
Trevor Grant, Holden Karau, Boris Lublinsky,
Richard Liu & Ilan Filonenko

Foreword by Chris Albon

Kubeflow
 for Machine Learning
From Lab to Production

Trevor Grant, Holden Karau, Boris Lublinsky,
Richard Liu, and Ilan Filonenko

Kubeflow for Machine Learning
From Lab to Production

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05012-4

[LSI]

Kubeflow for Machine Learning
by Trevor Grant, Holden Karau, Boris Lublinsky, Richard Liu, and Ilan Filonenko

Copyright © 2021 Trevor Grant, Holden Karau, Boris Lublinsky, Richard Liu, and Ilan Filonenko. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Amelia Blevins
Production Editor: Deborah Baker
Copyeditor: JM Olejarz
Proofreader: Justin Billing

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2020: First Edition

Revision History for the First Edition
2020-10-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492050124 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubeflow for Machine Learning, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Foreword. ix

Preface. xi

1. Kubeflow: What It Is and Who It Is For. 1
Model Development Life Cycle 1
Where Does Kubeflow Fit In? 2
Why Containerize? 2
Why Kubernetes? 3
Kubeflow’s Design and Core Components 4

Data Exploration with Notebooks 4
Data/Feature Preparation 5
Training 6
Hyperparameter Tuning 6
Model Validation 6
Inference/Prediction 7
Pipelines 7
Component Overview 8

Alternatives to Kubeflow 9
Clipper (RiseLabs) 9
MLflow (Databricks) 10
Others 10

Introducing Our Case Studies 10
Modified National Institute of Standards and Technology 11
Mailing List Data 11
Product Recommender 11
CT Scans 12

Conclusion 12

iii

2. Hello Kubeflow. 13
Getting Set Up with Kubeflow 13

Installing Kubeflow and Its Dependencies 14
Setting Up Local Kubernetes 15
Setting Up Your Kubeflow Development Environment 16
Creating Our First Kubeflow Project 18

Training and Deploying a Model 19
Training and Monitoring Progress 20
Test Query 21

Going Beyond a Local Deployment 23
Conclusion 24

3. Kubeflow Design: Beyond the Basics. 25
Getting Around the Central Dashboard 26

Notebooks (JupyterHub) 27
Training Operators 28
Kubeflow Pipelines 28
Hyperparameter Tuning 30
Model Inference 31
Metadata 32
Component Summary 33

Support Components 33
MinIO 34
Istio 36
Knative 38
Apache Spark 40
Kubeflow Multiuser Isolation 40

Conclusion 42

4. Kubeflow Pipelines. 43
Getting Started with Pipelines 44

Exploring the Prepackaged Sample Pipelines 44
Building a Simple Pipeline in Python 46
Storing Data Between Steps 52

Introduction to Kubeflow Pipelines Components 53
Argo: the Foundation of Pipelines 54
What Kubeflow Pipelines Adds to Argo Workflow 58
Building a Pipeline Using Existing Images 58
Kubeflow Pipeline Components 61

Advanced Topics in Pipelines 62
Conditional Execution of Pipeline Stages 63
Running Pipelines on Schedule 65

iv | Table of Contents

Conclusion 66

5. Data and Feature Preparation. 67
Deciding on the Correct Tooling 68
Local Data and Feature Preparation 68

Fetching the Data 69
Data Cleaning: Filtering Out the Junk 70
Formatting the Data 71
Feature Preparation 71
Custom Containers 72

Distributed Tooling 73
TensorFlow Extended 73
Distributed Data Using Apache Spark 78
Distributed Feature Preparation Using Apache Spark 87

Putting It Together in a Pipeline 88
Using an Entire Notebook as a Data Preparation Pipeline Stage 89
Conclusion 90

6. Artifact and Metadata Store. 91
Kubeflow ML Metadata 92

Programmatic Query 94
Kubeflow Metadata UI 96

Using MLflow’s Metadata Tools with Kubeflow 98
Creating and Deploying an MLflow Tracking Server 99
Logging Data on Runs 101
Using the MLflow UI 104

Conclusion 106

7. Training a Machine Learning Model. 107
Building a Recommender with TensorFlow 108

Getting Started 109
Starting a New Notebook Session 110
TensorFlow Training 110

Deploying a TensorFlow Training Job 113
Distributed Training 117

Using GPUs 121
Using Other Frameworks for Distributed Training 122

Training a Model Using Scikit-Learn 122
Starting a New Notebook Session 123
Data Preparation 124
Scikit-Learn Training 126
Explaining the Model 127

Table of Contents | v

Exporting Model 129
Integration into Pipelines 129

Conclusion 129

8. Model Inference. 131
Model Serving 132

Model Serving Requirements 133
Model Monitoring 134

Model Accuracy, Drift, and Explainability 134
Model Monitoring Requirements 135

Model Updating 135
Model Updating Requirements 136

Summary of Inference Requirements 137
Model Inference in Kubeflow 137
TensorFlow Serving 138

Review 141
Seldon Core 142

Designing a Seldon Inference Graph 143
Testing Your Model 148
Serving Requests 150
Monitoring Your Models 151
Review 158

KFServing 159
Serverless and the Service Plane 159
Data Plane 160
Example Walkthrough 162
Peeling Back the Underlying Infrastructure 168
Review 175

Conclusion 176

9. Case Study Using Multiple Tools. 179
The Denoising CT Scans Example 180

Data Prep with Python 181
DS-SVD with Apache Spark 182
Visualization 183
The CT Scan Denoising Pipeline 186

Sharing the Pipeline 191
Conclusion 191

10. Hyperparameter Tuning and Automated Machine Learning. 193
AutoML: An Overview 194
Hyperparameter Tuning with Kubeflow Katib 195

vi | Table of Contents

Katib Concepts 196
Installing Katib 198
Running Your First Katib Experiment 198

Prepping Your Training Code 199
Configuring an Experiment 199
Running the Experiment 201
Katib User Interface 204

Tuning Distributed Training Jobs 208
Neural Architecture Search 210
Advantages of Katib over Other Frameworks 213
Conclusion 214

A. Argo Executor Configurations and Trade-Offs. 215

B. Cloud-Specific Tools and Configuration. 217

C. Using Model Serving in Applications. 219

Index. 227

Table of Contents | vii

Foreword

Occasionally over the years people will ask me what skills are most in demand in
tech. Ten years ago I would tell them to study machine learning, which can scale
automated decision making in ways previously impossible. However, these days I
have a different answer: machine learning engineering.

Even just a few years ago if you knew machine learning and started at an organiza‐
tion, you would likely walk in the door as the only person with that skill set, allowing
you to have an outsized impact. However, a side effect of the proliferation of books,
tutorials, e-courses, and boot camps (some of which I have written myself) teaching
an entire generation of technologists the skills required is that now machine learning
is being used across tens of thousands of companies and organizations.

These days a more likely scenario is that, walking into your new job, you find an
organization using machine learning locally but unable to deploy it to production or
able to deploy models but unable to manage them effectively. In this setting, the most
valuable skill is not being able to train a model, but rather to manage all those models
and deploy them in ways that maximize their impact.

In this volume, Trevor Grant, Holden Karau, Boris Lublinsky, Richard Liu, and Ilan
Filonenko have put together what I believe is an important cornerstone in the educa‐
tion of data scientists and machine learning engineers. For the foreseeable future the
open source Kubeflow project will be a common tool in an organization’s toolkit for
training, management, and deployment of machine learning models. This book rep‐
resents the codification of a lot of knowledge that previously existed scattered around
internal documentation, conference presentations, and blog posts.

ix

If you believe, as I do, that machine learning is only as powerful as how we use it,
then this book is for you.

— Chris Albon
Director of Machine Learning,

The Wikimedia Foundation
https://chrisalbon.com

x | Foreword

Preface

We wrote this book for data engineers and data scientists who are building machine
learning systems/models they want to move to production. If you’ve ever had the
experience of training an excellent model only to ask yourself how to deploy it into
production or keep it up to date once it gets there, this is the book for you. We hope
this gives you the tools to replace Untitled_5.ipynb with something that works rela‐
tively reliably in production.

This book is not intended to serve as your first introduction to machine learning. The
next section points to some resources that may be useful if you are just getting started
on your machine learning journey.

Our Assumption About You
This book assumes that you either understand how to train models locally, or are
working with someone who does. If neither is true, there are many excellent intro‐
ductory books on machine learning to get you started, including Hands-On Machine
Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, by Aurélien Géron
(O’Reilly).

Our goal is to teach you how to do machine learning in a repeatable way, and how to
automate the training and deployment of your models. A serious problem here is that
this goal includes a wide range of topics, and it is more than reasonable that you may
not be intimately familiar with all of them.

Since we can’t delve deeply into every topic, we would like to provide you a short list
of our favorite primers on several of the topics you will see covered here:

• Python for Data Analysis, 2nd Edition, by Wes McKinney (O’Reilly)
• Data Science from Scratch, 2nd Edition, by Joel Grus (O’Reilly)
• Introduction to Machine Learning with Python by Andreas C. Müller and Sarah

Guido (O’Reilly)

xi

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edi‐
tion, by Aurélien Géron (O’Reilly)

• Kubernetes: Up and Running by Brendan Burns et al. (O’Reilly)
• Learning Spark by Holden Karau et al. (O’Reilly)
• Feature Engineering for Machine Learning by Alice Zheng and Amanda Casari

(O’Reilly)
• Building Machine Learning Pipelines by Hannes Hapke and Catherine Nelson

(O’Reilly)
• Apache Mahout: Beyond MapReduce by Dmitriy Lyubimov and Andrew Palumbo

(CreateSpace)
• R Cookbook, 2nd Edition, by J. D. Long and Paul Teetor (O’Reilly)
• Serving Machine Learning Models by Boris Lublinsky (O’Reilly)
• “Continuous Delivery for Machine Learning” by Danilo Sato et al.
• Interpretable Machine Learning by Christoph Molnar (self-published)
• “A Gentle Introduction to Concept Drift in Machine Learning” by Jason Brown‐

lee
• “Model Drift and Ensuring a Healthy Machine Learning Lifecycle” by A. Besir

Kurtulmus
• “The Rise of the Model Servers” by Alex Vikati
• “An Overview of Model Explainability in Modern Machine Learning” by Rui

Aguiar
• Machine Learning with Python Cookbook by Chris Albon (O’Reilly)
• Machine Learning Flashcards by Chris Albon

Of course, there are many others, but those should get you started. Please don’t be
overwhelmed by this list—you certainly don’t need to be an expert in each of these
topics to effectively deploy and manage Kubeflow. In fact, Kubeflow exists to stream‐
line many of these tasks. However, there may be some topic into which you wish to
delve deeper—and so this should be thought of as a “getting started” list.

Containers and Kubernetes are a wide, rapidly evolving area of practice. If you want
to deepen your knowledge of Kubernetes we recommend looking at the following:

• Cloud Native Infrastructure by Justin Garrison and Kris Nova (O’Reilly)
• Kubernetes: Up and Running by Brendan Burns et al. (O’Reilly)

xii | Preface

Your Responsibility as a Practitioner
This book helps you put your machine learning models into production to solve real-
world problems. Solving real-world problems with machine learning is great, but as
you go forth and apply your skills, remember to think about the impact.

First, it’s important to make sure your models are sufficiently accurate, and there are
great tools for this in Kubeflow, covered in “Training and Deploying a Model” on
page 19. Even the best tools will not save you from all mistakes—for example, hyper‐
parameter tuning on the same dataset to report final cross-validation results.

Even models with significant predictive power can have unintended effects and biases
that may not show up during the regular training-evaluation phase. Unintended bia‐
ses can be hard to discover, but there are many stories (e.g., the Amazon machine
learning–based recruiting engine that turned out to have intense biases and decided
to hire only men) that demonstrate the profound potential implications of our work.
Failing to address these issues early on can lead to having to abandon your entire
work, as demonstrated by IBM’s decision to stop its facial recognition program and
similar pauses across the industry after the implications of racial bias in facial recog‐
nition in the hands of law enforcement became clear.

Even seemingly unbiased data, like raw purchase records, can turn out to have
intense biases resulting in incorrect recommendations or worse. Just because a data‐
set is public and widely available does not mean it is unbiased. The well-known prac‐
tice of word embeddings has been shown to have many types of bias, including
sexism, anti-LGBTQ, and anti-immigrant. When looking at a new dataset it is crucial
to look for examples of bias in your data and attempt to mitigate it as much as possi‐
ble. With the most popular public datasets, various techniques are often discussed in
the research, and you can use these to guide your own work.

While this book does not have the tools to solve bias, we encourage you to think criti‐
cally about potential biases in your system and explore solutions before going into pro‐
duction. If you don’t know where to start, check out Katharine Jarmul’s excellent
introductory talk. IBM has a collection of tools and examples in its AI Fairness 360
open source toolkit that can be a great place to start your exploration. A critical step
to reducing bias in your models is to have a diverse team to notice potential issues
early. As Jeff Dean said: “AI is full of promise, with the potential to revolutionize so
many different areas of modern society. In order to realize its true potential, our field
needs to be welcoming to all people. As it stands today, it is definitely not. Our field
has a problem with inclusiveness.”

Preface | xiii

1 Remember the Twitter bot that through reinforcement learning became a neo-Nazi in less than a weekend?

It’s important to note that removing biases or validating accuracy in
your results is not a “one and done”; model performance can
degrade and biases can be introduced over time—even if you don’t
personally change anything.1

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xiv | Preface

We will use warnings to indicate any situations where the resulting pipeline is likely
to be nonportable and call out portable alternatives that you can use.

Code Examples
Supplemental material (code examples, etc.) is available for download at https://
oreil.ly/Kubeflow_for_ML. These code examples are available under an Apache 2
license, or as described in the next section.

There are additional examples under their own respective licenses that you may find
useful. The Kubeflow project has an example repo, which at the time of writing is
available under an Apache 2 license. Canonical also has a set of resources that may be
of special interest to MicroK8s users.

Using Code Examples
If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

Additional details on license can be found in the repos.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubeflow for Machine
Learning by Holden Karau, Trevor Grant, Boris Lublinsky, Richard Liu, and Ilan Filo‐
nenko (O’Reilly). Copyright 2021 Holden Karau, Trevor Grant, Boris Lublinsky,
Richard Liu, and Ilan Filonenko, 978-1-492-05012-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact the Authors
For feedback, email us at intro-to-ml-kubeflow@googlegroups.com. For random ram‐
blings, occasionally about Kubeflow, follow us online:

Trevor
• Twitter
• Blog
• GitHub
• Myspace

Holden
• Twitter
• YouTube
• Twitch
• LinkedIn
• Blog
• GitHub
• Facebook

Boris
• LinkedIn
• GitHub

Richard
• GitHub

xvi | Preface

Ilan
• LinkedIn
• GitHub

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata, examples, and any
additional information, at https://oreil.ly/Kubeflow_for_Machine_Learning.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors would like to thank everyone at O’Reilly Media, especially our editors
Amelia Blevins and Deborah Baker, as well as the Kubeflow community for making
this book possible. Clive Cox and Alejandro Saucedo from Seldon made amazing
contributions to Chapter 8, without which this book would be missing key parts. We’d
like to thank Google Cloud Platform for resources that allowed us to ensure examples
worked on GCP. Perhaps most importantly, we’d like to thank our reviewers, without
whom this book would not exist in its current form. This includes Taka Shinagawa,
Pete MacKinnon, Kevin Haas, Chris Albon, Hannes Hapke, and more. To all early
readers and reviewers of books, thank you for your contributions.

Preface | xvii

Holden
Would like to thank her girlfriend Kris Nóva for her help debugging her first
Kubeflow PR, as well as the entire Kubeflow community for being so welcoming.
She would also like to thank her wife Carolyn DeSimone, her puppy Timbit
DeSimone-Karau (pictured in Figure P-1), and her stuffed animals for the sup‐
port needed to write. She would like to thank the doctors at SF General and
UCSF for fixing up her hands so she could finish writing this book (although she
does wish the hands did not hurt anymore) and everyone who came to visit her
in the hospital and nursing home. A special thank you to Ann Spencer, the first
editor who showed her how to have fun writing. Finally, she would like to thank
her datefriend Els van Vessem for their support in recovering after her accident,
especially reading stories and reminding her of her love of writing.

Figure P-1. Timbit the dog

Ilan
Would like to thank all his colleagues at Bloomberg who took the time to review,
mentor, and encourage him to write and contribute to open source. The list
includes but is not limited to: Kimberly Stoddard, Dan Sun, Keith Laban, Steven
Bower, and Sudarshan Kadambi. He would also like to thank his family—Galia,
Yuriy, and Stan—for their unconditional love and support.

Richard
Would like to thank the Google Kubeflow team, including but not limited to:
Jeremy Lewi, Abhishek Gupta, Thea Lamkin, Zhenghui Wang, Kunming Qu,
Gabriel Wen, Michelle Casbon, and Sarah Maddox—without whose support
none of this would have been possible. He would also like to thank his cat Tina
(see Figure P-2) for her support and understanding during COVID-19.

xviii | Preface

Figure P-2. Tina the cat

Boris
Would like to thank his colleagues at Lightbend, especially Karl Wehden, for their
support in writing the book, their suggestions and proofreads of the early ver‐
sions of the text, and his wife Marina for putting up with his long hours and feed‐
ing him during these hours.

Trevor
Trevor would like to thank his office mates Apache and Meowska (see
Figure P-3) for reminding him of the importance of naps, and everyone who lis‐
tened to him give a talk on Kubeflow last year (especially the people who listened
to the bad versions, and especially especially people who listened to the bad ver‐
sions but still are reading this book now—you’re the best). He’d also like to thank
his mom, sister, and brother for tolerating his various shenanigans over the years.

Preface | xix

Figure P-3. Apache and Meowska

Grievances
The authors would also like to acknowledge the struggles of API changes, which
made writing this book so frustrating. If you ever struggle with API changes, know
that you are not alone; they are annoying to almost everyone.

Holden would also like to acknowledge the times Timbit DeSimone-Karau was a little
sh*t and dug up the yard while she was working. We have a special grievance to vent
with the person who hit Holden with their car, slowing down the release of this book.

Trevor has a grievance to air with his girlfriend, who has been badgering him (with
increasing persistence) to propose to her throughout this entire project, and while he
has been “working on it”—if he hasn’t asked her to marry him by the time this book
comes out: Katie, will you marry me?

xx | Preface

CHAPTER 1

Kubeflow: What It Is and Who It Is For

If you are a data scientist trying to get your models into production, or a data engi‐
neer trying to make your models scalable and reliable, Kubeflow provides tools to
help. Kubeflow solves the problem of how to take machine learning from research to
production. Despite common misconceptions, Kubeflow is more than just Kuber‐
netes and TensorFlow—you can use it for all sorts of machine learning tasks. We
hope Kubeflow is the right tool for you, as long as your organization is using Kuber‐
netes. “Alternatives to Kubeflow” on page 9 introduces some options you may wish to
explore.

This chapter aims to help you decide if Kubeflow is the right tool for your use case.
We’ll cover the benefits you can expect from Kubeflow, some of the costs associated
with it, and some of the alternatives. After this chapter, we’ll dive into setting up
Kubeflow and building an end-to-end solution to familiarize you with the basics.

Model Development Life Cycle
Machine learning or model development essentially follows the path: data → infor‐
mation → knowledge → insight. This path of generating insight from data can be
graphically described with Figure 1-1.

Model development life cycle (MDLC) is a term commonly used to describe the flow
between training and inference. Figure 1-1 is a visual representation of this continu‐
ous interaction, where upon triggering a model update the whole cycle kicks off yet
again.

1

1 For more on containers, see this Google cloud resource. In situations with GPUs or TPUs, the details of isola‐
tion become more complicated.

Figure 1-1. Model development life cycle

Where Does Kubeflow Fit In?
Kubeflow is a collection of cloud native tools for all of the stages of MDLC (data
exploration, feature preparation, model training/tuning, model serving, model test‐
ing, and model versioning). Kubeflow also has tooling that allows these traditionally
separate tools to work seamlessly together. An important part of this tooling is the
pipeline system, which allows users to build integrated end-to-end pipelines that con‐
nect all components of their MDLC.

Kubeflow is for both data scientists and data engineers looking to build production-
grade machine learning implementations. Kubeflow can be run either locally in your
development environment or on a production cluster. Often pipelines will be devel‐
oped locally and migrated once the pipelines are ready. Kubeflow provides a unified
system—leveraging Kubernetes for containerization and scalability, for the portability
and repeatability of its pipelines.

Why Containerize?
The isolation provided by containers allows machine learning stages to be portable
and reproducible. Containerized applications are isolated from the rest of your
machine and have all their requirements included (from the operating system up).1

Containerization means no more conversations that include “It worked on my
machine” or “Oh yeah, we forgot about just one, you need this extra package.”

2 | Chapter 1: Kubeflow: What It Is and Who It Is For

2 W. Felter et al., “An Updated Performance Comparison of Virtual Machines and Linux Containers,” 2015 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), March 29-31, 2015,
doi: 10.1109/ISPASS.2015.7095802.

3 Kubernetes does this by providing a container orchestration layer. For more information about Kubernetes,
check out its documentation.

4 Spotify was able to increase the rate of experiments ~7x; see this Spotify Engineering blog post.

Containers are built in composable layers, allowing you to use another container as a
base. For example, if you have a new natural language processing (NLP) library you
want to use, you can add it on top of the existing container—you don’t have to start
from scratch each time. The composability allows you to reuse a common base; for
example, the R and Python containers we use both share a base Debian container.

A common worry about using containers is the overhead. The overhead of containers
depends on your implementation, but a paper from IBM2 found the overhead to be
quite low, and generally faster than virtualization. With Kubeflow, there is some addi‐
tional overhead of having operators installed that you may not use. This overhead is
negligible on a production cluster but may be noticeable on a laptop.

Data scientists with Python experience can think of containers as a
heavy-duty virtual environment. In addition to what you’re used to
in a virtual environment, containers also include the operating sys‐
tem, the packages, and everything in between.

Why Kubernetes?
Kubernetes is an open source system for automating the deployment, scaling, and
management of containerized applications. It allows our pipelines to be scalable
without sacrificing portability, enabling us to avoid becoming locked into a specific
cloud provider.3 In addition to being able to switch from a single machine to a dis‐
tributed cluster, different stages of your machine learning pipeline can request differ‐
ent amounts or types of resources. For example, your data preparation step may
benefit more from running on multiple machines, while your model training may
benefit more from computing on top of GPUs or tensor processing units (TPUs).
This flexibility is especially useful in cloud environments, where you can reduce your
costs by using expensive resources only when required.

You can, of course, build your own containerized machine learning pipelines on
Kubernetes without using Kubeflow; however the goal of Kubeflow is to standardize
this process and make it substantially easier and more efficient.4 Kubeflow provides a
common interface over the tools you would likely use for your machine learning
implementations. It also makes it easier to configure your implementations to use
hardware accelerators like TPUs without changing your code.

Why Kubernetes? | 3

5 Local clusters like Minikube are limited to one machine, but most cloud clusters can dynamically change the
kind and number of machines as needed.

Kubeflow’s Design and Core Components
In the machine learning landscape, there exists a diverse selection of libraries, tool
sets, and frameworks. Kubeflow does not seek to reinvent the wheel or provide a “one
size fits all” solution—instead, it allows machine learning practitioners to compose
and customize their own stacks based on specific needs. It is designed to simplify the
process of building and deploying machine learning systems at scale. This allows data
scientists to focus their energies on model development instead of infrastructure.

Kubeflow seeks to tackle the problem of simplifying machine learning through three
features: composability, portability, and scalability.

Composability
The core components of Kubeflow come from data science tools that are already
familiar to machine learning practitioners. They can be used independently to
facilitate specific stages of machine learning, or composed together to form end-
to-end pipelines.

Portability
By having a container-based design and taking advantage of Kubernetes and its
cloud native architecture, Kubeflow does not require you to anchor to any partic‐
ular developer environment. You can experiment and prototype on your laptop,
and deploy to production effortlessly.

Scalability
By using Kubernetes, Kubeflow can dynamically scale according to the demand
on your cluster, by changing the number and size of the underlying containers
and machines.5

These features are critical for different parts of MDLC. Scalability is important as
your dataset grows. Portability is important to avoid vendor lock-in. Composability
gives you the freedom to mix and match the best tools for the job.

Let’s take a quick look at some of Kubeflow’s components and how they support these
features.

Data Exploration with Notebooks
MDLC always begins with data exploration—plotting, segmenting, and manipulating
your data to understand where possible insight might exist. One powerful tool that
provides the tools and environment for such data exploration is Jupyter. Jupyter is an
open source web application that allows users to create and share data, code snippets,

4 | Chapter 1: Kubeflow: What It Is and Who It Is For

6 There is still some setup work to make this function, which we cover in Chapter 5.

and experiments. Jupyter is popular among machine learning practitioners due to its
simplicity and portability.

In Kubeflow, you can spin up instances of Jupyter that directly interact with your
cluster and its other components, as shown in Figure 1-2. For example, you can write
snippets of TensorFlow distributed training code on your laptop, and bring up a
training cluster with just a few clicks.

Figure 1-2. Jupyter notebook running in Kubeflow

Data/Feature Preparation
Machine learning algorithms require good data to be effective, and often special tools
are needed to effectively extract, transform, and load data. One typically filters, nor‐
malizes, and prepares one’s input data in order to extract insightful features from
otherwise unstructured, noisy data. Kubeflow supports a few different tools for this:

• Apache Spark (one of the most popular big data tools)
• TensorFlow Transform (integrated with TensorFlow Serving for easier inference)

These distinct data preparation components can handle a variety of formats and data
sizes and are designed to play nicely with your data exploration environment.6

Kubeflow’s Design and Core Components | 5

Support for Apache Beam with Apache Flink in Kubeflow Pipelines
is an area of active development.

Training
Once your features are prepped, you are ready to build and train your model. Kube‐
flow supports a variety of distributed training frameworks. As of the time of writing,
Kubeflow has support for:

• TensorFlow
• PyTorch
• Apache MXNet
• XGBoost
• Chainer
• Caffe2
• Message passing interface (MPI)

In Chapter 7 we will examine how Kubeflow trains a TensorFlow model in greater
detail and Chapter 9 will explore other options.

Hyperparameter Tuning
How do you optimize your model architecture and training? In machine learning,
hyperparameters are variables that govern the training process. For example, what
should the model’s learning rate be? How many hidden layers and neurons should be
in the neural network? These parameters are not part of the training data, but they
can have a significant effect on the performance of the training models.

With Kubeflow, users can begin with a training model that they are unsure about,
define the hyperparameter search space, and Kubeflow will take care of the rest—spin
up training jobs using different hyperparameters, collect the metrics, and save the
results to a model database so their performance can be compared.

Model Validation
Before you put your model into production, it’s important to know how it’s likely to
perform. The same tool used for hyperparameter tuning can perform cross-validation
for model validation. When you’re updating existing models, techniques like A/B
testing and multi-armed bandit can be used in model inference to validate your
model online.

6 | Chapter 1: Kubeflow: What It Is and Who It Is For

Inference/Prediction
After training your model, the next step is to serve the model in your cluster so it can
handle prediction requests. Kubeflow makes it easy for data scientists to deploy
machine learning models in production environments at scale. Currently Kubeflow
provides a multiframework component for model serving (KFServing), in addition to
existing solutions like TensorFlow Serving and Seldon Core.

Serving many types of models on Kubeflow is fairly straightforward. In most situa‐
tions, there is no need to build or customize a container yourself—simply point
Kubeflow to where your model is stored, and a server will be ready to service
requests.

Once the model is served, it needs to be monitored for performance and possibly
updated. This monitoring and updating is possible via the cloud native design of
Kubeflow and will be further expanded upon in Chapter 8.

Pipelines
Now that we have completed all aspects of MDLC, we wish to enable reusability and
governance of these experiments. To do this, Kubeflow treats MDLC as a machine
learning pipeline and implements it as a graph, where each node is a stage in a work‐
flow, as seen in Figure 1-3. Kubeflow Pipelines is a component that allows users to
compose reusable workflows at ease. Its features include:

• An orchestration engine for multistep workflows
• An SDK to interact with pipeline components
• A user interface that allows users to visualize and track experiments, and to share

results with collaborators

Kubeflow’s Design and Core Components | 7

Figure 1-3. A Kubeflow pipeline

Component Overview
As you can see, Kubeflow has built-in components for all parts of MDLC: data prepa‐
ration, feature preparation, model training, data exploration, hyperparameter tuning,
and model inference, as well as pipelines to coordinate everything. However, you are
not limited to just the components shipped as part of Kubeflow. You can build on top
of the components or even replace them. This can be OK for occasional components,
but if you find yourself wanting to replace many parts of Kubeflow, you may want to
explore some of the alternatives available.

8 | Chapter 1: Kubeflow: What It Is and Who It Is For

Alternatives to Kubeflow
Within the research community, various alternatives exist that provide uniquely dif‐
ferent functionality to that of Kubeflow. Most recent research has focused around
model development and training, with large improvements being made in infrastruc‐
ture, theory, and systems.

Prediction and model serving, on the other hand, have received relatively less atten‐
tion. As such, data science practitioners often end up hacking together an amalgam of
critical systems components that are integrated to support serving and inference
across various workloads and continuously evolving frameworks.

Given the demand for constant availability and horizontal scalability, solutions like
Kubeflow and various others are gaining traction throughout the industry, as power‐
ful architectural abstraction tools, and as convincing research scopes.

Clipper (RiseLabs)
One interesting alternative to Kubeflow is Clipper, a general-purpose low-latency pre‐
diction serving system developed by RiseLabs. In an attempt to simplify deployment,
optimization, and inference, Clipper has a layered architecture system. Through vari‐
ous optimizations and its modular design, Clipper, achieves low latency and high-
throughput predictions at levels comparable to TensorFlow Serving, on three
TensorFlow models of varying inference costs.

Clipper is divided across two abstractions, aptly named model selection and model
abstraction layers. The model selection layer is quite sophisticated in that it uses an
adaptive online model selection policy and various ensemble techniques. Since the
model is continuously learning from feedback throughout the lifetime of the applica‐
tion, the model selection layer self-calibrates failed models without needing to inter‐
act directly with the policy layer.

Clipper’s modular architecture and focus on containerization, similar to Kubeflow,
enables caching and batching mechanisms to be shared across frameworks while also
reaping the benefits of scalability, concurrency, and flexibility in adding new model
frameworks.

Graduating from theory into a functional end-to-end system, Clipper has gained
traction within the scientific community and has had various parts of its architectural
designs incorporated into recently introduced machine learning systems. Nonethe‐
less, we have yet to see if it will be adopted in the industry at scale.

Alternatives to Kubeflow | 9

7 If you want to explore more of these tools, two good overviews are Ian Hellstrom’s 2020 blog post and this
2019 article by Austin Kodra.

MLflow (Databricks)
MLflow was developed by Databricks as an open source machine learning develop‐
ment platform. The architecture of MLflow leverages a lot of the same architectural
paradigms as Clipper, including its framework-agnostic nature, while focusing on
three major components that it calls Tracking, Projects, and Models.

MLflow Tracking functions as an API with a complementing UI for logging parame‐
ters, code versions, metrics, and output files. This is quite powerful in machine learn‐
ing as tracking parameters, metrics, and artifacts is of paramount importance.

MLflow Projects provides a standard format for packaging reusable data science code,
defined by a YAML file that can leverage source-controlled code and dependency
management via Anaconda. The project format makes it easy to share reproducible
data science code, as reproducibility is critical for machine learning practitioners.

MLflow Models are a convention for packaging machine learning models in multiple
formats. Each MLflow Model is saved as a directory containing arbitrary files and an
MLmodel descriptor file. MLflow also provides the model’s registry, showing lineage
between deployed models and their creation metadata.

Like Kubeflow, MLflow is still in active development, and has an active community.

Others
Because of the challenges presented in machine learning development, many organi‐
zations have started to build internal platforms to manage their machine learning life
cycle. For example: Bloomberg, Facebook, Google, Uber, and IBM have built, respec‐
tively, the Data Science Platform, FBLearner Flow, TensorFlow Extended, Michelan‐
gelo, and Watson Studio to manage data preparation, model training, and
deployment.7

With the machine learning infrastructure landscape always evolving and maturing,
we are excited to see how open source projects, like Kubeflow, will bring much-
needed simplicity and abstraction to machine learning development.

Introducing Our Case Studies
Machine learning can use many different types of data, and the approaches and tools
you use may vary. In order to showcase Kubeflow’s capabilities, we’ve chosen case
studies with very different data and best practices. When possible, we will use data
from these case studies to explore Kubeflow and some of its components.

10 | Chapter 1: Kubeflow: What It Is and Who It Is For

8 For example, see the Piyushdharkar’s GitHub.

Modified National Institute of Standards and Technology
In ML, Modified National Institute of Standards and Technology (MNIST) com‐
monly refers to the dataset of handwritten digits for classification. The relatively
small data size of digits, as well as its common use as an example, allows us to explore
a variety of tools. In some ways, MNIST has become one of the standard “hello
world” examples for machine learning. We use MNIST as our first example in Chap‐
ter 2 to illustrate Kubeflow end-to-end.

Mailing List Data
Knowing how to ask good questions is something of an art. Have you ever posted a
message to a mailing list, asking for help, only for no one to respond? What are the
different types of questions? We’ll look at some of the public Apache Software Foun‐
dation mailing list data and try to create a model that predicts if a message will be
answered. This example is scaled up and down by choosing which projects and what
time period we want to look at, so we can use a variety of tools to solve it.

Product Recommender
Recommendation systems are one of the most common and easily understood appli‐
cations of machine learning, with many examples from Amazon’s product recom‐
mender to Netflix’s movie suggestions. The majority of recommender
implementations are based on collaborative filtering—an assumption that if person A
has the same opinion as person B on a set of issues, A would be more likely to share
B’s opinion on other issues than would a randomly chosen third person. This
approach is built on a well-developed algorithm with quite a few implementations,
including TensorFlow/Keras implementation.8

One of the problems with rating-based models is that they can’t be standardized easily
for data with nonscaled target values, such as the purchase or frequency data. This
excellent Medium post shows how to convert such data into a rating matrix that can
be used for collaborative filtering. Our example leverages data and code from Data
Driven Investor and code described on Piyushdharkar’s GitHub. We’ll use this exam‐
ple to explore how to build an initial model in Jupyter and move on to building a pro‐
duction pipeline.

Introducing Our Case Studies | 11

CT Scans
As we were writing this book, the world was going through the COVID-19 pandemic.
AI researchers were being called on to apply methods and techniques to assist medi‐
cal providers with understanding the disease. Some research showed that CT scans
were more effective at early detection than RT-PCR tests (the traditional COVID
test). However, diagnostic CT scans use low dosages of radiation and are therefore
“noisy”—that is to say, CT scans are more clear when more radiation is used.

A new paper proposes an open source solution for denoising CT scans with off-the-
shelf methods available entirely from open source projects (as opposed to proprietary
FDA-approved solutions). We implement this approach to illustrate how one might
go from academic article to real-world solution, to show the value of Kubeflow for
creating reproducible and sharable research, and to provide a starting off point for
any reader who might want to contribute to the fight against COVID-19.

Conclusion
We are so glad you’ve decided to use this book to start your adventures into Kubeflow.
This introduction should have given you a feel for Kubeflow and its capabilities.
However, like all adventures, there may come a point when your guidebook isn’t
enough to carry you through. Thankfully, there is a collection of community resour‐
ces where you can interact with others on similar paths. We encourage you to sign up
for the Kubeflow Slack workspace, one of the more active areas of discussion. There is
also a Kubeflow discussion mailing list. There is a Kubeflow project page as well.

If you want to quickly explore Kubeflow end-to-end, there are
some Google codelabs that can help you.

In Chapter 2, we’ll install Kubeflow and use it to train and serve a relatively simple
machine learning model to give you an idea of the basics.

12 | Chapter 1: Kubeflow: What It Is and Who It Is For

CHAPTER 2

Hello Kubeflow

Welcome to your first steps into the exciting world of Kubeflow!

First off, we’ll set up Kubeflow on your machine, or on a cloud provider. Then we’ll
dive into a comprehensive example. The goal of this example is to get a model trained
and start serving as quickly as possible. In some parts of the first section, it may seem
like we are instructing you to mindlessly enter commands. While we want you to fol‐
low along, we strongly encourage you to revisit this chapter after you’ve finished the
book to reflect on the commands you entered, and consider how much your under‐
standing has grown while reading.

We’ll provide instructions for setting up and testing our example on a local machine
and a link to instructions for performing the same on real clusters. While we will
point you to the config files and OCI containers that are driving all of this, they are
not the focus of this chapter; they will be covered in detail in subsequent chapters.
The focus of this chapter is an end-to-end example that you can follow along with at
home.

In future chapters we will dig into the “why” of everything we’re doing, we promise.

For now, just enjoy the ride.

Getting Set Up with Kubeflow
One of the great things about Kubeflow being built with Kubernetes is the ability to
do our initial development and exploration locally, moving into more powerful and
distributed tools later on. Your same pipeline can be developed locally and moved
into a cluster.

13

Though you could get started with Kubeflow locally, you don’t have
to. You can just as easily do your initial work with one of the cloud
providers or on-premises Kubernetes clusters.
One of the faster ways to get started with Kubeflow is using the
click-to-deploy app on Google Cloud Platform (GCP). If you’re in a
rush to get started, go ahead and check out this Kubeflow docu‐
mentation page.

Installing Kubeflow and Its Dependencies
Before we approach the biggest requirement for Kubeflow, access to a Kubernetes
cluster, let’s get the tools set up. Kubeflow is fairly self-contained but does require
kubectl. The rest of the dependencies are inside containers, so you don’t have to
worry about installing them.

Whether you use a local or a remote Kubernetes cluster, having the
development tools installed locally will simplify your life.

Regardless of your cluster, you need to install Kubeflow’s core dependency kubectl,
for communicating with Kubernetes. kubectl is widely packaged, with the different
installation options covered in the Kubernetes documentation. If you want to use a
package manager to install kubectl, Ubuntu users can use snap (see Example 2-1)
and Mac users can use Homebrew (see Example 2-2); other installation options are
covered in the Kubernetes documentation. kubectl can also be installed as a local
binary from this Kubernetes documentation page.

Example 2-1. Install kubectl with snap

sudo snap install kubectl --classic

Example 2-2. Install kubectl with Homebrew

brew install kubernetes-cli

Once you have the minimum dependencies installed, you can now install Kubeflow
from this GitHub repo, as in Example 2-3.

14 | Chapter 2: Hello Kubeflow

Example 2-3. Install Kubeflow

PLATFORM=$(uname) # Either Linux or Darwin
export PLATFORM
mkdir -p ~/bin
#Configuration
export KUBEFLOW_TAG=1.0.1
^ You can also point this to a different version if you want to try
KUBEFLOW_BASE="https://api.github.com/repos/kubeflow/kfctl/releases"
Or just go to https://github.com/kubeflow/kfctl/releases
KFCTL_URL=$(curl -s ${KUBEFLOW_BASE} |\
 grep http |\
 grep "${KUBEFLOW_TAG}" |\
 grep -i "${PLATFORM}" |\
 cut -d : -f 2,3 |\
 tr -d '\" ')
wget "${KFCTL_URL}"
KFCTL_FILE=${KFCTL_URL##*/}
tar -xvf "${KFCTL_FILE}"
mv ./kfctl ~/bin/
rm "${KFCTL_FILE}"
It's recommended that you add the scripts directory to your path
export PATH=$PATH:~/bin

You should now have Kubeflow installed on your machine. To make sure it’s installed,
run kfctl version and check that it returns the expected version. Now let’s cover
some optional tools that you can install to ease your future Kubeflowing.

Setting Up Local Kubernetes
Being able to have the same software running locally and in production is one of the
great advantages of Kubeflow. To support this, you will need a local version of Kuber‐
netes installed. While there are several options, we find Minikube the simplest. Mini‐
kube is a local version of Kubernetes that allows you to use your local computer to
simulate a cluster. Two other common options for a local version of Kubeflow are
microk8s, supported on many Linux platforms, and MiniKF, which uses Vagrant to
launch a VM to run Kubernetes with Kubeflow.

A local Kubernetes cluster is not strictly required, but many data
scientists and developers find it helpful to have a local cluster to
test with.

Minikube
Minikube is a local version of Kubernetes that can run Kubeflow. There are installa‐
tion guides for Minikube on the main Kubernetes documentation page as well as the
Kubeflow-specific page.

Getting Set Up with Kubeflow | 15

The most common failure in the automatic setup of Minikube is missing a hypervisor
or Docker. Regardless of your OS, you should be able to use VirtualBox; however,
other options like KVM2 on Linux, Hyper-V on Windows, and HyperKit on macOS
all work as well.

When starting Minikube make sure to give it plenty of memory
and disk space, e.g., minikube start --cpus 16 --memory 12g
--disk-size 15g. Note: you don’t need 16 CPU cores to run this;
this is just the number of virtual CPUs Minikube will use.

Setting Up Your Kubeflow Development Environment
Kubeflow’s pipeline system is built in Python, and having the SDK installed locally
will allow you to build pipelines faster. However, if you can’t install software locally,
you can still use Kubeflow’s Jupyter environment to build your pipelines.

Setting up the Pipeline SDK
To begin setting up the Pipeline SDK you will need to have Python installed. Many
people find it useful to create isolated virtual environments for their different
projects; see how in Example 2-4.

Example 2-4. Create a virtual environment

virtualenv kfvenv --python python3
source kfvenv/bin/activate

Now you can use the pip command to install the Kubeflow Pipelines package and its
requirements, as in Example 2-5.

Example 2-5. Install Kubeflow Pipeline SDK

URL=https://storage.googleapis.com/ml-pipeline/release/latest/kfp.tar.gz
pip install "${URL}" --upgrade

If you use a virtual environment you will need to activate it whenever you want to use
the Pipeline SDK.

In addition to the SDK, Kubeflow ships a number of components. Checking out a
fixed version of the standard components, as in Example 2-6, allows us to create more
reliable pipelines.

Example 2-6. Clone the Kubeflow Pipelines repo

 git clone --single-branch --branch 0.3.0 https://github.com/kubeflow/pipelines.git

16 | Chapter 2: Hello Kubeflow

1 Just search “cloudname” plus the container registry name for documentation.

Setting up Docker
Docker is an important part of the minimum requirements, allowing you to custom‐
ize and add libraries and other functionality to your own custom containers. We’ll
cover more on Docker in Chapter 3. Docker can be installed from the standard pack‐
age managers in Linux or with Homebrew on macOS.

In addition to installing Docker, you will want a place to store the container images,
called a container registry. The container registry will be accessed by your Kubeflow
cluster. The company behind Docker offers Docker Hub and RedHat offers Quay, a
cloud neutral platform you can use. Alternatively, you can also use your cloud pro‐
vider’s container registry.1 A cloud vendor’s specific container registry often offers
greater security on images stored there and can configure your Kubernetes cluster
automatically with the permissions required to fetch those images. In our examples,
we’ll assume that you’ve set your container registry via an environment variable
$CONTAINER_REGISTRY, in your shell.

If you use a registry that isn’t on the Google Cloud Platform, you
will need to configure Kubeflow Pipelines container builder to have
access to your registry by following the Kaniko configuration
guide.

To make sure your Docker installation is properly configured, you can write a one-
line Dc and push it to your registry. For the Dockerfile we’ll use the FROM command
to indicate we are based on top of Kubeflow’s TensorFlow notebook container image,
as in Example 2-7 (we’ll talk more about this in Chapter 9). When you push a con‐
tainer, you need to specify the tag, which determines the image name, version, and
where it is stored—as shown in Example 2-8.

Example 2-7. Specify the new container is built on top of Kubeflow’s container

FROM gcr.io/kubeflow-images-public/tensorflow-2.1.0-notebook-cpu:1.0.0

Example 2-8. Build the new container and push to a registry for use

IMAGE="${CONTAINER_REGISTRY}/kubeflow/test:v1"
docker build -t "${IMAGE}" -f Dockerfile .
docker push "${IMAGE}"

With this setup, you’re now ready to start customizing the containers and compo‐
nents in Kubeflow to meet your needs. We’ll do a deeper dive into building containers

Getting Set Up with Kubeflow | 17

2 Not to be confused with the legacy kfctl.sh script.

from scratch in Chapter 9. As we move forward in future chapters we’ll use this pat‐
tern to add tools when needed.

Editing YAML
While Kubeflow abstracts the details of Kubernetes away from us to a large degree,
there are still times when looking at or modifying the configuration is useful. Most of
Kubernetes configuration is represented in YAML, so having tools set up to easily
look at and edit YAMLs will be beneficial. Most integrated development environ‐
ments (IDEs) offer some sort of tooling for editing YAML, but you may have to
install these separately.

For IntelliJ there is a YAML plugin. For emacs there are many
modes available for YAML editing, including yaml-mode (which is
installable from Milkypostman’s Emacs Lisp Package Archive
(MELPA)). Atom has syntax highlighting available as a package
YAML. If you use a different IDE, don’t throw it away just for better
YAML editing before you explore the plugin available. Regardless
of IDE you can also use the YAMLlint website to check your
YAML.

Creating Our First Kubeflow Project
First, we need to make a Kubeflow project to work in. To create a Kubeflow deploy‐
ment we use the kfctl program.2 When using Kubeflow you need to specify a mani‐
fest file that configures what is built and how there are various manifests for different
cloud providers.

We’ll start with an example project using a vanilla configuration, as seen in
Example 2-9. In this project we’ll build a simple end-to-end pipeline for our MNIST
example. We chose this example because it’s the standard “hello world” of machine
learning.

Example 2-9. Create first example project

Pick the correct config file for your platform from
https://github.com/kubeflow/manifests/tree/[version]/kfdef
You can download and edit the configuration at this point if you need to.
For generic Kubernetes with Istio:
MANIFEST_BRANCH=${MANIFEST_BRANCH:-v1.0-branch}
export MANIFEST_BRANCH
MANIFEST_VERSION=${MANIFEST_VERSION:-v1.0.1}
export MANIFEST_VERSION

18 | Chapter 2: Hello Kubeflow

KF_PROJECT_NAME=${KF_PROJECT_NAME:-hello-kf-${PLATFORM}}
export KF_PROJECT_NAME
mkdir "${KF_PROJECT_NAME}"
pushd "${KF_PROJECT_NAME}"

manifest_root=https://raw.githubusercontent.com/kubeflow/manifests/
On most environments this will create a "vanilla" Kubeflow install using Istio.
FILE_NAME=kfctl_k8s_istio.${MANIFEST_VERSION}.yaml
KFDEF=${manifest_root}${MANIFEST_BRANCH}/kfdef/${FILE_NAME}
kfctl apply -f $KFDEF -V
echo $?

popd

Example 2-9 assumes you’re using an existing Kubernetes cluster (like local Mini‐
kube). While your running kfctl apply you will see lots of status messages and
maybe even some error messages. Provided it prints out a 0 at the end you can safely
ignore most errors as they are automatically retried.

This deployment process can take up to 30 minutes.

If you’ve decided to go straight ahead with a cloud provider, the Kubeflow installation
guide has information on how to get started.

The Kubeflow user interface can come up before Kubeflow is fully
deployed, and accessing it then can mean you won’t have a proper
namespace. To make sure Kubeflow is ready, run kubectl get
pods --all-namespaces -w and wait for all of the pods to become
RUNNING or COMPLETED. If you see pods being preempted,
make sure you launched a cluster with enough RAM and disk
space. If you can’t launch a large enough cluster locally, consider a
cloud provider. (Ilan and Holden are currently working on a blog
post on this topic.)

