
www.allitebooks.co

http://www.allitebooks.org

JSTL in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

JSTL in Action
SHAWN BAYERN

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

 For my future wife and kids,
 who, when I meet and conceive them,

 respectively,
 will likely be my love and my inspiration

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

2 Foundation: XML and JSP 15

2.1 Introduction to XML 16

A dose of tag terminology 17 � The relevant rules of XML 21

2.2 Introduction to JSP 23

JSP tag syntax 24 � Standard JSP tags 25
JSP tag libraries 29 � Other JSP directives 32
JSP comments 33 � How JSP organizes data 34

2.3 Summary 39

PART 2 LEARNING JSTL ...41

3 The expression language 43

3.1 Expressions and the <c:out> tag 44

What expressions look like 45 � Where expressions work 46
Default values in <c:out> 46 � Special characters and <c:out> 47

3.2 Scoped variables and the expression language 48

Basic syntax to access scoped variables 48
Different types of scoped data 50

3.3 Request parameters and the expression language 55

HTML forms 55 � A page that reads request parameters 62

3.4 More powerful expressions 63

Different ways to access properties 64 � Accessing other data with the
expression language 65 � Comparisons 67 � Boolean operations
and parentheses 69 � Multiple expressions 70

3.5 Saving data with <c:set> 71

3.6 Deleting data with <c:remove > 74

3.7 Summary 75

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xv

12 Dynamic features for web sites 279

12.1 An online survey 280

What our survey looks like 281 � Setting up the survey
database 281 � Adding survey questions to pages 284
How the survey works 285

12.2 A message board 291

What our message board looks like 291 � Setting up the message
database 293 � Linking to appropriate message boards 294
How the message board works 295

12.3 Summary 300

13 Case study in building a web site 301

13.1 Managing the layout 303

A framework for channels 303 � Modular channels 305

13.2 Adding dynamic content 309

Including RSS channels 309 � Including other dynamic content 311

13.3 Registering users 313

Modifying the header 313 � The registration form 314
Saving the registration 318 � The user database 319

13.4 Authenticating users 320

Logging in users 320 � Some notes about authentication 321

13.5 Personalizing the site 322

Filling in a form automatically 322 � Displaying a
chosen RSS feed 324

13.6 Summary 325

PART 4 JSTL FOR PROGRAMMERS 327

14 Control and performance 329

14.1 Scripting elements and the JSTL rtexprvalue libraries 330

Warning against scripting expressions 331 � JSTL’s dual
libraries 332 � Scripting variables and <jsp:useBean> 333

14.2 Modifying properties with <c:set> 334

www.allitebooks.com

http://www.allitebooks.org

xx PREFACE

 This book will show you how to make the most of JSTL. It begins without
assuming you know anything more than HTML, and it gently introduces you to all
the principles you’ll need to produce flexible, powerful web pages. The goal of this
book isn’t to satisfy my own ego by showing you how subtle and tricky technology
can be, but instead to equip you to handle any JSTL-related issue that arises when
you produce real-world, dynamic web sites. If you read an example in this book
and think, “I didn’t realize it could be so easy,” then JSTL has done its job—and so
have I.

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOK xxv

names (for HTML, XML, or JSTL tags), tag attributes, scoped-variable names, and
other words that normally appear within code.

� Tables for tags

Just like HTML tags, JSTL tags have attributes that let you modify the tags’ behavior.
For instance, in the tag <fmt:formatNumber type="currency"/>, the text type=
"currency" is an attribute. I’ve listed tag attributes in tables that have a consistent
format. Here’s an example:

This sample table shows a few things. First, tables for tag attributes have a “tag”
icon to help you find them. Such tables have four columns describing the attribute
name, a brief description of each attribute, information about whether the attribute
must be specified for each use of the tag, and information about the default value
of the attribute if you don’t specify a value. If the Default column contains None,
the attribute has no default. If this column contains Body, the default value comes
from the tag’s body. (See chapter 2 for more information about tags, attributes, and
bodies. Note that <c:spam> is, of course, not a real JSTL tag—although given the
number of applications that send out junk mail, there’s clearly a need for it; per-
haps we’ll see it in JSTL 1.1.)

� Highlighting

I highlight sections of code samples whenever I feel like it, usually to draw your
attention to a part of the code sample that has changed. Highlighting isn’t consis-
tent; it’s there only when I think it will be useful.

� Code annotations

Some longer examples are annotated using bullets like this: i. These are often
tied to paragraphs that follow and amplify the code.

� Call-out boxes

Occasionally, I draw your attention to a Note, Tip, or Warning using a noticeable
box in the middle of the page. To be honest, I do this just because other books do
it; fortunately, I use these boxes sparingly.

<c:spam> tag attributes

Attribute Description Required Default

email Email address to send junk email to Yes None

subject Subject of the junk-email message No "Long distance service
for less."

message Body of the junk-email message No Body

www.allitebooks.com

http://www.allitebooks.org

Part 1

Background

Welcome to JSTL in Action, a guide to everything you’ll need to know about JSTL.
In the first part of this book, we explore what JSTL is and how it works. We start
by discussing the simple ideas behind dynamic content on the Web.

 After that, we look at some of the differences between HTML and XML.
This topic is important because JSTL uses an XML-like syntax, so you’ll need
to be aware of its rules. Toward the end of part 1, we also discuss the basics of
JavaServer Pages (JSP), the broader language that JSTL is based on.

 Part 1 takes for granted only a basic knowledge of HTML. This book is
designed to be a gentle but complete introduction to JSTL, and it doesn’t assume
you’re familiar with any other programming or web-design languages. Part 1 lays
a foundation so that you have all the tools you need to jump in and begin design-
ing dynamic web pages.

www.allitebooks.com

http://www.allitebooks.org

3

1Dynamic web sites

This chapter covers…

� Ideas behind dynamic web content

� What JSTL looks like

� Requirements for running JSTL

� JSTL’s role in web applications

The simple ideas behind dynamic web content 7

 To conduct a mail merge and print a customized letter, you supply the informa-
tion missing from this single master copy of the letter—perhaps at the prompting of
your word processor, or as a preformatted, comma-separated text file. To be com-
plete, each letter needs four pieces of information: NAME, DOLLARS, PRESENT, and
APPENDAGE. Like the old Mad-Libs games, producing a customized letter simply
involves filling in these placeholders. One set of legitimate values might be

Jack, 20, tuna sandwich, finger

Another might be

Leonard, 1200, television, arm

You’d use the mail merge in the first place because doing so is simpler than typing
each letter manually—or even using a word processor to edit the letter yourself
each time you need a new, customized copy.

 Believe it or not, template languages for the Web work almost exactly the same
way. Starting with a web-development language is no harder than using mail
merge. The major difference is that instead of printing simple text letters or docu-
ments, the goal of a web-design language is usually to print HTML. For instance,
here’s what our sample mail-merge letter might look like in JSTL:

<html>

<head>

 <title>Nasty letter</title>

</head>

<body>

<h1>Dear <c:out value="${name}"/>:</h1>

<p>

 My records show that you owe me $<c:out value="${dollars}"/>.

 I need this money now to buy myself a big

 <c:out value="${present}"/>. If I don’t get it,

 I will break your <c:out value="${appendage}"/>.

</p>

</body>

</html>

NOTE In this example, and throughout the rest of this book, I use bold type to
highlight JSTL tags that occur within HTML text. This formatting makes
it easier to differentiate the dynamic parts of a page from its static, tem-
plate text.

12 CHAPTER 1

Dynamic web sites

design, the JSTL page does all the work. That is, it knows how to find all the data it
needs to print, without any help from back-end Java code.

 In contrast with figure 1.4’s simple design, consider figure 1.5. The web browser
makes a request for a web page, but this request is handled by a servlet, which is a
web program written in the Java programming language. In order to handle this
request, the servlet can interact with other Java code, as well as databases, directo-
ries, XML files, messaging systems, and nearly anything else. Finally, once the serv-
let has decided what it wants to display to the user, it forwards—that is, hands off—
the request to a JSTL page, which decides how to print out the information.

 One key principle of this model is that each JSTL page is designed to do a differ-
ent thing. For example, one JSTL page might be written to print a shopping cart to
cell phones using WML. Another would be designed to present a registration page
for new users in HTML. The pages themselves don’t decide what task to perform;
they only decide what to display. The servlet takes care of all the behind-the-scenes
action, which might include determining what kind of device the user’s using (cell
phone versus web browser) and what the user is asking for (shopping cart or regis-
tration page).

 Organizing an application as shown in figure 1.5 has a number of benefits.
Doing so supports division of labor in your organization, much like traditional divi-
sion of labor in a factory assembly line. If you work for a large organization, you
probably have a number of different kinds of colleagues: programmers, web-page
authors, graphics designers, database administrators, and so on. Separating the
pieces of your application into different blocks—a servlet, plain Java code, a data-
base, JSTL pages—means that all the people in your organization can focus on what
they do best.

 This division of labor also makes a site more maintainable. Before template sys-
tems, it was common to include HTML in the middle of conventional programs,
like this:

Figure 1.4 Small applications can be designed entirely using JSTL

pages. Web browsers load the pages directly, and the pages know how

to find all the information that they need to print.

Introduction to XML 17

XML is an approach for using these tags to mark off information within a document.
 XML, unlike HTML, does not describe a particular set of tags (<p>, , and so

forth) or relationships between such tags. Instead, it describes the rules for using
tags in a document in the first place. To draw a loose analogy, XML is a general-
purpose mechanism, like Arabic numerals—1, 2, 3, and so on. Receiving a group of
Arabic numerals in isolation doesn’t tell you much; for example, seeing “79” on a
blank page doesn’t convey any useful information without a context. However, you
know that “79” is a valid string containing just Arabic numerals, and that “g”,
“49E”, and “©” are not.

 Similarly, the <beef> tag in the previous code snippet doesn’t mean anything in
isolation. In fact, neither does a tag like . This latter
tag has a meaning when it appears in an HTML document, but alone, it is simply an
arbitrary tag, just as “79” is an arbitrary string of digits. Nonetheless, it follows
XML’s rules, so it is a well-formed, recognizable XML tag, whereas

[am-I-an-XML-tag?]

is not. In a moment, we’ll look more at XML’s rules.
 If you’ve browsed discussion groups online or exchanged email with enough peo-

ple, you’ve probably seen informal uses of tags beyond HTML. For instance, I’ve
often seen people mark off a particularly vibrant part of an email message with tags
like <rant> and </rant>, or introduce a long, rambling section with a <ramble> tag.
This pseudo-HTML markup, insofar as it technically adds structure to a document,
represents the essential goal of XML: tags are used to mark a document in ways that
help people and programs identify the purpose of each part of that document.

 Jumping right in, we’ll first look at some of the jargon used to describe XML tags
and their relationships. Then we’ll follow up with some syntactic rules of XML.

2.1.1 A dose of tag terminology

When we talk about JSTL, it’s important to make sure we’re on the same page (so to
speak). To ensure this, one of the less glamorous things we need to do is cover some
XML terminology. We’ll also explain the terms and idioms that are used most com-
monly by JSP and JSTL users.

 As you probably know from your experience with HTML, tags often come in
pairs: one tag, which might look like <p>, starts a block; and a corresponding tag,
such as </p>, ends it. Figure 2.1 shows an example of an XML element—a block of
XML between, and including, corresponding start and end tags. The element
begins with a start tag, optionally contains a body (some inner text, tags, or both),
and wraps up with an end tag.

22 CHAPTER 2

Foundation: XML and JSP

A few straightforward rules

Most of these rules are self-explanatory. When writing plain HTML, you can be
somewhat sloppy without causing any problems. When constructing a list, you can
start a list item with but neglect to end it with . You can mix uppercase
and lowercase freely. And, you can leave off quotation marks in tag attributes (mod-
ifiers within a tag) in most cases.

 You can still do all these things when you use JSTL, as long as you’re just trying
to produce HTML pages and not strict XML pages. However, no matter how you
use JSTL tags, you need to introduce them into your page following the rules in
table 2.1. For instance, your document’s <a> tags can be written as <A>, and you
don’t need to explicitly end all your HTML tags—but your JSTL tags must have
their attributes quoted and must appear in the proper case.

Empty tags must be closed

The final rule in table 2.1 is one of the more confusing to HTML authors starting out
with XML or JSTL. In well-formed XML, every tag that’s meant to be empty must be
closed immediately, using either the longhand form shown earlier (
</br>) or
the vastly more common shorthand (
). Again, if you’re producing loose HTML
with your JSTL pages, you don’t have to worry about your
 tags. But if you
introduce an empty JSTL tag—for instance, <c:out>—into your page, you need to
close it or use the shorthand empty-tag syntax.

TIP If you are trying to produce well-formed XHTML pages, instead of loosely
structured HTML documents, you might run into a problem. Some older
browsers aren’t smart enough to recognize empty tags like
 or <hr/>.
They expect the loose form of HTML, where the tag is not necessarily
closed. In such cases, you can use the expanded form (
</br>). Often,
to avoid this cumbersome syntax, you can simply insert a space between
the <br and the />; many browsers (even the older ones) can handle this
correctly. Thus, tags end up looking like
 or <img src="uglier-
man.jpg" />—note the spaces before the />.

Table 2.1 Some relevant rules of XML syntax, with examples of violating and compliant

markup (continued)

Rule HTML example (violating rule) XHTML example (following rule)

Empty elements must be

closed

Introduction to JSP 27

Now, suppose b.jsp contains the following text:

Welcome to b.jsp.

Then a.jsp will output the following:

Welcome to a.jsp.

Now including b.jsp . . .

Welcome to b.jsp.

The contents of b.jsp have replaced the <jsp:include> tag in page a.jsp.
 Note that, because the <jsp:include> tag (as used here) does not contain a

body, it is closed by placing a forward slash before the closing angle bracket. As we
described earlier, JSP tags—which follow XML syntax—need to be closed in this
fashion if they are empty.

 The <jsp:include> tag can only include local files—files from the same JSP
engine servicing the page in which <jsp:include> appears. Either static or
dynamic files can be included. That is, the tag can include a simple text file,
another JSP page, or even a servlet or other arbitrary resource on the local server.

WARNING If you are an experienced designer of web applications, you might have
used the HTML <base> tag. This tag allows you to specify a location that
all tags like <a> and will use as their base. That is, if you specify a
new base with

<base href="http://www.jstlbook.com/"/>

then a tag like will cause the browser to try to
load http://www.jstlbook.com/image.jpg, not the local image.jpg file in
the same directory as the web page.

The <base> tag, however, does not affect the way that JSP tags like
<jsp:include> operate. To a JSP engine, the <base> tag is arbitrary HT-
ML. <base> has its effect because the browser interprets it and uses it to
modify the way the rest of the page loads. But JSP engines do not interpret
HTML tags; they simply pass them through to the browser. Therefore, al-
though it makes sense to think of <jsp:include> as finding files in a
manner similar to <a> and , the analogy is not perfect. <jsp:in-
clude> always looks for files on the local server.

A typical pattern is to use <jsp:include> to include header and footer text in mul-
tiple pages. For instance:

<jsp:include page="header.jsp"/>

Page contents

<jsp:include page="footer.jsp"/>

32 CHAPTER 2

Foundation: XML and JSP

In this book, I won’t always show the <%@ taglib %> directive every time I give
you a short example of a JSTL tag. However, you’ll need to include these directives
if you plan to run the tag. (All source code available from the Manning web site
includes the appropriate directives, as do this book’s longer examples.)

2.2.4 Other JSP directives

In addition to <%@ taglib %>, JSP has two other directives that are worth looking at
quickly. As you just saw, directives are pseudo-tags that have special meaning to the
container; they are not passed through to the browser but, instead, are processed by
the JSP engine. This section is, by necessity, somewhat technical; you will not miss
much if you skip it and come back to it later.

The <%@ include %> directive

Earlier in this chapter, you saw how to include other pages using the <jsp:include>
tag. JSP also has a directive that lets you include other files: <%@ include %>. It takes a
file attribute corresponding to a relative path, similar to the <jsp:include> tag.
For instance, to include b.jsp from a.jsp, you could use a directive like

<%@ include file="b.jsp" %>

Why have two mechanisms to include data? The difference between the two is
somewhat subtle and technical, but it boils down to this: the <%@ include %> direc-
tive works by finding the target file and inserting it into your JSP page, just as if you
had cut and pasted it using a text editor. By contrast, <jsp:include> locates the tar-
get page while your JSP page is executing. This difference in operation implies the
following differences in behavior:

� If a file included with <%@ include %> changes, its changes will not be
noticed until the page containing the <%@ include %> directive also changes.
Recall from chapter 1 that the JSP engine notices when files are changed and
processes them automatically. However, the container doesn’t keep track of

Table 2.3 Before you can use a tag library, you need to import it. You can use the following lines

to import each JSTL library into your page. For each page, you only need to import the libraries

you actually use, although there’s no harm in importing all of them.

JSTL tag library <%@ taglib %> directive

Core <%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

XML <%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

Formatting <%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

Database <%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

Introduction to JSP 37

Request scope

Earlier in this chapter, we looked at the <jsp:include> and <jsp:forward> tags.
These tags have something in common: they tie together multiple pages.

 To access web pages, a web browser makes a request for data from a web server.
If this request hits a JSP page that uses a <jsp:include> or <jsp:forward> tag, then
multiple JSP pages can be used to service a single request. All of the pages that are
used to respond to a single request have access to a common request scope. For
instance, as suggested by figure 2.9, a page that uses <jsp:include> can use the
request scope to transfer data to or from the pages it includes. Request scope is use-
ful if the target page needs to act differently depending on an event that occurred in
the page that includes it. Or perhaps the target page wants to set a variable that the
page using <jsp:include> needs to access. Either way, request scope—which is
broader than page scope—can be appropriate.

Application scope

In the world of server-side Java programming, the term web application has a spe-
cific meaning. A web application is a collection of JSP pages and other resources,
like servlets and HTML pages. Typically, a web application is located under a
common directory on the web server, and it represents a cohesive unit of func-
tionality. For instance, an entire online store or auction site is a good candidate for
a web application.

Figure 2.8

Page scope lets one part

of a page share data with

another part.

Figure 2.9

Request scope lets pages linked

by <jsp:include> or

<jsp:forward> communicate

among themselves.

