
www.allitebooks.com

http://www.allitebooks.org

Mockito for Spring

Learn all you need to know about the Spring Framework

and how to unit test your projects with Mockito

Sujoy Acharya

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mockito for Spring

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-378-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Sujoy Acharya

Reviewers

Carlo Micieli

Gualtiero Testa

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Llewellyn Rozario

Content Development Editor

Parita Khedekar

Technical Editors

Manal Pednekar

Chinmay S. Puranik

Copy Editors

Dipti Kapadia

Deepa Nambiar

Vikrant Phadke

Project Coordinator

Milton Dsouza

Proofreaders

Martin Diver

Maria Gould

Paul Hindle

Indexer

Monica Ajmera Mehta

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=4c20cc1d-34f9-30b3-f7e3-50bc8ac3c4f2
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=a1b26240-9982-1318-f871-50b5e075bfed
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e
http://www.allitebooks.org

About the Author

Sujoy Acharya works as a software architect with Siemens Technology and
Services Pvt. Ltd. (STS). He grew up in a joint family and pursued his graduation in
the ields of computer science and engineering. His hobbies are watching movies and
sitcoms, playing outdoor sports, and reading books.

Sujoy likes to research upcoming technologies. His major contributions are in the
ields of Java, J2EE, SOA, Ajax, GWT, and the Spring Framework.

He has authored three books for Packt Publishing, namely Test-Driven Development
with Mockito, Mastering Unit Testing using Mockito and JUnit, and Mockito Essentials.

He designs and develops healthcare software products. He has over 11 years
of experience in the industry and has architected and implemented large-scale
enterprise solutions.

I'd especially like to thank my wife, Sunanda, irstly for pushing me
to man up and inish the book, and additionally, for her patience and
endless support in the many hours spent on reviewing my draft and
providing valuable inputs.

I would also like to thank my mother and late father for their
support, blessings, and encouragement.

To my 23-month-old kid, Abhigyan, I am sorry I couldn't be around
as much as we all wanted and for the many times I had to get you
away from the laptop. I love you very much.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Carlo Micieli has been a software developer since 2001, developing applications
for computer-aided manufacturing with C#.

His main area of interest is application life cycle management, with a strong focus on
topics such as software design and testing.

He is a programming languages enthusiast, and he's currently trying to learn Scala and
Haskell. He shares his experiments on GitHub (http://github.com/CarloMicieli).

Gualtiero Testa is a software analyst, architect, and developer involved in Java
enterprise-level web applications, mainly in the domains of banking, health, and
government agencies. He lives in Pavia, Italy.

His main interests are test-driven development (TDD), testing tools and
methodologies, and everything related to code quality.

You can reach him through his blog at http://www.gualtierotesta.it/.

I would like to thank my wife, Alessandra, and my daughters, Giulia
and Francesca, because they are the source of my happiness.

www.allitebooks.com

http://github.com/CarloMicieli
http://www.gualtierotesta.it/
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Getting Familiar with the Spring Framework 7

Getting started with Spring 7

Exploring the Spring architecture 11

The core container 11

The AOP module 11

The instrumentation module 11

The messaging module 12

The data access module 12

The web layer 12

The test module 13

Learning the Inversion of Control 13

Printing Hello World 19

Examining life cycle messages 21

Working with autowiring and annotations 22

Working with aspects 24

Exploring Spring JDBC 29
Handling a transaction with Spring 36

Working with declarative Spring transaction 40

Exploring transaction attributes 43

Using the @Transactional annotation 45

Working with a programmatic Spring transaction 47
Using TransactionTemplate 48

Using PlatformTransactionManager 48

Building an MVC application with Spring 49
Summary 54

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Working with JUnit and Mockito 55
Learning unit testing 55

Working with the JUnit framework 57

Coniguring Eclipse 58
Examining annotations 59

Verifying an expectation with an assertion 62

Examining exception handling 66

Working with the @RunWith annotation 67

Working with test suites 68

Working with assertThat 69
Exploring equalTo, is, and not 70

Exploring compound matchers – either, both, anyOf, and allOf 71

Exploring collection matchers – hasItem and hasItems 72

Working with string matchers – startsWith, endsWith, and containsString 73

Exploring custom matchers 73

Working with Mockito 77
Learning the signiicance of Mockito 77

Exploring Mockito 78
Coniguring Mockito 78
Mocking in action 79

Mocking objects 81

Stubbing methods 83

Throwing exceptions 89

Summary 90

Chapter 3: Working with Spring Tests 91

Exploring the TestContext framework 92

Writing a custom TestExecutionListener interface 94

Coniguring Spring proiles 98
Mocking an environment 101
Mocking the JNDI lookup 105
Using RelectionTestUtils 107
Working with annotations 108
Testing Spring MVC 110
Mocking the servlet container with MockMvc 115
Handling transactions in Spring tests 118
Summary 122

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Resolving Out-of-container Dependencies

with Mockito 123
Unit testing the web layer 124

Unit testing the service layer 132

Unit testing the data access layer 137

Summary 142

Chapter 5: Time Travelling with Spring 143

Discovering the new Spring release 143

Working with asynchronous tasks 144

Exploring @RestController 147

Learning AsyncRestTemplate 150

Caching objects 153

Summary 158
Index 159

www.allitebooks.com

http://www.allitebooks.org

Preface
When I was writing the irst draft of this book, I was eager to compare the
manuscript with other books on the Spring Framework. Here are the features
that distinguish this book from others:

• This book is not only about the Spring Framework. It also describes the basics
of Spring, Spring's test module, Spring's integration testing, JUnit testing,
how to mock Spring beans with Mockito, and advanced Spring 4.1 features.
I couldn't ind any books that cover these topics.

• This book explains JUnit testing and mocking in the context of Spring.
• The book covers Spring's test module and Spring integration testing in detail.

These are the most dificult parts in the Spring testing world.

I have taken a hands-on approach here by combining theories with examples to
explain the topics.

What this book covers
Chapter 1, Getting Familiar with the Spring Framework, covers the basics of Spring,
Spring projects, and especially the Spring Framework. It explores the Spring
container, the life cycle of beans, dependency injection, AOP, Spring MVC, and
Spring transaction management.

Chapter 2, Working with JUnit and Mockito, covers both basic and advanced JUnit
usages. It covers annotation-based JUnit testing, assertion, the @RunWith annotation,
exception handling, and the Eclipse setup to run JUnit tests, matchers, and
assertThat, as well as the custom lessThanOrEqual() matcher. The Working
with Mockito section explores the Mockito framework and provides technical
examples to demonstrate the capability of Mockito.

Preface

[2]

Chapter 3, Working with Spring Tests, illustrates every aspect of unit testing your
Spring applications. It starts with TestContext and explores the JUnit 4 enabled
SpringJUnit4ClassRunner. Then, it explores Spring proiles that can be used to
work with the different sets of coniguration iles as well as the Spring environment
and how to mock the environment with MockEnvironment and MockPropertySource.
We use the ReflectionTestUtils method to access the private ields of the Spring
beans. The chapter provides usage examples of Spring annotations for testing, unit
tests the MVC application with MockHttpServletRequest, MockHttpSession, and
ModelAndViewAssert, and mocks the servlet container with MockMvc to handle actual
requests and responses, as they will be at runtime. You will also perform real Spring
integration and transaction management with annotations such as @Transactional,
@TransactionConfiguration, and @Rollback.

Chapter 4, Resolving Out-of-container Dependencies with Mockito, deals with unit testing
the service layer in isolation from the data access layer with Mockito, unit testing the
Spring data access layer with Mockito, and unit testing the Spring presentation layer
(MVC) with Mockito.

Chapter 5, Time Travelling with Spring, starts by covering the features of the new major
Spring release 4.0, such as Java 8 support and so on. Then, we pick the four Spring
4 topics and explore them one by one. The Working with asynchronous tasks section
showcases the execution of long running methods asynchronously and provides
examples to handle asynchronous processing. The Exploring @RestController section
eases RESTful web service development with the advent of the @RestController
annotation. The Learning AsyncRestTemplate section explains the RESTful client code
to invoke RESTful web services asynchronously. Caching is inevitable for high
performant, scalable web applications. This section explains EhCache and Spring
integration to achieve a high availability caching solution.

What you need for this book
You will need the following software installed before you run the examples:

• Java 7 or higher: JDK 1.7 or higher can be downloaded from http://www.
oracle.com/technetwork/java/javase/downloads/index.html.

• Eclipse editor: The latest version of Eclipse is Luna (4.4.1), which can be
downloaded from http://www.eclipse.org/downloads/.

• Mockito: This is required for the creation and veriication of mock objects
and for stubbing. Mockito can be downloaded from https://code.google.
com/p/mockito/downloads/list.

• Spring modules: These are used for coding and testing. Spring JARs can be
downloaded from http://maven.springframework.org/release/org/
springframework/spring/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://code.google.com/p/mockito/downloads/list
https://code.google.com/p/mockito/downloads/list
http://maven.springframework.org/release/org/springframework/spring/
http://maven.springframework.org/release/org/springframework/spring/

Preface

[3]

Who this book is for
This book is for advanced and novice-level software testers/developers using the
Spring Framework, Mockito, and JUnit. You should have a reasonable amount of
knowledge and understanding of unit testing elements and applications.

It is ideal for developers who have some experience in Java application development
and the Spring Framework as well as some basic knowledge of JUnit testing. However,
it also covers the basic fundamentals of JUnit testing, the Spring Framework, and the
Mockito framework to get you acquainted with these concepts before you use them.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The messaging module comes with key abstractions from the Spring Integration
project such as Message, MessageChannel, and MessageHandler to serve as a
foundation for messaging-based applications."

A block of code is set as follows:

 @Test

 public void currencyRoundsOff() throws Exception {

 assertNotNull(CurrencyFormatter.format(100.999));

 assertTrue(CurrencyFormatter.format(100.999).

 contains("$"));

 assertEquals("$101.00", CurrencyFormatter.format(100.999));

 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class LocaleTest {

 private Locale defaultLocale;

 @Before

 public void setUp() {

 defaultLocale = Locale.getDefault();

 Locale.setDefault(Locale.GERMANY);

 }

Preface

[4]

 @After

 public void restore() {

 Locale.setDefault(defaultLocale);

 }

 @Test

 public void currencyRoundsOff() throws Exception {

 assertEquals("$101.00", CurrencyFormatter.format(100.999));

 }

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Right-click
on the project; a pop-up menu will appear. Expand the Build Path menu and click on
the Conigure Build Path menu item."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you ind any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Getting Familiar with

the Spring Framework
Spring is a popular enterprise application development framework. This chapter
covers the following topics:

• Spring Framework fundamentals

• Spring projects

• The Spring architecture and modules

• Inversion of control (IoC) and dependency injection (DI)

• Setting up a Spring development environment, a Hello World program,
and autowiring

• Aspect-oriented Programming (AOP)

• Spring JDBC
• Transaction management

• Spring MVC

Getting started with Spring
Spring is an open source enterprise application development framework for Java.
It was irst written by Rod Johnson and released under the Apache 2.0 license in
June 2003.

Spring Framework provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure for us and allows us to focus on
our application logic. Spring enables us to build applications from Plain Old Java
Objects (POJOs) and apply enterprise services non-invasively to POJOs.

Getting Familiar with the Spring Framework

[8]

The following are examples of POJO-based application development:

• A Java method can handle an HTTP POST/GET request; you don't have to
write a servlet or work with servlet APIs

• A Java method can act as a RESTful web service without dealing with web
service APIs

• A Java method can execute a database transaction without dealing with
transaction APIs

• A local Java method can participate in a remote procedure call (RPC)
without having to deal with remote APIs

• A Java method can consume or handle messages without having to deal with
JMS APIs

• A Java method can work as a management extension without dealing with
JMX APIs

In a nutshell, Spring can be described as follows:

• An open source application framework

• One of the available enterprise application frameworks and a lightweight
solution for enterprise applications

• Non-invasive (POJO-based)
• Modular

• Extensible for other frameworks

• The de facto standard of Java enterprise applications

The following are advantages of Spring:

• Lightweight and minimally invasive development with POJOs
• Loose coupling through dependency injection and interface-orientation

• Declarative programming through aspects and common conventions

• Boilerplate code reduction through aspects and templates

Spring projects provide infrastructure for building security coniguration,
web applications, big data, LDAP, and so on. Spring Framework is one of
the Spring projects.

Chapter 1

[9]

There are various Spring projects that can be used. In this book, we'll be using
Spring 4.

The following are the icons of some Spring projects:

IO PLATFORM BOOT

SPRING FRAMEWORK SPRING XD

SPRING CLOUD

SPRING DATA
INTEGRATION BATCH

The following are all Spring projects as of September 2014:

• The Spring IO platform: Spring IO brings together the core Spring APIs into
a cohesive and versioned foundational platform for modern applications.
Spring IO is comprised of the Spring IO Foundation and Spring IO
Execution layers.

• Spring Boot: This helps in creating production-grade Spring applications
that can be run any time with the minimal Spring coniguration. It follows
the convention-over-coniguration approach.

• Spring Framework: This is an open source framework for Java enterprise
applications. It provides an inversion of control container for Java beans. The
framework offers a number of templates for the developers; the templates hide
the infrastructure code and allow us to concentrate on the business logic.

• Spring XD: This is a uniied, distributed, and extensible system for data
ingestion, real-time analytics, batch processing, and data export. The goal
of the project is to simplify the development of big data applications.

• Spring Cloud: Spring Cloud builds on Spring Boot by providing a bunch
of libraries that enhance the behavior of an application when added to the
classpath. You can take advantage of the basic default behavior to get started
really quickly, and then when you need to, you can conigure or extend it to
create a custom solution.

• Spring Data: This simpliies data access, offers APIs to work with the
relational databases, NoSQL or non-relational databases, big data or
the map-reduce algorithm, and so on.

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with the Spring Framework

[10]

• Spring Integration: This follows Enterprise Integration Patterns (EIP) to
enable us lightweight, POJO-based messaging for Spring applications to
integrate with external systems.

• Spring Batch: This is a lightweight, comprehensive batch framework
designed to enable the development of robust batch applications vital
for the daily operations of enterprise systems.

The following image displays the icons of the following spring projects:
security, HATEOAS, social, AMQP, web services, Mobile, Android, web
low, Spring LDAP and Grails

SPRING MOBILE ANDROID WEB FLOW SPRING LDAP GRAILS

SECURITY SPRING HATEOAS SPRING SOCIAL SPRING AMQP WEB SERVICES

• Spring Security: This is a powerful and highly customizable authentication
and access-control framework. It is the de facto standard for securing
Spring-based applications.

• Spring HATEOAS: This allows you to create REST representations that
follow the HATEOAS principle from your Spring-based applications.

• Spring Social: Connect your Spring application with Software as a Service
(SaaS) API providers such as Facebook, Twitter, and LinkedIn.

• Spring AMQP: The Advanced Message Queuing Protocol (AMQP) is
an open standard for messaging. Spring AMQP offers solutions for
AMQP-based messaging, for example, it can be used with the AMQP
broker RabbitMQ.

• Spring Mobile: This is an extension to Spring MVC that aims to simplify the
development of mobile web applications.

• Spring for Android: This is an extension of Spring Framework that aims to
simplify the development of native Android applications.

Chapter 1

[11]

• Spring Web Flow: This provides the infrastructure to build process
worklows for web-based Spring applications, such as page navigation,
navigation triggers, application state, and services to invoke. This is stateful
and can be a short-lived process low or long-running low.

• Spring Web Services: This aims to facilitate contract-irst SOAP service
development, and this allows the creation of lexible web services using
one of the many ways to manipulate XML payloads.

• Spring LDAP: This makes it easier to build Spring-based applications that
use the Lightweight Directory Access Protocol (LDAP).

Exploring the Spring architecture
Spring Framework is modular, and its features are organized into different
modules. This section talks about core Spring modules. The following are the
Spring 4 modules:

The core container
The core container holds the backbone of Spring Framework. The following are the
submodules in the core container:

• Core and Beans: These provide the fundamental parts of the framework,
including IoC and dependency injection features

• Context: This is a means to access objects in a framework-style manner that is
similar to the JNDI registry

• Expression Language: This is also known as SpEL; it is an expression
language used to query and modify an object graph and evaluate
mathematical expressions

The AOP module
AOP is an aspect-oriented programming implementation of Spring. It decouples
the business logic from the cross-cutting infrastructure code, such as logging
and security.

The instrumentation module
The instrumentation module provides class instrumentation support for the Spring
application. Instrumentation exposes container resources through MBean and helps
in JMX management.

Getting Familiar with the Spring Framework

[12]

The messaging module
The messaging module comes with key abstractions from the Spring Integration
project such as Message, MessageChannel, and MessageHandler to serve as a
foundation for messaging-based applications.

The data access module
The following are the submodules in the data access module:

• JDBC: This provides a JDBC abstraction layer
• ORM: This provides integration layers for popular object-relational mapping

APIs, including JPA, JDO, Hibernate, and iBATIS
• OXM: This provides an abstraction layer that supports object/XML mapping

implementations for JAXB, Castor, XMLBeans, JiBX, and Xstream

• JMS: This contains features to produce and consume messages

• Transactions: This supports programmatic and declarative transaction
management

The web layer
The web layer consists of the web, webmvc/servlet, WebSocket, and webmvc-portlet
modules:

• Web: This module provides basic web-oriented integration features such
as multipart ile upload functionality and initialization of the IoC container
using servlet listeners and web-oriented application context. It also contains
the web-related parts of Spring's remoting support.

• Webmvc: This module (also known as the web-servlet module) contains
Spring's model-view-controller implementation for web applications.
Spring's MVC framework provides a clean separation between the domain
model code and web forms and integrates with all the other features of
Spring Framework.

• Portlet: This module (also known as the web-portlet module) provides the
MVC implementation to be used in a portlet environment and mirrors the
functionality of the webmvc module.

• WebSocket: This module provides APIs for two-way communication
between client and server. It is extremely useful when the client and server
need to exchange events at high frequency and low latency. Prime candidates
include applications in inance, games, collaboration, and so on.

Chapter 1

[13]

The test module
The test module supports the unit testing and integration testing of Spring
components with JUnit or TestNG.

The following igure represents the Spring 4 modules:

Transactions

Test

Beans Core Context SpEL

Core Container

AOP Aspects Messaging Instrumentation

Data Access Web

JDBC ORM

OXM JMS

WebSocket Servlet

Web Portlet

Learning the Inversion of Control
Inversion of Control (IoC) and dependency injection (DI) are used interchangeably.
IoC is achieved through DI. DI is the process of providing dependencies and IoC is the
end result of DI. Spring's IoC container enforces the DI pattern for your components,
and this leaves them loosely coupled and allows you to code to abstractions.

Dependency injection is a style of object coniguration in which an object's ields and
collaborators are set by an external entity. In other words, objects are conigured
by an external entity. Dependency injection is an alternative to having the object
conigure itself. This might sound a bit vague, so let's look at a simple example.

After visiting the Packt Publishing website, you can search books by the author's
name or different criteria. We'll look at the service that lists books by author.

Getting Familiar with the Spring Framework

[14]

The following interface deines book retrieval:

public interface BookService {

 List<Book> findAll();

}

The following class lists books by author names:

public class BookLister {

 private BookService bookFinder = new BookServiceImpl();

 public List<Book> findByAuthor(String author){

 List<Book> books = new ArrayList<>();

 for(Book aBook:bookFinder.findAll()){

 for(String anAuthor:aBook.getAuthors()){

 if(anAuthor.equals(author)){

 books.add(aBook);

 break;

 }

 }

 }

 return books;

 }

}

The BookLister class needs a BookService implementation; this means that
the BookLister class depends on it. It cannot carry out its work without a
BookService implementation. Therefore, BookLister has a dependency on
the BookService interface and on some implementation of it. The BookLister
class itself instantiates BookServiceImpl as its BookService implementation.
Therefore, the BookLister class is said to satisfy its own dependencies. When a
class satisies its own dependencies, it automatically also depends on the classes
it satisies the dependencies with. In this case, BookLister now also depends
on BookServiceImpl, and if any, on the other values passed as a parameter to
the BookServiceImpl constructor. The BookService interface can have many
implementations such as Spring JDBC-based data access and JPA-based data access
implementation. We cannot use a different implementation of the BookService
interface without changing the code.

Chapter 1

[15]

To refactor this tight coupling, we can move the BookService instantiation to the
constructor of the class. The following is the modiied BookLister class:

public class BookLister {

 private final BookService bookFinder;

 public BookLister(BookService bookFinder) {

 this.bookFinder = bookFinder;

 }

 public List<Book> findByAuthor(String author){

 List<Book> books = new ArrayList<>();

 for(Book aBook:bookFinder.findAll()){

 for(String anAuthor:aBook.getAuthors()){

 if(anAuthor.equals(author)){

 books.add(aBook);

 break;

 }

 }

 }

 return books;

 }

}

Note that the BookService dependency is passed to the BookLister constructor
as a constructor argument. Now, BookLister is only depending on BookService.
Whoever instantiates the BookLister constructor will satisfy the dependency. The
BookService dependency is said to be injected into the BookLister constructor,
hence the term dependency injection. It is now possible to change the BookService
implementation used by the BookLister class without changing the BookLister
class.

There are two types of dependency injections:

• Constructor injection

• Setter injection

Getting Familiar with the Spring Framework

[16]

A Spring coniguration ile creates/deines and conigures (resolves dependencies)
beans. In the Spring coniguration ile, the constructor injection is constructed
as follows:

<bean id="bookLister" class="com.packt.di.BookLister">

 <constructor-arg ref="bookService"/>

</bean>

<bean id="bookService" class="com.packt.di.BookServiceImpl" />

The preceding code is equivalent to the following:

BookService service = new BookServiceImpl();

BookLister bookLister = new BookLister(service);

The setter injection is carried out by setting a property. In a setter injection, instead
of passing bookService as a constructor argument, we change the class to pass as
a setter method argument.

The Spring coniguration is as follows:

<bean id="bookListerSetterInjection" class="com.packt.di.BookLister">

 <property name="bookService" ref="bookService" />

</bean>

<bean id="bookService" class="com.packt.di.BookServiceImpl" />

The preceding code snippet is equivalent to the following:

BookService service = new BookServiceImpl();

BookLister bookLister = new BookLister();

bookLister.setBookService(service);

The Spring IoC container is known as ApplicationContext. The objects that are
used in our application, deined in ApplicationContext, and managed by the
Spring IoC container are called beans; for example, bookService is a bean.

A bean is an object that is managed by the Spring IoC container; beans are created
with the coniguration metadata that you supply to the container, such as in the
form of XML <bean/> deinitions or using Java annotations.

A bean deinition describes a bean instance. The bean deinition contains the
information called coniguration metadata, which is needed by the container to know
how to create the bean, the life cycle of the bean, and the dependencies of the bean.

Chapter 1

[17]

The following properties are used to deine a bean:

• class: This is mandatory and provides the fully qualiied bean class name
required for the container to create the bean instance.

• name: This attribute (also known as id) uniquely identiies a bean.
• scope: This provides the scope of the objects created from a bean deinition,

such as prototype and singleton. We'll learn about them later.
• constructor-arg: This injects a dependency as a bean's constructor argument.

• properties: This injects a dependency as a setter method argument.

• lazy-init: If this is set as true, the IoC container creates the bean
instance when it is irst requested, rather than at startup, which means any
coniguration error is not discovered until the bean is eventually instantiated
inside the Spring context.

• init-method: This provides the method name of the bean that is being
invoked just after all necessary properties on the bean are set by the IoC
container. This is useful when we need to initialize/compute something
after the bean is instantiated.

• destroy-method: The container calls this method when the bean is
destroyed; this is necessary when we need to clean up something
before the bean is destroyed.

The following are the bean scopes:

• singleton: A single instance of the bean per IoC container. This is not
actually the same as in the singleton design pattern (that is, one instance
per classloader).

• prototype: A single bean deinition to have any number of object instances.
A new bean instance is created each time one is needed.

• request: A bean instance per HTTP request, only valid in the web-aware
application context.

• session: A bean instance per HTTP session, only valid in the web-aware
application context.

• global-session: A bean instance per global HTTP session, only valid in the
web-aware application context.

Getting Familiar with the Spring Framework

[18]

The following are the steps in a bean's life cycle:

1. The irst step is to ind and instantiate the beans. The Spring IoC container
reads the bean deinitions from the XML and then instantiates them.

2. The next step is to populate the bean properties and satisfy the dependencies.
The IoC container uses dependency injection to set the properties.

3. After setting the dependencies, the setBeanName method is invoked on the
beans; if they implement the BeanNameAware interface, the setBeanName()
method is invoked by passing the ID of the bean.

4. After this, if a bean implements the BeanFactoryAware interface, the
setBeanFactory() method is called with an instance of itself.

5. The pre-initialization of BeanPostProcessor is done. If a bean
has any BeanPostProcessor interface associated with it, the
processBeforeInitialization() methods are called on the post processors.

6. The init method is called; if a bean speciies an init-method, it will be called.

7. Finally, the post-initialization is done; if there are any BeanPostProcessors
associated with the bean, their postProcessAfterInitialization()
methods are invoked.

Note that a POJO doesn't need to depend on anything Spring-speciic. For
particular cases, Spring provides hooks in the form of these interfaces. Using
them means introducing a dependency on Spring. The following igure depicts
the bean's life cycle:

ApplicationContextAware’s

setApplicationContext()

Instantiate
populate

properties

BeanNameAware’s

setBeanName()

BeanFactoryAware’s

setBeanFactory()

Pre-initialization

BeanPostProcessors

InitializingBean’s

afterPropertiesSet()

call custom

init-method

Bean is Ready

to use

container

shuts down

DisposableBean’s

destroy()

Call custom

destroy-method

Pre-initialization

BeanPostProcessors

To learn more about DI and IoC, visit the Martin Fowler site at
http://martinfowler.com/articles/injection.html.

http://martinfowler.com/articles/injection.html

Chapter 1

[19]

Printing Hello World
In this section, we'll create a hello world example and set up the Eclipse environment
for Spring. You can download the latest Eclipse version from http://www.eclipse.
org/downloads/.

Note that Spring provides a speciic Eclipse distribution for Spring, known as Spring
Tool Suite (STS). STS is customized for developing Spring applications. You can
download STS from http://spring.io/tools/sts.

Download the Spring 4.1.0 JAR from the Maven repository at http://search.
maven.org/ or http://mvnrepository.com/artifact/org.springframework.

1. Launch Eclipse and create a Java project and name it SpringOverview.

2. Add the following dependencies:

3. Create a com.packt.lifecycle package under src.

4. Add a HelloWorld class with following details:

public class HelloWorld {

 private String message;

 public String getMessage() {

 return message;

 }

www.allitebooks.com

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://spring.io/tools/sts
http://search.maven.org/
http://search.maven.org/
http://mvnrepository.com/artifact/org.springframework
http://www.allitebooks.org

Getting Familiar with the Spring Framework

[20]

 public void setMessage(String message) {

 this.message = message;

 }

}

5. Add an XML ile, applicationContext.xml, directly under the src folder
and add the bean deinition as follows:
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="helloWorld" class="com.packt.lifecycle.HelloWorld">

 <property name="message" value="Welcome to the Spring world">

 </property>

 </bean>

</beans>

6. Create a Java class, HelloWorldExample, and add the following lines to
check the bean coniguration:
public class HelloWorldExample {

 public static void main(String[] args) {

 ApplicationContext context = new

 ClassPathXmlApplicationContext(

 "applicationContext.xml");

 HelloWorld world = (HelloWorld)

 context.getBean("helloWorld");

 System.out.println(world.getMessage());

 }

}

We load the Spring bean coniguration from an XML ile, which is kept
in the classpath and named applicationContext.xml, and then ask the
context to ind a bean with a name or ID as helloWorld. Finally, we call
the getMessage() method on the bean to check the value we set in the
application context.

Chapter 1

[21]

7. When we run the HelloWorldExample program, the following output
is displayed:

Examining life cycle messages
We read about the bean's life cycle; why don't we try to examine the life cycle?

