


Fullstack React with TypeScript 
Learn Pro Patterns for Hooks, Testing, Redux, SSR, and GraphQL 

Written by Maksim Ivanov and Alex Bespoyasov 
Edited by Nate Murray 

© 2020 Fullstack.io 

All rights reserved. No portion of the book manuscript may be 
reproduced, stored in a retrieval system, or transmitted in any form or by 
any means beyond the number of purchased copies, except for a single 
backup or archival copy. The code may be used freely in your projects, 
commercial or otherwise. 

The authors and publisher have taken care in preparation of this book, 
but make no expressed or implied warranty of any kind and assume no 
responsibility for errors or omissions. No liability is assumed for 
incidental or consequential damagers in connection with or arising out 
of the use of the information or programs container herein. 

Published by \newline 

 



Contents

Book Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
EARLY DRAFT VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Join Our Discord Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Bug Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Be notified of updates via Twitter . . . . . . . . . . . . . . . . . . . . . . . . . 1
We’d love to hear from you! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
How To Get The Most Out Of This Book . . . . . . . . . . . . . . . . . . . . 2
What is Typescript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Why Use Typescript With React . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A Necessary Word Of Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Your First React and Typescript Application: Building Trello with Drag
and Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
What Are We Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Preview The Final Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
How to Bootstrap React + Typescript App Automatically? . . . . . . . . . . 17
App Layout. React + Typescript Basics . . . . . . . . . . . . . . . . . . . . . . 28
Render Children Inside The Columns . . . . . . . . . . . . . . . . . . . . . . 41
Create The Card Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Render Everything Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Component For Adding New Items. State, Hooks, and Events . . . . . . . . 44
Add Global State And Business Logic . . . . . . . . . . . . . . . . . . . . . . 56
Using useReducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Implement State Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS

Adding Items. Typescript Interfaces Vs Types . . . . . . . . . . . . . . . . . . 68
Moving Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Implement Custom Dragging Preview . . . . . . . . . . . . . . . . . . . . . . 86
Move The Dragged Item Preview . . . . . . . . . . . . . . . . . . . . . . . . . 87
Hide The Default Drag Preview . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Make The Custom Preview Visible . . . . . . . . . . . . . . . . . . . . . . . . 91
Tilt The Custom Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Drag Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Update The Reducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Implement The useDrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Drag a Card To an Empty Column . . . . . . . . . . . . . . . . . . . . . . . . 99
Saving State On Backend. How To Make Network Requests . . . . . . . . . 100
Loading The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

How to Test Your Applications: Testing a Digital Goods Store . . . . . . . . 115
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Initial Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Writing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Home Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Testing React Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Congratulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Patterns in React Typescript Applications: Making Music with React . . . 193
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
What We’re Going to Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
First Steps and Basic Application Layout . . . . . . . . . . . . . . . . . . . . 195
A Bit of a Music Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Third Party API and Browser API . . . . . . . . . . . . . . . . . . . . . . . . . 208
Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Creating a Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Playing a Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Mapping Real Keys to Virtual . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Instruments List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Render-Props . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Higher Order Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



CONTENTS

Next.js and Static Site Generation: Building a Medium-like Blog . . . . . . 262
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
What we’re going to build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Pre-rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Next.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Setting up a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
First page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Basic application layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Center component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Footer component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Custom _app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Application theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Custom _document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Site front page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Page 404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Post page template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
“Backend API” server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Frontend API client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Updating main page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Pre-render post page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Category page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Adding Breadcrumbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Building a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Using Redux and TypeScript - (COMING SOON) . . . . . . . . . . . . . . . . 312

GraphQL, React, and TypeScript (COMING SOON) . . . . . . . . . . . . . . . 313

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Revision 1p (05-20-2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315



CONTENTS 1

Book Revision

Revision 1p - 2020-05-19

EARLY DRAFT VERSION

This version of the book is an early draft. Our expectation is that the code works, but
some of the manuscript has not been through final edits.

If you’d like to report any bugs or typos, join our Discord or email us below.

Join Our Discord Channel

If you’d like to get help, help others, and hang out with other readers of this book,
come join our Discord channel:

https://newline.co/discord/¹

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at:us@fullstack.io.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow us at @full-
stackio².

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list
of testimonials on the website! Email us at: us@fullstack.io³.

¹https://newline.co/discord/
²https://twitter.com/fullstackio
³mailto:us@fullstack.io

https://newline.co/discord/
https://twitter.com/fullstackio
https://twitter.com/fullstackio
mailto:us@fullstack.io
https://newline.co/discord/
https://twitter.com/fullstackio
mailto:us@fullstack.io


Introduction
Welcome to Fullstack React with TypeScript! React and TypeScript are a powerful
combination that can prevent bugs and help you (and your team) ship products faster.
But understanding idiomatic React patterns and getting the typings setup isn’t always
straightforward.

This practical, hands-on book is a guide that will have you (and your team) writing
React apps with TypeScript (and hooks) in no time.

This book consists of several sections. Each section covers one practical case of using
Typescript with React.

Your First React and Typescript Application: Building Trello with Drag and
Drop: There you will learn how to bootstrap a React Typescript application and all
the basics of using React with Typescript. We will build a kanban board application
like Trello that will store it’s state on backend.

Testing React With TypeScript: Testing a Digital-Goods Store:. In this section
you will set up your testing environment and learn how to test your application. We
will take an online store application and cover it with tests.

Patterns in React Typescript Applications: Making Music with React: Making
Music with React. Here we cover Higher Order Components (HOCs) and render
props React patterns. We show when are they useful and how to use them with
Typescript. In this section we will build a virtual piano that supports different sound
sets.

Next.js and Static Site Generation: Building a Medium-like Blog Building
Medium with SSG. React can be rendered server-side. It allows to create multi-page
interactive websites. In this section we cover the basics of server-side generation
with React and then we build an advanced application using NextJS framework. The
example application will be blogging platform (like Medium).

State Management With Redux and Typescript. (coming soon – Summer 2020)
Some React applications are so complex that they require using some external state



Introduction 2

management library. Redux is a solid choice in this case. It is worth learning how
to use it with Typescript. In this section we will build a drawing application with
undo/redo support. It will also let you save your drawings on backend.

VI GraphQLWith React And Typescript. (coming soon – Summer 2020) GraphQL
is a query language that allows to create flexible APIs. Facebook, Github, Twitter
and a lot of other companies provide GraphQL APIs. Typescript works pretty well
with GraphQL. In this section we will build a Github issue viewer.

We recommend you to read the book in linear order, from start to finish. The sections
are arranged from basic topics to more complex. Most sections assume that you are
familiar with topics explained in previous sections.

How To Get The Most Out Of This Book

Prerequisites

In this book we assumed that you have at least the following skills:

• basic Javascript knowledge (working with functions, objects, and arrays)
• basic React understanding (at least general idea of component based approach)
• some command line skill (you know how to run a command in terminal)

Here we mostly focus on specifics of using Typescript with React and some other
popular technologies.

The instructions we give in this book are very detailed, so if you lack some of the
listed skills - you can still follow along with the tutorials and be just fine.

Running Code Examples

Each section has an example app shipped with it. You can download code examples
from the same place where you purchased this book.

If you have any trouble finding or downloading the code examples, email us at
us@fullstack.io⁴.

⁴mailto:us@fullstack.io

mailto:us@fullstack.io
mailto:us@fullstack.io


Introduction 3

In the beginning of each section you will find instructions of how to run the example
app. In order to run the examples you need a terminal app and NodeJS installed on
your machine.

Make sure you have NodeJS installed. Run node -v, it should output your current
NodeJS version:

$ node -v

v10.19.0

Here are instructions for installing NodeJS on different systems:

Windows

To work with examples in this book we recommend installing Cmder⁵ as a terminal
application.

We recommend installing node using nvm-windows⁶. Follow the installation instruc-
tions on the Github page.

Then run nvm to get the latest LTS version of NodeJS:

nvm install --lts

It will install the latest available LTS version.

Mac

Mac OS has a Terminal app installed by default. To launch it toggle Spotlight, search
for terminal and press Enter.

Run the following command to install nvm⁷:

⁵https://cmder.net/
⁶https://github.com/coreybutler/nvm-windows
⁷https://github.com/nvm-sh/nvm

https://cmder.net/
https://github.com/coreybutler/nvm-windows
https://github.com/nvm-sh/nvm
https://cmder.net/
https://github.com/coreybutler/nvm-windows
https://github.com/nvm-sh/nvm


Introduction 4

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/inst\

all.sh | bash

Then run nvm to get the latest LTS version of NodeJS:

nvm install --lts

This command will also set the latest LTS version as default, so you should be all set.

If you face any issues follow the troubleshooting guide for Mac OS⁸.

Linux

Most Linux distributions come with some terminal app provided by default. If you
use Linux - you probably know how to launch terminal app.

Run the following command to install nvm⁹:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/inst\

all.sh | bash

Then run nvm to get the latest LTS version of NodeJS:

nvm install --lts

In case of problems with installation follow the troubleshooting guide for Linux¹⁰.

Code Blocks And Context

Code Block Numbering

In this book, we build example applications in steps. Every time we achieve a
runnable state - we put it in a separate step folder.

⁸https://github.com/nvm-sh/nvm#troubleshooting-on-macos
⁹https://github.com/nvm-sh/nvm
¹⁰https://github.com/nvm-sh/nvm#troubleshooting-on-linux

https://github.com/nvm-sh/nvm#troubleshooting-on-macos
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-linux
https://github.com/nvm-sh/nvm#troubleshooting-on-macos
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-linux


Introduction 5

1 01-first-app/

2 ├── step1

3 ├── step2

4 ├── step3

5 ... // other steps

If at some point in the chapter we achieve the state that we can run - we will tell you
how to run the version of the app from the particular step.

Some files in that folders can have numbered suffixes with *.example word in the
end:

1 src/AddNewItem0.tsx.example

If you see this - it means that we are building up to something bigger. You can jump
to the file with same name but without suffix to see a completed version of it.

Here the completed file would be src/AddNewItem.tsx.

Reporting Issues

We did our best to make sure that our instructions are correct and code samples don’t
contain errors. There is still a chance that you will encounter problems.

If you find a place where a concept isn’t clear or you find an inaccuracy in our
explanations or a bug in our code, email us¹¹! We want to make sure that our book
is precise and clear.

Getting Help

If you have any problems working through the code examples in this book, email
us¹².

To make it easier for us to help you include the following information:

¹¹mailto:fullstack-react-typescript@newline.co
¹²mailto:fullstack-react-typescript@newline.co

mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co


Introduction 6

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.13.2, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?
• What have you tried already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

Ideally also provide a link to a git repository where we can reproduce an issue you
are having.

What is Typescript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript
- typescriptlang.org¹³.

Typescript allows you to specify types for values in your code, so you can develop
applications with more confidence.

Using Types In Your Code

Consider this Javascript example. Here we have a function that verifies that password
has at least eight characters:

function validatePasswordLength(password) {

return password.length >= 8;

}

When you pass it a string that has at least eight characters it will return true.

validatePasswordLength("123456789") // Returns true

Someone might accidentally pass a numeric value to this function:

¹³https://typescriptlang.org

https://typescriptlang.org/
https://typescriptlang.org/


Introduction 7

validatePasswordLength(123456789) // Returns false

In this case the function will return false. Even though the function was designed to
only work with strings you won’t get an error saying that you misused the function.

It can cause nasty run-time bugs that might be hard to catch.

With typescript we can restrict the values that we pass to our function to only be
strings:

function validatePasswordLength(password: string) {

return password.length >= 8;

}

validatePasswordLength(123456789) // Argument of type '123456789' is no\

t assignable to parameter of type 'string'.

Now if we try to call our function with the wrong type - Typescript typechecker will
give us an error.

Typescript typechecker can tell if we have an error in our code just by analysing
the syntax. That means that you won’t have to run your program. Most code editors
support Typescript so the error will be immediately highlighted when you will try
to call the function with the wrong value type.

Strings and numbers are examples of built-in types in Typescript. Typescript supports
all the types available in Javascript and adds some more. We will get familiar with
a lot of them during next chapters. But the coolest thing is that you can define your
own types.

Defining Custom Types

Let’s say we have a greet function that works with user objects. It generates a
greeting message using provided first and last name.



Introduction 8

function greet(user){

return `Hello ${user.firstName} ${user.lastName}`;

}

How can we make sure that this function recieves the input of correct type?

We can define our own type User and specify it as a type of our function user

argument:

type User = {

firstName: string;

lastName: string;

}

function greet(user: User){

return `Hello ${user.firstName} ${user.lastName}`;

}

Now our function will only accept objects that match the defined User type.

greet({firstName: "Maksim", lastName: "Ivanov"}) // Returns "Hello Maks\

im Ivanov!"

If we’ll try to pass something else - we’ll get an error.

greet({}) // Argument of type '{}' is not assignable to parameter of ty\

pe 'User'.

// Type '{}' is missing the following properties from type 'U\

ser': firstName, lastName

Benefits Of Using Typescript

Preventing errors. As you can see with Typescript we can define the interfaces for
the parts of our program, so we can be sure that they interact correctly. It means they



Introduction 9

will have clear contracts of communicating with each other which will significantly
reduce the amount of bugs.

Typescript contracts by which parts of your programm communicate.

If on top of that we cover our code with unit tests - BOOM, our application becomes
rock-solid. Now we can add new features with confidence, without fear of breaking
it.

There is a research paper¹⁴ showing that just by using typed language you
will get 15% less bugs in your code. There is also an interesting paper about
unit tests¹⁵ stating that products where TDD was applied had bettween
40% and 90% decrease in pre-relese bug density.

Better Developer Experience. When you use Typescript you also get better code
suggestions in your editor, which makes it easier to work with large and unfamiliar
codebases.

Why Use Typescript With React

Revolutionary thing about React is that it allows you to describe your application as
a tree of components.

¹⁴http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
¹⁵http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf

http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf
http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf


Introduction 10

Component can represent an element, like a button or an input. It can be a group
of elements representing a login form. Or it can be a complete page that consists of
multipler simpler components.

Components can pass the information down the tree, from parent to child. You can
also pass down functions functions as callbacks. So if something happens in child
component it can notify it’s parent by calling the passed callback function.

This is where Typescript becomes very handy. You can use it to define interfaces of
your components, so that you can be sure that your component gets only correct
inputs.

If you worked with React before you probably know that you can specify compo-
nent’s interface using prop-types.

import PropTypes from 'prop-types';

const Greeting = ({name}) => {

return (

<h1>Hello, {name}</h1>

);

}

Greeting.propTypes = {

name: PropTypes.string

};

If you could do with prop-types - why would you need Typescript?

For several reasons:

• You don’t need to run your application to know if you have type errors.
Typescript can be run by your code editor so you can see the errors just as
you make them.

• You can only use prop-types with components. In your application you will
probably have functions and classes that are not using React. It is important to
be able to provide types for them as well.



Introduction 11

• Typescript is just more powerfull. It gives you more options to define the types
and then it allows you to use this type information in many different ways. We
will demonstrate you examples of it in the next chapters.

A Necessary Word Of Caution

Typescript does not catch run-time type errors. It means that you can write the code
that will pass the type check, but you will get an error upon execution.

function messUpTheArray(arr: Array<string | number>): void {

arr.push(3);

}

const strings: Array<string> = ['foo', 'bar'];

messUpTheArray(strings);

const s: string = strings[2];

console.log(s.toLowerCase()) // Uncaught TypeError: s.toLowerCase is no\

t a function

Try to launch this code example in Typescript sandbox¹⁶. You will get Uncaught
TypeError: s.toLowerCase is not a function error.

Here we said that our messUpTheArray accepts an array containing elements of type
string or number. Then we passed to it our strings array that is defined as an array
of string elements. Typescript allows this because it thinks that types Array<string
| number> and Array<string> match.

Usually it is convenient because a an array that is defined as having number or string
elements can actually have only strings.

¹⁶https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/
GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+
fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA

https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA


Introduction 12

const stringsAndNumbers: Array<string | number> = ['foo', 'bar'];

In our case it allowed a bug to slip through the type checking.

It also means that you have to be extra careful with the data obtained through
network requests or loaded from the file system.

During this book we demonstrate the techniques that allow to minimize the risk of
such issues.



Your First React and Typescript
Application: Building Trello with
Drag and Drop
Introduction

In this part of the book, we will create our first React + TypeScript application.

We will bootstrap the file structure using the create-react-app CLI. If you’ve
worked with React before - you might be familiar with it. If you haven’t heard about
it yet - no worries, I will talk about it in more detail further in this chapter.

I will show you the file structure it generates and then I’ll tell you what is the purpose
of each file there.

Then we’ll create our components. You’ll see how to use Typescript to specify the
props.

We’ll talk about using Javascript libraries in your Typescript project. Some of them
are compatible by default, and some require you to install special @types packages.

By the end of this chapter, we will have the application layout. In the next chapter,
we’ll add the drag-and-drop and the business logic to it.

Prerequisites

There are a bunch of requirements before you start working with this chapter.

First of all, you need to know how to use the command line. On Mac, you can
use Terminal.app, it’s available by default. All Linux distributions also have some



Your First React and Typescript Application: Building Trello with Drag and Drop 14

preinstalled terminal applications. On Windows I recommend using Cygwin¹⁷ or
Cmder¹⁸. If you are more experienced - you can useWindows Subsystem for Linux¹⁹.

You will need a code editor with Typescript support. I recommend using VSCode, it
supports Typescript out of the box.

Make sure you have Node 10.16.0 or later. You can use nvm²⁰ on Mac or Linux to
switch Node versions. For Windows there is nvm-windows²¹.

You also need to know how to use node package managers. In this chapter examples,
I will use Yarn²². You can use npm²³ if you want.

All the examples for this chapter contain yarn.lock files, remove them if
you want to use npm to install dependencies.

You need to have some React understanding. Specifically, you have to know how to
use functional components and React hooks. In this example, we won’t use class-
based components. If you don’t feel confident it might be worth visiting React
Documentation²⁴ to refresh your knowledge.

What Are We Building

We will create a simplified version of a kanban board. A popular example of such an
application is Trello.

¹⁷https://www.cygwin.com/
¹⁸https://cmder.net/
¹⁹https://docs.microsoft.com/en-us/windows/wsl/install-win10
²⁰https://github.com/creationix/nvm#installation
²¹https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
²²https://yarnpkg.com/
²³https://www.npmjs.com/
²⁴https://reactjs.org/docs/getting-started.html

https://www.cygwin.com/
https://cmder.net/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/creationix/nvm#installation
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
https://yarnpkg.com/
https://www.npmjs.com/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.cygwin.com/
https://cmder.net/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/creationix/nvm#installation
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
https://yarnpkg.com/
https://www.npmjs.com/
https://reactjs.org/docs/getting-started.html


Your First React and Typescript Application: Building Trello with Drag and Drop 15

Trello board

In Trello, you can create tasks and organize them into lists. You can drag both cards
and lists to reorder them. You can also add comments and attach files to your tasks.

In our application we will recreate only the core functionality: creating tasks, making
lists and dragging them around.

Preview The Final Result

We will build our app together from scratch, and I will explain every step as we go,
but to get a sense of where we’re going it’s helpful if you check out the result first.

This book has an attached zip archive with examples for each step. You can find the
completed example in code/01-first-app/completed.

Unzip the archive and cd to the app folder.

cd code/01-first-app/completed

When you are there - install the dependencies and launch the app:



Your First React and Typescript Application: Building Trello with Drag and Drop 16

yarn && yarn start

It should also open the app in the browser. If it didn’t happen - navigate to
http://localhost:3000 and open it manually.

Final result

Our app will have a bunch of columns that you can drag around. Each column
represents a list of tasks.

Each task is rendered as a draggable card. You can drag each card inside the column
and between them.

You can create new columns by clicking the button that says “+ Add new list”. Each
column also has a button at the bottom that allows creating new cards.

For now, our app doesn’t persist any state and we don’t send data to a server, but
we’ll add these features later on.

Try to create new cards and columns and drag them around.



Your First React and Typescript Application: Building Trello with Drag and Drop 17

How to Bootstrap React + Typescript App
Automatically?

Now let’s go through the steps to create your version.

In this chapter, we will use an automatic CLI tool to generate our project initial
structure.

Why Use Automatic App Generators?

Usually, when you create a React application - you need to create a bunch of
boilerplate files.

First, you will need to set up a transpiler. React uses jsx syntax to describe the layout,
and also you’ll probably want to use the modern Javascript features. To do this we’ll
have to install and set up Babel²⁵. It will transform our code to normal Javascript that
current and older browsers can support.

You will need a bundler. You will have plenty of different files: your components
code, styles, maybe images and fonts. To bundle them together into small packages
you’ll have to set up Webpack²⁶ or Parcel²⁷.

Then there is a lot of smaller things. Setting up a test runner, adding vendor prefixes
to your CSS rules, setting up linter, enabling hot-reload, so you don’t have to refresh
the page manually every time you change the code. It can be a lot of work.

To simplify the process we will use create-react-app. It is a tool that will generate
the file structure and automatically create all the settings files for our project. This
way we will be able to focus on using React tools in the Typescript environment.

How to Use create-react-app With Typescript

Navigate to the folderwhere you keep your programming projects and run create-react-app.

²⁵https://babeljs.io/
²⁶https://webpack.js.org/
²⁷https://parceljs.org/

https://babeljs.io/
https://webpack.js.org/
https://parceljs.org/
https://babeljs.io/
https://webpack.js.org/
https://parceljs.org/


Your First React and Typescript Application: Building Trello with Drag and Drop 18

npx create-react-app --template typescript trello-clone

Here we’ve used npx to run create-react-app without installing it. We specified an
option --template typescript, so our app will have all the settings needed to work
with Typescript. The last argument is the name of our app. create-react-app will
automatically generate the trello-clone folder with all the necessary files.

Now, cd to trello-clone folder and open it with your favorite code editor.

Project Structure Generated By Create-React-App

Let’s look at the application structure.

If you’ve used create-react-app before - it will look familiar.

1 ├── public

2 │ ├── favicon.ico

3 │ ├── index.html

4 │ ├── logo192.png

5 │ ├── logo512.png

6 │ ├── manifest.json

7 │ └── robots.txt

8 ├── src

9 │ ├── App.css

10 │ ├── App.test.tsx

11 │ ├── App.tsx

12 │ ├── index.css

13 │ ├── index.tsx

14 │ ├── logo.svg

15 │ ├── react-app-env.d.ts

16 │ ├── serviceWorker.ts

17 │ └── setupTests.ts

18 ├── node_modules

19 │ └── ...

20 ├── README.md

21 ├── package.json



Your First React and Typescript Application: Building Trello with Drag and Drop 19

22 ├── tsconfig.json

23 └── yarn.lock

Let’s go through the files and see why do we need them there. We’ll make a short
overview, and then we’ll get back to some of the files and talk about them a bit more.

Files In The Root

First, let’s look at the root of our project.

README.md. This is a markdown file that contains a description of your application.
For example, Github will use this file to generate an html summary that you can see
at the bottom of projects.

package.json. This file contains metadata relevant to the project. For example,
it contains the name, version and description of our app. It also contains the
dependencies list with external libraries that our app depends on.

You can find the full list of possible package.json fields and their descrip-
tions on npm website²⁸

Now let’s open package.json file and check what are the packages that are installed
with create-react-app:

01-first-app/step1/package.json

"dependencies": {

"@testing-library/jest-dom": "^4.2.4",

"@testing-library/react": "^9.3.2",

"@testing-library/user-event": "^7.1.2",

"@types/jest": "^24.0.0",

"@types/node": "^12.0.0",

"@types/react": "^16.9.0",

"@types/react-dom": "^16.9.0",

"react": "^16.12.0",

"react-dom": "^16.12.0",

²⁸https://docs.npmjs.com/files/package.json

https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json


Your First React and Typescript Application: Building Trello with Drag and Drop 20

"react-scripts": "3.3.1",

"typescript": "~3.7.2"

},

Now, most packages that we use have a corresponding @types/* package.

I’m showing only the dependencies block because this is where type defini-
tions are installed. You won’t find any types-packages in devDependencies.

Those @types/* packages contain type definitions for libraries originally written in
Javascript. Why do we need them if Typescript can parse the Javascript code as well?

Problem with Javascript is that a lot of times it’s impossible to tell what types will
the code work with. Let’s say we have a Javascript code where we have a function
that accepts the data argument:

export function saveData(data) {

// data saving logic

}

Typescript can parse this code, but it has no way of knowing what type is the data
attribute restricted to. So for Typescript, the data attribute will implicitly have type
any. This type matches with absolutely anything, which defeats the purpose of type-
checking.

If we know that the function is meant to be more specific, for instance, it only accepts
the values of type string - we can create a *.d.ts file and describe it there manually.

This *.d.ts file name should match the module name we provide types for. For
example, if this saveData function comes from the save-datamodule - we will create
a save-data.d.ts file. We’ll need to put this file where Typescript compiler will see
it, usually, it’s src folder.

This file will then contain the declaration for our saveData function.



Your First React and Typescript Application: Building Trello with Drag and Drop 21

declare function saveData(data: string): void

Here we specified that datamust have type string. We’ve also specified return type
void for our function because we knew that it’s not meant to return any value.

Now we could make this file into a package and publish it through the npm registry.
And this is what all those @types/* packages are.

It is a convention that all the types-packages are published under the @types

namespace. Those packages are provided by the DefinitelyTyped²⁹ repository.

When you install javascript dependencies that don’t contain type definitions - you
can usually install them separately by installing a package with the same name and
@types prefix.

Versions for @types/* and their corresponding packages don’t have to match exactly.
Here you can see that react-dom has version ^16.12.0 and @types/react-dom is
^16.9.0.

yarn.lock. This file is generated when you install the dependencies by running yarn
in your project root. This file contains resolved dependencies versions along with
their sub-dependencies. It is needed to have consistent installs on different machines.
If you use npm to manage dependencies - you will have a package-lock.json instead.

tsconfig.json. It contains the Typescript configuration. We don’t need to edit this
file because the default settings work fine for us.

.gitignore. This file contains the list of files and folders that shouldn’t end up in your
git repository.

These are all the files that we can find in the root of our project. Now let’s take a
look at the folders.

public Folder

The public folder contains the static files for our app. They are not included in the
compilation process and remain untouched during the build.

Read more about public folder in Create React App documentation³⁰.

²⁹http://definitelytyped.org/
³⁰https://create-react-app.dev/docs/using-the-public-folder/

http://definitelytyped.org/
https://create-react-app.dev/docs/using-the-public-folder/
http://definitelytyped.org/
https://create-react-app.dev/docs/using-the-public-folder/


Your First React and Typescript Application: Building Trello with Drag and Drop 22

index.html. This file contains a special <div id="root"> that will be a mounting
point for our React application.

manifest.json. It provides application metadata for Progressive Web Apps³¹. For
example, this file allows installing your application on amobile phone’s home screen,
similar to native apps. It contains the app name, icons, theme colors, and other data
needed to make your app installable.

You can read more about manifest.json on MDN³²

favicon.ico, logo192.png, logo512.png. These are icons for your application. There
is favicon.ico, it’s a favicon, a small icon that is shown on browser tabs. Also,
there are two bigger icons: logo192.png and logo512.png. They are referenced in
manifest.json and will be used on mobile devices if your app will be added to the
home screen.

robots.txt. It tells crawlers what resources they shouldn’t access. By default it allows
everything.

Read more about robots.txt on robotstxt website³³

src Folder

Now let’s take a look at the src folder. Files in this folder will be processed by webpack
and will be added to your app’s bundle.

This folder contains a bunch of files with .tsx extension: index.tsx, App.tsx,
App.test.tsx. It means that those files contain JSX code.

JSX is an html-like syntax used in React applications to describe the layout.
Read more about it in React Docs³⁴

In Javascript React application - we could use either .jsx or .js extensions for such
files. It would make no difference.

³¹https://web.dev/progressive-web-apps/
³²https://developer.mozilla.org/en-US/docs/Web/Manifest
³³https://www.robotstxt.org/robotstxt.html
³⁴https://reactjs.org/docs/introducing-jsx.html

https://web.dev/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.robotstxt.org/robotstxt.html
https://reactjs.org/docs/introducing-jsx.html
https://web.dev/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.robotstxt.org/robotstxt.html
https://reactjs.org/docs/introducing-jsx.html


Your First React and Typescript Application: Building Trello with Drag and Drop 23

With Typescript - you should use .tsx extensions on files that have JSX code, and
.ts on files that don’t.

It is important because otherwise there can be a syntactic clash. Both Typescript and
JSX use angle brackets, but for different purposes.

Typescript has type assertion operator that uses angle brackets:

const text = <string>"Hello Typescript"

// text: string

You can use this operator to manually provide a type for your target variable. In this
case, we specify that text should have type string.

Otherwise, it would have type Hello Typescript. When you assign a const a string
value - Typescript will use this value as a type:

const text = "Hello Typescript"

// text: "Hello Typescript"

This operator can create ambiguity with JSX elements that also uses angle brackets:

<div></div>

You can read about it in Typescript Documentation³⁵.

index.tsx

Most important file in /src folder is index.tsx. It is an entry point for our application.
It means that webpack will start to build our application from this file, and then will
recursively include other files referenced by import statements.

Let’s look at this file’s contents:

³⁵https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator

https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator
https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator


Your First React and Typescript Application: Building Trello with Drag and Drop 24

01-first-app/step1/src/index.tsx

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(<App />, document.getElementById('root'));

// If you want your app to work offline and load faster, you can change

// unregister() to register() below. Note this comes with some pitfalls.

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

First, we import React, because we have a JSX statement here.

01-first-app/step1/src/index.tsx

ReactDOM.render(<App />, document.getElementById('root'));

Babel will transpile <App /> to React.createElement(App, null). It means that we
are implicitly referencing React in this file, so we need to have it imported.

Then we import ReactDOM, we’ll use it to render our application to the index.html

page. We find an element with an id root and render our <App /> component to it.

Next, we have index.css import. This file contains styles relevant to the whole
application, so we import it here.

We import the App component because we need to render it into the HTML.

Then there is an interesting syntax to import serviceWorker:

01-first-app/step1/src/index.tsx

import * as serviceWorker from './serviceWorker';



Your First React and Typescript Application: Building Trello with Drag and Drop 25

Our serviceWorker.ts file exports two functions: register and unregister. It
doesn’t have the default export so we have to use an asterisk syntax to save both
functions to one serviceWorker variable.

Alternatively we could import both functions individually, like this: import {

register, unregister } from './serviceWorker'.

What’s important here is that when the module doesn’t have a default export - you
can use an asterisk to assign all the individual exports to one variable. In the next
section, we’ll discuss how can it affect you when you use Typescript.

App.tsx

Let’s open src/App.tsx. If you use modern create-react-app this file won’t have
any difference from the regular Javascript version.

In older versions, React was imported differently.

Instead of:

01-first-app/step1/src/App.tsx

import React from 'react';

You would see:

import * as React from "react"

To explain this I will have to tell a bit more about the default imports.

When you write import name from 'module' it is the same as writing import

{default as name} from 'module';. To be able to do this the module should have
the default export, which would look like this: export default 'something'.

React doesn’t have the default export. Instead, it just exports all its functions in one
object.

You can see it in React source code³⁶. React exports an object full of different classes
and functions:

³⁶https://github.com/facebook/react/blob/master/packages/react/index.js

https://github.com/facebook/react/blob/master/packages/react/index.js
https://github.com/facebook/react/blob/master/packages/react/index.js


Your First React and Typescript Application: Building Trello with Drag and Drop 26

export {

Children,

createRef // ... other exports

} from "./src/React"

So strictly speaking import * as React from 'react' is the correct way of importing
React.

But if you’ve used React with Javascript before - you’ve noticed that React is always
imported there like it has the default export.

import React from "react"

It’s possible for two reasons. First - Javascript doesn’t type check the imports. It will
allow you to import whatever and then if something goes wrong - it will only throw
an error during runtime. And second - you most likely use React with some bundler
like Webpack, and it’s smart enough to check that if no default property is set in the
export, just use the entire export as the default value.

When you use Typescript - it’s a different story. Typescript checks that what you
are trying to import has the matching export. If the default export doesn’t exist - the
default behavior of Typescript will be to throw an error. Something like this:

1 TypeScript error in trello-clone/src/App.tsx(1,8):

2 Module '"trello-clone/node_modules/@types/react/index"' can only be def\

3 ault-imported using the 'allowSyntheticDefaultImports' flag TS1259

4

5 > 1 | import React from 'react'

6 | ^

7 2 | import logo from './logo.svg';

8 3 | import './App.css';

9 4 |

Thankfully since version, 2.7 Typescript has the allowSyntheticDefaultImports

option.When this option is enabled Typescript will pretend that the importedmodule
has the default export. So we’ll be able to import React normally.



Your First React and Typescript Application: Building Trello with Drag and Drop 27

Modern versions of create-react-app enable this option by default. Read more
about it in Typescript 2.7 release notes³⁷.

react-app-env.d.ts

Another file with an interesting extension is react-app-env.d.ts, let’s take a look.

Files with *.d.ts extensions contain Typescript types definitions. Usually, it’s needed
for libraries that were originally written in Javascript.

This file containes the following code:

01-first-app/step1/src/react-app-env.d.ts

/// <reference types="react-scripts" />

Here we have a special reference tag that includes types from the react-scripts

package.

Read more about “triple slash directives” in Typescript documentation³⁸

By default, it would reference the file ./node_modules/react-scripts/index.d.ts,
but reacts-scripts package contains a field "types": "./lib/react-app.d.ts" in
it’s package.json. Sowe end up referencing types from ./node_modules/react-scripts/lib/react-app.d.ts.

This file contains types for the Node environment and also types for static resources:
images and stylesheets.

Why do we need type declarations for stylesheets and images?

Thing is that Typescript doesn’t even see the static resources files. It is only interested
in files with .tsx, .ts, and d.ts extensions. With some tweaking, it will also see .js
and .jsx files.

Let’s say you are trying to import an image:

³⁷https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-
cjs-from-commonjs-modules-with---esmoduleinterop

³⁸https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-


Your First React and Typescript Application: Building Trello with Drag and Drop 28

import logo from "./logo.svg"

Typescript has no idea about files with .svg extension so it will throw something
like this: Cannot find module './logo.svg'. TS2307.

To fix it we can create a special module type.

One of the declarations in react-app.d.ts allows importing *.png files:

declare module "*.png" {

const src: string

export default src

}

This declaration tells Typescript that when we import stuff from modules that have
names ending with .png - we will get the default export of type string.

import image from "./foo.png"

// image has type `string` here

And Webpack is already set-up to resolve static files to their paths in the /static

folder.

App Layout. React + Typescript Basics

Remove The Clutter

Before we start writing the new code - let’s remove the files we aren’t going to use.

Go to src folder and remove the following files:

• logo.svg

• App.css

• App.test.tsx

• serviceWorker.ts.

You should end up with the following files in your src folder:



Your First React and Typescript Application: Building Trello with Drag and Drop 29

1 src

2 ├── App.css

3 ├── App.tsx

4 ├── index.css

5 ├── index.tsx

6 ├── react-app-env.d.ts

7 └── setupTests.ts

Also open src/index.tsx and remove all the serviceWorker mentions. Your index
file should look like this:

01-first-app/step2/src/index.tsx

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

ReactDOM.render(<App />, document.getElementById('root'));

Add Global Styles

We need to have some styles to be applied to the whole application.

Let’s edit src/index.css and add some global CSS rules.

01-first-app/step2/src/index.css

html {

box-sizing: border-box;

}

*, *:before, *:after {

box-sizing: inherit;

}

html, body, #root {



Your First React and Typescript Application: Building Trello with Drag and Drop 30

height: 100%

}

Here we add box-sizing: border-box to all elements. This directive tells browser to
include elements padding and border in it’s width and height calculations.

We also make html and body elements to take up the whole screen size vertically.

How To Style React Elements

There are several ways to style React elements:

• Regular CSS files, including CSS-modules.
• Manually specifying element style property.
• Using external styling libraries.

Let’s briefly talk about each of the options.

Using Separate CSS Files

You can have styles defined in CSS files. To use them you’ll need a properly
configured bundler, like Webpack. Create React App includes a pre-configured
Webpack that supports loading CSS files.

In our project, we have an index.css file. It contains styles that we need to be applied
globally.

To start using CSS rules from such a file you need to import it. We import index.css
in index.tsx file.

React elements accept className prop that sets the class attribute of the rendered
DOM node.

<div className="styled">React element</div>

Passing CSS Rules Through Style Prop

Another option is to pass an object with styling rules through style property. You
can declare the object inline, then you won’t need to specify type for it:



Your First React and Typescript Application: Building Trello with Drag and Drop 31

<div style={{ backgroundColor: "red" }}>Styled element</div>

A better practice is to define styles in a separate constant:

import React from "react"

const buttonStyles: React.CSSProperties = {

backgroundColor: "#5aac44",

borderRadius: "3px",

border: "none",

boxShadow: "none"

}

Here we set buttonStyles type to React.CSSProperties. As a bonus, we get
autocompletion hints for CSS property names.

Typescript provides nice CSS autocompletion

Keep in mind that we aren’t using real CSS attribute names. Because of how React
works with the styles propwe have to provide them in camel case form. For example
background-color becomes backgroundColor and so on.



Your First React and Typescript Application: Building Trello with Drag and Drop 32

Using External Styling Libraries

There are a lot of libraries that simplify working with CSS in React. I like to use
Styled Components³⁹.

Styled Components allows you to define reusable components with attached styles
like this:

import styled from "styled-components"

const Button = styled.button`

background-color: #5aac44;

border-radius: 3px;

border: none;

box-shadow: none;

`

Then you can use them as regular React components:

<Button>Click me</Button>

At the moment of writing this book, Styled Components has 28.4k stars on Github.
It also has Typescript support.

Install styled-components. Working with @types

packages

Now we are ready to start working on our app layout. Here we’ll get to create our
first functional components. We’ll also define the data structure for our app.

First, we’ll create the components that will be our cards and columns. Then we’ll
arrange them on the screen. During this step, we won’t add any interactivity.

We’ll need to provide styles for our components. I will use the styled-components

library. It allows you to create components that only hold styles.

Install styled-components:
³⁹https://github.com/styled-components/styled-components

https://github.com/styled-components/styled-components
https://github.com/styled-components/styled-components


Your First React and Typescript Application: Building Trello with Drag and Drop 33

yarn add styled-components

For convenience, we’ll put all the components generated by styled-components to
styles.ts.

Create the styles.ts file. Now try to import styled from styled-components:

import styled from "styled-components"

You’ll get a Typescript error.

Missing @types for styled-components

Typescript errors can be quite wordy, but usually, the most valuable information is
located closer to the end of the message.

Here Typescript tells us that we are missing type declarations for styled-components
package. It also suggests that we install missing types from @types/styled-components.

