

C++ System Programming
Cookbook

Practical recipes for Linux system-level programming using
the latest C++ features

Onorato Vaticone

BIRMINGHAM - MUMBAI

C++ System Programming Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Karan Gupta
Content Development Editor: Pathikrit Roy
Senior Editor: Rohit Singh
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: February 2020

Production reference: 1210220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-655-4

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Onorato Vaticone is a software engineer with over 18 years of experience. A C++ expert, he
has deep, system-level programming experience. An Agile coach and XP advocate, TDD
and Simple Design are his everyday tools. He has worked on real-time systems (defense
and energy transmission) with C++. During this time, he learned to write multiplatform
code. Early in his career, he realized that a form of agility was needed. He holds an MSc in
cloud computing and a BSc in computer engineering and software. He finds learning how
things work under the hood to be fascinating!

About the reviewers
Scott Hutchinson leads a team of C++ and F# developers in Oxnard, California. After a few
years as a VB/VBA developer, he started developing with .NET Framework immediately
after its launch in 2002. Since 2016, he has done most of his development in C++. He is a
mentor for the F# track on Exercism, and teaches functional programming in F# to his team
at work. His main professional interests are functional programming and machine learning.
When he's not learning some new software development skill, he's usually hiking in the
mountains of Southern California.

Daniel Durante is an author and technical editor for Packt Publishing, a consultant and
strategist for multiple Fortune 100 companies, and has been a full-stack developer since the
age of 12. His code exists in infrastructures such as Hubcash, Stripe, and Walmart.

He has worked on text-based browser games that have reached over 1,000,000 active
players, created bin-packing software for CNC machines, embedded programming with
Cortex-M and PIC circuits, built high-frequency trading applications, and helped contribute
to and maintain one of the oldest ORMs of Node.js (SequelizeJS). He has worked on various
books such as Rust Standard Library Cookbook, PostgreSQL Developer's Guide, and Rust
Programming By Example, among many others.

I would like to thank my parents, my brother, my mentors, and friends who have all put
up with my insanity sitting in front of a computer day in and day out. I would not be here
today if it wasn't for their patience, guidance, and love.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with System Programming 8
Technical requirements 9
Learning the Linux fundamentals - architecture 9

How to do it... 11
How it works... 11

Learning the Linux fundamentals - shell 12
How to do it... 13
How it works... 14
There's more... 16
See also 16

Learning the Linux fundamentals - users 16
How to do it... 16
How it works... 18
There's more... 19
See also 20

Using a makefile to compile and link a program 20
How to do it... 21
How it works... 22
There's more... 23

Using GDB to debug a program 23
How to do it... 23
How it works... 25
There's more... 27

Learning the Linux fundamentals - processes and threads 27
How to do it... 28
How it works... 29
There's more... 30

Handling a Linux bash error 30
How to do it... 30
How it works... 31
There's more... 31

Handling Linux code error 32
How to do it... 32
How it works... 33
There's more... 34

Chapter 2: Revisiting C++ 35
Technical requirements 36

Table of Contents

[ii]

Understanding C++ primitive types 37
How to do it... 37
How it works... 38
There's more... 39
See also 40

Lambda expressions 40
How to do it... 40
How it works... 41
There's more... 42
See also 42

Automatic type deduction and decltype 43
How to do it... 43
How it works... 44
There's more... 44
See also 44

Learning how atomic works 45
How to do it... 45
How it works... 46
There's more... 47
See also 47

Learning how nullptr works 47
How to do it... 47
How it works... 48
There's more... 48
See also 49

Smart pointers – unique_ptr and shared_ptr 49
How to do it... 49
How it works... 51
There's more... 53
See also 53

Learning how move semantics works 53
How to do it... 54
How it works... 55
There's more... 56
See also 57

Understanding concurrency 57
How to do it... 57
How it works... 60
There's more... 61
See also 62

Understanding the filesystem 62
How to do it... 62
How it works... 63
There's more... 64
See also 64

Table of Contents

[iii]

The C++ Core Guidelines 64
Getting ready 64
How to do it... 65
How it works... 65
There's more... 65
See also 65

Adding GSL in your makefile 65
Getting ready 65
How to do it... 66
How it works... 66
There's more... 66
See also 67

Understanding concepts 67
How to do it... 67
How it works... 68
There's more... 69
See also 69

Using span 70
How to do it... 70
How it works... 71
There's more... 71
See also 72

Learning how Ranges work 72
How to do it... 72
How it works... 73
There's more... 73
See also 74

Learning how modules work 74
How to do it... 74
How it works... 75
There's more... 76
See also 77

Chapter 3: Dealing with Processes and Threads 78
Technical requirements 78
Starting a new process 79

How to do it... 79
How it works... 82
There's more... 83
See also 84

Killing a process 85
Getting ready 85
How to do it... 85
How it works... 87
There's more... 88

Table of Contents

[iv]

Creating a new thread 88
How to do it... 88
How it works... 89
There's more... 90
See also 90

Creating a daemon process 91
How to do it... 91
How it works... 92
There's more... 93
See also 94

Chapter 4: Deep Dive into Memory Management 95
Technical requirements 95
Learning automatic versus dynamic memory 96

How to do it... 96
How it works... 98
There's more... 98
See also 99

Learning when to use unique_ptr, and the implications for size 99
How to do it... 99
How it works... 100
There's more... 101
See also 101

Learning when to use shared_ptr, and the implications for size 102
How to do it... 102
How it works... 103
There's more... 104
See also 104

Allocating aligned memory 105
How to do it... 105
How it works... 106
There's more... 107
See also 108

Checking whether the memory allocated is aligned 108
How to do it... 108
How it works... 109
There's more... 109
See also 110

Dealing with memory-mapped I/O 110
How to do it... 111
How it works... 113
There's more... 114
See also 115

Dealing with allocators hands-on 115
How to do it... 115

Table of Contents

[v]

How it works... 117
There's more... 117
See also 117

Chapter 5: Using Mutexes, Semaphores, and Condition Variables 118
Technical requirements 118
Using POSIX mutexes 119

How to do it... 119
How it works... 121
There's more... 122
See also 122

Using POSIX semaphores 123
How to do it... 123
How it works... 125
There's more... 126
See also 126

POSIX semaphores advanced usage 127
How to do it... 127
How it works... 129
There's more... 131
See also 132

Synchronization building blocks 132
How to do it... 132
How it works... 135
There's more... 136
See also 137

Learning inter-thread communication with simple events 137
How to do it... 137
How it works... 139
There's more... 139
See also 139

Learning inter-thread communication with condition variables 140
How to do it... 140
How it works... 142
There's more... 143
See also 144

Chapter 6: Pipes, First-In First-Out (FIFO), Message Queues, and
Shared Memory 145

Technical requirements 146
Learning the different types of IPC 147

How to do it... 147
How it works... 148
There's more... 149
See also 150

Learning how to use the oldest form of IPC – pipes 150

Table of Contents

[vi]

How to do it... 150
How it works... 152
There's more... 153
See also 153

Learning how to use FIFO 153
How to do it... 154
How it works... 155
There's more... 156
See also 157

Learning how to use message queues 157
How to do it... 157
How it works... 159
There's more... 161
See also 161

Learning how to use shared memory 162
How to do it... 162
How it works... 164
There's more... 165
See also 166

Chapter 7: Network Programming 167
Technical requirements 168
Learning the basics of connection-oriented communication 169

How to do it... 169
How it works... 170
There's more... 172
See also 172

Learning the basics of connectionless-oriented communication 172
How to do it... 173
How it works... 174
There's more... 174
See also 175

Learning what a communication endpoint is 175
How to do it... 175
How it works... 176
There's more... 177
See also 177

Learning to use TCP/IP to communicate with processes on another
machine 178

How to do it... 178
How it works... 182
There's more... 185
See also 186

Learning to use UDP/IP to communicate with processes on another
machine 186

Table of Contents

[vii]

How to do it... 186
How it works... 190
There's more... 193
See also 193

Dealing with endianness 193
How to do it... 194
How it works... 194
There's more... 195
See also 195

Chapter 8: Dealing with Console I/O and Files 196
Technical requirements 196
Implementing I/O to and from the console 197

How to do it... 197
How it works... 199
There's more... 201
See also 201

Learning how to manipulate I/O strings 201
How to do it... 201
How it works... 203
There's more... 205
See also 205

Working with files 205
How to do it... 206
How it works... 207
There's more... 209
See also 210

Chapter 9: Dealing with Time Interfaces 211
Technical requirements 211
Learning about the C++ time interface 212

How to do it... 213
How it works... 214
There's more... 215
See also 215

Using the C++20 calendar and time zone 216
How to do it... 216
How it works... 218
There's more... 219
See also 219

Learning the Linux timing 219
How to do it... 220
How it works... 221
There's more... 223
See also 223

Dealing with time sleep and overruns 224

Table of Contents

[viii]

How to do it... 224
How it works... 226
There's more... 227
See also 228

Chapter 10: Managing Signals 229
Technical requirements 229
Learning all of the signals and their default actions 230

How to do it... 230
How it works... 231
There's more... 232
See also 232

Learning how to ignore a signal 232
How to do it... 233
How it works... 234
There's more... 235
See also 235

Learning how to trap a signal 235
How to do it... 235
How it works... 236
There's more... 237
See also 238

Learning how to send a signal to another process 238
How to do it... 238
How it works... 239
There's more... 240
See also 240

Chapter 11: Scheduling 241
Technical requirements 241
Learning to set and get a scheduler policy 242

How to do it... 243
How it works... 244
There's more... 245
See also 247

Learning to get the timeslice value 247
How to do it... 247
How it works... 248
There's more... 249
See also 249

Learning how to set a nice value 250
How to do it... 250
How it works... 251
There's more... 251
See also 251

Learning how to yield the processor 252

Table of Contents

[ix]

How to do it... 252
How it works... 253
There's more... 253
See also 253

Learning about processor affinity 254
How to do it... 254
How it works... 255
There's more... 256
See also 257

Other Books You May Enjoy 258

Index 261

Preface
This book aims to provide ready-to-use solutions (to developers) for the essential aspects of
system programming, using the latest C++ standards wherever possible. System
programming deals with structuring computer programs that closely interact with the
operating system and allow computer hardware to interface with the programmer and the
user. Due to its efficient features, namely, low-level computation, data abstraction, and
object-oriented features, C++ is the preferred language for system programming. You will
learn how to create robust and concurrent systems, and you will also understand the inter-
process communication mechanism with shared memory and pipe. Moving forward, you
will deep dive into the C++ built-in libraries and frameworks in order to design robust
systems as per your requirements.

Who this book is for
This book is for C++ developers who want to gain practical knowledge of systems
programming. Though no experience of Linux system programming is assumed,
intermediate knowledge of C++ is necessary.

What this book covers
Chapter 1, Getting Started with System Programming, introduces you to the fundamentals
such as learning about the shell, users and groups, process IDs, and thread IDs to be able to
use a Linux system proficiently and so on that you must know for the rest of the book. For
example you will learn how Linux is designed, the shell, users and groups, process ID and
thread IDs. Furthermore, you will learn how to develop a simple Hello World program,
write its makefile, execute it, and debug it. This knowledge, although basic, is fundamental
for the more advanced topics that will appear in later chapters.

Chapter 2, Revisiting C++, refreshes your understanding of C++17, which will be used
throughout the entire book. It'll show why C++ represents a great opportunity for writing
good quality code that is concise and more portable than ever. This chapter contains all the
new features introduced by C++11/17/20 that you will find useful in this book.

Preface

[2]

Chapter 3, Dealing with Processes and Threads, introduces you to processes and threads that
are the foundation of any elaboration. A program is rarely ever made of just one process.
This chapter reveals the techniques for dealing with threads and processes in C++. The
chapter will demonstrate how easy and convenient it is to deal with threads (and tasks)
compared to POSIX. Although C++ does not have a formal way of creating a process, there
are rare cases in which a thread cannot do the job.

Chapter 4, Deep Dive into Memory Management, introduces you to memory, which is one of
the core concepts of dealing with system development. Allocating, freeing, and learning
how memory is managed and what C++ can offer to simplify and manage memory is
crucial. Furthermore, this chapter presents recipes on how to check and allocate aligned
memory and how to deal with memory-mapped I/O.

Chapter 5, Using Mutexes, Semaphores, and Condition Variables, shows us the POSIX
mechanism solutions and the ones offered by C++ to synchronize threads and processes.

Chapter 6, Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory, focuses on
making the processes communicate with each other. There are different solutions available
– pipes, FIFO, message queues, and shared memory. For each inter-process communication
mechanism, a recipe is provided.

Chapter 7, Network Programming, demonstrates how communication takes place from the
connection to the end. Communication between processes on different machines is the
foundation of the internet today, and TCP/IP is the standard de facto. Both TCP (short for
Transmission Control Protocol) and UDP (short for User Datagram Protocol) will be
described in detail, as the first represents connection-oriented and the latter represents
connectionless-oriented. This is quite important these days, especially with the video
streaming services that are available online.

Chapter 8, Dealing with Console I/O and Files, presents you with useful recipes for dealing
with files, I/O to and from the console, and streams of strings.

Chapter 9, Dealing with Time Interfaces, provides you with a deep understanding of how to
deal with and measure time with the features that are provided by both C++ and POSIX.
The chapter will offer ready-to-use recipes for each method.

Chapter 10, Managing Signals, introduces us to signals that are software interrupts. They
provide a way of managing asynchronous events. For example, a user typing the interrupt
key from the terminal, or another process sending a signal that must be managed. Every
signal has a name starting with SIG (for example, SIGABRT). This chapter will show the
reader how to write code to properly manage software interrupts, what the default actions
defined by Linux for each signal are, and how to override them.

Preface

[3]

Chapter 11, Scheduling, shows you how to use POSIX (the C++ standard does not provide
this) to set scheduler parameters, the scheduler policy, and the scheduler priorities. System
programming is about interacting with the underlying OS as seen so far. The scheduler is
one of the main components of every OS and impacts the way processes are allocated on
CPUs. There are cases where the developer needs control over this or, at least, tries to
influence the scheduler.

To get the most out of this book
Here is a list of requirements for this book:

Intermediate knowledge of C++.
Any additional requirements are mentioned in the Technical requirements section
of each chapter.
Disclaimer: The C++20 standard has been approved (that is, technically finalized)
by WG21 in a meeting in Prague at the end of February. This means that the GCC
compiler version that this book uses, 8.3.0, does not include (or has very, very
limited support for) the new and cool C++20 features. For this reason, the Docker
image does not include the C++20 recipe code.
GCC keeps the development of the newest features in branches (you have to use
appropriate flags for that, for example, -std=c++2a); therefore, you are
encouraged to experiment with them by yourself. So, clone and explore the GCC
contracts and module branches and have fun.
Some recipes (especially in Chapter 11, Scheduling) require the Docker image
running with admin privileges to execute properly. Depending on your Docker
configuration, you may be required to run the Docker with sudo. To avoid that
you can create a Linux group (for example, docker) and add users to it.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packt.com
https://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/C- System- Programming- Cookbook. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838646554_ColorImages. pdf.

Code in Action
Please visit the following link to check out the CiA videos: http:/ / bit.ly/ 2uXftdA

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In the second step, we started developing the main method."

http://www.packt.com
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/C-System-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838646554_ColorImages.pdf
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA
http://bit.ly/2uXftdA

Preface

[5]

A block of code is set as follows:

 std::cout << "Start ... " << std::endl;
 {
 User* developer = new User();
 developer->cheers();
 delete developer;
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

auto* mapPtr = static_cast<T*> (mmap(0, sizeof(T) * n,
 PROT_READ | PROT_WRITE,

Any command-line input or output is written as follows:

 $ grep "text" filename
 $ ls -l | grep filename

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows.

Preface

[6]

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

https://www.packtpub.com/support/errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started with System

Programming
In this chapter, you will be introduced to the foundations on which the entire book is
framed. You will learn (or refresh your knowledge of) how Linux is designed, and you will
also learn about the shell, users and groups, process IDs, and thread IDs to be able to use a
Linux system proficiently and get prepared for the next chapters. Furthermore, you will
also learn how to develop a simple hello world program, and find out about its makefile,
and also how to execute and debug it. Another important aspect of this chapter is to learn
how Linux deals with errors, from both a shell and a source code point of view. This
foundational knowledge is important to understand other advanced topics in the following
chapters. You can safely skip this and the next chapters if this refresher is not needed.

This chapter will cover the following recipes:

Learning the Linux fundamentals – architecture
Learning the Linux fundamentals – shell
Learning the Linux fundamentals – users
Using a makefile to compile and link a program
Using the GNU Project Debugger (GDB) to debug a program
Learning the Linux fundamentals – processes and threads
Handling a Linux bash error
Handling Linux code error

Getting Started with System Programming Chapter 1

[9]

Technical requirements
In order to let you try the programs immediately, we've set up a Docker image that has all
the tools and libraries we'll need throughout the book. This is based on Ubuntu 19.04.

In order to set this up, follow these steps:

Download and install the Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.
You should have at least this image now:4.
kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell, with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available.6.
Run root@39a5a8934370/# cd /BOOK/ to get all the programs developed, by
chapters.

The --cap-add sys_ptrace argument is needed to allow GDB in the Docker container to
set breakpoints, which, by default, Docker does not allow.

Learning the Linux fundamentals -
architecture
Linux is a clone of the Unix operating system, developed by Linus Torvalds in the early
'90s. It is a multiuser, multitasking operating system that runs on a wide variety of
platforms. The Linux kernel has a monolithic architecture for performance reasons. This
means that it is self-contained in one binary, and all its services run in kernel space. This
was one of the most controversial topics at the beginning. Andy Tanenbaum (professor at
the Vrije Universiteit, Amsterdam) argued against its monolithic system, saying: This is a
giant step back into the 1970s. He also argued against its portability, saying: LINUX is tied
fairly closely to the 80 x 86. Not the way to go. In the minix user group, there still is the thread
of full chat involving Torvalds, Tanenbaum, and others.

https://www.docker.com/

Getting Started with System Programming Chapter 1

[10]

The following diagram shows the main Linux building blocks:

Let's describe the layers we see in the diagram:

On the top layer, there are user applications, processes, compilers, and tools. This
layer (which runs in a user space) communicates with the Linux kernel (which
runs in kernel space) through system calls.
System libraries: These are a set of functions through which an application can
interact with the kernel.
Kernel: This component contains the core of the Linux system. Among other
things, it has the scheduler, networking, memory management, and filesystems.
Kernel modules: These contain pieces of kernel code that still run in kernel space
but are fully dynamic (in the sense that they can be loaded and unloaded with
the running system). They typically contain device drivers, kernel code that is
specific to a particular hardware module implementing a protocol, and so on.
One huge advantage of the kernel modules is that users can load them without
rebuilding the kernel.

GNU is a recursive acronym that stands for GNU is Not Unix. GNU is an operating system
that is free software. Note the term operating system here. Indeed, GNU used alone is meant
to represent a full set of tools, software, and kernel parts that an operating system needs.
The GNU operating system kernel is called the Hurd. As the Hurd was not production-
ready, GNU typically uses the Linux kernel, and this combination is called the GNU/Linux
operating system.

Getting Started with System Programming Chapter 1

[11]

So, what are the GNU components on a GNU/Linux operating system? Packages* such as
the GNU Compiler Collection (GCC), the GNU C library, GDB, the GNU Bash shell, and
the GNU Network Object Model Environment (GNOME) desktop environment, to
mention just a few. Richard Stallman and the Free Software Foundation (FSF)—of which
Stallman is the founder—authored the free software definition to help respect users'
freedom. Free software is considered any package that grants users the following four types
of freedoms (so-called essential freedoms: https:/ /isocpp. org/ std/ the- standard):

The freedom to run the program as you wish, for any purpose (Freedom 0).1.
The freedom to study how the program works and to change it, so it does your2.
computing as you wish (Freedom 1). Access to the source code is a precondition
for this.
The freedom to redistribute copies so that you can help others (Freedom 2).3.
The freedom to distribute copies of your modified versions to others (Freedom4.
3). By doing this, you can give the whole community a chance to benefit from
your changes. Access to the source code is a precondition for this.

The concrete instantiation of these principles is in the GNU/GPL license, which FSF
authored. All of the GNU packages are released under the GNU/GPL license.

How to do it...
Linux has a pretty standard folder structure across the distributions, so knowing this would
allow you to easily find programs and install them in the correct place. Let's have a look at
it as follows:

Open a Terminal on the Docker image.1.
Type the command ls -l /.2.

How it works...
The output of the command will contain the following folders:

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

Getting Started with System Programming Chapter 1

[12]

As you can see this folder structure is pretty organized and consistent across all the
distributions. Under the hood, the Linux filesystem is quite modular and flexible. A user
application can interact with the GNU C library (which provides interfaces such as open,
read, write, and close) or the Linux system call directly. The system call interface, in this
case, talks to the Virtual Filesystem (often referred to as the VFS). The VFS is the
abstraction on top of the concrete filesystem implementations (for example, ext3, Journaled
File System (JFS), and more). This architecture, as we can imagine, gives a high level of
flexibility.

Learning the Linux fundamentals - shell
A shell is a command interpreter that receives commands in an input, redirects them to
GNU/Linux, and returns back the output. It is the most common interface between a user
and GNU/Linux. There are different shell programs available. The most used ones are Bash
shell (part of the GNU Project), tcsh shell, ksh shell, and zsh shell (this is basically an
extended Bash shell).

Why would you need a shell? A user needs a shell if they need to interact with the
operating system through the command line. In this recipe, we'll show some of the most
common shell commands. Quite often, the terms shell and Terminal are used
interchangeably, even though, strictly speaking, they are not exactly the same thing.

Getting Started with System Programming Chapter 1

[13]

How to do it...
In this section, we will learn the basic commands to run on the shell—for example, to find a
file, grep a text into a file, copy, and delete:

Opening a shell: Depending on the GNU/Linux distribution, opening a new shell1.
command has different shortcuts. On Ubuntu, press Ctrl + Alt + T, or press Alt +
F2, then type gnome-terminal.
Closing a shell: To close Terminal, just type exit and press Enter.2.
The find command: This is used to search files in a directory hierarchy. In its3.
simplest form, it appears like this:

find . -name file

It supports wildcards, too:

$ find /usr/local "python*"

The grep command prints the lines by matching a pattern: 4.

 $ grep "text" filename

grep also supports recursive search:

 $ grep "text" -R /usr/share

Pipe commands: Commands running on the shell can be concatenated, to make5.
the output of one command the input for another. The concatenation is done
with the | (pipe) operator:

$ ls -l | grep filename

Editing a file: The most two common tools to edit a file on Linux are vi and6.
emacs (if you're not interested in editing the file, cat filename will print the
file to the standard output). While the first is inherited by the Unix operating
system, the latter is part of the GNU Project. This book will extensively use vi:

 $ vi filename

Next, we will look at shell commands related to file manipulation.

This is the command to remove files:7.

$ rm filename

Getting Started with System Programming Chapter 1

[14]

This is the command to remove directories:8.

$ rm -r directoryName

This is the command to clone a file:9.

$ cp file1 file2

This is the command to clone a folder:10.

$ cp -r folder1 folder2

This is the command to clone a folder using a relative and absolute path:11.

$ cp -r /usr/local/folder1 relative/folder2

The next section will describe these commands.

How it works...
Let's have a look at the commands discussed in the How to do it... section, in detail:

The first command searches (.) from the current folder and can contain absolute1.
paths (for example, /usr/local) or relative paths (for example,
tmp/binaries). For example, here, -name is the file to search.
The second command searches from the /usr/local folder any file or folder2.
that starts with python. The find command offers huge flexibility and a wide
variety of options. For more information, refer to man page through the man
find command.
The grep command searches and prints any line that contains the word text in3.
the filename file.
The grep recursive search command searches and prints any line that contains4.
the word text in any file recursively from the /usr/share folder.
Pipe command (|): The output of the first command is shown in the following5.
screenshot. A list of all the files and directories is passed as input to the second
command (grep), which will be used to grep the filename:

Getting Started with System Programming Chapter 1

[15]

Now, let's look at the commands that perform actions such as editing a file, and
adding/removing files and directories.

Editing a file:

The vi command will open the filename in edit mode, assuming the current user
has writing permissions on it (we will discuss permissions in more detail later).
The following is a short summary of the most used commands in vi:

Shift + : (that is, the Shift key + colon) to switch in edit mode.
Shift + :i to insert.
Shift + :a to append.
Shift + :q! to quit the current session without saving.
Shift + :wq to save and quit the current session.
Shift + :set nu to show the line numbers on the file.
Shift + :23 (Enter) goes at line 23.
Press the (Esc) key to switch to command mode.
. to repeat the last command.
cw to change the word, or do this by pointing the cursor at the
beginning of the word.
dd to remove the current line.
yy to copy the current line. If a number N is selected before the yy
command, the N line will be copied.
p to paste the copied line with the yy command.
u to undo.

Adding and removing files and directories:

The first command removes the file named filename. 1.
The second command removes directoryName and its content, recursively.2.
The third command creates file2, which is an exact copy of file1. 3.
The fourth command creates folder2 as a clone of folder1: 4.

Getting Started with System Programming Chapter 1

[16]

There is a common pattern in the execution of the commands shown in this recipe. They are
listed as follows:

The user types a command and hits Enter.1.
The command is interpreted by Linux.2.
Linux interacts with its different parts (memory management, networking,3.
filesystem, and more) to execute the command. This happens in kernel space.
The results are returned to the user.4.

There's more...
This recipe showed some of the most recurrent commands. Mastering all the options, even
just for the most common shell commands, is tricky, and that is why man pages were
created. They contain a solid and clear reference for the Linux user.

See also
Chapter 8, Dealing with Console I/O and Files, will go deeper into console I/O and file
management.

Learning the Linux fundamentals - users
Linux is a multiuser and multitasking operating system, so basic user administration skills
are a must. This recipe will show you how permissions for files and directories are
structured, how to add and remove a user, how to change a user's password, and how to
assign a user to a group.

How to do it...
The following series of steps shows useful commands for basic user administration
activities:

Creating a user: Having one user configured for each individual using Linux is1.
not just a best practice, it is also recommended. Creating a user is quite simple:

root@90f5b4545a54:~# adduser spacex --ingroup developers
Adding user `spacex' ...
Adding new user `spacex' (1001) with group `developers' ...

Getting Started with System Programming Chapter 1

[17]

Creating home directory `/home/spacex' ...
Copying files from `/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for spacex
Enter the new value, or press ENTER for the default
Full Name []: Onorato
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y

The spacex user has been created and assigned to the existing developers
group. To switch to the newly created user, log in using the new user's
credentials:

root@90f5b4545a54:~# login spacex
Password:
Welcome to Ubuntu 19.04 (GNU/Linux 4.9.125-linuxkit x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
This system has been minimized by removing packages and content
that are
not required on a system that users do not log into.
To restore this content, you can run the 'unminimize' command.
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted
by
applicable law.
spacex@90f5b4545a54:~$

Updating a user's password: Periodically, the password must be changed. Here2.
is the command to do this:

spacex@90f5b4545a54:~$ passwd
Changing password for spacex.
 Current password:
 New password:
 Retype new password:
 passwd: password updated successfully
 spacex@90f5b4545a54:~$

Getting Started with System Programming Chapter 1

[18]

Assigning a user to a group: As shown, a user can be assigned to a group when3.
created. Alternatively, a user can be assigned to a group at any time, by running
the following command:

root@90f5b4545a54:~# usermod -a -G testers spacex
 here spacex is added to the testers group

Removing a user: Likewise, removing a user is pretty simple:4.

root@90f5b4545a54:~# userdel -r spacex
userdel: spacex mail spool (/var/mail/spacex) not found
root@90f5b4545a54:~#

The -r option indicates to remove the spacex home directory and mail spool.

Now, let's have a look at the final command, which shows a list of the groups to5.
which the current user (spacex) belongs:

spacex@90f5b4545a54:~$ groups
 developers testers
 spacex@90f5b4545a54:~$

As you can see, the spacex user belongs to the developers and testers
groups.

How it works...
In step 1, we used the adduser command to add the spacex user and, contextually, added
the user to the developers group.

Step 2 shows how to change the password of the current user. To change the password, the
previous password must be provided. It is a good practice to change the password
periodically.

If we want to assign a user to a group, it can be done with the usermod command. In step
3, we have added the spacex user to the testers group. The -a and -G parameters just
indicate that the new groups (-G) will be appended to the current groups (-a) of the user.
That is, the spacex user will be assigned to the testers group, which will be contextually
created. The groups command, in the same step, shows which groups the current user
belongs to. If you only want to create a group, then groupadd group-name is the
command you need.

Getting Started with System Programming Chapter 1

[19]

Step 4 shows how to remove a user with the userdel command, passing the -r parameter.
This parameter ensures that all the files of the user we're removing will be deleted.

There's more...
On a Linux filesystem, each file and directory has a set of information defining who can do
what. The mechanism is simple, as well as powerful. The operations allowed on a file (or
directory) are read, write, and execute (r, w, and x, respectively). These operations can be
done by the owner of the file or directory, by a group of users, or by all users. Linux
represents this information with Owner: rwx; Group: rwx; All Users: rwx; or, more
simply: rwx-rwx-rwx (9 in total). Actually, Linux has one more flag on top of these ones
that represents the type of file. It can be a folder (d), a symbolic link to another file (l), a
regular file (-), a named pipe (p), a socket (s), a character device file (c), and a block device
(b). Typical permissions for a file look like this:

root@90f5b4545a54:/# ls -l
 -rwxr-xr-x 1 root root 13 May 8 20:11 conf.json

Let's see this in detail:

Reading from the left-hand side, the first character, -, informs us that
conf.json is a regular file.
The next three characters are about the current user, rwx. The user
has full read (r), write (w), and execution (x) permissions over the file.
The next three chars are about the group to which the user belongs, r-x. All the
users belonging to the group can read and execute the file, but cannot modify it
(w is not selected, marked as -).
The last three characters are about all the other users, r-x. All other users can
just read and execute the file (r and x are marked, but w is not).

The owner (or the root user) can change the permissions of the file. The easiest way to
achieve this is through the chmod command:

 $ chmod g+w conf.json

Getting Started with System Programming Chapter 1

[20]

Here, we're asking the Linux kernel to add the write permission (w) to the group user type
(g). The types of users are as follows: u (for user), o (for others), a (for all), and g (for
group), and the permissions flag can be x, w, and r, as explained previously. chmod can also
accept an integer:

 $ chmod 751 conf.json

There is a binary-to-decimal conversion on permission flags for each group type, for
example:
wxr: 111 = 7
w-r: 101 = 5
--r: 001 = 1

It could be a little cryptic at the beginning, but it is very practical and handy for everyday
use.

See also
The man pages are an infinite resource of information and should be the first thing you
look at. Commands such as man groups, man userdel, or man adduser will help with
this.

Using a makefile to compile and link a
program
A makefile is a file that describes the relationship among the sources of a program used by
the make utility to build (compile and link) the target goal (executable, shared object, and
more). Makefiles are really important as they help to keep sources organized and easy to
maintain. A program, to become executable, must be compiled and linked with other
libraries. GCC is the most widely used collection of compilers. The two compilers used in
the C and C++ world are GCC and g++ (for the C and C++ programs, respectively). This
book will use g++.

Getting Started with System Programming Chapter 1

[21]

How to do it...
This section will show how a makefile is written, to compile and run a simple C++ program.
We'll develop a simple program, and create its makefile to learn its rules:

Let's start by developing the program by opening the hello.cpp file: 1.

$vi hello.cpp

Type in the following code (refer to the Learning the Linux fundamentals -2.
shell recipe to review the vi commands):

#include <iostream>
int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

Save and exit: in vi, from the command mode, type :wq, which means write and3.
quit. The :x command has the same effect.
From the shell, create a new file called Makefile:4.

$ vi Makefile

Type in the following code:5.

CC = g++
all: hello
hello: hello.o
 ${CC} -o hello hello.o
hello.o: hello.cpp
 ${CC} -c hello.cpp
clean:
 rm hello.o hello

Although this is a typical Hello World! program, it is useful to show how a makefile is
structured.

Getting Started with System Programming Chapter 1

[22]

How it works...
Simply, a makefile consists of a set of rules. A rule consists of a target, a list of prerequisites,
and a command.

In the first step, we opened the file (hello.cpp) and typed the program listed in step 2.
Likewise, we opened another file, Makefile, in the same folder of the hello.cpp
program, and typed the specific makefile commands. Let's now dive into the makefile
internals. A typical makefile has the following content:

The first rule consists of a target called all, and a prerequisite called hello.1.
There is no command for this rule.
The second rule consists of a target called hello. It has a prerequisite on2.
hello.o and a command to link: g++.
The third rule has a target called hello.o, a prerequisite on hello.cpp, and a3.
command to compile: g++ -c hello.cpp.
The last rule has a clean target with a command to remove all the4.
hello and hello.o executables. This forces the recompilation of the files.
For any rule, if any of the source files change, then the command defined is5.
executed.

We're now able to compile the program using the makefile we created:

$ make

We're also able to execute the program, whose output is as follows:

The process of generating a binary executable from a source file includes the phase of
compilation and linking, which here is compressed inside a single command; it'll be like
this in most cases. In general, a large system code base relies on more sophisticated
mechanisms but the steps are still the same: source file editing, compilation, and linking.

Getting Started with System Programming Chapter 1

[23]

There's more...
This simple example just showed us the very basic concepts of a makefile and its make
command. There is much more to it than that. Here are a few examples:

Use of macros: A makefile allows the use of macros, which can be seen as1.
variables. These can be used to organize the makefile to be more modular, for
example:

A macro for all the dynamic libraries used in the program: LIBS = -
lxyz -labc.
A macro for the compiler itself (in case you want to change to another
compiler): COMPILER = GCC.
Reference these macros over all the makefile: $(CC). This gives us the
freedom to make changes in just one place.

By just typing make on a shell, the first rule defined in the makefile will run. In2.
our case, the first rule is all. If we changed the makefile by putting clean as a
first rule, running make without parameters would execute the clean rule. In
general, you'll always pass some parameters—for example, make clean.

Using GDB to debug a program
Debugging is the process of identifying and removing errors from software systems. The
GNU/Linux operating system has a standard de facto tool (that is, not part of any standard,
but used by almost anybody in the Linux world) called GDB. The GDB version installed on
this book's Docker is version 8.2.91. Of course, there are graphical tools that can use GDB
under the hood, but GDB on Linux is the way to go for its reliability, simplicity, and speed.
In this recipe, we will debug the software we've written in the previous recipe.

How to do it...
In order to use some of the GDB commands, we need to modify the previous program and
add some variables in it:

Open a shell and modify the hello.cpp file by typing in the following code:1.

 #include <iostream>
 int main()
 {
 int x = 10;

Getting Started with System Programming Chapter 1

[24]

 x += 2;
 std::cout << "Hello World! x = " << x << std::endl;
 return 0;
 }

This is a very simple program: take a variable, add 2 to it, and print the result.

Let's make sure that the program is compiled by typing the following command:2.

root@bffd758254f8:~/Chapter1# make
 g++ -c hello.cpp
 g++ -o hello hello.o

Now that we have the executable, we will debug it. From the command line,3.
type gdb hello:

root@bffd758254f8:~/Chapter1# gdb hello
 GNU gdb (Ubuntu 8.2.91.20190405-0ubuntu3) 8.2.91.20190405-git
 Copyright (C) 2019 Free Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
 This is free software: you are free to change and redistribute it.
 There is NO WARRANTY, to the extent permitted by law.
 Type "show copying" and "show warranty" for details.
 This GDB was configured as "x86_64-linux-gnu".
 Type "show configuration" for configuration details.
 For bug reporting instructions, please see:
 <http://www.gnu.org/software/gdb/bugs/>.
 Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
 Type "apropos word" to search for commands related to "word"...
 Reading symbols from hello...
 (No debugging symbols found in hello)
 (gdb)

As you can see, the last line says (No debugging symbols found in hello).4.
GDB doesn't have to debug symbols to debug the program, so we have to
communicate to the compiler that the debug symbols are to be included during
the compilation. We have to quit the current session; to do this, type q (Enter].
Then, edit the makefile, and add the -g option to the g++ compiler section (the
hello.o target):

CC = g++
all: hello
hello: hello.o
 ${CC} -o hello hello.o

Getting Started with System Programming Chapter 1

[25]

hello.o: hello.cpp
 $(CC) -c -g hello.cpp
clean:
 rm hello.o hello

Let's run it again, but, first, we have to rebuild the application with the5.
make command:

root@bcec6ff72b3c:/BOOK/chapter1# gdb hello
GNU gdb (Ubuntu 8.2.91.20190405-0ubuntu3) 8.2.91.20190405-git
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from hello...
(No debugging symbols found in hello)
(gdb)

We're ready to debug it. A debug session typically includes setting breakpoints, watching
the content of variables, setting watchpoints, and many others. The next section will show
the most common debug commands.

How it works...
In the previous section, we have seen the steps necessary to create a program and a
makefile. In this section, we'll learn how to debug the Hello World! program we
developed.

Getting Started with System Programming Chapter 1

[26]

Let's start by visualizing the code we're going to debug. We do this by running the l
command (short for list):

(gdb) l
 1 #include <iostream>
 2 int main()
 3 {
 4 int x = 10;
 5 x += 2;
 6 std::cout << "Hello World! x = " << x << std::endl;
 7 return 0;
 8 }

We have to set a breakpoint. To set a breakpoint, we run the b 5 command. This sets a
breakpoint to the code line number 5 in the current module:

(gdb) b 5
 Breakpoint 1 at 0x1169: file hello.cpp, line 5.
 (gdb)

It's time to run the program now. To run a program, we type the r command. This runs the
hello program we started with GDB:

(gdb) r
 Starting program: /root/Chapter1/hello

Once started, GDB will automatically stop at any breakpoint hit by the process flow. In this
case, the process runs, and then stops at line 5 of the hello.cpp file:

Breakpoint 1, main () at hello.cpp:5
 5 x += 2;

To proceed step by step, we run the n command (that is, step over) on GDB. This executes
the current visualized line of code. A similar command is s (step into). If the current
command is a function, it steps into the function:

(gdb) n
6 std::cout << "Hello World! x = " << x << std::endl;
the 'n' command (short for next) execute one line. Now we may want to check
the content of the variable x after the increment:

If we need to know the content of a variable, we run the p command (short for print), which
prints the content of a variable. In this case, as expected, x = 12 gets printed:

(gdb) p x
$1 = 12

Getting Started with System Programming Chapter 1

[27]

Now, let's run the program until the end (or until the next breakpoint, if set). This is done
with the c command (short for continue):

(gdb) c
 Continuing.
 Hello World! x = 12
 [Inferior 1 (process 101) exited normally]
 (gdb)

GDB really acts as an interpreter by letting the programmer step the program line by line.
This helps the developer to troubleshoot problems, see the content of variables at runtime,
change the status of variables, and more.

There's more...
GDB has a lot of very useful commands. In the following chapters, GDB will be explored
more. There are four more commands to show here:

s: Short for step. If called on a method, it steps into it.1.
bt: Short for backtrace. Prints the call stack.2.
q: Short for quit. Use to exit GDB.3.
d: Short for delete. It removes a breakpoint. For example, d 1 removes the first4.
breakpoint set.

The main page of the GNU GDB Project can be found here: https:/ /www.
gnu.org/ software/ gdb. More detailed information can be found on
the man dbg man pages and online. You can also refer to Using GDB: A
Guide to the GNU Source-Level Debugger, by Richard M. Stallman and
Roland H. Pesch.

Learning the Linux fundamentals -
processes and threads
Processes and threads are the execution units of any operating system. In this recipe, you'll
learn how to deal with processes and threads on GNU/Linux on the command line. A
process is a running instance of a program with a well-defined set of resources such as files,
processor state, and threads of execution allocated to it.

https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb

Getting Started with System Programming Chapter 1

[28]

A process in Linux is defined by the task_struct structure defined in the sched.h
header file. On the other hand, a thread is defined by the thread_info structure in
the thread_info.h header file. A thread is one possible flow of execution of the main
process. A process has at least one thread (the main thread). All the threads of a process run
concurrently on a system.

One aspect to keep in mind on Linux is that it doesn't differentiate between processes and
threads. A thread is just like a process that shares some resources with some other
processes. For this reason, in Linux, threads are often referred to as a lightweight process
(LWP).