Part 2

Learning JSTL

Now that you’ve seen the tip of the iceberg, it’s time to focus on the details and
principles of JSTL. We’ve discussed what JSTL’s supposed to do; now you get to
see how it works.

 Part 2 introduces and demonstrates nearly every JSTL tag. (We’ll leave two
tags until later.) We start with the most fundamental ones: those that handle sim-
ple decisions and loops in your pages. Then, we explore all the features JSTL has
to offer, from databases to powerful XML support.

 Although part 2 is designed as a tutorial and reference, we do (when appro-
priate) take a step back and look at useful examples of JSTL in action. For more
in-depth examples, see part 3.

www.allitebooks.com

http://www.allitebooks.org

43

3The expression language

This chapter covers…

� JSTL’s expression language syntax

� Printing dynamic content

� Storing and retrieving scoped variables

� Producing and reading HTML forms

Expressions and the <c:out> tag 47

times, instead of printing nothing, you want to print an error message, placeholder,
or other default value. For cases like these, <c:out> takes a parameter called
default. If value’s expression fails for any reason, default runs instead. For
instance, look at this tag:

<c:out value="${username}" default="Nobody"/>

This tag works just like the first <c:out> tag we presented; but if ${username}
doesn’t produce a sensible value, then the tag simply prints out the static text Nobody.
The <c:out> tag can also accept a body, which you can use as another way of speci-
fying a default value. Thus, the following tag is equivalent to the last one:

<c:out value="${username}">

 Nothing

</c:out>

This tag can be useful if your default value is too long to fit conveniently inside an
attribute. Or, you can stick other JSTL tags in the body, and they’ll be used as the
default if ${username} doesn’t produce a sensible value.

3.1.4 Special characters and <c:out>

You should know one more useful thing about <c:out>. By default, it makes sure
that any characters with special meaning to HTML or XML are escaped using the
entity references we discussed briefly in chapter 2. This feature lets you use <c:out>
without worrying that your data will get in the way of the HTML or XML output
you’re producing.

 Imagine that a scoped variable contains the text AT&T, or <o>, or another string
that has one or more characters with special meaning to XML. (The following char-
acters are special to XML: &, <, >, ', and ".) By default, if you print such a variable
with <c:out>, any special characters that it contains will be escaped as &, <,
and so forth. This escaping causes HTML browsers to display the characters to the
user instead of treating them as part of HTML or XML tags. For example, if the vari-
able eye contains the text <o>, then

<c:out value=”${eye}”/>

will output

<o>

where < stands in for < and > stands in for >. Thus, an HTML browser will
display the text <o>—the original value of ${eye}—to the user. If <c:out> were
instead to output <o> unescaped, then the browser would see an unrecognized
HTML tag, and the user wouldn’t see the information at all.

52 CHAPTER 3

The expression language

matical way of expressing statements like, “If I took my wristwatch off, it must be
on the nightstand. But it isn’t on the nightstand, so I must not have taken it off. Or
maybe I’m just growing senile.”)

 A boolean variable has two possible values: true and false. These values can
also be interpreted as “yes” and “no.” Whereas strings and numbers can take on
virtually unlimited values, a boolean variable can store only these two values.

 This limitation makes boolean variables particularly useful for yes-or-no ques-
tions. For example, the escapeXml attribute for <c:out> that we discussed in
section 3.1 is a boolean attribute: it needs a boolean variable. Our earlier example
showed escapeXml being used as follows:

<c:out value="${username}" escapeXml="false"/>

In this case, escapeXml was given the static value false. But just as <c:out>’s value
attribute can accept expressions, so can escapeXml. If the scoped variable status
has a boolean value, you can write this:

<c:out value="${username}" escapeXml="${status}"/>

This <c:out> tag will decide whether to escape special characters depending on the
value of the scoped attribute status. In chapter 4, you’ll see how to set scoped
boolean variables.

 If you print a boolean value using <c:out>, it will be printed as "true" or
"false", as appropriate.

NOTE Java has two different boolean data types: boolean and Boolean. (Java is
case-sensitive, so these represent different types.) For our purposes, they
are nearly identical, so you don’t have to worry about the differences be-
tween them.

Collections

When a scoped variable is a string, number, or boolean, it stores exactly one thing:
a piece of text, a number, or a truth value. Sometimes, however, a single scoped
variable can store an entire collection of objects. The most obvious example, in our
mercenary world, is a shopping cart. An application might make a shopping-cart
variable accessible as

${sessionScope.shoppingCart}

Such a variable refers to an entire collection of objects, organized under a single
name: shoppingCart.

Request parameters and the expression language 57

 <option value="summer">Summer</option>
 <option value="fall">Fall</option>
 </select>
 </p>

 <p>Languages you can read:
 English
 <input type="checkbox" name="language" value="english" />
 Spanish
 <input type="checkbox" name="language" value="spanish" />
 French
 <input type="checkbox" name="language" value="french" />
 </p>

 <p>Ontological speculations:

 <textarea rows="5" columns="40" name="philosophy" />
 </p>

 <input type="submit" value="Sign up!" />

</form>

It should be easy to see how the individual tags in listing 3.1 line up with the various
parts of the form shown in figure 3.4. Let’s look at each piece of the form in turn.

The <form> tag

An HTML form begins with <form> and ends with </form>. Between these two tags
come tags for the various form elements, such as <input>, <select>, and <tex-
tarea>. We’ll look at these individual tags in a moment; for now, I want to draw
your attention to the start tag for <form>:

<form method="post" action="formHandler.jsp">

This tag has two attributes, method and action. The action attribute is more impor-
tant for us. It functions basically like href in <a> or src in —that is, it lets you
enter a link. For our purposes, this link will typically be a relative URL and point to
a JSP file in the current directory. The action attribute means, “When the user sub-
mits this form, what page should I load, and where should I send the input?” For
example, the <form> tag we just looked at causes a page named formHandler.jsp to
run and receive the form’s input when the user submits the form. (You’ll see in a
moment how the user submits a form.)

 The value of the method parameter doesn’t matter much for now, but you can
think of it this way: by default, or if method="get", all of the form’s input will show
up encoded into the URL. (You’ll see more about the way this data is structured in
chapters 5 and 6.) By contrast, when method="post", this data is hidden from the
casual observer and is instead sent to the target page using a different behind-the-

62 CHAPTER 3

The expression language

tle. The entire block of text the user types into a <textarea> comes back to your
JSP page as a single parameter. For example, the entire box created by

<textarea rows="5" columns="40" name="philosophy" />

comes back as a single parameter: ${param.philosophy}.

Submitting a form

To add a submission button to a form, you add an <input> tag with the attribute
type="submit":

<input type="submit" value="Sign up!" />

This tag adds a button to the form (labeled with whatever’s inside the value
attribute); when the user clicks it, the form is sent to the page named in the action
attribute of the original <form> tag.

TIP Submission buttons created with <input type="submit"> can also have
name attributes. That is, they can also create request parameters. For in-
stance, a button like

<input type="submit" value="Register" name="choice" />

will set a request parameter ${param.choice} equal to the string Register.
This functionality is particularly useful if you want your form to have
multiple submission buttons, and you want to figure out which button
the user clicked to submit the form.

3.3.2 A page that reads request parameters

We’ve spent quite a bit of time discussing HTML forms and individual request
parameters. Let’s look, at last, at a dynamic page that reads some parameters. As an
example, we’ll write a page called formHandler.jsp that handles the form in figure 3.4
(and listing 3.1). To get this page to work, simply add it to the same directory as the
page that produced the form. Listing 3.2 shows an example of such a page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<p>Wow, I know a lot about you...</p>

<p>Your name is <c:out value="${param.username}"/>.</p>

<p>Your password (sssssh!) is '<c:out value="${param.pw}"/>'.</p>

<p>You are <c:out value="${param.gender}"/>.</p>

Listing 3.2 formHandler.jsp: a page that prints out the results of a form

More powerful expressions 67

3.4.3 Comparisons

You can use the expression language to produce boolean values even when your
inputs aren’t boolean. For instance, the expression ${2 == 2} results in true. Note
the use of two equal signs (==) as a way of comparing two values. Many programming
languages, including Java and JavaScript, use similar syntax, so it might look familiar.

 Table 3.6 lists the JSTL expression language’s comparison and equality operators.

${pageContext.request.
queryString}

Your page’s entire query string p1=value1&p2=value2

${pageContext.request.
requestURL}

The URL used to access your page http://server/app/
page.jsp

${pageContext.session.
new}

true if the session is new; false

otherwise

true

${pageContext.servlet-
Context.serverInfo}

Information about your JSP container Apache Tomcat/5.0.0

${pageContext.
exception.message}

For a page marked as an errorPage,

a description of the error that

occurred

"Something very, very
bad happened"

Table 3.5 JSTL expressions involving pageContext. These somewhat involved expressions are

useful if you need detailed information about the current page’s environment. Normally, you won’t

need to use such expressions, but they come in handy on occasion. (continued)

Expression Description Sample value

Table 3.6 JSTL supports these comparison and equality operators in expressions. You can use

these operators to write expressions like ${2 == 2} or ${user.weight gt user.IQ}. Every

comparison operator has a symbolic version (==) and a textual one (eq).

Operator Description Sample expression Result

==
eq

Equals ${5 == 5} true

!=
ne

Not equals ${5 != 5} false

<
lt

Less than ${5 < 7} true

>
gt

Greater than ${5 > 7} false

<=
le

Less than or equal to ${5 le 5} true

>=
ge

Greater than or equal to ${5 ge 6} false

72 CHAPTER 3

The expression language

take the result of this attribute—which may, of course, contain expressions—and
save it to the variable indicated by var and scope.

 For instance, consider the following tag:

<c:set var="four" value="${3 + 1}"/>

This tag stores the value 4 in a scoped variable named four. The scoped variable
named four is given page scope. If you wanted to store it in the session, you’d
instead write

<c:set var="four" scope="session" value="${3 + 1}"/>

The <c:set> tag can take any kind of JSTL expression in the value attribute; it can
result in a string, number, boolean, collection, or anything else.

Using the tag’s body

If you write a <c:set> tag without a value attribute, then <c:set> will take what-
ever appears in its body and save it to the scoped variable indicated by var and
scope. It’s important to realize that if other tags appear within <c:set>’s body,
these tags will be evaluated; like the browser itself, <c:set> only sees their output.

 This process might seem unusual, and it’s the first time we’ve encountered a
concept that will keep coming up in JSTL. JSP lets every tag have access to the out-
put of its body. Normally, everything in your page simply gets printed to the
browser; either it’s template text and gets printed directly, or it’s a tag and can pro-
duce dynamic output (see figure 3.6). But when template text and tags appear
inside another tag, the inner text and tags don’t get a chance to send their output
directly to the browser. Instead, the parent tag collects the output from its body and
then decides what to do with it. It can decide to send it on to the browser, to save it
to a scope variable, or to ignore it completely; it’s the tag’s choice (see figure 3.7). In

Figure 3.6 Normally, all template text and JSTL tags in your

page get the opportunity to output directly to a web browser.

The template text goes right through (as itself), and the JSTL

tags (like <c:out>) have a chance to produce dynamic output

that, by default, gets sent to a web browser.

77

4Controlling flow
with conditions

This chapter covers…

� Simple conditions

� Mutually exclusive conditions

� Nesting condition tags

� Syntactic rules for JSTL conditions

82 CHAPTER 4

Controlling flow with conditions

4.2.2 Using <c:if> within HTML tags

Because JSP doesn’t draw any distinction between plain text and HTML tags, you
can use <c:if> tags anywhere in your page—even in the middle of an HTML tag.
For instance, consider this use of a <c:if> tag:

<font size="2"
 <c:if test="${user.education == ’doctorate’}">
 color="red"
 </c:if>
>
 <c:out value="${user.name}"/>

This code prints the user’s name in red if the user is a doctor. The code checks the
user.education property and, if it is equal to doctorate, outputs the following
(ignoring white space) where name is the user’s name, as output by the <c:out> tag:

 name

If user.education is different from doctorate, we instead get

 name

In the first case, the HTML tag explicitly sets the text color to red, whereas
the latter case uses the default color. Recall from chapter 1 that the browser doesn’t
care how an HTML markup tag was generated—whether it was template text, the
output of a JSTL tag, or both. Thus, JSTL tags, like <c:if>, can easily be used to
produce HTML tags or parts of them.

4.2.3 Multiple <c:if> tags

When <c:if> tags appear next to one another, they act independently:

<c:if test="${error1}">
 Error 1 has occurred.
</c:if>
<c:if test="${error2}">
 Error 2 has occurred.
</c:if>

This example assumes that when certain errors have occurred, your page (or back-
end Java code) has stored the value true in page-scoped boolean variables called
error1, error2, and so on. (You’ll see how to create such variables in section 4.2.5.)

www.allitebooks.com

http://www.allitebooks.org

Yes-or-no conditions with <c:if> 87

<c:if test="${user.education==’doctorate’}">
 Dr.
</c:if>

then the page might appear inconsistent to the user. After a certain point in the
page, the Dr. title will appear; but at the beginning, it won’t. This difference might
not matter; but if consistency is important, we should record the value—whatever it
happened to be at a particular point—and then use it for the rest of the page. The
var attribute allows us to do this.

 Consider the following example:

<c:if test="${sessionScope.flags.errors.serious.error1}"

 var="error1">
 A serious error has occurred.
</c:if>

[… large page body …]

<c:if test="${error1}">
 Since a serious error occurred, your data has not been saved.
</c:if>

In this example, when the first tag is reached, the expression in its test attribute is
evaluated, and the result is saved into a page-scoped variable called error1. From
this point forward, even if the value of flags.errors.serious.error1 in the ses-
sion scope changes, the local error1 variable will stay the same. Thus, even if the
session-scoped flags.errors.serious.error1 flag changes for any reason, the
user will be given a message at the bottom of the page that is consistent with the
one displayed at the top. (Note also that in the second <c:if> tag, we save some
typing by using our own shorter variable name.)

 Although most <c:if> tags have a body, JSTL’s don’t require them to. So, you
can use <c:if> to write a tag whose only purpose is to expose a scoped variable.
For example, the following empty tag exposes a boolean variable named error1:

<c:if test="${sessionScope.flags.errors.serious.error1}"
 var="error1"/>

This tag isn’t used to make a decision during execution of the page; later tags on the
page, however, can use the error1 variable that this tag creates.

Saves variable

Uses variable

92 CHAPTER 4

Controlling flow with conditions

 Error 3 has occurred.

 </c:when>

 <c:otherwise>

 Everything is fine.

 </c:otherwise>

</c:choose>

The example now prints out a reassuring message—by way of the optional <c:oth-
erwise> tag—if ${error1}, ${error2}, and ${error3} are all not true.

Example 3

Let’s consider a slightly more involved example. In the first example in this chap-
ter, we discussed a <c:if> tag used to print the text Dr. if user.education indi-
cated that the user had a doctorate. In that example, Dr. would either appear or it
wouldn’t; there was no third choice. Instead of this simple yes-or-no choice, let’s
look at an example that prints one of three choices—Dr., Ms., or Mr.—as appropri-
ate. To do this, we have our tags check both a user.education property and
another property, user.gender:

<c:choose>

 <c:when test="${user.education==’doctorate’}">

 Dr.

 </c:when>

 <c:when test="${user.gender==’female’}">

 Ms.

 </c:when>

 <c:when test="${user.gender==’male’}">

 Mr.

 </c:when>

</c:choose>

<c:out value="${user.name}"/>

We use two different properties of the user variable, but all our tests are grouped
under a single <c:choose> tag. The result is that an appropriate title (Dr., Ms., or
Mr.) is displayed in all cases. Note that the check for Dr. appears first because it
transcends gender. If we checked for a particular gender first, we would miss all the
members of that gender who were also doctors. Instead, we want to check gender
only if the user is not a doctor.

 This example demonstrates that JSTL strictly adheres to the order of your
<c:when> tags. If the first <c:when> tag succeeds, then the second (and remaining)
tags won’t be evaluated; if the second succeeds, then the third (and remaining) tags
won’t be evaluated; and so on.

 The <c:when> tag does not accept a var attribute, but it can use boolean vari-
ables exposed by earlier <c:if> tags.

Addition of <c:otherwise>
to display the default message

General-purpose looping with <c:forEach> 97

 The basic function of <c:forEach> is to consider every item in the collection
specified by its items attribute. For each item in the collection, the body of the
<c:forEach> tag will be processed once, with the current item being exposed as a
page-scoped variable whose name is specified by <c:forEach>’s var attribute.
Because this variable takes a different value for each loop, the body of the
<c:forEach> tag can print different text each time it is evaluated.

 Let’s make this behavior concrete. Consider the following use of <c:forEach>:

<c:forEach items="${user.medicalConditions}" var="ailment">

 <c:out value="${ailment}"/>

</c:forEach>

This <c:forEach> tag loops over every item in the medicalConditions property of
the user variable. If this property contains a list of medical conditions, like gingi-
vitis, myopia, and dehydration, then the example will print a string for each of
these items.

 You can also include static template text inside a <c:forEach> tag’s body, in which
case it will appear unchanged for each loop that <c:forEach> makes. For example:

<p>Sorry, you are afflicted with the following

minor medical conditions:</p>

<c:forEach items="${user.medicalConditions}" var="ailment">

 <c:out value="${ailment}"/>

</c:forEach>

If ${user.medicalConditions} contains the three conditions I mentioned earlier,
this fragment will output the following HTML (ignoring white space):

<p>Sorry, you are afflicted with the following

minor medical conditions:</p>

 gingivitis

 myopia

 dehydration

The template text outside the <c:forEach> tag is, of course, included only once.
For instance, this example prints only one tag. But text within the

1 In case you encounter specific Java types when talking with Java programmers—or in case
you’re a developer yourself—you might be interested to know the names of the data types
<c:forEach> accepts. They include arrays, Collection variables (including Lists and
Sets), Maps, Iterators, and Enumerations. As you’ll see in section 5.2, it can also accept
simple strings.

102 CHAPTER 5

Controlling flow with loops

 Both <c:forEach> and <c:forTokens> accept three optional attributes in sup-
port of subsetting, as shown in table 5.3.

JSTL assigns an index to every item in a collection; this index represents the item’s
place in the overall collection. For each collection, the index begins with 0, which—

interestingly enough—corresponds to the first item. Each successive element takes
the next index number: the second element has an index of 1, the third element has
an index of 2, and so on.