Install the missing types:



Your First React and Typescript Application: Building Trello with Drag and Drop 34

yarn add @types/styled-components

Now we are ready to define our first styled-components.

Prepare Styled Components

We will create a bunch of container elements:

• AppContainer - arrange columns horizontally
• ColumnContainer - set the grey background and rounded corners
• ColumnTitle - make column title bold and add paddings
• CardContainer

Let’s go one by one.

Styles For AppContainer

We need our app layout to contain a list of columns arranged horizontally. We will
use flexbox to achieve this.

Create an AppContainer component in styles.ts and export it.

01-first-app/step2/src/styles.ts

export const AppContainer = styled.div`

align-items: flex-start;

background-color: #3179ba;

display: flex;

flex-direction: row;

height: 100%;

padding: 20px;

width: 100%;

`



Your First React and Typescript Application: Building Trello with Drag and Drop 35

Style components functions accept strings with CSS rules. When we use template
strings - we can omit the brackets and just append the string to the function name.

Herewe specify display: flex tomake it use the flexbox layout.We set flex-direction
property to row, to arrange our items horizontally. And we add a 20px padding inside
of it.

Go to src/App.tsx and import AppContainer:

01-first-app/step2/src/App.tsx

import { AppContainer } from "./styles"

Now use it in App layout:

01-first-app/step2/src/App.tsx

const App = () => {

return (

<AppContainer>

Columns will go here

</AppContainer>

)

}

Styles For Columns

Let’s make our Column component look good. Create a ColumnContainer component
in src/styles.ts.



Your First React and Typescript Application: Building Trello with Drag and Drop 36

01-first-app/step2/src/styles.ts

export const ColumnContainer = styled.div`

background-color: #ebecf0;

width: 300px;

min-height: 40px;

margin-right: 20px;

border-radius: 3px;

padding: 8px 8px;

flex-grow: 0;

`

Here we specify a grey background, margins, and paddings and also we specify
flex-grow: 0 so the component doesn’t try to take up all the horizontal space.

Still in src/styles.ts create styles for ColumnTitle:

01-first-app/step2/src/styles.ts

export const ColumnTitle = styled.div`

padding: 6px 16px 12px;

font-weight: bold;

`

We’ll use it to wrap our column’s title.

Styles For Cards

We’ll need styles for the Card component. Open src/styles.ts and create a new
styled component called CardContainer. Don’t forget to export it.



Your First React and Typescript Application: Building Trello with Drag and Drop 37

01-first-app/step2/src/styles.ts

export const CardContainer = styled.div`

background-color: #fff;

cursor: pointer;

margin-bottom: 0.5rem;

padding: 0.5rem 1rem;

max-width: 300px;

border-radius: 3px;

box-shadow: #091e4240 0px 1px 0px 0px;

`

Here we want to let the user know that cards are interactive so we specify cursor:

pointer. We also want our cards to look nice so we add a box-shadow.

Create Columns and Cards. How to Define React
Components

Now that we have our styles ready we can begin working on actual components for
our cards and columns.

In this section, I’m not going to explain how React components work. If you need to
pick this knowledge up - refer to React documentation⁴⁰. Make sure you know what
are props, what is state and how do lifecycle events work.

Now let’s see what is different when you define React components in Typescript.

How to Define Class Components?When you define a class component - you need
to provide types for its props and state. You do it by using special triangle brackets
syntax:

⁴⁰https://reactjs.org/docs/components-and-props.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html


Your First React and Typescript Application: Building Trello with Drag and Drop 38

interface CounterProps {

message: string;

};

interface CounterState {

count: number;

};

class Counter extends React.Component<CounterProps, CounterState> {

state: CounterState = {

count: 0

};

render() {

return (

<div>

{this.props.message} {this.state.count}

</div>

);

}

}

React.Component is a generic type that accepts type variables for props and state. I
will talk more about generics later.

You can find aworking class-component example in code/01-trello/class-components.

Defining Functional Components. In Typescript when you create a functional
component - you don’t have to provide types for it manually.

export const Example = () => {

return <div>Functional component text</div>

}

Here we return a string wrapped into a <div/> element, so Typescript will automat-
ically conclude that the return type of our function is JSX.Element.

If you want to be verbose - you can use React.FC or React.FunctionalComponent
types.



Your First React and Typescript Application: Building Trello with Drag and Drop 39

export const Example: React.FC = () => {

return <div>Functional component text</div>

}

Previously you could also see React.SFC or React.StatelessFunctionalComponent
but after the release of hooks, it’s deprecated.

Create Column Component

Time to create our first functional component.

We’ll start with the Column component. Create a new file src/Column.tsx.

import React from "react"

export const Column = () => {

return <div>Column Title</div>

}

Update Column Layout

Now let’s use this wrapper components in our Column layout:

01-first-app/step2/src/Column.tsx

import React from "react"

import { ColumnContainer, ColumnTitle } from "./styles"

export const Column = () => {

return (

<ColumnContainer>

<ColumnTitle>Column Title</ColumnTitle>

</ColumnContainer>

)

}



Your First React and Typescript Application: Building Trello with Drag and Drop 40

We want to be able to provide the column title using props.

Let’s see how to use props with functional components.

In Typescript, you need to provide a type or an interface to define the form of your
props object. In a lot of cases, types and interfaces can be used interchangeably. A
lot of their features overlap. We’ll get to some differences later in this chapter.

This being said I usually define props as an interface:

01-first-app/step2/src/Column3.tsx

import React from "react"

import { ColumnContainer } from "./styles"

interface ColumnProps {

text: string

}

export const Column = ({ text }: ColumnProps) => {

return (

<ColumnContainer>

<ColumnTitle>{text}</ColumnTitle>

</ColumnContainer>

)

}

Here we define an interface called ColumnProps.

Sometimes you can see the code where all the interfaces start with the
capital I. For example ColumntPropswould be IColumnProps. When I first
wrote the example code for this chapter I prefixed all interfaces with the
capital I. But then I read a discussion on github⁴¹ and decided to not use
the prefix.

Inside of the ColumnProps interface, we define a field text of type string. By default
this field will be required, so you’ll get a type error if you won’t provide this prop
to your component.

⁴¹https://github.com/typescript-eslint/typescript-eslint/issues/374

https://github.com/typescript-eslint/typescript-eslint/issues/374
https://github.com/typescript-eslint/typescript-eslint/issues/374


Your First React and Typescript Application: Building Trello with Drag and Drop 41

To make the prop optional you can add a question mark before the colon.

01-first-app/step2/src/Column.tsx

interface ColumnProps {

text?: string

}

In this case, Typescript will conclude that text can be undefined.

(property) ColumnProps.text?: string | undefined

We want the text prop to be required - so don’t add the question mark.

Render Children Inside The Columns

Now we have a Card component and a Column component and we can render
everything at once.

To do this we’ll pass the Card components children to our Column components.

Go to src/Column.tsx and modify the component:

01-first-app/step2/src/Column.tsx

export const Column = ({

text,

children

}: React.PropsWithChildren<ColumnProps>) => {

return (

<ColumnContainer>

<ColumnTitle>{text}</ColumnTitle>

{children}

</ColumnContainer>

)

}



Your First React and Typescript Application: Building Trello with Drag and Drop 42

Here we make use of React.PropsWithChildren type that can enhance your props
interface and add a definition for children there.

Alternatively, we couldmanually add children?: React.ReactNode to our ColumnProps
interface, but I think that React.PropsWithChildren approach is cleaner.

Here is the React.PropsWithChildren type definition:

type React.PropsWithChildren<P> = P & {

children?: React.ReactNode;

}

The letter P in angle brackets is a generic type. It serves as a placeholder for an actual
type that we can pass there. It doesn’t necessarily have to be P, but the convention is
to use capital Latin letters.

When we used React.PropsWithChildren we’ve passed our ColumnProps interface
to it. Then it was combined with another type using an ampersand.

As a result, we’ve got a new type that combines the fields of both source types. In
Typescript it’s called a type intersection.

Create The Card Component

After it’s done we can start working on our Card component. Create a new file
src/Card.tsx.

01-first-app/step2/src/Card.tsx

import React from "react"

import { CardContainer } from "./styles"

interface CardProps {

text: string

}

export const Card = ({ text }: CardProps) => {

return <CardContainer>{text}</CardContainer>

}



Your First React and Typescript Application: Building Trello with Drag and Drop 43

It will also accept only the text prop. Define the CardProps interface for the props

Render Everything Together

Let’s combine all the parts and render what we have so far. Go to src/App.tsx and
make sure you have all the necessary imports:

01-first-app/step2/src/App.tsx

import React from "react"

import { Column } from "./Column"

import { Card } from "./Card"

import { AppContainer } from "./styles"

Now and change the layout code to this:

01-first-app/step2/src/App.tsx

const App = () => {

return (

<AppContainer>

<Column text="To Do">

<Card text="Generate app scaffold" />

</Column>

<Column text="In Progress">

<Card text="Learn Typescript" />

</Column>

<Column text="Done">

<Card text="Begin to use static typing" />

</Column>

</AppContainer>

)

}

Let’s launch the app and make sure it works.

Run yarn start and open the browser, you should see this:



Your First React and Typescript Application: Building Trello with Drag and Drop 44

Rendering columns and cards

The only component missing here is a button to create new tasks and lists.

Component For Adding New Items. State,
Hooks, and Events

Before we move to the next chapter where we’ll add the business logic - let’s create
a component that will allow us to create new items.



Your First React and Typescript Application: Building Trello with Drag and Drop 45

AddItemComponent

This component will have two states. Initially, it will be a button that says “+ Add
another task” or “+ Add another list”. When you click this button the component
renders an input field and another button saying “Create”. When you click the
“Create” button we’ll trigger the callback function that we’ll pass as a prop.

Prepare Styled Componenets

Styles For The Button

Open src/styles.ts and define an interface for AddItemButtonProps.

01-first-app/step2/src/styles.ts

interface AddItemButtonProps {

dark?: boolean

}

We’ll use the AddNewItemButton component for both lists and tasks. When we’ll use it
for lists it will be rendered on a dark background, so we’ll need white color for text.
When we use it for tasks - we will render it inside the Column component, which
already has a light grey background, so we want the text to have black color.



Your First React and Typescript Application: Building Trello with Drag and Drop 46

Button on light and dark background

Now define the AddNetItemButton styled component:

01-first-app/step2/src/styles.ts

export const AddItemButton = styled.button<AddItemButtonProps>`

background-color: #ffffff3d;

border-radius: 3px;

border: none;

color: ${props => (props.dark ? "#000" : "#fff")};

cursor: pointer;

max-width: 300px;

padding: 10px 12px;

text-align: left;

transition: background 85ms ease-in;

width: 100%;

&:hover {

background-color: #ffffff52;

}

`

Styles For The Form

We are aiming to have a form styled like this:



Your First React and Typescript Application: Building Trello with Drag and Drop 47

Styled NewItemForm

Define a NewItemFormContainer in src/styles.ts file.

01-first-app/step2/src/styles.ts

export const NewItemFormContainer = styled.div`

max-width: 300px;

display: flex;

flex-direction: column;

width: 100%;

align-items: flex-start;

`

Create a NewItemButton component with the following styles:

01-first-app/step2/src/styles.ts

export const NewItemButton = styled.button`

background-color: #5aac44;

border-radius: 3px;

border: none;

box-shadow: none;

color: #fff;

padding: 6px 12px;

text-align: center;

`

We want our button to be green and have nice rounded corners.

Define styles for the input as well:



Your First React and Typescript Application: Building Trello with Drag and Drop 48

01-first-app/step2/src/styles.ts

export const NewItemInput = styled.input`

border-radius: 3px;

border: none;

box-shadow: #091e4240 0px 1px 0px 0px;

margin-bottom: 0.5rem;

padding: 0.5rem 1rem;

width: 100%;

`

Create AddNewItem Component. Using State

Create src/AddNewItem.tsx, import React and AddItemButton styles:

01-first-app/step2/src/AddNewItem.tsx

import React, { useState} from "react"

import { AddItemButton } from "./styles.ts"

This component will accept an item type and some text props for it’s buttons. Define
an interface for it’s props:

01-first-app/step2/src/AddNewItem.tsx

interface AddNewItemProps {

onAdd(text: string): void

toggleButtonText: string

dark?: boolean

}

• onAdd is a callback function that will be called when we click the Create item

button.
• toggleButtonText is the text we’ll render when this component is a button.
• dark is a flag that we’ll pass to the styled component.

Define the AddNewItem component:



Your First React and Typescript Application: Building Trello with Drag and Drop 49

01-first-app/step2/src/AddNewItem.tsx

export const AddNewItem = (props: AddNewItemProps) => {

const [showForm, setShowForm] = useState(false);

const { onAdd, toggleButtonText, dark } = props;

if (showForm) {

// We show item creation form here

}

return (

<AddItemButton dark={dark} onClick={() => setShowForm(true)}>

{toggleButtonText}

</AddItemButton>

)

}

It holds a showForm boolean state. When this state is true - we show an input with
the “Create” button. When it’s false - we render the button with toggleButtonText

on it:

Now let’s define the form that we’ll show inside the condition block.

Create Input Form. Using Events

Create a new file src/NewItemForm.tsx. Import Reactwith useState hook and styled
components:

01-first-app/step2/src/NewItemForm.tsx

import React, { useState } from "react"

import { NewItemFormContainer, NewItemButton, NewItemInput } from "./st\

yles"

Define the NewItemFormProps interface:



Your First React and Typescript Application: Building Trello with Drag and Drop 50

01-first-app/step2/src/NewItemForm.tsx

interface NewItemFormProps {

onAdd(text: string): void

}

• onAdd is a callback passed through AddNewItemProps.

Now define the NewItemForm component:

01-first-app/step2/src/NewItemForm.tsx

const [text, setText] = useState("")

return (

<NewItemFormContainer>

<NewItemInput

value={text}

onChange={e => setText(e.target.value)}

/>

<NewItemButton onClick={() => onAdd(text)}>

Create

</NewItemButton>

</NewItemFormContainer>

)

}

The component uses a controlled input we’ll store the value for it in the text state.
Whenever you type in the text inside this input - we update the text state.

Here we didn’t have to provide any type for the event argument of our onChange
callback. Typescript gets the type from React type definitions.

Update AddNewItem Component

Now let’s add NewItemForm to AddNewItem component.



Your First React and Typescript Application: Building Trello with Drag and Drop 51

01-first-app/step2/src/AddNewItem.tsx

const [showForm, setShowForm] = useState(false)

const { onAdd, toggleButtonText } = props

if (showForm) {

return (

<NewItemForm

onAdd={text => {

onAdd(text)

setShowForm(false)

}}

/>

)

}

return <button onClick={() => setShowForm(true)}>{toggleButtonText}</\

button>

}

Use AddNewItem Component

Our AddNewItem component is now fully functional and we can add it to the
application layout. For now, we won’t create the new items, instead, we’ll log
messages to console.

Adding New Lists

First let’s use the AddNewItem to add new lists. Go to src/App.tsx and import the
component:



Your First React and Typescript Application: Building Trello with Drag and Drop 52

01-first-app/step2/src/App.tsx

import { AddNewItem } from "./AddNewItem"

Now add the AddNewItem component to the App layout:

01-first-app/step2/src/App.tsx

const App = () => {

return (

<AppContainer>

<Column text="To Do">

<Card text="Generate app scaffold" />

</Column>

<Column text="In Progress">

<Card text="Learn Typescript" />

</Column>

<Column text="Done">

<Card text="Begin to use static typing" />

</Column>

<AddNewItem toggleButtonText="+ Add another list" onAdd={console.\

log} />

</AppContainer>

)

}

For now, we’ll pass console.log to our onAdd prop.

Adding New Tasks

Now go to src/Column.tsx, import the component and update the Column layout:



Your First React and Typescript Application: Building Trello with Drag and Drop 53

01-first-app/step2/src/Column.tsx

export const Column = ({

text,

children

}: React.PropsWithChildren<ColumnProps>) => {

return (

<ColumnContainer>

<ColumnTitle>{text}</ColumnTitle>

{children}

<AddNewItem

toggleButtonText="+ Add another task"

onAdd={console.log}

dark

/>

</ColumnContainer>

)

}

Verify That It Works

Let’s launch the app and verify that everything works:

When you click the buttons you should see the new item forms.

There is one problem though when you open the form you have to make one more
click to focus the input.



Your First React and Typescript Application: Building Trello with Drag and Drop 54

Input is not focused by default

Let’s see how can we focus the input automatically.

Automatically Focus on Input. Using Refs

To focus on the input we’ll use React feature called refs.

Refs provide a way to access the actual DOM nodes of rendered React elements.

Create a new file src/utils/useFocus.ts:

01-first-app/step2/src/utils/useFocus.ts

import { useRef, useEffect } from "react"

export const useFocus = () => {

const ref = useRef<HTMLInputElement>(null)

useEffect(() => {

ref.current?.focus()

})

return ref

}



Your First React and Typescript Application: Building Trello with Drag and Drop 55

Here we use the useRef hook to get access to the rendered input element. Typescript
can’t automatically know what will be the element type. So we provide the actual
type to it. In our case, we work with input so it’s HTMLInputElement.

When I need to know what is the name of some element type I usually
check @types/react/global.d.ts⁴² file. It contains type definitions for types
that have to be exposed globally (not in React namespace).

Now let’s use it in our NewItemForm. Go back to src/NewItemForm.tsx and import
the hook:

01-first-app/step2/src/NewItemForm.tsx

import { useFocus } from "./utils/useFocus"

And then use it in the component code.

01-first-app/step2/src/NewItemForm.tsx

export const NewItemForm = ({ onAdd }: NewItemFormProps) => {

const [text, setText] = useState("")

const inputRef = useFocus()

return (

<NewItemFormContainer>

<NewItemInput

ref={inputRef}

value={text}

onChange={e => setText(e.target.value)}

/>

<NewItemButton onClick={() => onAdd(text)}>Create</NewItemButton>

</NewItemFormContainer>

)

}

⁴²https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts


Your First React and Typescript Application: Building Trello with Drag and Drop 56

Here we pass the reference that we get from the useFocus hook to our input element.

If you launch the app and click the new item button - you should see that the form
input is focused automatically.

Complete application layout

Add Global State And Business Logic

In this chapter add interactivity to our application.

We’ll implement drag-and-drop using the React DnD library. And we will add state
management. We won’t use any external framework like Redux or Mobx. Instead,
we’ll throw together a poorman’s version of Redux using useReducer hook and React
context API.

Before we jump into the action I will give a little primer on using useReducer.

Using useReducer

useReducer is React hook that allows us to manage complex state like objects with
multiple fields.



Your First React and Typescript Application: Building Trello with Drag and Drop 57

Main idea is that instead of mutating the original object we always create a new
instance with desired values.

Instead of mutating the object we create a new instance

The state is updated using a special function called reducer.

What Is Reducer?

Reducer is a function that calculates a new state by combining an old state with an
action object.



Your First React and Typescript Application: Building Trello with Drag and Drop 58

Reducer

Reducer must be a pure function. It means it shouldn’t perform any side effects (I/O
operations, or modifying global state) and for any given input it should return the
same output.

What Are Actions?

Actions are special objects that are passed to the reducer function to calculate the
new state.

Actions must contain a type field and some field for payload. The type field is
mandatory. Payload often has some arbitrary name.

Here is an action that could be used to update name field:

{ type: "SET_NAME", name: "George" }

How to Call useReducer

You can call useReducer inside your functional components. On every state change,
your component will re-rendered.

Here’s the basic syntax:



Your First React and Typescript Application: Building Trello with Drag and Drop 59

const [state, dispatch] = useReducer(reducer, initialState)

useReducer accepts a reducer and initial state. It returns the current state paired
with a dispatch method.

dispatch method is used to send actions to the reducer.

Counter Example

The code for the counter example is in code/01-first-app/use-reducer.

Let’s look at the reducer first. Open src/App.tsx:

01-first-app/use-reducer/src/App.tsx

const counterReducer = (state: State, action: Action) => {

switch (action.type) {

case "increment":

return { count: state.count + 1 }

case "decrement":

return { count: state.count - 1 }

default:

throw new Error()

}

}

This reducer can process increment and decrement actions.

It’s Typescript so we must provide types for state and action attributes.

We’ll define the State interface with count: number field:

01-first-app/use-reducer/src/App.tsx

interface State {

count: number;

}

The action argument has a mandatory type field that we use to decide how should
we update our state.

Let’s define the Action type:



Your First React and Typescript Application: Building Trello with Drag and Drop 60

01-first-app/use-reducer/src/App.tsx

type Action =

| {

type: "increment"

}

| {

type: "decrement"

}

We’ve defined it as a type having one of the two forms: { type: "increment" } or
{ type: "decrement" }. In Typescript it’s called a union type.

You might wonder why didn’t we define it as an interface with a field type: string

like this:

interface Action {

type: string

}

But defining our Action as a type instead of an interface gives us a bunch of
important advantages. Bear with me, we’ll get back to this topic later in this chapter.

For now let’s see how can you use this in your components. Here is a counter
component that will use the reducer we’ve defined previously:

01-first-app/use-reducer/src/App.tsx

const App = () => {

const [state, dispatch] = useReducer(counterReducer, { count: 0 })

return (

<>

<p>Count: {state.count}</p>

<button onClick={() => dispatch({ type: "decrement" })}>-</button>

<button onClick={() => dispatch({ type: "increment" })}>+</button>

</>

)

}



Your First React and Typescript Application: Building Trello with Drag and Drop 61

Here we call the dispatch function inside of onClick handlers. With each dispatch

call we send an Action object. And then we calculate the new state in our counter
reducer.

If you launch the app you should see a counter with two buttons:

counter app

Click the buttons to the number on the counter to go up or down.

Implement State Management

Define App State Context. Using ReactContext With
Typescript

Here we’ll define a data structure for our application and make it available to all the
components through React’s Context API.

Create a new file called src/AppStateContext.tsx. Define the application data, for
now let’s hardcode it:



Your First React and Typescript Application: Building Trello with Drag and Drop 62

01-first-app/step3/src/AppStateContext.tsx

const appData: AppState = {

lists: [

{

id: "0",

text: "To Do",

tasks: [{ id: "c0", text: "Generate app scaffold" }]

},

{

id: "1",

text: "In Progress",

tasks: [{ id: "c2", text: "Learn Typescript" }]

},

{

id: "2",

text: "Done",

tasks: [{ id: "c3", text: "Begin to use static typing" }]

}

]

}

As you can see our data object has the AppState type. Let’s define it along with the
types it depends on:

01-first-app/step3/src/AppStateContext.tsx

interface Task {

id: string

text: string

}

interface List {

id: string

text: string

tasks: Task[]

}



Your First React and Typescript Application: Building Trello with Drag and Drop 63

export interface AppState {

lists: List[]

}

I decided to use the terms Task/List for the data types and Column/Card for UI
components.

Now let’s use createContext to define AppStateContext. Import createContext from
react. Import React as well, because we’ll define a provider component soon:

01-first-app/step3/src/AppStateContext.tsx

import React, { createContext } from "react"

Use createContext to define the AppStateContext.

01-first-app/step3/src/AppStateContext.tsx

const AppStateContext = createContext()

We’ll need to provide the type for our context. Let’s define it first:

01-first-app/step3/src/AppStateContext.tsx

interface AppStateContextProps {

state: AppState

}

For now, we only want to make our appState available through the context so it’s
the only field in our type as well.

React wants us to provide the default value for our context. This value will only
be used if we don’t wrap our application into our AppStateProvider. So we can
omit it. To do it pass an empty object that we’ll cast to AppStateContextProps to
createContext function. Here we use an as operator to make Typescript think that
our empty object actually has AppStateContextProps type:



Your First React and Typescript Application: Building Trello with Drag and Drop 64

01-first-app/step3/src/AppStateContext.tsx

const AppStateContext = createContext<AppStateContextProps>({} as AppSt\

ateContextProps)

Now let’s define the AppStateProvider. It will pass the hardcoded appData through
the AppStateContext.Provider:

01-first-app/step3/src/AppStateContext.tsx

export const AppStateProvider = ({ children }: React.PropsWithChildren<\

{}>) => {

return (

<AppStateContext.Provider value={{ state: appData }}>

{children}

</AppStateContext.Provider>

)

}

Our componentwill only accept children as a prop.We use React.propsWithChildren
type. It requires one generic argument, but we don’t want to have any other props
so we pass an empty object to it.

Go to src/index.tsx and wrap the <App/> component into AppStateProvider.

01-first-app/step3/src/index.tsx

import React from "react"

import ReactDOM from "react-dom"

import "./index.css"

import App from "./App"

import { AppStateProvider } from "./AppStateContext"

ReactDOM.render(

<AppStateProvider>

<App />

</AppStateProvider>,

document.getElementById("root")

)



Your First React and Typescript Application: Building Trello with Drag and Drop 65

Now we’ll be able to get state and dispatch from any component.

To make it easier to access them - let’s create a custom hook.

Using Data From Global Context. Implement Custom
Hook

Go back to src/AppStateContext.tsx and import useContext:

01-first-app/step3/src/AppStateContext.tsx

import React, { createContext, useReducer, useContext } from "react"

Then define a new function called useAppState:

01-first-app/step3/src/AppStateContext.tsx

export const useAppState = () => {

return useContext(AppStateContext)

}

Inside of this function, we retrieve the value from AppStateContext using useContext
hook and return the result.

Get The Data From AppStateContext

Go to src/App.tsx. Let’s use our useAppState hook to retrieve the state.

Import the hook:

01-first-app/step3/src/App.tsx

import { useAppState } from "./AppStateContext"

Then update the layout to use the appData:



Your First React and Typescript Application: Building Trello with Drag and Drop 66

01-first-app/step3/src/App.tsx

const App = () => {

const {state} = useAppState()

return (

<AppContainer>

{state.lists.map((list, i) => (

<Column text={list.text} key={list.id} index={i}/>

))}

<AddNewItem

toggleButtonText="+ Add another list"

onAdd={console.log}

/>

</AppContainer>

)

}

If you check the type of the state constant - you’ll see that it is AppState. Typescript
derived this type automatically because we’ve already provided it when we called
createContext.

If we make a typo and instead of list.text we’ll white list.test - Typescript will
correct us and show a list of available fields.

In src/App.tsx we started to pass an index prop to our columns. We’ll use it to
retrieve a list of cards to render.

Update the Column component. Remove children prop from the props and add index:
number prop:



Your First React and Typescript Application: Building Trello with Drag and Drop 67

01-first-app/step3/src/Column.tsx

interface ColumnProps {

text: string

index: number

}

Import the useAppState hook:

01-first-app/step3/src/Column.tsx

import { useAppState } from "./AppStateContext"

Change the layout. We call useAppState to get the data. Then we get the column by
index. This is why we are passing it as a prop to the Column component. Then we
iterate over the cards and render the Card components.

01-first-app/step3/src/Column.tsx

export const Column = ({ text, index }: ColumnProps) => {

const { state } = useAppState()

return (

<ColumnContainer>

<ColumnTitle>{text}</ColumnTitle>

{state.lists[index].tasks.map(task => (

<Card text={task.text} key={task.id} />

))}

<AddNewItem

toggleButtonText="+ Add another task"

onAdd={console.log}

dark

/>

</ColumnContainer>

)

}

Now all our components can get app data from the context. Time to make it possible
to update the data. Let’s add some actions and reducers.



Your First React and Typescript Application: Building Trello with Drag and Drop 68

Adding Items. Typescript Interfaces Vs Types

In this chapter, we’ll define actions and reducers necessary to create new cards
and components. We will provide the reducer’s dispatch method through the
React.Context and will use it in our AddNewItem component.

Define Actions

We’ll begin by adding two actions: ADD_TASK and ADD_LIST. To do this we’ll have to
define an Action type.

Open src/AppStateContext and define a new type:

01-first-app/step4/src/AppStateContext.tsx

type Action =

| {

type: "ADD_LIST"

payload: string

}

| {

type: "ADD_TASK"

payload: { text: string; taskId: string }

}

The technique we are using here is called discriminated union.

We’ve defined a type Action and then we’ve passed two interfaces separated by a
vertical line to it. It means that Action now can resolve to one of the forms that we’ve
passed.

Each interface has a type property. This property will be our discriminant. It means
that Typescript can look at this property and tell what will be the other fields of the
interface.

For example here is an if statement:



Your First React and Typescript Application: Building Trello with Drag and Drop 69

if (action.type === "ADD_LIST") {

return typeof action.payload

// Will return "string"

}

Here Typescript already knows that action.payload can only be a string. The
interface that has type: "ADD_LIST" has a payload field defined as string. We can
use it do define our reducers.

Define appStateReducer

Inside src/AppStateContext.tsx define appStateReducer, it should look like this:

01-first-app/step4/src/AppStateContext.tsx

const appStateReducer = (state: AppState, action: Action): AppState => {

switch (action.type) {

case "ADD_LIST": {

// Reducer logic here...

return {

...state

}

}

case "ADD_TASK": {

// Reducer logic here...

return {

...state

}

}

default: {

return state

}

}

}

We don’t have to define constants for our action types. Typescript will give you an
error if you try to compare action.type to something it cannot be.



Your First React and Typescript Application: Building Trello with Drag and Drop 70

Here is also another catch, note that we use curly brackets to define the block scope
for our case statements. Without those brackets, our constants would be visible
across the whole switch block.

Let’s say you have your reducer defined like this, without curly brackets:

01-first-app/step4/src/AppStateContext.tsx

const appStateReducer = (state: AppState, action: Action): AppState => {

switch (action.type) {

case "ADD_LIST":

const visibilityExample = "Too visible"

return {

...state

}

case "ADD_TASK":

const visibilityExample = "Too visible"

return {

...state

}

default: {

return state

}

}

}

Typescript will give you an error:

Cannot redeclare block-scoped variable 'visibilityExample'.ts(2451)

So don’t forget to use the curly brackets.

Provide Dispatch Through The Context

Open the src/AppStateContext.tsx and update the AppStateProvider:



Your First React and Typescript Application: Building Trello with Drag and Drop 71

01-first-app/step4/src/AppStateContext.tsx

export const AppStateProvider = ({ children }: React.PropsWithChildren<\

{}>) => {

const [state, dispatch] = useReducer(appStateReducer, appData)

return (

<AppStateContext.Provider value={{ state, dispatch }}>

{children}

</AppStateContext.Provider>

)

}

Now we provide the state value from our appStateReducer instead of using
hardcoded appData.

Adding Lists

Reducer needs to return a new instance of an object. Se we’ll use spread operator to
get all the fields from the previous state. Then we’ll set lists field to be a new array
with the old lists plus new item:

01-first-app/step4/src/AppStateContext.tsx

case "ADD_LIST": {

return {

...state,

lists: [

...state.lists,

{ id: uuid(), text: action.payload, tasks: [] }

]

}

}

New column has text, id and tasks fields. The text field contains the list’s title, we
get its value from action.payload, lists will be an empty array and the id for each
list has to be unique. We’ll use uuid to generate new identifiers.



Your First React and Typescript Application: Building Trello with Drag and Drop 72

We need to install this library. It doesn’t include type definitions so we install them
as well:

yarn add uuid @types/uuid

Now import uuid inside src/AppStateContext:

01-first-app/step4/src/AppStateContext.tsx

import uuid from 'uuid'

Adding Tasks

Adding tasks is a bit more complex because they need to be added to specific lists
tasks array. We’ll need to find the list by it’s id. Let’s add findItemIndexById

method.

Create a new file src/utils/findItemIndexById. We are going to define a function
that will accept any object that has a field id: string.

Define a new interface Item.

01-first-app/step4/src/utils/findItemIndexById.ts

interface Item {

id: string

}

Now we will use generic type T that extends Item. That means that we constrained
our generic to have the fields that are defined on the Item interface. In this case the
id field.

Define the function:



Your First React and Typescript Application: Building Trello with Drag and Drop 73

01-first-app/step4/src/utils/findItemIndexById.ts

export const findItemIndexById = <T extends Item>(items: T[], id: strin\

g) => {

return items.findIndex((item: T) => item.id === id)

}

Now go back to src/AppStateContext and add the code for ADD_TASK block:

01-first-app/step4/src/AppStateContext.tsx

case "ADD_TASK": {

const targetLaneIndex = findItemIndexById(

state.lists,

action.payload.taskId

)

state.lists[targetLaneIndex].tasks.push({

id: uuid(),

text: action.payload.text

})

return {

...state

}

}

Here we first find the target list index and save it to targetListIndex constant.

Then we push a new task object to the list with that index.

And then we return a new object, created from the old state using object spread
syntax.

Dispatching Actions

Go to src/App.tsx and update the code. Nowwe also get the dispatch function from
the useAppState hook.



Your First React and Typescript Application: Building Trello with Drag and Drop 74

01-first-app/step4/src/App.tsx

const App = () => {

const {state, dispatch} = useAppState()

return (

<AppContainer>

{state.lists.map((list, i) => (

<Column id={list.id} text={list.text} key={list.id} index={i}/>

))}

<AddNewItem

toggleButtonText="+ Add another list"

onAdd={text => dispatch({ type: "ADD_LIST", payload: text })}

/>

</AppContainer>

)

}

Also update the AddNewItem onAdd function. Now we’ll call the dispatch method
there, passing the text as a payload.

Open src/Column.tsx and update it as well:

01-first-app/step4/src/Column.tsx

export const Column = ({ text, index, id }: ColumnProps) => {

const { state, dispatch } = useAppState()

return (

<ColumnContainer>

<ColumnTitle>{text}</ColumnTitle>

{state.lists[index].tasks.map((task, i) => (

<Card text={task.text} key={task.id} index={i} />

))}

<AddNewItem

toggleButtonText="+ Add another card"

onAdd={text =>

dispatch({ type: "ADD_TASK", payload: { text, taskId: id } })



Your First React and Typescript Application: Building Trello with Drag and Drop 75

}

dark

/>

</ColumnContainer>

)

}

Here we also call the dispatch function. We pass the taskId alongside text because
we need to know which list will contain the new task.

Let’s launch the app and check that we can create new tasks and lists.

Moving Items

We can add new items, it’s time to move them around. We’ll start with columns.

Moving Columns

Add a new Action type:

01-first-app/step5/src/AppStateContext.tsx
type Action =

// ... Previously defined actions

{

type: "MOVE_LIST"

payload: {

dragIndex: number

hoverIndex: number

}

}

We’ve added a MOVE_LIST action. This action has dragIndex and hoverIndex in its
payload. When we start dragging the column - we remember the original position
of it and then pass it as dragIndex. When we hover other columns we take their
positions and use them as a hoverIndex.

Add a new case block to appStateReducer:



Your First React and Typescript Application: Building Trello with Drag and Drop 76

01-first-app/step5/src/AppStateContext.tsx

const appStateReducer = (state: AppState, action: Action): AppState => {

switch (action.type) {

// ... Previously defined 'case' blocks

case "MOVE_LIST": {

const { dragIndex, hoverIndex } = action.payload

state.lists = moveItem(state.lists, dragIndex, hoverIndex)

return { ...state }

}

default: {

return state

}

}

}

Here we take dragIndex and hoverIndex from the action payload. Then we calculate
the new value for the lists array. To do this we use the moveItem function, which
takes the source array, and two indices that it will swap.

Create a new file src/moveItem.ts that will hold this function:

01-first-app/step5/src/moveItem.ts

export const moveItem = <T>(array: T[], from: number, to: number) => {

const startIndex = to < 0 ? array.length + to : to;

const item = array.splice(from, 1)[0]

array.splice(startIndex, 0, item)

return array

}

We want to be able to work with arrays with any kind of items in them, so we use a
generic type T.

Then we calculate the startIndex. We make sure that it’s always a positive number.
If our destination index is smaller than zero - we use array length plus the destination
index.We do this because if you pass a negative index to splice function it will begin



Your First React and Typescript Application: Building Trello with Drag and Drop 77

that many elements from the end. So we can end up adding an item to the wrong
spot.

After we’ve calculated the startIndex that is always a positive number we can move
items around. First, we remove the item with the from index and store it in the item
const. Then we insert that item at startIndex position.

Add Drag and Drop (Install React DnD)

To implement drag and drop we will use the react-dnd library. This library has
several adapters called backends to support different APIs. For example to use
react-dnd with HTML5 we will use react-dnd-html5-backend.

Install the library:

yarn add react-dnd react-dnd-html5-backend

react-dnd has type definitions included, so we don’t have to install them separately.

Open src/index.tsx and add DndProvider to the layout.

01-first-app/step5/src/index.tsx

import React from "react"

import ReactDOM from "react-dom"

import "./index.css"

import App from "./App"

import { DndProvider } from "react-dnd"

import Backend from "react-dnd-html5-backend"

import { AppStateProvider } from "./AppStateContext"

ReactDOM.render(

<DndProvider backend={Backend}>

<AppStateProvider>

<App />

</AppStateProvider>

</DndProvider>,

document.getElementById("root")

)



Your First React and Typescript Application: Building Trello with Drag and Drop 78

This provider will add a dragging context to our app. It will allow us to use useDrag
and useDrop hooks inside our components.

Define The Type For Dragging

When we begin to drag some item we have to provide information about it to
react-dnd. We’ll pass an object that will describe the itemwe are currently dragging.
This object will have the type field that for now will be COLUMN. We’ll also pass the
column’s id, text and index that we’ll get from the Column component.

Create a new file src/DragItem.ts. Define a ColumnDragItem and for now assign it
to a DragItem type:

01-first-app/step5/src/DragItem.ts

export type ColumnDragItem = {

index: number

id: string

text: string

type: "COLUMN"

}

export type DragItem = ColumnDragItem

Later we will add a CardDragItem to it.

Store The Dragged Item In State

Unfortunately, you can only access currently dragged item data from react-dnd

hooks callbacks.

It’s not enough for us. For example, when we drag the column react-dnd will create
a drag preview that we’ll move around with our cursor. This drag preview will look
like the component that we started to drag. If we don’t hide the original component
- it will look like we are dragging a duplicate.



Your First React and Typescript Application: Building Trello with Drag and Drop 79

To fix it we need to hide the item that we are currently dragging. To do this we need
to know what kind of item are we dragging. We need to know the type, to know if
it’s a card or a column. And we need to know the id of this particular item.

Let’s store the dragged item in our app state. Create a new action SET_DRAGGED_ITEM:

01-first-app/step5/src/AppStateContext.tsx

type Action =

| {

type: "SET_DRAGGED_ITEM"

payload: DragItem | undefined

}

It will hold the DragItem that we defined earlier. We need to be able to set it to
undefined if we are not dragging anything.

Add a new case block to appStateReducer:

01-first-app/step5/src/AppStateContext.tsx

case "SET_DRAGGED_ITEM": {

return { ...state, draggedItem: action.payload }

}

In this block, we set the draggedItem field of our state to whatever we get from
action.payload.