How to do it...
In this section, we'll learn, step by step, all the most common commands to control
processes and threads on a GNU/Linux distribution:

The ps command shows the processes, attributes, and other parameters in the1.
current system:

root@5fd725701f0f:/# ps u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 4184 3396 pts/0 Ss 17:20 0:00 bash
root 18 0.0 0.1 5832 2856 pts/0 R+ 17:22 0:00 ps u

Another way to get info on a process (and its threads) is to look in the2.
/process/PID folder. This folder contains all the process info, threads of the
process (in the form of subfolders with process identifiers (PIDs)), memory, and
much more:

root@e9ebbdbe3899:/# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 4184 3344 pts/0 Ss 16:24 0:00 bash
root 149 0.0 0.1 4184 3348 pts/1 Ss 17:40 0:00 bash
root 172 85.0 0.0 5832 1708 pts/0 R+ 18:02 0:04 ./hello
root 173 0.0 0.1 5832 2804 pts/1 R+ 18:02 0:00 ps aux
root@e9ebbdbe3899:/# ll /proc/172/
total 0
dr-xr-xr-x 9 root root 0 May 12 18:02 ./
dr-xr-xr-x 200 root root 0 May 12 16:24 ../
dr-xr-xr-x 2 root root 0 May 12 18:02 attr/
-rw-r--r-- 1 root root 0 May 12 18:02 autogroup
-r-------- 1 root root 0 May 12 18:02 auxv
-r--r--r-- 1 root root 0 May 12 18:02 cgroup
--w------- 1 root root 0 May 12 18:02 clear_refs

Getting Started with System Programming Chapter 1

[29]

-r--r--r-- 1 root root 0 May 12 18:02 cmdline
-rw-r--r-- 1 root root 0 May 12 18:02 comm
-rw-r--r-- 1 root root 0 May 12 18:02 coredump_filter
-r--r--r-- 1 root root 0 May 12 18:02 cpuset
lrwxrwxrwx 1 root root 0 May 12 18:02 cwd -> /root/Chapter1/
-r-------- 1 root root 0 May 12 18:02 environ
lrwxrwxrwx 1 root root 0 May 12 18:02 exe -> /root/Chapter1/hello*
dr-x------ 2 root root 0 May 12 18:02 fd/
dr-x------ 2 root root 0 May 12 18:02 fdinfo/
-rw-r--r-- 1 root root 0 May 12 18:02 gid_map
-r-------- 1 root root 0 May 12 18:02 io
-r--r--r-- 1 root root 0 May 12 18:02 limits
...

A process can be killed, too. Technically, killing a process means stopping its3.
execution:

root@5fd725701f0f:/# kill -9 PID

This command sends the kill signal (9) to the process identified with the PID. Other
signals can be sent to processes—for example, HUP (hangup) and INT (interrupt).

How it works...
In step 1 for each process, we can see the following:

The user to whom the process belongs
The PID
The percentage of CPU and memory in a specific moment
When the process started, and its running time
The command used to run the process

Through the ps aux command, we can grab the PID of the hello process, which is 172.
We can now look into the /proc/172 folder.

Processes and threads are building blocks of an operating system. In this recipe, we've seen
how to interact with the kernel on the command line to get info on processes through a
command (for example, ps), and by looking into a specific folder that Linux updates as the
process runs. Again, every time we invoke a command (to get info on a process, in this
case), the command must enter in kernel space to get valid and updated info on it.

Getting Started with System Programming Chapter 1

[30]

There's more...
The ps command has many more parameters than the basic one seen in this recipe. A
complete list is available on its Linux man page, man ps.

A more advanced and interactive command to consider as an alternative to ps is the top
command, man top.

Handling a Linux bash error
We've seen that one way to interact with the Linux kernel is through the shell, by invoking
commands. A command can fail, as we can imagine, and a way to communicate a failure is
to return a non-negative integer value. 0, in most cases, means success. This recipe will
show you how to deal with error handling on the shell.

How to do it...
This section will show you how to get errors directly from the shell and via a script, which
is a fundamental aspect of script development:

First, run the following command:1.

root@e9ebbdbe3899:/# cp file file2
 cp: cannot stat 'file': No such file or directory
 root@e9ebbdbe3899:/# echo $?
 1

Create a new file called first_script.sh and type in the following code:2.

#!/bin/bash
cat does_not_exists.txt
if [$? -eq 0]
then
 echo "All good, does_not_exist.txt exists!"
 exit 0
else
 echo "does_not_exist.txt really DOES NOT exists!!" >&2
 exit 11
fi

Getting Started with System Programming Chapter 1

[31]

Save the file, and exit (:wq or :x).3.
Give execution permission (the x flag) to the current user for the4.
first_script.sh file:

root@e9ebbdbe3899:~# chmod u+x first_script.sh

These steps are detailed in the next section.

How it works...
In step 1, the cp command failed, as file and file2 don't exist. By querying echo $?, we
get the error code; in this case, it is 1. This is particularly useful when writing bash scripts
where we might need to check for a particular condition.

In step 2, the script just lists the does_not_exist.txt file and reads the error code
returned. If all goes fine, it prints an acknowledgment message and returns 0. Otherwise, it
returns the error code 11.

By running the script, we get the output as follows:

Here, we notice a couple of things:

We logged our error string.
The error code is the one we had set in the script.

Under the hood, every time a command is invoked, it enters into kernel space. The
command is executed, and a return status is sent back to the user in the form of an integer.
It's really important to consider this return status, as we might have a command that
apparently succeeded (no output) but eventually failed (returns code different from 0).

There's more...
One important aspect of the return status of the commands is that it can be used to
(conditionally) run the next command. Two important operators are used for this purpose:
&& (AND) and || (OR).

Getting Started with System Programming Chapter 1

[32]

In the two commands here, the second is run if—and only if—the first succeeds (the &&
operator). file.txt is removed if it is copied to the project folder:

cp file.txt ~/projects && rm -f file.txt

Let's have a look at a second example:

cp file.txt ~/projects || echo 'copy failed!'

In the preceding example, the second command is run only if the first fails (the ||
operator). copy failed! is printed if the copy fails.

In this recipe, we just showed that commands can be combined on a shell script to create a
more complex command, and by controlling the error code, we can control the flow of
execution. Man pages are a great resource as they contain all the commands and error
codes (for example, man cp and man cat).

Handling Linux code error
This recipe represents the second side of the coin in the topic of error handling: error
handling at a source-code level. Linux exposes its kernel features through commands, as
well as through a programming API. In this recipe, we'll see how to deal with error codes
and errno through a C program, to open a file.

How to do it...
In this section, we'll see how to get the error from a system call in a C program. To do this,
we'll create a program to open a non-existent file and show the details of the error returned
by Linux:

Create a new file: open_file.c. 1.
Edit the following code in the newly created file:2.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int main(int argc, char *argv[])
{
 int fileDesc = open("myFile.txt", O_RDONLY);

Getting Started with System Programming Chapter 1

[33]

 if (fileDesc == -1)
 {
 fprintf(stderr, "Cannot open myFile.txt .. error: %d\n",
 fileDesc);
 fprintf(stderr, "errno code = %d\n", errno);
 fprintf(stderr, "errno meaningn = %s\n", strerror(errno));
 exit(1);
 }
}

Save the file and exit (:x).3.
Compile the code: gcc open_file.c. 4.
The preceding compilation (without parameters) will produce a binary file5.
called a.out (which is the default name on the Linux and Unix operating
systems).

How it works...
The program listed tries to open a file in reading mode. Errors are printed on standard
error, through the fprintf command. By running it, the output will be as follows:

There are a couple of considerations to highlight. The program is developed by strictly
following the man page of the open system call (man 2 open):

RETURN VALUES
 If successful, open() returns a non-negative integer, termed a
file descriptor. It
 returns -1 on failure, and sets errno to indicate the error

The developer (us, in this case) checked that the file descriptor was -1 (confirmed
by fprintf) to print errno too (with code 2). What does errno 2 mean? strerror is
useful exactly for this scope, to translate from errno (which is cryptic) to something the
programmer (or the user) would understand.

Getting Started with System Programming Chapter 1

[34]

There's more...
In Chapter 2, Revisiting C++, we'll see how C++ helps programmers by providing higher-
level mechanisms, and easy-to-write and more concise code. Even if we try to minimize the
interaction with the kernel API directly, in favor of the use of the C++11-14-17 higher-level
mechanism, there will be cases where we'll need to check the error status. In those cases,
you are invited to pay attention to error management.

2
Revisiting C++

This chapter acts as a refresher on C++ 11-20, which will be used throughout this book.
We'll explain why C++ represents a great opportunity that shouldn't be missed when it
comes to writing good quality code that's concise and more portable than ever.

This chapter does not contain all the new features introduced by C++ (11 through 20) – just
the ones we will be using for the rest of this book. Specifically, you'll get a refresher (if you
already know) or learn (if you are new) about the most essential new C++ skills needed to
write modern code. You'll work, hands-on, with lambda expressions, atomics, and move
semantics, just to mention a few.

This chapter will cover the following recipes:

Understanding C++ primitive types
Lambda expressions
Automatic type deduction and decltype
Learning how atomic works
Learning how nullptr works
Smart pointers – unique_ptr and shared_ptr
Learning how semantics works
Understanding concurrency
Understanding the filesystem
The C++ Core Guidelines
Adding GSL to your makefile
Understanding concepts
Using span
Learning how Ranges work
Learning how modules work

Revisiting C++ Chapter 2

[36]

Technical requirements
To let you try out the programs in this chapter immediately, we've set up a Docker
image that has all the tools and libraries we'll need throughout this book. It's based on
Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install the Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.
Now, you should have the following4.
image: kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs that have been developed for the chapters in
this book.

The --cap-add sys_ptrace argument is needed to allow GDB to set breakpoints in the
Docker container which, by default, Docker does not allow.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

http://www.docker.com

Revisiting C++ Chapter 2

[37]

Understanding C++ primitive types
This recipe will show all the primitive data types defined by the C++ standard, as well as
their size.

How to do it...
In this section, we'll have a closer look at what primitives the C++ standard defines and
what other information is important. We'll also learn that although the standard does not
define a size for each, it defines another important parameter:

First, open a new Terminal and type in the following program:1.

#include <iostream>
#include <limits>

int main ()
 {
 // integral types section
 std::cout << "char " << int(std::numeric_limits<char>::min())
 << "-" << int(std::numeric_limits<char>::max())
 << " size (Byte) =" << sizeof (char) << std::endl;
 std::cout << "wchar_t " << std::numeric_limits<wchar_t>::min()
 << "-" << std::numeric_limits<wchar_t>::max()
 << " size (Byte) ="
 << sizeof (wchar_t) << std::endl;
 std::cout << "int " << std::numeric_limits<int>::min() << "-"
 << std::numeric_limits<int>::max() << " size
 (Byte) ="
 << sizeof (int) << std::endl;
 std::cout << "bool " << std::numeric_limits<bool>::min() << "-"
 << std::numeric_limits<bool>::max() << "
 size (Byte) ="
 << sizeof (bool) << std::endl;
 // floating point types
 std::cout << "float " << std::numeric_limits<float>::min() <<
 "-"
 << std::numeric_limits<float>::max() << " size
 (Byte) ="
 << sizeof (float) << std::endl;
 std::cout << "double " << std::numeric_limits<double>::min()
 << "-"
 << std::numeric_limits<double>::max() << " size
 (Byte) ="
 << sizeof (double) << std::endl;

Revisiting C++ Chapter 2

[38]

 return 0;
 }

Next, build (compile and link) g++ primitives.cpp.2.
This will produce an executable file with the (default) name of a.out.3.

How it works...
The output of the preceding program will be something like this:

This represents the minimum and maximum values that a type can represent and the size
in bytes for the current platform.

The C++ standard does not define the size of each type, but it does define the minimum
width:

char: Minimum width = 8
short int: Minimum width = 16
int: Minimum width = 16
long int: Minimum width = 32
long int int: Minimum width = 64

This point has huge implications as different platforms can have different sizes and a
programmer should cope with this. To help us get some guidance regarding data
types, there is the concept of a data model. A data model is a set of choices (a specific size
for each type) made by each implementation (the psABI of the architecture that compilers
and operating systems adhere to) to define all the primitive data types. The following table
shows a subset of various types and data models that exist:

Data type LP32 ILP32 LLP64 LP64
char 8 8 8 8

Revisiting C++ Chapter 2

[39]

short int 16 16 16 16
int 16 32 32 32
long 32 32 32 64
pointer 32 32 64 64

The Linux kernel uses the LP64 data model for 64-bit architectures (x86_64).

We briefly touched on the psABI topic (short for platform-specific Application Binary
Interfaces (ABIs)). Each architecture (for example, x86_64) has a psABI specification that
the OS adheres to. The GNU Compiler Collection (GCC) has to know these details as it has
to know the sizes of the primitive types it compiles. The i386.h GCC header file contains
the size of the primitive data types for that architecture:

root@453eb8a8d60a:~# uname -a
 Linux 453eb8a8d60a 4.9.125-linuxkit #1 SMP Fri Sep 7 08:20:28 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux

The program output shows that the current OS (actually, the Ubuntu image we're running)
uses the LP64 data model as expected and that the machine's architecture is x86_64.

There's more...
As we've seen, the C++ standard defines the following primitive data types:

Integer: int
Character: char
Boolean: bool
Floating point: float
Double floating point: double
Void: void
Wide character: wchar_t
Null pointer: nullptr_t

Data types can have other information so that their types can be defined:

Modifiers: signed, unsigned, long, and short
Qualifiers: const and restrict
Storage type: auto, static, extern, and mutable

Revisiting C++ Chapter 2

[40]

Obviously, not all these additional attributes can be applied to all the types; for
example, unsigned cannot be applied to the float and double types (their respective
IEEE standards would not allow that).

See also
Specifically for Linux, the Linux kernel documentation is generally a good place to start
digging more into this: https:/ /www. kernel. org/ doc/ html/ latest. The GCC source code
shows the sizes of the primitive data types for every supported architecture. Refer to the
following link to find out more: https:/ /github. com/ gcc- mirror/ gcc.

Lambda expressions
A lambda expression (or lambda function) is a convenient way of defining an anonymous,
small, and one-time use function to be used in the place right where it is needed. Lambda is
particularly useful with Standard Template Library (STL), as we'll see.

How to do it...
In this section, we'll write some code in order to get familiar with lambda expressions.
Although the mechanics are important, pay attention to the code readability with lambda,
especially in conjunction with STL. Follow these steps:

In this program, the lambda function gets an integer and prints it to standard1.
output. Let's open a file named lambda_01.cpp and write the following code in
it:

#include <iostream>
#include <vector>
#include <algorithm>
int main ()
{
 std::vector<int> v {1, 2, 3, 4, 5, 6};
 for_each (begin(v), end(v), [](int x) {std::cout << x
 << std::endl;});
 return 0;
}

https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc
https://github.com/gcc-mirror/gcc

Revisiting C++ Chapter 2

[41]

In this second program, the lambda function captures a prefix by reference and2.
prepends it to the integer in the standard output. Let's write the following code
in a file called lambda_02.cpp:

#include <iostream>
#include <vector>
#include <algorithm>
int main ()
{
 std::vector<int> v {1, 2, 3, 4, 5, 6};
 std::string prefix ("0");
 for_each (begin(v), end(v), [&prefix](int x) {std::cout
 << prefix << x << std::endl;});
 return 0;
}

Finally, we compile it with g++ lambda_02.cpp.3.

How it works...
In the first example, the lambda function just gets an integer as input and prints it. Note
that the code is concise and readable. Lambda can capture the variables in scope by
reference, &, or by value, =.

The output of the second program is as follows:

In the second example, the lambda captures the variable prefix by reference, making it
visible to the lambda. Here, we captured the prefix variable by reference, but we might
have captured any of the following:

All the variables by reference [&]
All the variables by value [=]
Specifying what variables to capture and how to capture them [&var1, =var2]

Revisiting C++ Chapter 2

[42]

There are cases where we have to be explicit about the type to return, as in this case:

[](int x) -> std::vector<int>{
 if (x%2)
 return {1, 2};
 else
 return {3, 4};
 });

The -> std::vector<int> operator, called trailing return type, tells the compiler that
this lambda will return a vector of integers.

There's more...
Lambda can be decomposed into six parts:

Capture clause: []1.
Parameter list: ()2.
Mutable specification: mutable3.
Exception specification: noexcept4.
Trailing return type: -> type5.
Body: {}6.

Here, 1, 2, and 6 are mandatory.

Although optional, mutable specification and exception specification are worth having a
look at as they might be handy in some circumstances. The mutable specification allows
a by-value parameter to be modified by the body of the lambda. A variable in the
parameter list is typically captured const-by-value, so the mutable specification just removes
this restriction. The second case is the exception specification, which we can use to specify
the exceptions the lambda might throw.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Revisiting C++ Chapter 2

[43]

Automatic type deduction and decltype
C++ offers two mechanisms for deducting types from an expression: auto and
decltype(). auto is used to deduce a type from its initializer, while decltype() is used
to deduce a type for more complex cases. This recipe will show examples of how to use
both.

How to do it...
It might be handy (and it actually is) to avoid explicitly specifying the type of variable that
will be used, especially when it is particularly long and used very locally:

Let's start with a typical example: 1.

std::map<int, std::string> payslips;
// ...
for (std::map<int,
 std::string>::const_iterator iter = payslips.begin();
 iter !=payslips.end(); ++iter)
{
 // ...
}

Now, let's rewrite it with auto:2.

std::map<int, std::string> payslips;
// ...
for (auto iter = payslips.begin(); iter !=payslips.end(); ++iter)
{
 // ...
}

Let's look at another example:3.

auto speed = 123; // speed is an int
auto height = calculate (); // height will be of the
 // type returned by calculate()

decltype() is another mechanism offered by C++ that can deduce the type of
expression when the expression is more complex than the auto case.

Let's look at this using an example: 4.

decltype(a) y = x + 1; // deducing the type of a
decltype(str->x) y; // deducing the type of str->x, where str

Revisiting C++ Chapter 2

[44]

is
 // a struct and x
 // an int element of that struct

Could we use auto instead of decltype() in these two examples? We'll take a look in the
next section.

How it works...
The first example with auto shows that the type is deduced, at compile time, from the
right-hand parameter. auto is used in simple cases.

decltype() deduces the type of expression. In the example, it defines the y variable so
that it's the same type as a. As you can imagine, this would not be possible with auto.
Why? This is pretty simple: decltype() tells the compiler to define a variable of a specific
type; in the first example, y is a variable with the same type as a. With auto, the type is
deduced automatically.

We should use auto and decltype() anytime we don't have to explicitly specify the type
of a variable; for example, when we need a double type (and not a float). It's worth
mentioning that both auto and decltype() deduct types of expressions that are already
known to the compiler, so they are not runtime mechanisms.

There's more...
There is a specific case that must be mentioned. When auto uses {} (uniform initializers)
for type deduction, it can cause some headaches (or at least behaviors that we wouldn't
expect). Let's look at an example:

auto fuelLevel {0, 1, 2, 3, 4, 5};

In this case, the type that's being deduced is initializer_list<T> and not an array of
integers, as we could expect.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Revisiting C++ Chapter 2

[45]

Learning how atomic works
Traditionally, C and C++ have a long tradition of portable code for system programming.
The atomic feature that was introduced in the C++11 standard reinforces this by adding,
natively, the guarantee that an operation is seen as atomic by other threads. Atomic is a
template, such as template <class T> struct atomic; or template <class T>
struct atomic<T*>;. C++20 has added shared_ptr and weak_ptr to T and T*. Any
operation that's performed on the atomic variable is now protected from other threads.

How to do it...
std::atomic is an important aspect of modern C++ for dealing with concurrency. Let's
write some code to master the concept:

The first snippet of code shows the basics of atomic operations. Let's write this1.
now:

std::atomic<int> speed (0); // Other threads have access to
the speed variable
auto currentSpeed = speed.load(); // default memory order:
memory_order_seq_cst

In this second program, we can see that the is_lock_free() method returns2.
true if the implementation is lock-free or if it has been implemented using a
lock. Let's write this code:

#include <iostream>
#include <utility>
#include <atomic>
struct MyArray { int z[50]; };
struct MyStr { int a, b; };
int main()
{
 std::atomic<MyArray> myArray;
 std::atomic<MyStr> myStr;
 std::cout << std::boolalpha
 << "std::atomic<myArray> is lock free? "
 << std::atomic_is_lock_free(&myArray) << std::endl
 << "std::atomic<myStr> is lock free? "
 << std::atomic_is_lock_free(&myStr) << std::endl;
}

Let's compile the program. When doing so, you may need to add the atomic3.
library to g++ (due to a GCC bug) with g++ atomic.cpp -latomic.

Revisiting C++ Chapter 2

[46]

How it works...
std::atomic<int> speed (0); defines a speed variable as an atomic integer. Although
the variable will be atomic, this initialization is not atomic! Instead, the following
code: speed +=10; atomically increases the speed of 10. This means that there will not be
race conditions. By definition, a race condition happens when among the threads accessing
a variable, at least 1 is a writer.

The std::cout << "current speed is: " << speed; instruction reads the current
value of the speed automatically. Pay attention to the fact that reading the value from speed
is atomic but what happens next is not atomic (that is, printing it through cout). The rule is
that read and write are atomic but the surrounding operations are not, as we've seen.

The output of the second program is as follows:

The basic operations for atomic are load, store, swap, and cas (short for compare and
swap), which are available on all types of atomics. Others are available, depending on the
types (for example, fetch_add).

One question remains open, though. How come myArray uses locks and myStr is lock-
free? The reason is simple: C++ provides a lock-free implementation for all the primitive
types, and the variables inside MyStr are primitive types. A user will set myStr.a
and myStr.b. MyArray, on the other hand, is not a fundamental type, so the underlying
implementation will use locks.

The standard guarantee is that for each atomic operation, every thread will make progress.
One important aspect to keep in mind is that the compiler makes code optimizations quite
often. The use of atomics imposes restrictions on the compiler regarding how the code can
be reordered. An example of a restriction is that no code that preceded the write of an
atomic variable can be moved after the atomic write.

Revisiting C++ Chapter 2

[47]

There's more...
In this recipe, we've used the default memory model called memory_order_seq_cst.
Some other memory models that are available are:

memory_order_relaxed: Only the current operation atomicity is guaranteed.
That is, there are no guarantees on how memory accesses in different threads are
ordered with respect to the atomic operation.
memory_order_consume: The operation is ordered to happen once all accesses
to memory in the releasing thread that carry a dependency on the releasing
operation have happened.
memory_order_acquire: The operation is ordered to happen once all accesses
to memory in the releasing thread have happened.
memory_order_release: The operation is ordered to happen before a consume
or acquire operation.
memory_order_seq_cst: The operation is sequentially consistent ordered.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail. Furthermore, the Atomic
Weapons talk from Herb Sutter, freely available on YouTube (https:/ /www. youtube. com/
watch?v=A8eCGOqgvH4), is a great introduction.

Learning how nullptr works
Before C++11, the NULL identifier was meant to be used for pointers. In this recipe, we'll see
why this was a problem and how C++11 solved it.

How to do it...
To understand why nullptr is important, let's look at the problem with NULL:

Let's write the following code:1.

bool speedUp (int speed);
bool speedUp (char* speed);
int main()

https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4
https://www.youtube.com/watch?v=A8eCGOqgvH4

Revisiting C++ Chapter 2

[48]

{
 bool ok = speedUp (NULL);
}

Now, let's rewrite the preceding code using nullptr:2.

bool speedUp (int speed);
bool speedUp (char* speed);
int main()
{
 bool ok = speedUp (nullptr);
}

How it works...
The first program might not compile or (if it does) call the wrong method. We would expect
it to call bool speedUp (char* speed); instead. The problem with NULL was exactly
this: NULL was defined as 0, which is an integer type, and used by the pre-processor (which
was replacing all the occurrences of NULL with 0). This is a huge difference as nullptr is
now among the C++ primitives types and managed by the compiler.

For the second program, the speedUp (overloaded) method is called with the char*
pointer to nullptr. There is no ambiguity here – we're calling the version with
the char* type.

There's more...
nullptr represents a pointer that does not point to any object:

int* p = nullptr;

Due to this, there is no ambiguity, which means that readability improves. Another
example that improves readability is as follows:

if (x == nullptr)
{
 // ...\
}

This makes the code more readable and clearly indicates that we're comparing a pointer.

Revisiting C++ Chapter 2

[49]

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Smart pointers – unique_ptr and shared_ptr
This recipe will show the basic usage of unique_ptr and shared_ptr. These smart
pointers are the main helpers for programmers who don't want to deal with memory
deallocation manually. Once you've learned how to use them properly, this will save
headaches and nights of debugging sessions.

How to do it...
In this section, we'll look at the basic use of two smart pointers, std::unique_ptr and
std::shared_ptr:

Let's develop a unique_ptr example by developing the following class:1.

#include <iostream>
#include <memory>
class CruiseControl
{
public:
 CruiseControl()
 {
 std::cout << "CruiseControl object created" << std::endl;
 };
 ~CruiseControl()
 {
 std::cout << "CruiseControl object destroyed" << std::endl;
 }
 void increaseSpeedTo(int speed)
 {
 std::cout << "Speed at " << speed << std::endl;
 };
};

Revisiting C++ Chapter 2

[50]

Now, let's develop a main class by calling the preceding class:2.

int main ()
{
 std::cout << "unique_ptr test started" << std::endl;
 std::unique_ptr<CruiseControl> cruiseControl =
 std::make_unique<CruiseControl>();
 cruiseControl->increaseSpeedTo(12);
 std::cout << "unique_ptr test finished" << std::endl;
}

Let's compile g++ unique_ptr_01.cpp.3.
Another example with unique_ptr shows its behavior with arrays. Let's reuse4.
the same class (CruiseControl):

int main ()
{
 std::cout << "unique_ptr test started" << std::endl;
 std::unique_ptr<CruiseControl[]> cruiseControl =
 std::make_unique<CruiseControl[]>(3);
 cruiseControl[1].increaseSpeedTo(12);
 std::cout << "unique_ptr test finished" << std::endl;
}

Let's see std::shared_ptr in action with a small program:5.

#include <iostream>
 #include <memory>
class CruiseControl
{
public:
 CruiseControl()
 {
 std::cout << "CruiseControl object created" << std::endl;
 };
 ~CruiseControl()
 {
 std::cout << "CruiseControl object destroyed" << std::endl;
 }
 void increaseSpeedTo(int speed)
 {
 std::cout << "Speed at " << speed << std::endl;
 };
};

Revisiting C++ Chapter 2

[51]

main looks like this:

int main ()
{
 std::cout << "shared_ptr test started" << std::endl;
 std::shared_ptr<CruiseControl> cruiseControlMaster(nullptr);
 {
 std::shared_ptr<CruiseControl> cruiseControlSlave =
 std::make_shared<CruiseControl>();
 cruiseControlMaster = cruiseControlSlave;
 }
 std::cout << "shared_ptr test finished" << std::endl;
}

The How it works... section will describe these three programs in detail.

How it works...
By running the first unique_ptr program, that is, ./a.out, we get the following output:

unique_ptr is a smart pointer that embodies the concept of unique ownership.
Unique ownership, simply put, means that there is one and only one variable that can own a
pointer. The first consequence of this concept is that the copy operator is not allowed on
two unique pointer variables. Just move is allowed, where the ownership is transferred
from one variable to another. The executable that was run shows that the object is
deallocated at the end of the current scope (in this case, the main
function): CruiseControl object destroyed. The fact that the developer doesn't need
to bother remembering to call delete when needed, but still keep control over memory, is
one of the main advantages of C++ over garbage collector-based languages.

Revisiting C++ Chapter 2

[52]

In the second unique_ptr example, with arrays, there are three objects of
the CruiseControl type that have been allocated and then released. For this, the output is
as follows:

The third example shows usage of shared_ptr. The output of the program is as follows:

The shared_ptr smart pointer represents the concept that an object is being pointed at
(that is, by the owner) by more than one variable. In this case, we're talking about shared
ownership. It is clear that the rules are different from the unique_ptr case. An
object cannot be released until at least one variable is using it. In this example, we defined
a cruiseControlMaster variable pointing to nullptr. Then, we defined a block and in
that block, we defined another variable: cruiseControlSlave. So far, so good! Then, still
inside the block, we assigned the cruiseControlSlave pointer to
cruiseControlMaster. At this point, the object allocated has two pointers:
cruiseControlMaster and cruiseControlSlave. When this block is closed,
the cruiseControlSlave destructor is called but the object is not freed as it is still used by
another one: cruiseControlMaster! When the program finishes, we see the shared_ptr
test finished log and immediately after the cruiseControlMaster, as it is the only
one pointing to the CruiseControl object release, the object and then the constructor is
called, as reported in the CruiseControl object destroyed log.

Revisiting C++ Chapter 2

[53]

Clearly, the shared_ptr data type has a concept of reference counting to keep track of the
number of pointers. These references are increased during the constructors (not always;
the move constructor isn't) and the copy assignment operator and decreased in the
destructors.

Can the reference counting variable be safely increased and decreased? The pointers to the
same object might be in different threads, so manipulating this variable might be an issue.
This is not an issue as the reference counting variable is atomically managed (that is, it is an
atomic variable).

One last point about the size. unique_ptr is as big as a raw pointer, whereas shared_ptr
is typically double the size of unique_ptr because of the reference counting variable.

There's more...
I strongly suggest always using std::make_unique and std::make_shared. Their usage
removes code duplication and improves exception safety. Want more details?
shared_ptr.h (https:/ / github. com/ gcc- mirror/ gcc/ blob/ master/ libstdc%2B%2B- v3/
include/bits/shared_ ptr. h) and shared_ptr_base.h (https:/ /github. com/ gcc-
mirror/gcc/blob/ master/ libstdc%2B%2B- v3/include/ bits/ shared_ ptr_ base. h) contain
the GCC shared_ptr implementation so that we can see how reference counting is
manipulated.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Learning how move semantics works
We know copies are expensive, especially heavy objects. The move semantics that were
introduced in C++11 help us avoid expensive copies. The foundational concept behind
std::move and std::forward is the rvalue reference. This recipe will show you how to
use std::move.

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/shared_ptr_base.h

Revisiting C++ Chapter 2

[54]

How to do it...
Let's develop three programs to learn about std::move and its universal reference:

Let's start by developing a simple program:1.

#include <iostream>
#include <vector>
int main ()
{
 std::vector<int> a = {1, 2, 3, 4, 5};
 auto b = std::move(a);
 std::cout << "a: " << a.size() << std::endl;
 std::cout << "b: " << b.size() << std::endl;
}

Let's develop a second example:2.

#include <iostream>
#include <vector>
void print (std::string &&s)
{
 std::cout << "print (std::string &&s)" << std::endl;
 std::string str (std::move(s));
 std::cout << "universal reference ==> str = " << str
 << std::endl;
 std::cout << "universal reference ==> s = " << s << std::endl;
}
void print (std::string &s)
{
 std::cout << "print (std::string &s)" << std::endl;
}
int main()
{
 std::string str ("this is a string");
 print (str);
 std::cout << "==> str = " << str << std::endl;
 return 0;
}

Let's look at an example with the universal reference:3.

#include <iostream>
void print (std::string &&s)
{
 std::cout << "print (std::string &&s)" << std::endl;
 std::string str (std::move(s));
 std::cout << "universal reference ==> str = " << str

Revisiting C++ Chapter 2

[55]

 << std::endl;
 std::cout << "universal reference ==> s = " << s << std::endl;
}
void print (std::string &s)
{
 std::cout << "print (std::string &s)" << std::endl;
}
int main()
{
 print ("this is a string");
 return 0;
}

The next section will describe these three programs in detail.

How it works...
The output of the first program is as follows (g++ move_01.cpp and ./a.out):

In this program, auto b = std::move(a); does a couple of things:

It casts the vector, a, to the rvalue reference.1.
As it is an rvalue reference, the vector move constructor is called, which moves2.
the content of the a vector to the b vector.
a doesn't have the original data anymore, b has.3.

The output of the second program is as follows (g++
moveSemantics2.cpp and ./a.out):

Revisiting C++ Chapter 2

[56]

In this second example, the str string we pass to the print method is
an lvalue reference (that is, we can take the address of that variable), so it is passed by
reference.

The output of the third program is as follows (g++ moveSemantics3.cpp and ./a.out):

In the third example, the method that's being called is the one with the universal
reference as a parameter: print (std::string &&s). This is because we cannot take the
address of this is a string, which means it is an rvalue reference.

It should be clear now that std::move doesn't actually move anything – it is a function
template that performs an unconditional cast to an rvalue, as we saw in the first example.
This allows us to move (and not copy) the data to the destination and invalidate the source.
The benefits of std::move are huge, especially every time we see an rvalue reference
parameter to a method (T&&) that would probably* be a copy in the previous versions of the
language (C++98 and before).

*Probably: it depends on compiler optimizations.

There's more...
std::forward is somewhat similar (but with a different purpose). It is a conditional cast to
an rvalue reference. You are invited to learn more about std::forward, rvalue, and lvalue
by reading the books referenced in the next section.

Revisiting C++ Chapter 2

[57]

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Understanding concurrency
In the past, it was common for a C++ developer to write programs by using threading
libraries or native threading mechanisms (for example pthread, a Windows thread). Since
C++11, this has changed drastically and concurrency is another big feature that was added
that goes in the direction of a self-consistent language. The two new features we'll look at in
this recipe are std::thread and std::async.

How to do it...
In this section, we'll learn how to use std::thread with a basic scenario (create and join)
and how to pass and receive parameters to it:

std::thread: By using the basic thread methods, create and join, write the1.
following code:

#include <iostream>
#include <thread>
void threadFunction1 ();
int main()
{
 std::thread t1 {threadFunction1};
 t1.join();
 return 0;
}
void threadFunction1 ()
{
 std::cout << "starting thread 1 ... " << std::endl;
 std::cout << "end thread 1 ... " << std::endl;
}

Compile it with g++ concurrency_01.cpp -lpthread.2.

Revisiting C++ Chapter 2

[58]

The second example is similar to the previous one but in this case, we pass and get
parameters:

std::thread: Create and join a thread, passing a parameter and getting a result.1.
Write the following code:

#include <iostream>
#include <thread>
#include <vector>
#include <algorithm>
void threadFunction (std::vector<int> &speeds, int& res);
int main()
{
 std::vector<int> speeds = {1, 2, 3, 4, 5};
 int result = 0;
 std::thread t1 (threadFunction, std::ref(speeds),
 std::ref(result));
 t1.join();
 std::cout << "Result = " << result << std::endl;
 return 0;
}
void threadFunction (std::vector<int> &speeds, int& res)
{
 std::cout << "starting thread 1 ... " << std::endl;
 for_each(begin(speeds), end(speeds), [](int speed)
 {
 std::cout << "speed is " << speed << std::endl;
 });
 res = 10;
 std::cout << "end thread 1 ... " << std::endl;
}

Compile it using g++ concurrency_02.cpp -lpthread.2.

The third example uses async to create a task, execute it, and get the result, as follows:

std::async: Here, we can see why async is called task-based threading. Write1.
the following code:

root@b6e74d5cf049:/Chapter2# cat concurrency_03.cpp
#include <iostream>
#include <future>
int asyncFunction ();
int main()
{
 std::future<int> fut = std::async(asyncFunction);
 std::cout << "max = " << fut.get() << std::endl;

Revisiting C++ Chapter 2

[59]

 return 0;
}
int asyncFunction()
{
 std::cout << "starting asyncFunction ... " << std::endl;
 int max = 0;
 for (int i = 0; i < 100000; ++i)
 {
 max += i;
 }
 std::cout << " Finished asyncFunction ..." << std::endl;
 return max;
}

Now, we need to compile the program. There is a catch here. Since we're using a2.
threading mechanism, the compilers rely on the native implementations, which
in our case turn out to be pthread. In order to compile and link without errors
(we'd get an undefined reference), we need to include -lpthread:

g++ concurrency_03.cpp -lpthread

In the fourth example, std::async used in conjunction with std::promise and
std::future is a good and easy way of making two tasks communicate with each other.
Let's take a look:

std::async: This is another std::async example showing a basic1.
communication mechanism. Let's code it:

#include <iostream>
#include <future>
void asyncProducer(std::promise<int> &prom);
void asyncConsumer(std::future<int> &fut);
int main()
{
 std::promise<int> prom;
 std::future<int> fut = prom.get_future();
 std::async(asyncProducer, std::ref(prom));
 std::async(asyncConsumer, std::ref(fut));
 std::cout << "Async Producer-Consumer ended!" << std::endl;
 return 0;
}
void asyncConsumer(std::future<int> &fut)
{
 std::cout << "Got " << fut.get() << " from the producer ... "
 << std::endl;
}
void asyncProducer(std::promise<int> &prom)

Revisiting C++ Chapter 2

[60]

{
 std::cout << " sending 5 to the consumer ... " << std::endl;
 prom.set_value (5);
}

And finally, compile it: g++ concurrency_04.cpp -lpthread2.

How it works...
Let's analyze the previous four programs:

std::thread: The following program shows basic thread usage for create and1.
join:

There's nothing really complex in this first test. std::thread was initialized with
a function through the uniform initialization and joined (waiting for the thread to
be completed). The thread would accept a function object:

struct threadFunction
{
 int speed;
 void operator ()();
}
std::thread t(threadFunction);

std::thread: Create and join a thread, passing a parameter and getting a result:2.

Revisiting C++ Chapter 2

[61]

This second test shows how to pass a parameter using std::vector<int>&
speeds to the thread and get the return parameter, int& ret. This test shows
how to pass parameters to a thread, and is not multithreaded code (that is, passing
the same parameters to other threads will result in a race condition if at least
one thread will be writing on them)!

std::async: Here, we can see why async is called task-based threading:3.

Note that when we call std::async(asyncFunction);, we could use auto
fut = std::async(asyncFunction); to deduce the type of the return
from std::async at compile time.

std::async: This is another std::async example showing a basic4.
communication mechanism:

The consumer, void asyncConsumer(std::future<int> &fut), calls the
get() method on the future to get the value set by the producer through the
set_value() method on the promise. fut.get() waits for the value to be
computed, if necessary (that is, it's a blocking call).

There's more...
The C++ concurrent library doesn't just include the features shown in this recipe, although
these are the foundational ones. You are invited to explore the full set of concurrency tools
that are available by going to Chapter 5, paragraph three of The C++ Programming
Language by Bjarne Stroustrup.

Revisiting C++ Chapter 2

[62]

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

Understanding the filesystem
C++17 marks another huge milestone in terms of new features. The filesystem library
provides a simpler way of interacting with the filesystem. It was inspired by
Boost.Filesystem (available since 2003). This recipe will show its basics features.

How to do it...
In this section, we'll show two examples of the filesystem library by
using directory_iterator and create_directories. Although there is definitely
more under this namespace, the goal of these two snippets is to highlight their simplicity:

std::filesystem::directory_iterator: Let's write the following code:1.

#include <iostream>
#include <filesystem>
int main()
{
 for(auto& p: std::filesystem::directory_iterator("/"))
 std::cout << p << std::endl;
}

Now, compile it with g++ filesystem_01.cpp -std=c++17 -lstdc++fs,2.
where -std=c++17 tells the compiler to use the C++17 standard and -
lstdc++fs tells the compiler to use the filesystem library.

The second example is about creating a directory and a file:

std::filesystem::create_directories: Write the following code:1.

#include <iostream>
#include <filesystem>
#include <fstream>
int main()
{
 std::filesystem::create_directories("test/src/config");
 std::ofstream("test/src/file.txt") << "This is an example!"

Revisiting C++ Chapter 2

[63]

 << std::endl;
}

The compilation is as the same as the previous example:2.
g++ filesystem_02.cpp -std=c++17 -lstdc++fs.

With just two lines of code, we've created a folder structure, a file, and have also written on
it! It's as simple (and portable) as that.

How it works...
The filesystem library is located in the <filesystem> header under the
std::filesystem namespace. These two tests, although pretty simple, were needed to
show how powerful the filesystem library is. The output of the first program is as
follows:

A complete list of std::filesystem methods can be found here: https:/ /en.
cppreference.com/ w/ cpp/ header/ filesystem.

https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem
https://en.cppreference.com/w/cpp/header/filesystem

Revisiting C++ Chapter 2

[64]

std::filesystem::create_directories create a directory (recursively, if test/src
does not exist) in the current folder, in this case. Of course, an absolute path is managed too
and the current line would be perfectly valid, that is,
std::filesystem::create_directories("/usr/local/test/config");.