 The begin and end attributes accept numbers corresponding to these indexes.
By default, <c:forEach> and <c:forTokens> process the entire collection available
to them; like dutiful cogs in a machine, they start at the beginning and finish at the
end. The begin and end attributes override this default behavior by identifying par-
ticular start and end indexes. The begin attribute directs the tag to start with the
item at a particular index, and end causes iteration to end with a particular index.
For example, begin="0" and end="4" together instruct that a <c:forEach> or
<c:forTokens> tag should begin with the first element and end with the fifth. Simi-
larly, when a <c:forEach> or <c:forToken> tag is given the attributes begin="5"
and end="9", only the indexes 5, 6, 7, 8, and 9 will be included (that is, the sixth
through tenth elements).

WARNING Be careful! Because 0 represents the first element, end="4" will cause iter-
ation to proceed through the fifth element. Zero-based indexes can be con-
fusing, but many programming languages adhere to them for consistency.
If you have worked with JavaScript or Java before, you probably are famil-
iar with zero-based indexes. (Zero-based indexes are not limited to pro-
gramming languages. Not too far from where I live, a highway mile
marker labeled 0 indicates the beginning of the highway. As a program-
mer, it warms my heart.)

Table 5.3 Subsetting attributes for <c:forEach> and <c:forTokens>

Attribute Description Required Default

begin Item to start the loop (inclusive; 0=first item, 1=sec-

ond item).

No 0

end Item to end the loop (inclusive; 0=first item; 1=sec-

ond item).

No Last item

step Iteration will process every stepth element (1=every

element, 2=every second element).

No 1

Loop example: scrolling through results 107

 The count property, on the other hand, starts with 1 and reflects the current
loop’s position among the items for which <c:forEach> runs its body. No matter
what, count always increases by one for each loop. For any <c:forEach> or
<c:forToken> tag, count will be 1 the first time the body is processed, 2 the second
time, and so on. The first and last properties are boolean properties indicating
whether the current loop is the tag’s first or last, respectively. (The first property is
just a convenient way of checking to see whether count currently equals 1.) The
count attribute’s behavior isn’t affected by the begin, end, or step attribute.

 Figure 5.2 shows the values of these properties for a sample iteration.2

5.4 Loop example: scrolling through results

Earlier, we discussed how you can use the begin and end attributes to display only
part of a collection, in cases where the collection is too big to fit reasonably on a
single screen. Many applications, when they have too much information for a sin-
gle page, let users pick the information to view. For instance, the user can decide
whether to display results 0 through 19, 20 through 39, and so on.

2 The variable that varStatus creates has some other properties, but they are intended more for
developers of custom tags than for page authors. If you’re a Java developer and are interested
in these extra properties, see the LoopTagStatus interface in appendix B.

Figure 5.2

Values of the varStatus

variable’s properties during a

sample iteration. The tag in this

figure iterates three times,

producing the letters a, c, and e.

The boxes above each letter

show the values of the

varStatus variable for that

letter’s loop.

112 CHAPTER 5

Controlling flow with loops

 </c:if>

 <c:out value="${current}"/>

 <c:if test="${status.last}">

 </c:if>

</c:forEach>

To pick out every second row, we use the expression ${status.count % 2 == 0}.
Recall from chapter 3 that % in JSTL’s expression language is a remainder operator.
Thus, status.count % 2 means, “Divide status.count by 2 and take the remain-
der.” This remainder will be 0 only for the even rows. Thus, only these rows print
in a smaller font in figure 5.4. Note that we use the same condition twice: once to
open a tag, and once to close it with .

<c:if test="${status.count % 2 == 0}">

</c:if>

<c:if test="${status.count % 2 == 0}">

</c:if>

Figure 5.4

Many web sites display

alternating rows in different

colors. Because colors don’t

show up well in a black-and-

white book, our example of

handling alternate rows uses

font size instead of color.

Here, every second row prints

using small text.

Including text with the <c:import> tag 117

Another important task you’ll need to handle when you write dynamic web pages
is managing Uniform Resource Locators (URLs). You need to use URLs when you
import content with <c:import>, but URLs show up in other places as well. For
example, every time your pages display hyperlinks (HTML <a> tags) to other pages,
they use URLs.

 In this chapter, we look at <c:import> and other tags that help you manage and
use URLs. We’ll also show how you can communicate with the pages you include,
in order to customize their output.

6.1 Including text with the <c:import> tag

To retrieve content from a local JSP page or from another server, you can use the
<c:import> tag. Sometimes you’ll just want to print the information that you
retrieve, but <c:import> also lets you store the retrieved text in a scoped variable
instead of printing it.

 Table 6.1 shows the <c:import> tag’s attributes.

The crucial attribute is url, which specifies the URL of the content to retrieve. The
other attributes let you modify the way the tag handles its URL.1

 Often, a page that uses <c:import> is called a source page, and the page whose
contents are included with <c:import> is called a target page.

6.1.1 Absolute and relative URLs

You’re probably familiar with the basics of URLs simply from browsing the Web. A
URL, which is often called a web address by the sort of person who’s captivated by

Table 6.1 Basic <c:import> tag attributes

Attribute Description Required Default

url URL to retrieve and import into the page Yes None

context / followed by the name of a local web application No Current context

var Name of the attribute to expose the String

contents of the URL

No None

scope Scope of the attribute to expose the String

contents of the URL

No page

1 The <c:import> tag has a few advanced attributes that you’ll need only if you’re performing
relatively sophisticated text imports. See chapter 14 for more information about advanced
<c:import> techniques.

122 CHAPTER 6

Importing text

 The context attribute names another web application on the same server as the
page you’re writing. This name needs to start with a forward slash (/). For instance,
consider the following tag:

This tag imports the page /directory/target.jsp from the web application named
“other” in the same JSP container as our source page. Thus, the URL that appears in
the url attribute is treated as if it is relative to the root of this other web application
(that is, the other context).

Using expressions

Of course, you’re not limited to using URLs that you type literally into the
<c:import> tag’s url attribute. The <c:import> tag supports the full range of JSTL
expressions. For instance, the target URL can come from an expression, as follows:

This tag looks up the target attribute in the application scope, treats it as a URL,
and retrieves information from this URL. The context attribute can also come from
an expression:

6.1.3 Saving information for later

By default, <c:import> retrieves information from a URL and then immediately
prints it to your page. This is exactly what <jsp:include> does, and in most cases,
it’s also what you want.

 However, suppose you don’t want to immediately print the data you retrieve.
Sometimes, for instance, you want to import a page and then include its text multi-
ple times in your page. (As an example, imagine a file that contains nothing but
some HTML formatting to produce a stylized, horizontal line.) Or you might want
to retrieve some text every time the user logs in, and then store this text in the
user’s session scope for use during the user’s session. Saving data from <c:import>
lets you avoid having to retrieve the contents of a URL multiple times, which can
sometimes take a long time and slow your pages.

 To save the result of <c:import> instead of printing it out, you can use the var
attribute. Specifying a var attribute to the <c:import> tag causes the tag to not out-
put anything. Instead, the tag will simply retrieve text and save it to a scoped vari-
able. As with other JSTL tags, you can also use a scope attribute to set the scope of
the variable you create. (As usual, when you use var and scope, you need to specify
the name and scope manually; you can’t use expressions in these two attributes.)

<c:import context="/other" url="/directory/target.jsp"/>

<c:import url="${applicationScope.target}"/>

<c:import url="${applicationScope.target}"

context=" ${applicationScope.targetContext}"/>

Including text with the <c:import> tag 127

web site, you might appreciate the simplicity of <c:param> and the fact that, when
you use <c:param> within <c:import>, you can immediately see what data two
pages share. If you want to understand two pages that use scoped variables, you
may need to spend more time looking at the source code for both the source and
the target.

6.1.5 Import example: a customized header

Let’s look at a concrete example of pages communicating with one another using
<c:import>. Many web applications need to standardize the appearance of a
header throughout the application. We’ll throw in a twist, however: in our example,
the header will display a customized title that the source page (the one using

Figure 6.3

<c:param> lets you communicate

simple request parameters, which

take the form name=value.

Request parameters are flexible,

but they can only consist of simple

text strings, and they only support

one-way communication (from the

source page to the target).

Figure 6.4

In contrast with request parameters,

scoped variables—which can be

accessed by both the source and target

pages of a <c:import> tag—can

include arbitrarily structured data. They

support two-way communication as

well. However, they only work for target

pages within your web application.

132 CHAPTER 6

Importing text

6.2 Redirecting with <c:redirect>

In some situations, your web pages need to act like seasoned bureaucrats and refer
you elsewhere. Fortunately, web browsers tend to have more patience than most
people do. Normally, when a browser sends a request for a web page, it receives
back an HTML file, image, or other content in response. Sometimes, however, it
gets redirected to another page. Essentially, the server says, “I don’t have what you
want; go look here instead,” where here is a particular URL the browser needs to fol-
low. The browser then loads this URL and displays its content—or perhaps it’s redi-
rected to yet another URL.

Figure 6.8 source.jsp sets a variable and then imports

target.jsp, which reads the variable. Before target.jsp

finishes, it sets its own variable, which source.jsp later reads.

Figure 6.9 source.jsp displays output that looks like this when loaded by a web browser.

www.allitebooks.com

http://www.allitebooks.org

Summary 137

Here, the <c:url> tag is embedded within the tag’s src attribute; it causes the
URL to be transformed appropriately so that the user’s browser can understand it.

 You can use <c:url>’s context attribute to create a URL to a page in another
web application in your JSP container.

 The <c:url> tag is also useful if you want to save a URL (using the var and
scope attributes) and use it multiple times in your application.

6.4 Summary

In this chapter, we looked at tags that support text retrieval, redirection, and URL
management. Key points to remember include the following:

� <c:import> works like <jsp:include>, but it lets you retrieve data from
absolute URLs, as well as pages from different web applications on the same
JSP server. It also lets you save data instead of printing it out immediately.

� If the source and target pages are in the same web application, then they can
share variables in request, session, and application scope. Doing so allows
two-way transmission of whatever data you’d like (including, of course, sim-
ple strings).

� <c:redirect> lets you bounce the user to a new page, using either an abso-
lute or relative URL.

� Whenever you write out a relative URL to a page, you should use <c:url>
instead of printing the URL directly. Doing so makes sure sessions work even
in browsers that don’t support cookies, and it also simplifies use of context-
relative URLs (those that begin with /).

� <c:param> lets you pass simple text strings from the source page to the target
page. It works with <c:import>, <c:redirect>, and <c:url>.

142 CHAPTER 7

Selecting XML fragments

7.2 XPath’s basic syntax

XPath operates on documents using the type of tree structure you just saw. As you
probably know, trees are commonly seen on computers. On nearly all modern
operating systems, for example, a disk is organized into directories (or folders), each of
which can contain other directories. This kind of organization naturally arranges
itself into a tree, and we often speak of child directories or subdirectories when we dis-
cuss disks.

 XPath takes advantage of our familiarity with traditional filenames, applying a
similar syntax to the tree representing an XML document. If you have three direc-
tories on your disk—a, b, and c—and you are running Windows, you can refer to
these directories as follows:

c:\a\b\c

Note how the backslash character (\) is used to separate the directory names. Unix
systems use the regular slash (/) character in a similar capacity:

/a/b/c

XPath adopts this Unix convention, using the slash character to separate the name
of one XML element from another. For example, in the tree from figure 7.1, the
element could be described by the following path:

/html/body/p/b

This XPath expression matches the highlighted part of our sample document:

<html>

 <head>

 <title>Poem</title>

 </head>

 <body>

 <h1>Poem</h1>

Figure 7.1

The tree structure of a sample HTML

document. When an element like

<h1> occurs inside <body>, you

can think of it as a child of that

<body> element.

XPath variables and JSTL 147

Therefore, //p is true if it is applied to a document that has at least one <p> ele-
ment, and it’s false if the document has no <p> elements.

NOTE XPath expressions are more flexible than I’ve shown here. For instance,
they can also call functions that directly return numeric values, boolean
values, and so on. XPath also provides general rules for converting be-
tween numbers, booleans, and other types of data. Details about XPath
data types are beyond the scope of this book because they’re not needed
to use JSTL; see appendix D for references to more information.

7.3 XPath variables and JSTL

Like many languages, XPath supports variables. Just as in JavaScript, Java, and
other languages, XPath variables are evaluated and replaced with actual values,
which might be different every time an XPath expression executes.

 JSTL depends on XPath variables in a somewhat novel way: it maps them to
dynamic scopes that resemble JSTL’s expression language. Therefore, XPath vari-
ables can refer to things that are similar to those the familiar expression language
can refer to (see chapter 3).

 Broadly speaking, an XPath variable is simply a qualified name (see chapter 2)
introduced with a dollar sign ($). That is, it’s a dollar sign followed by either a name
without a colon, like stomach, or a name with a colon, like large:intestine.

 The XPath expressions we’ve presented until now haven’t used variables; they
simply contained text, as in

/a/b/c

You can introduce a variable into this static XPath expression. This variable can
have a different value each time an XPath expression is evaluated. Variables can
refer to data from a variety of sources. For instance, the expression

$pageScope:document/b/c/d

contains the variable $pageScope:document. Recall from chapter 2 that in the name
pageScope:document, pageScope is a namespace prefix, and document is a specific,
local name. JSTL recognizes the namespace prefixes listed in table 7.1.

 These prefixes have the same behavior as the implicit objects described in
chapter 3 for the general-purpose expression language. Furthermore, just as in
JSTL’s language, the default behavior when searching for a variable (the behavior
when no namespace prefix is specified) is to search first in the page scope, and then

152 CHAPTER 7

Selecting XML fragments

7.6 Summary

In this chapter we explored XPath’s basic syntax, in order to let you use XPath with
JSTL. Keep in mind the following points:

� JSTL’s support for XML manipulation depends on XPath.
� XPath (the XML Path Language) can be used to select parts of XML documents.
� XPath treats XML documents as trees and accesses individual nodes in the

document in a similar manner to the way you access files on a disk.
� You can use XPath to filter documents based on node names, attribute values,

and even the order in which nodes appear. But be careful if your documents
use namespaces.

� XPath includes many more features than we’ve discussed here. Appendix D
lists resources that will help you learn XPath in more depth, if you want to
do so.

Accessing XML with <x:out> and <x:set> 157

//table

we’d write

$doc//table

This expression tells JSTL to find the doc variable, and then find all <table> tags
within the document it represents.

 It’s easy to confuse a variable that points to a document with the root element of
that document. For instance, consider the following <x:parse> tag:

<x:parse var="orders">
 <orders>
 <order item="4"/>
 </orders>
<x:parse>

To refer to the inner <order> element, you could write $orders/orders/order, but
not $orders/order. The inner <order> element is not a direct child of the docu-
ment; it is a child of the <orders> element.

8.2.2 The <x:out> tag

The <x:out> tag evaluates and prints out the string value of an XPath expression;
the starting node is often retrieved from an XPath variable. (For more information
about string values, see section 7.2.) The <x:out> tag is one of the most basic ways
of introducing an XPath expression into your JSP page. The tag takes the attributes
listed in table 8.2.

Let’s look at <x:out> in action. Suppose our page contains the following <x:parse> tag:

<x:parse var="simple">
 <a>

 <c>C</c>

 <d>
 <e>E</e>
 </d>

</x:parse>

Table 8.2 <x:out> tag attributes

Attribute Description Required Default

select XPath expression Yes None

escapeXml Whether to print characters like & as & No true

162 CHAPTER 8

Working with XML fragments

match any elements. If customerId equals 525, however, then the expression will
match the two order records for Jim Heinz.

 So, if Jim Heinz is the current customer (the one whose number is stored in
customerId), we’ll match two nodes. For Roberto, we won’t match any. Note that
we’re not interested in what the nodes are. For example, we couldn’t care less if the
order number is 20005. Because we simply want to differentiate customers who
have placed orders from those who haven’t, the mere presence of <order> ele-
ments for Jim Heinz (and their absence for Roberto del Monte) is decisive. Recall
XPath’s boolean conversion rules from section 7.2: an XPath expression that
matches one or more nodes is true, and one that doesn’t match any nodes is false.
Therefore, our sample XPath expression is true for Jim Heinz because he has
placed orders, and it’s false for Roberto del Monte because he hasn’t. Jim will
therefore receive the special message intended for repeat customers, and Roberto
won’t. Problem solved!

Storing a boolean result

The <x:if> tag, just like <c:if>, lets you save the result of a condition to a boolean
variable using the var and scope attributes. As before, this tag has a number of uses:

� To avoid wasteful re-evaluation of a condition.
� To “lock in” a condition if you’re afraid it will change.
� To use the result of a condition in a <c:when> or <x:when> tag that appears

later in the page. (We’ll look at <x:when> in a moment.)

8.3.2 Compound conditions with <x:choose>

Just as the core JSTL library provides <c:choose>, <c:when>, and <c:otherwise>
for complex, mutually exclusive conditionals, the XML library offers <x:choose>,
<x:when>, and <x:otherwise> for compound XML-based conditions. Their use is
identical to the core library’s, except that each <x:when> tag uses an XPath expres-
sion. Table 8.5 shows the attribute for <x:when>. (As with the core library, the other
mutually exclusive conditional tags don’t take attributes.)

As a simple example of <x:choose>, <x:when>, and <x:otherwise>, consider the
following small document, which you first saw in chapter 7:

Table 8.5 <x:when> tag attribute

Attribute Description Required Default

select XPath expression to evaluate. If true, process the

tag’s body; if false, ignore the body.

Yes None

Control flow based on XML documents 167

 <font
 <x:choose>
 <x:when select="@status=’preferred’">
 color="#000000"
 </x:when
 <x:otherwise>
 color="#888888"
 </x:otherwise>
 </x:choose>
 >
 <x:out select="name"/>

 </p>
</x:forEach>

In this case, preferred customers are printed in a deep black (color="#000000"),
and regular customers are printed in a lighter gray (color="#888888"). Ignoring
white space, the example outputs the following HTML text:

<p>

</p>
<p>

</p>
<p>

</p>

Note how we use XPath’s @ syntax to refer to attributes of the context node. Read
the expression “@status=’preferred’” as “Does the current node’s status attribute
equal preferred?”

