies. It precludes, for example, the 
possibility o f monitoring dynamic interactions at the intercellular level. In 
addition, an extensive data acquisition time exacerbates the photo-bleaching  
problem in fluorescence m icroscopy  [Pawley (1995)]. Briefly, damage 
caused by photo-bleaching refers to the fact that a specimen will not 
fluoresce when it is over-exposured. The severity o f this problem in cell 
studies has prompted the development o f extremely sophisticated techniques 
such as two-photon scanning fluorescence im aging, for example. We also 
want to point out that optica l coherent tom ography  (OCT), which is based on 
interferometry, is another pertinent and emerging technique used for 3-D 
microscopy [Huang, Swanson, Lin, Shuman, Stinson, Chang, Hee, Flotte, 
Gregory, Puliafito, and Fujimoto (1991)]. But once again, this technique also 
requires scanning the object along the depth direction. Actually, all existing 
commercialized microscopes (OSM, SCM, and OCT) require axial-scanning 
in order to achieve 3-D imaging. Eliminating the need for a 3-D scan, or 
more specifically for a depth-scan gives us the impetus to study novel 
holographic methods for 3-D microscopy.

Holography can be used in applications where 3-D data sets are 
desirable but axial scanning is difficult or sometimes impossible to utilize. 
With holography, we have the ability to capture high resolution 3-D 
information in a large volume space. In recent years, holographic microscopy 
has become more and more prevalent because it represents a novel departure 
from conventional 3-D microscopy mentioned above [Zhang and Yamaguchi 
(1998), Kim (2000)]. Traditionally, holographic microscopy has been used in 
biology, however it is inherently insensitive to incoherent emissions, such as 
fluorescence, which makes its usefulness severely limited in life sciences 
applications. A scanning holographic microscope (SHM), which is based on 
the principle o f optical scanning holography (OSH), can acquire 3-D 
information by only using single 2-D x-y scanning (no axial scanning is 
involved and hence there are reduced acquisition times for 3-D imaging). 
Most importantly, the SHM has the ability to image fluorescent samples, 
which is a breakthrough in holography since conventional holographic 
microscopes simply could not capture fluorescent specimens prior to the 
invention of optical scanning holography [Poon, Schilling, Indebetouw, and
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Storrie, U.S. Patent (2000)]. In addition, the SHM will provide better 
theoretical transverse resolution even in comparison to a SCM. The 
resolution of a SHM is 0.5Ar, where A r is again the resolution of a wide 
field microscope [Indebetouw (2002)]. We will further elaborate on this topic 
in chapter 5. Note that OCT techniques are also not capable of fluorescent 
imaging. Hence, OSH is a very unique technique for 3-D biomedical 
applications.

In the spirit of keeping the scanning holographic microscope (SHM) 
at the same level of simplicity illustrated with the OSM and the SCM shown 
in Figs. 4.2 and 4.3, respectively, we show a SHM in Fig. 4.4. In principle, 
we need a time-dependent Fresnel zone plate (TDFZP) to two-dimensionally 
raster scan the thick specimen as shown in Fig. 4.4.

plane wave at thick specimen

Fig. 4.4 Scanning holographic microscope (SHM).

Figure 4.5a) shows the actual setup of a scanning holographic 
microscope used for fluorescence applications. In this figure, two broad laser 
beams (originating from a 5l4nm-line of an argon laser), separated in 
temporal frequency by AH, are incident on the mirror and the beamsplitter 
(BS). The frequency shift in each beam is achieved by using an acousto-optic 
frequency shifter (AOFS). The AOFS is used in a configuration that allows 
us to split the laser into two beams separated in frequency by A H /2 i =  10.7 
MHz. The beams are then collimated and set parallel to each other as shown 
in the figure. Lens L" is placed in one of the beams to form the spherical 
wave, which is then combined collinearly with the other beam at the 
beamsplitter (BS). This will form a TDFZP on the object, which is at a 
distance of z beyond the focus of the spherical wave.
The dichroic beamsplitter transmits light at 514 nm and reflects light at 
around 595nm. Therefore, the laser light is allowed to pass through the 
dichroic beamsplitter and excite the fluorescent sample, which fluoresces at 
560nm. Also, the emission filter directly in front of the photomultiplier tube
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(PMT) allows fluorescent light to pass through while rejecting the 
background laser light at 514nm. The sample is scanned through the TDFZP 
in a raster pattern using a computer-controlled mechanical x-y scanning 
platform. The current o f the PMT, which contains holographic information of 
the scanned object, is electronically filtered, amplified at 10.7 MHz, 
demodulated and then digitized in synchronization with the x-y scanners in 
order to ultimately produce an electronic hologram. Note that the 
demodulation is performed by the usual electronic detection as we had 
previously discussed in Fig. 3.6. However, only one channel, specifically the 
in-phase component o f the heterodyne current, was utilized during the 
experiment.

a) b)
Fig. 4.5a) Experimental setup used to record the hologram of a fluorescent specimen 

by using OSH. PMT is a photomultiplier tube. Reprinted from B.W. Schilling et al., Optics 
Letters 22, 1506 (1997), with permission. © OSA. b) Experimental configuration of 

fluorescent solution on the ends of two wires. After Schilling (1997).

The fluorescent sample used in the experiment consists o f a solution 
containing a high concentration of fluorescent latex beads. The beads are 15 
.m  in diameter and characteristically reached peak excitation at 530nm and 
peak emission at 560nm. To demonstrate the depth-discriminating capability 
of the system, we use a fluorescent object that consists of two wires 
adjacently placed and parallel to the optical axis but with their ends at 
slightly different distances from the focus of lens L1. A drop of fluorescent 
solution is placed on the end of each of these wires, and the two drops of 
solution are separated in depth by approximately 2mm (the drop on the right 
at z0 & 35 mm and the drop on the left at z 1 & 37 mm, as shown in Fig. 
4.5b). A hologram o f this fluorescent sample was recorded and is displayed 
in Fig. 4.6. The two drops are easily distinguishable in the hologram.



1 0 4 Optical Scanning Holography with MATLAB

Fig. 4.6 Hologram of a fluorescent specimen recorded by using optical scanning holography. 
The object consists of two drops of solution containing a high concentration of fluorescent 
latex beads separated in depth by about 2 mm. The image is at a 256 level gray scale image 
consisting of 256x256 pixels. The area scanned is about 2.0 mm x 2.0 mm. Reprinted from 

B.W. Schilling et al., Optics Letters 22, 1506 (1997), with permission. © OSA.

The resolution o f the OSH system is limited by the system’s numerical 
aperture (NA), which actually depends on the focal length o f lens L1 
(0 =  150mm) and the diameter o f the plane wave focused by lens Li 
(H =  10mm). The NA of the system is approximately 0.033 which cor
responds to the diffraction-limited resolution limit o f A r ^  18.5 .m  and 
A d ^  1028.4 . 7 ,  according to Eqs. (4.1-2) and (4.1-4), respectively. The 15 
.m  bead size is very close to the limit that we can expect to resolve laterally 
with the setup.

Once the hologram has been recorded and stored, the 3-D image can 
then be reconstructed either optically or numerically. Numerical image 
reconstruction has been performed on the hologram at two different depths. 
Figure 4.7a) is a reconstructed image at d0 =  35mm, and Fig. 4.7b) is an 
image reconstruction at d1 =  37mm. Since the individual attributes o f each 
fluorescent drop are not obvious in these figures, arrows are marked on the 
figures to indicate particular areas o f interest. In Fig. 4.7a), the fluorescent 
drop on the left is in better focus than that on the right. The arrow in Fig. 
4.7a) indicates particular beads that are more clearly visible when the 
hologram is reconstructed at a depth o f d0 than in Fig. 4.7b) for a depth at d1 . 
Similarly, the arrow in Fig. 4.7b) points out a string o f four beads that are 
individually distinguishable when the hologram is reconstructed at a depth of 
d1 , but that are blurred in the image reconstruction plane z 0 inFig.4.7a).
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а)

Fig. 4.7 Reconstruction of the hologram shown in Fig. 4.6. a) At a depth of 
z0 = 35mm. Arrow shows individual fluorescent beads that are in focus at this depth. b) At a 
depth of z1 = 37mm. The arrow shows four individual fluorescent beads that are in focus at 

this depth. Reprinted from B.W. Schilling et al., Optics Letters 22, 1506 (1997), 
with permission. © OSA.
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Note that since only the in-phase component of the heterodyne 
current has been recorded to create the hologram shown in Fig. 4.6, twin- 
image noise (residual “fringing”) exists in these reconstructions.