Modify the HelloWorld class and implement the following Spring Framework
interfaces:

• ApplicationContextAware: This will ask you to implement the
setApplicationContext method

• BeanNameAware: This will tell you to implement the setBeanName method

• InitializingBean: This will force you to implement the
afterPropertiesSet() method

• BeanFactoryAware: This will request you to implement the
setBeanFactory method

• BeanPostProcessor: This needs you to implement
the postProcessBeforeInitialization and
postProcessAfterInitialization methods

• DisposableBean: This needs to implement the destroy() method

Add the System.out.println statement in all the implemented methods. Now, add
the following two methods:

 public void myInit() {

 System.out.println("custom myInit is called ");

 }

 public void myDestroy() {

 System.out.println("custom myDestroy is called ");

 }

Getting Familiar with the Spring Framework

[22]

Modify the bean deinition to call the init-method and destroy-method methods.
The following is the modiied bean deinition:

 <bean id="helloWorld" class="com.packt.lifecycle.HelloWorld"

 init-method="myInit" destroy-method="myDestroy">

 <property name="message" value="Welcome to the Spring world">

 </property>

 </bean>

Now, modify HelloWorldExample to destroy the application context by registering
to shutdown hook. The following is the modiied code:

AbstractApplicationContext context = new ClassPathXmlApplicationConte
xt("applicationContext.xml");

 HelloWorld world = (HelloWorld) context.getBean("helloWorld");

 System.out.println(world.getMessage());

 context.registerShutdownHook();

When we run the application, the following output is displayed:

Note that the setBeanName method is invoked irst, then the setBeanFactory,
setApplicationContext, and afterProperiesSet methods are called, and then the
custom init method is invoked. During destruction, the destroy method is called
irst and then the custom destroy-method is invoked.

Working with autowiring and annotations
The Spring container can autowire dependencies between the collaborating beans
without using the <constructor-arg> and <property> elements that simplify the
application context XML coniguration.

The following autowiring modes can be used to instruct a Spring container to use
autowiring for dependency injection:

• no: By default, the settings is no. This means no autowiring.

• byName: The container tries to match and wire bean properties with the beans
deined by the same name in the coniguration ile.

Chapter 1

[23]

• byType: The container tries to match a property if its type matches with
exactly one of the bean names in the coniguration ile. If more than one
such bean exists, an exception is thrown.

• constructor: This is similar to type but looks at the constructor type
matching. If more than one bean of the constructor argument type is
found in the container, an exception is thrown.

• default: This tries to wire using autowire by constructor; if it does not
work, then it tries autowire by byType.

Let's modify our HelloWorld example and try wiring by name:

 <bean name="message" class="java.lang.String">

 <constructor-arg value="auto wired" />

 </bean>

 <bean id="helloWorld" class="com.packt.lifecycle.HelloWorld"
autowire="byName">

 </bean>

It will print auto wired.

Spring provides annotations to wire collaborators. The following are the annotations:

• @Required: This annotation applies to the bean property setter method

• @Autowired: This can be applied to bean property setter methods,
constructor, and properties

• @Qualifier: This annotation along with @Autowired can be used to wire a
bean with the qualiier name

To enable autowiring through an annotation, the application context needs
to be conigured to indicate the annotation. Add the following entry to the
application context:

<context:annotation-config/>

Modify the application context to enable an annotation:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

Getting Familiar with the Spring Framework

[24]

 http://www.springframework.org/schema/context/spring-context-
3.0.xsd">

<context:annotation-config/>

 <bean name="message" id="message" class="java.lang.String">

 <constructor-arg value="auto wired" />

 </bean>

 <bean id="helloWorld" class="com.packt.lifecycle.HelloWorld">

 </bean>

</beans>

Modify the HelloWorld class to annotate the setter method (setMessage) or the
private message property with @Autowired:

public class HelloWorld implements ApplicationContextAware,BeanNameAwa
re, InitializingBean,

 BeanFactoryAware,BeanPostProcessor, DisposableBean {

 private String message;

 public String getMessage() {

 return message;

 }

 @Autowired

 public void setMessage(String message) {

 this.message = message;

 }

 //code omitted for brevity

}

Rerun the application; you will see the auto wired message.

Working with aspects
AOP is one of the key components of Spring Framework. Object-oriented
programming fails to deal with technical and functional cross-cutting concerns,
such as generic functionalities that are needed in many places in our application.

Chapter 1

[25]

The following are a few examples of cross-cutting concerns:

• Logging and tracing

• Transaction management

• Security

• Caching

• Error handling

• Performance monitoring

• Custom business rules

• Event handling

In our application, we need logging to debug or troubleshoot, so we put debug
messages in every method; this is a cross-cutting concern. Similarly, we secure
methods for unauthorized access.

AOP overlays a new layer onto the data-driven composition of OOP. This layer
corresponds to the cross-cutting functionalities that are dificult to integrate
through the OOP paradigm.

AOP is implemented with AspectJ and Spring AOP:

• AspectJ: This is the original AOP technology (the irst version dates from
1995) that offers a full-blown, aspect-oriented programming language and
uses bytecode modiication for aspect weaving.

• Spring AOP: This is a Java-based AOP framework and it uses dynamic
proxies for aspect weaving. This focuses on using AOP to solve enterprise
problems.

The following example demonstrates a cross-cutting concern:

class Account{

 private double balance;

 public void withdraw(double amount){

 logger.debug("Withdraw –"+amount);

 tx.begin();

 balance = this.balance-amount;

 accountDao.saveBalance(balance);

 tx.commit();

 }

}

Getting Familiar with the Spring Framework

[26]

The withdraw method logs debug information, begins a transaction, performs a
database transaction, and inally commits the transaction. In each method, we will
introduce duplicate code for debugging and opening and committing a transaction.
These are cross-cutting concerns as the conceptually duplicate code will be scattered
to all modules in the application. This is bad in the sense that if we need to change
any settings, we have to manually change all methods in all modules, such as instead
of logger.debug, and if we need to change the logging to logger.info, we need to
modify all methods.

Before we dig deep into AOP, let's get familiar with the terminology:

• Join point: This is a well-deined point during the execution of your
application. You can insert additional logic at join points.

Examples of join points are as follows:

 ° Method invocation

 ° Class initialization

 ° Object initialization

• Advice: This is the code that is executed at a speciic join point. The three
types of advice are as follows:

 ° The before advice is executed before a join point.

 ° The after advice is executed after a join point.

 ° The around advice is executed around a join point. The around
advice spans the before and after advice.

• Pointcut: This is a collection of join points to execute an advice. A join point
is a possibility of executing an advice, whereas a pointcut is a set of selected
join points where actually the advice is executed.

• Aspect: This deines the implementation of the cross-cutting concern. An
aspect is the combination of advice and pointcuts. An application can have
any number of aspects, depending on the requirement.

• Weaving: This is the process of applying aspects into the code at the
appropriate join points. There are three types of weaving:

 ° Compile-time weaving

 ° Class load-time weaving

 ° Runtime weaving

Chapter 1

[27]

• Target: This is the object that is advised by one or more aspects.

• Introduction: This is the process by which you can modify the structure
of an object by introducing additional methods or ields to it. You use the
introduction to make any object implement a speciic interface without
needing the object's class to implement that interface explicitly.

There are two types of AOP:

• Static AOP
 ° The weaving process forms another step in the build process for

an application

 ° For example, in a Java program, you can achieve the weaving process
by modifying the actual bytecode of the application by changing and
modifying the code as necessary

• Dynamic AOP
 ° The weaving process is performed dynamically at runtime

 ° It is easy to change the weaving process without recompilation

Spring AOP is based on proxies. To know more about proxies, read about the proxy
pattern or visit http://en.wikipedia.org/wiki/Proxy_pattern.

We'll display Hello World! through AOP. The following are the steps to create the
hello world message:

1. Create an interface called IMessageWriter:

package com.packt.aop;

public interface IMessageWriter {

 void writeMessage();

}

2. Create a class called MessageWriter and implement the IMessageWriter
interface:

package com.packt.aop;

public class MessageWriter implements IMessageWriter {

 @Override

 public void writeMessage() {

 System.out.print("World");

 }

}

http://en.wikipedia.org/wiki/Proxy_pattern

Getting Familiar with the Spring Framework

[28]

3. The join point is the invocation of the writeMessage() method. What
we need is an around advice as we'll prepend Hello before World and
append the exclamation after World to make it Hello World !. The
MethodInterceptor interface is AOP Alliance standard interface for
around interface. The MethodInvocation object represents the method
invocation that is being advised. We'll create an advice as follows:
import org.aopalliance.intercept.MethodInterceptor;

import org.aopalliance.intercept.MethodInvocation;

public class MessageDecorator implements MethodInterceptor {

 public Object invoke(MethodInvocation invocation)

 throws Throwable {

 System.out.print("Hello ");

 Object retVal = invocation.proceed();

 System.out.println("!");

 return retVal;

 }

}

4. We'll use the ProxyFactory class to create the proxy of the target object:

import org.springframework.aop.framework.ProxyFactory;

public class AOPTest {

 public static void main(String[] args) {

 MessageWriter target = new MessageWriter();

 // create the proxy

 ProxyFactory pf = new ProxyFactory();

 // Add the given AOP Alliance advice to the tail

 // of the advice (interceptor) chain

 pf.addAdvice(new MessageDecorator());

 // Set the given object as target

 pf.setTarget(target);

 // Create a new proxy according to the

 // settings in this factory

 MessageWriter proxy = (MessageWriter)

 pf.getProxy();

 // write the messages

 target.writeMessage();

 System.out.println("");

 // use the proxy

 proxy.writeMessage();

 }

}

Chapter 1

[29]

When we run the program, the MessageDecorator around advice is applied on the
proxy object. When proxy.writeMessage is called, the correct output is displayed.

Exploring Spring JDBC
The Spring Data Access Object (DAO) support makes it easy to work with data
access technologies such as JDBC, Hibernate, or JDO in a standardized way. Spring
Framework provides APIs to reduce JDBC code duplication. Spring JDBC hides
the low-level details and allows us to concentrate on business logic, which makes
switching between databases easy and simple.

In a normal JDBC code, we catch a series of checked exceptions such as
SQLException while acquiring a connection or executing a SQL statement; with
Spring, we can code without worrying about catching exceptions, as Spring does
the exception handling for us. Spring is not throwing away or eating the checked
exceptions but is instead translating them to unchecked/runtime ones.

Spring provides a set of abstract DAO classes that one can extend; these abstract
classes have methods to provide the data source and any other coniguration
settings that are speciic to the technology one is currently using.

The following are the DAO support classes:

• JdbcDaoSupport

• HibernateDaoSupport

• JdoDaoSupport

• JpaDaoSupport

In normal JDBC code, we write the code in the following way to access the database:

1. Deine the connection parameters.
2. Open the connection.
3. Specify the statement.

4. Prepare and execute the statement.

5. Set up the loop to iterate through the results (if any).

6. Do the work for each iteration.

7. Process any exception.

8. Handle transactions.

9. Close the connection.

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with the Spring Framework

[30]

Spring Framework relaxes the requirement to write numerous JDBC code lines. We
need to write only the code to perform the following:

• Specify the statement

• Do the work for each iteration

Spring takes care of all the grungy, low-level details that can make JDBC such a
tedious API to develop against.

The Spring-JDBC abstraction framework consists of four different packages:

• org.springframework.jdbc.core

• org.springframework.jdbc.datasource

• org.springframework.jdbc.object

• org.springframework.jdbc.support

The org.springframework.jdbc.core package contains the following:

• The JdbcTemplate class

• Various callback interfaces
• A variety of related classes

The org.springframework.jdbc.datasource package contains the following classes:

• A utility class for easy DataSource access

• Various simple DataSource implementations that can be used to test and run
unmodiied JDBC code outside of a J2EE container

• The utility class provides static methods to obtain connections from JNDI and
to close connections if necessary

• It has support for thread-bound connections, for example, to use with
DataSourceTransactionManager

The org.springframework.jdbc.object package contains the following:

• Classes that represent RDBMS queries, updates, and stored procedures as
thread-safe, reusable objects

• This approach is modeled by JDO, although of course, objects returned by
queries are disconnected from the database

• This higher level of JDBC abstraction depends on the lower-level abstraction
in the org.springframework.jdbc.core package

Chapter 1

[31]

The org.springframework.jdbc.support package contains the following:

• The SQLException translation functionality and some utility classes

• Exceptions thrown during JDBC processing are translated to exceptions
deined in the org.springframework.dao package

• The code using the Spring JDBC abstraction layer does not need to
implement JDBC-or RDBMS-speciic error handling

• All translated exceptions are unchecked giving you the option of catching the
exceptions that you can recover from while allowing other exceptions to be
propagated to the caller

The JdbcTemplate class is the main class in the org.springframework.jdbc.core
package. It simpliies the use of JDBC since it handles the creation and release of
resources. This helps avoid common errors such as not closing the connection, and it
executes the core JDBC worklow such as statement creation and execution leaving
application code to provide SQL and extract results.

We'll build a phone book application and store phone numbers using Spring JDBC
and normal JDBC and realize the simplicity and usability of Spring JDBC. We'll
use the Apache Derby database for persistence. Derby can be downloaded from
http://db.apache.org/derby/.

You can use better built-in databases such as H2. It has more features and less
restriction than Derby. However, we're using Derby for simplicity.

The following are the steps to run Derby:

1. Download the binary media ile and extract media to a location. We'll refer to
it as DERBY_HOME in the next steps.

2. On a Windows machine, go to DERBY_HOME\bin and execute
startNetworkServer.bat.

3. It will launch Command Prompt and print to the console that the database
server is started, such as the following:

started and ready to accept connections on port 1527.

Download the latest version of the Spring JDBC JAR and its dependencies from
http://maven.springframework.org/release/org/springframework/spring/.

http://db.apache.org/derby/
http://maven.springframework.org/release/org/springframework/spring/

Getting Familiar with the Spring Framework

[32]

Perform the following steps to implement Spring JDBC and simplify the code:

1. Launch Eclipse and create a Java project named DatabaseAccess.

2. Add a class PhoneEntry to store phone details. The following are the
class details:

 package com.packt.database.model;

 public class PhoneEntry implements Serializable {

 private static final long serialVersionUID = 1L;

 private String phoneNumber;

 private String firstName;

 private String lastName;

 // getters and setters

 }

3. Create a data access interface for the phone book. The following are
the API details:

 package com.packt.database.dao;

 import java.util.List;

 import com.packt.database.model.PhoneEntry;

 public interface PhoneBookDao {

 boolean create(PhoneEntry entry);

 boolean update(PhoneEntry entryToUpdate);

 List<PhoneEntry> searchByNumber(String number);

 List<PhoneEntry> searchByFirstName(String firstName);

 List<PhoneEntry> searchByLastName(String lastName);

 boolean delete(String number);

 }

Chapter 1

[33]

4. Edit .classpath to add the following Spring dependencies:

5. Create a database access interface implementation to communicate with the
database. The following are the data access object details:

 public class PhoneBookDerbyDao implements PhoneBookDao {

 private String driver =

 "org.apache.derby.jdbc.EmbeddedDriver";

 private String protocol = "jdbc:derby:";

 private String userId = "dbo";

 private String dbName = "phoneBook";

 public PhoneBookDerbyDao() {

 loadDriver();

 }

 protected void loadDriver() {

 try {

 Class.forName(driver).newInstance();

 } catch (ClassNotFoundException cnfe) {

 cnfe.printStackTrace(System.err);

 } catch (InstantiationException ie) {

 ie.printStackTrace(System.err);

 } catch (IllegalAccessException iae) {

 iae.printStackTrace(System.err);

 }

 }

 protected Connection getConnection() throws SQLException {

 Connection conn = null;

 Properties props = new Properties();

 props.put("user", userId);

Getting Familiar with the Spring Framework

[34]

 conn = DriverManager.getConnection(protocol + dbName +

 ";create=true",props);

 conn.setAutoCommit(false);

 return conn;

 }

}

Note that the PhoneBookDerbyDao class is a derby implementation of
the DAO. It has coniguration attributes such as driver, protocol, and
dbName, and getters/setters. The loadDriver() method loads the database
driver and gets invoked from the PhoneBookDerbyDao constructor. The
getConnection() method connects to a Derby database and establishes
a connection.

6. Implement the create behavior:

 @Override

 public boolean create(PhoneEntry entry) {

 PreparedStatement preparedStmt = null;

 Connection conn = null;

 try {

 conn = getConnection();

 preparedStmt = conn

 .prepareStatement("insert into PhoneBook values

 (?,?,?)");

 preparedStmt.setString(1, entry.getPhoneNumber());

 preparedStmt.setString(2, entry.getFirstName());

 preparedStmt.setString(3, entry.getLastName());

 preparedStmt.executeUpdate();

 // Note that it can cause problems on some dbs if

 //autocommit mode is on

 conn.commit();

 return true;

 } catch (SQLException e) {

 e.printStackTrace();

 } finally {

 if (preparedStmt != null) {

 try {

 preparedStmt.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

Chapter 1

[35]

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 return false;

 }

The create method irst acquires a database connection and creates a
prepared statement from connection; it then populates the prepared
statement with the PhoneEntry values, executes the prepared statement,
and then commits the connection. The finally block closes the resources,
which closes the prepared statement and the connection.

7. Create a class named PhoneBookDerbySpringDao that implements the
PhoneBookDao interface. The following is the Spring implementation
of the create method:

 public class PhoneBookDerbySpringDao implements

 PhoneBookDao {

 private final JdbcTemplate jdbcTemplate;

 public PhoneBookDerbySpringDao(JdbcTemplate jdbcTemplate) {

 this.jdbcTemplate = jdbcTemplate;

 }

 @Override

 public boolean create(PhoneEntry entry) {

 int rowCount = jdbcTemplate.update("insert into

 PhoneBook values (?,?,?)",

 new Object[]{entry.getPhoneNumber(),

 entry.getFirstName(),

 entry.getLastName()

 });

 return rowCount == 1;

 }

 }

Getting Familiar with the Spring Framework

[36]

The JdbcTemplate class simpliies the use of JDBC; it handles the resources
and helps avoid common errors such as not closing the connection. It
creates and populates the statement object, iterates through ResultSet,
leaving the application code to provide SQL and extract results.
PhoneBookDerbySpringDao contains a JdbcTemplate instance and delegates
the database tasks to jdbcTemplate. JdbcTemplate uses data source
deinition from the applicationContext ile.
JdbcTemplate has an update method for the insert and update operations. It
takes a SQL query and parameters. The new Spring version of the create()
method invokes the update() method on jdbcTemplate and passes the
PhoneEntry details. Now the create method looks simple; it is just two
lines of code. Spring Framework handles the resource life cycle.

Look at the Spring DAO class; it has only 54 lines. The class looks neat,
simple, and readable. It doesn't handle resources; rather, it concentrates
on data access.

Handling a transaction with Spring
Spring Framework provides supports for transaction management. The following
are characteristics of the Spring transaction management framework:

• Offers abstraction for transaction management
• Deines a programming model that supports different transaction APIs,

such as JDBC, JTA, and JPA
• Declarative transaction management is supported

• Provides a simpler programmatic transaction management API

• Easily integrates with Spring's data access abstractions

Two transaction management options are available for the J2EE developers.
The following are the two options:

• The application server manages global transactions, using the Java
Transaction API (JTA). It supports multiple transaction resources,
such as database transactions, JMS transactions, and XA transactions.

• Resource-speciic local transactions, such as a transaction associated
with a JDBC connection.

Both transaction models have downsides. The global transaction needs an
application server and JNDI to manage transactions; it uses JTA but the JTA API
is cumbersome and has a complex exception model. The need for an application
server, JNDI, and JTA limits the reusability of code.

Chapter 1

[37]

The local transactions have the following disadvantages:

• Cannot handle multiple transactional resources

• Invasive to the programming model

Spring's transaction model solves the problems associated with the global and
local transactions, and it offers a consistent programming model for developers
that can be used in any environment.

Spring Framework supports both declarative and programmatic transaction
management. Declarative transaction management is the recommended one,
and it has been well accepted by the development community.

The programmatic transaction model provides an abstraction that can be run over
any underlying transaction infrastructure. The concept of transaction strategy is
the key to the transaction abstraction. The org.springframework.transaction.
PlatformTransactionManager interface deines the strategy.

The following is the PlatformTransactionManager interface:

public interface PlatformTransactionManager {

 TransactionStatus getTransaction(

 TransactionDefinition definition) throws TransactionException;

 void commit(TransactionStatus status) throws

 TransactionException;

 void rollback(TransactionStatus status) throws

 TransactionException;

}

The following are the characteristics of PlatformTransactionManager:

• PlatformTransactionManager is not a class; instead, it is an interface,
and thus it can be easily mocked or stubbed to write tests.

• It doesn't need a JNDI lookup strategy, as its implementations can be deined
as Spring beans in Spring Framework's IoC container.

• Methods deined in PlatformTransactionManager throw
TransactionException. However, this is an unchecked exception, so
programmers are not forced to handle the exception. But in reality,
the exception is fatal in nature; when it is thrown, there is very little
chance that the failure can be recovered.

• The getTransaction() method takes a TransactionDefinition parameter
and returns a TransactionStatus object. The TransactionStatus object
can be a new or an existing transaction.

Getting Familiar with the Spring Framework

[38]

The TransactionDefinition interface deines the following:

public interface TransactionDefinition {

 int getIsolationLevel();

 int getPropagationBehavior();

 String getName();

 int getTimeout();

 boolean isReadOnly();

}

• Isolation: This returns the degree of isolation of this transaction from other
transactions. The following are the Spring propagations:

 ° ISOLATION_DEFAULT

 ° ISOLATION_READ_COMMITTED

 ° ISOLATION_READ_UNCOMMITTED

 ° ISOLATION_REPEATABLE_READ

 ° ISOLATION_SERIALIZABLE

• Propagation: This returns the transaction propagation behavior. The
following are the allowable values:

 ° PROPAGATION_MANDATORY: This needs a current transaction and raises
an error if no current transaction exists

 ° PROPAGATION_NESTED: This executes the current transaction within
a nested transaction

 ° PROPAGATION_NEVER: This doesn't support a current transaction and
raises an error if a current transaction exists

 ° PROPAGATION_NOT_SUPPORTED: This executes code non-transactionally

 ° PROPAGATION_REQUIRED: This creates a new transaction if no
transaction exists

 ° PROPAGATION_REQUIRES_NEW: This suspends the current transaction
and creates a new transaction

 ° PROPAGATION_SUPPORTS: If the current transaction exists, then this
supports it; otherwise, it executes the code non-transactionally

 ° TIMEOUT_DEFAULT: This uses the default timeout

Chapter 1

[39]

• Timeout: This returns the maximum time in seconds that the current
transaction should take; if the transaction takes more than that, then the
transaction gets rolled back automatically.

• Read-only status: This returns whether the transaction is a read-only
transaction. A read-only transaction does not modify any data.

The TransactionStatus interface provides a simple way for transactional code
to control the transaction execution and query the transaction status; it has the
following signature:

public interface TransactionStatus {

 boolean isNewTransaction();

 void setRollbackOnly();

 boolean isRollbackOnly();

}

The PlatformTransactionManager implementations normally require knowledge
of the environment in which they work, such as JDBC, JTA, Hibernate, and so on.

A local PlatformTransactionManager implementation deines a JDBC data
source and then uses the Spring DataSourceTransactionManager class, which
gives it a reference to DataSource. The following Spring context deines a local
transaction manager:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

 <property name="driverClassName" value="${jdbc.driverClassName}" />

 <property name="url" value="${jdbc.url}" />

 <property name="username" value="${jdbc.username}" />

 <property name="password" value="${jdbc.password}" />

</bean>

Here, ${jdbc.xxxx} represents the values deined in the properties ile. Usually,
the convention is that the JDBC properties are deined in a properties ile that
is then loaded from applicationContext, and then the JDBC properties are
accessed using the key such as ${key}. The following is the XML coniguration
of transaction manager:

<bean id="txManager" class="org.springframework.jdbc.datasource.
DataSourceTransactionManager">

 <property name="dataSource" ref="dataSource"/>

</bean>

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with the Spring Framework

[40]

When we use JTA in a J2EE container and use a container DataSource obtained
via the JNDI lookup, in conjunction with Spring's JtaTransactionManager, then
JtaTransactionManager doesn't need to know about DataSource, or any other
speciic resources, as it will use the container's global transaction management
infrastructure.

The following is the JtaTransactionManager deinition in Spring context:

<jee:jndi-lookup id="dataSource" jndi-name="myDataSource "/>

<bean id="txManager" class="org.springframework.transaction.jta.
JtaTransactionManager"/>

The beneit of Spring transaction manager is that in all cases, the application code
will not need to change at all. We can change how transactions are managed merely
by changing the coniguration, even if that change means moving from local to
global transactions or vice versa.

Declarative transaction management is preferred by most users; it is the option with
the least impact on the application code. It is most consistent with the ideals of a
non-invasive lightweight container. Spring's declarative transaction management is
made possible with Spring AOP.

The similarities between the EJB CMT and Spring declarative transaction are
as follows:

• It is possible to specify transaction behavior down to the individual
method level

• It is possible to make a setRollbackOnly() call within a transaction
context if necessary

Working with declarative Spring transaction
We'll create a simple Spring transaction management project and learn about the
basics. The following are the steps to create the project:

1. Create an empty class, Foo, under the com.packt.tx package. The following
is the class body:

package com.packt.tx;

public class Foo {

}

Chapter 1

[41]

2. Create an interface, FooService, to handle the CRUD operations on Foo:

package com.packt.tx;

public interface FooService {

 Foo getFoo(String fooName);

 void insertFoo(Foo foo);

 void updateFoo(Foo foo);

}

3. Create a default implementation of FooService, and from each method,
throw UnsupportedOperationException to impersonate a rollback
transaction:

public class FooServiceImpl implements FooService {

 @Override

 public Foo getFoo(String fooName) {

 throw new UnsupportedOperationException();

 }

 @Override

 public void insertFoo(Foo foo) {

 throw new UnsupportedOperationException();

 }

 @Override

 public void updateFoo(Foo foo) {

 throw new UnsupportedOperationException();

 }

}

4. Create an application context ile called applicationContextTx.xml
directly under the src folder and add the following entries:

Deine the fooService bean:

<bean id="fooService" class="com.packt.tx.FooServiceImpl" />

Deine a Derby data source:
<bean id="dataSource" class="org.apache.commons.dbcp2.
BasicDataSource"

 destroy-method="close">

Getting Familiar with the Spring Framework

[42]

 <property name="driverClassName" value="org.apache.derby.jdbc.
EmbeddedDriver" />

 <property name="url" value="jdbc:derby:derbyDB;create=true" />

 <property name="username" value="dbo" />

 <property name="password" value="" />

</bean>

Deine a transaction manager with the data source:
<bean id="txManager"

 class="org.springframework.jdbc.datasource.