Nested iteration

If a <x:forEach> tag appears inside another <x:forEach>, it inherits the outer tag’s
context node.

 Consider the following sample document:

<customers>
 <customer id="555">
 <order id="1310">
 <item id="30"/>
 <item id="84"/>
 </order>
 <order id="1340">
 <item id="46"/>
 <item id="84"/>
 </order>
 </customer>
</customers>

Jim Heinz

Roberto del Monte

Richard Hunt

172 CHAPTER 8

Working with XML fragments

The JSP page in listing 8.1 is an archetypal example of how to use XSLT from JSTL.
First, a <c:set> tag sets the xml variable with body content that appears directly in
the page. (Of course, this inline content could easily be replaced with a <c:import>
tag to fetch a document from elsewhere). Next, another <c:set> tag sets the xsl
variable using a simple, typed-in stylesheet. (Again, this stylesheet could reside else-
where, and the page could retrieve it using <c:import>.) Finally, the <x:trans-
form> applies the XSLT stylesheet to the XML document and outputs the result. The
page therefore outputs the following, ignoring white space:3

<?xml version="1.0" encoding="UTF-8"?>
<p>
 This document uses unusual markup,
 which we want to replace with HTML.
</p>

For information on how the XSLT stylesheet works, see the references listed in
appendix D.

8.4.2 Using the var attribute

If you specify a var attribute for <x:transform>, the document that results from the
<x:transform> tag’s transformation is saved in a variable instead of being output to
the page. This result can be useful in a number of situations. For instance, once
you’ve stored the output of a transformation using var, the output can be used as
input to another <x:transform> tag. Or, you can select portions from the resulting
document using XPath and <x:out>.

 For example, the final line of listing 8.1 is a simple <x:transform> tag that out-
puts its result to the page:

<x:transform xml="${xml}" xslt="${xsl}"/>

Suppose we replaced this tag with one that stores the document in a variable and
uses it in an <x:out> tag, as follows:

If these two lines replace the final line in listing 8.1, the listing’s JSP page then out-
puts simply HTML—the string value of the second tag in the resulting document.

 Instead of passing $doc2 to the <x:out> tag, we could have passed it to another
<x:transform> tag. Chaining XSLT transformations—applying them successively,
using the output of one transformation as input to another—is a flexible technique

3 In this example, the XML declaration (beginning <?xml) is added by the XSLT processor that’s
used behind the scenes to perform the transformation.

<x:transform var="doc2" xml="${xml}" xslt="${xsl}"/>

<x:out select="$doc2//b[2]"/>

An XML example: reading RSS files 177

</x:forEach>

This surprisingly short example is all we need to handle simple RSS files. We start
by loading and parsing the RSS file from a URL specified by one of our request
parameters, rssUrl. To pass the simpleRss.jsp page this parameter, we might use an
HTML form like this:

<form method="post" action="simpleRss.jsp">
 Enter the URL for an RSS feed:
 <input type="text" name="rssUrl" />
 <input type="submit" />
</form>

Once simpleRss.jsp has retrieved its RSS file over the Web, it loops over each
<item> tag in the RSS file and prints out its <link> and <title> children. We insert
the contents of the <link> item into an <a> tag’s href attribute, and we print the
headline (<title>) as the body of the hyperlink. A sample result is shown in figure 8.5.
(This example uses a news feed from CNet, which was available at the following
URL at the time this chapter was written: http://export.cnet.com/export/feeds/
news/rss/1,11176,,00.xml. See appendix D for more examples of RSS feeds.)

Dealing with namespaces

The simpleRss.jsp example is short and sweet, and it works for many RSS files, but it
has a problem: it doesn’t work for newer types of RSS files that use XML namespaces.
This limitation arises because, as you saw in chapter 7, XPath expressions like //item
and link don’t match elements that use namespaces. To match these items in all RSS
files, you need to use a slightly different syntax. Instead of writing

//item

to match all <item> tags, we’ll need to use an XPath expression like this:

//*[name()='item']

This expression matches all tags whose name is equal to item, regardless of the RSS
document’s use of namespaces. Listing 8.3 shows a more general page that parses
and prints out RSS documents.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

Listing 8.3 rss.jsp: converts an RSS channel (with namespaces) into a list of

hyperlinks

182 CHAPTER 9

Database-driven pages

When you need a user’s information to last for an entire session, you can store it in
JSP’s session scope. However, some information needs to last longer than the ses-
sion scope allows.

 For instance, you probably don’t want to make your visitors enter their prefer-
ences each time they come to your site. Most users would prefer to enter their infor-
mation once and have your site remember it. Some information—like a customer’s
full name, address, and phone number—might not even have anything to do with
the user’s session or web experience; you might simply need to gather this informa-
tion for use offline, after the user has left, to process orders or conduct other busi-
ness operations.

 To store data for long periods of time, you can use a software product called a
relational database management system—abbreviated RDBMS but often, these days,
described by the more general term database. Database packages include Oracle,
Microsoft SQL Server, PostgreSQL, MySQL.

 Of course, simple files on disk can also store information for a long time. You
might wonder why you should use a database when you can store data in straight-
forward text files.

 The answer is that using databases is safer, and in many cases more convenient,
than managing arbitrary files on a disk. Databases are designed to store structured
information. When you write to files, you must devise a way to represent your data
manually. For instance, you can separate names and phone numbers with commas,
and then store each user’s record on a different line in the file. But this process is as
error-prone as it is tedious, and it makes your file idiosyncratic. A missing comma
might cause you to greet a user as “Dear Mr. 203-432-6687.” If other people or
applications need to read your data, they must learn the format you personally
devised and implemented. By contrast, databases provide standard interfaces to
your data, and they help you organize it.

 Databases also help keep your data safe and consistent. A database can be set up
to ensure that every entry for a customer comes with a phone number and birthdate,
so you don’t accidentally end up with partial data. When databases guarantee the
consistency—or integrity—of data, they let you focus on other considerations. You
can set up a database once (or have a database administrator set one up) and then
read and write data to it, confident in its ability to handle the data quickly and accu-
rately.

 All the tags we introduce in this chapter come from JSTL’s sql tag library. (See
chapter 2 for more information on JSTL’s various tag libraries.) To use any of the
examples in this chapter, you’ll need to use a directive like the following at the top
of your pages:

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

www.allitebooks.com

http://www.allitebooks.org

Database connections with <sql:setDataSource> 187

To prepare connections to this database, we’d use the following tag:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

 password="donkey"/>

Because this <sql:setDataSource> tag doesn’t have a var or a scope attribute, it
will replace the page’s default database. That is, any other database tags that appear
later in the same page will use the database identified by this tag’s attributes. Sup-
pose we add just a scope attribute, as follows:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

 password="donkey"

With this new attribute, the <sql:setDataSource> tag will set up a new default
database for the user’s session. We could also specify scope="request" or scope=
"application" if we wanted to set a default for the request or application scope.

 Setting a default is useful when your application has only—or primarily—one
database to use. For instance, you can put an <sql:setDataSource> tag in a com-
mon header file included with <c:import> into your page. If such an <sql:set-
DataSource> tag has a scope="application" attribute, then it sets an application-
wide default, and you may never have to think about <sql:setDataSource> again
until you start working on a new application.

 When different default databases exist for the page, request, session, and appli-
cation scopes, then JSTL’s database tags use page first, followed by request, session,
or application. This sequence lets you set a default for a specific scope without
destroying the defaults for more general scopes. For instance, you can use <sql:set-
DataSource> in a single page but rely on a session-scoped default database for other
pages.

 If your application works with multiple databases, then instead of using
<sql:setDataSource> to set a default connection, you might instead use it to
expose a scoped variable that represents a database. You can do this by adding a
var attribute:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

scope="session" />

192 CHAPTER 9

Database-driven pages

<sql:query var="result">

 SELECT NAME, IQ FROM USERS WHERE IQ > 120

</sql:query>

The SQL query in this tag produces a result with exactly two columns: NAME and IQ.
The number of rows depends on the data itself—in this case, on the number of peo-
ple in the USERS table who have IQs above 120.

 Table 9.3 shows a sample result for this SQL query. The user named Richard has
an IQ of 132, Jonathan weighs in at a less-impressive 121, and so on.

The job of <sql:query> is to retrieve a result—just like that in table 9.3—and
expose it as a scoped variable. Such a scoped variable isn’t as simple as a string or
number; instead, it’s divided into a number of properties. These properties let you
access two things about a database result:

■ The data in the table
■ Information about the data (often called metadata)

Figure 9.3 shows all the properties of the variable that each <sql:query> exposes.
The first two, rows and rowsByIndex, are for accessing data. The remaining proper-
ties—columnNames, rowCount, and limitedByMaxRows—just help describe the data.

Accessing metadata

Let’s begin by looking at the metadata. Suppose you’ve used an <sql:query> tag to
create a variable called result. The simplest property of this result variable is
rowCount. The expression ${result.rowCount} lets you retrieve the number of
rows in the result. For instance, for table 9.3, rowCount would be 5, because five
pairs of NAME and IQ values are listed.

 You can also use the result variable to retrieve the names of the columns in the
result. The columnNames property is a list of column names. Recall from chapter 3
that you can access the items in an ordered list using square brackets ([]) and index

Table 9.3 A sample result from a database, with two

columns and five rows

NAME IQ

Richard 132

Jonathan 121

Liz 140

Michael 162

Rachel 149

Performing queries with <sql:query> 197

9.3.3 Limiting the size of a query’s result

We use databases because they’re good at storing large amounts of data. If all appli-
cations managed only a small amount of data, a general-purpose, relational data-
base would probably be overkill. The size of databases, though, can lead to a
problem: it becomes easy, with a simple query, to retrieve a set of results that is
unmanageably large. For example, the documentation for PostgreSQL, a free high-
quality database, says that some PostgreSQL installations have databases 60GB in
size. (That’s more than 64 billion characters.)

 Imagine that your application has a large database, and you perform a query
based on user input. You have a page that prints data for all customers who match
the user’s keyword. Now, suppose the user enters an uninspired keyword like
“Bob” that matches 50,000 rows. JSTL lets you prevent the query from going out of
control by using two attributes of the <sql:query> tag: maxRows and startRow.

The maxRows attribute

The maxRows attribute is straightforward. When it appears in an <sql:query> tag, it
ensures that no more than a specific number of rows will be stored by the scoped
variable that <sql:query> stores. For example, the following tag might produce a
very large result named customers:

<sql:query var="customers">

 SELECT * FROM CUSTOMERS

</sql:query>

However, this tag will never store more than 20 rows in customers:

 SELECT * FROM CUSTOMERS

</sql:query>

Figure 9.5

Sample output from printQuery.jsp,

using the data shown in table 9.3.

The generic printQuery.jsp page

accepts any result from

<sql:query> and formats it as a

simple HTML table.

<sql:query var="customers" maxRows="20">

202 CHAPTER 9

Database-driven pages

9.5.1 Template queries

One way to use queries like this is to customize them with simple JSP, just like you
customize an HTML page. After all, JSP is great for adding dynamic content to oth-
erwise static text. For example, we can use JSTL’s <c:out> tag (see chapter 3) to fill
in part of an SQL query:

<sql:query var="result">

 SELECT * FROM TABLE

 WHERE CUSTOMER_NUMBER=<c:out value="${customerNumber}"/>

</sql:query>

This is a simple way to use JSTL to modify a query. It effectively plugs the value of a
scoped variable into an SQL statement. However, this technique is more problem-
atic than it might seem at first. You’re not always working with numbers; sometimes
you’ll use strings. In SQL, strings must be quoted with single quotes. So far, that
doesn’t sound like a problem; we could just insert the quotes manually, like this:

WHERE CUSTOMER_NAME=’<c:out value="${customerName}"/>’

However, if the customer’s name contains a quotation mark, like David O’Davies,
the result will be the following unfortunate text:

WHERE CUSTOMER_NAME='David O'Davies'

Because <c:out> escapes the quotation mark by default, it yields an incorrect value;
SQL does not understand XML escaping.

 There’s even a security risk in building up queries manually. If you decide to get
around <c:out>’s escaping problem by using the attribute escapeXml="false", a
malicious user could purposely corrupt the query to retrieve private information or
even alter your database. For example, suppose the user, instead of a name like
David O’Davies, enters the following unexpected text:

David’ OR CUSTOMER_NAME <> ’David

In this case, the end of the query becomes

WHERE CUSTOMER_NAME=’David’ OR CUSTOMER_NAME <> ’David’

Because every customer name is either equal or not equal to ’David’, this query
will match every row in the table! Therefore, it’s not usually a good idea to use
<c:out> to build up an SQL statement yourself.

9.5.2 Safe, convenient parameters with <sql:param>

JSTL lets you avoid these problems by using a special syntax borrowed from JDBC,
the Java package that supports database connectivity. Using this syntax, you can

Managing transactions with <sql:transaction> 207

five operations must be treated as a single unit. Operations that need to succeed or
fail as a single unit are known as transactions.

WARNING Although most well-engineered database systems support transactions, not
every software product does. Before using the tags in this section, check
with your software’s documentation or your database administrator to en-
sure your database supports transactions.

9.6.1 The <sql:transaction> tag

In JSTL, transactions let you treat a series of <sql:query> and <sql:update> tags as
part of a unified whole. All query and update tags within a transaction succeed or
fail together; there is no middle ground. If the end of a transaction doesn’t complete
successfully, the beginning is stricken from the record: the database pretends it
never happened. This sort of pretending is formally called rolling back, and it
involves restoring the database’s state to a prior one—specifically, to the way things
were before the first <sql:update> in the transaction executed.

 JSTL supports transactions with a tag called <sql:transaction>. This tag acts as
a parent tag for <sql:update> and <sql:query> tags. Each <sql:transaction> tag

Figure 9.8

The <sql:transaction> tag

protects its <sql:update> and

<sql:query> children. It does

so by ensuring that these children

succeed or fail as a unit. If any of

the individual steps under an

<sql:transaction> fails, the

database will be rolled back to a

prior state, as if the transaction

had never begun.

212 CHAPTER 9

Database-driven pages

number. We can create a suitable table, which we’ll call counter, using the follow-
ing SQL command:

create table counter (

 counter integer

)

NOTE You’ll need to type this command into your database’s text interface. The
instructions for doing so vary from database to database, so you’ll need to
check with your database’s manual or administrator to determine how to
send it commands manually. (My hsqldb tutorial at Manning Publication’s
web site describes the procedure for hsqldb. See appendix D for its URL.)

If you have trouble sending commands to your database manually, you
can enter the command into an <sql:update> tag and run the tag manu-
ally by loading its page. This technique is somewhat clumsy, but it’s a de-
cent alternative. For instance, the following tag will create the counter
table in the default database:

<sql:update>
 create table counter (
 counter integer
)
</sql:update>

The counter table has a single column, also called counter, which stores an integer.
Our table will contain a single row, and this row’s value for the counter column will
represent the current tally of web-page hits. Before we use the counter, we’ll need to
create this row manually. To do so, we can run the following SQL command:

insert into counter(counter) values(0)

This line initializes our database and sets the counter’s starting value to 0.
 Now that we’ve set up the counter table, we’re ready to look at a page that uses

it. Listing 9.2 shows such a page.4

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:transaction>

Listing 9.2 counter.jsp: a simple hit counter

4 Remember, this chapter’s examples, including listing 9.2, assume you have a default database
set up. If you don’t, you’ll need to use the <sql:setDataSource> tag and the dataSource
attribute for <sql:transaction>. See section 9.2.

Printing numbers with <fmt:formatNumber> 217

will output

500000.01

The <c:out> tag prints the number in a simple, default form. Integers, for instance,
are presented as a sequence of digits. Floating-point numbers are displayed similarly,
but with a decimal point (.) separating some digits from the other digits. This simple
format might be okay for many of your pages, but if a page prints out a lot of num-
bers, or if presenting numbers is a page’s main job, then you’ll probably want more
control over how numbers are printed. That’s what <fmt:formatNumber> is for.

10.1.1 Basic usage of <fmt:formatNumber>

In its simplest form, you can use the <fmt:formatNumber> just like <c:out>. For
example, we can write

<fmt:formatNumber value="${netWorth}"/>

This usage is similar to <c:out>: the tag has an attribute, value, that points to the
number we want to print out. However, even in this simple form, the <fmt:format-
Number> tag does something more interesting than <c:out>: it prints the number
using its best guess about what format the user wants to see. Web browsers can con-
vey information about their locale—essentially, their location and preferred formats
for numbers, dates, and other data. The <fmt:formatNumber> tag can automatically
sense this locale and customize its output. So, if ${netWorth} equals 500000.01, the
simple <fmt:formatNumber> we just presented will output the following values for
these countries:

As this table shows, the format is different for the United States, France, Germany,
and (as you might know if you have a Swiss bank account) Switzerland.

TIP If you’re using Windows and Internet Explorer, you can experiment with
different locales by going to the Start menu and choosing Settings, then
Control Panel, and finally Regional Options. From there, the General tab
lets you pick your locale. (These instructions may vary slightly if you use

Country Sample numeric format

United States 500,000.01

France 500 000,01

Germany 500.000,01

Switzerland 500'000.01

222 CHAPTER 10

Formatting and internationalization

WARNING By default, the currencyCode attribute works only on JDK 1.4 and later
versions. Check with your system administrator if you’re not sure what
version of the JDK your JSP container runs on. If you use the currency-
Code attribute on a system that has an older version of Java, the code you
use will be printed as a currency symbol. I wouldn’t recommend this ap-
proach; use the currencySymbol attribute instead.

A separate attribute, currencySymbol, lets you set a specific currency symbol to
use. For instance, you might write currencySymbol="$" to indicate the dollar.

10.1.5 Grouping digits together … or not

By default, <fmt:formatNumber> arranges digits into groups that are appropriate for
the browser’s locale. For example, as you saw earlier, the number 500000.01 is
printed as 500,000.01 in English. This formatting is used because of the locale’s
customary rules: groups of three digits are separated by a comma (,). In Switzer-
land, the style uses groups of three digits separated by an apostrophe (’).

 You can use the groupingUsed attribute to explicitly shut off this grouping,
which will cause the number to be printed without any group separator. Figure 10.1
shows an example.