Training and Deploying a Model
In traditional machine learning texts, the training phase is the one that is given the
most attention, with a few simple examples on deployment, and very little treatment
of model management. Throughout this book, we assume that you are a data scientist
who knows how to select the correct model/algorithm or work with someone who
does. We focus on the deployment and model management more than traditional ML
texts.

Training and Deploying a Model | 19

3 The container is from this GitHub repo.

Training and Monitoring Progress
The next step is to train the model using a Kubeflow Pipeline. We will use a precre‐
ated training container3 that downloads the training data and trains the model. For
Example 2-10, we have a prebuilt workflow in train_pipeline.py that trains a Ran
domForestClassifier in the ch2 folder on this book’s GitHub example repo.

Example 2-10. Create training workflow example

dsl-compile --py train_pipeline.py --output job.yaml

If you run into problems here, you should check out the Kubeflow troubleshooting
guide.

The Kubeflow UI, as seen in Figure 2-1, is accessed in a few different ways. For local
deployments a quick port forward is the simplest way to get started: just run kubectl
port-forward svc/istio-ingressgateway -n istio-system 7777:80 and then go
to localhost:7777. If you have deployed on GCP you should go to https://<deploy
ment_name>.endpoints.<project_name>.cloud.goog. Otherwise, you can get the
address of the gateway service by running kubectl get ingress -n istio-system.

Figure 2-1. Kubeflow web UI

20 | Chapter 2: Hello Kubeflow

Click pipelines, or add _/pipeline/ to the root URL and you should see the Pipelines
web UI, as in Figure 2-2.

Figure 2-2. Pipelines web UI

From here we can upload our pipeline. Once we’ve uploaded the pipeline we can use
the same web UI to create a run of the pipeline. After you click the uploaded pipeline
you’ll be able to create a run, as shown in Figure 2-3.

Figure 2-3. Pipeline detail page

Test Query
Finally, let’s query our model and monitor the results. A “sanity check” is a simple test
to ensure our model is making predictions that are theoretically reasonable. For
example—we’re attempting to guess what digit was written. If our model comes back
with answers like 77, orange Kool-Aid, or ERROR, those would all fail the sanity
check. We expect to see digits between 0 and 9. Sanity checking models before
putting them into production is always a wise choice.

The web UI and model serving are exposed through the same Istio gateway. So, the
model will be available at http://<WEBUI_URL>/seldon<mnist-classifier/api<v0.1/
predictions. If you’re using Google IAP, you may find the iap_curl project helpful for
making requests.

There is a Python script available for pulling an image from the MNIST dataset, turn‐
ing it into a vector, displaying the image, and sending it to the model. Turning the
image into a vector is normally part of the preprediction transformation; we’ll cover
more of this in Chapter 8. Example 2-11 is a fairly clear Python example of how one
can query the model. The model returns a JSON of the 10 digits and the probability

Training and Deploying a Model | 21

of whether the submitted vector represents a specific digit. Specifically, we need an
image of a handwritten digit that we can turn into an array of values.

Example 2-11. Model query example

import requests
import numpy as np

from tensorflow.examples.tutorials.mnist import input_data
from matplotlib import pyplot as plt

def download_mnist():
 return input_data.read_data_sets("MNIST_data/", one_hot=True)

def gen_image(arr):
 two_d = (np.reshape(arr, (28, 28)) * 255).astype(np.uint8)
 plt.imshow(two_d, cmap=plt.cm.gray_r, interpolation='nearest')
 return plt
mnist = download_mnist()
batch_xs, batch_ys = mnist.train.next_batch(1)
chosen = 0
gen_image(batch_xs[chosen]).show()
data = batch_xs[chosen].reshape((1, 784))
features = ["X" + str(i + 1) for i in range(0, 784)]
request = {"data": {"names": features, "ndarray": data.tolist()}}
deploymentName = "mnist-classifier"
uri = "http://" + AMBASSADOR_API_IP + "/seldon/" + \
 deploymentName + "/api/v0.1/predictions"

response = requests.post(uri, json=request)

For example, see the handwritten 3 in Figure 2-4.

Figure 2-4. Handwritten 3

22 | Chapter 2: Hello Kubeflow

This returns the following:
{'data': {'names': ['class:0',
 'class:1',
 'class:2',
 'class:3',
 'class:4',
 'class:5',
 'class:6',
 'class:7',
 'class:8',
 'class:9'],
 'ndarray':[[0.03333333333333333,
 0.26666666666666666,
 0.03333333333333333,
 0.13333333333333333, ## It was actually this
 0.1,
 0.06666666666666667,
 0.1,
 0.26666666666666666,
 0.0,
 0.0]]},
 'meta': {'puid': 'tb02ff58vcinl82jmkkoe80u4r', 'routing': {}, 'tags': {}}}

We can see that even though we wrote a pretty clear 3, the model’s best guess was a tie
between 1 and 7. That being said, RandomForestClassifier is a bad model for hand‐
writing recognition—so this isn’t a surprising result. We used RandomForestClassi
fier for two reasons: first, to illustrate model explainability in Chapter 8, and second,
so you can experiment with a more reasonable model and compare performance.

While we’ve deployed our end-to-end example here without any
real validation, you should always validate before real production.

Going Beyond a Local Deployment
Some of you have been trying this out on a local Kubernetes deployment. One of the
powers of Kubeflow is the ability to scale using Kubernetes. Kubernetes can run on a
single machine or many computers, and some environments can dynamically add
more resources as needed. While Kubernetes is an industry standard, there are varia‐
tions in Kubeflow’s setup steps required depending on your provider. Kubeflow’s get‐
ting started guide has installation instructions for GCP, AWS, Azure, IBM Cloud, and
OpenShift. Once Kubeflow is installed on your Kubernetes cluster, you can try this
same example again and see how the same code can run, or take our word for it and
move on to more interesting problems.

Going Beyond a Local Deployment | 23

When deploying on cloud providers, Kubeflow can create more
than just Kubernetes resources that should be deleted too. For
example, on Google you can delete the ancillary services by going
to the deployment manager.

Conclusion
In this chapter, you got your first real taste of Kubeflow. You now have your develop‐
ment environment properly configured and a Kubeflow deployment you can use
throughout the rest of this book. We covered a simple end-to-end example with the
standard MNIST, allowing you to see the different core components of Kubeflow in
action. We introduced the pipeline, which ties all of Kubeflow together, and you used
it to train your model. In Chapter 3 we will explore Kubeflow’s design and set up
some optional components. Understanding the design will help you choose the right
components.

24 | Chapter 2: Hello Kubeflow

CHAPTER 3

Kubeflow Design: Beyond the Basics

You made it through two chapters. Well done. So far you have decided to learn Kube‐
flow and worked through a simple example. Now we want to take a step back and
look at each component in detail. Figure 3-1 shows the main Kubeflow components
and the role they play in the overall architecture.

Figure 3-1. Kubeflow architecture

25

Essentially, we’ll look at the core elements that make up our example deployment as
well as the supporting pieces. In the chapters that follow, we will dig into each of these
sections in greater depth.

That said, let’s get started.

Getting Around the Central Dashboard
Your main interface to Kubeflow is the central dashboard (see Figure 3-2), which
allows you to access the majority of Kubeflow components. Depending on your
Kubernetes provider, it might take up to half an hour to have your ingress become
available.

Figure 3-2. The central dashboard

While it is meant to be automatic, if you don’t have a namespace
created for your work, follow Kubeflow’s “Manual profile creation”
instructions.

From the home page of the central dashboard you can access Kubeflow’s Pipelines,
Notebooks, Katib (hyperparameter tuning), and the artifact store. We will cover the
design of these components and how to use them next.

26 | Chapter 3: Kubeflow Design: Beyond the Basics

Notebooks (JupyterHub)
The first step of most projects is some form of prototyping and experimentation.
Kubeflow’s tool for this purpose is JupyterHub—a multiuser hub that spawns, man‐
ages, and proxies multiple instances of a single-user Jupyter notebook. Jupyter note‐
books support the whole computation process: developing, documenting, and
executing code, as well as communicating the results.

To access JupyterHub, go to the main Kubeflow page and click the notebook button.
On the notebook page, you can connect to existing servers or create a new one.

To create a new server, you need to specify the server name and namespace, pick an
image (from CPU optimized, GPU optimized, or a custom image that you can cre‐
ate), and specify resource requirements—CPU/memory, workspace, data volumes,
custom configuration, and so on. Once the server is created, you can connect to it
and start creating and editing notebooks.

In order to allow data scientists to do cluster operations without leaving the note‐
book’s environment, Kubeflow adds kubectl to the provided notebook images, which
allows developers to use notebooks to create and manage Kubernetes resources. The
Jupyter notebook pods run under a special service account default-editor, which
has namespace-scoped permissions to the following Kubernetes resources:

• Pods
• Deployments
• Services
• Jobs
• TFJobs
• PyTorchJobs

You can bind this account to a custom role, in order to limit/extend permissions of
the notebook server. This allows notebook developers to execute all of the (allowed by
role) Kubernetes commands without leaving the notebook environment. For exam‐
ple, the creation of a new Kubernetes resource can be done by running the following
command directly in a Jupyter notebook:

!kubectl create -f myspec.yaml

The contents of your yaml file will determine what resource is created. If you’re not
used to making Kubernetes resources, don’t worry—Kubeflow’s pipelines include
tools to make them for you.

To further increase Jupyter capabilities, Kubeflow also provides support in the note‐
books for such important Kubeflow components as Pipelines and metadata manage‐

Getting Around the Central Dashboard | 27

ment (described later in “Metadata” on page 32). Jupyter notebooks can also directly
launch distributed training jobs.

Training Operators
JupyterHub is a great tool for initial experimentation with the data and prototyping
ML jobs. However, when moving to train in production, Kubeflow provides several
training components to automate the execution of machine learning algorithms,
including:

• Chainer training
• MPI training
• Apache MXNet training
• PyTorch training
• TensorFlow training

In Kubeflow, distributed training jobs are managed by application-specific control‐
lers, known as operators. These operators extend the Kubernetes APIs to create, man‐
age, and manipulate the state of resources. For example, to run a distributed
TensorFlow training job, the user just needs to provide a specification that describes
the desired state (number of workers and parameter servers, etc.), and the Tensor‐
Flow operator component will take care of the rest and manage the life cycle of the
training job.

These operators allow the automation of important deployment concepts such as
scalability, observability, and failover. They can also be used by pipelines to chain
their execution with the execution of other components of the system.

Kubeflow Pipelines
In addition to providing specialized parameters implementing specific functionality,
Kubeflow has Pipelines, which allows you to orchestrate the execution of machine
learning applications. This implementation is based on Argo Workflows, an open
source, container-native workflow engine for Kubernetes. Kubeflow installs all of the
Argo components.

At a high level, the execution of a pipeline contains the following components:

28 | Chapter 3: Kubeflow Design: Beyond the Basics

Python SDK
You create components or specify a pipeline using the Kubeflow Pipelines
domain-specific language (DSL).

DSL compiler
The DSL compiler transforms your pipeline’s Python code into a static configura‐
tion (YAML).

Pipeline Service
The Pipeline Service creates a pipeline run from the static configuration.

Kubernetes resources
The Pipeline Service calls the Kubernetes API server to create the necessary
Kubernetes custom resource definitions (CRDs) to run the pipeline.

Orchestration controllers
A set of orchestration controllers execute the containers needed to complete the
pipeline execution specified by the Kubernetes resources (CRDs). The containers
execute within Kubernetes Pods on virtual machines. An example controller is
the Argo Workflow controller, which orchestrates task-driven workflows.

Artifact storage
The Kubernetes Pods store two kinds of data:

Metadata
Experiments, jobs, runs, single scalar metrics (generally aggregated for the
purposes of sorting and filtering), etc. Kubeflow Pipelines stores the meta‐
data in a MySQL database.

Artifacts
Pipeline packages, views, large-scale metrics like time series (usually used for
investigating an individual run’s performance and for debugging), etc. Kube‐
flow Pipelines stores the artifacts in an artifact store like MinIO server, Goo‐
gle Cloud Storage (GCS), or Amazon S3.

Kubeflow Pipelines gives you the ability to make your machine learning jobs repeata‐
ble and handle new data. It provides an intuitive DSL in Python to write your pipe‐
lines with. Your pipelines are then compiled down to an existing Kubernetes
workflow engine (currently Argo Workflows). Kubeflow’s pipeline components make
it easy to use and coordinate the different tools required to build an end-to-end
machine learning project. On top of that, Kubeflow can track both data and metadata,
improving how we can understand our jobs. For example, in Chapter 5 we use these
artifacts to understand the schema. Pipelines can expose the parameters of the under‐
lying machine learning algorithms, allowing Kubeflow to perform tuning.

Getting Around the Central Dashboard | 29

Hyperparameter Tuning
Finding the right set of hyperparameters for your training model can be a challenging
task. Traditional methodologies such as grid search can be time-consuming and quite
tedious. Most existing hyperparameter systems are tied to one machine learning
framework and have only a few options for searching the parameter space.

Kubeflow provides a component (called Katib) that allows users to perform hyper‐
parameter optimizations easily on Kubernetes clusters. Katib is inspired by Google
Vizier, a black-box optimization framework. It leverages advanced searching algo‐
rithms such as Bayesian optimization to find optimal hyperparameter configurations.

Katib supports hyperparameter tuning and can run with any deep learning frame‐
work, including TensorFlow, MXNet, and PyTorch.

As in Google Vizier, Katib is based on four main concepts:

Experiment
A single optimization run over a feasible space. Each experiment contains a con‐
figuration describing the feasible space, as well as a set of trials. It is assumed that
objective function f(x) does not change in the course of the experiment.

Trial
A list of parameter values, x, that will lead to a single evaluation of f(x). A trial
can be “completed,” which means that it has been evaluated and the objective
value f(x) has been assigned to it, otherwise it is “pending.” One trial corresponds
to one job.

Job
A process responsible for evaluating a pending trial and calculating its objective
value.

Suggestion
An algorithm to construct a parameter set. Currently, Katib supports the follow‐
ing exploration algorithms:

• Random
• Grid
• Hyperband
• Bayesian optimization

Using these core concepts, you can increase your model’s performance. Since Katib is
not tied to one machine learning library, you can explore new algorithms and tools
with minimal modifications.

30 | Chapter 3: Kubeflow Design: Beyond the Basics

Model Inference
Kubeflow makes it easy to deploy machine learning models in production environ‐
ments at scale. It provides several model serving options, including TFServing, Sel‐
don serving, PyTorch serving, and TensorRT. It also provides an umbrella
implementation, KFServing, which generalizes the model inference concerns of
autoscaling, networking, health checking, and server configuration.

The overall implementation is based on leveraging Istio (covered later) and Knative
serving—serverless containers on Kubernetes. As defined in the Knative documenta‐
tion, the Knative serving project provides middleware primitives that enable:

• Rapid deployment of serverless containers
• Automatic scaling up and down to zero
• Routing and network programming for Istio components

Since model serving is inherently spiky, rapid scaling up and down is important. Kna‐
tive serving simplifies the support for continuous model updates, by automatically
routing requests to newer model deployments. This requires scaling down to zero
(minimizing resource utilization) for unused models while keeping them available for
rollbacks. Since Knative is cloud native it benefits from its underlying infrastructure
stack and therefore provides all the monitoring capabilities that exist within Kuber‐
netes, such as logging, tracing, and monitoring. KFServing also makes use of Knative
eventing to give optional support for pluggable event sources.

Similar to Seldon, every KFServing deployment is an orchestrator, wiring together the
following components:

Preprocessor
An optional component responsible for the transformation of the input data into
content/format required for model serving

Predictor
A mandatory component responsible for an actual model serving

Postprocessor
An optional component responsible for the transformation/enriching of the
model serving result into content/format required for output

Additional components can enhance one’s overall model serving implementation, but
are outside of the main execution pipeline. Tools like outlier detection and model
explainability can run in this environment without slowing down the overall system.

While all of these individual components and techniques have existed for a long time,
having them integrated into the serving system of Kubeflow reduces the complexity
involved in bringing new models into production.

Getting Around the Central Dashboard | 31

In addition to the components directly supporting ML operations, Kubeflow also
provides several supporting components.

Metadata
An important component of Kubeflow is metadata management, providing capabili‐
ties to capture and track information about a model’s creation. Many organizations
build hundreds of models a day, but it’s very hard to manage all of a model’s related
information. ML Metadata is both the infrastructure and a library for recording and
retrieving metadata associated with an ML developer’s and data scientist’s workflow.
The information, which can be registered in the metadata component includes:

• Data sources used for the model’s creation
• The artifacts generated through the components/steps of the pipeline
• The executions of these components/steps
• The pipeline and associated lineage information

ML Metadata tracks the inputs and outputs of all components and steps in an ML
workflow and their lineage. This data powers several important features listed in
Table 3-1 and shown in Figure 3-3.

Table 3-1. Examples of ML Metadata operations

Operation Example
List all artifacts of a specific type. All models that have been trained.

Compare two artifacts of the same type. Compare results from two experiments.

Show a DAG of all related executions and their input
and output artifacts.

Visualize the workflow of an experiment for debugging and
discovery.

Display how an artifact was created. See what data went into a model; enforce data retention plans.

Identify all artifacts that were created using a given
artifact.

Mark all models trained from a specific dataset with bad data.

Determine if an execution has been run on the same
inputs before.

Determine whether a component/step has already completed the
same work and the previous output can just be reused.

Record and query context of workflow runs. Track the owner and changes used for a workflow run; group the
lineage by experiments; manage artifacts by projects.

32 | Chapter 3: Kubeflow Design: Beyond the Basics

Figure 3-3. Metadata diagram

Component Summary
The magic of Kubeflow is making all of these traditionally distinct components work
together. While Kubeflow is certainly not the only system to bring together different
parts of the machine learning landscape, it is unique in its flexibility in supporting a
wide range of components. In addition to that, since it runs on standard Kubernetes,
you can add your own components as desired. Much of this magic of tool integration
happens inside of Kubeflow’s pipelines, but some of the support components are
essential to allowing these tools to interact.

Support Components
While these components aren’t explicitly exposed by Kubeflow, they play an impor‐
tant role in the overall Kubeflow ecosystem. Let’s briefly discuss each of them. We also
encourage you to research them more on your own.

Support Components | 33

1 This can run on multiple servers while exposing a consistent endpoint.

MinIO
The foundation of the pipeline architecture is shared storage. A common practice
today is to keep data in external storage. Different cloud providers have different sol‐
utions, like Amazon S3, Azure Data Storage, Google Cloud Storage, etc. The variety
of solutions makes it complex to port solutions from one cloud provider to another.
To minimize this dependency, Kubeflow ships with MinIO, a high-performance dis‐
tributed object storage server, designed for large-scale private cloud infrastructure.
Not just for private clouds, MinIO can also act as a consistent gateway to public APIs.

MinIO can be deployed in several different configurations. The default with Kube‐
flow is as a single container mode when MinIO runs using the Kubernetes built-in
persistent storage on one container. Distributed MinIO lets you pool multiple vol‐
umes into a single object storage service.1 It can also withstand multiple node failures
and yet ensure full data protection (the number of failures depends on your replica‐
tion configuration). MinIO Gateway provides S3 APIs on top of Azure Blob storage,
Google Cloud storage, Gluster, or NAS storage. The gateway option is the most flexi‐
ble, and allows you to create cloud independent implementation without scale limits.

While Kubeflow’s default MinIO setup works, you will likely want to configure it fur‐
ther. Kubeflow installs both the MinIO server and UI. You can get access to the
MinIO UI and explore what is stored, as seen in Figure 3-4, by using port-
forwarding, as in Example 3-1, or exposing an ingress. You can log in using Kube‐
flow’s default minio/minio123 user.

Example 3-1. Setting up port-forwarding

kubectl port-forward -n kubeflow svc/minio-service 9000:9000 &

Figure 3-4. MinIO dashboard

34 | Chapter 3: Kubeflow Design: Beyond the Basics

2 Storing credentials inside your application can lead to security breaches.

In addition, you can also install the MinIO CLI (mc) to access your MinIO installa‐
tion using commands from your workstation. For macOS, use Homebrew, as in
Example 3-2. For Linux Ubuntu, use snap, as in Example 3-3.

Example 3-2. Install MinIO on Mac

brew install minio/stable/minio

Example 3-3. Install MinIO on Linux

pushd ~/bin
wget https://dl.min.io/client/mc/release/linux-amd64/mc
chmod a+x mc

You need to configure MinIO to talk to the correct endpoint, as in Example 3-4.

Example 3-4. Configure MinIO client to talk to Kubeflow’s MinIO

mc config host add minio http://localhost:9000 minio minio123

Once you’ve configured the command line you can make new buckets, as in
Example 3-5, or change your setup.

Example 3-5. Create a bucket with MinIO

mc mb minio/kf-book-examples

MinIO exposes both native and S3-compatible APIs. The S3-compatible APIs are
most important since most of our software can talk to S3, like TensorFlow and Spark.

Using MinIO with systems built on top of Hadoop (mostly Java-
based) requires Hadoop 2.8 or higher.

Kubeflow installation hardcodes MinIO credentials—minio/minio123, which you can
use directly in your applications—but it’s generally a better practice to use a secret,
especially if you might switch to regular S3. Kubernetes secrets provide you with a
way to store credentials on the cluster separate from your application.2 To set one up
for MinIO or S3, create a secret file like in Example 3-6. In Kubernetes secret values

Support Components | 35

for the ID and key have to be base64 encoded. To encode a value, run the command
echo -n xxx | base64.

Example 3-6. Sample MinIO secret

apiVersion: v1
kind: Secret
metadata:
 name: minioaccess
 namespace: mynamespace
data:
 AWS_ACCESS_KEY_ID: xxxxxxxxxx
 AWS_SECRET_ACCESS_KEY: xxxxxxxxxxxxxxxxxxxxx

Save this YAML to the file minioaccess.yaml, and deploy the secret using the com‐
mand kubectl apply -f minioaccess.yaml. Now that we understand data commu‐
nication between pipeline stages, let’s work to understand network communication
between components.

Istio
Another supporting component of Kubeflow is Istio—a service mesh providing such
vital features as service discovery, load balancing, failure recovery, metrics, monitor‐
ing, rate limiting, access control, and end-to-end authentication. Istio, as a service
mesh, layers transparently onto a Kubernetes cluster. It integrates into any logging
platform, or telemetry or policy system and promotes a uniform way to secure, con‐
nect, and monitor microservices. Istio implementation co-locates each service
instance with a sidecar network proxy. All network traffic (HTTP, REST, gRPC, etc.)
from an individual service instance flows via its local sidecar proxy to the appropriate
destination. Thus, the service instance is not aware of the network at large and only
knows about its local proxy. In effect, the distributed system network has been
abstracted away from the service programmer.

Istio implementation is logically split into a data plane and control plane. The data
plane is composed of a set of intelligent proxies. These proxies mediate and control all
network communication between pods. The control plane manages and configures
the proxies to route traffic.

36 | Chapter 3: Kubeflow Design: Beyond the Basics

The main components of Istio are:

Envoy
Istio data plane is based on Envoy proxy, which provides features like failure han‐
dling (for example, health checks and bounded retries), dynamic service discov‐
ery, and load balancing. Envoy has many built-in features, including:

• Dynamic service discovery
• Load balancing
• TLS termination
• HTTP/2 and gRPC proxies
• Circuit breakers
• Health checks
• Staged rollouts with percent-based traffic splitting
• Fault injection
• Rich metrics

Mixer
Mixer enforces access control and usage policies across the service mesh, and
collects telemetry data from the Envoy proxy and other services. The proxy
extracts request-level attributes, and sends them to Mixer for evaluation.

Pilot
Pilot provides service discovery for the Envoy sidecars and traffic management
capabilities for intelligent routing (e.g., A/B tests, canary rollouts) and resiliency
(timeouts, retries, circuit breakers, etc.). This is done by converting high-level
routing rules that control traffic behavior into Envoy-specific configurations, and
propagating them to the sidecars at runtime. Pilot abstracts platform-specific ser‐
vice discovery mechanisms and synthesizes them into a standard format that any
sidecar conforming with the Envoy data plane APIs can consume.

Galley
Galley is Istio’s configuration validation, ingestion, processing, and distribution
component. It is responsible for insulating the rest of the Istio components from
the details of obtaining user configuration from the underlying platform.

Citadel
Citadel enables strong service-to-service and end-user authentication by provid‐
ing identity and credential management. It allows for upgrading unencrypted
traffic in the service mesh. Using Citadel, operators can enforce policies based on
service identity rather than on relatively unstable layer 3 or layer 4 network
identifiers.

Support Components | 37

Istio’s overall architecture is illustrated in Figure 3-5.

Figure 3-5. Istio architecture

Kubeflow uses Istio to provide a proxy to the Kubeflow UI and to route requests
appropriately and securely. Kubeflow’s KFServing leverages Knative, which requires a
service mesh, like Istio.

Knative
Another unseen support component used by Kubeflow is Knative. We will begin by
describing the most important part: Knative Serving. Built on Kubernetes and Istio,
Knative Serving supports the deploying and serving of serverless applications. The
Knative Serving project provides middleware primitives that enable:

• Rapid deployment of serverless containers
• Automatic scaling up and down to zero
• Routing and network programming for Istio components
• Point-in-time snapshots of deployed code and configurations

38 | Chapter 3: Kubeflow Design: Beyond the Basics

Knative Serving is implemented as a set of Kubernetes CRDs. These objects are used
to define and control behavior of a serverless workload:

Service
The service.serving.knative.dev resource manages the workload as a whole.
It orchestrates the creation and execution of other objects to ensure that an app
has a configuration, a route, and a new revision for each update of the service.
Service can be defined to always route traffic to the latest revision or to a speci‐
fied revision.

Route
The route.serving.knative.dev resource maps a network endpoint to one or
more revisions. This allows for multiple traffic management approaches, includ‐
ing fractional traffic and named routes.

Configuration
The configuration.serving.knative.dev resource maintains the desired state
for deployment. It provides a clean separation between code and configuration
and follows the Twelve-Factor App methodology. Modifying a configuration cre‐
ates a new revision.

Revision
The revision.serving.knative.dev resource is a point-in-time snapshot of the
code and configuration for each modification made to the workload. Revisions
are immutable objects and can be retained for as long as is useful. Knative Serv‐
ing Revisions can be automatically scaled up and down according to incoming
traffic.

Knative’s overall architecture is illustrated in Figure 3-6.

Support Components | 39

Figure 3-6. Knative architecture

Apache Spark
A more visible supporting component in Kubeflow is Apache Spark. Starting in
Kubeflow 1.0, Kubeflow has a built-in Spark operator for running Spark jobs. In addi‐
tion to the Spark operator, Kubeflow provides integration for using Google’s Dataproc
and Amazon’s Elastic Map Reduce (EMR), two managed cloud services for running
Spark. The components and the operator are focused on production use and are not
well suited to exploration. For exploration, you can use Spark inside of your Jupyter
notebook.

Apache Spark allows you to handle larger datasets and scale problems that cannot fit
on a single machine. While Spark does have its own machine learning libraries, it is
more commonly used as part of a machine learning pipeline for data or feature prep‐
aration. We cover Spark in more detail in Chapter 5.

Kubeflow Multiuser Isolation
The latest version of Kubeflow introduced multiuser isolation, which allows sharing
the same pool of resources across different teams and users. Multiuser isolation pro‐
vides users with a reliable way to isolate and protect their own resources, without
accidentally viewing or changing each other’s resources. The key concepts of such
isolation are:

40 | Chapter 3: Kubeflow Design: Beyond the Basics

3 To enable users to log in, they should be given minimal permission scope that allows them to connect to the
Kubernetes cluster. For example, for GCP users, they can be granted IAM roles: Kubernetes Engine Cluster
Viewer and IAP-secured Web App User.

Administrator
An administrator is someone who creates and maintains the Kubeflow cluster.
This person has permission to grant access permissions to others.

User
A user is someone who has access to some set of resources in the cluster. A user
needs to be granted access permissions by the administrator.

Profile
A profile is a grouping of all Kubernetes namespaces and resources owned by a
user.

As of version 1.0, Kubeflow’s Jupyter notebook service is the first application to be
fully integrated with multiuser isolation. Notebooks and their creation are controlled
by the profile access policies set by the administrator or the owners of the profiles.
Resources created by the notebooks (e.g., training jobs and deployments) will also
inherit the same access. By default, Kubeflow provides automatic profile creation for
authenticated users on first login,3 which creates a new namespace. Alternatively, pro‐
files for users can be created manually. This means that every user can work inde‐
pendently in their own namespace and use their own Jupyter server and notebooks.
To share access to your server/notebooks with others, go to the manage contributors
page and add your collaborators’ emails.

Kubeflow’s Repositories
As you’ve seen, Kubeflow is comprised of a number of different components. These
components are hosted under the Kubeflow GitHub organization. The most impor‐
tant repositories to be familiar with are kfctl, which is hosted in the kfctl repo, and
Kubeflow Pipelines, in the pipelines repo. The pipelines repo is especially important
as its prebuilt components can save you time. Using the other components does not
require explicit installation, but looking at the components issues, like in Katib, can
be useful to check for known workarounds for any problems you encounter.

Support Components | 41

Conclusion
You now know the different components of Kubeflow and how they fit together.
Kubeflow’s central dashboard gives you access to its web components. You’ve seen
that JupyterHub facilitates the explorative phase of model development. We’ve cov‐
ered the different built-in training operators for Kubeflow. We revisited Kubeflow
pipelines to discuss how they tie together all of Kubeflow’s other components. We
introduced Katib, Kubeflow’s tool for hyperparameter tuning that works on pipelines.
We talked about the different options for serving your models with Kubeflow (includ‐
ing KF Serving and Seldon). We discussed Kubeflow’s system for tracking your
machine learning metadata and artifacts. Then we wrapped it up with some of Kube‐
flow’s supporting components that enable the rest, Knative and Istio. By understand‐
ing the different parts of Kubeflow, as well as the overall design, you should now be
able to start seeing how your machine learning tasks and workflow translate to
Kubeflow.

The next few chapters will help you gain insights into these components and how to
apply them to your use cases.

42 | Chapter 3: Kubeflow Design: Beyond the Basics

CHAPTER 4

Kubeflow Pipelines

In the previous chapter we described Kubeflow Pipelines, the component of Kubeflow
that orchestrates machine learning applications. Orchestration is necessary because a
typical machine learning implementation uses a combination of tools to prepare data,
train the model, evaluate performance, and deploy. By formalizing the steps and their
sequencing in code, pipelines allow users to formally capture all of the data process‐
ing steps, ensuring their reproducibility and auditability, and training and deploy‐
ment steps.

We will start this chapter by taking a look at the Pipelines UI and showing how to
start writing simple pipelines in Python. We’ll explore how to transfer data between
stages, then continue by getting into ways of leveraging existing applications as part
of a pipeline. We will also look at the underlying workflow engine—Argo Workflows,
a standard Kubernetes pipeline tool—that Kubeflow uses to run pipelines. Under‐
standing the basics of Argo Workflows allows you to gain a deeper understanding of
Kubeflow Pipelines and will aid in debugging. We will then show what Kubeflow
Pipelines adds to Argo.

We’ll wrap up Kubeflow Pipelines by showing how to implement conditional execu‐
tion in pipelines and how to run pipelines execution on schedule. Task-specific com‐
ponents of pipelines will be covered in their respective chapters.

43

Getting Started with Pipelines
The Kubeflow Pipelines platform consists of:

• A UI for managing and tracking pipelines and their execution
• An engine for scheduling a pipeline’s execution
• An SDK for defining, building, and deploying pipelines in Python
• Notebook support for using the SDK and pipeline execution

The easiest way to familiarize yourself with pipelines is to take a look at prepackaged
examples.

Exploring the Prepackaged Sample Pipelines
To help users understand pipelines, Kubeflow installs with a few sample pipelines.
You can find these prepackaged in the Pipeline web UI, as seen in Figure 4-1. Note
that at the time of writing, only the Basic to Conditional execution pipelines are
generic, while the rest of them will run only on Google Kubernetes Engine (GKE). If
you try to run them on non-GKE environments, they will fail.

Figure 4-1. Kubeflow pipelines UI: prepackaged pipelines

44 | Chapter 4: Kubeflow Pipelines

Clicking a specific pipeline will show its execution graph or source, as seen in
Figure 4-2.

Figure 4-2. Kubeflow pipelines UI: pipeline graph view

Clicking the source tab will show the pipeline’s compiled code, which is an Argo
YAML file (this is covered in more detail in “Argo: the Foundation of Pipelines” on
page 54).

In this area you are welcome to experiment with running pipelines to get a better feel
for their execution and the capabilities of the Pipelines UI.

Getting Started with Pipelines | 45

To invoke a specific pipeline, simply click it; this will bring up Pipeline’s view as pre‐
sented in Figure 4-3.

Figure 4-3. Kubeflow pipelines UI: pipeline view

To run the pipeline, click the “Create Run” button and follow the instructions on the
screen.

When running a pipeline you must choose an experiment. Experi‐
ment here is just a convenience grouping for pipeline executions
(runs). You can always use the “Default” experiment created by
Kubeflow’s installation. Also, pick “One-off ” for the Run type to
execute the pipeline once. We will talk about recurring execution in
“Running Pipelines on Schedule” on page 65.

Building a Simple Pipeline in Python
We have seen how to execute precompiled Kubeflow Pipelines, now let’s investigate
how to author our own new pipelines. Kubeflow Pipelines are stored as YAML files
executed by a program called Argo (see “Argo: the Foundation of Pipelines” on page
54). Thankfully, Kubeflow exposes a Python domain-specific language (DSL) for
authoring pipelines. The DSL is a Pythonic representation of the operations per‐
formed in the ML workflow and built with ML workloads specifically in mind. The

46 | Chapter 4: Kubeflow Pipelines

1 This can often be automatically inferred when passing the result of one pipeline stage as the input to others.
You can also specify additional dependencies manually.

DSL also allows for some simple Python functions to be used as pipeline stages
without you having to explicitly build a container.

The Chapter 4 examples can be found in the notebooks in this
book’s GitHub repository.

A pipeline is, in its essence, a graph of container execution. In addition to specifying
which containers should run in which order, it also allows the user to pass arguments
to the entire pipeline and between participating containers.

For each container (when using the Python SDK), we must:

• Create the container—either as a simple Python function, or with any Docker
container (read more in Chapter 9).

• Create an operation that references that container as well as the command line
arguments, data mounts, and variable to pass the container.

• Sequence the operations, defining which may happen in parallel and which must
complete before moving on to a further step.1

• Compile this pipeline, defined in Python, into a YAML file that Kubeflow Pipe‐
lines can consume.

Pipelines are a key feature of Kubeflow and you will see them again throughout the
book. In this chapter we are going to show the simplest examples possible to illustrate
the basic principles of Pipelines. This won’t feel like “machine learning” and that is by
design.

For our first Kubeflow operation, we are going to use a technique known as light‐
weight Python functions. We should not, however, let the word lightweight deceive us.
In a lightweight Python function, we define a Python function and then let Kubeflow
take care of packaging that function into a container and creating an operation.

For the sake of simplicity, let’s declare the simplest of functions an echo. That is a
function that takes a single input, an integer, and returns that input.

Let’s start by importing kfp and defining our function:
import kfp
def simple_echo(i: int) -> int:
 return i

Getting Started with Pipelines | 47

Note that we use snake_case, not camelCase, for our function
names. At the time of writing there exists a bug (feature?) such that
camel case names (for example: naming our function simpleEcho)
will produce errors.

Next, we want to wrap our function simple_echo into a Kubeflow Pipeline operation.
There’s a nice little method to do this: kfp.components.func_to_container_op. This
method returns a factory function with a strongly typed signature:

simpleStronglyTypedFunction =
 kfp.components.func_to_container_op(deadSimpleIntEchoFn)

When we create a pipeline in the next step, the factory function will construct a Con‐
tainerOp, which will run the original function (echo_fn) in a container:

foo = simpleStronglyTypedFunction(1)
type(foo)
Out[5]: kfp.dsl._container_op.ContainerOp

If your code can be accelerated by a GPU it is easy to mark a stage
as using GPU resources; simply add .set_gpu_limit(NUM_GPUS) to
your ContainerOp.

Now let’s sequence the ContainerOp(s) (there is only one) into a pipeline. This pipe‐
line will take one parameter (the number we will echo). The pipeline also has a bit of
metadata associated with it. While echoing numbers may be a trivial use of parame‐
ters, in real-world use cases you would include variables you might want to tune later
such as hyperparameters for machine learning algorithms.

Finally, we compile our pipeline into a zipped YAML file, which we can then upload
to the Pipelines UI.

@kfp.dsl.pipeline(
 name='Simple Echo',
 description='This is an echo pipeline. It echoes numbers.'
)
def echo_pipeline(param_1: kfp.dsl.PipelineParam):
 my_step = simpleStronglyTypedFunction(i= param_1)

kfp.compiler.Compiler().compile(echo_pipeline,
 'echo-pipeline.zip')

It is also possible to run the pipeline directly from the notebook,
which we’ll do in the next example.

48 | Chapter 4: Kubeflow Pipelines

A pipeline with only one component is not very interesting. For our next example, we
will customize the containers of our lightweight Python functions. We’ll create a new
pipeline that installs and imports additional Python libraries, builds from a specified
base image, and passes output between containers.

We are going to create a pipeline that divides a number by another number, and then
adds a third number. First let’s create our simple add function, as shown in
Example 4-1.

Example 4-1. A simple Python function

def add(a: float, b: float) -> float:
 '''Calculates sum of two arguments'''
 return a + b

add_op = comp.func_to_container_op(add)

Next, let’s create a slightly more complex function. Additionally, let’s have this func‐
tion require and import from a nonstandard Python library, numpy. This must be
done within the function. That is because global imports from the notebook will not
be packaged into the containers we create. Of course, it is also important to make sure
that our container has the libraries we are importing installed.

To do that we’ll pass the specific container we want to use as our base image
to .func_to_container(, as in Example 4-2.

Example 4-2. A less-simple Python function

from typing import NamedTuple
def my_divmod(dividend: float, divisor:float) -> \
 NamedTuple('MyDivmodOutput', [('quotient', float), ('remainder', float)]):
 '''Divides two numbers and calculate the quotient and remainder'''
 #Imports inside a component function:

 import numpy as np

 #This function demonstrates how to use nested functions inside a
 # component function:

 def divmod_helper(dividend, divisor):
 return np.divmod(dividend, divisor)

 (quotient, remainder) = divmod_helper(dividend, divisor)

 from collections import namedtuple
 divmod_output = namedtuple('MyDivmodOutput', ['quotient', 'remainder'])
 return divmod_output(quotient, remainder)

divmod_op = comp.func_to_container_op(

 my_divmod, base_image='tensorflow/tensorflow:1.14.0-py3')

Importing libraries inside the function.

Getting Started with Pipelines | 49

Nested functions inside lightweight Python functions are also OK.

Calling for a specific base container.

Now we will build a pipeline. The pipeline in Example 4-3 uses the functions defined
previously, my_divmod and add, as stages.

Example 4-3. A simple pipeline

@dsl.pipeline(
 name='Calculation pipeline',
 description='A toy pipeline that performs arithmetic calculations.'
)
def calc_pipeline(
 a='a',
 b='7',
 c='17',
):
 #Passing pipeline parameter and a constant value as operation arguments
 add_task = add_op(a, 4) #Returns a dsl.ContainerOp class instance.

 #Passing a task output reference as operation arguments
 #For an operation with a single return value, the output
 # reference can be accessed using `task.output`
 # or `task.outputs['output_name']` syntax

 divmod_task = divmod_op(add_task.output, b)

 #For an operation with multiple return values, the output references
 # can be accessed using `task.outputs['output_name']` syntax

 result_task = add_op(divmod_task.outputs['quotient'], c)

Values being passed between containers. Order of operations is inferred from
this.

Finally, we use the client to submit the pipeline for execution, which returns the links
to execution and experiment. Experiments group the executions together. You can
also use kfp.compiler.Compiler().compile and upload the zip file as in the first
example if you prefer:

client = kfp.Client()
#Specify pipeline argument values
arguments = {'a': '7', 'b': '8'} #whatever makes sense for new version
#Submit a pipeline run
client.create_run_from_pipeline_func(calc_pipeline, arguments=arguments)

Following the link returned by create_run_from_pipeline_func, we can get to the
execution web UI, which shows the pipeline itself and intermediate results, as seen in
Figure 4-4.

50 | Chapter 4: Kubeflow Pipelines

Figure 4-4. Pipeline execution

As we’ve seen, the lightweight in lightweight Python functions refers to the ease of
making these steps in our process and not the power of the functions themselves. We
can use custom imports, base images, and how to hand off small results between con‐
tainers.

In the next section, we’ll show how to hand larger data files between containers by
mounting volumes to the containers.

Using Annotations to Simplify Our Pipeline
As you may have noticed, directly calling comp.func_to_container_op all the time
can get kind of repetitive. To avoid this, you can create a function that returns a
kfp.dsl.ContainerOp. Since people don’t always like creating absurdly large and fat
functions to do everything in real life, we’ll leave this here as an aside in case the
reader is interested in it. It’s also worth noting that adding the @kfp.dsl.component
annotation instructs the Kubeflow compiler to turn on static type checking:

@kfp.dsl.component
def my_component(my_param):
 ...
 return kfp.dsl.ContainerOp(
 name='My component name',
 image='gcr.io/path/to/container/image'
)

Finally, when it comes to incorporating these components into pipelines, you would
do something like this:

@kfp.dsl.pipeline(
 name='My pipeline',

Getting Started with Pipelines | 51

2 Kubernetes persistent volumes can provide different access modes.
3 Generic read-write-many implementation is NFS server.

 description='My machine learning pipeline'
)
def my_pipeline(param_1: PipelineParam, param_2: PipelineParam):
 my_step = my_component(my_param='a')

Storing Data Between Steps
In the previous example, the data passed between containers was small and of primi‐
tive types (such as numeric, string, list, and arrays). In practice however, we will likely
be passing much larger data (for instance, entire datasets). In Kubeflow, there are two
primary methods for doing this—persistent volumes inside the Kubernetes cluster,
and cloud storage options (such as S3), though each method has inherent problems.

Persistent volumes abstract the storage layer. Depending on the vendor, persistent
volumes can be slow with provisioning and have IO limits. Check to see if your ven‐
dor supports read-write-many storage classes, allowing for storage access by multiple
pods, which is required for some types of parallelism. Storage classes can be one of
the following.2

ReadWriteOnce
The volume can be mounted as read-write by a single node.

ReadOnlyMany
The volume can be mounted read-only by many nodes.

ReadWriteMany
The volume can be mounted as read-write by many nodes.

Your system/cluster administrator may be able to add read-write-many support.3

Additionally, many cloud providers include their proprietary read-write-many imple‐
mentations, see for example dynamic provisioning on GKE. but make sure to ask if
there is a single node bottleneck.

Kubeflow Pipelines’ VolumeOp allows you to create an automatically managed persis‐
tent volume, as shown in Example 4-4. To add the volume to your operation you can
just call add_pvolumes with a dictionary of mount points to volumes, e.g., down
load_data_op(year).add_pvolumes({"/data_processing": dvop.volume}).

52 | Chapter 4: Kubeflow Pipelines

4 Usage of the cloud native access storage can be handy if you need to ensure portability of your solution across
multiple cloud providers.

Example 4-4. Mailing list data prep

dvop = dsl.VolumeOp(name="create_pvc",
 resource_name="my-pvc-2",
 size="5Gi",
 modes=dsl.VOLUME_MODE_RWO)

While less common in the Kubeflow examples, using an object storage solution, in
some cases, may be more suitable. MinIO provides cloud native object storage by
working either as a gateway to an existing object storage engine or on its own.4 We
covered how to configure MinIO back in Chapter 3.

Kubeflow’s built-in file_output mechanism automatically transfers the specified
local file into MinIO between pipeline steps for you. To use file_output, write your
files locally in your container and specify the parameter in your ContainerOp, as
shown in Example 4-5.

Example 4-5. File output example

 fetch = kfp.dsl.ContainerOp(name='download',
 image='busybox',
 command=['sh', '-c'],
 arguments=[
 'sleep 1;'
 'mkdir -p /tmp/data;'
 'wget ' + data_url +
 ' -O /tmp/data/results.csv'
],
 file_outputs={'downloaded': '/tmp/data'})
 # This expects a directory of inputs not just a single file

If you don’t want to use MinIO, you can also directly use your provider’s object stor‐
age, but this may compromise some portability.

The ability to mount data locally is an essential task in any machine learning pipeline.
Here we have briefly outlined multiple methods and provided examples for each.

Introduction to Kubeflow Pipelines Components
Kubeflow Pipelines builds on Argo Workflows, an open source, container-native
workflow engine for Kubernetes. In this section we will describe how Argo works,
what it does, and how Kubeflow Pipeline supplements Argo to make it easier to use
by data scientists.

Introduction to Kubeflow Pipelines Components | 53

5 For installation of Argo Workflow on another OS, refer to these Argo instructions.

Argo: the Foundation of Pipelines
Kubeflow installs all of the Argo components. Though having Argo installed on your
computer is not necessary to use Kubeflow Pipelines, having the Argo command-line
tool makes it easier to understand and debug your pipelines.

By default, Kubeflow configures Argo to use the Docker executor.
If your platform does not support the Docker APIs, you need to
switch your executor to a compatible one. This is done by changing
the containerRuntimeExecutor value in the Argo params file. See
Appendix A for details on the trade-offs. The majority of the exam‐
ples in this book use the Docker executor but can be adapted to
other executors.

On macOS, you can install Argo with Homebrew, as shown in Example 4-6.5

Example 4-6. Argo installation

#!/bin/bash
Download the binary
curl -sLO https://github.com/argoproj/argo/releases/download/v2.8.1/argo-linux-amd64

Make binary executable
chmod +x argo-linux-amd64

Move binary to path
mv ./argo-linux-amd64 ~/bin/argo

You can verify your Argo installation by running the Argo examples with the
command-line tool in the Kubeflow namespace: follow these Argo instructions.
When you run the Argo examples the pipelines are visible with the argo command,
as in Example 4-7.

Example 4-7. Listing Argo executions

$ argo list -n kubeflow
NAME STATUS AGE DURATION
loops-maps-4mxp5 Succeeded 30m 12s
hello-world-wsxbr Succeeded 39m 15s

Since pipelines are implemented with Argo, you can use the same technique to check
on them as well. You can also get information about specific workflow execution, as
shown in Example 4-8.

54 | Chapter 4: Kubeflow Pipelines

Example 4-8. Getting Argo execution details

$ argo get hello-world-wsxbr -n kubeflow
Name: hello-world-wsxbr
Namespace: kubeflow
ServiceAccount: default
Status: Succeeded
Created: Tue Feb 12 10:05:04 -0600 (2 minutes ago)
Started: Tue Feb 12 10:05:04 -0600 (2 minutes ago)
Finished: Tue Feb 12 10:05:23 -0600 (1 minute ago)
Duration: 19 seconds

STEP PODNAME DURATION MESSAGE
 ✔ hello-world-wsxbr hello-world-wsxbr 18s

hello-world-wsxbr is the name that we got using argo list -n kubeflow
above. In your case the name will be different.

We can also view the execution logs by using the command in Example 4-9.