 DataSourceTransactionManager">

 <property name="dataSource" ref="dataSource" />

</bean>

Deine an advice with transaction manager so that all get methods will have
a read-only transaction:

<tx:advice id="txAdvice" transaction-manager="txManager">

 <tx:attributes>

 <!--all methods starting with 'get' are read-only-->

 <tx:method name="get*" read-only="true" />

 <tx:method name="*" />

 </tx:attributes>

 </tx:advice>

Deine the AOP coniguration to apply the advice on pointcut:

 <aop:config>

 <aop:pointcut id="fooServiceOperation"

 expression="execution(* com.packt.tx.FooService.*(..))" />

 <aop:advisor advice-ref="txAdvice" pointcut-
ref="fooServiceOperation" />

 </aop:config>

</beans>

5. Create a test class to get the FooService bean and call the getFoo method on
the FooService bean. The following is the class:

public class TransactionTest {

 public static void main(String[] args) {

 AbstractApplicationContext context = new

 ClassPathXmlApplicationContext(

 "applicationContextTx.xml");

 FooService fooService = (FooService)

 context.getBean("fooService");

Chapter 1

[43]

 System.out.println(fooService);

 fooService.getFoo(null);

 }

}

6. When we run the program, Spring creates a transaction and then rolls back
the transaction as it throws UnsupportedOperationException. Check the
log to get the details. The following is the log:

- Creating new transaction with name [com.packt.tx.FooServiceImpl.
getFoo]: PROPAGATION_REQUIRED,ISOLATION_DEFAULT,readOnly

- Acquired Connection [341280385, URL=jdbc:derby:derbyDB,
UserName=dbo, Apache Derby Embedded JDBC Driver] for JDBC
transaction

- Setting JDBC Connection [341280385, URL=jdbc:derby:derbyDB,
UserName=dbo, Apache Derby Embedded JDBC Driver] read-only

- Switching JDBC Connection [341280385, URL=jdbc:derby:derbyDB,
UserName=dbo, Apache Derby Embedded JDBC Driver] to manual commit

- Bound value [org.springframework.jdbc.datasource.
ConnectionHolder@6b58ba2b] for key [org.apache.commons.dbcp2.
BasicDataSource@680624c7] to thread [main]

- Initializing transaction synchronization

- Getting transaction for [com.packt.tx.FooServiceImpl.getFoo]

- Completing transaction for [com.packt.tx.FooServiceImpl.getFoo]
after exception: java.lang.UnsupportedOperationException

- Applying rules to determine whether transaction should rollback
on java.lang.UnsupportedOperationException

- Winning rollback rule is: null

- No relevant rollback rule found: applying default rules

- Triggering beforeCompletion synchronization

- Initiating transaction rollback

- Rolling back JDBC transaction on Connection [341280385,
URL=jdbc:derby:derbyDB, UserName=dbo, Apache Derby Embedded JDBC
Driver]

Exploring transaction attributes
We declared a transaction advice and its attributes in the preceding example. This
section examines the transaction attributes such as propagation, isolation, read-only,
timeout, and rollback rules.

Transaction propagation has seven levels:

• PROPAGATION_MANDATORY: Method should run in a transaction and if nothing
exists, an exception will be thrown.

• PROPAGATION_NESTED: Method should run in a nested transaction.

Getting Familiar with the Spring Framework

[44]

• PROPAGATION_NEVER: The current method should not run in a transaction. If
this exists, an exception will be thrown.

• PROPAGATION_NOT_SUPPORTED: Method should not run in a transaction.
The existing transaction will be suspended till the method completes
the execution.

• PROPAGATION_REQUIRED: Method should run in a transaction. If this already
exists, the method will run in that, and if not, a new transaction will be created.

• PROPAGATION_REQUIRES_NEW: Method should run in a new transaction. If
this already exists, it will be suspended till the method inishes.

• PROPAGATION_SUPPORTS: Method need not run in a transaction. If this
already exists, it supports one that is already in progress.

The following are the isolation levels:

• ISOLATION_DEFAULT: This is the default isolation speciic to the data source.
• ISOLATION_READ_UNCOMMITTED: This reads changes that are uncommitted.

This leads to dirty reads, phantom reads, and non-repeatable reads.

A dirty read happens when a transaction is allowed to read data from
a row that has been modiied by another running transaction and not
yet committed.

Data getting changed in the current transaction by other transactions
is known as a phantom read.

A non-repeatable read means data that is read twice inside the same
transaction cannot be guaranteed to contain the same value.

• ISOLATION_READ_COMMITTED: This reads only committed data. Dirty reads
are prevented but repeatable and non-repeatable reads are possible.

• ISOLATION_REPEATABLE_READ: Multiple reads of the same ield yield
the same results unless modiied by the same transaction. Dirty and
non-repeatable reads are prevented but phantom reads are possible as
other transactions can edit the ields.

• ISOLATION_SERIALIZABLE: Dirty, phantom, and non-repeatable reads are
prevented. However, this hampers the performance of the application.

The read-only attribute speciies that the transaction is only going to read data
from a database. It can be applied to only those propagation settings that start a
transaction, that is, PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, and
PROPAGATION_NESTED.

Chapter 1

[45]

The timeout speciies the maximum time allowed for a transaction to run. This is
required for the transactions that run for very long and hold locks for a long time.
When a transaction reaches the timeout period, it is rolled back. The timeout needs
to be speciied only on propagation settings that start a new transaction.

We can specify that transactions will roll back on certain exceptions and do not roll
back on other exceptions by specifying the rollback rules.

Using the @Transactional annotation
The functionality offered by the @Transactional annotation and the support classes
is only available in Java 5 (Tiger) and above. The @Transactional annotation can
be placed before an interface deinition, a method on an interface, a class deinition,
or a public method on a class. A method in the same class takes precedence over the
transactional settings deined in the class-level annotation.

The following example demonstrates the method-level precedence:

@Transactional(readOnly = true)

public class FooServiceImpl implements FooService {

 public Foo getFoo(String fooName) {

 }

 // This settings has precedence for this method

 @Transactional(readOnly = false, propagation =

 Propagation.REQUIRES_NEW)

 public void updateFoo(Foo foo) {

 }

}

However, the mere presence of the @Transactional annotation is not enough to
actually turn on the transactional behavior; the @Transactional annotation is simply
metadata that can be consumed by something that is aware of @Transactional and
that can use the metadata to conigure the appropriate beans with the transactional
behavior.

The default @Transactional settings are as follows:

• The propagation setting is PROPAGATION_REQUIRED

• The isolation level is ISOLATION_DEFAULT

• The transaction is read/write

Getting Familiar with the Spring Framework

[46]

• The transaction timeout defaults to the default timeout of the underlying
transaction system, or none if timeouts are not supported

• Any RuntimeException will trigger a rollback and any checked exception
will not trigger a rollback

When the previous POJO is deined as a bean in a Spring IoC container, the bean
instance can be made transactional by adding one line of XML coniguration. We'll
examine the @Transactional annotation in the following example:

1. Create a application context ile called applicationContextTxAnnotation.
xml and add the following lines (no need for aop and advice):

<context:annotation-config />

<bean id="fooService" class="com.packt.tx.FooServiceImpl" />

<!-- enable the configuration of transactional behavior based on
annotations -->

<tx:annotation-driven transaction-manager="txManager" />

<bean id="dataSource"

 class="org.apache.commons.dbcp2.BasicDataSource"

 destroy-method="close">

 <property name="driverClassName"

 value="org.apache.derby.jdbc.EmbeddedDriver" />

 <property name="url"

 value="jdbc:derby:derbyDB;create=true" />

 <property name="username" value="dbo" />

 <property name="password" value="" />

</bean>

<bean id="txManager"

 class="org.springframework.jdbc.datasource

 .DataSourceTransactionManager">

 <property name="dataSource" ref="dataSource" />

</bean>

2. Annotate FooServiceImpl with the @Transactional annotation:

@Transactional

public class FooServiceImpl implements FooService {

 @Override public Foo getFoo(String fooName) {

 throw new UnsupportedOperationException();

 }

Chapter 1

[47]

 @Override public void insertFoo(Foo foo) {

 throw new UnsupportedOperationException();

 }

 @Override public void updateFoo(Foo foo) {

 throw new UnsupportedOperationException();

 }

}

3. Create a class called TransactionTestAnnotation, load
applicationContextTxAnnotation, and examine whether the same log
appears. The following is the class:

public class TransactionTestAnnotation {

 public static void main(String[] args) {

 AbstractApplicationContext context = new

 ClassPathXmlApplicationContext(

 "applicationContextTxAnnotation.xml");

 FooService fooService = (FooService)

 context.getBean("fooService");

 System.out.println(fooService);

 fooService.getFoo(null);

 }

}

Working with a programmatic Spring

transaction
Spring provides two means of programmatic transaction management:

• Using TransactionTemplate

• Using a PlatformTransactionManager implementation directly

The Spring team generally recommends the irst approach (using
TransactionTemplate).

The second approach is similar to using the JTA UserTransaction API
(although exception handling is less cumbersome).

Getting Familiar with the Spring Framework

[48]

Using TransactionTemplate
The following are the characteristics of TransactionTemplate:

• It adopts the same approach as other Spring templates such as JdbcTemplate
and HibernateTemplate

• It uses a callback approach

• A TransactionTemplate instance is threadsafe

The following code snippet demonstrates TransactionTemplate with a callback:

Object result = transTemplate.execute(new TransactionCallback() {

 public Object doInTransaction(TransactionStatus status) {

 updateOperation();

 return resultOfUpdateOperation();

 }

});

If there is no return value, use the convenient TransactionCallbackWithoutResult
class via an anonymous class, as follows:

transTemplate.execute(new TransactionCallbackWithoutResult() {

protected void doInTransactionWithoutResult(

 TransactionStatus status) {

 updateOperation1();

 updateOperation2();

 }

});

Application classes wishing to use TransactionTemplate must have access to
PlatformTransactionManager, which will typically be supplied to the class via
a dependency injection. It is easy to unit test such classes with a mock or stub
PlatformTransactionManager. There is no JNDI lookup here; it is a simple
interface. As usual, you can use Spring to greatly simplify your unit testing.

Using PlatformTransactionManager
A PlatformTransactionManager implementation can be directly used to manage
a transaction:

1. Simply pass the implementation of the PlatformTransactionManager
to your bean via a bean reference.

2. Then, using the TransactionDefinition and TransactionStatus objects,
you can initiate transactions and perform a rollback or commit.

Chapter 1

[49]

The following code snippet provides an example of such use:

DefaultTransactionDefinition def = new DefaultTransactionDefinition();

def.setPropagationBehavior(TransactionDefinition.PROPAGATION_
REQUIRED);

TransactionStatus status = txManager.getTransaction(def);

try {

 // execute your business logic here

} catch (Exception ex) {

 txManager.rollback(status);

 throw ex;

}

txManager.commit(status);

Downloading the example code
You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

Building an MVC application with Spring
The Model View Controller (MVC) is a widely used web development pattern.
The MVC pattern deines three interconnected components, namely model, view,
and controller.

The model represents the application data, logic, or business rules.

The view is a representation of information or a model. A model can have multiple
views, for example, marks of a student can be represented in a tabular format or
graphical chart.

The controller accepts client requests and initiates commands to either update the
model or change the view.

The controller controls the low of the application. In JEE applications, a controller
is usually implemented as a servlet. A controller servlet intercepts requests and then
maps each request to an appropriate handler resource. In this section, we will build
a classic MVC front controller servlet to redirect requests to views.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Getting Familiar with the Spring Framework

[50]

Spring MVC is a web application framework that takes advantage of Spring
design principles:

• Dependency injection

• Interface-driven design

• POJO without being tied up with a framework

Spring MVC is used for the following advantages:

• Testing through dependency injection

• Binding of request data to domain objects

• Form validation

• Error handling

• Multiple view technologies

• Supports different formats such as JSP, Velocity, Excel, and PDF
• Page worklow

In Spring MVC, the following is a simpliied request-handling mechanism:

1. DispatcherServlet receives a request and confers with handler mappings
to ind out which controller can handle the request, and it then passes the
request to that controller

2. The controller performs the business logic (can delegate the request to a
service or business logic processor) and returns some information back
to DispatcherServlet for user display/response. Instead of sending the
information (model) directly to the user, the controller returns a view
name that can render the model.

3. DispatcherServlet then resolves the physical view from the view name
and passes the model object to the view. This way DispatcherServlet is
decoupled from the view implementation.

4. The view renders the model. A view can be a JSP page, a servlet, a PDF ile,
an Excel report, or any presentable component.

Chapter 1

[51]

The following sequence diagram represents the low and interaction of Spring
MVC components:

:DispatcherServlet:Browser :HandlerMapping :Controller :View:ViewResolver

request

controller

model and logical view

information

view name

view

request [mode]

renders the model

request

request

We will build a Spring web application and unit test code using JUnit by performing
the following steps:

1. Launch Eclipse and create a dynamic web project called SpringMvcTest.

2. Open web.xml and enter the following lines:

<display-name>SpringMVCTest</display-name>

<servlet>

 <servlet-name>dispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/dispatcher-servlet.xml

 </param-value>

 </context-param>

</web-app>

Getting Familiar with the Spring Framework

[52]

The dispatcher is a DispatcherServlet and it maps all requests. Note the
contextConfigLocation parameter. This indicates that the Spring beans
are deined in /WEB-INF/dispatcher-servlet.xml.

3. Create an XML ile called dispatcher-servlet.xml in WEB-INF and add the
following lines:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-
context-3.0.xsd">

 <context:component-scan base-package="com.packt" />

 <bean class= "org.springframework.web.servlet.view.

 InternalResourceViewResolver">

 <property name="prefix">

 <value>/WEB-INF/pages/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

</bean>

This XML deines a Spring view resolver. Any view will be found under the
/WEB-INF/pages location with the .jsp sufix, and all beans are conigured
under the com.packt package with Spring annotations.

4. Create a LoginInfo class in the com.packt.model package. This class
represents the login information. Add two private string ields, userId
and password, generate getters and setters

5. Create a JSP page called login.jsp under /WEB-INF/pages and add the
following lines to create a form using the Spring tag library. Modify the
form and add normal HTML input for username and password:

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/
form"%>

<sf:form method="POST" modelAttribute="loginInfo" action="/
onLogin">

</sf:form>

Chapter 1

[53]

6. Create a controller class called com.packt.controller.LoginController
to handle the login request. Add the following lines:

@Controller

@Scope("session")

public class LoginController implements Serializable {

 @RequestMapping({ "/", "/login" })

 public String onStartUp(ModelMap model) {

 model.addAttribute("loginInfo", new LoginInfo());

 return "login";

 }

}

The @Controller annotation indicates that the class is a Spring MVC
controller class. In sample-servlet.xml, we deined <context:component-
scan base-package="com.packt" />, so Spring will scan this @Controller
annotation and create a bean. @RequestMapping maps any request with the
default path /SpringMvcTest/ or /SpringMvcTest/login to the onStartUp
method. This method returns a view named login. The view resolver
deined in the XML ile will map the login request to /WEB-INF/pages/
login.jsp page.

7. Create another method in the Login class to handle the login submit request:

@RequestMapping({ "/onLogin" })

public String onLogin(@ModelAttribute("loginInfo")

 LoginInfo loginInfo, ModelMap model) {

 if(!"junit".equals(loginInfo.getUserId())) {

 model.addAttribute("error", "invalid login name");

 return "login";

 }

 if(!"password".equals(loginInfo.getPassword())) {

 model.addAttribute("error", "invalid password");

 return "login";

 }

 model.addAttribute("name", "junit reader!");

 return "greetings";

}

The method is mapped with /onLogin. @ModelAttribute("loginInfo")
is the model submitted from the login.jsp form. This method checks
whether the username is junit and password is password. If the user ID or
password does not match, then an error message is shown in the login page;
otherwise, the greetings view is opened.

Getting Familiar with the Spring Framework

[54]

8. Change login.jsp to submit the form to /SpringMvcTest/onLogin, and the
modelattribute name is loginInfo:

<sf:form method="POST" modelAttribute="loginInfo" action="/
SpringMvcTest/onLogin">

Also, add the following JSTL expression to display the error message:

<h1>${error}</h1>

9. Create a JSP ile called greetings.jsp and add the following lines:

<h1>Hello :${name}</h1>

10. In the browser, enter http://localhost:8080/SpringMvcTest/. This
will open the login page. In the login page, do not enter any value; just
hit Submit. It will show the error message Invalid login name. Now, enter
junit in the user Id ield and password in the Password ield and hit Enter;
the application will greet you with following message:

Resources: Spring Framework Reference Documentation

Summary
This chapter covered the Spring basics. It discussed the Spring projects and in
particular Spring Framework. It explored the Spring container, Spring bean life cycle,
dependency injection, AOP, Spring MVC, and Spring transaction management.

The next chapter will focus on getting the reader quickly started with JUnit 4 and
the Mocking framework. It provides an overview of JUnit testing and explores the
Mockito APIs.

Working with JUnit

and Mockito
This chapter covers the unit testing concept, JUnit 4 framework, Eclipse setup, test
doubles, and mocking with Mockito.

The following topics are covered in this chapter:

• JUnit 4 annotations
• Assertion methods and assertThat

• The @RunWith annotation

• Exception handling in JUnit
• JUnit test suite
• Overview of Mockito and Mockito APIs
• Advanced Mockito examples

Learning unit testing
A test is a measurement of performance of something, or an examination of data; for
example, a class test is an assessment of our understanding, to determine whether we
can go to the next level or not. We deliver software to our customers, so a test in the
software context is the validation of a requirement before the software is delivered
to a customer. For example, we need to check whether a valid user can log in to a
system, or 1,000 concurrent users can access the system.

A unit test is a fundamental test to quickly assess whether the result of a computation
can possibly go wrong or not. It is a straightforward check to verify the basis of the
computation result.

Working with JUnit and Mockito

[56]

Generally, Java code is unit tested using print statements or by debugging the
application. Neither of these approaches is correct, and combining production code
with testing logic is not good practice. Though it doesn't break the production code,
it increases code complexity, degrades readability, and creates severe maintenance
problems, or the production code may malfunction if anything gets misconigured.
When we add print statements or excessive logging statements in production code
for unit testing, they get executed along with the production code and print needless
information. In turn, they increase execution time and reduce code readability. Also,
excessive logging might bury a genuine issue; for example, we might fail to notice a
seriously hung thread message because of excessive logging.

Unit testing is the basis of Test-Driven Development (TDD). In TDD, a failing
test is written irst, then code is written to satisfy the test, and then the code quality
is improved by refactoring the code and applying patterns. So unit tests drive the
design. They reduce over engineering, as the code is written only to satisfy a failing
test. Automated tests provide a quick regression safety net for refactoring and
new features.

Kent Beck invented the Extreme Programming (XP) concept and TDD. He has
authored many books and papers.

Generally, we don't mix production code with the test code, so unit tests are kept in the
same project, but under a different directory or source folder such that the unit tests
for an org.packt.Bar.java Java class should be written in an org.packt.BarTest.
java test class. The convention is to end a test class name with Test. Note that the Bar
class and BarTest have the same package (org.packt), but they should be organized
in the src (/org/foo/Bar.java) and test (/org/foo/BarTest.java) source folders,
respectively. Keeping the source code and the unit test code in the same package
allows the unit test code to access the source code's protected and default methods
and members. This approach is useful while working with the legacy code.

Generally, customers do not need the unit tests as they don't execute them, so during
software packaging, the test folder is not bundled with the production code.

Code-driven unit testing frameworks are used to unit test Java code. The following
are a few Java unit testing frameworks:

• SpryTest

• Jtest
• JUnit
• TestNG

The most popular and widely used framework is the JUnit framework. JUnit 4 will
be explored in the following section.

Chapter 2

[57]

Working with the JUnit framework
JUnit is the most popular unit testing framework for Java. It offers a metadata-
based, non-invasive, and elegant unit testing framework for the Java community.
Apparently, TestNG has cleaner syntax and usage than JUnit, but JUnit is far more
popular than TestNG. JUnit enjoys better mocking support such as from Mockito,
which offers a custom JUnit4 runner.

Version 4.12 is the latest JUnit framework version that can be downloaded from
https://github.com/junit-team/junit/wiki/Download-and-Install.

JUnit 4 is a metadata-based (annotation), non-invasive (JUnit tests do not need to
inherit from a framework class) framework. The JUnit framework provides APIs to
write test cases to verify the individual functional lows, requirements, or units of code.
JUnit evolved from an invasive framework to a non-invasive framework, so we must
take a look at previous versions of JUnit framework to understand the beneits of JUnit
4. The following section compares the JUnit 4 framework with its predecessor. JUnit 3
had many downsides: it used to force your JUnit test to extend the TestCase class and
override some methods, a test method had to start with test, and so on. The following
are advantages of JUnit 4 over its predecessor:

• A test case no longer needs to inherit junit.framework.Testcase. Any
POJO class can be a test class.

• To prepare and clean up test data in JUnit 3, the setUp and tearDown
methods were used. You needed to override these methods explicitly, but
with JUnit 4, you can annotate any method with the @before or @after
annotations to execute it right before and after any test method, respectively.

• In JUnit 3, a test method name starts with test <name...>, but JUnit 4
allows you to annotate any public method with @Test to execute it as
a test method.

Java Integrated Development Environments (IDEs) provide features such as step
debugging, syntax highlighting, autocompletion, refactoring, and so on, and these
features enable us to write and debug code more easily. Popular Java IDEs include
Eclipse, NetBeans, JCreator, BlueJ, JBuilder, MyEclipse, IntelliJ IDEA, JDeveloper,
and so on.

In this book, we'll use Eclipse for Java coding and JUnit testing. Eclipse can be
downloaded from http://www.eclipse.org/downloads/.

https://github.com/junit-team/junit/wiki/Download-and-Install
http://www.eclipse.org/downloads/

Working with JUnit and Mockito

[58]

The latest Eclipse IDE version is Luna (v4.4).

Eclipse releases a project annually. It started with a project named
Callisto (starts with a C). Lexicographically, Eclipse project names go
like C, E, G, H, I, J, K, and L.
Since 2006, they have released Europa (E), Ganymede (G), Galileo
(G), Helios (H), Indigo (I), Juno (J), Kepler (K), and Luna (L).

The following section conigures Eclipse and executes our irst JUnit test.

Coniguring Eclipse
This section can be skipped if you already know how to conigure Eclipse and the
classpath of the Java project. The following are the steps to conigure Eclipse:

1. Go to the Eclipse download site, at http://www.eclipse.org/downloads/.
To download the binary, choose an operating system from the drop-down
(Windows, Mac, or Linux) and click on a hardware architecture hyperlink,
that is, 32 Bit or 64 Bit. The following screenshot of Eclipse Kepler shows
this. The latest version of Eclipse is Luna. For Spring users, it is better to
install the Eclipse IDE for Java EE developers, which includes some Spring
support and web development that will be used in the last chapter.

2. Unzip the Eclipse binary and click on eclipse.exe (in Windows) or run the
./Eclipse shell script (in Linux or Mac) to launch Eclipse.

3. Eclipse needs a workspace to manage project iles. Enter a workspace name to
create a new workspace; for example, in Windows, enter C:\myworkspace\
junit, and in Linux or Mac, enter $HOME /workspace/junit. If the directories
or folders don't exist, Eclipse will create the directory hierarchy for you and
open the new workspace.

http://www.eclipse.org/downloads/

Chapter 2

[59]

4. Now press Ctrl + N or click on the New menu option in File. A new wizard
will pop up. In this wizard, select Java Project and click on Next. Enter the
Java project name as JUnitTests and click on Finish. Eclipse will create
the JUnitTests project.

5. In this chapter, we'll write JUnit tests, and for this, we need the JUnit
framework JARs. To download the JUnit JARs, go to https://github.com/
junit-team/junit/wiki/Download-and-Install, and download junit.
jar and hamcrest-core.jar. Then copy the downloaded JARs to the
JUnitTests project directory.

6. There are two ways to add the downloaded JUnit JARs to the project library
or classpath. You can right-click on the downloaded JARs, select the Build
Path menu, and then click on the Add to build path menu item; or you
can right-click on the project, and when a pop-up menu appears, select the
Properties menu item, click on Java build path on the left-hand side, and
open the Libraries tab. In the Libraries tab, click on the Add JARs... button,
it will pop up a projects window. Expand the JUnitTests project from the
menu and select the two JARs (junit.jar and hamcrest-core.jar) to add
them to Libraries. Now our JUnitTests project is ready for JUnit testing.

We read that JUnit 4 is a non-invasive, annotation-based framework and it doesn't
ask us to extend any framework class. The following section uncovers JUnit 4
annotations, assertions, and exceptions.

We are going to examine annotations before writing our irst test.

Examining annotations
The @Test annotation signiies a test. We can annotate any public method with
@Test to make it a JUnit test method. We don't need to start a test method name
with test.

To verify code logic, sometimes, we need to build data such that if a method accepts
a list of students and publishes the result, the method internally sorts the student
list based on the total marks obtained. Then, to unit test the sorting logic, we need to
build a list of students and set individual totals. This activity of building the student
list with marks is called data setup. JUnit 3 API provides a setUp() method in the
TestCase class for data setup. A test class can override the setUp() method and
write data population logic there. The following is the setUp() method signature:

protected void setUp() throws Exception

www.allitebooks.com

https://github.com/junit-team/junit/wiki/Download-and-Install
https://github.com/junit-team/junit/wiki/Download-and-Install
http://www.allitebooks.org

Working with JUnit and Mockito

[60]

JUnit 4 doesn't deine any method for data setup. Rather, it offers the @Before
annotation. When a public void method of any name is annotated with @Before,
then that method is executed prior to every test execution.

Similarly, when any public method is annotated with @After, the method gets
executed subsequent to every test method execution. JUnit 3 deines a tearDown()
method for this purpose.

JUnit 4 deines two method-level annotations, @BeforeClass and @AfterClass,
for public static methods. Being static, they get executed only once per test class.
Any public static method annotated with @BeforeClass gets executed prior to the
irst test, and any public static method annotated with @AfterClass gets executed
following the last test.

The following example elucidates JUnit 4 annotations and the execution sequence
of annotated methods:

1. Launch Eclipse and open the JUnitTests project. Create a source folder
named test, and create a Java class named SanityTest.java under com.
packtpub.junit.recap the package. The following screenshot explains this:

The general convention to name test classes is that a test class name
should end with a Test sufix such that a SomeClass class will have a
SomeClassTest test class. Several code coverage tools ignore the tests
if the test classes don't end with a Test sufix.

2. We have created the test class. Now add the following code snippet to the
SanityTest class:

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

Chapter 2

[61]

public class SanityTest {

 @BeforeClass

 public static void beforeClass() {

 System.out.println("***Before Class is invoked");

 }

 @Before

 public void before() {

 System.out.println("____________________");

 System.out.println("\t Before is invoked");

 }

 @After

 public void after() {

 System.out.println("\t After is invoked");

 System.out.println("=================");

 }

 @Test

 public void someTest() {

 System.out.println("\t\t someTest is invoked");

 }

 @Test

 public void someTest2() {

 System.out.println("\t\t someTest2 is invoked");

 }

 @AfterClass

 public static void afterClass() {

 System.out.println("***After Class is invoked");

 }

}

The SanityTest class deines six methods. Two methods are annotated with
the @Test, two public static methods are annotated with the @BeforeClass
and @AfterClass annotations, and the other two non-static methods are
annotated with the @Before and @After annotations.

The static method annotated with @BeforeClass gets executed only
once—before the SanityTest class is instantiated (in other words, before the
irst test method execution), and the method annotated with @AfterClass
gets executed after both the test methods have inished executing.

Working with JUnit and Mockito

[62]

3. We'll run the tests to understand the method execution sequence. To run
the tests, press Alt + Shift + X + T or navigate to Run | Run As | JUnit Test.
During test execution, the following console (System.out.println) output
will be displayed:

Ensure that the before and after methods are executed before and after
every test method execution, respectively. However, the order of test method
execution varies from environment to environment, so someTest may get
executed before someTest2 in your machine, or vice versa. The afterClass
and beforeClass methods are executed only once.

Congratulations! You have executed your irst JUnit 4 test and learned
the annotations.

The @Before and @After annotations can be applied to any public void
method. The @AfterClass and @BeforeClass annotations can be
applied only to public static void methods.

Verifying an expectation with an assertion
An assertion veriies a programming hypothesis with the actual result of a code
execution. For example, you can expect that when you add a set of positive numbers,
the addition will result in a positive number. So you can write an add method to add
a set of numbers and assert the expected result with the actual result. For example,
you can pass 1, 2, and 3 to the add method and expect that the result will be 6, so you
can assert 6 with the actual result of the program. If the outcome doesn't match the
expectation, the assertion fails, which implies that there must be some problem in
your coding logic. Therefore, you need to revisit the logic.

Chapter 2

[63]

The org.junit.Assert class offers a set of static overloaded methods to assert
expected and real values for all primitive types, objects, and arrays.