The second line of the source code uses ofstream to create an output file stream
named test/src/file.txt and appends << to the string: This is an example!.

There's more...
The filesystem library is heavily inspired by Boost.Filesystem, which has been
available since 2003. If you want to experiment and debug a little, just add the -g option
(add the debug symbols to the binary) to the compiler: g++ -g fs.cpp -std=c++17 -
lstdc++fs.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

The C++ Core Guidelines
The C++ Core Guidelines are a collaborative effort led by Bjarne Stroustrup, much like the
C++ language itself. They are the result of many years of discussion and design across a
number of organizations. Their design encourages general applicability and broad adoption
but they can be freely copied and modified to meet your organization's needs. More
precisely, these guidelines are referring to the C++14 standard.

Getting ready
Go over to GitHub and go to the C++ Core Guideline document (http:/ /isocpp. github.
io/CppCoreGuidelines/ CppCoreGuidelines), as well as to the GitHub project
page: https://github. com/ isocpp/ CppCoreGuidelines.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines

Revisiting C++ Chapter 2

[65]

How to do it...
The C++ Core Guidelines are divided into sections that are easily browsable. The sections
include class and class hierarchies, resource management, performance, and error handling.
The C++ Core Guidelines are a collaborative effort led by Bjarne Stroustrup and Herb Sutter
but, in total, they involve more than 200 contributors (to find out more about this, please
visit https://github. com/ isocpp/ CppCoreGuidelines/ graphs/ contributors). The
quality, suggestions, and best practices they've put in are incredible.

How it works...
The most common way to use the C++ Core Guidelines is to keep a browser tab open on the
GitHub page and consult it continuously for your daily tasks.

There's more...
If you want to contribute to the issues that have already been provided, the GitHub page
contains a lot of items, ready to be picked up. For more information, please visit https:/ /
github.com/isocpp/ CppCoreGuidelines/ issues.

See also
The Adding GSL in your makefile recipe of this chapter will be helpful.

Adding GSL in your makefile
"The GSL is the small set of types and aliases specified in these guidelines. At the time of writing,
their specification herein is too sparse; we plan to add a WG21-style interface specification to ensure
that different implementations agree, and to propose as a contribution for possible standardization,
subject as usual to whatever the committee decides to accept/improve/alter/reject." – FAQ.50 of the
C++ Core Guidelines.

Getting ready
Go to GitHub and go to the C++ Core Guideline document: http:/ /isocpp. github. io/
CppCoreGuidelines/ CppCoreGuidelines.

https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
https://github.com/isocpp/CppCoreGuidelines/issues
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Revisiting C++ Chapter 2

[66]

How to do it...
In this section, we'll integrate the Guideline Supporting Library (gsl) to a program by
modifying a makefile:

Download and copy a gsl implementation (for example, https:/ /github. com/1.
microsoft/ GSL).
Copy the gsl folder into your project.2.
Add the include to the makefile: -I$HOME/dev/GSL/include.3.
In your source file, include #include <gsl/gsl>.4.

The gsl currently provides the following:

GSL.view

GSL.owner

GSL.assert: Assertions

GSL.util: Utilities

GSL.concept: Concepts

How it works...
You might have noticed that to get the gsl working, you just need to specify the header file
folder path in the makefile, that is, -I$HOME/dev/GSL/include. Another detail to note is
that no library is specified in the makefile.

This is because the whole implementation is provided inline in the header files under the
gsl folder.

There's more...
The Microsoft GSL (http:/ / isocpp. github. io/ CppCoreGuidelines/ CppCoreGuidelines) is
just one implementation maintained by Microsoft. You can find another implementation
here: https://github. com/ martinmoene/ gsl- lite. Both implementations have been
released under the MIT license type.

https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
https://github.com/microsoft/GSL
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite
https://github.com/martinmoene/gsl-lite

Revisiting C++ Chapter 2

[67]

See also
The C++ Core Guidelines recipe of this chapter.

Understanding concepts
A concept is a compile-time predicate that's used in conjunction with templates. The C++20
standard definitely boosted generic programming by providing more compile-time
opportunity for the developer to communicate its intention. We can visualize concepts such
as requirements (or constraints) the user of the template must adhere to. Why do we need
concepts? Do you have do define concepts by yourself? This recipe will answer these and
many more questions.

How to do it...
In this section, we will develop a concrete template example using concepts:

We want to create our own version of the std::sort template function from the1.
C++ standard library. Let's start by writing the following code in a .cpp file:

#include <algorithm>
#include <concepts>

namespace sp
{
 template<typename T>
 requires Sortable<T>
 void sort(T& container)
 {
 std::sort (begin(container), end(container));
 };
}

Now, let's use our new template class with the constraint that the type we pass,2.
an std::vector, must be sortable; otherwise, the compiler will notify us:

int main()
{
 std::vector<int> myVec {2,1,4,3};
 sp::sort(vec);

 return 0;
}

Revisiting C++ Chapter 2

[68]

We'll look at the details in the next section.

How it works...
I strongly believe concepts were the missing feature. Before them, a template didn't have a
well-defined set of requirements, nor, in the case of a compilation error, a simple and brief
description of it. These are the two pillars that drove the design of the concepts feature.

Step 1 includes the algorithms include for the std::sort method and the concepts
header. To not confuse the compiler and ourselves, we encapsulated our new template in a
namespace, sp. As you can see, there is a very minimal difference compared to the classical
templates we used to use and the difference is with the requires keyword.

requires communicates to the compiler (and to the template user) that this template is
only valid with a T Sortable type (Sortable<T>). OK; what is Sortable? This is a
predicate that is only satisfied if it is evaluated to true. There are other ways to specify a
constraint, as follows:

With the trailing requires:

template<typename T>
void sort(T& container) requires Sortable<T>;

As a template parameter:

template<Sortable T>
void sort(T& container)

I personally prefer the style in the How to do it... section as it is more idiomatic
and, more importantly, allows us to keep all the requires together, like so:

template<typename T>
 requires Sortable<T> && Integral<T>
void sort(T& container)
{
 std::sort (begin(container), end(container));
};

In this example, we want to communicate that our sp::sort method is valid with type T,
which is Sortable and Integral, for whatever reason.

Step 2 simply uses our new customized version of sort. To do this, we instantiated a vector
(which is Sortable!) and passed in input to the sp::sort method.

Revisiting C++ Chapter 2

[69]

There's more...
There might be cases where you need to create your own concept. The standard library
contains plenty of them, so it is a remote probability that you'd need one. As we learned in
the previous section, a concept is a predicate if and only if it is evaluated as true. The
definition of a concept as a composite of two existing ones might look like this:

template <typename T>
concept bool SignedSwappable()
{
 return SignedIntegral<T>() && Swappable<T>();
}

Here, we can use the sort method:

template<typename T>
 requires SignedSwappable<T>
void sort(T& container)
{
 std::sort (begin(container), end(container));
};

Why is this cool? For a couple of reasons:

It lets us immediately know what the template expects without getting lost in
implementation details (that is, the requirements or constraints are explicit).
At compile time, the compiler will evaluate whether the constraints have been
met.

See also
A Tour of C++, Second Edition, B. Stroustrup: Chapter 7.2 and Chapter 12.7 for a
complete list of concepts defined in the standard library.
https:// gcc. gnu. org/ projects/ cxx- status. html for a list of C++20 features
mapped with GCC versions and status.

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html

Revisiting C++ Chapter 2

[70]

Using span
We may come across cases where we need to write a method but we'd like to have the
flexibility to accept a plain array or STL containers as input. std::span solves this
problem. It gives the user a view into a contiguous sequence of elements. This recipe will
teach you how to use it.

How to do it...
In this recipe, we'll write a method with one parameter (std::span) that can be used in
different contexts. Then, we'll highlight the flexibility it offers:

Let's start by adding the includes we need. Then, we need to define the print1.
method by passing the container variable of the std::span type:

#include <iostream>
#include <vector>
#include <array>
#include

void print(std::span<int> container)
{
 for(const auto &c : container)
 std::cout << c << "-";
}

In main, we want to print our arrays by calling the print method:2.

int main()
{
 int elems[]{4, 2, 43, 12};
 print(elems);
 std::vector vElems{4, 2, 43, 12};
 print(vElems);
}

Let's see how this works.

Revisiting C++ Chapter 2

[71]

How it works...
std::span describes an object that refers to a contiguous sequence of elements. The C++
standard defines an array as having a contiguous portion of memory. This definitely
simplifies the std::span implementation, since a typical one includes a pointer to the first
element of the sequence and the size.

Step 1 defines the print method of passing the std::span, which we can read as
a sequence of integers. Any array type that has contiguous memory will be seen from the
method as a sequence.

Step 2 uses the print method with two different arrays, one C-style and the second
an std::vector part of the STL library. Since both arrays are defined in a contiguous
portion of memory, std::span is able to seamlessly manage them.

There's more...
Our method considers std::span with the int type. You might need to make the method
generic. In this case, you'd need to write something like this:

template <typename T>
void print(std::span<T> container)
{
 for(const auto &c : container)
 std::cout << c << "-";
}

As we learned in the Understanding concepts recipe, it is wise to specify some requirements
in this template. Therefore, we might write to the following:

template <typename T>
 requires Integral<T>
void print(std::span<T> container)
{
 for(const auto &c : container)
 std::cout << c << "-";
}

The requires Integral<T> would make explicit the needs of an Integral type for the
template.

Revisiting C++ Chapter 2

[72]

See also
The Understanding concepts recipe to review how to write concepts with templates
and apply them to std::span.
https:// gcc. gnu. org/ projects/ cxx- status. html for a list of C++20 features
mapped with GCC versions and their statuses.

Learning how Ranges work
The C++20 standard added Ranges, which are an abstraction of containers that allow the
program to operate uniformly on containers' elements. Furthermore, Ranges represent a
very modern and concise way of writing expressive code. We'll learn that this
expressiveness is even greater with pipes and adaptors.

How to do it...
In this section, we'll write a program that will help us learn the main use case of Ranges in
conjunction with pipes and adaptors. Given an array of temperatures, we want to filter out
the negative ones and convert the positives (warm temperatures) into Fahrenheit:

On a new source file, type the following code. As you can see, two lambda1.
functions and a for range loop does the job:

#include <vector>
#include <iostream>
#include <ranges>

int main()
{
 auto temperatures{28, 25, -8, -3, 15, 21, -1};
 auto minus = [](int i){ return i <= 0; };
 auto toFahrenheit = [](int i) { return (i*(9/5)) + 32; };
 for (int t : temperatures | std::views::filter(minus)
 |
std::views::transform(toFahrenheit))
 std::cout << t << ' '; // 82.4 77 59 69.8
}

We'll analyze what's behind of Ranges in the next section. We'll also learn that Ranges are
the first users of concepts.

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html

Revisiting C++ Chapter 2

[73]

How it works...
std::ranges represents a very modern way of describing a sequence of actions on a
container in a readable format. This is one of the cases where the language improves
readability.

Step 1 defines the temperatures vector, which contains some data. Then, we defined a
lambda function that returns true if the input, i, is greater or equal to zero. The second
lambda we defined converts i into Fahrenheit. Then, we looped over temperatures
(viewable_range) and piped to the filter (called adaptor, in the scope of Ranges),
which removed the negative temperatures based on the minus lambda function. The
output is piped to another adaptor that converts every single item of the container so that
the final loop can take place and print to the standard output.

C++20 provides another level on top of the one we used to iterate over the container's
element, one that's more modern and idiomatic. By combining viewable_range with
adaptors, the code is more concise, compact, and readable.

The C++20 standard library provides many more adaptors following the same logic,
including std::views::all, std::views::take, and std::views::split.

There's more...
All of the adaptors are templates that use concepts to define the requirements that the
specific adaptor needs. An example of this is as follows:

template<ranges::input_range V,
std::indirect_unary_predicate<ranges::iterator_t<V>> Pred >
 requires ranges::view<V> && std::is_object_v<Pred>
class filter_view : public ranges::view_interface<filter_view<V, Pred>>

This template is the std::views::filter we used in this recipe. This template takes two
types: the first one is V, the input range (that is, the container), while the second one is Pred
(which is the lambda function, in our case). We've specified two constraints for this
template:

V must be a view
The predicate must be an object type: a function, lambda, and so on

Revisiting C++ Chapter 2

[74]

See also
The Understanding concepts recipe to review concepts.
Go to https:/ /github. com/ ericniebler/ range- v3 to see the range
implementation by the C++20 library proposal author (Eric Niebler).
Learning the Linux fundamentals – shell recipe in Chapter 1, Getting Started with
System Programming, to notice that the C++20 Ranges pipe is very similar to the
concept of pipes we've seen on the shell.
To read more about std::is_object, please visit the following link: https:/ /
en.cppreference. com/ w/ cpp/ types/ is_object.

Learning how modules work
Before C++20, there was only one way of structuring a program in parts: through the
#include directive (which is resolved by the precompiler). The latest standard added
another and more modern way of achieving the same result, called module. This recipe will
show you how to write code using modules and the differences between #include and
module.

How to do it...
In this section, we'll write a program composed of two modules. This program is an
improvement of the one we developed in the Learning how Range works recipe. We'll
encapsulate the temperature code in a module and use it in a client module. Let's get
started:

Let's create a new .cpp source file called temperature.cpp and type in the1.
following code:

export module temperature_engine;
import std.core
#include <ranges>

export
std::vector<int> toFahrenheitFromCelsius(std::vector<int>& celsius)
{
 std::vector<int> fahrenheit;
 auto toFahrenheit = [](int i) { return (i*(9/5)) + 32; };
 for (int t : celsius | std::views::transform(toFahrenheit))
 fahrenheit.push_back(t);

https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object
https://en.cppreference.com/w/cpp/types/is_object

Revisiting C++ Chapter 2

[75]

 return fahrenheit;
}

Now, we have to use it. Create a new file (for example,2.
temperature_client.cpp) and include the following code:

import temperature_engine;
import std.core; // instead of iostream, containers
 // (vector, etc) and algorithm
int main()
{
 auto celsius = {28, 25, -8, -3, 15, 21, -1};
 auto fahrenheit = toFahrenheitFromCelsius(celsius);
 std::for_each(begin(fahrenheit), end(fahrenheit),
 [&fahrenheit](int i)
 {
 std::cout << i << ";";
 });
}

The next section explains how modules work, what relationship they have with the
namespaces, and the advantages they have over the #include precompiler directive.

How it works...
A module is the C++20 solution to (possibly) the #include directive. Possibly is mandatory
here as the millions of lines of legacy code cannot be converted overnight to use modules.

Step 1 has the main goal of defining our temperature_engine module. The first
line, export module temperature_engine;, defines the module we want to export.
Next, we have import std.core. This is one of the biggest differences brought into
C++20: there is no need to use #include anymore. Specifically, import std.core is
equivalent to #include <iostream>. We also #include the range. In this case, we did it
the old way to show you that is possible to have code that mixes old and new solutions. This
is important as it'll allow us how to manage the transition to module better. Every time we
want to export something from our module, we just need to prefix it with the export
keyword, as we did with the toFahrenheitFromCelsius method. The method's
implementation is not affected, so its logic doesn't change.

Revisiting C++ Chapter 2

[76]

Step 2 contains the code for the module client using temperature_engine. As we did in
the previous step, we just need to use import temperature_engine and use the exported
objects. We also used import std.core to replace #include <iostream>. Now, we can
use the exported method as we normally would, calling toFahrenheitFromCelsius and
passing the expected input parameters. The toFahrenheitFromCelsius method returns
a vector of integers representing the converted temperatures in Fahrenheit, which means all
we need to do is use the for_each template method to print the values by using import
std.core where we normally would have used #include <algorithm>.

The main question at this point is: why should we use module instead of #include?
Module does not just represent a syntactic difference – it's deeper than that:

A module is compiled only once, while #includes are not. To make
#include compile only once, we need to use the #ifdef #define,
and #endif precompilers.
Module can be imported in any order without affecting the meaning. This is not
the same for #include.
If a symbol is not exported from the module, the client code cannot use it and the
compiler will notify with an error if the users do.
Modules, unlike includes, are not transitive. Importing module A into module B,
when module C uses module B, doesn't mean it automatically gains access to
module A.

This has a great effect on maintainability, the structure of the code, and compilation time.

There's more...
One recurrent question is, aren't modules in conflict (or overlapping) with namespaces?
This is a good point, and the answer is no. Namespaces and modules solve two different
problems. A namespace is yet another mechanism that expresses the intention to group
some declarations together. Other mechanisms that put group declaration together are
functions and classes. What if two classes clash? We can encapsulate one of them into a
namespace. You can see an example of this in the Understanding concepts recipe, where we
created our own version of sort called sp::sort. A module, on the other hand, is a logical
set of functionalities. The two concepts are orthogonal, which means I can have my
namespace spread out over more modules. A concrete example is the std::vector and
std::list containers, which are in two different modules but on the same namespace:
std.

Revisiting C++ Chapter 2

[77]

Another thing worth highlighting is that modules allow us to set a portion of the module as
private to make it inaccessible to other Translation Units (TUs). This is useful if you want
to export a symbol as an incomplete type, like so:

export module temperature_engine;
import std.core
#include <ranges>

export struct ConversionFactors; //exported as incomplete type

export
void myMethod(ConversionFactors& factors)
{
 // ...
}

module: private;
struct ConversionFactors
{
 int toFahrenheit;
 int toCelsius;
};

See also
Go to https:/ /gcc. gnu. org/ projects/ cxx- status. html to check the module
(and other C++20 features) support timeline.
The Lambda expressions recipe for a refresher on lambdas.

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html

3
Dealing with Processes and

Threads
Processes and threads are the foundations of any computation. A program is rarely made of
just one thread or process. In this chapter, you will learn the fundamental recipes for
dealing with threads and processes. You will also learn how easy and convenient it is to
deal with threads compared with the Portable Operating System Interface
(POSIX). Learning these skills is very important as part of the core skills of a system
developer. C++ does not have the notion of process in its standard library, so the Linux
native implementation will be used.

This chapter will cover the following recipes:

Starting a new process
Killing a process
Creating a new thread
Creating a daemon process

Technical requirements
In order to let you try the programs immediately, we've set up a Docker image that has all
the tools and libraries we'll need throughout the book. This is based on Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub by running the following command: docker2.
pull kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.

https://www.docker.com/

Dealing with Processes and Threads Chapter 3

[79]

You should have at least this image now:4.
kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell, with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available. Type in6.
root@39a5a8934370/# cd /BOOK/ to get all the programs developed, by
chapters.

The --cap-add sys_ptrace argument is needed to allow the GNU Project Debugger
(GDB) in the Docker container to set breakpoints, which, by default, Docker does not allow.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

Starting a new process
This recipe will show how to start a new process programmatically. The C++ standard does
not include any support for processes, so the Linux native implementation will be used.
Being able to manage processes in a program is an important skill, and this recipe will teach
you the fundamental concepts of processes, the process identifier (PID), the parent PID,
and the system calls needed.

How to do it...
This recipe will show how to start a child process and how to make the parent process wait
for the child to finish by using Linux system calls. Two different techniques shall be shown:
the first, where the parent just forks the child; and the second, where the child process uses
the execl system call to run an application.

Dealing with Processes and Threads Chapter 3

[80]

An alternative option to system calls is to use an external library (or framework), such as
the Boost library.

First, type the program in a new file called process_01.cpp:1.

#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <iostream>

int main(void)
{
 pid_t child;
 int status;
 std::cout << "I am the parent, my PID is " << getpid()
 << std::endl;
 std::cout << "My parent's PID is " << getppid() << std::endl;
 std::cout << "I am going to create a new process..."
 << std::endl;
 child = fork();
 if (child == -1)
 {

We have to consider the case that a child might not be forked, so we need to2.
write this part:

 // fork() returns -1 on failure
 std::cout << "fork() failed." << std::endl;
 return (-1);
 }
 else if (child == 0)
 {

This branch is a happy case, where the parent can fork its child correctly. The3.
child, here, just prints its PID to the standard output:

 std::cout << "I am the child, my PID is " << std::endl;
 std::cout << "My parent's PID is " << getppid() << std::endl;
 }
 else
 {

Now, we have to make the parent wait for the child process to finish:4.

 wait(&status); // wait for the child process to finish...
 std::cout << "I am the parent, my PID is still "

Dealing with Processes and Threads Chapter 3

[81]

 << getpid() << std::endl;
 }
 return (0);
}

Now, let's develop the fork-exec version of the previous program.

First, type the program in a new file called process_02.cpp:1.

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <iostream>

int main(void)
{
 pxid_t child;
 int status;
 std::cout << "I am the parent, my PID is "
 << getpid() << std::endl;
 std::cout << "My parent's PID is "
 << getppid() << std::endl;
 std::cout << "I am going to create a new process..."
 << std::endl;
 child = fork();
 if (child == -1)
 {
 // fork() returns -1 on failure
 std::cout << "fork() failed." << std::endl;
 return 1;
 }
 else if (child == 0)
 {

The following code block shows the child section running ls -l with execl: 2.

 if (execl("/usr/bin/ls", "ls", "-l", NULL) < 0)
 {
 std::cout << "execl failed!" << std::endl;
 return 2;
 }
 std::cout << "I am the child, my PID is "
 << getpid() << std::endl;
 std::cout << "My parent's PID is "
 << getppid() << std::endl;

Dealing with Processes and Threads Chapter 3

[82]

 }
 else
 {
 wait(&status); // wait for the child process to finish...
 }
 return (0);
}

The next section will describe the details of the two different approaches (fork
versus fork-exec).

How it works...
Let's analyze the two preceding examples:

The fork system call: By compiling g++ process_01.cpp and running1.
./a.out, the output would be as follows:

The program, by calling fork, creates a copy of the calling process. This means
that the two processes have the same code and, although they are two completely
different processes, the code base will be the same. The user has to hook the child
code in the else if (child == 0) section. The parent, eventually, will have to
wait for the child to finish its task with the wait(&status); call. Another
alternative is the waitpid (123, &status, WNOHANG); call, which waits for a
specific PID (or waits for all the child processes if the first parameter is -1).
WNOHANG makes waitpid immediately return, even if the status of a child is not
immediately available.

Dealing with Processes and Threads Chapter 3

[83]

What happens if the parent process does not wait for the child to finish? That is,
what happens is there is no wait(&status); call? Technically, the parent will
finish, and the child, still running, will become a zombie. This was a huge
problem in the Linux kernel before version 2.6 as the zombie processes stayed in
the system until they were waited for. The child's processes are now adopted by
the init process (which has a PID of 1), which, periodically, waits for children
who can die.

The fork-exec system call:2.

The most common way of creating processes is the fork/exec combination. As
we've seen, fork creates a completely new process with its own PID, but now,
the else if (child == 0) section executes an external process, which has a
different code base. This example just calls the ls -l command to list files and
directories, but a developer can put any executable file here.

There's more...
Why a process should be used instead of a thread is an important aspect to consider. The
answer depends, but in general, the following aspects should be considered:

A thread runs in the same memory space of the process that launched it. This
aspect has both pros and cons. The main implication is that if a thread crashes,
the whole application crashes.
Communication between threads is much faster than interprocess
communications.
A process can be spawned with lower privileges (through setrlimit) to limit
the resources available to untrusted code.
A program designed in processes is more segregated than one designed in
threads.

Dealing with Processes and Threads Chapter 3

[84]

There are many variations to the fork/execl/wait calls seen in this recipe. The man pages
offer full comprehensive documentation to the whole family of calls. The following
screenshot refers to man execl:

See also
See Chapter 1, Getting Started with System Programming, for a refresher on man pages and
Linux in general.

Dealing with Processes and Threads Chapter 3

[85]

Killing a process
In the previous recipe, we've seen two ways to start a new process where the parent always
waits for their children to finish the task. This is not always the case. Sometimes, a parent
should be able to kill the child process. In this recipe, we will see an example of how to do
that.

Getting ready
It's important to go through the Starting a new process recipe as a prerequisite.

How to do it...
In this section, we create a program where a parent process forks its child process, the child
process will do an infinite loop, and the parent kills it:

Let's develop the child program that will be killed by the parent:1.

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <iostream>

int main(void)
{
 std::cout << "Running child ..." << std::endl;
 while (true)
 ;
}

Next, we have to develop the parent program (process_03.cpp in2.
the /BOOK/Chapter03 folder):

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <iostream>

Dealing with Processes and Threads Chapter 3

[86]

int main(void)
{
 pid_t child;
 int status;
 std::cout << "I am the parent, my PID is " << getpid()
 << std::endl;
 child = fork();
 std::cout << "Forked a child process with PID = "
 << child << std::endl;
 if (child == -1)
 {
 std::cout << "fork() failed." << std::endl;
 return 1;
 }
 else if (child == 0)
 {

Next, in the child section of the parent program, we start the child program3.
developed in the previous step:

 std::cout << "About to run the child process with PID = "
 << child << std::endl;
 if (execl("./child.out", "child.out", NULL) < 0)
 {
 std::cout << "error in executing child proceess "
 << std::endl;
 return 2;
 }
 }
 else
 {

In the parent section (else section) of the parent program, we have to kill the4.
child process and check that it is correctly killed:

 std::cout << "killing the child process with PID = "
 << child << std::endl;
 int status = kill (child, 9);
 if (status == 0)
 std::cout << "child process killed" << std::endl;
 else
 std::cout << "there was a problem killing
 the process with PID = "
 << child << std::endl;
 }
 return (0);
}

Dealing with Processes and Threads Chapter 3

[87]

We've seen both the parent and the child program, with the parent killing the child process.
In the next section, we'll learn the mechanics of these programs.

How it works...
Before all this, we have to compile both the child and parent programs—g++

process_03.cpp and g++ -o child.out process_04.cpp.

When compiling process_04.cpp, we have to specify -o child.out as needed by
the parent process (with the process name as a.out). By running it, the output produced is
as follows:

The execution shows that the child process with PID = 218 is correctly killed by the parent
process.

The code in this recipe is just a variation of the Starting a new process recipe. The difference
is that now, the parent process, as part of its elaboration, kills the child process int
status = kill (child, 9);. The kill system call accepts as the first parameter the
PID of the process to kill, and, as the second parameter, the signal to send to the child
process. The accepted signals are as follows:

1 = HUP (hangup)
2 = INT (interrupt)
3 = QUIT (quit)
6 = ABRT (abort)
9 = KILL (non-catchable, non-ignorable kill)
14 = ALRM (alarm clock)
15 = TERM (software termination signal)

man 2 kill, the kill system call, sends a signal to a process. On success,
return 0; otherwise, return -1. You need to include #include
<sys/types.h> and #include <signal.h> to use it.

Dealing with Processes and Threads Chapter 3

[88]

There's more...
In the Understanding concurrency recipe in Chapter 2, Revisiting C++, we offer two
alternative solutions (and advocate them for the nature of this book) based
on std::thread and std::async, if possible. The next recipe also offers a concrete
example of std::thread use.

Creating a new thread
Processes are not the only way of structuring a software system; a lightweight alternative is
to use threads. This recipe shows how to create and manage threads using the C++ standard
library. We've seen that the main advantages of using the C++ standard library are its
portability and the fact that it's not dependent on external libraries (for example, Boost).

How to do it...
The code we'll write will be the concurrent version of summing up a large vector of
integers. The vector is split into two parts; each thread calculates the sum of its part, and the
main thread shows the result.

Let's define a vector of 100,000 integers, and generate random numbers in the1.
main method:

#include <iostream>
#include <thread>
#include <vector>
#include <algorithm>

void threadFunction (std::vector<int> &speeds, int start, int
 end, int& res);

int main()
{
 std::vector<int> speeds (100000);
 std::generate(begin(speeds), end(speeds), [] ()
 { return rand() % 10 ; });

Next, start the first thread, passing the first 50,000 integers:2.

 int th1Result = 0;
 std::thread t1 (threadFunction, std::ref(speeds), 0, 49999,
 std::ref(th1Result));

Dealing with Processes and Threads Chapter 3

[89]

Then, start the second thread, passing the second 50,000 integers:3.

 int th2Result = 0;
 std::thread t2 (threadFunction, std::ref(speeds), 50000, 99999,
 std::ref(th2Result));

Wait for the results from the two threads:4.

 t1.join();
 t2.join();
 std::cout << "Result = " << th1Result + th2Result
 << std::endl;
 return 0;
}

void threadFunction (std::vector<int> &speeds, int start, int
 end, int& res)
{
 std::cout << "starting thread ... " << std::endl;
 for (int i = start; i <= end; ++i)
 res += speeds[i];
 std::cout << "end thread ... " << std::endl;
}

The next section explains the dynamics.

How it works...
By compiling the program with g++ thread_01.cpp -lpthread and executing it, the
output is as follows:

In step 1, we defined the threadFunction method, which is the basic thread unit that will
take care of summing up from start to end the elements in speeds, saving the result in
the res output variable.

Dealing with Processes and Threads Chapter 3

[90]

In step 2 and step 3, we started two threads to do the calculation for the first 50,000 items for
the t1 thread and the second 50,000 items for the t2 thread. These two threads ran
concurrently, so we needed to wait for them to finish to do this. In step 4, we waited for
the th1 and th2 results to be completed, summed up the two results—th1Results and
th2Results— and printed them in the standard output (stdout).

There's more...
The Starting a new process recipe showed how to create a process, and in which
circumstances a process suits the solution. One important aspect worth highlighting is that
a thread runs in the same address space of the process that created it. Although threads are
still a nice way of structuring a system software in a more independent (runnable) module,
if a thread crashes (due to a segmentation fault, or if terminate is somehow called, among
many others), the whole application crashes.

On the positive side, the ease of communication among threads, as we've seen in the
preceding code, is extremely simple and efficient. Furthermore, threads share the static and
the heap memory with each other, and with the process that created them.

The code in this recipe, although simple, has shown how a task (sum of a large array) can
be executed concurrently. As a side note, a multithreaded application is worthless if the
algorithm is not designed to be run concurrently—that is, if there are dependencies among
threads.

It's important to note in this context that if the two threads were to run on two processors at
the same time, we'd use the word parallel. We don't have this guarantee, in this case.

We've used std::thread from the C++ standard library, but the same example can be
written using std::async. Chapter 2, Revisiting C++, shows an example of both. You are
invited to rewrite this recipe's code using the second method.

See also
In the Understanding concurrency recipe in Chapter 2, Revisiting C++, there is an introduction
to the concurrency topic with a recipe that includes both std::thread and std::async.
You are also invited to read the section dedicated to threads in Effective Modern C++ by Scott
Meyers, and The C++ Programming Language by Bjarne Stroustrup.

Dealing with Processes and Threads Chapter 3

[91]

Creating a daemon process
System programming is really about dealing closely with operating system resources,
creating processes, threads, releasing resources, and much more. There are cases where we
need a process to run indefinitely; that is, a process first offers some services or manages a
resource, and then it keeps running all the time. A process that runs indefinitely in the
background is called a daemon. This recipe will show how a daemon could be spawned
programmatically.

How to do it...
As mentioned, a daemon is a process that runs indefinitely. A process, in order to be
classified as a daemon, must have some well-defined properties that will be shown in this
recipe with a program.

Type the following code to reset the initial access permission of the child process1.
by calling the umask system call:

#include <unistd.h>
#include <sys/stat.h>
#include <iostream>

int main(void)
{
 pid_t child;
 int status;
 std::cout << "I am the parent, my PID is " << getpid()
 << std::endl;
 std::cout << "I am going to create a new daemon process..."
 << std::endl;
 // 1. clear file creation mask
 umask(0);

 Type the code to fork for a child:2.

 child = fork();
 if (child == -1)
 {
 std::cout << "fork() failed." << std::endl;
 return (-1);
 }
 else if (child == 0) // child (daemon) process
 {

Dealing with Processes and Threads Chapter 3

[92]

Type the setsid command on the child process:3.

 setsid();

Change the working directory to the child process (which is a daemon now):4.

 if (chdir("/") < 0)
 std::cout << "Couldn't change directly" << std::endl;

Run the daemon-specific task—in this case, just sleep for 10 seconds:5.

 // Attach here the daemon specific long running
 // tasks ... sleep for now.
 sleep (10);
 }

The parent process exits after fork:6.

 return (0);
}

The next section will explain these six points in more detail.

How it works...
Compile the code with g++ daemon_01.cpp (in (/BOOK/Chapter03) folder of the Docker
image) and run it. The output is as follows:

Dealing with Processes and Threads Chapter 3

[93]

When we run a process on a shell, the Terminal waits for the children to finish before being
ready for another command. We can run the command with the & symbol (for example, ls
-l &), and the shell will prompt the Terminal for another command. Please note that the
child process will still be in the same session as the parent process. For a process to be a
daemon, the following rules should be applied (numbers 2 and 3 are mandatory; the others
are optional):

Call umask with parameter 0 (umask(0)): When a parent creates a child process,1.
the file mode creation mask is inherited (that is, the child process will inherit the
initial access permission of the parent). We want to make sure we reset them.
Have the parent exit after the fork: In the preceding code, after the parent has2.
created the child process, it returns.
Call setsid. This does three things:3.

The child process becomes the leader of a newly created session.
It becomes the leader of a new process group.
It gets disassociated from its controlling Terminal.

Change working directory: The parent process might run in a temporary (or4.
mounted) folder that might not exist for long. It's a good practice to set the
current folder to meet the long-term expectations of the daemon process.
Logging: Since the daemon service is not associated with any Terminal device5.
anymore, it is a good practice to redirect the standard input, output, and error to
/dev/null.

There's more...
A process, as seen so far, has a PID as its unique identifier. It also belongs to a group that
has a process group ID (PGID). A process group is a collection of one or more processes.
All the processes in the same group can receive signals from the same Terminal. Each
group has a leader, and the PGID has the same value as the leader's PID.

A session is a collection of one or more groups. This recipe showed that a new session can
be created by calling the setsid method.

Dealing with Processes and Threads Chapter 3

[94]

A session can have a (single) controlling Terminal. The ps -efj command shows all the
processes running with the PID, PPID, and PGID, and the controlling Terminal (TTY) info
for each process:

The output shows that the ./a.out daemon has PID = 19 and it's a leader for the group
(PGID = 19), and it is not attached to any controlling Terminal (TTY= ?).

See also
Chapter 13 of Advanced Programming in the UNIX® Environment by W.R. Stevens is dedicated
to the daemon processes.

4
Deep Dive into Memory

Management
Memory turns out to be one of the core concepts when dealing with systems development.
Allocating, freeing, and learning how memory is managed, and knowing what C++ can
offer to simplify and manage memory, are crucial. This chapter will help you grasp how
memory works by learning how to use C++ smart pointers, aligned memory, memory-
mapped I/O, and allocators.

This chapter will cover the following topics:

Learning automatic versus dynamic memory
Learning when to use unique_ptr, and the implications for size
Learning when to use shared_ptr, and the implications for size
Allocating aligned memory
Checking whether the memory allocated is aligned
Dealing with memory-mapped I/O
Dealing with allocators hands-on

Technical requirements
In order to let you immediately try the programs, we've set up a Docker image that has all
the tools and libraries we'll need throughout the book. This is based on Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub by running the following command: docker2.
pull kasperondocker/system_programming_cookbook:latest.

https://www.docker.com/
https://www.docker.com/

Deep Dive into Memory Management Chapter 4

[96]

The image should now be available. Type in the following command to view the3.
image: docker images.
You should have at least this image4.
now: kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell, with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available. Type6.
in root@39a5a8934370/# cd /BOOK/ to get all the programs developed, by
chapter.

The --cap-add sys_ptrace argument is needed to allow the GNU Project
Debugger (GDB) in the Docker container to set breakpoints, which, by default, Docker
does not allow.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

Learning automatic versus dynamic memory
This recipe will focus on the two main strategies C++ offers to allocate memory: automatic
and dynamic memory allocation. A variable is automatic when its scope lasts for the
duration of the block in which it is defined, and its allocation and deallocation are
automatic (that is, not up to the developer). The variable is allocated on the stack.

A variable is dynamic if allocated in the dynamic portion of the memory (free store, which
is often referred to as the heap), and the allocation and deallocation are up to the developer.
Greater flexibility offered by the dynamic memory allocation comes with a cost, in terms of
more work for the developer to avoid memory leaks, dangling pointers, and so on.

Deep Dive into Memory Management Chapter 4

[97]

How to do it...
This section will show two examples of automatic and dynamic variable allocation.

Let's create a utility class we're going to need:1.

class User
{
public:
 User(){
 std::cout << "User constructor" << std::endl;
 };
 ~User(){
 std::cout << "User Destructor" << std::endl;
 };

 void cheers()
 {
 std::cout << " hello!" << std::endl;};
 };
};

And now, let's create the main module to show automatic memory usage:2.

#include <iostream>

int main()
{
 std::cout << "Start ... " << std::endl;
 {
 User developer;
 developer.cheers();
 }
 std::cout << "End ... " << std::endl;
}

And now, we'll write the main module for dynamic memory usage:3.

#include <iostream>

int main()
{
 std::cout << "Start ... " << std::endl;
 {
 User* developer = new User();
 developer->cheers();
 delete developer;
 }

Deep Dive into Memory Management Chapter 4

[98]

 std::cout << "End ... " << std::endl;
}

These two programs, although with the same outcome, show two different ways of dealing
with memory.

How it works...
In the first step, we defined a User class, which is used to show the difference between
automatic and dynamic memory allocation. Its constructor and destructor will be used to
show when the class is allocated and deallocated.

In step 2, we can see that the variable is just defined as User developer;. The C++ runtime
will take care of allocating memory of the stack and freeing it, without additional work for
the developer. This type of memory management is faster and easier, but comes with two
major costs:

The amount of memory is limited.
The variable is only valid and visible in the inner { } block, where it is allocated.

In step 3, the same object is allocated on the dynamic memory (that is, heap). The main
difference is that the developer is now responsible for allocating and deallocating the
quantity of memory needed. If the memory is not deallocated (by using free), there'll be a
leak. The pros of managing the memory dynamically are as follows:

Flexibility: The pointer, referencing to the allocated memory (the developer
variable) can be used throughout the whole program.
The quantity of memory available is way more than that for automatic memory
management.

There's more...
With the newer C++ standard (from version 11 onward), new and delete can be safely
avoided in favor of smart pointers (shared_ptr and unique_ptr). These two tools will
take care of deallocating the memory when it is not used anymore. Chapter 2, Revisiting
C++, provides a refresher on smart pointers.

Deep Dive into Memory Management Chapter 4

[99]

See also
The next two recipes will show when to use unique_ptr and shared_ptr.

Learning when to use unique_ptr, and the
implications for size
In the previous recipe, we've learned the two fundamental ways of managing memory in
C++: automatic and dynamic. We've also learned that dynamic memory is available to the
developer in a greater quantity compared to automatic memory (that is, available from the
stack), and offers great flexibility. On the other hand dealing with dynamic memory can be
an unpleasant experience:

The pointer does not indicate whether it points to an array or to a single object.
When freeing the allocated memory, you don't know if you have to use delete
or delete[], so you have to look at how the variable is defined.
There is no explicit way to tell if the pointer is dangling.

These are just a few issues you might encounter when dealing with dynamic memory, and
then, with new and delete. unique_ptr is a smart pointer, which means that it knows
when the memory should be deallocated, removing the burden from the developer. In this
recipe, you'll learn how to use unique_ptr and make_unique properly.

How to do it...
In this section, we'll develop a program to learn why unique_ptr is a convenient way of
dealing with dynamic memory; and the second aspect is to learn whether unique_ptr is
the same size as raw pointers:

We'll reuse the User class developed in the previous recipe.1.
Let's write the main program, allocating a User object with make_unique and2.
using unique_ptr:

#include <iostream>

int main()
{
 std::cout << "Start ... " << std::endl;
 {

Deep Dive into Memory Management Chapter 4

[100]

 auto developer = std::make_unique<User>();
 developer->cheers();
 }
 std::cout << "End ... " << std::endl;
}

Let's see the memory implications:3.

auto developer = std::make_unique<User>();
developer->cheers();

User* developer2 = new User();
std::cout << "developer size = " << sizeof (developer) <<
std::endl;
std::cout << "developer2 size = " << sizeof (developer2) <<
std::endl;
delete developer2;

What do you think will be the difference in size between developer and developer2?