Example 4-9. Getting the log of Argo execution

$ argo logs hello-world-wsxbr -n kubeflow

This produces the result shown in Example 4-10.

Example 4-10. Argo execution log

< hello world >

 \
 \
 \
 ## .
 ## ## ## ==
 ## ## ## ## ===
 /""""""""""""""""___/ ===
  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~
       \______ o          __/
 \    \        __/
   \____\______/

You can also delete a specific workflow; see Example 4-11.

Example 4-11. Deleting Argo execution

$ argo delete hello-world-wsxbr -n kubeflow

Introduction to Kubeflow Pipelines Components | 55



Alternatively, you can get pipeline execution information using the Argo UI, as seen
in Figure 4-5.

Figure 4-5. Argo UI for pipeline execution

Installing Argo UI
By default, Kubeflow does not provide access to the Argo UI. To enable access, you
have to do the following:

• Make sure that your Argo UI deployment corresponds to the UI provided in
code in this book’s GitHub repo.

• Create a virtual service by applying the YAML provided in code in this book’s
GitHub repo.

• Point your browser to <cluster main url>/argo.

56 | Chapter 4: Kubeflow Pipelines



You can also look at the details of the flow execution graph by clicking a specific
workflow, as seen in Figure 4-6.

Figure 4-6. Argo UI execution graph

For any Kubeflow pipeline you run, you can also view that pipeline in the Argo
CLI/UI. Note that because ML pipelines are using the Argo CRD, you can also see the
result of the pipeline execution in the Argo UI (as in Figure 4-7).

Figure 4-7. Viewing Kubeflow pipelines in Argo UI

Introduction to Kubeflow Pipelines Components | 57



Currently, the Kubeflow community is actively looking at alterna‐
tive foundational technologies for running Kubeflow pipelines, one
of which is Tekton. The paper by A. Singh et al., “Kubeflow Pipe‐
lines with Tekton”, gives “initial design, specifications, and code for
enabling Kubeflow Pipelines to run on top of Tekton.” The basic
idea here is to create an intermediate format that can be produced
by pipelines and then executed using Argo, Tekton, or other run‐
times. The initial code for this implementation is found in this
Kubeflow GitHub repo.

What Kubeflow Pipelines Adds to Argo Workflow
Argo underlies the workflow execution; however, using it directly requires you to do
awkward things. First, you must define your workflow in YAML, which can be diffi‐
cult. Second, you must containerize your code, which can be tedious. The main
advantage of KF Pipelines is that you can use Python APIs for defining/creating pipe‐
lines, which automates the generation of much of the YAML boilerplate for workflow
definitions and is extremely friendly for data scientists/Python developers. Kubeflow
Pipelines also has hooks that add building blocks for machine learning-specific
components. These APIs not only generate the YAML but can also simplify container
creation and resource usage. In addition to the APIs, Kubeflow adds a recurring
scheduler and UI for configuration and execution.

Building a Pipeline Using Existing Images
Building pipeline stages directly from Python provides a straightforward entry point.
It does limit our implementation to Python, though. Another feature of Kubeflow
Pipelines is the ability to orchestrate the execution of a multilanguage implementa‐
tion leveraging prebuilt Docker images (see Chapter 9).

Using Custom Code Inside Pipelines
In order to use custom code and tools inside Kubeflow Pipelines, it needs to be pack‐
aged into a container: see this Kubeflow documentation page. Once the container is
uploaded to an accessible repository, it can be included in the pipeline. Pipelines
allow the user to configure some of the container execution through environment
variables and pass data between pipeline components. Environment variables can be
set using Kubernetes Python library. Include the Kubernetes library and then imple‐
ment the code:

58 | Chapter 4: Kubeflow Pipelines



from kubernetes import client as k8s_client

data = dsl.ContainerOp(
      name='updatedata',
      image='lightbend/recommender-data-update-publisher:0.2') \

    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_KEY', value='minio')) 

Here we set the environment variable MINIO_KEY to the value of minio.

The way you can pass parameters between steps (containers), depends on the Argo
runtime that you are using. For example, in the case of the docker runtime, you can
pass parameters by value. Those parameters are exposed by the image. If you are
using the k8api runtime, then the only way to pass parameters is through the file.

In addition to our previous imports, we also want to import the Kubernetes client,
which allows us to use Kubernetes functions directly from Python code (see
Example 4-12).

Example 4-12. Exporting Kubernetes client

from kubernetes import client as k8s_client

Again, we create a client and experiment to run our pipeline. As mentioned earlier, 
experiments group the runs of pipelines. You can only create a given experiment
once, so Example 4-13 shows how to either create a new experiment or use an exist‐
ing one.

Example 4-13. Obtaining pipeline experiment

client = kfp.Client()
exp = client.get_experiment(experiment_name ='mdupdate')

Now we create our pipeline (Example 4-14). The images used need to be accessible,
and we’re specifying the full names, so they resolve. Since these containers are pre‐
built, we need to configure them for our pipeline.

The pre-built containers we are using have their storage configured by the MINIO_*
environment variables. So we configure them to use our local MinIO install by calling
add_env_variable.

In addition to the automatic dependencies created when passing parameters between
stages, you can also specify that a stage requires a previous stage with after. This is
most useful when there is an external side effect, like updating a database.

Introduction to Kubeflow Pipelines Components | 59



Example 4-14. Example recommender pipeline

@dsl.pipeline(
  name='Recommender model update',
  description='Demonstrate usage of pipelines for multi-step model update'
)
def recommender_pipeline():
    # Load new data
  data = dsl.ContainerOp(
      name='updatedata',
      image='lightbend/recommender-data-update-publisher:0.2') \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_URL',
        value='http://minio-service.kubeflow.svc.cluster.local:9000')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_KEY', value='minio')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_SECRET', value='minio123'))
    # Train the model
  train = dsl.ContainerOp(
      name='trainmodel',
      image='lightbend/ml-tf-recommender:0.2') \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_URL',
            value='minio-service.kubeflow.svc.cluster.local:9000')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_KEY', value='minio')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_SECRET', value='minio123'))
  train.after(data)
    # Publish new model
  publish = dsl.ContainerOp(
      name='publishmodel',
      image='lightbend/recommender-model-publisher:0.2') \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_URL',
            value='http://minio-service.kubeflow.svc.cluster.local:9000')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_KEY', value='minio')) \
    .add_env_variable(k8s_client.V1EnvVar(name='MINIO_SECRET', value='minio123')) \
    .add_env_variable(k8s_client.V1EnvVar(name='KAFKA_BROKERS',
            value='cloudflow-kafka-brokers.cloudflow.svc.cluster.local:9092')) \
    .add_env_variable(k8s_client.V1EnvVar(name='DEFAULT_RECOMMENDER_URL',
            value='http://recommendermodelserver.kubeflow.svc.cluster.local:8501')) \
    .add_env_variable(k8s_client.V1EnvVar(name='ALTERNATIVE_RECOMMENDER_URL',
            value='http://recommendermodelserver1.kubeflow.svc.cluster.local:8501'))
  publish.after(train)

Since the pipeline definition is just code, you can make it more compact by using a
loop to set the MinIO parameters instead of doing it on each stage.

As before, we need to compile the pipeline, either explicitly with compiler.Com
piler().compile or implicitly with create_run_from_pipeline_func. Now go
ahead and run the pipeline (as in Figure 4-8).

60 | Chapter 4: Kubeflow Pipelines



6 Many of the standard components are in this Kubeflow GitHub repo.

Figure 4-8. Execution of recommender pipelines example

Kubeflow Pipeline Components
In addition to container operations which we’ve just discussed, Kubeflow Pipelines
also exposes additional operations with components. Components expose different
Kubernetes resources or external operations (like dataproc). Kubeflow components
allow developers to package machine learning tools while abstracting away the
specifics on the containers or CRDs used.

We have used Kubeflow’s building blocks fairly directly, and we have used the
func_to_container component.6 Some components, like func_to_container, are
available as Python code and can be imported like normal. Other components are
specified using Kubeflow’s component.yaml system and need to be loaded. In our
opinion, the best way to work with Kubeflow components is to download a specific
tag of the repo, allowing us to use load_component_from_file, as shown in
Example 4-15.

Example 4-15. Pipeline release

wget https://github.com/kubeflow/pipelines/archive/0.2.5.tar.gz
tar -xvf 0.2.5.tar.gz

Introduction to Kubeflow Pipelines Components | 61



There is a load_component function that takes a component’s name
and attempts to resolve it. We don’t recommend using this function
since it defaults to a search path that includes fetching, from Git‐
hub, the master branch of the pipelines library, which is unstable.

We explore data preparation components in depth in the next chapter; however, let’s
quickly look at a file-fetching component as an example. In our recommender exam‐
ple earlier in the chapter, we used a special prebuilt container to fetch our data since it
was not already in a persistent volume. Instead, we can use the Kubeflow GCS com‐
ponent google-cloud/storage/download/ to download our data. Assuming you’ve
downloaded the pipeline release as in Example 4-15, you can load the component
with load_component_from_file as in Example 4-16.

Example 4-16. Load GCS download component

gcs_download_component = kfp.components.load_component_from_file(
    "pipelines-0.2.5/components/google-cloud/storage/download/component.yaml")

When a component is loaded, it returns a function that produces a pipeline stage
when called. Most components take parameters to configure their behavior. You can
get a list of the components’ options by calling help on the loaded component, or
looking at the component.yaml. The GCS download component requires us to config‐
ure what we are downloading with gcs_path, shown in Example 4-17.

Example 4-17. Loading pipeline storage component from relative path and web link

    dl_op = gcs_download_component(
        gcs_path=
        "gs://ml-pipeline-playground/tensorflow-tfx-repo/tfx/components/testdata/external/csv"
    )  # Your path goes here

In Chapter 5, we explore more common Kubeflow pipeline components for data and
feature preparation.

Advanced Topics in Pipelines
All of the examples that we have shown so far are purely sequential. There are also
cases in which we need the ability to check conditions and change the behavior of the
pipeline accordingly.

62 | Chapter 4: Kubeflow Pipelines



Conditional Execution of Pipeline Stages
Kubeflow Pipelines allows conditional executions via dsl.Condition. Let’s look at a
very simple example, where, depending on the value of a variable, different calcula‐
tions are executed.

A simple notebook implementing this example follows. It starts with the imports nec‐
essary for this, in Example 4-18.

Example 4-18. Importing required components

import kfp
from kfp import dsl
from kfp.components import func_to_container_op, InputPath, OutputPath

Once the imports are in place, we can implement several simple functions, as shown
in Example 4-19.

Example 4-19. Functions implementation

@func_to_container_op
def get_random_int_op(minimum: int, maximum: int) -> int:
    """Generate a random number between minimum and maximum (inclusive)."""
    import random
    result = random.randint(minimum, maximum)
    print(result)
    return result

@func_to_container_op
def process_small_op(data: int):
    """Process small numbers."""
    print("Processing small result", data)
    return

@func_to_container_op
def process_medium_op(data: int):
    """Process medium numbers."""
    print("Processing medium result", data)
    return

@func_to_container_op
def process_large_op(data: int):
    """Process large numbers."""
    print("Processing large result", data)
    return

We implement all of the functions directly using Python (as in the previous example).
The first function generates an integer between 0 and 100, and the next three consti‐
tute a simple skeleton for the actual processing. The pipeline is implemented as in
Example 4-20.

Advanced Topics in Pipelines | 63



Example 4-20. Pipeline implementation

@dsl.pipeline(
    name='Conditional execution pipeline',
    description='Shows how to use dsl.Condition().'
)
def conditional_pipeline():

    number = get_random_int_op(0, 100).output 

    with dsl.Condition(number < 10): 
 process_small_op(number)

    with dsl.Condition(number > 10 and number < 50): 
 process_medium_op(number)

    with dsl.Condition(number > 50): 
 process_large_op(number)

kfp.Client().create_run_from_pipeline_func(conditional_pipeline, arguments={}) 

Depending on the number we get here…

We will continue on to one of these operations.

Note here that we are specifying empty arguments—required parameter.

Finally, the execution graph, as shown in Figure 4-9.

Figure 4-9. Execution of conditional pipelines example

64 | Chapter 4: Kubeflow Pipelines



7 A slightly more complex example of conditional processing (with nested conditions) can be found in this Git‐
Hub site.

From this graph, we can see that the pipeline really splits into three branches and
process-large-op execution is selected in this run. To validate that this is correct, we
look at the execution log, shown in Figure 4-10.

Figure 4-10. Viewing conditional pipeline log

Here we can see that the generated number is 67. This number is larger than 50,
which means that the process_large_op branch should be executed.7

Running Pipelines on Schedule
We have run our pipeline manually. This is good for testing, but is often insufficient
for production environments. Fortunately, you can run pipelines on a schedule, as
described on thisKubeflow documentation page. First, you need to upload a pipeline
definition and specify a description. When this is done, you can create a periodic run
by creating a run and selecting a run type of “Recurring,” then following the instruc‐
tions on the screen, as seen in Figure 4-11.

In this figure we are setting a pipeline to run every day.

When creating a periodic run we are specifying how often to run a
pipeline, not when to run it. In the current implementation, the
time of execution is defined by when the run is created. Once it is
created, it is executed immediately and then executed with the
defined frequency. If, for example, a daily run is created at 10 am, it
will be executed at 10 am daily.

Setting periodic execution of pipelines is an important functionality, allowing you to
completely automate pipeline execution.

Advanced Topics in Pipelines | 65



Figure 4-11. Setting up periodic execution of a pipeline

Conclusion
You should now have the basics of how to build, schedule, and run some simple pipe‐
lines. You also learned about the tools that pipelines use for when you need to debug.
We showed how to integrate existing software into pipelines, how to implement con‐
ditional execution inside a pipeline, and how to run pipelines on a schedule.

In our next chapter, we look at how to use pipelines for data preparation with some
examples.

66 | Chapter 4: Kubeflow Pipelines



1 See the TFX documentation for a good summary if you are new to data preparation.
2 The positive impact of using more data in training is made clear in A. Halevy et al., “The Unreasonable Effec‐

tiveness of Data,” IEEE Intelligent Systems 24, no. 2 (March/April 2009): 8-12, https://oreil.ly/YI820, and T.
Schnoebelen, “More Data Beats Better Algorithms,” Data Science Central, September 23, 2016, https://oreil.ly/
oLe1R.

3 For the formal definition, see “Six Steps to Master Machine Learning with Data Preparation”.

CHAPTER 5

Data and Feature Preparation

Machine learning algorithms are only as good as their training data. Getting good
data for training involves data and feature preparation.

Data preparation is the process of sourcing the data and making sure it’s valid. This is
a multistep process1 that can include data collection, augmentation, statistics calcula‐
tion, schema validation, outlier pruning, and various validation techniques. Not hav‐
ing enough data can lead to overfitting, missing significant correlations, and more.
Putting in the effort to collect more records and information about each sample dur‐
ing data preparation can considerably improve the model.2

Feature preparation (sometimes called feature engineering) refers to transforming the
raw input data into features that the machine learning model can use.3 Poor feature
preparation can lead to losing out on important relations, such as a linear model with
nonlinear terms not expanded, or a deep learning model with inconsistent image
orientation.

Small changes in data and feature preparation can lead to significantly different
model outputs. The iterative approach is the best for both feature and data prepara‐
tion, revisiting them as your understanding of the problem and model changes.
Kubeflow Pipelines makes it easier for us to iterate our data and feature preparation.
We will explore how to use hyperparameter tuning to iterate in Chapter 10.

67



4 There are too many tools to cover here, but this blog post includes many.
5 Datasets tend to grow over time rather than shrinking, so starting with distributed tooling can help you scale

your work.

In this chapter, we will cover different approaches to data and feature preparation and
demonstrate how to make them repeatable by using pipelines. We assume you are
already familiar with local tools. As such, we’ll start by covering how to structure our
local code for pipelines, and then move on to more scalable distributed tools. Once
we’ve explored the tools, we’ll put them together in a pipeline, using the examples
from “Introducing Our Case Studies” on page 10.

Deciding on the Correct Tooling
There are a wide variety of data and feature preparation tools.4 We can categorize
them into distributed and local. Local tools run on a single machine and offer a great
amount of flexibility. Distributed tools run on many machines so they can handle
larger and more complex tasks. With two very distinct paths of tooling, making the
wrong decision here can require substantial changes in code later.

If the input data size is relatively small, a single machine offers you all of the tools you
are used to. Larger data sizes tend to require distributed tools for the entire pipeline
or just as a sampling stage. Even with smaller datasets, distributed systems, like
Apache Spark, Dask, or TFX with Beam, can be faster but may require learning new
tools.5

Using the same tool for all of the data and feature preparation activities is not neces‐
sary. Using multiple tools is especially common when working with different datasets
where using the same tools would be inconvenient. Kubeflow Pipelines allows you to
split the implementation into multiple steps and connect them (even if they use dif‐
ferent languages) into a cohesive system.

Local Data and Feature Preparation
Working locally limits the scale of data but offers the most comprehensive range of
tools. A common way to implement data and feature preparation is with Jupyter
notebooks. In Chapter 4, we covered how to turn parts of the notebook into a pipe‐
line, and here we’ll look at how to structure our data and feature prep code to make
this easy.

Using notebooks for data preparation can be a great way to start exploring the data.
Notebooks can be especially useful at this stage since we often have the least amount
of understanding, and because using visualizations to understand our data can be
quite beneficial.

68 | Chapter 5: Data and Feature Preparation



Fetching the Data
For our mailing list example, we use data from public archives on the internet. Ideally,
you want to connect to a database, stream, or other data repository. However, even in
production, fetching web data can be necessary. First, we’ll implement our data-
fetching algorithm, which takes an Apache Software Foundation (ASF) project’s email
list location along with the year from which to fetch messages. Example 5-1 returns
the path to the records it fetches so we can use that as the input to the next pipeline
stage.

The function downloads at most one year of data, and it sleeps
between calls. This is to prevent overwhelming the ASF mail
archive servers. The ASF is a charity; please be mindful of that
when downloading data and do not abuse this service.

Example 5-1. Downloading the mailing list data

def download_data(year: int) -> str:

  # The imports are inline here so Kubeflow can serialize the function correctly.
  from datetime import datetime
  from lxml import etree
  from requests import get
  from time import sleep

 import json

  def scrapeMailArchives(mailingList: str, year: int, month: int):
      #Ugly xpath code goes here. See the example repo if you're curious.

   datesToScrape =  [(year, i) for i in range(1,2)]

   records = []
   for y,m in datesToScrape:
     print(m,"-",y)
     records += scrapeMailArchives("spark-dev", y, m)
   output_path = '/data_processing/data.json'
   with open(output_path, 'w') as f:
     json.dump(records, f)

   return output_path

This code downloads all of the mailing list data for a given year and saves it to a
known path. In this example, a persistent volume needs to be mounted there to allow
this data to move between stages, when we make our pipeline.

You may have a data dump as part of the machine learning pipeline, or a different
system or team may provide one. For data on GCS or a PV, you can use the built-in
components google-cloud/storage/download or filesystem/get_subdirectory to
load the data instead of writing a custom function.

Local Data and Feature Preparation | 69



6 See this blog post on some common techniques for imputing missing data.

Data Cleaning: Filtering Out the Junk
Now that we’ve loaded our data, it’s time to do some simple data cleaning. Local tools
are more common, so we’ll focus on them first. While data cleaning often depends on
domain expertise, there are standard tools to assist with common tasks. A first step
can be validating input records by checking the schema. That is to say, we check to
see if the fields are present and are the right type.

To check the schema in the mailing list example, we ensure a sender, subject, and
body all exist. To convert this into an independent component, we’ll make our func‐
tion take a parameter for the input path and return the file path to the cleaned
records. The amount of code it takes to do this is relatively small, shown in
Example 5-2.

Example 5-2. Data cleaning

def clean_data(input_path: str) -> str:
    import json
    import pandas as pd

    print("loading records...")
    with open(input_path, 'r') as f:
        records = json.load(f)
    print("records loaded")

    df = pd.DataFrame(records)
    # Drop records without a subject, body, or sender
    cleaned = df.dropna(subset=["subject", "body", "from"])

    output_path_hdf = '/data_processing/clean_data.hdf'
    cleaned.to_hdf(output_path_hdf, key="clean")

    return output_path_hdf

There are many other standard data quality techniques besides dropping missing
fields. Two of the more popular ones are imputing missing data6 and analyzing and
removing outliers that may be the result of incorrect measurements. Regardless of
which additional general techniques you decide to perform, you can simply add them
to your data-cleaning function.

Domain specific data cleaning tools can also be beneficial. In the mailing list example,
one potential source of noise in our data could be spam messages. One way to solve
this would be by using SpamAssassin. We can add this package to our container as
shown in Example 5-3. Adding system software, not managed by pip, on top of the
notebook images is a bit more complicated because of permissions. Most containers
run as root, making it simple to install new system packages. However, because of

70 | Chapter 5: Data and Feature Preparation



Jupyter, the notebook containers run as a less privileged user. Installing new packages
like this requires switching to the root user and back, which is not common in other
Dockerfiles.

Example 5-3. Installing SpamAssassin

ARG base
FROM $base
# Run as root for updates
USER root
# Install SpamAssassin
RUN apt-get update && \
    apt-get install -yq spamassassin spamc && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/* && \
    rm -rf /var/cache/apt
# Switch back to the expected user
USER jovyan

After you created this Dockerfile, you’ll want to build it and push the resulting image
somewhere that the Kubeflow cluster can access, as in Example 2-8.

Pushing a new container is not enough to let Kubeflow know that we want to use it.
When constructing a pipeline stage with func_to_container_op, you then need to
specify the base_image parameter to the func_to_container_op function call. We’ll
show this when we bring the example together as a pipeline in Example 5-35.

Here we see the power of containers again. You can add the tools we need on top of
the building blocks provided by Kubeflow rather than making everything from
scratch.

Once the data is cleaned, it’s time to make sure you have enough of it, or if not,
explore augmenting your data.

Formatting the Data
The correct format depends on which tool you’re using to do the feature preparation.
If you’re sticking with the same tool you used for data preparation, an output can be
the same as input. Otherwise, you might find this a good place to change formats. For
example, when using Spark for data prep and TensorFlow for training, we often
implement conversion to TFRecords here.

Feature Preparation
How to do feature preparation depends on the problem. With the mailing list exam‐
ple, we can write all kinds of text-processing functions and combine them into fea‐
tures, as shown in Example 5-4.

Local Data and Feature Preparation | 71



7 Have some VB6 code you really need to run? Check out Chapter 9, on going beyond TensorFlow, and make a
small sacrifice of wine.

Example 5-4. Writing and combining text-processing functions into features

    df['domains'] = df['links'].apply(extract_domains)
    df['isThreadStart'] = df['depth'] == '0'

    # Arguably, you could split building the dataset away from the actual witchcraft.
    from sklearn.feature_extraction.text import TfidfVectorizer

    bodyV = TfidfVectorizer()
    bodyFeatures = bodyV.fit_transform(df['body'])

    domainV = TfidfVectorizer()

    def makeDomainsAList(d):
        return ' '.join([a for a in d if not a is None])

    domainFeatures = domainV.fit_transform(
        df['domains'].apply(makeDomainsAList))

    from scipy.sparse import csr_matrix, hstack

    data = hstack([
        csr_matrix(df[[
            'containsPythonStackTrace', 'containsJavaStackTrace',
            'containsExceptionInTaskBody', 'isThreadStart'
        ]].to_numpy()), bodyFeatures, domainFeatures
    ])

So far, the example code is structured to allow you to turn each function into a sepa‐
rate pipeline stage; however, other options exist. We’ll examine how to use the entire
notebook as a pipeline stage in “Putting It Together in a Pipeline” on page 88.

There are data preparation tools beyond notebooks and Python, of course. Notebooks
are not always the best tool as they can have difficulty with version control. Python
doesn’t always have the libraries (or performance) you need. So we’ll now look at how
to use other available tools.

Custom Containers
Pipelines are not just limited to notebooks or even to specific languages.7 Depending
on the project, you may have a regular Python project, custom tooling, Python 2, or
even FORTRAN code as an essential component.

For instance, in Chapter 9 we will use Scala to perform one step in our pipeline. Also,
in “Using RStats” on page 190, we discuss how to get started with an RStats container.

72 | Chapter 5: Data and Feature Preparation



8 There is a compatibility matrix available on this Apache page, although currently Beam’s Python support
requires launching an additional Docker container, making support on Kubernetes more complicated.

Sometimes you won’t be able to find a container that so closely matches your needs as
we did here. In these cases, you can take a generic base image and build on top of it,
which we look at more in Chapter 9.

Beyond the need for custom containers, another reason you might choose to move
beyond notebooks is to explore distributed tools.

Distributed Tooling
Using a distributed platform makes it possible to work with large datasets (beyond a
single machine memory) and can provide significantly better performance. Often the
time when we need to start using distributed tooling is when our problem has out-
grown our initial notebook solution.

The two main data-parallel distributed systems in Kubeflow are Apache Spark and
Google’s Dataflow (via Apache Beam). Apache Spark has a larger install base and vari‐
ety of formats and libraries supported. Apache Beam supports TensorFlow Extended
(TFX), an end-to-end ML tool, which integrates smoothly into TFServing for model
inference. As it’s the most tightly integrated, we’ll start with exploring TFX on Apache
Beam and then continue to the more standard Apache Spark.

TensorFlow Extended
The TensorFlow community has created an excellent set of integrated tools for every‐
thing from data validation to model serving. At present, TFX’s data tools are all built
on top of Apache Beam, which has the most support for distributed processing on
Google Cloud. If you want to use Kubeflow’s TFX components, you are limited to a
single node; this may change in future versions.

Apache Beam’s Python support outside of Google Cloud’s Dataflow
is not as mature. TFX is a Python tool, so scaling it depends on
Apache Beam’s Python support. You can scale the job by using the
GCP only Dataflow component. As Apache Beam’s support for
Apache Flink and Spark improves, support may be added for scal‐
ing the TFX components in a portable manner.8

Kubeflow includes many of the TFX components in its pipeline system. TFX also has
its own concept of pipelines. These are separate from Kubeflow pipelines, and in
some cases TFX can be an alternative to Kubeflow. Here we will focus on the data and

Distributed Tooling | 73



9 While TFX automatically installs TFDV, if you have an old installation and you don’t specify tensorflow-
data-validation, you may get an error of Could not find a version that satisfies the requirement
so we illustrate explicitly installing both here.

feature preparation components, since those are the simplest to be used with the rest
of the Kubeflow ecosystem.

Keeping your data quality: TensorFlow data validation
It’s crucial to make sure data quality doesn’t decline over time. Data validation allows
us to ensure that the schema and distribution of our data are only evolving in
expected ways and catch data quality issues before they become production issues.
TensorFlow Data Validation (TFDV) gives us the ability to validate our data.

To make the development process more straightforward, you should install TFX and
TFDV locally. While the code can be evaluated inside of Kubeflow only, having the
library locally will speed up your development work. Installing TFX and TFDV is a
simple pip install, shown in Example 5-5.9

Example 5-5. Installing TFX and TFDV

pip3 install tfx tensorflow-data-validation

Now let’s look at how to use TFX and TFDV in Kubeflow’s pipelines. The first step is
loading the relevant components that we want to use. As we discussed in the previous
chapter, while Kubeflow does have a load_component function, it automatically
resolves on master making it unsuitable for production use cases. So we’ll use
load_component_from_file along with a local copy of Kubeflow components from
Example 4-15 to load our TFDV components. The basic components we need to load
are: an example generator (think data loader), schema, statistics generators, and the
validator itself. Loading the components is illustrated in Example 5-6.

Example 5-6. Loading the components

tfx_csv_gen = kfp.components.load_component_from_file(
    "pipelines-0.2.5/components/tfx/ExampleGen/CsvExampleGen/component.yaml")
tfx_statistic_gen = kfp.components.load_component_from_file(
    "pipelines-0.2.5/components/tfx/StatisticsGen/component.yaml")
tfx_schema_gen = kfp.components.load_component_from_file(
    "pipelines-0.2.5/components/tfx/SchemaGen/component.yaml")
tfx_example_validator = kfp.components.load_component_from_file(
    "pipelines-0.2.5/components/tfx/ExampleValidator/component.yaml")

In addition to the components, we also need our data. The current TFX components
pass data between pipeline stages using Kubeflow’s file_output mechanism. This
places the output into MinIO, automatically tracking the artifacts related to the pipe‐

74 | Chapter 5: Data and Feature Preparation



10 While technically not a file format, since TFX can accept Pandas dataframes, a common pattern is to load
with Pandas first.

line. To use TFDV on the recommender example’s input, we first download it using a
standard container operation, as in Example 5-7.

Example 5-7. Download recommender data

    fetch = kfp.dsl.ContainerOp(name='download',
                                image='busybox',
                                command=['sh', '-c'],
                                arguments=[
                                    'sleep 1;'
                                    'mkdir -p /tmp/data;'
                                    'wget ' + data_url +
                                    ' -O /tmp/data/results.csv'
                                ],
                                file_outputs={'downloaded': '/tmp/data'})
    # This expects a directory of inputs not just a single file

If we had the data on a persistent volume (say, data fetched in a
previous stage), we could then use the filesystem/get_file
component.

Once you have the data loaded, TFX has a set of tools called example generators that
ingest data. These support a few different formats, including CSV and TFRecord.
There are also example generators for other systems, including Google’s BigQuery.
There is not the same wide variety of formats supported by Spark or Pandas, so you
may find a need to preprocess the records with another tool.10 In our recommender
example, we use the CSV component, as shown in Example 5-8.

Example 5-8. Using CSV component

    records_example = tfx_csv_gen(input_base=fetch.output)

Now that we have a channel of examples, we can use this as one of the inputs for
TFDV. The recommended approach for creating a schema is to use TFDV to infer the
schema. To be able to infer the schema, TFDV first needs to compute some summary
statistics of our data. Example 5-9 illustrates the pipeline stages for both of these
steps.

Distributed Tooling | 75



Example 5-9. Creating the schema

    stats = tfx_statistic_gen(input_data=records_example.output)
    schema_op = tfx_schema_gen(stats.output)

If we infer the schema each time, we are unlikely to catch schema changes. Instead,
you should save the schema and reuse it in future runs for validation. The pipeline’s
run web page has a link to the schema in MinIO, and you can either fetch it or copy it
somewhere using another component or container operation.

Regardless of where you persist the schema, you should inspect it. To inspect the
schema, you need to import the TFDV library, as shown in Example 5-10. Before you
start using a schema to validate data, you should inspect the schema. To inspect the
schema, download the schema locally (or onto your notebook) and use the dis
play_schema function from TFDV, as shown in Example 5-11.

Example 5-10. Download the schema locally

import tensorflow_data_validation as tfdv

Example 5-11. Display the schema

schema = tfdv.load_schema_text("schema_info_2")
tfdv.display_schema(schema)

If needed, the schema_util.py script (downloadble from the TensorFlow GitHub
repo) provides the tools to modify your schema (be it for evolution or incorrect infer‐
ence).

Now that we know we’re using the right schema, let’s validate our data. The validate
component takes in both the schema and the statistics we’ve generated, as shown in
Example 5-12. You should replace the schema and statistics generation components
with downloads of their outputs at production time.

76 | Chapter 5: Data and Feature Preparation



Example 5-12. Validating the data

    tfx_example_validator(stats=stats.outputs['output'],
                          schema=schema_op.outputs['output'])

Check the size of the rejected records before pushing to produc‐
tion. You may find that the data format has changed, and you need
to use the schema evolution guide and possibly update the rest of
the pipeline.

TensorFlow Transform, with TensorFlow Extended on Beam
The TFX program for doing feature preparation is called TensorFlow Transform
(TFT) and integrates into the TensorFlow and Kubeflow ecosystems. As with TFDV,
Kubeflow’s TensorFlow Transform component currently does not scale beyond single
node processing. The best benefit of TFT is its integration into the TensorFlow Model
Analysis tool, simplifying feature preparation during inference.

We need to specify what transformations we want TFT to apply. Our TFT program
should be in a file separate from the pipeline definition, although it is possible to
inline it as a string. To start with, we need some standard TFT imports, as shown in
Example 5-13.

Example 5-13. TFT imports

import tensorflow as tf
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils

Now that we’ve got the imports, it’s time to create the entry point into our code for
the component, shown in Example 5-14.

Example 5-14. Creating the entry point

def preprocessing_fn(inputs):

Inside this function is where we do our data transformations to produce our features.
Not all features need to be transformed, which is why there is also a copy method to
mirror the input to the output if you’re only adding features. With our mailing list
example, we can compute the vocabulary, as shown in Example 5-15.

Distributed Tooling | 77



Example 5-15. Compute the vocabulary

    outputs = {}
    # TFT business logic goes here
    outputs["body_stuff"] = tft.compute_and_apply_vocabulary(inputs["body"],
                                                             top_k=1000)
    return outputs

This function does not support arbitrary python code. All transformations must be
expressed as TensorFlow or TensorFlow Transform operations. TensorFlow opera‐
tions operate on one tensor at a time, but in data preparation we often want to com‐
pute something over all of our input data, and TensorFlow Transform’s operations
give us this ability. See the TFT Python docs or call help(tft) to see some starting
operations.

Once you’ve written the desired transformations, it is time to add them to the pipe‐
line. The simplest way to do this is with Kubeflow’s tfx/Transform component.
Loading the component is the same as the other TFX components, illustrated in
Example 5-6. Using this component is unique in requiring the transformation code to
be passed in as a file uploaded to either S3 or GCS. It also needs the data, and you can
use the output from TFDV (if you used it) or load the examples as we did for TFDV.
Using the TFT component is illustrated in Example 5-16.

Example 5-16. Using the TFT component

    transformed_output = tfx_transform(
        input_data=records_example.output,
        schema=schema_op.outputs['output'],
        module_file=module_file)  # Path to your TFT code on GCS/S3

Now you have a machine learning pipeline that has feature preparation along with a
critical artifact to transform requests at serving time. The close integration of Tensor‐
Flow Transform can make model serving much less complicated. TensorFlow Trans‐
form with Kubeflow components doesn’t have the power for all projects, so we’ll look
at distributed feature preparation next.

Distributed Data Using Apache Spark
Apache Spark is an open source distributed data processing tool that can run on a
variety of clusters. Kubeflow supports Apache Spark through a few different compo‐
nents so you can access cloud-specific features. Since you may not be familiar with
Spark we’ll briefly introduce Spark’s Dataset/Dataframe APIs in the context of data
and feature preparation. If you want to go beyond the basics, we recommend Learn‐
ing Spark, Spark: The Definitive Guide, or High Performance Spark as resources to
improve your Spark skills.

78 | Chapter 5: Data and Feature Preparation



Here our code is structured to go in as a single stage for all of the
feature and data preparation, since once you’re at scale, writing and
loading the data between steps is costly.

Spark in Jupyter
Spark is not preinstalled in the notebook images. You can use pip inside your note‐
book to install Spark, but this does not support complex environments. Instead, take
the notebook container you’re working with and add Spark with a new Dockerfile, as
shown in Example 5-17.

Example 5-17. Adding Spark

# See https://www.kubeflow.org/docs/notebooks/custom-notebook/
ARG base
FROM $base
ARG sparkversion
ARG sparkrelease
ARG sparkserver https://www-us.apache.org/dist/spark
# We need to run as root for updates
USER root

# Set an environment variable for where we are going to put Spark
ENV SPARK_HOME /opt/spark

# Install Java because Spark needs it
RUN apt-get update && \
    apt-get install -yq openjdk-8-jre openjdk-8-jre-headless && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

# Install Spark
RUN set -ex && \
    rm /bin/sh && \
    ln -sv /bin/bash /bin/sh

RUN  echo "Setting up $sparkversion"
RUN  cd /tmp && \
     (wget ${sparkserver}/spark-${sparkversion}/${sparkrelease}.tgz) && \
     cd /opt && tar -xvf /tmp/${sparkrelease}.tgz && \
     rm /tmp/${sparkrelease}.tgz && mv ${sparkrelease} spark && \
     cd spark/python && pip install -e .
# Fix permissions
WORKDIR /opt/spark/work-dir
RUN chmod -R 777 /opt/spark/

# Switch the user back; using jovyan as a user is bad but the base image
# depends on it.
USER jovyan
# Install some common tools
pip install pandas numpy scipy pyarrow

Distributed Tooling | 79



The Spark workers don’t have a way to connect to our notebook server so we can’t
send data and requests back and forth. To enable this, you can create a service using
the name of the notebook to make it discoverable. The service definition exposes two
ports, as shown in Example 5-18, for a user in the “programmerboo” namespace with
a notebook named “spark-test-2.” Once you’ve written the service definition, all that is
needed is to run kubectl apply -f my_spark_service.yaml.

Example 5-18. Sample service definition

apiVersion: v1
kind: Service
metadata:
  name: spark-driver
  namespace: kubeflow-programmerboo
spec:
  selector:
    notebook-name: spark-test-2
  ports:
    - port: 39235
      targetPort: 39235
      name: spark-driver-port
    - port: 39236
      targetPort: 39236
      name: spark-block-port

When we make the SparkContext, we’ll configure it to use this service as the host‐
name. Jupyter notebooks make important activities like testing and version manage‐
ment challenging. Notebooks are great for the exploration phase, but as you move on,
you should consider using a Spark operator.

Spark operators in Kubeflow
Using Kubeflow’s native Spark operator EMR, or Dataproc is best once you’ve moved
beyond the experimental phase. The most portable operator is the native Spark oper‐
ator, which does not depend on any specific cloud. To use any of the operators, you
need to package the Spark program and store it on either a distributed filesystem
(such as GCS, S3, and so on) or put it inside a container.

If you’re working in Python or R, we recommend building a Spark container so you
can install your dependencies. With Scala or Java code, this is less critical. If you put
the application inside of a container, you can reference it with local:///. You can
use the gcr.io/spark-operator/spark-py:v2.4.5 container as the base or build your own
container—follow Spark on Kubernetes instructions, or see Chapter 9. Example 5-19
shows how to install any requirements and copy the application. If you decide to
update the application, you can still use the container, just configure the main
resource with a distributed filesystem.

We cover building custom containers additionally in Chapter 9.

80 | Chapter 5: Data and Feature Preparation



Example 5-19. Installing requirements and copying the application

# Use the Spark operator image as base
FROM gcr.io/spark-operator/spark-py:v2.4.5
# Install Python requirements
COPY requirements.txt /
RUN pip3 install -r /requirements.txt
# Now you can reference local:///job/my_file.py
RUN mkdir -p /job
COPY *.py /job

ENTRYPOINT ["/opt/entrypoint.sh"]

Two cloud-specific options for running Spark are the Amazon EMR and Google
Dataproc components in Kubeflow. However, they each take different parameters,
meaning that you will need to translate your pipeline.

The EMR components allow you to set up clusters, submit jobs, and clean up the
clusters. The two cluster task components are aws/emr/create_cluster for the start
and aws/emr/delete_cluster. The component for running a PySpark job is
aws/emr/submit_pyspark_job. If you are not reusing an external cluster, it’s impor‐
tant to trigger the delete component regardless whether the submit_pyspark_job
component succeeds.

While they have different parameters, the workflow for Dataproc clusters mirrors
that of EMR. The components are similarly named, with gcp/dataproc/create_clus
ter/ and gcp/dataproc/delete_cluster/ for the life cycle and gcp/dataproc/
submit_pyspark_job/ for running our job.

Unlike the EMR and Dataproc components, the Spark operator does not have a com‐
ponent. For Kubernetes operators without components, you can use the dsl.Resour‐
ceOp to call them. Example 5-20 illustrates using the ResourceOp to launch a Spark
job.

Example 5-20. Using the ResourceOp to launch a Spark job

resource = {
    "apiVersion": "sparkoperator.k8s.io/v1beta2",
    "kind": "SparkApplication",
    "metadata": {
        "name": "boop",
        "namespace": "kubeflow"
    },
    "spec": {
        "type": "Python",
        "mode": "cluster",
        "image": "gcr.io/boos-demo-projects-are-rad/kf-steps/kubeflow/myspark",
        "imagePullPolicy": "Always",
        # See the Dockerfile OR use GCS/S3/...
        "mainApplicationFile": "local:///job/job.py",
        "sparkVersion": "2.4.5",
        "restartPolicy": {

Distributed Tooling | 81



            "type": "Never"
        },
        "driver": {
            "cores": 1,
            "coreLimit": "1200m",
            "memory": "512m",
            "labels": {
                "version": "2.4.5",
            },
            # also try spark-operatoroperator-sa
            "serviceAccount": "spark-operatoroperator-sa",
        },
        "executor": {
            "cores": 1,
            "instances": 2,
            "memory": "512m"
        },
        "labels": {
            "version": "2.4.5"
        },
    }
}

@dsl.pipeline(name="local Pipeline", description="No need to ask why.")
def local_pipeline():

    rop = dsl.ResourceOp(
        name="boop",
        k8s_resource=resource,
        action="create",
        success_condition="status.applicationState.state == COMPLETED")

Kubeflow doesn’t apply any validation to ResourceOp requests. For
example, in Spark, the job name must be able to be used as the start
of a valid DNS name, and while in container ops container names
are rewritten, ResourceOps just directly passes through requests.

Spark Basics
Apache Spark has APIs available in Python, R, Scala, and Java, with some third-party
support for other languages. We’ll use the Python interface, as it is popular in the
machine learning community. The first thing needed in any Spark program is a Spark
session or context (as in Example 5-21).

Example 5-21. Launching your Spark session

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, to_date
from pyspark.sql.types import *
session = SparkSession.builder.getOrCreate()

82 | Chapter 5: Data and Feature Preparation



This example was so simple because it reads its configuration from the environment it
is called in. This works with the Spark operator, which does much of the setup for us.
When working in a notebook, though, we need to provide some extra information so
the executors can connect back to the notebook. Once you’ve set up the service so the
notebook and the driver can communicate, as described in Example 5-18, you would
then configure your Spark session to tell the executors to use this service, as shown in
Example 5-22.

Example 5-22. Configuring your Spark session

    .config("spark.driver.bindAddress",
            "0.0.0.0").config("spark.kubernetes.namespace",
                              "kubeflow-programmerboo").
    config("spark.master", "k8s://https://kubernetes.default").config(
        "spark.driver.host",
        "spark-driver.kubeflow-programmerboo.svc.cluster.local").config(
            "spark.kubernetes.executor.annotation.sidecar.istio.io/inject",
            "false").config("spark.driver.port",
                            "39235").config("spark.blockManager.port", "39236")

Also, we need the versions of Python to match, since a version mismatch may cause
serialization and function errors. To do this we add os.environ["PYSPARK_PYTHON"]
= "python3.6" to our notebook and install Python 3.6 in Spark’s worker container, as
in Example 5-23.

Example 5-23. Installing Python 3.6 in Spark’s worker container

ARG base
FROM $base

USER root

# Install libraries we need to build Python 3.6
RUN apt-get update && \
    DEBIAN_FRONTEND=noninteractive apt-get install -y -q \
    make build-essential libssl-dev zlib1g-dev libbz2-dev \
    libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev \
    libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev && \
    rm -rf /var/cache/apt

# Install Python 3.6 to match the notebook
RUN cd /tmp && \
    wget https://www.python.org/ftp/python/3.6.10/Python-3.6.10.tgz && \
    tar -xvf Python-3.6.10.tgz && \
    cd Python-3.6.10 && \
    ./configure && \
    make -j 8 && \
    make altinstall

RUN python3.6 -m pip install pandas pyarrow==0.11.0 spacy
# We depend on Spark being on the PYTHONPATH so no pip install
USER 185

Using MinIO, Kubeflow’s built-in S3-like service, requires some additional configura‐
tion. Example 5-24 illustrates how to configure Spark to use MinIO in Kubeflow.

Distributed Tooling | 83



11 There is no definitive list, although many vendors list their formats on this Spark page.
12 Of course, since most formats have slight variations, they have configuration options if the defaults don’t

work.

Example 5-24. Configuring Spark to use MinIO

    .config("spark.hadoop.fs.s3a.endpoint",
            "minio-service.kubeflow.svc.cluster.local:9000").config(
                "fs.s3a.connection.ssl.enabled",
                "false").config("fs.s3a.path.style.access", "true")
    # You can also add an account using the minio command as described in
    # Chapter 1.
    .config("spark.hadoop.fs.s3a.access.key",
            "minio").config("spark.hadoop.fs.s3a.secret.key", "minio123")

MinIO only works out of the box with Spark 3 or higher.

Now that we’ve got Spark up and running, it’s time to look at the basic tasks you will
want to do for data preparation and cleaning in Spark.

Reading the input data
Spark supports a wide variety of data sources, including (but not limited to): Parquet,
JSON, JDBC, ORC, JSON, Hive, CSV, ElasticSearch, MongoDB, Neo4j, Cassandra,
Snowflake, Redis, Riak Time Series, etc.11 Loading data is very straightforward, and
often all that is needed is specifying the format. For instance, in our mailing list
example, reading the Parquet-formatted output of our data preparation stage is done
as in Example 5-25.

Example 5-25. Reading our data’s Parquet-formatted output

initial_posts = session.read.format("parquet").load(fs_prefix +
                                                    "/initial_posts")
ids_in_reply = session.read.format("parquet").load(fs_prefix + "/ids_in_reply")

If this had instead been formatted as JSON, we would only have to change “parquet”
to “JSON.”12

84 | Chapter 5: Data and Feature Preparation



Fetching Input Data
We can also speed up our data fetching by using a block of our Python code to fetch
our data in parallel. If we look back at the mailing list example, we could download
each year on a different computer. Or if we wanted to look at multiple projects, we
could also fetch by project. We can do this by using parallelize, which gives us a
distributed list, and flatMap, which runs a Python function on the different execu‐
tors. For example, sc.parallelize([1, 2, 3]).map(fetchRecord) effectively runs
the fetchRecords function in parallel 3 times with the inputs 1, 2, and 3, respectively,
and concatenates the results.

Validating the schema
We often believe we know the fields and types of our data. Spark can quickly discover
the schema when our data is in a self-describing format like Parquet. In other for‐
mats, like JSON, the schema isn’t known until Spark reads the records. Regardless of
the data format, it is good practice to specify the schema and ensure the data matches
it, as shown in Example 5-26. Errors during data load are easier to debug than errors
during model deployment.

Example 5-26. Specifying the schema

ids_schema = StructType([
    StructField("In-Reply-To", StringType(), nullable=True),
    StructField("message-id", StringType(), nullable=True)
])
ids_in_reply = session.read.format("parquet").schema(ids_schema).load(
    fs_prefix + "/ids_in_reply")

You can configure Spark to handle corrupted and nonconforming records by drop‐
ping them, keeping them, or stopping the process (i.e., failing the job). The default is
permissive, which keeps the invalid records while setting the fields to null, allowing
us to handle schema mismatch with the same techniques for missing fields.

Handling missing fields
In many situations, some of our data is missing. You can choose to drop records with
missing fields, fall back to secondary fields, impute averages, or leave as is. Spark’s
built-in tools for these tasks are inside DataFrameNaFunctions. The correct solution
depends on both your data and the algorithm you end up using. The most common is
to drop records and make sure that we have not filtered out too many records, illus‐
trated using the mailing list data in Example 5-27.

Distributed Tooling | 85



Example 5-27. Dropping records

initial_posts_count = initial_posts.count()
initial_posts_cleaned = initial_posts.na.drop(how='any',
                                              subset=['body', 'from'])
initial_posts_cleaned_count = initial_posts_cleaned.count()

Filtering out bad data
Detecting incorrect data can be challenging. However, without performing at least
some data cleaning, the model may train on noise. Often, determining bad data
depends on the practitioner’s domain knowledge of the problem.