The following two tags are equivalent because groupingUsed="true" is the default:

<fmt:formatNumber value="500000.01" />

For the English locale, these tags both print

500,000.01

<fmt:formatNumber value="500000.01" groupingUsed="true" />

Figure 10.1

By default, the

<fmt:formatNumber> tag

arranges numbers into groups

of digits, using a locale-specific

group separator. You can shut

off this behavior with the

groupingUsed attribute.

Printing dates with <fmt:formatDate> 227

 For more information on how patterns work, you can read the Javadoc page for
the DecimalFormat class, which (for the version of Java that was current at the time
this chapter was written) should be available at http://java.sun.com/j2se/1.4/docs/
api/java/text/DecimalFormat.html.

10.2 Printing dates with <fmt:formatDate>

Just as JSTL provides support for formatting numbers with <fmt:formatNumber>,
it gives you <fmt:formatDate> to help print out dates and times. Table 10.4 lists
its attributes.

10.2.1 Differences from <fmt:formatNumber>

Besides the obvious difference that <fmt:formatDate> is for printing dates and
<fmt:formatNumber> is for printing numbers, a few syntactic differences exist
between the two tags. First, <fmt:formatDate> always takes a value attribute; this
attribute is required. In addition, it cannot accept data from its body.

 The value attribute for <fmt:formatDate> must point to a date variable; it can’t
simply point to a string that represents a date, like "Jan 1, 2001". There’s no
good, unambiguous way for <fmt:formatDate> to accept and interpret strings as
dates. That job is given to another JSTL tag, <fmt:parseDate>, which we’ll encoun-
ter later.

 You can get real date variables a few ways. You might retrieve one from a data-
base or receive one from back-end Java code. Or, you might use the <fmt:parse-
Date> tag we just mentioned, which we’ll describe in section 10.4, to produce a date
variable. You can also produce a date using an advanced tag called <jsp:useBean>.
We’ll leave this tag’s inner workings as magic for now; we’ll mention it again in

Table 10.4 <fmt:formatDate> tag attributes

Attribute Description Required Default

value Date to print Yes None

type Whether to print dates, times, or both No date

dateStyle Preformatted style to use for the date No default

timeStyle Preformatted style to use for the time No default

timeZone Time zone to use when formatting the date No See section 10.5

pattern Explicit formatting pattern to use No None

var Variable to expose the formatted date (as a string) No None

scope Scope in which to expose the formatted date No page

232 CHAPTER 10

Formatting and internationalization

10.3 Reading numbers with <fmt:parseNumber>

So far in this chapter, we’ve only discussed outputting data—formatting dates and
numbers and then (usually) printing them or (less frequently) saving them to scoped
variables. JSTL has two tags that help you handle input: <fmt:parseNumber> to help
you read numbers, and <fmt:parseDate> to help you read dates.

 In many cases, you don’t need these tags. As you saw in chapter 4, JSTL lets you
treat simple numbers as strings, and vice versa. For example, if the request parame-
ter named boundary equals the number 50 because that’s what the user entered in
an HTML form, we can say

<c:forEach … end="${param.boundary}">

and the <c:forEach> tag will know to stop its iteration after the fifty-first element.

 The <fmt:parseNumber> tag is specifically for cases in which you need to parse—
or interpret—more complicated numbers. If the user enters 50,000 (including the
comma), or if you read values that contain commas or spaces from an XML file or
database, you can’t treat these values as numbers; you need to parse them first.

 Table 10.7 lists the attributes that <fmt:parseNumber> accepts.

Tag Output

<fmt:formatDate
 value="${d}"

5 Apr 2002

<fmt:formatDate
 value="${d}"

4 after 9

<fmt:formatDate
 value="${d}"

April '02

<fmt:formatDate
 value="${d}"

Friday at 9:04 PM

pattern="d MMM yyyy"/>

pattern="m ’after’ h"/>

pattern="MMMM ’’yy"/>

pattern="EEEE ’at’ h:mm a"/>

Table 10.7 <fmt:parseNumber> tag attributes

Attribute Description Required Default

value The string to parse into a number No Body

type How to parse the number (number, currency, or

percent)

No number

www.allitebooks.com

http://www.allitebooks.org

Reading dates with <fmt:parseDate> 237

would work for the English locale, but

<fmt:parseDate value="Aug 24 1981"/>

would lead to an error because it lacks a comma. This behavior makes the default
case almost useless for processing input from users, because it’s usually inappropri-
ate to force users to be so specific in the values they enter. However, this use of
<fmt:parseDate> is appropriate in a few situations:

■ It’s useful if you know you’re getting data that was printed with <fmt:format-
Date>.

■ You can also use this simple form of <fmt:parseDate> if you’re generating a
string based on individual fields of user input—for instance, a pull-down
menu for month, followed by another one for date, and so on. See chapter 11
for an example of this technique.

If given a var attribute, <fmt:parseDate> stores a scoped variable that holds a date
and time (the time is always midnight in this simple case). Otherwise, it prints the
date in a somewhat ugly, unlocalized format:

Sat Aug 24 00:00:00 EDT 2002

You therefore almost always want to use a var attribute with <fmt:parseDate>
(except, perhaps, if you’re just testing your page).

10.4.2 Changing how <fmt:parseDate> parses dates

The <fmt:parseDate> tag comes with four attributes that let you change how it
parses dates. The first is simple: you can use the type attribute to let the tag parse
times as well as dates. Just as with <fmt:formatDate>, the type attribute has three
possible values: date, time, and both; date is the default. If you specify type=
"time", then <fmt:parseDate> tries to read and parse a time in the locale’s default
representation (for example, "07:45:02 PM"). For type="both", the tag expects a
default date/time combination, like

Aug 24, 2002 08:52:00 PM

The type attribute is somewhat limited when used alone. It can be useful when
used in conjunction with two more powerful attributes, timeStyle and dateStyle.
They let the <fmt:parseDate> tag accept the sorts of values shown in table 10.5,
earlier in this chapter.

242 CHAPTER 10

Formatting and internationalization

10.6 Overriding locales with <fmt:setLocale>

Throughout this chapter, I’ve mentioned that tags use the user’s web browser’s pre-
ferred locale by default. But JSTL page authors and back-end Java programmers
can also influence the locale used for the <fmt:format…> and <fmt:parse…> tags.
Doing so can be useful if you want to give users a choice of locale instead of letting
the browser automatically speak for them.

 Just as with time zones, back-end programmers have control over what locales
are used; they can explicitly choose to override the browser’s locale. See chapter 14
for information (geared to programmers) about how to do this.

 JSTL also lets you control the locale using a tag: <fmt:setLocale>. Table 10.11
lists this tag’s attributes.

As table 10.11 shows, value is always required. Using value, you can specify the
name of a locale. This locale will become the new default for the scope identified
by the scope attribute—or for the current page by default, if you don’t specify a
scope attribute. (The variant attribute is beyond the scope of this book.)

Figure 10.3

When the <fmt:timeZone> tag

surrounds one or more

<fmt:formatDate> or

<fmt:parseDate> tags, the time

zone from <fmt:timeZone>

automatically applies to each of

these child tags.

Table 10.11 <fmt:setTimeZone> tag attributes

Attribute Description Required Default

value Name of a locale to use (see section 10.6.1) Yes None

variant Specific variety of the chosen local to use (see

section 10.6.1)

No None

scope Scope for which to override the locale No page

Internationalizing text messages 247

10.7.2 Loading a bundle family with <fmt:bundle> and

<fmt:setBundle>

If no back-end Java code manages message bundles for your pages, or if you want
to override the bundle, you can use the <fmt:bundle> and <fmt:setBundle> tags.

 Table 10.15 lists the attributes for <fmt:bundle>.

Table 10.16 lists the attributes for <fmt:setBundle>.

The difference between <fmt:bundle> and <fmt:setBundle> is the same as the dif-
ference between <fmt:timeZone> and <fmt:setTimeZone>. The tags with set in
their names change the defaults for an entire scope, whereas the tags without set
apply only to their child tags.

 JSTL’s two bundle-related tags let you describe a group of related bundles using
the basename attribute. You’ll know the base name of a bundle if you’ve internation-
alized an application yourself; if you’re using someone else’s bundle, then whoever
internationalized the application should tell you the base name.

 The <fmt:bundle> tag changes the bundle for all the <fmt:message> tags in its
body. For instance:

<fmt:bundle basename="my.bundle">

 <fmt:message key="my.key.Welcome"/>

 <fmt:message key="my.key.Error"/>

</fmt:bundle>

When you use the <fmt:bundle> tag like this, you can give it a prefix attribute.
This attribute is a string that is added before every key in each <fmt:message> tag

Table 10.15 <fmt:bundle> tag attributes

Attribute Description Required Default

basename Name of the resource-bundle family to use Yes None

prefix String to prepend to each key (for long key names) No None

Table 10.16 <fmt:setBundle> tag attributes

Attribute Description Required Default

basename Name of the resource-bundle family to use Yes None

var Variable to expose the bundle No None

scope Scope in which to expose the bundle No page

Part 3

JSTL in action

So far, we’ve looked at what JSTL is and how it works. You’ve seen a few exam-
ples of JSTL in action, but now we’ll examine more closely how to handle practi-
cal tasks using JSTL. In chapter 11, we’ll show how you can use JSTL to address
some common but small-scale needs. In the chapters after that, we’ll discuss
more in-depth examples of web development with JSTL.

 A minor warning is in order. In some cases, you won’t be using JSTL as a
stand-alone technology. You might use it with Jakarta Struts, for example, or with
tag libraries developed specifically for your site. We can’t cover all the technolo-
gies that JSTL might interact with in this book; therefore, although most of the
material in part 3 is core, nuts-and-bolts stuff that you can use immediately, some
of the examples push JSTL to its limits. This is intentional; I think the best way to
learn a technology is by trying to use it creatively. So don’t be surprised if some
of the examples use JSTL for tasks that you might otherwise solve with a custom,
local library or with Struts. The examples here aren’t designed to demonstrate
principles of web-application architecture; books like Web Development with Java-
Server Pages1 already address that topic quite well. Instead, my goal is to show
you as many uses of JSTL as you could possibly want to see.

 My hope is that these “stretches” will serve as a good reference as your
knowledge of JSTL progresses. You just might find that JSTL can handle more
than you’d expect!

1 Duane Fields, Mark Kolb, and Shawn Bayern, 2nd ed. (Manning Publications, 2001).

252 CHAPTER 11

Common tasks

Some tasks never go away. If I had a dime for every time I had to write a JSP page
that signed up new users for a web application, I’d probably have more than $1.50
by now.

 However, JSTL makes lots of common tasks easier. In this chapter, we look at
how to use JSTL to address some common, specific issues like reading a date from a
user, accepting <input type="checkbox"> parameters, and handling errors. These
are all practical, but somewhat isolated, examples.

 They’re meant to help you generalize about JSTL. For instance, if you ever need
to read a date from a user of your web page, section 11.2 is a cookbook-like solu-
tion. But even if you don’t need to read dates frequently, understanding the exam-
ples in section 11.2 will be useful to solidify your knowledge of the <fmt:parseDate>
and <fmt:formatDate> tags. Similarly, the discussion of paramValues applies
equally well to headerValues and other collections; paramValues is just more com-
mon and practical.

 Before leaving this chapter, we get as far as a basic HTML-form handler that val-
idates its input and prepares to register a new user. Chapters 12 and 13 show more
complete, application-like examples.

11.1 Handling checkbox parameters

When we originally discussed JSTL’s expression language in chapter 3, you saw
how to use the expression language to handle HTML forms. For instance, an HTML
form parameter from a tag like

<input type="text" name="username" />

shows up to your JSTL tags as the expression ${param.username}.

 In chapter 3, however, I mentioned that checkbox parameters are special
because the same name can map to multiple values. Suppose we have an HTML
form with the following tags:

<input type="checkbox" name="language" value="english" />

<input type="checkbox" name="language" value="spanish" />

<input type="checkbox" name="language" value="french" />

If the user checks all three boxes, then the language parameter will have three val-
ues: english, spanish, and french.

 You can access a collection that contains all these values by using the expression
${paramValues.name}, where name is the name of the parameter you’re looking for.
You can use the <c:forEach> tag to loop over the individual parameters in this col-
lection and handle them one at a time.

Accepting dates 257

 You described our customer service as

 <c:forEach items="${paramValues.feedback}" var="adj">
 <c:choose>
 <c:when test="${adj == 'satisfactory'}">

 </c:when>
 <c:otherwise>

 </c:otherwise>
 </c:choose>
 <c:out value="${adj}"/>

 </c:forEach>
 </c:when>
 <c:otherwise>
 You didn't choose any feedback checkboxes.

 </c:otherwise>
</c:choose>

Again, this listing’s demonstration is somewhat silly, but it demonstrates an impor-
tant technique: using a <c:choose> tag directly below a <c:forEach> tag in order to
take special action depending on the parameter’s value. Instead of the trivial

it’s easy to see how you could do something more useful, like

<sql:update>

 UPDATE feedback SET satisfactory = satisfactory + 1

</sql:update>

This code would update a database when the page was loaded, but only if the box
for satisfactory customer service had been checked.

11.2 Accepting dates

Although HTML forms are flexible, they don’t do a lot of user-interface work for
you. HTML lets you choose from a few basic types of input fields—text boxes,
selection boxes, radio buttons, and so on—but it doesn’t make it easy to accept spe-
cial kinds of formatted input from the user. For instance, if you need your user to
enter a date or time, HTML doesn’t give you any tools to handle this input automat-
ically. Instead, you have to construct and interpret individual form fields.

 Using JSTL, it’s easy to write an HTML form that asks the user for a date or time.
Of course, you could always prompt the user for a date by displaying a text box
and asking them to type one in. You could then parse the date with the <fmt:

Checks to see if the
current parameter
equals a specific word

262 CHAPTER 11

Common tasks

your errors from multiple pages. The advantage of such a page is that it lets
you easily apply the same behavior to a group of pages; simply point all of
them at the same error page, and then figure out what to do in that page. It’s
an ideal place to say, “Something went wrong. Please try again.”

11.3.1 Ignoring the issue

JSP and JSTL don’t force you to think about errors. Some web applications’ JSP

pages don’t have to worry about errors, because the application could have been
deployed with error handling already set up. Just as back-end Java programmers
and application deployers can manage things like default locales, time zones, and
databases, they can also manage default error handling.

 Separately, if you’re reasonably confident that your pages won’t encounter any
unexpected errors—or if you’re happy with the look and feel of your JSP con-
tainer’s default error message—then you can forget about them and move on. (See

Figure 11.6 By default, errors in your JSP pages result in behavior that might look like this—or

different, depending on what your JSP container decides to show. The point is, you probably don’t

want your important pages to produce such errors. Unless back-end Java programmers supporting

your application have promised to take care of errors, you should catch and handle them yourself—

or use a JSP errorPage.

Handling errors 267

This line tells the JSP container that it can use this page as an error page.
 Note that you can use an error page and the <c:catch> tag from the same page.

The error page applies only if an error occurs but isn’t captured by a <c:catch> tag.
 Error pages are particularly useful when you want to provide a single, easily

changeable way to handle all your application’s errors. If you design an error page
that looks like the rest of your site—for instance, with the same headers, footers,
fonts, and color scheme—then your site’s error handling will look much more pro-
fessional.

Creating an error page

Listing 11.7 shows a simple error page.

<%@ page isErrorPage="true" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<h4>Error!</h4>

<p>Something bad happened in one of your pages:</p>

<p><c:out value="${pageContext.exception.message}"/></p>

Note how we use the expression ${pageContext.exception.message} to print out
information about the error that occurred. The pageContext.exception variable is
just like the scoped variable that <c:catch> stores: you can use its message property
to get information about the error that occurred, or you can print out the error
itself, which usually includes more technical information.1

 Listing 11.8 shows how to use an error page.

<%@ page errorPage="errorPage.jsp" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<fmt:parseDate value="A midsummer night"/>

If we load the page in listing 11.8, we’ll always get an error; the string "A midsummer
night" is not a valid date. Without the first line—<%@ page errorPage="error-

Page.jsp" %>—we’d get an error much like the one in figure 11.6. But with the

Listing 11.7 errorPage.jsp: a sample JSP error page

1 Note that the error message’s details can vary from one implementation of JSTL to another.

Listing 11.8 useErrorPage.jsp: a page that uses a JSP error page

Always an error

272 CHAPTER 11

Common tasks

 <small>

 Note: you must enter a name

 </small>

 </c:if>

 </p>

 <p>

 Enter your email address:

 <input type="text" name="email"

 value="<c:out value="${param.email}"/>" />

 <c:if test="${noEmail}">

 <small>

 Note: you must enter an email address

 </small>

 </c:if>

 </p>

 <p>

 Enter your age:

 <input type="text" name="age" size="3"

 value="<c:out value="${param.age}"/>" />

 <c:choose>

 <c:when test="${noAge}">

 <small>

 Note: you must enter your age

 </small>

 </c:when>

 <c:when test="${badAge}">

 <small>

 Note: I couldn't decipher the age you typed in

 </small>

 </c:when>

 <c:when test="${youngAge}">

 <small>

 Note: You're too young to receive adult

 junk mail. Please grow older and try again.

 </small>

 </c:when>

 </c:choose>

 </p>

 <input type="submit" value="Sign up" />

</form>

The page begins by looking more like a page that handles a form than a page that
displays one. This page does both, but we start with the validation logic. First, we
use a <c:if> tag to determine whether this page is (a) responding to a submitted

Prints an error message
if appropriate

g

More complicated
error-handling logic

h

www.allitebooks.com

http://www.allitebooks.org

Summary 277

11.5 Summary

In this chapter, we discussed a few demonstrations of JSTL in action. Take the fol-
lowing pointers from these examples:

■ Because checkbox parameters and cookies come in lists, you often need to
loop over them with <c:forEach>. You can find checkbox parameters with
the expression ${paramValues.name}, where name is the name of the parame-
ter you’re looking for.

■ If you need to let the user enter dates, you can use multiple expressions in the
same attribute value to assemble different request parameters (different form
fields) into a date that’s parseable by <fmt:parseDate>.

■ The <c:catch> tag lets you handle errors within your page.
■ JSP’s errorPage mechanism helps you control errors that aren’t handled in

your page.
■ You can use <c:if> tags, <c:choose> tags, and the expression language to

validate form input. One common strategy for validating input is to present a
page that cycles (see figure 11.10) until it receives correct input. Listing 11.9
shows an example of such a page.