Note that all assert methods have a version with a string message as the irst
argument, and the string message is shown if the assertion fails. The following
are the handy assert methods:

• assertTrue(assert condition) or assertTrue(failure message,
assert condition): If the assert condition becomes false, the assertion
fails and the assertTrue method throws an AssertionError. When a
failure message is passed, the failure message is thrown.

• assertFalse(boolean condition) or assertFalse(failure message,
boolean condition): These assert methods expect that the Boolean
condition passed to the method will be false; for example, if we expect that
user login will not be successful and call isValidUser(), or expect that an
object will be null and check obj == null, but if the condition becomes
true, such that the isValidUser() method returns true or obj does not
become null, then the assertion fails and the assertFalse method throws
an AssertionError with the passed-in error message.

• assertNull: This method expects that the passed in argument will be null.
If the argument does not become null, the assertion fails and the method
throws an AssertionError. This is useful when we pass invalid inputs
to a method and expect that the output will be null.

• assertNotNull: This method expects that the passed-in argument will not
be null. If the argument becomes null, the assertion fails and the method
throws an AssertionError. Suppose you are invoking a method and getting
a response object. You can assert the response for not null and then check
other attributes of the response.

• assertEquals(string message, object expected, object

actual) or assertEquals(object expected, object actual) or
assertEquals(primitive expected, primitive actual): This method
takes two arguments, the expected value and the actual value, and compares
their values. If the arguments don't match, it raises an AssertionError.
When primitive values are passed to this method, the values are compared.
If objects are passed, the equals() method is invoked such that expected
equals actual.

• assertSame(object expected, object actual): This method expects
that two same object references will be passed to the method. It checks the
object reference using the == operator and throws an AssertionError if
two different objects are passed.

Working with JUnit and Mockito

[64]

• assertNotSame: This method expects that two different object references
will be passed to the method. The assertion fails if the same object references
are passed.

At times, double value computation leads to unexpected results due to
the representation that Java uses to store double values. The following
example demonstrates the uncertainty in double value computation.

Declare a double variable, result = .999 + .98. The result variable
should hold the 1.98 value, but if you print the result to the console, the
output displayed is 1.9889999999999999. So, if you assert the result
with a double value of 1.98, the assertion will fail.

Due to this uncertainty in double computation, the Assert class
doesn't rely on double comparison, hence the assertEquals(double
expected, double actual) method has been deprecated.

Alternatively, Assert offers an overloaded assertEquals method for
double value assertion, which is assertEquals(double expected,
double actual, double delta). The third argument, delta, is
very important during double value comparison when the expected
value doesn't match the actual value because if the difference between
them is less than or equal to the delta value, the assertion is considered
to be passed.

For monetary calculations, never use double values; instead, use
BigDecimal.

We'll examine the assert methods in the following example:

1. Add a JUnit test class named AssertTest to the com.packtpub.junit.
recap package, and include the following code snippet in this class:

package com.packtpub.junit.recap;

import org.junit.Assert;

import org.junit.Test;

public class AssertTest {

 @Test

 public void assert_boolean_conditions() throws Exception

 {

 Assert.assertTrue(true);

 Assert.assertFalse(false);

 }

Chapter 2

[65]

 @Test

 public void assert_null_and_not_null_object_values()

 throws Exception {

 Object object = null;

 Assert.assertNull(object);

 object = new String("String value");

 Assert.assertNotNull(object);

 }

}

The assert_boolean_conditions test sends true to assertTrue and false
to assertFalse. If you pass false to assertTrue or true to assertFalse,
the test will fail.

The assert_null_and_not_null_object_values test creates a null object,
passes it to the assertNull method, reassigns a string value to the object,
and passes the string to the assertNotNull.

Now run the tests. They should be green.

2. Now we'll inspect the behavior of assertEquals. Include the following test
snippet in the class. In the preceding example, we used the assert method in a
static way. Now we will static import the assertEquals method and invoke
the assert methods like a local method:

import static org.junit.Assert.assertEquals;

@Test

public void assert_equals_test() throws Exception {

 Integer anInteger = 5;

 Integer anotherInteger = 5;

 assertEquals(anInteger, anotherInteger);

}

This test initializes two integer objects, anInteger and anotherInteger,
with value equal to 5, and passes them to the assertEquals method. In turn,
the assertEquals method calls anInteger.equals(anotherInteger).
Since the values are the same, the equals method returns true, and the
assertion passes. Note that the assertEquals method compares the values,
and assertSame compares the references.

If you want to assert double values, either use the delta version of
assertEquals(actual, expected, delta), or try using BigDecimal
instead of double values.

Working with JUnit and Mockito

[66]

3. We'll validate the behavior of assertNotSame, add the following test to the
test class, and static-import the assert method:

import static org.junit.Assert.assertNotSame;

 @Test

 public void assert_not_same_test() throws Exception {

 Integer anInt = new Integer("5");

 Integer anotherInt = new Integer("5");

 assertNotSame(anInt , anotherInt);

 }

The assertNotSame method raises AssertionError when the expected
object reference and the actual object reference point to the same memory
location. Here, anInt and anotherInt hold the same value, but they point to
two different memory locations. Hence the assertNotSame method passes.

4. Now we'll inspect the behavior of assertSame. Add the following test to the
test class and static-import the assert method:

import static org.junit.Assert.assertSame;

@Test

public void assert_same_test() throws Exception {

 Integer anInt = new Integer("5");

 Integer anotherInt = anInt;

 assertSame(anInt, anotherInt);

 }

Here, the test passes because anInt and anotherInt have the same
memory reference.

Examining exception handling
This section deals with exceptions in JUnit tests. In a JUnit test, when a test method
throws an exception, the test fails, and the test method marks the test as erroneous.
We should be allowed to unit test the exceptional condition such that an API takes
two objects and throws an exception if any argument is passed as null. If we pass
a null value to the API, the test fails with an error, but actually, an exception is not
an error. Rather, it is desirable, and the test should fail if the API doesn't throw
an exception.

Chapter 2

[67]

JUnit 4 provides a mechanism to handle the preceding situation.

The @Test annotation takes an expected=<<Exception class name>>.class
argument.

When we annotate a test method with @Test and pass an expected exception to
the annotation, but during execution, the expected exception doesn't match the
real exception thrown from the test method or the test method doesn't throw an
exception, the test fails. The following test snippet examines exception handling:

 @Test(expected=RuntimeException.class)

 public void test_exception_condition() {

 throw new RuntimeException();

 }

This exception handling mechanism doesn't allow you to verify the error message.
JUnit 4 provides several other mechanisms that are usually considered to be better
solutions, such as @Rule, an ExpectedException rule that lets you examine the
message as well as the type.

Working with the @RunWith annotation
Test runners perform JUnit test execution. When we run JUnit tests in Eclipse, we
get a graphical output such as a green bar or red bar. Eclipse has a native, built-in
graphical runner for executing the JUnit tests.

The @RunWith annotation accepts a class name. The class should extend the
org.junit.runner.Runner class. An example of a runner is JUnit4.class.
This class is also known as the default JUnit 4 class runner.

When we annotate a test class with @RunWith or extend a @RunWith class, during test
execution, the built-in JUnit4 runner is ignored. Instead, JUnit uses the runner that it
references in the @RunWith argument.

A runner can change the characteristics of the test class; for example, a Spring runner
enables Spring context initialization nature, or a Mockito runner initializes proxy
objects annotated with the @Mock annotation.

Suite is a standard runner that allows us to build a suite that contains tests from
many packages. The following is an example of @RunWith:

@RunWith(Suite.class)

public class MySuite {

}

Working with JUnit and Mockito

[68]

Working with test suites
A test suite groups and executes multiple tests. From Eclipse, we can run individual
test classes, but to run multiple tests together, we need a test suite. To achieve this,
JUnit 4 offers the Suite.class class and the @Suite.SuiteClasses annotation.
This annotation accepts a comma-separated array of test classes.

Add a Java class named TestSuite and annotate it with @RunWith(Suite.class).
As a result, the suite runner will be responsible for executing the test class.

Annotate the TestSuite class with @Suite.SuiteClasses and pass a
comma-separated array of other test classes, such as ({ AssertTest.class,
TestExecutionOrder.class, Assumption.class }).

The following is the code snippet for the test suites:

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({ AssertTest.class, TestExecutionOrder.class,

 Assumption.class })

public class TestSuite {

}

When we execute the TestSuite class, it in turn executes all the test classes passed
to the @Suite.SuiteClasses annotation. The following screenshot demonstrates
the result of test suite execution:

Chapter 2

[69]

Working with assertThat
The assertThat method was added to the Assert class to verify a result in a
sophisticated way. Joe Walnes invented the assertThat(Object actual, Matcher
matcher) method. The assertThat method is comprehensible and easier to use
than the assertEquals method.

The following is the assertThat syntax:

 public static void assertThat(Object actual, Matcher matcher)

Object represents the value received, and Matcher is an implementation of the org.
hamcrest.Matcher interface. The Matcher interface is not a part of the JUnit jar.
Rather, the interface is deined in a separate library called hamcrest.jar.

The assertEquals method compares the expected value with the actual value, and
fails if the values do not match, whereas with a matcher, the assertThat method
may either compare the object partially with the matcher or may look for an exact
match. The Matcher interface offers an array of utility methods such as is, either,
or, not, and hasItem for partial and exact matches. The Matcher methods follow the
builder pattern to create a chain of commands. It can combine one or more matchers
to build a composite matcher chain. This behavior is similar to the StringBuilder
method, which builds a target string in numerous steps.

The following examples demonstrate the capabilities of Matcher and assertThat:

• assertThat(calculatedTax, is(not(thirtyPercent)));

• assertThat(phdStudentList, hasItem(DrJohn));

• assertThat(manchesterUnitedClub, both(is(EPL_Champion)).

and(is(UEFA_Champions_League_Champion)));

Honestly speaking, the examples are more readable as English statements than pieces
of mundane JUnit test code. Anyone who understands English can understand the
objective of the test. This way, a matcher can improve the readability of your tests.

Hamcrest offers a utility matcher class, org.hamcrest.CoreMatchers, with
an array of utility matcher methods. A few utility methods of CoreMatchers
are allOf, anyOf, both, either, describedAs, everyItem, is, isA, anything,
hasItem, hasItems, equalTo, any, instanceOf, not, nullValue, notNullValue,
sameInstance, theInstance ,startsWith, endsWith, and containsString. These
methods return a Matcher to build a chain of commands.

In the preceding section, we used the assertEquals method. The following section
will start with the equalTo method, which is similar to the assertEquals method.

Working with JUnit and Mockito

[70]

Exploring equalTo, is, and not
Add a JUnit test class named AssertThatTest.java, and static-import the utility
methods of CoreMatchers. The following is the test code snippet for the equalTo,
is and not matchers:

import static org.hamcrest.CoreMatchers.*;

import static org.junit.Assert.assertThat;

import org.junit.Test;

public class AssertThatTest {

 @Test

 public void test_matcher_behavior() throws Exception {

 int myAge = 30;

 //examine the exact match with equalTo and is

 assertThat(myAge, equalTo(30));

 assertThat(myAge, is(30));

 //examine partial match with not()

 assertThat(myAge, not(equalTo(33)));

 assertThat(myAge, is(not(33)));

 }

}

The equalTo method behaves like the == operator. We initialized the myAge
variable to 30, and then passed it to the assertThat method with an equalTo(30)
matcher. The equalTo method accepts a value. If the Matcher value matches the
expected value, the assertion passes. Otherwise, the assertThat method throws
an AssertionError.

When we initialize myAge to 29 and rerun the test, the matcher value, 30, doesn't
match with 29, so the assertion fails. The following screenshot demonstrates the
resulting error message:

The is(value) method accepts a value or matcher; it works similar to
equalTo(value). We can combine utility methods in it; for example, is(value)
can be combined with equalTo(value) to build is(equalTo(a)), which is similar
to is(value) or equalTo(value).

Chapter 2

[71]

The not method accepts a value or a matcher. The preceding test calls
assertThat(age, is(not(33)));. This expression can be translated as age is
not 33. So again, we can see that a Matcher expression is more comprehensible
than the assert methods.

Exploring compound matchers – either, both,
anyOf, and allOf
This section explores the either, both, anyOf, and allOf compound matcher methods
in conjunction with not. Include the following test method in AssertThatTest.java:

@Test

 public void verify_multiple_values() throws Exception {

 double myMarks = 100.00;

 assertThat(myMarks, either(is(100.00)).or(is(90.9)));

 assertThat(myMarks, both(not(99.99)).and(not(60.00)));

 assertThat(myMarks, anyOf(is(100.00),is(1.00),is(55.00),
 is(88.00),is(67.8)));

 assertThat(myMarks, not(anyOf(is(0.00),is(200.00))));

 assertThat(myMarks, not(allOf(is(1.00),is(100.00),

 is(30.00))));

 }

The myMarks variable is initialized to 100.00. Then the value is asserted with an
either matcher. The either matcher method is used to compare two values against
a computed value in conjunction with the or matcher. If none of these two values
match with the computed value, an AssertionError is thrown.

The following is the syntax of the either(Matcher) method. It takes a matcher
and returns a CombinableEitherMatcher class. This class deines an or(Matcher
other) method to combine with the either Matcher method.

The or(Matcher other) method is translated as return (new
CombinableMatcher(first)).or(second);, and inally to new
CombinableMatcher(new AnyOf(templatedListWith(second)));.

Working with JUnit and Mockito

[72]

The both method returns true only if the two values passed to it match the
computed value. Otherwise, an AssertionError is thrown. The both method
is used in conjunction with the and method to match the two values.

A numeric value, such as myMarks, cannot be equal to both 60 and 80. We can,
however, negate the expression and check that myMarks is not equal to 80 and 60,
using the both matcher as assertThat(myMarks, both (not(60)). and(not
(80))).

The anyOf matcher method is more like the either method with multiple values.
The anyOf method compares multiple values against a computed value. If any of
these values matches the computed value, the assertion is passed. If none of these
values match the computed value, an AssertionError is thrown.

The allOf matcher method is more like the both matcher method with multiple
values. The allOf method compares multiple values against a computed value. If
any of these values does not match with the computed value, an AssertionError
is thrown. Like the both method, we can combine allOf with not to ensure that a
computed value either belongs to a set or does not belong to it.

In the preceding test, we combined allOf with not to check that myMarks is
not 1, 100, or 30.

Exploring collection matchers – hasItem and

hasItems
In the preceding example, we asserted a single value against a set of values. This
section asserts a collection of values against a value or a set of values.

Suppose you have a service API that returns you a list of salaries in your company,
and you need to verify that the salaries include a particular amount or the CEO's
salary. We'll mock the service API, create a salary list, and populate the list with
the following values: 50.00, 200.00, and 500.00. Suppose we would like to ind
whether a particular salary is included to the salary list or not. The Matcher API
provides the hasItem method to check whether a value is included in a collection,
and the hasItems method is used to check whether multiple values are included in
a collection. The following code snippet demonstrates the capabilities of hasItem
and hasItems:

 @Test

 public void verify_collection_values() throws Exception {

 List<Double> salary =Arrays.asList(50.0, 200.0, 500.0);

Chapter 2

[73]

 assertThat(salary, hasItem(50.00));

 assertThat(salary, hasItems(50.00, 200.00));

 assertThat(salary, not(hasItem(1.00)));

 }

The hasItem method has two variants—one accepts a value and the other accepts a
matcher. To check whether a particular value belongs to a collection, we can combine
the hasItem method with not. The hasItems matcher works on a set of values.

Working with string matchers – startsWith,
endsWith, and containsString
This section explores string matchers. The CoreMatchers class has three built-in
matcher methods (startsWith, endsWith, and containsString) to work with the
strings. The following code assigns a value to the myName string variable, asserts
that myName starts with a particular value and contains a particular value, and checks
whether myName ends with a particular value:

@Test

 public void verify_Strings() throws Exception {

 String myName = "John Jr Dale";

 assertThat(myName, startsWith("John"));

 assertThat(myName, endsWith("Dale"));

 assertThat(myName, containsString("Jr"));

 }

The startsWith method veriies that the passed string starts with a given string, the
endsWith method checks whether the passed-in string ends with a given string, and
the containsString veriies that the passed-in string contains a particular string.

Strings are objects, so we can use built-in matchers such as both, either,
anyOf, and so on with string objects to verify string values.

Exploring custom matchers
So far we have used built-in framework matchers with the assertThat method. This
section covers a custom matcher that will work with the assertThat method. We'll
be building this matcher to compare two values and return true only if the actual
object is less than or equal to the expected value. We'll name it the lessThanOrEqual
matcher. It will operate on any Comparable objects such as objects of Integer,
Double, or String types, and any object that implements the Comparable interface.

Working with JUnit and Mockito

[74]

The following examples explain the behavior of the custom matcher. You
will see that assertThat(10, lessThanOrEqual(11)) will pass but
assertThat(10, lessThanOrEqual(5)) will fail, and assertThat("john100",
lessThanOrEqual("john100")) will pass but assertThat("john123",
lessThanOrEqual("john12")) will fail.

The following are the steps to be performed to build the lessThanOrEqual matcher:

1. Add a Java class named LessThanOrEqual under the com.packtpub.junit.
recap package.

2. All matchers implement the Matcher interface, though Hamcrest
recommends extending the org.hamcrest.BaseMatcher class instead of
implementing the Matcher interface. Therefore, we'll follow the convention
and extend BaseMatcher. The abstract BaseMatcher class implements the
Matcher interface, but it doesn't implement the describeTo(Description
description) and matches(Object t) methods. The class that extends
the BaseMatcher class should provide the implementation of the abstract
describeTo and matches methods .

Internally, the assertThat method invokes the matches(Object obj)
method. An AssertionError is thrown if the matches method returns
false, and the describeTo(Description description) method is
called to build the error description.

The following code fragment shows the internals of the assertThat method:

 if(!matcher.matches(actual)){

 Description description = new StringDescription();

 description.appendText(reason).appendText

 ("\nExpected: ").appendDescriptionOf(matcher).

 appendText("\n but: ");

 matcher.describeMismatch(actual, description);

 throw new AssertionError(description.toString());

 }

When the matcher.matches() method returns false, a description object is
created and the error description is populated. The appendDescriptionOf()
method invokes the describeTo() method of the matcher and builds the
error description.

The matcher.describeMismatch(actual, description) method call
appends the was <<actual>> string to the description, where <<actual>>
represents the actual value, which doesn't match the expected value.

Chapter 2

[75]

3. The lessThanOrEqual class compares two objects to determine whether
one object is less than or equal to the other object so that the matcher can
operate on the Comparable objects. Our matcher should work on any
object type that can be compared, so the generic matcher will operate on
any type, T, that implements the Comparable interface. The following is
our matcher deinition:
public class LessThanOrEqual<T extends Comparable<T>>

 extends BaseMatcher<Comparable<T>> {

}

4. Our matcher extends the BaseMatcher class, so it has to implement the
describeTo() and matches() superclass methods. The assertThat method
invokes the matches(Object o) method of the matcher with the actual
value. When we pass an expected value to the matcher, during assertion, the
assertThat method calls the matches method of the matcher with the actual
value, and the matcher compares the actual value with the expected value.

The following code snippet explains the assertThat call:

assertThat (actual, matcher(expectedValue)).

We need to store the expectedValue during the Matcher(LessThanOrEqual)
object instantiation, and compare it with the actual value in the matches()
method. The following is our matcher class:

public class LessThanOrEqual<T extends Comparable<T>> extends
BaseMatcher<Comparable<T>> {

 private final Comparable<T> expValue;

 public LessThanOrEqual(T expValue) {

 this.expValue= expValue;

 }

 @Override

 public void describeTo(Description desc) {

 desc.appendText(" less than or equal(<=)"

 +expValue);

 }

 @Override

 public boolean matches(Object t) {

 int compareTo = expValue.compareTo((T)t);

 return compareTo > -1;

 }

}

Working with JUnit and Mockito

[76]

The matches method of the LessThanOrEqual class should return true only
if expValue.compareTo(actual) >= 0 is true, but when the expected value
is less than the actual value, then the matches method returns false, the
assertion fails, and describeTo appends the "less than or equals (<=)
" + expValue string to the error message.

5. The assertThat method accepts a matcher, so we can pass new
LessThanOrEqual(expectedValue) to the assertThat method, but the
camel case class name reduces readability. Instead, a method name starting
with a small letter could improve readability.

Add a static method named lessThanOrEqual() to the LessThanOrEqual
class, and instantiate a new object of LessThanOrEqual. Pass the
lessThanOrEqual() method to the assertThat method. The following
is the code snippet for the custom matcher:

 @Factory

 public static<T extends Comparable<T>> Matcher<T>

 lessThanOrEqual(T t) {

 return new LessThanOrEqual(t);

 }

6. To validate the LessThanOrEqual matcher, you have to static-import the
LessThanOrEqual class and add a test to the AssertThatTest class. The
following test method passes integer, double, and string values to the
matcher. The test passes because the actual value is always less than
or equal to the expected value:

 @Test

 public void lessthanOrEquals_ matcher() throws

 Exception

 {

 int actualGoalScored = 2;

 int expGoalScored= 4;

 assertThat(actualGoalScored,

 lessThanOrEqual(expGoalScored));

 expGoalScored =2;

 assertThat(actualGoalScored,

 lessThanOrEqual(expGoalScored));

 double actualDouble = 3.14;

 double expDouble = 9.00;

 assertThat(actualDouble, lessThanOrEqual(expDouble));

Chapter 2

[77]

 String authorName = "Sujoy";

 String expAuthName = "Zachary";

 assertThat(authorName, lessThanOrEqual(expAuthName));

 }

7. Now we'll test the opposite scenario—where the actual value is greater than
the expected value. In Java, Integer.MAX_VALUE represents the maximum
integer value and Integer.MIN_VALUE represents the minimum integer
value. If we imagine that the maximum value would be less than or equal to
the minimum value, then the assertion will fail. The following code snippet
shows this comparison:

 int maxInt = Integer.MAX_VALUE;

 assertThat(maxInt, lessThanOrEqual(Integer.MIN_VALUE));

As the MAX_VALUE is not less than the MIN_VALUE, the assertion fails and
gives this error:

Working with Mockito
Mockito is an open source unit mocking framework for Java. It allows mock object
creation, veriication, and stubbing.

Mockito was moved to GitHub. You can visit https://github.com/mockito/
mockito to get the source code, and visit http://code.google.com/p/mockito/
to learn more about Mockito.

Learning the signiicance of Mockito
We add automated unit tests to run and notify us in case any code breaks the system
so that the wrong code can be identiied and ixed very quickly.

But when an automated test suite takes time to execute, for instance, two hours
to complete a build, it defeats the purpose of quick feedback. In Test-Driven
Development (TDD), automated JUnit test cases are run to provide quick feedback.
Here, a test should not take more than a few milliseconds to execute. When a test
suite takes hours to execute, it blocks the progress of development.

https://github.com/mockito/mockito
https://github.com/mockito/mockito
http://code.google.com/p/mockito/

Working with JUnit and Mockito

[78]

A test suite takes time because individual tests take time to execute. The following
are some reasons behind delays in test execution:

• A test performs an integration task, such as acquiring a database connection,
and then fetches data or updates data.

• A test may connect to the Internet to download iles or get the current
stock price.

• A test may send an invoice mail to a vendor. In order to send an e-mail, it has
to interact with an SMTP server.

• A test may print a bill, open a ile, or perform an I/O operation.

Do we really need to perform all or any of these tasks to unit test our code?

If we don't perform these tasks, a few parts of the system remain untested. So
querying the database or sending an e-mail is necessary to perform end-to-end
system testing, but when a test interacts with an external resource, it is called an
integration test. Due to external resource interaction, integration tests take time
to execute but unit tests mock external dependencies using test doubles, and thus
unit tests are executed very quickly.

Mockito provides APIs to mock external dependencies. It can mock a database
connection with a mock implementation that doesn't interact with the real database,
or it can mock an SMTP connection for an e-mail task. So Mockito provides APIs
to isolate the actual logic from external dependencies to unit test it.

Exploring Mockito
We need to download the Mockito binary to start working with Mockito. You can
download the Mockito jar from http://mockito.org/.

As of December 2014, the latest Mockito version is v2.0.2-beta.

The following section conigures Eclipse projects to use Mockito.

Coniguring Mockito
To add Mockito JAR iles as a project dependency, perform the following steps:

1. Unzip the Mockito JAR iles into a folder.
2. Open Eclipse.
3. In Eclipse, create a Java project named MockitoOverview.

http://mockito.org/

Chapter 2

[79]

4. Right-click on the project. A pop-up menu will appear. Expand the Build
Path menu and click on the Conigure Build Path menu item. It will open
a wizard. Go to the Libraries tab in the Java build path.

5. Click on the Add External JARs... button and browse to the Mockito folder.

6. Select all JAR iles and click on OK.

Mocking in action
This section provides examples of mock objects with a stock quote simulation
program. The program observes the market trend and performs the following actions:

• Buying new stocks

• Selling existing stocks

The important domain objects in this program are Stock, MarketWatcher,
Portfolio, and StockBroker.

The Stock class represents real-world stocks. A Stock object can have properties
such as symbol, company name, and price.

The MarketWatcher object observes the market trend and returns the current
stock price. A real-world MarketWatcher object needs to connect to the Internet
to download the stock quote.

The Portfolio object represents a stock portfolio such stock count and price details.
It provides APIs to get the average stock price and methods to buy and sell stocks.
Suppose you bought a Facebook share for $75, and the next day, you bought one
more Facebook share for $85. So, on the second day, you have two Facebook shares,
with the average share price equal to $80.

Here is a screenshot of the Eclipse project. This project can be downloaded from the
Packt Publishing website.

Working with JUnit and Mockito

[80]

The following is the StockBroker class. It works together with the MarketWatcher
and Portfolio classes. The perform() method accepts a portfolio and a stock,
gets the current market price of the stock, and compares the current price with the
average stock price. If the current stock price goes up 10 percent, then it sells 10
stocks. Otherwise, it buys a stock:

public class StockBroker {

 private final static BigDecimal LIMIT

 = new BigDecimal("0.10");

 private final MarketWatcher market;

 public StockBroker(MarketWatcher market) {

 this.market = market;

 }

 public void perform(Portfolio portfolio,Stock stock) {

 Stock liveStock = market.getQuote(stock.getSymbol());

 BigDecimal avgPrice = portfolio.getAvgPrice(stock);

 BigDecimal priceGained =

 liveStock.getPrice().subtract(avgPrice);

 BigDecimal percentGain = priceGained.divide(avgPrice);

 if(percentGain.compareTo(LIMIT) > 0) {

 portfolio.sell(stock, 10);

 }else if(percentGain.compareTo(LIMIT) < 0){

 portfolio.buy(stock);

 }

 }

}

The Portfolio class reads the average stock price from the database, and the
MarketWatcher class connects to the Internet to get the latest stock price. Therefore,
if we need to write a unit test for the broker program, the test will need a database
and an Internet connection. The test will interact with external entities, and we can
call it an integration test rather than a unit test. If our unit tests interact with the real
database and Internet connection, then chances of test failure will increase, as the
database state might not be the same across all test runs, and each Internet call to get
the stock price might return different values. Therefore asserting a constant value
may result in assertion failure; for example, we assert a stock price of $100 in our test
but the actual market price goes down to $90, or our test thinks that a portfolio has
10 stocks in the database but some other user adds 20 more shares using a different
thread. That's why unit tests mock external dependencies and set a constant value as
the expectation, so the preceding example will lead to this: all the time, the portfolio
will return 10 as the number of stocks, or the current stock price will always be
returned as $100.

Chapter 2

[81]

In the following section, we'll mock external dependencies using Mockito and
execute the test in isolation. Therefore, the test will invoke methods on proxy
dependency objects and be self-governing, and thus it will be executed quickly.