How it works...
In step 2, we used unique_ptr to define a variable allocated using std::make_unique.
Once the variable is allocated, there is no risk of memory leak as the destructor will
automatically deallocate the memory for us. The output is as follows:

In step 3, we wanted to check if unique_ptr added any memory compared to raw pointers.
Well, the good news is that unique_ptr has the same size as the raw pointer version. The
output of this step is as follows:

Deep Dive into Memory Management Chapter 4

[101]

The developer and developer2 variables are of the same size, and the developer can
treat them the same way.

A rule of thumb is to use unique_ptr for variables that manage resources with exclusive
ownership only, which represent most developers' use cases.

There's more...
By default, unique_ptr calls the default delete destructor for the object, but a custom
delete destructor can be specified. If the pointer variable does not represent exclusive
ownership but rather shared ownership converting it to shared_ptr is easy.

One important aspect to highlight is that make_unique is not part of the C++11 standard
library, but part of the C++ 14 library. If you're using the C++11 standard library, its
implementation is quite simple, though.

See also
Chapter 2, Revisiting C++ has a dedicated recipe on smart pointers, with one recipe on
shared and unique pointers. A suggested read is Effective Modern C++ by Scott Meyers.

Deep Dive into Memory Management Chapter 4

[102]

Learning when to use shared_ptr, and the
implications for size
In the previous recipe, we've learned how to manage dynamic memory (allocated on the
heap) in a very convenient way, by using unique_ptr. We've learned as well that
unique_ptr must be used, just in case of exclusive ownership of the memory, or resources
managed by the memory. But what if we have a resource that is co-owned by more entities?
What if the memory we have to manage has to be released when all the owners have
completed their job? Well, this is exactly the use case for shared_ptr. Just as
with unique_ptr, for shared_ptr we don't have to allocate memory with new, but there
is a template function (part of the C++ standard library), make_shared.

How to do it...
In this section, we'll develop a program to show how to use shared_ptr. You'll learn that
the memory is only deallocated when none of the owners use the memory anymore:

We'll reuse the User class developed in the first recipe. Let's now write the main1.
module:

int main()
{
 std::cout << "Start ... " << std::endl;
 auto shared1 = std::make_shared<User>();
 {
 auto shared2 = shared1;
 shared2->cheers(); std::cout << " from shared2"
 << std::endl;
 shared1->cheers(); std::cout << " from shared1"
 << std::endl;
 }
 std::cout << "End ... " << std::endl;
}

Now, let's see the memory used by shared_ptr by writing this program:2.

int main()
{
 std::cout << "Start ... " << std::endl;
 auto shared1 = std::make_shared<User>();
 {
 auto shared2 = shared1;
 User* newAllocation = new User();

Deep Dive into Memory Management Chapter 4

[103]

 auto uniqueAllocation = std::make_unique<User>();

 std::cout << "shared2 size = " << sizeof (shared2)
 << std::endl;
 std::cout << "newAllocation size = " <<
 sizeof (newAllocation) << std::endl;
 std::cout << "uniqueAllocation size = " <<
 sizeof (uniqueAllocation) << std::endl;

 delete newAllocation;
 }
 std::cout << "End ... " << std::endl;
}

At this point, we should know the size of unique_ptr compared to a raw pointer (as we
learned in the Learning when to use unique_ptr, and the implications for size recipe). What is the
size of the shared_ptr variable? Still the same? In the next section, we'll learn about this
important aspect.

How it works...
In the preceding first program, we showed how to use shared_ptr. First, we allocated a
block of memory, which contained an object of type User with auto shared1 =
std::make_shared<User>();. So far, the User resource is owned by the shared1
variable. Next, into the block, we assigned the shared1 variable to shared2 through auto
shared2 = shared1;. This means that the memory containing the User object is now
pointed by shared1 and shared2. The same goal would have been achieved by using the
constructor copy auto shared2 (shared1);. As User is now pointed by two variables,
the deallocation of the used memory only happens when all the variables go out of scope.
Indeed, the output proves that the memory is deallocated (User's destructor is called) at the
end of the main block, and not at the end of the inner block, as happened for unique_ptr:

Deep Dive into Memory Management Chapter 4

[104]

The impact of shared_ptr on memory is not the same as unique_ptr. The reason is that
the shared_ptr implementation needs one raw pointer to keep track of the memory
(likewise with unique_ptr), and another raw pointer for the resource's reference counting.

This reference-counting variable must necessarily be an atomic one, as it can be
incremented and decremented by different threads:

The memory size of a shared_ptr variable is, typically, twice the size of a raw pointer, as
we see in the preceding output, on running the second program.

There's more...
One more interesting point not to overlook is that as shared_ptr contains an atomic
variable, it is typically slower than normal variables.

See also
Chapter 2, Revisiting C++, has a dedicated recipe on smart pointers, with one recipe on
shared and unique pointers. A suggested read is Effective Modern C++ by Scott Meyers.

Deep Dive into Memory Management Chapter 4

[105]

Allocating aligned memory
Writing system programs might require the use of data that is aligned in memory in order
to access the hardware efficiently (and in some cases, to access it at all). For example, on a
32-bit architecture machine, we have the memory allocated aligned to a 4-byte boundary. In
this recipe, you'll learn how to use the C++11 std::aligned_storage to allocate aligned
memory. Of course, there are other, more traditional, mechanisms to allocate aligned
memory, but the goal of this book is to use C++ standard library tools as much as possible.

How to do it...
In this section, we'll write a program that will use the allocated memory
with std::aligned_storage and will show the use of std::alignment_of:

Let's start by writing a program to check what is the default alignment boundary1.
for integers and doubles on the current machine:

#include <type_traits>
#include <iostream>
int main()
{
 std::cout << "int alignment = " << std::alignment_of<int>
 ::value << std::endl;
 std::cout << "double alignment = " <<
 std::alignment_of<double>::value << std::endl;
 return (0);
}

Now, let's write a program to allocate memory aligned to a specific size. For2.
this, let's use std::aligned_storage:

#include <type_traits>
#include <iostream>
typedef std::aligned_storage<sizeof(int), 8>::type intAligned;
int main()
{
 intAligned i, j;
 new (&i) int();
 new (&j) int();

 int* iu = &reinterpret_cast<int&>(i);
 *iu = 12;
 int* ju = &reinterpret_cast<int&>(j);
 *ju = 13;

Deep Dive into Memory Management Chapter 4

[106]

 std::cout << "alignment = " << std::alignment
 _of<intAligned>::value << std::endl;
 std::cout << "value = " << *iu << std::endl;
 std::cout << "value2 = " << reinterpret_cast<int&>(i)
 << std::endl;
 return (0);
}

Allocating aligned memory can be tricky, and the C++ standard library (from version 11
onward) offers these two features (std::alignment_of, std::aligned_storage) to
simplify it. The next section will describe the mechanics behind it.

How it works...
The first program, which is quite simple, shows the natural alignment in memory for two
primitive types through std::alignment_of. By compiling (g++ alignedStorage.cpp)
and running the program, we have the following output:

This means that each integer will be aligned at 4 bytes of boundary and with floating-point
types aligned to 8 bytes.

In the second program, we need an integer that is aligned to 8 bytes. By compiling it and
running the executable, the output would be something like this:

You may have noticed that I've compiled with the -g option (to add debug symbols). We
did this to show, with the memory dump in GDB, that the memory of the integer is
correctly aligned at 8 bytes:

Deep Dive into Memory Management Chapter 4

[107]

From the debug session, we can see that through the x/20bd iu (x = memory dump)
command, we dumped 20 bytes of the memory after the address of the iu variable. We can
see something interesting here: both the iu and ju variables are aligned at 8 bytes. Each
memory row displays 8 bytes (test it: 0x7ffc57654470 – 0x7ffc57654468 = 8).

There's more...
Playing with memory is always risky, and these new C++ features (and others available in
the std namespace) help us to play safe. The recommendation is still the same: premature
optimization must be used carefully; optimize (that is, use aligned memory) only when
necessary. One last recommendation: using reinterpret_cast is discouraged, as it
manipulates memory at a low level. You need to know what you're doing when using it.

Deep Dive into Memory Management Chapter 4

[108]

See also
The latest version of The C++ Programming Language, Fourth Edition by Bjarne Stroustrup has
a paragraph on memory alignment (6.2.9) and aligned_storage (35.4.1).

Checking whether the memory allocated is
aligned
In the previous recipe, you have learned how to use C++11 to allocate aligned memory. The
question now is: how do we know that memory is properly aligned? This recipe will teach
you about this.

How to do it...
We'll be using the previous program, and by modifying it a little, we'll see how to check
whether a pointer is aligned or not:

Let's modify the previous program, as follows:1.

#include <type_traits>
#include <iostream>

using intAligned8 = std::aligned_storage<sizeof(int), 8>::type;
using intAligned4 = std::aligned_storage<sizeof(int), 4>::type;

int main()
{
 intAligned8 i; new(&i) int();
 intAligned4 j; new (&j) int();

 int* iu = &reinterpret_cast<int&>(i);
 *iu = 12;
 int* ju = &reinterpret_cast<int&>(j);
 *ju = 13;

 if (reinterpret_cast<unsigned long>(iu) % 8 == 0)
 std::cout << "memory pointed by the <iu> variable
 aligned to 8 byte" << std::endl;
 else
 std::cout << "memory pointed by the <iu> variable NOT
 aligned to 8 bytes" << std::endl;
 if (reinterpret_cast<unsigned long>(ju) % 8 == 0)

Deep Dive into Memory Management Chapter 4

[109]

 std::cout << "memory pointed by the <ju> variable aligned
to
 8 bytes" << std::endl;
 else
 std::cout << "memory pointed by the <ju> variable NOT
 aligned to 8 bytes" << std::endl;

 return (0);
}

We created on purpose two typedefs, one for the alignment to 8 bytes (intAligned8) and
one for the alignment to 4 bytes (intAligned4).

How it works...
In the program, we defined two variables, i and j, of type intAligned8
and intAligned4 respectively. With the help of these two variables (with alignment to 8
and 4 bytes), we can see that they are properly aligned by checking that the result of the
division by 8 is 0: ((unsigned long)iu % 8 == 0). This ensures that the iu pointer is
aligned to 8 bytes. The same is done for the ju variable. By running the preceding program,
we'll get this result:

As expected: iu is properly aligned to 8 bytes and ju is not.

There's more...
As you might have noticed, we used reinterpret_cast to allow the modulus (%)
operator instead of the C-style cast ((unsigned long)iu % 8 == 0). If you are
developing in C++, you're encouraged to use the named casts (static_cast,
reinterpret_cast, const_cast, dynamic_cast) for two basic reasons:

To allow the programmer to express the intent of the cast
To make the cast safe

Deep Dive into Memory Management Chapter 4

[110]

See also
More info on this topic can be found in Advanced Programming in the UNIX® Environment by
W. Richard Stevens and Stephen A. Rago.

When a portion of memory is aligned, the compiler can make great optimization. A
compiler doesn't have the possibility of knowing this, and therefore cannot make any
optimizations. The last C++20 standard added the std::assume_aligned feature. This
informs the compiler that the value of a pointer is a memory address aligned to a certain
number of bytes. What can happen is that when we allocate some aligned memory, the
pointer to that memory is then passed to other functions.

The std::assume_aligned feature informs the compiler to assume that the memory
pointed by a pointer is already aligned, so it is safe to make optimizations:

void myFunc (int* p)
{
 int* pAligned = std::assume_aligned<64>(p);
 // using pAligned from now on.
}

The std::assume_aligned<64>(p); feature informs the compiler that p is already
aligned to at least 64 bytes. You'll get undefined behavior if the memory is not aligned.

Dealing with memory-mapped I/O
Sometimes, we need to operate on memory in a way that is not conventional or, so to speak,
not common. As we've seen, memory is allocated with new and released with delete (or,
even better, with make_unique and make_shared). There might be cases in which we need
to skip some layer—that is, using a Linux system call; for the sake of performance; or
because of a custom behavior that we cannot map with the C++ standard library. This is the
case with the mmap Linux system call (man 2 mmap). mmap is a POSIX-compliant system call
that allows the programmer to map a file to a portion of memory. Among other things,
mmap also allows memory to be allocated, and this recipe will teach you how to do it.

Deep Dive into Memory Management Chapter 4

[111]

How to do it...
This section will show two mmap use cases: the first, how to map a file to a portion of
memory; and the second, how to allocate memory using mmap. Let's first write a program
that maps a file to memory.

In a shell, let's create a new source file called mmap_write.cpp. We need to open1.
a file to map:

 int fd = open(FILEPATH, O_RDWR | O_CREAT | O_TRUNC, (mode_t)0600);
 if (fd == -1)
 {
 std::cout << "Error opening file " << FILEPATH << std::endl;
 return 1;
 }

Second, we have to create a space into the file that we'll use later (mmap does not2.
do this):

int result = lseek(fd, FILESIZE-1, SEEK_SET);
if (result == -1)
{
 close(fd);
 std::cout << "Error calling lseek " << std::endl;
 return 2;
}

result = write(fd, "", 1);
if (result != 1)
{
 close(fd);
 std::cout << "Error writing into the file " << std::endl;
 return 3;
}

Then, we can map the file—represented by the fd file descriptor—to the map3.
variable:

 int* map = (int*) mmap(0, FILESIZE, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 0);
 if (map == MAP_FAILED)
 {
 close(fd);
 std::cout << "Error mapping the file " << std::endl;
 return 4;
 }

Deep Dive into Memory Management Chapter 4

[112]

And finally, we need to write some value into it:4.

for (int i = 1; i <=NUM_OF_ITEMS_IN_FILE; ++i)
 map[i] = 2 * i;

Let's not forget to close the resources used:5.

if (munmap(map, FILESIZE) == -1)
 std::cout << "Error un-mapping" << std::endl;

close(fd);

The steps seen so far are related to writing a file with mmap. For the sake of6.
completeness, in this step, we develop the program to read a file called
mmap_read.cpp, which is very similar to the one we've seen. Here, we'll just see
the important part (the Docker image contains the complete version of both the
reader and the writer):

int* map = (int*) mmap(0, FILESIZE, PROT_READ, MAP_SHARED, fd, 0);
if (map == MAP_FAILED)
{
 close(fd);
 std::cout << "Error mapping the file " << std::endl;
 return 4;
}

for (int i = 1; i <= NUM_OF_ITEMS_IN_FILE; ++i)
 std::cout << "i = " << map[i] << std::endl;

Let's now learn how to use mmap to allocate memory.

Let's now allocate memory with mmap:1.

#include <sys/mman.h>
#include <iostream>
#include <cstring>

constexpr auto SIZE = 1024;

int main(int argc, char *argv[])
{
 auto* mapPtr = (char*) mmap(0, SIZE,
 PROT_READ | PROT_WRITE,
 MAP_PRIVATE | MAP_ANONYMOUS,
 -1, 0);
 if (mapPtr == MAP_FAILED)
 {

Deep Dive into Memory Management Chapter 4

[113]

 std::cout << "Error mapping memory " << std::endl;
 return 1;
 }
 std::cout << "memory allocated available from: " << mapPtr
 << std::endl;

 strcpy (mapPtr, "this is a string!");
 std::cout << "mapPtr val = " << mapPtr << std::endl;

 if (munmap(mapPtr, SIZE) == -1)
 std::cout << "Error un-mapping" << std::endl;

 return 0;
}

Although simple, these two programs show you how to allocate memory and manage a
file with mmap. In the next section, we'll see how it works.

How it works...
In the first program, we've learned the most common use of mmap: to map a file to a portion
of memory. As almost any resource can be mapped to a file in Linux, it means that we can
map almost anything to memory with mmap. It indeed accepts a file descriptor. By
compiling and running the mmap_write.cpp program first, we are able to write a file in
memory with a list of integers. The file generated will be called mmapped.txt. The
interesting part is to run the mmap_read.cpp reader program. Let's compile and run it:

As we can see, it correctly prints out all the integers from the file.

Deep Dive into Memory Management Chapter 4

[114]

Strictly speaking, mmap does not allocate memory in the heap memory, nor on the stack. It
is a separate memory area, still in the virtual space of the process. munmap does the inverse:
it releases the mapped memory, and flushes data to file (this behavior can be controlled
with the msync system call).

The second program shows the second use case of mmap: Allocating memory in an
alternative way to new and malloc. We can see a few differences in the call to mmap:

MAP_PRIVATE: The modifications are private. Any modification made to the
memory is not reflected back to the file or to other mappings. The file is mapped
as copy-on-write.
MAP_ANONYMOUS: It indicates that a portion of the memory of size SIZE will be
allocated and not associated with any specific file.
The fifth parameter we passed -1 as we want to allocate memory (that is, no file
descriptor).

We allocated 1 KB of memory and used a string. The output is as follows:

Likewise, when we deallocate memory with free or delete, we need to release the
mapped memory with munmap.

There's more...
There are a few advantages worth mentioning about mmap:

Reading from and writing to a memory-mapped file avoids the copy needed by1.
the read() and write() from the actual file if mmap is used with MAP_SHARED or
MAP_SHARED_VALIDATE flags. Indeed, when we write a chunk of data to a file, a
buffer is moved from the user space to the kernel space, and the same is true
when reading a chunk of data.
Reading and writing a memory-mapped file turns out to be a simple memory2.
access. A memory-mapped file is only read and written in memory; at the
munmap call, the memory is flushed back in the file. This behavior can be
controlled by the MS_SYNC, MS_ASYNC, and MS_INVALIDATE flag parameters of
the msync system call.

Deep Dive into Memory Management Chapter 4

[115]

Very conveniently, when multiple processes map the same file in memory, the3.
data is shared among all the processes (MAP_SHARED).

See also
Check man 2 mmap for more information. Further information can be found in Linux
System Programming, Second Edition by Robert Love.

Dealing with allocators hands-on
C++ Standard Template Library (STL) containers are a simple, as well as effective, way of
managing resources. One huge benefit of containers is that they can manage (almost) any
type of data. When dealing with system programming, though, we may need to provide an
alternative way of managing memory for our container. Allocators are exactly this: they
provide a custom implementation to a container.

How to do it...
In this recipe, you'll learn to implement your own custom allocator (based on mmap, in this
case) to provide to a standard library container (std::vector):

Let's create an empty allocator template first:1.

template<typename T>
class mmap_allocator
{
public:
 using value_type = T;
 template<typename U> struct rebind {
 using alloc = mmap_allocator<U>;
 };

 mmap_allocator(){};
 template <typename U>
 mmap_allocator(const mmap_allocator<U> &alloc) noexcept {};

 T* allocate(std::size_t n){};

 void deallocate(T* p, std::size_t n) {}
};

Deep Dive into Memory Management Chapter 4

[116]

As you can see, there are copy constructor, allocate, and deallocate methods2.
to implement. Let's implement them one by one (there is no need to implement
the default constructor, in this case):

 mmap_allocator(const mmap_allocator<U> &alloc) noexcept {
 (void) alloc;};

Next, implement the allocate method:3.

 std::cout << "allocating ... n = " << n << std::endl;
 auto* mapPtr = static_cast<T*> (mmap(0, sizeof(T) * n,
 PROT_READ | PROT_WRITE,
 MAP_PRIVATE | MAP_ANONYMOUS,
 -1, 0));
 if (mapPtr != MAP_FAILED)
 return static_cast<T*>(mapPtr);
 throw std::bad_alloc();

And finally, implement the deallocate method:4.

 std::cout << "deallocating ... n = " << n << std::endl;
 (void) n;
 munmap(p, sizeof(T) * n);

The main method looks like this:5.

int main ()
{
 std::vector<int, mmap_allocator<int>> mmap_vector = {1, 2,
 3, 4, 5};

 for (auto i : mmap_vector)
 std::cout << i << std::endl;

 return 0;
}

The use of std::vector, as you can see, is seamless from the user's point of view. The only
difference is to specify which allocator we want to use. This container will allocate and
deallocate memory, using solely mmap and munmap and not the default implementation,
based on new and delete.

Deep Dive into Memory Management Chapter 4

[117]

How it works...
The central part of this program is the two methods: allocate, which returns a pointer
representing the memory allocated, and deallocate, which takes a pointer to the memory
to be released.

In the first step, we've sketched the interface we're going to use to allocate and deallocate
the memory. It's a template class, as we want it to be valid for any type. The two methods
we have to implement, as discussed previously, are allocate and deallocate.

In the second step, we've developed the copy constructor, which will be called when we
want to construct an object, passing in the input of an object of the same type. We're just
returning a typedef that will communicate which allocator to use for the new object.

In the third step, we've implemented the constructor, which basically allocates the space of
object n of type T with mmap. We've seen the use of mmap already in the previous recipe, so
you're invited to read that recipe again.

In the fourth step, we've implemented the deallocate method, which in this case is
calling the munmap method, which deletes the mappings for the specified address range.

Finally, the main method shows how to use our custom allocator with std::vector (it
could have been any container—for example, list). In the definition of the variable,
mmap_vector, we pass two parameters: the first one, int, to inform the compiler that it'll
be a vector of integers, and the second one, mmap_allocator<int>, to instruct the use of
our custom allocator, mmap_allocator, instead of the default one.

There's more...
In system programming, there is the concept of a pool of (pre-allocated) memory that the
system reserves upfront and that must be used throughout the life of a resource. The
map_allocator class seen in this recipe can be easily modified to pre-allocate a portion of
memory in the constructor, and acquire and release it from the pool without affecting the
system memory.

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail. Refer to the Dealing with
memory-mapped I/O recipe for more details on mmap.

5
Using Mutexes, Semaphores,

and Condition Variables
This chapter will focus on the most common mechanisms you can use to synchronize access
to a shared resource. The synchronization mechanisms we will look at prevent a critical
section (the program segment responsible for a resource) from being executed concurrently
from two or more processes or threads. In this chapter, you'll learn how to use both POSIX
and C++ standard library synchronization building blocks such as mutexes,
std::condition_variable, std::promise, and std::future.

This chapter will cover the following recipes:

Using POSIX mutexes
Using POSIX semaphores
POSIX semaphores advanced usage
Synchronization building blocks
Learning inter-thread communication with simple events
Learning inter-thread communication with condition variables

Technical requirements
So that you can try out all the programs in this chapter immediately, we've set up a Docker
image that contains all the tools and libraries we'll need throughout this book. It is based on
Ubuntu 19.04.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[119]

In order to set it up, follow these steps:

Download and install the Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the docker images command to3.
view the image.
You should have the following4.
image: kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell using the docker run -it --5.
cap-add sys_ptrace
kasperondocker/system_programming_cookbook:latest /bin/bash

command.
The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs that will be developed in this book.

The --cap-add sys_ptrace argument is needed to allow GDB to set breakpoints. Docker
doesn't allow this by default.

Using POSIX mutexes
This recipe will teach you how to use POSIX mutexes to synchronize access to a resource
from multiple threads. We'll do this by developing a program that contains a method (the
critical section) that will perform a task that cannot run concurrently. We'll use
the pthread_mutex_lock, pthread_mutex_unlock, and pthread_mutex_init POSIX
methods to synchronize the threads' access to it.

How to do it...
In this recipe, we'll create a multi-threaded program just to increment an integer to 200000.
To do this, we'll develop the critical section that's responsible for incrementing the counter,
which must be protected. Then, we'll develop the main section, which will create the two
threads and manage the coordination between them. Let's proceed:

Open a new file called posixMutex.cpp and develop its structure and critical1.
section method:

#include <pthread.h>
#include <iostream>

http://www.docker.com

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[120]

struct ThreadInfo
{
 pthread_mutex_t lock;
 int counter;
};

void* increment(void *arg)
{
 ThreadInfo* info = static_cast<ThreadInfo*>(arg);
 pthread_mutex_lock(&info->lock);

 std::cout << "Thread Started ... " << std::endl;
 for (int i = 0; i < 100000; ++i)
 info->counter++;
 std::cout << "Thread Finished ... " << std::endl;

 pthread_mutex_unlock(&info->lock);
 return nullptr;
}

Now, in the main section, add the init method for the lock that's needed for2.
synchronization between threads:

int main()
{
 ThreadInfo thInfo;
 thInfo.counter = 0;
 if (pthread_mutex_init(&thInfo.lock, nullptr) != 0)
 {
 std::cout << "pthread_mutex_init failed!" << std::endl;
 return 1;
 }

Now that we have the method that will execute the increment (that is, the3.
critical section to protect) and the lock that will manage the synchronization
between threads, let's create the threads:

 pthread_t t1;
 if (pthread_create(&t1, nullptr, &increment, &thInfo) != 0)
 {
 std::cout << "pthread_create for t1 failed! " << std::endl;
 return 2;
 }

 pthread_t t2;
 if (pthread_create(&t2, nullptr, &increment, &thInfo) != 0)
 {
 std::cout << "pthread_create for t2 failed! " << std::endl;

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[121]

 return 3;
 }

Now, we have to wait for the threads to complete the tasks:4.

 pthread_join(t1, nullptr);
 pthread_join(t2, nullptr);
 std::cout << "Threads elaboration finished. Counter = "
 << thInfo.counter << std::endl;
 pthread_mutex_destroy(&thInfo.lock);
 return 0;

This program (available in the Docker image under the /BOOK/Chapter05/ folder)
showed us how to use the POSIX mutex interfaces to synchronize the use of a shared
resource – a counter, in this case – between threads. We will explain this process in detail in
the next section.

How it works...
In the first step, we created the struct that was needed to pass the parameters to the
threads: struct ThreadInfo. In this struct, we put the lock that's needed to protect the
resource counter and the counter itself. Then, we developed the increment
feature. increment, logically, needs to lock the
pthread_mutex_lock(&info->lock); resource, increment the counter (or any other
action needed by the critical section), and unlock the
pthread_mutex_unlock(&info->lock); resource to let the other threads do the same.

In the second step, we started developing the main method. The first thing we did is
initialize the lock mutex with pthread_mutex_init. Here, we need to pass a pointer to
the locally allocated resource.

In the third step, we created two threads, th1 and th2. These are responsible for running
the increment method concurrently. The two threads are created with the
pthread_create POSIX API by passing the address of thInfo that was allocated in step 2.
If the thread is created successfully, it starts the elaboration immediately.

In the fourth and last step, we waited for both th1 and th2 to finish printing the value of
the counter to the standard output, which we expect to be 200000. By compiling g++
posixMutex.cpp -lpthread and running the ./a.out program, we get the following
output:

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[122]

As we can see, the two threads never overlap the execution. Thus, the counter resource in
the critical section is managed properly and the output is what we expected.

There's more...
In this recipe, we used pthread_create for the sake of completeness. The exact same goal
could have been achieved by using std::thread and std::async from the C++ standard
library.

The pthread_mutex_lock() function locks the mutex. If the mutex is
already locked, the calling thread will be blocked until the mutex becomes
available. The pthread_mutex_unlock function unlocks the mutex if the
current thread holds the lock on a mutex; otherwise, it results in
undefined behavior.

See also
You are invited to modify this program and use pthread_mutex_lock and
pthread_mutex_unlock in conjunction with std::thread or std::async from the C++
standard library. See Chapter 2, Revisiting C++, to refresh yourself on this topic.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[123]

Using POSIX semaphores
POSIX mutexes are clearly not the only mechanism you can use to synchronize access to a
shared resource. This recipe will show you how to use another POSIX tool to achieve the
same result. Semaphores are different from mutexes, and this recipe will teach you their
basic usage, while the next will show you more advanced ones. A semaphore is a
notification mechanism between threads and/or processes. As a rule of the thumb, try to
use a mutex as a synchronization mechanism and semaphores as a notification mechanism.
In this recipe, we'll develop a program that's similar to the one we built in the Using POSIX
mutexes recipe, but this time, we'll protect the critical section with semaphores.

How to do it...
In this recipe, we'll create a multi-threaded program to increment an integer until it
reaches 200000. Again, the code section that takes care of the increments must be protected
and we'll use POSIX semaphores. The main method will create the two threads and ensure
that the resources are destroyed correctly. Let's get started:

Let's open a new file called posixSemaphore.cpp and develop the structure and1.
the critical section method:

#include <pthread.h>
#include <semaphore.h>
#include <iostream>

struct ThreadInfo
{
 sem_t sem;
 int counter;
};

void* increment(void *arg)
{
 ThreadInfo* info = static_cast<ThreadInfo*>(arg);
 sem_wait(&info->sem);

 std::cout << "Thread Started ... " << std::endl;
 for (int i = 0; i < 100000; ++i)
 info->counter++;
 std::cout << "Thread Finished ... " << std::endl;
 sem_post(&info->sem);
 return nullptr;
}

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[124]

Now, in the main section, add the init method for the lock that's needed for the2.
synchronization between threads:

int main()
{
 ThreadInfo thInfo;
 thInfo.counter = 0;
 if (sem_init(&thInfo.sem, 0, 1) != 0)
 {
 std::cout << "sem_init failed!" << std::endl;
 return 1;
 }

Now that the init section is complete, let's write the code that will start the two3.
threads:

pthread_t t1;
if (pthread_create(&t1, nullptr, &increment, &thInfo) != 0)
{
 std::cout << "pthread_create for t1 failed! " << std::endl;
 return 2;
}

pthread_t t2;
if (pthread_create(&t2, nullptr, &increment, &thInfo) != 0)
{
 std::cout << "pthread_create for t2 failed! " << std::endl;
 return 3;
}

Finally, here's the closing part:4.

 pthread_join(t1, nullptr);
 pthread_join(t2, nullptr);

 std::cout << "posixSemaphore:: Threads elaboration
 finished. Counter = "
 << thInfo.counter << std::endl;
 sem_destroy(&thInfo.sem);
 return 0;
}

The same program we used for POSIX mutexes now runs with POSIX semaphores. As you
can see, the program's design doesn't change – what really changes is the APIs we used to
protect the critical section.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[125]

How it works...
The first section contains the structure that's used to communicate with the increment
method and the definition of the method itself. The main difference, compared to the mutex
version of the program, is that we now include the #include <semaphore.h> headers so
that we can use the POSIX semaphores APIs. Then, in the structure, we use the sem_t type,
which is the actual semaphore that is going to protect the critical section. The increment
method has two barriers to protect the actual logic: sem_wait(&info->sem); and
sem_post(&info->sem);. All these two methods do is atomically decrement and
increment the sem counter, respectively. sem_wait(&info->sem); acquires the lock
by decrementing the counter by 1. If the value of the counter is greater than 0, then the lock
is acquired and the thread can enter the critical region. sem_post(&info->sem); just
increments the counter by one while exiting the critical region.

In the second step, we initialize the semaphore by calling the sem_init API. Here, we
passed three parameters:

The semaphore to initialize.
The pshared argument. This indicates whether the semaphore is to be shared
between the threads of a process or between processes. 0 indicates the first
option.
The last parameter indicates the initial value of the semaphore. By passing 1 to
sem_init, we are asking the semaphore to protect one resource. The semaphore,
through sem_wait and sem_post, will internally increase and decrease that
counter automatically, letting each thread enter the critical section one at a time.

In the third step, we created the two threads that use the increment method.

In the last step, we waited for the two threads to finish the elaboration with pthread_join
and, most relevant in this section, we destroyed the semaphore structure with
sem_destroy by passing the semaphore structure we've used so far.

Let's compile and execute the program: g++ posixSemaphore.cpp -lpthread. Even in
this case, we need to link the program with the libpthread.a by passing the -lpthread
option to g++ as we use pthreads. The output of doing this is as follows:

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[126]

As expected, the output shows the counter at 200000. It also shows that the two threads are
not overlapping.

There's more...
We used sem_t as a binary semaphore by passing the value 1 to the sem_init method.
Semaphores can be used as counting semaphores, which means passing a value greater than 1
to the init method. In this case, it means that the critical section will be accessed
concurrently by N threads.

For more information on the GNU/Linux man pages, type man
sem_init in a shell.

See also
You can find out more about counting semaphores in the next recipe, where we'll learn about
the difference between mutexes and semaphores.

You are invited to modify this program and use pthread_mutex_lock and
pthread_mutex_unlock in conjunction with std::thread or std::async from the C++
standard library.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[127]

POSIX semaphores advanced usage
The Using POSIX semaphores recipe showed us how to use POSIX semaphores to protect a
critical region. In this recipe, you'll learn how to use it as a counting semaphore and
notification mechanism. We'll do this by developing a classical publish-subscriber program
where there is one publisher thread and one consumer thread. The challenge here is that we
want to limit the maximum number of items in the queue to a defined value.

How to do it...
In this recipe, we'll write a program representing a typical use case for a counting
semaphore – a producer-consumer problem in which we want to limit the number of items
in the queue to a certain number. Let's get started:

Let's open a new file called producerConsumer.cpp and code the structure1.
we'll need in the two threads:

#include <pthread.h>
#include <semaphore.h>
#include <iostream>
#include <vector>

constexpr auto MAX_ITEM_IN_QUEUE = 5;

struct QueueInfo
{
 sem_t mutex;
 sem_t full;
 sem_t empty;
 std::vector<int> queue;
};

Now, let's write the code for producer:2.

void* producer(void *arg)
{
 QueueInfo* info = (QueueInfo*)arg;
 std::cout << "Thread Producer Started ... " << std::endl;
 for (int i = 0; i < 1000; i++)
 {
 sem_wait(&info->full);

 sem_wait(&info->mutex);
 info->queue.push_back(i);
 std::cout << "Thread Producer Started ... size = "

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[128]

 << info->queue.size() << std::endl;
 sem_post(&info->mutex);

 sem_post(&info->empty);
 }
 std::cout << "Thread Producer Finished ... " << std::endl;
 return nullptr;
}

We do the same for consumer:3.

void* consumer(void *arg)
{
 QueueInfo* info = (QueueInfo*)arg;
 std::cout << "Thread Consumer Started ... " << std::endl;
 for (int i = 0; i < 1000; i++)
 {
 sem_wait(&info->empty);

 sem_wait(&info->mutex);
 if (!info->queue.empty())
 {
 int b = info->queue.back();
 info->queue.pop_back();
 }
 sem_post(&info->mutex);

 sem_post(&info->full);
 }
 std::cout << "Thread Consumer Finished ... " << std::endl;
 return nullptr;
}

Now, we need to code the main method in order to initialize the resources (for4.
example, semaphores):

int main()
{
 QueueInfo thInfo;
 if (sem_init(&thInfo.mutex, 0, 1) != 0 ||
 sem_init(&thInfo.full, 0, MAX_ITEM_IN_QUEUE) != 0 ||
 sem_init(&thInfo.empty, 0, 0) != 0)
 {
 std::cout << "sem_init failed!" << std::endl;
 return 1;
 }

 pthread_t producerPthread;

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[129]

 if (pthread_create(&producerPthread, nullptr, &producer,
 &thInfo) != 0)
 {
 std::cout << "pthread_create for producer failed! "
 << std::endl;
 return 2;
 }
 pthread_t consumerPthread;
 if (pthread_create(&consumerPthread, nullptr, &consumer,
 &thInfo) != 0)
 {
 std::cout << "pthread_create for consumer failed! "
 << std::endl;
 return 3;
 }

Finally, we need to code the section that will release the resources:5.

 pthread_join(producerPthread, nullptr);
 pthread_join(consumerPthread, nullptr);

 sem_destroy(&thInfo.mutex);
 sem_destroy(&thInfo.full);
 sem_destroy(&thInfo.empty);
 return 0;
}

This program, which is the typical implementation of a consumer-producer problem based
on semaphores, shows how to limit the use of a resource to N (in our
case, MAX_ITEM_IN_QUEUE). This concept can be applied to other problems, including how
to limit the number of connections to a database, and so on. What would happen if, instead
of one producer, we started two producer threads?

How it works...
In the first step of the program, we defined struct that's needed to let the two threads
communicate. It contains the following:

A full semaphore (counting semaphore): This semaphore is set to
MAX_ITEM_IN_QUEUE. This limits the number of the item on the queue.
An empty semaphore (counting semaphore): This semaphore notifies the process
when the queue is empty.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[130]

A mutex semaphore (binary semaphore): This is a mutex that's implemented
with semaphores and is needed to provide mutual exclusion on the queue's
access.
Queue: Implemented with std::vector.

In the second step, we implemented the producer method. The core part of the method is
the for loop implementation. The producer goal is to push items into the queue with no
more than MAX_ITEM_IN_QUEUE items at the same time so that the producer tries to enter
the critical region by decrementing the full semaphore (which we initialized
to MAX_ITEM_IN_QUEUE in sem_init), then push the item into the queue and increment
the empty semaphore (this gives the consumer permission to go on and read from the
queue). Why do we need to notify that the consumer can read an item? In other words, why
do we need to call sem_post(&info->empty); in the producer? If we didn't, the
consumer thread would read items continuously and would keep incrementing the
full semaphore to values greater than MAX_ITEM_IN_QUEUE with the effect of more
than MAX_ITEM_IN_QUEUE item in the queue.

In the third step, we implemented the consumer method. This is specular to producer.
What the consumer does is wait for the notification to read an item from the queue
with sem_wait(&info->empty);, reads from the queue, and then increments the full
semaphore. This last step can be read like so: I've just consumed one item from the queue.

The fourth step is where we started the two threads and initialized the three semaphores.

The fifth step is the closing section.

If we start more producers, the code would still work as the full and empty semaphores
would ensure the behavior we described previously and the mutex on the queue ensures
that just one item at a time writes/read on it.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[131]

Both POSIX mutexes and semaphores can be used among threads and processes. To make a
semaphore working among processes, we just need to pass a value different from 0 in the
second parameter of sem_init. For mutexes, we need to pass the
PTHREAD_PROCESS_SHARED flag when calling pthread_mutexattr_setpshared. By
building and running the program we'd have output like the following:

Let's see something more about this recipe in the next section.

There's more...
It's worth highlighting that a semaphore can be initialized (the third parameter of
the sem_init method) to three possible values:

To 1: In this case, we're using the semaphore as a mutex.
To N: In this case, we're using the semaphore as a counting semaphore.
To 0: We're using the semaphore like a notification mechanism (see the
empty semaphore example previously).

In general, semaphores must be seen as a notification mechanism between threads or
processes.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[132]

When should we use POSIX semaphores and POSIX mutexes? Try to use a mutex as a
synchronization mechanism and semaphores as a notification mechanism. Furthermore,
consider that POSIX mutexes are generally faster than POSIX semaphores in Linux kernels.

One last thing: remember that both POSIX mutexes and semaphores make the tasks go to
sleep, as opposed to spinlocks, which don't. Indeed, when a mutex or semaphore is locked,
the Linux scheduler puts the task in the waiting queue.

See also
Please have look at the following list for further information:

The Using POSIX mutexes recipe in this chapter to learn how to program POSIX
mutexes
The Using POSIX semaphores recipe in this chapter to learn how to program
POSIX mutexes
Linux Kernel Development, by Robert Love

Synchronization building blocks
From this recipe and the next two, we'll be back in the C++ world. In this recipe, we'll learn
about the C++ synchronization building blocks. Specifically, we'll look at using
std::lock_guard and std::unique_lock in combination with Resource Acquisition Is
Initialization (RAII), an object-oriented programming idiom that makes the code more
robust and readable. std::lock_guard and std::unique_lock wrap the C++ concept of
mutexes around two classes with the RAII concept. std::lock_guard is the simplest and
smallest guard, while std::unique_lock adds some functionality on top of it.