Figure 11.12

When the page from listing

11.9 is fed invalid input, it

reprints its form with

appropriate error messages

interspersed. It also

explicitly fills in the form

with the values the user

entered, making it easier for

the user to correct them.

282 CHAPTER 12

Dynamic features for web sites

The survey_results table has two columns (see table 12.1).

The first column in this table, survey_id, contains a number that identifies an indi-
vidual survey question. For instance, survey 2 could be, “Which of your internal
organs do you find most appealing?” and survey 3 could be, “Are you a Democrat
or a Republican?” The questions don’t need to have anything to do with each other;
all questions that your site uses can live side-by-side in the survey_results table.

 Every row in this table stores an individual user’s choice. For instance, if a user
submits the value pancreas for survey 2, we add a row that looks like (2, ‘pan-
creas’). The next user might vote for the choice liver, which would lead us to
create a new row: (2, ‘liver’). The table thus allows duplicate rows, which are
fine in a relational database.

TIP We could have structured this table differently. Instead of storing one row
for each response, survey_results could contain one row for each dif-
ferent choice and could keep a counter that is incremented, much like the
counter we used in chapter 9. I decided to use the approach outlined in ta-
ble 12.1 for two reasons:

Table 12.1 Our survey application’s database table (survey_results) has two columns: one that

identifies the survey and another that stores the choices users make.

Column name Type Purpose

survey_id INTEGER Stores a number that distinguishes each survey

question from the others

choice VARCHAR(30) Contains an individual user’s choice for the

corresponding survey_id

Figure 12.2

Our survey can respond by

printing detailed

information about the

user’s choices, or even a

graph of the results.

An online survey 287

 </tr>

 </table>

 </td>

 </tr>

 <c:if test="${s.last}">

 </table>

 </c:if>

 </c:forEach>

 </c:otherwise>

</c:choose>

b The survey.jsp page starts with an error check. If we don’t receive the two parameters
we need (surveyId and choice), then we don’t bother going on. We put the error mes-
sage in a <c:when> block and the rest of the page in <c:otherwise>. Thus, the page
won’t try to update or access the database unless it’s given the necessary parameters.

c The first <sql:update> tag saves the user’s vote in the database. Note that this tag—

and all the database tags in survey.jsp—doesn’t use a dataSource attribute. As I
mentioned at the beginning of this chapter, I assume the page runs in an environ-
ment where the default database has been set up correctly. If this is not the case,
you’ll need to add a dataSource attribute to every <sql:query> and <sql:update>
tag in the page. For information on how to do this properly, see chapter 9.

 The SQL command that we use to save the user’s choice is simple. Remember
that the survey_results table is supposed to have a row for every individual sur-
vey response. Thus, all we need to do is add a row for the current user’s vote. To do
this, we use the base query

insert into survey_results(survey_id, choice)

 values(?, ?)

and send it our two parameters using <sql:param> tags.

d Now, after saving the new result, we want to retrieve all results for the requested
survey. We do this with an <sql:query> tag that contains an <sql:param> tag to
pass the survey_id number we’re interested in. We use a bit of advanced SQL here,
so let’s go over it carefully.

 Our SQL query retrieves two things from the survey_results table. It begins
as follows:

select choice, count(choice) from survey_results

 where survey_id = ?

The first thing we’re selecting—choice—is simple; it’s the value of a column. It’s
clear that we’re only interested in rows that have a particular survey_id.

292 CHAPTER 12

Dynamic features for web sites

up. If this board doesn’t have any messages yet, then users are invited to be the first
to post a message (figure 12.5). Otherwise, users see prior messages and can add to
the discussion (figure 12.6).

Figure 12.4 It’s easy to add support for our message board to any web page. Simply add a link

where it’s appropriate. You’ll see what form this URL takes in section 12.2.3.

Figure 12.5

Users who ask for an

empty forum are told

that they can be the

first user to post a

message in the forum.

A message board 297

 <c:choose>

 <c:when test="${result.rowCount == 0}">

 <p>

 Currently, there are no messages in this message board.

 Be the first to post a message by filling in the form

 below!

 </p>

 </c:when>

 <c:otherwise>

 <c:forEach items="${result.rows}" var="row">

 <p>

 From: <c:out value="${row.AUTHOR}" />

 Date: <c:out value="${row.SENT_DATE}" />

 Subject: <c:out value="${row.SUBJECT}" />

 <blockquote>

 <tt><c:out value="${row.BODY}" /></tt>

 </blockquote>

 <hr />

 </c:forEach>

 </c:otherwise>

 </c:choose>

 <form method="post" action="postMessage.jsp">

 <p>

 New message

 Name: <input type="text" name="name" />

 Subject: <input type="text" name="subject" />

 <textarea cols="30" rows="5" name="body"></textarea>

 <input type="hidden" name="messageBoard"

 value="<c:out value="${param.messageBoard}" />" />

 <input type="submit" value="Post!" />

 </p>

 </form>

 </c:otherwise>

</c:choose>

b After confirming our parameters using a technique that should look familiar by
now, we perform a simple SQL query against our database, finding all messages
associated with our messageBoard parameter. We use the SQL clause SELECT *,
which retrieves all columns from the database. Unlike in the survey application
from section 12.1, we’ll refer to each row’s columns by name (for instance ${row.name})
instead of by number (as in ${row[1]}).

 Note that the SQL query controls the order in which messages display. In
listing 12.2, the messages will be displayed in chronological order, starting with the

Checks whether the board
has any messages

 c

Prints each
message

 d

Lets a user enter
a new message

 e

Passes the
current board
number

 f

302 CHAPTER 13

Case study in building a web site

So far, you’ve seen how to use JSTL to solve specific problems and to write individ-
ual applications. Now, let’s look at how to tie it all together.

 In this chapter, we’ll build a simple web portal, like the one shown in figure 13.1.
You’ve probably run into portals before, such as my.yahoo.com or my.netscape.
com. To be honest, I’m not an enthusiastic user of portals. I often keep 12 different
browser windows open at once, and I know almost all the URLs I use by heart—so
I don’t need a single site to tie things together for me. But apparently, lots of users
do. They feel more comfortable with a central, customizable site that becomes their
home on the web.

 Whether you use portals or not, writing one in JSTL will be a good way to tie
our separate applications into a single web site. We’ll essentially use JSTL to create a
primitive content-management system that lets us plug in new channels to our mas-
ter web site. We’ll also see how to register users, let them log in, and personalize the
site for them.

Figure 13.1 In this chapter, we design a simple web portal that combines some features we’ve

written into a single web page. This portal uses JSTL to manage the layout and lets you insert

pluggable channels as you see fit.

Managing the layout 307

markup; headings will do so less frequently, but we don’t want to prevent ourselves
from formatting a headline with, for instance, <i> or <u> tags.)

 As I mentioned before, the channel.jsp page knows what information to print by
checking its request parameters. It imports the page specified by the request param-
eter page and prints the headline from the parameter headline. Note that we could
have used the <c:import> tag directly in the body of the table (without saving the
page we imported in the body variable), but the way it’s currently arranged is more
instructive. If you experiment with channel.jsp, try removing the escapeXml=
"false" attribute from the second <c:out> tag; you’ll get output that looks like fig-
ure 13.3.

Individual channels

Our top-down view of simplePortal.jsp doesn’t end with channel.jsp. As I men-
tioned, channel.jsp doesn’t display any content of its own, other than a headline
and the HTML formatting for a channel. The final content for our simple portal, as
figure 13.4 demonstrates, comes from individual, target pages.

 The simplePortal.jsp page decides what pages should ultimately be used as
channels. For instance, in listing 13.1, our page created four channels. The first
channel’s content comes from welcome.html, the second from quotes.html, and so
on. In this example, these are just local files in the same directory as the portal, but
they could be anywhere else; these files could be loaded from a different directory
on the same web server, or even from a completely different web server. Instead of

Figure 13.3

If we remove the

escapeXml="false"

attribute from the <c:out>

tag that produces each

channel’s body, we see the

raw HTML formatting that

was used to produce each

channel.

312 CHAPTER 13

Case study in building a web site

Because message boards in chapter 12’s message system can grow without bound,
you normally wouldn’t include an entire board in a single portal channel; but you
could if you wanted to. (Instead, you’d probably link to a forum, the way the whim-
sical “Discuss this counter” link in figure 13.1 does.)

 Our survey application from chapter 12 integrates cleanly, as well. Simply ask
the survey question in a channel that includes an appropriate HTML <form>, and
have the form open in new window—a technique you saw how to handle in
chapter 12.

 In figure 13.1, we also included chapter 9’s counter in a channel. Let’s look more
closely at how to do this; it’s a good end-to-end example of including dynamic con-
tent in the portal.

 To begin with, we modify the counter example from chapter 9 to print the count,
not simply to store the value as a scoped variable. The result is the counter.jsp page
from listing 13.4.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:transaction>

 <sql:update>

 update counter set counter = counter + 1

 </sql:update>

 <sql:query var="result">

 select * from counter

 </sql:query>

 <c:set var="count" value="${result.rows[0].counter}" />

</sql:transaction>

<p>

 This site has been accessed

 <c:out value="${count}" />

 times!

</p>

<p>

 <a target="_blank"

 href="<c:url value="viewMessages.jsp">

 <c:param name="messageBoard" value="2"/>

 </c:url>">

 Discuss this counter

</p>

Listing 13.4 counter.jsp: a channel that adds a counter to the portal

Registering users 317

</form>

</body>

</html>

Most of this page should be familiar from our prior experience in chapter 11. The
only thing that’s different about register.jsp is that it refers to a request-scoped
attribute called takenName. It does this twice. First, in its initial validation, it refuses
to pass the user on to doRegister.jsp if takenName is true. Then, it prints out a spe-
cial error message if takenName is true.

 From the special error message that prints, you can probably figure out what the
takenName variable represents: it’s true if the user has entered a username that has
already been taken by another user. But what sets this scoped variable, and how
does it do so?

 The doRegister.jsp page sets the scoped variable. When the user enters values
for all three form fields, we forward the user to doRegister.jsp. Normally, doRegis-
ter.jsp just adds the new user to a database and bounces the user back to the main

Figure 13.8 New users who try to register with the portal need to fill out the information

in the form presented by register.jsp. If the user enters valid information, then register.jsp

forwards to doRegister.jsp. Normally, doRegister.jsp adds the user to the database and

returns the user to the main portal page. However, if the user enters a duplicate username,

doRegister.jsp forwards the user back to register.jsp and gives him a chance to choose a

new name.

322 CHAPTER 13

Case study in building a web site

able to retrieve the name of the current user simply by using an expression like
the following:

${pageContext.request.remoteUser}

Alternatively, back-end Java logic may manage authentication and set some infor-
mation in the session scope for you to use.

 One principle for authentication is important to keep in mind: don’t reinforce
your front door but leave your back door wide open. If you handle authentication
at a single page in your application, consider what might happen if a user tried to
access one of your other page’s URLs directly. Using session-scoped variables is a
good idea because users can’t set scoped variables directly. Similarly, using a
parameter to pass a secure username from one page to another is a very bad idea,
because users can set parameters.

 A final note: in some environments, network security is important. Sending a
cleartext password to a web site might not be acceptable in some environments.
You may have noticed that some web pages have URLs that start with https instead
of http. These URLs use the Secure Sockets Layer (SSL), which is a mechanism that
can provide both encryption and authentication for the Web.

 Overall, be careful when handling the authentication of users. In other words,
don’t use the system that we built here to protect your valuable assets until you’ve
thought long and hard about computer security!

13.5 Personalizing the site

The portal and any channel can use the session-scoped user variable to determine
who (if anyone) is logged in and react accordingly. Channels and the portal can also
use other session-scoped variables to configure themselves.

 You’ve already seen one simple example of this kind of personalization. The
header for the main portal page that we added in section 13.3 will print a custom-
ized greeting for the user. For example, instead of saying, “Welcome, guest!” it will
say, “Welcome back, Shawn!” if I log in.

 Let’s look at a few other examples of personalization.

13.5.1 Filling in a form automatically

Look again at figure 13.1. The first column contains a message board from chapter 12’s
messaging system. Normally, users need to enter a username when posting a mes-
sage. But because the portal might know who’s logged in, let’s let the messaging sys-
tem take advantage of that fact.

Part 4

JSTL for programmers

Parts 1 through 3 of this book have covered everything that web-page authors
need to know about JSTL. But if you’re a Java programmer, JSTL offers you a few
special features.

 In part 4, we present more advanced material. None of this material is neces-
sary to use JSTL, but you might find it useful if you’re a programmer who wants
to get the most out of JSTL. First, we discuss some more advanced uses of JSTL
than you saw in parts 1 through 3. Then, we examine ways to configure JSTL
tags and otherwise assist the page authors you work with. For instance, you can
use Java code to manage locales, time zones, and databases so that your page
authors don’t have to. Part 4 shows you how.

 Finally, we explore how JSTL makes it easier to write custom JSP tags. If
you’ve been intimidated by the JSP Tag Extension API, then you will probably
appreciate JSTL’s more convenient APIs for iteration and conditional tags.

 If you’re not a programmer, don’t despair. You won’t need to know any of the
material in these chapters. However, I certainly encourage you to be ambitious:
Java isn’t that hard to learn, and JSTL is designed to make things easier—for pro-
grammers, too. If you don’t know Java, I suggest you start with a good introduc-
tory book on Java, like Peter van der Linden’s Just Java.1 Then, feel free to wade
into part 4’s material. My hope is that you’ll find it more interesting and helpful
than you expected.

1 Prentice Hall, 2001.

329

14Control and performance

This chapter covers…

■ Mixing Java code and JSTL

■ Exposing data for JSTL tags

■ Advanced features of JSTL tags

■ Configuring JSTL

332 CHAPTER 14

Control and performance

14.1.2 JSTL’s dual libraries

To work better with scripting expressions, every JSTL tag library has a twin that
uses scripting expressions (<%= … %>) instead of the JSTL expression language.
Recall from chapter 2 that JSTL offers four tag libraries:

■ The core library
■ The XML-processing library

■ The text-formatting and internationalization library

■ The database library

Each of these libraries has a counterpart that’s identical, except that every attribute
that accepts a JSTL expression in the familiar library accepts, instead, a scripting
expression in the twin library. Formally, when a tag accepts a scripting expression
for an attribute, that tag is said to accept an rtexprvalue, or request-time expression
value. For instance, the following tag uses an rtexprvalue:

Table 14.1 lists the four rtexprvalue-oriented JSTL libraries.

Importing the rtexprvalue libraries is as simple as importing the familiar libraries
you’ve already seen. For instance, chapter 2 showed how to import the core library:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

To import the rtexprvalue version of the core library, you’d instead write the following:

Then, if you wanted to use the forEach tag in the core library, you’d write

<c_rt:forEach ...>

<fmt_rt:formatNumber value="<%= netWorth %>"/>

Table 14.1 For each JSTL tag library that we discussed earlier in this book, JSTL supports a twin

rtexprvalue library that accepts Java expressions instead of JSTL expressions. This table lists the

URIs and suggested prefixes of the four JSTL rtexprvalue libraries.

JSTL tag library Suggested prefix URI Example tag

Core library (iteration,

conditions, and so on)

c_rt http://java.sun.com/jstl/core_rt <c_rt:forEach>

XML processing library x_rt http://java.sun.com/jstl/xml_rt <x_rt:forEach>

Internationalization

(i18n) and formatting

fmt_rt http://java.sun.com/jstl/fmt_rt <fmt_rt:formatDate>

Database (SQL) access sql_rt http://java.sun.com/jstl/sql_rt <sql_rt:query>

<%@ taglib prefix="c_rt" uri="http://java.sun.com/jstl/core_rt" %>

Advanced techniques for importing text 337

One final note of caution: varReader may not be effective when you import relative
URLs. It works fine, but under most implementations of JSTL (including the refer-
ence implementation), it won’t be any faster than using a simple string.

14.3.2 Character encoding

Let’s look at another advanced feature: <c:import> gives you control over what
character set to use if you import from a URL that offers binary data. If you’ve pro-
grammed in Java, you might be familiar with the difference between an Input-
Stream and a Reader. Specifically, both classes let you read data, but InputStream
returns binary data, whereas Reader returns text characters. If you’re retrieving
data from a URL and this data begins with the character “S”, then a Reader object
simply provides the “S” to you. (Think of this “S” almost like a high-level object;
you can treat it as if it represents some real-world entity without worrying about
how it’s stored internally by the computer.) InputStream, however, returns a simple
byte, like 01010011—or, because it’s usually convenient to interpret bytes as num-
bers—83. But 83 isn’t a character; it’s still just a number. To convert it to a charac-
ter, you need to use a character encoding, otherwise known as a character set. (In the
character set that’s most widely used, 83 represents the character “S”.)

 Some resources can return characters to you directly. In particular, if you
import a JSP page with <c:import>, and the page resides in the same JSP container
as the one you’re writing, then the two pages communicate using characters, and
no character encoding is necessary. The target page simply sends characters like
“S” and “T”, and you don’t need to interpret them; you can immediately use them
as characters.

 But when you import files over the network—for example, every time you use
an absolute URL—the data is transferred over a binary medium, and you must use
a character encoding to figure out how to interpret the data. Picture a URL as
returning a series of numbers to you: 87, 72, 89, and so on. You need a character
encoding to figure out what these numbers mean.

 By default, <c:import> usually does a pretty good job of interpreting these
numbers. When you load an absolute URL from a web server, this absolute URL
has a chance to declare its character encoding. Picture it responding by saying
something like this: “Here are some bytes, encoded using the ISO-8859-4 character
set: 87, 72, 89, ….” The <c:import> tag receives this message and normally can
decipher the bytes.

 However, in some situations you want to specify a character encoding yourself.
In particular, sometimes a URL doesn’t declare its character encoding appropri-
ately. In this case, <c:import> falls back to a decoding that works most of the time.
This encoding is called ISO-8859-1, and it represents a character encoding used

342 CHAPTER 14

Control and performance

document based on a subset of XPath’s syntax—corresponding roughly to the por-
tion of XPath we discussed chapter 7. (This isn’t a coincidence; it’s the subset of
XPath that I think is most useful in most situations.)