A common technique supported in Spark is outlier removal. However, naively apply‐
ing this can remove valid records. Using your domain experience, you can write a
custom validation function and remove any records that do not match it using Spark’s
filter function, as illustrated with our mailing list example in Example 5-28.

Example 5-28. Filtering out bad data

def is_ok(post):
    # Your special business logic goes here
    return True

spark_mailing_list_data_cleaned = spark_mailing_list_data_with_date.filter(
    is_ok)

Using Spark SQL
If you’re a pro at SQL and less so with Scala or Python, you can also directly write
SQL queries. After you’ve loaded data, you can give the data names with register‐
TempTable and then use the SQL function on the Spark session (see Example 5-29).

Example 5-29. Using Spark SQL

ids_in_reply.registerTempTable("cheese")
no_text = session.sql("select * from cheese where body = '' AND subject = ''")

Saving the output
Once you have the data ready, it’s time to save the output. If you’re going to use
Apache Spark to do feature preparation, you can skip this step for now.

If you want to go back to single-machine tools, it’s often simplest to save to a persis‐
tent volume. To do this, bring the data back to the main program by calling toPan
das(), as shown in Example 5-30. Now you can save the data in whatever format the
next tool expects.

86 | Chapter 5: Data and Feature Preparation



Example 5-30. Saving to a persistent volume

initial_posts.toPandas()

If the data is large, or you otherwise want to use an object store, Spark can write to
many different formats (just as it can load from many different formats). The correct
format depends on the tool you intend to use for feature preparation. Writing to Par‐
quet is shown in Example 5-31.

Example 5-31. Writing to Parquet

initial_posts.write.format("parquet").mode('overwrite').save(fs_prefix +
                                                             "/initial_posts")
ids_in_reply.write.format("parquet").mode('overwrite').save(fs_prefix +
                                                            "/ids_in_reply")

Now you’ve seen a variety of different tools you can use to source and clean the data.
We’ve looked at the flexibility of local tools, the scalability of distributed tools, and the
integration from TensorFlow Extended. With the data in shape, let’s now make sure
the right features are available and get them in a usable format for the machine learn‐
ing model.

Distributed Feature Preparation Using Apache Spark
Apache Spark has a large number of built-in feature preparation tools, in
pyspark.ml.feature, that you can use to generate features. You can use Spark in the
same way as you did during data preparation. You may find using Spark’s own ML
pipeline an easy way to put together multiple feature preparation stages.

For the Spark mailing list example, we have textual input data. To allow us to train a
variety of models, converting this into word vectors is our preferred form of feature
prep. Doing so involves first tokenizing the data with Spark’s Tokenizer. Once we have
the tokens, we can train a Word2Vec model and produce our word vectors.
Example 5-32 illustrates how to prepare features for the mailing list example using
Spark.

Example 5-32. Preparing features for the mailing list

tokenizer = Tokenizer(inputCol="body", outputCol="body_tokens")
body_hashing = HashingTF(inputCol="body_tokens",
                         outputCol="raw_body_features",
                         numFeatures=10000)
body_idf = IDF(inputCol="raw_body_features", outputCol="body_features")
body_word2Vec = Word2Vec(vectorSize=5,
                         minCount=0,
                         numPartitions=10,
                         inputCol="body_tokens",
                         outputCol="body_vecs")

Distributed Tooling | 87



assembler = VectorAssembler(inputCols=[
    "body_features", "body_vecs", "contains_python_stack_trace",
    "contains_java_stack_trace", "contains_exception_in_task"
],
                            outputCol="features")

With this final distributed feature preparation example, you’re ready to scale up to
handle larger data sizes if they ever come your way. If you’re working with smaller
data, you’ve seen how you can use the same simple techniques of containerization to
continue to work with your favorite tools. Either way, you’re almost ready for the next
stage in the machine learning pipeline.

Putting It Together in a Pipeline
We have shown how to solve individual problems in data and feature preparation, but
now we need to bring it all together. In our local example, we wrote our functions
with the types and returned parameters to make it easy to put into a pipeline. Since
we return the path of where our output is in each stage, we can use the function out‐
puts to create the dependency graph for us. Putting these functions together into a
pipeline is illustrated in Example 5-33.

Example 5-33. Putting the functions together

@kfp.dsl.pipeline(name='Simple1', description='Simple1')
def my_pipeline_mini(year: int):
    dvop = dsl.VolumeOp(name="create_pvc",
                        resource_name="my-pvc-2",
                        size="5Gi",
                        modes=dsl.VOLUME_MODE_RWO)
    tldvop = dsl.VolumeOp(name="create_pvc",
                          resource_name="tld-volume-2",
                          size="100Mi",
                          modes=dsl.VOLUME_MODE_RWO)
    download_data_op = kfp.components.func_to_container_op(
        download_data, packages_to_install=['lxml', 'requests'])
    download_tld_info_op = kfp.components.func_to_container_op(
        download_tld_data,
        packages_to_install=['requests', 'pandas>=0.24', 'tables'])
    clean_data_op = kfp.components.func_to_container_op(
        clean_data, packages_to_install=['pandas>=0.24', 'tables'])

    step1 = download_data_op(year).add_pvolumes(
        {"/data_processing": dvop.volume})
    step2 = clean_data_op(input_path=step1.output).add_pvolumes(
        {"/data_processing": dvop.volume})
    step3 = download_tld_info_op().add_pvolumes({"/tld_info": tldvop.volume})

kfp.compiler.Compiler().compile(my_pipeline_mini, 'local-data-prep-2.zip')

You can see that the feature preparation step here follows the same general pattern of
all of the local components. However, the libraries that we need for our feature

88 | Chapter 5: Data and Feature Preparation



preparation are a bit different, so we’ve changed the packages_to_install value to
install Scikit-learn, as shown in Example 5-34.

Example 5-34. Installing Scikit-learn

    prepare_features_op = kfp.components.func_to_container_op(
        prepare_features,
        packages_to_install=['pandas>=0.24', 'tables', 'scikit-learn'])

When you start exploring a new dataset, you may find it easier to
use a notebook as usual, without the pipeline components. When
possible following the same general structure you would with pipe‐
lines will make it easier to productionize your exploratory work.

These steps don’t specify the container to use. For the container with SpamAssassin
you’ve just built, you write it as in Example 5-35.

Example 5-35. Specifying a container

clean_data_op = kfp.components.func_to_container_op(
    clean_data,
    base_image="{0}/kubeflow/spammassisan".format(container_registry),
    packages_to_install=['pandas>=0.24', 'tables'])

Sometimes the cost of writing our data out in between stages is too expensive. In our
recommender example, unlike in the mailing list example, we’ve chosen to put data
and feature prep together into a single pipeline stage. In our distributed mailing list
example, we build one single Spark job as well. In these cases, our entire work so far is
just one stage. Using a single stage allows us to avoid having to write the file out in
between, but can complicate debugging.

Using an Entire Notebook as a Data Preparation
Pipeline Stage
If you don’t want to turn the individual parts of the data preparation notebook into a
pipeline, you can use the entire notebook as one stage. You can use the same contain‐
ers used by JupyterHub to run the notebook programmatically.

To do this, you’ll need to make a new Dockerfile, specify that it is based on top of
another container using FROM, and then add a COPY directive to package the notebook
inside the new container. Since the census data example has a preexisting notebook,
that’s the approach we’ve taken in Example 5-36.

Using an Entire Notebook as a Data Preparation Pipeline Stage | 89



Example 5-36. Using an entire notebook as data preparation

FROM gcr.io/kubeflow-images-public/tensorflow-1.6.0-notebook-cpu

COPY ./ /workdir /

If you require additional Python dependencies, you can use the RUN directive to
install them. Putting the dependencies in the container can help speed up the pipe‐
line, especially for complicated packages. For our mailing list example, the Dockerfile
would look like Example 5-37.

Example 5-37. Using RUN to add Python dependencies to the container

RUN pip3 install --upgrade lxml pandas

We can use this container like any other in the pipeline with dsl.ContainerOp, as we
did with the recommender example in Chapter 4. Now you have two ways to use
notebooks in Kubeflow, and we’ll cover options beyond notebooks next.

Does the notebook need GPU resources? When specifying the
dsl.ContainerOp, add a call to set_gpu_limit and specify either
nvidia or amd depending on the desired GPU type.

Conclusion
Now you have your data ready to train a model. We’ve seen how there is no one-size-
fits-all approach to feature and data preparation; our different examples needed dif‐
ferent tooling. We’ve also seen how the methods can require changing within the
same problem, like when we expanded the scope of the mailing list example to
include more data. The amount and quality of the features, and the data to produce
them, are critical to the success of the machine learning projects. You can test this by
running the examples with smaller data sizes and comparing the models.

It’s also important to remember that data and feature preparation is not a one-and-
done activity, and you may want to revisit this step as you develop this model. You
may find that there is a feature you wish you had, or that a feature you thought would
perform well isn’t suggesting data quality issues. In the coming chapters, as we train
our models and serve them, feel free to revisit the data and feature preparation.

90 | Chapter 5: Data and Feature Preparation



1 For a good background on metadata for machine learning, and an overview of what to capture refer to this
blog post written by Luigi Patruno.

2 For more on this topic, see this blog post by Jennifer Villa and Yoav Zimmerman.
3 Note that Kubeflow ML Metadata is different from ML Metadata, which is part of TFX.

CHAPTER 6

Artifact and Metadata Store

Machine learning typically involves dealing with a large amount of raw and inter‐
mediate (transformed) data where the ultimate goal is creating and deploying the
model. In order to understand our model it is necessary to be able to explore datasets
used for its creation and transformations (data lineage). The collection of these data‐
sets and the transformation applied to them is called the metadata of our model.1

Model metadata is critical for reproducibility in machine learning;2 reproducibility is
critical for reliable production deployments. Capturing the metadata allows us to
understand variations when rerunning jobs or experiments. Understanding varia‐
tions is necessary to iteratively develop and improve our models. It also provides a
solid foundation for model comparisons. As Pete Warden defined it in this post:

To reproduce results, code, training data, and the overall platform need to be recorded
accurately.

The same information is also required for other common ML operations—model
comparison, reproducible model creation, etc.

There are many different options for tracking the metadata of models. Kubeflow has a
built-in tool for this called Kubeflow ML Metadata.3 The goal of this tool is to help
Kubeflow users understand and manage their ML workflows by tracking and manag‐
ing the metadata that the workflows produce. Another tool for tracking metadata that
we can integrate into our Kubeflow pipelines is MLflow Tracking. It provides API and

91



4 MLflow was initially developed by Databricks and currently is part of the Linux Foundation.
5 The complete code for this notebook is located in this book’s GitHub repo.

UI for logging parameters, code versions, metrics, and output files when running
your machine learning code and for later visualizing the results.

In this chapter we will discuss the capabilities of Kubeflow’s ML Metadata project and
show how it can be used. We will also consider some shortcomings of this implemen‐
tation and explore usage of additional third-party software: MLflow.4

Kubeflow ML Metadata
Kubeflow ML Metadata is a library for recording and retrieving metadata associated
with model creation. In the current implementation, Kubeflow Metadata provides
only Python APIs. To use other languages, you need to implement the language-
specific Python plug-in to be able to use the library. To understand how it works, we
will start with a simple artificial example showing the basic capabilities of Kubeflow
Metadata using a very simple notebook (based on this demo).5

Implementation of Kubeflow Metadata starts with required imports, as shown in
Example 6-1.

Example 6-1. Required imports

from kfmd import metadata
import pandas
from datetime import datetime

In Kubeflow Metadata, all the information is organized in terms of a workspace, run,
and execution. You need to define a workspace so Kubeflow can track and organize
the records. The code in Example 6-2 shows how this can be done.

Example 6-2. Define a workspace

ws1 = metadata.Workspace(
    # Connect to metadata-service in namespace kubeflow.
    backend_url_prefix="metadata-service.kubeflow.svc.cluster.local:8080",
    name="ws1",
    description="a workspace for testing",
    labels={"n1": "v1"})
r = metadata.Run(
    workspace=ws1,
    name="run-" + datetime.utcnow().isoformat("T") ,
    description="a run in ws_1",
)
exec = metadata.Execution(
    name = "execution" + datetime.utcnow().isoformat("T") ,

92 | Chapter 6: Artifact and Metadata Store



    workspace=ws1,
    run=r,
    description="execution example",
)

Workspace, run, and execution can be defined multiple times in
the same or different applications. If they do not exist, they will be
created; if they already exist, they will be used.

Kubeflow does not automatically track the datasets used by the application. They have
to be explicitly registered in code. Following a classic MNIST example data sets regis‐
tration in Metadata should be implemented as shown in Example 6-3.

Example 6-3. Metadata example

data_set = exec.log_input(
        metadata.DataSet(
            description="an example data",
            name="mytable-dump",
            owner="owner@my-company.org",
            uri="file://path/to/dataset",
            version="v1.0.0",
            query="SELECT * FROM mytable"))

In addition to data, Kubeflow Metadata allows you to store information about your
model and its metrics. The code implementing it is presented in Example 6-4.

Example 6-4. Another metadata example

model = exec.log_output(
    metadata.Model(
            name="MNIST",
            description="model to recognize handwritten digits",
            owner="someone@kubeflow.org",
            uri="gcs://my-bucket/mnist",
            model_type="neural network",
            training_framework={
                "name": "tensorflow",
                "version": "v1.0"
            },
            hyperparameters={
                "learning_rate": 0.5,
                "layers": [10, 3, 1],
                "early_stop": True
            },
            version="v0.0.1",
            labels={"mylabel": "l1"}))
metrics = exec.log_output(
    metadata.Metrics(
            name="MNIST-evaluation",
            description="validating the MNIST model to recognize handwritten digits",

Kubeflow ML Metadata | 93



            owner="someone@kubeflow.org",
            uri="gcs://my-bucket/mnist-eval.csv",
            data_set_id=data_set.id,
            model_id=model.id,
            metrics_type=metadata.Metrics.VALIDATION,
            values={"accuracy": 0.95},
            labels={"mylabel": "l1"}))

These code snippets will implement all of the main steps for storing model creation
metadata:

1. Define workspace, run, and execution.
2. Store information about data assets used for model creation.
3. Store information about the created model, including its version, type, training

framework, and hyperparameters used for its creation.
4. Store information about model evaluation metrics.

In real-world implementations these snippets should be used in the actual code to
capture metadata used for data preparation, machine learning, etc. See Chapter 7 for
examples of where and how this information is captured.

Collecting metadata is useful only if there are ways to view it. Kubeflow Metadata
provides two ways of viewing it—programmatically, and using Metadata UI.

Programmatic Query
The following functionality is available for programmatic query.

First, we list all the models in the workspace, as shown in Example 6-5.

Example 6-5. List all models

pandas.DataFrame.from_dict(ws1.list(metadata.Model.ARTIFACT_TYPE_NAME))

94 | Chapter 6: Artifact and Metadata Store



In our code we created only a single model, which is returned as a result of this query
(see Table 6-1).

Table 6-1. List of models

 id workspace run create_time description model_type
0 2 ws1 run-2020-01-10T22:13:20.959882 2020-01-10T22:13:26.324443Z model to

recognize
handwritten
digits

neural
network

name owner version uri training_framework
MNIST someone@kubeflow.org v0.0.1 gcs://my-bucket/mnist {name: tensorflow, version: v1.0}

Next, we get basic lineage (see Example 6-6). In our case we created a single model, so
the returned lineage will contain only the ID of this model.

Example 6-6. Basic lineage

print("model id is " + model.id) 

Returns model id is 2.

Then we find the execution that produces this model. In our toy application we cre‐
ated a single execution. An ID of this execution is returned as a result of this query, as
shown in Example 6-7.

Example 6-7. Find the execution

output_events = ws1.client.list_events2(model.id).events
execution_id = output_events[0].execution_id

print(execution_id) 

Returns 1.

Finally, we find all events related to that execution, as illustrated in Example 6-8.

Example 6-8. Getting all related events

all_events = ws1.client.list_events(execution_id).events
assert len(all_events) == 3
print("\nAll events related to this model:")
pandas.DataFrame.from_dict([e.to_dict() for e in all_events])

Kubeflow ML Metadata | 95



In our case we used a single input that was used to create a model and metrics. So the
result of this query looks as shown in Table 6-2.

Table 6-2. Query result as a table

artifact_id execution_id path type milliseconds_since_epoch
0 1 1 None INPUT 1578694406318

1 2 1 None OUTPUT 1578694406338

2 3 1 None OUTPUT 1578694406358

Kubeflow Metadata UI
In addition to providing APIs for writing code to analyze metadata, the Kubeflow
Metadata tool provides a UI, which allows you to view metadata without writing
code. Access to the Metadata UI is done through the main Kubeflow UI, as seen in
Figure 6-1.

Figure 6-1. Accessing Metadata UI

96 | Chapter 6: Artifact and Metadata Store



Once you click the Artifact Store, you should see the list of available artifacts (logged
metadata events), as in Figure 6-2.

Figure 6-2. List of artifacts in the Artifact Store UI

From this view we can click the individual artifact and see its details, as shown in
Figure 6-3.

Figure 6-3. Artifact view

Kubeflow Metadata provides some basic capabilities for storing and viewing of
machine learning metadata; however, its capabilities are extremely limited, especially
in terms of viewing and manipulating stored metadata. A more powerful implemen‐
tation of machine learning metadata management is done by MLflow. Though
MLflow isn’t part of Kubeflow distribution, it’s very easy to deploy it alongside Kube‐
flow and use it from Kubeflow-based applications, as described in the next section.

Kubeflow ML Metadata | 97



Using MLflow’s Metadata Tools with Kubeflow
MLflow is an open source platform for managing the end-to-end machine learning
life cycle. It includes three primary functions:

MLflow Tracking
Tracking experiments to record and compare parameters and results

MLflow Projects
Packaging ML code in a reusable, reproducible form in order to share with other
data scientists or transfer to production

MLflow Models
Managing and deploying models from a variety of ML libraries to a variety of
model serving and inference platforms

For the purposes of our Kubeflow metadata discussion we will only discuss deploy‐
ment and usage of MLflow tracking components—an API and UI for logging param‐
eters, code versions, metrics, and output files when running your machine learning
code and for visualizing the results. MLflow Tracking lets you log and query experi‐
ments using Python, REST, R, and Java APIs, which significantly extends the reach of
APIs, allowing you to store and access metadata from different ML components.

MLflow Tracking is organized around the concept of runs, which are executions of
some piece of data science code. Each run records the following information:

Code version
Git commit hash used for the run, if it was run from an MLflow Project

Start and end time
Start and end time of the run

Source
Name of the file to launch the run, or the project name and entry point for the
run if run from an MLflow Project

Parameters
Key-value input parameters of your choice. Both keys and values are strings.

Metrics
Key-value metrics, where the value is numeric. Each metric can be updated
throughout the course of the run (for example, to track how your model’s loss
function is converging), and MLflow records and lets you visualize the metric’s
full history.

98 | Chapter 6: Artifact and Metadata Store



Artifacts
Output files in any format. Here you can record images (such as PNG files),
models (for example, a pickled Scikit-learn model), and data files (for example, a
Parquet file) as artifacts.

Most of the MLflow examples use local MLflow installations, which is not appropriate
for our purposes. For our implementation we need a cluster-based installation, allow‐
ing us to write metadata from different Docker instances and view them centrally.
Following the approach outlined in the project MLflow Tracking Server based on
Docker and AWS S3, the overall architecture of such MLflow Tracking component
deployment is presented in Figure 6-4.

Figure 6-4. Overall architecture of MLflow components deployment

The main components of this architecture are:

• MinIO server, already part of the Kubeflow installation
• MLflow tracking server—the MLflow UI component—an additional component

that needs to be added to Kubeflow installation to support MLflow usage
• User code such as notebook, Python, R, or Java application

Creating and Deploying an MLflow Tracking Server
MLflow Tracking Server allows you to record MLflow runs to local files, to a
SQLAlchemy-compatible database, or remotely to a tracking server. In our imple‐
mentation we are using a remote server.

An MLflow Tracking Server has two components for storage: a backend store and an
artifact store. The backend store is where MLflow Tracking Server stores experiment

Using MLflow’s Metadata Tools with Kubeflow | 99



6 This is a simplified implementation. For complete implementation, see this book’s GitHub repo.

and run metadata as well as parameters, metrics, and tags for runs. MLflow supports
two types of backend stores: file store and database-backed store. For simplicity we
will be using a file store. In our deployment, this file store is part of the Docker image,
which means that this data is lost in the case of server restart. If you need longer-term
storage, you can either use an external filesystem, like NFS server, or a database. The
artifact store is a location suitable for large data (such as an S3 bucket or shared NFS
filesystem) and is where clients log their artifact output (for example, models). To
make our deployment cloud independent, we decided to use MinIO (part of Kube‐
flow) as an artifact store. Based on these decisions, a Docker file for building the
MLflow Tracking Server looks like Example 6-9 (similar to the implementation in this
GitHub repo).

Example 6-9. MLflow Tracking Server

FROM python:3.7

RUN pip3 install --upgrade pip && \
   pip3 install mlflow --upgrade && \
   pip3 install awscli --upgrade  && \
   pip3 install boto3 --upgrade

ENV PORT 5000
ENV AWS_BUCKET bucket
ENV AWS_ACCESS_KEY_ID aws_id
ENV AWS_SECRET_ACCESS_KEY aws_key
ENV FILE_DIR /tmp/mlflow

RUN mkdir -p /opt/mlflow
COPY run.sh /opt/mlflow
RUN chmod -R 777 /opt/mlflow/

ENTRYPOINT ["/opt/mlflow/run.sh"]

Here we first load MLflow code (using pip), set environment variables, and then copy
and run the startup script. The start-up script used here looks like Example 6-10.6

Example 6-10. MLflow startup script

#!/bin/sh
mkdir -p $FILE_DIR

mlflow server \
   --backend-store-uri file://$FILE_DIR \
   --default-artifact-root s3://$AWS_BUCKET/mlflow/artifacts \
   --host 0.0.0.0 \
   --port $PORT

100 | Chapter 6: Artifact and Metadata Store



7 Here we are showing usage of Python APIs. For additional APIs (R, Java, REST) refer to the MLflow docu‐
mentation.

8 The code here is adapted from this article by Jean-Michel Daignan.

This script sets an environment and then verifies that all required environment vari‐
ables are set. Once validation succeeds, an MLflow server is started. Once the Docker
is created, the Helm command in Example 6-11 (the Helm chart is located on this
book’s GitHub repo) can be used to install the server.

Example 6-11. Installing MLflow server with Helm

helm install <location of the Helm chart>

This Helm chart installs three main components implementing the MLflow Tracking
Server:

Deployment
Deploying MLflow server itself (single replica). The important parameters here
are the environment, including MinIO endpoint, credentials, and bucket used for
artifact storage.

Service
Creating a Kubernetes service exposing MLflow deployment

Virtual service
Exposing MLflow service to users through the Istio ingress gateway used by
Kubeflow

Once the server is deployed, we can get access to the UI, but at this point it will say
that there are no available experiments. Let’s now look at how this server can be used
to capture metadata.7

Logging Data on Runs
As an example of logging data, let’s look at some simple code.8 We will start by instal‐
ling required packages, shown in Examples 6-11 and 6-12.

Example 6-12. Install required

!pip install pandas --upgrade --user

!pip install mlflow --upgrade --user 
!pip install joblib --upgrade --user
!pip install numpy --upgrade --user
!pip install scipy --upgrade --user
!pip install scikit-learn --upgrade --user

!pip install boto3 --upgrade --user 

Using MLflow’s Metadata Tools with Kubeflow | 101



Here mlflow and boto3 are the packages required for metadata logging, while the
rest are used for machine learning itself.

Once these packages are installed, we can define required imports, as shown in
Example 6-13.

Example 6-13. Import required libraries

import time
import json
import os
from joblib import Parallel, delayed

import pandas as pd
import numpy as np
import scipy

from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.metrics import r2_score, explained_variance_score
from sklearn.exceptions import ConvergenceWarning

import mlflow
import mlflow.sklearn
from mlflow.tracking import MlflowClient

from warnings import simplefilter
simplefilter(action='ignore', category = FutureWarning)
simplefilter(action='ignore', category = ConvergenceWarning)

Here again, os and the last three imports are required for MLflow logging, while the
rest are used for machine learning. Now we need to define the environment variables
(see Example 6-14) required for proper access to the MinIO server for storing
artifacts.

Example 6-14. Set environment variables

os.environ['MLFLOW_S3_ENDPOINT_URL'] = \
     'http://minio-service.kubeflow.svc.cluster.local:9000'
os.environ['AWS_ACCESS_KEY_ID'] = 'minio'
os.environ['AWS_SECRET_ACCESS_KEY'] = 'minio123'

Note here that in addition to the tracking server itself, MLFLOW_S3_ENDPOINT_URL is
defined not only in the tracking server definition, but also in the code that actually
captures the metadata. This is because, as we mentioned previously, user code writes
to the artifact store directly, bypassing the server.

Here we skip the majority of the code (the full code can be found on this book’s Git‐
Hub repo) and concentrate only on the parts related to the MLflow logging. The next

102 | Chapter 6: Artifact and Metadata Store



step (see Example 6-15) is connecting to the tracking server and creating an
experiment.

Example 6-15. Create experiment

remote_server_uri = "http://mlflowserver.kubeflow.svc.cluster.local:5000"
mlflow.set_tracking_uri(remote_server_uri)
experiment_name = "electricityconsumption-forecast"
mlflow.set_experiment(experiment_name)

Once connected to the server and creating (choosing) an experiment, we can start
logging data. As an example, let’s look at the code for storing KNN regressor informa‐
tion, in Example 6-16.

Example 6-16. Sample KNN model

def train_knnmodel(parameters, inputs, tags, log = False):
    with mlflow.start_run(nested = True):

……………………………………………….
        # Build the model
        tic = time.time()
        model = KNeighborsRegressor(parameters["nbr_neighbors"],
                                weights = parameters["weight_method"])
        model.fit(array_inputs_train, array_output_train)
        duration_training = time.time() - tic

        # Make the prediction
        tic1 = time.time()
        prediction = model.predict(array_inputs_test)
        duration_prediction = time.time() - tic1

        # Evaluate the model prediction
        metrics = evaluation_model(array_output_test, prediction)

        # Log in mlflow (parameter)
        mlflow.log_params(parameters)

        # Log in mlflow (metrics)
        metrics["duration_training"] = duration_training
        metrics["duration_prediction"] = duration_prediction
        mlflow.log_metrics(metrics)

        # Log in mlflow (model)
        mlflow.sklearn.log_model(model, f"model")

        # Save model
        #mlflow.sklearn.save_model(model,
                         f"mlruns/1/{uri}/artifacts/model/sklearnmodel")

        # Tag the model
        mlflow.set_tags(tags)

Using MLflow’s Metadata Tools with Kubeflow | 103



In this code snippet, we can see how different kinds of data about model creation and
prediction test statistics are logged. The information here is very similar to the infor‐
mation captured by Kubeflow Metadata and includes inputs, models, and metrics.

Finally, similar to Kubeflow Metadata, MLflow allows you to access this metadata
programmatically. The main APIs provided by MLflow include what you see in
Example 6-17.

Example 6-17. Getting the runs for a given experiment

df_runs = mlflow.search_runs(experiment_ids="0") 
print("Number of runs done : ", len(df_runs))

df_runs.sort_values(["metrics.rmse"], ascending = True, inplace = True) 
df_runs.head()

Getting the the runs for a given experiment

Sorting runs based on the specific parameters

MLflow will sort runs by root mean square error (rmse) and show the best ones.

For additional capabilities of the programmatic runs querying, consult the MLflow
documentation.

With all the capabilities of running programmatic queries, the most powerful way to
evaluate runs’ metadata is through the MLflow UI, which we will cover next.

Using the MLflow UI
The Tracking UI in MLflow lets you visualize, search, and compare runs, as well as
download run artifacts or metadata for analysis in other tools. Because MLflow is not
part of Kubeflow, its access is not provided by Kubeflow UI. Based on the provided
virtual service, the MLflow UI is available at <Kubeflow Istio ingress gateway URL>/
mlflow.

Figure 6-5 shows the results produced by the run described. It is possible to filter
results using the search box. For example, if we want to see only results for the KNN
model, then the search criteria tags.model="knn" can be used. You can also use more
complex filters, such as tags.model="knn" and metrics.duration_prediction <
0.002, which will return results for the KNN model for which prediction duration is
less than 0.002 sec.

104 | Chapter 6: Artifact and Metadata Store



Figure 6-5. MLflow main page

By clicking the individual run we can see its details, as shown in Figure 6-6.

Figure 6-6. View of the individual run

Using MLflow’s Metadata Tools with Kubeflow | 105



9 Also see the MLflow documentation for additional UI capabilities.

Alternatively, we can compare several runs by picking them and clicking compare, as
seen in Figure 6-7.

Figure 6-7. Run comparison view

We can also view metrics comparison for multiple runs, as in Figure 6-8.9

Figure 6-8. Run metrics comparison view

Conclusion
In this chapter we have shown how the Kubeflow Metadata component of the Kube‐
flow deployment supports storing and viewing ML metadata. We have also discussed
shortcomings of this implementation, including its Python-only support and weak
UI. Last, we covered how to supplement Kubeflow with components with similar
functionality—MLflow and additional capabilities that can be achieved in this case.

In Chapter 7, we explore using Kubeflow with TensorFlow to train and serve models.

106 | Chapter 6: Artifact and Metadata Store



CHAPTER 7

Training a Machine Learning Model

In Chapter 5, we learned how to prepare and clean up our data, which is the first step
in the machine learning pipeline. Now let’s take a deep dive into how to use our data
to train a machine learning model.

Training is often considered the “bulk” of the work in machine learning. Our goal is
to create a function (the “model”) that can accurately predict results that it hasn’t seen
before. Intuitively, model training is very much like how humans learn a new skill—
we observe, practice, correct our mistakes, and gradually improve. In machine learn‐
ing, we start with an initial model that might not be very good at its job. We then put
the model through a series of training steps, where training data is fed to the model.
At each training step, we compare the prediction results produced by our model with
the true results, and see how well our model performed. We then tinker with the
parameters to this model (for example, by changing how much weight is given to
each feature) to attempt to improve the model’s accuracy. A good model is one that
makes accurate predictions without overfitting to a specific set of inputs.

In this chapter, we are going to learn how to train machine learning models using two
different libraries—TensorFlow and Scikit-learn. TensorFlow has native, first-class
support in Kubeflow, while Scikit-learn does not. But as we will see in this chapter,
both libraries can be easily integrated with Kubeflow. We’ll demonstrate how you can
experiment with models in Kubeflow’s notebooks, and how you can deploy these
models to production environments.

107



Building a Recommender with TensorFlow
Let us first take a look at TensorFlow—an open source framework for machine learn‐
ing developed by Google. It is currently one of the most popular libraries for machine
learning–powered applications, in particular for implementing deep learning. Tensor‐
Flow has great support for computational tasks on a variety of hardware, including
CPUs, GPUs, and TPUs. We chose TensorFlow for this tutorial because its high-level
APIs are user-friendly and abstract away many of the gory details.

What Is Deep Learning?
In recent years, deep learning—a category of algorithms that leverage artificial neural
networks to progressively extract higher-level features from input data—has become
increasingly popular. Deep learning has the ability to leverage hidden layers in the
neural network to learn highly abstract models of the input.

Deep learning algorithms can be found in many everyday applications, like image
recognition and natural language processing. The multiple hidden layers of neural
networks allow these algorithms to discover increasingly abstract details from data.
For example, while the initial layer in an image classification neural network might
discover only object edges, the deeper layer may learn more complex features and
classify the objects in the images.

Let’s get acquainted with TensorFlow with a simple tutorial. In Chapter 1 we intro‐
duced our case studies, one of which is a product recommendation system for cus‐
tomers. In this chapter, we will be implementing this system with TensorFlow.
Specifically, we will do two things:

1. Use TensorFlow to train a model for product recommendation.
2. Use Kubeflow to wrap the training code and deploy it to a production cluster.

TensorFlow’s high-level Keras API makes it relatively easy to implement our model.
In fact, the bulk of the model can be implemented with less than 50 lines of Python
code.

Keras is the high-level TensorFlow API for deep learning models. It
has a user-friendly interface and high extensibility. As an added
bonus, Keras has many common neural network implementations
straight out of the box, so you can get a model up and running
right away.

108 | Chapter 7: Training a Machine Learning Model



Let’s begin by selecting a model for our recommender. We begin with a simple
assumption—that if two people (Alice and Bob) have similar opinions on a set of
products, then they are also more likely to think similarly about other products. In
other words, Alice is more likely to have the same preferences as Bob than would a
randomly chosen third person. Thus, we can build a recommendation model using
just the users’ purchase history. This is the idea of collaborative filtering—we collect
preferential information from many users (hence “collaborative”) and use this data to
make selective predictions (hence “filtering”).

To build this recommender model, we will need a few things:

Users’ purchasing history
We will use the example input data from this GitHub repo.

Data storage
To make sure that our model works across different platforms, we’ll use MinIO as
the storage system.

Training model
The implementation that we are using is based on a Keras model on GitHub.

We will first experiment with this model using Kubeflow’s notebook servers, and then
deploy the training job to our cluster using Kubeflow’s TFJob APIs.

Getting Started
Let’s get started by downloading the prerequisites. You can download the notebook
from this book’s GitHub repo. To run the notebook, you will need a running Kube‐
flow cluster that includes a MinIO service. Review “Support Components” on page 33
to configure MinIO. Make sure that MinIO Client (“mc”) is also installed.

We also need to prepare the data to facilitate training: you can download the user
purchase history data from this GitHub site. Then you can use MinIO Client to create
the storage objects, as shown in Example 7-1.

Example 7-1. Setting up prerequisites

# Port-forward the MinIO service to http://localhost:9000
kubectl port-forward -n kubeflow svc/minio-service 9000:9000 &

# Configure MinIO host
mc config host add minio http://localhost:9000 minio minio123

# Create storage bucket
mc mb minio/data

# Copy storage objects
mc cp go/src/github.com/medium/items-recommender/data/recommend_1.csv \\
        minio/data/recommender/users.csv

Building a Recommender with TensorFlow | 109



1 Currently Kubeflow provides CPU and GPU images with TensorFlow 1.15.2 and 2.1.0, or you can use a cus‐
tom image.

2 The examples in this chapter use TensorFlow 1.15.2. Examples with TensorFlow 2.1.0 can be found on this
Kubeflow GitHub site.

mc cp go/src/github.com/medium/items-recommender/data/trx_data.csv \\
        minio/data/recommender/transactions.csv

Starting a New Notebook Session
Now let’s start by creating a new notebook. You can do this by navigating to the
“Notebook Servers” panel in your Kubeflow dashboard, then clicking “New Server”
and following the instructions. For this example, we use the tensorFlow-1.15.2-
notebook-cpu:1.0 image.1

When the notebook server starts up, click the “Upload” button in the top right corner
and upload the Recommender_Kubeflow.ipynb file. Click the file to start a new
session.

The first few sections of the code involve importing libraries and reading the training
data from MinIO. Then we normalize the input data so that we are ready to start
training. This process is called feature preparation, which we discussed in Chapter 5.
In this chapter we’ll focus on the model training part of the exercise.

TensorFlow Training
Now that our notebook is set up and the data is prepared, we can create a TensorFlow
session, as shown in Example 7-2.2

Example 7-2. Creating a TensorFlow session

# Create TF session and set it in Keras
sess = tf.Session()
K.set_session(sess)
K.set_learning_phase(1)

For the model class, we use the code in Example 7-3 for collaborative filtering.

110 | Chapter 7: Training a Machine Learning Model



Example 7-3. DeepCollaborativeFiltering learning

class DeepCollaborativeFiltering(Model):
   def__init__(self, n_customers, n_products, n_factors, p_dropout = 0.2):
      x1 = Input(shape = (1,), name="user")

      P = Embedding(n_customers, n_factors, input_length = 1)(x1)
      P = Reshape((n_factors,))(P)

      x2 = Input(shape = (1,), name="product")

      Q = Embedding(n_products, n_factors, input_length = 1)(x2)
      Q = Reshape((n_factors,))(Q)

      x = concatenate([P, Q], axis=1)
      x = Dropout(p_dropout)(x)

      x = Dense(n_factors)(x)
      x = Activation('relu')(x)
      x = Dropout(p_dropout)(x)

      output = Dense(1)(x)

      super(DeepCollaborativeFiltering, self).__init__([x1, x2], output)

   def rate(self, customer_idxs, product_idxs):
      if (type(customer_idxs) == int and type(product_idxs) == int):
          return self.predict([np.array(customer_idxs).reshape((1,)),\
                  np.array(product_idxs).reshape((1,))])

      if (type(customer_idxs) == str and type(product_idxs) == str):
          return self.predict( \
                 [np.array(customerMapping[customer_idxs]).reshape((1,)),\
                 np.array(productMapping[product_idxs]).reshape((1,))])

      return self.predict([
         np.array([customerMapping[customer_idx] \
                for customer_idx in customer_idxs]),
            np.array([productMapping[product_idx] \
                for product_idx in product_idxs])
      ])

This is the basis of our model class. It includes a constructor with some code to
instantiate the collaborative filtering model using Keras APIs, and a “rate” function
that we can use to make a prediction using our model—namely, what rating a cus‐
tomer would give to a particular product.

We can create an instance of the model, as in Example 7-4.

Example 7-4. Model creation

model = DeepCollaborativeFiltering(n_customers, n_products, n_factors)
model.summary()

Building a Recommender with TensorFlow | 111



Now we are ready to start training our model. We can do this by setting a few hyper‐
parameters, as shown in Example 7-5.

Example 7-5. Setting Training configuration

bs = 64
val_per = 0.25
epochs = 3

These are hyperparameters that control the training process. They are typically set
before training begins, unlike model parameters, which are learned from the training
process. Setting the right values for hyperparameters can significantly impact the
effectiveness of your model. For now, let’s just set some default values for them. In
Chapter 10 we’ll look at how to use Kubeflow to tune hyperparameters.

We are now ready to run the training code. See Example 7-6.

Example 7-6. Fitting model

model.compile(optimizer = 'adam', loss = mean_squared_logarithmic_error)
model.fit(x = [customer_idxs, product_idxs], y = ratings,
        batch_size = bs, epochs = epochs, validation_split = val_per)
print('Done training!')

Once the training is complete, you should see results like in Example 7-7.

Example 7-7. Model training results

Train on 100188 samples, validate on 33397 samples
Epoch 1/3
100188/100188 [==============================]
- 21s 212us/step - loss: 0.0105 - val_loss: 0.0186
Epoch 2/3
100188/100188 [==============================]
- 20s 203us/step - loss: 0.0092 - val_loss: 0.0188
Epoch 3/3
100188/100188 [==============================]
- 21s 212us/step - loss: 0.0078 - val_loss: 0.0192
Done training!

Congratulations: you’ve successfully trained a TensorFlow model in a Jupyter note‐
book. But we’re not quite done yet—to make use of our model later, we should first 
export it. You can do this by setting up the export destination using MinIO Client, as
shown in Example 7-8.

112 | Chapter 7: Training a Machine Learning Model



Example 7-8. Setting export destination

directorystream = minioClient.get_object('data', 'recommender/directory.txt')
directory = ""
for d in directorystream.stream(32*1024):
    directory += d.decode('utf-8')
arg_version = "1"
export_path = 's3://models/' + directory + '/' + arg_version + '/'
print ('Exporting trained model to', export_path)

Once you have set up your export destination, you can then export the model, as in
Example 7-9.

Example 7-9. Exporting the model

# Inputs/outputs
tensor_info_users = tf.saved_model.utils.build_tensor_info(model.input[0])
tensor_info_products = tf.saved_model.utils.build_tensor_info(model.input[1])
tensor_info_pred = tf.saved_model.utils.build_tensor_info(model.output)

print ("tensor_info_users", tensor_info_users.name)
print ("tensor_info_products", tensor_info_products.name)
print ("tensor_info_pred", tensor_info_pred.name)

# Signature
prediction_signature = (tf.saved_model.signature_def_utils.build_signature_def(
        inputs={"users": tensor_info_users, "products": tensor_info_products},
        outputs={"predictions": tensor_info_pred},
        method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
# Export
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
      sess, [tf.saved_model.tag_constants.SERVING],
      signature_def_map={
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
          prediction_signature,
      },
      legacy_init_op=legacy_init_op)
builder.save()

Now we’re ready to use this model to serve predictions, as we’ll learn in Chapter 8.
But before that, let’s look at how to deploy this training job using Kubeflow.

Deploying a TensorFlow Training Job
So far we have done some TensorFlow training using Jupyter notebooks, which is a
great way to prototype and experiment. But soon we may discover that our prototype
is insufficient—perhaps we need to refine the model using more data, or perhaps we
need to train the model using specialized hardware. Sometimes we may even need to
continuously run the training job because our model is constantly evolving. Perhaps

Deploying a TensorFlow Training Job | 113



most importantly, our model has to be deployable to production, where it can serve
actual customer requests.

In order to handle these requirements, our training code must be easily packageable
and deployable to various different environments. One of the ways to achieve this is
to use TFJob—a Kubernetes custom resource (implemented using Kubernetes opera‐
tor tf-operator) that you can use to run TensorFlow training jobs on Kubernetes.

Why Should You Use TFJobs?
There are many challenges to deploying our training code to a production environ‐
ment. To name a few:

• What kind of infrastructure do we have to work with? Are we running in the
cloud or on-premises?

• Who has access to the training job and its data? Can we share a training job with
our teammates?

• How do we scale up the training job? How do we clean up the resources when we
are done?

• What do we do with the model after we’ve trained it? How do we export the
model so we can make use of it?

Typically, these problems require the user to implement a large amount of “glue code”
to work with the underlying infrastructure. Such code is likely to differ greatly
depending on the environment and the technical constraints, which means that
developing this technical stack could be much more time-consuming than the model
itself.

These are the problems that Kubeflow aims to solve. Since Kubeflow’s architecture is
entirely based on Kubernetes, all of Kubernetes’ scalable and portable features are
available to Kubeflow. Applications in Kubernetes are developed as “cloud native”
microservices. In the case of machine learning training, if you want to scale up a
training job, simply increase the number of desired replicas and the underlying sys‐
tem will take care of that for you. The same Kubeflow job that runs on Amazon Cloud
can easily be exported to a different cluster running Google Cloud or even to
on-premises.

Kubeflow makes it easy to configure TensorFlow jobs on a Kubernetes cluster by
orchestrating them as custom resources. Custom resources are extensions to the core
Kubernetes API that store collections of API objects. By using custom resources,
developers only need to provide a “desired state” of their applications, and the under‐
lying controllers will take care of the rest.

114 | Chapter 7: Training a Machine Learning Model



We’ll start by deploying our recommender as a single-container TFJob. Since we
already have a Python notebook, exporting it as a Python file is fairly simple—just
select “File,” then “Download as” and select “Python.” This should save your notebook
as a ready-to-execute Python file.

The next step is to package the training code in a container. This can be done with the
Dockerfile, as seen in Example 7-10.

Example 7-10. TFJob Dockerfile

FROM  tensorflow/tensorflow:1.15.2-py3
RUN pip3 install --upgrade pip
RUN pip3 install pandas --upgrade
RUN pip3 install keras --upgrade
RUN pip3 install minio --upgrade
RUN mkdir -p /opt/kubeflow
COPY Recommender_Kubeflow.py /opt/kubeflow/
ENTRYPOINT ["python3", "/opt/kubeflow/Recommender_Kubeflow.py"]

Next, we need to build this container along with its required libraries, and push the
container image to a repository:

docker build -t kubeflow/recommenderjob:1.0 .
docker push kubeflow/recommenderjob:1.0

Once that’s done, we are ready to create the specification for a TFJob, as in
Example 7-11.

Example 7-11. Single-container TFJob example

apiVersion: "kubeflow.org/v1"   

kind: "TFJob"                   
metadata:

  name: "recommenderjob"        
spec:

  tfReplicaSpecs:               
    Worker:
      replicas: 1
    restartPolicy: Never
    template:
      spec:
        containers:
        - name: tensorflow image: kubeflow/recommenderjob:1.0

The apiVersion field specifies which version of the TFJob custom resource you
are using. The corresponding version (in this case v1) needs to be installed in
your Kubeflow cluster.

The kind field identifies the type of the custom resource—in this case a TFJob.

Deploying a TensorFlow Training Job | 115



The metadata field is common to all Kubernetes objects and is used to uniquely
identify the object in the cluster—you can add fields like name, namespace, and
labels here.

The most important part of the schema is tfReplicaSpecs. This is the actual
description of your TensorFlow training cluster and its desired state. For this
example, we just have a single worker replica. In the following section, we’ll
examine this field further.

There are a few other optional configurations for your TFJob, including:

activeDeadlineSeconds

How long to keep this job active before the system can terminate it. If this is set,
the system will kill the job after the deadline expires.

backoffLimit

How many times to keep retrying this job before marking it as failed. For exam‐
ple, setting this to 3 means that if a job fails 3 times, the system will stop retrying.

cleanPodPolicy

Configures whether or not to clean up the Kubernetes pods after the job com‐
pletes. Setting this policy can be useful to keep pods for debugging purposes. This
can be set to All (all pods are cleaned up), Running (only running pods are
cleaned up), or None (no pods are cleaned up).

Now deploy the TFJob to your cluster, as in Example 7-12.

Example 7-12. Deploying TFJob

kubectl apply -f recommenderjob.yaml

You can monitor the status of the TFJob with the command in Example 7-13.

Example 7-13. Viewing the state of TFJob

kubectl describe tfjob recommenderjob

This should display something like Example 7-14.

116 | Chapter 7: Training a Machine Learning Model



Example 7-14. TF Recommender job description

Status:
  Completion Time:  2019-05-18T00:58:27Z
  Conditions:
    Last Transition Time:  2019-05-18T02:34:24Z
    Last Update Time:      2019-05-18T02:34:24Z
    Message:               TFJob recommenderjob is created.
    Reason:                TFJobCreated
    Status:                True
    Type:                  Created
    Last Transition Time:  2019-05-18T02:38:28Z
    Last Update Time:      2019-05-18T02:38:28Z
    Message:               TFJob recommenderjob is running.
    Reason:                TFJobRunning
    Status:                False
    Type:                  Running
    Last Transition Time:  2019-05-18T02:38:29Z
    Last Update Time:      2019-05-18T02:38:29Z
    Message:               TFJob recommenderjob successfully completed.
    Reason:                TFJobSucceeded
    Status:                True
    Type:                  Succeeded
  Replica Statuses:
    Worker:
      Succeeded:  1

Note that the status field contains a list of job conditions, which represent when the
job transitioned into each state. This is useful for debugging—if the job failed, the
reason for the job’s failure would appear here.

So far we have trained a fairly simple and straightforward model with a modest num‐
ber of training samples. In real life, learning more complex models may require sig‐
nificantly more training samples or model parameters. Such models can be too large
and computationally complex to be handled by one machine. This is where dis‐
tributed training comes in.

Distributed Training
By now we’ve deployed a single-worker TensorFlow job with Kubeflow. It is called
“single-worker” because everything from hosting the data to executing the actual
training steps is done on a single machine. However, as models become more com‐
plex, a single machine is often insufficient—we may need to distribute the model or
the training samples over several networked machines. TensorFlow supports a dis‐
tributed training mode, in which training is performed in parallel over several worker
nodes.