An important attribute of scanning holographic imaging is that this is 
the first time the hologram of a fluorescent specimen has been recorded by 
using an optical holographic technique [Poon et al., U.S. Patent (2000)]. 
Holography and fluorescence imaging would never seem to make 
conventional sense because holographic techniques require the coherent 
interference of light waves and fluorescence imaging does not generate 
coherent light. And yet, we have been able to record holograms of 
fluorescent specimens because optical scanning holography makes this 
possible. In fact, optical scanning holographic techniques can be applied to 
3-D biomedical applications as fluorescence imaging [Indebetouw, Kim, 
Poon, and Schilling (1998)] as well as near-infared imaging [Sun and Xie 
(2004)] through turbid media have been demonstrated. Most recently a better 
than 1.m-re solution also has been established with a holographic 
fluorescence microscope [Indebetouw and Zhong (2006)].

4.2 Three-Dimensional Holographic TV and 3-D Display

Figure 4.8 shows a conceptual holographic system used for 3-D display with 
a complete recording and reconstruction stages of a point source object. As 
we had mentioned in chapter 2, if the recording film is replaced by, say, 
some electronic device such as a CCD video camera, then we can create a 3
D display by transferring the CCD’s electronic output into some spatial light 
modulator. As we transfer the holographic information at video rate to a 
spatial light modulator, we create a holographic 3-D display system.

The first television transmission of a hologram was demonstrated by 
Enloe, Murphy, and Rubinstein [1966]. A television camera was used to 
record an off-axis hologram where the interference between the Fresnel 
diffraction pattern of an object transparency and an off-axis plane wave was 
recorded. The recorded hologram was then transmitted over a closed-circuit 
TV and displayed on a 2-D monitor. The displayed 2-D record was then 
photographed to form a hologram, which was subsequently reconstructed by 
a coherent optical system. Since then, much progress has been made and 
many novel devices have been invented [Macovski (1971), Brown, Noble 
and Markevitch, U.S. Patent (1983), Kirk, International Patent (1984), 
Benton (1991), Shinoda, Suzuki, Wu and Poon, U.S. Patent (1991), Schilling 
and Poon, U.S. Patent (2004)].
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Fig. 4.8 Conceptual holographic system for 3-D display.

In this section, we will describe a recently proposed holographic TV 
system that uses optical scanning holography (OSH) to acquire holographic 
information and employs a spatial light modulator (SLM) for an eventual 
coherent 3-D display [Poon (2002a)]. We should be familiar with OSH by 
now and, therefore, we will first describe the SLM used in this system. The 
overall system will be subsequently discussed. The SLM, which has been 
experimented on the proposed TV holographic system, is called an electron- 
beam -addressed  spa tia l light m odulator (EBSLM) [Hamamatsu Photonics 
K.K., Japan and Hamamatsu Corp., Bridgewater, NJ]. The device is shown in 
Fig. 4.9.

A serial video signal is the required input to the EBSLM controller. 
The controller in turn provides the signal that modulates the intensity o f the 
emission from the electron gun within the EBSLM head. This electron beam 
is then two-dimensionally scanned onto the surface o f a LiNbO3 crystal with 
a deflection coil. As a result, electric charges accumulate on the surface of
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the crystal. The spatially induced electric field deforms the crystal as a result 
of the P ockels effect [Poon and Kim (2006)]. A pair o f crossed polarizers is 
used in order to read the resulting spatial distribution on the crystal by laser. 
Conjunctly, a coherent spatial distribution o f the output laser would 
correspond to the 2-D scanned video information on the crystal.

Fig. 4.9 Electron-beam-addressed spatial light modulator (EBSLM) for coherent display.

By incorporating optical scanning holography for holographic 
recording with EBSLM for coherent display, we can create a complete 
holographic TV system. This is shown in Fig. 4.10, where we have included 
a system for optical scanning holography on the top portion o f the figure.

In the top part o f the system, M1, M2, and M3 represent the mirrors, 
BS1 and BS2 denote the beamsplitters, AOM is an acousto-optic modulator 
used to shift the laser beam at a frequency o f H, and BE1 and BE2 are the 
beam expanders. Note that lens L is used to focus a point source on the BS2, 
that projects a spherical wave through the x-y scanner to the object, while 
BE2 provides a plane wave onto the object. After 2-D raster scanning o f the 
object, the photomultiplier picks up the scattered light from the object and 
delivers a heterodyne current as an output current. I f  the heterodyne current 
is at the radio frequency (rf) range, then it can be directly radiated through an 
antenna to a remote site for demodulation. At the demodulation site, we will 
have the usual electronic multiplexing detection. The PC can manipulate the 
two holograms (sine and cosine holograms) and thus deliver its output to the 
controller o f the EBSLM for coherent reconstruction o f the holographic 
information in order to display the output light for the audience. Hence, we 
have a complete holographic TV system. This system has been proposed by 
Poon [2002a], and this idea o f using OSH to acquire holographic information 
and to use SLMs for display has been tested in the system shown in Fig. 
4.11. It is clear from the figure that a TDFZP is used to scan the 3-D object,



and the photodetector’s output is bandpass filtered at, H and then it is finally 
mixed with cos(fit) to get the sine-FZP hologram, 3c(x ,y ), as given by 
Eq. (3.5-3a), for coherent reconstruction by the EBSLM.
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Fig. 4.10 Proposed holographic TV system. Adapted from T.-C. Poon, 
J. Information Display 3, 12 (2002a).

The Image Processing and Measuring System (IPMS) is a device that 
acts as an interface that accepts a slow-scan electrical signal and stores the 
information in its digital memory. The information is then converted into a 
NTSC video signal [Hamamatsu Photonics K.K. and Hamamatsu Corp., NJ]. 
When the video o f the IPMS is displayed on a TV monitor, the sine-FZP 
hologram of a 3-D object is displayed as shown in Fig. 4.12. The 3-D object 
consists o f two transparencies, the letters “V” and “T,” located side by side 
but separated by a depth-distance o f about 15 cm The “V” is located closer to 
the 2-D scanner at a distance o f about 23 cm, i.e., z =  23 cm. Both letters are 
printed on 3 5 m m  film, have a line width o f about 100.m , and are 
transmissive on an opaque background. By passing the reflected light o f the 
EBSLM through an analyzer as shown in Fig. 4.11, a coherent image is 
reconstructed at a distance o f M  x z away from the analyzer, where z is the 
distance from the scanning mirror to the object (as indicated at the 
holographic recording stage in the figure), and M  is a magnification factor
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that takes into account the longitudinal magnification o f the holographic 
imaging system that arises because o f various hologram scalings. An 
example o f the cause o f hologram  scaling  may be that the displaying area of 
the hologram in the EBSLM is different from the actual optical scan area of 
the object. Holographic magnification is discussed in Example 4.1.

The reconstruction o f a hologram along depth can be observed 
through the movable CCD camera, which focuses on different reconstruction 
planes. Figure 4.13a), c), and e) show the real-time reconstruction o f a 
hologram of different depths by using the electron-beam-addressed spatial 
light modulator. In the 3-D reconstruction, the M  x z for Fig. 4.13a) and 
Fig. 4.13e) are 23cm and 41cm, respectively. In Fig. 4.13a), we notice that 
the “V ” is in focus, and in Fig. 4.13e) the “T” is now in focus. Also note that 
the reconstructed image planes have been contaminated by the twin-image 
noise because only one channel, namely the sine-FZP hologram, has been 
used. For comparison, we have shown digital reconstructions in Fig. 4.13b), 
d), and f) [Poon, Doh, Schilling, Wu, Shinoda, and Suzuki (1995)].

The EBSLM system is capable o f displaying holograms at a video 
rate and, o f course, some commercial x — y scanners are also capable of 
working at a video rate. But what we have done is really the use o f a SLM to 
display the acquired hologram along depth for coherent reconstruction. So 
what is the prospect o f displaying true 3-D images in holographic television?

Fig. 4.11 Experimental 3-D holographic television system. 
Adapted from T.-C. Poon et al. Optical Review 4, 576 (1997).
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Figure 4.12 Sine-FZP hologram of two letters “V” and“T” located at different depths. 
Reprinted from T.-C. Poon et al., Optical Engineering 34, 1338 (1995), 

with permission. © SPIE.
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Fig. 4.13 Holographic Reconstruction. a) ,c), and e) EBSLM’s reconstruction. Reprinted from 
T.-C. Poon et al., Optical Review 4, 576 (1997); b), d), and f) Digital reconstruction. 

Reprinted from T.-C. Poon et al., Optical Engineering 34, 1338 (1995), 
with permission. © SPIE.