How to do it...
In this recipe, we'll develop two programs in order to learn how to use std::unique_lock
and std::lock_guard. Let's get started:

From a shell, create a new file called lock_guard.cpp. Then, write the code for1.
the ThreadInfo structure and the increment (thread) method:

#include <iostream>
#include <mutex>
#include <thread>

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[133]

struct ThreadInfo
{
 std::mutex mutex;
 int counter;
};

void increment(ThreadInfo &info)
{
 std::lock_guard<std::mutex> lock(info.mutex);
 std::cout << "Thread Started ... " << std::endl;

 for (int i = 0; i < 100000; ++i)
 info.counter++;

 std::cout << "Thread Finished ... " << std::endl;
}

Now, write the code for the main method, as follows:2.

int main()
{
 ThreadInfo thInfo;

 std::thread t1 (increment, std::ref(thInfo));
 std::thread t2 (increment, std::ref(thInfo));

 t1.join();
 t2.join();

 std::cout << "Threads elaboration finished. Counter = "
 << thInfo.counter << std::endl;
 return 0;
}

Let's write the same program for std::unique_lock. From a shell, create a new3.
file called unique_lock.cpp and write the code for the ThreadInfo structure
and the increment (thread) method:

#include <iostream>
#include <mutex>
#include <thread>
struct ThreadInfo
{
 std::mutex mutex;
 int counter;
};

void increment(ThreadInfo &info)

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[134]

{
 std::unique_lock<std::mutex> lock(info.mutex);
 std::cout << "Thread Started ... " << std::endl;
 // This is a test so in a real scenario this is not be needed.
 // it is to show that the developer here has the possibility to
 // unlock the mutex manually.
 // if (info.counter < 0)
 // {
 // lock.unlock();
 // return;
 // }
 for (int i = 0; i < 100000; ++i)
 info.counter++;
 std::cout << "unique_lock:: Thread Finished ... " << std::endl;
}

Regarding the main method, there are no differences here to what we saw in4.
the Using POSIX mutexes recipe:

int main()
{
 ThreadInfo thInfo;

 std::thread t1 (increment, std::ref(thInfo));
 std::thread t2 (increment, std::ref(thInfo));

 t1.join();
 t2.join();

 std::cout << "Unique_lock:: Threads elaboration finished.
 Counter = "
 << thInfo.counter << std::endl;
 return 0;
}

These two programs are the C++ versions of the one we wrote in the Using POSIX mutexes
recipe. Note the conciseness of the code.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[135]

How it works...
Step 1 of the lock_guard.cpp program defines the ThreadInfo struct and the
increment method that's needed. The first thing we can see is the use of std::mutex as a
protection mechanism for the critical section. The increment method is now simplified
with fewer headaches for the developer. Note that we have
the std::lock_guard<std::mutex> lock(info.mutex); variable definition. As we
can see in the method, there is no unlock() call at the end – why is this? Let's see how
std::lock_guard works: its constructor locks the mutex. Since std::lock_guard is a
class, when the object goes out of scope (at the end of the method, in this case), the
destructor is called. The unlock of the std::mutex object is called in the
std::lock_guard destructor. This means that whatever happens to the increment
method, the constructor is called so there's no risk of a deadlock and the developer doesn't
have to take care of the unlock(). What we described here is the RAII C++ technique,
which binds the life cycle of the info.mutex object with the lifetime of the lock variable.

Step 2 contains the main code that's used to manage the two threads. In this case, C++ has a
much cleaner and simpler interface. A thread is created with std::thread t1
(increment, std::ref(thInfo));. Here, std::thread accepts two parameters: the
first is the method that the thread will call, while the second is the ThreadInfo that's
passed to the increment method.

The unique_lock.cpp program is the version of the lock_guard we've described so far.
The main difference is that std::unique_lock gives the developer more freedom. In this
case, we've modified the increment method to simulate the needs of the mutex unlock for
the if (info.counter < 0) case. With the use of std::unique_lock, we are able to
unlock() the mutex and return from the method. We wouldn't be able to do the same on
the std::lock_guard class. Of course, the lock_guard would unlock at the end of the
scope no matter what, but what we want to highlight here is that with std::unique_lock,
the developer has the freedom to unlock the mutex manually, at any time.

By compiling lock_guard.cpp: g++ lock_guard.cpp -lpthread and running the
generated executable, we get the following output:

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[136]

The same happens for unique_lock.cpp: g++ unique_lock.cpp -lpthread, the
output is as follows:

As expected, both outputs are exactly the same, with the advantage that the code that uses
lock_guard looks cleaner and definitely more safe from the developer's point of view.

There's more...
As we've seen in this recipe, std::lock_guard and std::unique_lock are template
classes that we used with the std::mutex object.lock_guard. unique_lock can be
defined with other mutex objects, such as std::timed_mutex, which allows us to get a
lock for a specific amount of time:

#include <chrono>
using std::chrono::milliseconds;

std::timed_mutex timedMutex;
std::unique_lock<std::timed_mutex> lock {timedMutex, std::defer_lock};
lock.try_lock_for(milliseconds{5});

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[137]

The lock object will try to acquire the lock for 5 milliseconds. We have to be careful when
adding std::defer_lock, which will not lock the mutex automatically on construction.
This will only happen when try_lock_for succeeds.

See also
Here is a list of references you may refer to:

Linux Kernel Development, by Robert Love
The Using POSIX mutexes recipe in this chapter
The Using POSIX semaphores recipe in this chapter
Chapter 2, Revisiting C++, for a refresher on C++

Learning inter-thread communication with
simple events
So far, we know how to use both POSIX and C++ standard library mechanisms to
synchronize a critical section. There are use cases where we don't need to explicitly use
locks; instead, we can use more simple communication mechanisms. std::promise and
std::future can be used to allow two threads to communicate without the hassle of the
synchronization.

How to do it...
In this recipe, we will write a program that splits a problem into two parts: thread 1 will
run a highly intensive computation and will send the result to thread 2, which is the
consumer of the results. We'll do this by using std::promise and std::future. Let's get
started:

Open a new file called promiseFuture.cpp and type the following code into it:1.

#include <iostream>
#include <future>

struct Item
{
 int age;
 std::string nameCode;

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[138]

 std::string surnameCode;
};

void asyncProducer(std::promise<Item> &prom);
void asyncConsumer(std::future<Item> &fut);

Write the main method:2.

int main()
{
 std::promise<Item> prom;
 std::future<Item> fut = prom.get_future();

 std::async(asyncProducer, std::ref(prom));
 std::async(asyncConsumer, std::ref(fut));

 return 0;
}

The consumer is responsible for getting the result through std::future and3.
using it:

void asyncConsumer(std::future<Item> &fut)
{
 std::cout << "Consumer ... got the result " << std::endl;
 Item item = fut.get();
 std::cout << "Age = " << item.age << " Name = "
 << item.nameCode
 << " Surname = " << item.surnameCode << std::endl;
}

The producer performs an elaboration to get the item and sends it to the waiting4.
consumer:

void asyncProducer(std::promise<Item> &prom)
{
 std::cout << "Producer ... computing " << std::endl;

 Item item;
 item.age = 35;
 item.nameCode = "Jack";
 item.surnameCode = "Sparrow";

 prom.set_value(item);
}

This program shows the typical use case for std::promise and std::future, where a
mutex or semaphore is not needed for a one-shot form of communication.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[139]

How it works...
In step 1, we defined the struct Item to use between the producer and the consumer and
declared the two method's prototypes.

In step 2, we defined two tasks using std::async by passing the defined promise and
future.

In step 3, the asyncConsumer method waits for the result of the elaboration with the
fut.get() method, which is a blocking call.

In step 4, we implemented the asyncProducer method. This method is simple – it just
returns a canned answer. In a real scenario, the producer performs a highly intensive
elaboration.

This simple program showed us how to simply decouple a problem from the producer of
the information (promise) and the consumer of the information without taking care of the
synchronization between threads. This solution of using std::promise and
std::future only works for a one-shot type of communication (that is, we cannot have
loops in the two threads sending and getting items).

There's more...
std::promise and std::future are just concurrency tools offered by the C++ standard
library. The C++ standard library also provides std::shared_future in addition
to std::future. In this recipe, we had one information producer and one information
consumer, but what if we have more consumers? std::shared_future allows multiple
threads to wait for the same information (coming from std::promise).

See also
The books Effective Modern C++ by Scott Meyers and The C++ Programming
Language by Bjarne Stroustrup cover these topics in great detail.

You're also invited to read more about concurrency through the C++ Core
Guideline in the CP: Concurrency and parallelism (https:/ /github. com/
isocpp/ CppCoreGuidelines/ blob/ master/ CppCoreGuidelines. md#cp-
concurrency- and- parallelism) section.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#cp-concurrency-and-parallelism

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[140]

Learning inter-thread communication with
condition variables
In this recipe, you'll learn about another C++ tool that's available in the standard library that
allows multiple threads to communicate. We'll be using std::condition_variable and
std::mutex to develop a producer-consumer program.

How to do it...
The program in this recipe will use std::mutex to protect the queue from concurrent
access and std::condition_variable to notify the consumer that an item has been
pushed to the queue. Let's get started:

Open a new file called conditionVariable.cpp and type the following code1.
into it:

#include <iostream>
#include <queue>
#include <condition_variable>
#include <thread>

struct Item
{
 int age;
 std::string name;
 std::string surname;
};

std::queue<Item> queue;
std::condition_variable cond;
std::mutex mut;

void producer();
void consumer();

Now, let's write the main method, which creates the threads for the consumer2.
and the producer:

int main()
{
 std::thread t1 (producer);
 std::thread t2 (consumer);

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[141]

 t1.join();
 t2.join();
 return 0;
}

Let's define the consumer method:3.

void consumer()
{
 std::cout << "Consumer ... " << std::endl;
 while(true)
 {
 std::unique_lock<std::mutex> lck{mut};
 std::cout << "Consumer ... loop ... START" << std::endl;
 cond.wait(lck);
 // cond.wait(lck, []{ return !queue.empty();});
 auto item = queue.front();
 queue.pop();
 std::cout << "Age = " << item.age << " Name = "
 << item.name << " Surname = " << item.surname
 << std::endl;
 std::cout << "Queue Size = " << queue.size() << std::endl;
 std::cout << "Consumer ... loop ... END" << std::endl;
 lck.unlock();
 }
}

Finally, let's define the producer method:4.

void producer()
{
 while(true)
 {
 Item item;
 item.age = 35;
 item.name = "Jack";
 item.surname = "Sparrow";
 std::lock_guard<std::mutex> lock {mut};
 std::cout << "Producer ... loop ... START" << std::endl;
 queue.push(item);
 cond.notify_one();
 std::cout << "Producer ... loop ... END" << std::endl;
 }
}

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[142]

Although the program we've developed solves the typical producer-consumer problem we
saw in the previous recipe, the code is more idiomatic, easy to read, and less error-prone.

How it works...
In the first step, we defined struct Item that we need to pass from the producer to the
consumer. The interesting point in this step is the definition of the std::queue variable; it
uses a mutex that synchronizes access to the queue and std::condition_variable to
communicate an event to the consumer from the producer.

In the second step, we defined the producer and consumer threads and called the join()
method.

In the third step, the consumer method does essentially four things: acquires the lock to
read the item from the queue, waits for a notification from the producer with the condition
variable, cond, pops an item from the queue, and then releases the lock. Interestingly, the
condition variable uses std::unique_lock and not std::lock_guard for one simple
reason: as soon as the wait() method on the condition variable is called, the lock is
(internally) released so that the producer isn't blocked. When the producer calls
the notify_one method, the cond variable on the consumer gets woken up and locks the
mutex again. This allows it to safely pop an item from the queue and release the lock again
at the end with lck.unlock(). Immediately after cond.wait() (the commented out
code), there is an alternative way of calling wait() by passing a second parameter, a
predicate, which will wait further if the second parameter returns false. In our case, the
consumer will not wait if the queue isn't empty.

The last step is quite simple: we create an item, lock it with lock_guard on a mutex, and
push it onto the queue. Note that by using std::lock_guard, we don't need to call
unlock; the destructor of the lock variable will take care of that. The last thing we need to
do before ending the current loop is notify the consumer with the notify_one method.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[143]

The g++ conditionVariable.cpp -lpthread compilation and the execution of the
./a.out program will produce the following output:

Note that since the producer is way faster than the consumer due to the
condition_variable, which is asynchronous, there is a latency to pay. As you may have
noticed, the producer and the consumer run infinitely, so you have to stop the process
manually (Ctrl + C).

There's more...
In this recipe, we used the notify_one method on the condition_variable in the
producer. An alternative method is to use notify_all, which notifies all the waiting
threads.

Using Mutexes, Semaphores, and Condition Variables Chapter 5

[144]

Another important aspect to highlight is that condition variables are best used when the
producer wants to notify one of the waiting thread about an event occurred in the
computation so that the consumer can take action. For example, let's say that the producer
notifies the consumer that a special item has been pushed or that the producer notifies a
queue manager that the queue is full so that another consumer has to be spawned.

See also
The Creating a new thread recipe in Chapter 2, Revisiting C++, to find out more or
refresh yourself on threading in C++.
C++ Programming Language, by Bjarne Stroustrup, covers these topics in great
detail.

6
Pipes, First-In First-Out (FIFO),
Message Queues, and Shared

Memory
Communication between processes is an important part of software systems, and choosing
the appropriate communication technique is not a simple task. One important distinction
that developers should keep in mind when making a choice is whether processes are going
to run on the same machine or not. This chapter focuses on the first category, where you'll
learn how to develop interprocess communication (IPC) solutions based on pipes, First-In
First-Out (FIFO), message queues, and shared memory. It'll start with an overview of the
four types of IPC in the first recipe, their characteristics, and the differences between the
types. Then, a recipe for each type will provide hands-on information needed to apply
them to your daily work. This chapter does not contain any C++-specific solutions, in
order to let you familiarize yourself with the Linux native mechanisms.

This chapter will cover the following topics:

Learning the different types of IPC
Learning how to use the oldest form of IPC—pipes
Learning how to use FIFO
Learning how to use message queues
Learning how to use shared memory

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[146]

Technical requirements
In order to let you try the programs immediately, we've set up a Docker image that has all
the tools and libraries we'll need throughout the book. This is based on Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub by running the following command: docker2.
pull kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.
You should have at least this image now:4.
kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell, with the help of the following5.
command: docker run -it --cap-add sys_ptrace
kasperondocker/system_programming_cookbook:latest /bin/bash.
The shell on the running container is now available. Type in6.
root@39a5a8934370/# cd /BOOK/ to get all the programs developed, by
chapters.

The --cap-add sys_ptrace argument is needed to allow the GNU Project Debugger
(GDB) in the Docker container to set breakpoints, which, by default, Docker does not allow.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

http://www.docker.com

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[147]

Learning the different types of IPC
This recipe's goal is to provide guidance among the different IPC solutions typically used
with processes running on the same machine. It'll provide an overview of the main
characteristics seen from the developer's point of view (your point of view!), explaining
how they are different from each other.

How to do it...
The following table shows the four types of IPC always available on a Linux machine,
where the columns represent what we believe are the distinctive factors that a developer
should consider when making design choices:

Processes'
relation
required?

Synchronization
required? Communication type Scope Kernel

involved?

Pipe Yes Generally no Half-duplex Same machine Yes

FIFO No Generally no Half-duplex Typically same
machine Yes

Message
queue No Generally no Half-duplex Same machine Yes

Shared
memory No Yes Half-duplex Same machine Yes

The columns of the table have the following descriptions:

Processes' relation required?: This indicates whether a relation between
processes (for example, parent-child) is required or not to implement the specific
IPC.
Synchronization required?: This indicates whether you have to take into
consideration any form of synchronization between processes (for example,
mutex, semaphores, and so on; see Chapter 5, Using Mutexes, Semaphores, and
Condition Variables) or not.
Communication type: A communication between two or more entities can be
half-duplex (the closest analogy is the walkie-talkie, where just one individual
can talk at any given time) or full-duplex (the telephone, for example, whereby
two people can talk simultaneously). This can have a profound impact on the
solution designed.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[148]

Scope: This indicates if the solution can be applied to a broader scope, in terms of
IPC among processes on different machines.
Kernel involved?: This warns you about the kernel involvement in the
communication process. The How it works... section will explain why this is
important.

In the next section, we'll analyze row by row the single characteristics highlighted in the
table.

How it works...
The first IPC mechanism in the list is a pipe. A pipe requires a relation between two
processes (parent-child, for example) for it to work. This relation is needed in order to make
the pipe visible by both the processes (as opposed to FIFO). It is like a variable that must be
visible by a method in order to be usable. In the pipe recipe, we'll see how this works
technically.

The communication type is half-duplex: the data flows from process A to process B, and for
this reason, there is no need for synchronization. In order to achieve a full-duplex
communication type between two processes, two pipes must be used. For the same reason
that two processes must have a relationship in order to be able to use a pipe, a pipe cannot
be used as a communication mechanism between processes on two different machines. The
Linux kernel is involved in the communication as the data is copied to the kernel, which is
then further copied to the receiver process.

The second IPC mechanism in the table is the FIFO (or named pipe). It is a named pipe as it
requires a pathname to be created, and indeed, it is a special kind of a file. This makes the
FIFO usable by any processes even without a relationship between them. All they need is
the path of the FIFO (likewise, a filename) that all the process will use. Synchronization is
not required in this case either. We have to be careful, though, as there are cases where
synchronization is required, as the man page specifies.

POSIX.1 says that writes (http:/ /man7. org/ linux/ man- pages/ man2/
write. 2. html) of less than pipe_BUF bytes must be atomic (that is, the
output data is written to the pipe as a contiguous sequence). Writes of
more than pipe_BUF bytes may be nonatomic (that is, the kernel may
interleave the data with data written by other processes). POSIX.1 requires
pipe_BUF to be at least 512 bytes. (On Linux, pipe_BUF is 4,096 bytes.)
The precise semantics depends on whether the file descriptor is
nonblocking (O_NONBLOCK); whether there are multiple writers to the
pipe; and on n, the number of bytes to be written.

http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html
http://man7.org/linux/man-pages/man2/write.2.html

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[149]

The general rule is that, if you have any doubts about how much data exchange should
happen between the processes, always provide a synchronization mechanism (for example,
mutex, semaphores, and many others). A FIFO (likewise, a pipe) provides a half-duplex
communication mechanism unless two FIFOs are provided for each process (one reader
and one writer for each process); in that case, it would make it a full-duplex
communication. FIFOs are typically used for IPC between processes on the same machine
but, as it is based on files, if the file is visible by other machines, a FIFO could potentially be
used for IPC between processes on different machines. Even in this case, the kernel is
involved in the IPC, with data copied from kernel space to the user space of the processes.

A message queue is a linked list of messages stored in the kernel. This definition already
contains a piece of information; this is a communication mechanism provided by the kernel,
and again, it means that the data is copied back and forth from/to the kernel. Message
queues do not require any relation between processes; they have to share a key to be able to
access the same queue. The Linux kernel guarantees the atomicity of the operations on the
queue if the message is smaller than or equal to pipe_BUF. In that case, a synchronization
mechanism is required. A message queue cannot be used outside the scope of a machine.

The last IPC mechanism in the table is shared memory. This is the fastest form of IPC. This
comes with a cost, in the sense that the processes using shared memory should use a form
of synchronization (for example, mutexes or semaphores), as the man page suggests (man
shm_overview).

Any time there is a critical section to protect, processes must synchronize
the access using a mechanism we've seen in Chapter 5, Using Mutexes,
Semaphores, and Condition Variables.

Processes must be running on the same machine to use the same shared memory, and it is
identified with a key, likewise for message queues. As the shared memory resides in the
kernel space, data is copied from the kernel space to the processes that read and delete it.

There's more...
These four forms of IPC are the ones originally developed on the Unix System V and then
reimplemented in the more modern POSIX standard, which Linux supports. There are
cases where the processes are not on the same machine, and in those cases, we need to use
other mechanisms such as sockets, which we'll see in the next chapter. Of course, a socket
has wider applicability as it puts in communication processes, regardless of the position on
the network.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[150]

This generality, so to speak, comes at a cost: they are slower than the mechanisms described
in this recipe. So, as developers, this is a factor that must be taken into consideration when
making a design choice.

See also
Chapter 5, Using Mutexes, Semaphores, and Condition Variables: About the
synchronization mechanisms you can use.
Chapter 7, Network Programming: To complement this chapter with the notion of
sockets (connection-oriented and connectionless).

Learning how to use the oldest form of IPC –
pipes
In the previous recipe, you learned how to choose an IPC based on some key factors. It's
now time to get hands-on with the four communication types, and this recipe focuses on
pipes. In this recipe, you'll learn how to use pipes to make two processes communicating
full-duplex by using two pipes. We'll not use any form of synchronization as generally, it is
not required. In the How it works... section, we'll see why and when is it not required.

How to do it...
In this section, we'll develop a program that will create two processes, with the unique goal
of sending a message to each other. With a pipe, as we've seen, the data flows in one
direction. To make a bidirectional communication, and to simulate the general case, we will
make use of two pipes:

We instantiate the two messages to send, and their size, which we'll need later:1.

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>

char* msg1 = "Message sent from Child to Parent";
char* msg2 = "Message sent from Parent to Child";
#define MSGSIZE 34

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[151]

#define IN 0
#define OUT 1

Next, we move on to the initialization section. We need to instantiate the space2.
for the message received, both the childToParent and parentToChild pipes,
and the process identifier (PID) that we use to track the child:

int main()
{
 char inbufToParent[MSGSIZE];
 char inbufToChild[MSGSIZE];
 int childToParent[2], parentToChild[2], pid, nbytes;

 inbufToParent[0] = 0;
 inbufToChild[0] = 0;
 if (pipe(childToParent) < 0)
 return 1;

 if (pipe(parentToChild) < 0)
 return 1;

Now, let's see the child section. This section has two parts: the first, where the3.
child sends the msg1 message to the parent; and the second, where the child
receives the msg2 message from the parent:

if ((pid = fork()) > 0)
{
 printf("Created child with PID = %d\n", pid);
 close(childToParent[IN]);
 write(childToParent[OUT], msg1, strlen(msg1));
 close(childToParent[OUT]);

 close (parentToChild[OUT]);

 read(parentToChild[IN], inbufToChild, strlen(msg2));
 printf("%s\n", inbufToChild);
 close (parentToChild[IN]);
 wait(NULL);
}

And finally, let's see the parent code. It has two sections: one to receive the4.
message from the child, and the second to reply to it:

else
{
 close (childToParent[OUT]);
 read(childToParent[IN], inbufToParent, strlen(msg1));

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[152]

 printf("%s\n", inbufToParent);
 close (childToParent[IN]);

 close (parentToChild[IN]);
 write(parentToChild[OUT], msg2, strlen(msg2));
 close (parentToChild[OUT]);
}
return 0;

We've implemented programmatically what we learned in Chapter 1, Getting Started with
System Programming, for the shell (see the Learning the Linux fundamentals – shell recipe).
These steps are detailed in the next section.

How it works...
In the first step, we just defined msg1 and msg2 to be used by the two processes and
defined MSGSIZE for the message length needed to read them.

The second step essentially defines the two pipes, childToParent and parentToChild,
as an array of two integers each. They are used by the pipe system call to create two
communication buffers, which the processes can access through the childToParent[0]
and childToParent[1] file descriptors. The message is written to childToParent[1]
and read from childToParent[0] with the FIFO policy. In order to avoid a situation
where buffers are not initialized, this step sets the pointer of inbuf1 and inbuf2 to 0.

The third step deals with the child's code. It writes to childToParent[1], then reads
from parentToChild[0]. Writes to childToParentp[1] by the child process can be read
on childToParent[0] by the parent process. The read and write system call causes the
process to step in kernel mode and save the input data temporarily in kernel space until the
second process reads it. One rule to follow is that the unused end of the pipes has to be
closed. In our case, we write to childToParent[1]; so, we close the read end of the
pipe, childToParent[0], and once read, we close the write end as this is not used.

The fourth step, pretty similar to the third, has the symmetric code to the child code. It
reads on the childToParent[0] pipe and writes on parentToChild[1], following the
same rule of closing the end of the pipe not used.

From the code analyzed, the reason why pipes are not usable by processes that are not
ancestors should now be clear: childToParent and parentToChild file descriptors must
be visible to parents and children at runtime.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[153]

If we compile the code with gcc pipe.c in the Docker container's /BOOK/Chapter06/
folder and run it, the output would be as follows:

This shows that the parent and the child send and receive the two messages correctly.

There's more...
For the vast majority of use cases, pipes are intended to be used with small amounts of
data, but there might be scenarios where a larger amount is needed. The standard POSIX, to
which we adhere in this chapter, says that a write of less than pipe_BUF bytes must be
atomic. It furthermore dictates that pipe_BUF must be at least 512 bytes (on Linux, it is 4
KB); otherwise, you have to take care of the synchronization at the user level by using
mechanisms such as semaphores and mutexes.

See also
Chapter 1, Getting Started with System Programming, shows the pipe concept from
the shell point of view.
Chapter 5, Using Mutexes, Semaphores, and Condition Variables has the tools
necessary to add the synchronization, in case the data to send and receive is
larger than pipe_BUF.

Learning how to use FIFO
The pipes we've seen in the previous recipe are temporary, in the sense that when no
process has them open, they cease to exist. FIFOs (also called named pipes) are different;
they are special pipes that exist as a special file on the filesystem. In principle, any process,
assuming it has the right permissions, can access a FIFO. This last one is the FIFO-
distinctive characteristic. Using files allows us to program a more general communication
mechanism to put processes in communication, even without an ancestor relationship; or,
in other words, we can use FIFO to get any two files to communicate. In this recipe, you'll
learn how to program FIFO.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[154]

How to do it...
In this section, we'll develop a very primitive chat program based on FIFOs, resulting in
two different programs that at runtime will allow two users to chat:

Let's create a file called fifo_chat_user1.c and add the includes that we1.
need later, and the MAX_LENGTH define to determine the max length of messages
the two users can exchange:

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>

#define MAX_LENGTH 128

Next, start with main. Here, we need to define the fd file descriptor to open the2.
file; the path in which we intend to store the file; the two strings we'll use to store
the msgReceived and msgToSend messages; and, finally, the mkfifo system
call to create the FIFO in the defined path:

int main()
{
 char* fifoChat = "/tmp/chat";
 mkfifo(fifoChat, 0600);

 char msgReceived[MAX_LENGTH], msgToSend[MAX_LENGTH];

We now need an infinite loop to write and read continuously. We do this by3.
creating two sections: in the write section, we open the fifoChat file in write
mode, get the message from the user with fgets, and write msgToSend to the
file, represented by the fd file descriptor. In the reader's section, we open the file
in reading mode and read the content of the file with the read method, print the
output, and close fd:

 while (1)
 {
 int fdUser1 = open(fifoChat, O_WRONLY);
 printf("User1: ");
 fgets(msgToSend, MAX_LENGTH, stdin);
 write(fdUser1, msgToSend, strlen(msgToSend)+1);
 close(fdUser1);

 int fdUser2 = open(fifoChat, O_RDONLY);

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[155]

 read(fdUser2, msgReceived, sizeof(msgReceived));
 printf("User2: %s\n", msgReceived);
 close(fdUser2);
 }
 return 0;
}

The second program is very similar. The only difference is the while loop, which4.
is the other way around. Here, we have the read section, and then, the write
section. You can copy the fifo_chat_user1.c file into fifo_chat_user2.c
and modify it, like the following:

while (1)
{
 int fdUser2 = open(myfifo, O_RDONLY);
 read(fdUser2, msgReceived, sizeof(msgReceived));
 printf("User1: %s\n", msgReceived);
 close(fdUser2);

 int fdUser1 = open(myfifo, O_WRONLY);
 printf("User2: ");
 fgets(msgToSend, MAX_LENGTH, stdin);
 write(fdUser1, msgToSend, strlen(msgToSend)+1);
 close(fdUser1);
}

Although this is not the most interactive chat you'll find around, it's definitely useful to
experiment with FIFO. In the next section, we'll analyze the steps seen in this section.

How it works...
Let's first compile and run the two programs. In this case, we want to give a different name
to the executables, so as to distinguish them:

gcc fifo_chat_user1.c -o chatUser1

gcc fifo_chat_user2.c -o chatUser2

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[156]

This creates two executables: chatUser1 and chatUser2. Let's run them in two separate
Terminals, and let's chat:

In step 1, we essentially defined MAX_LENGTH to the 128 bytes and added the defines we
need.

In step 2, we created the mkfifo FIFO at the path specified by fifoChat, which points to
the /tmp/chat file, with permissions 6 (read and write for the user), 0 (no read, no write,
no execution for the group the user belongs to), and 0 (no read, no write, no execution for
others). These settings can be checked once mkfifo is called:

root@d73a2ef8d899:/BOOK/chapter6# ls -latr /tmp/chat
prw------- 1 root root 0 Oct 1 23:40 /tmp/chat

In step 3, we opened the FIFO with the open method. It's worth mentioning that open is the
same method used to open regular files, and on the descriptor returned, we can call read
and write, as we would do on normal files. In this step, we made an infinite loop to allow
the user to chat as long as they want. The read and write sections, as you can see, are
swapped in step 4 to allow the second user to read if the first is writing, and vice versa.

A FIFO is managed internally by the kernel with the FIFO policy. Every time we write or
read data from/to the FIFO, the data is passed from/to the kernel. You should keep this
aspect in mind. The message passes from the chat1 executable, then, in the kernel space,
and back in the user space again when the chat2 program calls the read method.

There's more...
It should be clear so far that a FIFO is a special pipe. This means the same limitation we
have for pipes applies to FIFO too. For example, there is no need for synchronization unless
the amount of data sent exceeds the pipe_BUF limit, which the standard POSIX defines as
512 bytes, and Linux sets to 4 KB.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[157]

Another aspect to highlight is that a named pipe (FIFO) can be used in N to M
communication types (that is, multiple readers and multiple writers). The kernel guarantees
the atomicity of the operations (read and write calls) if the preceding conditions are met.

See also
Chapter 3, Dealing with Processes and Threads
Chapter 5, Using Mutexes, Semaphores, and Condition Variables

Learning how to use message queues
Another mechanism directly supported by POSIX-compliant operating systems (and then,
the Linux kernel) is a message queue. A message queue, in its essence, is a linked list of
messages stored in the kernel, where each queue is identified by an ID. In this recipe, we'll
rewrite the chat program using a message queue, highlighting the key pros and cons.

How to do it...
In this section, we'll rewrite the chat program from the Learning how to use FIFO recipe. This
will allow you to see, hands-on, similarities and differences between FIFO and a message
queue:

Create a new file called mq_chat_user_1.c, and add the following includes and1.
defines:

#include <stdio.h>
#include <string.h>
#include <mqueue.h>

#define MAX_MESSAGES 10
#define MAX_MSG_SIZE 256

In the main method, let's now define the two message queue descriptors2.
(user1Desc and user2Desc) needed to store the result from
the mq_open method later. We have to define and initialize the mq_attr struct to
store the configuration of the message queues we'll create:

int main()
{

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[158]

 mqd_t user1Desc, user2Desc;
 char message[MAX_MSG_SIZE];
 char message2[MAX_MSG_SIZE];

 struct mq_attr attr;
 attr.mq_flags = 0;
 attr.mq_maxmsg = MAX_MESSAGES;
 attr.mq_msgsize = MAX_MSG_SIZE;
 attr.mq_curmsgs = 0;

We can open the two /user1 and /user2 message queues:3.

 if ((user1Desc = mq_open ("/user1", O_WRONLY | O_CREAT,
 "0660", &attr)) == -1)
 {
 perror ("User1: mq_open error");
 return (1);
 }
 if ((user2Desc = mq_open ("/user2", O_RDONLY | O_CREAT,
 "0660", &attr)) == -1)
 {
 perror ("User2: mq_open error");
 return (1);
 }

The central part of the program is the loop to send and receive the messages from4.
the two users. To do this, we have to:

Send a message to the user 2 with the mq_send method, using1.
the user1Desc message queue descriptor.
Receive an eventual message that the user 2 sent us with mq_receive,2.
using the user2Desc message queue descriptor:

 while (1)
 {
 printf("USER 1: ");
 fgets(message, MAX_MSG_SIZE, stdin);
 if (mq_send (user1Desc, message, strlen (message)
 + 1, 0) == -1)
 {
 perror ("Not able to send message to User 2");
 continue;
 }
 if (mq_receive (user2Desc, message2, MAX_MSG_SIZE,
 NULL) == -1)
 {
 perror ("tried to receive a message from User 2
 but I've failed!");

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[159]

 continue;
 }
 printf("USER 2: %s\n", message2);
 }
 return 0;
}

We need another program that would reply to user 1. This program is very5.
similar; the only difference is that it sends messages on user2Desc (which is
open in write mode this time) and reads from user1Desc (which is open in read
mode).

Let's run the program now. We need to compile the
mq_chat_user_1.c and mq_chat_user_2.c programs by typing the following two
commands in the shell:

gcc mq_chat_user_1.c -o user1 -g -lrt
gcc mq_chat_user_2.c -o user2 -g -lrt

We're compiling and linking the programs, and generating user1 and user2 executables.
We've added -lrt (which is the POSIX.1b Realtime Extensions library) as we need to
include the POSIX message queue implementation. Remember that with -l, you're asking
the compiler to consider a specific library for the linker phase. In the next section, we'll see
the output, and analyze all the steps seen previously.

How it works...
By running the ./user1 and ./user2 executables, we'd have the following output:

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[160]

Let's have a look at the following steps:

Step 1: We need #include <stdio.h> for the user input/output, #include1.
<string.h> to get the length of string through strlen, and #include
<mqueue.h> to have access to the message queue interfaces. In this step, we've
defined the max number of messages in the queue (10) and the max size of a
message in the queue (256 bytes).
Step 2: In the main method of the program, we've defined the two message2.
queue descriptors (user1Desc and user2Desc) to keep a reference to message
queues; the two message arrays (message and message2) to store the messages
to send and receive between the two users; and finally, we've defined and
initialized the struct mq_attr structure, used to initialize the message queues
we'll use in the next step.
Step 3: In this step, we've opened the two message queues. These are /user13.
and /user2, and they are located in /dev/mqueue:

root@1f5b72ed6e7f:/BOOK/chapter6# ll /dev/mqueue/user*
------x--- 1 root root 80 Oct 7 13:11 /dev/mqueue/user1*
------x--- 1 root root 80 Oct 7 13:11 /dev/mqueue/user2*

mq_chat_user_1.c opens the /user1 message queue in write-only mode and
creates it if it's not present. It also opens /user2 in read-only mode and creates it
if it's not present. It should be clear that if the current process doesn't have access
rights to the message queue (which we open with 660), mq_open will fail.

Step 4: This step contains the main logic of our program. It has an infinite loop,4.
which sends a message from user 1 to user 2 and receives from user 2 to user 1.
The method used to send messages is mq_send. It needs the message queue
descriptor, the message to send, its length (+1, as we need to include the
terminator), and the message priority (which we didn't use in this case).
mq_send (see man mq_send for more info) blocks if there is no space in the
queue until enough becomes available.

After the send, we call the mq_receive method (see man mq_receive for more
info) to get an eventual message from the user 2. It needs the message queue
descriptor, an array that will contain the message, the max size we can receive,
and the priority. Keep in mind that mq_receive blocks if there are no messages
in the queue.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[161]

For more info, see the man mq_receive page.

As send and receive are core concepts, let's analyze them a little deeper with a schema:

(1) In this case, the user 1 process calls mq_send. The Linux kernel makes a copy of the
message to send from the user space to the kernel space. The same happens in case (3).

(2) When the user 2 process calls mq_receive on the same message queue (user1Desc),
the Linux kernel makes a copy of the message from the kernel space to the user space,
copying the data in the message2 buffer. The same happens in case (4).

There's more...
There might be cases where you may need to get the messages from the queue based on
priority, which we didn't use in this case. Can you modify this recipe's program to include
the priority? What do you have to modify?

You may have noticed that we used the perror method in this recipe. The perror method
prints in the standard output the last error (errno), which occurs in a descriptive format.
The advantage for the developer is that you don't have to explicitly get the errno value
and translate it to a string; it is done automatically for you.

The same concept of atomicity that we described for pipes and FIFOs is valid for message
queues. The delivery of a message is guaranteed to be atomic if the message is smaller
than pipe_BUF. Otherwise, a synchronization mechanism must be provided by the
developer.

See also
Recipes in Chapter 3, Dealing with Processes and Threads (about threading) and Chapter
5, Using Mutexes, Semaphores, and Condition Variables (about synchronization). As usual, man
pages offer a great source of information, and a suggested starting point is man
mq_overview.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[162]

Learning how to use shared memory
In all the IPC mechanisms we've seen so far, the kernel plays an active part in the
communication between processes, as we've learned. The information indeed flows
through from the Linux kernel to the processes, and vice versa. In this recipe, we'll learn the
fastest form of interprocess communication that does not require the kernel as the mediator
between processes. As usual, although the System V APIs are widely available, we'll be
using the newest, simpler, and better-designed POSIX APIs. We'll rewrite our chat
application using the shared memory, digging into it in greater detail.

How to do it...
In this section, we'll focus on developing a simple chat application by using the POSIX
shared memory APIs. As the kernel does not take part in the communication process
(directly), we need to provide a synchronization mechanism to protect the critical
section—the shared memory—from the reads and the writes of the two processes:

Let's start by adding the include and defines we need. We'll have two shared1.
memory spaces (STORAGE_ID1 and STORAGE_ID2) to have bidirectional
communication between the processes:

#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define STORAGE_ID1 "/SHM_USER1"
#define STORAGE_ID2 "/SHM_USER2"
#define STORAGE_SIZE 32

In the main method, we need two arrays to store the sent and received messages.2.
Furthermore, we need to open two shared memory spaces with the following
flags: read and write mode, create if not existing, and flags indicating read and
write permission for the owner of the file (S_IRUSR and S_IWUSR, respectively):

int main(int argc, char *argv[])
{
 char message1[STORAGE_SIZE];
 char message2[STORAGE_SIZE];
 int fd1 = shm_open(STORAGE_ID1, O_RDWR | O_CREAT, S_IRUSR |
 S_IWUSR);
 int fd2 = shm_open(STORAGE_ID2, O_RDWR | O_CREAT, S_IRUSR |

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[163]

 S_IWUSR);
 if ((fd1 == -1) || (fd2 == -1))
 {
 perror("open");
 return 10;
 }

As shared memory is based on mmap (we essentially map a file to a portion of3.
memory), we need to expand the file pointed by the file descriptor 1 (fd1) to the
size STORAGE_SIZE that we need. Then, we need to map the two file descriptors
to a portion of memory in shared mode (MAP_SHARED) and, of course, check for
errors:

 // extend shared memory object as by default it's initialized
 // with size 0
 int res1 = ftruncate(fd1, STORAGE_SIZE);
 if (res1 == -1)
 {
 perror("ftruncate");
 return 20;
 }

 // map shared memory to process address space
 void *addr1 = mmap(NULL, STORAGE_SIZE, PROT_WRITE, MAP_SHARED,
 fd1, 0);
 void *addr2 = mmap(NULL, STORAGE_SIZE, PROT_WRITE, MAP_SHARED,
 fd2, 0);
 if ((addr1 == MAP_FAILED) || (addr2 == MAP_FAILED))
 {
 perror("mmap");
 return 30;
 }

In the main loop, as with the previous two recipes, we read and write in the4.
two shared memory instances:

 while (1)
 {
 printf("USER 1: ");
 fgets(message1, STORAGE_SIZE, stdin);
 int len = strlen(message1) + 1;
 memcpy(addr1, message1, len);
 printf("USER 2 (enter to get the message):"); getchar();
 memcpy(message2, addr2, STORAGE_SIZE);
 printf("%s\n", message2);
 }

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[164]

 return 0;
}

The second program mirrors this one. You can find both of them in5.
the /BOOK/Chapter06 folder: shm_chat_user1.c (the one we described)
and shm_chat_user2.c.

Let's compile and link the two shm_chat_user1.c and shm_chat_user2.c programs by
typing the following two commands on the shell:

gcc shm_chat_user1.c -o user1 -g -lrt
gcc shm_chat_user2.c -o user2 -g -lrt

The outputs will be two binary files: user1 and user2. We've added -lrt in this case too
as we need to include the POSIX shared memory implementation (without it, the linking
phase will throw an undefined reference to 'shm_open' error). In the next section,
we'll analyze all the steps seen in this section.

How it works...
Running the ./user1 and ./user2 programs would give the following interactions:

Let's perform the steps, as follows:

Step 1: The first step just includes a few headers we need: stdio.h for the
standard input/output (for example, perror , printf, and so on); mman.h for
the shared memory APIs; mmap and fcntl.h for the shm_open flags (for
example, O_CREAT, O_RDWR, and many others); unistd.h for the ftruncate
method; and string.h for strlen and memcpy methods.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[165]

We defined STORAGE_ID1 and STORAGE_ID2 to identify the two shared memory
objects, which will be available in the /dev/shm folder:

root@1f5b72ed6e7f:/BOOK/chapter6# ll /dev/shm/SHM_USER*
-rw------- 1 root root 32 Oct 7 23:26 /dev/shm/SHM_USER1
-rw------- 1 root root 0 Oct 7 23:26 /dev/shm/SHM_USER2

Step 2: In this step, we allocated the space on the stack for the two messages
(message1 and message2) that we'll use to send and receive messages between
processes. We then created and opened two new shared memory objects and
checked for any errors.
Step 3: Once the two shared memory objects are available, we need to extend the
two files (through the two file descriptors fd1 and fd2, one for each program)
and—very important—mapping fd1 and fd2 to a virtual address space of the
current process.
Step 4: This step is the central part of the program. Here, there are a couple of
interesting things to note. First, we can see that there is none of the movement of
data between user space and kernel space that there was with FIFOs, pipes, and
message queues. We just do memory copies between local buffers (allocated on
the stack) and the memory we mapped, and vice versa. The second factor is that
as we just deal with memory copy, the performance will be better than other IPC
mechanisms.