Define useItemDrag Hook

The dragging logic will be similar for both cards and columns. I suggest we move it
to a custom hook.

This hook will return a drag method that accepts the ref of a draggable element.
Whenever we start dragging the item - the hookwill dispatch a SET_DRAG_ITEM action
to save the item in the app state. When we stop dragging it will dispatch this action
again with undefined as payload.

Create a new file src/useItemDrag.ts. Inside of it write the following:



Your First React and Typescript Application: Building Trello with Drag and Drop 80

01-first-app/step5/src/useItemDrag.ts

import { useDrag } from "react-dnd"

import { useAppState } from "./AppStateContext"

import { DragItem } from "./DragItem"

export const useItemDrag = (item: DragItem) => {

const { dispatch } = useAppState()

const [, drag ] = useDrag({

item,

begin: () =>

dispatch({

type: "SET_DRAGGED_ITEM",

payload: item

}),

end: () => dispatch({ type: "SET_DRAGGED_ITEM", payload: undefined \

})

})

return { drag }

}

Internally this hook uses useDrag from react-dnd. We pass an options object to it.

• item - contains the data about the dragged item
• begin - is called when we start dragging an item
• end - is called when we release the item

As you can see inside this hook we dispatch the new SET_DRAGGED_ITEM action.When
we start dragging - we store the item in our app state, and when we stop - we reset
it to undefined.

Drag Column

Let’s implement the dragging for the Column component.



Your First React and Typescript Application: Building Trello with Drag and Drop 81

01-first-app/step5/src/Column.tsx

export const Column = ({ text, index, id }: ColumnProps) => {

const { state, dispatch } = useAppState()

const ref = useRef<HTMLDivElement>(null)

const { drag } = useItemDrag({ type: "COLUMN", id, index, text })

drag(ref)

return (

<ColumnContainer ref={ref}>

//... Column layout

</ColumnContainer>

)

}

We need a ref to specify as a drag target. Here we know that it will be a div element.
We manually provide the HTMLDivElement type to useRef call. You can see that we
provided it as a ref prop to ColumnContaner.

Thenwe call our useItemDrag hook.We pass an object that will represent the dragged
item. We tell that it’s a COLUMN and we pass the id, index and text. This hook returns
the drag function.

Next, we pass our ref to the drag function.

Now you can launch the app and verify that you can drag the column.



Your First React and Typescript Application: Building Trello with Drag and Drop 82

Column is leaving a “ghost” image

Move The Column

We can now drag the column, but it just creates a “ghost” image of the dragged
column and leaves the original column in place. Also, we can’t drop the column
anywhere.

To find the place to drop the column we’ll use other columns as drop targets. So
when we hover over another column we’ll dispatch a MOVE_LIST action to swap the
dragged and target column positions.

Open src/Column.tsx file and import useDrop from react-dnd:

01-first-app/step5/src/Column1.tsx

import { useDrop } from "react-dnd"

Now add this code in the beginning of the Column component:



Your First React and Typescript Application: Building Trello with Drag and Drop 83

01-first-app/step5/src/Column1.tsx

const [, drop] = useDrop({

accept: "COLUMN",

hover(item: DragItem) {

const dragIndex = item.index

const hoverIndex = index

if (dragIndex === hoverIndex) {

return

}

dispatch({ type: "MOVE_LIST", payload: { dragIndex, hoverIndex } \

})

item.index = hoverIndex

}

})

Here we pass the accepted item type and then define the hover callback. The hover
callback is triggered whenever you move the dragged item above the drop target.

Inside our hover callback we check that dragIndex and hoverIndex are not the same.
Which means we aren’t hovering above the dragged item.

If the dragIndex and hoverIndex are different - we dispatch a MOVE_LIST action.

Finally, we update the index of the react-dnd item reference.

Now combine the drag and drop calls:

01-first-app/step5/src/Column1.tsx

drag(drop(ref))

Hide The Dragged Column

Styles For DragPreviewContainer

If you try to drag the column around - you will see that the original dragged column
is still visible.



Your First React and Typescript Application: Building Trello with Drag and Drop 84

Let’s go to src/styles.ts and add an option to hide it.

We’ll need to reuse this logic so we’ll move it out to DragPreviewContainer.

01-first-app/step5/src/styles.ts

interface DragPreviewContainerProps {

isHidden?: boolean

}

export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

s>`

opacity: ${props => (props.isHidden ? 0.3 : 1)};

`

For now, we won’t hide the column completely we’ll just make it semitransparent.
Set the opacity in the hidden state to 0.3.

Now update the ColumnContainer. It has to extend DragPreviewContainer compo-
nent:

01-first-app/step5/src/styles.ts

export const ColumnContainer = styled(DragPreviewContainer)`

background-color: #ebecf0;

width: 300px;

min-height: 40px;

margin-right: 20px;

border-radius: 3px;

padding: 8px 8px;

flex-grow: 0;

`

Calculate isHidden Flag

Let’s add a helper method to calculate if we need to hide the column.

Create a new file src/utils/isHidden with the following code:



Your First React and Typescript Application: Building Trello with Drag and Drop 85

01-first-app/step5/src/utils/isHidden.ts

import { DragItem } from "../DragItem"

export const isHidden = (

draggedItem: DragItem | undefined,

itemType: string,

id: string

): boolean => {

return Boolean(

draggedItem && draggedItem.type === itemType && draggedItem.id === \

id

)

}

This function compares the type and id of the currently dragged item with the type
and id we pass to it as arguments.

Go to src/Column.tsx and update the layout. We now pass the result of isHidden
function to isHidden prop of our ColumnContainer:

01-first-app/step5/src/Column.tsx

<ColumnContainer ref={ref} isHidden={isHidden(state.draggedItem, "C\

OLUMN", id)}>

<ColumnTitle>{text}</ColumnTitle>

{state.lists[index].tasks.map((task, i) => (

<Card text={task.text} key={task.id} index={i} />

))}

<AddNewItem

toggleButtonText="+ Add another card"

onAdd={text =>

dispatch({ type: "ADD_TASK", payload: { text, columnId: id } \

})

}

dark

/>



Your First React and Typescript Application: Building Trello with Drag and Drop 86

</ColumnContainer>

)

At this point, we have an app where we can drag the columns around.

Implement Custom Dragging Preview

If you open an actual Trello board - you’ll notice that when you drag the items around
- their preview is a little bit slanted.

To implement this feature we’ll have to use a customDragLayer from react-dnd. This
feature allows you to have a custom element that will represent the dragged item
preview.

We need a container component to render the preview. It needs to have position:

fixed and should take up the whole viewport.

Define a new styled component in src/styles.ts:

01-first-app/step6/src/stylestsx

export const CustomDragLayerContainer = styled.div`

height: 100%;

left: 0;

pointer-events: none;

position: fixed;

top: 0;

width: 100%;

z-index: 100;

`

We want this container to be rendered on top of any other element on the page, so
we provide z-index: 100. Also, we specify pointer-events: none so it will ignore
all mouse events.

Now create a new file src/CustomDragLayer.tsx and import useDragLayer from
react-dnd:



Your First React and Typescript Application: Building Trello with Drag and Drop 87

01-first-app/step6/src/CustomDragLayer.tsx

import { useDragLayer } from "react-dnd"

Create a CustomDragLayer component:

01-first-app/step6/src/CustomDragLayer.tsx

const CustomDragLayer: React.FC = () => {

const { isDragging, item } = useDragLayer(monitor => ({

item: monitor.getItem(),

isDragging: monitor.isDragging()

}))

return isDragging ? (

<CustomDragLayerContainer>

<Column

id={item.id}

text={item.text}

index={item.index}

/>

</CustomDragLayerContainer>

) : null

}

Here we use useDragLayer to obtain isDragging flag and currently dragged item

object. Then we render our layout if isDragging is true, otherwise, we return null

and render nothing.

We use an actual Column component to render a preview. We pass it id, index and
text from the item object.

Move The Dragged Item Preview

Right now we just render the preview component. We need to write some extra code
to make it follow the cursor.



Your First React and Typescript Application: Building Trello with Drag and Drop 88

We will write a function that will get the dragged item coordinates from react-dnd

and generate the styles with the transform attribute to move the preview around.

In this function, we’ll need to use XYCoord type from react-dnd. Import it from the
library.

01-first-app/step6/src/CustomDragLayer.tsx

import { XYCoord, useDragLayer } from "react-dnd"

Here is the function to generate new styles:

01-first-app/step6/src/CustomDragLayer.tsx

function getItemStyles(currentOffset: XYCoord | null): React.CSSPropert\

ies {

if (!currentOffset) {

return {

display: "none"

}

}

const { x, y } = currentOffset

const transform = `translate(${x}px, ${y}px)`

return {

transform,

WebkitTransform: transform

}

}

We can manually set the return value of this function to be React.CSSProperties.
It’s not required, but can be useful, because then if you will make a mistake - you’ll
get an error inside the function instead of the place where you pass the resulting style
as a prop to your component.

This function accepts a currentOffset argument that has the XYCoord type. It
contains a currently dragged item position. We take x and y fields from the
currentOffset and generate the value for CSS transform property.



Your First React and Typescript Application: Building Trello with Drag and Drop 89

Add a wrapping div element around the Column preview. Now we can use the
getItemStyles function to specify the styles for our wrapping div.

01-first-app/step6/src/CustomDragLayer.tsx

const CustomDragLayer: React.FC = () => {

const { isDragging, item, currentOffset } = useDragLayer(monitor => ({

item: monitor.getItem(),

currentOffset: monitor.getSourceClientOffset(),

isDragging: monitor.isDragging()

}))

return isDragging ? (

<CustomDragLayerContainer>

<div style={getItemStyles(currentOffset)}>

// ...Dragged item preview

</div>

</CustomDragLayerContainer>

) : null

}

Here we also get the currentOffset value from the useDragLayer hook. Pass this
value to our getItemStyles function.

After we create our CustomDragLayer component we need to do two things. First, we
need to mount the component inside the App layout, and then we’ll need to hide the
default drag preview.

Open src/App.tsx and import CustomDragLayer and add it to App layout above the
columns:



Your First React and Typescript Application: Building Trello with Drag and Drop 90

01-first-app/step6/src/App.tsx

const App = () => {

const {state, dispatch} = useAppState()

return (

<AppContainer>

<CustomDragLayer />

{state.lists.map((list, i) => (

<Column id={list.id} text={list.text} key={list.id} index={i}/>

))}

<AddNewItem

toggleButtonText="+ Add another list"

onAdd={text => dispatch({ type: "ADD_LIST", payload: text })}

/>

</AppContainer>

)

}

Hide The Default Drag Preview

To hide the default drag preview we’ll have to modify the useItemDrag hook.

Open src/useItemDrag.ts. We’ll use getEmptyImage function to create the preview
that won’t be rendered. Import the function from react-dnd-html5-backend:

<<01-first-app/step6/src/useItemDrag.ts⁴³

Now add a new useEffect call in the end of our hook:

⁴³./code/01-first-app/step6/src/useItemDrag.ts

code/01-first-app/step6/src/useItemDrag.ts
code/01-first-app/step6/src/useItemDrag.ts


Your First React and Typescript Application: Building Trello with Drag and Drop 91

01-first-app/step6/src/useItemDrag.ts

export const useItemDrag = (item: DragItem) => {

const { dispatch } = useAppState()

const [, drag, preview ] = useDrag({

item,

begin: () =>

dispatch({

type: "SET_DRAGGED_ITEM",

payload: item

}),

end: () => dispatch({ type: "SET_DRAGGED_ITEM", payload: undefined \

})

})

useEffect(() => {

preview(getEmptyImage(), { captureDraggingState: true });

}, [preview]);

return { drag }

}

Get the preview function from useDrag. The preview function accepts an element or
node to use as a drag preview. This is where we use getEmptyImage.

Launch the app - you’ll see that now the default preview is not visible. Problem is
that our custom preview is not rendered either.

Make The Custom Preview Visible

Our custom preview is hidden because it uses the same id and index as the currently
dragged column. We need to add isPreview condition to our isHidden function.

Open src/utils/isHidden, add a new boolean argument isPreview:



Your First React and Typescript Application: Building Trello with Drag and Drop 92

01-first-app/step6/src/utils/isHidden.ts

export const isHidden = (

isPreview: boolean | undefined,

draggedItem: DragItem | undefined,

itemType: string,

id: string,

): boolean => {

return Boolean(

!isPreview &&

draggedItem &&

draggedItem.type === itemType &&

draggedItem.id === id

)

}

Now we need to add this argument to our Column component. First add it to
ColumnProps interface:

01-first-app/step6/src/Column.tsx

interface ColumnProps {

text: string

index: number

id: string

isPreview?: boolean

}

Now pass this prop to isHidden function call.



Your First React and Typescript Application: Building Trello with Drag and Drop 93

01-first-app/step6/src/Column.tsx

export const Column = ({ text, index, id, isPreview }: ColumnProps) => {

// ... the rest of the code

return (

<ColumnContainer

ref={ref}

isHidden={isHidden(isPreview, state.draggedItem, "COLUMN", id)}

>

// ... Column layout

</ColumnContainer>

)

}

We used to have the dragged column opacity to be 0.3, it was a hack to keep the pre-
view visible before we created a custom preview component. Open src/styles.ts

and set the hidden state opacity to 0

01-first-app/step6/src/styles0.ts

export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

s>`

opacity: ${props => (props.isHidden ? 0 : 1)};

`

Tilt The Custom Preview

Add a new isPreview property to our DragPreviewContainer component to rotate it
a few degrees.



Your First React and Typescript Application: Building Trello with Drag and Drop 94

01-first-app/step6/src/styles.ts

export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

s>`

transform: ${props => (props.isPreview ? "rotate(5deg)" : undefined)};

opacity: ${props => (props.isHidden ? 0 : 1)};

`

Now go back to src/Column.tsx and pass isPreview as a prop to ColumnContainer:

01-first-app/step6/src/Column.tsx

export const Column = ({ text, index, id, isPreview }: ColumnProps) => {

// ... the rest of the code

return (

<ColumnContainer

isPreview={isPreview}

ref={ref}

isHidden={isHidden(isPreview, state.draggedItem, "COLUMN", id)}

>

// ... Column layout

</ColumnContainer>

)

}

Launch the app, now you can drag columns around and they will have this nice little
tilt to them.



Your First React and Typescript Application: Building Trello with Drag and Drop 95

Tilted column drag-preview

Drag Cards

Time to drag cards around. Open src/DragItem.ts and add the CardDragItem type.

01-first-app/step7/src/DragItem.ts

export type CardDragItem = {

index: number

id: string

columnId: string

text: string

type: "CARD"

}

export type ColumnDragItem = {

index: number



Your First React and Typescript Application: Building Trello with Drag and Drop 96

id: string

text: string

type: "COLUMN"

}

export type DragItem = CardDragItem | ColumnDragItem

Also, update the DragItem type to be either a CardDragItem or a ColumnDragItem.

Update The Reducer

First we need to add a new Action type. Open src/AppStateContext.tsx and add
MOVE_TASK action:

01-first-app/step7/src/AppStateContext.tsx

type Action =

// ... previously defined actions

{

type: "MOVE_TASK"

payload: {

dragIndex: number

hoverIndex: number

sourceColumn: string

targetColumn: string

}

}

This action accepts dragIndex and hoverIndex just like MOVE_LIST, but it also needs to
know between which columns do we drag the card. So it also contains sourceColumn
and targetColumn attributes that hold source and target column ids.

Also we need to add a new case block to our reducer:



Your First React and Typescript Application: Building Trello with Drag and Drop 97

01-first-app/step7/src/AppStateContext.tsx

const appStateReducer = (state: AppState, action: Action): AppState => {

switch (action.type) {

// ... other 'case' blocks

case "MOVE_TASK": {

const {

dragIndex,

hoverIndex,

sourceColumn,

targetColumn

} = action.payload

const sourceLaneIndex = findItemIndexById(state.lists, sourceColu\

mn)

const targetLaneIndex = findItemIndexById(state.lists, targetColu\

mn)

const item = state.lists[sourceLaneIndex].tasks.splice(dragIndex,\

1)[0]

state.lists[targetLaneIndex].tasks.splice(hoverIndex, 0, item)

return { ...state }

}

default: {

return state

}

}

}

Our sourceColumn and targetColumn are column ids so first, we find their corre-
sponding indices in columns array. Then we use splice to remove the card from the
source column and then another splice to add it to the target column.

Implement The useDrop

Next we need to make our cards to be drop targets. Open src/Card.tsx and add this
useDrop block:



Your First React and Typescript Application: Building Trello with Drag and Drop 98

01-first-app/step7/src/Card.tsx

const [, drop] = useDrop({

accept: "CARD",

hover(item: CardDragItem) {

if (item.id === id) {

return

}

const dragIndex = item.index

const hoverIndex = index

const sourceColumn = item.columnId

const targetColumn = columnId

dispatch({

type: "MOVE_TASK",

payload: { dragIndex, hoverIndex, sourceColumn, targetColumn }

})

item.index = hoverIndex

item.columnId = targetColumn

}

})

Now just like in the Column component, wrap your ref into the drop call.

Inside the hover callback we check that we aren’t hovering the item we currently
drag. If the ids are equal - we just return.

Thenwe take the dragIndex and sourceColumn from the dragged item, and hoverIndex
and targetColumn from the hovered card.

We dispatch those values inside the MOVE_TASK action payload.

The last thing we do - we set the dragged item’s index and columnId to match the
fields of the hovered card.

After it’s done - wrap the ref into the drag function call, just like we did in our
Column component:



Your First React and Typescript Application: Building Trello with Drag and Drop 99

01-first-app/step7/src/Card.tsx

drag(drop(ref))

Now launch the app and enjoy dragging the cards around. Pretty soon you might
notice that after you’ve moved all the cards from some column - you can’t move
them back. Let’s fix it.

Drag a Card To an Empty Column

To implement this functionality we’ll use columns as a drop target for our cards as
well.

This way if the column is empty and we drag a card over it - the card will be moved
to this empty column.

To do this we’ll edit our Column drop hover code and add CARD to supported item
types.

01-first-app/step8/src/Column.tsx

accept: ["COLUMN", "CARD"],

Now inside of our hover callback, we’ll need to check what is the actual type of our
dragged item. The item has DragItem type which is a union of ColumnDragItem and
CardDragItem. Both ColumnDragItem and CardDragItem have a common field type

that we can use to discriminate the DragItem.

Add an if block. If our item.type is COLUMN - then we do what we did before.
Just leave the previous logic there. Otherwise, we will calculate the hoverIndex

differently. Remember - we are hovering a column and its index is not very useful
when we are dragging the card. So we just set the hoverIndex to 0.

Then we store item.columnId as sourceColumn. Here we just prepare a const to
match the field name of our action.payload.

Next, we take the id, we do it inside a Column component so it’s not columnId and
store it as targetColumn.

We check that the source and the target columns are different and if that’s the case
- we dispatch an action.



Your First React and Typescript Application: Building Trello with Drag and Drop 100

01-first-app/step8/src/Column.tsx

hover(item: DragItem) {

if (item.type === "COLUMN") {

// ... draggin column

} else {

const dragIndex = item.index

const hoverIndex = 0

const sourceColumn = item.columnId

const targetColumn = id

if (sourceColumn === targetColumn) {

return

}

dispatch({

type: "MOVE_TASK",

payload: { dragIndex, hoverIndex, sourceColumn, targetColumn }

})

item.index = hoverIndex

item.columnId = targetColumn

}

}

Last thing is to update the dragged item’s index and columnId to match the new
values.

Saving State On Backend. How To Make
Network Requests

In this chapter, we’ll learn to work with network requests.

Network requests are tricky. They are resolved only during run time, so you have to
account for that when you write your Typescript code.



Your First React and Typescript Application: Building Trello with Drag and Drop 101

In previous chapters, we wrote a kanban board application where you can create
tasks, organize them into lists and drag them around.

Let’s upgrade our app and let the user save the application state on the backend.

Sample Backend

I’ve prepared a simple backend application for this chapter.

This backend will allow us to store and retrieve the application state. We’ll use a
naive approach and will send the whole state every time it changes.

You will need to keep it running for this chapter examples to work.

To launch it go to code/01-first-app/trello-backend, install dependencies using
yarn and run yarn start:

yarn && yarn start

You should see this message:

Kanban backend running on http://localhost:4000!

You can verify that backend works correctly by manually sending cURL requests.
There are two endpoints available. One for storing data and one for retrieving.

Here is a command to store the data:

curl --header "Content-Type: application/json" \

--request POST \

--data '{"lists":"[]"}' \

http://localhost:4000/api/login

And here is the one to retrieve:

curl http://localhost:4000/load

Every time you POST a JSON object to /save endpoint - the backend stores it in
memory. Next time you call the /load endpoint - the backend sends the saved value
back.



Your First React and Typescript Application: Building Trello with Drag and Drop 102

The Final Result

Before we start working on our application - let’s see what are we aiming to get in
the end.

Launch the sample backend in a separate terminal tab:

cd code/01-first-app/trello-backend

yarn && yarn start

Completed example for this chapter is located in code/02-trello-clone/step9, cd
to this folder and launch the app:

cd code/01-first-app/step9

yarn && yarn start

Initially, you should see an empty field with the “+ Create new list” button.

Empty field



Your First React and Typescript Application: Building Trello with Drag and Drop 103

Create a few lists and tasks and then reload the page. You should see that all the items
are preserved.

Items preserved after page reload

The Starting Point

If you’ve completed the instructions from the first two chapters - then you can
continue where you’ve finished.

If you didn’t follow the previous chapters - then you can use the code/02-trello-clone/step9
as your starting point. Copy the folder somewhere in your working projects direc-
tory.

Using Fetch With Typescript

Browser Javascript has a built-in fetchmethod that allowsmaking network requests.
Here is Typescript type declaration for this function:



Your First React and Typescript Application: Building Trello with Drag and Drop 104

function fetch(input: RequestInfo, init?: RequestInit): Promise<Respons\

e>;

It says here that fetch accepts two arguments:

• input of type RequestInfo. RequestInfo is a union type defined like string |

Request. It means it can be a string or an object having Request type.
• init - optional argument of type RequestInit. This argument contains options
that can control a bunch of different settings. Using this parameter you can
specify request method, custom headers, request body, etc.

Performing requests. Here is a typical POST request performed with fetch:

fetch('https://example.com/profile', {

method: 'POST',

headers: {

'Content-Type': 'application/json',

},

body: JSON.stringify({username: 'example'}),

})

Working with responses. fetch returns a promise that resolves to Response type.
We will usually work with JSON type responses so to us the most interesting field is
.json() method. This method returns a promise that resolves to response body text
as JSON. Unfortunately, this method is not defined as generic so we will have to do
some trickery to specify the type for the returned value.

Let’s say I make a request to https://api.github.com. I know that this API returns
an object with available endpoints, among other fields there will be current_user_-
url:



Your First React and Typescript Application: Building Trello with Drag and Drop 105

const { current_user_url } = await fetch('https://api.github.com')

.then((response) => {

return response.json<{ current_user_url: string }>();

})

}

console.log(typeof current_user_url) // string

You can run this code in Typescript Playground⁴⁴.

Here I specified the return value of json() function call to be have type { current_-

user_url: string }.

Create API Module

When I work with network requests I prefer to create a separate module with
asynchronous functions that abstract the actual network calls.

Let’s say we want to get some data from Github API:

export const githubAPI = <T>() => {

return fetch('https://api.github.com').then((response) => {

return response.json() as Promise<T>;

})

}

Here I defined a generic function githubAPI that accepts a type argument T. I use it
then to specify the type of the return value of response.json() function.

It allows me to use this function like this:

⁴⁴https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+
rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+
YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA

https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA


Your First React and Typescript Application: Building Trello with Drag and Drop 106

const { user_search_url } = await githubAPI<{user_search_url: string}>(\

);

Now in my components, I won’t have to think in terms of requests and responses. I
will have an asynchronous function that returns data.

This approach has a bunch of benefits:

• We are not bound to a specific fetch implementation. If you want to switch
to axios⁴⁵ - you will have only one place in your application where you’ll have
to make the changes.

• Testing is easier. I don’t have to mock the request and response object. What
I have to do is to mock an asynchronous function that returns some data.

• Easy to add types. If you have anAPImodule where youwrap all your network
requests into asynchronous functions - you can provide nice types for them.

To use our API we’ll need to define our backend url somewhere. Create a .env file
with the following contents:

<<01-first-app/step9/.env⁴⁶

Now create a new file api.ts and define the save function:

01-first-app/step9/src/api.ts

import { AppState } from "./AppStateContext"

export const save = (payload: AppState) => {

return fetch(`${process.env.REACT_APP_BACKEND_ENDPOINT}/save`, {

method: "POST",

headers: {

Accept: "application/json",

"Content-Type": "application/json",

},

body: JSON.stringify(payload),

})

⁴⁵https://github.com/axios/axios
⁴⁶./code/01-first-app/step9/.env

https://github.com/axios/axios
code/01-first-app/step9/.env
https://github.com/axios/axios
code/01-first-app/step9/.env


Your First React and Typescript Application: Building Trello with Drag and Drop 107

.then((response) => {

return response.json()

})

.catch(console.log)

}

This function will accept the current state and send it to the backend as JSON.

Define the load function:

01-first-app/step9/src/api.ts

export const load = () => {

return fetch(`${process.env.REACT_APP_BACKEND_ENDPOINT}/load`).then(

(response) => {

return response.json() as Promise<AppState>

}

)

}

This function will load the previously saved data from the backend.We cast the JSON
parsing result to the AppState type.

Ok, now you have an API with two functions:

• save function makes a POST request and sends a JSON representation of our
application state to the backend.

• load function makes a GET request to retrieve previously saved state.

Saving The State

We want to save our application state every time it changes. It means that every
time we move the items around or create new ones we want to make a request to
our backend.

In our application, we have a redux-like architecture. It means that we have a
centralized store that holds our application state.



Your First React and Typescript Application: Building Trello with Drag and Drop 108

We don’t use Redux, but we use React’s built-in hook useReducer which is fairly
similar.

In order to save the state on backend we’ll use a useEffect hook.

Add the following code to src/AppStateContext.tsx right before the AppStateProvider
return statement:

01-first-app/step9/src/AppStateContext.tsx

useEffect(() => {

save(state)

}, [state])

Don’t forget to import the useEffect hook from React.

The useEffect⁴⁷ hook allows to run side effect callbacks on some value change.

It accepts a callback function and a dependency array. Then it triggers the callback
function every time the variables in the dependency array get updated.

So in our case we call our save method with the value of the state every time the
state is updated.

Let’s verify that everything works correctly, every time you send the data to the
backend it logs it to console.

Try to drag the items around and then check the backend console output. It should
look like this:

⁴⁷



Your First React and Typescript Application: Building Trello with Drag and Drop 109

Backend console output

Loading The Data

In our application, the only time we want to load the data is when we first render it.

We have a provider component that is being mounted once when we render our
application. Problem is that we can’t load the data directly inside of it because then
our application will first initialize with the default data, then we will get the data
from the backend but it wouldn’t matter as our reducer would already be initialized.

The solution is to have a wrapper component that will load the data for us and then
will pass the data to our context provider as a prop so it initializes with correct data.

We could create another component that will render our AppStateProvider inside of
it. But I propose to create a more generic solution using the HOC pattern.



Your First React and Typescript Application: Building Trello with Drag and Drop 110

What is HOC

HOC is a React pattern where you create a factory function that accepts a wrapped
component as an argument, wraps it into another component that implements the
desired behavior and then returns this construction.

We will talk about HOCs and other React patterns in the next chapters. For now, let’s
practice creating one.

Creating your first HOC

OurHOCwill accept AppStateProvider and inject the initialState prop containing
loaded data into it.

Create a new file src/withData.tsx.

Make necessary imports:

01-first-app/step9/src/withData.tsx

import React, { PropsWithChildren, ComponentType } from "react"

import { AppState } from "./AppStateContext"

Then define and export our withData HOC:

01-first-app/step9/src/withData.tsx

export const withData = (

WrappedComponent: ComponentType<PropsWithChildren<{ initialState: App\

State }>>

) => {

return ({ children }: PropsWithChildren<{}>) => {

const initialState: AppState = { lists: [], draggedItem: undefined }

// Here will go the logic of our HOC

return (

<WrappedComponent initialState={initialState}>

{children}



Your First React and Typescript Application: Building Trello with Drag and Drop 111

</WrappedComponent>

)

}

}

Let’s go line by line. First we define a withData function that accepts WrappedComponent
argument. This WrappedComponent has a complex type declaration:

ComponentType<PropsWithChildren<{ initialState: AppState }>>

Here we composed the type of our WrappedComponent from several generic types.
Whatwemeant here is that wewant to have a React component, that accepts children
and also additional initialState prop of type AppState.

Then inside of our function, we return a nameless component that accepts children
prop. Our AppStateProvider will accept the initialState prop. This nameless
component will play the role of modified AppStateProvider that only accepts the
children.

Inside of the nameless internal component we have hardcoded the initial state.

Then we return the WrappedComponent (in our app it will be AppStateProvider)
passing the initialState and children to it.

Here you go. Now we can add the data loading logic to our HOC.

If you don’t understand how HOCs work yet - don’t worry, we have a
dedicated chapter about the advanced React patterns, where we talk in
more detail about them.

Load Data Inside HOC

Inside this function, we create a functional component that uses useEffect hook to
load data.

Call a useEffect hook and call our load function from the API module when it gets
triggered.

We will have three different states:



Your First React and Typescript Application: Building Trello with Drag and Drop 112

• Pending.We have this state when we’ve started loading data but didn’t finish
yet. We need to render some kind of loader.

• Success. The data is loaded successfully. We can render our app.
• Failure.We got a network error. We need to render the error message.

Remove the following line:

const initialState: AppState = { lists: [], draggedItem: undefined }

Define states for pending, success, and failure statuses.

01-first-app/step9/src/withData.tsx

const [isLoading, setIsLoading] = useState(true)

const [error, setError] = useState<Error | undefined>()

const [initialState, setInitialState] = useState<AppState>({

lists: [],

draggedItem: undefined,

})

Now we’ll need to update those states when the status of our request changes.

Add a useEffect call:

01-first-app/step9/src/withData.tsx

React.useEffect(() => {

const fetchInitialState = async () => {

try {

const data = await load()

setInitialState(data)

} catch (e) {

setError(e)

}

setIsLoading(false)

}

fetchInitialState()

}, [])



Your First React and Typescript Application: Building Trello with Drag and Drop 113

Here we call the useEffect hook. We an empty array to it as a second argument so
that it triggers the callback only when our component mounts.

Read more about useEffect hook in React Documentation⁴⁸

Inside of our useEffect callback, we defined the fetchInitialState asynchronous
function. We did it so that we could use the async/await syntax.

Inside of the fetchInitialState function we have a try/catch block where we load
the data and store it in our state and if something goes wrong we save the error.

Now let’s update the wrapper component layout.

01-first-app/step9/src/withData.tsx

if (isLoading) {

return <div>Loading</div>

}

if (error) {

return <div>{error.message}</div>

}

return (

<WrappedComponent initialState={initialState}>

{children}

</WrappedComponent>

)

Here we show the loader if isLoading state is true. We show an error message if
something went wrong. And we return the wrapped component if the data was
loaded successfully.

Use The HOC

Now the HOC is ready, import it into src/AppStateContext.tsx.:

⁴⁸https://reactjs.org/docs/hooks-effect.html

https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html


Your First React and Typescript Application: Building Trello with Drag and Drop 114

01-first-app/step9/src/AppStateContext.tsx

import { withData } from "./withData"

And wrap the AppStateContext into it.

01-first-app/step9/src/AppStateContext.tsx

export const AppStateProvider = withData(({ children, initialState }: R\

eact.PropsWithChildren<{initialState: AppState}>) => {

const [state, dispatch] = useReducer(appStateReducer, initialState)

useEffect(() => {

save(state)

}, [state])

return (

<AppStateContext.Provider

value={{ state, dispatch }}

>

{children}

</AppStateContext.Provider>

)

})

Launch The App

Now the app should preserve the state on our backend.

Launch the app and try to move the columns and cards around. Reload the page to
verify that the state was preserved.



How to Test Your Applications:
Testing a Digital Goods Store
Introduction

In this part, we will learn to test our React + Typescript applications. Unlike other
sections where we start from scratch and then build an application – in this one we’ll
begin with an existing app and will cover it with tests.

We will use React testing library⁴⁹ because it has simple API, is easy to set up and is
recommended by React team. Oh, and of course it supports Typescript.

How to test a front-end application isn’t always obvious, but the React testing library
makes it easy. Below, we’re going to walk through how to test components in React
with Jest, how to mock dependencies, test routing, and even test React hooks.

Get Familiar With The Application

Before we begin - let’s get familiar with the example application that we’ll be
covering with tests.

The book has an attached zip archive with examples for each step. The completed
example is in code/02-testing/completed.

Unzip the archive and cd to the app folder.

cd code/02-testing/completed

When you are there - install the dependencies and launch the app:

⁴⁹https://testing-library.com/docs/react-testing-library/intro

https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro


How to Test Your Applications: Testing a Digital Goods Store 116

yarn && yarn dev

The yarn dev command runs both a server and a client. We use concur-
rently⁵⁰ to launch two scripts at the same time. You can check src/package.json
to see how we do it.

It should also open the app in the browser. If it didn’t happen - navigate to
http://localhost:3000 and open it manually.

Main screen

You should see a list of hero equipment: weapons, armor, potions. Click the Add to
cart buttons to add items to the cart.

⁵⁰https://www.npmjs.com/package/concurrently

https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/concurrently


How to Test Your Applications: Testing a Digital Goods Store 117

Selected items

You should also see that the cart widget in the top-right corner shows the number of
items you are going to buy. Click that widget.



How to Test Your Applications: Testing a Digital Goods Store 118

Cart summary

You will end up on Cart Summary page. Here you can review the cart and remove
the items if you don’t want to buy them anymore. Click the Go to checkout button.



How to Test Your Applications: Testing a Digital Goods Store 119

Selected items

Now you are on Checkout page. Here you can see a list of products you are going to
buy with the total amount of Zorkmids you have to pay.

Below the list, you see the checkout form. Fill in the fields. If you try to skip the
fields or input the incorrect values - you’ll see error messages. Also, note that we are
normalizing the Card number field to have the xxxx xxxx xxxx xxxx format.

After you are done filling in the form – press the Checkout button.

Selected items

Now the cart will be purged, and you will be redirected to the Order Summary page.



How to Test Your Applications: Testing a Digital Goods Store 120

On this page, you should see the list of products you’ve bought and the Back to the
store button. Click the button to get back to the main page.

That’s it, here we have a tiny fantasy store where you can put products into the cart,
review the cart, maybe remove some products from it, and then fill in the checkout
form and perform the purchase.

We will go through the code of each page, discuss it’s functionality, and then cover
it with tests.

Initial Setup

To beginworking on this project copy the code/02-testing/step1 to yourworkspace
folder. It will be our starting point.

In this tutorial, I assume that you will be using VSCode. Open the project in the
editor.

1 .

2 ├── .vscode

3 │ └── launch.json // Settings for debugging in VSCode

4 ├── node_modules

5 ├── public

6 ├── src

7 ├── .gitignore

8 ├── .nvmrc // This file contains Node version

9 ├── package.json

10 ├── README.md

11 ├── tsconfig.json

12 ├── yarn-error.log

13 └── yarn.lock

You should see the following file structure.

Our application is written using Create React App, so Jest is already pre-configured
there.



How to Test Your Applications: Testing a Digital Goods Store 121

In the first chapter of this book I go through the whole application
structure generated by CRA and explain the purpose of each file.

Jest supports Typescript out of the box. We don’t need any additional setup to run
the tests.

To verify that everything works - install the dependencies using yarn and run the
tests:

yarn && yarn test

This will launch the Jest runner in watch mode. If you change the code or test files,
it will re-run the tests. You can quit the runner by pressing q.

Install VSCode plugin

If you are using VSCode - you can install a useful Jest plugin⁵¹ that automatically
runs the tests and displays the test results right in the text editor.

⁵¹https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest

https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest


How to Test Your Applications: Testing a Digital Goods Store 122

Jest VSCode plugin

To verify that it works - open src/App.spec.tsx. You should see the green checkmark
near the first test case:



How to Test Your Applications: Testing a Digital Goods Store 123

Jest VSCode plugin

This way you can get the visual feedback from running your tests way quicker.

If it doesn’t show up automatically - launch Command Palette and select Jest: Start

Runner.

Jest VSCode plugin



How to Test Your Applications: Testing a Digital Goods Store 124

Troubleshooting
If your VSCode Jest plugin doesn’t seem to work, check the “Output”
console on the bottom of your window. It should contain some messages
that will help you diagnose the issue.

vscode-jest also contains a troubleshooting section in their documenta-
tion here⁵²

Enable Debugging Tests

Before we begin there is one more thing that is good to know. How to debug your
tests? To enable debugging in VSCode you need to add a launch.json configuration
into the .vscode folder in the root of your project.

In this project I already did it for you. You can open .vscode/launch.json to see
what it contains:

{

"version": "0.2.0",

"configurations": [

{

"name": "Debug CRA Tests",

"type": "node",

"request": "launch",

"runtimeExecutable": "${workspaceRoot}/node_modules/.bin/react-sc\

ripts",

"args": [

"test",

"--runInBand",

"--no-cache",

"--watchAll=false"

],

"cwd": "${workspaceRoot}",

"protocol": "inspector",

⁵²https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting

https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting
https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting
https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting


How to Test Your Applications: Testing a Digital Goods Store 125

"console": "integratedTerminal",

"internalConsoleOptions": "neverOpen",

"env": { "CI": "true" },

"disableOptimisticBPs": true

}

]

}

Here we specify a launch configuration called Debug CRA Tests. It uses react scripts
with parameters from the args field. It’s an equivalent of running the following in
your terminal:

yarn test --runInBand --no-cache --watchAll=false

• --runInBand makes tests run serially in one process. It’s hard to debug many
processes at the same time.

• --no-cache disables cache, to avoid cache related problems during debugging.
• --watchAll=false disables re-running tests when any of related files change.
We want to perform a single run, so we set this flag to false.

This configuration will work with any Create React App generated application.

Set a Breakpoint

Let’s verify our debugging configuration. Open src/App.spec.tsx and place a
breakpoint:



How to Test Your Applications: Testing a Digital Goods Store 126

Jest VSCode plugin

Now open the Command Palette (View -> Command Palette) and select Debug: Select

and Start Debugging and the Debug CRA Tests.

Jest VSCode plugin

You should see the debug pane with the runtime variables, call stack, and breakpoints
sections on the left and control buttons at the top of the screen.

You can use this interface to go through your tests execution step by step and observe
the values of all the variables in your code. We will use this functionality later in this
chapter, for now, stop the execution by pressing the red square button (or press Shift
+ F5).