Example 4.1 Holographic M agnification

We will derive holographic magnification in the context o f OSH. We 
consider a three-point object given by

5(x,y, z  — z 0) +  5 (x x 0, y, z  — z 0) +  5 (x ,y , z  — ( z 0 +  Ad0)), (4.2-1)

where the first two points are located at a distance o f z0 away from the point 
source, which generates the spherical wave shown in Fig. 4.4. The two points 
have a lateral separation o f x0. The third point is located at a distance of 
z0 +  A z0 away from the first two points. According to Eq. (3.5-3a), when 
this three-point object is scanned, the scanned demodulated electrical signal, 
ic, gives a sine-hologram, which is given by

L 3-P(x, y) -  s i n [ ^ ( x 2 + y2)] +  s i n { ^ [ ( x  — x 0)2 +  y2]} 
2z0 2z0

sin I k0
2(z0 +  A z0)

(x2 + y2)] . (4.2-2)

If this hologram is illuminated by a plane wave at - 0 , the three points will be 
reconstructed at their respective locations. We will now consider holographic 
magnification.
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a) H ologram  Scaling

Magnification can be achieved by enlarging holograms, however, it is a 
difficult task especially when we deal with off-axis holograms where fringe 
densities are o f the order o f several thousands lp/mm. Most photographic 
enlargers do not have a sufficient resolution in order to handle these details. 
Hence, the method is not very practical. With the scanning technique, 
however, on-axis holograms are generated and scaling is straightforward. 
The hologram can be scaled by a factor o f M , simply by displaying the 
hologram in an area that is different from the optical scan area. In this case, 
Eq. (4.2-2) becomes

fen
H$-p(M x , M y )  =  sin{—— [(M x )2 +  (M y)2]}

+  s in { ^ [ ( M x  -  xn)2 +  (M y)2]}
2Dn

5
+  sin{ 2( +  ?  ) [(M x )2 +  (M C)2]}. (4.2-3)2 (Dn +  ?Dn)

When M <1, we have magnification, whereas M >1 corresponds to 
demagnification. By re-writing Eq. (4.2-3), we have

5
^ - p ^ x  M y) =  sin[2Dn/M2 (x2 +  У2)]

+  sin{2^ 0 ° l(x -  xn/M)2  +  y2]} +  sin{2 (Dn +  l n ) / M 2 (x'2 +  y2)}.

(4.2-4)
Now, during optical reconstruction using a wavelength - n, we see 

that by inspection o f the first and second term in Eq. (4.2-4), the two real 
image points are now formed at a distance o f Dn/M 2 away from the 
hologram, and with a reconstructed lateral distance o f x n/M  away from each 
other. By defining the la tera l m agnification, Mlat, as the ratio o f the 
reconstructed lateral distance to the original lateral distance, xn, we have 
Mlat =  1/M . In order to determine the magnification along the longitudinal 
direction, we must focus on the first and the third terms, and upon 
reconstruction, we see that the two points are reconstructed at Dn/M 2 and 
(Dn +  A zn)/M 2, respectively. By defining the longitudinal m agnification, 
Mlong, as the ratio o f the reconstructed longitudinal distance, A zn /M 2, to the 
original longitudinal distance, A zn, we have Mlong=1/M 2.
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b) W avelength Scaling

We could reconstruct the hologram with a different wavelength, say m -0 (or 
50 /m), where m is a constant. Hence, according to Fresnel diffraction, the 
field distribution at z away from the hologram is now given by

L 3-P(x,y) * 2(x,y; z , 50/m)

This equation suggests that there will be no magnification in the lateral 
direction. Along the longitudinal direction, we can inspect the results o f the 
first and the third terms. And again when we consider real image 
reconstruction, the first and the second term will form an image at z =  z0/m. 
The third term gives rise to a real image at z =  (z0 +  A z0 )/m. Hence, in this 
case Mlat =  1, and Mlong =  1/m. The reconstructed volume is either 
compressed or expanded by a factor o f 1/m with the same lateral 
magnification. When m>1, we have compression. With visible light for 
recording and reconstruction, m is in the range o f 0.5 to 1.8. However, when 
using digital reconstruction, m can be arbitrarily chosen.

c) R econstruction com bining hologram  scaling an d  w avelength scaling

If we change the scale o f the hologram and use a different wavelength for 
reconstruction, then the combined magnification along the lateral and 
longitudinal direction will be Mlat =  1 /Q  and Mlong =  1 /m Q 2. Therefore, 
we see that the reconstructed volume, x0A z0/m Q 3, is different from the 
original volume x0 A z0. This creates distortion when we magnify the original 
3-D object. This is a well-known result of magnification in 3-D optical 
imaging. In order to have a true 3-D perspective on reconstruction, when the 
scale change o f the hologram is given by Q , we let m =  1 /Q  which gives us 
Mlat =  m and Mlong =  m, and therefore, we obtain Mlat =  Mlong. In other 
words, in order to prevent distortion in 3-D imaging, we scale the hologram 
by a factor Q , and then the reconstructing wavelength should be m -0, where 
- 0 is the recording wavelength and m is equal to 1 /Q . This is the original 
idea o f Gabor [1949] who first conceptualized the notion during the pre-laser 
era to improve upon the electron microscope. Electron microscopy was the 
motivational factor in the development o f holography.

(sin[ ̂ ( x 2 +  y2)] +  sin{ 2 ^ [ ( x  — x 0)2 +  y2]} 
 ̂ 2z0 2z0

(4.2-5)
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In order to address the prospect o f a true 3-D holographic TV, we will 
consider some issues o f 3-D holographic display.

A. Spatia l frequ en cy resolution issue

Let us first delve into the spatial frequency resolution o f an SLM for 3-D 
display. For simplicity, we will take a point source hologram as our 
hologram displayed on a SLM. From previous chapters, we know that the 
expression o f such a hologram is given by sin[ # | ( в 2 +  У2)]. Remember that 
zo is the distance o f the point source away from the recording device. The 
local spatial frequency along the в -direction across the hologram has been 
given by Eq. (2.5-5), and is defined as

—  . ( ] 5 L X#) — в
2 i  d x  2zo -oDo

(4.2-6)

If the size o f the limiting aperture o f the hologram is xmax, then / 6oca6 at xn 
is

/max
Xm
-ozo

(4.2-7)

which is the highest spatial frequency of the hologram fringes. Now assume 
that the SLM has a maximum spatial resolution o f / ! ,  and if  we want to 
record / max, then we must obey the requirement o f f o — /max. Now, 
according to the geometry shown in Fig. 4.14, the N A  o f the hologram is

s in ()/2 ) — Xmax/zo (4.2-8)

where )  is defined as the view ing angle. By using Eq. (4.2-7), Eq. (4.2-8) 
becomes

N A  — sin ()/2 ) — -o/max — -o /o . (4.2-9)

Fig. 4.14 Viewing angle.
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For any given spatial resolution o f the SLM, we can therefore find the 
viewing angle according to Eq. (4.2-9). For example, Hamamatsu’s EBSLM 
has a spatial resolution o f about 00 =  8lp/mm, which gives us a viewing 
angle o f about 0.6° at - 0 =  0.6328 .m . Hence, such a device is not useful for 
applications in 3-D display. However, if  we desire to obtain a sequential 2-D 
display along the depth, then the EBSLM system is adequate enough because 
it is capable o f updating holograms at a video rate. Table 4.1 shows the 
viewing angle for some existing SLMs. We currently do not have SLMs that 
are suitable for 3-D display as their viewing angles are severely limited. The 
situation becomes even worse if  we use off-axis holography because we will 
need to resolve the carrier frequency. As we recall, for 45 degrees o f the 
recording angle, the carrier frequency is about 1,000 lp/mm, which is well 
beyond the capability o f existing SLMs (see Table 4.1).

Table 4.1 Viewing angles for - 0 = 0.6328 .m.

0o(SLM’s resolution) )  (viewing angle) device/company
8 lp/mm 0.6 degree EBSLM/Hamamatsu
100 lp/mm 6.8 degrees PALSLM/Hamamatsu
500 lp/mm 34 degrees not available

B. Spatia l resolution issue

Let us calculate the number o f samples that are required for a hologram to be 
displayed by an SLM. For a given spatial frequency resolution o f an SLM, 00, 
and according to the N yquist sam pling, the minimum sampling frequency, 
0=, required in order to generate the hologram is

0= =  200.

The number o f samples, R , that will then be required to create a hologram of 
size / х /  is

R E
R  =  ( /0=)2 =  (/ ,  200)2 =  (2/— )2, (4.2-10)

- 0

where we have used Eq. (4.2-9). According to Eq. (4.2-10), for full parallax, 
20mm x 20mm on-axis hologram to be presented on an SLM, with a viewing 
angle o f 600, the number o f resolvable pixels required is about 1.1 billion. To 
put things into perspective, some of the best CCD cameras, such as Canon 
D60 (3072x2048 pixels, 67.7 lp/mm, 7.4 .m  pixel size), have just a little 
over 6 Mega pixels.
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C . D ata  transm ission issue

117

As we had previously calculated, a single frame o f a 20mm x 20mm 
hologram with a viewing angle of 60° requires about 1.1 billion pixels on the 
SLM. To update such a frame with an 8-bit resolution at 30 frames/s, a serial 
data rate of

1.1 billion samples/frame x 8 bits/sample x 30 frames/s =  0.26 Tbit/s

is required for full parallax.
Basically, all the issues that we have discussed illustrate the fact that 

content o f information held within a hologram is enormous. This implies that 
the content of information in the hologram must be significantly reduced in 
order to achieve 3-D holographic TV for 3-D display. Live 3-D TV with 
holographic images is truly a formidable problem. However, since we are 
used to looking at the world with our two eyes more or less on a horizontal 
level, we are usually satisfied with horizontal parallax. Hence, for 512 
vertical lines, the number o f pixels required becomes 512 x (2/ x 2 R E /A 0), 
which is approximately 17 million, if  we are to eliminate vertical parallax. 
By scarifying vertical parallax, the data rate becomes 4 Gbits per second 
instead of 0.26 Tbits per second, which is calculated for full parallax. And 
this is manageable with advanced modern optical communications systems. 
By using fiber optics, data rates o f up to 40 Gbit/s indeed can be achieved in 
real-world applications. The possibility o f real-time holographic TV becomes 
a reality if  the horizontal-parallax-only (HPO)-electronic holographic recor
ding technique becomes available. Indeed, by using computer-generated, 
horizontal-parallax-only holographic information, the MIT group has demon
strated a 3-D holographic display having 64 vertical lines and with viewing 
angle o f about 15 degrees [St. Hilaire, Benton, Lucente, Jepsen, Kollin, 
Yoshikawa, Underkoffler (1990), St. Hilaire, Benton, and Lucente (1992)]. 
However, this HPO-holographic information is computer generated and no 
HPO-holographic information has actually been generated by or recorded 
from actual real objects.