The mechanic of this step is pretty simple: we ask the user to type a message and store it in
the message1 buffer, and then copy the buffer to the memory-mapped address
with addr1. The read section (where we read the message from the second user) is simple
too: we copy the message from the memory to the local buffer, message2.

There's more...
As you can see, there was no synchronization between the two processes in this recipe. That
was to let you focus on one aspect only: communication with shared memory. The reader is
again invited to improve this code to make it more interactive by using threads, and more
secure by using a synchronization mechanism.

Since kernel 2.6.19, Linux supports the use of access control lists (ACLs) to control the
permissions of objects in the virtual filesystem. For more info, see man acl.

Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory Chapter 6

[166]

See also
Recipes about threading and synchronization:

Chapter 3, Dealing with Processes and Threads
Chapter 5, Using Mutexes, Semaphores, and Condition Variables

7
Network Programming

In Chapter 6, Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory, we
learned different IPC techniques to allow processes running on the same machine to
communicate with each other. In this chapter, (which compliments what was covered
in Chapter 6, Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory, you'll
learn how two processes running on two different computers can achieve the same result.
The topics presented here are the foundation of how the internet today works. You'll learn,
hands-on, the difference between connection-oriented and connectionless-oriented
communication, the characteristics that define an endpoint, and finally two recipes that will
teach you how to use TCP/IP and UDP/IP.

This chapter will cover the following topics:

Learning the basics of connection-oriented communication
Learning the basics of connectionless-oriented communication
Learning what a communication endpoint is
Learning to use TCP/IP to communicate with processes on another machine
Learning to use UDP/IP to communicate with processes on another machine
Dealing with endianness

Network Programming Chapter 7

[168]

Technical requirements
In order to let you start using the programs immediately, we've set up a Docker image that
has all the tools and libraries that we'll need throughout the book. It is based on Ubuntu
19.04.

In order to set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub using docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in docker images to view the image. 3.
You should have at4.
least kasperondocker/system_programming_cookbook now.
Run the Docker image with an interactive shell by using docker run -it --5.
cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs, listed by chapter.

The --cap-add sys_ptrace argument is needed to allow GNU Project Debugger (GDB)
in the Docker container to set breakpoints, which by default Docker does not allow. To
launch a second shell on the same container, run the docker exec -it container-name
bash command. You can get the container name from the docker ps command.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

https://www.docker.com/

Network Programming Chapter 7

[169]

Learning the basics of connection-oriented
communication
If you sit at your desk and you browse the internet, it is likely that you're using a
connection-oriented type of communication. When you request a page via HTTP or HTTPS,
under the hood, a connection between your machine and the server you're trying to contact
is established before the actual communication takes place. The de facto standard for
internet communications is the Transport Control Protocol (TCP). In this chapter, you will
learn what it is and why it is important, and you will also learn (on the command line)
what a connection is.

How to do it...
In this section, we'll explore use of the command line to understand what happens when
we make a connection with a remote machine. Specifically, we'll learn the internal aspects
of a TCP/IP connection. Let's go through the following steps:

With the Docker image running, open a shell, type the following command, and1.
press Enter:

tcpdump -x tcp port 80

Open another shell, type the following command, and press Enter:2.

telnet amazon.com 80

In the first shell, you'll see an output similar to the following:3.

Network Programming Chapter 7

[170]

All of this might seem cryptic, but it's actually simple. The next section will explain to you,
in great detail, how it works.

How it works...
A connection-oriented communication is based on the assumption that a connection
between two entities is made. In this section, we'll explore what exactly a connection is.

The first step uses tcpdump (man tcpdump), which is a command-line tool that dumps all
the traffic on a network. In our case, it writes all the TCP traffic from port 80 on the
standard output showing the data in a hexadecimal representation. Once Enter is pressed,
tcpdump will switch to listening mode.

The second step uses telnet to establish a connection with a remote service running on
port 80 at amazon.com. Once Enter is pressed, after a few moments, the connection will be
established.

In the third step, we see the output of the connection between the local machine through
the telnet (or man telnet , to give it its full name) service and a remote machine at
amazon.com (translated to the IP). The first thing to keep in mind is that a connection in
TCP is a three-step process called a three-way handshake. The client sends SYN, the server
replies SYN+ACK, and the client replies ACK. The following diagram represents the TCP
header specification:

What data do the client and the server exchange in the SYN | SYN+ACK | ACK phase in
order to successfully establish a connection? Let's go through it, step by step:

The client sends SYN to the server (amazon.com):1.

Network Programming Chapter 7

[171]

Let's start from 0xe8f4 and 0x050 (the Ethernet header is before this, which is
beyond the scope of this chapter). As we can see from the preceding TCP header,
the first two bytes represent the source port (0xe8f4 = 59636) and the second two
bytes represent the destination port (0x0050 = 80). In the next four bytes, the
client sets a random number called the sequence number: 0x9bd0 | 0xb114.
The acknowledgment number is not set in this case. In order to mark this packet
as SYN, the client has to set the SYN bit to 1 and indeed the value of the next two
bytes is 0xa002, which in binary is 1010 0000 0000 0010. We can see that the
second to last bit is set to 1 (compare this with the TCP header, as seen in the
preceding screenshot).

The server sends SYN+ACK to the client:2.

The server, which has received the SYN from the client, has to respond with
SYN+ACK. Leaving out the first 16 bytes, the Ethernet header, we can see the
following content: 2 bytes represent the source port (0x0050 = 80) and the second
2 bytes represent the destination port (0xe8f4 = 59636). Then we start to see a
few interesting things: the server puts a random number in the sequence number,
which in this case is 0x1afe = | 0x5e1e, and in the acknowledgment number,
the sequence number received from the client + 1 = 0x9bd0 | 0xb115. As we
learned, the server must set the flag to SYN+ACK and, according to the TCP
header, the specification is correctly implemented by setting the two bytes
to 0x7012 = 0111 0000 0001 0010. The highlighted parts are ACK and SYN
respectively. The TCP packet is then sent back to the client.

The client sends ACK to the server (amazon.com):3.

Network Programming Chapter 7

[172]

The last step of the three-way handshake algorithm is the reception of the ACK
packet sent by the client to the server. The message consists of two bytes
representing the source port (0xe8f4 = 59636) and the destination port
(0x050 = 80); the sequence number this time contains the value the server
originally received from the client, 0x9bd0 | 0xb115; and the acknowledgement
number contains the random value received from the server + 1: 0x1afe = |
0x5e1f. Finally, the ACK is sent by setting the value 0x5010 = 0101 0000 0001
0000 (the part of the value that is highlighted is the ACK; compare it to the
previous TCP header picture).

There's more...
The protocol you have learned so far is described in the RFC 793 (https:/ /tools. ietf.
org/html/rfc793). If the internet works, it is because all the network vendors, device driver
implementations, and many programs implement this RFC (and other related standards)
perfectly. The TCP RFC defines much more than what we've learned in this recipe, which
was strictly focused on the connectivity. It defines the flow control (through the concept of
a window) and reliability (through the concept of a sequence number and the ACK in it).

See also
The Learning to use TCP/IP to communicate with processes on another
machine recipe shows programmatically how two processes on two machines can
communicate. The connection part is hidden in a system call, as we'll see.
Chapter 3, Dealing with Processes and Threads, for a refresher on processes and
threads.

Learning the basics of connectionless-
oriented communication
In the Learning the basics of connection-oriented communication recipe, we learned that a
connection-oriented communication with flow control is reliable. To make two processes in
communication, we must establish a connection first. This obviously comes at a cost in
terms of performance, which we cannot always pay—for example, when you watch an
online movie, the available bandwidth might not be enough to support all the features that
TCP takes with it.

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793

Network Programming Chapter 7

[173]

In this case, it is likely that the underlying communication mechanism is connectionless.
The de facto standard protocol for connectionless communication is the User Data Protocol
(UDP), which is on the same logical level as TCP. In this recipe, we'll learn what UDP looks
like on the command line.

How to do it...
In this section, we'll use tcpdump and netcast (nc) to analyze a connectionless link over
UDP:

With the Docker image running, open a shell, type the following command, and1.
press Enter:

tcpdump -i lo udp port 45998 -X

Let's open another shell, type the following command, and press Enter:2.

echo -n "welcome" | nc -w 1 -u localhost 45998

On the first shell, you'll see an output similar to the following:3.

This seems cryptic too, but it's actually simple. The next section will explain the steps in
great detail.

Network Programming Chapter 7

[174]

How it works...
In a UDP connection, there is no concept of connection. In this case, a packet is sent to a
receiver. There is no flow control and the link is not reliable. The UDP header is indeed
very simple, as you can see from the following diagram:

Step 1 uses tcpdump to listen on port 45998 using the UDP protocol on the loopback
interface (-i lo) by printing the data of each packet in hex and ASCII.

Step 2 uses the netcast command nc (man nc) to send a UDP packet (-u) containing the
string welcome to the localhost.

Step 3 shows the details of the UDP protocol. We can see that the source port (randomly
picked by the sender) is 0xdb255 = 56101 and the destination port is correctly set
to 0xb3ae = 459998. Next, we set the length to 0x000f = 15 and the checksum to 0xfe22 =
65058. The length is 15 bytes, as 7 bytes is the length of the data received and 8 bytes is the
length of the UDP header (source port + destination port + length + checksum).

No retransmission, no control flow, no connection. A connectionless link is really just a
message the sender sends to the receiver knowing that it might not receive it.

There's more...
We've talked about connections and we've seen the concepts of the source port and
destination port in the UDP header. The address of the sender and receiver is stored
somewhere else, in the IP (short for Internet Protocol) layer, logically right below the UDP
layer. The IP layer has the information of the sender and receiver addresses (the IP
addresses), which are used to route the UDP packet from the client to the server and vice
versa.

The UDP is elaborately defined in RFC 768, at https:/ /www. ietf. org/ rfc/rfc768. txt.

https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt

Network Programming Chapter 7

[175]

See also
Chapter 1, Getting Started with System Programming, for a review of the pipe of
commands
The Learning the basics of a connectionless-oriented communication recipe for a
comparison with the TCP protocol

Learning what a communication endpoint is
When two entities communicate with each other they essentially exchange information. In
order to make this happen, each entity must be clear as to where to send the information.
From the programmer's point of view, each entity involved in the communication must
have a clear endpoint. This recipe will teach you what an endpoint is and will show, on the
command line, how to identify them.

How to do it...
In this section, we'll be using the netstat command-line utility to inspect and learn what
an endpoint is:

With the Docker image running, open a shell, type the following command, and1.
press Enter:

b07d3ef41346:/# telnet amazon.com 443

Open a second shell and type this command:2.

b07d3ef41346:/# netstat -ntp

The next section will explain these two steps.

Network Programming Chapter 7

[176]

How it works...
In step 1, we used the telnet utility to connect to the local machine, with the
amazon.com remote host on port 443 (HTTP). The output of this command is the
following:

It is waiting for commands, which we won't send, as what we really care about is the
connection.

In step 2, we want to know the details of the connection that we established between our
local machine (localhost) and the remote host (amazon.com port 443). For this, we
executed the command in step 2. The output is as follows:

What information can we retrieve from the output in this command line? Well, we can
retrieve a few very useful pieces of information. Let's go through what we can learn from
the preceding screenshot, reading the code from left to right:

tcp represents the type of connection. It is a connection-oriented connection,
which means that the local and remote hosts went through the three-way
handshake that we saw in the Learning the basics of connection-oriented
communication recipe.
Recv-Q is a queue containing the data to be processed by the current process on
localhost.
Send-Q is a queue containing the data to be sent by the current process on
localhost to a remote process.
Local Address is a combination of the IP address and port number, which
really represent the first endpoint of our communication, the local endpoint.
Such an endpoint is often called, from a programming perspective, Socket,
which is an integer representing, in its essence, IP and PORT. In this case, the
endpoint is 172.17.0.2:40850.

Network Programming Chapter 7

[177]

Foreign Address, like the Local Address, is a combination of IP and PORT,
and represents the remote endpoint, in this case, 176.32.98.166:443. Note that
443 is a well-known port and represents the https service.
State represents the state of the connection between the two
endpoints, ESTABLISHED in this case.
PID/Program Name, or in our case, 65/telnet, represents the local process
using both the endpoints to communicate with the remote host.

When programmers talk about socket, they are talking about IP and PORT for each
endpoint of the communication. As we've seen, Linux makes it easy to analyze both the
endpoints of the communication and the process they are attached to.

One important aspect to highlight is that a PORT represents a service. In our example, the
local process telnet was connected with the remote host using IP 176.32.98.166 at port
80, where we know an HTTP daemon is running. But how do we know the port number
for a specific service? There is a list of well-known ports (https:/ /www. iana. org/
assignments/service- names- port- numbers/ service- names- port- numbers.
xhtml) maintained by the IANA (short for the Internet Assigned Numbers Authority),
which assigns PORTS to services. For example, the HTTPS service is expected to run at PORT
443, the sftp (short for Secure File Transfer Protocol) runs at PORT 22, and so on.

There's more...
The port info is a 16 bits unsigned integer value (that is, unsigned int), is maintained by
the IANA (https:/ /www. iana. org/) and is split into these ranges:

0-1023: Well-known ports. Ports that are well known, for example, HTTP, SFTP,
and HTTPS.
1024-49151: Registered ports. Ports that organizations can ask to register for their
purpose.
49152-65535: Dynamic, private, or ephemeral ports. Free to be used.

See also
The Learning the basics of connectionless-oriented communication recipe to learn how
communication without a connection works
The Learning the basics of connection-oriented communication recipe to learn
how communication with a connection works

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/

Network Programming Chapter 7

[178]

The Learning to use TCP/IP to communicate with processes on another machine recipe
to learn how to develop a connection-oriented program
The Learning to use UDP/IP to communicate with processes on another machine
recipe to learn how to develop a connectionless-oriented program

Learning to use TCP/IP to communicate with
processes on another machine
This recipe will show you how to connect two programs by using a connection-oriented
mechanism. This recipe will use TCP/IP, which is the de facto standard on the internet. So
far, we've learned that TCP/IP is a reliable form of communication, and its connection is
made in three phases. It is time now to write a program to learn how to make two
programs communicate with each other. Although the language used will be C++, the
communication part will be written using the Linux system calls, as it is not supported by
the C++ standard library.

How to do it...
We'll develop two programs, a client and a server. The server will start and listen on a
specific port that is ready to accept an incoming connection. The client will start and
connect to the server identified by an IP and a port number:

With the Docker image running, open a shell and create a new1.
file, clientTCP.cpp. Let's add some headers and constants that we'll need later:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <iostream>

constexpr unsigned int SERVER_PORT = 50544;
constexpr unsigned int MAX_BUFFER = 128;

Network Programming Chapter 7

[179]

Let's start writing the main method now. We start by initializing socket and2.
getting the information that is related to the server:

int main(int argc, char *argv[])
{
 int sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 {
 std::cerr << "socket error" << std::endl;
 return 1;
 }
 struct hostent* server = gethostbyname(argv[1]);
 if (server == nullptr)
 {
 std::cerr << "gethostbyname, no such host" << std::endl;
 return 2;
 }

Next, we want to connect to the server, but we need the correct information,3.
namely the serv_addr:

 struct sockaddr_in serv_addr;
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(SERVER_PORT);
 if (connect(sockfd, (struct sockaddr *) &serv_addr, sizeof
 (serv_addr)) < 0)
 {
 std::cerr << "connect error" << std::endl;
 return 3;
 }

The server will reply with a connection ack, so we call the read method:4.

 std::string readBuffer (MAX_BUFFER, 0);
 if (read(sockfd, &readBuffer[0], MAX_BUFFER-1) < 0)
 {
 std::cerr << "read from socket failed" << std::endl;
 return 5;
 }
 std::cout << readBuffer << std::endl;

Network Programming Chapter 7

[180]

We can now send the data to the server by just calling the write system call:5.

 std::string writeBuffer (MAX_BUFFER, 0);
 std::cout << "What message for the server? : ";
 getline(std::cin, writeBuffer);
 if (write(sockfd, writeBuffer.c_str(), strlen(write
 Buffer.c_str())) < 0)
 {
 std::cerr << "write to socket" << std::endl;
 return 4;
 }

Finally, let's go through the cleaning part, where we have to close the socket:6.

 close(sockfd);
 return 0;
}

Let's now develop the server program. In a second shell, we create7.
the serverTCP.cpp file:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <iostream>
#include <arpa/inet.h>

constexpr unsigned int SERVER_PORT = 50544;
constexpr unsigned int MAX_BUFFER = 128;
constexpr unsigned int MSG_REPLY_LENGTH = 18;

On a second shell, first of all, we need a socket descriptor that will identify our8.
connection:

int main(int argc, char *argv[])
{
 int sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 {
 std::cerr << "open socket error" << std::endl;

Network Programming Chapter 7

[181]

 return 1;
 }

 int optval = 1;
 setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (const
 void *)&optval , sizeof(int));

We have to bind the socket to a port and serv_addr on the local machine:9.

 struct sockaddr_in serv_addr, cli_addr;
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(SERVER_PORT);
 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof
 (serv_addr)) < 0)
 {
 std::cerr << "bind error" << std::endl;
 return 2;
 }

Next, we have to wait for and accept any incoming connection:10.

 listen(sockfd, 5);
 socklen_t clilen = sizeof(cli_addr);
 int newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,
 &clilen);
 if (newsockfd < 0)
 {
 std::cerr << "accept error" << std::endl;
 return 3;
 }

As soon as we get a connection, we log who connected to the standard11.
output (using their IP and port) and send a confirmation ACK:

 std::cout << "server: got connection from = "
 << inet_ntoa(cli_addr.sin_addr)
 << " and port = " << ntohs(cli_addr.sin_port)
 << std::endl;
 write(incomingSock, "You are connected!", MSG_REPLY_LENGTH);

Network Programming Chapter 7

[182]

We made the connection (a three-way handshake, remember?), so now we can12.
read any data coming from the client:

 std::string buffer (MAX_BUFFER, 0);
 if (read(incomingSock, &buffer[0], MAX_BUFFER-1) < 0)
 {
 std::cerr << "read from socket error" << std::endl;
 return 4;
 }
 std::cout << "Got the message:" << buffer << std::endl;

Finally, we close both the sockets:13.

 close(incomingSock);
 close(sockfd);
 return 0;
}

We've written quite a lot of code, so it is time to explain how all of this works.

How it works...
Both the client and the server have a very common algorithm, which we have to describe in
order for you to understand and generalize this concept. The client's algorithm is as
follows:

socket() -> connect() -> send() -> receive()

Here, connect() and receive() are blocking calls (that is, the calling program will wait
for their completion). The connect phrase specifically initiates the three-way handshake
that we described in detail in the Learning the basics of connection-oriented communication
recipe.

The server's algorithm is as follows:

socket() -> bind() -> listen() -> accept() -> receive() -> send()

Here, accept and receive are blocking the call. Let's now analyze in detail both the
client's and server's code.

Network Programming Chapter 7

[183]

The client code analysis is as follows:

The first step just contains the necessary includes that are needed to correctly use1.
the four APIs that we listed in the preceding client's algorithm section. Just note
that the constants, in pure C++ style, are not defined using the #define macro,
but by using constexpr. The difference is that the latter is managed by the
compiler, whereas the former is managed by the preprocessor. As a rule of
thumb, you should always try to rely on the compiler.
The socket() system call creates a socket descriptor that we named sockfd,2.
which will be used to send and receive information to/from the server. The two
parameters indicate that the socket will be a TCP (SOCK_STREAM)/IP (PF_INET)
socket type. Once we have a valid socket descriptor, and before calling the
connect method, we need to know the server's details; for this, we use the
gethostbyname() method, which, given a string like localhost, will return a
pointer to struct hostent * with information about the host.
We're now ready to call the connect() method, which will take care of the3.
three-way-handshake process. By looking at its prototype (man connect), we
can see that as well as the socket, it needs a const struct sockaddr
*address struct, so we need to copy the respective information into it and pass it
to the connect(); that's why we use the utility method bcopy() (bzero() is
just a helper method to reset the sockaddr struct before using it).
We are now ready to send and receive data. Once the connection is established,4.
the server will send an acknowledgment message (You are connected!). Have
you noticed that we're using the read() method to receive information from the
server through a socket? This is the beauty and simplicity of programming in a
Linux environment. One method can support multiple interfaces—indeed, we're
able to work with the same method to read files, receive data with sockets, and
do many other things.
We can send a message to the server. The method used is, as you may have5.
guessed, write(). We pass socket to it, which identifies the connection, the
message we want the server to receive, and the length of the message so that
Linux will know when to stop reading from the buffer.
As usual, we need to close, clean, and free any resource used. In this case, we6.
have to close the socket by just using the close() method, passing the socket
descriptor.

Network Programming Chapter 7

[184]

The server code analysis is as follows:

We use a similar code to the one we used for the client, but include some headers1.
and three defined constants, which we will use and explain later.
We have to define a socket descriptor by calling the socket() API. Note that2.
there is no difference between the client and the server. We just need a socket
that is able to manage a TCP/IP type of a connection.
We have to bind the socket descriptor created in the previous step to the network3.
interface and port it on the local machine. We do this with the bind() method,
which assigns an address (const struct sockaddr *address passed as the
second parameter) to the socket descriptor passed as the first parameter. The call
to the setsockopt() method is just to avoid the bind error, Address already
in use.
We start listening for any incoming connection by calling the listen() API. The4.
listen() system call is pretty simple: it gets the socket descriptor on which we
are listening and the maximum number of connections to keep in the queue of
pending connections, which in our case we set to 5. Then we call accept() on
the socket descriptor. The accept method is a blocking call: it means that it'll
block until a new incoming connection is available, and then it'll return an
integer representing the socket descriptor. The cli_addr structure is filled in
with the connection's information, which we use to log who connected (IP and
port).
This step is just a logical continuation of step 10. Once the server accepts a5.
connection, we log on the standard output who connected (in terms of
their IP and port). We do this by querying the information that was filled in the
cli_addr struct by the accept method.
In this step, we receive information from the connected client through the6.
read() system call. We pass in the input, the socket descriptor of the incoming
connection, the buffer where the data will be saved, and the maximum length
of the data that we want to read (MAX_BUFFER-1).
We then clean up and free any eventual resource that is used and/or allocated. In7.
this case, we have to close the two sockets' descriptors that were used (sockfd
for the server and incomingSock for the incoming connection).

Network Programming Chapter 7

[185]

By building and running both the server and the client (in this order), we get the following
output:

The server build and output are as follows:

The client build and output are as follows:

This proves what we learned in this recipe.

There's more...
How can we improve the server application to manage multiple concurrent incoming
connections? The server's algorithm that we implemented is sequential; after listen(), we
just wait on accept() until the end, where we close the connections. You should go
through the following steps as an exercise:

Run an infinite loop over accept() so that a server is always up and ready to1.
serve clients.
Spin off a new thread for each accepted connection. You can do this by using2.
std::thread or std::async.

Another important practice is to pay attention to the data that the client and server
exchange with each other. Usually, they agree to use a protocol that they both know. It
might be a web server, which in that case will involve the exchange of HTML, files,
resources, and so on between the client and the server. If it is a supervision and control
system, it might be a protocol defined by a specific standard.

Network Programming Chapter 7

[186]

See also
Chapter 3, Dealing with Processes and Threads, to refresh your memory as to how
processes and threads work to improve the server solution described here
The Learning the basics of connection-oriented communication recipe to learn how the
TCP connection works
The Learning what a communication endpoint recipe to learn what an endpoint is
and how it is related to a socket

Learning to use UDP/IP to communicate with
processes on another machine
When a process communicates with another, reliability is not always the main criterion to
use when deciding the communication mechanism. Sometimes, what we need is fast
communication without the burden or the connection, flow control, and all the other
controls that the TCP protocol implemented to make it reliable. This is the case for video
streaming, Voice over Internet Protocol (VoIP) calls, and many others. In this recipe, we'll
learn how to program UDP code that makes two (or more) processes communicate with
each other.

How to do it...
We'll develop two programs, a client and a server. The server will start, bind the socket to a
local address, and then will just receive data from the clients:

With the Docker image running, open a shell, create a new file, serverUDP.cpp,1.
and add some headers and constants that we'll need later:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <iostream>
#include <arpa/inet.h>

Network Programming Chapter 7

[187]

constexpr unsigned int SERVER_PORT = 50544;
constexpr unsigned int MAX_BUFFER = 128;

In the main function, we have to instantiate the socket of the DATAGRAM type and2.
set the option to reuse the address each time the server is rerun:

int main(int argc, char *argv[])
{
 int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if (sockfd < 0)
 {
 std::cerr << "open socket error" << std::endl;
 return 1;
 }
 int optval = 1;
 setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (const void
 *)&optval , sizeof(int));

We have to bind the socket we've created with a local address:3.

 struct sockaddr_in serv_addr, cli_addr;
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(SERVER_PORT);
 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof
 (serv_addr)) < 0)
 {
 std::cerr << "bind error" << std::endl;
 return 2;
 }

We're now ready to receive packets from the clients, this time using4.
the recvfrom API:

 std::string buffer (MAX_BUFFER, 0);
 unsigned int len;
 if (recvfrom(sockfd, &buffer[0],
 MAX_BUFFER, 0,
 (struct sockaddr*)& cli_addr, &len) < 0)
 {
 std::cerr << "recvfrom failed" << std::endl;
 return 3;
 }
 std::cout << "Got the message:" << buffer << std::endl;

Network Programming Chapter 7

[188]

We want to send an ACK message to the client with the sendto API:5.

 std::string outBuffer ("Message received!");
 if (sendto(sockfd, outBuffer.c_str(),
 outBuffer.length(), 0,
 (struct sockaddr*)& cli_addr, len) < 0)
 {
 std::cerr << "sendto failed" << std::endl;
 return 4;
 }

Finally, we can close the socket:6.

 close(sockfd);
 return 0;
}

Let's now create the client program. On another shell, create the7.
file clientUDP.cpp:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <iostream>

constexpr unsigned int SERVER_PORT = 50544;
constexpr unsigned int MAX_BUFFER = 128;

We have to instantiate the socket of the datagram type:8.

int main(int argc, char *argv[])
{
 int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if (sockfd < 0)
 {
 std::cerr << "socket error" << std::endl;
 return 1;
 }

Network Programming Chapter 7

[189]

We need to get the host information to be able to identify the server that we want9.
to send the packet to, and we do this by calling the gethostbyname API:

 struct hostent* server = gethostbyname(argv[1]);
 if (server == NULL)
 {
 std::cerr << "gethostbyname, no such host" << std::endl;
 return 2;
 }

Let's copy the host information into the sockaddr_in struct to identify the10.
server:

 struct sockaddr_in serv_addr, cli_addr;
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(SERVER_PORT);

We can finally send a message to the server using the socket descriptor, the11.
message from the user, and the server address:

 std::string outBuffer (MAX_BUFFER, 0);
 std::cout << "What message for the server? : ";
 getline(std::cin, outBuffer);
 unsigned int len = sizeof(serv_addr);
 if (sendto(sockfd, outBuffer.c_str(), MAX_BUFFER, 0,
 (struct sockaddr *) &serv_addr, len) < 0)
 {
 std::cerr << "sendto failed" << std::endl;
 return 3;
 }

We know that the server will reply with an ACK, so let's receive it with the12.
recvfrom method:

 std::string inBuffer (MAX_BUFFER, 0);
 unsigned int len_cli_add;
 if (recvfrom(sockfd, &inBuffer[0], MAX_BUFFER, 0,
 (struct sockaddr *) &cli_addr, &len_cli_add) < 0)
 {
 std::cerr << "recvfrom failed" << std::endl;
 return 4;

Network Programming Chapter 7

[190]

 }
 std::cout << inBuffer << std::endl;

Finally, as usual, we take care of closing and freeing all the structures used:13.

 close(sockfd);
 return 0;
}

Let's go deeper into the code and see how all of this works.

How it works...
In the Learning to use TCP/IP to communicate with processes on another machine recipe, we
learned the client's and server's TCP algorithms. The UDP algorithms are simpler and, as
you can see, the connection part is missing:

The UDP client's algorithm:

socket() -> sendto() -> recvfrom()

The UDP server's algorithm:

socket() -> bind() -> recvfrom() -> sendto()

Note how much simpler they are now—for example, the server, in this case, does
not listen for and accept incoming connections.

The server-side code analysis is as follows:

We just defined some headers and two constants that represent the port where1.
the server will expose the service (SERVER_PORT) and the maximum size of the
data (MAX_BUFFER).
In this step, we defined the socket (sockfd), just like we did in the TCP code, but2.
this time we use the SOCK_DGRAM (UDP) type. In order to avoid the bind issue
of Address already in use, we set the option to allow the socket to reuse the
address.

Network Programming Chapter 7

[191]

Next is the bind call. It accepts the parameters of int socket, const struct3.
sockaddr *address, and socklen_t address_len, which are basically the
socket, the address to bind the socket at, and the length of the address struct. In
the address variable, we specify that we are listening to all the available local
network interfaces (INADDR_ANY) and we will use the Internet Protocol version 4
(AF_INET).
We can now start receiving data by using the recvfrom method. The method4.
takes as input the socket descriptor (sockfd), the buffer to store the data in
(buffer), the maximum size of data we can store, a flag (0, in this case) to set the
specific properties on the received message, the address of the sender of the
datagram (cli_addr), and the length of the address (len). These last two
parameters are returned filled in, so we'd know who sent the datagram.
We can now send an ACK to the client. We use the sendto method. As the UDP5.
is a connectionless protocol, we don't have a client connected, so we need to pass
this information somehow. We do this by passing the cli_addr, which
is returned filled in by the recvfrom method along with the length (len), to the
sendto method. Other than this, we need to pass the socket descriptor (sockfd),
the buffer to send (outBuffer), the length of the buffer (outBuffer.length()),
and the flag (0, in this case).
Then, we just need to clean up at the end of the program. We have to close the6.
socket descriptor with the close() method.

The client-side code analysis is as follows:

In this step, we find the same headers that we have on the serverUDP.cpp1.
source file with SERVER_PORT and MAX_BUFFER.
We have to define the socket of the datagram type by calling the socket method,2.
passing again as input AF_INET and SOCK_DGRAM.
As we need to know who to send the datagram to, the client application takes as3.
input on the command line the address of the server (for example, localhost)
that we pass as input to the gethostbyname, which returns the host address
(server).
We use the server variable to fill the serv_addr structure used to identify the4.
address of the server that we want to send the datagram to
(serv_addr.sin_addr.s_addr), the port (serv_addr.sin_port), and the
family of the protocol (AF_INET).

Network Programming Chapter 7

[192]

We can then use the sendto method to send the user message to the server by5.
passing the parameters of sockfd, outBuffer, MAX_BUFFER, the flag set to 0, the
address of the server serv_addr, and its length (len). Again, the client does not
know at this stage who is the receiver of the message as it is not connected to
anybody, and that is why the serv_addr structure must be properly filled in so
that it contains a valid address.
We know that the server will send back an application ACK, so we have to6.
receive it. We call the recvfrom method that is passing the socket
descriptor (sockfd) as input, the buffer to store the returned data in (buffer),
the maximum size of the data we can get, and a flag set to 0. recvfrom returns
the address of the sender of the message with its length, which we store
in cli_addr and len respectively.

Let's run the server, then the client.

Run the server as follows:

Run the client as follows:

This shows how UDP works.

Network Programming Chapter 7

[193]

There's more...
Another way of using the UDP protocol, as a type of connectionless communication, is to
send a datagram in multicast or broadcast format. A multicast is a communication
technique that is used to send the same datagram to multiple hosts. The code does not
change; we just have to set the IP of the multicast group so it knows where to send the
message. It is a convenient and efficient way of communicating one-to-many, saving a lot of
bandwidth. Another alternative is to send a datagram in broadcast mode. We have to set
the IP of the receiver with a subnet mask in the form of 172.30.255.255. The message
will be sent to all the hosts in the same subnet.

You're invited to improve the server code by going through the following steps:

Set up an infinite loop over recvfrom() so that you always have a server up and1.
ready to serve clients.
Start a new thread for each accepted connection. You can do this by2.
using std::thread or std::async.

See also
Chapter 3, Dealing with Processes and Threads, to refresh how processes and
threads work to improve the server solution described here
The Learning the basics of connectionless-oriented communication recipe to learn how
the UDP connection works
The Learning what a communication endpoint is recipe to learn what an endpoint is
and how it is related to a socket

Dealing with endianness
Writing code at system level might mean dealing with different processors' architectures.
When doing this, there is one thing that programmers had to take care of by themselves
before C++20, which is endianness. Endianness refers to the byte's order in the binary
representation of a number. Fortunately, the last C++ standard helps us to enter endian
information at compile time. This recipe will teach you how to be aware of endianness and
write code that can run on both little- and big-endian architecture.

Network Programming Chapter 7

[194]

How to do it...
We'll develop a program that will query the machine at compile time, so that we can make
a conscious decision as to how to deal with numbers represented in different formats:

We need to include the <bit> headers file; then we can use the std::endian1.
enumerations:

#include <iostream>
#include <bit>

int main()
{
 if (std::endian::native == std::endian::big)
 // prepare the program to read/write
 // in big endian ordering.
 std::cout << "big" << std::endl;
 else if (std::endian::native == std::endian::little)
 // prepare the program to read/write
 // in little endian ordering.
 std::cout << "little" << std::endl;

 return 0;
}

Let's take a closer look at what implications this has in the next section.

How it works...
Big-endian and little-endian are the two dominant types of data representation. The little-
endian ordering format means that the least significant byte (also known as LSB) is placed
in the highest address, while in a big-endian machine, the most significant byte (also known
as MSB) is placed in the lowest address. An example of the representation for the
hexadecimal value 0x1234 would be as follows:

Address Address+1 (byte)
Big-endian 12 34

Little-endian 34 12

Network Programming Chapter 7

[195]

The main goal of the code snippet in step 1 is to answer the question: how do I know what
machine architecture I'm dealing with? The new C++20 enumeration std::endian helps us
solve this problem perfectly. How? Well, first in terms of endian awareness. Having
std::endian as part of the C++ standard library helps the programmer to query at any
time the endian architecture of the underlying machine. Second: for shared resources, the
two programs have to agree on a format (like the TCP protocol does, that is, sending the
info in network order) so that the reader (or receiver, if exchanging data over the network)
can make the appropriate conversions.

The other question is: what should I do? There are two things that you should do: one is
related to the application point of view and the second is related to networking. In both
cases, if your application exchanges data with another machine with a different endian
format (a file exchanged, or a filesystem shared, among many others) or sends data over the
internet to a machine with a different architecture, then you have to make sure that your
data will be understood. To do this, you can use the hton, ntoh macro and friends; this
makes sure that the number is converted from host to network (for hton) and from
network to host (for ntoh). We have to mention that most of the internet protocols use the
big-endian format, which is the reason why, if you call hton from a big-endian machine,
the function will not perform any conversion.

The Intel x86 family and the AMD64 series of processors use all the little-endian format,
while the IBM z/Architecture, Freescale, and all the Motorola 68000 heritage processers use
the big-endian format. There are some processors (such as the PowerPC) that can switch
endianness.

There's more...
In theory, data representation formats other than little- and big-endian do exist. An
example is the middle-endian format used by the Honeywell 316 minicomputer.

See also
The Learning to use TCP/IP to communicate with processes on another machine recipe
The Learning to use UDP/IP to communicate with processes on another machine recipe

8
Dealing with Console I/O and

Files
This chapter covers recipes based on the console, streaming, and file I/O using the C++
Standard Library. We've been reading parameters into the programs we've written in other
chapters but there are several other ways to do this. We'll deep dive into these topics and
we will learn the alternatives, tips, and best practices for each with specific and
dedicated hands-on recipes.

Once again, our main focus is to try to write system programming software by using C++
(and its standard library) as much as we can, so the code will have very limited C and
POSIX solutions.

This chapter will cover the following topics:

Implementing I/O to and from the console
Manipulating I/O strings
Working with files

Technical requirements
In order to let you try the programs right from the start, we've set up a Docker image that
has all the tools and libraries we'll need throughout the book. It is based on Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install the Docker Engine from www.docker.com.1.
Pull the image from Docker2.
Hub: docker pull
kasperondocker/system_programming_cookbook:latest

https://www.docker.com/

Dealing with Console I/O and Files Chapter 8

[197]

The image should now be available. Type in the following command to view the3.
image: docker images
You should have this image4.
now: kasperondocker/system_programming_cookbook
Run the Docker image with an interactive shell with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b
in/bash

The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs that we develop throughout the book,
organized by chapter.

The --cap-add sys_ptrace argument is needed to allow GDB in the Docker container to
set breakpoints, which Docker does not allow by default.

Implementing I/O to and from the console
This recipe focuses on console I/O. Most programs we write need some kind of interaction
with the user: we need to get inputs, do some processing, and return the output. Think, for
example, about user inputs you could collect in an application that you'll build. In this
recipe, we'll write code that shows different ways to get input from the console and return
the output.

How to do it...
Let's write some code:

With the Docker image running, let's create a new file named console_01.cpp1.
and type this code into it:

#include <iostream>
#include <string>
int main ()
{
 std::string name;
 std::cout << "name: ";
 std::cin >> name;
 std::string surname;
 std::cout << "surname: ";
 std::cin >> surname;

Dealing with Console I/O and Files Chapter 8

[198]

 int age;
 std::cout << "age: ";
 std::cin >> age;
 std::cout << "Hello " << name << ", "
 << surname << ": " << age << std::endl;
 return 0;
}

Create another file now called console_02.cpp and type this code in to see the2.
limitation of this approach:

#include <iostream>
#include <string>
int main ()
{
 std::string fullNameWithCin;
 std::cout << "full Name got with cin: ";
 std::cin >> fullNameWithCin;

 std::cout << "hello " << fullNameWithCin << std::endl;
 return 0;
}

Finally, let's create a new file and name it console_03.cpp; let's see how3.
std::getline and std::cin can overcome this previous limitation:

#include <iostream>
#include <string>

int main ()
{
 std::string fullName;
 std::cout << "full Name: ";
 std::getline (std::cin, fullName);
 std::cout << "Hello " << fullName << std::endl;
 return 0;
}

Although these are very simple examples, they show the C++ way of interacting with the
console standard input and output.

Dealing with Console I/O and Files Chapter 8

[199]

How it works...
In the first step, the console_01.cpp program just uses std::cin and std::cout to get
the name and the surname information of the user and save it in the std::string
variables. These are the first things to use when a simple interaction with the standard
input and output is needed. By building and running the console_01.cpp file, we'll get
the following output:

The second step of the recipe shows the limitation of std::cin and std::cout. The user
gives name and surname in the command line to the running process as programmed, but
strangely enough, just the name is stored in the fullNameWithCin variable, completely
skipping the surname. How come? The reason is simple: std:cin always considers spaces,
tabs, or newlines as delimiters of the value captured from the standard input. How can we
get the full line from the standard input, then? By compiling and
running console_02.cpp, we get the following:

The third step shows the use of the getline function in conjunction with std::cin to get
the full line from the standard input. std::getline gets the line from std::cin and
stores it in the fullName variable. In general, std::getline accepts any std::istream
as input with the possibility of specifying the delimiter. The available prototypes in the
standard library are as follows:

istream& getline (istream& is, string& str, char delim);
istream& getline (istream&& is, string& str, char delim);
istream& getline (istream& is, string& str);
istream& getline (istream&& is, string& str);

Dealing with Console I/O and Files Chapter 8

[200]

These make getline a very flexible method. By building and running console_03.cpp,
we get the following output:

Let's have a look at the following example, where we pass a stream to the method, the
variable to store the extracted piece of information, and the delimiter:

#include <iostream>
#include <string>
#include <sstream>

int main ()
{
 std::istringstream ss("ono, vaticone, 43");

 std::string token;
 while(std::getline(ss, token, ','))
 {
 std::cout << token << '\n';
 }

 return 0;
}

The output of the preceding method is as follows:

This can form the foundation for building your own tokenizer method.