How to Test Your Applications: Testing a Digital Goods Store 127

Remove the breakpoint by clicking on it.

Writing Tests

Our application entry point is src/index.tsx. This is where we render our compo-
nent tree into the HTML.

02-testing/completed/src/index.tsx

import React from "react"

import ReactDOM from "react-dom"

import { BrowserRouter } from "react-router-dom"

import { App } from "./App"

import { CartProvider } from "./CartContext"

import "./index.css"

ReactDOM.render(

<React.StrictMode>

<CartProvider>

<BrowserRouter>

<App />

</BrowserRouter>

</CartProvider>

</React.StrictMode>,

document.getElementById("root")

)

Here we render our App component. Note that it is wrapped into three providers here:

• <ProductsProvider> holds information about products. It automatically loads
the data from the backend and makes it available across the application.

• <CartProvider>manages the cart state. It persists the information in localStorage.
• <BrowserRouter> this provider allows using routing across our app.



How to Test Your Applications: Testing a Digital Goods Store 128

Note that some of the components we are going to test will depend on those providers.
We will have to acknowledge this when writing tests.

This file only contains the application initialization code and doesn’t have any logic
we can test. We skip it and go to the App component.

App Component and Testing Context

Open src/App.tsx. This file contains App component definition.

02-testing/completed/src/App.tsx

import React from "react"

import { Switch, Route } from "react-router-dom"

import { Checkout } from "./Checkout"

import { Home } from "./Home"

import { Cart } from "./Cart"

import { Header } from "./shared/Header"

import { OrderSummary } from "./OrderSummary"

export const App = () => {

return (

<>

<Header/>

<div className="container">

<Switch>

<Route path="/checkout">

<Checkout />

</Route>

<Route path="/cart">

<Cart />

</Route>

<Route path="/order">

<OrderSummary />

</Route>

<Route path="/">



How to Test Your Applications: Testing a Digital Goods Store 129

<Home />

</Route>

</Switch>

</div>

</>

)

}

App is a functional component. It doesn’t accept any props, nor does it contain any
business logic. The only thing it does is render the layout.

Most of your components will output some layout and this is the first thing you can
test.

Let’s write test that verifies that App component at least renders successfully. Open
src/App.spec.tsx and add the following code:

02-testing/step1/src/App.spec.tsx

import React from "react"

import { App } from "./App"

import { render } from "@testing-library/react"

describe("App", () => {

it("renders successfully", () => {

const { container } = render(<App />)

expect(container.innerHTML).toMatch("Goblin Store")

})

})

Here we wrap the whole testing code into a describe('App') block. This way we
specify that all the it blocks containing specific test cases are related to testing the App
component. You can greatly improve the readability of your tests by using describe
blocks wisely. We will talk about it more in this chapter.

Inside of the describe we have an it block. it blocks contain individual tests.
Optimally each it block should test one aspect of the tested entity. Here we test
that our App component renders successfully.



How to Test Your Applications: Testing a Digital Goods Store 130

Every it block has a name, in our case it’s renders successfully, and a callback.

A good practice is to use present simple tense for names and keep them short and
unambiguous. Treat the it word as a part of the sentence:

• � Bad: it("component was rendered successfully")

• � Good: it("renders successfully")

The callback contains the actual testing code.

02-testing/step1/src/App.spec.tsx

const { container } = render(<App />)

expect(container.innerHTML).toMatch("Goblin Store")

Now if you run the test it will fail with the following error:

1 Invariant failed: You should not use <Switch> outside a <Router>

Where is this coming from?

Our App component uses <Switch> - which comes from React Router - to render
different pages depending on the URL we are on. But the <Switch> component has
a constraint: it can only be used inside a <Router> context (Router also comes from
React Router).

Look again back at our src/index.tsx. When you open src/index.tsx - you’ll see
that, when we run our application outside of our tests, we wrap our App component
there into a BrowserRouter:



How to Test Your Applications: Testing a Digital Goods Store 131

02-testing/step1/src/index.tsx

import React from "react"

import ReactDOM from "react-dom"

import { BrowserRouter } from "react-router-dom"

import { App } from "./App"

import { CartProvider } from "./CartContext"

import "./index.css"

ReactDOM.render(

<React.StrictMode>

<CartProvider>

<BrowserRouter>

<App />

</BrowserRouter>

</CartProvider>

</React.StrictMode>,

document.getElementById("root")

)

However, in our test we were trying to run the App component directly –without the
Router context (that is, the <Router> tag wrapping - or being a parent of - our App).

To fix this, we need to wrap our App component into a Router in our tests as well.

Tests Run in Node

It is important to note that our tests run in the Node environment - not an actual
browser! - and we use a simulated DOMAPI provided by jsdom⁵³. It means that some
functionality can be missing or work differently from the browser environment.

One of the missing things is a History API⁵⁴. So to use routing we’ll have to install
an additional package that will provide us the History API functionality.

Install history as dev dependency:

⁵³https://www.npmjs.com/package/jsdom
⁵⁴https://developer.mozilla.org/en-US/docs/Web/API/History_API

https://www.npmjs.com/package/jsdom
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://www.npmjs.com/package/jsdom
https://developer.mozilla.org/en-US/docs/Web/API/History_API


How to Test Your Applications: Testing a Digital Goods Store 132

yarn add --dev history

Now let’s fix our test by using our synthetic History API:

02-testing/step1/src/App.spec.tsx

import React from "react"

import { App } from "./App"

import { createMemoryHistory } from "history"

import { render } from "@testing-library/react"

import { Router } from "react-router-dom"

describe("App", () => {

it("renders successfully", () => {

const history = createMemoryHistory()

const { container } = render(

<Router history={history}>

<App />

</Router>

)

expect(container.innerHTML).toMatch("Goblin Store")

})

it("renders Home component on root route", () => {

const history = createMemoryHistory()

history.push("/")

const { container } = render(

<Router history={history}>

<App />

</Router>

)

expect(container.innerHTML).toMatch("Home")

})

})

There are three things are going on here:



How to Test Your Applications: Testing a Digital Goods Store 133

Initial setup.We create the history object and pass it to the Router component.

Rendering. We call the render method from @testing-library/react⁵⁵ and get the
container instance. Container represents the containing DOM node of the rendered
React component.

Expectation. We call the expect method provided by Jest⁵⁶. We pass the HTML
contents of our container to it and check if it contains the string "Goblin Store"

in it. Our App layout always renders the Header component that contains this text.
So it can be a good indication that our component rendered successfully.

Mocking Dependencies

Our App component also defines the routing system and renders the Home page at the
root route.

We can test it as well, but our Home page component depends on data from the
ProductsProvider to render the products list. It might also render other components
with more dependencies, so in the end, the test can become quite cumbersome to set
up.

A common approach in such situations is to mock the dependency, so we can test
our component in isolation.

Let’s write the test that will verify that App will render the Home component at the
root route. We will mock the App component so that we won’t have to work with
extra dependencies.

In the src/App.spec.tsx import the Home component and then call jest.mock to
mock this module:

02-testing/step1/src/App.spec.tsx

jest.mock("./Home", () => ({ Home: () => <div>Home</div> }))

jest.mock allows you to mock whole modules. Mocking means that we substitute
the real object by a fake double that mimics its behavior. You can also spy on mocked

⁵⁵https://testing-library.com/docs/react-testing-library
⁵⁶https://jestjs.io/docs/en/expect

https://testing-library.com/docs/react-testing-library
https://jestjs.io/docs/en/expect
https://testing-library.com/docs/react-testing-library
https://jestjs.io/docs/en/expect


How to Test Your Applications: Testing a Digital Goods Store 134

objects and functions to track how your code is using them. But we’ll get back to it
later.

Here we defined our mock component that will be used instead of the real Home
component. It will render "Home component" text, that we can refer to in our test to
verify that component was rendered.

Now right after the first it block define a new it block:

02-testing/step1/src/App.spec.tsx

it("renders Home component on root route", () => {

const history = createMemoryHistory()

history.push("/")

const { container } = render(

<Router history={history}>

<App />

</Router>

)

expect(container.innerHTML).toMatch("Home")

})

Here we push the root url to our history object before rendering the App component.
Then we check that the content of the containermatches with the "Home" string that
we render in our mocked Home component.

If you are using the Jest VSCode plugin you should see the green checkbox near this
test. If you decided to not use the plugin - run the tests in the terminal from the
project root:

yarn test

The tests should pass.

Routing Testing

If you open src/App.tsx file - you’ll see that our App component renders four
different routes using Switch.



How to Test Your Applications: Testing a Digital Goods Store 135

02-testing/step1/src/App.tsx

<Switch>

<Route exact path="/">

<Home />

</Route>

<Route path="/checkout">

<Checkout />

</Route>

<Route path="/cart">

<Cart />

</Route>

<Route path="/order">

<OrderSummary />

</Route>

<Route>Page not found</Route>

</Switch>

Aside from the root route where it renders Home component it also renders /checkout,
/cart, and /order routes.

We can test those routes as well. But we will end up with a lot of duplicated code.
All those routes tests will look like the root route test. The only things that will be
different will be the url and the expected strings to render.

Let’s create a helper method to render components with the router.

Global Helper With Typescript

First of all create a new file src/testHelpers.tsx that will hold our helper function:



How to Test Your Applications: Testing a Digital Goods Store 136

02-testing/step1/src/testHelpers.tsx

global.renderWithRouter = (renderComponent, route) => {

const history = createMemoryHistory()

if (route) {

history.push(route)

}

return {

...render(

<Router history={history}>{renderComponent()}</Router>

),

history

}

}

This function creates a history object and pushes the route to it if we got it through
the arguments. Then we call the render method from the testing-library/react

and return all the fields that we got from it plus history object.

We’ve defined the renderWithRouter function on the global object. The global

object is a global namespace object in node⁵⁷.

Everything that we define on this object we’ll be able to address directly in our tests.
For example, we’ll be able to call the renderWithRouter function without importing
it.

One problem though, Typescript complains that Property 'renderWithRouter' does

not exist on type 'Global'. Let’s fix it.

First define the type for our function:

⁵⁷https://nodejs.org/api/globals.html#globals_global

https://nodejs.org/api/globals.html#globals_global
https://nodejs.org/api/globals.html#globals_global


How to Test Your Applications: Testing a Digital Goods Store 137

02-testing/step1/src/testHelpers.tsx

type RenderWithRouter = (

renderComponent: () => React.ReactNode,

route?: string

) => RenderResult & { history: MemoryHistory }

Here we defined a function that accepts renderComponent and optionally a route. As
a result, it should return a RenderResult from @testing-library/react, which is a
return type of it’s render function with an additional field history.

By default, the global object has type Global. We can add a new field to it.

02-testing/step1/src/testHelpers.tsx

declare global {

namespace NodeJS {

interface Global {

renderWithRouter: RenderWithRouter

}

}

}

The type Global is a part of NodeJS namespace which is globally available. It means
that we can address NodeJS namespace from any module directly without the need
to import it first.

We can augment global namespaces by using the declare global {} syntax. Read
more about it in Typescript documentation⁵⁸.

Here we augment the Global type by adding a renderWithRouter field to it with type
RenderWithRouter.

Great, now we’ll be able to call our function by referencing it on the global object
like this:

⁵⁸https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-
scope-from-modules

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules


How to Test Your Applications: Testing a Digital Goods Store 138

global.renderWithRouter(() => <ExampleComponent />, "/")

If you call it without the global in the beginning - Typescript will give you an error:
can't find name 'renderWithRouter'.

To call it without referencing the global object we’ll need to augment the glob-
alThis⁵⁹ type as well. It is a variable that refers to the global scope.

02-testing/step1/src/testHelpers.tsx

declare global {

namespace NodeJS {

interface Global {

renderWithRouter: RenderWithRouter

}

}

namespace globalThis {

const renderWithRouter: RenderWithRouter

}

}

Now you should be able to call renderWithRouter directly:

renderWithRouter(() => <ExampleComponent />, "/")

Now let’s make it available in our test files. Go to src/setupTests.ts and import
the src/testHelpers.tsx:

02-testing/step1/src/setupTests.ts

import "./testHelpers"

Writing The Tests

Now let’s finally write our routing tests. First mock the pages components. Add the
following code right after you mock the Home component:

⁵⁹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis


How to Test Your Applications: Testing a Digital Goods Store 139

02-testing/step1/src/App.spec.tsx

jest.mock("./Cart", () => ({ Cart: () => <div>Cart</div> }))

jest.mock("./Checkout", () => ({

Checkout: () => <div>Checkout</div>

}))

jest.mock("./OrderSummary", () => ({

OrderSummary: () => <div>Order summary</div>

}))

Now create a new describe block with name routing and move our root route test
there. Remake it so that it uses renderWithRouter:

02-testing/step1/src/App.spec.tsx

describe("routing", () => {

it("renders home page on '/'", () => {

const { container } = renderWithRouter(

() => <App />,

"/"

)

expect(container.innerHTML).toMatch("Home")

})

})

Make sure that your tests pass and then add a new it block for /checkout route:

02-testing/step1/src/App.spec.tsx

it("renders checkout page on '/cart'", () => {

const { container } = renderWithRouter(

() => <App />,

"/cart"

)

expect(container.innerHTML).toMatch("Cart")

})



How to Test Your Applications: Testing a Digital Goods Store 140

Repeat it for the /cart and /order routes.

After you are done with all the existing routes - it’s time to check if the nonexistent
routes alse render correctly:

02-testing/step1/src/App.spec.tsx

it("renders checkout page on '/cart'", () => {

const { container } = renderWithRouter(

() => <App />,

"/cart"

)

expect(container.innerHTML).toMatch("Cart")

})

Here we check that with some arbitrary route that is not defined we’ll render the
Page not found message.

Shared Components

Before we move on and start testing our pages - let’s test the shared components. All
of them are defined inside the src/shared folder.

Header Component

Header component renders the title of the store and also the cart widget. Cart widget
is defined in a separate component, so we’ll mock it and test Header in isolation.

Create new file called src/shared/Header.spec.tsx with the following contents:



How to Test Your Applications: Testing a Digital Goods Store 141

02-testing/step1/src/shared/App.spec.tsx

import React from "react"

import { Header } from "./Header"

jest.mock("./CartWidget", () => ({

CartWidget: () => <div>Cart widget</div>

}))

describe("Header", () => {

it("renders correctly", () => {

const { container } = renderWithRouter(() => <Header />)

expect(container.innerHTML).toMatch("Goblin Store")

expect(container.innerHTML).toMatch("Cart widget")

})

})

The header contains a link to the main page so we’ll have to use renderWithRouter
to be able to test it.

Here we’ve mocked the CartWidget component to render the "Cart widget" string.
Now in our test, we can make sure that it was rendered by checking if the "Cart

widget" string ends up in rendered layout.

Now let’s verify that if we click the “Goblin Store” sign we’ll get redirected to the
root url.

02-testing/step1/src/shared/Header.spec.tsx

it("navigates to / on header title click", () => {

const { getByText, history } = renderWithRouter(() => <Header />)

fireEvent.click(getByText("Goblin Store"))

expect(history.location.pathname).toEqual("/")

})

We click the element that has the text “Goblin Store” on it and then we expect that
we end up on root url.



How to Test Your Applications: Testing a Digital Goods Store 142

Here it comes in handy that we return the history object from our renderWithRouter
helper function. This allows us to check that the current location matches the root
url.

CartWidget

Let’s move on to the CartWidget component. This component displays the number
of products in the cart. Also, the whole component acts as a link, so if you click on
it - you get redirected to the cart summary page.

This component also uses an icon cart.svg so it has a dedicated folder called
CartWidget.

Let’s create a test file. Create a new file src/shared/CartWidget.spec.tsx:

02-testing/step1/src/shared/CartWidget/CartWidget.spec.tsx

import React from "react"

import { CartWidget } from "./CartWidget"

import { fireEvent } from "@testing-library/react"

describe("CartWidget", () => {

it.todo("shows the amount of products in the cart")

it.todo("navigates to cart summary page on click")

})

Here we’ve planned out the tests we are going to write using it.todo syntax. This
syntax allows you to write only the test case name omit the callback. It is useful
when you want to list the aspects that you want to test but you don’t want to write
the actual tests yet.

Ok, we already know how to test navigation by click. Let’s write the test that will
check that we get redirected to the cart summary page when we click the widget.

Remove the todo from the navigates to cart summary page on click test and add
the following code there:



How to Test Your Applications: Testing a Digital Goods Store 143

02-testing/step1/src/shared/CartWidget/CartWidget.spec.tsx

it("navigates to cart summary page on click", () => {

const { getByRole, history } = renderWithRouter(() => (

<CartWidget />

))

fireEvent.click(getByRole("link"))

expect(history.location.pathname).toEqual("/cart")

})

})

Here we use the getByRole⁶⁰ selector from @testing-library/react. This selector
uses the aria-role attribute to find the element. Some elements have the default
aria-role value for example <a> elements have link role. You can find complete list
of default aria-role values on WHATWG site⁶¹.

So in our test, we click the link element and then check if we ended up on the /cart
route.

Now let’s test that CartWidget renders the number of products in the cart correctly.

CartWidget component does not have any logic to track the number of products in the
cart. It just takes the value provided by the CartContext though the useCartContext
hook.

Open the CartWidget component code. It’s located in src/shared/CartWidget/CartWidget.tsx:

⁶⁰https://testing-library.com/docs/dom-testing-library/api-queries#byrole
⁶¹https://html.spec.whatwg.org/multipage/index.html#contents

https://testing-library.com/docs/dom-testing-library/api-queries#byrole
https://html.spec.whatwg.org/multipage/index.html#contents
https://testing-library.com/docs/dom-testing-library/api-queries#byrole
https://html.spec.whatwg.org/multipage/index.html#contents


How to Test Your Applications: Testing a Digital Goods Store 144

02-testing/step1/src/shared/CartWidget/CartWidget.tsx

import React from "react"

import { Link } from "react-router-dom"

import cart from "./cart.svg"

import { useCartContext } from "../../CartContext"

interface CartWidgetProps {

useCartHook?: typeof useCartContext;

}

export const CartWidget = ({useCartHook = useCartContext}: CartWidgetPr\

ops) => {

const { products } = useCartHook()

return (

<Link to="/cart" className="nes-badge is-icon">

<span className="is-error">{products?.length || 0}</span>

<img src={cart} width="64" height="64" alt="cart" />

</Link>

)

}

Look what happens here. We get the products array from the useCartContext hook.
But we don’t call it directly. Instead, we define a prop called useCartHook and assign
the useCartContext hook as the default value to it.

To specify the type of this prop we use a built-in typeof util from Typescript. This
way we can get the type of some value, in this case, the type of useCartContext hook
and reuse it.

This way in our test we can easily provide the mocked version of this hook to our
component.

Go back to the test code, let’s test that we render the amount of products in the cart
correctly:



How to Test Your Applications: Testing a Digital Goods Store 145

02-testing/step1/src/shared/CartWidget/CartWidget.spec.tsx

it("shows the amount of products in the cart", () => {

const stubCartHook = () => ({

products: [

{

name: "Product foo",

price: 0,

image: "image.png"

}

],

})

const { container } = renderWithRouter(() => (

<CartWidget useCartHook={stubCartHook} />

))

expect(container.innerHTML).toMatch("1")

})

Here we define a mock version of the useCartHook. The mock version returns only
the products field with a hardcoded product.

But here is the problem. If we define only the products field in our returned object
- the types of our mocked hook and the useCartHook prop of the CartWidget won’t
match.

When we wrote that useCartHook has the type of the useCartContext hook it meant
that we need to have the same type signature. If the useCartContext hook has some
method or field in returned values - our mocked version should have them as well.

How can we skip the fields that we don’t need for our test?

Well, the easiest way to do it is to use the type any. Like we did in our test when we
passed the mocked hook through the useCartHook prop.



How to Test Your Applications: Testing a Digital Goods Store 146

02-testing/step1/src/shared/CartWidget/CartWidget.spec.tsx

<CartWidget useCartHook={stubCartHook} />

This way you lose the real type information, so I don’t recommend this approach.
Instead, we could be more specific when defining this useCartHook type on our
component.

Let’s go back to the src/shared/CartWidget/CartWidget.tsx andmodify the useCartHook
type.

02-testing/step1/src/shared/CartWidget/CartWidget.tsx

interface CartWidgetProps {

useCartHook?: () => Pick<ReturnType<typeof useCartContext>, "products\

">;

}

Now we define the useCartHook as a function that returns an object with one field
products from the useCartContext return type.

We used two utility types provided by Typescript: * ReturnType - constructs type
from function return type. For example if we have a function type () => string, we
can use ReturnType<() => string> to get string. * Pick - allows us to create a type
with a subset of fields. For example: {lang=ts,line-numbers=off}
interface ExampleType { foo: string; bar: number; }

1 Pick<ExampleType, 'bar'> // { bar: number }

Now in our test we don’t need to typecast our mocked useCartHook:



How to Test Your Applications: Testing a Digital Goods Store 147

02-testing/step1/src/shared/CartWidget/CartWidget.spec.tsx

it("shows the amount of products in the cart", () => {

const stubCartHook = () => ({

products: [

{

name: "Product foo",

price: 0,

image: "image.png"

}

],

})

const { container } = renderWithRouter(() => (

<CartWidget useCartHook={stubCartHook} />

))

expect(container.innerHTML).toMatch("1")

})

Loader Component

Our Loader component does not contain any logic. In our test we’ll only make sure
that it renders correctly:

02-testing/step1/src/shared/Loader.spec.tsx

import React from "react"

import { Loader } from "./Loader"

import { render } from "@testing-library/react"

describe("Loader", () => {

it("renders correctly", () => {

const { container } = render(<Loader />)

expect(container.innerHTML).toMatch("Loading")

})

})



How to Test Your Applications: Testing a Digital Goods Store 148

Home Page

Our home page renders the list of products that we get from the backend.

Home page

Open the src/Home folder, I’ll walk you through the files there:

1 index.tsx

2 Home.tsx

3 Product.tsx

First of all, we have an index.ts file here. It’s used to control the visibility of the
module contents.

02-testing/completed/src/Home/index.ts

export * from './Home'

As you can see we export only the Home component. The Product component won’t
be visible outside this module. The benefit of it is that the Product component won’t



How to Test Your Applications: Testing a Digital Goods Store 149

be accidentally used on other pages. If we’ll decide to reuse it we’ll have to move it
to shared folder

Let’s look at the Home component props:

02-testing/completed/src/Home/Home.tsx

interface HomeProps {

useProductsHook?: () => {

categories: Category[]

isLoading: boolean

error: boolean

}

}

This component gets the products to render from the useProducts hook. To simplify
testing of this component I made useProducts an explicit dependency by adding it
to the component props and setting the default value to be the imported hook.

This way we won’t have to mock the useProducts module using Jest. We’ll be able
to pass the stub through the props. It will make our tests a bit simpler and easier to
set up.

Also, this approach makes all the component dependencies obvious, which greatly
decreases the chance of creating a component that depends on too many things and
thus is hard to test.

But as you can seewe aremanually specifying the return value of the useProductsHook
function. As we now know more efficient way - let’s rewrite it:



How to Test Your Applications: Testing a Digital Goods Store 150

02-testing/completed/src/Home/Home.tsx

interface HomeProps {

useProductsHook?: () => Pick<

ReturnType<typeof useProducts>,

"categories" | "isLoading" | "error"

>

}

Now let’s move on to the tests. Create a test file called src/Home.spec.tsx.

This component gets the data from the useProducts hook and then does one of three
things:

• while products are being loaded
– renders the <Loader />

• if got an error from useProducts
– render the error message

• when products are loaded successfully
– render the products list

Let’s reflect it in our tests. Define a describe block for each state our component can
end up:

02-testing/completed/src/Home/Home.spec.tsx

describe("Home", () => {

describe("while loading", () => {

it.todo("renders categories with products")

})

describe("with data", () => {

it.todo("renders categories with products")

})

describe("with error", () => {

it.todo("renders categories with products")

})

})



How to Test Your Applications: Testing a Digital Goods Store 151

Now let’s write the individual test cases. First, let’s verify that when isLoading is
true we’ll render the Loader component.

02-testing/completed/src/Home/Home.spec.tsx

describe("while loading", () => {

it("renders loader", () => {

const mockUseProducts = () => ({

categories: [],

isLoading: true,

error: false

})

const { container } = render(

<Home useProductsHook={mockUseProducts} />

)

expect(container.innerHTML).toMatch("Loading")

})

})

Here we defined our mockUseProducts function so that it returns isLoading: true

and then we verified that in this case, we’ll find the word "Loading" in rendered
layout.

Then let’s check that our error state will also be processed correctly:

02-testing/completed/src/Home/Home.spec.tsx

describe("with error", () => {

it("renders error message", () => {

const mockUseProducts = () => ({

categories: [],

isLoading: false,

error: true

})

const { container } = render(



How to Test Your Applications: Testing a Digital Goods Store 152

<Home useProductsHook={mockUseProducts} />

)

expect(container.innerHTML).toMatch("Error")

})

})

This test is very similar to the loading state test, the only difference is that now error

is true and isLoading is false.

And finally, let’s verify that when we got the products we render them correctly.

Home component uses the ProductCard component to render products. I don’t want
to introduce it as a dependency to this test. Let’s mock the ProductCard component:

02-testing/completed/src/Home/Home.spec.tsx

jest.mock("./ProductCard", () => ({

ProductCard: ({ datum }: ProductCardProps) => {

const { name, price, image } = datum

return (

<div>

{name} {price} {image}

</div>

)

}

}))

Our mock renders the product data that it gets through the props. This way we’ll be
able to verify that we pass this data to the real component as well.

Inside describe("with data") block define a category constant:



How to Test Your Applications: Testing a Digital Goods Store 153

02-testing/completed/src/Home/Home.spec.tsx

const category: Category = {

name: "Category Foo",

items: [

{

name: "Product foo",

price: 55,

image: "/test.jpg"

}

]

}

Now let’s verify that if we render home page with this data we’ll see the category
titled Category foo and it will contain the rendered product:

02-testing/completed/src/Home/Home.spec.tsx

it("renders categories with products", () => {

const mockUseProducts = () => ({

categories: [category],

isLoading: false,

error: false

})

const { container } = render(

<Home useProductsHook={mockUseProducts} />

)

expect(container.innerHTML).toMatch("Category Foo")

expect(container.innerHTML).toMatch(

"Product foo 55 /test.jpg"

)

})

Here we don’t need to test that if we click on the product’s Add to cart button we’ll
add the product to the cart. We’ll do it in the ProductCart component tests.



How to Test Your Applications: Testing a Digital Goods Store 154

ProductCart Component

Moving on to the ProductCard component. Let’s see what do we have here.

First of all, we need to render the product data: the image should have the correct
alt and src tags, we need to render the price and product name.

Then we render the Add to cart button. This button can have one of two states.
If the product was added to the cart, the button should be disabled and the text on
it should say Added to cart. Otherwise, it should be Add to cart and the button
should trigger the addToCart function from the useCart hook when clicked.

Let’s write the test. Create the src/Home/ProductCard.spec.tsx file with the follow-
ing contents:

02-testing/step1/src/Home/ProductCard.spec.tsx

import React from "react"

import { render, fireEvent } from "@testing-library/react"

import { ProductCard } from "./ProductCard"

import { Product } from "../shared/types"

describe("ProductCard", () => {

it.todo("renders correctly")

describe("when product is in the cart", () => {

it.todo("the 'Add to cart' button is disabled")

})

describe("when product is not in the cart", () => {

describe("on 'Add to cart' click", () => {

it("calls 'addToCart' function")

})

})

})

The first thing we can test is that our ProductCard renders correctly. There are two
states in which it should be rendered correctly:



How to Test Your Applications: Testing a Digital Goods Store 155

• product is in the cart
– render with disabled button saying Added to cart

• product is not in the cart
– render with primary button saying Add to cart

– on Add to cart click
* add the product to the cart

Also in both cases, it renders the name, the price, and the image of the product.

First let’s check that our product renders the data correctly. Define the product const
in the top describe block:

02-testing/completed/src/Home/ProductCard.spec.tsx

const product: Product = {

name: "Product foo",

price: 55,

image: "/test.jpg"

}

Now let’s write the test:

02-testing/completed/src/Home/ProductCard.spec.tsx

it("renders correctly", () => {

const { container, getByRole } = render(

<ProductCard datum={product} />

)

expect(container.innerHTML).toMatch("Product foo")

expect(container.innerHTML).toMatch("55 Zm")

expect(getByRole("img")).toHaveAttribute(

"src",

"/test.jpg"

)

})



How to Test Your Applications: Testing a Digital Goods Store 156

Here we make sure that we can find the product name and price and that the image
has correct attributes.

Now let’s test that if the product is in the cart already - the Add to cart button will
be disabled:

02-testing/completed/src/Home/ProductCard.spec.tsx

describe("when product is in the cart", () => {

it("the 'Add to cart' button is disabled", () => {

const mockUseCartHook = () => ({

addToCart: () => {},

products: [product]

})

const { getByRole } = render(

<ProductCard

datum={product}

useCartHook={mockUseCartHook as any}

/>

)

expect(getByRole("button")).toBeDisabled()

})

})

If you look at our mockUseCartHook here you’ll see that we also had to provide
the addToCart function. That’s because in ProductCard props we defined that
useCartHook returns products list and addToCart function:



How to Test Your Applications: Testing a Digital Goods Store 157

02-testing/step1/src/Home/ProductCard.tsx

export interface ProductCardProps {

datum: Product

useCartHook?: () => Pick<

ReturnType<typeof useCartContext>,

"products" | "addToCart"

>

}

Note that we’ve exported the ProductCartProps interface. We used it in Home

component tests.

Now let’s test how our component works when it’s product is not in the cart, add
this code to “when product is not in the cart” describe block:

02-testing/step1/src/Home/ProductCard.spec.tsx

describe("on 'Add to cart' click", () => {

it("calls 'addToCart' function", () => {

const addToCart = jest.fn()

const mockUseCartHook = () => ({

addToCart,

products: []

})

const { getByText } = render(

<ProductCard

datum={product}

useCartHook={mockUseCartHook}

/>

)

fireEvent.click(getByText("Add to cart"))

expect(addToCart).toHaveBeenCalledWith(product)

})

})



How to Test Your Applications: Testing a Digital Goods Store 158

Here we set the cart products list to be an empty array. We use jest.fn() to mock
our addToCart function:

We fire the click event on our button and then we check that the addToCart function
was called with the product data.

We are done testing the Home page components. We’ll test the useProducts hook later,
for now, move on to other pages.

We’ll continue with the Cart page.

Cart Page

This page renders the list of items that you’ve added to cart.

Cart summary page

Here you can review the products and remove them from the cart if you’ve changed
your mind and don’t want to buy them anymore.

If there are no products this page renders a message saying that the cart is empty and
provides a button to go back to the main page.

Open the src/Cart folder. Here you should see the following files:



How to Test Your Applications: Testing a Digital Goods Store 159

1 index.ts

2 Cart.tsx

3 CartItem.tsx

The index.ts file controls the module visibility. It exports only the Cart page
component.

CartItem represents the product that was added to the cart. It also renders theRemove
button, that you can click to remove the item from the cart.

Cart Component

Open the src/Cart/Cart.tsx. Here we use the useCart hook to get the cart data.

Just like with the home page I decided to add this hook to the props and specify the
default value.

The Cart component has a condition in its layout code:

• when the products array is empty
– renders the “empty cart” message with the link to the products page
– on products page link redirects to /

• with products in the cart
– renders the list of products
– renders the total price
– renders the “Go to checkout” button
– on “Go to checkout” click

* redirects to /checkout

Create the test file src/Cart/Cart.spec.tsx with the following contents:



How to Test Your Applications: Testing a Digital Goods Store 160

02-testing/completed/src/Cart/Cart.spec.tsx

import React from "react"

describe("Cart", () => {

describe("without products", () => {

it.todo("renders empty cart message")

describe("on 'Back to main page'", () => {

it.todo("redirects to '/'")

})

})

describe("with products", () => {

it.todo("renders cart products list with total price")

describe("on 'go to checkout' click", () => {

it.todo("redirects to '/checkout'")

})

})

})

First, let’s check that our Cart component will render the “empty cart” message with
the link.

02-testing/completed/src/Cart/Cart.spec.tsx

import React from "react"

describe("Cart", () => {

describe("without products", () => {

it.todo("renders empty cart message")

})

describe("with products", () => {

it.todo("renders cart products list")



How to Test Your Applications: Testing a Digital Goods Store 161

describe("on 'go to checkout' click", () => {

it.todo("redirects to '/checkout'")

})

})

})

Now let’s check that if we click the link - we’ll get redirected to main page. First
lets hardcode the cart value with empty products array inside the without products

block:

02-testing/step1/src/Cart/Cart.spec.tsx

const stubCartHook = () => ({

products: [],

removeFromCart: () => {},

totalPrice: () => 0

})

Still inside products block write the test that will check that our component will
render Your cart is empty message:

02-testing/step1/src/Cart/Cart.spec.tsx

it("renders empty cart message", () => {

const { container } = renderWithRouter(() => (

<Cart useCartHook={stubCartHook} />

))

expect(container.innerHTML).toMatch(

"Your cart is empty."

)

})

Time to check that if we click the Back to main page button we’ll get redirected to
the main page. Right after the renders empty cart message test add a new describe
block on 'Back to main page' click with the following code:



How to Test Your Applications: Testing a Digital Goods Store 162

02-testing/step1/src/Cart/Cart.spec.tsx

describe("on 'Back to main page' click", () => {

it("redirects to '/'", () => {

const {

getByText,

history

} = renderWithRouter(() => (

<Cart useCartHook={stubCartHook} />

))

fireEvent.click(getByText("Back to main page."))

expect(history.location.pathname).toBe("/")

})

})

})

Here we use the renderWithRouter helper that we defined at the beginning of this
chapter. We find an element that has Back to main page text on it, click it and then
verify that ended up on root route.

Now let’s verify that cart with products also renders correctly. Inside the with

products block hardcode an array of products:

02-testing/step1/src/Cart/Cart.spec.tsx

const products = [

{

name: "Product foo",

price: 100,

image: "/image/foo_source.png"

},

{

name: "Product bar",

price: 100,

image: "/image/bar_source.png"



How to Test Your Applications: Testing a Digital Goods Store 163

}

]

Define the cartHook with these products:

02-testing/step1/src/Cart/Cart.spec.tsx

const stubCartHook = () => ({

products,

removeFromCart: () => {},

totalPrice: () => 55

})

Now let’s check if the component will render correctly. We need to make sure that
the products are rendered and also that we display the total price.

Before we write the test let’s mock the CartItem component. Add this code in the
beginning of our test file:

02-testing/step1/src/Cart/Cart.spec.tsx

jest.mock("./CartItem", () => ({

CartItem: ({ product }: CartItemProps) => {

const { name, price, image } = product

return (

<div>

{name} {price} {image}

</div>

)

}

}))

Now add this code inside the renders cart products list with total price block:



How to Test Your Applications: Testing a Digital Goods Store 164

02-testing/step1/src/Cart/Cart.spec.tsx

it("renders cart products list with total price", () => {

const { container } = renderWithRouter(() => (

<Cart useCartHook={stubCartHook} />

))

expect(container.innerHTML).toMatch(

"Product foo 100 /image/foo_source.png"

)

expect(container.innerHTML).toMatch(

"Product bar 100 /image/bar_source.png"

)

expect(container.innerHTML).toMatch("Total: 55 Zm")

})

Here we check that we can find product names, prices, and image URLs in the
rendered layout.

Let’s verify that if we click the Go to checkout button it will redirect us to the
checkout page:

02-testing/step1/src/Cart/Cart.spec.tsx

describe("on 'go to checkout' click", () => {

it("redirects to '/checkout'", () => {

const {

getByText,

history

} = renderWithRouter(() => (

<Cart useCartHook={stubCartHook} />

))

fireEvent.click(getByText("Go to checkout"))

expect(history.location.pathname).toBe("/checkout")

})

})



How to Test Your Applications: Testing a Digital Goods Store 165

This test is very similar to the one that checks that the empty state button redirects
you to the main page.

CartItem Component

Time to test our CartItem component. This component renders the product infor-
mation and also renders a Remove button that allows removing the product from the
cart. So if we summarize its functionality it will look like this:

• renders correctly
• on Remove button click

– removes the item from the cart

Create a new file called src/Cart/CartItem.spec.tsx and plan out the tests.

02-testing/step1/src/Cart/CartItem.spec.tsx

import React from "react"

describe("CartItem", () => {

it.todo("renders correctly")

describe("on 'Remove' click", () => {

it.todo("calls passed in function")

})

})

Let’s test that it renders correctly first. Hardcode some product data inside the top
level describe block:



How to Test Your Applications: Testing a Digital Goods Store 166

02-testing/step1/src/Cart/CartItem.spec.tsx

const product: Product = {

name: "Product Foo",

price: 100,

image: "/image/source.png"

}

Now inside the renders correctly block add the following code:

02-testing/step1/src/Cart/CartItem.spec.tsx

it("renders correctly", () => {

const {

container,

getByAltText

} = renderWithRouter(() => (

<CartItem

product={product}

removeFromCart={() => {}}

/>

))

expect(container.innerHTML).toMatch("Product Foo")

expect(container.innerHTML).toMatch("100 Zm")

expect(getByAltText("Product Foo")).toHaveAttribute(

"src",

"/image/source.png"

)

})

Here we verify that all the data related to the product is rendered, we can find the
image by it’s alt attribute and it has correct src.

Let’s move on and test that when user clicks the Remove button we call the function
passed through the removeFromCart prop. Add this code inside the on 'Remove' click

block:



How to Test Your Applications: Testing a Digital Goods Store 167

02-testing/step1/src/Cart/CartItem.spec.tsx

it("calls passed in function", () => {

const removeFromCartMock = jest.fn()

const { getByText } = renderWithRouter(() => (

<CartItem

product={product}

removeFromCart={removeFromCartMock}

/>

))

fireEvent.click(getByText("Remove"))

expect(removeFromCartMock).toBeCalledWith(product)

})

Here we defined a mock function using jest.fn. The cool thing about those is that
we can check if they have been called. We can even verify that such a function was
called with specific arguments. Here we check that when we click the Remove button
- our removeFromCartMock gets called with the product rendered by this component.

Checkout Page

This is the page where the user can input the payment credentials and perform the
order.



How to Test Your Applications: Testing a Digital Goods Store 168

Checkout page

We also render the list of products that the user is going to buy here.

Testing CheckoutList

The list of products is rendered by the CheckoutList component.

Checkout list

This component also uses CartContext through the useCart hook.