Optical scanning holography with horizontal-parallax-only recording 
is possible if  we scan the object with a 1-D TDFZP. This idea, called H PO - 
optica l scanning holography , has been proposed recently while computer 
simulations have been performed [Poon, Akin, Indebetouw, and Kim (2005), 
Poon (2006)].

4.3 Optical Scanning Cryptography

Due to the recent progress in the development o f optical components and the 
increased technical performance o f optical systems, optical cryptography has
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a significant potential in advances for security applications. Indeed there has 
been a plethora of articles that deal with secure systems that use optical 
methods [Lohmann, Stork, and Stucke (1986), Refregier and Javidi (1995), 
Lai and Neifeld (2000), Wang, Sun, Su, and Chiou (2000), Magensen and 
Gluckstad (2001)]. One of the reasons for using optical encryption is that 
information, such as images, that needs to be encrypted exists already in the 
optical domain. Another reason is that optical encryption, as opposed to 
electronic or digital encryption, can provide many degrees of freedom when 
securing sensitive information. When large volumes of information need to 
be encrypted, such as a 3-D object, using optical encryption methods is 
probably the most logical choice. Although most optical encryption 
techniques are typically coherent, some incoherent optical techniques for 
encryption have recently been proposed [Tajahuerce, Lancis, Javidi, and 
Andres (2001)]. In general, incoherent optical techniques have many 
advantages over their coherent counterparts. This includes a better S/N ratio 
and insensitivity to the misalignment of optical elements. In this section, we 
will discuss an incoherent optical method based on optical scanning 
holography for encryption. This method is called optical scanning 
cryptography (OSC) [Poon, Kim, and Doh (2003)]. While having the 
capability to utilize incoherent processing, the method also has many other 
advantages. These advantages include the following. 1) Since it is an optical 
scanning method, it can process incoherent objects, such as printed 
documents, without using a spatial light modulator (SLM) to convert an 
incoherent image into a coherent image as existing coherent techniques 
currently do. The proposed system can indeed perform real-time or on-the-fly 
encryption. 2) Since the output signal is a heterodyne electrical signal, and 
hence the encrypted information is riding on a heterodyne frequency (or a 
carrier frequency as used in communications), it can immediately be radiated 
for wireless transmission to a secure site for storage and then subsequently be 
encrypted. This may have important applications in radio frequency 
identification (RFID) [Radio Frequency Identification Technologies: A 
Workshop Summary (2004)]. 3) Because the technique is based on 
holography, it can be easily extended to the use of encrypting 3-D 
information.

Figure 4.15 shows the optical system utilized for encryption and 
decryption. The system contains two subsystems: an encryption stage and a 
decryption stage. It is noted that the two subsystems have an identical two- 
pupil optical heterodyne scanning image processor, which we have 
extensively studied in section 3.4. We will first briefly summarize the 
previous results of the image processor, and then we will discuss encryption 
and decryption.
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Decryption stage

у  Wq +  Q
J P i (x, y)

Уу P2 (x,y)
Decryption key

—► x antenna

sin(Qt) D igital C om puter

Fig. 4.15 Optical scanning cryptography.
Adapted from T.-C. Poon et al., Applied Optics 42, 496 (2003).
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If we concentrate on the optical system o f the encryption stage, we 
can see that the two pupils, : i ( x ,  y) and ^ ( x ,  y), are located at the front focal 
plane of the lens and are illuminated by two broad laser beams of temporal 
frequencies, = o and = o + H, respectively. The two beams are then combined 
by a beamsplitter and used to 2-D scan a planar object, | r o(x, y; z-) |2, 
located at a distance z- away from the back focal plane o f the lens. The 
distance o f z- is called a coding distance, and | r o(x, y; z-) 2 is the object to 
be encrypted. The photodetector, PD, collects all the light transmitted by the 
object if  the object is transparent (or collects all the scattered light if  the 
object is diffusely reflecting). The photodetector will have a heterodyning 
current at a frequency o f H as one o f its outputs (where the other output is a 
baseband signal). After electronic tuning at H, the heterodyne current, 
3H(x,y;z-), is given by Eq. (3.4-11) where z is replaced by the coding 
distance z- ,

*H(x, y; z-) — Re[iHp(x, y; z -)exp(jHt)]

— Re[Y-1 {Y { |ro (x ,y ;z -) |2} O T JH (fcx A ;z -)}exp(iHt)].

(4.3-1)

Again O T J H(fcx, 5y; z-) is called the optical transfer function (OTF) o f the 
heterodyne scanning system, which has been given by Eq. (3.4-10) as 
follows:

O T Jh(5x , 5y; z-) — exp 

( ( Pl(x ' • y ' ) ^ ( x ' +  / ^ x ,  y '+ exp 4y(x 'fcx  +  y'5y) dx 'dy '

(4.3-2)
where /  is the focal length o f the lens shown in the encryption stage in Fig. 
4.15. The processing elements are the two pupil functions, :" (x ,y )  and 
: 2(x ,y). 3HH(x,y;z-) is the scanned and processed version o f the input, 
l> o(x ,y ;z-) |2. By manipulating the pupils, we will have a different 
processed output because the OTF in Eq. (4.3-2) is expressed in terms o f the 
two pupils. Now the processed information is carried by a temporal carrier at 
a frequency o f H, and if  H is chosen to be in the radio frequency domain 
(which can be done easily through the use o f acousto-optic modulators), then 
the processed information can be readily radiated to a secure site (or a 
decryption site) for further processing. The situation is shown in Fig. 4.15. 
After receiving the decrypted information from an antenna at the secure site 
(the output o f the antenna in the secure site is switched to the input o f the



bandpass filter for electronic processing), the information is further 
processed electronically as shown in Fig. 4.15. In other words, by multi
plying the incoming signal by cos(H>) and sin(fit), and through lowpass 
filtering, we obtain two signals, 3C and is , respectively, which have been 
been given by Eqs. (3.4-14a) and (3.4-14b) as follows:

ic(B,y;Dc) =  R e[T-1 { T { ^ ( в ,  у; dc) |2} О Т ^ ( 5 в А ; г с)}] (4.3-3a)

and

3=(b,c;dc) =  Im [T-1 { T {|Г 0(в, у; dc) |2)}O T Jq(5b , 5у; dc)}]. (4.3-3b)

If we now apply addition to the above expressions in the following manner: 
3 (в ,у ;г с) =  3с(в, у; dc) +  j 3s(b , у; dc), we have a complex expression 
where the full amplitude and phase information o f the processed object are 
available:

3 (в ,у ;г с) =  T -1 { T {|Г>(в, у; dc) |2)}O T Jq(5b , 5у; dc)}. (4.3-4) 

Encryption

From Eq. (4.3-4), we will now discuss encryption. To perform encryption on 
the input object, |Г0(в,у ; dc) |2, located at a distance o f dc away from the 
back focal plane of the lens at the encryption stage, we generally can 
manipulate the two pupils, :  (в, у) and : 2(в ,у ). As a simple example, we 
will let Р2(в ,у ) = $(в, у ) , a pin hole, and keep ^ ( в ,  у) as is. The situation is 
shown in Fig. 4.15. We shall call и  (в, у) an encryption key. Under these 
conditions, according to Eq. (4.3-2), the OTF o f the system becomes

О Г ^о(5в ,5у ;^с) =  exp[ -  4250 ( 5  + 5 ,  ^ у ) ,

(4.3-5)
and Eq. (4.3-4) then becomes

3 (в ,у ;г с) =  T -1 {Y  {|Г0( в ,у ;г с)|2}

x exp [ - 4 250(5B + 52)] х :* ( - 5 Г 5а: , - ^ у » .  (4.3-6)

3(в, у; D ) is the coded or encrypted object and can be stored by the digital 
computer. Note that the spectrum of |Г0(в, у; dc) |2 is multiplied by two 
terms. Since the product o f the object’s spectrum with the term
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exp - 4'&  (5x + ^ )
l>o(x, y; z -) |2 [see Eq

corresponds to the spectrum of the hologram of

(3.5-9)], where the object is recorded at a distance of 
z- away from the focal plane o f the lens, we can interpret Eq. (4.3-6) as the 
holographic information (or hologram) o f the object that is encrypted or 
coded by i.e., we “encrypt the hologram o f the object.” This idea of 
coding holographic information was first investigated by Schilling and Poon 
in the context o f optical scanning holography [Schilling and Poon (1995)].