Distributed training typically comes in two flavors: data parallelism and model paral‐
lelism. In data parallelism, the training data is partitioned into chunks, and the same
training code runs on each chunk. At the end of each training step, each worker com‐
municates its updates to all other nodes. Model parallelism is the opposite—the same

Distributed Training | 117



training data is used in all workers, but the model itself is partitioned. At the end of
each step, each worker is responsible for synchronizing the shared parts of the model.

Distribution Strategies in TensorFlow
TensorFlow supports a number of different strategies for distributed training. These
include:

Mirrored strategy
This is a synchronous strategy, which means the training steps and gradients are
synced across replicas. Copies of all variables in the model are replicated on each
device across all workers.

TPU strategy
Similar to mirrored strategy, but allows you to train on Google’s TPUs.

Multiworker mirrored strategy
Also similar to mirrored strategy, but uses CollectiveOps multiworker all-reduce
to keep variables in sync.

Central storage strategy
Instead of replicating variables across all workers, this strategy stores variables on
a central CPU while replicating computational work across workers.

Parameter server strategy
Nodes are classified as either workers or parameter servers. Each model parame‐
ter is stored on one parameter server, while computational work is replicated
among workers.

The TFJob interface supports multiworker distributed training. Conceptually, a
TFJob is a logical grouping of all resources related to a training job, including pods
and services. In Kubeflow, each replicated worker or parameter server is scheduled on
its own single-container pod. In order for the replicas to synchronize with each other,
each replica needs to expose itself through an endpoint, which is a Kubernetes inter‐
nal service. Grouping these resources logically under a parent resource (which is the
TFJob) allows these resources to be co-scheduled and garbage collected together.

In this section we’ll deploy a simple MNIST example with distributed training. The
TensorFlow training code is provided for you at this GitHub repo.

Let’s take a look at the YAML file for the distributed TensorFlow job in Example 7-15.

118 | Chapter 7: Training a Machine Learning Model



Example 7-15. Distributed TFJob example

apiVersion: "kubeflow.org/v1"
kind: "TFJob"
metadata:
  name: "mnist"
  namespace: kubeflow
spec:
  cleanPodPolicy: None
  tfReplicaSpecs:
    Worker:
      replicas: 2
      restartPolicy: Never
      template:
        spec:
          containers:
            - name: tensorflow
              image: gcr.io/kubeflow-ci/tf-mnist-with-summaries:1.0
              command:
                - "python"
                - "/var/tf_mnist/mnist_with_summaries.py"
                - "--log_dir=/train/logs"
                - "--learning_rate=0.01"
                - "--batch_size=150"
              volumeMounts:
                - mountPath: "/train"
                  name: "training"
          volumes:
            - name: "training"
              persistentVolumeClaim:
                claimName: "tfevent-volume"

Note that the tfReplicaSpecs field now contains a few different replica types. In a
typical TensorFlow training cluster, there are a few possible possibilities:

Chief
Responsible for orchestrating computational tasks, emitting events, and check‐
pointing the model

Parameter servers
Provide a distributed data store for the model parameters

Worker
This is where the computations and training actually happen. When a chief node
is not explicitly defined (as in the preceding example), one of the workers acts as
the chief node.

Evaluator
The evaluators can be used to compute evaluation metrics as the model is
trained.

Distributed Training | 119



Note also that a replica spec contains a number of properties that describe its desired
state:

replicas

How many replicas should be spawned for this replica type

template

A PodTemplateSpec that describes the pod to create for each replica

restartPolicy

Determines whether pods will be restarted when they exit. The allowed values are
as follows:

Always

Means the pod will always be restarted. This policy is good for parameter
servers since they never exit and should always be restarted in the event of
failure.

OnFailure

Means the pod will be restarted if the pod exits due to failure. A nonzero exit
code indicates a failure. An exit code of 0 indicates success and the pod will
not be restarted. This policy is good for the chief and workers.

ExitCode

Means the restart behavior is dependent on the exit code of the TensorFlow
container as follows:

• 0 indicates the process completed successfully and will not be restarted.
• 1–127 indicates a permanent error and that the container will not be

restarted.
• 128–255 indicates a retryable error and the container will be restarted.

This policy is good for the chief and workers.

Never

This means pods that terminate will never be restarted. This policy should rarely
be used, because Kubernetes will terminate pods for any number of reasons (e.g.,
node becomes unhealthy) and this will prevent the job from recovering.

Once you have the TFJob spec written, deploy it to your Kubeflow cluster:
kubectl apply -f dist-mnist.yaml

Monitoring the job status is similar to a single-container job:
kubectl describe tfjob mnist

This should output something like Example 7-16.

120 | Chapter 7: Training a Machine Learning Model



Example 7-16. TFJob execution result

Status:
  Completion Time:  2019-05-12T00:58:27Z
  Conditions:
    Last Transition Time:  2019-05-12T00:57:31Z
    Last Update Time:      2019-05-12T00:57:31Z
    Message:               TFJob dist-mnist-example is created.
    Reason:                TFJobCreated
    Status:                True
    Type:                  Created
    Last Transition Time:  2019-05-12T00:58:21Z
    Last Update Time:      2019-05-12T00:58:21Z
    Message:               TFJob dist-mnist-example is running.
    Reason:                TFJobRunning
    Status:                False
    Type:                  Running
    Last Transition Time:  2019-05-12T00:58:27Z
    Last Update Time:      2019-05-12T00:58:27Z
    Message:               TFJob dist-mnist-example successfully completed.
    Reason:                TFJobSucceeded
    Status:                True
    Type:                  Succeeded
  Replica Statuses:
    Worker:
      Succeeded:  2

Notice that the Replica Statuses field shows a breakdown of status by each replica
type. The TFJob is successfully completed when all of its workers complete. If any
worker has failed, then the TFJob’s status would be failed as well.

Using GPUs
GPUs are processors that are composed of many smaller and specialized cores. Origi‐
nally designed to render graphics, GPUs are increasingly used for massively parallel
computational tasks, such as machine learning. Unlike CPUs, GPUs are ideal for dis‐
tributing large workloads over its many cores and executing them concurrently.

To use GPUs for training, your Kubeflow cluster needs to be preconfigured to enable
GPUs. Refer to your cloud provider’s documentation on enabling GPU usage. After
enabling GPUs on the cluster, you can enable GPUs on the specific replica type in the
training spec by modifying the command-line arguments, as in Example 7-17.

Example 7-17. TFJob with GPU example

    Worker:
      replicas: 4
      restartPolicy: Never
      template:
        spec:
          containers:
            - name: tensorflow
              image: kubeflow/tf-dist-mnist-test:1.0

Distributed Training | 121



3 The languages currently supported by Jupyter notebooks include Python, R, Julia, and Scala.

              args:
            - python
            - /var/tf_dist_mnist/dist_mnist.py
            - --num_gpus=1

Using Other Frameworks for Distributed Training
Kubeflow is designed to be a multiframework machine learning platform. That means
the schema for distributed training can easily be extended to other frameworks. As of
the time of this writing, there are a number of operators written to provide first-class
support for other frameworks, including PyTorch and Caffe2.

Example 7-18 shows what a PyTorch training job spec looks like.

Example 7-18. Pytorch Distributed Training Example

apiVersion: "kubeflow.org/v1"
kind: "PyTorchJob"
metadata:
  name: "pytorch-dist"
spec:
  pytorchReplicaSpecs:
    Master:
      replicas: 1
      restartPolicy: OnFailure
      template:
        spec:
          containers:
            - name: pytorch
              image: gcr.io/kubeflow-ci/pytorch-dist-sendrecv-test:1.0
    Worker:
      replicas: 3
      restartPolicy: OnFailure
      template:
        spec:
          containers:
            - name: pytorch
              image: gcr.io/kubeflow-ci/pytorch-dist-sendrecv-test:1.0

As you can see, the format is very similar to that of TFJobs. The only difference is in
the replica types.

Training a Model Using Scikit-Learn
Thus far we have seen how to use the built-in operators in Kubeflow to train machine
learning models. However, there are many frameworks and libraries for which there
are no Kubeflow operators. In these cases you can still use your favorite frameworks
in Jupyter notebooks3 or in custom Docker images.

122 | Chapter 7: Training a Machine Learning Model



Scikit-learn is an open source Python library for machine learning built on top of
NumPy for high-performance linear algebra and array operations. The project started
as scikits.learn, a Google Summer of Code project by David Cournapeau. Its name
stems from the notion that it is a “SciKit” (SciPy Toolkit), a separately developed and
distributed third-party extension to SciPy. Scikit-learn is one of the most popular
machine learning libraries on GitHub, and one of the best-maintained. Training
models with Scikit-learn is supported in Kubeflow as generic Python code, with no
specific operators for distributed training.

The library supports state-of-the-art algorithms such as KNN, XGBoost, Random
Forest, and SVM. Scikit-learn is widely used in Kaggle competitions and by promi‐
nent tech companies. Scikit-learn helps in preprocessing, dimensionality reduction
(parameter selection), classification, regression, clustering, and model selection.

In this section, we will explore how to train models in Kubeflow by using Scikit-learn
on the 1994 US Census dataset. This example is based on this implementation of
Anchor explanations for income prediction, and leverages an extract from the 1994
census dataset. The dataset includes several categorical variables and continuous fea‐
tures, including age, education, marital status, occupation, salary, relationship, race,
sex, native country, and capital gains and losses. We will use a Random Forest algo‐
rithm—an ensemble learning method for classification, regression, and other tasks
that operates by constructing a multitude of decision trees at training time and out‐
putting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees.

You can download the notebook from this book’s GitHub repo.

Starting a New Notebook Session
Let’s start by creating a new notebook. Similar to TensorFlow training, you can do
this by navigating to the “Notebook Servers” panel in your Kubeflow dashboard, then
clicking “New Server” and following the instructions. For this example, we can use
the tensorFlow-1.15.2-notebook-cpu:1.0 image.

When working in Kubeflow, an easy way to take advantage of GPU
resources to accelerate your Scikit model is to switch to GPU type.

When the notebook server starts up, click the “Upload” button in the top right corner
and upload the IncomePrediction.ipynb file. Click the file to start a new session.

Training a Model Using Scikit-Learn | 123



4 See Chapter 5 for an in-depth discussion of feature preparation.

Data Preparation
The first few sections of the notebook involve importing libraries and reading the
data. Then we proceed to feature preparation.4 For feature transformation we are
using Scikit-learn pipelines. The pipeline makes it easier to feed the model with con‐
sistent data.

For our Random Forest training, we need to define ordinal (standardize data) and
categorical (one-hot encoding) features, as in Example 7-19.

Example 7-19. Feature preparation

ordinal_features = [x for x in range(len(feature_names))
                if x not in list(category_map.keys())]
ordinal_transformer = Pipeline(steps=[
    ('imputer',  SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())])

categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer',
    SimpleImputer(strategy='median')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))])

Many real-world datasets contain missing values, which are enco‐
ded by data-specific placeholders, such as blanks and NaNs. Such
datasets are typically incompatible with Scikit-learn estimators,
which assume that all values are numerical. There are multiple
strategies to deal with such missing data. One basic strategy would
be to discard entire rows and/or columns containing missing val‐
ues, which comes at the price of losing data. A better strategy is to
impute the missing values—to infer them from the known part of
the data. Simple imputer is a Scikit-learn class that allows you to
handle the missing data in the predictive model dataset by replac‐
ing the NaN values with specified predefined values.

Once features are defined, we can use a column transformer to combine them, as
shown in Example 7-20.

Example 7-20. Combining columns using column transformer

preprocessor = ColumnTransformer(transformers=[
    ('num', ordinal_transformer, ordinal_features),
    ('cat', categorical_transformer, categorical_features)])
preprocessor.fit(X_train)

124 | Chapter 7: Training a Machine Learning Model



Scikit-learn one-hot encoding is used to encode categorical features
as a one-hot numeric array. The encoder transforms an array of
integers or strings, replacing the values by categorical (discrete)
features. The features are encoded using a one-hot (aka, one-of-K
or dummy) encoding scheme. This creates a binary column for
each category and returns a sparse matrix or dense array (depend‐
ing on the sparse parameter).

The transformer itself looks like Example 7-21.

Example 7-21. Data transformer

ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
  transformer_weights=None,
  transformers=[('num',
    Pipeline(memory=None,
      steps=[
        ('imputer', SimpleImputer(add_indicator=False,
          copy=True,
          fill_value=None,
          missing_values=nan,
          strategy='median',
          verbose=0)),
        ('scaler', StandardScaler(copy=True,
          with_mean=True,
          with_std=True))],
        verbose=False),
      [0, 8, 9, 10]),
    ('cat',
     Pipeline(memory=None,
       steps=[('imputer', SimpleImputer(add_indicator=False,
         copy=True,
         fill_value=None,
         missing_values=nan,
         strategy='median',
         verbose=0)),
       ('onehot', OneHotEncoder(categories='auto',
         drop=None,
         dtype=<class 'numpy.float64'>,
         handle_unknown='ignore',
         sparse=True))],
       verbose=False),
       [1, 2, 3, 4, 5, 6, 7, 11])],
    verbose=False)

As a result of this transformation, we have our data in the form of features ready for
training.

Training a Model Using Scikit-Learn | 125



Scikit-Learn Training
Once we have our features prepared we can proceed with the training. Here we will
use RandomForestClassifier, provided by the Scikit-learn library, as shown in
Example 7-22.

Example 7-22. Using RandomForestClassifier

np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(preprocessor.transform(X_train), Y_train)

The set and specific features of machine learning algorithm(s) is
one of the main drivers behind picking a specific framework for
machine learning implementation. Even the same algorithm imple‐
mentation in different frameworks provides slightly different fea‐
tures that might (or might not) be important for your specific
dataset.

Once prediction is done, we can evaluate training results, as shown in Example 7-23.

Example 7-23. Evaluating training results

predict_fn = lambda x: clf.predict(preprocessor.transform(x))
print('Train accuracy: ', accuracy_score(Y_train, predict_fn(X_train)))
print('Test accuracy: ', accuracy_score(Y_test, predict_fn(X_test)))

Which returns the results in Example 7-24.

Example 7-24. Training results

Train accuracy:  0.9655333333333334
Test accuracy:  0.855859375

At this point the model is created and can be directly used by exporting it (see the
next section). One of the most important attributes of a model is its explainability.
Although model explainability is mostly used in model serving, it is also important
for model creation, for two main reasons:

• If explainability is important for model serving during model creation, we often
need to validate that the model that was created is explainable.

• Many of the model explanation methods require additional calculations during
model creation.

126 | Chapter 7: Training a Machine Learning Model



5 Refer to this blog post by Rui Aguiar for more information on model explainability.

Based on this, we will show how to implement model explainability5 during model
creation.

Explaining the Model
For model explanation, we are using anchors, which are part of Seldon’s Alibi project.

The algorithm provides model-agnostic (black box) and human-interpretable explan‐
ations suitable for classification models applied to images, text, and tabular data. The
continuous features are discretized into quantiles (e.g., deciles), so they become more
interpretable. The features in a candidate anchor are kept constant (same category or
bin for discretized features) while we sample the other features from a training set, as
in Example 7-25.

Example 7-25. Defining the tabular anchor

explainer = AnchorTabular(
    predict_fn, feature_names, categorical_names=category_map, seed=1)
explainer.fit(X_train, disc_perc=[25, 50, 75])

This creates the tabular anchor (Example 7-26).

Example 7-26. Tabular anchor

AnchorTabular(meta={
    'name': 'AnchorTabular',
    'type': ['blackbox'],
    'explanations': ['local'],
    'params': {'seed': 1, 'disc_perc': [25, 50, 75]}
})

Now we can get an anchor for the prediction of the first observation in the test set.
An anchor is a sufficient condition—that is, when the anchor holds, the prediction
should be the same as the prediction for this instance in Example 7-27.

Example 7-27. Prediction calculation

idx = 0
class_names = adult.target_names
print('Prediction: ', class_names[explainer.predictor( \
                X_test[idx].reshape(1, -1))[0]])

Training a Model Using Scikit-Learn | 127



Which returns a prediction calculation result as shown in Example 7-28.

Example 7-28. Prediction calculation result

Prediction:  <=50K

We set the precision threshold to 0.95. This means that predictions on observations
where the anchor holds will be the same as the prediction on the explained instance
at least 95% of the time. Now we can get an explanation (Example 7-29) for this
prediction.

Example 7-29. Model explanation

explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('Coverage: %.2f' % explanation.coverage)

Which returns a model explanation result as shown in Example 7-30.

Example 7-30. Model explanation result

Anchor: Marital Status = Separated AND Sex = Female
Precision: 0.95
Coverage: 0.18

This tells us that the main factors for decision are marital status (Separated) and sex
(Female). Anchors might not be found for all points. Let’s try getting an anchor for a
different observation in the test set—one for which the prediction is >50K, shown in
Example 7-31.

Example 7-31. Model explanation

idx = 6
class_names = adult.target_names
print('Prediction: ', class_names[explainer.predictor( \
                X_test[idx].reshape(1, -1))[0]])

explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation.anchor)))
print('Precision: %.2f' % explanation.precision)
print('Coverage: %.2f' % explanation.coverage)

Which returns a model explanation result as shown in Example 7-32.

128 | Chapter 7: Training a Machine Learning Model



Example 7-32. Model explanation result

Prediction:  >50K
Could not find a result satisfying the 0.95 precision constraint.
Now returning the best non-eligible result.
Anchor: Capital Loss > 0.00 AND Relationship = Husband AND
    Marital Status = Married AND Age > 37.00 AND
    Race = White AND Country = United-States AND Sex = Male
Precision: 0.71
Coverage: 0.05

Due to the imbalanced dataset (roughly 25:75 high:low earner proportion), during
the sampling stage feature ranges corresponding to low earners will be oversampled.
As a result, the anchor in this case is not found. This is a feature because it can point
out an imbalanced dataset, but it can also be fixed by producing balanced datasets to
enable anchors to be found for either class.

Exporting Model
In order to use the created model for serving, we need to export the model. This is
done using Scikit-learn functionality, as in Example 7-33.

Example 7-33. Exporting model

dump(clf, '/tmp/job/income.joblib')

This exports a model in Scikit-learn format, that can be used by, for example, Scikit-
learn server for inference.

Integration into Pipelines
Regardless of which Python-based machine learning library you want to use, if Kube‐
flow doesn’t have an operator for it, you can simply write your code as normal and
then containerize it. To take the notebook we built in this chapter and use it as a pipe‐
line stage, see “Using an Entire Notebook as a Data Preparation Pipeline Stage” on
page 89. Here we can use file_output to upload the resulting model to our artifact
tracking system, but you can also use the persistent volume mechanism.

Conclusion
In this chapter, we have taken a look at how to train machine learning models in
Kubeflow using two very different frameworks: TensorFlow and Scikit-learn.

We learned how to build a collaborative filtering recommendation system using
TensorFlow. We used Kubeflow to create a notebook session, where we’ve prototyped
a TensorFlow model with Keras APIs, and then used the TFJob APIs to deploy our

Conclusion | 129



training job to a Kubernetes cluster. Finally, we’ve looked at how to use TFJob for dis‐
tributed training.

We also learned how to train a generic Python model using Scikit-learn, a framework
that is not natively supported by Kubeflow. Chapter 9 looks at how to integrate non‐
supported non-Python machine learning systems, which is a bit more complicated.
While Kubeflow’s first-party training operators can simplify your work, it’s important
to remember you aren’t limited by this.

In Chapter 8 we will look at how to serve the model that we’ve trained in this chapter.

130 | Chapter 7: Training a Machine Learning Model



CHAPTER 8

Model Inference

We would like to acknowledge Clive Cox and Alejandro Saucedo
from Seldon for their great contributions to this chapter.

Most of the attention paid to machine learning has been devoted to algorithm devel‐
opment. However, models are not created for the sake of their creation, they are cre‐
ated to be put into production. Usually when people talk about taking a model “to
production,” they mean performing inference. As introduced in Chapter 1 and illus‐
trated in Figure 1-1, a complete inference solution seeks to provide serving, monitor‐
ing, and updating functionality.

Model serving
Puts a trained model behind a service that can handle prediction requests

Model monitoring
Monitors the model server for any irregularities in performance—as well as the
underlying model’s accuracy

Model updating
Fully manages the versioning of your models and simplifies the promotion and
rollback between versions

This chapter will explore each of these core components and define expectations for
their functionality. Given concrete expectations, we will establish a list of require‐
ments that your ideal inference solution will satisfy. Lastly, we will discuss Kubeflow-
supported inference offerings and how you can use them to satisfy your inference
requirements.

131



1 If you are interested in learning more about model embedding, we suggest reading Serving Machine Learning
Models by Boris Lublinsky (O’Reilly).

Model Serving
The first step of model inference is model serving, which is hosting your model
behind a service that you can interface with. Two fundamental approaches to model
serving are embedded, where the models are deployed directly into the application,
and model serving as a service (MaaS), where a separate service dedicated to model
serving can be used from any application in the enterprise. Table 8-1 provides a com‐
parison of these approaches.

Table 8-1. Comparing embedded with MaaS

Serving
types

Advantages Disadvantages

Embedded • Delivers maximum performance
• Features the simplest infrastructure
• No need to plan for aberrant user behavior

• Model has to be deployed in every
application using it

• Application updates are required
when the model type changes

• All deployment strategies, for
example blue-green, must be
explicitly implemented

MaaS • Simplifies integration with other technologies and organizational
processes

• Reuses model deployment across multiple stream-processing
applications

• Allows model serving on lower-power devices (e.g., phones)
incapable of running complex models

• Enables mini-batching for requests from multiple clients
• Makes it easier to provide built-in capabilities, including model

updates, explainability, drift detection, etc.
• Enables advanced model deployment strategies like ensembles

and multi-armed bandit, which require decoupling from
application

• Allows for separate scaling between application and model
server, or running them on different devices like CPU and GPU

• Additional network hops decrease
performance

• Tight temporal coupling to the model
server can impact overall service-level
agreement

Kubeflow only supports a MaaS approach. As a result, we will not be discussing
model embedding in this book.1

There are two main approaches for implementing MaaS: model as code, and model as
data. Model as code uses model code directly in a service’s implementation. Model as
data uses a generic implementation that is driven by a model in an intermediate
model format like PMML, PFA, ONNX, or TensorFlow’s native format. Both

132 | Chapter 8: Model Inference



approaches are used in different model server implementations in Kubeflow. When
determining which implementation to use, we recommended using model as data, as
it allows for the exchange of models between serving instances to be standardized,
thus providing portability across systems and the enablement of generic model serv‐
ing solutions.

Most common serving implementations, like TFServing, ONNX Runtime, Triton,
and TorchServe, use a model-as-data approach and leverage an intermediate model
format. Some of these implementations support only one framework, while others
support multiple. Unfortunately, each of these solutions uses different model formats
and exposes unique proprietary serving APIs. None of these interfaces meet every‐
one’s needs. The complexity and divergence of these API interfaces result in a differ‐
ing UX and an inability to share features effectively. Furthermore, there is increased
friction in swapping between model frameworks, as the interfaces behind these
implementations are different.

There are a few strong industry players attempting to unify the open source commu‐
nity of model servers and decrease the friction between toggling model frameworks.
Seldon is pioneering graph inferencing with Seldon Core; Bloomberg and IBM are
investigating serverless model serving using solutions like Knative; and Google is fur‐
ther hardening its serving implementation for TensorFlow models.

In “Model Inference in Kubeflow” on page 137, we will discuss the serving solutions
that Kubeflow offers and the work that has been done to unify these solutions into a
single interface.

Model Serving Requirements
Model serving requires you to understand and manage the developmental operations
(DevOps) and handle the analysis, experimentation, and governance of your models.
This scope is wide, complicated, and universal among data scientists. We will now
start scoping out the expectations you might want from a serving solution.

First, you want framework flexibility. Solutions like Kubeflow allow for your training
to be implementation-agnostic (i.e., TensorFlow versus PyTorch). If you write an
image classification inference service, it should not matter if the underlying model
was trained using PyTorch, Scikit-learn, or TensorFlow—the service interface should
be shared so that the user’s API remains consistent.

Second, you want the ability to leverage hardware optimizers that match the needs of
the algorithm. Sometimes fully fitted and tuned neural nets are quite deep, which
means that even in the evaluation phase, you would benefit from hardware optimiz‐
ers like GPUs or TPUs to infer the models.

Model Serving | 133



Third, your model server should seamlessly interact with other components in an
inference graph. An inference graph could comprise feature transformers, predictors,
explainers, and drift detectors—all of which we will cover later.

Fourth, you should also have options to scale your serving instance, both explicitly
and using autoscalers, regardless of the underlying hardware—i.e., cost per inference,
latency. This is particularly important and difficult because GPU autoscaling relies on
a combination of factors including: GPU/CPU utilization metrics, duty cycles, and
more, and knowing which metric to use for autoscaling is not obvious. Also, the scal‐
ing of each of the components in your inference graph should be done separately due
to differing algorithmic needs.

Fifth, you want a serving instance that exposes representational state transfer (REST)
requests or general-purpose remote procedure calls (gRPC). If you have streaming
inputs, you may want to support a streaming interface like Kafka.

Model Monitoring
Once you have a model served, you must monitor the model server in production.
When we are talking about monitoring of the model server, we are talking not only
about model serving insights but also about general monitoring used for any
Kubernetes-based applications, including memory, CPU, networking, etc. We will
explore model monitoring and model insight in more detail in “Monitoring Your
Models” on page 151.

Model Accuracy, Drift, and Explainability
In generating model serving insights, the most common ML attributes to monitor are 
model accuracy, model drift, and explainability. Model accuracy refers to the valida‐
tion accuracy of your training data. But as live data distributions begin to deviate
from those of the original training data, this tends to result in model drift. In other
words, model drift occurs when the feature distribution of the data sent to the model
begins to significantly differ from the data used to train the model, causing the model
to perform suboptimally. ML insight systems implement effective techniques for ana‐
lyzing and detecting changes—concept drift—that might happen to your input data,
and the detection of these drifts is critical for models running in production systems.

Another form of model insight that is increasingly gaining attention today is model
explainability, or the ability to explain why a certain result was produced. More pre‐
cisely, it answers:

134 | Chapter 8: Model Inference



2 Some references include: “Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift”,
“Detecting and Correcting for Label Shift with Black Box Predictors”, “A Kernel Two-Sample Test”, and
“Monitoring and Explainability of Models in Production”.

• What features in the data did the model think are most important?
• For any single prediction from a model, how did each feature in the data affect

that particular prediction?
• What interactions between features have the greatest effects on a model’s

predictions?

Beyond model insight, application monitoring traditionally relates to network
observability, or telemetry, the enablement of log aggregation, and service-mesh-
related metrics collection. These tools are useful in capturing data from a live serving
instance. This infrastructure exposes enough queryable information for troubleshoot‐
ing and alerting, should things go awry regarding reachability, utilization, or latency.

Model Monitoring Requirements
Monitoring model accuracy and model drift is hard. Luckily, this is a very active 
research space with a variety of open source solutions.2 Your inference solution
should enable you to plug in solutions that provide your desired functionality out of
the box. Now, we will see what you may wish to have from your model monitoring
component.

First, you want your inference service to provide ML insight out of the box and run in
a microservice-based architecture in order to simplify the experimentation of drift
detection and model explanation solutions.

Second, you want to enable the monitoring, logging, and tracing of your service. It
should also support solutions like Prometheus, Kibana, and Zipkin, respectively, but
then also be able to seamlessly support their alternatives.

Model Updating
If you wish to update your model and roll out a newer version or roll back to a previ‐
ous version, you will want to deploy and run this updated version. However, the rela‐
tionship between your current deployment and the new deployment can be defined
in a variety of ways. When your inference system introduces multiple versions of
your model serving instance, you can use either shadow or competing models:

Model Updating | 135



Shadow models
These are useful when considering the replacement of a model in production.
You can deploy the new model alongside the current one and send the same pro‐
duction traffic to gather data on how the shadow model performs before promot‐
ing it.

Competing models
These are a slightly more complex scenario, where you are trying multiple ver‐
sions of a model in production to find out which one is better through tools like
A/B testing.

Let’s discuss the three main deployment strategies:

Blue-green deployments
These reduce downtime and risk relating to version rollouts by having only one
live environment, which serves all production traffic.

Canary deployments
These enable rollout releases by allowing you to do percentage-based traffic
between versions.

Pinned deployments
These allow you to expose experimental traffic to a newer version, while keeping
production traffic against the current version.

The added complexity of canary and pinned over blue-green comes from the infra‐
structure and routing rules required to ensure that traffic is being redirected to the
right models. With this enablement, you can then gather data to make statistically sig‐
nificant decisions about when to start moving traffic. One statistical approach for
traffic movement is A/B testing. Another popular approach for evaluating multiple
competing models is multi-armed bandits, which requires you to define a score or
reward for each model and to promote models relative to their respective score.

Model Updating Requirements
Upgrading your model must be simple, so the deployment strategy that you use for
upgrading should be easy to configure and simple to change (i.e., from pinned to can‐
ary). Your inference solution should also offer more-complex graph inferencing in its
design. We will elaborate on what you need from your inference solution:

136 | Chapter 8: Model Inference



First, the toggle of deployment strategies—i.e., from pinned to canary—should be
trivial. You can enable traffic-level routing in an abstracted way by abstracting the
service plane, which will be defined in “Serverless and the Service Plane” on page 159.

Second, version changes should be tested and validated before promotion, and the
corresponding upgrade should be logged.

Third, the underlying stack should enable you to configure the more complex
deployment strategies common to graph inferencing literature.

Summary of Inference Requirements
With the requirements of model serving, monitoring, and updating all satisfied, you
now have an inference solution that completes your model development life cycle
(MDLC) story. This enables you to bring a model all the way from lab to production,
and even handle the updating of this model should you want to tune or modify its
construction. Now we will discuss the inference solutions that Kubeflow offers.

Some ML practitioners believe that continuous learning (CL) is
fundamental in their production ML systems. CL is the ability of a
model to learn continually from streaming data. In essence, the
model will autonomously learn and adapt in production as new
data comes in. Some even call this AutoML. With a complete
MDLC solution that enables pipelines and canary deployments,
you can design such a system using the tools available in Kubeflow.

Model Inference in Kubeflow
Model serving, monitoring, and updating within inference can be quite tricky
because you need a solution that manages all of these expectations in a way that pro‐
vides abstraction for first-time users and customizability for power users.

Kubeflow provides many options for model inference solutions. In this section, we
will describe some of them, including TensorFlow Serving, Seldon Core, and KFServ‐
ing. Table 8-2 presents a quick comparison of these solutions.

Summary of Inference Requirements | 137



Table 8-2. Comparing different model inference approaches

Solution Approach
TensorFlow Serving • Single model type (TensorFlow) support

• Some support for monitoring metrics (Prometheus)
• With version 2.3, support for canarying via model version labels
• Simplest infrastructure dependencies

Seldon Core • Optimized Docker containers for popular libraries like TensorFlow, H2O, XGBoost, MXNet, etc.
• Language wrappers that convert a Python file or a Java JAR into a fully fledged microservice
• Support for inference pipelines that can consist of models, transformers, combiners and routers
• Support for monitoring metrics and auditable request logs
• Support for advanced deployment techniques—canary, blue-green, etc.
• Support for advanced ML insights: explainers, outlier detectors, and adversarial attack detectors
• More complex infrastructure dependencies

KFServing • Adding serverless (Knative) and a standardized inference experience to Seldon Core, while providing
extensibility for other model servers

• Most complex infrastructure dependencies

TensorFlow Serving
One of the most popular serving implementations is TensorFlow Serving (TFServ‐
ing), a model-serving implementation based on the TensorFlow export format.
TFServing implements a flexible, high-performance serving system for ML models,
designed for production environments. The TFServing architecture is shown in
Figure 8-1.

Figure 8-1. TFServing architecture

TFServing uses exported TensorFlow models as inputs and supports running predic‐
tions on them using HTTP or gRPC. TFServing can be configured to use either:

138 | Chapter 8: Model Inference



3 Refer to the TensorFlow documentation for details on using TFServing locally.
4 Refer to the TensorFlow documentation for details on using TFServing on Kubernetes.

• A single (latest) version of the model
• Multiple, specific versions of the model

TensorFlow can be used both locally3 and in Kubernetes.4 A typical TFServing imple‐
mentation within Kubeflow includes the following components:

• A Kubernetes deployment running the required amount of replicas
• A Kubernetes service providing access to the deployment
• An Istio virtual service that exposes the service through the Istio ingress gateway
• An Istio DestinationRule that defines policies for traffic routed to the service

(These rules can specify configurations for load balancing, connection pool size,
and outlier detection settings so that you can detect and evict unhealthy hosts
from the load balancing pool.)

We will walk through an example of how these components are implemented by
extending our recommender example. To simplify your initial inference service, your
example TFServing instance will be scoped to a deployment and a service that enables
HTTP access. The Helm chart for this example can be found in the GitHub repo for
this book.

The chart defines a Kubernetes deployment and service. The deployment uses the
“standard” TFServing Docker image and, in its configuration spec, points to a serial‐
ized model at an S3 source location. This S3 bucket is managed by a local MinIO
instance. The service exposes this deployment inside the Kubernetes cluster.

The chart can be deployed using the following command (assuming you are running
Helm 3):

helm install <chart_location>

Now that you have the chart deployed, you need a way to interface with your infer‐
ence solution. One method is to port forward your service, so that the traffic can be
redirected to your localhost for testing. You can port-forward your service with
Example 8-1.

Example 8-1. Port-forwarding TFServing services

kubectl port-forward service/recommendermodelserver 8501:8501

TensorFlow Serving | 139



The resulting traffic will be rerouted to localhost:8051.

You are now ready to interact with your TFServing inference solution. To start, you
should validate the deployment by requesting model deployment information from
your service:

curl http://localhost:8501/v1/models/recommender/versions/1

The expected output is shown in Example 8-2.

Example 8-2. TFServing Recommender model version status

{
 "model_version_status": [
  {
   "version": "1",
   "state": "AVAILABLE",
   "status": {
    "error_code": "OK",
    "error_message": ""
   }
  }
 ]
}

You can also get the model’s metadata, including its signature definition, by issuing
the following curl command:

curl http://localhost:8501/v1/models/recommender/versions/1/metadata

Now that your model is available and has the correct signature definition, you can
predict against the service with the command seen in Example 8-3.

Example 8-3. Sending a request to your TFServing Recommender service

curl -X POST http://localhost:8501/v1/models/recommender/versions/1:predict\
-d '{"signature_name":"serving_default","inputs":\
{"products": [[1],[2]],"users" : [[25], [3]]}}'

The result from executing Example 8-3 is shown in Example 8-4.

Example 8-4. Output from your TFServing Recommender service

{
    "outputs": {
        "model-version": [
            "1"
        ],
        "recommendations": [
            [
                0.140973762
            ],
            [

140 | Chapter 8: Model Inference



5 If you are using Istio as a service mesh, follow these instructions to add a virtual service.
6 You can, of course, scale it manually by changing the amount of deployed instances.

                0.0441606939
            ]
        ]
    }
}

Your TensorFlow model is now behind a live inference solution. TFServing makes it
easy to deploy new TensorFlow algorithms and experiments, while keeping the same
server architecture and APIs. But the journey does not end there. For one, these
deployment instructions create a service but do not enable access from outside of the
cluster.5 But we will now take a further look into all the capabilities of this particular
solution against your inference requirements.

Review
If you are looking to deploy your TensorFlow model with the lowest infrastructure
requirement, TFServing is your solution. However, this has limitations when you
consider your inference requirements.

Model serving
Because TFServing only has production-level support for TensorFlow, it does not
have the desired flexibility you would expect from a framework-agnostic inference
service. It does, however, support REST, gRPC, GPU acceleration, mini-batching, and
“lite” versions for serving on edge devices. Regardless of the underlying hardware,
this support does not extend to streaming inputs or to built-in auto scaling.6 Further‐
more, the ability to extend the inference graph—beyond a Fairness Indicator—to
include more advanced ML insights isn’t supported in a first-class way. Despite pro‐
viding basic serving and model analysis features for TensorFlow models, this infer‐
ence solution does not satisfy your more advanced serving requirements.

Model monitoring
TFServing supports traditional monitoring via its integration with Prometheus. This
exposes both system information—such as CPU, memory, and networking—and
TFServing-specific metrics; unfortunately, there is very little documentation (see the
best source, on the TensorFlow site). Also, there is no first-class integration with data
visualization tools like Kibana or distributed tracing libraries like Jaeger. As such,
TFServing does not provide the managed network observability capabilities you
desire.

TensorFlow Serving | 141



7 See TFServing’s deployment strategy configuration for more information.

When it comes to advanced model serving insights, including model drift and
explainability, some of them are available in TensorFlow 2.0. Furthermore, the vendor
lock-in to a proprietary serving solution complicates the plugability of model insight
components. Since the deployment strategy of TFServing uses Kubeflow’s infrastruc‐
ture stack, it leverages a microservice approach. This allows TFServing deployments
to be easily coupled with auxiliary ML components.

Model updating
TFServing is quite advanced in that it enables canary, pinned, and even rollback 
deployment strategies.7 However, the strategies are limited to the manual labeling of
existing model versions and do not include support for the introduction of in-flight
model versions. So version promotion does not have a safe-rollout guarantee. Lastly,
the strategies are embedded in the server and aren’t extensible for other deployment
strategies that might exist outside of TFServing.

Summary
TFServing provides extremely performant and sophisticated out-of-the-box integra‐
tion for TensorFlow models, but it falls short on enabling more advanced features like
framework extensibility, advanced telemetry, and plugable deployment strategies.
Seeing these requirements unsatisfied, we will now look at how Seldon Core attempts
to fill these gaps.

Seldon Core
Instead of just serving up single models behind an endpoint, Seldon Core enables
data scientists to compose complex runtime inference graphs—by converting their
machine learning code or artifacts into microservices. An inference graph, as visual‐
ized in Figure 8-2, can be composed of:

Models
Runtime inference executable for one or more ML models

Routers
Route requests to subgraphs, i.e., enabling A/B tests or multi-armed bandits

Combiners
Combine the responses from subgraphs, i.e., model ensemble

Transformers
Transform requests or responses, i.e., transform feature requests

142 | Chapter 8: Model Inference



Figure 8-2. Seldon inference graph example

To understand how Seldon achieves this, we will explore its core components and fea‐
ture set:

Prepackaged model servers
Optimized Docker containers for popular libraries such as TensorFlow, XGBoost,
H2O, etc., which can load and serve model artifacts/binaries

Language wrappers
Tools to enable more custom machine learning models to be wrapped using a set
of CLIs, which allow data scientists to convert a Python file or a Java JAR into a
fully fledged microservice

Standardized API
Out-of-the-box APIs that can be REST or gRPC

Out of the box observability
Monitoring metrics and auditable request logs

Advanced machine learning insights
Complex ML concepts such as explainers, outlier detectors, and adversarial
attack detectors abstracted into infrastructural components that can be extended
when desired

Using all of these components, we walk through how to design an inference graph
using Seldon.

Designing a Seldon Inference Graph
First, you will need to decide what components you want your inference graph to
consist of. Will it be just a model server, or will you add a set of transformers,
explainers, or outlier detectors to the model server? Luckily, it’s really easy to add or
remove components as you see fit, so we will start with just a simple model server.

Seldon Core | 143



8 Refer to the Seldon documentation for integration with Prometheus, ELK, and Jaeger.

Second, you need to containerize your processing steps. You can build each step of
your inference graph with model as data or model as code. For model as data, you
could use a prepackaged model server to load your model artifacts/binaries and avoid
building a Docker container every time your model changes. For model as code, you
would build your own prepackaged model server based on a custom implementation.
Your implementation is enabled via a language wrapper that would containerize your
code by exposing a high-level interface to your model’s logic. This can be used for
more complex cases, even use cases that may require custom OS-specific, or even
external-system dependencies.

Next, you need to test your implementation. You can run your implementation
locally, leveraging Seldon tools to verify that it works correctly. Local development is
enabled by the underlying portability of Kubernetes and by Seldon’s compatibility
with Kubeflow’s infrastructure stack.

Then, you can enable Seldon Core extensions. Some extensions include: Jaeger trac‐
ing integration, ELK request logging integration, Seldon Core analytics integration, or
Istio/Ambassador ingress integration, to name a few.8

After enabling extensions, you can promote your local graph deployment to be hos‐
ted against a live Kubernetes cluster.

Lastly, you can hook up your inference graph into a continuous integration/continu‐
ous delivery (CI/CD) pipeline. Seldon components allow you to integrate seamlessly
into CI/CD workflows, which enables you to use your preferred CI tool to connect
your model sources into Seldon Core.

Now that you have scoped out a rather robust inference graph, we will walk through
some examples after getting set up with Seldon on your Kubeflow cluster.

Setting up Seldon Core
Seldon Core 1.0 comes prepackaged with Kubeflow, so it should already be available
to you. The Seldon Core installation will create a Kubernetes operator which will
watch for SeldonDeployment resources that describe your inference graph. However,
you can install a custom version of Seldon Core, as per the installation instructions,
with Example 8-5.

144 | Chapter 8: Model Inference



9 Currently supported prepackaged servers include MLflow server, SKLearn server, TensorFlow serving, and
XGBoost server.

10 Currently supported is a language server for Python. Incubating are Java, R, NodeJS, and Go.

Example 8-5. Helm install for a custom Seldon Core version

helm install seldon-core-operator \
    --repo https://storage.googleapis.com/seldon-charts  \
    --namespace default \
    --set istio.gateway=istio-system/seldon-gateway \
    --set istio.enabled=true

You must ensure that the namespace where your models will be served has an Istio
gateway and an InferenceServing namespace label. An example label application
would be:

kubectl label namespace kubeflow serving.kubeflow.org/inferenceservice=enabled

An example Istio gateway is shown in Example 8-6.

Example 8-6. Seldon Core Istio Gateway

kind: Gateway
metadata:
  name: seldon-gateway
  namespace: istio-system
spec:
  selector:
    istio: ingressgateway
  servers:
  - hosts:
    - '*'
    port:
      name: http
      number: 80
      protocol: HTTP

You should save Example 8-6 to a file and apply it using kubectl.

Packaging your model
As mentioned before, to run a model with Seldon Core you can either package it
using a prepackaged model server9 or a language wrapper.10

Creating a SeldonDeployment
After packaging your model you need to define an inference graph that connects a set
of model components into a single inference system. Each of the model components
can be one of the two options outlined in “Packaging your model” on page 145.

Seldon Core | 145



11 Because Seldon implements the computational structure as a tree, the combiner executes in reverse order to
combine output from all children.

Some example graphs are shown in Figure 8-3.

Figure 8-3. Seldon graph examples

The following list expands on the example inference graphs (a) to (e), as shown in
Figure 8-3:

• (a) A single model
• (b) Two models in sequence. The output of the first will be fed into the input of

the second.
• (c) A model with input and output transformers: the input transformer will be

called, then the model and the response will be transformed by the output trans‐
former

• (d) A router that will choose whether to send to model A or B
• (e) A combiner that takes the response from model A and B and combines into a

single response11

In addition, SeldonDeployment can specify methods for each component. When
your SeldonDeployment is deployed, Seldon Core adds a service orchestrator to man‐
age the request and response flow through your graph.

An example SeldonDeployment, for inference graph (a) in Figure 8-3, appears in
Example 8-7 as an example of what a prepackaged model server looks like.

146 | Chapter 8: Model Inference



Example 8-7. Simple Seldon Core prepackaged model server

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
 name: seldon-model
spec:
 name: test-deployment
 predictors:
 - componentSpecs:
   graph:
     name: classifier
     type: SKLEARN_SERVER
     modelUri: gs://seldon-models/sklearn/income/model
     children: []
   name: example
   replicas: 1

In the example you see that the SeldonDeployment has a list of predictors, each of
which describes an inference graph. Each predictor has some core fields:

componentSpecs
A list of Kubernetes PodSpecs, each of which will be used for a Kubernetes
deployment.

graph
A representation of the inference graph containing the name of each component,
its type, and the protocol it respects. The name must match one container name
from the componentSpecs section, unless it is a prepackaged model server (see
subsequent examples).

Name
The name of the predictor.

Replicas
The number of replicas to create for each deployment in the predictor.

Type
The detail on whether it is a prepackaged model server or a custom language
wrapper model.

modelUri
A URL where the model binary or weight are stored, which would be relevant for
the respective prepackaged model server.

Another example for SeldonDeployment for (a) is shown in Example 8-8, using in
this instance a custom language wrapper model.

Seldon Core | 147



Example 8-8. Simple Seldon Core custom language wrapper

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
 name: seldon-model
spec:
 name: test-deployment
 predictors:
 - componentSpecs:
   - spec:
       containers:
       - image: seldonio/mock_classifier_rest:1.3
         name: classifier
   graph:
     children: []
     endpoint:
       type: REST
     name: classifier
     type: MODEL
   name: example
   replicas: 1

In this example you have a small set of new sections:

Containers
This is your Kubernetes container definition, where you are able to provide over‐
rides to the details of your container, together with your Docker image and tag.

Endpoint
In this case you can specify if the endpoint of your model will be REST or gRPC.

The definition of your inference graph is now complete. We will now discuss how to
test your components individually or in unison on the cluster.

Testing Your Model
In order to test your components, you must interface with each using some request
input. You can send requests directly using curl, grpcurl, or a similar utility, as well
as by using the Python SeldonClient SDK.

There are several options for testing your model before deploying it.

Running your model directly with the Python client
This allows for easy local testing outside of a cluster.

Running your model as a Docker container
This can be used for all language wrappers—but not prepackaged inference
servers—to test that your image has the required dependencies and behaves as
you would expect.

148 | Chapter 8: Model Inference



12 You can also send requests using the Python client.

Running your SeldonDeployment in a Kubernetes dev client such as KIND
This can be used for any models and is a final test that your model will run as
expected.

Python client for Python language wrapped models
You can define your Python model in a file called MyModel.py, as seen in
Example 8-9.

Example 8-9. Seldon Core Python model class

class MyModel:
    def __init__(self):
      pass
    def predict(*args, **kwargs):
      return ["hello, "world"]

You are able to test your model by running the microservice CLI that is provided by
the Python module. Once you install the Python seldon-core module you will be
able to run the model with the following command:

> seldon-core-microservice MyModel REST --service-type MODEL
...
2020-03-23 16:59:17,366 - werkzeug:_log:122
- INFO: * Running on http://0.0.0.0:5000/
(Press CTRL+C to quit)

Now that your model microservice is running, you can send a request using curl, as
seen in Example 8-10.

Example 8-10. Sending a request to your Seldon Core custom microservice

> curl -X POST \
>  -H 'Content-Type: application/json' \
>  -d '{"data": { "ndarray": [[1,2,3,4]]}}' \
>      http://localhost:5000/api/v1.0/predictions
{"data":{"names":[],"ndarray":["hello","world"]},"meta":{}}

You can see that the output of the model is returned through the API.12

Seldon Core | 149



13 A SeldonMessage can be defined as both an OpenAPI specification and a protobuffer definition.

Local testing with Docker
If you are building language models with other wrappers, you can run the containers
you build through your local Docker client. A good tool for building Docker contain‐
ers from source code is S2I. For this, you just have to run the Docker client with the
command seen in Example 8-11.