Mocking objects
The org.mockito.Mockito class deines a static method mock() to create mock
objects. The following code snippet creates mock objects using the mock method:

import org.mockito.Mockito;

public class StockBrokerTest {

 MarketWatcher marketWatcher =

 Mockito.mock(MarketWatcher.class);

 Portfolio portfolio =

 Mockito.mock(Portfolio.class);

}

Instead of directly calling the Mockito.mock() method, we can use the static
import feature of Java. The following code snippet simpliies mock creation
using static import:

import static org.mockito.Mockito.mock;

public class StockBrokerTest {

 MarketWatcher marketWatcher = mock(MarketWatcher.class);

 Portfolio portfolio = mock(Portfolio.class);

}

The alternative is to annotate the class member variables with the @Mock annotation.
The following code snippet uses this annotation:

import org.mockito.Mock;

public class StockBrokerTest {

 @Mock

 MarketWatcher marketWatcher;

 @Mock

 Portfolio portfolio;

}

To create mocks using the @Mock annotation, we need to initialize the mocks before
test execution, so use MockitoAnnotations.initMocks(this) before using the
mocks, or use MockitoJUnitRunner as a JUnit runner.

Working with JUnit and Mockito

[82]

This example uses MockitoAnnotations:

import static org.junit.Assert.assertEquals;

import org.mockito.MockitoAnnotations;

public class StockBrokerTest {

 @Mock

 MarketWatcher marketWatcher;

 @Mock

 Portfolio portfolio;

 @Before

 public void setUp() {

 MockitoAnnotations.initMocks(this);

 }

 @Test

 public void sanity() throws Exception {

 assertNotNull(marketWatcher);

 assertNotNull(portfolio);

 }

}

The following example uses the MockitoJUnitRunner JUnit runner:

import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)

public class StockBrokerTest {

 @Mock

 MarketWatcher marketWatcher;

 @Mock

 Portfolio portfolio;

 @Test

 public void sanity() throws Exception {

 assertNotNull(marketWatcher);

 assertNotNull(portfolio);

 }

}

Chapter 2

[83]

A few things to remember
Mockito cannot mock or spy on Java constructs such as inal classes and
methods, static methods, enums, private methods, the equals() and
hashCode() methods, primitive types, and anonymous classes.

But the good news is that PowerMockito (an extension of the Mockito
framework) API allows us to overcome the limitations of Mockito. It lets
us mock static and private methods. You can also set expectations on
new invocations for local or anonymous classes, private member classes,
and inner classes but as per the design, you should not opt for mocking
private or static properties because it violates the encapsulation. Instead,
you should refactor the offending code to make it testable.

Now, to cross-check the information of a inal class that Mockito cannot mock, just
modify the Portfolio class and make it a inal class. Then rerun the test. It will fail
because the class is inal.

The following screenshot shows the output of the JUnit test run:

Stubbing methods
Stubbing a method means setting up an expectation on a method invocation or
simulating the behavior of the method. Mock objects are basically proxy objects, and
they imitate the behavior of real objects. We can stub a method on a mock object to
redeine the behavior of the method. In other words, we can return a speciic value
or throw a speciic exception when the method is called on the mocked object. If we
don't stub a method of a mock object, the mock object returns the default values such
as false for the Boolean return type, null for the object return type, 0 for the integer
or long return type, and so on.

Working with JUnit and Mockito

[84]

Mockito allows stubbing to return a speciic value when a speciic method is called.
The Mockito.when() method identiies a method that needs to be stubbed, and the
thenReturn() method returns a speciic value.

The when static method is deined in the Mockito class. Here is the process of
importing the when method in our test class:

import static org.mockito.Mockito.when;

The following example stubs the getQuote(String symbol) method of
MarketWatcher and returns a speciic Stock object:

import static org.mockito.Matchers.anyString;

import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)

public class StockBrokerTest {

 @Mock MarketWatcher marketWatcher;

 @Mock Portfolio portfolio;

 @Test

 public void marketWatcher_Returns_current_stock_status() {

 Stock uvsityCorp = new Stock("UV", "Uvsity Corporation",

 new BigDecimal("100.00"));

 when(marketWatcher.getQuote(anyString())).

 thenReturn(uvsityCorp);

 assertNotNull(marketWatcher.getQuote("UV"));

 }

The preceding test method creates a stock object and stubs the getQuote method
of marketWatcher to return the stock. Note that we passed anyString() to the
getQuote method, and anyString represents any string value such as "UV", which
we passed in the next line (marketWatcher.getQuote("UV")). Therefore, whenever
the getQuote method will be called on the marketWatcher proxy, the stock object
will be returned.

The when() method represents the trigger for the time to stub.

Chapter 2

[85]

The following Mockito methods represent the course of action of the trigger:

• thenReturn(value to be returned): This returns a speciic value.
• thenThrow(throwable to be thrown): This throws a speciic exception.
• thenAnswer(Answer answer): Unlike returning a speciic value, some logic

is executed and an action is taken from that logic; for example, some value is
computed and returned. Answer is an interface.

• thenCallRealMethod(): This calls the real method on the object. The real
method doesn't return any default value. It performs the actual logic, but if it
needs to invoke any method that is stubbed, then the stubbed value is passed
to the real method; for example, the foo()method calls bar(), but bar() is
stubbed to return a value 10, so foo() will get 10.

The following test code stubs the portfolio and marketWatcher methods:

import com.packt.trading.dto.Stock;

import static org.junit.Assert.assertNotNull;

import static org.mockito.Matchers.anyString;

import static org.mockito.Matchers.isA;

import static org.mockito.Mockito.verify;

import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)

public class StockBrokerTest {

 @Mock MarketWatcher marketWatcher;

 @Mock Portfolio portfolio;

 StockBroker broker;

 @Before public void setUp() {

 broker = new StockBroker(marketWatcher);

 }

 @Test

 public void when_ten_percent_gain_then_the_stock_is_sold() {

 //Portfolio's getAvgPrice is stubbed to return $10.00

 when(portfolio.getAvgPrice(isA(Stock.class))).

 thenReturn(new BigDecimal("10.00"));

 //A stock object is created with current price $11.20

 Stock aCorp = new Stock("A", "A Corp", new

 BigDecimal("11.20"));

 //getQuote method is stubbed to return the stock

 when(marketWatcher.getQuote(anyString())).thenReturn(

 aCorp);

Working with JUnit and Mockito

[86]

 //perform method is called, as the stock price increases

 // by 12% the broker should sell the stocks

 broker.perform(portfolio, aCorp);

 //verifying that the broker sold the stocks

 verify(portfolio).sell(aCorp,10);

}

The stubbed getAvgPrice() method returns $10.00, and the stubbed getQuote
method returns a stock of A Corp. The stock is conigured to return the current stock
price as $11.20. As the current stock price ($11.20) is 12 percent more than the
average stock price ($10), broker will sell 10 A Corp stocks to book proit.

We already know that the if we don't stub a method on a mock object, then that
method returns a default value, but for the void methods, there is nothing to be
returned, so no action is taken. In our case, the broker logic invokes the sell method
on the portfolio object, but the sell method is a void method, so the sell method is
auto-stubbed and it doesn't connect to the database to update the portfolio status. It
simply dumps the call.

The perform method is a void method, so it doesn't return any response saying
whether it sold some units or not. So how would we check the logic that 10 stocks
were sold? We use Mockito.verify.

The verify() method is a static method. It is used to verify the method invocation.
If we verify a method call on a mock object but the method is not invoked by the
code logic, then the verify() method raises an exception to indicate that there is
something wrong in the code logic. In the preceding example we veriied that 10
stocks were sold, but if the code logic doesn't call the sell method due to some bug
in logic and our test veriies the call in test, it signiies that the code is buggy.

Verifying in depth
An overloaded version of verify() takes org.mockito.internal.verification.
Times as an argument. Times takes the wantedNumberOfInvocations integer
argument.

When we pass 0 to Times, it means that the stubbed method has not been invoked
in the testing path, but if the method is invoked once, then the verify method raises
an exception. If we pass a negative number to the Times constructor, then it throws
MockitoException - org.mockito.exceptions.base.MockitoException, and
shows the Negative value is not allowed here error message.

Chapter 2

[87]

The following methods can be used in combination with verify:

• times(int wantedNumberOfInvocations): This signiies that the stubbed
method was invoked exactly wantedNumberOfInvocations times. If the
method invocation count doesn't match, then the test fails.

• never(): This is equivalent to times (0). It signiies that the method wasn't
invoked at all.

• atLeastOnce(): This signiies that the stubbed method was invoked at least
once. It doesn't throw an error if the method is invoked multiple times, but
fails if the method is not invoked.

• atLeast(int minNumberOfInvocations): This signiies that the
stubbed method was invoked minNumberOfInvocations or more times.
It doesn't throw an error if the stubbed method is invoked more than
minNumberOfInvocations times but fails if the stubbed method is invoked
less than minNumberOfInvocations times.

• atMost(int maxNumberOfInvocations): This signiies that the stubbed
method was invoked maxNumberOfInvocations times. It raises an exception
if the method is called more than minNumberOfInvocations times and works
ine if the method is never invoked or invoked less than the maximum count.

• only(): This is the only method called on a mock. It fails if any other method
is called on the mock object. In our example, if we use verify(portfolio,
only()).sell(aCorp,10);, the test will fail with following output:

The test fails when, portfolio.getAvgPrice(stock) is called (in line
number 15).

• timeout(int millis): This interacts in a speciied time range.

Working with JUnit and Mockito

[88]

Verifying zero and no more interactions
The verifyZeroInteractions(object... mocks) method takes an array of mock
objects and veriies that no methods were called on the mocks. This is important to
check the logic branching. Suppose we have two sets of classes, one to send e-mails,
and one to generate the mail printout to be sent over the general mail. During code
execution, it should either send an e-mail or print a mail. For the e-mail path, we can
verify that no methods were called on the mail printout classes.

The following test demonstrates the verifyZeroInteractions method and directly
passes the two mock objects to it. Since no methods are invoked on the mock objects,
the test passes:

 @Test

 public void verify_zero_interaction() {

 verifyZeroInteractions(marketWatcher,portfolio);

 }

The verifyNoMoreInteractions(Object... mocks) method checks whether any
of the given mocks has any unveriied interaction. We can use this method after
verifying a mock method to ensure that nothing else was invoked in the mock.

The following test code demonstrates the verifyNoMoreInteractions method:

 @Test public void verify_no_more_interaction() {

 Stock noStock = null;

 portfolio.getAvgPrice(noStock);

 portfolio.sell(null, 0);

 verify(portfolio).getAvgPrice(eq(noStock));

 //this will fail as the sell method was invoked

 verifyNoMoreInteractions(portfolio);

 }

Here is a screenshot showing the JUnit output of the preceding code:

Chapter 2

[89]

Throwing exceptions
When a piece of code throws a business exception due to violations of some core
business logic, then the program should handle the exception instead of halting (for
the errors such as Out Of Memory or disk failure, it should deinitely halt). In our
unit tests, we should consider exceptional conditions such as the code requesting
to sell 10 stocks and the portfolio containing only ive stocks. Mockito provides
methods to throw exceptions during testing.

Mockito deines an action method called thenThrow(Throwable). This method
throws a speciic exception when a trigger occurs or a stubbed method is called.

The getAvgPrice method scans the database to fetch the average stock price. Suppose
the database is unavailable for upgrade or some other reason, and you invoked the
method. Then the getAvgPrice will throw an exception, but it is we who should
handle the exception and show a proper meaningful error message to the user. We'll
use Mockito's API to throw an exception from the getAvgPrice method:

 @Test(expected = IllegalStateException.class)

 public void throwsException() throws Exception {

 when(portfolio.getAvgPrice(isA(Stock.class))).thenThrow(

 new IllegalStateException("Database down"));

 portfolio.getAvgPrice(new Stock(null, null, null));

 }

We stubbed the getAvgPrice method of portfolio to throw an exception.

The following is the syntax to throw an exception from a void method:

doThrow(exception).when(mock).voidmethod(arguments);

The buy method portfolio is a void method, so we'll stub it to throw an exception:

 @Test(expected = IllegalStateException.class)

 public void throwsException_void_methods() throws Exception {

 doThrow(new IllegalStateException()).

 when(portfolio).buy(isA(Stock.class));

 portfolio.buy(new Stock(null, null, null));

 }

Working with JUnit and Mockito

[90]

To learn advanced Mockito topics such as Answers, ArgumentCaptor, matchers, and
so on, read the following books:

• Mastering Unit Testing Using Mockito and JUnit, Sujoy Acharya (https://www.
packtpub.com/application-development/mastering-unit-testing-

using-mockito-and-junit)

• Mockito Essentials, Sujoy Acharya (https://www.packtpub.com/
application-development/mockito-essentials)

Summary
This JUnit refresher chapter covered both basic and advanced applications of JUnit.
We also covered annotation-based JUnit testing, assertion, the @RunWith annotation,
exception handling, setting up Eclipse for running JUnit tests, matchers, assertThat,
and the custom lessThanOrEqual() matcher.

Then the Mockito framework was described in depth, and technical examples were
provided to demonstrate the capability of Mockito.

The next chapter focuses on getting the reader quickly started with Spring
Framework unit testing. It provides an overview of Spring integration testing
and explores the test APIs.

https://www.packtpub.com/application-development/mastering-unit-testing-using-mockito-and-junit
https://www.packtpub.com/application-development/mastering-unit-testing-using-mockito-and-junit
https://www.packtpub.com/application-development/mastering-unit-testing-using-mockito-and-junit
https://www.packtpub.com/application-development/mockito-essentials
https://www.packtpub.com/application-development/mockito-essentials

Working with Spring Tests
This chapter covers the test module of Spring and the APIs used for unit and
integration testing Spring applications. The following topics are covered here:

• Spring's TestContext framework and SpringJUnit4ClassRunner

• Spring proiles
• Mocking environments with MockEnvironment and MockPropertySource

• Mocking a JNDI lookup with SimpleNamingContextBuilder and
ExpectedLookupTemplate

• Testing with ReflectionTestUtils

• Exploring Spring annotations for unit testing; the annotations covered
are @ContextConfiguration, ApplicationContextInitializer,
@WebAppConfiguration, @ContextHierarchy, @ActiveProfiles,
@ProfileValueSourceConfiguration, @TestPropertySource,
@DirtiesContext, @TestExecutionListeners, @IfProfileValue,
@Timed, and @Repeat

• Unit testing Spring MVC with MockHttpServletRequest,
MockHttpSession, and ModelAndViewAssert, as well as Spring
beans with request scope and Spring beans with session scope

• Mocking a servlet container with MockMvc

• Transaction management with @Transactional,
@TransactionConfiguration, @Rollback, @BeforeTransaction,
and @AfterTransaction

Working with Spring Tests

[92]

Exploring the TestContext framework
Spring's TestContext framework is a generic, annotation-driven framework for
unit and integration testing. The framework's resources are located in the org.
springframework.test.context package. This framework believes in the design
paradigm "convention over coniguration," which means that the framework
provides reasonable defaults for every coniguration; the user can still override the
unconventional aspects through annotation-based coniguration. The TestContext
framework provides support for JUnit and TestNG, such as a custom JUnit runner
that allows non-invasive POJO test classes.

The framework consists of two classes and three interfaces. The following are
the classes:

• TestContext: This class provides the context in which a test is executed. It
also makes the context management and caching supports available for the
test instance. To load the application context, the ContextLoader interface
(or SmartContextLoader) is used.

• TestContextManager: This class is the main entry point to the TestContext
framework; it manages a single TestContext class and publishes events to
all registered TestExecutionListener implementations at test execution
points. These are the test execution points:

 ° In static before class methods

 ° In before test execution methods

 ° During test instance preparation

 ° In after test execution methods

 ° In static after class methods

The following are the interfaces:

• TestExecutionListener: The TestContextManager class publishes events
to all the registered listeners. This interface deines the listener API to react
to the published events.

• ContextLoader: This interface loads ApplicationContext for the Spring
integration tests.

• SmartContextLoader: This interface is the extension of the ContextLoader
interface and has been introduced in Spring 3.1. A SmartContextLoader
interface processes resource locations, annotated classes, or context
initializers. Also, it can set active bean proiles (@ActiveProfiles)
and property sources in the context that it loads.

Chapter 3

[93]

For each test, a TestContextManager class is being created. The
TestContextManager class handles a TestContext class for the current test and
updates the state of the TestContext class as the test progresses. For dependency
injection, dirty checks, transactional support, and so on, the TestContextManager
class delegates control to the TestExecutionListener implementations, which
in turn implements the actual test execution by providing dependency injection,
managing transactions, and so on.

The default TestExecutionListener implementations are registered in the
following order:

• ServletTestExecutionListener: This listener provides the Servlet API
mocks for WebApplicationContext

• DependencyInjectionTestExecutionListener: As the name suggests, this
listener provides dependency injections for the test

• DirtiesContextTestExecutionListener: This listener checks the
context—whether any bean is dirtied or not during a test execution;
it also handles the @DirtiesContext annotation

• TransactionalTestExecutionListener: This provides transactional support

• SqlScriptsTestExecutionListener: This executes SQL scripts conigured
via the @Sql annotation

The TestExecutionListener implementations externalize the reusable code to
instrument tests. When we execute a TestExecutionListener implementation, we
can reuse it across test class hierarchies and projects. Custom TestExecutionListener
implementations can be registered for a test class and its subclasses via the
@TestExecutionListeners annotation. If a custom TestExecutionListener
implementation is registered via @TestExecutionListeners, the default listeners
will not be registered. As a result, the developer has to manually declare all the default
listeners in addition to any custom listeners. The following example demonstrates
this style of coniguration. Usually, we don't need a custom TestExecutionListener
implementation unless we want to perform some custom logic before, during, or after
the test method or test class execution. In the following section, we'll create a custom
listener to print the test class and method names just before and after test execution.

Working with Spring Tests

[94]

Writing a custom TestExecutionListener

interface
The following are the steps to create a custom TestExecutionListener
implementation:

1. Create a Java project, SpringTests.

2. Create a SysOutTestExecutionListener Java class in the com.packt.
listener package and implement the TestExecutionListener interface.
All implemented methods print information about the test class or the test
method. The TestExecutionListener listener can be reused with any
Spring test class. The following is the implementation:

 public class SysOutTestExecutionListener implements

 TestExecutionListener {

 @Override public void afterTestClass(TestContext

 testContext) throws Exception {

 ApplicationContext ctx =

 testContext.getApplicationContext();

 System.out.println("In afterTestClass for class =

 "+testContext.getTestClass());

 }

Note that you can get the application context, ctx, from the TestContext
class to work with the Spring beans. Although I'm not doing any alterations
to any bean coniguration, you can do so from all the methods in a
TestExecutionListner class, as shown here:

 @Override public void afterTestMethod(TestContext testContext)

 throws Exception {

 System.out.println("In afterTestMethod for =

 "+testContext.getTestMethod().getName());

 }

 @Override public void beforeTestClass(TestContext

 testContext) throws Exception {

 System.out.println("In beforeTestClass for class =

 "+testContext.getTestClass());

 }

 @Override public void beforeTestMethod(TestContext

 testContext) throws Exception {

 System.out.println("In beforeTestMethod for =

 "+testContext.getTestMethod().getName());

 }

Chapter 3

[95]

 @Override

 public void prepareTestInstance(TestContext testContext)

 throws Exception {

 System.out.println("In prepareTestInstance for=

 "+testContext.getTestInstance());

 }

}

The SysOutTestExecutionListener class implements ive methods, namely,
afterTestClass, beforeTestClass, afterTestMethod, beforeTestMethod,
and prepareTestInstance. Each method accepts a TestContext object.
A TextContext object can provide the test method, test class, test instance,
application context, and the beans conigured in the application context,
and so on. We'll check the method execution sequence later.

3. Create an empty applicationContext.xml ile directly under the com.
packt.listener package. You don't need to deine any bean here. The
following is the XML ile:
 <?xml version="1.0" encoding="UTF-8"?>

 <beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-

 beans.xsd">

 </beans>

4. Create a test class to examine SysOutTestExecutionListener. The class
details are as follows:

package com.packt.listener;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.TestExecutionListeners;

import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations="classpath:com/packt/listener/
applicationContext.xml")

@TestExecutionListeners({

 SysOutTestExecutionListener.class

Working with Spring Tests

[96]

})

public class TestExecutionListenerTest {

 @Test

 public void someTest() throws Exception {

 System.out.println("executing someTest");

 }

 @Test

 public void someOtherTest() throws Exception {

 System.out.println("executing someOtherTest");

 }

}

The class is annotated with @RunWith, @ContextConfiguration,
and @ TestExecutionListeners. By annotating test classes with
@RunWith(SpringJUnit4ClassRunner.class), we enable the class to
get the beneits of Spring unit and integration tests, such as TestContext,
the applicationContext loading, DI, transaction support, and so on.

The @ContextConfiguration annotation loads the application
context resource from the speciied locations or the @Configuration
annotated classes. In locations, we pass the XML coniguration or the
applicationContext XML location that can be loaded from the classpath.
The @TestExecutionListeners annotation deines class-level metadata
to conigure which TestExecutionListener implementations should be
registered with TestContextManager.

5. The TestExecutionListenerTest class has two tests. When we execute
the test class, the following output is displayed:

In beforeTestClass for class = class com.packt.listener.
TestExecutionListenerTest

In prepareTestInstance for= com.packt.listener.TestExecutionListen
erTest@548c491e

In beforeTestMethod for = someOtherTest

executing someOtherTest

In afterTestMethod for = someOtherTest

In prepareTestInstance for= com.packt.listener.TestExecutionListen
erTest@5cd99967

In beforeTestMethod for = someTest

executing someTest

In afterTestMethod for = someTest

In afterTestClass for class = class com.packt.listener.
TestExecutionListenerTest

Chapter 3

[97]

The beforeTestClass method is invoked irst, and it is invoked only once
for the test class; we can access the application context and beans using
this method. The prepareTestMethod is invoked before any test method
execution. We can get the test instance and prepare beans or initialize test-
speciic data from this method. The beforeTestMethod is executed after
prepareTestMethod but before any test method execution, and then a test is
executed. The afterTestMethod is executed after any test method execution.
The afterTestClass method acts like the destructors in C++, and is invoked
only once per class at the end of the last test method's afterTestMethod call.

You might wonder what the difference is between JUnit 4's @before and
@after and the TestExecutionListener methods. The answer is you can
access TestContext in the TestExecutionListener methods but not in
JUnit annotated methods, and TestExecutionListener logic can be shared
with many tests but JUnit annotations are test class speciic. For example,
our SysOutTestExecutionListener logic can be shared with any test class;
but if we annotate a test method with a JUnit 4 annotation, then that method
cannot be shared with all the test classes unless they extend the class.

6. If a custom TestExecutionListener class is registered via
@TestExecutionListeners, the default listeners will not be registered.
This forces the developer to manually declare all default listeners in addition
to any custom listeners. The following listing demonstrates this style
of coniguration:
@ContextConfiguration

@TestExecutionListeners({

 SysOutTestExecutionListener.class,

 ServletTestExecutionListener.class,

 DependencyInjectionTestExecutionListener.class,

 DirtiesContextTestExecutionListener.class,

 TransactionalTestExecutionListener.class,

 SqlScriptsTestExecutionListener.class

})

public class TestExecutionListenerTest {

}

Working with Spring Tests

[98]

7. To avoid the redeclaration of all default listeners, the mergeMode attribute
of @TestExecutionListeners can be set to MergeMode.MERGE_WITH_
DEFAULTS. The MERGE_WITH_DEFAULTS part indicates that locally declared
listeners should be merged with the default listeners, as shown in the
following listing:

@ContextConfiguration

@TestExecutionListeners(

 listeners = SysOutTestExecutionListener.class,

 mergeMode = MERGE_WITH_DEFAULTS

)

public class TestExecutionListenerTest {

}

The TextContext framework does not force you to extend any particular
class or to implement a speciic interface in order to conigure the application
context. Instead, coniguration is achieved simply by declaring the
@ContextConfiguration annotation at the class level.

Coniguring Spring proiles
Spring 3.1 introduced a feature called proiles. Proiles allow you to build one
package that can be deployed in all environments, such as dev, test, prod, perf,
and so on.

If we deine a system property, spring.profiles.active, or annotate a test class
with @ActiveProfiles and set the active proile names, Spring loads the beans from
the context where the proile name matches or no proile name is deined. We can
create different beans depending on the proile name using an XML coniguration
or the @Profile annotation.

Suppose you have a dev environment and a prod environment; you use a JNDI
lookup for DataSource in prod, but in dev, you build DataSource, as in the
following snippet:

<jee:jndi-lookup id="common-Datasource" jndi-name="java:comp/env/
Datasource"

 resource-ref="true" cache="true" lookup-on-startup="false"

 proxy-interface="javax.sql.DataSource" />

Chapter 3

[99]

In dev, we redeine it as follows:

<bean id="common-Datasource"

 class="org.springframework.jdbc.datasource

 .DriverManagerDataSource"

 autowire-candidate="false"

 >

 <property name="driverClassName"

 value="${jdbc.driverClassName}" />

 <property name="url" value="${jdbc.url}"/>

 <property name="username" value="${jdbc.username}"/>

 <property name="password" value="${jdbc.password}"/>

</bean>

We need to load the DataSource bean depending on the environment. In a dev
environment, the second bean should be loaded, and in prod, the irst <jee>
deinition should be loaded.

The following are the steps to examine the proile feature:

1. Create a com.packt.profile package and an applicationContext.xml ile
and deine three beans. The following is the body of the XML ile:
<beans >

 <bean name="noProfileBean" id="noProfileBean"

 class="java.lang.String">

 <constructor-arg value="I'm a free bean" />

 </bean>

 <beans profile="dev">

 <bean name="message" id="message" class="java.lang.String">

 <constructor-arg value="I'm a dev bean" />

 </bean>

 </beans>

 <beans profile="prod">

 <bean name="message" id="message" class="java.lang.String">

 <constructor-arg value="I'm a prod bean" />

 </bean>

 </beans>

</beans>

Working with Spring Tests

[100]

We deined two proiles, prod and dev, and in each proile we deined a
String bean message, but the content of the message is different in the two
proiles. We also deined a noProfileBean String bean directly under the
default beans with no proile name.

2. Create a test class to load the dev proile context and assert the message bean
value to check that the dev proile value is loaded. The following is the test:
package com.packt.profile;

import org.springframework.test.context.ActiveProfiles;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations="classpath:com/packt/profile/
applicationContext.xml")

@ActiveProfiles(profiles={"dev"})

public class ProfileTest {

 @Autowired

 ApplicationContext context;

 @Test

 public void profile() throws Exception {

 assertEquals("I'm a dev bean",

 context.getBean("message"));

 assertEquals("I'm a free bean",

 context.getBean("noProfileBean"));

 }

}

The @ActiveProfiles annotation takes an array of active proile names. We
passed the value dev to load the dev proile beans. We asserted the message
bean value with I'm a dev bean. Note that the noProfileBean is also
loaded with the value I'm a free bean although we asked to load the dev
proile. When we deine a bean in the absence of a proile name (or just under
the default proile) and try to load a speciic proile, the bean deined under
no proile is also loaded along with the beans with matching proile names.
If we change the @ActiveProfiles annotation to load both the proiles, such
as @ActiveProfiles(profiles={"dev", "prod"}), the Spring context
loads the last deined bean in the application context, as the prod proile is
deined after the dev proile (in applictionContext.xml). So, here it will
load the prod proile bean and the test will fail, as the test asserts the dev
value with a prod value.

Chapter 3

[101]

The following is the failure stack:

In the test, if you change the sequence as @ActiveProfiles(profiles={"pr
od", "dev"}), the test will also fail as the order is deined in the XML ile.

3. Now, remove the @ActiveProfiles annotation, open the Eclipse JUnit run
coniguration, go to the Environment tab, and deine a spring.profiles.
active = dev variable. Rerun the test, and it will pass:

The @ActiveProfiles annotation is used in tests to load a speciic proile(s);
in web/standalone applications, the following environment variable
approach is used:

-Dspring.profiles.active= profile1, profile2 ...