D ecryption

After the object has been coded or encrypted, it will be necessary to decode 
or decrypt it. To do this, we turn to the optical system at the secure site. 
Again, note that the optical system is the same except for the choice of the 
selected pupils, and the laser beams are now scanning a pin hole as an object, 
i.e., |ro (x ,y ;z d) |2 — $ (x ,y ;z d), located at a distance zd away from the back 
focal plane o f the lens at the decryption stage. We shall call zd the decoding  
distance.

However, this time the switch, as shown in Fig. 4.15, is connected to 
the output o f the optical system at the secure site. Through electronic 
processing, the output o f the photodetector will then be processed. The result 
of Eq. (4.3-4) can be applied again, but by replacing z- with by zd. Now we 
choose :" (x ,y )  = $ (x ,y), a pin hole, and keep : 2(x ,y) as is. We shall call 
: 2(x ,y) a decryption key. According to Eq. (4.3-2), this selection o f the 
pupils gives the following OTF,

O T Jh (5 x ,5 y ;zd) — exp
d

f t  ( A x  , A y ) .  (4.3-7)
5o 5o

By using Eq. (4.3-4) and the fact that Y { |T 0(x, y; zd) |2} — 1, we have

3(x ,y ;zd) — Y -1 { exp (&x + 5C) : 2( 5r fcx , / л ) } .  (4.3-8)

This is the output generated at the decryption stage, where the decryption key 
has been inserted into the stage and a pin hole has been scanned. The 
information is now stored in the digital computer to be used to later decrypt 
the information coming from the encryption site via a wireless transmission. 
To decrypt the information represented by Eq. (4.3-6), a digital decryption 
unit (DDU), shown in Fig. 4.16, has been proposed.

Again, 3 (x ,y ;z -) is the transmitted encrypted information 
transmitted via wireless from the encryption stage, and 3 (x ,y ;zd) is the 
information generated at the decryption site. We see that by using Eq. (4.3-6)
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and (4.3-8), at the output o f the unit we have

output o f DDU °  Y —1{ Y {3 (x ,y ;z c)} x Y {3(x ,y ;zd)}}

=  Y -1

— 0 - 0  
x p K —; — 5 x ,^ —  5y)exp

5o 5o p > ( ) 50Ofcy)}
=  |>o(x ,y ; zc\ |2 (4.3-9)

if the following conditions are simultaneously met. 1) zd =  zc, i.e., the
coding distance in the encryption stage and the decoding distance in the
decryption stage are the same, and 2) p j( — x, — y)p2(x, y) =  1. Condition
(1) simply means that the holographic reconstruction is in focus if  Condition
(2) has already been met. For any values o f zd ф zc, we have what is known 
as defocused image reconstruction. Condition (2) allows us to choose the 
functional form of the encryption key, p1(x ,y ), in the encryption stage and 
the decryption key, p#(x, y), at the decryption site. As a simple example, the 
choice o f phase keys works well. We shall demonstrate this in the following 
example.

Fig. 4.16 Digital Decryption Unit (DDU) : 3(x, y; zc) is the encrypted 
information with encryption key, p  (x, y), inserted into the encryption stage, which is sent 
from the encryption site via wireless transmission. 3(x, y; zd) is the signal generated at the 

decryption site where the decryption key, p2 (x, y), is inserted into the scanning stage to scan a 
pin hole aperture. Adapted from T.-C. Poon et el., Applied Optics 42, 496 (2003).
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Example 4.2 MATLAB Exam ple on 
Optical Scanning Cryptography

As a simple example, we can immediately see that the choice o f a random 
phase mask is a good encryption key, i.e., we let :  (x, y) — exp[j'2 iM  (x, y)] 
where Q ( x ,y ) is  a function o f random numbers chosen from a uniform 
distribution between the interval (0.0,1.0). Again, : 2(x ,y) = $ (x ,y ) , i.e., a 
pin-hole is the other pupil in the encryption stage. For this choice o f pupils, 
the encrypted image from Eq. (4.3-6) becomes

The above encrypted information can be made more secure if, for example, 
the original document is multiplied by a random phase mask, exp[j'2 ir(x , y)], 
where <(x,y) is a function o f random numbers. By using Eq. (4.3-10), the 
overall encrypted image then becomes

This technique used to obtain the above resulting encrypted image is called 
double-random  ph ase  encoding  [Refregier and Javidi (1995)]. We shall use 
MATLAB in order to simulate this coding. Note that <(x, y) and Q (x ,y )  
should be chosen as two independent random functions.

Table 4.2 contains the m-file for the simulations shown in this 
example. Figure 4.17a) shows the original document, |Г0 (x,y; z-) |2. Figure 
4.17b) and 4.17c) show the real part and imaginary part of the original 
document multiplied by a random phase mask, exp[j'2 ir(x , y)], placed 
immediately in front o f the original document. Figure 4.17d) shows the 
“intensity” o f the encrypted document, |3(x, y; z -) | , which is calculated using 
Eq. (4.3-11) where we have used sigma — (zc*ld)/(4*pi) — (30)*(0.6*10A-
6 )/4 i in the m-file [sigma is z-/250 in Eq. (4.3-11)].

3 (x ,y ;z-) — Y  1 { Y { |>o( x ,y ;z-)|2}exp - 4 2 - ( / x + 5У)

(4.3-10)

3 (x ,y ;z-) — Y  1 { Y  { |r o( x ,y ;z-)|2 exp [i 2 i r ( x ,y)]}

(4.3-11)
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a) Original document.
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b) Real part of the image multiplied by random phase mask.
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c) Imaginary part of the image multiplied by random phase mask.
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d) Intensity of encrypted document. 

Fig. 4.17 Cryptography simulations.

For decryption, we need to gather information in the decryption 
stage by scanning a pin-hole object located at a distance o f zd away from the 
back focal plane o f the lens, where the pupils are : 1(x ,y) — $(x,y) (a pin 
hole) and : 2(x, y) — exp[j'2 iM ( — x, — y)], which satisfies Condition (2) as 
previously discussed. According to Eq. (4.3-8), the scanned output to be 
stored in the digital computer then becomes

3(x ,y ;zd) — Y —1 {exp [42*0 (*  + *  ) ] exp[ i 2 i M (— .

(4.3-12)
According to Fig. 4.16, when the information from Eqs. (4.3-11) and 
(4.3-12) are the inputs o f the DDU, the output is as follows:

output of DDU °  Y —1{ Y { |r0(x, y; z -) |2exp[j'2ir(x, y)]}

x exp exp

— |Гo( x ,y ;z-)|2exP[421 r (x ,y)], (4.3-12)

when the sigma used in the m-file is the same as that used for encryption, i.e., 
theoretically zd — z- . The decrypted output intensity, i.e., the absolute value 
of the DDU’s output, is shown in Fig. 4.18a). If  the decryption key is chosen 
incorrectly (such as the guessing o f a random phase mask), Fig. 4.18b) shows 
its unusable output intensity. Finally, when the decryption key is used 
correctly and if  sigma or zd is guessed or chosen incorrectly, say, 
zd — 1.5 x z- , then the absolute value o f the DDU’s output is shown in Fig.
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4.18c), which is a defocused version o f Fig. 4.18a). We see that the 
introduction o f z - and zd gives an extra security measure.

Virginia

Tech
a) Intensity of decrypted document with matched key and zd — z-

... — ■ У~'\ 
* . л •••ш шмтштт <: ■ .

•'VV.

b) Intensity of decrypted document with mismatched key and zd — z-

c)Intensity of decrypted document with matched key but with zd — 1.5z- 

Fig. 4.18 Decryption simulations.
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Table 4.2 Cryptography.m: 
m-file for simulating optical scanning cryptography.