It has one task, so it better does it well. Let’s test the CheckoutList. Create a new file
src/Checkout/CheckoutList.spec.tsx:



How to Test Your Applications: Testing a Digital Goods Store 169

02-testing/completed/src/Checkout/CheckoutList.spec.tsx

import React from "react"

import { CheckoutList } from "./CheckoutList"

import { Product } from "../shared/types"

import { render } from "@testing-library/react"

describe("CheckoutList", () => {

it.todo("renders list of products")

})

As you can see we are only going to test that CheckoutList correctly renders the list
of products provided to it:

02-testing/completed/src/Checkout/CheckoutList.spec.tsx

it("renders list of products", () => {

const products: Product[] = [

{

name: "Product foo",

price: 10,

image: "/image.png"

},

{

name: "Product bar",

price: 10,

image: "/image.png"

}

]

const { container } = render(

<CheckoutList products={products} />

)

expect(container.innerHTML).toMatch("Product foo")

expect(container.innerHTML).toMatch("Product bar")

})

We verify that we can find the titles of the provided products in the rendered layout.



How to Test Your Applications: Testing a Digital Goods Store 170

Testing The Form

The next component that we are going to test is CheckoutForm.

Checkout form

Here we want to verify the following things:

• When the input values are invalid
– The form renders an error messages

• When the input values are valid
– When you click the Order button

* The submit function is called

Create a the test file with the following contents:

02-testing/step1/src/Checkout/CheckoutForm.spec.tsx

import React from "react"

import { render, fireEvent } from "@testing-library/react"

import { CheckoutForm } from "./CheckoutForm"

import { act } from "react-dom/test-utils"

describe("CheckoutForm", () => {

it.todo("renders correctly")

describe("with invalid inputs", () => {

it.todo("shows errors")



How to Test Your Applications: Testing a Digital Goods Store 171

})

describe("with valid inputs", () => {

describe("on place order button click", () => {

it("calls submit function with form data")

})

})

})

When we render the form we expect to see the following fields:

• Card holder’s name
• Card number
• Card expiration date
• CVV number

This will be our first test. Remove the todo part from the renders correctly test
and add the following code:

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

it("renders correctly", () => {

const { container } = render(<CheckoutForm />)

expect(container.innerHTML).toMatch("Cardholders Name")

expect(container.innerHTML).toMatch("Card Number")

expect(container.innerHTML).toMatch("Expiration Date")

expect(container.innerHTML).toMatch("CVV")

})

Here we verify that all the fields we need in this form are present.

Next we need to check that the form will show the errors if we click Place Order

with invalid values. Add the following test:



How to Test Your Applications: Testing a Digital Goods Store 172

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

describe("with invalid inputs", () => {

it("shows errors ", async () => {

const { container, getByText } = render(

<CheckoutForm />

)

await act(async () => {

fireEvent.click(getByText("Place order"))

})

expect(container.innerHTML).toMatch("Error:")

})

})

Here we expect that if we click the Place Order button while the form is not filled
in - it will render an error message.

Now let’s check that if we provide valid values to our form inputs and then click the
Place Order button the form component will call onSubmit function.

Inside the calls submit function with form data block define the mockSubmit

function:

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

const { getByLabelText, getByText } = render(

<CheckoutForm submit={mockSubmit} />

)

And then use it to render our form component:

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

const mockSubmit = jest.fn()



How to Test Your Applications: Testing a Digital Goods Store 173

Now we will fill in the form inputs. But the trick is that it will trigger state updates
in our form. Our form uses React hook form⁶² to manage the inputs. It means that
the inputs are controlled⁶³ and filling them in triggers state updates.

When you have the code in your test that triggers state updates in your components
- you need to wrap it into act⁶⁴.

Let’s fill in the inputs:

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

await act(async () => {

fireEvent.change(

getByLabelText("Cardholders Name:"),

{ target: { value: "Bibo Bobbins" } }

)

fireEvent.change(getByLabelText("Card Number:"), {

target: { value: "0000 0000 0000 0000" }

})

fireEvent.change(

getByLabelText("Expiration Date:"),

{ target: { value: "3020-05" } }

)

fireEvent.change(getByLabelText("CVV:"), {

target: { value: "123" }

})

})

And then click the Place order button. Technically we could put it into the same
act block, but I decided that it is more clear that first we create specific conditions
and then we perform an action:

⁶²https://react-hook-form.com/
⁶³https://reactjs.org/docs/forms.html#controlled-components
⁶⁴https://reactjs.org/docs/test-utils.html#act

https://react-hook-form.com/
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/test-utils.html#act
https://react-hook-form.com/
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/test-utils.html#act


How to Test Your Applications: Testing a Digital Goods Store 174

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

await act(async () => {

fireEvent.click(getByText("Place order"))

})

Finally we can check that our mock function was called:

02-testing/completed/src/Checkout/CheckoutForm.spec.tsx

expect(mockSubmit).toHaveBeenCalled()

Testing FormField

The checkout form uses FormField to render the inputs. This component renders
label, input and if we pass an error object to it it also renders a paragraph with an
error message.

It also supports normalization. For example, we can pass a normalize function to
it that will limit the length of the input value. It is needed for the CVV field, which
accepts only three digits. This normalize function could also format the input in
some specific way. For example, our card number field needs to be formatted into
four blocks of four digits each.

Create a new file called src/Checkout/FormField.spec.tsx:

02-testing/step1/src/Checkout/FormField.spec.tsx

import React from "react"

import { render, fireEvent } from "@testing-library/react"

import { FormField } from "./FormField"

describe("FormField", () => {

it.todo("renders correctly")

describe("with error", () => {

it.todo("renders error message")

})



How to Test Your Applications: Testing a Digital Goods Store 175

describe("on change", () => {

it.todo("normalizes the input")

})

})

First let’s check that our FormField component renders correctly:

02-testing/step1/src/Checkout/FormField.spec.tsx

it("renders correctly", () => {

const { getByLabelText } = render(

<FormField label="Foo label" name="foo" />

)

const input = getByLabelText("Foo label:")

expect(input).toBeInTheDocument()

expect(input).not.toHaveClass("is-error")

expect(input).toHaveAttribute("name", "foo")

})

Here we verify that we render the input element, it has the correct name value and
doesn’t have the is-error class by default. Also, note that we find it by the label
value so we additionally verify that the label was rendered as well.

Now let’s verify that if we pass an error object to ou FormField - it will render the
error message:

02-testing/step1/src/Checkout/FormField.spec.tsx

describe("with error", () => {

it("renders error message", () => {

const { getByText } = render(

<FormField

label="Foo label"

name="foo"

errors={{ message: "Example error" }}

/>

)



How to Test Your Applications: Testing a Digital Goods Store 176

expect(getByText("Error: Example error")).toBeInTheDocument()

})

})

Here we try to find the error message in the rendered layout.

Next let’s verify that the normalize function will work. Add this test inside the on

change describe block:

02-testing/step1/src/Checkout/FormField.spec.tsx

it("normalizes the input", () => {

const { getByLabelText } = render(

<FormField

label="Foo label"

name="foo"

errors={{ message: "Example error" }}

normalize={(value:string) => value.toUpperCase()}

/>

)

const input = getByLabelText(

"Foo label:"

) as HTMLInputElement

fireEvent.change(input, { target: { value: "test" } })

expect(input.value).toEqual("TEST")

})

Here we define the normalize function to call toUppercase method on input values.
Then we expect that the input value will be capitalized.

Order Summary Page

This page fetches the order information from the backend by orderId and displays
the products included in the order.



How to Test Your Applications: Testing a Digital Goods Store 177

Order summary

It gets the orderId from the current location query params. And makes a request to
backend using the api module.

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx
import React from "react"

import { OrderSummary } from "./OrderSummary"

describe("OrderSummary", () => {

afterEach(jest.clearAllMocks)

describe("while order data being loaded", () => {

it("renders loader")

})

describe("when order is loaded", () => {

it("renders order info")

it("navigates to main page on button click")

})

describe("without order", () => {

it("renders error message")

})

})

First, let’s test that in loading state we’ll render Loader. First, let’s mock the Loader
component.



How to Test Your Applications: Testing a Digital Goods Store 178

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

jest.mock("../shared/Loader", () => ({

Loader: jest.fn(() => null)

}))

Here we defined Loader using mock.fn function. It will allow us to check if it was
called instead of checking the rendered results.

Add this code to renders loader block:

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

describe("while order data being loaded", () => {

it("renders loader", () => {

const stubUseOrder = () => ({

isLoading: true,

order: undefined

})

render(<OrderSummary useOrderHook={stubUseOrder} />)

expect(Loader).toHaveBeenCalled()

})

})

Now let’s test that when order is loaded successfully we render the products list from
it. Hardcode the useOrder hook inside the when order is loaded block:



How to Test Your Applications: Testing a Digital Goods Store 179

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

const stubUseOrder = () => ({

isLoading: false,

order: {

products: [

{

name: "Product foo",

price: 10,

image: "image.png"

}

]

}

})

Now let’s check that it renders correctly. Add the following code:

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

it("renders order info", () => {

const { container } = renderWithRouter(() => (

<OrderSummary useOrderHook={stubUseOrder} />

))

expect(container.innerHTML).toMatch("Product foo")

})

When order information is loaded successfully we also renaed a link to the main
page. Let’s write a test for it as well:



How to Test Your Applications: Testing a Digital Goods Store 180

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

it("navigates to main page on button click", () => {

const {

getByText,

history

} = renderWithRouter(() => (

<OrderSummary useOrderHook={stubUseOrder} />

))

fireEvent.click(getByText("Back to the store"))

expect(history.location.pathname).toEqual("/")

})

And finally lest’s test that if the order data could not be loaded we render a failure
message:

02-testing/step1/src/OrderSummary/OrderSummary.spec.tsx

describe("without order", () => {

it("renders error message", () => {

const stubUseOrder = () => ({

isLoading: false,

order: undefined

})

const { container } = render(

<OrderSummary useOrderHook={stubUseOrder} />

)

expect(container.innerHTML).toMatch(

"Couldn't load order info."

)

})

})



How to Test Your Applications: Testing a Digital Goods Store 181

At this point, we’ve tested all the components that our app has. Time to test the
hooks.

Testing React Hooks

Let’s go back to our Home page and test how do we fetch the products list.

Our Home page uses the useProducts hook to fetch the products from the backend.

To test the hooks we’ll have to install the @testing-library/react-hooks. From the
root of the project run the following command:

yarn add --dev @testing-library/react-hooks

Testing useProducts

Our useProducts hook does a bunch of things:

• fetches products on mount
• while the data is loading

– returns isLoading = true

• if loading fails
– returns error = true

• when data is loaded
– returns the loaded data

Create a new file src/Home/useProducts.spec.ts



How to Test Your Applications: Testing a Digital Goods Store 182

02-testing/step1/src/Home/useProducts.spec.ts

import { renderHook } from "@testing-library/react-hooks"

import { useProducts } from "./useProducts"

describe("useProducts", () => {

it.todo("fetches products on mount")

describe("while waiting API response", () => {

it.todo("returns correct loading state data")

})

describe("with error response", () => {

it.todo("returns error state data")

})

describe("with successful response", () => {

it.todo("returns successful state data")

})

})

First let’s test that useProducts hook will start fetching data when it is mounted:

02-testing/step1/src/Home/useProducts.spec.ts

it("fetches products on mount", async () => {

const mockApiGetProducts = jest.fn()

await act(async () => {

renderHook(() => useProducts(mockApiGetProducts))

})

expect(mockApiGetProducts).toHaveBeenCalled()

})

Here it comes in very handy that we can just pass the mocked version of the API as
an argument.



How to Test Your Applications: Testing a Digital Goods Store 183

We render the hook using the renderHookmethod from @testing-libary/react-hooks

and then we check if the mockApiGetProducts function was called.

Let’s test the waiting state when the data is being loaded.

02-testing/step1/src/Home/useProducts.spec.ts

it("returns correct loading state data", () => {

const mockApiGetProducts = jest.fn(

() => new Promise(() => {})

)

const { result } = renderHook(() =>

useProducts(mockApiGetProducts)

)

expect(result.current.isLoading).toEqual(true)

expect(result.current.error).toEqual(false)

expect(result.current.categories).toEqual([])

})

Note how we define our mockApiGetProducts now:

02-testing/step1/src/Home/useProducts.spec.ts

describe("while waiting API response", () => {

it("returns correct loading state data", () => {

We make it return a Promise that will never resolve (or reject).

This way we can make sure that our useProducts hook will return a correct set of
values while we are fetching the data.

Let’s test that we correctly handle loading failure:



How to Test Your Applications: Testing a Digital Goods Store 184

02-testing/step1/src/Home/useProducts.spec.ts

it("returns error state data", async () => {

const mockApiGetProducts = jest.fn(

() =>

new Promise((resolve, reject) => {

reject("Error")

})

)

const { result, waitForNextUpdate } = renderHook(() =>

useProducts(mockApiGetProducts)

)

await act(() => waitForNextUpdate())

expect(result.current.isLoading).toEqual(false)

expect(result.current.error).toEqual("Error")

expect(result.current.categories).toEqual([])

})

Here we mock the API method so that it instantly rejects with an error.

02-testing/step1/src/Home/useProducts.spec.ts

const mockApiGetProducts = jest.fn(

() =>

new Promise((resolve, reject) => {

reject("Error")

})

)

The data fetching happens inside of the async function in our hook, and as a result it
will update its state. To handle it correctly we need to use act to wait for next update
before we can test our expectations:



How to Test Your Applications: Testing a Digital Goods Store 185

02-testing/step1/src/Home/useProducts.spec.ts

await act(() => waitForNextUpdate())

And finally, we can test the happy path, when we successfully get the data and return
it from our hook. We are going to add the returns successful state data test.

We begin by mocking an API function so that it resolves with products data:

02-testing/step1/src/Home/useProducts.spec.ts

const mockApiGetProducts = jest.fn(

() =>

new Promise((resolve, reject) => {

resolve({

categories: [{ name: "Category", items: [] }]

})

})

)

Then we render our hook and wait for next update, so that the internal state of our
hook has correct value:

02-testing/step1/src/Home/useProducts.spec.ts

const { result, waitForNextUpdate } = renderHook(() =>

useProducts(mockApiGetProducts)

)

await act(() => waitForNextUpdate())

And finally we check our expectations:



How to Test Your Applications: Testing a Digital Goods Store 186

02-testing/step1/src/Home/useProducts.spec.ts

expect(result.current.isLoading).toEqual(false)

expect(result.current.error).toEqual(false)

expect(result.current.categories).toEqual([

{

name: "Category",

items: []

}

])

Testing useCart

Another hook that we have in our application is useCart. This hook allows us to get
the list of products in the cart, add new products, or clear the cart.

This hook provides a bunch of functions and we’ll check each of them in our tests:

02-testing/step1/src/CartContext/useCart.spec.ts

describe("useCart", () => {

describe("on mount", () => {

it.todo("it loads data from localStorage")

})

describe("#addToCart", () => {

it.todo("adds item to the cart")

})

describe("#removeFromCart", () => {

it.todo("removes item from the cart")

})

describe("#totalPrice", () => {

it.todo("returns total products price")

})



How to Test Your Applications: Testing a Digital Goods Store 187

describe("#clearCart", () => {

it.todo("removes all the products from the cart")

})

})

Here I’m using a naming convention from RSpec⁶⁵ where function tests are called
with pound sign prefix: #functionName.

Let’s go one by one, first, we need to make sure that when this hook is mounted it
loads the data from the localStorage. Let’s start by mocking the localStorage:

Define the localStorage constant:

02-testing/step1/src/CartContext/useCart.spec.ts

const localStorageMock = (() => {

let store: { [key: string]: string } = {}

return {

clear: () => {

store = {}

},

getItem: (key: string) => {

return store[key] || null

},

removeItem: (key: string) => {

delete store[key]

},

setItem: jest.fn((key: string, value: string) => {

store[key] = value ? value.toString() : ""

})

}

})()

Then assign it on window object using Object.assign method:

⁶⁵https://rspec.rubystyle.guide/

https://rspec.rubystyle.guide/
https://rspec.rubystyle.guide/


How to Test Your Applications: Testing a Digital Goods Store 188

02-testing/step1/src/CartContext/useCart.spec.ts

Object.defineProperty(window, "localStorage", {

value: localStorageMock

})

One last thing before we move on to the test. Add this clean up code inside the top
level describe:

02-testing/step1/src/CartContext/useCart.spec.ts

afterEach(() => {

localStorageMock.clear()

})

Now we are ready to test that our hook will load its initial state from localStorage:

02-testing/step1/src/CartContext/useCart.spec.ts

it("it loads data from localStorage", () => {

const products: Product[] = [

{

name: "Product foo",

price: 0,

image: "image.jpg"

}

]

localStorageMock.setItem(

"products",

JSON.stringify(products)

)

const { result } = renderHook(useCart)

expect(result.current.products).toEqual(products)

})



How to Test Your Applications: Testing a Digital Goods Store 189

Here we set the products in localStorage to be a string representation of our
hardcoded products array. Then we render our hook and check if the products value
that it returns matches the original hardcoded array.

Next we need to make sure that we can add items to the cart:

02-testing/step1/src/CartContext/useCart.spec.ts

describe("#addToCart", () => {

it("adds item to the cart", () => {

const product: Product = {

name: "Product foo",

price: 0,

image: "image.jpg"

}

const { result } = renderHook(useCart)

act(() => {

result.current.addToCart(product)

})

expect(result.current.products).toEqual([product])

expect(localStorageMock.setItem).toHaveBeenCalledWith(

"products",

JSON.stringify([product])

)

})

})

Here we hardcode a product, render our hook, then we call the addToCart method.
Note that as this method will update the state inside our hook - we need to wrap it
into act. Then we verify that products array from our hook matches an array with
our hardcoded product. Finally, we check that the data stored in localStorage is also
correct.

Moving on to #removeFromCart. Thismethod should remove an existingmethod from
the cart and update the data in localStorage.



How to Test Your Applications: Testing a Digital Goods Store 190

Let’s write the callback for the removes item from the cart block.

First define a product and save it into localStorage as a JSON string:

02-testing/step1/src/CartContext/useCart.spec.ts

const product: Product = {

name: "Product foo",

price: 0,

image: "image.jpg"

}

localStorageMock.setItem(

"products",

JSON.stringify([product])

)

Next render our hook:

02-testing/step1/src/CartContext/useCart.spec.ts

const { result } = renderHook(useCart)

Now call the removeFromCart method. Remember to wrap this call into act because
it alters the state of the hook:

02-testing/step1/src/CartContext/useCart.spec.ts

act(() => {

result.current.removeFromCart(product)

})

And finally check the expectations. The products array should be empty and
localStorage should be updated:



How to Test Your Applications: Testing a Digital Goods Store 191

02-testing/step1/src/CartContext/useCart.spec.ts

expect(result.current.products).toEqual([])

expect(localStorageMock.setItem).toHaveBeenCalledWith(

"products",

"[]"

)

Let’s test the totalPricemethod. This method should return the sum of prices of all
the products located in the cart.

02-testing/step1/src/CartContext/useCart.spec.ts

describe("#totalPrice", () => {

it("returns total products price", () => {

const product: Product = {

name: "Product foo",

price: 21,

image: "image.jpg"

}

localStorageMock.setItem(

"products",

JSON.stringify([product, product])

)

const { result } = renderHook(useCart)

expect(result.current.totalPrice()).toEqual(42)

})

})

Here we hardcode a product that costs twenty-one zorkmid. Then we store an array
of two similar products in localStorage.

After we render the hook we check that the returned value of totalPrice function
is forty-two.

The last method we’ll test is clearCart.



How to Test Your Applications: Testing a Digital Goods Store 192

02-testing/step1/src/CartContext/useCart.spec.ts

it("removes all the products from the cart", () => {

const product: Product = {

name: "Product foo",

price: 21,

image: "image.jpg"

}

localStorageMock.setItem(

"products",

JSON.stringify([product, product])

)

const { result } = renderHook(useCart)

act(() => {

result.current.clearCart()

})

expect(result.current.products).toEqual([])

expect(localStorageMock.setItem).toHaveBeenCalledWith(

"products",

"[]"

)

Here we also save two instances of product in the localStorage. Then we render
the hook, call the clearCart method and then check that the cart is empty.

Congratulations

If you read up until this point - you’ve tested the whole application. Well done!



Patterns in React Typescript
Applications: Making Music
with React
Introduction

In this chapter, we’re going to talk about some common, useful patterns for React
applications - and how to use them with proper TypeScript types.

We will talk about:

• what these patterns are
• why these patterns are useful
• which pattern should be used in which situation
• tradeoffs, constraints, and limitations of some of the patterns

Particularly, we will talk about React-specific patterns such as Render-Props and
Higher Order Component, and how they are connected to a more general concepts.

This chapter is going to help you think-in-React by seeing common patterns with
specific code.

What We’re Going to Build

The application we’re going to build is a virtual piano keyboard with a list of
instruments that can be played with this keyboard.

We will use a third-party API to generate musical notes and the browser built-
in AudioContext API to get access to a user’s sound hardware. The real computer



Patterns in React Typescript Applications: Making Music with React 194

keyboard will be connected to a virtual one, so that when a user presses the button
on their keyboard they will hear a musical note. And, of course, we will create a list
of instruments to select different sounds for our keyboard.

The completed applicationwill look like this: �

A complete code example is located in code/03-react-piano/completed.

Unzip the archive and cd to the app folder.

1 cd code/03-react-piano/completed

When you are there, install the dependencies and launch the app:

1 yarn && yarn start

It should open the app in the browser. If it didn’t, navigate to http://localhost:3000⁶⁶
and open it manually.

⁶⁶http://localhost:3000

http://localhost:3000/
http://localhost:3000/


Patterns in React Typescript Applications: Making Music with React 195

In the browser, at the center of the screen, you will see a keyboard with letter labels
on each key and a select under with a default instrument.

Go ahead and try it out! You will hear the musical notes played on an acoustic grand
piano. Let’s build it!

First Steps and Basic Application Layout

First, let’s create another template application using create-react-app, like we did
in previous chapters. Open your terminal and run:

1 npx create-react-app --template typescript react-piano

Now, cd to react-piano folder and open the project in a text editor or IDE.

After that we will have to clean our project directory and remove all the files and
code that we’re not going to need. Also, we will create a basic application layout and
apply some global styles.

In App.tsx we can safely remove logo.svg import along with the corresponding
file—we won’t need it anymore. Instead we create and import a Footer component.
It will contain a signature and a current year:

03-react-piano/step-1/src/components/Footer/Footer.tsx

import React, { FunctionComponent } from "react"

import "./style.css"

export const Footer: FunctionComponent = () => {

const currentYear = new Date().getFullYear()

return (

<footer className="footer">

<a href="https://fullstack.io">Fullstack.io</a>

<br />

{currentYear}

</footer>



Patterns in React Typescript Applications: Making Music with React 196

)

}

Notice that our component imports a stylesheet, so let’s create a file called style.css
beside out Footer.tsx and fill it up with these styles.

03-react-piano/step-1/src/components/Footer/style.css

.footer {

height: var(--footer-height);

padding: 5px;

text-align: center;

line-height: 1.4;

}

Here, we declare that Footer should have text alignment by center and some 5px
paddings at each side. Pay attention to 2nd line of stylesheet: there we declare that
component’s height should be equal to a value of a custom property⁶⁷ (a.k.a CSS
variable).

In CSS var() function searches for a custom property with a given name, in our case
--footer-height, and if found uses its value. So where does that value come from?
We will declare it in index.css:

03-react-piano/step-1/src/index.css

:root {

--footer-height: 60px;

--logo-height: 8rem;

A visibility scope of our variable is :root. That means that our variable is visible
across all the elements on a page. We could also define it in some selector, so that it
would be hidden from other element. For our case :root is fine.

Now, let’s create a Logo component. We will use emojis for our logo. A component’s
source code will look like this:

⁶⁷https://developer.mozilla.org/en-US/docs/Web/CSS/--*

https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://developer.mozilla.org/en-US/docs/Web/CSS/--*


Patterns in React Typescript Applications: Making Music with React 197

03-react-piano/step-1/src/components/Logo/Logo.tsx

import React, { FunctionComponent } from "react"

import "./style.css"

export const Logo: FunctionComponent = () => {

return (

<h1 className="logo">

<span role="img" aria-label="metal hand emoji">

�

</span>

<span role="img" aria-label="musical keyboard emoji">

�

</span>

<span role="img" aria-label="musical notes emoji">

�

</span>

</h1>

)

}

(Unfortunately, we cannot use emoji in the example above, that’s why we replaced
them with a single symbol of a musical note. In the sources you will find the original
code with emojis.)

We wrap every symbol in a span with a role="image" attribute. It will help screen
readers to correctly parse the content of our app. Then, we create a stylesheet for our
Logo component.



Patterns in React Typescript Applications: Making Music with React 198

03-react-piano/step-1/src/components/Logo/style.css

.logo {

font-size: 5rem;

text-align: center;

line-height: var(--logo-height);

height: var(--logo-height);

margin: 0;

padding-top: 30px;

}

It will use --logo-height which is declared in index.css. Also, it uses rem for
defining font-size⁶⁸. This is a relative unit, that refers to the value of font-size

property on html element.

It is handy in adaptive styles to rely on that value: we won’t need to update each
element’s font-size separately, but we will have to change single font-size value
on html element instead.

When created Footer and Logo and styles for them, we’re going to import and render
it in an App.tsx, so that it will look like this:

03-react-piano/step-1/src/App.tsx

import React from "react"

import { Footer } from "./components/Footer"

import { Logo } from "./components/Logo"

import "./App.css"

export const App = () => {

return (

<div className="app">

<Logo />

<main className="app-content" />

<Footer />

</div>

⁶⁸https://developer.mozilla.org/en-US/docs/Web/CSS/font-size

https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size


Patterns in React Typescript Applications: Making Music with React 199

)

}

Now, let’s finish with global styles which will be applied to the whole project:

03-react-piano/step-1/src/index.css

*,

*::after,

*::before {

box-sizing: border-box;

}

Here we define box-sizing: border-box to every element on a page. It will help
us to calculate elements’ geometry more easily. Also, we declare that page should
have height at least 100% of a screen height. Since our keyboard will be placed in the
center of a screen it will be convenient to do that.

And finally, let’s style our App component to ensure that Footer will be placed at the
bottom of the page and Logo component—at the top.

03-react-piano/step-1/src/App.css

.app {

min-height: 100vh;

}

.app-content {

--offset: calc(var(--footer-height) + var(--logo-height));

min-height: calc(100vh - var(--offset));

display: flex;

justify-content: center;

align-items: center;

}

Here we want all the contents of an App component to be placed in the center and
the App itself to have a minimal height of a page but without Footer and Logo

components’ heights. It ensures that content area is at least a size of a screen.



Patterns in React Typescript Applications: Making Music with React 200

A Bit of a Music Theory

In order to understandwhat we’re building, we have tomake sure that we understand
howmusic works andwhat rules apply to a musical keyboard. So, before we continue
developing our application, let’s dive into music theory a little.

First of all, we have to determine in which way we want to represent musical notes
in our application. Nowadays it is considered standard to use MIDI Notes Numbers⁶⁹
for that.

Long story short, MIDI Note Number is a number that represents a given note in
range from -1st octave to 9th. Octave is a set of 12 semitones that are different from
each other by half of a tone (hence semitone).

Notes in an octave start from C and go up to B like this:

1 C C# D D# E F F# G G# A A# B

Sharp (#) is a sign which tells us that a given note is ”sharp“. There are also “flat”
notes, but for simplicity sake we will focus on and use sharps. Sharp note is a note
that is half a step higher than its natural note and half a step lower than the next
note. So that A# is half a tone higher than A and half a tone lower than B.

On a musical keyboard they would be positioned like this. White keys are naturals
and black ones are sharps.

⁶⁹http://www.flutopedia.com/octave_notation.htm

http://www.flutopedia.com/octave_notation.htm
http://www.flutopedia.com/octave_notation.htm


Patterns in React Typescript Applications: Making Music with React 201

Notes location on a musical keyboard

Coding Music Rules

With all that said let’s try to formalize these rules and express them in TS:

03-react-piano/step-2/src/domain/note.ts

export type NoteType = "natural" | "flat" | "sharp"

export type NotePitch = "A" | "B" | "C" | "D" | "E" | "F" | "G"

export type OctaveIndex = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

First of all, let’s talk about domain. In software domain⁷⁰ is a target subject of a
program. This term has roots in domain driven design⁷¹—the concept of how to
structure applications.

In our case domain refers to sound, notes generation, notes notation and real
keyboard layout.

Inside of domain directory we create a file called note.ts—here we describe every-
thing about notes that we want to express in TypeScript.

For example inside we create new custom union type called NoteType. It will contain
all the possible note types, that we will use across our app. Union types are useful
when we want to create a set of entities to select among. In our case NoteType is a set
of possible notes types like: natural, sharp or flat. Despite the fact that we’re going

⁷⁰https://en.wikipedia.org/wiki/Domain_(software_engineering)
⁷¹https://en.wikipedia.org/wiki/Domain-driven_design

https://en.wikipedia.org/wiki/Domain_(software_engineering)
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain_(software_engineering)
https://en.wikipedia.org/wiki/Domain-driven_design


Patterns in React Typescript Applications: Making Music with React 202

to use only sharps it is a good practice to keep union types as full as possible to make
it clear what can be used in general.

Then, NotePitch is a union type which contains all the possible note pitches from A
to G. Since the order of items in union is not important we can order our pitches in
alphabetic order to make it easier to work with later.

And finally, OctaveIndex is a union which contains all the octaves that can be placed
on a piano keyboard.

Now, we want to create some type aliases just to make signatures of our future
functions more clear.

03-react-piano/step-2/src/domain/note.ts

export type MidiValue = number

export type PitchIndex = number

Here, we describe a MidiValue type which is basically a number from Octave
Notation above. And a PitchIndex which is also a number and represents an index
of a given pitch in an octave from 0 to 11. PitchIndex is useful when we want to
compare notes with each other to figure out which is higher. for example.

Interface of a Note

We’re going to create an interface of our Note entity.

Firstly, what is an interface? An interface⁷² is an abstract description of some entity,
in our case of an object. It is a shared boundary across which two or more separate
components of a computer system exchange information.

In TypeScript, interfaces fill the role of naming custom types⁷³, and are a powerful
way of defining contracts within our code as well as contracts with code outside of
our project.

They are a powerful tool to make code components less dependent on each other and
make our code reusable and less error prone.

So let’s go ahead and create our Note interface:

⁷²https://en.wikipedia.org/wiki/Interface_(computing)
⁷³https://www.typescriptlang.org/docs/handbook/interfaces.html

https://en.wikipedia.org/wiki/Interface_(computing)
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://en.wikipedia.org/wiki/Interface_(computing)
https://www.typescriptlang.org/docs/handbook/interfaces.html


Patterns in React Typescript Applications: Making Music with React 203

03-react-piano/step-2/src/domain/note.ts

export interface Note {

midi: MidiValue

type: NoteType

pitch: NotePitch

index: PitchIndex

octave: OctaveIndex

}

We describe a shape of a note object which is going to be used later in our code. A
Note contains 5 fields, which are:

• midi of type MidiValue — a number in Octave Notation
• type of type NoteType — which note it is: natural or sharp
• pitch of type NotePitch — a literal representation of a note’s pitch
• index of type PitchIndex — an index of notes in an octave
• octave of type OctaveIndex — an octave index of a given note

Notice that some fields accept union types, for instance field type accepts values with
type of NoteType. That means that the value for field type can only be one of those
described earlier in NodeType. So we can only assign "natural", "sharp" or "flat"
to field type and nothing more.

If we try to do that TS type checker will tell us that:



Patterns in React Typescript Applications: Making Music with React 204

1 Type '"not-natural"' is not assignable to type 'NoteType'. TS2322

2

3 71 | export const note: Note = {

4 72 | midi: 60,

5 > 73 | type: "not-natural",

6 | ^

7 74 | pitch: "C",

8 75 | index: 0,

9 76 | octave: 4,

This is very useful when we work with complex data structures and don’t want to
mix things up.

Application Constraints

Now, let’s outline in what range we want our keyboard to contain notes. First of
all let’s consider the lowest note possible to play which is C of 1st octave. It has a
MidiValue of 24, we will save it in C1_MIDI_NUMBER constant to use later.

Similarly we create constraints for our keyboard range. A start note will be C4_-

MIDI_NUMBER and finish note — B5_MIDI_NUMBER. Also we’re going to need count of
halfsteps in an octave so we keep it in SEMITONES_IN_OCTAVE constant.

03-react-piano/step-2/src/domain/note.ts

const C1_MIDI_NUMBER = 24

const C4_MIDI_NUMBER = 60

const B5_MIDI_NUMBER = 83

export const LOWER_NOTE = C4_MIDI_NUMBER

export const HIGHER_NOTE = B5_MIDI_NUMBER

export const SEMITONES_IN_OCTAVE = 12

And now, we can create some kind of a map to connect literal and numerical
representations of pitches of our notes.



Patterns in React Typescript Applications: Making Music with React 205

03-react-piano/step-2/src/domain/note.ts

export const NATURAL_PITCH_INDICES: PitchIndex[] = [

0,

2,

4,

5,

7,

9,

11

]

NATURAL_PITCH_INDICES is an array which contains only indices of natural notes.

03-react-piano/step-2/src/domain/note.ts

export const PITCHES_REGISTRY: Record<PitchIndex, NotePitch> = {

0: "C",

1: "C",

2: "D",

3: "D",

4: "E",

5: "F",

6: "F",

7: "G",

8: "G",

9: "A",

10: "A",

11: "B"

}

PITCHES_REGISTRY is an object with an PitchIndex as a key and NotePitch as a value.

You may notice that its type is Record<PitchIndex, NotePitch>. Types with
“arguments” like this one are called generics⁷⁴. Those are types which allow us to

⁷⁴https://www.typescriptlang.org/docs/handbook/generics.html

https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/generics.html


Patterns in React Typescript Applications: Making Music with React 206

create a program component that can work over a variety of types rather than a
single one.

Record<K, T> type constructs⁷⁵ a type with a set of properties K of type T. In our case
it constructs a type with a set of properties PitchIndex of type NotePitch.

We will cover generics in more detail later when creating our own.

Notes Generation

We’re almost there! The only thing left to cover is a function which can create a Note
object from a given MidiValue. So let’s create it!

03-react-piano/step-2/src/domain/note.ts

export function fromMidi(midi: MidiValue): Note {

const pianoRange = midi - C1_MIDI_NUMBER

const octave = (Math.floor(pianoRange / SEMITONES_IN_OCTAVE) +

1) as OctaveIndex

const index = pianoRange % SEMITONES_IN_OCTAVE

const pitch = PITCHES_REGISTRY[index]

const isSharp = !NATURAL_PITCH_INDICES.includes(index)

const type = isSharp ? "sharp" : "natural"

return { octave, pitch, index, type, midi }

}

Here, we take a MidiValue as an argument and determine in which octave this note
is. After that we figure out what index this note has inside of its octave and what
pitch this note of. Finally we define what type this note of, and return a created note
object.

This function will not only help us to convert numbers to notes on our keyboard, but
also to create an initial set of notes. Let’s make a little helper function to generate
that set.

⁷⁵https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkt

https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkt
https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkt


Patterns in React Typescript Applications: Making Music with React 207

03-react-piano/step-2/src/domain/note.ts

interface NotesGeneratorSettings {

fromNote?: MidiValue

toNote?: MidiValue

}

export function generateNotes({

fromNote = LOWER_NOTE,

toNote = HIGHER_NOTE

}: NotesGeneratorSettings = {}): Note[] {

return Array(toNote - fromNote + 1)

.fill(0)

.map((_, index: number) => fromMidi(fromNote + index))

}

export const notes = generateNotes()

Here, we create a generateNotes() function which takes a settings object of type
NotesGeneratorSettings. It describes what settings we can use in our function to
generate notes. Question mark (?) at field’s name means that this field is optional
and can be omitted when creating an instance of an object.

It is better to use settings object than optional function arguments since arguments
rely on their order and object keys don’t. So, we destructure a given settings object
to get an access to fromNote and toNote fields of that object. If none is given we use
an empty object as settings. Inside we use default values for those fields and if they
are not specified we set them to LOWER_NOTE and HIGHER_NOTE respectively. So when
we call generateNotes() with no arguments it will generate a set of note in range
from LOWER_NOTE to HIGHER_NOTE. And that is exactly what we need for our future
keyboard!

Inside of generateNotes() we create an array and fill it with notes from fromNote

to toNote.



Patterns in React Typescript Applications: Making Music with React 208

Third Party API and Browser API

We’re going to use Audio API and some third-party API to create a sound. So let’s
talk a bit about integration of those APIs.

Web Audio API

For starters let’s figure out what’s required to create a sound in a browser in a first
place. Modern web browsers have support Audio API⁷⁶.

It uses an AudioContext which allows us to handle audio operations such as playing
musical tracks, creating oscillators etc. This AudioContext⁷⁷ has nothing to do with
React.Context that we saw earlier. Those only have similar names, but AudioContext
we’re going to use is an interface that provides access to browser’s audio API.

We can access AudioContext via window.AudioContext. The problem is that not every
browser has this property. The majority of modern browsers do, but we cannot rely
on an assumption that user’s browser has it.

So we have to ensure that user’s browser supports AudioContext and only after that
can we continue using it. Let’s create a helper function which will check if our
browser supports AudioContext:

03-react-piano/step-2/src/domain/audio.ts

import { Optional } from "./types"

export function accessContext(): Optional<AudioContextType> {

return window.AudioContext || window.webkitAudioContext || null

}

We create a function accessContext(), which takes no arguments and returns
Optional<AudioContextType>. Optional is a utility type, which we want to create
in types.ts:

⁷⁶https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
⁷⁷https://developer.mozilla.org/en-US/docs/Web/API/AudioContext

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext


Patterns in React Typescript Applications: Making Music with React 209

03-react-piano/step-2/src/domain/types.ts

export type Optional<TEntity> = TEntity | null

Our Optional type is a generic type, which tells that it represents a union of a given
type TEntity or a null. Basically we’re building an ”assumption“ type, and use it
when we’re not sure if some entity is defined as TEntity type or is null.

You may notice, that we use different notation for defining type arguments in this
case, a bit more verbose one—we use TEntity instead of T. This is not mandatory.
We will use this only for readability sake, because later on, when we will be building
complex interfaces and generic functions, we will be needing a way to describe what
our type arguments are and what they are for.

So, this Optional type is useful when we need to make sure that we cover all the
possible cases when some entity possibly doesn’t exist. In our case, Optional tells us
that accessContext() returns either AudioContextType or null.