Mocking an environment
The Environment interface and the PropertySource class were added to Spring
3.1 in order to simplify working with properties. In Spring 3.2, MockEnvironment
and MockPropertySource were added to the mock properties in tests. We'll create
a program to conigure a bean from a properties ile value and then mock out the
properties ile value with MockEnvironment and MockPropertySource.

Working with Spring Tests

[102]

The following are the steps:

1. Create a myProp.properties properties ile under the test source folder
and add the following property:

message = I'm the king

2. You can deine a Spring coniguration context by annotating a class with the
@Configuration annotation. The @PropertySource annotation takes the
properties' ilenames and sets the properties to the Environment resource.
Create a MyConfig coniguration class under the com.packt.environment
package. The following is the coniguration class:
@Configuration

@PropertySource({"classpath:myProp.properties"})

public class MyConfig {

 @Resource

 private Environment environment;

 @Bean(name="message")

 public String getMessage() {

 return new environment.getProperty("message");

 }

}

A message String bean is deined with the @Bean annotation, and the String
bean is initialized from the message property value deined in the myProp.
properties ile.

3. Create a test class to load the message bean from the application context and
assert the bean value with I'm the king:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(classes=MyConfig.class)

public class EnvironmentTest {

 @Autowired

 ApplicationContext context;

 @Test

 public void environment() throws Exception {

 assertEquals("I'm the king", context.getBean("message"));

 }

}

The @ContextConfiguration annotation takes the @Configuration class
name to load the context. The test passes as the coniguration class initializes
the bean with the property value.

Chapter 3

[103]

4. Suppose we want to mock the properties ile reading with a mock
value. To mock the Environment value, we need to change the
application context's Environment value at the time of context
initialization. The @ContextConfiguration annotation takes a
ApplicationContextInitializer instance for explicit initialization; we
can create a ApplicationContextInitializer instance and change the
Environment value of ApplicationContext with a MockEnvironment
object. The following is the modiied test:
@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(classes=MyConfig.class, initializers

 = EnvironmentTest.MockPropertyInitializer.class)

public class EnvironmentTest {

 @Autowired

 ApplicationContext context;

 @Test

 public void environment() throws Exception {

 assertEquals("I'm the king",

 context.getBean("message"));

 }

 public static class MockPropertyInitializer implements

 ApplicationContextInitializer

 <ConfigurableApplicationContext> {

 @Override

 public void initialize(ConfigurableApplicationContext

 applicationContext) {

 MockEnvironment mock = new MockEnvironment();

 mock.setProperty("message", "I'm a mockstar");

 applicationContext.setEnvironment(mock);

 }

 }

}

Working with Spring Tests

[104]

Here, MockPropertyInitializer implements the
ApplicationContextInitializer instance and replaces Environment of
applicationContext with MockEnvironment. The @ContextConfigura
tion(classes=MyConfig.class, initializers = EnvironmentTest.

MockPropertyInitializer.class) annotation invokes the
MockPropertyInitializer instance at the time of initialization and
sets the message property with the value I'm a mockstar. When we
run the test, the assertion fails with the expectation I'm a mockstar:

5. Similarly, we can use MockPropertySource with a mock value to
mock out the properties ile values. The following is the modiied
MockPropertyInitializer:

public static class MockPropertyInitializer implements

 ApplicationContextInitializer

 <ConfigurableApplicationContext> {

 @Override

 public void initialize(ConfigurableApplicationContext

 applicationContext) {

 MutablePropertySources propertySources =

 applicationContext.getEnvironment()

 .getPropertySources();

 MockPropertySource mockEnvVars = new MockPropertySource()

 .withProperty("message", "I'm a mock");

 propertySources.replace(StandardEnvironment.

 SYSTEM_ENVIRONMENT_PROPERTY_SOURCE_NAME,

 mockEnvVars);

 }

}

Here, we get a MutablePropertySources class from the Environment value of
applicationContext and then replace the SYSTEM_ENVIRONMENT_PROPERTY_
SOURCE_NAME of MutablePropertySources with MockPropertySource.

Chapter 3

[105]

Mocking the JNDI lookup
Sometimes, we need to mock the <jee:jndi-lookup>/JNDI lookup with a
mock value in the out-of-container tests. The org.springframework.mock.jndi
package contains an implementation of the JNDI SPI, which you can use to set up
a simple JNDI environment for test suites or standalone applications. In the
following example, we'll deine <jee:jndi-lookup> for the DataSource resource
in applicationContext and mock out the lookup from the test. The following are
the steps to mock up a JNDI call:

1. Create an applicationContext.xml ile in the com.packt.jndi package,
with the following details:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:jee="http://www.springframework.org/schema/jee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-4.1.xsd

">

<jee:jndi-lookup id="common-Datasource"

 jndi-name="java:comp/env/Datasource"

 resource-ref="true" cache="true"

 lookup-on-startup="false"

 proxy-interface="javax.sql.DataSource" />

</beans>

2. When we run a JUnit test, the container is not accessible; hence, we need
to mock out the <jee:jndi-lookup> from our JUnit test. We'll create an
ApplicationContextInitializer instance to initialize the application
context and bind a mock DataSource object with the original DataSource
name. The following is the test code:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations = "classpath:com/packt/jndi/
applicationContext.xml",

 initializers =

Working with Spring Tests

[106]

 DataSourceTest.MockJeeLookUpInitializer.class)

public class DataSourceTest {

 @Autowired

 ApplicationContext context;

 @Test

 public void jndiResource() throws Exception {

 assertNotNull(context.getBean("common-Datasource"));

 }

 public static class MockJeeLookUpInitializer implements

 ApplicationContextInitializer

 <ConfigurableApplicationContext> {

 @Override

 public void initialize(

 ConfigurableApplicationContext applicationContext) {

 DataSource mockDataSource = (javax.sql.DataSource)

 Mockito.mock(javax.sql.DataSource.class);

 SimpleNamingContextBuilder builder = new

 SimpleNamingContextBuilder();

 builder.bind("java:comp/env/Datasource",

 mockDataSource);

 try {

 builder.activate();

 } catch (IllegalStateException |

 NamingException e) {

 e.printStackTrace();

 }

 }

 }

}

A SimpleNamingContextBuilder object is created and then a mock
DataSource object is bound to the name java:comp/env/Datasource; inally,
the builder is activated in the ApplicationContextInitializer interface.

Chapter 3

[107]

Using RelectionTestUtils
The org.springframework.test.util package contains ReflectionTestUtils,
which is a collection of relection-based utility methods to set a non-public ield
or invoke a private/protected setter method when testing the application code,
as follows:

• ORM frameworks, such as JPA and Hibernate, condone private or
protected ield access as opposed to public setter methods for properties
in a domain entity

• Spring's support for annotations such as @Autowired, @Inject, and
@Resource, which provide dependency injections for private or protected
ields, setter methods, and coniguration methods

The following example demonstrates the capabilities of ReflectionUtils:

1. Create a Secret class in the com.packt.testutils package with a private
String ield, secret, and a public method, initiate, to encrypt a String and
set it to secret. The following is the class:

package com.packt.testutils;

public class Secret {

 private String secret;

 public void initiate(String key) {

 this.secret = key.replaceAll("a", "z")

 .replaceAll("i", "k");

 }

}

The initiate method replaces all the instances of a with z and all the
instances of i with k. So, if you pass aio to the method, zko will be set
to secret.

2. The following test class invokes the getField and setField methods of
ReflectionUtils to access the private ield of the Secret class:

package com.packt.testutils;

import static org.junit.Assert.*;

import java.lang.reflect.Field;

import org.junit.Test;

import org.springframework.util.ReflectionUtils;

Working with Spring Tests

[108]

public class ReflectionUtilsTest {

 @Test

 public void private_field_access() throws Exception {

 Secret myClass = new Secret();

 myClass.initiate("aio");

 Field secretField =

 ReflectionUtils.findField(Secret.class,

 "secret", String.class);

 assertNotNull(secretField);

 ReflectionUtils.makeAccessible(secretField);

 assertEquals("zko",

 ReflectionUtils.getField(secretField, myClass));

 ReflectionUtils.setField(secretField, myClass,

 "cool");

 assertEquals("cool",

 ReflectionUtils.getField(secretField, myClass));

 }

}

First, it inds the secret ield and makes it accessible; then, it calls the
getField method to access the private ield value, and inally the setField
method is called to set a new value to the private ield.

Working with annotations
The Spring Framework provides a set of Spring-speciic annotations for unit and
integration tests in conjunction with the TestContext framework. The following
are widely used annotations:

• @ContextConfiguration: We have already covered this annotation and
loaded applicationContext for integration tests. This annotation is used to
determine how to load and conigure an ApplicationContext for integration
tests. @ContextConfiguration declares the application context's resource
locations or the annotated classes that will be used to load the context.

• @WebAppConfiguration: This class-level annotation is used to instruct
the Spring context that the ApplicationContext loaded using the
@ContextConfiguration annotation is a WebApplicationContext.
We will use WebApplicationContext in the next section.

Chapter 3

[109]

• @ContextHierarchy: This is a class-level annotation that loads the
parent-child application context in hierarchical order. The following
integration test declares a context hierarchy of two levels, one for the root
WebApplicationContext (loaded using the TestConfig class) and one for
the dispatcher servlet WebApplicationContext (loaded using the WebConfig
class). The WebApplicationContext that is autowired into the test instance
is the one used for the child context:

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration

@ContextHierarchy({

 @ContextConfiguration(classes = TestConfig.class),

 @ContextConfiguration(classes = WebConfig.class)

})

public class IntegrationTests {

 @Autowired

 private WebApplicationContext wac;

 // ...

}

• @ActiveProfiles: This class-level annotation is used to instruct the bean
container about which bean deinition proiles should be active during
application context loading. The following example instructs the container
to load the dev and test proiles:
@ContextConfiguration

@ActiveProfiles({"dev", "test"})

public class MyTest {

}

• @TestPropertySource: This class-level annotation is used to conigure
the locations of the properties iles and the inline properties to be added to
the set of PropertySources of Environment during ApplicationContext
loading. The following example loads a property from the classpath:

@ContextConfiguration

@TestPropertySource("/test.properties")

public class MyTest {

 // class body...

}

Working with Spring Tests

[110]

• @DirtiesContext: This annotation speciies that the ApplicationContext
has been dirtied during the execution of a test (such as, it changed the state
of a singleton bean) and should be closed. When an application context is
dirtied, it is removed from the testing framework's cache and closed. This
annotation can be used as both a class- and method-level within the same
test class.

• @TestExecutionListeners: We have already covered this class-level
annotation before.

• @Timed: This method-level annotation indicates that the annotated test
method must inish execution in a speciied time period (in milliseconds). If
the text execution time exceeds the speciied time period, the test fails. The
following is an example of @Timed:

@Timed(millis=2000)

public void testTwoSecondsTimeout() {

 // some logic that should not take longer than 2 seconds to
execute

}

• @Repeat: This method-level annotation indicates that the test method
must be executed repeatedly. The number of times the test method is
to be executed is speciied in the annotation:
@Repeat(100)

@Test

public void testToBeRepeated() {

 // ...

}

Testing Spring MVC
This section will mock the request and session scope beans with
MockHttpServletRequest and MockHttpSession:

1. Create a dynamic web project, SpringWebTest, add the Spring-mvc jars
to the classpath, and modify the web.xml ile (stored under <project>/
WebContent/WEB-INF/) to enable Spring DispatcherServlet as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://
java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_3_0.xsd" id="WebApp_ID" version="3.0">

 <display-name>SpringWebTest</display-name>

Chapter 3

[111]

 <servlet>

 <servlet-name>dispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/dispatcher-servlet.xml

 </param-value>

 </context-param>

</web-app>

2. Create a LoginService Java class in the com.packt.controller package
to set the user ID and password and then validate them. The following is
the class:

public class LoginService {

 private String userId;

 private String password;

 //ignoring getters and setters for brevity

 public boolean isValid(){

 return getPassword().equals(getUserId());

 }

}

The isValid() method returns true when the username and password
match.

3. Create a LoginDetails class in the com.packt.controller package to store
the user ID and the irst login time. The following is the class:
 public class LoginDetails {

 private String user;

 private Date loginTime;

 public LoginDetails(String user, Date loginTime) {

 this.user = user;

 this.loginTime = loginTime;

Working with Spring Tests

[112]

 }

 public String getUser() {

 return user;

 }

 public Date getLoginTime() {

 return loginTime;

 }

}

4. Create a Controller class to handle requests. We'll have three requests: the
initial request "/" will load the login page, the login page submit will invoke
the "/onLogin" request, and validate the user ID and password. If the login
is invalid, route the user to the login page; otherwise, store the user ID and
login time in the session and pass the request to the greetings page. On
the greetings page, the user can click on the Login details hyperlink to
view the login time and user ID, and this will generate a "/onLoginDetail"
request and get the login details from the session. The controller will be
dependent on LoginService to get the user ID and password from the
request and validate them, and on LoginDetails to fetch the user ID
and login time from the session. The following is the controller:

@Controller

@Scope("session")

public class LoginController implements Serializable {

 @Autowired

 private LoginService loginService;

 @Autowired

 private LoginDetails loginDetails;

 @RequestMapping({ "/", "/login" })

 public String onStartUp(ModelMap model) {

 return "login";

 }

 @RequestMapping({ "/onLogin" })

 public ModelAndView onLogin(ModelMap model, HttpSession

 session, HttpServletRequest request) {

 if (!loginService.isValid()) {

 model.addAttribute("error", "Invalid user

 name and password");

 return new ModelAndView("login", model);

 }

Chapter 3

[113]

 session.setAttribute("loggedInTime", new Date());

 session.setAttribute("userId",

 request.getParameter("userId"));

 model.addAttribute("name", "Welcome reader!");

 return new ModelAndView("greetings", model);

 }

 @RequestMapping({ "/onLoginDetail" })

 public String onLoginDetail(ModelMap model) {

 model.addAttribute("name",

 loginDetails.getUser());

 model.addAttribute("time",

 loginDetails.getLoginTime());

 return "greetings";

 }

}

5. Add an application context, dispatcher-servlet.xml, to deine the
beans. The loginService bean is deined in the request scope, and its
properties are set from the request parameters using the p namespace. The
loginDetails bean is deined in the session scope, and its constructor
arguments are set from the session attributes using the c namespace:

<bean id="loginService"

 class="com.packt.controller.LoginService"

 scope="request"

 p:userId="#{request.getParameter('userId')}"

 p:password="#{request.getParameter('password')}">

 <aop:scoped-proxy />

</bean>

The <aop:scoped-proxy> is used to expand the scope of the beans:

 <bean id="loginDetails"

 class="com.packt.controller.LoginDetails"

 c:user="#{session.getAttribute('userId')}"

 c:loginTime="#{session.getAttribute('loggedInTime')}"

 scope="session">

 <aop:scoped-proxy />

 </bean>

 <context:component-scan base-package="com.packt" />

 <bean

 class="org.springframework.web.servlet.view.

Working with Spring Tests

[114]

 InternalResourceViewResolver">

 <property name="prefix">

 <value>/WEB-INF/pages/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

 </bean>

Also, the view resolver tells the Spring container to resolve the views from
the /WEB-INF/pages folder with the .jsp sufix. This means that if the
controller returns a view named greetings, then resolve the logical view
to a physical greetings.jsp page under the /WEB-INF/pages folder.

6. How can we get the session and request scope beans in our JUnit test and
set the request and session attributes? The following test class autowires the
request-scoped LoginService and session-scoped LoginDetails; it also
veriies the logic that isValid() checks the username and password, and
the session attributes are properly passed to LoginDetails:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations ="classpath:beans.xml")

@WebAppConfiguration

public class LoginControllerTest {

 @Autowired

 private LoginService loginService;

 @Autowired

 private LoginDetails loginDetails;

 @Autowired MockHttpServletRequest request;

 @Autowired MockHttpSession session;

 @Test

 public void requestScope() throws Exception {

 request.setParameter("userId", "rock");

 request.setParameter("password", "rock");

 assertTrue(loginService.isValid());

 }

 @Test

 public void sessionScope() throws Exception {

 Date now = new Date();

 session.setAttribute("userId", "john");

 session.setAttribute("loggedInTime", now);

Chapter 3

[115]

 assertEquals("john",loginDetails.getUser());

 assertEquals(now,loginDetails.getLoginTime());

 }

}

The following things took place in the preceding test:

• We loaded a WebApplicationContext for our test by annotating the test
class with @WebAppConfiguration

• We injected the mock request or session into our test instance and
prepared test data as appropriate, such as setting the request parameters
and session attributes

• We invoked the web component from the conigured
WebApplicationContext via dependency injections, and asserted
the values against the mocks

Mocking the servlet container with
MockMvc
The design behind the Spring MVC test is to test the controller by performing actual
requests and generating responses, as they would be at runtime. MockMvc is used
to mock the servlet container, and it can perform a request and verify the resulting
response status and response elements. We'll build a Spring controller to generate a
JSON response as in the case of a rest controller and then use MockMvc to unit test
the request and the response:

1. Create a serializable Employee POJO class that holds employee information,
such as ID, name, and salary.

2. Create a controller to return a speciic employee and all employees with /
employees/{id} and /employees/ urls. We'll create a HashMap and store
dummy employees. The following is the class:

@Controller

public class HRController {

 private Map<Integer, Employee> database = new HashMap<Integer,

 Employee>();

 public HRController() {

 loadDummyData();

 }

 private void loadDummyData() {

 Employee john = new Employee();

 john.setId(1);

 john.setName("John Doe");

Working with Spring Tests

[116]

 john.setSalary(100.00);

 database.put(1, john);

 Employee karen = new Employee();

 karen.setId(2);

 karen.setName("Karen Cushing");

 karen.setSalary(500.00);

 database.put(2, karen);

 }

 @RequestMapping(value = "/employees/{id}", method =

 RequestMethod.GET)

 public @ResponseBody

 Employee retrieve(@PathVariable int id) {

 return database.get(id);

 }

 @RequestMapping(value = "/employees", method =

 RequestMethod.GET)

 public @ResponseBody

 List<Employee> retrieveAll() {

 return new ArrayList<Employee>(database.values());

 }

}

Note that the retrieve and retrieveAll methods are annotated
with @RequestMapping(value = "/employees/{id}", method =
RequestMethod.GET) and @RequestMapping(value = "/employees",
method = RequestMethod.GET), respectively to map the URLs. Also, both
the methods are annotated with an @ResponseBody annotation to return
response as JSON object.

3. When we run the web application and open the explorer to load the
http://localhost:8080/SpringWebTest/employees/ URL, the
following JSON output is displayed:

Chapter 3

[117]

4. When we type http://localhost:8080/SpringWebTest/employees/1,
this is how the output looks:

5. We can examine the integration of the web tier with other tiers in isolation
from a web container using the org.springframework.test.web.
servlet.MockMvc, org.springframework.test.web.servlet.request.

MockMvcRequestBuilders, and org.springframework.test.web.
servlet.result.MockMvcResultMatchers classes. The following JUnit test
demonstrates the usages of MockMvc:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations ="classpath:beans.xml")

@WebAppConfiguration

public class HRControllerTest {

 @Autowired

 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Before public void setup() {

 this.mockMvc =

 MockMvcBuilders.webAppContextSetup

 (this.wac).build();

 }

 @Test public void getEmployee() throws Exception {

 this.mockMvc.perform(get("/employees/1").

 accept(MediaType.parseMediaType(

 "application/json;charset=UTF-8")))

 .andExpect(status().isOk())

 .andExpect(content().contentType(

 "application/json;charset=UTF-8"))

 .andExpect(jsonPath("$.name").value("John

 Doe"))

 .andExpect(jsonPath("$.salary").value(100.00))

 .andExpect(jsonPath("$.id").value(1));

 }

}

Working with Spring Tests

[118]

The MockMvcBuilders class needs a WebApplicationContext to build
a MockMvc object; the WebApplicationContext is autowired using the
@WebAppConfiguration annotation. The MockMvc object is used to perform
a GET request to /employees/1 and then it veriies that the response status
is 200 (isOk()) as well as the JSON response. The jsonPath("$.name").
value("John Doe") statement checks whether the output JSON contains
a name ield and its value is John Doe. So, we just bypassed the servlet
container to test the real request/response handling.

Handling transactions in Spring tests
Spring provides a module/utility library for integration tests. The following are
the steps to write JUnit tests using the Spring transaction management API and
SpringJUnit4ClassRunner.

We'll reuse the DataAccess project used in Chapter 1, Getting Familiar with the
Spring Framework.

1. Create a source folder, integration, directly under the DataAccess project.
Spring supports XML-based coniguration and wiring beans. Create an
XML ile, integration.xml, in the integration source package. Modify
the XML and deine the dataSourceBean, transactionManagerBean, and
JdbcTemplateBean Spring beans. The following is the XML body:
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-4.1.xsd">

 <bean id="dataSourceBean"

 class="org.springframework.jdbc.datasource.

 DriverManagerDataSource">

 <property name="driverClassName"

 value="org.apache.derby.jdbc.EmbeddedDriver"/>

 <property name="url"

 value="jdbc:derby:derbyDB;create=true"/>

 <property name="username" value="dbo"/>

 </bean>

 <bean id="transactionManagerBean"

 class="org.springframework.jdbc.datasource.

 DataSourceTransactionManager">

Chapter 3

[119]

 <constructor-arg ref="dataSourceBean"/>

 </bean>

 <bean id="jdbcTemplateBean"

 class="org.springframework.jdbc.core.JdbcTemplate">

 <property name="dataSource" ref="dataSourceBean"/>

 </bean>

 </beans>

We deined a dataSourceBean bean with driverClassName, url,
and username. The dataSourceBean reference is passed to the
jdbcTemplateBean and transactionManagerBean beans.

2. Spring supports automatic transaction rollback after test execution. It helps
us to shield the development database from getting corrupted. A transaction
manager bean reference is required to set the test runner before test
execution. SpringJUnit4ClassRunner handles the integration tests. Add a
PhoneBookDerbySpringDaoIntegrationTest JUnit test and the following
lines to it:

@ContextConfiguration({ "classpath:integration.xml" })

@TransactionConfiguration(transactionManager =
"transactionManagerBean", defaultRollback = true)

@Transactional

@RunWith(SpringJUnit4ClassRunner.class)

public class PhoneBookDerbySpringDaoIntegrationTest {

 @Autowired

 JdbcTemplate jdbc;

 PhoneBookDerbySpringDao dao;

 @Before

 public void init() {

 dao = new PhoneBookDerbySpringDao(jdbc);

 }

 @Test

 public void integration() throws Exception {

 PhoneEntry entry = newEntry("12345", "Mark", "Smith");

 //test create

 assertTrue(dao.create(entry));

Working with Spring Tests

[120]

 //check retrieval

 List<PhoneEntry> phoneEntries =

 dao.searchByFirstName("Mark");

 //check creation

 assertFalse(phoneEntries.isEmpty());

 //update last name

 entry.setLastName("Boucher");

 //update the entry

 assertTrue(dao.update(entry));

 //retrieve the entry by first name

 phoneEntries = dao.searchByFirstName("Mark");

 //verify Mark Boucher exists

 assertFalse(phoneEntries.isEmpty());

 assertEquals("Boucher",

 phoneEntries.get(0).getLastName());

 //delete Mark Boucher from Phonebook

 dao.delete(entry.getPhoneNumber());

 //retrieve entry with first name Mark

 phoneEntries = dao.searchByFirstName("Mark");

 //verify that Mark was deleted

 assertTrue(phoneEntries.isEmpty());

 }

The @ContextConfiguration({ "classpath:integration.xml" })
annotation instructs the JUnit runner to load Spring beans from a classpath
location. It will load three beans from the integration.xml ile.
The class-level @Transactional annotation makes all methods transactional.

The @TransactionConfiguration(transactionManager =
"transactionManagerBean", defaultRollback = true) annotation
deines the transaction manager, and the defaultRollback attribute tells the
transaction manager to roll back all transactions at the end of a given test.

Chapter 3

[121]

The following things occur in sequence when the JUnit test is run:
 ° Spring beans are loaded from the integration.xml file.

 ° A transaction manager is configured to roll back all transactions.

 ° The jdbcTemplateBean bean is wired to the test class member jdbc.

 ° The init method creates a new instance of the
PhoneBookDerbySpringDao class and passes jdbc to dao.

 ° The test gets executed and in turn it creates, updates, and deletes
PhoneEntry.

 ° After test execution, the transaction manager rolls back the
transaction. No data is created, updated, or deleted in the
PhoneBook table.

3. When the JUnit test is run, the following Spring console log is shown:
INFO: Began transaction (1): transaction manager [org.
springframework.jdbc.datasource.DataSourceTransactionManager@56
9c60]; rollback [true]

Apr 11, 2014 10:02:25 PM org.springframework.test.context.
transaction.TransactionalTestExecutionListener endTransaction

INFO: Rolled back transaction after test execution for test
context [[TestContext@134eb84 testClass =
PhoneBookDerbySpringDaoIntegrationTest, testInstance =
com.packt.database.dao.
PhoneBookDerbySpringDaoIntegrationTest@1522de2,
 testMethod =
integration@PhoneBookDerbySpringDaoIntegrationTest,
testException = [null], mergedContextConfiguration =
[MergedContextConfiguration@425743 testClass =
PhoneBookDerbySpringDaoIntegrationTest, locations =
'{classpath:integration.xml}', classes = '{}',
activeProfiles = '{}', contextLoader =
'org.springframework.test.context.support.DelegatingSmartCo
ntextLoader']]]

The log shows that a transaction has begun and inally the transaction is
rolled back, but the transaction was not rolled back due to any exception,
rather it was rolled back due to the [defaultRollback = true]
transactional setting. The log shows that testException = null,
which implies that no exception was thrown.

Working with Spring Tests

[122]

Summary
This chapter covered every aspect of unit testing the Spring applications. It
started with the TestContext framework and explored the JUnit 4 enabled
SpringJUnit4ClassRunner.

We also looked at Spring proiles to work with a different set of coniguration iles,
explored the Spring Environment interface, and how to mock the Environment
interface with MockEnvironment and MockPropertySource. Moreover, we used
the ReflectionTestUtils methods to access private ields of the Spring beans,
saw the provided usage and examples of Spring annotations for testing, unit tested
the MVC application with MockHttpServletRequest, MockHttpSession, and
ModelAndViewAssert. We mocked the servlet container with MockMvc to handle
actual requests and responses as they will be handled at runtime, and performed
real Spring integration and transaction management with the @Transactional,
@TransactionConfiguration, and @Rollback annotations.

The next chapter focuses on how to mock Spring beans with Mockito. This chapter
covered the integration testing of Spring services, while the next chapter covers the
unit testing of the web layer, service layer, and DAO layer with Mockito.

Resolving Out-of-container

Dependencies with Mockito
The preceding chapter covered the container Spring integration testing and the
Spring testing framework. This chapter deals with the role of the Mockito framework
in Spring unit testing and how to resolve container dependency with Mockito. The
following topics are covered in depth in this chapter:

• Unit testing the service layer with Mockito

• Unit testing the DAO layer with Mockito
• Unit testing the web layer with Mockito

Enterprise applications change over time. There are several reasons for change,
such as the addition of new features, bug ixing, improvement in the non functional
requirements such as performance or scalability, regulatory changes such as ICD-
10 (ICD-10 is the 10th revision of the International Statistical Classiication of
Diseases and Related Health Problems (ICD), a medical classiication list by the
World Health Organization (WHO)), adapting to modern technology such as
implementing JPA, and so on. It doesn't matter how good a software system is, it
will be transformed over time. However, a loosely coupled system is more resilient
to change than a rigid system. In a tightly coupled system, when we modify a part of
the system, the other parts of the system break and we need to ix those parts. This
in turn increases the complexity and the degree of reworking required. We should
always strive for loose coupling. To minimize coupling, we can divide our system
into multiple layers, such as the data access layer, controller layer, service layer, and
so on. Once we implement the layers, we can localize the change in one layer without
affecting the other layers, such that we can change the data access implementation
from Spring JDBC to Hibernate without affecting the service layer.