%Cryptography.m
%Simulation of Optical Encryption and Decryption
%This program was adapted from the one developed by Taegeun Kim
%of Sejong Univ., Korea

clear
%L : Normalized length of back ground (field of view)
L=1;
%Dl: Physical field of view in this simulation 20% of L 
Dl=0.02;
%N : sampling number 
N=255;
% dx : step size 
dx=L/N;

%Unit Axis Scaling
%Normalized length and Spatial Frequency according to the Normalized length 
for k=1:256 

X(k)=1/255*(k-1)-L/2;
Y(k)=1/255*(k-1)-L/2;

%Kx=(2*pi*k)/(N*dx)
%k is sampling number, N is number of sample,
%in our case, N=255, dx=1/255(unit length)

Kx(k)=(2*pi*(k-1))/(N*dx)-((2*pi*(256-1))/(N*dx))/2;
Ky(k)=(2*pi*(k-1))/(N*dx)-((2*pi*(256-1))/(N*dx))/2;

end
%Real length and real spatial frequency 
X=Dl*X;
Y=Dl*Y;
Kx=Kx./Dl;
Ky=Ky./Dl;

%Read Input image, image size must be 575x577x3 
%for the program to function properly 
CH1=imread('vt.bmp','bmp');
CH1=CH1(:,:,1);
[x,y]=meshgrid(1:577,1:575);
[xi,yi]=meshgrid(1: 2.2539:577,1:2.2461:575);
CH1p=double(CH1);
I0=interp2(x,y,CH1p,xi,yi);
I0=double(I0);
I0=I0./max(max(I0)); %Image to be encrypted

M=rand(256);
M2=rand(256);
%Encryption key in frequency domain,



Optical Scanning Holography: Applications 129

%the last term in Eq. (4.3-10)
P=exp(-j*2*pi*M2);

RPM=exp(j*2*pi*M); %random phase mask, exp(j*2*pi*r(x,y)) 
R1=I0.*RPM;%Random phase mask times the image

%OTF(kx,ky;zc)
%sigma=z/(2Ko)=(z*ld)/(4*pi)
%where Ko is the wave number, z is the distance from the source
%and ld is the wavelength of the source
ld=0.6*10A-6; % wavelength=ld=0.6*10A-6
zc=0.3; %coding distance
sigma=(zc*ld)/(4*pi);

for r=1:256, 
for c=1:256,
OTF(r,c)=exp(-j*sigma*(Kx(r).A2+Ky(c).A2));
end

end

for r=1:256, 
for c=1:256,
OTF2(r,c)=exp(-j*1.5*sigma*(Kx(r).A2+Ky(c).A2));
end

end

%Fourier transformation 
FR=(1/256)A2*fft2(R1);
FR=fftshift(FR);
Ho=FR.*OTF;

%Encrypted image in the frequency domain 
E=Ho.*P;

%Encrypted image in the space domain 
e=ifft2(E); %Eq. (4.3-10)

%Key info for decryption key is achieved by scanning the pin hole that is 
%located at z=zc
Key_info=conj(OTF.*P); % Fourier transform of Eq. (4.3-11),zd=zc 
Key_info2=conj(OTF2.*P); % Fourier transform of Eq. (4.3-11), zd=1.5zc 
%Different random phase 
M3=rand(256);
P1=exp(j*2*pi*M3);
Key_info_mis=conj(OTF.*P1);% Fourier transform of Eq. (4.3-11) but with a wrong 
phase key

%Decrypted image with matched key in the frequency domain 
De=E. *Key_info;

%Decrypted image with matched key in the frequency domain 
%but with twice distance of zc



De2=E.*Key_info2;

%Decrypted image with matched key in the space domain 
de=ifft2(De); %Eq. (4.3-12)

%Decrypted image with matched key in the space domain 
%but with zd=1.5 zc 
de2=ifft2(De2); %Eq. (4.3-12)

%Decrypted image with mis_matched key in the frequency domain 
De_mis=E.*Key_info_mis;

%Decrypted image with mis_matched key in the space domain 
de_mis=ifft2(De_mis);

figure(1)
image(X,Y,256*I0); 
colormap(gray(256)); 
axis square
title('image to be encrypted') 
axis off

figure(2)
image(X,Y,255*real(R1)); 
colormap(gray(256)); 
axis square
title('Real part of the image multiplied by random phase mask') 
axis off

figure(3)
image(X,Y,255*imag(R1)); 
colormap(gray(256)); 
axis square
title('Imaginary part of the image multiplied by random phase mask') 
axis off

figure(4)
image(X,Y,255*abs(e)/max(max(abs(e))))
colormap(gray(256))
axis square
title('Intensity of encrypted image')% absolute value of Eq. (4.3-10) 
axis off

figure(5)
image(X,Y,255*abs(de)/max(max(abs(de))));
colormap(gray(256));
axis square
title('Intensity of decrypted image with matched key with zd=zc') 
axis off

figure(6)
image(X,Y,255*abs(de_mis)/max(max(abs(de_mis))));
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colormap(gray(256)); 
axis square
title('Intensity of decrypted image with mismatched key with zd=zc') 
axis off

figure(7)
image(X,Y,255*abs(de2)/max(max(abs(de2))));
colormap(gray(256));
axis square
title('Intensity of decrypted image with matched key with zd=1.5zc') 
axis off
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Chapter 5

Optical Scanning Holography: Advances

5.1 Coherent and Incoherent Holographic Processing

In chapter 4, we have discussed some applications that employ optical 
scanning holography (OSH). OSH has been implemented by the two-pupil 
optical heterodyne scanning image processor that we have discussed in 
chapter 3 [see Fig. 3.11]. All o f our discussions regarding the applications 
that we use OSH have so far been confined to incoherent image processing,
i.e., the objects that are processed are incoherent and this leads to some of the 
important applications o f 3-D fluorescence microscopy and remote sensing. 
Coherent 3-D imaging, nevertheless, is an important extension o f the 
processor in biological imaging for the area o f quantitative ph ase-con trast 
im aging  [Cuche, Bevilacqua, and Depeursinge (1999)].

Fig. 5.1 Generalized two-pupil image processor. Adapted from T.-C. Poon, 
J. Holography Speckle 1, 6-25 (2004).
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In this section, we will discuss how the image processor can be configured 
(or generalized) in order to work in a coherent mode, i.e., the amplitude 
instead o f the intensity o f the object can be processed. We shall use Fourier 
optics discussed in chapter 2, in order to fully analyze the processor.

The generalized processor is shown in Fig. 5.1 with its usual two- 
pupil set-up for optical scanning o f the 3-D object. As compared to the 
standard setup shown in Fig. 3.11, note that the Fourier transform lens, L2, 
and the mask, M (x ,y ) , are the additional elements in the system. We will 
model the 3-D object as a stack o f transverse slices where each slice o f the 
object is represented by an amplitude transmittance, T (x , y ;z ) , which is thin 
and weakly scattering. We will place the 3-D object in front o f the Fourier 
transform lens, L2. M (x , y) is a mask located at the back focal plane o f lens 
L2. The photodetector, PD, collects all the light transmitted by the mask and 
delivers the processed and scanned current, i ( t ) ,  as output of the system. 
Finally, for the usual multiplexing electronic detection the bandpass filter 
(BPF) is tuned to H to give the heterodyne current, 3H ( t) . By using Fourier 
optics, we shall outline the procedures used to obtain 3(t) upon scanning the 
object.

The amplitude distribution o f the light field, at position z just before 
the object slice, is given by

T i(x , y; z +  z0)exp(j=0t) +  P#(x,  y; z +  z0)exp[j'(=0 +  H )t], (5.1-1a) 

where, according to Fresnel diffraction,

T ;(x ,y ;z  +  zo) =  Y te (x ,y )} ,  = ̂  5 = %/ * 2 (x ,y ;z  +  zo) (5.1-1b)5x 0 15y 0

with 3 =  1 or 2 and : 3(x, y) is the pupil functions shown in Fig. 5.1.
According to the principle o f optical scanning developed in section 

3.1, the field just after the object slice is

x (x /,y/,x i y ;z) =  {Ti (x /,y '; z +  zo)exp (i=ot)

+  T2(x 'iC ;z  +  zo)exp[4(=o +  H t]}T(x ' +  x, yw +  y ;z ) , (5.1-2)

where x =  x(t) and y =  y(t) represent the instantaneous 2-D position o f the 
object with respect to the incident light amplitude distribution. This field then 
propagates through the Fourier transform lens, L2, and reaches the mask, 
M (x , y). According to Eq. (2.4-5), the field just before the mask, apart from 
some inessential constant, is
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where we have set do =  f  — z in Eq. (2.4-5) to obtain the phase factor in 
front o f the integral. x7  and y7  are the coordinates in the plane o f the mask. 
The above field is caused by a single object slide. For a 3-D object, we need 
to integrate the above field over the thickness, z, of the 3-D object to find the 
total field just before the mask. This becomes the following expression

By multiplying the above field by the mask, the field, just after the mask is 
then given by

Finally, the photodetector, PD, which responds to intensity, gives the current 
output 3(>) by spatially integrating the intensity:

3(>) consists o f a baseband current and a heterodyne current at a frequency of 
H. After some manipulations, the heterodyne current, 3H(t), at the output o f a 
bandpass filter [see Fig. (5.1)], becomes

in(>) °  ( [P i(x ',y ';z ' +  zo)-P2* (x '',y '';z '' +  zo)exp( — j'fit) 

+  T2(x', y'; z ' +  zo)P"(x '', y''; z '' +  zo)exp(j'Ht)]

x e x p j j 'y  [xm(x' — x'') +  ym(y' — y '')]}



x exp [ ~ 4 5o(z20-2 z ) (x7 2 +  ym2)]T(x' +  xi yw +  y ; z 0

x T *(x" + x , y/w +  y ; z//) |M (x m, ym)|2

x . x /. y /. x //. y //. z / dz/wdxmdym. (5.1-3)

This heterodyne current contains the scanned and processed information of 
the 3-D object. Different processing operations can be expected with the 
specified selections o f the pupils, : i ( x ,  y) and : 2(x, y), as well as the mask, 
M (x , y), which is located at the back focal plane o f lens L2. As calculated 
by Indebetouw, Klysubun, Kim, and Poon [2000], the coherency o f the two- 
pupil scanning system can be modified by changing the mask, M (x m,y m). 
We shall summarize the results o f Eq. (5.1-3) for M (x m,y m) =  1 and
M (x 7 , y 7 ) =  $( x ,y) .