Next, let’s figure outwhat AudioContextType is. For that let’s open react-app-env.d.ts:

03-react-piano/step-2/src/react-app-env.d.ts

1 /// <reference types="react-scripts" />

2

3 type AudioContextType = typeof AudioContext

4

5 interface Window extends Window {

6 webkitAudioContext: AudioContextType

7 }

Here, we create a type called AudioContextTypewhich is equal to typeof AudioContext.
This may seem a bit confusing, but technically it means that our custom type
AudioContextType is literally a type of window.AudioContext. We need it because
AudioContext is not a type per se, this is a constructor function. To make Type-
Script understand what type we want to declare we explicitly define it as typeof
AudioContext.



Patterns in React Typescript Applications: Making Music with React 210

Below,we can see an extension for Window interface, which includes field webkitAudioContext
with a type of AudioContextType. This is required for now because TypeScript by
default doesn’t include⁷⁸ some vendor properties and methods on window.

So we have to extend standard window interface to get an access to this field
because in some browsers AudioContext is accessible via AudioContext property and
in some—via webkitAudioContext.

And that is exactly what we cover in our accessContext() function! We tell a
browser to check if it supports AudioContext and use it, or to check if it supports
webkitAudioContext otherwise. If a browser doesn’t support any of them then we
want to return null, just to be able to determine later that we cannot access Audio
API.

Soundfont

Next, it is time to introduce a third party API whichwe’re going to use— Soundfont⁷⁹.
It is a framework agnostic loader and player which has a pack of pre-rendered sounds
of many instruments. And also it comes with typings for integration with TypeScript
project!

We prefer Soundfont over MIDI.js⁸⁰ because Soundfont satisfies all of our require-
ments and weighs less.

Let’s start integrating Soundfont with our project.

03-react-piano/step-2/src/domain/sound.ts

import { InstrumentName } from "soundfont-player"

export const DEFAULT_INSTRUMENT: InstrumentName =

"acoustic_grand_piano"

For nowwe are goodwith exporting DEFAULT_INSTRUMENT constant of type InstrumentName
which comes with soundfont-player package. One of the coolest things about
integration third-party APIs which have TypeScript declarations is that we can use

⁷⁸https://github.com/microsoft/TypeScript/issues/31686
⁷⁹https://www.npmjs.com/package/soundfont-player
⁸⁰https://github.com/mudcube/MIDI.js

https://github.com/microsoft/TypeScript/issues/31686
https://www.npmjs.com/package/soundfont-player
https://github.com/mudcube/MIDI.js
https://github.com/microsoft/TypeScript/issues/31686
https://www.npmjs.com/package/soundfont-player
https://github.com/mudcube/MIDI.js


Patterns in React Typescript Applications: Making Music with React 211

our IDE’s autocomplete to scroll through possible options for union types. Here, we
can select across multiple different instruments which are listed in InstrumentName

union.

Patterns

So far we have been working with our application code and third party APIs
separately. However, in order to combine and use them together we have to connect
them.

In programming it is not always easy to connect different software components with
each other. A good news is that many of those problems are solved for us long time
ago. The solutions for typical software development problems are called patterns.

Adapter or Provider Pattern

An Adapter⁸¹ pattern (or sometimes Provider pattern) is a software design pattern
that allows the interface of an existing entity (class, service, etc) to be used as another
interface. Basically it adapts⁸² (or provides) third party API to us and make it usable
in our application code.

React-Specific Patterns

In our case we want to use Provider pattern to make Soundfont’s functionality
accessible for our application. Also, it will be useful to connect Audio API to our
code.

Using React we can implement Provider pattern using multiple techniques, such
as Render-Props and Higher Order Components. Those are also called patterns,
however to distinguish these from patterns above we will call them React-patterns.

Later we will cover all those React-patterns, but before we begin let’s create a new
application screen with a Keyboard component to be able to play notes.

⁸¹https://en.wikipedia.org/wiki/Adapter_pattern
⁸²(https://github.com/kamranahmedse/design-patterns-for-humans#-adapter)

https://en.wikipedia.org/wiki/Adapter_pattern
(https://github.com/kamranahmedse/design-patterns-for-humans#-adapter)
https://en.wikipedia.org/wiki/Adapter_pattern
(https://github.com/kamranahmedse/design-patterns-for-humans#-adapter)


Patterns in React Typescript Applications: Making Music with React 212

Creating a Keyboard

In this section, we’re going to create a main app screen with a Keyboard component
on it. Also, we will cover the case when a user’s browser doesn’t support Audio API

and create a component with a message about it.

Main App Screen

Our main app screen will be in Main component.

03-react-piano/step-3/src/components/Main/Main.tsx

import React, { FunctionComponent } from "react"

import { Keyboard } from "../Keyboard"

import { NoAudioMessage } from "../NoAudioMessage"

import { useAudioContext } from "../AudioContextProvider"

export const Main: FunctionComponent = () => {

const AudioContext = useAudioContext()

return !!AudioContext ? <Keyboard /> : <NoAudioMessage />

}

When used, it checks whether the browser supports Audio API or not and decides
which component to render: Keyboard or NoAudioMessage. We will look at them a
little later. For now, let’s focus on a custom hook⁸³—useAudioContext().

Custom Hook for Accessing Audio

Intentionally Hooks in React let us use state and other features without writing a
class. Writings hooks has its rules⁸⁴ and limitations. For example all hooks’ names
should start with use* prefix. It allows linter to check if a hook’s source code satisfies
all the limitations, which are:

⁸³https://reactjs.org/docs/hooks-intro.html
⁸⁴https://reactjs.org/docs/hooks-rules.html

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-rules.html


Patterns in React Typescript Applications: Making Music with React 213

• We can call hooks only at the top level of our components, and never —
conditionally.

• We can call hooks only inside of Functional Components.

In our case, we create a hook called useAudioContext()which encapsulates an access
to AudioContext.

03-react-piano/step-3/src/components/AudioContextProvider/useAudioContext.ts

import { useRef } from "react"

import { Optional } from "../../domain/types"

import { accessContext } from "../../domain/audio"

export function useAudioContext(): Optional<AudioContextType> {

const AudioCtx = useRef(accessContext())

return AudioCtx.current

}

Here, we use useRef() hook⁸⁵ to “remember” the value that our accessContext()
function is going to return.

The useState() hook is a hook which allows us to create a local state in functional
component. It returns a tuple of a value and an update-function. Since we don’t need
an update function, we only use the value from the local state.

As an argument useState() takes an initial value for the state. We can also pass
a function, since useState() checks the arguments and if a given argument is a
function, useState() will call it automatically and will keep the returned result as a
state value.

As a result from our custom hook we return Optional<AudioContextType>. Again,
we want to provide either an AudioContextType or null to be able to build our UI
depending on that later on.

So, when a Main component calls useAudioContext(), it gets an AudioContext if a
browser supports it and renders a Keyboard component, or it gets null and renders
NoAudioMessage component otherwise. Now it’s time to look at both of them.

⁸⁵https://reactjs.org/docs/hooks-reference.html#useref

https://reactjs.org/docs/hooks-reference.html#useref
https://reactjs.org/docs/hooks-reference.html#useref


Patterns in React Typescript Applications: Making Music with React 214

Handling Missing Audio Context

Let’s look at the NoAudioMessage component first. It is basically a divwith some text
in it. It doesn’t do much, only renders a message for a user.

03-react-piano/step-3/src/components/NoAudioMessage/NoAudioMessage.tsx

import React, { FunctionComponent } from "react"

export const NoAudioMessage: FunctionComponent = () => {

return (

<div>

<p>Sorry, it's not gonna work :–(</p>

<p>

Seems like your browser doesn't support <code>Audio API</code>

.

</p>

</div>

)

}

Keyboard Layout

The Keyboard components however is a bit more interesting.

03-react-piano/step-3/src/components/Keyboard/Keyboard.tsx

import React, { FunctionComponent } from "react"

import { OctavesRange, selectKey } from "../../domain/keyboard"

import { notes } from "../../domain/note"

import { Key } from "../Key"

import "./style.css"

export const Keyboard: FunctionComponent = () => {

return (

<div className="keyboard">



Patterns in React Typescript Applications: Making Music with React 215

{notes.map(({ midi, type, index, octave }) => {

const label = selectKey(octave as OctavesRange, index)

return <Key key={midi} type={type} label={label} />

})}

</div>

)

}

Let’s start analyzing it with a notes array which we map() over.

As we remember it is an array of generated notes from C4 to B5. When mapping each
note we destructure into midi, type, index, and octave. For each note we render a
Key component, we will look at it a bit later.

There is a function, however, which we haven’t seen yet, called selectKey(). It is a
function that selects a letter label for a given key. Let’s inspect its source code.

03-react-piano/step-3/src/domain/keyboard.ts

import { OctaveIndex, PitchIndex } from "./note"

export type Key = string

export type Keys = Key[]

export type OctavesRange = Extract<OctaveIndex, 4 | 5>

export const TOP_ROW: Keys = Array.from("q2w3er5t6y7u")

export const BOTTOM_ROW: Keys = Array.from("zsxdcvgbhnjm")

export function selectKey(

octave: OctavesRange,

index: PitchIndex

): Key {

const keysRow = octave < 5 ? TOP_ROW : BOTTOM_ROW

return keysRow[index]

}

In keyboard.ts we create 3 custom types:



Patterns in React Typescript Applications: Making Music with React 216

• Key, a type-alias for representing letter key label
• Keys, an array of those labels
• and an OctavesRange, a type which uses Extract utility type.

Extract<T, U> constructs⁸⁶ a type by extracting from type T all properties that are
assignable to type U. Thus, it makes an OctavesRange to be a type that contains only
octaves that can fit into our not very wide keyboard.

By design, OctavesRange is possible to fit only 2 octaves. It sets up a constraint on
what octaves can be used here. In our case there are only 4-th and 5-th. Extract takes
a union (OctaveIndex) and keeps only a set of values given as a second argument.

Then, we create 2 arrays of letters, that will label our keys. If those letters are pressed
on a real keyboard we will play a sound of a key with corresponding label. We use
Array.from()⁸⁷ to create an array of characters from a string.

And finally, selectKey() is a function which takes an octave index that we are
choosing a key for and a pitch index to select among the chosen octave. Thus, we
select a letter for our key label.

Single Key on a Keyboard

Next, we want to inspect a Key component.

03-react-piano/step-3/src/components/Key/Key.tsx

import clsx from "clsx"

First of all, we want to use clsx package⁸⁸ to compose a component’s classNamewith
others in the future.

⁸⁶https://www.typescriptlang.org/docs/handbook/utility-types.html#extracttu
⁸⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
⁸⁸https://www.npmjs.com/package/clsx

https://www.typescriptlang.org/docs/handbook/utility-types.html#extracttu
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://www.npmjs.com/package/clsx
https://www.typescriptlang.org/docs/handbook/utility-types.html#extracttu
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://www.npmjs.com/package/clsx


Patterns in React Typescript Applications: Making Music with React 217

03-react-piano/step-3/src/components/Key/Key.tsx

interface KeyProps {

type: NoteType

label: string

disabled?: boolean

}

export const Key: FunctionComponent<KeyProps> = (props) => {

const { type, label, ...rest } = props

return (

<button

className={clsx(`key key--${type}`)}

type="button"

{...rest}

>

{label}

</button>

)

}

Then, let’s pay attention to a type definition of a component— it is a FunctionComponent<KeyProps>.

We could write this without FunctionComponent at all, it wouldn’t be a mistake:

export const Key = ({ type, label, ...rest }: KeyProps) => /*...*/

However, let’s try to use FunctionComponent as well. First of all, FunctionComponent
is a generic type⁸⁹ from React package which takes props type as an argument. When
using it we can be sure, that a compiler understands that this particular component
wants a specified props to be provided. It is also useful for autocompletion in IDE,
because when IDE knows what props a component can have it can help us with
suggestions of what we can or must provide when using it.

In our case these argument-props are described with an interface KeyProps. Inside
we define:

⁸⁹https://www.typescriptlang.org/docs/handbook/jsx.html#function-component

https://www.typescriptlang.org/docs/handbook/jsx.html#function-component
https://www.typescriptlang.org/docs/handbook/jsx.html#function-component


Patterns in React Typescript Applications: Making Music with React 218

• type, a NoteType—will be used to define the styles of a key
• label, a string—a letter that will be placed as a label of a key
• and disabled, an optional boolean—if true it will disable the key from pressing.

Also wewant to use clsx package⁹⁰ to compose a component’s classNamewith others
in the future.

As a base for our component we use button element. To ensure that all the browsers
render our keys more or less equally we want to reset default button styles.

03-react-piano/step-3/src/index.css

button {

border: none;

border-radius: 0;

margin: 0;

padding: 0;

width: auto;

background: none;

appearance: none;

color: inherit;

font: inherit;

line-height: normal;

cursor: pointer;

-webkit-font-smoothing: inherit;

-moz-osx-font-smoothing: inherit;

}

Here, we drop default styles and make button look like a text item.

Then, in styles for Key component we describe how keys should look like. The whole
stylesheet can be found in src/components/Key/style.css, here, we focus only on
the difference between black and white keys.

⁹⁰https://www.npmjs.com/package/clsx

https://www.npmjs.com/package/clsx
https://www.npmjs.com/package/clsx


Patterns in React Typescript Applications: Making Music with React 219

03-react-piano/step-3/src/components/Key/style.css

.key {

position: relative;

font-size: var(--font-size);

border-radius: 0 0 var(--radius) var(--radius);

text-transform: uppercase;

user-select: none;

}

We use sharp and natural from NodeType union as class modifiers for our styles.
Thus, when changing the type prop of our Key component we automatically change
its className, and therefore its style.

03-react-piano/step-3/src/components/Key/style.css

.key--natural {

width: var(--white-key-width);

height: var(--white-key-height);

padding-top: var(--white-key-padding);

border: 1px solid rgba(0, 0, 0, 0.1);

color: rgba(0, 0, 0, 0.4);

margin-right: -1px;

z-index: 1;

}

.key--sharp,

.key--flat {

width: var(--black-key-width);

height: var(--black-key-height);

padding-top: var(--black-key-padding);

background-color: #111;

color: white;

margin: 0 calc(-0.5 * calc(var(--black-key-width)));

z-index: 2;

}



Patterns in React Typescript Applications: Making Music with React 220

Playing a Sound

All right, it seems like everything is ready to actually play some sounds in our app.
Before we begin, let’s add a new custom type called SoundfontType in our .d.ts. It
is going to be useful when we will create an adapter for Soundfont.

03-react-piano/step-4/src/react-app-env.d.ts

type SoundfontType = typeof Soundfont

Soundfont Adapter

Let’s examine what we want from adapter to do. It should take what Soundfont
provides as public API, take what window gives us, and adapt all of that for our usage.

How Soundfont adapter should work

For starters we create an adapter based on a custom hook, and later on we will use
React-Patterns, such as HOCs and Render-Props. For now, just to get to know the
Soundfont’s API we use a custom hook.

Okay, let’s specify what we need as dependencies and as a result.



Patterns in React Typescript Applications: Making Music with React 221

03-react-piano/step-4/src/adapters/Soundfont/useSoundfont.ts

interface Settings {

AudioContext: AudioContextType

}

interface Adapted {

loading: boolean

current: Optional<InstrumentName>

load(instrument?: InstrumentName): Promise<void>

play(note: MidiValue): Promise<void>

stop(note: MidiValue): Promise<void>

}

export function useSoundfont({ AudioContext }: Settings): Adapted {

Here, a Settings interface describes what our useSoundfont() adapter hook requires
as arguments—in our case we want an AudioContext constructor. Then, Adapted
interface specifies what kind of object we’re going to return from our hook.

A loading field is a boolean that is truewhen Soundfont loads the instrument sounds
set, we will use it to disable Keyboard while loading is happening. A current field
contains a current instrument.

Functions load(), play() and stop() are functions which handle loading instrument
sounds set, starting playing a note and finishing playing a note respectively. They all
are asynchronous, since the Audio API is asynchronous by itself.

Async functions in TS are typed with Promise<TResult> generic type—it allows us
to comprehend that this function returns a Promise of some value, but not the value
right away.

Now, let’s prepare a local state for our adapter.



Patterns in React Typescript Applications: Making Music with React 222

03-react-piano/step-4/src/adapters/Soundfont/useSoundfont.ts

let activeNodes: AudioNodesRegistry = {}

const [current, setCurrent] = useState<Optional<InstrumentName>>(

null

)

const [loading, setLoading] = useState<boolean>(false)

const [player, setPlayer] = useState<Optional<Player>>(null)

const audio = useRef(new AudioContext())

Here, activeNodes is an object with something called AudioNode⁹¹ items. Those are a
general interfaces to handling sound operations. Soundfont uses them to store a state
of played notes. Notice that type of this state part is AudioNodesRegistry. This is the
type that we create especially for this case in our domain.

03-react-piano/step-4/src/domain/sound.ts

import { MidiValue } from "./note"

import { Optional } from "./types"

export type AudioNodesRegistry = Record<MidiValue, Optional<Player>>

AudioNodesRegistry is a Record of MidiValue as a key and a Player as a value.
Player type is a type provided by Soundfont, and it is basically an entity that handles
for us every musical operation that we want to perform.

Notice that in contrast with other local variables activeNodes is not a part of a local
state. That is because we don’t want our component to re-render every time audio
nodes change their state to avoid extra repaints and also to avoid situations when
.stop() method is being called on a non-existing node or on a node with an invalid
audio state. So, we update this registry directly using local variable, not using the
state.

Next, current is a current instrument that is being played. By default we set it to null
andmake it of type Optional<InstrumentName>, just becausewe have to download its
sound before we can start playing. A loading field indicates whether an instrument

⁹¹https://developer.mozilla.org/ru/docs/Web/API/AudioNode

https://developer.mozilla.org/ru/docs/Web/API/AudioNode
https://developer.mozilla.org/ru/docs/Web/API/AudioNode


Patterns in React Typescript Applications: Making Music with React 223

is being loaded or not. A player is a Soundfont Player instance, which helps us
perform musical operations.

And finally, audio is an AudioContext instance. Again, we use useRef() hook⁹² to
keep a reference to an instance of an AudioContext that we create when component
mounts. To access this instance we will have to use audio.current property.

Loading Sounds Set

To load an instrument sounds set we have to implement a load() function for our
adapter.

03-react-piano/step-4/src/adapters/Soundfont/useSoundfont.ts

async function load(

instrument: InstrumentName = DEFAULT_INSTRUMENT

) {

setLoading(true)

const player = await Soundfont.instrument(

audio.current,

instrument

)

setLoading(false)

setCurrent(instrument)

setPlayer(player)

}

Notice that we mark this function as async, that’s because Soundfont’s instrument()
method is async as well. In our load() function we take an instrument as an
argument and make its default value equal to DEFAULT_INSTRUMENT.

First thing’s first, we set loading state to true to indicate that sounds set is being
loaded. Then, we call await Soundfont.instrument() method and keep returned
result to a player local state. Also, we save a given instrument as current and when
everything is done mark loading as false.

Now, we have to implement 2 more functions: load() and stop(). Let’s build them.
⁹²https://reactjs.org/docs/hooks-reference.html#useref

https://reactjs.org/docs/hooks-reference.html#useref
https://reactjs.org/docs/hooks-reference.html#useref


Patterns in React Typescript Applications: Making Music with React 224

03-react-piano/step-4/src/adapters/Soundfont/useSoundfont.ts
async function play(note: MidiValue) {

await resume()

if (!player) return

const node = player.play(note.toString())

activeNodes = { ...activeNodes, [note]: node }

}

async function stop(note: MidiValue) {

await resume()

if (!activeNodes[note]) return

activeNodes[note]!.stop()

activeNodes = { ...activeNodes, [note]: null }

}

This exclamation mark in stop() function is a non-null assertion operator⁹³. Using
it we declare that we are totally sure, that activeNodes[note] is not null. We can
do that because we checked it on a previous line.

Here, we can see a resume() function that is being called as a first step of both
functions.

03-react-piano/step-4/src/adapters/Soundfont/useSoundfont.ts
async function resume() {

return audio.current.state === "suspended"

? await audio.current.resume()

: Promise.resolve()

}

This function checks in what state audio is in right now. If it is suspended⁹⁴ that
means that AudioContext is halting audio hardware access and reducing CPU/bat-
tery usage in the process. To continue we have to resume() it. And since it also has
an async interface we have to implement our resume() wrapper as async too.

⁹³https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator
⁹⁴https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend


Patterns in React Typescript Applications: Making Music with React 225

To handle the casewhen state of audiowasn’t suspended, we use Promise.resolve()⁹⁵.
This method returns a Promise object that is resolved with a given value. We don’t
need any value, so we don’t pass any as an argument.

Next, in our play() function we take a MidiValue as an argument to know what
note to play. Also, we check if there is no player yet, then we don’t do anything.
Otherwise, we create an active audioNode by calling player.play() method. Then,
we save that node into our activeNodes registry.

These activeNodes are needed to keep track of what notes are being played and be
able to stop() them. Again, we resume() an AudioContext, then make sure that a
needed node exists and call s stop() method on it.

And that is how we created our first sound provider!

Connecting to a Keyboard

In order to use our adapter we have to tweak props of our Keyboard and Key

components a bit. First, let’s look at the keyboard.

03-react-piano/step-4/src/components/Keyboard/Keyboard.tsx

export interface KeyboardProps {

loading: boolean

play: (note: MidiValue) => Promise<void>

stop: (note: MidiValue) => Promise<void>

}

export const Keyboard: FunctionComponent<KeyboardProps> = ({

loading,

stop,

play

}) => (

<div className="keyboard">

{notes.map(({ midi, type, index, octave }) => {

const label = selectKey(octave as OctavesRange, index)

return (

⁹⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve


Patterns in React Typescript Applications: Making Music with React 226

<Key

key={midi}

type={type}

label={label}

disabled={loading}

onDown={() => play(midi)}

onUp={() => stop(midi)}

/>

)

})}

</div>

)

Notice that Keyboard now has props that will consume loading, play() and stop()

that are provided by the adapter. We use loading flag to disable keys to forbid user to
press them while keyboard is not ready. Also, we use onDown() and onUp() methods
to handle key press events.

03-react-piano/step-4/src/components/Key/Key.tsx

onUp: ReactEventHandler<HTMLButtonElement>

onDown: ReactEventHandler<HTMLButtonElement>

Those methods are described now in KeyProps and we use them in onMouseDown()

and onMouseUp() props for button element.

03-react-piano/step-4/src/components/Key/Key.tsx

onMouseDown={onDown}

onMouseUp={onUp}

Now, we only have to actually connect our Keyboard to Soundfont provider, and
we’re there!



Patterns in React Typescript Applications: Making Music with React 227

03-react-piano/step-4/src/components/Keyboard/WithInstrument.tsx

import React, { FunctionComponent } from "react"

import { useAudioContext } from "../AudioContextProvider"

import { useSoundfont } from "../../adapters/Soundfont"

import { useMount } from "../../utils/useMount"

import { Keyboard } from "../Keyboard"

import "./style.css"

export const KeyboardWithInstrument: FunctionComponent = () => {

const AudioContext = useAudioContext()!

const { loading, play, stop, load } = useSoundfont({ AudioContext })

useMount(load)

return <Keyboard loading={loading} play={play} stop={stop} />

}

Here, we use our custom hook to access required methods and flags. Then, when
mounted, we provide those props to our Keyboard. We use exclamation mark to
tell type checker that we are sure that useAudioContext() returns not null. That is
because we know that this component will be rendered only if the browser supports
Audio API, because we tested it earlier.

Finally, the only thing we have to do is to update our Main component to include our
connected KeyboardWithInstrument.

03-react-piano/step-4/src/components/Main/Main.tsx

import React, { FunctionComponent } from "react"

import { KeyboardWithInstrument } from "../Keyboard"

import { NoAudioMessage } from "../NoAudioMessage"

import { useAudioContext } from "../AudioContextProvider"

export const Main: FunctionComponent = () => {

const AudioContext = useAudioContext()

return !!AudioContext ? (

<KeyboardWithInstrument />



Patterns in React Typescript Applications: Making Music with React 228

) : (

<NoAudioMessage />

)

}

Mapping Real Keys to Virtual

Right now our Keyboard can play sounds when pressed by a mouse click. However,
we want it to play notes when a user presses corresponding keys on their real
keyboard. In order to do that we need to map real keys with virtual ones, so that
when a user presses a key our application would know what to do and what note to
play.

We create a component that will implement another pattern calledObserver. Its main
idea is to allow us to subscribe to some events and handle them like we want to. In
our case we want to subscribe to keyPress events.

Let’s again start with designing API.

03-react-piano/step-5/src/components/PressObserver/usePressObserver.ts

type IsPressed = boolean

type EventCode = string

interface Settings {

watchKey: KeyLabel

onStartPress: Function

onFinishPress: Function

}

IsPressed is a type alias for boolean, it helps us determining if a user pressed a key
or not. EventCode is a type alias for event.code, we will use it to figure out what
key is pressed. In Settings we use KeyLabel to define which key is to be observed.
Functions onStartPress() and onFinishPress() are handlers for when user pressed
a key and lift their finger up respectively.

The hook type signature will look like this:



Patterns in React Typescript Applications: Making Music with React 229

03-react-piano/step-5/src/components/PressObserver/usePressObserver.ts

export function usePressObserver({

watchKey,

onStartPress,

onFinishPress

}: Settings): IsPressed {

const [pressed, setPressed] = useState<IsPressed>(false)

Here we take Settings as an argument and return IsPressed as a result. A state
(pressed or not) we will keep in a local state of our component using useState()

hook.

Now, let’s implement the main logic using useEffect().

03-react-piano/step-5/src/components/PressObserver/usePressObserver.ts

useEffect(() => {

function handlePressStart({ code }: KeyboardEvent): void {

if (pressed || !equal(watchKey, code)) return

setPressed(true)

onStartPress()

}

function handlePressFinish({ code }: KeyboardEvent): void {

if (!pressed || !equal(watchKey, code)) return

setPressed(false)

onFinishPress()

}

document.addEventListener("keydown", handlePressStart)

document.addEventListener("keyup", handlePressFinish)

return () => {

document.removeEventListener("keydown", handlePressStart)

document.removeEventListener("keyup", handlePressFinish)

}

}, [watchKey, pressed, setPressed, onStartPress, onFinishPress])



Patterns in React Typescript Applications: Making Music with React 230

In here, when a user presses a key, we call handlePressStart() to handle this event.
We check if this key hasn’t been pressed yet and if not, we set pressed variable to
true and call onStartPress() callback. When a user finished pressing the key we
call onFinishPress() inside of handlePressFinish() handler.

We use document.addEventListener() to connect events and our named handler
functions, and document.removeEventListener() inside of a cleanup function which
is returned from the useEffect()⁹⁶ hook. This is important to remove event listeners
in cleanup-function to prevent memory leaks and unwanted event handlers calls.

When usePressObserver() is ready, we connect it to our Key component.

03-react-piano/step-5/src/components/Key/Key.tsx

const pressed = usePressObserver({

watchKey: label,

onStartPress: onDown,

onFinishPress: onUp

})

return (

<button

className={clsx(`key key--${type}`, pressed && "is-pressed")}

onMouseDown={onDown}

onMouseUp={onUp}

type="button"

{...rest}

>

{label}

</button>

)

We use onDown() and onUp() props as values for onStartPress and onFinishPress

for the observer respectively and use returned pressed value to assign an active
className to our button.

⁹⁶https://reactjs.org/docs/hooks-effect.html

https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html


Patterns in React Typescript Applications: Making Music with React 231

Instruments List

Last thing to do before we dive in Render-Props and Higher Order Components is to
create an instruments list to be able to load them dynamically. This part requires
a state that will be accessible among many components, so we’re going to use
React.Context to share that state.

Context

Let’s start with creating a new Context. We will call it InstrumentContext.

03-react-piano/step-6/src/state/Instrument/Context.ts

export interface ContextValue {

instrument: InstrumentName

setInstrument: (instrument: InstrumentName) => void

}

export const InstrumentContext = createContext<ContextValue>({

instrument: DEFAULT_INSTRUMENT,

setInstrument() {}

})

export const InstrumentContextConsumer = InstrumentContext.Consumer

export const useInstrument = () => useContext(InstrumentContext)

Here, we use createContext() function and specify that our context value is
going to be of type ContextValue. It will keep a current instrument which we
will be able to update via setInstrument(). As a default value for an instrument
we provide DEFAULT_INSTRUMENT constant. From this file we want to export an
InstrumentContextConsumer and useInstrument() hook to access the context.

The next step is to create an InstrumentContextProvider that will provide an access
to the context.



Patterns in React Typescript Applications: Making Music with React 232

03-react-piano/step-6/src/state/Instrument/Provider.tsx

export const InstrumentContextProvider: FunctionComponent = ({

children

}) => {

const [instrument, setInstrument] = useState(DEFAULT_INSTRUMENT)

return (

<InstrumentContext.Provider value={{ instrument, setInstrument }}>

{children}

</InstrumentContext.Provider>

)

}

The InstrumentContextProvider is a component that keeps the instrument value in
local state and exposes setInstrument()method to update it.We use Context.Provider
to set a value and render children inside—that will help us to wrap our entire
application in this provider and get access to the InstrumentContext from anywhere.

Instruments Selector

Now, let’s actually try to update a current instrument. For that we create a new
component called InstrumentSelector.

03-react-piano/step-6/src/components/InstrumentSelector/InstrumentSelector.tsx

export const InstrumentSelector: FunctionComponent = () => {

const { instrument, setInstrument } = useInstrument()

const updateValue = ({ target }: ChangeEvent<HTMLSelectElement>) =>

setInstrument(target.value as InstrumentName)

return (

<select

className="instruments"

onChange={updateValue}

value={instrument}

>



Patterns in React Typescript Applications: Making Music with React 233

{options.map(({ label, value }) => (

<option key={value} value={value}>

{label}

</option>

))}

</select>

)

}

Here, we use our useInstrument() custom hook to get a current instrument value and
a method for its updating. Then, we create an event handler called updateValue()

which takes a ChangeEvent<HTMLSelectElement> as an argument and calls setInstrument()
with new InstrumentName.

ChangeEvent is a generic type that tells React that this function takes some change
event of some element, in our case this element is select, hence ChangeEvent<HTMLSelectElement>.

Notice how we set onChange() property to have a value of updateValue(). That is
how we connect our Context to a component in UI. That is where all the changes
affect our state.

Later we render the select element, filled with options list. We import options list
from other file besides.

03-react-piano/step-6/src/components/InstrumentSelector/options.ts

interface Option {

value: InstrumentName

label: string

}

type OptionsList = Option[]

type InstrumentList = InstrumentName[]

function normalizeList(list: InstrumentList): OptionsList {

return list.map((instrument) => ({

value: instrument,

label: instrument.replace(/_/gi, " ")



Patterns in React Typescript Applications: Making Music with React 234

}))

}

export const options = normalizeList(instruments as InstrumentList)

Options for our case is an array of Option objects. Each object contains a value of
type InstrumentName, and a label of type string. We will use a value as a value for
option elements in select, also this is our current instrument in InstrumentContext.
And label is a string that wewill put inside of option elements to render them visible
for users.

A function normalizeList() converts instrument names provided by Soundfont
into readable ones. You see, Soundfont gives us a list of instruments that typed
like "acoustic_grand_piano", and we don’t want our users to see this underscore
between words. So we remove it and replace it with a space.

Now, in order to provide an access to our InstrumentContext we have to expose it
via InstrumentContextProvider.

03-react-piano/step-6/src/components/Playground/Playground.tsx

export const Playground: FunctionComponent = () => {

return (

<InstrumentContextProvider>

<div className="playground">

<KeyboardWithInstrument />

<InstrumentSelector />

</div>

</InstrumentContextProvider>

)

}

Here, we wrap our Keyboard and InstrumentSelector in a component called
Playground. Inside of it we use InstrumentContextProvider. We could wrap the
entire application in it, however, it is not necessary. In our case there are only 2 com-
ponents that actually use InstrumentContext: Keyboard and InstrumentSelector, so
we can wrap only them into the context provider.



Patterns in React Typescript Applications: Making Music with React 235

The next thing to do is to update our Main component, we want to include and use
Playground instead of a Keyboard that we used previously.

03-react-piano/step-6/src/components/Main/Main.tsx

export const Main: FunctionComponent = () => {

const AudioContext = useAudioContext()

return !!AudioContext ? <Playground /> : <NoAudioMessage />

}

We’re almost there! The only this to do now is to actually load a new sounds set
when changing a current instrument. Let’s update our KeyboardWithInstrument

component to handle this case.

Dynamically Loading Instruments

03-react-piano/step-6/src/components/Keyboard/WithInstrument.tsx

export const KeyboardWithInstrument: FunctionComponent = () => {

const AudioContext = useAudioContext()!

const { instrument } = useInstrument()

const { loading, current, play, stop, load } = useSoundfont({

AudioContext

})

useEffect(() => {

if (!loading && instrument !== current) load(instrument)

}, [load, loading, current, instrument])

return <Keyboard loading={loading} play={play} stop={stop} />

}

Here we use useInstrument() hook to access the value of a current instrument.
Later, we call load() function providing instrument as an argument for it. It will
tell Soundfont to load the sounds set for this particular instrument.



Patterns in React Typescript Applications: Making Music with React 236

Notice, that we replace useMount() hook with useEffect() hook. We have to do that
since we want to dynamically change our instruments sounds set, instead of loading
it once when mounted.

Also, we check if an instrument is really changed and load new one only if so. For
that we use current value which is provided by useSoundfont() hook earlier. We
compare a current instrument in Soundfont provider and a wanted instrument from
our Context. And if they are different we call load() function.

And that’s it! Now you can open the project in a browser and play with different
instruments sounds.

Render-Props

So far we used only hooks to implement a Provider pattern. However, we can use
different technics to achieve the same result. One of those technics is a React-pattern
called Render-Props.

The key idea of this technic is reflected in the title. A component with a render prop⁹⁷
takes a function that returns a React element and calls it instead of implementing its
own render logic. This technic makes it possible and convenient to share internal
logic of a component with another.

Let’s try to imagine how a component with render-functionwould look like. Its usage
would look somewhat like this:

<ExampleRenderPropsComponent

render={(name: string) => <div>Hello, {name}!</div>}

/>

If we look closely to render we would notice that it takes a function, that returns
another React component. However, it renders not just some component, but it
renders a component with a text that contains a name. This name is a value calculated
inside of ExampleRenderPropsComponent.

So, this function for render kind of connects internal values of ExampleRenderPropsComponent
with outside world. We, sort of, expose this internal value to outer world. The coolest

⁹⁷https://reactjs.org/docs/render-props.html

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html


Patterns in React Typescript Applications: Making Music with React 237

thing is that we can decide what to share with outer world and what don’t. We could
have 100 internal values inside of ExampleRenderPropsComponent, but expose only 1.
Only one that is needed to be exposed.

Thus, we can encapsulate the logic in one place—ExampleRenderPropsComponent, but
share some functionality with different components:

<ExampleRenderPropsComponent

render={(name: string) => <Greetings name={name} />}

/>

<ExampleRenderPropsComponent

render={(name: string) => <Farewell name={name} />}

/>

Here, we expose name value to Greetings and Farewell. We don’t recreate all the
operations that required to get name by hands, but instead we keep them inside of
ExampleRenderPropsComponent and use render to provide it to other components.

Now, let’s try and build a Provider for Soundfont using Render-Props.

Creating Render-Props With Functional Components

There are 2 ways to create a Render-Props component: using a functional component
and a class. Let’s start with functional components first.

First of all, we need to determine what props this component would require to be
passed.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProvider.ts

interface ProviderProps {

instrument?: InstrumentName

AudioContext: AudioContextType

render(props: ProvidedProps): ReactElement

}

We would require an optional instrument prop to specify what instrument we want
to load, and an AudioContext to work with. But most importantly we would require



Patterns in React Typescript Applications: Making Music with React 238

render prop that is a function that takes ProvidedProps as an argument and returns
a ReactElement. ProvidedProps is an interface with values that we would provide to
outside world, we would describe it like this:

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProvider.ts

interface ProvidedProps {

loading: boolean

play(note: MidiValue): Promise<void>

stop(note: MidiValue): Promise<void>

}

Basically those are the same values, that we provided earlier with useSoundfont()

hook, but without load() and current. We don’t need them because we encapsulate
loading of sounds inside of our provider, and a current instrument now is being set
from the outside via instrument prop.

Also, we don’t return them as a function result, but instead we pass them as a render
function argument. Thus, the usage of our new provider would look like this:

function renderKeyboard({ play, stop, loading }: ProvidedProps): ReactE\

lement {

return <Keyboard play={play} stop={stop} loading={loading} />

}

;<SoundfontProvider

AudioContext={AudioContext}

instrument={instrument}

render={renderKeyboard}

/>

When we are okay with the API of our new provider we can start implementing it.
A type signature of this provider would be like:



Patterns in React Typescript Applications: Making Music with React 239

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProvider.ts

export const SoundfontProvider: FunctionComponent<ProviderProps> = ({

AudioContext,

instrument,

render

}) => {

We explicitly say that this is a FunctionComponent that takes ProviderProps.

All the work with internal state would be the same as it was in useSoundfont()

hook. Except that we add loading and reloading sounds when instrument prop is
being changed. It will look like this:

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProvider.ts

useEffect(() => {

if (!loading && instrument !== current) loadInstrument()

}, [loadInstrument, loading, instrument, current])

Here, we use useEffect() to capture the moment when an instrument prop changes
and load new sounds set for that instrument. However we don’t call load() function,
instead we call a memoized version⁹⁸ of it—this is possible because of useCallback()
hook.

Youmay notice that this is the logic thatwe implemented in KeyboardWithInstrument
component previously, and you will be totally right! This is exactly the same
functionality, but now it is encapsulated inside of a provider as well.

Finally, we have to expose our internal values and functions to outside world. For
that we use render():

⁹⁸https://reactjs.org/docs/hooks-reference.html#usecallback

https://reactjs.org/docs/hooks-reference.html#usecallback
https://reactjs.org/docs/hooks-reference.html#usecallback


Patterns in React Typescript Applications: Making Music with React 240

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProvider.ts

return render({

loading,

play,

stop

})

As you can see, we call render() and pass inside of it an object with all the values
and functions that we promised to pass in ProvidedProps.

Now the only thing that we have to update for the application to work is to tweak
code of KeyboardWithInstrument component a bit.

03-react-piano/step-7/src/components/Keyboard/WithInstrument.tsx

export const KeyboardWithInstrument: FunctionComponent = () => {

const AudioContext = useAudioContext()!

const { instrument } = useInstrument()

return (

<SoundfontProvider

AudioContext={AudioContext}

instrument={instrument}

render={(props) => <Keyboard {...props} />}

/>

)

}

Here, we pass the AudioContext and an instrument as props to SoundfontProvider

and then pass to render() a function that takes loading, play() and stop(), passes
them to a Keyboard and returns it. We use object destructuring not to manually
enumerate each prop for Keyboard but to pass them right away instead.

Creating Render-Props With Classes

We can use classes to create Render-Props components as well. Let’s rebuild our
provider using the same technic but based on a class.