 You can experiment with the SPath filter by copying the spath.tld file from the
src/org/apache/taglibs/standard/extra/spath directory of the reference implemen-
tation’s source code distribution, available from http://jakarta.apache.org/taglibs,
to your web application’s WEB-INF directory. Then, you can import SPath’s small
tag library into your page using the spath prefix with the following directive:

<%@ taglib prefix="spath" uri="/WEB-INF/spath.tld" %>

After this, you’re free to use a tag called <spath:filter> in your page. The
<spath:filter> tag takes two attributes: select, which lets you specify an expres-
sion in the small SPath language, and var, which lets you expose a filter. You can
use the tag as follows:

These two lines have a very similar effect to the following:

<x:parse xml="${bigDocument}" var="unfiltered"/>

<x:set select=’$unfiltered//customer[@id="525"]’ var="unfiltered"/>

However, for large documents, the former example should run much faster than
the latter; it applies an XMLFilter before the document is ever exposed, instead of
simply applying an XPath expression to pare down an already large document.

NOTE I said the two examples have a “very similar effect”—not an identical ef-
fect. The reason for the difference is somewhat technical. The first exam-
ple exposes an entire document (in a variable called filtered), whereas
the second exposes the root XML element of a document (in a variable
called unfiltered). This might not seem like a big difference, but XPath
draws a distinction between the root node of a document and the same doc-
ument’s root element. If the variable filtered points to the root node of
a document, you can expose the document’s root element as a variable
called doc by using the following tag:

<x:set select="$filtered/node()" var="doc" />

The XPath expression in this tag works because in XPath, the root element
is a child of the root node. If this concept still seems inscrutable, don’t wor-
ry; you can get along fine without understanding the details.

<spath:filter select=’//customer[@id="525"]’ var="spath"/>

<x:parse xml="${bigDocument}" var="filtered" filter="${spath}"/>

Exposing data to JSP pages 347

Some programmers and style guides discourage this sort of bulk import,
but for core classes like those in Java’s standard java.util package, there
isn’t much harm in importing everything.

Once you expose your list using the previous code, a page author could access it
using expressions like ${strings[0]}, ${strings[1]}, and so on.

 In some ways, java.util.Map objects are more flexible than java.util.List
objects. They let you store pairs of items, where each item has a name and a value.
Maps are therefore useful when you have a collection of objects to expose and you
want to give each a name. For instance, we might use a map to associate ZIP codes
with city names. We can create a map as follows:

Map m = new HashMap();

m.put("11791", "Syosset, NY");

m.put("06510", "New Haven, CT");

m.put("33767", "Clearwater, FL");

NOTE As before, you’ll need to make sure that java.util.Map and java.util.
HashMap are imported into your Java source.

Exposing this map in the session scope lets page authors access the pairs of ZIP
codes and place names. For instance, if we store the map as a session-scoped vari-
able named zips, then the following tag will print out "New Haven, CT":

<c:out value=’${sessionScope.zips["06510"]}’/>

14.6.3 Writing JavaBeans

Sometimes, you want to expose one of your own Java classes to a page author.
Doing so can be more efficient and convenient than creating maps and lists for all
of your application’s data. You can expose any Java object as a scoped variable, but
simply exposing an object doesn’t mean that JSTL will be able to do anything useful
with it. If you want your object’s data to be easily readable by page authors, you’ll
need to follow a few conventions when designing your classes.

 Fortunately, these conventions are straightforward. The rules are laid out by the
JavaBeans specification (this might sound intimidating, but it’s not). You don’t have
to jump through any complicated hoops to write a JavaBean; in fact, whether a
class is a JavaBean or not is something of a blurry distinction these days. For JSTL’s
purposes, you’ll just need to follow a few simple rules.

 Think of your class as a collection of properties you want to expose. For instance,
if you’re writing a class to represent a customer, your Customer class might have

352 CHAPTER 14

Control and performance

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>
 <description>
 My web application.
 </description>

</web-app>

The tags that create an initialization parameter are highlighted. They appear within
the <web-app> element. The outer tag, <context-param>, declares a single context-
initialization parameter. This tag has two children: <param-name>, which specifies
the name of the parameter, and <param-value>, which specifies the value of the
parameter. Our sample web.xml file sets the parameter named my.initializa-
tion.parameter to a value of my.parameter.value.

 The constants declared in the Config class aren’t relevant when setting configu-
ration variables using context-initialization parameters.

 JSTL expressions can access context-initialization parameters directly using the
initParam implicit object, as in ${initParam["my.initialization.parameter"]}.
However, page authors don’t need to access configuration variables manually; their
defaults take effect automatically.

14.7.2 Managing database access

Now that we’ve looked at how to set configuration variables, let’s see what specific
variables JSTL looks for. JSTL’s database tags support the variables listed in
table 14.4.

Default DataSource

The javax.servlet.jsp.jstl.sql.dataSource variable (Config.SQL_DATA_SOURCE)
lets you install an object that represents your pages’ default database. This variable

<context-param>

<param-name>my.initialization.parameter</param-name>

<param-value>my.parameter.value</param-value>

</context-param>

Table 14.4 JSTL’s database tags support configuration variables to help you set up default data-

bases for your pages and to help prevent against runaway queries.

Variable constant Variable name Purpose

Con-
fig.SQL_DATA_SOURCE

javax.servlet.jsp.jstl.
sql.dataSource

Default DataSource object or path

Config.SQL_MAX_ROWS javax.servlet.jsp.jstl.
sql.maxRows

Default value for <sql:query>’s

maxRows attribute

Enforcing good page-authoring habits 357

 </validator>

 <tag>

 <name>noop</name>

 <tag-class>javax.servlet.jsp.tagext.TagSupport</tag-class>

 <body-content>empty</body-content>

 </tag>

</taglib>

Most of this document is boilerplate. However, it has four interesting sections,
marked by the tags <init-param> and </init-param>. These sections let you con-
figure how strict you’d like to be in monitoring against scripting elements. You can
decide to limit

b declarations (<%! … %>)

c scriptlets (<% … %>)

d scripting expressions (<%= … %>)

e rtexprvalues (a scripting expression within a JSP tag attribute)

In the file I’ve shown, all of these scripting elements are prohibited; you can selec-
tively allow them by replacing the word false with true inside the corresponding
<param-value> tags.

 If you save this file as /WEB-INF/scriptfree.tld in your web application, then script-
ing expressions will be prohibited from any page that uses the following directive:

<%@ taglib uri="/WEB-INF/scriptfree.tld" prefix="scriptfree" %>

As I mentioned, this limitation requires buy-in from any JSP page author whose
behavior you’re trying to control; a page author can always choose not to include
this directive.

 If you know how to write and package tag libraries (a topic we’ll introduce in
chapter 15) then you can include the <validator> element from scriptfree.tld in
your own TLD files, thus requiring that anyone who uses your taglibs also not use
scripting elements.

14.8.2 Enumerating legal tag libraries

JSTL’s second validator lets you list the tag libraries that are valid for a particular
page. Listing 14.2 shows an example that ensures no tag libraries other than JSTL’s
non-rtepxrvalue libraries are used in a page.

362 CHAPTER 15

Using JSTL to develop custom tags

As you’ve seen, JSTL gives page authors the tools they need to access databases,
format text and XML, internationalize applications, and perform many other com-
mon tasks. In many cases, authors of JSP pages don’t need to look beyond the flex-
ible set of tags that JSTL offers.

 However, JSTL’s tags aren’t meant to solve every potential problem a page
author might run into. When page authors have a need that JSTL doesn’t address,
they depend on back-end Java programmers to fill in the gaps. For example, JSTL
1.0 doesn’t offer a way to send email, read from online directories using the Java
Naming and Directory Interface (JNDI), send messages using the Java Message Ser-
vice (JMS), and so on. If page authors need to accomplish these tasks, they need to
be helped along by back-end Java programmers in their organization (or third-
party tag libraries they download or purchase).

 In this chapter, we look at how JSTL makes it easier to develop custom tag
libraries. At this point, I assume you have some knowledge of the Java program-
ming language. As you’ll see, JSTL lets you develop some kinds of tags without
making you learn the details of JSP’s complex tag-related APIs. However, under JSP
1.2, you still need to know Java to develop custom tags.

NOTE At the time I wrote this chapter, the JSP 1.3 expert group was considering
how to provide a way for non-programmers to produce custom tags using
JSP instead of Java. So, under JSP 1.3, developing tags might become even
easier. For the moment, though, JSTL’s support for tag developers is a use-
ful step in the right direction.

15.1 Developing and installing tag libraries

Tag libraries are written in Java using JSP’s tag extension API. This API lets you
develop tag handlers, which are Java classes that implement custom JSP tags. For
instance, we might write a Java class named

com.jstlbook.examples.MyIfTag

whose code runs every time the tag

<book:if>

appears in our site’s JSP pages. For such a class to be a tag handler, it must imple-
ment the javax.servlet.jsp.tagext.Tag interface, which is defined by the JSP
specification.

Developing conditional tags 367

 Although this expression language is useful in many situations, some pages
require more specific, focused conditional logic. The expression language lets you
compare two values, for example, but it doesn’t let you ask all the conditional ques-
tions that Java lets you ask. That’s what custom tag handlers are for.

15.2.1 A simple conditional tag

For our first example of custom conditional tags, suppose a page author for our
application needs to display different data depending on whether it’s the weekend
or weekday. Imagine the following requirement: when a page is loaded any time
between Monday and Friday, the page must print, “Our operators are standing by
at this very moment.” Otherwise, it should not print this message: no use inviting
telephone calls when nobody’s around to answer them.

 We might be able to implement this functionality using the <fmt:formatDate>
tag from chapter 10 and some clever applications of the pattern attribute. But
although this strategy would probably be fun to implement, it would lead to an
awkward, hard-to-maintain page. Instead, we’d like to create simple logic that dif-
ferentiates weekdays from weekends and expose this logic to page authors who
don’t necessarily know how to program. That is, we want page authors to be able to
write something like this:

<book:ifWeekday>

 Our operators are standing by at this very moment.

</book:ifWeekday>

The new tag, <book:ifWeekday>, should let its body be processed only if the cur-
rent day is a weekday. Thus, on Monday through Friday, this tag will cause its body
to be printed; on the weekends, it will prevent its body from printing. With this sim-
ple syntax, pages using the tag will be easy to maintain.

 Before we create the <book:ifWeekday> tag, we need to figure out how to write
code to differentiate weekends from weekdays. Ideally, we’d like to write a simple
isWeekday() method that returns true on weekdays and false on weekends. List-
ing 15.1 shows one way to write such a method, spelled out in detail to make sure
it’s clear.

package com.jstlbook.examples;

import java.util.*;

public class Weekday {

 public boolean isWeekday() {

Listing 15.1 weekday.java: a class with a method that detects weekends

Returns a boolean b

372 CHAPTER 15

Using JSTL to develop custom tags

 private int day = -1;

 private int after = -1;

 private int before = -1;

 public void setDay(String s) {

 if (s.equals("sunday"))

 day = Calendar.SUNDAY;

 else if (s.equals("monday"))

 day = Calendar.MONDAY;

 else if (s.equals("tuesday"))

 day = Calendar.TUESDAY;

 else if (s.equals("wednesday"))

 day = Calendar.WEDNESDAY;

 else if (s.equals("thursday"))

 day = Calendar.THURSDAY;

 else if (s.equals("friday"))

 day = Calendar.FRIDAY;

 else if (s.equals("saturday"))

 day = Calendar.SATURDAY;

 else throw new IllegalArgumentException("bad weekday: " + s);

 }

 public void setBefore(int i) {

 if (i < 0 || i > 23)

 throw new IllegalArgumentException("bad hour: " + i);

 before = i;

 }

 public void setAfter(int i) {

 if (i < 0 || i > 23)

 throw new IllegalArgumentException("bad hour: " + i);

 after = i;

 }

 protected boolean condition() {

 Calendar now = Calendar.getInstance();

 int currentDay = now.get(Calendar.DAY_OF_WEEK);

 int currentHour = now.get(Calendar.HOUR_OF_DAY);

 if (day != -1 && currentDay != day)

 return false;

 if (before != -1 && currentHour >= before)

 return false;

 if (after != -1 && currentHour < after)

 return false;

 return true;

 }

}

Variables for
attributes

 b

Accepts the
day attribute

 c

Retrieves the
current date
and time

 d

Ensures the date
and time meet
requirements

 e

Developing conditional tags 377

integrate your tags into <c:when> blocks, and it makes it easy for you to write tags
that behave like JSTL’s tags.

 To demonstrate this functionality, let’s add a few lines to the <tag> element for
<book:ifTime> in our TLD. The new lines are highlighted:

<tag>
 <name>ifTime</name>
 <tag-class>com.jstlbook.examples.TimeTag</tag-class>
 <attribute>
 <name>day</name>
 </attribute>
 <attribute>
 <name>before</name>
 </attribute>
 <attribute>
 <name>after</name>
 </attribute>

</tag>

This is all we need to add. The base ConditionalTagSupport class provides the set-
ter method for var (setVar()) and exposes the variable automatically when the
page author specifies a var attribute. ConditionalTagSupport similarly supports a
scope attribute if you’d like to add it to your tag.

15.2.4 Using the expression language

JSTL 1.0 doesn’t provide a standard way to use the expression language in your
own tags; there is no standard JSTL API for invoking the expression language to
interpret expressions within your own tags. Although JSP 1.3 wasn’t yet released at
the time this chapter was written, the plan is for JSP 1.3 to take care of resolving
expressions for you. Thus, if JSTL 1.0 provided a standard expression API, it would
be useful only under JSP 1.2, and the Java Community Process typically avoids
intentionally providing legacy interfaces.

 However, the lack of a standard API doesn’t mean you can’t accept JSTL expres-
sions in your own tags. It just makes it hard to describe an exact procedure in this
book! To use the expression language in your own tags under JSP 1.2, you’ll need to
use an API specific to an individual implementation of JSTL—one that decides to
expose an expression-language API for you to use. The JSTL reference implementa-
tion, which is available from the Jakarta Taglibs web site at http://jakarta.apache.
org/taglibs, provides such an interface.

 At the time this was written, accessing the expression language using the JSTL
reference implementation was simple: make sure the file standard.jar from the JSTL

<attribute>

<name>var</name>

</attribute>

382 CHAPTER 15

Using JSTL to develop custom tags

 protected void prepare() throws JspTagException {
 try {
 if (input != null)
 input.close();
 input = new BufferedReader(new FileReader(filename));
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

 public void release() {
 try {
 if (input != null)
 input.close();
 } catch (IOException ex) {
 // ignore
 }
 }

 protected boolean hasNext() throws JspTagException {
 try {
 return input.ready();
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

 protected Object next() throws JspTagException {
 try {
 return input.readLine();
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

}

Understanding the code

Listing 15.4 shows the code for a custom iteration tag that extends JSTL’s LoopTag-
Support base class. We store the value of the filename attribute in our own variable
named filename (b), which is set from the setFilename() accessor (c). Before
looping over the data, we prepare for the iteration by opening a file (d).

 We use the release() method to call the close() method (e) for the stream
we’ve opened. Using the simple interface that LoopTagSupport provides, we can’t
easily close the stream as soon as we’re done with it;3 but we want to make sure that

3 If we only closed it immediately before returning false from hasNext(), we would leave it
open in cases where it wasn’t fully consumed.

Prepares for
an iteration

 d

Cleans up when
we’re done

 e

Determines if
there’s more data

 f

Returns the next
line from the file

 g

Summary 387

 this.beginSpecified = true;
 validateBegin();
}

Our setBegin() method declares JspTagException because validateBegin() may
throw this exception if it decides the new value for begin is invalid.

 You could write setEnd() and setStep() methods in the same style. Then, sim-
ply add your attributes to the TLD, and you can support iteration with subsetting,
just like the core JSTL tags.

15.4 Summary

In this chapter, we looked at how JSTL makes it easier to develop condition and
iteration tags for JSP pages. When developing tags using JSTL, keep in mind the fol-
lowing points:

■ JSP comes with a tag-extension API for writing custom tags.
■ The tag library descriptor (TLD) document maps tag handler classes to tag

names. In a JSP page, the <%@ taglib %> directive imports a tag library by
referring to its TLD.

■ JSTL simplifies the process of writing tags by providing base classes that do
some of the heavy lifting for you.

■ JSTL’s ConditionalTagSupport class lets you write conditional tags by supply-
ing a condition() method that causes the tag to either include or skip its body.

■ JSTL’s LoopTagSupport class lets you write iteration tags by supplying items
to iterate over.

■ Tag handlers that extend ConditionalTagSupport and LoopTagSupport must
provide accessor (setXxx()) methods for their own attributes, but the JSTL
base classes provide setVar() automatically. Thus, they expose variables
without your needing to do any of the work.

392 APPENDIX A

JSTL reference

Boolean logic

The comparison operators produce boolean expressions, and JSTL expressions can
also access boolean primitives. To combine boolean subexpressions, JSTL provides
the following operators:

JSTL supports two boolean literals: true and false.

Parentheses

JSTL expressions can use parentheses to group subexpressions. For example, ${(1 + 2)
* 3} equals 9, but ${1 + (2 * 3)} equals 7.

A.2 Core tag library

JSTL’s core tag library supports output, management of variables, conditional logic,
loops, text imports, and URL manipulation. JSP pages can import the core tag
library with the following directive:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

A.2.1 General-purpose tags

JSTL provides <c:out> for writing data, <c:set> for saving data to memory,
<c:remove> for deleting data, and <c:catch> for handling errors.

Examples

Thanks for logging in, <c:out value="${name}"/>.

<c:set var="loggedIn" scope="session" value="${true}"/>

<c:remove var="loggedOut" scope="session"/>

Tag attributes

The <c:catch> tag’s attribute is as follows:

Operator Description

&&
and

True only if both sides are true

||
or

True if either or both sides are true

!
not

True only if the expression following it is false

Attribute Description Required Default

var Variable to expose information about error No None

XML tag library 397

A.3 XML tag library

JSTL’s XML-processing tag library supports parsing of XML documents, selection of
XML fragments, flow control based on XML, and XSLT transformations. JSP pages
can import the XML-processing tag library with the following directive:

<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

A.3.1 Parsing and general manipulation

Before you work with an XML document, it must be parsed with <x:parse> or
back-end Java code. The <x:out> and <x:set> tags can retrieve fragments of
parsed documents, whether these documents are DOM objects or a JSTL imple-
mentation’s own choice of data type.