For the mask being an open mask, i.e., M (x ,y )  =  1, Eq. (5.1-3) 
becomes

3fi(t) °  Re ( T1i(x/,y /; z +  zo)T2(x /,y /; z +  zo)

x |T ( x w +  x, yw +  y; z) |2 . x ' . y ' . z  exp(j'Ht)

(5.1-4)
This equation is basically identical to Eq. (3.4-5), which corresponds to 
incoherent processing, because only the intensity values, i.e., |T |2, are 
processed. However, note that the intensity can be processed by the two 
pupils, : 1(x ,y) and P2(x ,y).

On the other hand, for a pinhole mask centered on the axis, i.e., 
M (x , y) =  $(x, y). Equation (5.1-3) then becomes

3H(t) °  Re [ j  T2(x/,y /; z' +  zo)T (xw +  x ,y w +  y; z') . x ' . y ' . z ' ]
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[ /  T"*(x ,y  ;z  +  zo)T*(x + x , y  + y ; z  ) . x  . y  . z  ] exp(jHt)

For a specific case, if  we let : 1(x ,y) =  5(x ,y ), i.e., one o f the scanning 
beams is a uniform plane wave, and leave : 2(x ,y) as is, then
/___oT 1*(x//, yww; z" +  zo)T*(x/w +  x , yww +  y; zww) . x " . y //. z // is a constant, 
and the above equation becomes

3H(t) °  Re I [T2( x / ,y ; z +  zo)



x T ( x ' +  x, y ' +  y; z) dx 'dy 'dz ] exp(j'Ht)
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We see that we can process the object’s amplitude transmittance by pupil 
P2(x, y). Equations (5.1-4) and (5.1-5) represent the important results o f the 
generalized two-pupil heterodyne scanning image processor. By varying the 
detection mode from pinhole to spatially integrating detection, we are able to 
change the coherence property of the imaging process o f a 3-D object from 
linear in intensity [see Eq. (5.1-4)] to linear in amplitude [see Eq. (5.1-5)]. 
By varying the size o f the mask, it is possible to obtain 3-D p a r tia l coherent 
im age processin g  [Poon and Indebetouw (2003)].

By incorporating Eq. (5.1-4) and (5.1-5) into one simple important 
result, we have

in (>) °  Re[ inP(x,y) exp(j'Ht)], (5.1-6a)

where, for Q (x ,y )  =  $(x,y) and : i ( x ,y )  =  $(x,y) we have the following 
coherent processing equation,

inP(x,y) =  ( P 2(x ',y ';z  +  zo)X(x' +  x ,y ' +  y ;z )  d x 'd y 'd z . (5.1-6b) 

For Q (x , y) =  1, we have the incoherent processing equation,

in p(x,y) =  (  P li(x/, y ; z  +  zo)P2(x/, y ; z  +  zo)

x |T ( x ' +  x, y ' +  y; z ) |2 dx 'd y 'd z . (5.1-6c)

Again X or |X |2 is the input object that is being scanned and it can be 
a complex amplitude object or intensity object. in (>) is the scanned and 
processed heterodyne output current at a temporal frequency o f H from the 
photodetector, and iHp(x,y) is in general a complex function. Hence, the 
amplitude and the phase o f the heterodyne current, in (>), carry the complete 
processed information.

The scanned and processed current can be demodulated according to 
Fig. 5.1 under the usual multiplexing electronic detection, and this gives the 
following two outputs:

ic(x ,y) °  |inP(x ,y )|s in ()), (5.1-7a)

and

i=(x,y) °  |inp(x, y) |cos()), (5.1-7b)
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where iHp(x,y) =  |3qp (x , y )|exp[j)(x , y)]. Processing operations can be 
manipulated by the selected choice o f pupils, : 1 (x ,y) and/or : 2(x ,y ), 
according to Eq. (5.1-6).

These important results open up new avenues for unconventional 
imaging. For one, coherent processing has been recently assessed experi
mentally [Indebetouw, Tada and Leacock (2006)], and the other is its abi
lity to perform 3-D coherent image processing. In the case o f incoherent 
processing, we can perform 3-D  com plex incoherent im age processing . The 
term “3-D” means the object being processed can be o f a 3-D nature, and the 
term “complex” means that the processing element for the intensity object 
can be represented by a complex function [see Eq. (5.1-4) as the processing 
element is T1*T2 ]. Thus, we have mentioned some o f the virtually unexplored 
topics in 3-D optical image processing [Poon and Indebetouw (2003)].

Example 5.1 Holographic Recording in Coherent Mode

For coherent processing, we will use Eq. (5.1-6b). In general, T (x ,y ;z )  is 
processed by selecting : 2(x ,y ). For a simple holographic recording, we 
select p i ( x ,  y) =  1. For this selection, according to Eq. (5.1-1b) and by using 
Table 1.1 and Eq. (2.3-11), T2(x ,y ;z  +  zo) becomes

T2(x, y ;z  +  zo) =  Y { :2(x, y) }5 = v  , = toy *2(x, y; z +  zo)0 0
=  4 i 2$ (50x, * f )

- -jfep  (x2 +  y2)" >
- 2(z +  zo) " J

By substituting Eq. (5.1-8) into Eq. (5.1-6b), we now have

T (x w +  x , y w +  y; z ) .x /. y /. z

=  (  exp[ — 4'feo(z +  zo)] 2i (f++zo)
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exp — 45 o (x2 + У2) 
2(z +  zo)

]>  0  T ( x ,y ; z) dz

according to the definition o f correlation. By using Eq. (1.2-5), the above 
integration can be written in terms o f  convolution to become

inp(x, y) =  I exp[ — j'fco(z +  zo)]
45o

exp

2 i(z  +  zo) 

— 45 o (x2 + У2)
2(z +  zo)

]>  * T ( x ,y ; z) d z . (5.1-9)

Note that this corresponds to the holographic recording o f coherent 
information, X (x ,y ;z ) , because it is clearly shown by comparing it to the 
incoherent case given by Eq. (3.5-5). Indeed, Eq. (5.1-9) tells us that we have 
a complex Fresnel zone plate hologram o f X(x, y ;z ) .

5.2 Single-Beam Scanning vs. Double-Beam Scanning

Recently, the applicability o f optical scanning holography (OSH) to 3-D 
microscopy has been assessed by taking into account polarization effects, 
high numerical apertures, and generalized illumination wavefronts [Swoger, 
Martinez-Corral, Huisken, and Stelzer (2002)]. In low -R E  systems, 
polarization remains the same during light propagation. Polarization is 
necessarily taken into account when h igh-R E  lenses are used. Generalized 
illumination refers to the use o f  the two pupils associated with the two 
scanning beams. Ideally, one of the pupils is a delta function and the other is 
unity. This gives a plane wave and a spherical wave on the object, res
pectively. For arbitrary pupil functions, we have a generalized illumination 
wavefront on the object [Indeed, for example, Eq. (5.1-4) points to the fact 
that the object, |X (x,y; z ) |2, is actually illuminated by P*P2, thereby pro
viding a generalized illumination].

The authors also use the term “reference beam” and “object beam” 
when referring to the plane wave and the spherical wave in the ideal case. In 
addition, a single-beam scanning technique has been proposed and compared 
to double-beam scanning. D ouble-beam  scanning  in OSH refers to the fact 
that the combination o f  a plane wave and a spherical wave is used to raster 
scan a thick specimen, while single-beam  scanning  means that only one o f  
the waves is used to scan and the other wave remains stationary with respect 
to the specimen. Figure 5.2 shows the schematics o f the scanning con
figurations for OSH. For single-beam scanning, mirror M1 is used to scan 
the beam and mirror M2 is fixed. For double-beam scanning, M2 is used to
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scan and M1 is fixed. The specimen and the mask are placed in the front 
focal plane and in the back focal plane of lens L2, respectively. This 
corresponds to the situation shown in Fig. 5.1. In the following section, we 
will summarize some observations made by Swoger et al.