Dealing with Console I/O and Files Chapter 8

[201]

There's more...
std::cin and std::cout allow chain requests, which makes the code more readable and
concise:

std::cin >> name >> surname;
std::cout << name << ", " << surname << std::endl;

std::cin expects the user to pass their name, and then their surname. They have to be
separated by a space, tab, or newline character.

See also
The Learning how to manipulate I/O strings recipe covers how to manipulate strings
as a complement of console I/O.

Learning how to manipulate I/O strings
String manipulation is a very important aspect of almost any software. Being able to
manipulate strings simply and effectively is a key aspect of software development. How
would you read the configuration file of your application or parse it? This recipe will teach
you what tools C++ offers to make this an enjoyable task with the std::stringstream
class.

How to do it...
In this section, we'll develop a program by using std::stringstream to parse streams,
which can actually come from any source: files, strings, input arguments, and so on.

Let's develop a program that prints all the entries of a file. Type the following1.
code into a new CPP file, console_05.cpp:

#include <iostream>
#include <string>
#include <fstream>

int main ()
{
 std::ifstream inFile ("file_console_05.txt",

Dealing with Console I/O and Files Chapter 8

[202]

std::ifstream::in);
 std::string line;
 while(std::getline(inFile, line))
 std::cout << line << std::endl;

 return 0;
}

std::stringstream is very handy when we have to parse strings into2.
variables. Let's see this in action by writing the following code in a new file,
console_06.cpp:

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

int main ()
{
 std::ifstream inFile ("file_console_05.txt",
 std::ifstream::in);
 std::string line;
 while(std::getline(inFile, line))
 {
 std::stringstream sline(line);
 std::string name, surname;
 int age{};
 sline >> name >> surname >> age;
 std::cout << name << "-" << surname << "-"<< age <<
 std::endl;
 }
 return 0;
}

And, to complement the second step, parsing and creating string streams is easy3.
too. Let's do this in console_07.cpp:

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

int main ()
{
 std::stringstream sline;
 for (int i = 0; i < 10; ++i)

Dealing with Console I/O and Files Chapter 8

[203]

 sline << "name = name_" << i << ", age = " << i*7 <<
 std::endl;

 std::cout << sline.str();
 return 0;
}

The preceding three programs show how simple it is parsing a string in C++. The next
section will explain them step by step.

How it works...
Step 1 shows that std::getline accepts any stream as input, not just the standard input
(that is, std::cin). In this case, it gets the stream coming from a file. We include iostream
for std::cout, string to be able to use strings, and fstream to be able to read the file.

Then, we open the file_console_05.txt file by using std::fstream (file stream). In its
constructor, we pass the filename and the flags (in this case, just the information that is an
input file with std::ifstream::in). We pass the file stream to std::getline, which
will take care of copying each line from the stream and storing it in the std::string
variable line, which is just printed. The output of this program is as follows:

Step 2 shows the same program reading the file_console_05.txt file, but, this time we
want to parse each line of the file. We do this by passing the line string variable to the
sline std::stringstream variable. std::stringstream offers convenient and easy-to-
use parsing capabilities.

Dealing with Console I/O and Files Chapter 8

[204]

By just writing the line sline >> name >> surname >> age, the operator>> of
the std::stringstream class will save the name, surname, and age into the respective
variables, taking care of the type conversion (that is, for the age variable, from string to
int), assuming these variables appear in that order in the file. The operator>> will parse
the string and, by skipping leading whitespaces, for each token will call the appropriate
method (for example, basic_istream& operator>>(short& value); or
basic_istream& operator>>(long long& value);, among many others). The
output of this program is as follows:

Step 3 shows that the same simplicity of parsing a stream into variables applies when
building a stream too. The same std::stringstream variable sline is used with the <<
operators, representing that the stream of data now flows in the direction of the string
stream variable, which is printed to the standard output in two lines in the following
screenshot. The output of this program is, as expected, as follows:

Dealing with Console I/O and Files Chapter 8

[205]

std::stringstream makes it really easy to parse strings and streams, wherever they
come from.

There's more...
If you're looking for low latency, streams manipulation with std::stringstream might
not be your first choice. We always suggest that you measure the performance and make a
decision based on data. If that's the case, you have different solutions you can try:

Just focus on the low-latency part of the code to optimize, if you can.
Write your layer using a standard C or C++ method to parse data, for example,
the typical atoi() method.
Use any open source low-latency framework.

See also
The Implementing I/O to and from the console recipe covers how to deal with I/O
from the console.

Working with files
This recipe will teach you the fundamental knowledge needed to deal with files. The C++
Standard Library historically offers a very good interface, but C++ 17 added a namespace
called std::filesystem, which further enriches the offer. We'll not take advantage of the
C++17 std::filesystem namespace, though, as it was already introduced in Chapter 2,
Revisiting C++. Think about a concrete use case of creating a configuration file, or where
you'd need to make a copy of that configuration file. This recipe will teach you how C++
makes this task easy.

Dealing with Console I/O and Files Chapter 8

[206]

How to do it...
In this section, we'll write three programs to learn how to work with files by
using std::fstream, std::ofstream, and std::ifstream:

Let's develop a program that opens and writes into a new file, file_01.cpp, by1.
using std::ofstream:

#include <iostream>
#include <fstream>

int main ()
{
 std::ofstream fout;
 fout.open("file_01.txt");

 for (int i = 0; i < 10; ++i)
 fout << "User " << i << " => name_" << i << " surname_"
 << i << std::endl;

 fout.close();
}

In a new source file, file_02.cpp, let's read from a file and print to standard2.
output:

#include <iostream>
#include <fstream>

int main ()
{
 std::ifstream fiut;
 fiut.open("file_01.txt");

 std::string line;
 while (std::getline(fiut, line))
 std::cout << line << std::endl;

 fiut.close();
}

Dealing with Console I/O and Files Chapter 8

[207]

Now we want to combine the flexibility of opening a file for both reading and3.
writing. We'll use std::fstream to copy the contents of file_01.txt into
file_03.txt and then print its content. In another source file, file_03.cpp,
type the following code:

#include <iostream>
#include <fstream>

int main ()
{
 std::fstream fstr;
 fstr.open("file_03.txt", std::ios::trunc | std::ios::out
 | std::ios::in);

 std::ifstream fiut;
 fiut.open("file_01.txt");
 std::string line;
 while (std::getline(fiut, line))
 fstr << line << std::endl;
 fiut.close();

 fstr.seekg(0, std::ios::beg);
 while (std::getline(fstr, line))
 std::cout << line << std::endl;
 fstr.close();
}

Let's see how this recipe works.

How it works...
Before getting deep into the preceding three programs, we have to clarify how the standard
library is structured with regards to file streams. Let's have a look at this following table:

<fstream>

<ios> <--<ostream> <--ofstream

<ios> <-- <istream> <--ifstream

Dealing with Console I/O and Files Chapter 8

[208]

Let's break it down as follows:

<ostream>: The streams class responsible for output streams.
<istream>: The streams class responsible for input streams.
ofstream: The streams class for writing to files. Present in the fstream header
file.
ifstream: The streams class for reading from files. Present in the fstream
header file.

Both std::ofstream and std::ifstream inherit from the generic stream classes
of std::ostream and std::istream, respectively. As you can imagine, std::cin and
std::cout also inherit from std::istream and std::ostream (not shown in the
preceding table).

Step 1: The first thing we do is include <iostream> and <fstream> in order to use
std::cout and std::ofstream to read the file_01.txt file. Then we call the open
method, which, in this case opens the file in writing mode, as we're using
the std::ofstream class. We are now ready to write our strings into the fout file stream
with the << operator. Finally, we have to close the stream, which will end up closing the
file. By compiling and running the program, we'll get the following output:

Dealing with Console I/O and Files Chapter 8

[209]

Step 2: We do the opposite in this case: we read from the file_01.txt file and print to the
standard output. The only difference, in this case, is that we use the std::ifstream class,
which represents a reading file stream. By calling the open() method, the file is opened in
reading mode (std::ios::in). By using the std::getline method, we can print to the
standard output all the rows of the file. The output is shown as follows:

The final third step shows the usage of the std::fstream class, which gives us more
freedom by allowing us to open a file in both reading and writing mode (std::ios::out |
std::ios::in). We also want to truncate the file if it exists (std::ios::trunc). There are
many more options available to pass to the std::fstream constructor.

There's more...
C++17 made a huge improvement by adding the std::filesystem to the standard library.
It is not completely new – it is hugely inspired by the Boost library. The main public
members exposed are as follows:

Method Name Description
path Represents a path
filesystem_error An exception on filesystem errors

directory_iterator An iterator to the content of the directory (the recursive version is available
too)

space_info Information about free and available space on the filesystem
perms Identifies file system permissions system

Dealing with Console I/O and Files Chapter 8

[210]

In the std::filesystem namespace, there are also helper functions that give information
about the file, such as is_directory(), is_fifo(), is_regular_file(),
is_socket(), and so on.

See also
The Understanding the filesystem recipe in Chapter 2, Revisiting C++, gives a
refresher on the topic.

9
Dealing with Time Interfaces

Time is used in several forms in operating systems and applications. Typically, applications
need to deal with the following categories of time:

Clock: The actual time and date, as you would read on your watch
Time point: Processing time taken to profile, monitor, and troubleshoot an
application's usage (for example, a processor or resource in general)
Duration: Monotonic time, that is, the elapsed time for a certain event

In this chapter, we'll deal with all these aspects from both a C++ and POSIX point of view in
order so that you have more tools available in your toolbox. The recipes in this chapter will
teach you how to measure an event by using time points and why you should use a steady
clock for that, as well as when the time overruns and how to mitigate it. You'll learn how to
implement these concepts with both POSIX and C++ std::chrono.

This chapter will cover the following recipes:

Learning about the C++ time interface
Using the C++20 calendar and time zone
Learning about Linux timing
Dealing with time sleep and overruns

Technical requirements
To try out the programs in this chapter immediately, we've set up a Docker image that
contains all the tools and libraries we'll need throughout this book. It is based on Ubuntu
19.04.

Dealing with Time Interfaces Chapter 9

[212]

In order to set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.
You should have the following4.
image: kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell with the help of the docker run5.
-it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash command.
The shell on the running container is now available. Go6.
to root@39a5a8934370/# cd /BOOK/ to get all the programs that will be
developed in this book.

The --cap-add sys_ptrace argument is needed to allow GDB (short for GNU Project
Debugger) to set breakpoints, which Docker doesn't allow by default.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

Learning about the C++ time interface
The C++11 standard really marks an important step regarding time. Before that (C++
standard 98 and before), system and application developers had to rely on implementation-
specific APIs (that is, POSIX) or external libraries (for example, boost) to manipulate
time, which means less portable code. This recipe will teach you how to write C++ code by
using the standard time manipulation library.

https://www.docker.com/

Dealing with Time Interfaces Chapter 9

[213]

How to do it...
Let's write a program to learn about the concepts of clock, time point, and duration, as
supported in the C++ standards:

Create a new file and call it chrono_01.cpp. We need a few includes first:1.

#include <iostream>
#include <vector>
#include <chrono>

In the main part, we need something to measure, so let's populate2.
an std::vector with some integers:

int main ()
{
 std::cout << "Starting ... " << std::endl;
 std::vector <int> elements;
 auto start = std::chrono::system_clock::now();

 for (auto i = 0; i < 100'000'000; ++i)
 elements.push_back(i);

 auto end = std::chrono::system_clock::now();

Now that we have the two time points, start and end, let's calculate the3.
difference (that is, duration) and print it to see how long it took:

 // default seconds
 std::chrono::duration<double, std::milli> diff = end - start;
 std::cout << "Time Spent for populating a vector with
 100M of integer ..."
 << diff.count() << "msec" << std::endl;

Now, we want to print the start variable in another format; for example, in the4.
format of calendar local time with ctime:

 auto tpStart = std::chrono::system_clock::to_time_t(start);
 std::cout << "Start: " << std::ctime(&tpStart) << std::endl;

 auto tpEnd = std::chrono::system_clock::to_time_t(end);
 std::cout << "End: " << std::ctime(&tpEnd) << std::endl;
 std::cout << "Ended ... " << std::endl;
}

Dealing with Time Interfaces Chapter 9

[214]

This program uses a few of the std::chrono features, such as system_clock,
time_point, and duration available in the Standard Library, and has done since version 11
of the C++ standard.

How it works...
Step 1 takes care of including the headers we'll need later: <iostream> for the standard
output and <vector> and <chrono> for the time.

Step 2 defines a vector of int called elements. Due to this, we can call the now() method on
the system_clock class in the chrono namespace to get the current time. Although we
used auto, this method returns a time_point object representing a point in time. Then, we
looped over 100 million times to populate the elements array in order to highlight that we
used the new C++14 feature to represent 100,000,000, which improves the readability of the
code. At the end, we took another point in time by calling the now() method and storing
the time_point object in the end variable.

In step 3, we looked at how long it took to execute the loop. To calculate this, we
instantiated a duration object, which is a template class that needs two parameters:

The representation: A type representing the number of ticks.
The period: This can be (among other things) std::nano, std:micro,
std::milli, and so on.

The default value for the period is std::seconds. Then, we just write diff.cout() on
the standard output, which represents the number of milliseconds between start and end.
An alternative way of calculating this difference is by using duration_cast; for
example, std::chrono::duration_cast<std::chrono::milliseconds> (end-
start).count().

In step 4, we print the start and end time_point variables in calendar localtime
representation (note that the container time might not be in sync with the host container).
To do this, we need to convert them into time_t by using the to_time_t() static variable
of the system_clock class and then pass them to the std::ctime method.

Now, let's build and run this:

Dealing with Time Interfaces Chapter 9

[215]

We'll learn a bit more about this recipe in the next section.

There's more...
The program we developed uses the system_clock class. There are three clock classes in
the chrono namespace:

system_clock: This represents the so-called wall clock time. It can be adjusted
at any moment, such as when an additional imprecision is introduced through a
leap second or the user has just set it. Its epoch (that is, its starting point), in most
implementations, uses UNIX time, which means the start counts from 1st January
1970.
steady_clock: This represents the so-called monotonic clock. It'll never be
adjusted. It remains steady. In most implementations, its starting point is the
time when the machine boots. For calculating the elapsed time of a certain event,
you should consider using this type of clock.
high_resolution_clock: This is the clock with the shortest tick available. It
might just be an alias for the system_clock or steady_clock or a completely
different implementation. It is implementation-defined.

A second aspect to keep in mind is that the C++20 standard includes time_of_day,
calendar, and time zone.

See also
The Learning the Linux timing recipe for a brief comparison
A Tour of C++, Second Edition, by Bjarne Stroustrup

Dealing with Time Interfaces Chapter 9

[216]

Using the C++20 calendar and time zone
The C++20 standard has enriched the std::chrono namespace with calendar features.
They include all the typical features you would expect, plus a more idiomatic and intuitive
way of playing with it. This recipe will teach you about some of the most important
features and how simple it is to interact with the calendar section of the std::chrono
namespace.

How to do it...
Let's look at some code:

Create a new file, ensuring that you include <chrono> and <iostream>. We1.
have a date and we want to know what day of the week bday will fall on:

#include <chrono>
#include <iostream>

using namespace std;
using namespace std::chrono;

int main ()
{
 auto bday = January/30/2021;
 cout << weekday(bday) << endl;

 auto anotherDay = December/25/2020;
 if (bday == anotherDay)
 cout << "the two date represent the same day" << endl;
 else
 cout << "the two dates represent two different days"
 << endl;
}

There's a whole set of classes that allow you to play with the calendar. Let's take2.
a look at some of them:

#include <chrono>
#include <iostream>

using namespace std;
using namespace std::chrono;

int main ()
{

Dealing with Time Interfaces Chapter 9

[217]

 auto today = year_month_day{ floor<days>(system_clock::now())
};
 auto ymdl = year_month_day_last(today.year(), monthday
 last{ month{ 2 } });
 auto last_day_feb = year_month_day{ ymdl };
 std::cout << "last day of Feb is: " << last_day_feb
 << std::endl;

 return 0;
}

Let's play with the time zone and print a list of times for different time zones:3.

#include <chrono>
#include <iostream>

using namespace std;
using namespace std::chrono;

int main()
{
 auto zone_names = {
 "Asia/Tokyo",
 "Europe/Berlin",
 "Europe/London",
 "America/New_York",
 };

 auto localtime = zoned_time<milliseconds>(date::current_zone(),
 system_clock::now());
 for(auto const& name : zone_names)
 cout << name
 << zoned_time<milliseconds>(name, localtime)
 << std::endl;

 return 0;
}

One feature that's used often is used to find the difference between two time4.
zones:

#include <chrono>
#include <iostream>

using namespace std;
using namespace std::chrono;

Dealing with Time Interfaces Chapter 9

[218]

int main()
{
 auto current = system_clock::now();
 auto lon = zoned_time{"Europe/London", current_time};
 auto newYork = zoned_time{"America/New_York", current_time};
 cout <<"Time Difference between London and New York:"
 << (lon.get_local_time() - newYork.get_local_time())
 << endl;

 return 0;
}

Let's go a little deeper into the std::chrono calendar section to learn more about this
recipe.

How it works...
There are a lot of calendar and time zone helper functions available in the new C++20
standard. This recipe just scratched the surface, but still gives us an understanding of how
easy it is to deal with time. A reference for all the std::chrono calendar and time zone
capabilities can be found at https:/ /en. cppreference. com/ w/cpp/ chrono.

Step 1 uses the weekday method to get the day of the week (using the Gregorian calendar).
Before calling the weekday method, we need to get a specific day and with C++20, we can
just set auto bday = January/30/2021, which represents a date. Now, we can pass it to
the weekday method to get the specific day of the week, which in our case is Saturday. One
useful property is that we can compare dates, just like we can compare between
the bday and anotherDay variables. weekday, as well as all the other
std::chrono calendar methods, handles leap seconds.

Step 2 shows the use of the year_month_day and year_month_day_last methods. The
library contains a whole set of classes similar to these two, for example, month_day and
month_day_lat, and so on. They clearly have a different scope, but their principles remain
the same. In this step, we're interested in knowing the last day of February. We set the
current date in the today variable with the year_month_day{
floor<days>(system_clock::now()) } and then we pass today to the
year_month_day_last method, which will return something like 2020/02/last, which
we store in the ymdl variable. We can use the year_month_day method again to get the
last day of February. We can skip a few steps and call the year_month_day_last method
directly. We performed this step for educational purposes.

https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono

Dealing with Time Interfaces Chapter 9

[219]

Step 3 moves into the scope of time zones. The snippet of code in this step prints a list of
time zones by iterating over the zone_names array. Here, we got the localtime first by
looping over each time zone identified by a string. Then, we converted the localtime into
the time zone that was identified by the name variable using the zoned_time method.

In step 4, we covered an interesting and recurrent problem: finding the time difference
between two time zones. The principle doesn't change; we still use the zoned_time
method to get the local time of the two time zones, which in this case
are "America/New_York" and "Europe/London". Then, we subtract the two local times
to get the difference.

There's more...
The std::chrono calendar offers a wide variety of methods that you are invited to
explore. A complete list is available at https:/ /en. cppreference. com/ w/cpp/ chrono.

See also
A Tour of C++, Second Edition, by Bjarne Stroustrup, Chapter 13.7, Time

Learning the Linux timing
Before C++11, the Standard Library did not contain any direct time-management support,
so system developers had to use external sources. By external, we mean either an external
library (for example, Boost (https:/ / www. boost. org/)) or OS-specific APIs. We believe it's
necessary that a system developer understands the concept of time in terms of Linux. This
recipe will help you master concepts such as clock, time point, and duration by using the
POSIX standard.

https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/chrono
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/
https://www.boost.org/

Dealing with Time Interfaces Chapter 9

[220]

How to do it...
In this recipe, we'll write a program so that we can learn about the concepts of clock, time
point, and duration in terms of Linux. Let's get started:

In a shell, create a new file named linux_time_01.cpp and add the following1.
includes and function prototype:

#include <iostream>
#include <time.h>
#include <vector>

void timespec_diff(struct timespec* start, struct timespec* stop,
struct timespec* result);

Now, we want to see the difference between CLOCK_REALTIME and2.
CLOCK_MONOTONIC on the clock_gettime call. We need to define two struct
timespec variables:

int main ()
{
 std::cout << "Starting ..." << std::endl;
 struct timespec tsRealTime, tsMonotonicStart;
 clock_gettime(CLOCK_REALTIME, &tsRealTime);
 clock_gettime(CLOCK_MONOTONIC, &tsMonotonicStart);

Next, we need to print the contents of the tsRealTime and tsMonoliticStart3.
variables to see the difference:

 std::cout << "Real Time clock (i.e.: wall clock):"
 << std::endl;
 std::cout << " sec :" << tsRealTime.tv_sec << std::endl;
 std::cout << " nanosec :" << tsRealTime.tv_nsec << std::endl;

 std::cout << "Monotonic clock:" << std::endl;
 std::cout << " sec :" << tsMonotonicStart.tv_sec << std::endl;
 std::cout << " nanosec :" << tsMonotonicStart.tv_nsec+
 << std::endl;

We need a task to monitor, so we'll use a for loop to populate an std::vector.4.
After that, we immediately get a time point in the tsMonotonicEnd variable:

 std::vector <int> elements;
 for (int i = 0; i < 100'000'000; ++i)
 elements.push_back(i);

Dealing with Time Interfaces Chapter 9

[221]

 struct timespec tsMonotonicEnd;
 clock_gettime(CLOCK_MONOTONIC, &tsMonotonicEnd);

Now, we want to print the task's duration. To do this, we call timespec_diff5.
(helper method) to calculate the difference between tsMonotonicEnd
and tsMonotonicStart:

 struct timespec duration;
 timespec_diff (&tsMonotonicStart, &tsMonotonicEnd, &duration);

 std::cout << "Time elapsed to populate a vector with
 100M elements:" << std::endl;
 std::cout << " sec :" << duration.tv_sec << std::endl;
 std::cout << " nanosec :" << duration.tv_nsec << std::endl;
 std::cout << "Finished ..." << std::endl;
}

Finally, we need to implement a helper method to calculate the time difference6.
(that is, duration) between the times represented by the start and
stop variables:

// helper method
void timespec_diff(struct timespec* start, struct timespec* stop,
struct timespec* result)
{
 if ((stop->tv_nsec - start->tv_nsec) < 0)
 {
 result->tv_sec = stop->tv_sec - start->tv_sec - 1;
 result->tv_nsec = stop->tv_nsec - start->tv_nsec
 + 100'000'0000;
 }
 else
 {
 result->tv_sec = stop->tv_sec - start->tv_sec;
 result->tv_nsec = stop->tv_nsec - start->tv_nsec;
 }
 return;
}

The preceding program shows how to gather time points to calculate the duration of an
event. Now, let's deep dive into the details of this program.

Dealing with Time Interfaces Chapter 9

[222]

How it works...
First of all, let's compile and execute the program:

We can immediately notice that the real-time clock (seconds) is way bigger than the
monotonic clock (seconds). By doing some math, you'll notice that the first is about 49 years
and the latter is about 12 hours. Why is that? The second observation is that our code took 1
second and 644348500 nanoseconds to populate a vector of 100 million items. Let's gather
some insights to explain this.

Step 1 just adds some includes and the prototype we've written to calculate the time
difference.

Step 2 defined two variables, struct timespec tsRealTime and struct
timespec tsMonotonicStart, that will be used to store the two time points. Then, we
called the clock_gettime() method twice by passing CLOCK_REALTIME and
the tsRealTime variable. We did this a second time by passing CLOCK_MONOTONIC with
the tsMonotonicStart variable. CLOCK_REALTIME and CLOCK_MONOTONIC are both of
the clockid_t type. When clock_gettime() is called with CLOCK_REALTIME, the time
that we get will be the wall-clock time (or real time).

This time point has the same issues that std::chrono::SYSTEM_CLOCK does, which we
looked at in the Learning about the C++ time interface recipe. It can be adjusted (for example, if
the system clock is synced with NTP), so this isn't suitable for calculating the elapsed time
(or the duration) of an event. When clock_gettime() is called with the
CLOCK_MONOTONIC parameter, the time does not adjust and most implementations make it
start right from the boot of the system (that is, by counting the clock tick from the start of
the machine). This is very suitable for event duration calculations.

Dealing with Time Interfaces Chapter 9

[223]

Step 3 just prints the results of the time points, that is, tsRealTime
and tsMonotonicStart. We can see that the first one contains the seconds since 1st

January 1970 (about 49 years), while the latter contains the seconds since my machine has
booted (about 12 hours).

Step 4 just adds 100 million items in an std::vector and then gets another time point in
tsMonotonicEnd, which will be used to calculate the duration of this event.

Step 5 calculates the difference between tsMonotonicStart and tsMonotonicEnd and
stores the result in the duration variable by calling the timespec_diff() helper method.

Step 6 implements the timespec_diff() method, which logically calculates
(tsMonotonicEnd - tsMonotonicStart).

There's more...
For the clock_gettime() method, we used POSIX as the counterpart set
method: clock_settime(). The same is valid for gettimeofday(): settimeofday().

It's worth highlighting that gettimeofday() is an extension of time() that returns
a struct timeval (that is, seconds and microseconds). The issue with this method is that
it can be adjusted. What does this mean? Let's imagine you use usegettimeofday() to get
a time point before the event to measure, and then you get another time point after the
event to measure. Here, you would calculate the difference between the two time points
thinking everything is fine. What issues may occur here? Imagine that, between the two
time points you've taken, the Network Time Protocol (NTP) server demands the local
machine to adjust the local clock to get it in sync with the time server. The duration that's
calculated won't be accurate since the time point that's taken after the event is affected by
the NTP sync. NTP is just an example of this. The local clock can be adjusted in other ways
too.

See also
The Learning about the C++ time interface recipe for comparison with C++
Linux System Programming, Second Edition, by Robert Love

Dealing with Time Interfaces Chapter 9

[224]

Dealing with time sleep and overruns
Time, in a system programming context, doesn't only involve the act of measuring the
duration of an event or reading the clock. It's also possible to put a process to sleep for a
certain amount of time. This recipe will teach you how to put a process to sleep by using
the seconds-based API, the microseconds-based API, and the
clock_nanosleep() method, which has nanosecond resolution. Furthermore, we'll see
what time overruns are and how we can minimize them.

How to do it...
In this section, we'll write a program to learn how to put a program to sleep by using the
different POSIX APIs that are available. We'll also look at the C++ alternative:

Open a shell and create a new file called sleep.cpp. We need to add some1.
headers that we'll need later:

#include <iostream>
#include <chrono>
#include <thread> // sleep_for
#include <unistd.h> // for sleep
#include <time.h> // for nanosleep and clock_nanosleep

We'll put the program to sleep for 1 second by using the sleep() method and2.
the std::chrono::steady_clock class as time points to calculate the duration
at the end:

int main ()
{
 std::cout << "Starting ... " << std::endl;

 auto start = std::chrono::steady_clock::now();
 sleep (1);
 auto end = std::chrono::steady_clock::now();
 std::cout << "sleep() call cause me to sleep for: "
 << std::chrono::duration_cast<std::chrono::
 milliseconds> (end-start).count()
 << " millisec" << std::endl;

Dealing with Time Interfaces Chapter 9

[225]

Let's look at how nanosleep() works. We still use3.
std::chrono::steady_clock to calculate the duration, but we need a struct
timespec. We'll make the process sleep for about 100 milliseconds:

 struct timespec reqSleep = {.tv_sec = 0, .tv_nsec = 99999999};
 start = std::chrono::steady_clock::now();
 int ret = nanosleep (&reqSleep, NULL);
 if (ret)
 std::cerr << "nanosleep issue" << std::endl;
 end = std::chrono::steady_clock::now();
 std::cout << "nanosleep() call cause me to sleep for: "
 << std::chrono::duration_cast<std::
 chrono::milliseconds> (end-start).count()
 << " millisec" << std::endl;

A more advanced way of putting a process to sleep is by using4.
clock_nanosleep(), which allows us to specify some interesting parameters
(see the next section for more details):

 struct timespec reqClockSleep = {.tv_sec = 1,
 .tv_nsec = 99999999};
 start = std::chrono::steady_clock::now();
 ret = clock_nanosleep (CLOCK_MONOTONIC, 0,
 &reqClockSleep, NULL);
 if (ret)
 std::cerr << "clock_nanosleep issue" << std::endl;
 end = std::chrono::steady_clock::now();
 std::cout << "clock_nanosleep() call cause me to sleep for: "
 << std::chrono::duration_cast<std::chrono::
 milliseconds> (end-start).count()
 << " millisec" << std::endl;

Now, let's look at how we can put the current thread to sleep by using the C++5.
Standard Library (through the std::this_thread::sleep_for template
method):

 start = std::chrono::steady_clock::now();
 std::this_thread::sleep_for(std::chrono::milliseconds(1500));
 end = std::chrono::steady_clock::now();
 std::cout << "std::this_thread::sleep_for() call
 cause me to sleep for: "
 << std::chrono::duration_cast<std::chrono::
 milliseconds> (end-start).count()
 << " millisec" << std::endl;
 std::cout << "End ... " << std::endl;
}

Dealing with Time Interfaces Chapter 9

[226]

Now, let's go over these steps in more detail.

How it works...
The program will be put to sleep in four different ways. Let's take a look at the runtime:

Step 1 just contains the headers we need: <iostream> for the standard output and standard
error (cout and cerr), <chrono> for the time points that will be used to measure the
actual sleep, <thread> for the sleep_for method, <unistd> for sleep(), and <time.h>
for nanosleep() and clock_nanosleep().

Step 2 puts the process to sleep for 1 second by using the sleep() method. We use
steady_clock::now() to get the time points and duration_cast to cast the difference
and get the actual duration. To be precise, sleep() returns 0 if the process has successfully
slept for at least the amount of time specified, but it can return a value between 0 and the
seconds specified, which would represent the time not slept.

Step 3 shows how to put a process to sleep by using nanosleep(). We decided to use this
method since usleep() has been deprecated on Linux. nanosleep() has an advantage
over sleep() since it has nanosecond resolution and POSIX.1b is standardized.
nanosleep() returns 0 on success and -1 in the case of an error. It does this by setting
the errno global variable to the specific error that occurred. The struct timespec
variable contains tv_sec and tv_nsec (seconds and nanoseconds).

Step 4 uses a more sophisticated clock_nanosleep(). This method contains two
parameters we haven't looked at yet. The first parameter is clock_id and accepts, among
other things, CLOCK_REALTIME and CLOCK_MONOTONIC, which we looked at in the
previous recipes. As a rule of thumb, you want to use the first if you're sleeping until an
absolute time (wall-clock time) and the second if you're sleeping until a relative time value.
This makes sense based on what we saw in the previous recipe.

Dealing with Time Interfaces Chapter 9

[227]

The second parameter is a flag; it can be TIME_ABSTIME or 0. If the first one is passed, the
reqClockSleep variable will be treated as absolute, but if 0 is passed, then it'll be treated
as relative. To clarify the concept of absolute time further, it might come from a previous
call of clock_gettime() that stores an absolute time point in a variable, say ts. By
adding 2 seconds to it, we can pass &ts (that is, the address of the variable ts) to
clock_nanosleep(), which will wait until that specific absolute time.

Step 5 puts the current thread of the process to sleep (in this case, the current thread is the
main thread, so the whole process will sleep) for 1.5 seconds (1,500 milliseconds = 1.5
seconds). std::this_thread::sleep_for is simple and effective. It is a template method
that takes in one parameter as input; that is, the duration, which needs the representation
type and the period (_Rep and _Period), as we saw in the Learning the C++ time interface
recipe. In this case, we only passed the period in milliseconds and left the representation in
its default state.

There is an issue we should be aware of here: the time overrun. All the interfaces we've
used in this recipe guarantee that the process will sleep at least as long as requested. They'll
return an error otherwise. They might sleep for a time slightly longer than the time we
requested for different reasons. One reason might be due to the scheduler that selects a
different task to run. This problem occurs when the granularity of the timer is greater than
the time that was requested. Think, for example, about the time that's shown by the timer
(10msec) and that the sleep time is 5 msec. We might have a case where the process has to
wait 5 milliseconds more than expected, which is 100% longer. Time overrun can be
mitigated by using methods that support high-precision time sources, such
as clock_nanosleep(), nanosleep(), and std::this_thread::sleep_for().

There's more...
We didn't explicitly mention the thread implications for nanosleep() and
clock_nanosleep(). Both methods cause the current thread to sleep. Sleep on Linux
means that the thread (or the process, if it is a single-threaded application) will enter a Not
Runnable state so that the CPU can continue with other tasks (remember that Linux does
not differentiate between threads and processes).

Dealing with Time Interfaces Chapter 9

[228]

See also
The Learning the C++ time interface recipe for a review of
the std::chrono::duration<> template class
The Learning the Linux timing recipe for a review of the concepts of REALTIME
and MONOTONIC

10
Managing Signals

Signals are software interrupts. They provide a way of managing asynchronous events, for
example, a user from the terminal typing the interrupt key or another process sending a
signal that must be managed. Every signal has a name that starts with SIG (for
example, SIGABRT). This chapter will teach you how to write code to properly manage
software interrupts, what the default actions defined by Linux for each signal are, and how
to override them.

This chapter will cover the following recipes:

Learning all of the signals and their default actions
Learning how to ignore a signal
Learning how to trap a signal
Learning how to send a signal to another process

Technical requirements
In order to let you try the programs in this chapter immediately, we've set up a Docker
image that has all the tools and libraries we'll need throughout the book, it is based on
Ubuntu 19.04.

In order to set it up, follow these steps:

Download and install the Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.
You should have at least this image4.
now: kasperondocker/system_programming_cookbook.

http://www.docker.com

Managing Signals Chapter 10

[230]

Run the Docker image with an interactive shell with the help of the following5.
command: docker run -it --cap-add
sys_ptrace kasperondocker/system_programming_cookbook:latest /b

in/bash.
The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs developed, by chapters.

The --cap-add sys_ptrace argument is necessary to allow GDB in the Docker container
to set breakpoints, which, by default, Docker does not allow.

Learning all of the signals and their default
actions
This recipe will show you all the signals and related default actions supported by Linux.
We'll also learn why signals are an important concept and what Linux does for a software
interrupt.

How to do it...
In this section, we'll list all the signals supported by our Linux distribution in order to be
able to describe the most common ones in the How it works... section.

On a shell, type the following command:

root@fefe04587d4e:/# kill -l

If you run this command on the Docker image of the book, which is based on the Ubuntu
version 19.04 distribution, you'll get this output:

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47)
SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52)
SIGRTMAX-12

Managing Signals Chapter 10

[231]

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57)
SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

In the next section, we'll learn what the default actions of the most common signals a
process can receive are, a description for each, and how Linux manages these software
interrupts.

How it works...
In step 1, we executed the kill -l command to get all the signals the current Linux
distribution supports. The following table provides a list of the most common signals with
the default action and description:

Signal Description Default Action

SIGHUP The Terminal controlling the process was closed (for
example, the user logged out?) Terminate

SIGABRT Signal sent by abort() Terminate (with a core dump, if
possible)

SIGSEGV Invalid memory reference Terminate (with a core dump,
if possible)

SIGSYS Bad system call or process tried to execute an invalid
system call.

Terminate (with a core dump,
if possible)

SIGINT Interrupt generated from the keyboard (for example Ctrl +
C) Terminate

SIGQUIT Quit generated from the keyboard (for example: Ctrl + /) Terminate (with a core dump,
if possible)

SIGPIPE A process tried to write to a pipe but with no reader Terminate

SIGILL A process tried to execute an illegal instruction Terminate (with a core dump,
if possible)

SIGALRM Signal sent by alarm() Terminate
SIGSTOP Stop a process Stop the process
SIGIO Async I/O event Terminate
SIGTRAP Breakpoint trapped Terminate
SIGTERM Termination signal (catchable) Terminate
SIGKILL Process termination (un-catchable) Terminate

For each signal sent to a process, Linux applies its default action. The system developer can,
of course, override this action by implementing the desired one on within the process, as
we'll see in the Learning how to trap a signal recipe.

Managing Signals Chapter 10

[232]

Signals are defined in the <signal.h> header file and are simply positive integers with a
meaningful name always prefixed by the SIG word. What does Linux do when a signal
(that is, a software interrupt) is raised? Simply put, it always applies the same sequential
life cycle, which is as follows:

The signal is raised by a user of another process, or by Linux itself.1.
The signal is stored until Linux is able to deliver it.2.
Once delivered, Linux performs one of these specific actions:3.

Ignore the signal: we've seen that there are signals that cannot be1.
ignored (for example, SIGKILL).
Perform the default action: you can refer to column 3 of the preceding2.
table.
Handle the signal with the registered function (which the system3.
developer implemented).

There's more...
All the signals, described and defined in the <signal.h> header file are POSIX compliant.
This means that each identifier, their names, and the default actions are defined by
the POSIX.1-2003 standard, which Linux adheres to. This guarantees the portability of the
signals implementation or support in the applications.

See also
The Learning how to trap a signal recipe
The Learning how to ignore a signal recipe
The Learning how to send a signal to another process recipe
Chapter 3, Dealing with Processes and Threads for a refresh on processes and
threads.

Learning how to ignore a signal
There might be cases where we just need to ignore a specific signal. However, rest assured,
there are few signals that cannot be ignored, for example, SIGKILL (uncatchable). This
recipe will teach you how to ignore a catchable signal.

Managing Signals Chapter 10

[233]

How to do it...
To ignore a catchable signal, follow these steps:

On a shell, open a new source file called signal_ignore.cpp and start by1.
adding the following code:

#include<stdio.h>
#include<signal.h>
#include <iostream>

int main()
{
 std::cout << "Starting ..." << std::endl;
 signal(SIGTERM, SIG_IGN);
 while (true) ;
 std::cout << "Ending ..." << std::endl;
 return 0;
}

In this second program (signal_uncatchable.cpp), we want to see that an2.
uncatchable signal cannot be ignored. To do this, we'll use the SIGKILL signal that
we've seen in the Learning all of the signals and their default actions recipe, which is
not catchable (that is, the program cannot ignore it):

#include<stdio.h>
#include<signal.h>
#include <iostream>

int main()
{
 std::cout << "Starting ..." << std::endl;
 signal(SIGKILL, SIG_IGN);
 while (true) ;
 std::cout << "Ending ..." << std::endl;
 return 0;
}

The next section will explain the details of the preceding two programs.

Managing Signals Chapter 10

[234]

How it works...
Step 1 contains the program to ignore the SIGTERM signal. We do this by calling
the signal(); system call by passing the specific signal as the first parameter (SIGTERM)
and the action to follow as the second parameter, which, in this case, is SIG_IGN, is to
ignore.

Step 2 has the same code as step 1. We just used the signal(); method passing
the SIGKILL parameter and SIG_IGN. In other words, we asked Linux to ignore the
SIGKILL signal for this process (signal_uncatchable.cpp will become a process once
built and executed). As we learned in the Learning all of the signals and their default actions
recipe, SIGKILL is an uncatchable signal.

Let's build and run the two programs now. What we expect to see is the SIGTERM signal
ignored in the first program and SIGKILL signal, which cannot be ignored in the second
one, respectively. The output of the first program is as follows:

Here, we retrieved the PID of the process, using ps aux, and sent the SIGTERM signal by
running the command: kill -15 115 (where 15 represents SIGKILL). As you can see, the
process keeps running by completely ignoring the signal to terminate it.

The second program, signal_uncatchable.cpp, shows that even if we specified to catch
the SIGKILL signal, Linux ignored this and killed our process anyway. We can see this in
the following screenshot:

Managing Signals Chapter 10

[235]

There's more...
To have a list of all the signals supported on a Linux machine, the kill -l command is of
great help and man signal contains all the details you need to successfully integrate the
signal in your program.

See also
The Learning the Linux fundamentals – shell recipe in Chapter 1, Getting Started
with System Programming, for a refresh on how to run programs on the shell
Learning how to trap a signal recipe
Learning how to send a signal to another process recipe
Learning all of the signals and their default actions recipe
Chapter 3, Dealing with Processes and Threads, for a refresh on processes and
threads

Learning how to trap a signal
This recipe will teach you how to catch (or trap) a signal in a program. There might be a
need to perform some actions for a specific signal. An example of this is when an
application receives the signal to terminate (SIGTERM) but we are required to clean up some
used resources before quitting.