Examples

<c:set var="textDocument">

 <orders>

 <order>

 762 cans of low-fat yogurt

 </order>

 <order>

 6 spoons

 </order>

 </orders>

</c:set>

<x:parse xml="${textDocument}" var="xml"/>

<x:out select="$xml/orders/order[1]"/>

<x:set var="fragment" select="$xml//order"/>

Tag attributes

The <x:parse> tag’s attributes are as follows:

Attribute Description Required Default

xml Text of the document to parse (String or Reader) No Body

systemId URI of the original document (for entity resolution) No None

filter XMLFilter object to filter the document No None

var Name of the variable to expose the parsed document No None

scope Scoped of the variable to expose the parsed document No None

varDom Name of the variable to expose the parsed DOM No None

scopeDom Scoped of the variable to expose the parsed DOM No None

402 APPENDIX A

JSTL reference

A.4.2 Queries and updates

JSTL can read from databases with <sql:query> and write to them with
<sql:update>. These tags support SQL commands with ? placeholders, which
<sql:param> and <sql:dateParam> can fill in.

Examples

<sql:query var="result">

 SELECT ORDER

 FROM ORDERS

 WHERE CUSTOMER_ID=’52’

 AND PRODUCT_NAME=’Oat Bran’

</sql:query>

<c:forEach items="${result.rows}" var="row">

 <c:out value="${row.product_name}"/>

</c:forEach>

<sql:update var="count">

 UPDATE CONVICTS

 SET ARRESTS=ARRESTS+1

 WHERE CONVICT_ID=?

 <sql:param value="${currentConvict}"/>

</sql:update>

Tag attributes

The <sql:query> tag’s attributes are as follows:

user Database username No None

password Database password No None

dataSource Database prepared in advance (String or

javax.sql.DataSource)

No None

var Name of the variable to represent the database No Set default

scope Scope of the variable to represent the database No page

Attribute Description Required Default

Attribute Description Required Default

sql SQL command to execute (should return a ResultSet) No Body

dataSource Database connection to use (overrides the default) No Default database

maxRows Maximum number of results to store in the variable No Unlimited

startRow Number of the row in the result at which to start recording No 0

Formatting tag library 407

The <fmt:timeZone> tag’s attribute is as follows:

The <fmt:setTimeZone> tag’s attributes are as follows:

A.5.3 Other internationalization

To assist with customized internationalization of applications, JSTL offers the fol-
lowing tags: <fmt:setLocale> to specify a new default locale, <fmt:bundle> and
<fmt:setBundle> to prepare resource bundles for use, and <fmt:message> and
<fmt:param> to output localized messages.

Examples

<fmt:setLocale value="en_US"/>

<fmt:setBundle basename="vulgarInsults"/>

<fmt:bundle basename="org.apache.bookies">

 <fmt:message key="threat" >

 <fmt:param value="${address}"/>

 <fmt:param value="${numberOfChildren}"/>

 <fmt:param value="${nameOfSpouse}"/>

 </fmt:message>

</fmt:bundle>

timeZone Time zone of the parsed date No Default time zone

var Name of the variable to store the parsed date (as a

java.util.Date)

No Print to page

scope Scope of the variable to store the parsed date No page

Attribute Description Required Default

value Time zone to apply to the body (string or

java.util.TimeZone)

Yes None

Attribute Description Required Default

value Time zone to expose as a scoped or configuration

variable

Yes None

var Name of the variable to store the new time zone No Replace default

scope Scope of the variable to store the new time zone No page

Attribute Description Required Default

412 APPENDIX B

JSTL API (for developers)

REQUEST_SCOPE , PageContext.SESSION_SCOPE , or PageContext.

APPLICATION_SCOPE from javax.servlet.jsp.PageContext). It returns null if no
such configuration variable is found.

static Object get(javax.servlet.ServletRequest request,

 String name)

This method retrieves the configuration variable name from the request scope repre-
sented by request. It returns null if no such configuration variable is found.

static Object get(javax.servlet.http.HttpSession session,

 String name)

This method retrieves the configuration variable name from the session scope repre-
sented by session. It returns null if no such configuration variable is found.

static Object get(javax.servlet.ServletContext application,

 String name)

This method retrieves the configuration variable name from the application scope
represented by application. It returns null if no such configuration variable is found.

Methods for removing configuration variables

static void remove(javax.servlet.jsp.PageContext pageContext,

 String name,

 int scope)

This method removes the scoped variable name from pageContext—specifically,
from the given scope (one of PageContext.PAGE_SCOPE , PageContext.
REQUEST_SCOPE , PageContext.SESSION_SCOPE , or PageContext.

APPLICATION_SCOPE from javax.servlet.jsp.PageContext).

static void remove(javax.servlet.ServletRequest request,

 String name)

This method removes the scoped variable name from the request scope represented
by request.

static void remove(javax.servlet.http.HttpSession session,

 String name)

This method removes the scoped variable name from the session scope represented
by session.

static void remove(javax.servlet.ServletContext application,

 String name)

This method removes the scoped variable name from the application scope repre-
sented by application.

Using JSTL’s localization algorithms 417

This method returns a Result object based on the given ResultSet. Note that the
ResultSet is consumed; it must be reset before further use (and if it is a one-way
ResultSet, it will no longer be usable).

static Result toResult(ResultSet rs, int maxRows)

This method returns a Result object based on the given ResultSet, limiting it to
maxRows rows if necessary. Recall that the Result objects returned by ResultSupport
methods cache data. The maxRows parameter lets you avoid consuming too much
memory as the result of a runaway query (for instance, a negligence to join two tables
in a query, producing an unanticipated, unfiltered cross-product of two relations).

B.3.3 The javax.servlet.jsp.jstl.sql.SQLExecutionTag interface

JSTL provides two tags for setting PreparedStatement parameters: <sql:param>
and <sql:dateParam>. However, SQL supports many data types; applications and
databases may need more support. To let you plug in your own parameter tags,
JSTL provides the SQLExecutionTag interface.

 To write a custom parameter tag designed to set a ?-style parameter in a Pre-
paredStatement, simply have your tag find its nearest SQLExecutionTag ancestor
and call the following method for this ancestor:

public void addSQLParameter(Object value)

This method adds a PreparedStatement parameter to the SQL execution tag (typi-
cally <sql:query> or <sql:update>). The SQL tag will accept this parameter
among those sent by other child tags, such as <sql:param>.

 For instance, a custom child tag might contain the following code:

SQLExecutionTag t =
 (SQLExecutionTag)
 findAncestorWithClass(this, SQLExecutionTag.class);
t.addSQLParameter(myParameter);

B.4 Using JSTL’s localization algorithms

To help you internationalize your applications, JSTL provides two classes related to
formatting and globalization.

B.4.1 The javax.servlet.jsp.jstl.fmt.LocaleSupport class

JSTL uses a detailed algorithm to select which locale to use when internationalizing
applications. This algorithm is designed to choose the best locale when the set of
available locales to satisfy any requested operation, such as a keyed lookup of an
internationalized message, does not contain the precise locale the user would prefer.

422 APPENDIX C

Database tags and SQL

The database tags from chapter 9 and the examples in part 3 use the Structured
Query Language (SQL) to access data. This appendix shows how you can use SQL
in your <sql:query> and <sql:update> tags. For more information about
<sql:query> and <sql:update>, see chapter 9. If you’re not familiar with SQL, this
appendix will help you follow the book’s examples.

NOTE This is not meant to be a complete guide to SQL—just a crash course to help
you understand this book’s examples if you haven’t used SQL before. For a
more complete introduction to SQL, see the resources in appendix D.

C.1 SQL and <sql:update>

SQL has two categories of commands. Commands in its Data Definition Language
(DDL) let you alter the structure of a database—for instance, add or remove a table.
By contrast, commands in SQL’s Data Manipulation Language (DML) let you work
with data—add, modify, or remove rows, for example.

 The <sql:update> tag supports both kinds of commands. You can therefore use
<sql:update> not only to add data but also to change the structure of your database.

C.1.1 Managing tables

In a relational database, a table is a collection of data that’s organized into rows and
columns. Think of a row of data as a single record or entry, and a column as a field,
or a placeholder filled in by each row.

 For example, a table of users might have three columns: ID, IQ, and BLOOD_TYPE.
Table C.1 shows an example, with some sample data.

Table 15.1 A simple table that lists users’ ID numbers, IQs, and blood

types. Relational databases store information in tables that work similarly

to printed tables in books: they are divided into rows and columns.

NAME IQ BLOOD_TYPE

1 106 O

2 82 A-

3 164 B+

4 143

5 128 AB+

SQL and <sql:query> 427

ment benefits might apply only if the employee’s age and years of service total 70 or
greater. We could express this condition with the following expression:

AGE + SERVICE > 70

C.1.4 Removing data

Of course, data stored in a relational database isn’t permanent. You can delete it
with the DELETE command, whose syntax is straightforward:

DELETE FROM table
[WHERE condition]

If a DELETE command appears without a WHERE clause, it deletes every row from the
table. Be very careful when using DELETE, because you can easily remove all data
from a table with a command like this:

DELETE FROM CUSTOMERS

This command deletes all data from the CUSTOMERS table, which probably isn’t a
good idea unless you’re going out of business.

 As with UPDATE, you can use the keyword WHERE, followed by a conditional SQL
expression, to narrow the set of rows to delete. For instance, if we needed to delete all
users under the age of 18, we could use the command

DELETE FROM PEOPLE
WHERE AGE < 18

C.2 SQL and <sql:query>

To retrieve data from a database, use the SQL SELECT command. Remember that,
as chapter 9 showed, <sql:query>’s only job is to acquire data, not to print it out.
SELECT is the SQL statement you use to tell a database what information you want
to receive.

C.2.1 Basic SELECT syntax

The simplest form of the SELECT statement is

SELECT * FROM table

This simple statement retrieves all data from the table named table. That is, every
column of every row is retrieved. To print the entire contents of a table, you can use
this SELECT statement with the printQuery.jsp page from listing 9.1 in chapter 9.

 Suppose, however, that you’re not interested in every row. For instance, we
might be a publisher releasing a new philosophical tract that we think will only
interest people with an IQ over 130. (As with the other examples in this chapter,

Miscellaneous references 437

■ XSL Transformations (XSLT), Version 1.0

http://www.w3.org/TR/xslt. JSTL includes support for XSLT (see chapter 8),
a language that’s primarily useful for converting XML documents from one
form to another.

■ World Wide Web Consortium (W3C)

http://www.w3.org/. The web site for the W3C offers technical standards for
XML-related technologies. In addition to the specific URLs listed earlier, you
can read more about the Document Object Model (DOM) at this site.

D.5 Miscellaneous references

■ HTML and CSS reference

http://www.blooberry.com. The HTML and CSS guides at Blooberry are well
organized and thorough.

■ Just Java

By Peter van der Linden (Prentice Hall, 2001); ISBN 0130320722. This book
is an excellent, readable introduction to the Java programming language.

442 INDEX

expression language (continued)
* 51
+ 51
. 52
/ 51
<= 44, 67–69
== 44, 67–69
>= 44, 67–69
|| 69–70
addition 51
and 44, 69–70
applicationScope 49
arithmetic 51
boolean values 44, 67–70
brackets, square 44, 64
checking for missing

values 44, 69
comparisons 44, 67–69
context-initialization

parameters 66
cookies 65–66
data types 50, 55
div 51
division 51
empty 44, 69
eq 44, 67–69
equality 44, 67–69
ge 44, 67–69
greater than 44, 67–69
grouping 44, 69–70
gt 44, 67–69
headers 65
headerValues 66
indirect reference of

properties 64
initParam 66
interaction with Java

classes 330
interaction with Java

code 344–349
le 44, 67–69
less than 44, 67–69
logical operators 69–70
lt 44, 67–69
mod 51
modulus 51
multiple expressions in same

attribute 70
multiplication 51
ne 44, 67–69
not 44, 69–70

not allowed in var, scope 71
null 44, 69, 391
numbers 50–51
operator precedence 44, 69–70
or 44, 69–70
pageContext 66
pageScope 49
parameters 55–63
paramValues 252–257
parentheses 44
property access 44, 52, 64
purpose 44
reference 390
remainder 51
request parameters 44, 55–63
requestScope 49
scoped variables 44, 48–55
sessionScope 49
strings 50
subtraction 51
variable access, basic 48
variables 48–55
where valid 46

Extensible Markup Language
See XML

Extensible Stylesheet Language
Transformations

See XSLT

F

<fmt:bundle> 216, 245–248, 408
<fmt:formatDate> 216, 227–

232, 260, 406, 419
dates versus times 228
fine-grained control 230
no tag body 227
time zones 239
times versus dates 228
verbosity 229

<fmt:formatNumber> 216–219,
405

as cause of slight fevers 224
contrasted with <c:out> 217
currencies 219–222
digit grouping 222
fine-grained control 223–227
parsing rules 235
percentages 219–222
scientific notation 226
tag body 218

<fmt:message> 216, 245–248,
408, 418–419

parameters 246
<fmt:param> 216, 245–248,

408, 418
<fmt:parseDate> 216, 260, 406,

419
parsing rules 237
patterns 238
time zones 239

<fmt:parsedate> 236–238
<fmt:parseNumber> 216, 232–

236, 405, 419
rationale 233

<fmt:requestEncoding> 330,
343–344

<fmt:setBundle> 216, 245–248,
408

<fmt:setLocale> 216, 242–245
<fmt:setTimeZone> 216, 238–

242, 407
<fmt:timeZone> 216, 238–242,

407
<form>

HTML tag 44, 55–63
method 57

File Transfer Protocol 118, 121
first page 4
floating-point numbers 51
flow control

definition 78
footers 128–130
forms 6

check
boxes 252–257

date input 257–261
filling in 274–277
HTML 44, 55–63
prepopulating 274–277
validation of 268–277

forwarding of web requests
definition 12

functional programming 169

G

GET 57
getRemoteUser 322
gingivitis 97
globalization 216

INDEX 447

template text
definition 6
and SQL queries 202

text areas 61
text boxes 58
Throwable 266
time zones 216, 238–242

default 330, 349–355, 410–412
how JSTL determines 239

times 216
timeStyle 230, 237
timeZone 239

attribute 216
tag attribute 238–242

tokens 98–101
definition 98

Tomcat 10, 120, 434
transactions 206–211

definition 207
transformations

of XML documents 169–175
trees

and XML documents 140–142
Twenty Questions 88

U

Uniform Resource Locators
See URL

Universal Resource Identifiers
and tag libraries 30
for JSTL taglibs 30

University of Kentucky 118
UPDATE

SQL keyword 200, 425
uPortal 173
URIs

See Universal Resource Identi-
fiers

URL 30
absolute 117
absolute vs relative 117–121
compared to phone

numbers 118
context-relative 120
importing data from 117, 121–

132
managing with <c:url> 116,

134–137
page-relative 119
query strings 110

relative vs absolute 117–121
retrieving data from 117, 121–

132
user authentication 320–322
user registration 302, 313–320
UTF-8 344

V

validation 252, 268–277, 331
client-side 268

VALUES
SQL keyword 425

var attribute
conventional use in JSTL 71
no expressions 71

VARCHAR
SQL type 282

varDom 339
variables

boolean 67–69
and <c:import> 125–127
creating 71–74
creating booleans 86–88
deleting 74–75
exposing from Java 344–349
and expression language 48–55
modifying properties of 334–

335
removing 74–75
scoped 34–39, 48–55
scoped

See also scopes
setting 71–74
and XML 158–159

varReader 335
varStatus 106–112
View Source

to see HTML code 5
votes

online survey 280
voting applications 280–291

W

waste-generator training,
hazardous 118

web addresses 117
web browsers

determining type of 66
inconsistencies 4

web pages
as reactive to requests 9

web programs
versus traditional programs 6

web request 9
web response 9
web.xml 351
WEB-INF directory 366
WHERE

SQL keyword 425
whitespace

in SQL 429
Wireless Markup Language 6, 12
World Wide Web

Consortium 437

X

<x:choose> 154, 162–164, 399
can’t use <c:when> 163

<x:forEach> 154, 164–169, 400,
413

nested iteration with 167
and XPath context 166

<x:if> 154, 160–162, 399
<x:otherwise> 154, 162–164, 399
<x:out> 154, 156–158, 398
<x:param> 174, 401
<x:parse> 154–156, 397

and acquiring documents 155
advanced techniques 338–343
and <c:import> 155
and source of documents 155
systemId 340
varDom 339

<x:set> 154, 158–159, 398
<x:transform> 154, 169–175,

400
Result objects 343
system identifiers 340
xmlSystemId 340
xsltSystemId 340

<x:when> 154, 162–164, 399
XHTML

as stricter HTML 6
XML

advanced JSTL support 330,
338–343

attributes 16
as basis for web content 6

More Java titles from Manning

JMX in Action

BENJAMIN G. SULLINS AND MARK B. WHIPPLE

ISBN 1930110561

360 pages, $39.95
Fall 2002

Java Development with Ant

ERIK HATCHER AND STEVE LOUGHRAN

ISBN 1930110588

672 pages, $44.95
Summer 2002

For ordering information visit www.manning.com

More Java titles from Manning

SCWCD Exam Study Kit:
Java Web Component Developer Certification

HANUMANT DESHMUKH AND JIGNESH MALAVIA

ISBN 1930110596

560 pages, includes CD ROM, $44.95
Summer 2002

Bitter Java

BRUCE A. TATE

ISBN 193011043X

368 pages, $44.95
Spring 2002

For ordering information visit www.manning.com

More Java titles from Manning

JDK 1.4 Tutorial

GREGORY M. TRAVIS

ISBN 1930110456

408 pages, $34.95
Spring 2002

Java 3D Programming

DANIEL SELMAN

ISBN 1930110359

400 pages, $49.95
Spring 2002

For ordering information visit www.manning.com

More Java titles from Manning

Instant Messaging in Java:
The Jabber Protocols

IAIN SHIGEOKA

ISBN 1930110464

400 pages, $39.95
Spring 2002

Web Development with Java Server Pages
Second edition

DUANE FIELDS, MARK A. KOLB, AND SHAWN BAYERN

ISBN 193011012X

800 pages, $44.95
November 2001

For ordering information visit www.manning.com