Patterns in React Typescript Applications: Making Music with React 241

ProvidedProps would still be the same, because we don’t change the public API.
ProviderProps, on the other hand, will change. This time instrument field will not
be optional.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

interface ProviderProps {

instrument: InstrumentName

AudioContext: AudioContextType

render(props: ProvidedProps): ReactElement

}

That’s because we will use defaultProps⁹⁹ to use them when nothing will be passed
to a component. We will see how they are defined in a minute.

Then, since we are going to use a class we need to specify a state type, because
useState() hook is not available in class components. Hooks can be used only inside
of functional components. So, let’s introduce the ProviderState interface.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

interface ProviderState {

loading: boolean

current: Optional<InstrumentName>

}

Here, we declare that our local state should contain a loading field which is a boolean
and a currentwhich is a Optional<InstrumentName>. Those are the parts that should
cause re-render when changed.

⁹⁹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-
jsx

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx


Patterns in React Typescript Applications: Making Music with React 242

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

export class SoundfontProvider extends Component<

ProviderProps,

ProviderState

> {

public static defaultProps = {

instrument: DEFAULT_INSTRUMENT

}

private audio: AudioContext

private player: Optional<Player> = null

private activeNodes: AudioNodesRegistry = {}

public state: ProviderState = {

loading: false,

current: null

}

As you may notice we now pass 2 types into Component<> type. First one describes
props and second one describes a state. Also, we created a couple of private fields for
our class. Those are audio, player, and activeNodes. Wemake them private because
we don’t want outside entities to mess around with those fields. It is considered a
good practice to mark everything that is not public as private or protected.

The difference¹⁰⁰ between private and protected is that private members
are accessible only from inside the class, and protected members are
accessible from inside the class and extending class as well.

Notice, defaultProps there. We declare them as a static field on a class.

¹⁰⁰https://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers

https://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers
https://www.typescriptlang.org/docs/handbook/classes.html#public-private-and-protected-modifiers


Patterns in React Typescript Applications: Making Music with React 243

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

public static defaultProps = {

instrument: DEFAULT_INSTRUMENT

}

Then, we create a constructor() method. This is the method¹⁰¹ that is being called
right after a class is created.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

constructor(props: ProviderProps) {

super(props)

const { AudioContext } = this.props

this.audio = new AudioContext()

}

The first thing we have to do is to call¹⁰² super(props) method. A super() method
calls a parent constructor. In order to avoid situations when this.props are not
assigned to a component until the constructor is finished, we have to assign them via
super(props). If we didn’t do that we would not be able to access AudioContext from
this.props in a constructor later. Then, we get AudioContext and assign this.audio

to an instance of it.

Seems pretty well. Now, let’s imagine our component’s life cycle. What should be
done when, so to speak. When a component is created we assign private fields.
When it’s mounted we have to load an initial instrument. When an instrument is
changed (a component has been updated) we have to check if a new instrument is
different to current one and reload it if so.

Technically we described 4 life cycle¹⁰³ methods here:

• constructor(), which we discussed before

¹⁰¹https://www.typescriptlang.org/docs/handbook/classes.html#classes
¹⁰²https://overreacted.io/why-do-we-write-super-props/
¹⁰³https://reactjs.org/docs/state-and-lifecycle.html

https://www.typescriptlang.org/docs/handbook/classes.html#classes
https://overreacted.io/why-do-we-write-super-props/
https://reactjs.org/docs/state-and-lifecycle.html
https://www.typescriptlang.org/docs/handbook/classes.html#classes
https://overreacted.io/why-do-we-write-super-props/
https://reactjs.org/docs/state-and-lifecycle.html


Patterns in React Typescript Applications: Making Music with React 244

• componentDidMount(), which is called when a component is mounted into the
DOM

• shouldComponentUpdate(), which is called right before updating and deter-
mines if a component needs to be updated and re-rendered

• componentDidUpdate(), which is called when component has been updated

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

public componentDidMount() {

const { instrument } = this.props

this.load(instrument)

}

public shouldComponentUpdate({ instrument }: ProviderProps) {

return this.state.current !== instrument

}

public componentDidUpdate({

instrument: prevInstrument

}: ProviderProps) {

const { instrument } = this.props

if (instrument && instrument !== prevInstrument)

this.load(instrument)

}

Notice that shouldComponentUpdate() is not an optimization in this case, but a part
of a provider’s logic. We use it to prevent infinite reloading of instruments, that could
happen because of asynchronous loadings.

Also there is no need to check if an instrument is defined or not in componentDidMount(),
thanks to defaultProps.

That is exactly what we do in those methods. When a component is mounted we
access instrument prop and load it using this.load(). Before it is going to be
updated we check if a current instrument (this.state.current) is different from
the new one from props, and if so we load it.

Now, we have to implement this.load() method for loading sounds.



Patterns in React Typescript Applications: Making Music with React 245

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

private load = async (instrument: InstrumentName) => {

this.setState({ loading: true })

this.player = await Soundfont.instrument(this.audio, instrument)

this.setState({ loading: false, current: instrument })

}

We are using this.setState() to update loading flag—it will be provided later to
a component in render(). Also, notice that this method is public, since we want to
expose it to outer world. However, make sure to mark load() method private, since
we don’t want it to be exposed to outer world in any way.

There are 2 other methods now that we need to implement and expose.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

public play = async (note: MidiValue) => {

await this.resume()

if (!this.player) return

const node = this.player.play(note.toString())

this.activeNodes = { ...this.activeNodes, [note]: node }

}

public stop = async (note: MidiValue) => {

await this.resume()

if (!this.activeNodes[note]) return

this.activeNodes[note]!.stop()

this.activeNodes = { ...this.activeNodes, [note]: null }

}

It repeats the logic from our functional component provider, however here we
change not local variables but private class fields instead. All the signatures, API
and implementation are the same.



Patterns in React Typescript Applications: Making Music with React 246

That is whatmakes abstraction and interfaces so powerful, we can describe
an interface (sort of create a contract) and as long as we implement this
interface we can tweak and change the internals of the implementation as
we want.

Now we have to create a this.resume() method, which is almost identical to our
resume() function from the previous adapter.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

private resume = async () => {

return this.audio.state === "suspended"

? await this.audio.resume()

: Promise.resolve()

}

…And expose the methods and values to render() function. We access that function
from this.props, take it and pass as an argument the object with all the values and
method we promised to provide in ProvidedProps.

03-react-piano/step-7/src/adapters/Soundfont/SoundfontProviderClass.ts

public render() {

const { render } = this.props

const { loading } = this.state

return render({

loading,

play: this.play,

stop: this.stop

})

}

And that’s it! This is the Render-Props component based on a class. We can use it the
same way we used our previous provider based on a functional component.



Patterns in React Typescript Applications: Making Music with React 247

Tips and Tricks

We don’t necessarily need to call this prop render, we can use children prop as
well. In that case the children prop would become a function and we would use our
provider like this.

<SoundfontProvider AudioContext={AudioContext} instrument={instrument}>

{(props) => <Keyboard {...props} />}>

</SoundfontProvider>

Caveats

Be careful when using Render Props with React.PureComponent¹⁰⁴.

Using a Render-Props can negate the advantage that comes fromusing React.PureComponent
if we create the function inside a render method. This is because the shallow prop
comparison will always return false for new props, and each render in this case will
generate a new value for the render prop.

To get around this problem, we can sometimes define the prop as an instance
method. In cases where we cannot define the prop statically we should extend
React.Component instead.

Pros and Cons

Each pattern has its own limitations and usage cases. For Render-Props pros would
be, that a Render-Props Provider:

• Explicitly shows where all the methods come from
• Declaratively loads an instrument via prop
• Can be written as a class and as a function component

And we can consider as cons that a Render-Props Provider:

• Adds 1-2 nesting levels to a component which uses it.
• Needs a render to be called.

¹⁰⁴https://reactjs.org/docs/render-props.html

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html


Patterns in React Typescript Applications: Making Music with React 248

Higher Order Components

The next React-Pattern we’re going to explore is called Higher Order Component or
HOC. Let’s first break down this name to understand what it means.

Higher Order Functions

To grasp on what “order” means we need to have a look at functions first.

function increment(a: number): number {

return a + 1

}

Function increment() is a regular function that takes a number and returns a sum
of this number and 1. It is a first-order function.

function twice(fn: Function): Function {

return function (...args: unknown[]) {

return fn(fn(...args))

}

}

Function twice() is a function that takes another function as an argument and
returns a function as a result—that makes it a function with order higher that first.

Basically any given function that either takes a function as an argument or returns
a function as a result or both—is a function with order higher that first, hence the
name—higher order function¹⁰⁵.

This kind of functions is useful for composition. This term¹⁰⁶ comes from functional
programming and essentially it is a mechanism that makes it possible to take simple
functions and build more complicated ones based on them.

Let’s continue with our example here. We can create a function that will increment
a number twice. A naive way to do that would be:

¹⁰⁵https://en.wikipedia.org/wiki/Higher-order_function
¹⁰⁶https://en.wikipedia.org/wiki/Function_composition_(computer_science)

https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Function_composition_(computer_science)


Patterns in React Typescript Applications: Making Music with React 249

function incrementTwice(a: number): number {

return increment(increment(a))

}

However, this is not very good. First, we cannot be sure that in the future there won’t
be a requirement to increment number 3 or 5 times. Also, hardcoded logic is not good
in general. And, finally, if we zoom into twice() function we can notice similarities
with our incrementTwice() function.

They both call some function 2 times in a row, but incrementTwice() calls a concrete
function (increment()), and twice() calls an abstract function that comes from its
argument (fn()).

We can try to use twice() function to achieve the same result as we did with
incrementTwice().

const anotherIncrementTwice = twice(increment)

Yup, that’s it! Let’s see how it works step by step.

When we call twice() and pass the increment as an argument, variable fn starts
carrying the value of increment function. So, after first step fn is increment.

Then, we create an anonymous function that takes an array of arguments function(...args:
unknown[]). We need to create this function to prevent calling fn right away. Since
we only want to “prepare” and “remember” which function we want to call 2 times
in the future.

We return this anonymous function. Thus, whenwe assign const anotherIncrementTwice

to a result of twice(increment), we actually assign const anotherIncrementTwice

to that anonymous function that already “remembers” which function we wanted to
call twice. It knows that it should call increment() 2 times when called, and it takes
some arguments that will pass into increment().

If we try to write it down, it would look almost exactly like it did earlier:



Patterns in React Typescript Applications: Making Music with React 250

const anotherIncrementTwice = function (...args: unknown[]) {

return increment(increment(...args))

}

And surely it returns the same result as the previous one:

const result1 = incrementTwice(5) // returns 7

const result2 = anotherIncrementTwice(5) // returns 7

result1 === result2 // true

The only difference here is that previously this function took only 1 argument and
now it takes an array of arguments. It is a side effect of a fact that now we can use
function twice() with any other function to repeat it!

function sayHello(name: string): void {

console.log(`Hello, ${name}!`);

}

const sayHelloTwice = twice(sayHello);

sayHelloTwice(‘Alex');

// Hello, Alex!

// Hello, Alex!

Notice that we didn’t implement this logic again from scratch.We used a higher order
function twice() to buildmore complex function sayHelloTwice() from a simple one
sayHello().

Higher Order Components carry the same idea but in the realm of React components.

Component as a Higher Order Function

As we said previously Higher Order Components are like higher order functions but
in the realm of React components. …Hmm, but let’s define a component.



Patterns in React Typescript Applications: Making Music with React 251

How it is put in official docs¹⁰⁷, conceptually, components are like JavaScript
functions. They accept arbitrary inputs (called “props”) and return React elements
describing what should appear on the screen.

So, we can say that a component is a function of some data passed via props.
Therefore, we can continue this analogy with functions and extend it. What would
a Higher Order Component be?

Since higher order function either takes a function or returns a function or both, we
can assume that higher order component is a function that takes a component and
returns another one as a result. And this is what the official docs tell us¹⁰⁸.

Whereas a component transforms props into UI, a higher-order component trans-
forms a component into another component, enhanced in some way. In our case
the enhancement would be in connecting a component to a Soundfont functionality.
With that said let’s try and build a Soundfont provider based on HOC.

Th public API would stay the same as it was before, however ProvidedProps we
would call InjectedProps now since we would inject them into a component which
is going to be enhanced. ProviderProps and ProviderState are the same as before,
but without render() method.

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

interface InjectedProps {

loading: boolean

play(note: MidiValue): Promise<void>

stop(note: MidiValue): Promise<void>

}

interface ProviderProps {

AudioContext: AudioContextType

instrument: InstrumentName

}

interface ProviderState {

loading: boolean

¹⁰⁷https://reactjs.org/docs/components-and-props.html
¹⁰⁸https://reactjs.org/docs/higher-order-components.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/higher-order-components.html


Patterns in React Typescript Applications: Making Music with React 252

current: Optional<InstrumentName>

}

Then, we create a function withInstrument() that takes a component needed to be
enhanced. We make this function generic, to tell type checker which props we’re
going to inject. We will cover the injection itself a bit later.

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

export function withInstrument<

TProps extends InjectedProps = InjectedProps

>(WrappedComponent: ComponentType<TProps>) {

Please, pay attention to extends keyword in type arguments declaration. This is
a generic constraint¹⁰⁹. We use it to define that TProps must have properties that
describes in InjectedProps type, otherwise TypeScript should give us an error.

Also notice, that by default we define TProps to be InjectedProps type using = sign.
This is default type for this generic. It works exactly like default values for arguments
in functions.

Inside, we create a const called displayNamewhich is useful¹¹⁰ for debugging. You see,
a container component that we’re going to create is going to show up in developer
tools like any other component. So, we better give it a name to make it recognizable
in an inspector.

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

const displayName =

WrappedComponent.displayName ||

WrappedComponent.name ||

"Component"

Then, we create a class WithInstrument that we’re going to return. That is the
container-component that will enhance our WrappedComponent.

¹⁰⁹https://www.typescriptlang.org/docs/handbook/generics.html#generic-constraints
¹¹⁰https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging

https://www.typescriptlang.org/docs/handbook/generics.html#generic-constraints
https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging
https://www.typescriptlang.org/docs/handbook/generics.html#generic-constraints
https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging


Patterns in React Typescript Applications: Making Music with React 253

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

return class WithInstrument extends Component<

ProviderProps,

ProviderState

> {

Assign a displayName to it. We make this field of a class static¹¹¹ to be able to access
it like WithInstrument.displayName without creating an instance.

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

public static displayName = `withInstrument(${displayName})`

The rest of a class is the same as it was in SoundfontProviderClass from the step 7,
except the render() method.

03-react-piano/step-8/src/adapters/Soundfont/withInstrument.tsx

public render() {

const injected = {

loading: this.state.loading,

play: this.play,

stop: this.stop

} as InjectedProps

return (

<WrappedComponent {...this.props} {...(injected as TProps)} />

)

}

Here, instead of calling this.props.render() and passing an object with values and
methods into it, we render our WrappedComponent and inject these values andmethod
on it.
¹¹¹https://www.typescriptlang.org/docs/handbook/classes.html#static-properties

https://www.typescriptlang.org/docs/handbook/classes.html#static-properties
https://www.typescriptlang.org/docs/handbook/classes.html#static-properties


Patterns in React Typescript Applications: Making Music with React 254

Notice that we first spread this.props of a component and then injected function-
ality. This is because we don’t want any of our injected props to be overridden by
someone else after.

Also, there is an issue¹¹² in TypeScript that forces us to explicitly cast injected props
to InjectedProps type, when we use as InjectedProps.

Using HOC with Keyboard

When created it can be used to enhance our Keyboard component to connect it to
Soundfont.

03-react-piano/step-8/src/components/Keyboard/WithInstrument.tsx

const WrappedKeyboard = withInstrument(Keyboard)

export const KeyboardWithInstrument: FunctionComponent = () => {

const AudioContext = useAudioContext()!

const { instrument } = useInstrument()

return (

<WrappedKeyboard

AudioContext={AudioContext}

instrument={instrument}

/>

)

}

Here, we can see how withInstrument() is being used: it takes a Keyboard component
that requires loading, play() and stop() as props and returns a WrappedKeyboard

that requires AudioContext and optional instrument props.

This is possible because a Keyboard becomes WrappedComponent when we call
withInstrument(). Basically, WrappedKeyboard is a WithInstrument class that ren-
ders out a Keyboard with “remembered” injected props.

¹¹²https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046

https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046
https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046


Patterns in React Typescript Applications: Making Music with React 255

At the moment when we render WrappedComponent it already has loading, play()
and stop(), since they have been injected as InjectedProps earlier. And what
it requires is ProviderProps that were specified on Component<ProviderProps,

ProviderState>.

Props flow in HOC

You may notice that this is almost exactly like in the example with functions, when
fn became increment and an anonymous function was “remembering” it.

Caveats

We cannot¹¹³ wrap a component in HOC inside of render() (in runtime). React’s
diffing algorithm uses component identity to determine whether it should update the
existing subtree or throw it away and mount a new one. The problem here isn’t just
about performance — remounting a component causes the state of that component
and all of its children to be lost. We must always apply HOCs outside the component
definition so that the resulting component is created only once.

All the static methods if defined must be copied¹¹⁴ over.

There may be a situation when some props that provided by a HOC have the same

¹¹³https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
¹¹⁴https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over

https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over
https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over


Patterns in React Typescript Applications: Making Music with React 256

names as props from other HOC or wrapper. The name collision can lead us to
accidentally overridden props.

Passing Refs Through

Refs¹¹⁵ provide a way to access DOM nodes or React elements created in the render
method.

By default refs aren’t passed through¹¹⁶, and for “true” reusability we have to also
consider exposing¹¹⁷ a ref for our HOC. For that we can use¹¹⁸ forwardRef() function.

The base of our HOC will still be the same, however we have to declare some
“runtime” types inside of withInstrument().

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentForwardedRef.tsx

type ComponentInstance = InstanceType<typeof WrappedComponent>

type WithForwardedRef = ProviderProps & {

forwardedRef: Ref<ComponentInstance>

}

First, we create a ComponentInstance type. It is a type¹¹⁹ consisting of the instance
type of a component. We need it to pass into Ref<> type to specify a ref of which
component it would be. This we put into a WithForwardRef type which extends
ProviderProps type andwhere forwardedRef is a ref that wewant to forward further
into an enhanced component.

Basically, the root cause of a problem is that we create a container-component which
is just an intermediate element and has no real DOM elements. So, in order to be able
to provide an access to a DOM node, we have to pass a received ref further onto an
enhanced component which when rendered will result in a DOM node.

Later, we declare a class WithInstrument as a Component of WithForwardRef props
and ProviderState.

¹¹⁵https://reactjs.org/docs/refs-and-the-dom.html
¹¹⁶https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through
¹¹⁷https://reactjs.org/docs/forwarding-refs.html
¹¹⁸https://github.com/typescript-cheatsheets/react-typescript-cheatsheet/blob/master/HOC.md
¹¹⁹https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypet

https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through
https://reactjs.org/docs/forwarding-refs.html
https://github.com/typescript-cheatsheets/react-typescript-cheatsheet/blob/master/HOC.md
https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypet
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through
https://reactjs.org/docs/forwarding-refs.html
https://github.com/typescript-cheatsheets/react-typescript-cheatsheet/blob/master/HOC.md
https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypet


Patterns in React Typescript Applications: Making Music with React 257

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentForwardedRef.tsx

class WithInstrument extends Component<

WithForwardedRef,

ProviderState

> {

In render() method we access forwardedRef from props and pass it as ref props
onto a WrappedComponent.

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentForwardedRef.tsx

public render() {

const { forwardedRef, ...rest } = this.props

const injected = {

loading: this.state.loading,

play: this.play,

stop: this.stop

} as InjectedProps

return (

<WrappedComponent

ref={forwardedRef}

{...rest}

{...(injected as TProps)}

/>

)

}

The rest of class internals are the same, but we don’t return this class from a
withInstrument() function. Instead we return a result of a forwardRef() function.



Patterns in React Typescript Applications: Making Music with React 258

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentForwardedRef.tsx

return forwardRef<ComponentInstance, ProviderProps>(

(props, ref) => <WithInstrument forwardedRef={ref} {...props} />

)

This is because by default refs are not provided as all the other props. And in order
to get an access to a ref, we have to call a special forwardRef() function.

As an argument for it we provide another anonymous function which return our
WithInstrument component. Notice that this function receives 2 arguments: props,
the original props of a component, and a ref, the ref that should be forwarded.

And that’s how we keep refs working in HOCs.

Static Composition

HOCs have another interesting use case. Imagine a situation when we don’t need
to change an instrument in runtime, and we want to specify it once. In that case
we don’t really need the instrument property on a WrappedKeyboard component. Is
there a way to define an instrument to load before we actually start rendering a
component? There is! It is called static composition.

So far we worked with, as they call it, dynamic composition—when arguments of
functions (or props for components) were passed dynamically in runtime. However,
we can create a HOC that “remembers” an argument and then uses it in runtime
when rendering a component. Let’s build on of those!

Again let’s determine what a signature of such a HOC would look like.

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentStatic.tsx

export function withInstrumentStatic<

TProps extends InjectedProps = InjectedProps

>(initialInstrument: InstrumentName = DEFAULT_INSTRUMENT) {

Here we create a function withInstrumentStatic()which takes an instrument as an
argument. This is the instrument that our provider will load, it won’t change through
the whole component life.



Patterns in React Typescript Applications: Making Music with React 259

Then, instead of returning a class, we return another function! This function is our
original HOC which takes a WrappedComponent and returns a class WithInstrument.

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentStatic.tsx

return function enhanceComponent(

WrappedComponent: ComponentType<TProps>

) {

const displayName =

WrappedComponent.displayName ||

WrappedComponent.name ||

"Component"

return class WithInstrument extends Component<

ProviderProps,

ProviderState

> {

Why would we create a function that returns a function that returns a class?.. Well,
to answer this question we have to look at a use case for this HOC.

03-react-piano/step-8/src/components/Keyboard/WithStaticInstrument.tsx

const withGuitar = withInstrumentStatic("acoustic_guitar_steel")

const withPiano = withInstrumentStatic("acoustic_grand_piano")

const WrappedKeyboard = withPiano(Keyboard)

export const KeyboardWithInstrument: FunctionComponent = () => {

const AudioContext = useAudioContext()!

return <WrappedKeyboard AudioContext={AudioContext} />

}

Now, when we call withInstrumentStatic() function we don’t get a component
in return, we get another function, that remembers an instrument that we want to
connect. So, we can create as many functions as we want beforehand and use them
co connect components to Soundfont after!



Patterns in React Typescript Applications: Making Music with React 260

From Hooks to HOCs

Since HOCs are just functions that return components, we can reckon that they can
be based on hooks as well.

03-react-piano/step-8/src/adapters/Soundfont/withInstrumentBasedOnHook.tsx

export const withInstrument = (

WrappedComponent: ComponentType<InjectedProps>

) => {

return function WithInstrumentComponent(props: ProviderProps) {

const { AudioContext, instrument } = props

const fromHook = useSoundfont({ AudioContext })

const { loading, current, play, stop, load } = fromHook

useEffect(() => {

if (!loading && instrument !== current) load(instrument)

}, [load, loading, current, instrument])

return (

<WrappedComponent loading={loading} play={play} stop={stop} />

)

}

}

Again, we encapsulate the loading of sounds sets inside of WithInstrumentComponent
and expose to outside only ProviderProps. However, all the logic of this components
is based upon the functionality that useSoundfont() gives us.

Pros and Cons

HOCs have limitations and caveats too. We can consider as pros these aspects:

• Static composition possibility, we can “remember” arguments for the future.
However it can be done in other patterns via Factory pattern or currying, so,
this is debatable.



Patterns in React Typescript Applications: Making Music with React 261

• HOCs are literal implementation of a Decorator pattern.

And as cons:

• Extra encapsulation and “implicitness”. Sometimes HOCs hide too much logic
inside of them and it is not clear what is going to happen when we wrap some
component in a HOC.

• Not obvious typings strategy and presence of generics, type-casting “on the fly”
and overall difficulty level. It is much harder to understand what is going on in
the code, comparing to functional components.

• HOCs may become too verbose.

Conclusion

Congratulations! We have created the piano keyboard that plays sounds of many
instruments! But most importantly we now can solve problems with sharing logic
and reducing duplications using different technics such as Render-Props and Higher
Order Components.



Next.js and Static Site
Generation: Building a
Medium-like Blog
Introduction

So far we have been creating Single Page Applications¹²⁰, as known as SPA. They got
this name because of a way that page refresh goes: our application would not reload
the whole page, but it would fetch new data and re-render only parts of the page that
should be updated instead. Since all this happens on the same page, they are called
SPA.

There is a caveat in this flow, though. Say, we want all the pages of our application
to be detectable by search engines. It cannot be done if all the data fetching and re-
render happens only in a user’s browser. The vast majority of search robots wouldn’t
wait until the real content of an application would appear. They would instead read
the content of the HTML we serve them at start, which is almost empty.

For an application that hugely rely on its content, like say a blog platform or a news
site, it is not acceptable. And here the pre-rendering¹²¹ comes in.

What we’re going to build

In order to fully understand all the advantages of pre-rendering we have to create an
application that has a lot of text content. With that in mind, we’re going to create a
news site. We will take a BBC site¹²² as a source of news and images and create an
application which will have pre-rendered pages with content on them.

¹²⁰https://en.wikipedia.org/wiki/Single-page_application
¹²¹https://nextjs.org/docs/basic-features/pages#pre-rendering
¹²²https://www.bbc.com

https://en.wikipedia.org/wiki/Single-page_application
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://www.bbc.com/
https://en.wikipedia.org/wiki/Single-page_application
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://www.bbc.com/


Next.js and Static Site Generation: Building a Medium-like Blog 263

Themain page of the completed applicationwill look like this: �

And a post page will look like this:



Next.js and Static Site Generation: Building a Medium-like Blog 264

A post page of the application

A complete code example is located in code/05-next-ssg/completed.

Unzip the archive and cd to the app folder.

1 cd code/05-next-ssg/completed

When you are there, install the dependencies and launch the app:

1 yarn && yarn dev

It should open the app in the browser. If it didn’t, navigate to http://localhost:3000¹²³
and open it manually.

¹²³http://localhost:3000

http://localhost:3000/
http://localhost:3000/


Next.js and Static Site Generation: Building a Medium-like Blog 265

Pre-rendering

As we said earlier, for an application that hugely rely on its content serving empty
pages is not acceptable. Here, we would want to pre-render pages of an application
to serve them with the content.

The 2 major ways to pre-render pages are: Server Side Rendering and Static Site
Generation.

Server Side Rendering

Server Side Rendering¹²⁴, or SSR is a technic when a server renders real HTML for
every page request it gets. For our application it would mean that a server would
render HTML for each post page, section page, etc.

SSR doesn’t require us us to have to store each page as an HTML-file on a server, not
at all. Instead we could have middleware that fetches real data from a backend API,
renders a page that we want to send as a response, fills it with data fetched earlier
and sends the whole HTML to a client.

Each page is associatedwithminimal JavaScript code necessary for that page.When a
page is loaded by the browser, its JavaScript code runs andmakes the page interactive.
Thus, an application that was “freezed” resurrects and runs from a point which it was
“freezed” at. This process is called hydration¹²⁵.

Static Site Generation

Static Site Generation¹²⁶, or SSG, on the other hand means that pages’ HTML is
generated at build time once. So, technically it means that we will have all the real
HTML files for each page.

The advantage of this technic is that SSG responds faster since it doesn’t need to
render each page every time. However, it is hard to use SSG in some cases. Basically,
we should ask ourselves: “Can we pre-render this page ahead of a user’s request?” If
the answer is yes, then we should choose SSG.

¹²⁴https://nextjs.org/docs/basic-features/pages#server-side-rendering
¹²⁵https://nextjs.org/docs/basic-features/pages#pre-rendering
¹²⁶https://nextjs.org/docs/basic-features/pages#static-generation-recommended

https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://nextjs.org/docs/basic-features/pages#static-generation-recommended
https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://nextjs.org/docs/basic-features/pages#static-generation-recommended


Next.js and Static Site Generation: Building a Medium-like Blog 266

In our case SSG is perfect, because we can predict which content should appear on
which page.

Next.js

Since, we’re focusing on SSG, we’re going to use Next.js¹²⁷ (from now on and later—
Next).

Next is a framework for creating React applications. We chose Next because it has a
clean API and all the features we’re going to need for our purposes, SSG included.
Also, it has a great documentation and tutorials to learn.

Setting up a project

First of all, we have to set up a project. Next has a set of instructions¹²⁸ for getting
started, however, we want to walk through the setting up step by step.

For starters, let’s create a directory in which our project will be located.

mkdir 05-ssr-and-ssg

Inside, we have to create 2 more directories pages and public. First one is a directory
in which Next will search for pages¹²⁹ of our application, we will talk about pages
in detail a bit later. Second one is a directory for static resources¹³⁰ like images,
stylesheets etc.

cd 05-ssr-and-ssg

mkdir pages

mkdir public

Then, let’s initialize a project and add all the dependencies we’re going to need:

¹²⁷https://github.com/zeit/next.js/
¹²⁸https://nextjs.org/docs/getting-started
¹²⁹https://nextjs.org/docs/basic-features/pages
¹³⁰https://nextjs.org/docs/basic-features/static-file-serving

https://github.com/zeit/next.js/
https://nextjs.org/docs/getting-started
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/static-file-serving
https://github.com/zeit/next.js/
https://nextjs.org/docs/getting-started
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/static-file-serving


Next.js and Static Site Generation: Building a Medium-like Blog 267

yarn init -y

yarn add next react react-dom

Once initialized, we want to update scripts section of our package.json file and
add following scripts:

05-next-ssg/step-1/package.json

"scripts": {

"dev": "next",

"build": "next build",

"start": "next start"

},

Among those scripts: - dev, it will run a development environment, we will use it
the most often. - build, it will build our application and generate rendered pages.
- start, we won’t use it in this chapter, but this script is being used in production
environments on servers when application is started.

TypeScript

By default Next uses JavaScript, not TypeScript. To integrate TypeScript we have to
set it up as well.

First, we’re going to add all of the development dependencies.

yarn add --dev typescript @types/react @types/node

Then, we will create an empty tsconfig.json file in the root directory of a project:

touch tsconfig.json

Notice that we don’t populate it with any content, Next will do it for us automatically
when we run:



Next.js and Static Site Generation: Building a Medium-like Blog 268

yarn dev

This command should open the app in the browser. If it didn’t, navigate to http://localhost:3000¹³¹
and open it manually.

First page

When opened the application should show 404 error.

By default there is “Not found” error

This is fine. Next couldn’t render anything because we haven’t created any page yet.
So, let’s fix that!

A page¹³² in Next is a React Component exported from a .js, .jsx, .ts, or .tsx file
in the pages directory. That’s why we created that folder before—to populate it with
pages components.
¹³¹http://localhost:3000
¹³²https://nextjs.org/docs/basic-features/pages

http://localhost:3000/
https://nextjs.org/docs/basic-features/pages
http://localhost:3000/
https://nextjs.org/docs/basic-features/pages


Next.js and Static Site Generation: Building a Medium-like Blog 269

To create our first page we need to create a file pages/index.tsx and export a React
Component from it:

05-next-ssg/step-1/pages/index.tsx

import React from "react"

import Head from "next/head"

export default function Front() {

return (

<>

<Head>

<title>Front page of the Internet</title>

</Head>

<main>Hello world from Next!</main>

</>

)

}

First of all, notice that we use a default export here. That’s because Next requires
page components to be default-exported.

Other interesting thing is a Head component imported from next/head. This is a
component that injects everything we pass as children inside of head element on an
HTML-page. In our case we pass there title element with the page title to update
it.

When the file is created, Next should notice that there is a new page and refresh the
browser, where we should see the message “Hello world from Next!”.

Basic application layout

At this point we want to create a basic application layout with header, footer and
main content blocks. Let’s start with a Header component.

Header component



Next.js and Static Site Generation: Building a Medium-like Blog 270

05-next-ssg/step-2/components/Header/Header.tsx

import React, { FunctionComponent } from "react"

import Link from "next/link"

import { Center } from "../Center"

import { Container, Logo } from "./style"

export const Header: FunctionComponent = () => {

return (

<Container>

<Center>

<Logo>

<Link href="/">

<a>What's Next?!</a>

</Link>

</Logo>

</Center>

</Container>

)

}

Here, we declare a Header component that uses a couple of dependencies, such as
Head component and style.ts. For styles we’re using styled-components, and as
we know in order to use them we have to install them first. So, let’s do that:

yarn add styled-components @types/styled-components

After installed, this package can be used in our code. First of all, we want to create
a Container for our Header component which will stick to the page top and contain
all the component’s content.



Next.js and Static Site Generation: Building a Medium-like Blog 271

05-next-ssg/step-2/components/Header/style.ts

export const Container = styled.header`

position: fixed;

top: 0;

left: 0;

right: 0;

height: 50px;

padding: 7px 0;

background-color: white;

box-shadow: 0 1px 1px rgba(0, 0, 0, 0.2);

`

Then, we create a Logo which is an h1 element. It uses props to get access to theme,
which we will cover a bit later in this section.

05-next-ssg/step-2/components/Header/style.ts

export const Logo = styled.h1`

font-size: 1.6rem;

font-family: ${(p) => p.theme.fonts.accent};

a {

text-decoration: none;

color: black;

}

a:hover {

color: ${(p) => p.theme.colors.pink};

}

`



Next.js and Static Site Generation: Building a Medium-like Blog 272

Next’s Link

The next dependency we used in Header is Link component¹³³ imported from
next/link. This is a component which enables client-side transition between routes
of our app—basically, between pages¹³⁴.

Please, pay attention to a structure of a Linkwe created. At the top level we use Link
component and provide an href attribute to it, and inside we use an a element in
which we place the link contents.

Link requires exactly one element to passed as a child. In cases when we for some
reasons cannot pass an a element, we can use different elements or components and
force¹³⁵ Link to pass an href prop further. It will be useful later, when we will use
styled links.

Center component

Another component that we will use across the whole project is a Center component.
It is a styled component which does only 1 thing—it aligns itself at the center of the
page.

05-next-ssg/step-2/components/Center/style.ts

import styled from "styled-components"

export const Center = styled.div`

max-width: 1000px;

padding: 0 20px;

margin: auto;

@media (max-width: 800px) {

max-width: 520px;

padding: 0 15px;

}

`

¹³³https://nextjs.org/docs/api-reference/next/link
¹³⁴https://nextjs.org/docs/routing/introduction
¹³⁵https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag

https://nextjs.org/docs/api-reference/next/link
https://nextjs.org/docs/routing/introduction
https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag
https://nextjs.org/docs/api-reference/next/link
https://nextjs.org/docs/routing/introduction
https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag


Next.js and Static Site Generation: Building a Medium-like Blog 273

We will use this component to center content in many other places. That’s why we
didn’t place it in Header/style.ts but located it in components/Center/style.ts

instead.

Footer component

Finally, we create a Footer component which we will use at the bottom of the
application pages.

05-next-ssg/step-2/components/Footer/Footer.tsx

import React, { FunctionComponent } from "react"

import { Center } from "../Center"

import { Container } from "./style"

export const Footer: FunctionComponent = () => {

const currentYear = new Date().getFullYear()

return (

<Container>

<Center>

<a href="https://fullstack.io">Fullstack.io</a> {currentYear}

</Center>

</Container>

)

}

It will contain a current year and a link to Fullstack.io site. Notice that here we use
not a Link component, but an ordinary a element instead. That’ because Link should
be used only for navigation between application routes, and not for links to “outer”
resources. Otherwise Next will throw an error.

Custom _app

When we created all of the components we’re going to need, we want to use them
in the app layout.



Next.js and Static Site Generation: Building a Medium-like Blog 274

First thought of how to use them is to include components in pages/index.tsx right
away. That would work, but then we would have to include those components in
code of every new page we’re going to create. This is not convenient and it violates
DRY principle (Don’t Repeat Yourself).

For this problem Next has a solution. We can create a component which will be like
a wrapper for every page Next is going to render. This component is App¹³⁶.

Next uses the App component to initialize pages. We can override it and control the
page initialization. It may be useful for: - Persisting layout between page changes -
Keeping state when navigating pages - Injecting additional data into pages - Adding
global CSS

Let’s create one and see how we can use it in our app. First of all, let’s decide what
we want to import and use in this component.

05-next-ssg/step-2/pages/_app.tsx

import React from "react"

import Head from "next/head"

import { ThemeProvider } from "styled-components"

import { Header } from "../components/Header"

import { Footer } from "../components/Footer"

import { Center } from "../components/Center"

import { GlobalStyle, theme } from "../shared/theme"

We will use Head from next/head to override page title, ThemeProvider from
styled-components for using theme which we will create in shared/theme in a
minute, and all the components we created earlier.

Then, we create a component MyApp and export it. Notice the props of MyApp:
Component and pageProps—those are the props that Next injects for us.

The Component prop is the active page. When we navigate between routes, Component
will change to the new page. pageProps is an object with the initial props that were
preloaded for the page.

¹³⁶https://nextjs.org/docs/advanced-features/custom-app

https://nextjs.org/docs/advanced-features/custom-app
https://nextjs.org/docs/advanced-features/custom-app


Next.js and Static Site Generation: Building a Medium-like Blog 275

We render Component inside and pass pageProps to it using spreading. In other words,
we render a current page and pass all the props required for it.

Also, we use Head and title element to set a default page title and Header and
Footer components to create a layout. Finally, we wrap all of this in ThemeProvider

to provide access to theme for every styled component.

05-next-ssg/step-2/pages/_app.tsx

export default function MyApp({ Component, pageProps }) {

return (

<ThemeProvider theme={theme}>

<GlobalStyle theme={theme} />

<Head>

<title>What's Next?!</title>

</Head>

<Header />

<main className="main">

<Center>

<Component {...pageProps} />

</Center>

</main>

<Footer />

</ThemeProvider>

)

}

Application theme

Now it is time to create a theme for our application!

First of all, we declare an object theme with fonts and colours we’re going to use.



Next.js and Static Site Generation: Building a Medium-like Blog 276

05-next-ssg/step-2/shared/theme.ts

export const theme = {

fonts: {

basic: "Helvetica, sans-serif",

accent: '"Permanent Marker", cursive'

},

colors: {

orange: "#f4ae40",

blue: "#387af5",

pink: "#eb57a3"

// Credits: https://colors.lol/fou.

}

}

Then, we want to create global styles for all the pages. We declare a new type
MainThemePropswhich will be used in createGlobalStyle() generic function on the
next line.

05-next-ssg/step-2/shared/theme.ts

export type MainThemeProps = ThemeProps<typeof theme>

export const GlobalStyle = createGlobalStyle<MainThemeProps>`

And thenwe create some basic global styles for body, headings, links and .main block.