Example 8-11. Exposing Seldon Core microservice in a local Docker client

docker run --rm --name mymodel -p 5000:5000 mymodel:0.1

This will run the model and export it on port 5000, so now you can send a request
using curl, as seen in Example 8-12.

Example 8-12. Sending a request to your local Seldon Core microservice

> curl -X POST \
>  -H 'Content-Type: application/json' \
>  -d '{"data": { "ndarray": [[1,2,3,4]]}}' \
>      http://localhost:5000/api/v1.0/predictions

{"data":{"names":[],"ndarray":["hello","world"]},"meta":{}}

With this environment, you can rapidly prototype and effectively test, before serving
your model in a live cluster.

Serving Requests
Seldon Core supports two ingress gateways, Istio and Ambassador. Because Kube‐
flow’s installation uses Istio, we will focus on how Seldon Core works with the Istio
Ingress Gateway. We will assume that the Istio gateway is at <istioGateway> and
has a SeldonDeployment name <deploymentName> in namespace <namespace>. This
means a REST endpoint will be exposed at:

http://<istioGateway>/seldon/<namespace>/<deploymentName>/api/v1.0/predictions.

A gRPC endpoint will be exposed at <istioGateway> and you should send header
metadata in your request with:

• Key seldon and value <deploymentName>.
• Key namespace and value <namespace>.

The payload for these requests will be a SeldonMessage.13

150 | Chapter 8: Model Inference



14 For more on how to enable this, see this Seldon documentation page.

A sample SeldonMessage, say for a simple ndarray representation, is shown in
Example 8-13.

Example 8-13. SeldonMessage containing an ndarray

{
   "data": {
   "ndarray":[[1.0, 2.0, 5.0]]
   }
}

Payloads can also include simple tensors, TFTensors, as well as binary, string, or
JSON data. An example request containing JSON data is shown in Example 8-14.

Example 8-14. SeldonMessage containing JSON data

{
   "jsonData": {
     "field1": "some text",
     "field2": 3
   }
}

Now that your inference graph is defined, tested, and running, you will want to get
predictions back from it, and you also might want to monitor it in production to
ensure it is running as expected.

Monitoring Your Models
In Seldon Core’s design, deploying ML models is not treated differently from how one
would deploy traditional applications. The same applies to monitoring and gover‐
nance once the deployments are live. Traditional application monitoring metrics like
request latency, load, and status code distribution are provided by exposing Prome‐
theus metrics in Grafana.14

However, as data scientists we are mostly interested in how well the models are per‐
forming—the relationship between the live data coming in and the data the model
was trained on and the reasons why specific predictions were made.

To address these concerns, Seldon Core provides the additional open source projects
Alibi:Explain and Alibi:Detect, which focus specifically on advanced ML insights.
These two projects implement the core algorithms for model explainability, outlier
detection, data drift, and adversarial attack detection, respectively. We will now walk

Seldon Core | 151



through examples of how Seldon Core enables model explainability and drift detec‐
tion, via its integration of Alibi:Explain and Alibi:Detect.

Model explainability
Model explainability algorithms seek to answer the question: “Why did my model
make this prediction on this instance?” The answer can come in many shapes, i.e., the
most important features contributing to the model’s prediction or the minimum
change to features necessary to induce a different prediction.

Explainability algorithms are also distinguished by how much access to the underly‐
ing model they have. On one end of the spectrum there are “black box” algorithms
that only have access to the model prediction endpoint and nothing else. In contrast,
you have “white box” algorithms that have full access to the internal model architec‐
ture and allow for much greater insight (such as taking gradients). In the production
scenario, however, the black-box case is much more prominent, so we will focus on
that here.

Before discussing an example, we will describe the integration patterns that would
arise from the use of black-box explanation algorithms. These algorithms typically
work by generating a lot of similar-looking instances to the one being explained and
then send both batch and sequential requests to the model to map out a picture of the
model’s decision-making process in the vicinity of the original instance. Thus, an
explainer component will communicate with the underlying model, as the explana‐
tion is being computed. Figure 8-4 shows how this pattern is implemented. A model
configured as a SeldonDeployment sits alongside an explainer component, which
comes with its own endpoint. When the explainer endpoint is called internally the
explainer communicates with the model to produce an explanation.

Figure 8-4. Seldon explainer component

152 | Chapter 8: Model Inference



In Figure 8-4, the explainer communicates directly with the pro‐
duction model. However, in a more realistic scenario, the underly‐
ing model would be a separate but identical deployment (i.e., in
staging) to ensure that calls to the explainer don’t degrade the per‐
formance of the production inference system.

To illustrate these techniques we will show a few examples.

Sentiment prediction model
Our first example is a sentiment prediction model that is trained on movie review
data hosted by Cornell University. You can launch this with an associated anchors
explainer, using a SeldonDeployment like in Example 8-15.

Example 8-15. SeldonDeployment with Anchor Explainers

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
  name: movie
spec:
  name: movie
  annotations:
    seldon.io/rest-timeout: "10000"
  predictors:
  - graph:
      children: []
      implementation: SKLEARN_SERVER
      modelUri: gs://seldon-models/sklearn/moviesentiment
      name: classifier
    explainer:
      type: AnchorText
    name: default
    replicas: 1

Once deployed, this model can be queried via the Istio ingress as usual. You can then
send the simple review "This film has great actors" to the model, as in
Example 8-16.

Example 8-16. Sending a prediction request to your Seldon Core movie sentiment model

curl -d '{"data": {"ndarray":["This film has great actors"]}}' \
   -X POST http://<istio-ingress>/seldon/seldon/movie/api/v1.0/predictions \
   -H "Content-Type: application/json"

The response to the prediction request in Example 8-16 is seen in Example 8-17.

Seldon Core | 153



Example 8-17. Prediction response from your Seldon Core movie sentiment model

{
  "data": {
    "names": ["t:0","t:1"],
    "ndarray": [[0.21266916924914636,0.7873308307508536]]
  },
  "meta": {}
}

The model is a classifier and it is predicting with 78% accuracy that this is a positive
review, which is correct. You can now try to explain the request, as seen in
Example 8-18.

Example 8-18. Sending an explanation request to your Seldon Core movie sentiment
model

curl -d '{"data": {"ndarray":["This movie has great actors"]}}' \
   -X POST http://<istio-ingress>/seldon/seldon/movie/explainer/api/v1.0/explain \
   -H "Content-Type: application/json"

The response to the explanation request in Example 8-18 is seen in Example 8-19
(curtailed without the examples section).

Example 8-19. Explanation response from your Seldon Core movie sentiment model

{
  "names": [
    "great"
  ],
  "precision": 1,
  "coverage": 0.5007,
  ...
  "instance": "This movie has great actors",
  "prediction": 1
  },
  "meta": {
    "name": "AnchorText"
  }
}

The key element in this example is that the explainer has identified the word great as
being the reason the model predicted positive sentiment and suggests that this would
occur 100% of the time for this model if a sentence contains the word great (reflected
by the precision value).

154 | Chapter 8: Model Inference



15 See “Training a Model Using Scikit-Learn” on page 122 for more information on this model and how it is
built.

US Census income predictor model example
Here is a second example, trained on the 1996 US Census data, which predicts
whether a person will have high or low income.15 For this example, you also need to
have an Alibi explainer sample the input dataset and identify categorical features to
allow the explainer to give more intuitive results. The details for configuring an Alibi
explainer can be found in the Alibi documentation along with an in-depth review of
the following data science example.

The SeldonDeployment resource is defined in Example 8-20.

Example 8-20. SeldonDeployment for income predictor

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
  name: income
spec:
  name: income
  annotations:
    seldon.io/rest-timeout: "100000"
  predictors:
  - graph:
      children: []
      implementation: SKLEARN_SERVER
      modelUri: gs://seldon-models/sklearn/income/model
      name: classifier
    explainer:
      type: AnchorTabular
      modelUri: gs://seldon-models/sklearn/income/explainer
    name: default
    replicas: 1

Once deployed, you can ask for a prediction with a curl request seen in Example 8-21.

Example 8-21. Sending a prediction request to your Seldon Core income predictor model

curl -d '{"data": {"ndarray":[[39, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]]}}' \
   -X POST http://<istio-ingress>/seldon/seldon/income/api/v1.0/predictions \
   -H "Content-Type: application/json"

The response to the prediction request in Example 8-21 is seen in Example 8-22.

Seldon Core | 155



Example 8-22. Prediction response from your Seldon Core income predictor model

{
    "data": {
      "names":["t:0","t:1"],
      "ndarray":[[1.0,0.0]]
     },
     "meta":{}
 }

The model is predicting low income for this person. You can now get an explanation
for this prediction with Example 8-23.

Example 8-23. Sending a explanation request to your Seldon Core income predictor
model

curl -d '{"data": {"ndarray":[[39, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]]}}' \
   -X POST http://<istio-ingress>/seldon/seldon/income/explainer/api/v1.0/explain \
   -H "Content-Type: application/json"

The response to the explanation request in Example 8-23 is seen in Example 8-24,
which we have shortened to not show all the examples returned.

Example 8-24. Explanation response from your Seldon Core income predictor model

{
  "names": [
    "Marital Status = Never-Married",
    "Occupation = Admin",
    "Relationship = Not-in-family"
  ],
  "precision": 0.9766081871345029,
  "coverage": 0.022,
  ...
}

The key takeaway is that this model will predict a low income classification 97% of
the time if the input features are "Marital Status = Never-Married", "Occupation
= Admin", and "Relationship = Not-in-family". So these are the key features from
the input that influenced the model.

Outlier and drift detection
ML models traditionally do not extrapolate well outside of the training data distribu‐
tion, and that impacts model drift. In order to trust and reliably act on model predic‐
tions, you must monitor the distribution of incoming requests via different types of
detectors. Outlier detectors aim to flag individual instances that do not follow the
original training distribution. An adversarial detector tries to spot and correct a care‐
fully crafted attack with the intent to fool the model. Drift detectors check when the

156 | Chapter 8: Model Inference



distribution of the incoming requests is diverging from a reference distribution, such
as that of the training data.

If data drift occurs, the model performance can deteriorate, and it should be
retrained. The ML model predictions on instances flagged by any of the detectors
we’ve looked at should be verified before being used in real-life applications. Detec‐
tors typically return an outlier score at the instance or even the feature level. If the
score is above a predefined threshold, the instance is flagged.

Outlier and drift detection are usually done asynchronously to the actual prediction
request. In Seldon Core you can activate payload logging and send the requests to an
external service that will do the outlier and drift detection outside the main request/
response flow. An example architecture is shown in Figure 8-5, where Seldon Core’s
payload logger passes requests to components that process them asynchronously. The
components that do the processing and alerting are managed via Knative Eventing,
which is described in “Knative Eventing” on page 173. The use of Knative Eventing
here is to provide late-binding event sources and event consumers, enabling asyn‐
chronous processing. The results can be passed on to alerting systems.

Figure 8-5. Data science monitoring of models with Seldon Core and Knative

Following are some examples that leverage outlier and drift detec‐
tion using the architecture in Figure 8-5:

• An outlier detection example for CIFAR10
• A drift detection example for CIFAR10

Seldon Core | 157



16 See the Seldon Core documentation for further details.

Review
Seldon Core is a solid choice as an inference solution when building an inference
graph and hoping to simultaneously achieve model serving, monitoring, and updat‐
ing guarantees. It sufficiently fills most of the gaps of TFServing while enabling data
scientists to organically grow their inference graph as their use cases become more
complex. It also allows many more features outside the scope of this overview, such as
Canaries, Shadows, and powerful multistage inference pipelines.16

However, we will take a look at how it satisfies your inference requirements.

Model serving
Seldon Core clearly provides the functionality to extend an inference graph and sup‐
port advanced ML insights in a first-class way. The architecture is also flexible
enough to leverage other advanced ML insights outside of its managed offering. And
Seldon Core is quite versatile, providing the expected serving flexibility because it is
framework-agnostic. It provides support for both REST and gRPC, and GPU acceler‐
ation. It also can interface with streaming inputs using Knative Eventing. However,
because the SeldonDeployment is running as a bare Kubernetes deployment, it does
not provide GPU autoscaling, which we expect from hardware-agnostic autoscaling.

Model monitoring
Seldon Core seems to satisfy all of your model monitoring needs. Seldon Core’s
deployment strategy also uses Kubeflow’s infrastructure stack, so it leverages a micro‐
service approach. This is especially noticeable with Seldon Core’s explainers and
detectors being represented as separate microservices within a flexible inference
graph. Seldon Core makes monitoring first-class by enabling monitoring, logging,
and tracing with its support of Prometheus and Zipkin.

Model updating
Seldon Core is advanced in that it supports a variety of deployment strategies, includ‐
ing canary, pinned, and even multi-armed bandits. However, similar to TFServing,
revision or version management isn’t managed in a first-class way. This, again, means
that version promotion does not have a safe-rollout guarantee. Lastly, as you can see
by the options available for graph inferencing, in Figure 8-3, Seldon Core provides
complete flexibility in growing your inference graph to support more complex
deployment strategies.

158 | Chapter 8: Model Inference



Summary
Seldon Core works to fill in the gaps by providing extensibility and sophisticated out-
of-the-box support for complex inference graphs and model insight. But it falls short
with regards to the autoscaling of GPUs, its scale-to-zero capabilities, and revision
management for safe model updating—features that are common to serverless appli‐
cations. We will now explore how KFServing works to fill this gap by adding some
recent Kubernetes additions, provided by Knative, to enable serverless workflows for
TFServing, Seldon Core, and many more serving solutions.

KFServing
As seen with TFServing and Seldon Core, the production-grade serving of ML mod‐
els is not a unique problem to any one research team or company. Unfortunately, this
means that every in-house solution will use different model formats and expose
unique proprietary serving APIs. Another problem facing both TFServing and Sel‐
don Core is the lack of serverless primitives, like revision management and more
sophisticated forms of autoscaling. These shortcomings are also found in most infer‐
ence services. In order to unify the open source community of model servers, while
filling the gaps that each model server had, Seldon, Google, Bloomberg, and IBM
engaged with the open source community to collaboratively develop KFServing.

KFServing is a serverless inferencing solution that provides performant, high-
abstraction interfaces for common ML frameworks like TensorFlow, XGBoost, Scikit-
learn, PyTorch, and ONNX. By placing Knative on top of Kubeflow’s cloud native
stack, KFServing encapsulates the complexity of autoscaling, networking, health
checking, and server configuration and brings cutting-edge serving features like GPU
autoscaling, scale to zero, and canary rollouts to ML prediction services. This allows
ML engineers to focus on critical data-science–related tooling like prediction serv‐
ices, transformers, explainability, and drift detectors.

Serverless and the Service Plane
KFServing’s design primarily borrows from serverless web development. Serverless
allows you to build and run applications and services without provisioning, scaling,
or managing any servers. These server configurations are commonly referred to as
the service plane, or control plane.

Naturally, serverless abstractions come with deployment simplicity and fluidity as
there is limited infrastructure administration. However, serverless architecture
depends heavily on event-based triggers for scaling its replicas, which we will talk
about in “Escape hatches” on page 170. It allows you to focus solely on your applica‐
tion code.

KFServing | 159



One of the primary tenancies of KFServing is extending serverless application devel‐
opment to model serving. This is particularly advantageous for data scientists, as you
want to only focus on the ML model that you are developing and the resulting input
and output layers.

Data Plane
KFServing defines the data plane, which links all of the standard model serving com‐
ponents together and uses Knative to provide serverless abstractions for the service
plane. A data plane is the protocol for how packets and requests are forwarded from
one interface to another while also providing agency over service discovery, health
checking, routing, load balancing, authentication/authorization, and KFServing’s data
plane architecture consists of a static graph of components—similar to Seldon Core’s
InferenceGraph—to coordinate requests for a single model. Advanced features like
ensembling, A/B testing, and multi-armed bandits connect these services together,
again taking inspiration from Seldon Core’s deployment extensibility.

In order to understand the data plane’s static graph, let’s review some terminology
used in Figure 8-6.

Figure 8-6. KFServing data plane

Endpoint
KFServing instances are divided into two endpoints: default and canary. The
endpoints allow users to safely make changes using the pinned and canary roll‐
out strategies. Canarying is completely optional, enabling users to simply deploy
with a blue-green deployment strategy against the default endpoint.

Component
Each endpoint has multiple components: predictor, explainer, and transformer. 

The only required component is the predictor, which is the core of the system. As
KFServing evolves, it can seamlessly increase the number of supported components

160 | Chapter 8: Model Inference



17 KFServing is continuously evolving, as is its protocol. You can preview the V2 protocol on this Kubeflow Git‐
Hub site. The second version of the data plane protocol addresses several issues found in the V1 data plane
protocol, including performance and generality across a large number of model frameworks and servers.

to enable use cases like Seldon Core’s outlier detection. If you want, you can even
introduce your own components and wire them together using the power of Knative’s
abstractions.

Predictor
The predictor is the workhorse of the KFServing instance. It is simply a model
and a model server that is made available at a network endpoint.

Explainer
The explainer enables an optional alternative data plane that provides model
explanations in addition to predictions. Users may define their own explanation
container, which KFServing configures with relevant environment variables like a
prediction endpoint. For common use cases, KFServing provides out-of-the-box
explainers like Seldon Core’s Alibi:Explain, which we learned about earlier.

Transformer
The transformer enables users to define a pre- and postprocessing step before the
prediction and explanation workflows. Like the explainer, it is configured with
relevant environment variables.

The last portion of the data plane is the prediction protocol17 that KFServing uses.
KFServing worked to define a set of HTTP/REST and gRPC APIs that must be imple‐
mented by compliant inference/prediction services. It is worth noting that KFServing
standardized this prediction workflow, described in Table 8-3, across all model
frameworks.

Table 8-3. KFServing V1 data plane

API Verb Path Payload
Readiness GET /v1/models/

<model_name>

{
  Response:{"name":<model_name>,"ready": true/false}
}

Predict POST /v1/models/
<model_name>:predict

{
  Request:{"instances": []},
  Response:{"predictions": []}
}

Explain POST /v1/models/
<model_name>:explain

{
  Request:{"instances": []},
  Response:{"predictions": [],"explanations": []}
}

KFServing | 161



18 KFServing also supports standalone installation without Kubeflow. In fact, most production users of KFServ‐
ing run it as a standalone installation.

Example Walkthrough
With the data plane defined, we will now walk through an example of how you can
interface with a model served by KFServing.

Setting up KFServing
KFServing provides InferenceService, a serverless inference resource that describes
your static graph, by providing a Kubernetes CRD for serving ML models on arbi‐
trary frameworks. KFServing comes prepackaged with Kubeflow, so it should already
be available. The KFServing installation18 will create a Kubernetes operator in the
kubeflow namespace, which will watch for InferenceService resources.

Because Kubeflow’s Kubernetes minimal requirement is 1.14,
which does not support object selector, ENABLE_WEBHOOK_NAME
SPACE_SELECTOR is enabled in the Kubeflow installation by default.
If you are using Kubeflow’s dashboard or profile controller to cre‐
ate user namespaces, labels are automatically added to enable
KFServing to deploy models. If you are creating namespaces man‐
ually, you will need to run:

kubectl label namespace \
my-namespace serving.kubeflow.org/inferenceservice=enabled

to allow KFServing to deploy InferenceService in the namespace
my-namespace, for example.

To check whether the KFServing controller is installed correctly, run the following
command:

kubectl get pods -n kubeflow | grep kfserving

You can confirm that the controller is running by seeing a pod in the Running state.
There is also a detailed troubleshooting guide you can follow on this Kubeflow Git‐
Hub site.

Simplicity and extensibility
KFServing was fashioned to be simple for day-one users and customizable for seas‐
oned data scientists. This is enabled via the interface that KFServing designed.

Now we will take a look at three examples of InferenceService.

Example 8-25 is for sklearn.

162 | Chapter 8: Model Inference



Example 8-25. Simple sklearn KFServing InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  default:
    predictor:
      sklearn:
        storageUri: "gs://kfserving-samples/models/sklearn/iris"

Example 8-26 is for tensorflow.

Example 8-26. Simple TensorFlow KFServing InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
  name: "flowers-sample"
spec:
  default:
    predictor:
      tensorflow:
        storageUri: "gs://kfserving-samples/models/tensorflow/flowers"

Example 8-27 is for pytorch.

Example 8-27. Simple PyTorch KFServing InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
  name: "pytorch-cifar10"
spec:
  default:
    predictor:
      pytorch:
        storageUri: "gs://kfserving-samples/models/pytorch/cifar10/"
        modelClassName: "Net"

Each of these will give you a serving instance—with an HTTP endpoint—that will
serve a model using a requested framework server type. In each of these examples, a
storageUri points to a serialized asset. The interface is mostly consistent across dif‐
ferent models. The differences are in the framework specifications, i.e., tensorflow
and pytorch. These framework specifications are common enough in that they share
information like storageUri and Kubernetes resources requests, but they’re also
extensible in that they can enable framework-specific information like PyTorch’s
ModelClassName.

KFServing | 163



Clearly, this interface is simple enough to get started quite easily, but how extensible
is it toward more complex deployment configurations and strategies? Example 8-28
exhibits some of the features that KFServing has to offer.

Example 8-28. Sophisticated Canary KFServing InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
  name: "my-model"
spec:
  default:
    predictor:
      # 90% of traffic is sent to this model
      tensorflow:
        storageUri: "gs://kfserving-samples/models/tensorflow/flowers"
        serviceAccount: default
        minReplicas: 2
        maxReplicas: 10
        resources:
          requests:
            cpu: 1
            gpu: 1
            memory: 8Gi
  canaryTrafficPercent: 10
  canary:
    predictor:
      # 10% of traffic is sent to this model
      tensorflow:
        storageUri: "gs://kfserving-samples/models/tensorflow/flowers-2"
        serviceAccount: default
        minReplicas: 1
        maxReplicas: 5
        resources:
          requests:
            cpu: 1
            gpu: 1
            memory: 8Gi

The first extension is the ServiceAccount, which is used for authentication in the
form of managed identities. If you wish to authenticate to S3 because your S3 should
not be public, you need an identity attached to your InferenceService that validates
you as a user. KFServing allows you to pass an identity mounted on the container and
wires up the credentials through the ServiceAccount in a managed way. For example,
say you are trying to access a model that may be stored on Minio. You would use your
Minio identity information to create a secret beforehand, and then attach it to the ser‐
vice account. If you recall, we created a secret in MinIO in “MinIO” on page 34, so we
just need to include KFServing-related annotations like in Example 8-29.

164 | Chapter 8: Model Inference



Example 8-29. KFServing-annotated MinIO secret

apiVersion: v1
data:
 awsAccessKeyID: xxxx
 awsSecretAccessKey: xxxxxxxxx
kind: Secret
metadata:
 annotations:
   serving.kubeflow.org/s3-endpoint: minio-service.kubeflow.svc.cluster.local:9000
   serving.kubeflow.org/s3-verifyssl: "0"
   serving.kubeflow.org/s3-usehttps: "0"
   serving.kubeflow.org/s3-region: us-east-1
 name: minioaccess
 namespace: my-namespace

And attach it to a service account like the one seen in Example 8-30.

Example 8-30. Service Account with attached MinIO secret

apiVersion: v1
kind: ServiceAccount
metadata:
  name: default
  namespace: my-namespace
secrets:
- name: default-token-rand6
- name: minioaccess

The second extension to notice is the min and max replicas. You would use these to
control provisioning to allow you to meet demand, neither dropping requests nor
overallocating.

The third extension is resource requests, which have preset defaults that you will
almost always need to customize for your model. As you can see, this interface ena‐
bles the use of hardware accelerators, like GPUs.

The last extension showcases the mechanism that KFServing uses to enable canary
deployments. This deployment strategy assumes that you only want to focus on a
two-way traffic split, as opposed to an n-way traffic split. In order to customize your
deployment strategy, do the following:

• If you use just the default, like in your initial template, you get a standard blue-
green deployment that comes with a Kubernetes deployment resource.

• If you include a canary, with canaryTrafficPercent == 0, you get a pinned
deployment where you have an addressable default and canary endpoint. This
is useful if you wish to send experimental traffic to your new endpoint, while
keeping your production traffic pointed to your old endpoint.

KFServing | 165



19 You can still predict against a certain version by passing in a Host-Header in your request. For more informa‐
tion on rollouts, see this GitHub repo.

• If you include canary, with canaryTrafficPercent > 0, you get a canary
deployment that enables you to slowly increment traffic to your canary deploy‐
ment, in a transparent way. In the previous example, you are experimenting with
flowers-2, and as you slowly increment this canaryTrafficPercentage you can
gain confidence that your new model will not break your current users.19 Eventu‐
ally, you would go to 100, thereby flipping the canary and default, and you
should then delete your old version.

Now that we understand some of the powerful abstractions that KFServing offers,
let’s use KFServing to host your product recommender example.

Recommender example
We will now put your product recommender example, from “Building a Recommen‐
der with TensorFlow” on page 108, behind an InferenceService.

Because the kubeflow namespace is a system namespace, you are
unable to create an InferenceService in the kubeflow namespace.
As such, you must deploy your InferenceService in another
namespace.

First, you’ll define your InferenceService with the following 11 lines of YAML, as
seen in Example 8-31.

Example 8-31. KFServing Recommender InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "recommender"
 namespace: my-namespace
spec:
 default:
   predictor:
     tensorflow:
       serviceAccount: default
       storageUri: "s3://models/recommender"

166 | Chapter 8: Model Inference



20 You can install the SDK by running pip install kfserving. You can get the KFServing SDK documentation
on this GitHub site and examples on this GitHub site for creating, rolling out, promoting, and deleting an
InferenceService.

After running kubectl apply and waiting until your InferenceService is Ready,
you should see:

$ kubectl get inferenceservices -n my-namespace
NAME        URL                                                               READY DEFAULT
recommender http://recommender.my-namespace.example.com/v1/models/recommender True  100

You can then curl your InferenceService as in Example 8-32.

Example 8-32. Sending a prediction request to your KFServing Recommender
InferenceService

kubectl port-forward --namespace istio-system \
 $(kubectl get pod --namespace istio-system \
 --selector="app=istio-ingressgateway" \
 --output jsonpath='{.items[0].metadata.name}') \
 8080:80

curl -v -H "Host: recommender.my-namespace.example.com" \
http://localhost:8080/v1/models/recommender:predict -d \
'{"signature_name":"serving_default",
  "inputs": {"products": [[1],[2]],"users" : [[25], [3]]}}'

If your curl returns a 404 Not Found error, this is a known Istio
gateway issue that is present in Kubeflow 1.0.x. We recommend
that you use Kubeflow 1.1 or above. A possible workaround is
described in this GitHub issue.

As an alternative to curl, you can also use the KFServing PythonSDK to send requests
in Python.20 In addition to an HTTP endpoint, this simple interface also provides all
the serverless features that come with Kubeflow’s stack and Knative, among them:

• Scale to zero
• GPU autoscaling
• Revision management (safe rollouts)
• Optimized containers
• Network policy and authentication
• Tracing
• Metrics

KFServing | 167



As such, with only a few lines of YAML, KFServing provides production ML features,
while also allowing data scientists to scale their deployments into the future. But how
does KFServing enable these features in such an abstracted way?

We will now look at KFServing’s underlying infrastructure stack and see how it pro‐
motes serverless, how its layers can be further customized, and what additional fea‐
tures exist.

Peeling Back the Underlying Infrastructure
By dissecting its infrastructure stack, you can see how KFServing enables serverless
ML while also educating you on how to debug your inference solutions. KFServing is
built in a cloud native way, as is Kubeflow. It benefits from the features of every layer
below it. As seen in Figure 8-7, KFServing is built on the same stack as Kubeflow but
is one of the few Kubeflow solutions that leverage Istio and Knative functionality
quite heavily.

We will now walk through the role of each of these components, in greater detail than
we did in previous chapters, to see what parts of these layers KFServing utilizes.

Figure 8-7. KFServing infrastructure stack

168 | Chapter 8: Model Inference



Going layer by layer
Hardware that runs your compute cluster is the base-building block for all the layers
above. Your cluster could run a variety of hardware devices including CPUs, GPUs, or
even TPUs. It is the responsibility of the layers above to simplify the toggling of hard‐
ware types and to abstract as much complexity as possible.

Kubernetes is the critical layer, right above the compute cluster, that manages, orches‐
trates, and deploys a variety of resources—successfully abstracting the underlying
hardware. The main resources we will focus on are deployments, horizontal pod
autoscalers (HPA), and ingresses. And since Kubernetes abstracts the underlying
hardware, upon which deployments are run, this enables you to use hardware opti‐
mizers like GPUs within the upper levels of the stack.

Istio has been alluded to throughout this book, but we will talk about a few of its fea‐
tures that are particularly relevant to KFServing. Istio is an open source service mesh
that layers transparently onto the Kubernetes cluster. It integrates into any logging
platform, telemetry system, or policy system and promotes a uniform way to secure,
connect, and monitor microservices. But what is a service mesh? Traditionally, each
service instance is co-located with a sidecar network proxy. All network traffic (HTTP,
REST, gRPC, etc.) from an individual service instance flows via its local sidecar proxy
to the appropriate destination. Thus, the service instance is not aware of the network
at large and only knows about its local proxy. In effect, the distributed system net‐
work has been abstracted away from the service programmer. Primarily, Istio expands
upon Kubernetes resources, like ingresses, to provides service mesh fundamentals
like:

• Authentication/Access control
• Ingress and egress policy management
• Distributed tracing
• Federation via multicluster ingress and routing
• Intelligent traffic management

These tools are all critical for production inference applications that require adminis‐
tration, security, and monitoring.

The last component of the KFServing infrastructure stack is Knative, which takes
advantage of the abstractions that Istio provides. The KFServing project primarily
borrows from Knative Serving and Eventing, the latter of which will be expanded on
in “Knative Eventing” on page 173. As we described in “Knative” on page 38, Knative
Serving builds on Kubernetes and Istio to support deploying and serving serverless
applications. By building atop Kubernetes resources like deployments and HPAs, and
Istio resources, like virtual services, Knative Serving provides:

KFServing | 169



• An abstracted service mesh
• CPU/GPU autoscaling (either queries per second (QPS) or metric-based)
• Revision management for safe rollouts and canary/pinned deployment strategies

These offerings are desirable for data scientists who want to limit their focus and
energy to model development, and have scaling and versioning be handled for them
in a managed way.

Escape hatches
KFServing’s extensibility features escape hatches to the underlying layers of its stack.
By building escape hatches into the InferenceService CRD, data scientists can fur‐
ther tune their production inference offering for security at the Istio level and their
performance at the Knative level.

We will now walk through one example of how you can leverage these escape hatches,
by tuning the autoscaling of your InferenceService.

To understand how to use this escape hatch, you need to understand how Knative
enables autoscaling. There is a proxy in Knative Serving Pods called the queue proxy,
which is responsible for enforcing request queue parameters (concurrency limits),
and reporting concurrent client metrics to the autoscaler. The autoscaler, in turn,
reacts to these metrics by bringing pods up and down. Every second, the queue proxy
publishes the observed number of concurrent requests in that time period. KFServing
by default sets the target concurrency (average number of in-flight requests per pod)
to one. If we were to load the service with five concurrent requests, the autoscaler
would try to scale up to five pods. You can customize the target concurrency by
adding the example annotation autoscaling.knative.dev/target.

Let’s look again at your InferenceService from Example 8-31.
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "recommender"
 namespace: my-namespace
spec:
 default:
   predictor:
     tensorflow:
       serviceAccount: default
       storageUri: "s3://models/recommender"

170 | Chapter 8: Model Inference



21 You can further explore load testing on this Kubeflow GitHub site. Two great load-testing frameworks are Hey
and Vegeta.

If you test this service by sending traffic in 30-second spurts while maintaining 5 in-
flight requests, you will see that the autoscaler scales up your inference services to 5
pods.21

There will be a cold-start time cost as a result of initially spawning
pods and downloading the model, before being ready to serve. The
cold start may take longer (to pull the serving image) if the image is
not cached on the node that the pod is scheduled on.

By applying the annotation autoscaling.knative.dev/target, as seen in
Example 8-33, the target concurrency will be set to five.

Example 8-33. Custom target concurrency via annotations in KFServing
InferenceService

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "recommender"
 namespace: my-namespace
 annotations:
   autoscaling.knative.dev/target: "5"
spec:
 default:
   predictor:
     tensorflow:
       serviceAccount: default
       storageUri: "s3://models/recommender"

Which means, that if you load the service with five concurrent requests, you will see
that you only need one pod for your inference service.

Debugging an InferenceService
With a fully abstracted interface, InferenceService enables many features while giving
minimal exposure to the complexity under the hood. To properly debug your Infer‐
enceService, let’s look at the request flow upon hitting your InferenceService.

The request flow when hitting your inference service, illustrated in Figure 8-8, is as
follows:

KFServing | 171



1. Traffic arrives through the Istio ingress gateway when traffic is external and
through the Istio cluster local gateway when traffic is internal.

2. KFServing creates an Istio VirtualService to specify its top-level routing rules for
all of its components. As such, traffic routes to that top-level VirtualService from
the gateway.

3. Knative creates an Istio virtual service to configure the gateway to route the user
traffic to the desired revision. Upon opening up the destination rules, you will see
that the destination is a Kubernetes service for the latest ready Knative revision.

4. Once the revision pods are ready, the Kubernetes service will send the request to
the queue-proxy.
• If the queue proxy has more requests than it can handle, based on the concur‐

rency of the KFServing container, then the autoscaler will create more pods to
handle the additional requests.

5. Lastly, the queue proxy will send traffic to the KFServing controller.

Figure 8-8. KFServing request flow

172 | Chapter 8: Model Inference



22 A detailed debugging guide can be found on this Kubeflow GitHub site.
23 To learn more about Knative Eventing, see the documentation.

Where does this come in handy? Well, say you create your InferenceService but the
Ready status is false:

kubectl get inferenceservice -n my-namespace recommender
NAME          URL   READY   DEFAULT TRAFFIC   CANARY TRAFFIC   AGE
recommender         False                                      3s

You can step through the resources that are created in the request flow and view each
of their status objects to understand what the blocker is.22

Debugging performance
What if you deployed your InferenceService but its performance does not meet your
expectations? KFServing provides various dashboards and tools to help investigate
such issues. Using Knative, KFServing has many resources in its “debugging perfor‐
mance issues” guide. You can also follow this Knative guide to access Prometheus and
Grafana. Lastly, you can use request tracing, also known as distributed tracing, to see
how much time is spent in each step of KFServing’s request flow in Figure 8-8. You
can use this Knative guide to access request traces.

Knative Eventing
By bringing Knative into its stack, KFServing enabled serverless via Knative Serving
and the use of event sources and event consumers via Knative Eventing.23 We will take
a look at how Knative Eventing works, and how you can extend your inference ser‐
vice with an event source.

Knative Eventing enforces a lambda-style architecture of event sources and event
consumers with the following design principles:

• Knative Eventing services are loosely coupled.
• Event producers and event consumers are independent. Any producer or Source

can generate events before there are active event consumers listening. Any event
consumer can express interest in an event before there are producers that are cre‐
ating those events.

• Other services can be connected to any Eventing system that:
— Creates new applications without modifying the event producer or event-

consumer.
— Selects and targets specific subsets of events from their producers.

KFServing | 173



24 Knative has a nonexhaustive list of event sources.
25 To learn more about KafkaSource, see the documentation.

Knative Eventing delivers events in two flavors: direct delivery from a source to a sin‐
gle service and fan-out delivery from a source to multiple endpoints using channels
and subscriptions.

There are a variety of sources24 that come out-of-the-box when installing Knative
Eventing, one of which is KafkaSource.25 If you look at Example 8-34, you will see
how you would use KafkaSource to send events, received by Kafka, to your recom‐
mender example.

Example 8-34. KafkaSource that sends events to a KFServing Recommender
InferenceService

apiVersion: sources.knative.dev/v1alpha1
kind: KafkaSource
metadata:
  name: kafka-source
spec:
  consumerGroup: knative-group
  # Broker URL. Replace this with the URLs for your Kafka cluster, which
  # is in the format of my-cluster-kafka-bootstrap.my-kafka-namespace:9092.
  bootstrapServers: my-cluster-kafka-bootstrap.my-kafka-namespace:9092.
  topics: recommender
  sink:
    ref:
      apiVersion: serving.kubeflow.org/v1alpha2
      kind: InferenceService
      name: recommender

As you can see by the simplicity of this specification, after setting up your Kafka
resources, hooking Kafka into your InferenceService is as simple as 13 lines of YAML.
You can find a more advanced end-to-end example with MinIO and Kafka on this
Kubeflow GitHub site.

Additional features
KFServing contains a host of features that are continuously being improved. A com‐
prehensive list of its capabilities can be found on this GitHub site.

API documentation
For more on the APIs, consult the references for the KFServing Kubernetes APIs and
the KFServing Python KFServing Python APIs.

174 | Chapter 8: Model Inference



Review
Building serverless on top of Seldon Core’s graph inferencing, KFServing has pro‐
duced a complete inference solution that sufficiently fills all the gaps of TFServing
and Seldon Core. KFServing works to unify the entire community of model servers
by running model servers as Knative components. With all of its functionality and
promise, we will take a look at how KFServing manages to satisfy all your inference
requirements.

Model serving
KFServing makes graph inference and advanced ML insights first-class while also
defining a data plane that is extremely extensible for pluggable components. This
flexibility allows data scientists to focus on ML insights without having to strain over
how to include them in the graph.

KFServing is not only versatile in that it provides serving flexibility for a variety of
frameworks, but it also standardizes the data plane across differing frameworks to
reduce complexity in switching between model servers. It codifies the Kubernetes
design pattern by moving common functionalities like request batching, logging, and
pipelining into a sidecar. This, in turn, slims down the model server and creates a
separation of concerns, as model services without these features can immediately
benefit from deploying onto KFServing. It also provides support for REST, gRPC, and
GPU acceleration and can interface with streaming inputs using Knative Eventing.
And lastly, thanks to Knative Serving, KFServing provides GPU autoscaling, which
you expect from hardware-agnostic autoscaling.

Model monitoring
By taking from Seldon Core and its infrastructure stack, KFServing meets all of your
model monitoring needs. KFServing leverages the sophisticated model explainers and
drift detectors of Seldon Core in a first-class way, while also paving a way for develop‐
ers to define their own monitoring components in a highly flexible yet powerful data
plane.

Furthermore, with all the networking capabilities enabled by having Istio and Knative
in its infrastructure stack, KFServing provides extensible network monitoring and
telemetry with support for Prometheus, Grafana, Kibana, Zipkin, and Jaeger, to name
a few. These all satisfy your needs to monitor for Kubernetes metrics (memory/CPU
container limits) and server metrics (queries per second and distributed tracing).

Model updating
KFServing’s use of Knative was strategic in providing sophisticated model updating
features. As such, KFServing satisfies all of your requirements regarding deployment
strategies and version rollouts.

KFServing | 175



26 Check out examples of how ML Graph can be used to build complex graphs of ML components on this Sel‐
don GitHub site.

By leveraging Istio’s virtual services and the simplicity of an abstracted CRD, KFServ‐
ing makes the toggling of deployment strategies simple. It makes the flow from blue-
green → pinned → canary as simple as changing a few lines of YAML. Furthermore,
with the diverse and ever-expanding features of its underlying stack, KFServing is
easily extensible to support more-complicated deployment strategies like multi-
armed bandits.26

By using Knative Serving, KFServing adopts revision management that makes Kuber‐
netes deployment immutable. This ensures safe rollout by health checking the new
revisions pods before moving over the traffic. A revision enables:

• Automated and safe rollouts
• Bookkeeping for all revisions previously created
• Rollbacks to known, good configurations

This sufficiently satisfies your versioning requirements for models in development, in
flight, and in production.

Summary
KFServing has developed a sophisticated inference solution that abstracts its com‐
plexity for day-one users while also enabling power users to take advantage of its
diverse feature set. Building cloud native, KFServing seamlessly sits atop Kubeflow
and finalizes the MDLC with its inference solution.

Conclusion
In this chapter we investigated various inference solutions that can be used within
Kubeflow.

Based on what inference requirements you wish to prioritize and how deep you want
your infrastructure stack to be, each of the solutions described has distinctive advan‐
tages. Having reviewed each of the offerings in detail, it might be worthwhile to
reconsider Table 8-2 and see which inference solution is appropriate for your use
case:

• TFServing provides extremely performant and sophisticated out-of-the-box inte‐
gration for TensorFlow models.

• Seldon Core provides extensibility and sophisticated out-of-the-box support for
complex inference graphs and model insight.

176 | Chapter 8: Model Inference



• KFServing provides a simpler opinionated deployment definition with serverless
capabilities.

However, technology and development are shared between all these projects, and
looking to the future, Seldon Core will even support the new KFServing data plane
with the goal to provide easy interoperability and conversion. Other exciting features
to expect from KFServing include multi-model serving, progressive rollouts, and
more advanced graph inferencing techniques like pipelines and multi-armed bandit.

Now that you have completed the final step in your MDLC story, we will see how you
can further customize Kubeflow to enable more advanced features in the next
chapter.

Conclusion | 177





CHAPTER 9

Case Study Using Multiple Tools

In this chapter we’re going to discuss what to do if you need to use “other” tools for
your particular data science pipeline. Python has a plethora of tools for handling a
wide array of data formats. RStats has a large repository of advanced math functions.
Scala is the default language of big data processing engines such as Apache Spark and
Apache Flink. Legacy programs that would be costly to reproduce exist in any num‐
ber of languages.

A very important benefit of Kubeflow is that users no longer need to choose which 
language is best for their entire pipeline but can instead use the best language for each
job (as long as the language and code are containerizable).

We will demonstrate these concepts through a comprehensive example denoising CT
scans. Low-dose CT scans allow clinicians to use the scans as a diagnostic tool by
delivering a fraction of the radiation dose—however, these scans often suffer from an
increase in white noise. CT scans come in a format known as DICOM, and we’ll use a
container with a specialized library called pydicom to load and process the data into a
numpy matrix.

Several methods for denoising CT scans exist; however, they often focus on the math‐
ematical justification, not the implementation. We will present an open source
method that uses a singular value decomposition (SVD) to break the image into com‐
ponents, the “least important” of which are often the noise. We use Apache Spark
with the Apache Mahout library to do a singular value decomposition. Finally, we use
Python again to denoise the CT scans and visualize the results.

179



1 The full paper can be found here.

The Denoising CT Scans Example
Computed tomography (CT) scans are used for a wide array of medical purposes.
The scans work by taking X-rays from multiple angles and forming image “slices” that
can then be stacked to create a 3D image of a person’s insides. In the United States,
health experts recommend a person receive no more than 100 milliSieverts (mSv) of
radiation throughout their lives, which is equivalent to about 25 chest CT scans (at ~7
mSv each).

In the late twentieth and early twenty-first century, much research was done on what
are known as “low-dose” CT scans. A low-dose chest CT scan only delivers 1 to 2
mSv of radiation, but at a cost of a much noisier image, which can be harder to read.
These scans are popular tools for screening for lung cancer among habitual smokers.

The cost of this low-dose CT scan is that the resultant image is lower quality, or nois‐
ier. In the 2000s, much research was done on denoising these low-dose CT scans.
Most of the papers present methods and results only (no code). Further, the FDA
restricts what methods can be used for denoising CT scans, which has led to almost
all solutions being proprietary and expensive. Denoising seeks to improve image
quality by removing the white noise that is often present in these low-dose CT scans.

At the time of the writing of this book, the novel coronavirus more popularly known
as COVID-19 has escalated into a global pandemic. It has been shown that chest CT
scans are a more sensitive early-detection test than the reverse transcription polymer‐
ase chain reaction (RT-PCR) test, especially at early stages of infection.

As multiple repositories of CT scans are coming online and asking AI researchers to
assist in fighting the pandemic, we have sought to add a method for denoising CT
scans based entirely on off-the-shelf open source components. Namely we will use
Python, Apache Spark, Apache Mahout (a Spark library specializing in distributed
linear algebra), and Kubeflow.

We will not delve into the math of what we are doing here, but we strongly encourage
you to consult this paper.1

In this example, we will instead focus on the “how” of doing this technique with
Kubeflow, and encourage readers to add their own steps at the end of this pipeline,
which can then be freely shared with other researchers.

180 | Chapter 9: Case Study Using Multiple Tools



2 The Radiological Society of North America hopes to publish a repository of COVID-19 CT scans soon.

Data Prep with Python
CT scan images are commonly stored in the DICOM format. In this format each
“slice” of the image is stored in its own file, along with some metadata about the
image, such as space between pixels, and space between slices. We want to read all of
these files and create a 3D tensor of the pixel values. Then we want to “flatten” that
tensor into a two-dimensional matrix, on which we can then perform a singular value
decomposition.

There are several places where you can get DICOM file sets. For the paper, we
retrieved some from https://coronacases.org (though downloading the DICOMs can
be a bit tricky). Other places you can find DICOM files are CT scans from the Public
Lung Image Database, a CD you may have received from the doctor if you’ve ever had
a CT scan, and other places online.2 The important thing is, we need one directory of
DICOM files that comprise a single CT scan. We will assume there exists some
DICOM file set comprising a single CT scan in the directory /data/dicom.

Converting a DICOM image into a tensor is shockingly easy, if you have the right
dependencies in place. We will use pydicom, which is a well-supported Python inter‐
face for working with DICOM images. Unfortunately, the pydicom Docker images do
not include Grassroots DICOM (GDCM), which is required for converting the
DICOM into a pixel array. Our solution to this problem was to use the pydicom
Docker container as a base image, then build a compatible GDCM version. The
resulting image we’ve named rawkintrevo/covid-prep-dicom. With pydicom and
GDCM it’s easy to convert DICOM images into tensors; we will use a Lightweight
Python Function to do the rest (see Example 9-1).

Example 9-1. Lightweight Python function converts DICOMs to tensors

def dicom_to_matrix(input_dir: str, output_file: str) -> output_type:

    import pydicom 
    import numpy as np

    def dicom_to_tensor(path): 
        dicoms = [pydicom.dcmread(f"{path}/{f}") for f in listdir(path)]
        slices = [d for d in dicoms if hasattr(d, "SliceLocation")]
        slices = sorted(slices, key=lambda s: s.SliceLocation)

        img_shape = list(slices[0].pixel_array.shape)
        img_shape.append(len(slices))
        img3d = np.zeros(img_shape)

        for i, s in enumerate(slices):
            img2d = s.pixel_array
            img3d[:, :, i] = img2d

The Denoising CT Scans Example | 181



        return {"img3d": img3d, "img_shape": img_shape}

    m = dicom_to_tensor(f"{input_dir}")

    np.savetxt(output_file, m['img3d'].reshape((-1,m['img_shape'][2])), delimiter=",") 
    return None

dicom_to_matrix_op = comp.func_to_container_op(
        dicom_to_matrix,
        base_image='rawkintrevo/covid-prep-dicom:0.8.0.0')

Our imports must occur within the function (not globally).

This function reads the list of “slices,” which themselves are 2D images, and
stacks them into a 3D tensor.

We use numpy to reshape the 3D tensor into a 2D matrix.

Next, let’s consider denoising our CT scan using Apache Spark and Apache Mahout.

DS-SVD with Apache Spark
The mathematics behind distributed stochastic singular value decomposition (DS-
SVD) are well beyond the scope of this book; however, we direct you to learn more in
Apache Mahout: Beyond MapReduce, on the Apache Mahout website, or in the afore‐
mentioned paper.