We'll build a layered Spring web application and unit test each layer. We'll start with
the presentation layer and go over to the service and data access layers.

Resolving Out-of-container Dependencies with Mockito

[124]

Unit testing the web layer
We'll build a simple Spring web application with the following functionalities:

• User registration

• User login

We'll create the following three layers:

• A data access layer to store and retrieve data

• A service layer to perform business logic and data validation

• Spring controllers to present the UIs and invoke services

In this section, we'll build the controllers and unit test them in isolation from the web
server. We have to mock out the service and data access logic.

Perform the following steps to build the web application:

1. Create a dynamic web project, SpringWeb, and copy the Spring JARs
from the Spring MVC project we created in Chapter 1, Getting Familiar
with the Spring Framework.

2. Add the following lines to the web.xml ile in order to conigure Spring
MVC. We have already covered the details in Chapter 1, Getting Familiar
with the Spring Framework:

<web-app xmlns:xsi="...">

 <display-name>SpringWeb</display-name>

 <servlet>

 <servlet-name>dispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/dispatcher-servlet.xml

 </param-value>

 </context-param>

</web-app>

Chapter 4

[125]

3. Create a dispatcher-servlet.xml ile under /WEB-INF to load the web
application context, and add the following line to the ile in order to read the
bean deinitions from a classpath application context ile called beans.xml:

 <import resource="classpath:beans.xml"/>

4. In the source folder, create an XML ile called beans.xml to deine the beans.
Add the following lines to the ile:
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"

 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"
xmlns:c="http://www.springframework.org/schema/c"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-
4.1.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-
4.1.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-4.1.xsd

 http://www.springframework.org/schema/aop

 http://www.springframework.org/schema/aop/spring-aop-4.1.xsd

 http://www.springframework.org/schema/mvc

 http://www.springframework.org/schema/mvc/spring-mvc-4.1.xsd">

 <mvc:annotation-driven />

 <context:component-scan base-package="com.packt" />

 <bean

 class="org.springframework.web.servlet.view.

 InternalResourceViewResolver">

 <property name="prefix">

 <value>/WEB-INF/pages/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

 </bean>

Resolving Out-of-container Dependencies with Mockito

[126]

The preceding XML code tells the Spring container to scan the com.packt
package for bean deinitions. MVC is annotation driven and also deines a
Spring view resolver bean. The view resolver embodies that a logical view
name should be mapped to a physical .jsp ile under the /WEB-INF/pages
folder.

5. Create a login.jsp page under /WEB-INF/pages. Add the following
lines to create a login form using the Spring tag library deined in
uri="http://www.springframework.org/tags/form" and to display a
hyperlink for new user sign-up:

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/
form"%>

 <div>

 <h2>Login </h2>

 <sf:form method="POST" action="/SpringWeb/onLogin">

 <fieldset>

 <table cellspacing="0">

 <tr>

 <th><label for="userId">User Id:</label></th>

 <td><input type="text" name="userId"

 id="userId" size="10" maxlength="10"/> </td>

 </tr>

 <tr>

 <th><label for="password">Password:</label></th>

 <td><input type="password" name="password"

 id="password" size="10" maxlength="10"/></td>

 </tr>

 <tr>

 <td colspan="2">

 <input type="submit" value="Submit" /></td>

 </tr>

 </table>

 </fieldset>

 </sf:form>

 </div>

 <h3>Sign Up</h3>

Note that the form action is "/SpringWeb/onLogin", which means that
when the form is submitted, a Spring controller method annotated with
@RequestMapping({ "/onLogin" }) will handle the processing of the
request. The sf tag is deined in Spring's taglib and sf:form represents
an HTML form tag.

Chapter 4

[127]

6. Create a register.jsp page under /WEB-INF/pages to display user
registration. A user can enter the login name, password, irst name, and last
name, and they also click on the login page hyperlink to go back to the login
page. This is how the code for the page will look:

 <div>

 <h2>Register User</h2>

 <sf:form method="POST" action="/SpringWeb/onRegistration">

 <fieldset>

<table cellspacing="0">

 <tr>

 <th><label for="userId">User Id:</label></th>

 <td><input type="text" name="userId"

 id="userId" size="10" maxlength="10"/></td>

 </tr>

 <tr>

 <th><label for="password">Password:</label></th>

 <td><input type="password" name="password"

 id="password" size="10" maxlength="10"/></td>

 </tr>

 <tr>

 <th><label for="fname">First Name:</label></th>

 <td><input type="fname" name="fname"

 id="fname" size="20" maxlength="20"/></td>

 </tr>

 <tr>

 <th><label for="lname">Last Name:</label></th>

 <td><input type="lname" name="lname"

 id="lname" size="20" maxlength="20"/></td>

 </tr>

 <tr>

 <td colspan="2"><input type="submit"

 value="Submit" /></td>

 </tr>

</table>

</fieldset>

</sf:form>

</div>

<h3>Login</h3>

Resolving Out-of-container Dependencies with Mockito

[128]

7. We'll create a controller class to display the initial login page and handle
the login form submission. Create a LoginController class under the com.
packt.controller package to handle the user login. The onStartUp method
will return a view named login to display the login.jsp page, and the
method will be annotated with @RequestMapping({ "/", "/login" }),
which signiies that when a user enters the context path to the browser
(the / symbol), the login.jsp page is loaded. Also, from the registration
page, the user can click on the login ("/login") hyperlink to come back to the
login page. The following code snippet shows the LoginController class:

 @Controller

 public class LoginController implements Serializable {

 private static final long serialVersionUID = 1L;

 @RequestMapping({ "/", "/login" })

 public String onStartUp(ModelMap model) {

 return "login";

 }

 }

The @Controller annotation signiies that the class is a Spring controller.

8. Create an onLogin method to handle the login form submission, and
annotate the method with @RequestMapping({ "/onLogin" }) as we
deined the form action on the login page. The method has to validate the
username and password against a stored value (the database table). We'll
create a request-scoped service to read the user ID and password from the
request and then validate the same against the database. We'll call the service
LoginService. This service will deine an isValid() method to validate the
user credentials. Make the following change to Spring's application context
in order to scope the service request and read the user ID and password from
the request for validation:

<bean id="loginService"

 class="com.packt.controller.LoginService"

 scope="request"

 p:userId="#{request.getParameter('userId')}"

 p:password="#{request.getParameter('password')}">

 <aop:scoped-proxy />

</bean>

We have already covered request-scoped beans, so we will not explain them
here again. Make the following changes to the controller class:

 @RequestMapping({ "/onLogin" })

 public ModelAndView onLogin(ModelMap model) {

Chapter 4

[129]

 if (!loginService.isValid()) {

 model.addAttribute("error", "Invalid user name and

 password");

 return new ModelAndView("login", model);

 }

 String userName = loginService.retrieveName();

 model.addAttribute("name", "Welcome "+userName+"!");

 return new ModelAndView("greetings", model);

 }

If the login fails, it builds an error message that says invalid username
or password. Otherwise, LoginService retrieves the username for the
logged-in user and builds a greeting message.

9. Now, create another controller class to handle the user registration. We'll
call this class RegistrationController. We need a service to handle user
registration, so create a request-scoped service, RegistrationService, to
read the userId, password, firstName, and lastName values, and then
validate whether the user ID exists or not. Update the application context
to register the request-scoped service, as follows:

<bean id="registrationService"

 class="com.packt.controller.RegistrationService"

 scope="request"

 p:userId="#{request.getParameter('userId')}"

 p:password="#{request.getParameter('password')}"

 p:firstName="#{request.getParameter('fname')}"

 p:lastName="#{request.getParameter('lname')}">

 <aop:scoped-proxy />

</bean>

Add a showRegisterView method and annotate it with @RequestMapping({
"/register" }) to display the registration page, as shown here:

@RequestMapping({ "/register" })

public String showRegisterView(ModelMap model) {

 return "register";

}

Add another method, onRegistration, to handle the user registration
action. We will use the following method:
@RequestMapping({ "/onRegistration" })

public ModelAndView onRegistration(ModelMap model) {

 String error = registrationService.hasError();

 if(error != null){

Resolving Out-of-container Dependencies with Mockito

[130]

 model.addAttribute("message", "Cannot create the

 user due to following error ="+error);

 }else{

 model.addAttribute("message", "User created");

 }

 return new ModelAndView("register", model);

}

This method delegates the user input validation task to the service; the
service returns an error if the user ID exists and then the controller shows
the error message to the user, otherwise the user is created.

10. We have created the controller classes, and now we can unit test the
controller methods. We'll mock out the services using Mockito. Create a
source package, test, for holding the test iles and create a com.packt.
controller package under test. Add a JUnit test, LoginControllerTest,
under com.packt.controller. We need to unit test an invalid login and a
successful login scenario. We'll add two tests, as follows:
import static org.mockito.Mockito.when;

import static org.junit.Assert.*;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.runners.MockitoJUnitRunner;

import org.springframework.ui.ModelMap;

import org.springframework.web.servlet.ModelAndView;

@RunWith(MockitoJUnitRunner.class)

public class LoginControllerTest {

 @Mock

 private LoginService loginService;

 private LoginController controller;

 @Before

 public void setup(){

 controller = new LoginController();

 controller.setLoginService(loginService);

 }

 @Test

 public void when_invalid_login_error_message_is

 _generated() {

Chapter 4

[131]

 when(loginService.isValid()).thenReturn(false);

 ModelMap model = new ModelMap();

 ModelAndView modelAndView = controller.onLogin(model);

 assertNotNull(modelAndView.getModel().get("error"));

 assertEquals("login", modelAndView.getViewName());

 }

 @Test

 public void when_a_valid_login_greeting_message_

 is_generated() {

 when(loginService.isValid()).thenReturn(true);

 ModelMap model = new ModelMap();

 ModelAndView modelAndView = controller.onLogin(model);

 assertNull(modelAndView.getModel().get("error"));

 assertNotNull(modelAndView.getModel().get("name"));

 assertEquals("greetings", modelAndView.getViewName());

 }

}

We created a mock LoginService and injected the mocked service to
the controller in the setup method. In the case of an invalid login test, we
stubbed the isValid method to return false and then asserted the error
and view name. Similarly, in the case of the successful login test, we stubbed
the isValid method to return true and subsequently asserted that no error
message was set, and the greetings view was returned by the controller.

11. Create a test for RegistrationController and mock
RegistrationService. The following code snippet is the test:

 @RunWith(MockitoJUnitRunner.class)

 public class RegistrationControllerTest {

 @Mock

 private RegistrationService registrationService;

 private RegistrationController controller;

 @Before

 public void setup(){

 controller = new RegistrationController();

 controller.setRegistrationService
 (registrationService);

 }

 @Test

 public void when_invalid_user_id_geneartes_error_message() {

Resolving Out-of-container Dependencies with Mockito

[132]

 when(registrationService.hasError())
 .thenReturn("error");

 ModelMap model = new ModelMap();

 ModelAndView modelAndView = controller.onRegistration(model);

 String message = (String)

 modelAndView.getModel().get("message");

 assertNotNull(message);

 assertTrue
 (message.contains(RegistrationController.ERROR));

 }

 @Test

 public void when_valid_user_id_creates_user() throws Exception {

 when(registrationService.hasError()).thenReturn(null);

 ModelMap model = new ModelMap();

 ModelAndView modelAndView = controller.onRegistration(model);

 String message = (String)

 modelAndView.getModel().get("message");

 assertNotNull(message);

 assertTrue
 (message.contains(RegistrationController.SUCCESS));

 }

}

We unit tested the Spring controllers in isolation from the container. We didn't test
the infrastructure, such as Spring annotations. In the next section, we'll unit test
the services.

Unit testing the service layer
RegistrationService validates the following rules:

• The user ID, password, irst name, or last name cannot be empty
• The irst and last names cannot contain numbers
• The irst and last names cannot contain special characters
• The password should contain at least one special character

• There cannot be a duplicate user ID

Chapter 4

[133]

RegistrationService should call the database to determine whether a user ID
exists or not. We'll create a data access interface for persisting user and to check
whether a duplicate user ID is present. Perform the following steps to build the
service, create a data access object API, and unit test the service:

1. Create a RegistrationDao interface in the com.packt.dao package, and add
the following methods to check for duplicate users and to create a new user:

public interface RegistrationDao {

 boolean isExistingUserId(String userId);

 void create(String userId, String password, String

 firstName, String lastName);

}

2. Modify the RegistrationService class to have a reference to
RegistrationDao and its getters/setters, and add the validation
logic. The following is the modiied method:
 public String hasError() {

 if (isEmpty(userId)) {

 return "Please enter user id";

 }

 if (isEmpty(password)) {

 return "Please enter password";

 }

 if (isEmpty(firstName)) {

 return "Please enter first name";

 }

 if (isEmpty(lastName)) {

 return "Please enter last name";

 }

 if (isSpecial(firstName) || isSpecial(lastName)) {

 return "Name cannot contain special characters";

 }

 if (isNumeric(firstName) || isNumeric(lastName)) {

 return "Name cannot contain numbers";

 }

 if (!isSpecial(password)) {

Resolving Out-of-container Dependencies with Mockito

[134]

 return "Password should contain a special

 character";

 }

 if (registrationDao.isExistingUserId(userId)) {

 return "User Id exists";

 }

 try {

 registrationDao.create(userId, password,

 firstName, lastName);

 } catch (Exception e) {

 return "Could not create user.";

 }

 return null;

 }

The class deines three methods for checking special characters, empty
Strings, and numeric Strings and then uses these methods for validation. This
class calls the registrationDao.isExistingUserId() method to check the
duplicate user ID and inally calls the registrationDao.create() method
to create a new user.

3. Now, create a JUnit test, RegistrationServiceTest, under the test source
folder and add the following lines:

@RunWith(MockitoJUnitRunner.class)

public class RegistrationServiceTest {

 private RegistrationService registrationService;

 @Mock

 private RegistrationDao registrationDao;

 Set up the service to use the mock DAO:
@Before public void setup(){

 registrationService = new RegistrationService();

 registrationService.setRegistrationDao(registrationDao);

}

4. Verify that when any input is empty, the error is shown to the user. It will be
sophisticated and handy if we can create small tests for each mandatory ield,
but I'm creating a big input validation method to reduce code duplication:

 @Test

 public void when_empty_imputs_raises_error() {

 String error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(PLEASE_ENTER_USER_ID, error);

Chapter 4

[135]

 registrationService.setUserId("john123");

 error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(PLEASE_ENTER_PASSWORD, error);

 registrationService.setPassword("Passw@rd");

 error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(PLEASE_ENTER_FIRST_NAME, error);

 registrationService.setFirstName("john");

 error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(PLEASE_ENTER_LAST_NAME, error);

 registrationService.setLastName("doe");

 error = registrationService.hasError();

 assertNull(error);

 }

5. Verify that when the name contains a number, an error is raised:
 @Test

 public void when_name_contains_number_raises_error() {

 registrationService.setFirstName("john1");

 registrationService.setLastName("doe");

 registrationService.setUserId("john123");

 registrationService.setPassword("Passw@rd");

 String error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(NAME_CONTAINS_NUMBER, error);

 }

6. Verify that when the name contains a special character, such as @, an error
is raised:

 @Test

 public void when_name_contains_special

 _chars_raises_error(){

 registrationService.setFirstName("john@");

 registrationService.setLastName("doe");

 registrationService.setUserId("john123");

 registrationService.setPassword("Passw@rd");

Resolving Out-of-container Dependencies with Mockito

[136]

 String error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(NAME_CONTAINS_SPECIAL_CHAR, error);

 }

7. Stub the DAO's isExistingUserId() method using the Mockito API to
return true in order to emulate a duplicate user ID, and then verify that an
error is raised for the duplicate user ID:

 @Test

 public void when_user_exists_raises_error(){

 when(registrationDao.isExistingUserId
 (Mockito.anyString())).thenReturn(true);

 registrationService.setFirstName("john");

 registrationService.setLastName("doe");

 registrationService.setUserId("john123");

 registrationService.setPassword("Passw@rd");

 String error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(USER_ID_EXISTS, error);

 }

8. Here, stub the void create() method to throw an exception using the
Mockito API. To emulate this, when a database save fails, no error is
percolated and an error message is shown to the user instead:

 @Test

 public void when_user_creation_fails_then_raises_error() {

 doThrow(new RuntimeException("save failed")).

 when(registrationDao).create(anyString(), anyString(),
 anyString(), anyString());

 registrationService.setFirstName("john");

 registrationService.setLastName("doe");

 registrationService.setUserId("john123");

 registrationService.setPassword("Passw@rd");

 String error = registrationService.hasError();

 assertNotNull(error);

 assertEquals(COULD_NOT_CREATE_USER, error);

 }

9. Finally, check the happy path where the user inputs are valid, user ID is
unique, and database save succeeds:

 @Test

 public void when_no_validation_error_then_creates_user(){

 registrationService.setFirstName("john");

 registrationService.setLastName("doe");

Chapter 4

[137]

 registrationService.setUserId("john123");

 registrationService.setPassword("Passw@rd");

 assertNull(registrationService.hasError());

 }

}

We mocked the database layer and covered the unit testing of the service layer. You
can follow the approach and create a JUnit test for the LoginService; what you need
to do is create an interface for the DAO layer and mock the interface. Next, we'll
cover how to mock the database APIs and perform the unit testing of the DAO layer.

Unit testing the data access layer
The data access layer is responsible for managing the database connection, retrieving
data from the database, and storing data back to the database. Unit testing the data
access layer is very important; if anything goes wrong in this layer, the application
will fail. We can unit test the data access logic in isolation from the database and
perform integration testing to verify the application and database integrity.

We'll use the Derby database to store real user data. We'll create a utility class to
create a database, derbyDB, and create a table with details such as user_data(userId
varchar(50), password varchar(50), fname varchar(40), and lname
varchar(40)). Skipping the class details for brevity, you can download the class
from the Packt Publishing site. The class name is DatabaseManager and the package
is com.packt.dao under the src source package.

The following are the steps to build the Spring DAO layer:

1. Modify the beans.xml ile to deine a data-source and a JDBC template:
<bean id="dataSource" class="org.springframework.

 jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName"

 value="org.apache.derby.jdbc.EmbeddedDriver"/>

 <property name="url"

 value="jdbc:derby:derbyDB;create=true"/>

 <property name="username" value="dbo"/>

</bean>

<bean id="transactionManager"

 class="org.springframework.jdbc

 .datasource.DataSourceTransactionManager">

 <constructor-arg ref="dataSource"/>

</bean>

Resolving Out-of-container Dependencies with Mockito

[138]

<bean id="jdbcTemplate" class="org.springframework.

 jdbc.core.JdbcTemplate">

 <property name="dataSource" ref="dataSource"/>

</bean>

2. Create a RegistrationDaoSpring class and implement RegistratioDao.
The following is the Spring-enabled DAO class:
public class RegistrationDaoSpring implements RegistrationDao {

 private final JdbcTemplate jdbcTemplate;

 public RegistrationDaoSpring(JdbcTemplate jdbcTemplate) {

 this.jdbcTemplate = jdbcTemplate;

 }

@Override

 public boolean isExistingUserId(String userId) {

 return jdbcTemplate.queryForInt(

 "SELECT count(*) FROM user_data where userId=?",

 new Object[] { userId }) > 0;

 }

@Override

 public void create(String userId, String password,
 String firstName, String lastName) {

 int rowCount = jdbcTemplate.update(
 "insert into user_data values
 (?,?,?,?)", new Object[] {

 userId, password, firstName, lastName });

 if (rowCount != 1) {

 throw new RuntimeException("Database update
 row count should be 1");

 }

 }

}

JdbcTemplate simpliies the use of JDBC, as it handles the resources and
helps to avoid common errors, such as not closing the connection. It creates
and populates the statement object and iterates through ResultSet, leaving
the application code to provide SQL and extract results.

Chapter 4

[139]

3. Create a JUnit test class, RegistrationDaoSpringTest, in the com.packt.
dao package with the following details:

@RunWith(MockitoJUnitRunner.class)

public class RegistrationDaoSpringTest {

 @Mock JdbcTemplate mockJdbcTemplate;

 RegistrationDaoSpring springDao;

 @Before public void init() {

 springDao = new RegistrationDaoSpring(mockJdbcTemplate);

 }

 @Test public void when_creates_user() throws Exception {

 // Prepare data for user registration

 String joesUserId = "joe4u";

 String joesPassword = "joe@123";

 String joesFirstName = "Joseph";

 String joesLastName = "Lawrence";

 // Stub jdbcTemplate's update to return 1

 when(

 mockJdbcTemplate.update(anyString(),
 anyString(), anyObject(), anyObject(),
 anyObject())).thenReturn(1);

 // Execute

 springDao.create(joesUserId, joesPassword,
 joesFirstName, joesLastName);

 // Create argument captures

 ArgumentCaptor<Object> varArgs =
 ArgumentCaptor.forClass(Object.class);

 ArgumentCaptor<String> strArg =
 ArgumentCaptor.forClass(String.class);

 // Verify update method was called and capture args

 verify(mockJdbcTemplate).update(strArg.capture(),
 varArgs.capture(),varArgs.capture(),
 varArgs.capture(), varArgs.capture());

 // Verify 1st dynamic argument was the userId

 assertEquals(joesUserId,
 varArgs.getAllValues().get(0));

 // Verify the password arguments

Resolving Out-of-container Dependencies with Mockito

[140]

 assertEquals(joesPassword,
 varArgs.getAllValues().get(1));

 // Verify the name arguments

 assertEquals(joesFirstName,
 varArgs.getAllValues().get(2));

 assertEquals(joesLastName,
 varArgs.getAllValues().get(3));

 }

This JUnit test checks whether the Spring JDBC API is properly used or not
and whether the arguments are passed to the JDBC API in the correct order
or not. The ArgumentCaptor class is a Mockito class and it allows you to
capture the argument passed to a stubbed method of a mock/proxy object.
Our code calls the update method on jdbcTemplate. The update method
takes a SQL String and variable arguments of objects. Now, our task is to
verify that the arguments are passed in the proper order, that is, the name is
not passed for the password and so on. We use an argument captor to verify
the argument order:

 @Test(expected=RuntimeException.class)

 public void when_create_fails_then_raises_error(){

 // Prepare data for user registration

 String joesUserId = "joe4u";

 String joesPassword = "joe@123";

 String joesFirstName = "Joseph";

 String joesLastName = "Lawrence";

 // Stub jdbcTemplate's update to return no update

 when(mockJdbcTemplate.update(anyString(),
 anyString(), anyObject(),anyObject(),
 anyObject())).thenReturn(0);

 // Execute for fail

 springDao.create(joesUserId, joesPassword,
 joesFirstName, joesLastName);

 }

}

4. We have unit tested the DAO layer in isolation from database. Now, we need
to verify the integrity of our application. We'll do end-to-end testing. Modify
the beans.xml ile to deine registrationDaoSpring, as follows:

<bean id="registrationDaoSpring"

 class="com.packt.dao.RegistrationDaoSpring">

 <constructor-arg ref="jdbcTemplate" />

</bean>

Chapter 4

[141]

5. Autowire the DAO to the RegisterService as follows:

@Autowired

private RegistrationDao registrationDao;

6. Now, run the application and click on the Sign Up hyperlink to load the
registration page. In the registration page, enter the user ID, password, irst
and last names, and then click on the Submit button:

7. The system will create the user and display the following screen:

Resolving Out-of-container Dependencies with Mockito

[142]

8. When we try to create a duplicate user, the following message is displayed:

We created a layered architecture and learned how to unit test individual layers
in isolation from other layers, and then we inally integrated the application.
Integration becomes easier when each individual layer is unit tested.

Summary
This chapter covered unit testing of the service layer in isolation from the data access
layer with Mockito, unit testing the Spring data access layer with Mockito, and unit
testing the Spring presentation layer (MVC) with Mockito.

The next chapter explores the new features of Spring 4 and its advanced topics, such
as @RestController, AsyncRestTemplate, Async task, and caching.

Time Travelling with Spring
Spring 4.0 is the Java 8-enabled latest release of the Spring Framework. In this
chapter, we'll discover the major changes in the Spring 4.x release and the four
important features of the Spring 4 framework. We will cover the following topics
in depth:

• @RestController

• AsyncRestTemplate

• Async tasks

• Caching

Discovering the new Spring release
This section deals with the new features and enhancements in Spring Framework 4.0.
The following are the features:

• Spring 4 supports Java 8 features such as Java lambda expressions and
java.time. Spring 4 supports JDK 6 as the minimum.

• All deprecated packages/methods are removed.

• Java Enterprise Edition 6 or 7 are the base of Spring 4, which is based
on JPA 2 and Servlet 3.0.

• Bean coniguration using the Groovy DSL is supported in Spring
Framework 4.0.

• Hibernate 4.3 is supported by Spring 4.

• Custom annotations are supported in Spring 4.

• Autowired lists and arrays can be ordered. The @Order annotation and the
Ordered interface are supported.

Time Travelling with Spring

[144]

• The @Lazy annotation can now be used on injection points as well as on
the @Bean deinitions.

• For the REST application, Spring 4 provides a new @RestController
annotation. We will discuss this in detail in the following section.

• The AsyncRestTemplate feature (class) is added for asynchronous REST
client development.

• Different time zones are supported in Spring 4.0.

• New spring-websocket and spring-messaging modules have been added.

• The SocketUtils class is added to examine the free TCP and UDP server
ports on localhost.

• All the mocks under the org.springframework.mock.web package are now
based on the Servlet 3.0 speciication.

• Spring supports JCache annotations and new improvements have been made
in caching.

• The @Conditional annotation has been added to conditionally enable or
disable an @Configuration class or even individual @Bean methods.

• In the test module, SQL script execution can now be conigured
declaratively via the new @Sql and @SqlConfig annotations on a per-class or
per-method basis.

You can visit the Spring Framework reference at http://docs.spring.io/
spring/docs/4.1.2.BUILD-SNAPSHOT/spring-framework-reference/

htmlsingle/#spring-whats-new for more details.

Also, you can watch a video at http://zeroturnaround.com/rebellabs/spring-
4-on-java-8-geekout-2013-video/ for more details on the changes in Spring 4.

Working with asynchronous tasks
Java 7 has a feature called Future. Futures let you retrieve the result of an
asynchronous operation at a later time. The FutureTask class runs in a separate
thread, which allows you to perform non-blocking asynchronous operations. Spring
provides an @Async annotation to make it more easier to use. We'll explore Java's
Future feature and Spring's @Async declarative approach:

1. Create a project, TimeTravellingWithSpring, and add a package, com.
packt.async.

http://docs.spring.io/spring/docs/4.1.2.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#spring-whats-new
http://docs.spring.io/spring/docs/4.1.2.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#spring-whats-new
http://docs.spring.io/spring/docs/4.1.2.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#spring-whats-new
http://zeroturnaround.com/rebellabs/spring-4-on-java-8-geekout-2013-video/
http://zeroturnaround.com/rebellabs/spring-4-on-java-8-geekout-2013-video/

Chapter 5

[145]

2. We'll exercise a bank's use case, where an automated job will run and settle
loan accounts. It will also ind all the defaulters who haven't paid the loan
EMI for a month and then send an SMS to their number. The job takes time
to process thousands of accounts, so it will be good if we can send SMSes
asynchronously to minimize the burden of the job. We'll create a service
class to represent the job, as shown in the following code snippet:

@Service

public class AccountJob {

 @Autowired

 private SMSTask smsTask;

 public void process() throws InterruptedException,

 ExecutionException {

 System.out.println("Going to find defaulters... ");

 Future<Boolean> asyncResult =smsTask.send("1", "2", "3");

 System.out.println("Defaulter Job Complete. SMS will be

 sent to all defaulter");

 Boolean result = asyncResult.get();

 System.out.println("Was SMS sent? " + result);

 }

}

The job class autowires an SMSTask class and invokes the send method with
phone numbers. The send method is executed asynchronously and Future
is returned. When the job calls the get() method on Future, a result is
returned. If the result is not processed before the get() method invocation,
the ExecutionException is thrown. We can use a timeout version of the
get() method.