05-next-ssg/step-2/shared/theme.ts

body {

margin: 0;

font-family: ${({ theme }) => theme.fonts.basic};

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

}

*,

*::after,



Next.js and Static Site Generation: Building a Medium-like Blog 277

*::before { box-sizing: border-box; }

h1, h2, h3, h4, h5, h6 { margin: 0; }

a { color: ${({ theme }) => theme.colors.blue} }

a:hover { color: ${({ theme }) => theme.colors.pink} }

.main {

padding: 70px 0 20px;

min-height: calc(100vh - 50px);

}

This GlobalStyle component we use in MyApp to inject those styles in pages’ code.

From now on we will focus more on the components’ code and the integration with
Next, and less—on the styles code. You can find all the styles in sources besides the
according components.

Custom _document

So far we created global styles and theme, but if we look closely at our theme we can
find that accent font is defined to be "Permanent Marker" font-family. This is not the
font that every device has, so we have to include it.

We can use Google Fonts to get this font, however, it is not yet clear when we
can place a link element with a link to a stylesheet with this font. We could
include it in MyApp component, but Next has another option called custom Document

component¹³⁷.

Next’s Document component not only encapsulates html and body declarations, but
can also include initial props¹³⁸ for expressing asynchronous server-rendering data
requirements. In our case initial props would be the styles across the application.

Butwhy not just render styled components aswe usually do? That’s a tricky question,
because since we want to create an application that is being rendered on a server and
then gets “hydrated” on a client, we have to make sure, that page’s markup from a

¹³⁷https://nextjs.org/docs/advanced-features/custom-document
¹³⁸https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object

https://nextjs.org/docs/advanced-features/custom-document
https://nextjs.org/docs/advanced-features/custom-document
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://nextjs.org/docs/advanced-features/custom-document
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object


Next.js and Static Site Generation: Building a Medium-like Blog 278

server and markup on a client are the same. Otherwise we would get an error that
some properties are not the same.

In order to make the markup consistent we have to make styles and class names
consistent as well. And that is what custom Document is going to help us to do.

First of all, let’s create a blueprint for the custom Document component. Here, we
import ServerStyleSheet from styled-components which will help us to collect all
the styles needed to be sent to a client. And a bunch of things from next/document.
We will cover them in detail a bit later, now let’s pay attention to Document.

05-next-ssg/step-2/pages/_document.tsx

import React from "react"

import { ServerStyleSheet } from "styled-components"

import Document, {

Html,

Head,

Main,

NextScript,

DocumentContext

} from "next/document"

export default class MyDocument extends Document {

We create a component called MyDocument which extends Next’s Document compo-
nent. Then, we define a render() method.

05-next-ssg/step-2/pages/_document.tsx

render() {

const description = "The Next generation of a news feed"

const fontsUrl =

"https://fonts.googleapis.com/css2?family=Permanent+Marker&displa\

y=swap"

return (

<Html>

<Head>



Next.js and Static Site Generation: Building a Medium-like Blog 279

<meta name="description" content={description} />

<link href={fontsUrl} rel="stylesheet" />

{this.props.styles}

</Head>

<body>

<Main />

<NextScript />

</body>

</Html>

)

}

Notice that we don’t use html element, but we use Html component imported from
next/document instead. This is because Html, Head, Main and NextScript are required
for the page to be properly rendered. Html is a root element, Main is a component
which will render pages, and NextScript is a service component required for Next
to work correctly.

Inside of a Head we create a meta element with description and a link element
with a link to fonts from Google Fonts, this is the place when we keep links to
external resources like fonts. Then, we render this.props.styles—those are the
styles collected using ServerStyleSheet. We collect them in getInitialProps()

method.

05-next-ssg/step-2/pages/_document.tsx

static async getInitialProps(ctx: DocumentContext) {

const sheet = new ServerStyleSheet()

const originalRenderPage = ctx.renderPage

try {

ctx.renderPage = () =>

originalRenderPage({

enhanceApp: (App) => (props) =>

sheet.collectStyles(<App {...props} />)

})



Next.js and Static Site Generation: Building a Medium-like Blog 280

const initialProps = await Document.getInitialProps(ctx)

return {

...initialProps,

styles: (

<>

{initialProps.styles}

{sheet.getStyleElement()}

</>

)

}

} finally {

sheet.seal()

}

}

This method is static which means that it can be called on a class (without
creating an instance of it) like this Document.getInitialProps(). Thismethod takes a
Next’s DocumentContext as an argument. This is an object that contains many useful
things¹³⁹, such as pathname of a page URL, req for request, res for response and and
error object err if any error encountered during the rendering.

Here, we kind of extend it with our styles prop, to make them accessible in render()

method later. We create a sheet which is an instance of a ServerStyleSheet—that
waywewill be able to collect styles from thewhole application. Next, we “remember”
ctx.renderPage() method in a constant originalRenderPage to “override” original
ctx.renderPage() inside of try-finally clause.

When overriding it we use sheet.collectStyles()¹⁴⁰ method and pass the whole
rendered application as an argument. It will gather all the styles so that we will be
able to extract them by calling sheet.getStyleElement() later.

Then, we “remember” original initialProps by calling Document.getInitialProps().
Notice that we call it like a static method, that’s why we had to make our
getInitialProps() static as well—to make sure that we don’t break compatibility.
¹³⁹https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
¹⁴⁰https://styled-components.com/docs/advanced#example

https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://styled-components.com/docs/advanced#example
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://styled-components.com/docs/advanced#example


Next.js and Static Site Generation: Building a Medium-like Blog 281

As a result we return from this method an object that contains all of the original
initialProps and a styles prop which contains a component with style elements
that contain all the styles that required to be sent along with the page markup.

In the browser it should look like a style element filled with app styles:

Final collected styles

After all, in finally clause we call sheet.seal() method. Thus, we make sure that
sheet object is available for garbage collector¹⁴¹.

Site front page

On a front page we will have a Feed with Post cards in side. Let’s update our Front
component and include Feed in main element.

¹⁴¹https://styled-components.com/docs/advanced#example

https://styled-components.com/docs/advanced#example
https://styled-components.com/docs/advanced#example


Next.js and Static Site Generation: Building a Medium-like Blog 282

05-next-ssg/step-3/pages/index.tsx

<main>

<Feed />

</main>

Feed

Then, we want to create a Feed component. Our Feed would contain 3 sections with
post cards inside. Those sections would represent news categories such as science,
technology, and arts.

05-next-ssg/step-3/components/Feed/Feed.tsx

import React, { FunctionComponent } from "react"

import { Section } from "../Section"

export const Feed: FunctionComponent = () => {

return (

<>

<Section title="Science" />

<Section title="Technology" />

<Section title="Arts" />

</>

)

}

Section

For now each Section component’s propswould require only a title. Wewill update
it later.



Next.js and Static Site Generation: Building a Medium-like Blog 283

05-next-ssg/step-3/components/Section/Section.tsx

interface SectionProps {

title: string

}

And Section itself will contain a Title and a Grid with a bunch of (hardcoded for
now) Post cards inside.

05-next-ssg/step-3/components/Section/Section.tsx

export const Section: FunctionComponent<SectionProps> = ({ title }) => {

return (

<section>

<Title>{title}</Title>

<Grid>

<Post />

<Post />

<Post />

</Grid>

</section>

)

}

A Grid component is a styled component which uses display: flex to line up the
content inside. The :after pseudo-element is required to prevent elements in last
row from wrong positioning¹⁴².

¹⁴²https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid

https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid
https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid


Next.js and Static Site Generation: Building a Medium-like Blog 284

05-next-ssg/step-3/components/Section/style.ts

export const Grid = styled.div`

display: flex;

flex-wrap: wrap;

justify-content: space-between;

&:after {

content: "";

flex: auto;

}

&:after,

& > * {

width: calc(33% - 10px);

margin-bottom: 20px;

}

Also, we use @media to define adaptive styles for our grid.

05-next-ssg/step-3/components/Section/style.ts

@media (max-width: 800px) {

&:after,

& > * {

width: 100%;

}

}

Post

Now, let’s create a Post card. This component will play a role of a preview for a full
post and will contain an image, a title, and a short text description.



Next.js and Static Site Generation: Building a Medium-like Blog 285

05-next-ssg/step-3/components/Post/Post.tsx

export const Post: FunctionComponent = () => {

return (

<Link href="/post/[id]" as="/post/example" passHref>

<Card>

<Figure>

<img alt="Post photo" src="/image1.jpg" />

</Figure>

<Title>Post title!</Title>

<Content>

<p>

Lorem ipsum dolor sit amet, consectetur adipiscing elit, se\

d do

eiusmod tempor incididunt ut labore et dolore magna aliqua.

</p>

</Content>

</Card>

</Link>

)

}

A couple of interesting things here. First of all, notice the passHref prop on Link

component—that is the way that we tell Next to provide href prop further on a child
of Link. This is because we don’t pass an a element to a Link but we pass a Card

instead.

Card is a styled a element, so it is technically not an a, but an a wrapped in some
other thing. Without this prop an a element won’t have a href attribute, which can
affect SEO.

Then, we define href and as props on Link. When we work with dynamic routes¹⁴³
in Next we use “[]” to specify dynamic part of a route. In our case [id] is a dynamic
part of a post route. It will represent a post id that we want to load.

The href is the name of the page in the pages directory. And the as is the url that will

¹⁴³https://nextjs.org/docs/routing/dynamic-routes

https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/docs/routing/dynamic-routes


Next.js and Static Site Generation: Building a Medium-like Blog 286

be shown in the browser. We will use it later as well to create pretty urls for every
post in Feed.

Also, as prop helps Next determine which pages to pre-render. Therefore it is
possible to miss pre-rendering of some pages when using dynamic segments in
href right away like this:

// this is alright

<Link href="/posts/[id]" as={`/posts/${post.id}`} />

…and not like this:

// this may result in missing pre-rendering of that page

<Link href={`/posts/${post.id}`} />

Lastly, notice the src="/image1.jpg" on img element. This is the path for an image
from our public directory. By default Next serves everything from public and make
it accessible right from / path. Thus, if we want to render an image we use src prop
with a path to an image respectively to the public folder’s root.

Now, on the main page you should see a three Section components with 3 Post cards
in each of them. However, if we click on any of Post cards we will see the default
404 page. So, before we create a post page, let’s update 404 a bit.

Page 404

To create a custom 404 page¹⁴⁴ we’re going to need to create a file called 404.tsx.

In that file we create a component NotFound which we’re going to export by default.

¹⁴⁴https://nextjs.org/docs/advanced-features/custom-error-page

https://nextjs.org/docs/advanced-features/custom-error-page
https://nextjs.org/docs/advanced-features/custom-error-page


Next.js and Static Site Generation: Building a Medium-like Blog 287

05-next-ssg/step-3/pages/404.tsx

const NotFound: FunctionComponent = () => {

return (

<Container>

<Main>404</Main>

Oops! The page not found!

</Container>

)

}

export default NotFound

Also, in that exact file we define styles for our 404.

05-next-ssg/step-3/pages/404.tsx

const Container = styled.div`

display: flex;

flex-wrap: wrap;

justify-content: center;

align-items: center;

text-align: center;

`

const Main = styled.h2`

font-size: 10rem;

line-height: 11rem;

font-family: ${(p) => p.theme.fonts.accent};

width: 100%;

`

We keep them in the same file because Next requires all the pages to export by
default a component that is a page. So we cannot create, say, a directory 404 with
file 404/style.ts and extract the styles in that file. If we do that while building a
project we will get an error:



Next.js and Static Site Generation: Building a Medium-like Blog 288

> Build error occurred

Error: Build optimization failed: found pages without a React Component\

as default export in

pages/404/style

See https://err.sh/zeit/next.js/page-without-valid-component for more i\

nfo.

We could extract them in some kind of shared code, but since the styles code is not
huge we can keep it here just to gather everything about this page in one place.

And finally, we are ready to create a post page.

Post page template

As our first approach to this page we won’t render any content for now. Instead we
will ensure that we can get an id of a post to load it from server later.

To create a page that is responsible for a path with dynamic route segment¹⁴⁵, we
should add brackets to a page file name.

In our case a new file will be called [id].tsx and will be located in pages/post

directory.

<<05-next-ssg/step-3/pages/post/[id].tsx¹⁴⁶

Nothing special inside so far. But let’s examine more closely a useRouter() hook¹⁴⁷.
It is a hook that provides access to a router object¹⁴⁸.

In that object there are 2 values that we are interested in: - pathname, current route.
This is the path of the page in pages directory. - query, the query string parsed to an
object.

A query object will contain the id of a current post. So, we caccess it and use for
loading data later on.

¹⁴⁵https://nextjs.org/docs/routing/dynamic-routes
¹⁴⁶./code/05-next-ssg/step-3/pages/post/[id].tsx
¹⁴⁷https://nextjs.org/docs/api-reference/next/router#userouter
¹⁴⁸https://nextjs.org/docs/api-reference/next/router#router-object

https://nextjs.org/docs/routing/dynamic-routes
code/05-next-ssg/step-3/pages/post/%5Bid%5D.tsx
https://nextjs.org/docs/api-reference/next/router#userouter
https://nextjs.org/docs/api-reference/next/router#router-object
https://nextjs.org/docs/routing/dynamic-routes
code/05-next-ssg/step-3/pages/post/%5Bid%5D.tsx
https://nextjs.org/docs/api-reference/next/router#userouter
https://nextjs.org/docs/api-reference/next/router#router-object


Next.js and Static Site Generation: Building a Medium-like Blog 289

“Backend API” server

Before we continue, let’s recall how our static site should work.

We have a bunch of pages that we want to pre-render. This pre-rendering should
happen at a build time once, and then generated pages should be sent as responses
to requests.

In order to be able to generate those pages we need data to inject in them. We can
get this data in many different ways: - from file system (as .md files for example); -
from a remote data base directly; - from a backend server’s API.

Next has a great example¹⁴⁹ on working with file system. We, however, will create a
“backend server” and fetch data from it’s API.

First of all, let’s install required dependencies:

yarn add body-parser concurrently cors express node-fetch ts-node

And then, update our scripts section a bit:

"scripts": {

"build": "next build",

"start": "next start",

"serve": "ts-node -O '{\"module\": \"commonjs\"}' ./server/index.ts",

"dev": "concurrently --kill-others \"yarn serve\" \"next\""

},

Server setup

We’ve added a serve script which sets up a server and updated the dev script to run
serve and next at the same time. The serve script will run a nodejs server using a
server/index.ts file. Let’s create one.

¹⁴⁹https://nextjs.org/docs/basic-features/data-fetching#simple-example

https://nextjs.org/docs/basic-features/data-fetching#simple-example
https://nextjs.org/docs/basic-features/data-fetching#simple-example


Next.js and Static Site Generation: Building a Medium-like Blog 290

05-next-ssg/step-4/server/index.ts

import express from "express"

import cors from "cors"

import bodyParser from "body-parser"

const categories = require("./categories.json")

const posts = require("./posts.json")

const app = express()

app.use(cors())

app.use(bodyParser.json())

We import all the packages we’re going to use and data as well. We could use some
DB (like MongoDB for example), but for simplicity sake we will read data right from
json files. You can find them in 05-next-ssg/step-4/server directory.

Post data and interface

Let’s take a quick look at posts.json and see what kind of structure a single post will
have. A post is an object with id, some meta information, text content, and image.

{

"id": 1,

"title": "Post title",

"date": "2020-04-23",

"category": "Technology",

"source": "Link to original post or source",

"image": "Link to image",

"lead": "Lead paragraph",

"content": "Text content of this post"

}

With that in mind let’s design post entity with TypeScript first, to be able to use this
type later in both client and server codebases. We create a file called types.ts in
shared directory.



Next.js and Static Site Generation: Building a Medium-like Blog 291

05-next-ssg/step-4/shared/types.ts

export type UriString = string

export type UniqueString = string

export type EntityId = number | UniqueString

export type Category = "Technology" | "Science" | "Arts"

export type DateIsoString = string

Inside we create some common type aliases (like UriString, UniqueString, EntityId,
and DateIsoString) and a Category union. Then we use them to describe a Post

interface:

05-next-ssg/step-4/shared/types.ts

export interface Post {

id: EntityId

date: DateIsoString

category: Category

title: string

lead: string

content: string

image: UriString

source: UriString

}

API endpoints

Now, we want to create API endpoints to make data accessible via GET requests.



Next.js and Static Site Generation: Building a Medium-like Blog 292

05-next-ssg/step-4/server/index.ts

const port = 4000

app.get("/posts", (_, res) => {

return res.json(posts)

})

app.get("/categories", (_, res) => {

return res.json(categories)

})

app.listen(port, () =>

console.log(`DB is running on http://localhost:${port}!`)

)

Here we setup a port 4000 for this server and create 2 endpoints /posts, so that when
a client sends a request on http://localhost:4000/posts it would get a list of posts
as a response. And the same for /categories.

Frontend API client

Now, when we have created a server API, we can create a frontend client for that
API. Let’s create a directory api with 2 files in it: config.ts and summary.ts.

The config.tswill contain configuration settings for our requests. A baseUrl setting
will help us to reduce duplication across our request functions.

05-next-ssg/step-4/api/config.ts

export const config = {

baseUrl: "http://localhost:4000"

}

And summary.ts will have functions for fetching data for the main page from our
server.



Next.js and Static Site Generation: Building a Medium-like Blog 293

05-next-ssg/step-4/api/summary.ts

import fetch from "node-fetch"

import { Post, Category } from "../shared/types"

import { config } from "./config"

export async function fetchPosts(): Promise<Post[]> {

const res = await fetch(`${config.baseUrl}/posts`)

return await res.json()

}

export async function fetchCategories(): Promise<Category[]> {

const res = await fetch(`${config.baseUrl}/categories`)

return await res.json()

}

Notice that we use node-fetch package here. This is because when Next builds a
project it will run outside of browser’s environment, so it won’t have access to
fetch() function. This package creates a function alike fetch() available in node.

Then there are fetchPosts() and fetchCategories() functions. Both are async and
return Promise. First one requests /posts and returns a promise of Post[]. Second
one—/categories and Category[] respectively. These functions we will use for
fetching and pre-fetching data on main page.

Updating main page

When functions for data fetching are done, we can use them to fetch data on the
main page. First, let’s make our page dependent on posts and categories that will be
passed as props.



Next.js and Static Site Generation: Building a Medium-like Blog 294

05-next-ssg/step-4/pages/index.tsx

interface FrontProps {

posts: Post[]

categories: Category[]

}

Here, we cerate an interface FrontProps and use it in Front component:

05-next-ssg/step-4/pages/index.tsx

export default function Front({ posts, categories }: FrontProps) {

return (

<>

<Head>

<title>Front page of the Internet</title>

</Head>

<main>

<Feed posts={posts} categories={categories} />

</main>

</>

)

}

Also, we change Feed component’s API as well to make it accept posts and categories
as props. We will update it a bit later, now let’s take a look at how we can pre-render
this page.

Static props

Next has a concept of static props¹⁵⁰. Those are the props that Next will inject at build
time in a page component. In our case those props would be categories and posts for
the main page.

In order to tell Next that we want to fetch some data and pre-render a page we have
to export an async function called getStaticProps().

¹⁵⁰https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation

https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation


Next.js and Static Site Generation: Building a Medium-like Blog 295

05-next-ssg/step-4/pages/index.tsx

export async function getStaticProps() {

const categories = await fetchCategories()

const posts = await fetchPosts()

return { props: { posts, categories } }

}

In this function we make 2 requests to our backend API: fetchCategories() fetches
categories for the main page, and fetchPosts() fetches posts. Then, we return an
object with props that contain those categories and posts.

This object is going to be injected as Front component’s props, so that we will have
access to them inside of a component. We should be aware that getStaticProps()
runs only on the server-side. It will never be run on the client-side. It won’t even be
included in the bundle for the browser.

Updating Feed

Then, it is time to update the Feed component, since we want to pass the props from
the Front page.

05-next-ssg/step-4/components/Feed/Feed.tsx

interface FeedProps {

posts: Post[]

categories: Category[]

}

export const Feed: FunctionComponent<FeedProps> = ({ posts, categories \

}) => {

We start with declaring an interface FeedProps and accessing them inside of a
component.



Next.js and Static Site Generation: Building a Medium-like Blog 296

05-next-ssg/step-4/components/Feed/Feed.tsx

return (

<>

{categories.map((currentCategory) => {

const inSection = posts.filter(

(post) => post.category === currentCategory

)

return (

<Section

key={currentCategory}

title={currentCategory}

posts={inSection}

/>

)

})}

</>

)

Then, we iterate over each category and filter posts for it. After, we render a Section
for each category and pass a title and posts for this category as props.

Updating Section

Now, the Section component needs to be updated as well.

Again, we start with declaring an interface SectionProps and accessing them inside
of a component.



Next.js and Static Site Generation: Building a Medium-like Blog 297

05-next-ssg/step-4/components/Section/Section.tsx

interface SectionProps {

title: string

posts: PostType[]

}

export const Section: FunctionComponent<SectionProps> = ({ title, posts\

}) => {

Then, we render a Title and Grid with Post cards inside.

05-next-ssg/step-4/components/Section/Section.tsx

return (

<section>

<Title>{title}</Title>

<Grid>

{posts.map((post) => (

<Post key={post.id} post={post} />

))}

</Grid>

</section>

)

Updating Post card

And finally, we want to update a Post card component.



Next.js and Static Site Generation: Building a Medium-like Blog 298

05-next-ssg/step-4/components/Post/Post.tsx

interface PostProps {

post: PostType

}

export const Post: FunctionComponent<PostProps> = ({ post }) => {

We declare an interface PostPropswith a post field. Then we render a Link and pass
an href prop with a path to our post/[id].tsx page, as prop which tells how this url
should look in the browser, and a passHref prop to force Next to pass href further
on a child component.

05-next-ssg/step-4/components/Post/Post.tsx

return (

<Link href="/post/[id]" as={`/post/${post.id}`} passHref>

We use post.id in as prop to make our urls look pretty. So that when we render a
post with "id": "some-post" url would look like /posts/some-post/.

The last thing we have to do now is to render every piece of information from post

in the card.

05-next-ssg/step-4/components/Post/Post.tsx

<Link href="/post/[id]" as={`/post/${post.id}`} passHref>

<Card>

<Figure>

<img alt={post.title} src={post.image} />

</Figure>

<Title>{post.title}</Title>

<Lead>{post.lead}</Lead>

</Card>

</Link>

We render an image, a title and a lead text.



Next.js and Static Site Generation: Building a Medium-like Blog 299

After we do this, we can run yarn dev and see the result!

Statically generated front page

Here, we see the front page with categories fetched from the server each of which
contains a list of posts for that category also fetched from our “backend API”.

Notice the “pre-rendered page indicator” in right bottom corner of a page. It
appears¹⁵¹ on pages that Next statically generated.

Pre-rendered page indicator

¹⁵¹https://nextjs.org/docs/api-reference/next.config.js/static-optimization-indicator

https://nextjs.org/docs/api-reference/next.config.js/static-optimization-indicator
https://nextjs.org/docs/api-reference/next.config.js/static-optimization-indicator
https://nextjs.org/docs/api-reference/next.config.js/static-optimization-indicator


Next.js and Static Site Generation: Building a Medium-like Blog 300

Pre-render post page

Now, let’s create a pre-rendered post page.

API

First thing for us to do is to create an API endpoint for getting a single post info.

05-next-ssg/step-5/server/index.ts

app.get("/posts/:id", (req, res) => {

const wantedId = String(req.params.id)

const post = posts.find(({ id }: Post) => String(id) === wantedId)

return res.json(post)

})

Here, we create an endpoint for /posts/:id, extract an id of a needed post, then
search for post with the same id among the list of all posts and return found one.

Then, we create a function to fetch that data.

05-next-ssg/step-5/api/post.ts

import fetch from "node-fetch"

import { Post, EntityId } from "../shared/types"

import { config } from "./config"

export async function fetchPost(id: EntityId): Promise<Post> {

const res = await fetch(`${config.baseUrl}/posts/${id}`)

return await res.json()

}

This fetchPost() function takes an EntityId of a post and returns a Promise of a
Post. That’s it!



Next.js and Static Site Generation: Building a Medium-like Blog 301

Post page static props and static paths

For a post page we also want to declare a props interface since this component will
accept data via props.

<<05-next-ssg/step-5/pages/post/[id].tsx¹⁵²

Then, since this page is also going to be pre-rendered, we create getStaticProps()
function.

<<05-next-ssg/step-5/pages/post/[id].tsx¹⁵³

We import GetStaticProps from next package to declare types of this function’s
arguments and returned result. Notice that this time we use an argument that is
being passed into this function. This argument is a context object¹⁵⁴.

It contains params object, which contains the route parameters for pages that use
dynamic routes. Since our page has dynamic segment ([id]) this object has an id

property with a value that is equal to an id of a current post, which we will use to
fetch data.

Static paths

There is another exported function though, called getStaticPaths(). This function
determines¹⁵⁵ which paths should be rendered to HTML at build time.

<<05-next-ssg/step-5/pages/post/[id].tsx¹⁵⁶

Here, we see that this function returns an object with 2 fields. First one is fallback,
which is true. When it’s false any paths not returned by getStaticPaths() will
result in a 404 page. When true, Next will return “fallback” version of those paths.

In our case we use router.isFallback property to render Loader component (will
cover a bit later). When a user requests a page which is not yet rendered, but has a
“fallback”, they will see a Loader. At that time in the background Next will statically

¹⁵²./code/05-next-ssg/step-5/pages/post/[id].tsx
¹⁵³./code/05-next-ssg/step-5/pages/post/[id].tsx
¹⁵⁴https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
¹⁵⁵https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation
¹⁵⁶./code/05-next-ssg/step-5/pages/post/[id].tsx

code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx


Next.js and Static Site Generation: Building a Medium-like Blog 302

generate the requested path HTML and JSON. A browser then will receive those
HTML and JSON and swap from a “fallback” page to a rendered one.

Second property is paths. This is the list of paths that should be rendered at build
time. In our case we take them from shared/staticPaths.ts file.

05-next-ssg/step-5/shared/staticPaths.ts

const staticPostsIdList: EntityId[] = [1, 2, 3, 4, 5, 6, 7, 8, 9]

export const postPaths: PostStaticPath[] = staticPostsIdList.map((id) =\

> ({

params: { id: String(id) }

}))

There, we generate a list of objects with structure {params: { id: post.id }} for
each post. That way we’re telling Next posts with which ids it should pre-render.

Then we finish our Post page component.

<<05-next-ssg/step-5/pages/post/[id].tsx¹⁵⁷

Inside we use useRouter() hook to get access to router object. Then we check if
router.isFallback is true. If so, it means that this post hasn’t been pre-rendered,
so we render a Loader component. If not we render a PostBody component.

Loader component

For loader we use a block with Loading... text inside.

¹⁵⁷./code/05-next-ssg/step-5/pages/post/[id].tsx

code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx
code/05-next-ssg/step-5/pages/post/%5Bid%5D.tsx


Next.js and Static Site Generation: Building a Medium-like Blog 303

05-next-ssg/step-5/components/Loader/Loader.tsx

import React, { FunctionComponent } from "react"

import { Container } from "./style"

export const Loader: FunctionComponent = () => {

return <Container>Loading...</Container>

}

PostBody component

To render the whole post we create a PostBody component. It will take post as a prop.

05-next-ssg/step-5/components/Post/PostBody.tsx

interface PostBodyProps {

post: Post

}

export const PostBody: FunctionComponent<PostBodyProps> = ({ post }) =>\

{

…And return a block with main post info first:

05-next-ssg/step-5/components/Post/PostBody.tsx

return (

<div>

<Title>{post.title}</Title>

<Figure>

<img src={post.image} alt={post.title} />

</Figure>

<Content dangerouslySetInnerHTML={{ __html: post.content }} />

…And post meta info last:



Next.js and Static Site Generation: Building a Medium-like Blog 304

05-next-ssg/step-5/components/Post/PostBody.tsx

<Meta>

<span>{post.date}</span>

<span>&middot;</span>

<Link href="/category/[id]" as={`/category/${post.category}`}>

<a>{post.category}</a>

</Link>

<span>&middot;</span>

<a href={post.source}>Source</a>

</Meta>

We use dangerouslySetInnerHTML on Content component only for simplicity sake.
Since our posts have HTML markup in their content fields we render them right
away. In real world application we should consider text preprocessing to avoid XSS
or other security vulnerabilities.

In Meta we also create a link to category page. This is the page we’re going to create
next. For now let’s try and run yarn dev to see what a post page will look like.



Next.js and Static Site Generation: Building a Medium-like Blog 305

Statically generated post page

And it is done!

Category page

The final step before our application is done is to create a category page. It will
contain a list of posts from a given category. Again, we will start with an API.

API

Here, we create a new endpoint for /categories/:id url. We use id as a category
identifier and search for posts that have a category field with the same value.



Next.js and Static Site Generation: Building a Medium-like Blog 306

05-next-ssg/step-6/server/index.ts

app.get("/categories/:id", (req, res) => {

const { id } = req.params

const found = posts.filter(({ category }: Post) => category === id)

const categoryPosts = [...found, ...found, ...found]

return res.json(categoryPosts)

})

Then we use a list of found posts 3 times, just to make it a bit bigger, than it is. We
do it only to make an example simpler. In real world API we would make a request
to a data base instead and pull out a list of category posts from there.

Next, we create a function for fetching that data in api/category.ts.

05-next-ssg/step-6/api/category.ts

import fetch from "node-fetch"

import { Post, EntityId } from "../shared/types"

import { config } from "./config"

export async function fetchPosts(categoryId: EntityId): Promise<Post[]>\

{

const url = `${config.baseUrl}/categories/${categoryId}`

const res = await fetch(url)

return await res.json()

}

The function fetchPosts() takes an EntityId which is a category identifier and
returns a Promise of Post items list. And that’s how our API is ready!

Category page component

Next, we want to create a Category page component. First of all, let’s design a props
for it. Category component will take a list of Post items as a posts prop.

<<05-next-ssg/step-6/pages/category/[id].tsx¹⁵⁸

¹⁵⁸./code/05-next-ssg/step-6/pages/category/[id].tsx

code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx


Next.js and Static Site Generation: Building a Medium-like Blog 307

Since we want this page to be pre-rendered as well, we create a getStaticProps()

function. In that function we fetchPosts and return a props object with posts

property.

<<05-next-ssg/step-6/pages/category/[id].tsx¹⁵⁹

As well as we created getStaticProps() we want to create getStaticPaths()

function. Again, we make fallback property equal to true just to make sure that
no page would return 404 when it is not pre-rendered.

<<05-next-ssg/step-6/pages/category/[id].tsx¹⁶⁰

Static paths for this pagewill be a list of objects with {params: { id: category }}. By
default we include 3 categories to pre-renderwhich a listed in categoriesToPreRender.

05-next-ssg/step-6/shared/staticPaths.ts
const categoriesToPreRender: Category[] = ["Science", "Technology", "Ar\

ts"]

export const categoryPaths: CategoryStaticPath[] = categoriesToPreRende\

r.map(

(category) => ({ params: { id: category } })

)

And finally, we check if page is not pre-rendered and render Loader component, or
render Section otherwise.

<<05-next-ssg/step-6/pages/category/[id].tsx¹⁶¹

Updating Section

Now, we use our Section component both on the main page and on a category page.
On the main page there are only 3 post cards, though. Let’s create a link “More in
this section” for the main page, so that a user would be able to go to a section page
right away.

Firstly, let’s update SectionProps and append isCompact optional field. It will
determine, whether to render “More link” or not.
¹⁵⁹./code/05-next-ssg/step-6/pages/category/[id].tsx
¹⁶⁰./code/05-next-ssg/step-6/pages/category/[id].tsx
¹⁶¹./code/05-next-ssg/step-6/pages/category/[id].tsx

code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx
code/05-next-ssg/step-6/pages/category/%5Bid%5D.tsx


Next.js and Static Site Generation: Building a Medium-like Blog 308

05-next-ssg/step-6/components/Section/Section.tsx

interface SectionProps {

title: string

posts: PostType[]

isCompact?: boolean

}

Then, we access this prop:

05-next-ssg/step-6/components/Section/Section.tsx

export const Section: FunctionComponent<SectionProps> = ({

title,

posts,

isCompact = false

}) => {

And conditionally render a Link component which leads to a given category.

05-next-ssg/step-6/components/Section/Section.tsx

return (

<section>

<Title>{title}</Title>

<Grid>

{posts.map((post) => (

<PostCard key={post.id} post={post} />

))}

</Grid>

{isCompact && (

<Link href={`/category/${title}`} passHref>

<MoreLink>More in {title}</MoreLink>

</Link>

)}

</section>

)



Next.js and Static Site Generation: Building a Medium-like Blog 309

Again, we use passHref to force Link component to pass href further on a MoreLink,
which is a styled link.

05-next-ssg/step-6/components/Section/style.ts
export const MoreLink = styled.a`

margin: -20px 0 30px;

display: inline-block;

vertical-align: top;

`

Now, when isCompact is not truewe won’t see this link. However, it is not done yet,
because we have to update Feed to make sure that this link is being rendered on the
main page. Let’s do that!

05-next-ssg/step-6/components/Feed/Feed.tsx
return (

<Section

key={category}

title={category}

posts={inSection}

isCompact

/>

)

Here, we append isCompact prop on Section components inside of map(). Thus,
all the sections in Feed would render MoreLink and a user would have access to a
category page.

Adding Breadcrumbs

The last thing we would want to show to our users is Breadcrumbs on a post page. It
is a component that contains a “links path” from the main page to a current. In our
case it will have a link to the main page, and a link to a category that the current
post is in.

Let’s create a new component. We start with an interface BreadcrumbsProps and
getting access to post prop.



Next.js and Static Site Generation: Building a Medium-like Blog 310

05-next-ssg/step-6/components/Breadcrumbs/Breadcrumbs.tsx

interface BreadcrumbsProps {

post: Post

}

export const Breadcrumbs: FunctionComponent<BreadcrumbsProps> = ({ post\

}) => {

Then we render a Container (styled nav element) inside of which we place a couple
of links.

05-next-ssg/step-6/components/Breadcrumbs/Breadcrumbs.tsx

return (

<Container>

<Link href="/">

<a>Front</a>

</Link>

<span>�</span>

<Link href="/category/[id]" as={`/category/${post.category}`}>

<a>{post.category}</a>

</Link>

</Container>

)

And then we want to render it in PostBody component right above the post title.

05-next-ssg/step-6/components/Post/PostBody.tsx

return (

<div>

<Breadcrumbs post={post} />



Next.js and Static Site Generation: Building a Medium-like Blog 311

Building a project

Now it is finally time to build our project. For that we have a script yarn build.

However, if we run it right now,wewon’t see any build artifacts in a project directory.
That’s because by default Next puts those in a .next directory.

Next offers an option to export generated code¹⁶² in out directory via next export

script. Though we would want to change the build destination directory to ours—
build.

In order to do that we have to create a file called next.config.js. This is a
configuration file¹⁶³ for Next framework.

One of the configuration options is distDir¹⁶⁴—it is a name to use for a custom build
directory.

In our case we want to use build for that:

05-next-ssg/step-7/next.config.js

module.exports = {

distDir: "build"

}

Now, we can run yarn serve in one terminal window to setup a “backend server”
and yarn build in another. After project is built you will see a bunch of files in build

directory.

Notice the BUILD_ID file—it contains a hash of a current build. This hash is a name of
a directory inside of build/server/static which contains a current build artifacts
like pages’ HTML and JSON.

Conclusion

In this chapter we learned how to create applications using Next.js framework and
hot to use Static Site Generation for pre-rendering pages.

¹⁶²https://nextjs.org/docs/advanced-features/static-html-export
¹⁶³https://nextjs.org/docs/api-reference/next.config.js/introduction
¹⁶⁴https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory

https://nextjs.org/docs/advanced-features/static-html-export
https://nextjs.org/docs/api-reference/next.config.js/introduction
https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory
https://nextjs.org/docs/advanced-features/static-html-export
https://nextjs.org/docs/api-reference/next.config.js/introduction
https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory


Using Redux and TypeScript -
(COMING SOON)

This chapter is coming soon (Summer 2020)



GraphQL, React, and TypeScript
(COMING SOON)

This chapter is coming soon (Summer 2020)



Appendix



Changelog
Revision 1p (05-20-2020)

First “Early Draft” Release


	Table of Contents
	Book Revision
	EARLY DRAFT VERSION
	Join Our Discord Channel
	Bug Reports
	Be notified of updates via Twitter
	We'd love to hear from you!
	Introduction
	How To Get The Most Out Of This Book
	What is Typescript
	Why Use Typescript With React
	A Necessary Word Of Caution

	Your First React and Typescript Application: Building Trello with Drag and Drop
	Introduction
	Prerequisites
	What Are We Building
	Preview The Final Result
	How to Bootstrap React + Typescript App Automatically?
	App Layout. React + Typescript Basics
	Render Children Inside The Columns
	Create The Card Component
	Render Everything Together
	Component For Adding New Items. State, Hooks, and Events
	Add Global State And Business Logic
	Using useReducer
	Implement State Management
	Adding Items. Typescript Interfaces Vs Types
	Moving Items
	Implement Custom Dragging Preview
	Move The Dragged Item Preview
	Hide The Default Drag Preview
	Make The Custom Preview Visible
	Tilt The Custom Preview
	Drag Cards
	Update The Reducer
	Implement The useDrop
	Drag a Card To an Empty Column
	Saving State On Backend. How To Make Network Requests
	Loading The Data

	How to Test Your Applications: Testing a Digital Goods Store
	Introduction
	Initial Setup
	Writing Tests
	Home Page
	Testing React Hooks
	Congratulations

	Patterns in React Typescript Applications: Making Music with React
	Introduction
	What We're Going to Build
	First Steps and Basic Application Layout
	A Bit of a Music Theory
	Third Party API and Browser API
	Patterns
	Creating a Keyboard
	Playing a Sound
	Mapping Real Keys to Virtual
	Instruments List
	Render-Props
	Higher Order Components
	Conclusion

	Next.js and Static Site Generation: Building a Medium-like Blog
	Introduction
	What we’re going to build
	Pre-rendering
	Next.js
	Setting up a project
	First page
	Basic application layout
	Center component
	Footer component
	Custom _app
	Application theme
	Custom _document
	Site front page
	Page 404
	Post page template
	“Backend API” server
	Frontend API client
	Updating main page
	Pre-render post page
	Category page
	Adding Breadcrumbs
	Building a project
	Conclusion

	Using Redux and TypeScript - (COMING SOON)
	GraphQL, React, and TypeScript (COMING SOON)
	Appendix
	Changelog
	Revision 1p (05-20-2020)