Fig. 5.2 Scanning configurations for optical scanning holography.
(M: mirror, M1,2: scanning mirrors, BS:beamsplitter, L1 and L2: lenses; PD: photodetector).

Regardless of the polarization directions of the two scanning beams, 
double-beam scanning is well suited for optical scanning holography when 
working in the incoherent mode (open mask in front of the detector). 
However, in order to obtain holographic information in a coherent mode 
(pin-hole mask in front of the detector), it is necessary to have a uniform 
plane wave as one of the scanning beams on the object. In any case, if the 
reference beam is a uniform plane wave and the object wave has the same 
polarization of the plane wave, the results reduce to the conclusion developed 
earlier by Indebetouw, Klysubun Kim, and Poon [2000]. On the other hand, 
during single-beam scanning for the coherent mode, there is no need for the 
reference beam to be uniform and the polarization directions do not need to 
be constant. The reference beam here now refers specifically to the beam that 
is not being scanned. However, the incoherent mode is restricted by the 
constant polarization direction of the reference beam when we attempt to 
obtain holographic information. Therefore, there are several pros and cons
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associated with the two scanning configurations and for future work we 
should include the actual implementation o f a h igh-R E  optical scanning 
holographic system that is capable o f allowing us to observe live biological 
specimens in both fluorescence and phase contrasts. Recently, optical 
scanning holographic systems operating in the coherent mode have been 
implemented to test its phase contrast capabilities [Indebetouw, Tada, and 
Leacock (2006)]. To end this section, I also want to point out that recent 
experiments have been demonstrated by using single-beam scanning [Chien, 
Dilworth, Liu and Leith (2006)]. The authors consider the term “scanning 
holography” and “synthetic-aperture optics” to be essentially interchangeable 
because both techniques imply phase-preserving scanning. Indeed, it was 
pointed out as early as the late 1970’s in the article by Poon and Korpel 
[1979] that scanning holographic recording was analogous to synthetic- 
aperture radar.

5.3 PSF Engineering

As pointed out in section 3.6, the basic principle o f optical scanning hologra
phy is that we simply create the time-dependent Fresnel zone plate (TDFZP) 
in order to raster scan the object that allows us to obtain holographic infor
mation. This can be implemented by the two-pupil heterodyne image pro
cessor that was discussed in section 3.4. In the processor, we let the two 
pupil functions be :i(x , y) =  1 and : 2(x, y) =  5(x, y) on the pupil plane, as 
shown in Fig. 5.3a), so that the scanning beam intensity at a distance o f zo 
away from the focal point, c, of the lens is given by Eq. (3.6-1) as follows:

Mscan(x i y  t)

=  | aexp[j(=o +H)t] +  exp[ -  45o(x +  y ) ]exp(4=ot)|2,
2izo 2zo

5
=  E + F  sin[---- (x2 +  y2) +  Ht], (5.3-1)

2zo

where it is understood that the two pupils are o f different temporal 
frequencies accordingly. The scanning beam intensity is the time-dependent 
Fresnel zone plate, and the situation is shown schematically in Fig. 5.3a).

If  the object is a pin hole, a delta function mathematically, then the 
output after electronic detection (for example, multiplying with cosHt and 
lowpass filtering) is given by Eq. (3.6-3) as follows:

3c(x, y) -  s i n [ ^ ( x 2 +  y2)]. 
2zo

(5.3-2)



The result above is the hologram of a pin-hole object for the single channel. 
For brevity, the channel due to the multiplying with sinHt and lowpass 
filtering is not considered here. Upon plane-wave illumination o f the 
hologram, a real image will focus at zo in front o f the hologram. If the 
hologram has a limiting aperture size o f radius r, then its N A  is r / z 0, which 
gives - 0/ N A  as the resolution o f the reconstructed point source. This 
reconstructed point source is the point spread function (PSF) o f the system 
being considered. Now, by manipulating the functional form of the pupils, 
we can modify the PSF o f the system as we see fit. Nowadays, this is known 
as PSF-engineering  [Martinez-Corral (2003)].
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Fig. 5.3a) Optical scanning holography with time-dependent FZP as a scanning beam.
b) Optical scanning holography with scanning spherical waves of opposite curvatures. 

Adapted from T.-C. Poon, J. Holography and Speckle 1, 6 (2004).

Let us consider the following situation. We let p"(x ,y) =  1 as before, but 
set p2(x, y) =  exp[ — 45o(Xz+y )]. We shall find the PSF with these choices of 
the pupils. We are familiar with the choice o f p"(x,  y) =  1 because it gives a
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spherical wave on the object at a distance zo away from the focal plane o f the 
lens, which corresponds to the term e x p [ -  45o(xz+y )]exp(4=ot) in Eq. 
(5.3-1). The situation is shown in Fig. 5.3b). Let us find what a is in Eq. 
(5.3-1) for the choice o f : ( x , y )  given above. Note that a (x ,y ) is now a 
function o f x and y. Through the Fourier transformation o f the lens [see Eq. 
(2.4-6)] and Fresnel diffraction at a distance o f zo [see Eq. (2.3-12)], we can 
write the field distribution due to :  (x, y) on the object as

+(x ,y ) =  Yx y { : ( x ,y)} , , * 2 (x ,y ;zo) (5.3-3)5x=5o£//
5c = 5oc//

( r 45 o(x2 +  y2), ™ 
=  Yxy I exp [  —  }} , , .. ♦ M ^ y ^ o X,x=,ox//

5c = 5oc/Z

where f  is the focal length o f the lens. The above Fourier transformation can 
be found by using Table 1.1 on page 2. We then perform the convolution and 
the result, apart from some constant, is given as follows:

, \ 45 o rJ5 o(x2 +  y2) -i a (x ,y ) =  ------ expl----------------- i. (5.3-4)
v 2iz^ 2z"

Note that a(x, y) can either be converging wavefronts or divergent wave
fronts on the specimen and this is dependent on the location o f the focused 
point, p. In Fig. 5.3b), we show that point cw is the image point o f the focused 
point, p, and hence the radius o f curvature, zi, is positive in the situation 
because we have converging wavefronts illuminating the specimen [see 
Example 2.4 on spherical wave]. The value o f z" can be designed accordingly 
by properly locating point p or the distance, z3, under the imaging condition 
so that

1 1 1
(5.3-5)

f  +  z3 f  +  zo +  z i f

Therefore, we can design : 2(x, y) with a different radius o f curvature.
For the choices o f z3 =  2 f  and zo =  z" =  f / 4 ,  Eq. (5.3-5) will be 

satisfied. Since zo =  z", we will have spherical waves o f opposite curvatures 
illuminating the specimen. Hence, with Eq. (5.3-4) and zo =  z", the scanning 
beam intensity becomes

Mscan (^  y; t)

rJ5 o(x2 +  y2)n r v  , n U i . Г 45 o(x2 +  y2 !̂ ,4,2°  | exp[------ ---------- ]exp[j(=o +  H)t] +  exp[---------- ---------- Jexp(j=0t)|
2zo 2zo
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5n
=  A  +  В ' sin[ (x2 +  y2) +  Ht], (5.3-6)

2(Zo /2)

where A' and В ' are some constants. The above scanning beam gives

i c(x,  y)  -  sin[— (x2 +  y2)] (5.3-7)
zo

as our new hologram for the selected pupils. Upon real image reconstruction 
of the hologram given by Eq. (5.3-7), we see that the image is formed at a 
distance o f zo/2 . For the same limiting aperture size of the hologram, r, 
similar to the standard optical scanning setup, its N A  now becomes 
r / ( z 0/2 ). This gives - 0/(2N A ) as the resolution o f the reconstructed point 
source, which is our new PSF. The result means that for the same hologram 
aperture size, it is possible to synthesize the point-spread function in optical 
scanning holography in order to obtain holographic reconstructions with a 
transverse resolution exceeding the Rayleigh limit o f the aperture up to a 
factor o f 2, at least in the limit of low NA . Indeed, this has been investigated 
by Indebetouw (2002) and was recently confirmed by optical experiments 
[Indebetouw, Maghnouji, and Foster (2005)]. Other pupils examined so far 
include axicons, which have been used to achieve optical sectioning, 
however, thus far only simulations have been provided [Indebetouw, Zhong, 
and Chamberlin-Long (2006)].

In general, arbitrary complex amplitude distributions o f the pupils 
can be synthesized by using masks, refractive or diffractive optical elements 
(DOEs), or spatial light modulators which allow dynamic changes. For
P2(x,y) =  exp[ — 45o(xz+y )] shown in this example, we can simply imple
ment it by placing a p oint source at a distance, z3, in front o f the pupil 
plane as shown in Fig. 5.3b). In general, I want to point out that the two- 
pupil method offers a broad range o f possibilities when synthesizing 
unconventional PSFs for potential novel applications. One o f the new 
applications is super-resolution  [Indebetouw, Tada, Rosen and Brooker 
(2007)].
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