3. Create the SMSTask class in the com.packt.async package with the
following details:

@Component

public class SMSTask {

 @Async

 public Future<Boolean> send(String... numbers) {

 System.out.println("Selecting SMS format ");

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

Time Travelling with Spring

[146]

 e.printStackTrace();

 return new AsyncResult<>(false);

 }

 System.out.println("Async SMS send task is Complete!!!");

 return new AsyncResult<>(true);

 }

}

Note that the method returns Future, and the method is annotated
with @Async to signify asynchronous processing.

4. Create a JUnit test to verify asynchronous processing:
@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations="classpath:com/packt/async/

 applicationContext.xml")

public class AsyncTaskExecutionTest {

 @Autowired ApplicationContext context;

 @Test

 public void jobTest() throws Exception {

 AccountJob job =

 (AccountJob)context.getBean(AccountJob.class);

 job.process();

 }

}

The job bean is retrieved from the applicationContext ile and then the
process method is called. When we execute the test, the following output
is displayed:

Going to find defaulters...

Defaulter Job Complete. SMS will be sent to all defaulter

Selecting SMS format

Async SMS send task is Complete!!!

Was SMS sent? true

During execution, you might feel that the async task is executed after a delay
of 2 seconds as the SMSTask class waits for 2 seconds.

Chapter 5

[147]

Exploring @RestController
JAX-RS provides the functionality for Representational State Transfer (RESTful)
web services. REST is well-suited for basic, ad hoc integration scenarios. Spring
MVC offers controllers to create RESTful web services.

In Spring MVC 3.0, we need to explicitly annotate a class with the @Controller
annotation in order to specify a controller servlet and annotate each and every
method with @ResponseBody to serve JSON, XML, or a custom media type. With
the advent of the Spring 4.0 @RestController stereotype annotation, we can
combine @ResponseBody and @Controller.

The following example will demonstrate the usage of @RestController:

1. Create a dynamic web project, RESTfulWeb.

2. Modify the web.xml ile and add a coniguration to intercept requests
with a Spring DispatcherServlet:

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://
java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_3_0.xsd" id="WebApp_ID" version="3.0">

 <display-name>RESTfulWeb</display-name>

 <servlet>

 <servlet-name>dispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/dispatcher-servlet.xml

 </param-value>

 </context-param>

</web-app>

Time Travelling with Spring

[148]

3. The DispatcherServlet expects a coniguration ile with the naming
convention [servlet-name]-servlet.xml. Create an application context
XML, dispatcher-servlet.xml. We'll use annotations to conigure Spring
beans, so we need to tell the Spring container to scan the Java package in
order to craft the beans. Add the following lines to the application context in
order to instruct the container to scan the com.packt.controller package:

<context:component-scan base-package=
 "com.packt.controller" />

 <mvc:annotation-driven />

4. We need a REST controller class to handle the requests and generate
a JSON output. Go to the com.packt.controller package and add a
SpringService controller class. To conigure the class as a REST controller,
we need to annotate it with the @RestController annotation. The following
code snippet represents the class:

@RestController

@RequestMapping("/hello")

public class SpringService {

 private Set<String> names = new HashSet<String>();

 @RequestMapping(value = "/{name}", method =

 RequestMethod.GET)

 public String displayMsg(@PathVariable String name) {

 String result = "Welcome " + name;

 names.add(name);

 return result;

 }

 @RequestMapping(value = "/all/", method =

 RequestMethod.GET)

 public String anotherMsg() {

 StringBuilder result = new StringBuilder("We

 greeted so far ");

 for(String name:names){

 result.append(name).append(", ");

 }

 return result.toString();

 }

}

We annotated the class with @RequestMapping("/hello"). This means that
the SpringService class will cater for the requests with the http://{site}/
{context}/hello URL pattern, or since we are running the app in localhost,
the URL can be http://localhost:8080/RESTfulWeb/hello.

Chapter 5

[149]

The displayMsg method is annotated with @RequestMapping(value = "/
{name}", method = RequestMethod.GET). So, the method will handle all
HTTP GET requests with the URL pattern /hello/{name}. The name can be
any String, such as /hello/xyz or /hello/john. In turn, the method stores the
name to Set for later use and returns a greeting message, welcome {name}.

The anotherMsg method is annotated with @RequestMapping(value = "/
all/", method = RequestMethod.GET), which means that the method
accepts all the requests with the http://{SITE}/{Context}/hello/all/
URL pattern. Moreover, this method builds a list of all users who visited the
/hello/{names} URL. Remember, the displayMsg method stores the names
in Set; this method iterates Set and builds a list of names who visited the /
hello/{name} URL.

There is some confusion though: what will happen if you enter the /hello/
all URL in the browser? When we pass only a String literal after /hello/,
the displayMsg method handles it, so you will be greeted with welcome
all. However, if you type /hello/all/ instead—note that we added a slash
after all—it means that the URL does not match the /hello/{name} pattern
and the second method will handle the request and show you the list of users
who visited the irst URL.

5. When we run the application and access the /hello/{name} URL, the
following output is displayed:

When we access http://localhost:8080/RESTfulWeb/hello/all/,
the following output is displayed:

Therefore, our RESTful application is ready for use, but just remember that in
the real world, you need to secure the URLs against unauthorized access. In a
web service, development security plays a key role. You can read the Spring
security reference manual for additional information.

Time Travelling with Spring

[150]

Learning AsyncRestTemplate
We live in a small, wonderful world where everybody is interconnected and
impatient! We are interconnected through technology and applications, such as
social networks, Internet banking, telephones, chats, and so on. Likewise, our
applications are interconnected; often, an application housed in India may need to
query an external service hosted in Philadelphia to get some signiicant information.

We are impatient as we expect everything to be done in seconds; we get frustrated
when we make an HTTP call to a remote service, and this blocks the processing
unless the remote response is back. We cannot inish everything in milliseconds
or nanoseconds, but we can process long-running tasks asynchronously or
in a separate thread, allowing the user to work on something else.

To handle RESTful web service calls asynchronously, Spring offers two useful
classes: AsyncRestTemplate and ListenableFuture. We can make an async call
using the template and get Future back and then continue with other processing,
and inally we can ask Future to get the result.

This section builds an asynchronous RESTful client to query the RESTful web service
we developed in the preceding section. The AsyncRestTemplate class deines an
array of overloaded methods to access RESTful web services asynchronously. We'll
explore the exchange and execute methods.

The following are the steps to explore the template:

1. Create a package, com.packt.rest.template.

2. Add a AsyncRestTemplateTest JUnit test.
3. Create an exchange() test method and add the following lines:

@Test

 public void exchange(){

 AsyncRestTemplate asyncRestTemplate = new
 AsyncRestTemplate();

 String url ="http://localhost:8080/RESTfulWeb/
 hello/all/";

 HttpMethod method = HttpMethod.GET;

 Class<String> responseType = String.class;

 HttpHeaders headers = new HttpHeaders();

 headers.setContentType(MediaType.TEXT_PLAIN);

 HttpEntity<String> requestEntity = new
 HttpEntity<String>("params", headers);

Chapter 5

[151]

 ListenableFuture<ResponseEntity<String>> future =
 asyncRestTemplate.exchange(url, method,
 requestEntity, responseType);

 try {

 //waits for the result

 ResponseEntity<String> entity = future.get();

 //prints body of the given URL

 System.out.println(entity.getBody());

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 }

 }

The exchange() method has six overloaded versions. We used the
method that takes a URL, an HttpMethod method such as GET or POST, an
HttpEntity method to set the header, and inally a response type class.
We called the exchange method, which in turn called the execute method
and returned ListenableFuture. The ListenableFuture is the handle
to our output; we invoked the GET method on ListenableFuture to get
the RESTful service call response. The ResponseEntity has the getBody,
getClass, getHeaders, and getStatusCode methods for extracting the
web service call response.

We invoked the http://localhost:8080/RESTfulWeb/hello/all/ URL
and got back the following response:

4. Now, create an execute test method and add the following lines:

@Test public void execute(){

 AsyncRestTemplate asyncTemp = new AsyncRestTemplate();

 String url ="http://localhost:8080/RESTfulWeb
 /hello/reader";

 HttpMethod method = HttpMethod.GET;

 HttpHeaders headers = new HttpHeaders();

 headers.setContentType(MediaType.TEXT_PLAIN);

Time Travelling with Spring

[152]

 AsyncRequestCallback requestCallback = new
 AsyncRequestCallback (){

 @Override

 public void doWithRequest(AsyncClientHttpRequest
 request) throws IOException {

 System.out.println(request.getURI());

 }

 };

 ResponseExtractor<String> responseExtractor = new
 ResponseExtractor<String>(){

 @Override

 public String extractData(ClientHttpResponse
 response) throws IOException {

 return response.getStatusText();

 }

 };

 Map<String,String> urlVariable = new HashMap<String,
 String>();

 ListenableFuture<String> future = asyncTemp.execute(url,
 method, requestCallback, responseExtractor,
 urlVariable);

 try {

 //wait for the result

 String result = future.get();

 System.out.println("Status =" +result);

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 }

 }

The execute method has several variants. We invoke the one that takes a
URL, HttpMethod such as GET or POST, an AsyncRequestCallback method
which is invoked from the execute method just before executing the request
asynchronously, a ResponseExtractor to extract the response, such as a
response body, status code or headers, and a URL variable such as a URL
that takes parameters. We invoked the execute method and received a
future, as our ResponseExtractor extracts the status code. So, when we ask
the future to get the result, it returns the response status which is OK or 200.
In the AsyncRequestCallback method, we invoked the request URI; hence,
the output irst displays the request URI and then prints the response status.

Chapter 5

[153]

The following is the output:

Caching objects
Scalability is a major concern in web application development. Generally, most
web trafic is focused on some special set of information. So, only those records
are queried very often. If we can cache these records, then the performance and
scalability of the system will increase immensely.

The Spring Framework provides support for adding caching into an existing
Spring application. In this section, we'll work with EhCache, the most widely used
caching solution. Download the latest EhCache JAR from the Maven repository; the
URL to download version 2.7.2 is http://mvnrepository.com/artifact/net.
sf.ehcache/ehcache/2.7.2.

Spring provides two annotations for caching: @Cacheable and @CacheEvict. These
annotations allow methods to trigger cache population or cache eviction, respectively.

The @Cacheable annotation is used to identify a cacheable method, which means
that for an annotate method the result is stored into the cache. Therefore, on
subsequent invocations (with the same arguments), the value in the cache is
returned without actually executing the method.

The cache abstraction allows the eviction of cache for removing stale or unused data
from the cache. The @CacheEvict annotation demarcates the methods that perform
cache eviction, that is, methods that act as triggers to remove data from the cache.

The following are the steps to build a cacheable application with EhCache:

1. Create a serializable Employee POJO class in the com.packt.cache package
to store the employee ID and name. The following is the class deinition:
public class Employee implements Serializable {

 private static final long serialVersionUID = 1L;

 private final String firstName, lastName, empId;

 public Employee(String empId, String fName, String lName) {

 this.firstName = fName;

http://mvnrepository.com/artifact/net.sf.ehcache/ehcache/2.7.2
http://mvnrepository.com/artifact/net.sf.ehcache/ehcache/2.7.2

Time Travelling with Spring

[154]

 this.lastName = lName;

 this.empId = empId;

 }

 //Getter methods

}

2. Spring caching supports two storages: the ConcurrentMap and ehcache
libraries. To conigure caching, we need to conigure a manager
in the application context. The org.springframework.cache.
ehcache.EhCacheCacheManager class manages ehcache. Then, we
need to deine a cache with a configurationLocation attribute. The
configurationLocation attribute deines the coniguration resource. The
ehcache-speciic coniguration is read from the resource ehcache.xml.

Create an applicationConext ile under the com.packt.cache package
with the following details:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"

xmlns:cache="http://www.springframework.org/schema/cache"

xmlns:p="http://www.springframework.org/schema/p"

xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-
4.1.xsd

http://www.springframework.org/schema/cache http://www.
springframework.org/schema/cache/spring-cache-
4.1.xsd

http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-
context-4.1.xsd ">

 <context:component-scan base-package=
 "com.packt.cache" />

 <cache:annotation-driven/>

 <bean id="cacheManager" class="org.springframework.cache.

 ehcache.EhCacheCacheManager"

 p:cacheManager-ref="ehcache"/>

 <bean id="ehcache" class="org.springframework.cache.

 ehcache.EhCacheManagerFactoryBean"

 p:configLocation="classpath:com/packt/cache/ehcache.xml"/>

</beans>

Chapter 5

[155]

The <cache:annotation-driven/> tag informs the Spring container that
the caching and eviction is performed in annotated methods. We deined a
cacheManager bean and then deined an ehcache bean. The ehcache bean's
conigLocation points to an ehcache.xml ile. We'll create the ile next.

3. Create an XML ile, ehcache.xml, under the com.packt.cache package and
add the following cache coniguration data:
<ehcache>

 <diskStore path="java.io.tmpdir"/>

 <cache name="employee"

 maxElementsInMemory="100"

 eternal="false"

 timeToIdleSeconds="120"

 timeToLiveSeconds="120"

 overflowToDisk="true"

 maxElementsOnDisk="10000000"

 diskPersistent="false"

 diskExpiryThreadIntervalSeconds="120"

 memoryStoreEvictionPolicy="LRU"/>

</ehcache>

The XML conigures many things. Cache is stored in memory, but memory
has a limit, so we need to deine maxElementsInMemory. EhCache needs to
store data to disk when max elements in memory reaches the threshold limit.
We provide diskStore for this purpose. The eviction policy is set as an LRU,
but the most important thing is the cache name. The name employee will be
used to access the cache coniguration.

4. Now, create a service to store the Employee objects in a HashMap. The
following is the service:

@Service

public class EmployeeService {

 private final Map<String, Employee> employees = new
 ConcurrentHashMap<String, Employee>();

 @PostConstruct

 public void init() {

 saveEmployee (new Employee("101", "John", "Doe"));

 saveEmployee (new Employee("102", "Jack",
 "Russell"));

 }

Time Travelling with Spring

[156]

 @Cacheable("employee")

 public Employee getEmployee(final String employeeId) {

 System.out.println(String.format("Loading a
 employee with id of : %s", employeeId));

 return employees.get(employeeId);

 }

 @CacheEvict(value = "employee", key = "#emp.empId")

 public void saveEmployee(final Employee emp) {

 System.out.println(String.format("Saving a emp with
 id of : %s", emp.getEmpId()));

 employees.put(emp.getEmpId(), emp);

 }

}

The getEmployee method is a cacheable method; it uses the cache employee.
When the getEmployee method is invoked more than once with the same
employee ID, the object is returned from the cache instead of the original
method being invoked. The saveEmployee method is a CacheEvict method.

5. Now, we'll examine caching. We'll call the getEmployee method twice; the
irst call will populate the cache and the subsequent call will be responded to
by the cache. Create a JUnit test, CacheConfiguration, and add the
following lines:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations="classpath:com/packt/cache/
applicationContext.xml")

public class CacheConfiguration {

 @Autowired

 ApplicationContext context;

@Test public void jobTest() throws Exception {

 EmployeeService employeeService =

 (EmployeeService)context.getBean(EmployeeService.class);

 long time = System.currentTimeMillis();

 employeeService.getEmployee("101");

 System.out.println("time taken
 ="+(System.currentTimeMillis() - time));

 time = System.currentTimeMillis();

 employeeService.getEmployee("101");

Chapter 5

[157]

 System.out.println("time taken to read from cache
 ="+(System.currentTimeMillis() - time));

 time = System.currentTimeMillis();

 employeeService.getEmployee("102");

 System.out.println("time taken

 ="+(System.currentTimeMillis() - time));

 time = System.currentTimeMillis();

 employeeService.getEmployee("102");

 System.out.println("time taken to read from cache
 ="+(System.currentTimeMillis() - time));

 employeeService.saveEmployee(new Employee("1000",
 "Sujoy", "Acharya"));

 time = System.currentTimeMillis();

 employeeService.getEmployee("1000");

 System.out.println("time taken
 ="+(System.currentTimeMillis() - time));

 time = System.currentTimeMillis();

 employeeService.getEmployee("1000");

 System.out.println("time taken to read from cache
 ="+(System.currentTimeMillis() - time));

 }

}

Note that the getEmployee method is invoked twice for each employee, and
we recorded the method execution time in milliseconds. You will ind from
the output that every second call is answered by the cache, as the irst call
prints Loading a employee with id of : 101 and then the next call doesn't
print the message but prints the time taken to execute. You will also ind
that the time taken for the cached objects is zero or less than the method
invocation time.

Time Travelling with Spring

[158]

The following screenshot shows the output:

Summary
This chapter started with discovering the features of the new major Spring release
4.0, such as Java 8 support and so on. Then, we picked four Spring 4 topics and
explored them one by one.

The @Async section showcased the execution of long-running methods asynchronously
and provided an example of how to handle asynchronous processing.

The @RestController section eased the RESTful web service development with
the advent of the @RestController annotation.

The AsyncRestTemplate section explained the RESTful client code to invoke
RESTful web service asynchronously.

Caching is inevitable for a high-performance, scalable web application. The caching
section explained the EhCache and Spring integrations to achieve a high-availability
caching solution.

Index

Symbols

@Cacheable annotation 153
@CacheEvict annotation 153
@RestController annotation

exploring 147-149
@RunWith annotation

working with 67
@Transactional annotation

using 45-47

A

annotations
@ActiveProiles 109
@Autowired 23
@ContextConiguration 108
@ContextHierarchy 109
@DirtiesContext 110
@Qualiier 23
@Repeat 110
@Required 23
@TestExecutionListeners 110
@TestPropertySource 109
@Timed 110
@WebAppConiguration 108
examining 59-62
working with 108-110

AOP
about 11, 25
advice 26
aspect 26
AspectJ 25
dynamic AOP 27

introduction 27
join point 26
pointcut 26
Spring AOP 25
static AOP 27
target 27
weaving 26

AspectJ 25
aspects

about 26
working with 24, 25

assertion
expectation, verifying with 62-66

assert methods 63-66
assertThat method

about 69
collection matchers, exploring 72
compound matchers, exploring 71, 72
custom matchers, exploring 73-77
equalTo, exploring 70
is, exploring 70
not, exploring 70
string matchers, exploring 73
working with 69

asynchronous tasks
working with 144-146

AsyncRestTemplate 150-152
autowiring mode

about 22-24
byName 22
byType 23
constructor 23
default 23
no 22

[160]

B
bean

ApplicationContextAware 21
BeanFactoryAware 21
BeanNameAware 21
BeanPostProcessor 21
class 17
constructor-arg 17
destroy-method 17
DisposableBean 21
init-method 17
InitializingBean 21
lazy-init 17
life cycle 18-22
name 17
properties 17
properties, for deining 17
scope 17

beans
bean, scopes

global-session 17
prototype 17
request 17
session 17
singleton 17

C

collection matchers
exploring 72, 73

compound matchers
exploring 71, 72

ContextLoader interface 92
core container

about 11
Context 11
Core and Beans 11
Expression Language 11

custom matchers
exploring 73-77

D

DAO layer
building 137-142

data access layer
unit testing 137-142

data access module
JDBC 12
JMS 12
ORM 12
OXM 12
transactions 12

data setup 59
dependency injection (DI)

about 13-16
URL 18

Derby
running 31

dynamic AOP 27

E

Eclipse
coniguring 58, 59
URL 57, 58

EhCache JAR
URL 153

Enterprise Integration Patterns (EIP) 10
environment

mocking 101-104
exception handling

examining 66, 67
exceptions

throwing 89, 90
Extreme Programming (XP) 56

H

Hello World
printing 19, 20

I

instrumentation 11
Integrated Development Environments

(IDEs) 57
Inversion of Control (IoC)

about 13-15
URL 18

[161]

isolation, levels
ISOLATION_DEFAULT 44
ISOLATION_READ_COMMITTED 44
ISOLATION_READ_UNCOMMITTED 44
ISOLATION_REPEATABLE_READ 44
ISOLATION_SERIALIZABLE 44

J

Java Transaction API (JTA) 36
Java unit testing frameworks 56
JNDI lookup

mocking 105, 106
JUnit 4 57
JUnit framework

@RunWith annotation, working with 67
about 57
annotations, examining 59-62
assertThat, working with 69
exception handling, examining 66, 67
expectation, verifying with assertion 62-66
test suites, working with 68
URL 57

M
messaging module 12
Mockito

about 77, 78
coniguring 78
exceptions, throwing 89, 90
in action 79-81
objects, mocking 81-83
signiicance 77, 78
stubbing methods 83-86
URL 77

Mockito jar
URL 78

MockMvc
used, for mocking servlet container 115-118

Model View Controller (MVC)
about 49-54
testing 110-115

O

objects
caching 153-157

P

Plain Old Java Objects (POJOs)
about 7
based application development 8

PlatformTransactionManager
features 37

pointcut 26
Portlet 12
proiles, Spring

coniguring 98-101
programmatic transaction management

PlatformTransactionManager, using 48
TransactionTemplate, using 48
using 47

R

RelectionTestUtils
using 107, 108

remote procedure call (RPC) 8
Representational State Transfer (RESTful)

web services 147

S

service layer
unit testing 132-137

servlet container
mocking, with MockMvc 115-118

SmartContextLoader interface 92
Software as a Service (SaaS) 10
Spring

about 7
Advanced Message Queuing Protocol

(AMQP) 10
advantages 8
Batch 10
Boot 9
Cloud 9
Data 9
for Android 10
Framework 9
HATEOAS 10
in nutshell 8
Integration 10
IO platform 9
LDAP 11

[162]

Mobile 10
MVC, testing 110-115
proiles, coniguring 98-101
projects 9-11
release, discovering 143, 144
Security 10
Social 10
test transactions, handling 118-121
Web Flow 11
Web Services 11
XD 9

Spring AOP 25-28
Spring, architecture

about 11
AOP module 11
core container 11
data access module 12
instrumentation module 11
messaging module 12
test module 13
web layer 12

Spring Data Access Object (DAO) 29
Spring Framework

URL 144
Spring JDBC

exploring 29-31
implementing 32-36

Spring JDBC JAR
URL 31

Spring Tool Suite (STS) 19
static AOP 27
string matchers

exploring 73
stubbing methods

about 83-85
in depth veriication 86, 87
thenAnswer(Answer answer) 85
thenCallRealMethod() 85
thenReturn(value to be returned) 85
thenThrow(throwable to be thrown) 85
Verifying zero and no more interactions 88

T

TestContext class 92
TestContext framework

ContextLoader interface 92

exploring 92
SmartContextLoader interface 92
TestContext class 92
TestContextManager class 92
TestExecutionListener interface 92

TestContextManager class 92
Test-Driven Development (TDD) 77 56
TestExecutionListener implementations

DependencyInjectionTestExecutionListener
93

DirtiesContextTestExecutionListener 93
ServletTestExecutionListener 93
SqlScriptsTestExecutionListener 93
TransactionalTestExecutionListener 93

TestExecutionListener interface
about 92
writing 94-98

test module 13
test, Spring

transactions, handling 118-121
test suites

working with 68
transaction

attributes, exploring 43
declarative Spring transaction, working

with 40-42
handling, with Spring 36-40

TransactionDeinition interface 38
transaction, propogation

PROPAGATION_MANDATORY 43
PROPAGATION_NESTED 43
PROPAGATION_NEVER 44
PROPAGATION_NOT_SUPPORTED 44
PROPAGATION_REQUIRED 44
PROPAGATION_REQUIRES_NEW 44
PROPAGATION_SUPPORTS 44

U

unit testing
about 55
code-driven 56
data access layer 137-142
service layer 132-137
web layer 124-132

[163]

W

weaving 26
web layer

about 12
Portlet 12
unit testing 124-132
Webmvc 12
WebSocket 12

World Health Organization (WHO) 123

V
verify

atLeast(int minNumberOfInvocations) 87
atLeastOnce() 87
atMost(int maxNumberOfInvocations) 87
never() 87
only() 87
timeout(int millis) 87
times(int wantedNumberOfInvocations) 87

video
URL 144

Thank you for buying

Mockito for Spring

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mockito Essentials
ISBN: 978-1-78398-360-5 Paperback: 214 pages

A practical guide to get you up and running with unit
testing using Mockito

1. Explore Mockito features and learn stubbing,
mocking and spying dependencies using the
Mockito framework.

2. Mock external dependencies for legacy and
greenield projects and create an automated
JUnit safety net for building reliable,
maintainable and testable software.

3. A focused guide illed with examples and
supporting illustrations on testing your
software using Mockito.

Mastering Unit Testing Using
Mockito and JUnit
ISBN: 9781-7-8398-250-9 Paperback: 314 pages

An advanced guide to mastering unit testing using
Mockito and JUnit

1. Create meaningful and maintainable automated
unit tests using advanced JUnit features and the
Mockito framework.

2. Build an automated continuous integration
environment to get real-time feedback on
broken code, code coverage, code quality,
and integration issues.

3. Covers best practices and presents insights on
architecture and designs to create faster and
reliable unit testing environments.

Please check www.PacktPub.com for information on our titles

Mockito Cookbook
ISBN: 978-1-78398-274-5 Paperback: 284 pages

Over 65 recipes to get you up and running with unit
testing using Mockito

1. Implement best practices to perform tests
with Mockito.

2. Extend Mockito with other popular Java-based
unit testing frameworks such as JUnit and
Powermock.

3. A focused guide with many recipes on testing
your software using Mockito.

Test-Driven Development

with Mockito
ISBN: 978-1-78328-329-3 Paperback: 172 pages

Learn how to apply Test-Driven Development and
the Mockito framework in real life projects, using
realistic, hands-on examples

1. Start writing clean, high quality code to apply
Design Patterns and principles.

2. Add new features to your project by applying
Test-irst development- JUnit 4.0 and Mockito
framework.

3. Make legacy code testable and clean up
technical debts.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Familiar with
the Spring Framework
	Getting started with Spring
	Exploring the Spring architecture
	The core container
	The AOP module
	The instrumentation module
	The messaging module
	The data access module
	The web layer
	The test module

	Learning the Inversion of Control
	Printing Hello World
	Examining life cycle messages
	Working with autowiring and annotations
	Working with aspects
	Exploring Spring JDBC
	Handling a transaction with Spring
	Working with declarative Spring transaction
	Exploring transaction attributes
	Using the @Transactional annotation
	Working with a programmatic Spring transaction
	Using TransactionTemplate
	Using PlatformTransactionManager

	Building an MVC application with Spring
	Summary

	Chapter 2: Working with JUnit
and Mockito
	Learning unit testing
	Working with the JUnit framework
	Configuring Eclipse
	Examining annotations
	Verifying an expectation with an assertion
	Examining exception handling
	Working with the @RunWith annotation
	Working with test suites
	Working with assertThat
	Exploring equalTo, is, and not
	Exploring compound matchers – either, both, anyOf, and allOf
	Exploring collection matchers – hasItem and hasItems
	Working with string matchers – startsWith, endsWith, and containsString
	Exploring custom matchers

	Working with Mockito
	Learning the significance of Mockito

	Exploring Mockito
	Configuring Mockito
	Mocking in action
	Mocking objects
	Stubbing methods
	Throwing exceptions

	Summary

	Chapter 3: Working with Spring Tests
	Exploring the TestContext framework
	Writing a custom TestExecutionListener interface

	Configuring Spring profiles
	Mocking an environment
	Mocking the JNDI lookup
	Using ReflectionTestUtils
	Working with annotations
	Testing Spring MVC
	Mocking the servlet container with MockMvc
	Handling transactions in Spring tests
	Summary

	Chapter 4: Resolving Out-of-container Dependencies with Mockito
	Unit testing the web layer
	Unit testing the service layer
	Unit testing the data access layer
	Summary

	Chapter 5: Time Travelling with Spring
	Discovering the new Spring release
	Working with asynchronous tasks
	Exploring @RestController
	Learning AsyncRestTemplate
	Caching objects
	Summary

	Index