We seek to decompose our CT scan into a set of features, and then drop the least
important features, as these are probably noise. So let’s jump into decomposing a CT
scan with Apache Spark and Apache Mahout.

A significant feature of Apache Mahout is its “R-Like” domain-specific language,
which makes math code written in Scala easy to read. In Example 9-2 we load our
data into a Spark RDD, wrap that RDD in a Mahout distributed row matrix (DRM),
and perform the DS-SVD on the matrix, which yields three matrices that we will then
save.

Example 9-2. Decomposing a CT scan with Spark and Mahout

val pathToMatrix = "gs://covid-dicoms/s.csv" 

val voxelRDD:DrmRdd[Int]  = sc.textFile(pathToMatrix)
  .map(s => dvec( s.split(",")
  .map(f => f.toDouble)))
  .zipWithIndex
  .map(o => (o._2.toInt, o._1))

val voxelDRM = drmWrap(voxelRDD) 

182 | Chapter 9: Case Study Using Multiple Tools



// k, p, q should all be cli parameters
// k is rank of the output, e.g., the number of eigenfaces we want out.
// p is oversampling parameter,
// and q is the number of additional power iterations
// Read https://mahout.apache.org/users/dim-reduction/ssvd.html
val k = args(0).toInt
val p = args(1).toInt
val q = args(2).toInt

val(drmU, drmV, s) = dssvd(voxelDRM.t, k, p, q) 

val V = drmV.checkpoint().rdd.saveAsTextFile("gs://covid-dicoms/drmV")
val U = drmU.t.checkpoint().rdd.saveAsTextFile("gs://covid-dicoms/drmU")

sc.parallelize(s.toArray,1).saveAsTextFile("gs://covid-dicoms/s") 

Load the data.

Wrap the RDD in a DRM.

Perform the DS-SVD.

Save the output.

And so in just a few lines of Scala we are able to execute an out-of-core singular value
decomposition.

Visualization
There are lots of good libraries for visualization in R and Python, and we want to use
one of these for visualizing our denoised DICOMs. We also want to save our final
images to somewhere more persistent than a persistent volume container (PVC), so
that we can come back later to view our images.

This phase of the pipeline will have three steps:

1. Download the DRMs that resulted from the DS-SVD.
2. Recombine the matrices into a DICOM, denoised by setting some of the diagonal

values of the matrix s to zero.
3. Render a slice of the resulting DICOM visually.

Visualization could be easily accomplished in R or Python. We will
proceed in Python, but using the oro.dicom package in R. We have
chosen Python because Google officially supports a Python API for
interacting with Cloud Storage.

The Denoising CT Scans Example | 183



Downloading DRMs
Recall the DRM is really just a wrapper around an RDD. In the cloud storage bucket,
it will be represented as a directory full of “parts” of the matrix. To download these
files we use the helper function shown in Example 9-3.

Example 9-3. Helper function to download a directory from GCS

def download_folder(bucket_name = 'your-bucket-name',
                    bucket_dir = 'your-bucket-directory/',
                    dl_dir= "local-dir/"):
    storage_client = storage.Client()
    bucket = storage_client.get_bucket(bucket_name)
    blobs = bucket.list_blobs(prefix=bucket_dir)  # Get list of files
    for blob in blobs:
        filename = blob.name.replace('/', '_')
        blob.download_to_filename(dl_dir + filename)  # Download

At the time of writing, Mahout’s integration with Python is sparse (there is no
PySpark equivalent to this code).

Also, there are no helper functions for reading Mahout DRMs into Python NumPy
arrays, so we must write another helper function to assist us with that (shown in
Example 9-4).

Example 9-4. Helper function to read Mahout DRMs into NumPy matrices

def read_mahout_drm(path):
    data = {}
    counter = 0

    parts = [p for p in os.listdir(path) if "part"] 
    for p in parts:
        with open(f"{path}/{p}", 'r') as f:
            lines = f.read().split("\n")
            for l in lines[:-1]:
                counter +=1
                t = literal_eval(l)
                arr = np.array([t[1][i] for i in range(len(t[1].keys()))])
                data[t[0]] = arr
    print(f"read {counter} lines from {path}")
    return data

Remember, most Mahout DRMs will be in “parts” of files, so we must iterate
through the parts to reconstruct the matrix.

Recomposing the matrix into denoised images
In a singular value decomposition, the diagonal matrix of singular values are typically
denoted with a sigma. In our code, however, we use the letter s. By convention, these
values are typically ordered from most important to least important, and happily, this
convention is followed in the Mahout implementation. To denoise the images, we

184 | Chapter 9: Case Study Using Multiple Tools



simply set the last few values of the diagonals to zero. The idea is that the least impor‐
tant basis vectors probably represent noise which we seek to get rid of (see
Example 9-5).

Example 9-5. A loop to write several images

percs = [0.001, 0.01, 0.05, 0.1, 0.3]

for p in range(len(percs)):
    perc = percs[p]
    diags = [diags_orig[i]
             if i < round(len(diags) - (len(diags) * perc))
             else 0

             for i in range(len(diags))] 

    recon = drmU_p5 @ np.diag(diags) @ drmV_p5.transpose() 

    composite_img = recon.transpose().reshape((512,512,301)) 
    a1 = plt.subplot(1,1,1)

    plt.imshow(composite_img[:, :, 150], cmap=plt.cm.bone) 
    plt.title(f"{perc*100}% denoised.  (k={len(diags)}, oversample=15, power_iters=2)")
    a1.set_aspect(1.0)
    plt.axis('off')
    fname = f"{100-(perc*100)}%-denoised-img.png"
    plt.savefig(f"/tmp/{fname}")

    upload_blob(bucket_name, f"/tmp/{fname}", f"/output/{fname}") 

Set the last p% of the singular values to equal zero.

@ is the “matrix multiplication” operator.

We’re presuming our original image was 512 x 512 x 301 slices, which may or
may not be correct for your case.

Take the 150th slice.

We’ll talk about this function in the next section.

Now in our bucket, we will have several images in the /output/ folder, named for
what percentage of denoising they have been through.

Our output was an image of one slice of the DICOM. Instead, we could have output
several full DICOM files (one for each level of denoising) that could then be viewed
in a DICOM viewer, though the full example is a bit involved and out of scope for this
text. We encourage you to read pydicom’s documentation if you are interested in this
output.

The Denoising CT Scans Example | 185



The CT Scan Denoising Pipeline
To create our pipeline, we will first create a manifest for our Spark job, which will
specify what image to use, what secrets to use to mount what buckets, and a wide
array of other information. Then we will create a pipeline using our containers from
earlier steps and the manifest we define, which will output a PNG of one slice of the
DICOM image with varying levels of noise removed.

Spark operation manifest
Spark read/wrote the files from GCS because it has issues with ReadWriteOnce
(RWO) PVCs. We’ll need to download output from GCS, then upload.

The Apache Spark operator does not like to read from ReadWriteOnce PVCs. If your
Kubernetes is using these operators, and you can’t request ReadWriteMany (as, for
example, is the case on GCP), then you will need to use some other storage for the
original matrix which is to be decomposed.

Most of our containers to this point have used ContainerOp. As a Spark job may
actually consist of several containers, we will use a more generic ResourceOp. Defin‐
ing ResourceOps gives us much more power and control, but this comes at the cost of
the pretty Python API. To define a ResourceOp we must define a manifest (see
Example 9-6) and pass that to the ResourceOp creation (see the next section).

Example 9-6. Spark operation manifest

container_manifest = {
    "apiVersion": "sparkoperator.k8s.io/v1beta2",
    "kind": "SparkApplication",
    "metadata": {

        "name": "spark-app", 
        "namespace": "kubeflow"
    },
    "spec": {
        "type": "Scala",
        "mode": "cluster",
        "image": "docker.io/rawkintrevo/covid-basis-vectors:0.2.0",
        "imagePullPolicy": "Always",

        "hadoopConf": { 
            "fs.gs.project.id": "kubeflow-hacky-hacky",
            "fs.gs.system.bucket": "covid-dicoms",
            "fs.gs.impl" : "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem",
            "google.cloud.auth.service.account.enable": "true",
            "google.cloud.auth.service.account.json.keyfile": "/mnt/secrets/user-gcp-sa.json",
        },
        "mainClass": "org.rawkintrevo.covid.App",
        "mainApplicationFile": "local:///covid-0.1-jar-with-dependencies.jar",
        # See the Dockerfile
        "arguments": ["245", "15", "1"],
        "sparkVersion": "2.4.5",
        "restartPolicy": {

186 | Chapter 9: Case Study Using Multiple Tools



            "type": "Never"
        },
        "driver": {
            "cores": 1,

            "secrets": [ 
                {"name": "user-gcp-sa",
                 "path": "/mnt/secrets",
                 "secretType": "GCPServiceAccount"
                 }
            ],

            "coreLimit": "1200m",
            "memory": "512m",
            "labels": {
                "version": "2.4.5",
            },
            "serviceAccount": "spark-operatoroperator-sa", # also try spark-operatoroperator-sa
        },
        "executor": {
            "cores": 1,

            "secrets": [ 
                {"name": "user-gcp-sa",
                 "path": "/mnt/secrets",
                 "secretType": "GCPServiceAccount"
                 }
            ],

            "instances": 4, 
            "memory": "4084m"
        },
        "labels": {
            "version": "2.4.5"
        },

    }
}

Name of the app: you can check on progress in the console with kubectl logs
spark-app-driver.

Different cloud providers use slightly different configurations here.

We’re doing a decomposition on a very large matrix—you may want to give even
more resources than this if you can spare them.

Because we are accessing GCP, we need to base our image from
gcr.io/spark-operator/spark:v2.4.5-gcs-prometheus, which
has additional included JARs for accessing GCP (otherwise we
would use gcr.io/spark-operator/spark:v2.4.5).

While this is tuned for GCP, with a very minimal change in configuration, specifically
around the secrets, this could easily be ported to AWS or Azure.

The Denoising CT Scans Example | 187



If you are familiar with Kubernetes, you are probably used to seeing manifests repre‐
sented as YAML files. Here we have created a manifest with a Python dictionary. Next
we will use this dictionary in our pipeline definition to create a ResourceOp.

The pipeline
Finally, we have all of our necessary components. We will create a pipeline that strings
them together into a repeatable operation for us.

To review, Example 9-7 does the following:

• Downloads CT scans from GCP to a local PVC.
• Converts the CT scans (DICOM files) into a matrix (s.csv).
• A Spark job does a distributed stochastic singular value decomposition and

writes the output to GCP.
• The decomposed matrix is recomposed with some of the singular values set to

zero—thus denoising the image.

Example 9-7. CT scan denoising pipeline

from kfp.gcp import use_gcp_secret
@kfp.dsl.pipeline(
    name="Covid DICOM Pipe v2",
    description="Visualize Denoised CT Scans"
)
def covid_dicom_pipeline():
    vop = kfp.dsl.VolumeOp(
        name="requisition-PVC",
        resource_name="datapvc",
        size="20Gi", #10 Gi blows up...
        modes=kfp.dsl.VOLUME_MODE_RWO
    )

    step1 = kfp.dsl.ContainerOp( 
        name="download-dicom",
        image="rawkintrevo/download-dicom:0.0.0.4",
        command=["/run.sh"],
        pvolumes={"/data": vop.volume}
    )

    step2 = kfp.dsl.ContainerOp( 
        name="convert-dicoms-to-vectors",
        image="rawkintrevo/covid-prep-dicom:0.9.5",
        arguments=[
            '--bucket_name', "covid-dicoms",
        ],
        command=["python", "/program.py"],
        pvolumes={"/mnt/data": step1.pvolume}

    ).apply(kfp.gcp.use_gcp_secret(secret_name='user-gcp-sa')) 

    rop = kfp.dsl.ResourceOp( 
        name="calculate-basis-vectors",
        k8s_resource=container_manifest,

188 | Chapter 9: Case Study Using Multiple Tools



        action="create",
        success_condition="status.applicationState.state == COMPLETED"
    ).after(step2)

    pyviz = kfp.dsl.ContainerOp( 
        name="visualize-slice-of-dicom",
        image="rawkintrevo/visualize-dicom-output:0.0.11",
        command=["python", "/program.py"],
        arguments=[
            '--bucket_name', "covid-dicoms",
        ],
    ).apply(kfp.gcp.use_gcp_secret(secret_name='user-gcp-sa')).after(rop)

kfp.compiler.Compiler().compile(covid_dicom_pipeline,"dicom-pipeline-2.zip")
client = kfp.Client()

my_experiment = client.create_experiment(name='my-experiments')
my_run = client.run_pipeline(my_experiment.id, 'my-run1', 'dicom-pipeline-2.zip')

This container was not discussed, but it simply downloads images from a GCP
bucket to our local PVC.

Here we convert our DICOM into a matrix and upload it to a specified GCP
bucket.

This is the Spark job that calculates the singular value decomposition.

This is where DICOM images are reconstructed.

For GCP we use_gcp_secret, but similar functions exist for Azure and AWS.

For illustration, Figures 9-1 through 9-3 are slices of the DICOM image at various
levels of denoising. As we are not radiology experts, we won’t try to make any points
about changes in quality or what is optimal, other than to point out that at 10%
denoising we’ve probably gone too far, and at 30% we unquestionably have.

Figure 9-1. Original slice of DICOM

The Denoising CT Scans Example | 189



Figure 9-2. 1% denoised DICOM slice (left); 5% denoised DICOM slice (right)

Figure 9-3. 10% denoised DICOM slice (left); .5% denoised DICOM slice (right)

Again we see that while this pipeline is now hardcoded for GCP, it can with only a
few lines of updates be changed to work with AWS or Azure; specifically, how we
mount secrets to the container. A significant advantage of this is that we are able to
safely decouple passcodes from code.

Using RStats
Our examples have all been Python- or Scala-based, but remember—a container is
just an OS that is going to run a program. As such, you can use any language that can
exist in a container. To use an RStats script as a pipeline step:

1. Create a Docker container (probably from a preexisting images such as r-
base:latest).

2. Create a program that takes command-line arguments.
3. Output the results to a mounted PVC or save to a cloud storage provider.

190 | Chapter 9: Case Study Using Multiple Tools



3 With minor tuning for no GCE deployments.

Sharing the Pipeline
A final important benefit of Kubeflow is the reproducibility of experiments. While
often underscored in academia, reproducibiltiy is an important concept in business
settings as well. By containerizing pipeline steps, we can remove hidden dependencies
that allow a program to only run on one device—or, to put it another way, reproduci‐
bility prevents you from developing an algorithm that only runs on one person’s
machine.

The pipeline we present here should run on any Kubeflow deployment.3 This also
allows for rapid iteration. Any reader can use this pipeline as a basis and, for instance,
could create a final step where some deep learning is performed on the denoised
images and the original images to compare the effects of denoising.

Conclusion
We have now seen how to create very maintainable pipelines by leveraging containers
that have most, if not all, of the required dependencies to make our program run.
This not only removes the technical debt of having to maintain a system with all of
these dependencies, but makes the program much more transferable, and our
research much more easily transferable and reproducible.

There exists a large and exciting galaxy of Docker containers, and odds are you
already have some steps Dockerized in preexisting containers. Being able to leverage
these containers for Kubeflow Pipeline steps is certainly one of Kubeflow’s biggest
strengths.

Sharing the Pipeline | 191





CHAPTER 10

Hyperparameter Tuning and Automated
Machine Learning

In the previous chapters, we have seen how Kubeflow helps with the various phases of
machine learning. But knowing what to do in each phase—whether it’s feature prepa‐
ration or training or deploying models—requires some amount of expert knowledge
and experimentation. According to the “no free lunch” theorem, no single model
works best for every machine learning problem, therefore each model must be con‐
structed carefully. It can be very time-consuming and expensive to fully build a highly
performing model if each phase requires significant human input.

Naturally, one might wonder: is it possible to automate parts—or even the entirety—
of the machine learning process? Can we reduce the amount of overhead for data sci‐
entists while still sustaining high model quality?

In machine learning, the umbrella term for solving these type of problems is automa‐
ted machine learning (AutoML). It is a constantly evolving field of research, and has
found its way to the industry with practical applications. AutoML seeks to simplify
machine learning for experts and nonexperts alike by reducing the need for manual
interaction in the more time-consuming and iterative phases of machine learning:
feature engineering, model construction, and hyperparameter configuration.

In this chapter we will see how Kubeflow can be used to automate hyperparameter
search and neural architecture search, two important subfields of AutoML.

193



AutoML: An Overview
AutoML refers to the various processes and tools that automate parts of the machine
learning process. At a high level, AutoML refers to any algorithms and methodologies
that seek to solve one or more of the following problems:

Data preprocessing
Machine learning requires data, and raw data can come from various sources and
in different formats. To make raw data useful, human experts typically have to
comb over the data, normalize values, remove erroneous or corrupted data, and
ensure data consistency.

Feature engineering
Training models with too few input variables (or “features”) can lead to inaccu‐
rate models. However, having too many features can also be problematic; the
learning process would be slower and more resource-consuming, and overfitting
problems can occur. Coming up with the right set of features can be the most
time-consuming part of building a machine learning model. Automated feature
engineering can speed up the process of feature extraction, selection, and
transformation.

Model selection
Once you have all the training data, you need to pick the right training model for
your dataset. The ideal model should be as simple as possible while still providing
a good measure of prediction accuracy.

Hyperparameter tuning
Most learning models have a number of parameters that are external to the
model, such as the learning rate, the batch size, and the number of layers in the
neural network. We call these hyperparameters to distinguish them from model
parameters that are adjusted by the learning process. Hyperparameter tuning is
the process of automating the search process for these parameters in order to
improve the accuracy of the model.

Neural architecture search
A related field to hyperparameter tuning is neural architecture search (NAS).
Instead of choosing between a fixed range of values for each hyperparameter
value, NAS seeks to take automation one step further and generates an entire
neural network that outperforms handcrafted architectures. Common methodol‐
ogies for NAS include reinforcement learning and evolutionary algorithms.

The focus of this chapter will be on the latter two problems—hyperparameter tuning
and neural architecture search. As they are related, they can be solved using similar
methodologies.

194 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



Hyperparameter Tuning with Kubeflow Katib
In Chapter 7, it was mentioned that we needed to set a few hyperparameters. In
machine learning, hyperparameters refer to parameters that are set before the train‐
ing process begins (as opposed to model parameters which are learned from the
training process). Examples of hyperparameters include the learning rate, number of
decision trees, number of layers in a neural network, etc.

The concept of hyperparameter optimization is very simple: select the set of hyper‐
parameter values that lead to optimal model performance. A hyperparameter tuning
framework is a tool that does exactly that. Typically, the user of such a tool would
define a few things:

• The list of hyperparameters and their valid range of values (called the search
space)

• The metrics used to measure model performance
• The methodology to use for the searching process

Kubeflow comes packaged with Katib, a general framework for hyperparameter tun‐
ing. Among similar open source tools, Katib has a few distinguishing features:

It is Kubernetes native
This means that Katib experiments can be ported wherever Kubernetes runs.

It has multiframework support
Katib supports many popular learning frameworks, with first-class support for
TensorFlow and PyTorch distributed training.

It is language-agnostic
Training code can be written in any language, as long as it is built as a Docker
image.

The name katib means “secretary” or “scribe” in Arabic, and is an
homage to the Vizier framework that inspired its initial version
(“vizier” being Arabic for a minister or high official).

In this chapter, we’ll take a look at how Katib simplifies hyperparameter optimization.

Hyperparameter Tuning with Kubeflow Katib | 195



Katib Concepts
Let’s begin by defining a few terms that are central to the workflow of Katib (as illus‐
trated in Figure 10-1):

Experiment
An experiment is an end-to-end process that takes a problem (e.g., tuning a
training model for handwriting recognition), an objective metric (maximize the
prediction accuracy), and a search space (range for hyperparameters), and pro‐
duces a final set of optimal hyperparameter values.

Suggestion
A suggestion is one possible solution to the problem we are trying to solve. Since
we are trying to find the combination of hyperparameter values that lead to opti‐
mal model performance, a suggestion would be one set of hyperparameter values
from the specified search space.

Trial
A trial is one iteration of the experiment. Each trial takes a suggestion and exe‐
cutes a worker process (packaged through Docker) that produces evaluation met‐
rics. Katib’s controller then computes the next suggestion based on previous
metrics and spawns new trials.

Figure 10-1. Katib system workflow

In Katib, experiments, suggestions, and trials are all custom resour‐
ces. This means they are stored in Kubernetes and can be manipu‐
lated using standard Kubernetes APIs.

196 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



Another important aspect of hyperparameter tuning is how to find the next set of
parameters. As of the time of this writing, Katib supports the following search
algorithms:

Grid search
Also known as a parameter sweep, grid search is the simplest approach—exhaus‐
tively search through possible parameter values in the specified search space.
Although resource-intensive, grid search has the advantage of having high paral‐
lelism since the tasks are completely independent.

Random search
Similar to grid search, the tasks in random search are completely independent.
Instead of enumerating every possible value, random search attempts to generate
parameter values through random selection. When there are many hyperparame‐
ters to tune (but only a few have significant impact on model performance), ran‐
dom search can vastly outperform grid search. Random search can also be useful
when the number of discrete parameters is high, which makes grid search
infeasible.

Bayesian optimization
This is a powerful approach that uses probability and statistics to seek better
parameters. Bayesian optimization builds a probabilistic model for the objective
function, finds parameter values that perform well on the model, and then itera‐
tively updates the model based on metrics collected during trial runs. Intuitively
speaking, Bayesian optimization seeks to improve upon a model by making
informed guesses. This optimization method relies on previous iterations to find
new parameters, and can be parallelized. While trials are not as independent as
grid or random search, Bayesian optimization can find results with fewer trials
overall.

Hyperband
This is a relatively new approach that selects configuration values randomly. But
unlike traditional random search, hyperband only evaluates each trial for a small
number of iterations. Then it takes the best-performing configurations and runs
them longer, repeating this process until a desired result is reached. Due to its
similarity to random search, tasks can be highly parallelized.

Other experimental algorithms
These include the tree of Parzen estimators (TPE) and covariance matrix adapta‐
tion evolution strategy (CMA-ES), both implemented by using the Goptuna opti‐
mization framework.

One final piece of the puzzle in Katib is the metrics collector. This is the process that
collects and parses evaluation metrics after each trial and pushes them into the

Katib Concepts | 197



persistent database. Katib implements metrics collection through a sidecar container,
which runs alongside the main container in a pod.

Overall, Katib’s design makes it highly scalable, portable, and extensible. Since it is
part of the Kubeflow platform, Katib natively supports integration with many of
Kubeflow’s other training components, like the TFJob and PyTorch operators. Katib is
also the first hyperparameter tuning framework that supports multitenancy, making
it ideal for a cloud hosted environment.

Installing Katib
Katib is installed by default. To install Katib as a standalone service, you can use the
following script in the Kubeflow GitHub repo:

git clone https://github.com/kubeflow/katib
bash ./katib/scripts/v1beta1/deploy.sh

If your Kubernetes cluster doesn’t support dynamic volume provisioning, you would
also create a persistent volume:

pv_path=https://raw.githubusercontent.com/kubeflow/katib/master/manifests\
/v1beta1/pv/pv.yaml
kubectl apply -f pv_path

After installing Katib components, you can navigate to the Katib dashboard to verify
that it is running. If you installed Katib through Kubeflow and have an endpoint, sim‐
ply navigate to the Kubeflow dashboard and select “Katib” in the menu. Otherwise,
you can set up port forwarding to test your deployment:

kubectl port-forward svc/katib-ui -n kubeflow 8080:80

Then navigate to:
http://localhost:8080/katib/

Running Your First Katib Experiment
Now that Katib is up and running in your cluster, let’s take a look at how to run an
actual experiment. In this section we will use Katib to tune a simple MNist model.
You can find the source code and all configuration files on Katib’s GitHub page.

198 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



Prepping Your Training Code
The first step is to prepare your training code. Since Katib runs training jobs for trial
evaluation, each training job needs to be packaged as a Docker container. Katib is
language-agnostic, so it does not matter how you write the training code. However, to
be compatible with Katib, the training code must satisfy a couple of requirements:

• Hyperparameters must be exposed as command-line arguments. For example:

python mnist.py --batch_size=100 --learning_rate=0.1

• Metrics must be exposed in a format consistent with the metrics collector. Katib
currently supports metrics collection through standard output, file, TensorFlow
events, or custom. The simplest option is to use the standard metrics collector,
which means the evaluation metrics must be written to stdout, in the following
format:

metrics_name=metrics_value

The example training model code that we will use can be found on this GitHub site.

After preparing the training code, simply package it as a Docker image and it is ready
to go.

Configuring an Experiment
Once you have the training container, the next step is to write a spec for your experi‐
ment. Katib uses Kubernetes custom resources to represent experiments.
Example 10-1 can be downloaded from this GitHub page.

Example 10-1. Example experiment spec

apiVersion: "kubeflow.org/v1beta1"
kind: Experiment
metadata:
  namespace: kubeflow
  labels:
    controller-tools.k8s.io: "1.0"
  name: random-example
spec:

  objective:               
    type: maximize
    goal: 0.99
    objectiveMetricName: Validation-accuracy
    additionalMetricNames:
      - Train-accuracy

  algorithm:               
    algorithmName: random

  parallelTrialCount: 3    
  maxTrialCount: 12
  maxFailedTrialCount: 3

Running Your First Katib Experiment | 199



  parameters:              
    - name: --lr
      parameterType: double
      feasibleSpace:
        min: "0.01"
        max: "0.03"
    - name: --num-layers
      parameterType: int
      feasibleSpace:
        min: "2"
        max: "5"
    - name: --optimizer
      parameterType: categorical
      feasibleSpace:
        list:
        - sgd
        - adam
        - ftrl

  trialTemplate:           
    goTemplate:
        rawTemplate: |-
          apiVersion: batch/v1
          kind: Job
          metadata:
            name: {{.Trial}}
            namespace: {{.NameSpace}}
          spec:
            template:
              spec:
                containers:
                - name: {{.Trial}}
                  image: docker.io/kubeflowkatib/mxnet-mnist
                  command:
                  - "python3"
                  - "/opt/mxnet-mnist/mnist.py"
                  - "--batch-size=64"
                  {{- with .HyperParameters}}
                  {{- range .}}
                  - "{{.Name}}={{.Value}}"
                  {{- end}}
                  {{- end}}
                restartPolicy: Never

That’s quite a lot to follow. Let’s take a closer look at each part of the spec section:

Objective. This is where you configure how to measure the performance of your
training model, and the goal of the experiment. In this experiment, we are trying
to maximize the validation-accuracy metric. We are stopping our experiment if
we reach the objective goal of 0.99 (99% accuracy). The additionalMetrics
Names represents metrics that are collected from each trial, but aren’t used to
evaluate the trial.

Algorithm. In this experiment we are using random search; some algorithms may
require additional configurations.

200 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



Budget configurations. This is where we configure our experiment budget. In this
experiment, we would run 3 trials in parallel, with a total of 12 trials. We would
also stop our experiment if we have three failed trials. This last part is also called
an error budget—an important concept in maintaining production-grade system
uptime.

Parameters. Here we define which parameters we want to tune and the search
space for each. For example, the learning rate parameter is exposed in the
training code as --lr. It is a double, with a contiguous search space between 0.01
and 0.03.

Trial template. The last part of the experiment spec is the template from which
each trial is configured. For the purpose of this example, the only important parts
are:

    image: docker.io/kubeflowkatib/mxnet-mnist
    command:
      - "python3"
      - "/opt/mxnet-mnist/mnist.py"
      - "--batch-size=64"

This should point to the Docker image that you built in the previous step, with the
command-line entry point to run the code.

Running the Experiment
After everything is configured, apply the resource to start the experiment:

kubectl apply -f random-example.yaml

You can check the status of the experiment by running the following:
kubectl -n kubeflow describe experiment random-example

In the output, you should see something like Example 10-2.

Example 10-2. Example experiment output

Name:         random-example
Namespace:    kubeflow
Labels:       controller-tools.k8s.io=1.0
Annotations:  <none>
API Version:  kubeflow.org/v1beta1
Kind:         Experiment
Metadata:
  Creation Timestamp:  2019-12-22T22:53:25Z
  Finalizers:
    update-prometheus-metrics
  Generation:        2
  Resource Version:  720692
  Self Link:         /apis/kubeflow.org/v1beta1/namespaces/kubeflow/experiments/random-example
  UID:               dc6bc15a-250d-11ea-8cae-42010a80010f

Running Your First Katib Experiment | 201



Spec:
  Algorithm:
    Algorithm Name:        random
    Algorithm Settings:    <nil>
  Max Failed Trial Count:  3
  Max Trial Count:         12
  Metrics Collector Spec:
    Collector:
      Kind:  StdOut
  Objective:
    Additional Metric Names:
      accuracy
    Goal:                   0.99
    Objective Metric Name:  Validation-accuracy
    Type:                   maximize
  Parallel Trial Count:     3
  Parameters:
    Feasible Space:
      Max:           0.03
      Min:           0.01
    Name:            --lr
    Parameter Type:  double
    Feasible Space:
      Max:           5
      Min:           2
    Name:            --num-layers
    Parameter Type:  int
    Feasible Space:
      List:
        sgd
        adam
        ftrl
    Name:            --optimizer
    Parameter Type:  categorical
  Trial Template:
    Go Template:
      Raw Template:  apiVersion: batch/v1
kind: Job
metadata:
  name: {{.Trial}}
  namespace: {{.NameSpace}}
spec:
  template:
    spec:
      containers:
      - name: {{.Trial}}
        image: docker.io/kubeflowkatib/mxnet-mnist-example
        command:
        - "python"
        - "/mxnet/example/image-classification/train_mnist.py"
        - "--batch-size=64"
        {{- with .HyperParameters}}
        {{- range .}}
        - "{{.Name}}={{.Value}}"
        {{- end}}
        {{- end}}
      restartPolicy: Never

Status:                                       
  Conditions:

202 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



    Last Transition Time:  2019-12-22T22:53:25Z
    Last Update Time:      2019-12-22T22:53:25Z
    Message:               Experiment is created
    Reason:                ExperimentCreated
    Status:                True
    Type:                  Created
    Last Transition Time:  2019-12-22T22:55:10Z
    Last Update Time:      2019-12-22T22:55:10Z
    Message:               Experiment is running
    Reason:                ExperimentRunning
    Status:                True
    Type:                  Running

  Current Optimal Trial:                      
    Observation:
      Metrics:
        Name:   Validation-accuracy
        Value:  0.981091
    Parameter Assignments:
      Name:          --lr
      Value:         0.025139701133432946
      Name:          --num-layers
      Value:         4
      Name:          --optimizer
      Value:         sgd
  Start Time:        2019-12-22T22:53:25Z

  Trials:            12                       
  Trials Running:    2
  Trials Succeeded:  10
Events:              <none>

Some of the interesting parts of the output are:

Status. Here you can see the current state of the experiment, as well as its previ‐
ous states.

Current Optimal Trial. This is the “best” trial so far, i.e., the trial that produced
the best outcome as determined by our predefined metrics. You can also see this
trial’s parameters and metrics.

Trials Succeeded/Running/Failed. In this section, you can see how your experi‐
ment is progressing.

Running Your First Katib Experiment | 203



Katib User Interface
Alternatively, you can use Katib’s user interface (UI) to submit and monitor your
experiments. If you have a Kubeflow deployment, you can navigate to the Katib UI by
clicking “Katib” in the navigation panel and then “Hyperparameter Tuning” on the
main page, shown in Figure 10-2.

Figure 10-2. Katib UI main page

Let’s submit our random search experiment (see Figure 10-3). You can simply paste a
YAML in the textbox here, or have one generated for you by following the UI. To do
this, click the Parameters tab.

Figure 10-3. Configuring a new experiment, part 1

204 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



You should see a panel like Figure 10-4. Enter the necessary configuration parameters
on this page; define a run budget and the validation metrics.

Figure 10-4. Configuring a new experiment, part 2

Then scroll down the page and finish up the rest of the experiment by configuring the
search space and the trial template. For the latter, you can just leave it on the default
template. When you are done, click “Deploy.”

Running Your First Katib Experiment | 205



Now that the experiment is running, you can monitor its status and see a visual graph
of the progress (see Figure 10-5). You can see your running and completed experi‐
ments by navigating to the drop-down menu in the Katib dashboard, and then select‐
ing “UI” and then “Monitor.”

Figure 10-5. Katib UI for an experiment

206 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



Below this graph, you will see a detailed breakdown of each trial (shown in
Figure 10-6), the values of the hyperparameters for each of the trials, and the final
metric values. This is very useful for comparing the effects of certain hyperparame‐
ters on the model’s performance.

Figure 10-6. Katib metrics for an experiment

Running Your First Katib Experiment | 207



Since we are also collecting validation metrics along the way, we can actually plot the
graph for each trial. Click a row to see how the model performs with the given hyper‐
parameter values across time (as in Figure 10-7).

Figure 10-7. Metrics for each trial

Tuning Distributed Training Jobs
In Chapter 7 we saw an example of using Kubeflow to orchestrate distributed train‐
ing. What if we want to use Katib to tune parameters for a distributed training job?

The good news is that Katib natively supports integration with TensorFlow and
PyTorch distributed training. An MNIST example with TensorFlow can be found at
this Katib GitHub page. This example uses the same MNIST distributed training
example we saw in Chapter 7, and directly integrates it into the Katib framework. In
Example 10-3, we will launch an experiment to tune hyperparameters (learning rate
and batch size) for a distributed TensorFlow job.

Example 10-3. Distributed training example

apiVersion: "kubeflow.org/v1beta1"
kind: Experiment
metadata:
  namespace: kubeflow
  name: tfjob-example
spec:

208 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



  parallelTrialCount: 3             
  maxTrialCount: 12
  maxFailedTrialCount: 3

  objective:                        
    type: maximize
    goal: 0.99
    objectiveMetricName: accuracy_1
  algorithm:
    algorithmName: random

  metricsCollectorSpec:             
    source:
      fileSystemPath:
        path: /train
        kind: Directory
    collector:
      kind: TensorFlowEvent

  parameters:                       
    - name: learning_rate
      parameterType: double
      feasibleSpace:
        min: "0.01"
        max: "0.05"
    - name: batch_size
      parameterType: int
      feasibleSpace:
        min: "100"
        max: "200"
  trialTemplate:
    trialParameters:
      - name: learningRate
        description: Learning rate for the training model
        reference: learning_rate
      - name: batchSize
        description: Batch Size
        reference: batch_size
    trialSpec:
      apiVersion: "kubeflow.org/v1"
      kind: TFJob
      spec:

        tfReplicaSpecs:             
          Worker:
            replicas: 2
            restartPolicy: OnFailure
            template:
              spec:
                containers:
                  - name: tensorflow
                    image: gcr.io/kubeflow-ci/tf-mnist-with-summaries:1.0
                    imagePullPolicy: Always
                    command:
                      - "python"
                      - "/var/tf_mnist/mnist_with_summaries.py"
                      - "--log_dir=/train/metrics"
                      - "--learning_rate=${trialParameters.learningRate}"
                      - "--batch_size=${trialParameters.batchSize}"

The total and parallel trial counts are similar to the previous experiment. In this
case they refer to the total and parallel number of distributed training jobs to run.

Tuning Distributed Training Jobs | 209



1 T. Elsken, J. H. Metzen, F. Hutter, “Neural Architecture Search: A Survey,” Journal of Machine Learning
Research 20 (2019), https://oreil.ly/eO-CV, pp. 1-21.

The objective specification is also similar—in this case we want to maximize the
accuracy measurement.

The metrics collector specification looks slightly different. This is because this is a
TensorFlow job, and we can use TFEvents outputted by TensorFlow directly.
Using the built-in TensorFlowEvent collector type, Katib can automatically parse
TensorFlow events and populate the metrics database.

The parameter configurations are exactly the same—in this case we are tuning
the learning rate and batch size of the model.

The trial template should look familiar to you if you read Chapter 7—it’s the
same distributed training example spec that we ran before. The imporant differ‐
ence here is that we’ve parameterized the input to learning_rate and
batch_size.

So now you have learned how to use Katib to tune hyperparameters. But notice that
you still have to select the model yourself. Can we reduce the amount of human work
even further? What about other subfields in AutoML? In the next section we will look
at how Katib supports the generation of entire artificial neural networks.

Neural Architecture Search
Neural architecture search (NAS) is a growing subfield in automated machine learn‐
ing. Unlike hyperparameter tuning, where the model is already chosen and our goal is
to optimize its performance by turning a few knobs, in NAS we are trying to generate
the network architecture itself. Recent research has shown that NAS can outperform
handcrafted neural networks on tasks like image classification, object detection, and
semantic segmentation.1

Most the methodologies for NAS can be categorized as either generation methods or
mutation methods. In generation methods, the algorithm will propose one or more
candidate architectures in each iteration. These proposed architectures are then eval‐
uated and then refined in the next iteration. In mutation methods, an overly complex
architecture is proposed first, and subsequent iterations will attempt to prune the
model.

210 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



2 H. Liu, K. Simonyan, and Y. Tang, “Differentiable Architecture Search (DARTS),” https://oreil.ly/JSAIX.
3 H. Pham et al., “Efficient Neural Architecture Search via Parameter Sharing,” https://oreil.ly/SQPxn.

Katib currently supports two implementations of NAS: Differentiable Architecture
Search (DARTS),2 and Efficient Neural Architecture Search (ENAS).3 DARTS achieves
scalability of NAS by relaxing the search space to be continuous instead of discrete
and utilizes gradient descent to optimize the architecture. ENAS takes a different
approach, by observing that in most NAS algorithms the bottleneck occurs during the
training of each child model. ENAS forces each child model to share parameters, thus
improving the overall efficiency.

The general workflow of NAS in Katib is similar to hyperparameter search, with an
additional step for constructing the model architecture. An internal module of Katib,
called the model manager, is responsible for taking topological configurations and
mutation parameters, and constructing new models. Katib then uses the same con‐
cepts of trials and metrics to evaluate the model’s performance.

As an example, see the spec of a NAS experiment using DARTS in Example 10-4.

Example 10-4. Example NAS experiment spec

apiVersion: "kubeflow.org/v1beta1"
kind: Experiment
metadata:
  namespace: kubeflow
  name: darts-example-gpu
spec:
  parallelTrialCount: 1
  maxTrialCount: 1
  maxFailedTrialCount: 1
  objective:
    type: maximize
    objectiveMetricName: Best-Genotype
  metricsCollectorSpec:
    collector:
      kind: StdOut
    source:
      filter:
        metricsFormat:
          - "([\\w-]+)=(Genotype.*)"
  algorithm:
    algorithmName: darts
    algorithmSettings:
      - name: num_epochs
        value: "3"

  nasConfig:                     
    graphConfig:
      numLayers: 3
    operations:
      - operationType: separable_convolution
        parameters:

Neural Architecture Search | 211



          - name: filter_size
            parameterType: categorical
            feasibleSpace:
              list:
                - "3"
      - operationType: dilated_convolution
        parameters:
          - name: filter_size
            parameterType: categorical
            feasibleSpace:
              list:
                - "3"
                - "5"
      - operationType: avg_pooling
        parameters:
          - name: filter_size
            parameterType: categorical
            feasibleSpace:
              list:
                - "3"
      - operationType: max_pooling
        parameters:
          - name: filter_size
            parameterType: categorical
            feasibleSpace:
              list:
                - "3"
      - operationType: skip_connection
  trialTemplate:
    trialParameters:
      - name: algorithmSettings
        description: Algorithm settings of DARTS Experiment
        reference: algorithm-settings
      - name: searchSpace
        description: Search Space of DARTS Experiment
        reference: search-space
      - name: numberLayers
        description: Number of Neural Network layers
        reference: num-layers
    trialSpec:
      apiVersion: batch/v1
      kind: Job
      spec:
        template:
          spec:
            containers:
              - name: training-container
                image: docker.io/kubeflowkatib/darts-cnn-cifar10
                imagePullPolicy: Always
                command:
                  - python3
                  - run_trial.py
                  - --algorithm-settings="${trialParameters.algorithmSettings}"
                  - --search-space="${trialParameters.searchSpace}"
                  - --num-layers="${trialParameters.numberLayers}"
                resources:
                  limits:
                    nvidia.com/gpu: 1
            restartPolicy: Never

212 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



The general structure of a NAS experiment is similar to that of a hyperparameter
search experiment. The majority of the specification should look very familiar;
the most important difference is the addition of the nasConfig. This is where you
can configure the specifications of the neural network that you want to create,
such as the number of layers, the inputs and outputs at each layer, and the types
of operations.

Advantages of Katib over Other Frameworks
There are many similar open source systems for hyperparameter search, among them
NNI, Optuna, Ray Tune, and Hyperopt. In addition, the original design of Katib was
inspired by Google Vizier. While these frameworks offer many capabilities similar to
Katib’s, namely the ability to configure parallel hyperparameter sweeps using a variety
of algorithms, there are a few features of Katib that make it unique:

Design catering to both user and admin
Most tuning frameworks are designed to cater to the user—the data scientist per‐
forming the tuning experiment. Katib is also designed to make life easier for the
system admin, who is responsible for maintaining the infrastructure, allocating
compute resources, and monitoring system health.

Cloud native design
Other frameworks (such as Ray Tune) may support integration with Kubernetes,
but often require additional effort to set up a cluster. By contrast, Katib is the first
hyperparameter search framework to base its design entirely on Kubernetes;
every one of its resources can be accessed and manipulated by Kubernetes APIs.

Scalable and portable
Because Katib uses Kubernetes as its orchestration engine, it is very easy to scale
up an experiment. You can run the same experiments on a laptop for prototyping
and deploy the job to a production cluster with minimal changes to the spec. By
contrast, other frameworks require additional effort to install and configure
depending on the hardware availability.

Extensible
Katib offers flexible and pluggable interfaces for its search algorithms and storage
systems. Most other frameworks come with a preset list of algorithms and have
hardcoded mechanisms for metrics collection. In Katib, the user can easily imple‐
ment a custom search algorithm and integrate it with the framework.

Native support
Katib natively supports advanced features like distributed training and neural
architecture search.

Advantages of Katib over Other Frameworks | 213



Conclusion
In this chapter we’ve taken a quick overview of AutoML and learned how it can accel‐
erate the development of machine learning models by automating time-consuming
tasks like hyperparameter search. With techniques like automated hyperparameter
tuning, you can scale up the development of your models while sustaining high
model quality.

We have then used Katib—a Kubernetes-native tuning service from the Kubeflow
platform—to configure and execute a hyperparameter search experiment. We have
also shown how you can use Katib’s dashboard to submit, track, and visualize your
experiments.

We’ve also explored how Katib handles neural architecture search (NAS). Katib cur‐
rently supports two methods of NAS—DARTS and ENAS, with more development to
follow.

Hopefully, this has given you some insights into how Katib can be leveraged to reduce
the amount of work in your machine learning workflows. Katib is still an evolving
project, and you can follow the latest developments on this Katib GitHub page.

 

Thank you for joining us on your adventures in learning Kubeflow. We hope that
Kubeflow meets your needs and helps you deliver on machine learning’s ability to
bring value to your organization. To keep up to date on the latest changes with Kube‐
flow, we encourage you to join the Kubeflow Slack workspace and mailing lists.

214 | Chapter 10: Hyperparameter Tuning and Automated Machine Learning



APPENDIX A

Argo Executor Configurations
and Trade-Offs

Until recently, all Kubernetes implementations supported Docker APIs. The initial
Argo implementation depended on them. With the introduction of OpenShift 4,
which doesn’t support the Docker APIs, the situation changed. To support the
absence of Docker APIs, Argo introduced several new executors: Docker, Kubelet,
and Kubernetes APIs. The containerRuntimeExecutor config value in the Argo
parameters file controls which executor is used. The pros and cons of each executor
(based on the information here) are summarized in Table A-1. This table should help
you pick the correct value of the Argo executor.

Table A-1. Argo and Kubernetes APIs

Executor Docker Kubelet Kubernetes API PNC
Pros Supports all workflow

examples. Most reliable,
well tested, very scalable.
Communicates with
Docker daemon for heavy
lifting.

Secure. Can’t escape
pod’s service account
privileges. Medium
scalability. Log retrieval
and container polling are
done against Kubelet.

Secure. Can’t escape
privileges of pod’s service
account. No extra
configuration.

Secure. Can’t escape service
account privileges. Artifact
collection can be done from
base image layer. Scalable:
process polling is done over
procfs, not kubelet/k8s API.

Cons Least secure. Requires
docker.sock of host
to be mounted (often
rejected by OPA).

Additional kubelet
configuration may be
required. Can only save
params/artifacts in
volumes (e.g., empty
Dir), and not the base
image layer (e.g., /tmp).

Least scalable. Log
retrieval and container
polling are done against
k8s API server. Can only
save params/artifacts in
volumes (e.g., empty
Dir), and not the base
image layer (e.g., /tmp).

Processes no longer run
with pid 1. Artifact
collection may fail for
containers completing too
fast. Can’t capture artifact
directories from base image
layer with volume mounted
under it. Immature.

Argo
Config

docker kubelet k8sapi pns

215





APPENDIX B

Cloud-Specific Tools and Configuration

Cloud-specific tools can accelerate your development, but they can also cause vendor
lock-in.

Google Cloud
Since Kubeflow originates from Google, it is no surprise that there are some extra fea‐
tures available when running on Google Cloud. We’ll quickly point out how to use
TPUs and Dataflow to accelerate your machine learning pipelines, and more Google-
specific components are available in the Kubeflow GitHub repo.

TPU-Accelerated Instances
Different parts of the machine learning process can benefit from not only different 
numbers of machines, but also different types of machines. The most common exam‐
ple is with model serving: often lots of low-memory machines can perform reasona‐
bly well, but for model training, high-memory or TPU accelerated machines can offer
greater benefits. While there is a handy built-in shorthand for using GPUs, with
TPUs you need to explicitly import kfp.gcp as gcp. Once you’ve imported kfp’s gcp
you can add TPU resources to any container operation in a similar way to GPUs by
adding .apply(gcp.use_tpu(tpu_cores=cores, tpu_resource=version, tf_ver
sion=tf_version)) to your container operation.

TPU nodes are only available in certain regions. Check this Google
Cloud page for a list of supported regions.

217



Dataflow for TFX
On Google Cloud you can configure Kubeflow’s TFX components to use Google’s
Dataflow for distributed processing. To do this, you will need to specify a distributed
output location (since there is not a shared persistent volume between the workers),
and configure TFX to use the Dataflow runner. The simplest way to show this is by
revisiting Example 5-8; to use Dataflow we would change it to Example B-1.

Example B-1. Changing the pipeline to use Dataflow

generated_output_uri = root_output_uri + kfp.dsl.EXECUTION_ID_PLACEHOLDER
beam_pipeline_args = [
    '--runner=DataflowRunner',
    '--project=' + project_id,
    '--temp_location=' + root_output_uri + '/tmp'),
    '--region=' + gcp_region,
    '--disk_size_gb=50', # Adjust as needed
]

records_example = tfx_csv_gen(
    input_uri=fetch.output, # Must be on distributed storage
    beam_pipeline_args=beam_pipeline_args,
    output_examples_uri=generated_output_uri)

As you can see, changing the pipeline to use Dataflow is relatively simple and opens
up a larger scale of data for processing.

While cloud-specific accelerations can be beneficial, be careful that the trade-off is
worth the additional future headache if you ever need to change providers.