How to do it...
Let's write an application where we'll catch the SIGTERM signal, print a string, and
terminate the application:

On a shell, create a new file called signal_trap.cpp. We need to include,1.
among other headers, <signal.h> to be able to handle signals. We also have to
add the prototype needed to manage the signal we want to trap. In the main
method then, we call the signal() system call by passing SIGTERM that we
want to catch and the method used to manage it:

#include<stdio.h>
#include<signal.h>
#include <iostream>

Managing Signals Chapter 10

[236]

void handleSigTerm (int sig);

int main()
{
 std::cout << "Starting ..." << std::endl;
 signal(SIGTERM, handleSigTerm);
 while (true);
 std::cout << "Ending ..." << std::endl;
 return 0;
}

We need to define the handleSigTerm() method (which can be named2.
whatever we want):

void handleSigTerm (int sig)
{
 std::cout << "Just got " << sig << " signal" << std::endl;
 std::cout << "cleaning up some used resources ..."
 << std::endl;
 abort();
}

The next section will describe the program in detail.

How it works...
Step 1 essentially defines the main method. First, we require the <signal.h> header. In the
definition of the main method, the central part is the signal() system call where we pass
the SIGTERM signal we want to trap and the method we want to get called by Linux. This is
an important aspect worth highlighting. The signal() system call accepts (as a second
parameter) a pointer to a function that the system developer has to define, as we did. In the
kernel, when a software interrupt is raised, Linux sends it to the specific process and the
method will be called (in the form of a callback). The prototype of the signal() method
looks like this:

void(*signal(int, void (*)(int)))(int);

Step 2 has the definition of the method that will manage the SIGTERM signal we want to
trap. This method, in its simplicity, shows a couple of interesting things. First, this method
is a callback invoked from the signal() system call. Second, we necessarily have to define
its prototype as void (*)(int) , that is, return void and accept an integer in the input (it
represents the signal that the application actually receives). Anything different from this
prototype will result in a compilation error.

Managing Signals Chapter 10

[237]

Let's now build and execute the program we've developed in the previous section:

We built and linked the signal_trap.cpp program and generated the a.out executable.
We run it; the PID associated with the process is 46. On the right shell, we send
the SIGTERM signal (with identifier = 15) to the process with PID 46. As you can see on the
standard output (the shell on the left), the process caught the signal and called the method
we defined handleSigTerm(). This method printed some logs in the standard output and
called the abort() system call, which sends the SIGABORT signal to the running process.
As you can see in the Learning all of the signals and their default actions recipe, the default
action of SIGABORT is to terminate the process (and generate the core dump). You can, of
course, play with it and terminate the process in another, more suitable, way, depending on
the requirements you have (for example, exit()).

There's more...
So, what does happen to signals when a process forks (or executes) another one? The
following table will help you to understand how to deal with signals with a process-child
relationship:

Signal Behavior Process Fork Process Exec
Default Inherited Inherited
Ignored Inherited Inherited
Handled Inherited Not inherited

At this stage, you should not be surprised that, when a process forks another process, the
child essentially inherits all the behaviors of the parent. When a process executes another
task (with exec), it inherits the default behavior and the ignored behavior, but it does not
inherit the handled method that is implemented.

Managing Signals Chapter 10

[238]

See also
The Learning how to ignore a signal recipe
The Learning all of the signals and their default actions recipe
The Learning how to send a signal to another process recipe
Chapter 3, Dealing with Processes and Threads, for a refresh on processes and
threads

Learning how to send a signal to another
process
There could be scenarios where a process needs to send a signal to other processes. This
recipe will teach you how to achieve that using a hands-on approach.

How to do it...
We'll write a program that will send the SIGTERM signal to a running process. We'll see the
process terminating as expected. On a shell, open a new source file
called signal_send.cpp. We'll be using the system call, kill(), which sends a signal sig
to a process specified by pid. The program accepts an input parameter, which is pid of the
program to terminate:

#include<stdio.h>
#include<signal.h>
#include <iostream>

int main(int argc, char* argv[])
{
 std::cout << "Starting ..." << std::endl;
 if (argc <= 1)
 {
 std::cout << "Process pid missing ..." << std::endl;
 return 1;
 }
 int pid = std::atoi(argv[1]);
 kill (pid, SIGTERM);

 std::cout << "Ending ..." << std::endl;
 return 0;
}

Managing Signals Chapter 10

[239]

We'll be using the signal_trap.cpp program developed in the Learning how to trap a
signal recipe as the process to terminate. The next section will go deep in the detail of the
code seen here.

How it works...
In order to see the correct behavior, we need to run a process we intend to terminate. We'll
run the signal_trap.cpp program. Let's build and run the signal_send.cpp program
as follows:

Here, we performed a couple of things, as follows:

We've built the signal_trap.cpp program and generated the a.out1.
executable.
Run ./a.out.2.
On the shell on the left, we took pid of the a.out process, which was 133.3.
We've built the signal_send.cpp program to the terminate executable.4.
We run ./terminate with the pid variable of the process a.out we wanted to5.
terminate: ./terminate 133.
On the shell on the right, we could see the a.out process terminating correctly.6.

Step 1 has a couple of things we have to explain. First, we parsed the pid variable from the
command-line parameter, converted to an integer, and then saved it into the pid variable.
Second, we called the kill() system call by passing the pid variable and the
SIGTERM signal we have to send to the running process.

Managing Signals Chapter 10

[240]

man 2 kill: int kill(pid_t pid, int sig);
The kill() function sends the signal specified by sig to pid.
For System V compatibility, if the PID is negative (but not -1), the signal
is sent to all of the processes whose process group IDs are equal to the
absolute value of the process number. However, if the pid is 0, sig is sent
to every process in the invoking process's process group.

There's more...
In order to send a signal to another process (or processes), the sending process must have
appropriate privileges. Put simply, a process can send signals to another process if the
current user owns it.

There might be cases where a process has to send a signal to itself. In this case, the system
call, raise(), does the job:

int raise (int signo);

Note one final, yet very important, thing: the handler code that manages the signal raised
must be reentrant. The rationale behind that is that the process might be in the middle of
any processing, so the handler must be very careful in modifying any static or global data.
A function is reentrant if the data manipulated is allocated on the stack or passed in the
input.

See also
The Learning how to trap a signal recipe
The Learning how to ignore a signal recipe
The Learning all of the signals and their default actions recipe

11
Scheduling

System programming is about interacting with the underlying OS. The scheduler is one of
the core components of every OS and impacts the way processes are allocated on CPUs.
Ultimately, this is what the end user is concerned about: processes running smoothly and
with correct priority over other processes. This chapter will teach you the practical skills
you need in order to interact with the scheduler by changing the process' policy, its nice
value, the real-time priority, processor affinity, and how real-time processes can yield the
processor.

This chapter will cover the following recipes:

Learning to set and get a scheduler policy
Learning to get the timeslice value
Learning how to set a nice value
Learning how to yield the processor
Learning about processor affinity

Technical requirements
To try out the programs in this chapter, we've set up a Docker image that contains all the
tools and libraries we'll need throughout this book. It is based on Ubuntu 19.04.

To set it up, follow these steps:

Download and install Docker Engine from www.docker.com.1.
Pull the image from Docker Hub: docker pull2.
kasperondocker/system_programming_cookbook:latest.
The image should now be available. Type in the following command to view the3.
image: docker images.

https://www.docker.com/

Scheduling Chapter 11

[242]

You should have the following image:4.
kasperondocker/system_programming_cookbook.
Run the Docker image with an interactive shell with the help of the docker run5.
-it --cpu-rt-runtime=95000 --ulimit rtprio=99 --cap
add=sys_nice kasperondocker/system_programming_cookbook:latest

/bin/bash command.
The shell on the running container is now available. Use root@39a5a8934370/#6.
cd /BOOK/ to get all the programs that have been developed for this book.

The --cpu-rt-runtime=95000, --ulimit rtprio=99, and --cap
add=sys_nice arguments are needed to allow the software written in Docker to set the
scheduler parameters. If the host machine has been configured correctly, the software won't
have any issues.

Disclaimer: The C++20 standard has been approved (that is, technically
finalized) by WG21 in a meeting in Prague at the end of February. This
means that the GCC compiler version that this book uses, 8.3.0, does not
include (or has very, very limited support for) the new and cool C++20
features. For this reason, the Docker image does not include the C++20
recipe code. GCC keeps the development of the newest features in
branches (you have to use appropriate flags for that, for example, -
std=c++2a); therefore, you are encouraged to experiment with them by
yourself. So, clone and explore the GCC contracts and module branches
and have fun.

Learning to set and get a scheduler policy
In a system programming context, there are cases where some processes must be handled
differently than others. By differently, we mean the different ways a process gets a
processor time or a different priority. A system programmer must be aware of this and
learn how to interact with the scheduler's API. This recipe will show you how to change the
policy of a process to meet different scheduling requirements.

Scheduling Chapter 11

[243]

How to do it...
This recipe will show you how to get and set the policy of a process alongside the limits that
can be assigned to it. Let's get started:

On a shell, let's open a new source file called schedParameters.cpp. We need1.
to check what the current (default) process policy is. To do this, we'll use
the sched_getscheduler() system call:

#include <sched.h>
#include <iostream>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

int main ()
{
 int policy = sched_getscheduler(getpid());
 switch(policy)
 {
 case SCHED_OTHER: std::cout << "process' policy =
 SCHED_OTHER"
 << std::endl ; break;
 case SCHED_RR: std::cout << "process' policy = SCHED_RR"
 << std::endl; break;
 case SCHED_FIFO: std::cout << "process' policy =
SCHED_FIFO"
 << std::endl; break;
 default: std::cout << "Unknown policy" << std::endl;
 }

Now, we want to assign the SCHED_FIFO policy with a real-time (rt) priority. To2.
make the code portable, we get the min and max from
the sched_get_priority_min and sched_get_priority_max APIs:

 int fifoMin = sched_get_priority_min(SCHED_FIFO);
 int fifoMax = sched_get_priority_max(SCHED_FIFO);
 std::cout << "MIN Priority for SCHED_FIFO = " << fifoMin
 << std::endl;
 std::cout << "MAX Priority for SCHED_FIFO = " << fifoMax
 << std::endl;

 struct sched_param sched;
 sched.sched_priority = (fifoMax - fifoMin) / 2;
 if (sched_setscheduler(getpid(), SCHED_FIFO, &sched) < 0)
 std::cout << "sched_setscheduler failed = "

Scheduling Chapter 11

[244]

 << strerror(errno) << std::endl;
 else
 std::cout << "sched_setscheduler has set priority to = "
 << sched.sched_priority << std::endl;

We should be able to check the new SCHED_FIFO policy that was assigned with3.
the sched_getscheduler() function:

 policy = sched_getscheduler(getpid());
 std::cout << "current process' policy = " << policy << std
 ::endl ;
 return 0;
}

The next section will describe the preceding code in detail.

How it works...
The POSIX standard defines the following policies:

SCHED_OTHER: The normal scheduler policy (that is, not for real-time processes)
SCHED_FIFO: First-in/first-out
SCHED_RR: Round-robin

Here, SCHED_OTHER is the default one and SCHED_FIFO and SCHED_RR are the real-time
ones. Actually, Linux defines SCHED_NORMAL, SCHED_BATCH, and SCHED_IDLE as other
real-time policies. These are defined in the sched.h header file.

Step 1 calls sched_getscheduler() to check the current policy of the process. As
expected, the default is SCHED_OTHER. We passed the input to the getpid() function
(<unistd.h>), which returns the PID of the current process. sched_getscheduler() also
accepts 0, which in this case represents the current process.

Scheduling Chapter 11

[245]

Step 2 has the goal of setting a real-time policy and giving priority to the current process
with the sched_setscheduler() function. We want this process to have a higher priority
over the normal processes running on the machine. Think, for example, of a (soft) real-time
application where the computation cannot be interrupted or if a software interrupt is
received and its processing cannot be postponed. These Linux boxes usually run very few
processes for a dedicated purpose. To achieve this, the policy to set is SCHED_FIFO and the
priority we set is the middle value between the min and max that can be set on the current
system. It is always suggested to check these values with the
sched_get_priority_max() and sched_get_priority_min() functions in order to
write portable code. One thing to highlight is that the sched_setscheduler() function
internally sets the rt_priority field of struct task_struct.

Step 3 checks that SCHED_FIFO has been correctly set by calling the
sched_getscheduler() function, similar to what happened in step 1.

There's more...
SCHED_FIFO and SCHED_RR are the two policies that are defined by POSIX and
implemented on Linux that allocate tasks on processors that are more suitable for real-time
software. Let's go over how they work:

SCHED_FIFO: When a task is returned by this policy, it continues to run until it
blocks (for example, I/O requests), it yields the processor, or a higher priority
task preempts it.
SCHED_RR: This has the exact same logic as SCHED_FIFO but with one difference:
the tasks that are scheduled with this policy have a timeslice assigned so that a
task continues to run until the time slice expires or a higher task preempts it or
yields the processor.

Note that when SCHED_OTHER (or SCHED_NORMAL) implements a preemptive form of
multitasking, SCHED_FIFO and SCHED_RR are cooperative (they are not preempted).

Scheduling Chapter 11

[246]

The Linux main scheduler function loops over all the policies and for each one, it asks the
next task to run. It does this with the pick_next_task() function, which is implemented
by each policy. The main scheduler is defined in kernel/sched.c, which defines
the sched_class struct. This states that each policy must be defined and implemented so
that all the different policies are working properly. Let's take a look at this at a graphical
level:

kernel/sched.c: Defines struct sched_class and loops over the following
policies:

kernel/rt.c (for SCHED_FIFO and SCHED_RR) sets const
struct sched_class rt_sched_class with the specific real-
time policy functions.
kernel/fair.c (for SCHED_NORMAL or SCHED_OTHER) sets const
struct sched_class fair_sched_class with the fair
scheduler-specific functions.

One way of looking at the Linux scheduler design is this: kernel/sched.c defines the
interface and the specific policies beneath the interface. The interface is represented by
the struct sched_class structure. The following is the interface implementation for
SCHED_OTHER/SCHED_NORMAL (the CFS fair scheduler policy):

static const struct sched_class fair_sched_class = {
 .next = &idle_sched_class,
 .enqueue_task = enqueue_task_fair,
 .dequeue_task = dequeue_task_fair,
 .yield_task = yield_task_fair,
 .check_preempt_curr = check_preempt_wakeup,
 .pick_next_task = pick_next_task_fair,
 .put_prev_task = put_prev_task_fair,

#ifdef CONFIG_SMP
 .select_task_rq = select_task_rq_fair,
 .load_balance = load_balance_fair,
 .move_one_task = move_one_task_fair,
 .rq_online = rq_online_fair,
 .rq_offline = rq_offline_fair,
 .task_waking = task_waking_fair,
#endif
 .set_curr_task = set_curr_task_fair,
 .task_tick = task_tick_fair,
 .task_fork = task_fork_fair,
 .prio_changed = prio_changed_fair,
 .switched_to = switched_to_fair,
 .get_rr_interval = get_rr_interval_fair,

Scheduling Chapter 11

[247]

#ifdef CONFIG_FAIR_GROUP_SCHED
 .task_move_group = task_move_group_fair,
#endif
};

The real-time priority range of the SCHED_FIFO and SCHED_RR policies is [1, 99], while
the SCHED_OTHER priority (called nice) is [-20, 10].

See also
The Learning how to set a nice value recipe to see how the real-time priority is
related to the nice priority
The Learning how to yield the processor recipe to learn how to yield a running real-
time task
Linux Kernel Development, Third Edition, by Robert Love

Learning to get the timeslice value
The Linux scheduler offers different policies for allocating processor time to tasks.
The Learning to set and get a scheduler policy recipe shows what policies are available and
how to change them. The SCHED_RR policy, that is, the round-robin policy, is the one that's
used on real-time tasks (with SCHED_FIFO). The SCHED_RR policy assigns a timeslice to
each process. This recipe will show you how to configure the timeslice.

How to do it...
In this recipe, we'll be writing a small program to get the round-robin timeslice by using
the sched_rr_get_interval() function:

On a new shell, open a new file called schedGetInterval.cpp. We have to1.
include <sched.h> for the scheduler capabilities, <iostream.h> to log to the
standard output, and <string.h> to use the strerror function and translate
the errno integer into a readable string:

#include <sched.h>
#include <iostream>
#include <string.h>

int main ()

Scheduling Chapter 11

[248]

{
 std::cout << "Starting ..." << std::endl;

To get the round-robin interval, we have to set the scheduler policy for our2.
process:

 struct sched_param sched;
 sched.sched_priority = 8;
 if (sched_setscheduler(0, SCHED_RR, &sched) == -1)
 std::cout << "sched_setscheduler failed = "
 << strerror(errno)
 << std::endl;
 else
 std::cout << "sched_setscheduler, priority set to = "
 << sched.sched_priority << std::endl;

Now, we can get the interval with the sched_rr_get_interval() function:3.

 struct timespec tp;
 int retCode = sched_rr_get_interval(0, &tp);
 if (retCode == -1)
 {
 std::cout << "sched_rr_get_interval failed = "
 << strerror(errno) << std::endl;
 return 1;
 }

 std::cout << "timespec sec = " << tp.tv_sec
 << " nanosec = " << tp.tv_nsec << std::endl;
 std::cout << "End ..." << std::endl;
 return 0;
}

Let's see how this works under the hood.

How it works...
When a task gets the processor with the SCHED_RR policy, it has priority over the
SCHED_OTHER and SCHED_NORMAL tasks and gets allocated a defined timeslice that
continues to run until the timeslice expires. Higher priority tasks run until they explicitly
yield the processor or block. An important factor for a system programmer is to know the
timeslice for the SCHED_RR policy. This is quite important. If the time slice is too large, other
processes might wait a long time before getting CPU time, while if it is too small, the
system might spend a significant amount of time context switching.

Scheduling Chapter 11

[249]

Step 1 shows the includes that are needed for the rest of the program. <iostream> is for the
standard output, <sched.h> is used to get access to the scheduler features, and
<string.h> is used for the strerror() function.

Step 2 is very important as it sets the SCHED_RR policy for the current process. As you may
have noticed, we passed 0 as the first parameter. This is perfectly fine since the man page of
the sched_setscheduler() function says, If pid equals zero, the policy of the calling thread
will be set.

Step 3 calls the sched_rr_get_interval() function. It accepts two parameters: the PID
and struct timespec. The first is an input parameter, while the latter is an output
parameter that contains the timeslice in the form of {sec, nanoseconds}. For the first
parameter, we could have passed the getpid() function, which returns the PID of the
current process. Then, we simply log the standard output to the timeslice that's returned.

There's more...
Where does the SCHED_RR timeslice come from? The Linux scheduler, as we already know,
has different policies. All of them are implemented in different modules:
kernel/sched_fair.c for SCHED_NORMAL or SCHED_OTHER and kernel/rt.c for
SCHED_RR and SCHED_FIFO. By looking at kernel/rt.c, we can see that
the sched_rr_get_interval() function returns the sched_rr_timeslice() variable,
which is defined on top of the module. We can also see that if sched_rr_timeslice() is
called for the SCHED_FIFO policy, it returns 0.

See also
The Learning how to yield the processor recipe as an alternative to stopping the
running task instead of waiting for the timeslice
The Learning to set and get a scheduler policy recipe
Linux Kernel Development, Third Edition, by Robert Love

Scheduling Chapter 11

[250]

Learning how to set a nice value
The SCHED_OTHER/SCHED_NORMAL policy implements the so-called completely fair
scheduler (CFS). This recipe will show you how to set the nice value for normal processes in
order to increase their priority. We'll see that the nice value is used to weigh the timeslice
that a process has. Priority must not be confused with the real-time priority, which is
specific to the SCHED_FIFO and SCHED_RR policies.

How to do it...
In this recipe, we'll implement a program that will increase the nice value of a process:

On a shell, open a new source file called schedNice.cpp. We need to add some1.
includes and call the nice() system call by passing the value we want to set for
the current process:

#include <string.h>
#include <iostream>
#include <unistd.h>

int main ()
{
 std::cout << "Starting ..." << std::endl;

 if (nice(5) == -1)
 std::cout << "nice failed = " << strerror(errno)
 << std::endl;
 else
 std::cout << "nice value successfully set = " << std::endl;
 while (1) ;

 std::cout << "End ..." << std::endl;
 return 0;
}

In the next section, we'll see how this program works and how the nice value is used to
influence the time a task gets on a processor.

Scheduling Chapter 11

[251]

How it works...
Step 1 basically calls the nice() system call, which increments the static priority of the task
by the given amount. Just to be clear, assuming a process starts with a priority of 0 (which
is the default value for the SCHED_OTHER and SCHED_NORMAL policies), two consecutive
calls of nice(5) will set its static priority to 10.

Let's build and run the schedNice.cpp program:

Here, we can see that, on the left, we have our process running and on the right, we've run
the ps -el command to get the nice values of the running processes. We can see that
the ./a.out process now has a nice value of 5. To give a task a higher priority (and then a
lower value of nice), the process needs to run as root.

There's more...
The struct task_struct structure has three values to represent a task priority: rt_prio,
static_prio, and prio. We discussed rt_prio in the Learning to set and get a scheduler
policy recipe and defined that this field represents the priority for real-time tasks.
static_prio is the struct task_struct field that's used to store the nice value, while
prio contains the actual task priority. The lower static_prio is, the higher the prio
value of the task.

There may be cases where we need to set the nice value of a process at runtime. The
command we should use in this situation is renice value -p pid; for example, renice
10 -p 186.

See also
The Learning how to yield the processor recipe as an alternative to stopping the
running task instead of waiting for the timeslice
The Learning to set and get a scheduler policy recipe

Scheduling Chapter 11

[252]

Learning how to yield the processor
When a task is scheduled with one of the real-time scheduling policies (that is, SCHED_RR or
SCHED_FIFO), you may need to yield the task from the processor (yielding the task means
to relinquish the CPU, making it available to other tasks). As we described in the Learning to
set and get a scheduler policy recipe, when a task is scheduled with the SCHED_FIFO policy, it
does not leave the processor until a certain event occurs; that is, there is no concept of a
timeslice. This recipe will show you how to yield a process with the sched_yield()
function.

How to do it...
In this recipe, we'll develop a program that will yield the current process:

On a shell, open a new source file called schedYield.cpp and type in the1.
following code:

#include <string.h>
#include <iostream>
#include <sched.h>

int main ()
{
 std::cout << "Starting ..." << std::endl;

 // set policy to SCHED_RR.
 struct sched_param sched;
 sched.sched_priority = 8;
 if (sched_setscheduler(0, SCHED_RR, &sched) == -1)
 std::cout << "sched_setscheduler failed = "
 << strerror(errno)
 << std::endl;

 for(;;)
 {
 int counter = 0;
 for(int i = 0 ; i < 10000 ; ++i)
 counter += i;

 if (sched_yield() == -1)
 {
 std::cout << "sched_yield failed = "
 << strerror(errno) << std::endl;
 return 1;

Scheduling Chapter 11

[253]

 }
 }

 // we should never get here ...
 std::cout << "End ..." << std::endl;
 return 0;
}

In the next section, we'll describe how our program and sched_yield() work.

How it works...
When sched_yield() is called on a task scheduled with SCHED_FIFO or SCHED_RR, it is
moved to the end of a queue with the same priority and another task is run. Yields cause a
context switch, so it should be used carefully and when strictly needed.

Step 1 defines the program that shows us how to use sched_yield(). We simulated a
CPU-bound type of process where we check periodically in order to yield the processor.
Before doing that, we had to set the policy type for this process to SCHED_RR and the
priority to 8. As you can see, there is no information about the process (PID) to yield, so it
assumes that the current task will be yielded.

There's more...
sched_yield() is a system call that can be used by userspace applications. Linux usually
calls the yield() system call, which has the advantage of keeping the process in
a RUNNABLE state.

See also
The Learning to set and get a scheduler policy recipe to review how to change a
policy's type
Linux Kernel Development, Third Edition, by Robert Love

Scheduling Chapter 11

[254]

Learning about processor affinity
In a multi-processor environment, the scheduler has to deal with task allocation on multiple
processors or cores. From a Linux perspective, processes and threads are the same thing;
both are represented by the struct task_struct kernel structure. There may be the need
to force two or more tasks (that is, threads or processes) to run on the same processor to
leverage, for example, the cache by avoiding the cache invalidation. This recipe will teach
you how to set a hard affinity on a task.

How to do it...
In this recipe, we'll develop a small piece of software in which we'll force it to run on a
CPU:

On a shell, open a new source file called schedAffinity.cpp. What we want is1.
to check the affinity mask for the newly created process. Then, we need to
prepare the cpu_set_t mask to set the affinity on the CPU to 3:

#include <iostream>
#include <sched.h>
#include <unistd.h>

void current_affinity();
int main ()
{
 std::cout << "Before sched_setaffinity => ";
 current_affinity();

 cpu_set_t cpuset;
 CPU_ZERO(&cpuset);
 int cpu_id = 3;
 CPU_SET(cpu_id, &cpuset);

Now, we are ready to call the sched_setaffinity() method and force the2.
hard affinity for the current task on CPU number 3. To check whether the affinity
has been set correctly, we'll also print the mask:

 int set_result = sched_setaffinity(getpid(),
 sizeof(cpu_set_t),
 &cpuset);
 if (set_result != 0)
 {
 std::cerr << "Error on sched_setaffinity" << std::endl;

Scheduling Chapter 11

[255]

 }

 std::cout << "After sched_setaffinity => ";
 current_affinity();
 return 0;
}

Now, we have to develop the current_affinity() method, which will just3.
print the mask for the processors:

// Helper function
void current_affinity()
{
 cpu_set_t mask;
 if (sched_getaffinity(0, sizeof(cpu_set_t), &mask) == -1)
 {
 std::cerr << "error on sched_getaffinity";
 return;
 }
 else
 {
 long nproc = sysconf(_SC_NPROCESSORS_ONLN);
 for (int i = 0; i < nproc; i++)
 {
 std::cout << CPU_ISSET(i, &mask);
 }
 std::cout << std::endl;
 }
}

What would happen if we set the affinity on a nonexistent CPU (for example, cpu_id =
12)? Where in the kernel is the affinity mask information stored? We'll answer these and
other questions in the next section.

How it works...
Step 1 does two things. First, it prints the default affinity mask. We can see that the process
is scheduled to run on all the processors. Second, it prepares cpu_set_t, which represents
a set of CPUs, by initializing it with the CPU_ZERO macro and setting the affinity on CPU 3
with the CPU_SET macro. Note that the cpu_set_t object must be manipulated directly but
only via the macro provided. A full list of macros is documented on the man page: man
cpu_set.

Scheduling Chapter 11

[256]

Step 2 calls the sched_setaffinity() system call to set the affinity (specified in the mask
variable, that is, cpu_set_t) on the process with the PID returned by the getpid()
function. We could have passed 0 instead of getpid(), meaning the current process. After
the setaffinity function, we printed the CPU's mask to verify the correct new value.

Step 3 contains the definition of the helper function we used to print the standard output
onto the mask for the CPUs. Note that we get the number of available processors through
the sysconf() system call and by passing _SC_NPROCESSORS_ONLN. This function checks
the system information that's present in the /sys/ folder. Then, we loop over each
processor and call the CPU_ISSET macro while passing i-th. The CPU_ISSET macro will
set the respective bit for the i-th CPU.

If you try to modify int cpu_id = 3 and pass a different processor, that is, a nonexisting
one (for example, 15), the sched_setaffinity() function will obviously fail,
returning EINVAL and leaving the affinity mask untouched.

Let's take a look at the program now:

As we can see, the CPUs mask is set to 1 for each processor. This means that the process, at
this stage, can be scheduled on each CPU. Now, we set the mask, asking the scheduler to
run the process (hard affinity) only on CPU 3. When we call sched_getaffinity(), the
mask reflects this.

There's more...
When we call the sched_setaffinity() system call, we ask the scheduler to run a task
on a specific processor. We call this hard affinity. There is also a soft affinity. This is
automatically managed by the scheduler. Linux always tries to optimize resources and
avoids cache invalidation in order to speed up the performance of the whole system.

Scheduling Chapter 11

[257]

When we set the affinity mask through the macro, we are basically setting
cpus_allowed in the task_struct structure. This makes a lot of sense since we're setting
the affinity of a process or thread on one or more CPUs.

If you want to set the affinity of a task to more than one CPU, the CPU_SET macro must be
called for the CPUs you want to set.

See also
The Learning how to yield the processor recipe
The Learning to get the timeslice value recipe
The Learning to set and get a scheduler policy recipe

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Embedded Programming with C++17
Maya Posch

ISBN: 978-1-78862-930-0

Choose the correct type of embedded platform to use for a project
Develop drivers for OS-based embedded systems
Use concurrency and memory management with various microcontroller units
(MCUs)
Debug and test cross-platform code with Linux
Implement an infotainment system using a Linux-based single board computer
Extend an existing embedded system with a Qt-based GUI
Communicate with the FPGA side of a hybrid FPGA/SoC system

https://www.packtpub.com/application-development/hands-embedded-programming-c17

Other Books You May Enjoy

[259]

Advanced C++ Programming Cookbook
Dr. Rian Quinn

ISBN: 978-1-83855-991-5

Solve common C++ development problems by implementing solutions in a more
generic and reusable way
Achieve different levels of exception safety guarantees by introducing precise
declarations
Write library-quality code that meets professional standards
Practice writing reliable, performant code that exposes consistent behavior in
programs
Understand why you need to implement design patterns and how it’s done
Work with complex examples to understand various aspects of good library
design

https://www.packtpub.com/programming/advanced-c-cookbook

Other Books You May Enjoy

[260]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access control lists (ACLs) 165
address space 90
aligned memory
 allocating 105, 106, 107
async 58
atomic feature
 working 45, 46
automatic memory
 versus dynamic memory 96, 98
automatic type deduction 43

B
Boost library 80

C
C++ Core Guidelines
 about 64, 65
 reference link 64
C++ standards, concepts
 clock 213
 duration 213
 time point 213
C++ time interface
 about 212
 learning 213, 215
 working 214
C++20 calendar and time zone
 using 216, 217, 219
 working 218
C++
 primitive types 37, 38, 39
child programs
 compiling 87
communication endpoint
 about 175

 working with 176, 177
concepts
 about 67
 using 67, 68
concurrency 57, 58
concurrency and parallelism
 reference link 139
connection-oriented communication
 basics 169, 170, 171
connectionless-oriented communication
 basics 172, 174
custom allocator
 implementing 115, 116, 117

D
daemon process
 about 91
 creating 91, 92, 93, 94
 working 93
data model 38
date and time utilities
 reference link 219
decltype 43, 44
dynamic memory
 versus automatic memory 96, 98

E
endianness
 dealing with 193, 194, 195
essential freedoms
 reference link 11

F
FIFO (named pipes)
 using 153, 155, 156
files

[262]

 working with 205, 207, 208, 209
Filesystem library 62, 63, 64
First-In First-Out (FIFO) 145
fork system call 82
fork-exec system call 83
free software definition 11
Free Software Foundation (FSF) 11

G
GDB
 used, for debugging program 23, 25, 26, 27
GNU Compiler Collection (GCC) 11, 39
GNU GDB Project
 reference link 27
GNU is Not Unix (GNU) 10
GNU Network Object Model Environment

(GNOME) 11
GNU/Linux operating system 10
Guideline Supporting Library (GSL)
 adding, in makefile 66

H
hard affinity 256
heap 98
heap memory 90
Hurd 10

I
I/O strings
 manipulating 201, 203, 204, 205
I/O
 implementing, from console 197, 199, 200
 implementing, to console 197, 198, 200
inter-thread communication
 with condition variables 140, 141, 143, 144
 with simple events 137, 139
Internet Assigned Numbers Authority (IANA) 177
Internet Protocol (IP) 174
interprocess communication (IPC)
 about 145, 148, 149, 150
 FIFO 147
 message queue 147
 pipe 147
 shared memory 147
 types 147

invoking process's process group 239

J
Journaled File System (JFS) 12

L
lambda expression 40, 41, 42
lambda function 40
least significant byte (LSB) 194
Light-Weight Process (LWP) 28
Linux code error
 handling 32, 33
Linux kernel documentation
 reference link 40
Linux timing, concepts
 clock 219
 duration 219
 time point 219
Linux timing
 learning 219, 220, 223
 working 222, 223
Linux
 about 9
 architecture 9, 11
 kernel 10
 kernel modules 10
 shell 12
 system libraries 10
 users 16
lvalue reference 56

M
makefile
 GSL, adding in 66
 used, for compiling program 20, 22, 23
 used, for linking program 22
memory alignment
 checking 108, 109, 110
memory models 47
memory-mapped I/O
 dealing with 110, 113, 115
message queues
 about 149
 using 157, 158, 160, 161
Microsoft GSL

[263]

 reference link 66
modules
 about 74
 working 74, 75, 76
monotonic clock 215
most significant byte (MSB) 194
move semantics
 working 53, 54, 55, 56

N
Network Time Protocol (NTP) 223
nullptr
 working 47, 48

O
orthogonal 76

P
parallel 90
parent programs
 compiling 87
pipes
 about 148
 using 150, 152, 153
platform-specific Application Binary Interface

(psABI) 39
pool 117
Portable Operating System Interface (POSIX) 78
POSIX mutexes
 using 119, 120, 121, 122
POSIX semaphores
 advanced usage 127, 128, 129, 131
 using 123, 124, 125, 126
primitive types, C++ 37, 38, 39
process group ID (PGID) 93
process identifier (PID) 79, 151
process
 killing 85, 86, 87
 putting, to sleep with clock_nanosleep() method

224

 setting up 79, 80, 81, 83, 250, 251
 working 82
processes and threads
 controlling 27, 28, 29
 handling 30, 31

processor affinity
 about 254, 255
 learning 256
 working 256
processor
 yielding 252, 253
pthread_mutex_lock() function 122

R
Ranges
 working 72
reference counting 53
Resource Acquisition Is Initialization (RAII) 132
rvalue reference 53, 55

S
SCHED_FIFO policies 245
SCHED_RR policies 245
scheduler policy
 obtaining 242, 244, 245, 247
 setting 242, 244, 245, 247
 working 245
shared memory
 about 149
 using 162, 164, 165
shared_ptr.h
 reference link 53
shared_ptr
 about 49
 using 52, 102, 103, 104
shared_ptr_base.h
 reference link 53
shell
 about 12
 commands, for adding and removing file and

directories 15
 commands, working with 13, 14, 16
signals
 about 231, 232
 default actions 230, 231
 ignoring 232, 234, 235
 learning 230
 sending, to another process 238, 239
 trapping 235, 236, 237
smart pointers

 using 49, 50, 51
span
 using 70, 71
standard de facto tool 23
Standard Template Library (STL) 115
static memory 90
synchronization building blocks 132, 134, 135,

137

T
task-based threading 58, 61
TCP/IP
 used, for communicating with processes on

another machine 178, 180, 182, 184, 186
template class, parameters
 period 214
 representation 214
thread
 creating 88, 89, 90
three-way handshake 170
time overrun
 about 227
 dealing with 224, 225
 working 226, 227
timeslice value

 obtaining 247, 248, 249
 working 248
trailing-return-type 42
Translation Units (TUs) 77
Transport Control Protocol (TCP) 169

U
UDP/IP
 used, for communicating with processes on

another machine 186, 188, 189, 191, 193
unique_ptr
 about 49
 using 51, 99, 100, 101
universal reference 56
User Data Protocol (UDP) 173
users
 commands for administration activities, setting

up 16, 18, 20

V
variables 23
Voice over Internet Protocol (VoIP) 186

W
wall clock time 215

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with System Programming
	Technical requirements
	Learning the Linux fundamentals - architecture
	How to do it...
	How it works...

	Learning the Linux fundamentals - shell
	How to do it...
	How it works...
	There's more...
	See also

	Learning the Linux fundamentals - users
	How to do it...
	How it works...
	There's more...
	See also

	Using a makefile to compile and link a program
	How to do it...
	How it works...
	There's more...

	Using GDB to debug a program
	How to do it...
	How it works...
	There's more...

	Learning the Linux fundamentals - processes and threads
	How to do it...
	How it works...
	There's more...

	Handling a Linux bash error
	How to do it...
	How it works...
	There's more...

	Handling Linux code error
	How to do it...
	How it works...
	There's more...

	Chapter 2: Revisiting C++
	Technical requirements
	Understanding C++ primitive types
	How to do it...
	How it works...
	There's more...
	See also

	Lambda expressions
	How to do it...
	How it works...
	There's more...
	See also

	Automatic type deduction and decltype
	How to do it...
	How it works...
	There's more...
	See also

	Learning how atomic works
	How to do it...
	How it works...
	There's more...
	See also

	Learning how nullptr works
	How to do it...
	How it works...
	There's more...
	See also

	Smart pointers – unique_ptr and shared_ptr
	How to do it...
	How it works...
	There's more...
	See also

	Learning how move semantics works
	How to do it...
	How it works...
	There's more...
	See also

	Understanding concurrency
	How to do it...
	How it works...
	There's more...
	See also

	Understanding the filesystem
	How to do it...
	How it works...
	There's more...
	See also

	The C++ Core Guidelines
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding GSL in your makefile
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Understanding concepts
	How to do it...
	How it works...
	There's more...
	See also

	Using span
	How to do it...
	How it works...
	There's more...
	See also

	Learning how Ranges work
	How to do it...
	How it works...
	There's more...
	See also

	Learning how modules work
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Dealing with Processes and Threads
	Technical requirements
	Starting a new process
	How to do it...
	How it works...
	There's more...
	See also

	Killing a process
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a new thread
	How to do it...
	How it works...
	There's more...
	See also

	Creating a daemon process
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Deep Dive into Memory Management
	Technical requirements
	Learning automatic versus dynamic memory
	How to do it...
	How it works...
	There's more...
	See also

	Learning when to use unique_ptr, and the implications for size
	How to do it...
	How it works...
	There's more...
	See also

	Learning when to use shared_ptr, and the implications for size
	How to do it...
	How it works...
	There's more...
	See also

	Allocating aligned memory
	How to do it...
	How it works...
	There's more...
	See also

	Checking whether the memory allocated is aligned
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with memory-mapped I/O
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with allocators hands-on
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Using Mutexes, Semaphores, and Condition Variables
	Technical requirements
	Using POSIX mutexes
	How to do it...
	How it works...
	There's more...
	See also

	Using POSIX semaphores
	How to do it...
	How it works...
	There's more...
	See also

	POSIX semaphores advanced usage
	How to do it...
	How it works...
	There's more...
	See also

	Synchronization building blocks
	How to do it...
	How it works...
	There's more...
	See also

	Learning inter-thread communication with simple events
	How to do it...
	How it works...
	There's more...
	See also

	Learning inter-thread communication with condition variables
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Pipes, First-In First-Out (FIFO), Message Queues, and Shared Memory
	Technical requirements
	Learning the different types of IPC
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to use the oldest form of IPC – pipes
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to use FIFO
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to use message queues
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to use shared memory
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Network Programming
	Technical requirements
	Learning the basics of connection-oriented communication
	How to do it...
	How it works...
	There's more...
	See also

	Learning the basics of connectionless-oriented communication
	How to do it...
	How it works...
	There's more...
	See also

	Learning what a communication endpoint is
	How to do it...
	How it works...
	There's more...
	See also

	Learning to use TCP/IP to communicate with processes on another machine
	How to do it...
	How it works...
	There's more...
	See also

	Learning to use UDP/IP to communicate with processes on another machine
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with endianness
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Dealing with Console I/O and Files
	Technical requirements
	Implementing I/O to and from the console
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to manipulate I/O strings
	How to do it...
	How it works...
	There's more...
	See also

	Working with files
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Dealing with Time Interfaces
	Technical requirements
	Learning about the C++ time interface
	How to do it...
	How it works...
	There's more...
	See also

	Using the C++20 calendar and time zone
	How to do it...
	How it works...
	There's more...
	See also

	Learning the Linux timing
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with time sleep and overruns
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 10: Managing Signals
	Technical requirements
	Learning all of the signals and their default actions
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to ignore a signal
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to trap a signal
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to send a signal to another process
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: Scheduling
	Technical requirements
	Learning to set and get a scheduler policy
	How to do it...
	How it works...
	There's more...
	See also

	Learning to get the timeslice value
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to set a nice value
	How to do it...
	How it works...
	There's more...
	See also

	Learning how to yield the processor
	How to do it...
	How it works...
	There's more...
	See also

	Learning about processor affinity
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