218 | Appendix B: Cloud-Specific Tools and Configuration



APPENDIX C

Using Model Serving in Applications

In Chapter 8 you learned different approaches for exposing model servers provided
by Kubeflow. As described there, Kubeflow provides several ways of deploying trained
models and providing both REST and gRPC interfaces for running model inference.
However, it falls short in providing support for using these models in custom applica‐
tions. Here we will present some of the approaches to building applications by lever‐
aging model servers exposed by Kubeflow.

When it comes to applications leveraging model inference, they can be broadly classi‐
fied into two categories: real time and batch applications. In the real time/stream
applications model, inference is done on data directly as it is produced or received. In
this case, typically only one request is available at a time and it can be used for infer‐
encing as it arrives. In the batch scenarios all of the data is available up front and can
be used for inference either sequentially or in parallel. We will start from the stream‐
ing use case and then take a look at possible batch implementations.

Building Streaming Applications Leveraging
Model Serving
The majority of today’s streaming applications leverage Apache Kafka as the data
backbone of a system. The two possible options for implementing streaming applica‐
tions themselves are: usage of stream processing engines and usage of stream process‐
ing libraries.

219



1 L. Affetti et al., “Defining the Execution Semantics of Stream Processing Engines,” Journal of Big Data 4
(2017), https://oreil.ly/TcI39.

2 Compare to MapReduce architecture.

Stream Processing Engines and Libraries
As defined in the article “Defining the Execution Semantics of Stream Processing
Engines,”1 modern stream processing engines are based on organizing computations
into blocks and leveraging cluster architectures.2 Splitting computations in blocks
enables execution parallelism, where different blocks run on different threads on the
same machine, or on different machines. It also enables failover by moving execution
blocks from failed machines to healthy ones. Additionally, checkpointing supported
by modern engines further improves the reliability of cluster-based execution.

Stream processing libraries, on the other hand, are libraries with a domain-specific
language providing a set of constructs that simplify building streaming applications.
Such libraries typically do not support distribution and/or clustering—this is typi‐
cally left as an exercise for developers.

Because these options sound similar, they are often used interchangeably. In reality, as
Jay Kreps has outlined in his blog, stream processing engines and stream processing
libraries are two very different approaches to building streaming applications and
choosing one of them is a trade-off between power and simplicity. As described pre‐
viously, stream processing engines provide more functionality, but require a devel‐
oper to adhere to their programming model and deployment. They also often require
a steeper learning curve for mastering their functionality. Stream processing libraries,
on another hand, are typically easier to use, providing more flexibility, but require
specific implementation of deployment, scalability, and load balancing.

Today’s most popular stream processing engines include the following:

• Apache Spark
• Apache Flink
• Apache Beam

The most popular stream libraries are:

• Apache Kafka streams
• Akka streams

220 | Appendix C: Using Model Serving in Applications



3 For implementation details, see the report, Serving Machine Learning Models, and Kai Waehner’s project on
GitHub.

All of these can be used as a platform for building streaming applications including
model serving.3

A side-by-side comparison of stream processing engines (Flink) and stream process‐
ing libraries (Kafka streams), done jointly by data Artisans (currently Vervetica) and
Confluent teams, also emphasizes yet another difference between stream processing
engines and libraries: enterprise ownership. Stream processing engines are typically
owned and managed centrally by enterprise-wide units, while stream processing
libraries are typically under the purview of individual development teams, which
often makes their adoption much simpler. A stream processing engine is a good fit
for applications that require features provided out of the box by such engines, includ‐
ing cluster scalability and high throughput through parallelism across a cluster, event-
time semantics, checkpointing, built-in support for monitoring and management,
and mixing of stream and batch processing. The drawback of using engines is that
you are constrained by the programming and deployment models they provide.

In contrast, the stream processing libraries provide a programming model that allows
developers to build the applications or microservices the way that fits their precise
needs and deploy them as simple standalone Java applications. But in this case they
need to roll out their own scalability, high availability, and monitoring solutions
(Kafka-based implementations support some of them by leveraging Kafka).

Introducing Cloudflow
In reality, most of the streaming application implementations require usage of multi‐
ple engines and libraries for building individual applications, which creates additional
integration and maintenance complexities. Many of these can be alleviated by using
an open source project, like Cloudflow, which allows you to quickly develop, orches‐
trate, and operate distributed streaming applications on Kubernetes. Cloudflow sup‐
ports building streaming applications as a set of small, composable components
communicating over Kafka and wired together with schema-based contracts. This
approach can significantly improve reuse and allows you to dramatically accelerate
streaming application development. At the time of this writing, such components can
be implemented using Akka Streams; Flink and Spark streaming with Kafka Streams
support is coming soon. The overall architecture of Cloudflow is presented in
Figure C-1.

Using Model Serving in Applications | 221



Figure C-1. Cloudflow architecture

In the heart of Cloudflow is a Cloudflow operator, which is responsible for deploying/
undeploying, management, and scaling of pipelines and individual streamlets. The
operator also leverages existing Flink and Spark operators to manage Flink and Spark
streamlets. A set of provided Helm charts allows for simple installation of the opera‐
tor and supporting components.

A common challenge when building streaming applications is wiring all of the com‐
ponents together and testing them end-to-end before going into production. Cloud‐
flow addresses this by allowing you to validate the connections between components
and to run your application locally during development to avoid surprises during
deployment.

Everything in Cloudflow is done in the context of an application, which represents a
self-contained distributed system (graph) of data processing services connected
together by data streams over Kafka.

Cloudflow supports:

Development
By generating a lot of boilerplate code, it allows developers to focus on business
logic.

Build
It provides all the tooling for going from business logic to a deployable Docker
image.

222 | Appendix C: Using Model Serving in Applications



4 Some of the examples of such implementations for TFServing integration can be found in this GitHub repo,
and for Seldon integration, in this GitHub repo.

5 In the case of embedded model usage, the state is a model itself.

Deploy
It provides Kubernetes tooling to deploy your distributed application with a sin‐
gle command.

Operate
It provides all the tools you need to get insights, observability, and life cycle man‐
agement for your distributed streaming application. Another important opera‐
tional concern directly supported by Cloudflow is an ability to scale individual
components of the stream.

When using Cloudflow for implementing streaming applications, model server invo‐
cation is typically implemented by a separate streamlet4 based on a dynamically con‐
trolled stream pattern.

In Figure C-2 an implementation contains a state, where a state is a URL to the model
serving server, in the case when a model server is used for inference.5 The actual data
processing in this case is done by invoking a model server to get an inference result.
This call can be done using either REST or gRPC (or any other interface supported by
the model server).

Figure C-2. Dynamically controlled stream pattern

This state can be updated through an additional Kafka topic, which allows for switch‐
ing the URL (in the case when model server deployment is moved) without redeploy‐
ment of the applications. The state is used by a data processor for processing
incoming data.

Additional streamlets (with the same architecture) can be introduced into the appli‐
cation to get model serving insights, such as explanation and drift detection (see
“Model Monitoring” on page 134 for more details).

Using Model Serving in Applications | 223



6 See this TFServing document for more details.
7 For the complete definitions of available parameters, see this TFServing GitHub repo.
8 Compare to the MapReduce programming model.
9 Streamlet, in the case of Cloudflow-based implementation.

Building Batch Applications Leveraging Model Serving
A typical batch application is implemented by reading a dataset containing all the
samples and then processing them, invoking the model server for every one of them.
The simplest batch application implementation is doing this sequentially, one data
element at a time. Although such implementation will work, it is not very perform‐
ant, due to the network overhead for processing every element.

One popular way to speed up processing is to use batching. TFServing, for example, 
supports two batching approaches: server-side batching and client-side batching.

Server-side batching is supported out of the box by TFServing.6 To enable batching,
set --enable_batching and --batching_parameters_file flags. To achieve the best
trade-offs between latency and throughput, pick appropriate batching parameters.7

Some of the recommendations for the parameters values for both CPU and GPU
usage can be found in this TFServing GitHub repo.

Upon reaching full batch on the server side, inference requests are merged internally
into a single large request (tensor) and a Tensorflow Session is run on the merged
request. You need to use asynchronous client requests to populate server-side batches.
Running a batch of requests on a single session is where CPU/GPU parallelism can
really be leveraged.

Client-side batching is just grouping multiple inputs together on the client to make a
single request.

Although batching can significantly improve performance of the batch inference, it’s
often not sufficient for reaching performance goals. Another popular approach for
performance improvement is multithreading.8 The idea behind this approach is to
deploy multiple instances of a model server, split data processing into multiple
threads, and allow each thread to do inference for part of the data it is responsible for.

One of the ways to implement multithreading is through a batch implementation via
streaming. This can be done by implementing software component9 reading source
data and writing each record to Kafka for processing. This approach effectively turns
batch processing into a streaming one to allow for better scalability through an archi‐
tecture as shown in Figure C-3.

224 | Appendix C: Using Model Serving in Applications



Figure C-3. Using stream processing for batch serving implementation

This deployment includes three layers:

• Cloudflow-based stream processing that invokes model serving for every element
of the stream. Every streamlet of this solution can be scaled appropriately to pro‐
vide required throughput.

• A model server that does the actual model inference. This layer can be independ‐
ently scaled by changing the amount of model servers.

• Load balancers, for example Istio or Ambassador, that provide load balancing for
inference REST/gRPC requests.

Because every layer in this architecture can scale independently, such an architecture
can provide a model serving solution that is quite scalable for both streaming and
batch use cases.

Using Model Serving in Applications | 225





Index

A
A/B testing, 136
administrator of Kubeflow cluster, 41
Amazon EMR, 81
Ambassador, 150
annotations on pipelines, 51
Apache Beam

about, 73
Python support, 73
TensorFlow Extended on top of, 73

Apache Flink, 220
Apache Mahout, 180, 182
Apache Software Foundation (see mailing list

data preparation)
Apache SpamAssassin, 70, 89
Apache Spark

about, 40, 73, 78
basics, 82
cloud-specific options for running, 81
configuring, 83
data denoising example id=ch09-dd5, 180
data denoising pipeline, 186-190
feature preparation example, 87
Jupyter notebooks, 79
Kubeflow native operator, 80-84
mailing list example, 87
MinIO configuration, 83
ResourceOp request validation, 82
resources on, 78
schema validation, 85
SQL, 86
using with Kubeflow, 5, 78

Apache Spark in Kubeflow
components, 40

architecture
Differentiable Architecture Search

(DARTS), 211
Efficient Neural Architecture Search

(ENAS), 211
neural architecture search support and

Katb, 211
Argo executors APIs, 215
Argo Workflows

deleting a workflow, 55
Docker as executor, 54, 215
executing pipeline YAML files, 46
execution information, 54
execution logs, 55
executors, 54, 215
flow execution graph details, 57
installing, 54
Kubeflow Pipelines built on, 28, 53-57
Kubeflow Pipelines enhancing, 58
orchestration controller, 29
parameter passing, 59
pipelines visible, 54, 57
UI for pipeline execution, 56, 57
UI installation, 56
YAML files for pipelines, 45

artifact store, for logged metadata events, 97
attribution for code examples, xv
author contact information, xvi
AutoML (automated machine learning)

about, 193
continuous learning as, 137
Kubeflow Katib, 30, 195

227



B
batch applications via model serving, 224-225
Bayesian optimization

in Katib, 30, 197
beginners’ resources for ML, xi-xii

(see also getting started)
biases of machine learning, xiii
blue-green deployment, 136

KFServing endpoints, 160, 176

C
Caffe2 for distributed training, 122
canary deployment, 136
canary deployments

KFServing endpoints, 160, 176
Canonical resources, xv
central dashboard, 26
central storage distributed training, 118
Clipper, 9
cloud native microservices, 114
Cloudflow, 221-223
code examples in book

download link, xv
permission for use, xv

collaborative filtering, 109
competing models, 136
components

about, 4-8, 62
central dashboard, 26
file-fetching component, 62
Google-specific, 217
hyperparameter tuning, 30-30
load_component function warning, 62, 74
load_component_from_file function, 74
metadata management, 32

(see also Kubeflow ML Metadata)
model inference, 31
multiuser isolation, 40
pipelines, 28, 43

(see also Kubeflow Pipelines)
repositories, 41, 61
training operators, 28

composability of Kubeflow, 4
concept drift, 134
conditional execution of pipelines, 63-65
container registry, 17
containers

about, 3
beginners’ resources, xii

building example pipeline, 47
container registry, 17
custom containers, 72
overhead, 3
pipeline custom code and tools, 58, 72
resource about, 2
serverless, 31
SpamAssassin package, 70, 89
tag for pushing, 17
why containerize, 2

continuous learning (CL), 137
control plane, 159
COVID-19 pandemic, 12, 180
CRDs (see custom resource definitions)
credentials for MinIO, 35
CSV component in recommender system, 75
CT scan data denoised

about data, 12, 179, 180
Apache Spark, 86, 186-190
data preparation, 181
decomposing CT scan, 182
denoising pipeline, 186-190
open source method, 179, 180
resource on math, 180
sharing the pipeline, 191
singular value decomposition, 179, 182
visualizing denoised DICOMs, 183-185

custom containers, 72
custom resource definitions (CRDs)

Knative Serving, 39
Pipeline Service, 29

custom resources on Kubernetes, 114
Kubeflow Katib, 196, 199

D
data

data lineage, 91
DICOM file format, 181
distributed object storage server, 34, 53
environment variables for pipelines, 58
exploring new, 89
file-fetching component, 62
Kubernetes Pods storing, 29
metadata definition, 91

(see also metadata)
persistent volumes, 52-52

Apache Spark output, 86
filesystem/get_file component, 75
local data preparation, 69

228 | Index



preparation of, 5, 67
(see also data preparation)

sources for datasets, 181
tracked by Kubeflow, 29
validation via TensorFlow Extended, 74-77

data cleaning
about CT scan data, 12, 180
Apache Spark, 186-190
denoising pipeline, 186-190
open source method, 179, 180

data parallelism distributed training, 117
data plane of KFServing, 160-161, 175
data preparation

about, 67
AutoML for, 194
CT scan data denoised, 181
distributed

about, 73
Apache Spark feature preparation, 87
Apache Spark for, 84-88
Apache Spark setup, 78-84
data validation, 74-77, 84-88
missing data, 85
rejected records check, 77

feature preparation
about, 67, 71
Apache Spark, 87
AutoML for, 194
data formatting and, 71
recommendation system, 110
TensorFlow Transform, 77-78

local
about, 68
custom containers, 72
fetching the data, 69
filtering out junk, 70
formatting the data, 71
missing data, 70
SpamAssassin package, 70

missing data
distributed platform, 85
local, 70
Scikit-learn and, 124

putting together into a pipeline, 88-90
entire notebook as pipeline stage, 89

Random Forest algorithm, 124-125
Scikit-learn and missing data, 124
tools online resource, 68
tools, local versus distributed, 68

US Census dataset, 124-125
Databricks MLflow

about, 10, 92
metadata tools

about, 98
logging data on runs, 101
MLflow Tracking, 98
MLflow Tracking Server, 99-101
UI, 104

datasets (see data)
debugging

KFServing
InferenceService, 171
performance, 173

TFJob deployment, 117
deep learning, 108

sharing a pipeline, 191
denoising data

about CT scan data, 12, 179, 180
Apache Spark, 86, 186-190
CT scan case study, 179-191
data preparation, 181
decomposing CT scan, 182
denoising pipeline, 186-190
open source method, 179, 180
resource on math, 180
sharing the pipeline, 191
singular value decomposition, 179, 182
visualizing denoised DICOMs, 183-185

deployment of Kubeflow
click-to-deploy on Google Cloud, 14
model serving options, 31
namespace, 19

DICOM file format, 181
sources for datasets, 181

Differentiable Architecture Search (DARTS),
211

disk space for Minikube, 16
display_schema, 76
distributed stochastic singular value decompo‐

sition (DS-SVD), 179, 182
distributed training

about, 117
Docker

Apache Spark on Jupyter notebooks, 79
Argo Workflows executor, 54, 215
container registry, 17
deploying recommender training code, 115
entire notebook as pipeline stage, 89

Index | 229



installing, 17
installing Minikube, 16
parameters passed by value, 59
prebuilt Docker images, 58-60
Seldon Core local testing, 150

E
Efficient Neural Architecture Search (ENAS),

211
EMR native Spark operator, 80-84
environment variables for pipelines, 58
events via Knative Eventing

KafkaSource to send events, 174
KFServing, 31, 173
online documentation, 173
Seldon Core, 157

example generators in TensorFlow Extended,
75

executors for Argo Workflows, 54, 215
experiments, 46, 50, 59

Kubeflow Katib, 30, 196
configuring, 199

reproducibility by sharing pipeline, 191
explaining the model

Scikit-learn, 126-129
explaining the model, importance of, 126, 134

F
failover, 28
feature preparation

about, 67, 71
Apache Spark, 87
AutoML for, 194
data formatting and, 71
recommendation system, 110
TensorFlow Transform, 77-78

file-fetching component, 62
filesystem/get_file component, 75
file_output mechanism, 53, 74

G
getting started

getting started guide, 23
installing Kubeflow, 13-15, 19, 23

first project, 18-23
installing Kubeflow Katib, 198

first experiment, 198-203
machine learning, xi-xii

Google BigQuery example generators, 75
Google Cloud Platform (GCP)

click-to-deploy Kubeflow app, 14
Google-specific components, 217
TPU-accelerated instances, 217

Google codelabs, 12
Google Dataflow

Apache Beam for, 73
TensorFlow Extended configured for, 218

Google Dataproc for Apache Spark, 80-84
Google Kubernetes Engine (GKE), 44
Google Vizier, 30, 195
GPUs

autoscaling in KFServing, 159, 170, 175
autoscaling lacking in Seldon Core, 158
resource marking in code, 48, 90
training using, 121

grid search in Katib, 197

H
handwriting recognition via RandomForest‐

Classifier, 18-23
hello world project, 18-23
hyperparameters

AutoML for tuning, 194
definition, 6, 195
Kubeflow Katib for tuning, 30-30, 195, 213

(see also Kubeflow Katib)
neural architecture search, 194
TensorFlow recommender, 112
tuning supported by Kubeflow, 6

I
income predictor model, 155-156
Istio

about, 36, 169
KFServing

infrastructure, 169
model inference, 31

J
Jupyter notebooks

adding system software, 70
Apache Spark via Dockerfile, 79
data and feature preparation

about, 68
adding system software, 70
entire notebook as pipeline stage, 89

230 | Index



GPU resources, 48, 90
JupyterHub, 27, 28, 89
kubectl for Kubernetes management, 27
Kubeflow component support via, 27
Kubeflow support for, 4, 16
multiuser isolation, 41
Scikit-learn notebook setup, 122-123
TensorFlow recommender notebook setup,

109-110

K
KafkaSource to send Knative events, 174
Katib (Kubeflow)

about, 30, 195, 198
about katib meaning, 195
advantages of, 213
distributed training jobs, 208
experiments, 30, 196

configuring, 199
first experiment, 198-203

first experiment
about, 198
configuring experiment, 199
prepping training code, 199
running, 201-203

installing, 198
jobs, 30
metrics collector, 197
neural architecture search support, 211

about NAS, 210
example DARTS experiment, 211-213
model manager, 211

search algorithms
Bayesian optimization, 197
grid search, 197
hyperbrand, 197
random search, 197

suggestions, 30, 196
trials, 30, 196
UI, 204

Keras API, 108
kfctl repository, 41
KFServing

about, 159, 175
API documentation, 174, 174
capabilities of, 174
comparison chart, 137
curl 404 Not Found, 167
data plane, 160-161

component in, 160
endpoint in, 160
explainer in, 161
prediction protocol in, 161
predictor in, 161
transformer in, 161

debugging InferenceService, 171
debugging performance, 173
deployment strategies, 175
endpoints

blue-green deployment, 160
inference, 159-176
InferenceService

autoscaling via escape hatches, 170-171
debugging, 171
escape hatches, 170-171
examples, 162-166, 167
KafkaSource to send Knative events, 174
namespace, 166
recommender, 166-168

infrastructure stack, 168
debugging InferenceService, 171
debugging performance, 173
escape hatches, 170-171
Istio, 169
Knative, 160, 169, 169, 173
Knative Eventing, 31, 173
Knative Serving, 169, 173, 176
Kubernetes, 169

model monitoring, 175
model serving, 175
model updating, 175
network monitoring and telemetry, 175
SDK documentation, 167
serverless inferencing, 159, 167, 173
service plane, 159
setting up, 162-162

namespaces and, 162
troubleshooting guide online, 162

Knative
architecture, 39
components in Kubeflow, 38
Eventing

KafkaSource to send events, 174
KFServing, 31, 173
online documentation, 173
Seldon Core, 157

KFServing infrastructure, 160, 169, 173
Serving, 38, 159

Index | 231



KFServing, 169, 173, 176
kubectl

deployment of Kubeflow, 19
installing, 14
Jupyter notebook incorporation, 27

Kubeflow
about, 1, 3
alternatives to, 9-10, 73
Apache 2 license, xv
core components, 4-8

(see also components)
dataset tools, 5
first project, 18-23
getting started guide, 23
hyperparameter tuning, 6

(see also hyperparameters)
installing, 13-15, 19, 20, 23
installing development environment, 16
local installation, 15
local to distributed with ease, 13, 23
online community, 12, 214
overhead, 3
training frameworks, 6
web UI installation, 20

Kubeflow Katib
about, 30, 195, 198
about katib meaning, 195
advantages of, 213
distributed training jobs, 208
experiments, 30, 196

configuring, 199
first experiment, 198-203

first experiment
about, 198
configuring experiment, 199
prepping training code, 199
running, 201-203

installing, 198
jobs, 30
metrics collector, 197
neural architecture search support, 211

about NAS, 210
example DARTS experiment, 211-213
model manager, 211

search algorithms
Bayesian optimization, 197
grid search, 197
hyperbrand, 197
random search, 197

suggestions, 30, 196
trials, 30, 196
UI, 204

Kubeflow ML Metadata
about, 91, 92
dataset tracking, 93
defining a workspace, 92
information about model and metrics, 93
information organization, 92
limitations of, 97
Python only APIs, 92
required imports, 92

Kubeflow Pipelines
about, 7, 13, 28, 29, 43
and TensorFlow Extended, 73
annotations, 51
Argo alternative, 58
Argo Workflows enhanced by, 58
Argo Workflows foundation, 28, 53-57
building examples in Python, 46-49
camelCase function name bug in DSL, 48
compiler, 29, 48
components of, 28, 61
conditional execution, 63-65
custom code and tools inside, 58, 72
data and feature preparation, 67, 88-90
environment variables, 58
experiments, 46, 50, 59

reproducibility by sharing pipeline, 191
exploring sample, 44
generic versus Google Kubernetes Engine,

44
GPU resource marking, 90
GPU resource marking in DSL, 48
language capabilities, 72, 179

denoising CT scan case study, 179-191
load_component function warning, 62, 74
load_component_from_file function, 74
operators chaining execution, 28
periodic execution of, 65
prebuilt Docker images, 58-60
Python SDK, 29
running, 46, 50

on a schedule, 65
SDK installation, 16
Service, 29

repository, 41
shared storage, 34
training first project, 20

232 | Index



training integrated into, 129
transformation code, 78
UI, 44

Kubeflow Slack workspace, 12, 214
Kubernetes

about, 3
Argo Workflows, 28, 53
beginners’ resources, xii
client, 59
cloud native microservices, 114
custom resources

Kubeflow Katib, 196, 199
custom resources APIs, 114, 196
installing Kubeflow, 14
KFServing infrastructure, 169
kubectl

deployment of Kubeflow, 19
installing, 14
Jupyter notebook incorporation, 27

local cluster via Minikube, 15
Pipeline Service custom resource defini‐

tions, 29
Pods

data stored by, 29
deployment of Kubeflow, 19

resource creation, 27
YAML configuration editing, 18

Kubernetes custom resources

L
language capabilities of pipelines, 72, 179

denoising CT scan case study, 179-191
libraries

data validation via TensorFlow Extended,
74, 76

importing, 49
Kubernetes Python library, 58
Scikit-learn, 89
stream processing, 220

lightweight Python functions, 47-51
load_component warning, 74
load_component_from_file, 74

M
MaaS (model serving as a service), 132-133

APIs, 133
machine learning (ML)

AutoML
about, 193

continuous learning as, 137
Kubeflow Katib, 30, 195

beginners’ resources, xi-xii
biases, xiii
explainability importance, 126, 134
framework selection, 126
no single model works best, 193
reproducibility importance, 91

mailing list data preparation
about mailing list data, 11
Apache SpamAssassin package, 70, 89
Apache Spark

filtering out bad data, 86
handling missing data, 85
reading input data, 84
saving the output, 86, 89
SQL, 86

fetching the data, 69
filtering out junk, 70
parallelize for data fetching, 85
putting together into a pipeline, 88-90

manual profile creation, 26
metadata

about storing model creation metadata, 94
artifact store and, 97
defined, 91
Kubeflow Metadata (see Kubeflow ML

Metadata)
Kubernetes Pods, 29
management component, 32
reproducibility importance, 91
resource on, 91
tracked by Kubeflow, 29, 32
tracking tool in Kubeflow, 91

(see also Kubeflow ML Metadata)
viewing

Metadata UI, 96
programmatic query, 94-96

Minikube
about, 15
local installation of Kubeflow, 15
memory for, 16
resources online, 15

MinIO, 34-36
Apache Spark configuration, 83
Client exporting a model, 112
data validation via TensorFlow Extended, 74
distributed object storage server, 34-36
file_output, 53, 74

Index | 233



Hadoop version for, 35
secrets for credentials, 35

mirrored distributed training strategy, 118
ML (see machine learning)
ML Metadata TensorFlow Extended (TFX), 91
MLflow (Databricks)

about, 10, 92
metadata tools

about, 98
logging data on runs, 101
MLflow Tracking, 91, 98
MLflow Tracking Server, 99-101
UI, 104

MNIST (Modified National Institute of Stand‐
ards and Technology)
about, 11
data registration example, 93
distributed training, 118-121
hello world project, 18-23
Kubeflow Katib first experiment

about, 198
configuring experiment, 199
prepping training code, 199
running experiment, 201-203

Python script for first project, 21
model as data MaaS, 132
model development life cycle (MDLC), 1, 4-7,

137
model drift, 134, 134

Seldon Core, 156, 156
model explainability

importance of, 126, 134
Scikit-learn, 126-129, 134
Seldon Core, 152

model inference
about, 131, 137
accuracy, 134
as code Maas, 132
components, 31
continuous learning, 137
debugging TFJob deployment, 117
deployment of in distributed training

MNIST example, 118-121
deployment reproducibility importance, 91
deployment strategies, 114
first project test query, 21
Istio, 31
KFServing, 159-176

about, 159, 175

autoscaling via escape hatches, 170-171
capabilities of, 174
comparison chart, 137
data plane, 160-161
debugging InferenceService, 171
debugging performance, 173
deployment strategies, 175
InferenceService debugging, 171
InferenceService escape hatches, 170-171
InferenceService namespace, 166
InferenceService recommender, 166-168
infrastructure stack, 168
model monitoring, 175
model serving, 175
model updating, 175
network monitoring and telemetry, 175
serverless inferencing, 159, 167
service plane, 159
setting up, 162-162
setting up and namespaces, 162

Kubeflow, 31
Kubeflow model inference, 7, 137
model monitoring, 134

accuracy, drift, explainability, 134
KFServing, 175
requirements, 135
Seldon Core, 151, 156, 158
TensorFlow Serving, 141

model serving, 132
embedded, 132
KFServing, 175
model serving as a service, 132-133
Seldon Core, 158
TensorFlow Serving, 141

model serving requirements, 133-134
model updating, 135

KFServing, 175
requirements, 136
Seldon Core, 158
TensorFlow Serving, 142

Seldon Core, 142-159
about, 142
comparison chart, 137
deployment, 145
example graphs, 146-148
explaining the model, 152
income predictor model, 155-156
inference graph, 142
model serving, 158

234 | Index



model updating, 158
monitoring models, 151, 156, 158
packaging the model, 145
SeldonMessage, 150
sentiment prediction model, 153-154
serverless primitives lacking, 159
serving requests, 150
setting up, 144
testing the model, 148, 150

TensorFlow recommender deployment
with TensorFlow Serving, 139-141

TensorFlow Serving, 138-141
about, 138
comparison chart, 137
model monitoring, 141
model serving, 141
model updating, 142
recommendation system, 139-141
serverless primitives lacking, 159
TensorFlow Extended and, 73

updating models, 135
TensorFlow Serving, 142

model serving
about, 132
custom applications

about, 219
batch applications, 224-225
streaming applications, 219-223

embedded, 132
KFServing, 175
model serving as a service, 132-133
model updating, 135

KFServing, 175
requirements, 136
Seldon Core, 158
TensorFlow Serving, 142

monitoring, 134
KFServing, 175
Knative serving project, 31
requirements, 135
resources on, 135
Seldon Core, 151, 156, 158
TensorFlow Serving, 141

requirements, 133-134
Seldon Core, 158
TensorFlow Serving, 141

model serving as a service (MaaS), 132-133
model training (see training)
models

about the impact of, xiii
continuous learning, 137
evaluating competing, 136
explainability importance, 126

Seldon Core, 152
exporting

Scikit-learn, 129
TensorFlow, 112

monitoring, 134
KFServing, 175
Knative serving project, 31
requirements, 135
resources on, 135
Seldon Core, 151, 156, 158
TensorFlow Serving, 141

serving options, 31
updating, 135

KFServing, 175
requirements, 136
Seldon Core, 158
TensorFlow Serving, 142

validation, 6, 23, 134
Modified National Institute of Standards and

Technology (see MNIST)
monitoring

about, 134
KFServing, 175
Knative serving project, 31
model serving, 134
requirements, 135
resources on, 135
Seldon Core, 151, 156, 158
TensorFlow Serving, 141

multi-armed bandits, 176
multiuser isolation, 40
multiworker mirrored distributed training

strategy, 118

N
namespaces

deployment of Kubeflow, 19
KFServing

InferenceService, 166
setup, 162

manual profile creation, 26
profile definition, 41
Seldon Core installation, 145

NAS (see neural architecture search)
natural language processing (NLP), 3

Index | 235



neural architecture search (NAS)
about, 194, 210
AutoML, 194
Differentiable Architecture Search, 211
Efficient Neural Architecture Search, 211
generation versus mutation methods, 210
Kubeflow Katib supporting, 211

example DARTS experiment, 211-213
model manager, 211

notebooks (see Jupyter notebooks)

O
object stores

distributed object storage server, 34, 53
(see also MinIO)

using with Apache Spark, 87
observability automated by operators, 28
one-hot encoding in Scikit-learn, 125
online community for Kubeflow, 12, 214
online resources (see resources)
orchestration controllers, 29, 31

P
parallelize for data fetching, 85
parameter server distributed training, 118
persistent volume storage

about, 52-52
Apache Spark output, 86
filesystem/get_file component, 75
local data preparation, 69

pinned deployments, 136
KFServing endpoints, 160, 176

Pods (Kubernetes)
data stored by, 29
deployment of Kubeflow, 19

portability of Kubeflow
Kubernetes foundation, 4, 114
object storage and, 53

prediction (see model inference)
product recommender (see recommendation

systems)
profiles

automatic creation, 41
definition, 41
manual creation, 26
multiuser isolation, 40

Python
Apache Beam support of, 73
Apache Spark

basics, 82
reading input data, 84

building example pipelines, 46-49
camelCase function name bug, 48
client for Python-wrapped models, 149
DSL compiler, 29
GPU resource marking, 48, 90
installing, 16
KFServing API documentation, 174
Kubeflow ML Metadata, 92
Kubeflow native Spark operator, 80
Kubernetes client, 59
library imports, 49
lightweight Python functions, 47-51
MNIST image script, 21
Pandas and, 75
pipeline components, 29
pipeline custom code and tools, 58, 72
Scikit-learn, 123
TensorFlow Extended as Python tool, 73
virtual environments for projects, 16

PyTorch for distributed training, 122
job spec example, 122

Q
quality of data maintained, 74

R
Random Forest algorithm

about, 123
data preparation, 124-125
running, 126

random search in Katib, 197
recommendation systems

about, 11, 108
collaborative filtering, 109
KFServing InferenceService, 166-168
TensorFlow

deployment with TFServing, 139-141
repositories

components, 41, 61
COVID-19 CT scans, 181
kfctl, 41
Pipelines Service, 41

reproducibility in machine learning, 91
ResourceOp request validation, 82
resources for Kubeflow

alternatives, 10
click-to-deploy Kubeflow app, 14

236 | Index



code examples for download, xv
component repositories, 41, 61
getting started guide, 23
installation guide, 19
online community, 12, 214

S
scalability of Kubeflow

Apache Spark feature preparation, 88
inference component, 31
KFServing for inferencing, 159

autoscaling via escape hatches, 170-171
Kubernetes foundation, 4, 23, 114
operators automating, 28

schema
data validation via TensorFlow Extended,

74, 75-77
inferred by TensorFlow Data Validation, 75
inspecting, 76
rejected records check, 77
saved to catch changes, 76
tool for modifying, 76
validation by Apache Spark, 85

Scikit-learn
about, 122
explaining the model, 126-129
exporting the model, 129
library, 89
missing data and, 124
one-hot encoding, 125
RandomForestClassifier, 20-23

Scikit-learn Jupyter notebook setup, 122-123
Seldon Core, 150

about, 142
comparison chart, 137
deployment, 145
example graphs, 146-148
explaining the model, 152
income predictor model, 155-156
inference, 142-159
inference graph, 142
Istio ingress gateway and, 150
model serving, 158
model updating, 158
monitoring models, 151, 156, 158
outlier and drift detection in, 156
packaging the model, 145
SeldonMessage, 150
sentiment prediction model, 153-154

serverless primitives lacking, 159
serving requests, 150
setting up, 144
testing the model, 148

local testing with Docker, 150
sentiment prediction model, 153-154
serverless

about, 159
containers on Kubernetes, 31
KFServing, 159, 167, 173
Knative Serving, 159
Knative serving and, 31

serverless applications
Knative Serving, 38

service mesh
about, 169
components, with Istio, 36
with Istio, 169

service plane, 159
shadow models, 136
single-worker TensorFlow jobs, 117
singular value decomposition (SVD), 179, 182
SpamAssassin package, 70, 89
SQL in Apache Spark, 86
storage

distributed object storage server, 34, 53
Minikube requirements, 16
persistent volumes, 52-52

Apache Spark output, 86
filesystem/get_file component, 75
local data preparation, 69

storage classes, 52
storing data between steps, 52-53
UI to explore, 34

streaming applications
about, 219
Cloudflow, 221-223
processing engines versus libraries, 220

suggestions (Kubeflow Katib), 196

T
tag for pushing containers, 17
Tekton for running pipelines, 58
TensorFlow

about, 108
distributed training

about, 117
distribution strategies, 118
MNIST example, 118-121

Index | 237



jobs as Kubernetes custom resources, 114
recommender

about, 11, 108
creating TensorFlow session, 110
deployment, 113-117
deployment with TFServing, 139-141
exporting model, 112
hyperparameters, 112
Keras API, 108
model selection, 109
notebook setup, 109-110
running training code, 112

single-worker jobs, 117
TensorFlow Data Validation (TFDV), 74-77

installing, 74
schema inferred by, 75
schema inspection, 76

TensorFlow Extended (TFX)
about, 73, 73
Apache Beam Python support and, 73
example generators, 75
Google Dataflow, 218
installing, 74
installing components, 74, 74
Kubeflow pipelines and TFX pipelines, 73
ML Metadata, 91
Pandas dataframes accepted by, 75
schema inferred by TFDV, 75
TensorFlow Data Validation, 74-77
Transform feature preparation, 77-78

TensorFlow Model Analysis, 77
TensorFlow Serving (TFServing)

about, 138
batch applications, 224
comparison chart, 137
inference, 138-141
model monitoring, 141
model serving, 141
model updating, 142
recommendation system, 139-141
serverless primitives lacking, 159
TensorFlow Extended integrating with, 73

TensorFlow Transform (TFT)
feature preparation, 77-78
Kubeflow support for, 5
Model Analysis integration, 77

testing
Argo installation, 54
Docker installation, 17

first project test query, 21
Seldon Core inference model, 148

local testing with Docker, 150
Python-wrapped models, 149

TFJob for deployment
multiworker distributed training, 118
specifications, 115
TensorFlow recommender, 114-117

TFServing (see TensorFlow Serving)
TFX (see TensorFlow Extended)
tfx/Transform component, 78
TPU distributed training strategy, 118
TPU-accelerated instances, 217
tracking data and metadata, 29
training

about, 107
deep learning, 108

sharing a pipeline, 191
distributed training

about, 117
data versus model parallelism, 117
GPUs for, 121
Kubeflow Katib, 208
MNIST example, 118-121
other frameworks for, 122

first Kubeflow project, 20
frameworks supported, 6
impact of using more data, 67
Kubeflow components, 28
model selection, 109

AutoML for, 194
operators, 28, 129
pipeline integration, 129
Scikit-learn

about, 122
about Random Forest, 123
data preparation, 124-125
explaining the model, 126-129
exporting the model, 129
running Random Forest, 126
training with and evaluation, 126

TensorFlow recommender
about TensorFlow, 108
creating TensorFlow session, 110
deployment, 113-117
deployment with TFServing, 139-141
exporting model, 112
hyperparameters, 112
Keras API, 108

238 | Index



model selection, 109
notebook setup, 109-110
running training code, 112
single-worker jobs, 117

trials (Kubeflow Katib), 196

U
US Census dataset

about dataset, 123
about Random Forest, 123
data preparation, 124-125
explaining the model, 126-129
exporting the model, 129
income predictor model, 155-156
training, 126
training with and evaluation, 126

user interfaces (UI)
Argo UI, 56

installation, 56
central dashboard, 26
display_schema, 76
installation of Kubeflow web UI, 20
Katib, 204
Kubeflow Pipelines UI, 44, 48
Metadata UI, 96
MinIO to explore storage, 34
MLflow (Databricks), 104

user of Kubeflow cluster, 41

V
validation of data

Apache Spark, 84-88
TensorFlow Extended, 74-77

schema inferred, 75
validation of models

importance of, 23
Kubeflow support for, 6
model accuracy, 134

virtual environments in Python, 16

W
web UI for Pipeline, 44, 50

Y
YAML

component options, 62
DSL compiler producing, 29, 45, 48
editing, 18
KafkaSource to send Knative events, 174
KFServing InferenceService, 166
resource creation, 27
secrets for MinIO credentials, 35
TensorFlow distributed training job, 118

Index | 239



About the Authors
Trevor Grant is a member of the Apache Software Foundation, and is heavily
involved in the Apache Mahout, Apache Streams, and Community Development
projects. He often tinkers and occasionally documents his (mis)adventures at
www.rawkintrevo.org. In the before time, he was an international speaker on technol‐
ogy, but now he focuses mainly on writing. Trevor wishes to thank IBM for their con‐
tinued patronage of his artistic endeavors. He lives in Chicago because it’s the best
city on the planet.

Holden Karau is a queer transgender Canadian, Apache Spark committer, Apache
Software Foundation member, and an active open source contributor. She also
extends her passion for building community with industry projects including Scaling
for Python for ML and teaching distributed computing to children. As a software
engineer, she’s worked on a variety of distributed compute, search, and classification
problems at Google, IBM, Alpine, Databricks, Foursquare, and Amazon. She gradu‐
ated from the University of Waterloo with a bachelor of mathematics in computer sci‐
ence. Outside of software she enjoys playing with fire, welding, riding scooters, eating
poutine, and dancing.

Boris Lublinsky is a principal architect at Lightbend. Boris has over 25 years’ experi‐
ence in enterprise, technical architecture, and software engineering. He is an active
member of OASIS SOA RM committee, coauthor of Applied SOA: Service-Oriented
Architecture and Design Strategies (Wiley), and author of numerous articles on archi‐
tecture, programming, big data, SOA, and BPM.

Richard Liu is a senior software engineer at Waymo, where he focuses on building a
machine learning platform for self-driving cars. Previously he has worked at Micro‐
soft Azure and Google Cloud. He is one of the primary maintainers of the Kubeflow
project and has given several talks at KubeCon. He holds a master’s degree in com‐
puter science from the University of California, San Diego.

Ilan Filonenko is a member of the Data Science Infrastructure team at Bloomberg,
where he has designed and implemented distributed systems at both the application
and infrastructure level. Previously, Ilan was an engineering consultant and technical
lead in various startups and research divisions across multiple industry verticals,
including medicine, hospitality, finance, and music. He actively contributes to open
source, primarily Apache Spark and Kubeflow’s KFServing. He is one of the principal
contributors to Spark on Kubernetes—primarily focusing on remote shuffle and
HDFS security, and to multi-model serving in KFServing. Ilan’s research has been in
algorithmic, software, and hardware techniques for high-performance machine
learning with a focus on optimizing stochastic algorithms and model management.



Colophon
The animal on the cover of Kubeflow for Machine Learning is the Cape Barren goose
(Cereopsis novaehollandiae). This unusual goose (it is the only member of the genus
Cereopsis) is found in the southern coastal areas of Australia.

Cape Barren geese are light grey with some darker dappling, and have stocky pink
legs and lightly webbed black feet. The small head and large yellow cere, combined
with a short black, slightly downturned bill, distinguishes their appearance from
other geese. Adults average 35 inches long with a 70-inch wingspan, and weigh about
10 pounds.

These geese feed primarily on grasses and other vegetation. Though this bird does
not often swim, it does have the ability to drink salt and brackish water, allowing it to
inhabit coastal areas and the many islands off southern Australia.

Cape Barren geese form lifelong pair bonds, and make down-lined nests in the grass.
They raise three to six chicks per clutch, and like all geese, they aggressively defend
their nest and young against intruders. When chicks hatch, they have black-and-
white fuzz, and acquire their grey feathers as they get bigger.

Though Cape Barren geese nearly went extinct in the mid-twentieth century, now
that they have protected status, their numbers have recovered. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Meyers Kleines Lexicon (1908). The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.



There’s much more  
where this came from.
Experience books, videos, live online  
training courses, and more from O’Reilly  
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5


	Copyright
	Table of Contents
	Foreword
	Preface
	Our Assumption About You
	Your Responsibility as a Practitioner
	Conventions Used in This Book
	Code Examples
	Using Code Examples

	O’Reilly Online Learning
	How to Contact the Authors
	How to Contact Us
	Acknowledgments
	Grievances

	Chapter 1. Kubeflow: What It Is and Who It Is For
	Model Development Life Cycle
	Where Does Kubeflow Fit In?
	Why Containerize?
	Why Kubernetes?
	Kubeflow’s Design and Core Components
	Data Exploration with Notebooks
	Data/Feature Preparation
	Training
	Hyperparameter Tuning
	Model Validation
	Inference/Prediction
	Pipelines
	Component Overview

	Alternatives to Kubeflow
	Clipper (RiseLabs)
	MLflow (Databricks)
	Others

	Introducing Our Case Studies
	Modified National Institute of Standards and Technology
	Mailing List Data
	Product Recommender
	CT Scans

	Conclusion

	Chapter 2. Hello Kubeflow
	Getting Set Up with Kubeflow
	Installing Kubeflow and Its Dependencies
	Setting Up Local Kubernetes
	Setting Up Your Kubeflow Development Environment
	Creating Our First Kubeflow Project

	Training and Deploying a Model
	Training and Monitoring Progress
	Test Query

	Going Beyond a Local Deployment
	Conclusion

	Chapter 3. Kubeflow Design: Beyond the Basics
	Getting Around the Central Dashboard
	Notebooks (JupyterHub)
	Training Operators
	Kubeflow Pipelines
	Hyperparameter Tuning
	Model Inference
	Metadata
	Component Summary

	Support Components
	MinIO
	Istio
	Knative
	Apache Spark
	Kubeflow Multiuser Isolation

	Conclusion

	Chapter 4. Kubeflow Pipelines
	Getting Started with Pipelines
	Exploring the Prepackaged Sample Pipelines
	Building a Simple Pipeline in Python
	Storing Data Between Steps

	Introduction to Kubeflow Pipelines Components
	Argo: the Foundation of Pipelines
	What Kubeflow Pipelines Adds to Argo Workflow
	Building a Pipeline Using Existing Images
	Kubeflow Pipeline Components

	Advanced Topics in Pipelines
	Conditional Execution of Pipeline Stages
	Running Pipelines on Schedule

	Conclusion

	Chapter 5. Data and Feature Preparation
	Deciding on the Correct Tooling
	Local Data and Feature Preparation
	Fetching the Data
	Data Cleaning: Filtering Out the Junk
	Formatting the Data
	Feature Preparation
	Custom Containers

	Distributed Tooling
	TensorFlow Extended
	Distributed Data Using Apache Spark
	Distributed Feature Preparation Using Apache Spark

	Putting It Together in a Pipeline
	Using an Entire Notebook as a Data Preparation 
Pipeline Stage
	Conclusion

	Chapter 6. Artifact and Metadata Store
	Kubeflow ML Metadata
	Programmatic Query
	Kubeflow Metadata UI

	Using MLflow’s Metadata Tools with Kubeflow
	Creating and Deploying an MLflow Tracking Server
	Logging Data on Runs
	Using the MLflow UI

	Conclusion

	Chapter 7. Training a Machine Learning Model
	Building a Recommender with TensorFlow
	Getting Started
	Starting a New Notebook Session
	TensorFlow Training

	Deploying a TensorFlow Training Job
	Distributed Training
	Using GPUs
	Using Other Frameworks for Distributed Training

	Training a Model Using Scikit-Learn
	Starting a New Notebook Session
	Data Preparation
	Scikit-Learn Training
	Explaining the Model
	Exporting Model
	Integration into Pipelines

	Conclusion

	Chapter 8. Model Inference
	Model Serving
	Model Serving Requirements

	Model Monitoring
	Model Accuracy, Drift, and Explainability
	Model Monitoring Requirements

	Model Updating
	Model Updating Requirements

	Summary of Inference Requirements
	Model Inference in Kubeflow
	TensorFlow Serving
	Review

	Seldon Core
	Designing a Seldon Inference Graph
	Testing Your Model
	Serving Requests
	Monitoring Your Models
	Review

	KFServing
	Serverless and the Service Plane
	Data Plane
	Example Walkthrough
	Peeling Back the Underlying Infrastructure
	Review

	Conclusion

	Chapter 9. Case Study Using Multiple Tools
	The Denoising CT Scans Example
	Data Prep with Python
	DS-SVD with Apache Spark
	Visualization
	The CT Scan Denoising Pipeline

	Sharing the Pipeline
	Conclusion

	Chapter 10. Hyperparameter Tuning and Automated 
Machine Learning
	AutoML: An Overview
	Hyperparameter Tuning with Kubeflow Katib
	Katib Concepts
	Installing Katib
	Running Your First Katib Experiment
	Prepping Your Training Code
	Configuring an Experiment
	Running the Experiment
	Katib User Interface

	Tuning Distributed Training Jobs
	Neural Architecture Search
	Advantages of Katib over Other Frameworks
	Conclusion

	Appendix A. Argo Executor Configurations and Trade-Offs
	Appendix B. Cloud-Specific Tools and Configuration
	Google Cloud
	TPU-Accelerated Instances
	Dataflow for TFX


	Appendix C. Using Model Serving in Applications
	Building Streaming Applications Leveraging 
Model Serving
	Stream Processing Engines and Libraries
	Introducing Cloudflow

	Building Batch Applications Leveraging Model Serving

	Index
	About the Authors
	Colophon



